Sample records for missense mutations causing

  1. Missense variants in plakophilin-2 in arrhythmogenic right ventricular cardiomyopathy patients--disease-causing or innocent bystanders?

    PubMed

    Christensen, Alex Hørby; Benn, Marianne; Tybjaerg-Hansen, Anne; Haunso, Stig; Svendsen, Jesper Hastrup

    2010-01-01

    Mutations in genes encoding desmosomal proteins have been linked to arrhythmogenic right ventricular cardiomyopathy/dysplasia (ARVC/D). We hypothesized that a Scandinavian ARVC/D population would have a different spectrum of plakophilin-2 (PKP2) mutations and that some of the reported missense mutations may not be pathogenic. We screened 53 unrelated patients fulfilling Task Force criteria for ARVC/D for mutations in PKP2 by direct sequencing. Seven different mutations were identified: two insertion/deletions (E329fsX352, P401fsX406), 1 splice site (2146-2A>T), 1 non-sense (R79X) and 4 missense mutations (Q62K in 2 patients, G489R, G673V) of undeterminable pathogeneity. None of these mutations was present in 650 controls. Five of the mutations were novel. Seven patients carried reported missense mutations (D26N, S140F, V587I); however, these mutations were identified in our healthy controls, although at a lower frequency. Evaluation of all reported missense mutations in PKP2 showed unclear pathogeneity of several reported mutations. Fifteen percent of Danish ARVC/D patients carried PKP2 mutations. Our finding of reported disease-causing mutations at a low frequency among healthy controls suggests that these variants are disease modifying but not directly disease causing. We recommend conservative interpretation of missense variants in PKP2, functional characterization and large-scale sequencing to clarify normal variation in the gene.

  2. AVPR2 variants and mutations in nephrogenic diabetes insipidus: review and missense mutation significance.

    PubMed

    Spanakis, Elias; Milord, Edrice; Gragnoli, Claudia

    2008-12-01

    Almost 90% of nephrogenic diabetes insipidus (NDI) is due to mutations in the arginine-vasopressin receptor 2 gene (AVPR2). We retrospectively examined all the published mutations/variants in AVPR2. We planned to perform a comprehensive review of all the AVPR2 mutations/variants and to test whether any amino acid change causing a missense mutation is significantly more or less common than others. We performed a Medline search and collected detailed information regarding all AVPR2 mutations and variants. We performed a frequency comparison between mutated and wild-type amino acids and codons. We predicted the mutation effect or reported it based on published in vitro studies. We also reported the ethnicity of each mutation/variant carrier. In summary, we identified 211 AVPR2 mutations which cause NDI in 326 families and 21 variants which do not cause NDI in 71 NDI families. We described 15 different types of mutations including missense, frameshift, inframe deletion, deletion, insertion, nonsense, duplication, splicing and combined mutations. The missense mutations represent the 55.83% of all the NDI published families. Arginine and tyrosine are significantly (P = 4.07E-08 and P = 3.27E-04, respectively) the AVPR2 most commonly mutated amino acids. Alanine and glutamate are significantly (P = 0.009 and P = 0.019, respectively) the least mutated AVPR2 amino acids. The spectrum of mutations varies from rare gene variants or polymorphisms not causing NDI to rare mutations causing NDI, among which arginine and tyrosine are the most common missense. The AVPR2 mutations are spread world-wide. Our study may serve as an updated review, comprehensive of all AVPR2 variants and specific gene locations. J. Cell. Physiol. 217: 605-617, 2008. (c) 2008 Wiley-Liss, Inc.

  3. In silico investigation of molecular effects caused by missense mutations in creatine transporter protein

    NASA Astrophysics Data System (ADS)

    Zhang, Zhe; Schwatz, Charles; Alexov, Emil

    2011-03-01

    Creatine transporter (CT) protein, which is encoded by SLC6A8 gene, is essential for taking up the creatine in the cell, which in turn plays a key role in the spatial and temporal maintenance of energy in skeletal and cardiac muscle cells. It was shown that some missense mutations in CT cause mental retardation, while others are harmless non-synonymous single nucleoside polymorphism (nsSNP). Currently fifteen missense mutations in CT are known, among which twelve are disease-causing. Sequence analysis reveals that there is no clear trend distinguishing disease-causing from harmless missense mutations. Because of that, we built 3D model of the CT using highly homologous template and use the model to investigate the effects of mutations of CT stability and hydrogen bond network. It is demonstrated that disease-causing mutations affect the folding free energy and ionization states of titratable group in much greater extend as compared with harmless mutations. Supported by grants from NLM, NIH, grant numbers 1R03LM009748 and 1R03LM009748-S1.

  4. De novo REEP2 missense mutation in pure hereditary spastic paraplegia.

    PubMed

    Roda, Ricardo H; Schindler, Alice B; Blackstone, Craig

    2017-05-01

    Alterations in proteins that regulate endoplasmic reticulum morphology are common causes of hereditary spastic paraplegia (SPG1-78, plus others). Mutations in the REEP1 gene that encodes an endoplasmic reticulum-shaping protein are well-known causes of SPG31, a common autosomal dominant spastic paraplegia. A closely-related gene, REEP2, is mutated in SPG72, with both autosomal and recessive inheritances. Here, we report a patient with a pure hereditary spastic paraplegia due to a de novo missense mutation (c.119T > G, p.Met40Arg) in REEP2 at a highly-conserved residue very close to another known pathogenic missense change. This represents only the second autosomal dominant SPG72 missense mutation reported.

  5. Common pathogenic effects of missense mutations in the P-type ATPase ATP13A2 (PARK9) associated with early-onset parkinsonism.

    PubMed

    Podhajska, Agata; Musso, Alessandra; Trancikova, Alzbeta; Stafa, Klodjan; Moser, Roger; Sonnay, Sarah; Glauser, Liliane; Moore, Darren J

    2012-01-01

    Mutations in the ATP13A2 gene (PARK9) cause autosomal recessive, juvenile-onset Kufor-Rakeb syndrome (KRS), a neurodegenerative disease characterized by parkinsonism. KRS mutations produce truncated forms of ATP13A2 with impaired protein stability resulting in a loss-of-function. Recently, homozygous and heterozygous missense mutations in ATP13A2 have been identified in subjects with early-onset parkinsonism. The mechanism(s) by which missense mutations potentially cause parkinsonism are not understood at present. Here, we demonstrate that homozygous F182L, G504R and G877R missense mutations commonly impair the protein stability of ATP13A2 leading to its enhanced degradation by the proteasome. ATP13A2 normally localizes to endosomal and lysosomal membranes in neurons and the F182L and G504R mutations disrupt this vesicular localization and promote the mislocalization of ATP13A2 to the endoplasmic reticulum. Heterozygous T12M, G533R and A746T mutations do not obviously alter protein stability or subcellular localization but instead impair the ATPase activity of microsomal ATP13A2 whereas homozygous missense mutations disrupt the microsomal localization of ATP13A2. The overexpression of ATP13A2 missense mutants in SH-SY5Y neural cells does not compromise cellular viability suggesting that these mutant proteins lack intrinsic toxicity. However, the overexpression of wild-type ATP13A2 may impair neuronal integrity as it causes a trend of reduced neurite outgrowth of primary cortical neurons, whereas the majority of disease-associated missense mutations lack this ability. Finally, ATP13A2 overexpression sensitizes cortical neurons to neurite shortening induced by exposure to cadmium or nickel ions, supporting a functional interaction between ATP13A2 and heavy metals in post-mitotic neurons, whereas missense mutations influence this sensitizing effect. Collectively, our study provides support for common loss-of-function effects of homozygous and heterozygous missense mutations in ATP13A2 associated with early-onset forms of parkinsonism.

  6. Common Pathogenic Effects of Missense Mutations in the P-Type ATPase ATP13A2 (PARK9) Associated with Early-Onset Parkinsonism

    PubMed Central

    Podhajska, Agata; Musso, Alessandra; Trancikova, Alzbeta; Stafa, Klodjan; Moser, Roger; Sonnay, Sarah; Glauser, Liliane; Moore, Darren J.

    2012-01-01

    Mutations in the ATP13A2 gene (PARK9) cause autosomal recessive, juvenile-onset Kufor-Rakeb syndrome (KRS), a neurodegenerative disease characterized by parkinsonism. KRS mutations produce truncated forms of ATP13A2 with impaired protein stability resulting in a loss-of-function. Recently, homozygous and heterozygous missense mutations in ATP13A2 have been identified in subjects with early-onset parkinsonism. The mechanism(s) by which missense mutations potentially cause parkinsonism are not understood at present. Here, we demonstrate that homozygous F182L, G504R and G877R missense mutations commonly impair the protein stability of ATP13A2 leading to its enhanced degradation by the proteasome. ATP13A2 normally localizes to endosomal and lysosomal membranes in neurons and the F182L and G504R mutations disrupt this vesicular localization and promote the mislocalization of ATP13A2 to the endoplasmic reticulum. Heterozygous T12M, G533R and A746T mutations do not obviously alter protein stability or subcellular localization but instead impair the ATPase activity of microsomal ATP13A2 whereas homozygous missense mutations disrupt the microsomal localization of ATP13A2. The overexpression of ATP13A2 missense mutants in SH-SY5Y neural cells does not compromise cellular viability suggesting that these mutant proteins lack intrinsic toxicity. However, the overexpression of wild-type ATP13A2 may impair neuronal integrity as it causes a trend of reduced neurite outgrowth of primary cortical neurons, whereas the majority of disease-associated missense mutations lack this ability. Finally, ATP13A2 overexpression sensitizes cortical neurons to neurite shortening induced by exposure to cadmium or nickel ions, supporting a functional interaction between ATP13A2 and heavy metals in post-mitotic neurons, whereas missense mutations influence this sensitizing effect. Collectively, our study provides support for common loss-of-function effects of homozygous and heterozygous missense mutations in ATP13A2 associated with early-onset forms of parkinsonism. PMID:22768177

  7. Severe Clinical Course in a Patient with Congenital Amegakaryocytic Thrombocytopenia Due to a Missense Mutation of the c-MPL Gene.

    PubMed

    Ok Bozkaya, İkbal; Yaralı, Neşe; Işık, Pamir; Ünsal Saç, Rukiye; Tavil, Betül; Tunç, Bahattin

    2015-06-01

    Congenital amegakaryocytic thrombocytopenia (CAMT) generally begins at birth with severe thrombocytopenia and progresses to pancytopenia. It is caused by mutations in the thrombopoietin receptor gene, the myeloproliferative leukemia virus oncogene (c-MPL). The association between CAMT and c-MPL mutation type has been reported in the literature. Patients with CAMT have been categorized according to their clinical symptoms caused by different mutations. Missense mutations of c-MPL have been classified as type II and these patients have delayed onset of bone marrow failure compared to type I patients. Here we present a girl with severe clinical course of CAMT II having a missense mutation in exon 4 of the c-MPL gene who was admitted to our hospital with intracranial hemorrhage during the newborn period.

  8. A Novel Missense Mutation p.Gly162Glu of the Gene MYL2 Involved in Hypertrophic Cardiomyopathy: A Pedigree Analysis of a Proband.

    PubMed

    Renaudin, Pauline; Janin, Alexandre; Millat, Gilles; Chevalier, Philippe

    2018-04-01

    Hypertrophic cardiomyopathy (HCM), a common and clinically heterogeneous disease characterized by unexplained ventricular myocardial hypertrophy, is mostly caused by mutations in sarcomeric genes. Identifying the genetic cause is important for management, therapy, and genetic counseling. A molecular diagnosis was performed on a 51-year-old woman diagnosed with HCM using a next-generation sequencing workflow based on a panel designed for sequencing the most prevalent cardiomyopathy-causing genes. Segregation analysis was performed on the woman's family. A novel myosin regulatory light chain (MYL2) missense variant, NM_000432.3:c485G>A, p.Gly162Glu, was identified and firstly considered as a putative pathogenic mutation. Among the 27 family members tested, 16 were carriers for the MYL2-p.Gly162Glu mutation, of whom 12 with the phenotype were positive. None of the 11 family members without mutation had cardiomyopathy. Genetic analysis combined with a segregation study allowed us to classify this novel MYL2 variation, p.Gly162Glu, as a novel pathogenic mutation leading to a familial form of HCM. Due to absence of fast in vitro approaches to evaluate the functional impact of missense variants on HCM-causing genes, segregation studies remain, when possible, the easiest approach to evaluate the putative pathogenicity of novel gene variants, more particularly missense ones.

  9. Systematic Review of Cysteine-Sparing NOTCH3 Missense Mutations in Patients with Clinical Suspicion of CADASIL.

    PubMed

    Muiño, Elena; Gallego-Fabrega, Cristina; Cullell, Natalia; Carrera, Caty; Torres, Nuria; Krupinski, Jurek; Roquer, Jaume; Montaner, Joan; Fernández-Cadenas, Israel

    2017-09-13

    CADASIL (cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy) is caused by mutations in the NOTCH3 gene, affecting the number of cysteines in the extracellular domain of the receptor, causing protein misfolding and receptor aggregation. The pathogenic role of cysteine-sparing NOTCH3 missense mutations in patients with typical clinical CADASIL syndrome is unknown. The aim of this article is to describe these mutations to clarify if any could be potentially pathogenic. Articles on cysteine-sparing NOTCH3 missense mutations in patients with clinical suspicion of CADASIL were reviewed. Mutations were considered potentially pathogenic if patients had: (a) typical clinical CADASIL syndrome; (b) diffuse white matter hyperintensities; (c) the 33 NOTCH3 exons analyzed; (d) mutations that were not polymorphisms; and (e) Granular osmiophilic material (GOM) deposits in the skin biopsy. Twenty-five different mutations were listed. Four fulfill the above criteria: p.R61W; p.R75P; p.D80G; and p.R213K. Patients carrying these mutations had typical clinical CADASIL syndrome and diffuse white matter hyperintensities, mostly without anterior temporal pole involvement. Cysteine-sparing NOTCH3 missense mutations are associated with typical clinical CADASIL syndrome and typical magnetic resonance imaging (MRI) findings, although with less involvement of the anterior temporal lobe. Hence, these mutations should be further studied to confirm their pathological role in CADASIL.

  10. Mapping disease-related missense mutations in the immunoglobulin-like fold domain of lamin A/C reveals novel genotype-phenotype associations for laminopathies.

    PubMed

    Scharner, Juergen; Lu, Hui-Chun; Fraternali, Franca; Ellis, Juliet A; Zammit, Peter S

    2014-06-01

    Mutations in A-type nuclear lamins cause laminopathies. However, genotype-phenotype correlations using the 340 missense mutations within the LMNA gene are unclear: partially due to the limited availability of three-dimensional structure. The immunoglobulin (Ig)-like fold domain has been solved, and using bioinformatics tools (including Polyphen-2, Fold X, Parameter OPtimized Surfaces, and PocketPicker) we characterized 56 missense mutations for position, surface exposure, change in charge and effect on Ig-like fold stability. We find that 21 of the 27 mutations associated with a skeletal muscle phenotype are distributed throughout the Ig-like fold, are nonsurface exposed and predicted to disrupt overall stability of the Ig-like fold domain. Intriguingly, the remaining 6 mutations clustered, had higher surface exposure, and did not affect stability. The majority of 9 lipodystrophy or 10 premature aging syndrome mutations also did not disrupt Ig-like fold domain stability and were surface exposed and clustered in distinct regions that overlap predicted binding pockets. Although buried, the 10 cardiac mutations had no other consistent properties. Finally, most lipodystrophy and premature aging mutations resulted in a -1 net charge change, whereas skeletal muscle mutations caused no consistent net charge changes. Since premature aging, lipodystrophy and the subset of 6 skeletal muscle mutations cluster tightly in distinct, charged regions, they likely affect lamin A/C -protein/DNA/RNA interactions: providing a consistent genotype-phenotype relationship for mutations in this domain. Thus, this subgroup of skeletal muscle laminopathies that we term the 'Skeletal muscle cluster', may have a distinct pathological mechanism. These novel associations refine the ability to predict clinical features caused by certain LMNA missense mutations. © 2013 Wiley Periodicals, Inc.

  11. C1q deficiency: identification of a novel missense mutation and treatment with fresh frozen plasma.

    PubMed

    Topaloglu, Rezan; Taskiran, Ekim Z; Tan, Cagman; Erman, Baran; Ozaltin, Fatih; Sanal, Ozden

    2012-07-01

    A Turkish patient with C1q deficiency presented with a lupus-like disease, and a new missense mutation at A chain is presented. To characterize the genetic defect, all exons of the genes for the A, B, and C chains of C1q were sequenced in the patient. This revealed a missense mutation in the collagen-like domain of the A chain, p.Gly31 Arg. No other sequence variants, including the common silent mutations, were found in the three chains. Exon 1 of the C1q A chain was sequenced in 105 samples from healthy controls for this particular mutation. None of these carried the mutation. The C1q-deficient patient was treated with fresh frozen plasma infusions. Our findings showed that Turkish patients may have different mutations than the previously described common mutation, and once again, not only nonsense mutations but also missense mutations cause hereditary C1q deficiency. Regular fresh frozen plasma infusions to the patient have been clinically and therapeutically successful.

  12. In Silico and In Vitro Investigations of the Mutability of Disease-Causing Missense Mutation Sites in Spermine Synthase

    PubMed Central

    Zhang, Zhe; Norris, Joy; Schwartz, Charles; Alexov, Emil

    2011-01-01

    Background Spermine synthase (SMS) is a key enzyme controlling the concentration of spermidine and spermine in the cell. The importance of SMS is manifested by the fact that single missense mutations were found to cause Snyder-Robinson Syndrome (SRS). At the same time, currently there are no non-synonymous single nucleoside polymorphisms, nsSNPs (harmless mutations), found in SMS, which may imply that the SMS does not tolerate amino acid substitutions, i.e. is not mutable. Methodology/Principal Findings To investigate the mutability of the SMS, we carried out in silico analysis and in vitro experiments of the effects of amino acid substitutions at the missense mutation sites (G56, V132 and I150) that have been shown to cause SRS. Our investigation showed that the mutation sites have different degree of mutability depending on their structural micro-environment and involvement in the function and structural integrity of the SMS. It was found that the I150 site does not tolerate any mutation, while V132, despite its key position at the interface of SMS dimer, is quite mutable. The G56 site is in the middle of the spectra, but still quite sensitive to charge residue replacement. Conclusions/Significance The performed analysis showed that mutability depends on the detail of the structural and functional factors and cannot be predicted based on conservation of wild type properties alone. Also, harmless nsSNPs can be expected to occur even at sites at which missense mutations were found to cause diseases. PMID:21647366

  13. Do Structural Missense Variants in the ATM Gene Found in Women With Breast Cancer Cause Breast Cancer in Knock-in Mouse Strains?

    DTIC Science & Technology

    2006-04-01

    W81XWH-05-1-0282 TITLE: Do Structural Missense Variants in the ATM Gene Found in Women with Breast Cancer Cause Breast Cancer in "Knock-in...5a. CONTRACT NUMBER Do Structural Missense Variants in the ATM Gene Found in Women with Breast Cancer Cause Breast Cancer in "Knock-in" Mouse...human cohort-specific missense mutations will develop breast cancer with dominant inheritance in a subset of animals. It also is hypothesized that

  14. Analysis of human MutS homolog 2 missense mutations in patients with colorectal cancer.

    PubMed

    Zhang, Xiaomei; Chen, Senqing; Yu, Jun; Zhang, Yuanying; Lv, Min; Zhu, Ming

    2018-05-01

    Germline mutations of DNA mismatch repair gene human MutS homolog 2 ( hMSH2 ) are associated with hereditary nonpolyposis colorectal cancer (HNPCC). A total of one-third of these mutations are missense mutations. Several hMSH2 missense mutations have been identified in patients in East Asia, although their function has not been evaluated. In the present study, the role of ten hMSH2 missense mutations in the pathogenesis of colorectal cancer was examined. The hMSH2/hMSH6 protein interaction system was established using yeast two-hybrid screening. Next, the missense mutations were analyzed for their ability to affect the protein interaction of hMSH2 with its partner hMSH6. Additionally, the Sorting Intolerant from Tolerant tool was applied to predict the effects of different amino acid substitutions. The results demonstrated that certain hMSH2 mutations (L173R and C199R) caused a significant functional change in the human hMutSα complex and were identified to be pathological mutations. The Y408C, D603Y, P696L and S703Y mutations partially affected interaction and partly affected the function of hMSH2. The remaining four variants, T8M, I169V, A370T and Q419K, may be non-functional polymorphisms or could affect protein function through other molecular mechanisms. The present study evaluated the functional consequences of previously unknown missense mutations in hMSH2 , and may contribute to improved clinical diagnosis and mutation screening of HNPCC.

  15. A new missense mutation in the BCKDHB gene causes the classic form of maple syrup urine disease (MSUD).

    PubMed

    Miryounesi, Mohammad; Ghafouri-Fard, Soudeh; Goodarzi, Hamedreza; Fardaei, Majid

    2015-05-01

    Maple syrup urine disease (MSUD) is an autosomal recessive metabolic disease caused by mutations in the BCKDHA, BCKDHB, DBT and DLD genes, which encode the E1α, E1β, E2 and E3 subunits of the branched chain α ketoacid dehydrogenase (BCKD) complex, respectively. This complex is involved in the metabolism of branched-chain amino acids. In this study, we analyzed the DNA sequences of BCKDHA and BCKDHB genes in an infant who suffered from MSUD and died at the age of 6 months. We found a new missense mutation in exon 5 of BCKDHB gene (c.508C>T). The heterozygosity of the parents for the mentioned nucleotide change was confirmed by direct sequence analysis of the corresponding segment. Another missense mutation has been found in the same codon previously and shown by in silico analyses to be deleterious. This report provides further evidence that this amino acid change can cause classic MSUD.

  16. Parkinson-causing α-synuclein missense mutations shift native tetramers to monomers as a mechanism for disease initiation

    PubMed Central

    Dettmer, Ulf; Newman, Andrew J.; Soldner, Frank; Luth, Eric S.; Kim, Nora C.; von Saucken, Victoria E.; Sanderson, John B.; Jaenisch, Rudolf; Bartels, Tim; Selkoe, Dennis

    2015-01-01

    β-Sheet-rich α-synuclein (αS) aggregates characterize Parkinson's disease (PD). αS was long believed to be a natively unfolded monomer, but recent work suggests it also occurs in α-helix-rich tetramers. Crosslinking traps principally tetrameric αS in intact normal neurons, but not after cell lysis, suggesting a dynamic equilibrium. Here we show that freshly biopsied normal human brain contains abundant αS tetramers. The PD-causing mutation A53T decreases tetramers in mouse brain. Neurons derived from an A53T patient have decreased tetramers. Neurons expressing E46K do also, and adding 1-2 E46K-like mutations into the canonical αS repeat motifs (KTKEGV) further reduces tetramers, decreases αS solubility and induces neurotoxicity and round inclusions. The other three fPD missense mutations likewise decrease tetramer:monomer ratios. The destabilization of physiological tetramers by PD-causing missense mutations and the neurotoxicity and inclusions induced by markedly decreasing tetramers suggest that decreased α-helical tetramers and increased unfolded monomers initiate pathogenesis. Tetramer-stabilizing compounds should prevent this. PMID:26076669

  17. A Novel Missense Mutation in Peripheral Myelin Protein-22 Causes Charcot-Marie-Tooth Disease.

    PubMed

    Li, Li-Xi; Dong, Hai-Lin; Xiao, Bao-Guo; Wu, Zhi-Ying

    2017-08-05

    Charcot-Marie-Tooth disease (CMT) is the most common inherited peripheral neuropathy. A great number of causative genes have been described in CMT, and among them, the heterozygous duplication of peripheral myelin protein-22 (PMP22) is the major cause. Although the missense mutation in PMP22 is rarely reported, it has been demonstrated to be associated with CMT. This study described a novel missense mutation of PMP22 in a Chinese family with CMT phenotype. Targeted next-generation sequencing (NGS) was used to screen the causative genes in a family featured with an autosomal dominant demyelinating form of CMT. The potential variants identified by targeted NGS were verified by Sanger sequencing and classified according to the American College of Medical Genetics and Genomics standards and guidelines. Further cell transfection studies were performed to characterize the function of the novel variant. Using targeted NGS, a novel heterozygous missense variant in PMP22 (c.320G>A, p.G107D) was identified. In vitro cell functional studies revealed that mutant PMP22 protein carrying p.G107D mutation lost the ability to reach the plasma membrane, was mainly retained in the endoplasmic reticulum, and induced cell apoptosis. This study supported the notion that missense mutations in PMP22 give rise to a CMT phenotype, possibly through a toxic gain-of-function mechanism.

  18. Patients with autosomal nephrogenic diabetes insipidus homozygous for mutations in the aquaporin 2 water-channel gene.

    PubMed Central

    van Lieburg, A. F.; Verdijk, M. A.; Knoers, V. V.; van Essen, A. J.; Proesmans, W.; Mallmann, R.; Monnens, L. A.; van Oost, B. A.; van Os, C. H.; Deen, P. M.

    1994-01-01

    Mutations in the X-chromosomal V2 receptor gene are known to cause nephrogenic diabetes insipidus (NDI). Besides the X-linked form, an autosomal mode of inheritance has been described. Recently, mutations in the autosomal gene coding for water-channel aquaporin 2 (AQP2) of the renal collecting duct were reported in an NDI patient. In the present study, missense mutations and a single nucleotide deletion in the aquaporin 2 gene of three NDI patients from consanguineous matings are described. Expression studies in Xenopus oocytes showed that the missense AQP2 proteins are nonfunctional. These results prove that mutations in the AQP2 gene cause autosomal recessive NDI. PMID:7524315

  19. Atypical Clinical Presentation of Xeroderma Pigmentosum in a Patient Harboring a Novel Missense Mutation in the XPC Gene: The Importance of Clinical Suspicion.

    PubMed

    Meneses, Marina; Chavez-Bourgeois, Marion; Badenas, Celia; Villablanca, Salvador; Aguilera, Paula; Bennàssar, Antoni; Alos, Llucia; Puig, Susana; Malvehy, Josep; Carrera, Cristina

    2015-01-01

    Xeroderma pigmentosum (XP) is a genodermatosis caused by abnormal DNA repair. XP complementation group C (XPC) is the most frequent type in Mediterranean countries. We describe a case with a novel mutation in the XPC gene. A healthy Caucasian male patient was diagnosed with multiple primary melanomas. Digital follow-up and molecular studies were carried out. During digital follow-up 8 more additional melanomas were diagnosed. Molecular studies did not identify mutations in CDKN2A, CDK4 or MITF genes. Two heterozygous mutations in the XPC gene were detected: c.2287delC (p.Leu763Cysfs*4) frameshift and c.2212A>G (p.Thr738Ala) missense mutations. The p.Thr738Ala missense mutation has not been previously described. Missense mutations in the XPC gene may allow partial functionality that could explain this unusual late onset XP. Atypical clinical presentation of XPC could be misdiagnosed when genetic aberrations allow partial DNA repair capacity. © 2015 S. Karger AG, Basel.

  20. Recessive myosin myopathy with external ophthalmoplegia associated with MYH2 mutations.

    PubMed

    Tajsharghi, Homa; Hammans, Simon; Lindberg, Christopher; Lossos, Alexander; Clarke, Nigel F; Mazanti, Ingrid; Waddell, Leigh B; Fellig, Yakov; Foulds, Nicola; Katifi, Haider; Webster, Richard; Raheem, Olayinka; Udd, Bjarne; Argov, Zohar; Oldfors, Anders

    2014-06-01

    Myosin myopathies comprise a group of inherited diseases caused by mutations in myosin heavy chain (MyHC) genes. Homozygous or compound heterozygous truncating MYH2 mutations have been demonstrated to cause recessive myopathy with ophthalmoplegia, mild-to-moderate muscle weakness and complete lack of type 2A muscle fibers. In this study, we describe for the first time the clinical and morphological characteristics of recessive myosin IIa myopathy associated with MYH2 missense mutations. Seven patients of five different families with a myopathy characterized by ophthalmoplegia and mild-to-moderate muscle weakness were investigated. Muscle biopsy was performed to study morphological changes and MyHC isoform expression. Five of the patients were homozygous for MYH2 missense mutations, one patient was compound heterozygous for a missense and a nonsense mutation and one patient was homozygous for a frame-shift MYH2 mutation. Muscle biopsy demonstrated small or absent type 2A muscle fibers and reduced or absent expression of the corresponding MyHC IIa transcript and protein. We conclude that mild muscle weakness and ophthalmoplegia in combination with muscle biopsy demonstrating small or absent type 2A muscle fibers are the hallmark of recessive myopathy associated with MYH2 mutations.

  1. Mouse models of two missense mutations in actin-binding domain 1 of dystrophin associated with Duchenne or Becker muscular dystrophy.

    PubMed

    McCourt, Jackie L; Talsness, Dana M; Lindsay, Angus; Arpke, Robert W; Chatterton, Paul D; Nelson, D'anna M; Chamberlain, Christopher M; Olthoff, John T; Belanto, Joseph J; McCourt, Preston M; Kyba, Michael; Lowe, Dawn A; Ervasti, James M

    2018-02-01

    Missense mutations in the dystrophin protein can cause Duchenne muscular dystrophy (DMD) or Becker muscular dystrophy (BMD) through an undefined pathomechanism. In vitro studies suggest that missense mutations in the N-terminal actin-binding domain (ABD1) cause protein instability, and cultured myoblast studies reveal decreased expression levels that can be restored to wild-type with proteasome inhibitors. To further elucidate the pathophysiology of missense dystrophin in vivo, we generated two transgenic mdx mouse lines expressing L54R or L172H mutant dystrophin, which correspond to missense mutations identified in human patients with DMD or BMD, respectively. Our biochemical, histologic and physiologic analysis of the L54R and L172H mice show decreased levels of dystrophin which are proportional to the phenotypic severity. Proteasome inhibitors were ineffective in both the L54R and L172H mice, yet mice homozygous for the L172H transgene were able to express even higher levels of dystrophin which caused further improvements in muscle histology and physiology. Given that missense dystrophin is likely being degraded by the proteasome but whole body proteasome inhibition was not possible, we screened for ubiquitin-conjugating enzymes involved in targeting dystrophin to the proteasome. A myoblast cell line expressing L54R mutant dystrophin was screened with an siRNA library targeting E1, E2 and E3 ligases which identified Amn1, FBXO33, Zfand5 and Trim75. Our study establishes new mouse models of dystrophinopathy and identifies candidate E3 ligases that may specifically regulate dystrophin protein turnover in vivo. © The Author(s) 2017. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  2. A novel missense HGD gene mutation, K57N, in a patient with alkaptonuria.

    PubMed

    Grasko, Jonathan M; Hooper, Amanda J; Brown, Jeffrey W; McKnight, C James; Burnett, John R

    2009-05-01

    Alkaptonuria is a rare recessive disorder of phenylalanine/tyrosine metabolism due to a defect in the enzyme homogentisate 1,2-dioxygenase (HGD) caused by mutations in the HGD gene. We report the case of a 38 year-old male with known alkaptonuria who was referred to an adult metabolic clinic after initially presenting to an emergency department with renal colic and subsequently passing black ureteric calculi. He complained of severe debilitating lower back pain, worsening over the last few years. A CT scan revealed marked degenerative changes and severe narrowing of the disc spaces along the entire lumbar spine. Sequencing of the HGD gene revealed that he was a compound heterozygote for a previously described missense mutation in exon 13 (G360R) and a novel missense mutation in exon 3 (K57N). Lys(57) is conserved among species and mutation of this residue is predicted to affect HGD protein function by interfering with substrate traffic at the active site. In summary, we describe an alkaptonuric patient and report a novel missense HGD mutation, K57N.

  3. BTKbase, mutation database for X-linked agammaglobulinemia (XLA).

    PubMed Central

    Vihinen, M; Brandau, O; Brandén, L J; Kwan, S P; Lappalainen, I; Lester, T; Noordzij, J G; Ochs, H D; Ollila, J; Pienaar, S M; Riikonen, P; Saha, B K; Smith, C I

    1998-01-01

    X-linked agammaglobulinemia (XLA) is an immunodeficiency caused by mutations in the gene coding for Bruton's agammaglobulinemia tyrosine kinase (BTK). A database (BTKbase) of BTK mutations has been compiled and the recent update lists 463 mutation entries from 406 unrelated families showing 303 unique molecular events. In addition to mutations, the database also lists variants or polymorphisms. Each patient is given a unique patient identity number (PIN). Information is included regarding the phenotype including symptoms. Mutations in all the five domains of BTK have been noticed to cause the disease, the most common event being missense mutations. The mutations appear almost uniformly throughout the molecule and frequently affect CpG sites that code for arginine residues. The putative structural implications of all the missense mutations are given in the database. The improved version of the registry having a number of new features is available at http://www. helsinki.fi/science/signal/btkbase.html PMID:9399844

  4. Novel USH2A mutations in Israeli patients with retinitis pigmentosa and Usher syndrome type 2.

    PubMed

    Kaiserman, Nadia; Obolensky, Alexey; Banin, Eyal; Sharon, Dror

    2007-02-01

    To identify USH2A mutations in Israeli patients with autosomal-recessive Usher syndrome type 2 (USH2) and retinitis pigmentosa (RP). Patients from 95 families with RP and 4 with USH2 were clinically evaluated. USH2A exons 2-72 were scanned for mutations using single-strand conformation and sequencing analyses. The frequency of novel missense changes was determined in patients and controls using restriction endonucleases. The analysis revealed 3 USH2A mutations, 2 of which are novel, in 2 families with USH2 and a large family (MOL0051) with both USH2 and RP. Compound heterozygotes for 2 null mutations (Thr80fs and Arg737stop) in MOL0051 suffered from USH2 while compound heterozygotes for 1 of the null mutations and a novel missense mutation (Gly4674Arg) had nonsyndromic RP. Our results support the involvement of USH2A in nonsyndromic RP and we report here of a second, novel, missense mutation in this gene causing autosomal-recessive RP. Possible involvement of USH2A should be considered in the molecular genetic evaluation of patients with autosomal-recessive RP. Understanding the mechanism by which different USH2A mutations cause either USH2 or RP may assist in the development of novel therapeutic approaches.

  5. Structural Impact of Three Parkinsonism-Associated Missense Mutations on Human DJ-1

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lakshminarasimhan, M.; Maldonado, M.T.; Zhou, W.

    2009-05-20

    A number of missense mutations in the oxidative stress response protein DJ-1 are implicated in rare forms of familial Parkinsonism. The best-characterized Parkinsonian DJ-1 missense mutation, L166P, disrupts homodimerization and results in a poorly folded protein. The molecular basis by which the other Parkinsonism-associated mutations disrupt the function of DJ-1, however, is incompletely understood. In this study we show that three different Parkinsonism-associated DJ-1 missense mutations (A104T, E163K, and M26I) reduce the thermal stability of DJ-1 in solution by subtly perturbing the structure of DJ-1 without causing major folding defects or loss of dimerization. Atomic resolution X-ray crystallography shows thatmore » the A104T substitution introduces water and a discretely disordered residue into the core of the protein, E163K disrupts a key salt bridge with R145, and M26I causes packing defects in the core of the dimer. The deleterious effect of each Parkinsonism-associated mutation on DJ-1 is dissected by analysis of engineered substitutions (M26L, A104V, and E163K/R145E) that partially alleviate each of the defects introduced by the A104T, E163K and M26I mutations. In total, our results suggest that the protective function of DJ-1 can be compromised by diverse perturbations in its structural integrity, particularly near the junctions of secondary structural elements.« less

  6. A missense mutation in ALDH1A3 causes isolated microphthalmia/anophthalmia in nine individuals from an inbred Muslim kindred.

    PubMed

    Mory, Adi; Ruiz, Francesc X; Dagan, Efrat; Yakovtseva, Evgenia A; Kurolap, Alina; Parés, Xavier; Farrés, Jaume; Gershoni-Baruch, Ruth

    2014-03-01

    Nine affected individuals with isolated anophthalmia/microphthalmia from a large Muslim-inbred kindred were investigated. Assuming autosomal-recessive mode of inheritance, whole-genome linkage analysis, on DNA samples from four affected individuals, was undertaken. Homozygosity mapping techniques were employed and a 1.5-Mbp region, homozygous in all affected individuals, was delineated. The region contained nine genes, one of which, aldehyde dehydrogenase 1 (ALDH1A3), was a clear candidate. This gene seems to encode a key enzyme in the formation of a retinoic-acid gradient along the dorsoventral axis during an early eye development and the development of the olfactory system. Sanger sequence analysis revealed a missense mutation, causing a substitution of valine (Val) to methionine (Met) at position 71. Analyzing the p.Val71Met missense mutation using standard open access software (MutationTaster online, PolyPhen, SIFT/PROVEAN) predicts this variant to be damaging. Enzymatic activity, studied in vitro, showed no changes between the mutated and the wild-type ALDH1A3 protein.

  7. A missense mutation in ALDH1A3 causes isolated microphthalmia/anophthalmia in nine individuals from an inbred Muslim kindred

    PubMed Central

    Mory, Adi; Ruiz, Francesc X; Dagan, Efrat; Yakovtseva, Evgenia A; Kurolap, Alina; Parés, Xavier; Farrés, Jaume; Gershoni-Baruch, Ruth

    2014-01-01

    Nine affected individuals with isolated anophthalmia/microphthalmia from a large Muslim-inbred kindred were investigated. Assuming autosomal-recessive mode of inheritance, whole-genome linkage analysis, on DNA samples from four affected individuals, was undertaken. Homozygosity mapping techniques were employed and a 1.5-Mbp region, homozygous in all affected individuals, was delineated. The region contained nine genes, one of which, aldehyde dehydrogenase 1 (ALDH1A3), was a clear candidate. This gene seems to encode a key enzyme in the formation of a retinoic-acid gradient along the dorsoventral axis during an early eye development and the development of the olfactory system. Sanger sequence analysis revealed a missense mutation, causing a substitution of valine (Val) to methionine (Met) at position 71. Analyzing the p.Val71Met missense mutation using standard open access software (MutationTaster online, PolyPhen, SIFT/PROVEAN) predicts this variant to be damaging. Enzymatic activity, studied in vitro, showed no changes between the mutated and the wild-type ALDH1A3 protein. PMID:23881059

  8. A novel KCNQ4 one-base deletion in a large pedigree with hearing loss: implication for the genotype-phenotype correlation.

    PubMed

    Kamada, Fumiaki; Kure, Shigeo; Kudo, Takayuki; Suzuki, Yoichi; Oshima, Takeshi; Ichinohe, Akiko; Kojima, Kanako; Niihori, Tetsuya; Kanno, Junko; Narumi, Yoko; Narisawa, Ayumi; Kato, Kumi; Aoki, Yoko; Ikeda, Katsuhisa; Kobayashi, Toshimitsu; Matsubara, Yoichi

    2006-01-01

    Autosomal-dominant, nonsyndromic hearing impairment is clinically and genetically heterogeneous. We encountered a large Japanese pedigree in which nonsyndromic hearing loss was inherited in an autosomal-dominant fashion. A genome-wide linkage study indicated linkage to the DFNA2 locus on chromosome 1p34. Mutational analysis of KCNQ4 encoding a potassium channel revealed a novel one-base deletion in exon 1, c.211delC, which generated a profoundly truncated protein without transmembrane domains (p.Q71fsX138). Previously, six missense mutations and one 13-base deletion, c.211_223del, had been reported in KCNQ4. Patients with the KCNQ4 missense mutations had younger-onset and more profound hearing loss than patients with the 211_223del mutation. In our current study, 12 individuals with the c.211delC mutation manifested late-onset and pure high-frequency hearing loss. Our results support the genotype-phenotype correlation that the KCNQ4 deletions are associated with later-onset and milder hearing impairment than the missense mutations. The phenotypic difference may be caused by the difference in pathogenic mechanisms: haploinsufficiency in deletions and dominant-negative effect in missense mutations.

  9. MAFA missense mutation causes familial insulinomatosis and diabetes mellitus

    PubMed Central

    Iacovazzo, Donato; Flanagan, Sarah E.; Walker, Emily; Quezado, Rosana; de Sousa Barros, Fernando Antonio; Johnson, Matthew B.; Wakeling, Matthew; Brändle, Michael; Guo, Min; Dang, Mary N.; Gabrovska, Plamena; Niederle, Bruno; Christ, Emanuel; Jenni, Stefan; Sipos, Bence; Nieser, Maike; Frilling, Andrea; Dhatariya, Ketan; Konukiewitz, Björn; Klöppel, Günter; Stein, Roland; Korbonits, Márta; Ellard, Sian

    2018-01-01

    The β-cell–enriched MAFA transcription factor plays a central role in regulating glucose-stimulated insulin secretion while also demonstrating oncogenic transformation potential in vitro. No disease-causing MAFA variants have been previously described. We investigated a large pedigree with autosomal dominant inheritance of diabetes mellitus or insulinomatosis, an adult-onset condition of recurrent hyperinsulinemic hypoglycemia caused by multiple insulin-secreting neuroendocrine tumors of the pancreas. Using exome sequencing, we identified a missense MAFA mutation (p.Ser64Phe, c.191C>T) segregating with both phenotypes of insulinomatosis and diabetes. This mutation was also found in a second unrelated family with the same clinical phenotype, while no germline or somatic MAFA mutations were identified in nine patients with sporadic insulinomatosis. In the two families, insulinomatosis presented more frequently in females (eight females/two males) and diabetes more often in males (12 males/four females). Four patients from the index family, including two homozygotes, had a history of congenital cataract and/or glaucoma. The p.Ser64Phe mutation was found to impair phosphorylation within the transactivation domain of MAFA and profoundly increased MAFA protein stability under both high and low glucose concentrations in β-cell lines. In addition, the transactivation potential of p.Ser64Phe MAFA in β-cell lines was enhanced compared with wild-type MAFA. In summary, the p.Ser64Phe missense MAFA mutation leads to familial insulinomatosis or diabetes by impacting MAFA protein stability and transactivation ability. The human phenotypes associated with the p.Ser64Phe MAFA missense mutation reflect both the oncogenic capacity of MAFA and its key role in islet β-cell activity. PMID:29339498

  10. Null missense ABCR (ABCA4) mutations in a family with stargardt disease and retinitis pigmentosa.

    PubMed

    Shroyer, N F; Lewis, R A; Yatsenko, A N; Lupski, J R

    2001-11-01

    To determine the type of ABCR mutations that segregate in a family that manifests both Stargardt disease (STGD) and retinitis pigmentosa (RP), and the functional consequences of the underlying mutations. Direct sequencing of all 50 exons and flanking intronic regions of ABCR was performed for the STGD- and RP-affected relatives. RNA hybridization, Western blot analysis, and azido-adenosine triphosphate (ATP) labeling was used to determine the effect of disease-associated ABCR mutations in an in vitro assay system. Compound heterozygous missense mutations were identified in patients with STGD and RP. STGD-affected individual AR682-03 was compound heterozygous for the mutation 2588G-->C and a complex allele, [W1408R; R1640W]. RP-affected individuals AR682-04 and-05 were compound heterozygous for the complex allele [W1408R; R1640W] and the missense mutation V767D. Functional analysis of the mutation V767D by Western blot and ATP binding revealed a severe reduction in protein expression. In vitro analysis of ABCR protein with the mutations W1408R and R1640W showed a moderate effect of these individual mutations on expression and ATP-binding; the complex allele [W1408R; R1640W] caused a severe reduction in protein expression. These data reveal that missense ABCR mutations may be associated with RP. Functional analysis reveals that the RP-associated missense ABCR mutations are likely to be functionally null. These studies of the complex allele W1408R; R1640W suggest a synergistic effect of the individual mutations. These data are congruent with a model in which RP is associated with homozygous null mutations and with the notion that severity of retinal disease is inversely related to residual ABCR activity.

  11. The Promiscuous sumA Missense Suppressor from Salmonella enterica Has an Intriguing Mechanism of Action

    PubMed Central

    Cole, Ashley E.; Hani, Fatmah M.; Altman, Ronni; Meservy, Megan; Roth, John R.; Altman, Elliot

    2017-01-01

    While most missense suppressors have very narrow specificities and only suppress the allele against which they were isolated, the sumA missense suppressor from Salmonella enterica serovar Typhimurium is a promiscuous or broad-acting missense suppressor that suppresses numerous missense mutants. The sumA missense suppressor was identified as a glyV tRNA Gly3(GAU/C) missense suppressor that can recognize GAU or GAC aspartic acid codons and insert a glycine amino acid instead of aspartic acid. In addition to rescuing missense mutants caused by glycine to aspartic acid changes as expected, sumA could also rescue a number of other missense mutants as well by changing a neighboring (contacting) aspartic acid to glycine, which compensated for the other amino acid change. Thus the ability of sumA to rescue numerous missense mutants was due in part to the large number of glycine codons in genes that can be mutated to an aspartic acid codon and in part to the general tolerability and/or preference for glycine amino acids in proteins. Because the glyV tRNA Gly3(GAU/C) missense suppressor has also been extensively characterized in Escherichia coli as the mutA mutator, we demonstrated that all gain-of-function mutants isolated in a glyV tRNA Gly3(GAU/C) missense suppressor are transferable to a wild-type background and thus the increased mutation rates, which occur in glyV tRNA Gly3(GAU/C) missense suppressors, are not due to the suppression of these mutants. PMID:27974497

  12. Germline mutations of regulator of telomere elongation helicase 1, RTEL1, in Dyskeratosis congenita.

    PubMed

    Ballew, Bari J; Yeager, Meredith; Jacobs, Kevin; Giri, Neelam; Boland, Joseph; Burdett, Laurie; Alter, Blanche P; Savage, Sharon A

    2013-04-01

    Dyskeratosis congenita (DC) is an inherited bone marrow failure and cancer predisposition syndrome caused by aberrant telomere biology. The classic triad of dysplastic nails, abnormal skin pigmentation, and oral leukoplakia is diagnostic of DC, but substantial clinical heterogeneity exists; the clinically severe variant Hoyeraal Hreidarsson syndrome (HH) also includes cerebellar hypoplasia, severe immunodeficiency, enteropathy, and intrauterine growth retardation. Germline mutations in telomere biology genes account for approximately one-half of known DC families. Using exome sequencing, we identified mutations in RTEL1, a helicase with critical telomeric functions, in two families with HH. In the first family, two siblings with HH and very short telomeres inherited a premature stop codon from their mother who has short telomeres. The proband from the second family has HH and inherited a premature stop codon in RTEL1 from his father and a missense mutation from his mother, who also has short telomeres. In addition, inheritance of only the missense mutation led to very short telomeres in the proband's brother. Targeted sequencing identified a different RTEL1 missense mutation in one additional DC proband who has bone marrow failure and short telomeres. Both missense mutations affect the helicase domain of RTEL1, and three in silico prediction algorithms suggest that they are likely deleterious. The nonsense mutations both cause truncation of the RTEL1 protein, resulting in loss of the PIP box; this may abrogate an important protein-protein interaction. These findings implicate a new telomere biology gene, RTEL1, in the etiology of DC.

  13. Germline Mutations of Regulator of Telomere Elongation Helicase 1, RTEL1, In Dyskeratosis Congenita

    PubMed Central

    Ballew, Bari J.; Yeager, Meredith; Jacobs, Kevin; Giri, Neelam; Boland, Joseph; Burdett, Laurie; Alter, Blanche P.; Savage, Sharon A.

    2013-01-01

    Dyskeratosis congenita (DC) is an inherited bone marrow failure and cancer predisposition syndrome caused by aberrant telomere biology. The classic triad of dysplastic nails, abnormal skin pigmentation, and oral leukoplakia is diagnostic of DC, but substantial clinical heterogeneity exists; the clinically severe variant Hoyeraal Hreidarsson syndrome (HH) also includes cerebellar hypoplasia, severe immunodeficiency, enteropathy, and intrauterine growth retardation. Germline mutations in telomere biology genes account for approximately one-half of known DC families. Using exome sequencing, we identified mutations in RTEL1, a helicase with critical telomeric functions, in two families with HH. In the first family, two siblings with HH and very short telomeres inherited a premature stop codon from their mother who has short telomeres. The proband from the second family has HH and inherited a premature stop codon in RTEL1 from his father and a missense mutation from his mother, who also has short telomeres. Additionally, inheritance of only the missense mutation led to very short telomeres in the proband’s brother. Targeted sequencing identified a different RTEL1 missense mutation in one additional DC proband who has bone marrow failure and short telomeres. Both missense mutations affect the helicase domain of RTEL1, and three in silico prediction algorithms suggest that they are likely deleterious. The nonsense mutations both cause truncation of the RTEL1 protein, resulting in loss of the PIP box; this may abrogate an important protein-protein interaction. These findings implicate a new telomere biology gene, RTEL1, in the etiology of DC. PMID:23329068

  14. Clinical and genetic investigation of a Japanese family with cardiac fabry disease. Identification of a novel α-galactosidase A missense mutation (G195V).

    PubMed

    Nakagawa, Naoki; Maruyama, Hiroki; Ishihara, Takayuki; Seino, Utako; Kawabe, Jun-ichi; Takahashi, Fumihiko; Kobayashi, Motoi; Yamauchi, Atsushi; Sasaki, Yukie; Sakamoto, Naka; Ota, Hisanobu; Tanabe, Yasuko; Takeuchi, Toshiharu; Takenaka, Toshihiro; Kikuchi, Kenjiro; Hasebe, Naoyuki

    2011-01-01

    Fabry disease is an X-linked lysosomal storage disorder caused by mutations of the α-galactosidase A gene (GLA), and the disease is a relatively prevalent cause of left ventricular hypertrophy mimicking idiopathic hypertrophic cardiomyopathy. We assessed clinically 5 patients of a three-generation family and also searched for GLA mutations in 10 family members. The proband had left ventricular hypertrophy with localized thinning in the basal posterior wall and late gadolinium enhancement (LGE) in the near-circumferential wall in cardiovascular magnetic resonance images and her sister had vasospastic angina pectoris without organic stenosis of the coronary arteries. LGE notably appeared in parallel with decreased α-galactosidase A activity and increased NT-pro BNP in our patients. We detected a new GLA missense mutation (G195V) in exon 4, resulting in a glycine-to-valine substitution. Of the 10 family members, 5 family members each were positive and negative for this mutation. These new data extend our clinical and molecular knowledge of GLA gene mutations and confirm that a novel missense mutation in the GLA gene is important not only for a precise diagnosis of heterozygous status, but also for confirming relatives who are negative for this mutation.

  15. Involvement of ER Stress in Dysmyelination of Pelizaeus-Merzbacher Disease with PLP1 Missense Mutations Shown by iPSC-Derived Oligodendrocytes

    PubMed Central

    Numasawa-Kuroiwa, Yuko; Okada, Yohei; Shibata, Shinsuke; Kishi, Noriyuki; Akamatsu, Wado; Shoji, Masanobu; Nakanishi, Atsushi; Oyama, Manabu; Osaka, Hitoshi; Inoue, Ken; Takahashi, Kazutoshi; Yamanaka, Shinya; Kosaki, Kenjiro; Takahashi, Takao; Okano, Hideyuki

    2014-01-01

    Summary Pelizaeus-Merzbacher disease (PMD) is a form of X-linked leukodystrophy caused by mutations in the proteolipid protein 1 (PLP1) gene. Although PLP1 proteins with missense mutations have been shown to accumulate in the rough endoplasmic reticulum (ER) in disease model animals and cell lines transfected with mutant PLP1 genes, the exact pathogenetic mechanism of PMD has not previously been clarified. In this study, we established induced pluripotent stem cells (iPSCs) from two PMD patients carrying missense mutation and differentiated them into oligodendrocytes in vitro. In the PMD iPSC-derived oligodendrocytes, mislocalization of mutant PLP1 proteins to the ER and an association between increased susceptibility to ER stress and increased numbers of apoptotic oligodendrocytes were observed. Moreover, electron microscopic analysis demonstrated drastically reduced myelin formation accompanied by abnormal ER morphology. Thus, this study demonstrates the involvement of ER stress in pathogenic dysmyelination in the oligodendrocytes of PMD patients with the PLP1 missense mutation. PMID:24936452

  16. In silico analysis of a novel MKRN3 missense mutation in familial central precocious puberty.

    PubMed

    Neocleous, Vassos; Shammas, Christos; Phelan, Marie M; Nicolaou, Stella; Phylactou, Leonidas A; Skordis, Nicos

    2016-01-01

    The onset of puberty is influenced by the interplay of stimulating and restraining factors, many of which have a genetic origin. Premature activation of the GnRH secretion in central precocious puberty (CPP) may arise either from gain-of-function mutations of the KISS1 and KISS1R genes or from loss-of-function manner mutations of the MKRN3 gene leading to MKRN3 deficiency. To explore the genetic causes responsible for CPP and the potential role of the RING finger protein 3 (MKRN3) gene. We investigated potential sequence variations in the intronless MKRN3 gene by Sanger sequencing of the entire 507 amino acid coding region of exon 1 in a family with two affected girls presented with CPP at the age of 6 and 5·7 years, respectively. A novel heterozygous g.Gly312Asp missense mutation in the MKRN3 gene was identified in these siblings. The imprinted MKRN3 missense mutation was also identified as expected in the unaffected father and followed as expected an imprinted mode of inheritance. In silico analysis of the altered missense variant using the computational algorithms Polyphen2, SIFT and Mutation Taster predicted a damage and pathogenic alteration causing CPP. The pathogenicity of the alteration at the protein level via an in silico structural model is also explored. A novel mutation in the MKRN3 gene in two sisters with CPP was identified, supporting the fundamental role of this gene in the suppression of the hypothalamic GnRH neurons. © 2015 John Wiley & Sons Ltd.

  17. [Using exon combined target region capture sequencing chip to detect the disease-causing genes of retinitis pigmentosa].

    PubMed

    Rong, Weining; Chen, Xuejuan; Li, Huiping; Liu, Yani; Sheng, Xunlun

    2014-06-01

    To detect the disease-causing genes of 10 retinitis pigmentosa pedigrees by using exon combined target region capture sequencing chip. Pedigree investigation study. From October 2010 to December 2013, 10 RP pedigrees were recruited for this study in Ningxia Eye Hospital. All the patients and family members received complete ophthalmic examinations. DNA was abstracted from patients, family members and controls. Using exon combined target region capture sequencing chip to screen the candidate disease-causing mutations. Polymerase chain reaction (PCR) and direct sequencing were used to confirm the disease-causing mutations. Seventy patients and 23 normal family members were recruited from 10 pedigrees. Among 10 RP pedigrees, 1 was autosomal dominant pedigrees and 9 were autosomal recessive pedigrees. 7 mutations related to 5 genes of 5 pedigrees were detected. A frameshift mutation on BBS7 gene was detected in No.2 pedigree, the patients of this pedigree combined with central obesity, polydactyly and mental handicap. No.2 pedigree was diagnosed as Bardet-Biedl syndrome finally. A missense mutation was detected in No.7 and No.10 pedigrees respectively. Because the patients suffered deafness meanwhile, the final diagnosis was Usher syndrome. A missense mutation on C3 gene related to age-related macular degeneration was also detected in No. 7 pedigrees. A nonsense mutation and a missense mutation on CRB1 gene were detected in No. 1 pedigree and a splicesite mutation on PROM1 gene was detected in No. 5 pedigree. Retinitis pigmentosa is a kind of genetic eye disease with diversity clinical phenotypes. Rapid and effective genetic diagnosis technology combined with clinical characteristics analysis is helpful to improve the level of clinical diagnosis of RP.

  18. Evaluating the impact of missenses mutations in CYP2D6*7 and CYP2D6*14A: does it compromise tamoxifen metabolism?

    PubMed

    Borba, Maria Acsm; Melo-Neto, Renato P; Leitão, Glauber M; Castelletti, Carlos Hm; Lima-Filho, José L; Martins, Danyelly Bg

    2016-04-01

    CYP2D6 is a high polymorphic enzyme from P450, responsible for metabolizing almost 25% of drugs. The distribution of different mutations among CYP2D6 alleles has been associated with poor, intermediate, extensive and ultra-metabolizers. To evaluate how missenses mutations in CYP2D6*7 and CYP2D6*14A poor metabolizer alleles affect CYP2D6 stability and function. CYPalleles database was used to collect polymorphisms data present in 105 alleles. We selected only poor metabolizers alleles that presented exclusively missenses mutations. They were analyzed through seven algorithms to predict the impact on CYP2D6 structure and function. H324P, the unique mutation in CYP2D6*7, has high impact in enzyme function due to its occurrence between two alpha-helixes involved in active site dynamics. G169R, a mutation that occurs only in CYP2D6*14A, leads to the gain of solvent accessibility and severe protein destabilization. Our in silico analysis showed that missenses mutations in CYP2D6*7 and CYP2D6*14A cause CYP2D6 dysfunction.

  19. Profound, prelingual nonsyndromic deafness maps to chromosome 10q21 and is caused by a novel missense mutation in the Usher syndrome type IF gene PCDH15.

    PubMed

    Doucette, Lance; Merner, Nancy D; Cooke, Sandra; Ives, Elizabeth; Galutira, Dante; Walsh, Vanessa; Walsh, Tom; MacLaren, Linda; Cater, Tracey; Fernandez, Bridget; Green, Jane S; Wilcox, Edward R; Shotland, Lawrence I; Shotland, Larry; Li, Xiaoyan Cindy; Li, X C; Lee, Ming; King, Mary-Claire; Young, Terry-Lynn

    2009-05-01

    We studied a consanguineous family (Family A) from the island of Newfoundland with an autosomal recessive form of prelingual, profound, nonsyndromic sensorineural hearing loss. A genome-wide scan mapped the deafness trait to 10q21-22 (max LOD score of 4.0; D10S196) and fine mapping revealed a 16 Mb ancestral haplotype in deaf relatives. The PCDH15 gene was mapped within the critical region and was an interesting candidate because truncating mutations cause Usher syndrome type IF (USH1F) and two missense mutations have been previously associated with isolated deafness (DFNB23). Sequencing of the PCDH15 gene revealed 33 sequencing variants. Three of these variants were homozygous exclusively in deaf siblings but only one of them was not seen in ethnically matched controls. This novel c.1583 T>A transversion predicts an amino-acid substitution of a valine with an aspartic acid at codon 528 (V528D). Like the two DFNB23 mutations, the V528D mutation in Family A occurs in a highly conserved extracellular cadherin (EC) domain of PCDH15 and is predicted to be more deleterious than the previously identified DFNB23 missense mutations (R134G and G262D). Physical assessment, vestibular and visual function testing in deaf adults ruled out syndromic deafness because of Usher syndrome. This study validates the DFNB23 designation and supports the hypothesis that missense mutations in conserved motifs of PCDH15 cause nonsyndromic hearing loss. This emerging genotype-phenotype correlation in USH1F is similar to that in several other USH1 genes and cautions against a prognosis of a dual sensory loss in deaf children found to be homozygous for hypomorphic mutations at the USH1F locus.

  20. A role of SCN9A in human epilepsies, as a cause of febrile seizures and as a potential modifier of Dravet syndrome.

    PubMed

    Singh, Nanda A; Pappas, Chris; Dahle, E Jill; Claes, Lieve R F; Pruess, Timothy H; De Jonghe, Peter; Thompson, Joel; Dixon, Missy; Gurnett, Christina; Peiffer, Andy; White, H Steve; Filloux, Francis; Leppert, Mark F

    2009-09-01

    A follow-up study of a large Utah family with significant linkage to chromosome 2q24 led us to identify a new febrile seizure (FS) gene, SCN9A encoding Na(v)1.7. In 21 affected members, we uncovered a potential mutation in a highly conserved amino acid, p.N641Y, in the large cytoplasmic loop between transmembrane domains I and II that was absent from 586 ethnically matched population control chromosomes. To establish a functional role for this mutation in seizure susceptibility, we introduced the orthologous mutation into the murine Scn9a ortholog using targeted homologous recombination. Compared to wild-type mice, homozygous Scn9a(N641Y/N641Y) knockin mice exhibit significantly reduced thresholds to electrically induced clonic and tonic-clonic seizures, and increased corneal kindling acquisition rates. Together, these data strongly support the SCN9A p.N641Y mutation as disease-causing in this family. To confirm the role of SCN9A in FS, we analyzed a collection of 92 unrelated FS patients and identified additional highly conserved Na(v)1.7 missense variants in 5% of the patients. After one of these children with FS later developed Dravet syndrome (severe myoclonic epilepsy of infancy), we sequenced the SCN1A gene, a gene known to be associated with Dravet syndrome, and identified a heterozygous frameshift mutation. Subsequent analysis of 109 Dravet syndrome patients yielded nine Na(v)1.7 missense variants (8% of the patients), all in highly conserved amino acids. Six of these Dravet syndrome patients with SCN9A missense variants also harbored either missense or splice site SCN1A mutations and three had no SCN1A mutations. This study provides evidence for a role of SCN9A in human epilepsies, both as a cause of FS and as a partner with SCN1A mutations.

  1. A molecular and clinical study of Larsen syndrome caused by mutations in FLNB.

    PubMed

    Bicknell, Louise S; Farrington-Rock, Claire; Shafeghati, Yousef; Rump, Patrick; Alanay, Yasemin; Alembik, Yves; Al-Madani, Navid; Firth, Helen; Karimi-Nejad, Mohammad Hassan; Kim, Chong Ae; Leask, Kathryn; Maisenbacher, Melissa; Moran, Ellen; Pappas, John G; Prontera, Paolo; de Ravel, Thomy; Fryns, Jean-Pierre; Sweeney, Elizabeth; Fryer, Alan; Unger, Sheila; Wilson, L C; Lachman, Ralph S; Rimoin, David L; Cohn, Daniel H; Krakow, Deborah; Robertson, Stephen P

    2007-02-01

    Larsen syndrome is an autosomal dominant osteochondrodysplasia characterised by large-joint dislocations and craniofacial anomalies. Recently, Larsen syndrome was shown to be caused by missense mutations or small inframe deletions in FLNB, encoding the cytoskeletal protein filamin B. To further delineate the molecular causes of Larsen syndrome, 20 probands with Larsen syndrome together with their affected relatives were evaluated for mutations in FLNB and their phenotypes studied. Probands were screened for mutations in FLNB using a combination of denaturing high-performance liquid chromatography, direct sequencing and restriction endonuclease digestion. Clinical and radiographical features of the patients were evaluated. The clinical signs most frequently associated with a FLNB mutation are the presence of supernumerary carpal and tarsal bones and short, broad, spatulate distal phalanges, particularly of the thumb. All individuals with Larsen syndrome-associated FLNB mutations are heterozygous for either missense or small inframe deletions. Three mutations are recurrent, with one mutation, 5071G-->A, observed in 6 of 20 subjects. The distribution of mutations within the FLNB gene is non-random, with clusters of mutations leading to substitutions in the actin-binding domain and filamin repeats 13-17 being the most common cause of Larsen syndrome. These findings collectively define autosomal dominant Larsen syndrome and demonstrate clustering of causative mutations in FLNB.

  2. Trafficking defects and loss of ligand binding are the underlying causes of all reported DDR2 missense mutations found in SMED-SL patients.

    PubMed

    Ali, Bassam R; Xu, Huifang; Akawi, Nadia A; John, Anne; Karuvantevida, Noushad S; Langer, Ruth; Al-Gazali, Lihadh; Leitinger, Birgit

    2010-06-01

    Spondylo-meta-epiphyseal dysplasia (SMED) with short limbs and abnormal calcifications (SMED-SL) is a rare, autosomal recessive human growth disorder, characterized by disproportionate short stature, short limbs, short broad fingers, abnormal metaphyses and epiphyses, platyspondyly and premature calcifications. Recently, three missense mutations and one splice-site mutation in the DDR2 gene were identified as causative genetic defects for SMED-SL, but the underlying cellular and biochemical mechanisms were not explored. Here we report a novel DDR2 missense mutation, c.337G>A (p.E113K), that causes SMED-SL in two siblings in the United Arab Emirates. Another DDR2 missense mutation, c.2254C>T (p.R752C), matching one of the previously reported SMED-SL mutations, was found in a second affected family. DDR2 is a plasma membrane receptor tyrosine kinase that functions as a collagen receptor. We expressed DDR2 constructs with the identified point mutations in human cell lines and evaluated their localization and functional properties. We found that all SMED-SL missense mutants were defective in collagen-induced receptor activation and that the three previously reported mutants (p.T713I, p.I726R and p.R752C) were retained in the endoplasmic reticulum. The novel mutant (p.E113K), in contrast, trafficked normally, like wild-type DDR2, but failed to bind collagen. This finding is in agreement with our recent structural data identifying Glu113 as an important amino acid in the DDR2 ligand-binding site. Our data thus demonstrate that SMED-SL can result from at least two different loss-of-function mechanisms: namely defects in DDR2 targeting to the plasma membrane or the loss of its ligand-binding activity.

  3. Trafficking defects and loss of ligand binding are the underlying causes of all reported DDR2 missense mutations found in SMED-SL patients

    PubMed Central

    Ali, Bassam R.; Xu, Huifang; Akawi, Nadia A.; John, Anne; Karuvantevida, Noushad S.; Langer, Ruth; Al-Gazali, Lihadh; Leitinger, Birgit

    2010-01-01

    Spondylo-meta-epiphyseal dysplasia (SMED) with short limbs and abnormal calcifications (SMED-SL) is a rare, autosomal recessive human growth disorder, characterized by disproportionate short stature, short limbs, short broad fingers, abnormal metaphyses and epiphyses, platyspondyly and premature calcifications. Recently, three missense mutations and one splice-site mutation in the DDR2 gene were identified as causative genetic defects for SMED-SL, but the underlying cellular and biochemical mechanisms were not explored. Here we report a novel DDR2 missense mutation, c.337G>A (p.E113K), that causes SMED-SL in two siblings in the United Arab Emirates. Another DDR2 missense mutation, c.2254C>T (p.R752C), matching one of the previously reported SMED-SL mutations, was found in a second affected family. DDR2 is a plasma membrane receptor tyrosine kinase that functions as a collagen receptor. We expressed DDR2 constructs with the identified point mutations in human cell lines and evaluated their localization and functional properties. We found that all SMED-SL missense mutants were defective in collagen-induced receptor activation and that the three previously reported mutants (p.T713I, p.I726R and p.R752C) were retained in the endoplasmic reticulum. The novel mutant (p.E113K), in contrast, trafficked normally, like wild-type DDR2, but failed to bind collagen. This finding is in agreement with our recent structural data identifying Glu113 as an important amino acid in the DDR2 ligand-binding site. Our data thus demonstrate that SMED-SL can result from at least two different loss-of-function mechanisms: namely defects in DDR2 targeting to the plasma membrane or the loss of its ligand-binding activity. PMID:20223752

  4. Multigeneration family with dominant SPG30 hereditary spastic paraplegia.

    PubMed

    Roda, Ricardo H; Schindler, Alice B; Blackstone, Craig

    2017-11-01

    Autosomal recessive KIF1A missense mutations cause hereditary spastic paraplegia (HSP) type SPG30, while recessive truncations lead to sensory and autonomic neuropathy (HSN2C) and many de novo missense mutations are associated with cognitive impairment. Here, we describe family members across three generations with pure HSP. A heterozygous p.Ser69Leu KIF1A mutation segregates with those afflicted. The same variant was previously reported in a Finnish father and son with pure HSP as well as four members of a Sicilian kindred with more intrafamilial phenotypic variability. This further validates the pathogenicity of the p.Ser69Leu mutation and suggests that it may represent a mutation hot spot.

  5. Functional analysis of mutations in a severe congenital neutropenia syndrome caused by glucose-6-phosphatase-β deficiency

    PubMed Central

    Lin, Su Ru; Pan, Chi-Jiunn; Mansfield, Brian C.; Chou, Janice Yang

    2016-01-01

    Glucose-6-phosphatase-β (G6Pase-β or G6PC3) deficiency is characterized by neutropenia and dysfunction in both neutrophils and macrophages. G6Pase-β is an enzyme embedded in the endoplasmic reticulum membrane that catalyzes the hydrolysis of glucose-6-phosphate (G6P) to glucose and phosphate. To date, 33 separate G6PC3 mutations have been identified in G6Pase-β-deficient patients but only the p.R253H and p.G260R missense mutations have been characterized functionally for pathogenicity. Here we functionally characterize 16 of the 19 known missense mutations using a sensitive assay, based on a recombinant adenoviral vector-mediated expression system, to demonstrate pathogenicity. Fourteen missense mutations completely abolish G6Pase-β enzymatic activity while the p.S139I and p.R189Q mutations retain 49% and 45%, respectively of wild type G6Pase-β activity. A database of residual enzymatic activity retained by the G6Pase-β mutations will serve as a reference for evaluating genotype-phenotype relationships. PMID:25492228

  6. Usher syndrome type 1 due to missense mutations on both CDH23 alleles: investigation of mRNA splicing.

    PubMed

    Becirovic, Elvir; Ebermann, Inga; Nagy, Ditta; Zrenner, Eberhart; Seeliger, Mathias Wolfgang; Bolz, Hanno Jörn

    2008-03-01

    Usher syndrome (USH) is an autosomal recessive condition characterized by sensorineural hearing loss, vestibular dysfunction, and visual impairment due to retinitis pigmentosa. Truncating mutations in the cadherin-23 gene (CDH23) result in Usher syndrome type 1D (USH1D), whereas missense mutations affecting strongly conserved motifs of the CDH23 protein cause non-syndromic deafness (DFNB12). Four missense mutations constitute an exception from this genotype-phenotype correlation: they have been described in USH1 patients in homozygous state. Using a minigene assay, we have investigated these changes (c.1450G>C, p.A484P; c.3625A>G, p.T1209A; c.4520G>A, p.R1507Q; and c.5237G>A, p.R1746Q) for a possible impact on mRNA splicing which could explain the syndromic phenotype. While in silico analysis suggested impairment of splicing in all four cases, we found aberrant splicing for only one mutation, p.R1746Q. However, splicing was normal in case of p.A484P, p.T1209A and p.R1507Q. These three latter CDH23 missense mutations could interfere with functions of both, the auditory and the visual system. Alternatively, they could represent rare non-pathogenic polymorphisms.

  7. Mutations in WNT1 Cause Different Forms of Bone Fragility

    PubMed Central

    Keupp, Katharina; Beleggia, Filippo; Kayserili, Hülya; Barnes, Aileen M.; Steiner, Magdalena; Semler, Oliver; Fischer, Björn; Yigit, Gökhan; Janda, Claudia Y.; Becker, Jutta; Breer, Stefan; Altunoglu, Umut; Grünhagen, Johannes; Krawitz, Peter; Hecht, Jochen; Schinke, Thorsten; Makareeva, Elena; Lausch, Ekkehart; Cankaya, Tufan; Caparrós-Martín, José A.; Lapunzina, Pablo; Temtamy, Samia; Aglan, Mona; Zabel, Bernhard; Eysel, Peer; Koerber, Friederike; Leikin, Sergey; Garcia, K. Christopher; Netzer, Christian; Schönau, Eckhard; Ruiz-Perez, Victor L.; Mundlos, Stefan; Amling, Michael; Kornak, Uwe; Marini, Joan; Wollnik, Bernd

    2013-01-01

    We report that hypofunctional alleles of WNT1 cause autosomal-recessive osteogenesis imperfecta, a congenital disorder characterized by reduced bone mass and recurrent fractures. In consanguineous families, we identified five homozygous mutations in WNT1: one frameshift mutation, two missense mutations, one splice-site mutation, and one nonsense mutation. In addition, in a family affected by dominantly inherited early-onset osteoporosis, a heterozygous WNT1 missense mutation was identified in affected individuals. Initial functional analysis revealed that altered WNT1 proteins fail to activate canonical LRP5-mediated WNT-regulated β-catenin signaling. Furthermore, osteoblasts cultured in vitro showed enhanced Wnt1 expression with advancing differentiation, indicating a role of WNT1 in osteoblast function and bone development. Our finding that homozygous and heterozygous variants in WNT1 predispose to low-bone-mass phenotypes might advance the development of more effective therapeutic strategies for congenital forms of bone fragility, as well as for common forms of age-related osteoporosis. PMID:23499309

  8. WDR73 missense mutation causes infantile onset intellectual disability and cerebellar hypoplasia in a consanguineous family.

    PubMed

    Jiang, Chen; Gai, Nan; Zou, Yongyi; Zheng, Yu; Ma, Ruiyu; Wei, Xianda; Liang, Desheng; Wu, Lingqian

    2017-01-01

    Galloway-Mowat syndrome (GMS) is a very rare autosomal-recessive disorder characterized by nephrotic syndrome associated with microcephaly, and various central nervous system abnormalities, mostly cerebral hypoplasia or cerebellar atrophy, intellectual disability and neural-migration defects. WDR73 is the only gene known to cause GMS, and has never been implicated in other disease. Here we present a Chinese consanguineous family with infantile onset intellectual disability and cerebellar hypoplasia but no microcephaly. Whole exome sequencing identified a WDR73 p.W371G missense mutation. The mutation is confirmed to be segregated in this family by Sanger sequencing according to a recessive inheritance pattern. It is predicted to be deleterious by multiple algorithms and affect highly conserved site. Structural modeling revealed conformational differences between the wild type protein and the p.W371G protein. Real-time PCR and Western blotting revealed altered mRNA and protein levels in mutated samples. Our study indicates the novel WDR73 p.W371G missense mutation causes infantile onset intellectual disability and cerebellar hypoplasia in recessive mode of inheritance. Our findings imply that microcephaly is a variable phenotype in WDR73-related disease, suggest WDR73 to be a candidate gene of severe intellectual disability and cerebellar hypoplasia, and expand the molecular spectrum of WDR73-related disease. Copyright © 2016 Elsevier B.V. All rights reserved.

  9. Distinct effects of tubulin isotype mutations on neurite growth in Caenorhabditis elegans

    PubMed Central

    Zheng, Chaogu; Diaz-Cuadros, Margarete; Nguyen, Ken C. Q.; Hall, David H.; Chalfie, Martin

    2017-01-01

    Tubulins, the building block of microtubules (MTs), play a critical role in both supporting and regulating neurite growth. Eukaryotic genomes contain multiple tubulin isotypes, and their missense mutations cause a range of neurodevelopmental defects. Using the Caenorhabditis elegans touch receptor neurons, we analyzed the effects of 67 tubulin missense mutations on neurite growth. Three types of mutations emerged: 1) loss-of-function mutations, which cause mild defects in neurite growth; 2) antimorphic mutations, which map to the GTP binding site and intradimer and interdimer interfaces, significantly reduce MT stability, and cause severe neurite growth defects; and 3) neomorphic mutations, which map to the exterior surface, increase MT stability, and cause ectopic neurite growth. Structure-function analysis reveals a causal relationship between tubulin structure and MT stability. This stability affects neuronal morphogenesis. As part of this analysis, we engineered several disease-associated human tubulin mutations into C. elegans genes and examined their impact on neuronal development at the cellular level. We also discovered an α-tubulin (TBA-7) that appears to destabilize MTs. Loss of TBA-7 led to the formation of hyperstable MTs and the generation of ectopic neurites; the lack of potential sites for polyamination and polyglutamination on TBA-7 may be responsible for this destabilization. PMID:28835377

  10. A novel AMELX mutation causes hypoplastic amelogenesis imperfecta.

    PubMed

    Kim, Young-Jae; Kim, Youn Jung; Kang, Jenny; Shin, Teo Jeon; Hyun, Hong-Keun; Lee, Sang-Hoon; Lee, Zang Hee; Kim, Jung-Wook

    2017-04-01

    Amelogenesis imperfecta (AI) is a hereditary genetic defect affecting tooth enamel. AI is heterogeneous in clinical phenotype as well as in genetic etiology. To date, more than 10 genes have been associated with the etiology of AI. Amelogenin is the most abundant enamel matrix protein, most of which is encoded by the amelogenin gene in the X-chromosome (AMELX). More than 16 alternative splicing transcripts have been identified in the murine Amelx gene. The purpose of this study was to identify the genetic cause of an AI family. We recruited a family with hypoplastic AI and performed mutational analysis on the candidate gene based on the clinical phenotype. Mutational analysis revealed a missense mutation in exon 6 (NM_182680.1; c.242C > T), which changes a sequence in a highly conserved amino acid (NP_872621.1; p.Pro81Leu). Furthermore, a splicing assay using a minigene displayed that the mutation changed the mRNA splicing repertory. In this study, we identified a novel AMELX missense mutation causing hypoplastic AI, and this mutation also resulted in altered mRNA splicing. These results will not only expand the mutation spectrum causing AI but also broaden our understanding of the biological mechanism of enamel formation. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Activating mutations affecting the Dbl homology domain of SOS2 cause Noonan syndrome

    PubMed Central

    Cordeddu, Viviana; Yin, Jiani C.; Gunnarsson, Cecilia; Virtanen, Carl; Drunat, Séverine; Lepri, Francesca; De Luca, Alessandro; Rossi, Cesare; Ciolfi, Andrea; Pugh, Trevor J.; Bruselles, Alessandro; Priest, James R.; Pennacchio, Len A.; Lu, Zhibin; Danesh, Arnavaz; Quevedo, Rene; Hamid, Alaa; Martinelli, Simone; Pantaleoni, Francesca; Gnazzo, Maria; Daniele, Paola; Lissewski, Christina; Bocchinfuso, Gianfranco; Stella, Lorenzo; Odent, Sylvie; Philip, Nicole; Faivre, Laurence; Vlckova, Marketa; Seemanova, Eva; Digilio, Cristina; Zenker, Martin; Zampino, Giuseppe; Verloes, Alain; Dallapiccola, Bruno; Roberts, Amy E.; Cavé, Hélène; Gelb, Bruce D.; Neel, Benjamin G.; Tartaglia, Marco

    2015-01-01

    The RASopathies constitute a family of autosomal dominant disorders whose major features include facial dysmorphism, cardiac defects, reduced postnatal growth, variable cognitive deficits, ectodermal and skeletal anomalies, and susceptibility to certain malignancies. Noonan syndrome (NS), the commonest RASopathy, is genetically heterogeneous and caused by functional dysregulation of signal transducers and regulatory proteins with roles in the RAS/extracellular signal-regulated kinase (ERK) signal transduction pathway. Mutations in known disease genes account for approximately 80% of affected individuals. Here, we report that missense mutations altering son of sevenless, Drosophila, homolog 2 (SOS2), which encodes a RAS guanine nucleotide exchange factor, occur in a small percentage of subjects with NS. Four missense mutations were identified in five unrelated sporadic cases and families transmitting NS. Disease-causing mutations affected three conserved residues located in the Dbl homology domain, of which two are directly involved in the intramolecular binding network maintaining SOS2 in its auto-inhibited conformation. All mutations were found to promote enhanced signaling from RAS to ERK. Similar to NS-causing SOS1 mutations, the phenotype associated with SOS2 defects is characterized by normal development and growth, as well as marked ectodermal involvement. Unlike SOS1 mutations, however, those in SOS2 are restricted to the Dbl homology domain. PMID:26173643

  12. A mechanism for exon skipping caused by nonsense or missense mutations in BRCA1 and other genes.

    PubMed

    Liu, H X; Cartegni, L; Zhang, M Q; Krainer, A R

    2001-01-01

    Point mutations can generate defective and sometimes harmful proteins. The nonsense-mediated mRNA decay (NMD) pathway minimizes the potential damage caused by nonsense mutations. In-frame nonsense codons located at a minimum distance upstream of the last exon-exon junction are recognized as premature termination codons (PTCs), targeting the mRNA for degradation. Some nonsense mutations cause skipping of one or more exons, presumably during pre-mRNA splicing in the nucleus; this phenomenon is termed nonsense-mediated altered splicing (NAS), and its underlying mechanism is unclear. By analyzing NAS in BRCA1, we show here that inappropriate exon skipping can be reproduced in vitro, and results from disruption of a splicing enhancer in the coding sequence. Enhancers can be disrupted by single nonsense, missense and translationally silent point mutations, without recognition of an open reading frame as such. These results argue against a nuclear reading-frame scanning mechanism for NAS. Coding-region single-nucleotide polymorphisms (cSNPs) within exonic splicing enhancers or silencers may affect the patterns or efficiency of mRNA splicing, which may in turn cause phenotypic variability and variable penetrance of mutations elsewhere in a gene.

  13. Structural Characterization of Missense Mutations Using High Resolution Mass Spectrometry: A Case Study of the Parkinson's-Related Protein, DJ-1

    NASA Astrophysics Data System (ADS)

    Ben-Nissan, Gili; Chotiner, Almog; Tarnavsky, Mark; Sharon, Michal

    2016-06-01

    Missense mutations that lead to the expression of mutant proteins carrying single amino acid substitutions are the cause of numerous diseases. Unlike gene lesions, insertions, deletions, nonsense mutations, or modified RNA splicing, which affect the length of a polypeptide, or determine whether a polypeptide is translated at all, missense mutations exert more subtle effects on protein structure, which are often difficult to evaluate. Here, we took advantage of the spectral resolution afforded by the EMR Orbitrap platform, to generate a mass spectrometry-based approach relying on simultaneous measurements of the wild-type protein and the missense variants. This approach not only considerably shortens the analysis time due to the concurrent acquisition but, more importantly, enables direct comparisons between the wild-type protein and the variants, allowing identification of even subtle structural changes. We demonstrate our approach using the Parkinson's-associated protein, DJ-1. Together with the wild-type protein, we examined two missense mutants, DJ-1A104T and DJ-1D149A, which lead to early-onset familial Parkinson's disease. Gas-phase, thermal, and chemical stability assays indicate clear alterations in the conformational stability of the two mutants: the structural stability of DJ-1D149A is reduced, whereas that of DJ-1A104T is enhanced. Overall, we anticipate that the methodology presented here will be applicable to numerous other missense mutants, promoting the structural investigations of multiple variants of the same protein.

  14. Identification of a novel nonsense mutation and a missense substitution in the AGPAT2 gene causing congenital generalized lipodystrophy type 1

    PubMed Central

    Haghighi, Amirreza; Razzaghy-Azar, Maryam; Talea, Ali; Sadeghian, Mahnaz; Ellard, Sian; Haghighi, Alireza

    2012-01-01

    Congenital generalized lipodystrophy (CGL) is an autosomal recessive disease characterized by the generalized scant of adipose tissue. CGL type 1 is caused by mutations in gene encoding 1-acylglycerol-3-phosphate O-acyltransferase-2 (AGPAT2). A clinical and molecular genetic investigation was performed in affected and unaffected members of two families with CGL type 1. The AGPAT2 coding region was sequenced in index cases of the two families. The presence of the identified mutations in relevant parents was tested. We identified a novel nonsense mutation (c.685G>T, p.Glu229*) and a missense substitution (c.514G>A, p.Glu172Lys). The unaffected parents in both families were heterozygous carrier of the relevant mutation. The results expand genotype–phenotype spectrum in CGL1 and will have applications in prenatal and early diagnosis of the disease. This is the first report of Persian families identified with AGPAT2 mutations. PMID:22902344

  15. A missense mutation encoding Cys73Phe in neurophysin II is associated with autosomal dominant neurohypophyseal diabetes insipidus.

    PubMed

    Santiprabhob, Jeerunda; Browning, James; Repaske, David

    2002-01-01

    Autosomal dominant neurohypophyseal diabetes insipidus (ADNDI) is an inherited disease caused by progressive deficiency of the hormone arginine vasopressin (AVP) that typically becomes clinically apparent in the first decade of life. The genetic locus of ADNDI is the arginine vasopressin-neurophysin II (AVP-NPII) gene and mutations that cause ADNDI have been found in the nucleotides encoding the signal peptide, vasopressin, and neurophysin II peptides. In this study we have analyzed the AVP-NPII gene in a 20-year-old female who was diagnosed with ADNDI at 2 years of age. A heterozygous missense mutation (1684G>T) was found in exon 2 that predicts replacement of cysteine with phenylalanine at position 73 of neurophysin II. The mutation was confirmed by subcloning exon 2 PCR products to sequence each allele independently. Two out of four clones were found to have the missense mutation and two have the normal sequence, confirming the presence of the mutation and heterozygosity. Neurophysin II is an intracellular carrier protein for AVP during axonal transport from the hypothalamus to the posterior pituitary and contains 14 cysteine residues forming 7 disulfide bonds. This mutation is predicted to disrupt the disulfide bridge between Cys73 and Cys61 within the neurophysin II moiety. This finding of a novel mutation substituting cysteine with phenylalanine in one AVP-NPII gene allele supports the hypothesis that inability to form normal disulfide bonds in neurophysin II leads to ADNDI.

  16. SLC1A4 mutations cause a novel disorder of intellectual disability, progressive microcephaly, spasticity and thin corpus callosum.

    PubMed

    Heimer, G; Marek-Yagel, D; Eyal, E; Barel, O; Oz Levi, D; Hoffmann, C; Ruzzo, E K; Ganelin-Cohen, E; Lancet, D; Pras, E; Rechavi, G; Nissenkorn, A; Anikster, Y; Goldstein, D B; Ben Zeev, B

    2015-10-01

    Two unrelated patients, presenting with significant global developmental delay, severe progressive microcephaly, seizures, spasticity and thin corpus callosum (CC) underwent trio whole-exome sequencing. No candidate variant was found in any known genes related to the phenotype. However, crossing the data of the patients illustrated that they both manifested pathogenic variants in the SLC1A4 gene which codes the ASCT1 transporter of serine and other neutral amino acids. The Ashkenazi patient is homozygous for a deleterious missense c.766G>A, p.(E256K) mutation whereas the Ashkenazi-Iraqi patient is compound heterozygous for this mutation and a nonsense c.945delTT, p.(Leu315Hisfs*42) mutation. Structural prediction demonstrates truncation of significant portion of the protein by the nonsense mutation and speculates functional disruption by the missense mutation. Both mutations are extremely rare in general population databases, however, the missense mutation was found in heterozygous mode in 1:100 Jewish Ashkenazi controls suggesting a higher carrier rate among Ashkenazi Jews. We conclude that SLC1A4 is the disease causing gene of a novel neurologic disorder manifesting with significant intellectual disability, severe postnatal microcephaly, spasticity and thin CC. The role of SLC1A4 in the serine transport from astrocytes to neurons suggests a possible pathomechanism for this disease and implies a potential therapeutic approach. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  17. Massively Parallel Sequencing of a Chinese Family with DFNA9 Identified a Novel Missense Mutation in the LCCL Domain of COCH

    PubMed Central

    Gu, Xiaodong; Su, Wenling; Tang, Mingliang; Guo, Luo; Zhao, Liping

    2016-01-01

    DFNA9 is a late-onset, progressive, autosomal dominantly inherited sensorineural hearing loss with vestibular dysfunction, which is caused by mutations in the COCH (coagulation factor C homology) gene. In this study, we investigated a Chinese family segregating autosomal dominant nonsyndromic sensorineural hearing loss. We identified a missense mutation c.T275A p.V92D in the LCCL domain of COCH cosegregating with the disease and absent in 100 normal hearing controls. This mutation leads to substitution of the hydrophobic valine to an acidic amino acid aspartic acid. Our data enriched the mutation spectrum of DFNA9 and implied the importance for mutation screening of COCH in age related hearing loss with vestibular dysfunctions. PMID:28116169

  18. Novel and recurrent mutations in the C1NH gene of Arab patients affected with hereditary angioedema.

    PubMed

    Faiyaz-Ul-Haque, Muhammad; Al-Gazlan, Sulaiman; Abalkhail, Halah A; Al-Abdulatif, Ahmad; Toulimat, Mohamed; Peltekova, Iskra; Khaliq, Agha M R; Al-Dayel, Fouad; Zaidi, Syed H E

    2010-01-01

    Autosomal dominant hereditary angioedema (HAE) results in episodes of subcutaneous edema in any body part and/or submucosal edema of the upper respiratory or gastrointestinal tracts. This disorder is caused by mutations in the C1NH gene, many of which have been described primarily in European patients. However, the genetic cause of HAE in Middle Eastern Arab patients has not yet been determined. Four unrelated Arab families, in which 15 patients were diagnosed with HAE, were studied. DNA from 13 patients was analyzed for mutations in the C1NH gene by DNA sequencing. Three novel and 2 recurrent mutations were identified in the C1NH gene of HAE patients. In family 1, the patient was heterozygous for a novel c.856C>T and a recurrent c.1361T>A missense mutation encoding for p.Arg264Cys and p.Val432Glu, respectively. In patients from family 2, a novel c.509C>T missense mutation encoding for a p.Ser148Phe was identified. In patients from family 3, a novel c.1142delC nonsense mutation encoding for a p.Ala359AlafsX15 was discovered. In family 4, a recurrent c.1397G>A missense mutation encoding for a p.Arg444His was present. This is the first ever report of C1NH gene mutations in Middle Eastern Arab patients. Our study suggests that, despite the numerous existing mutations in the C1NH gene, there are novel and recurrent mutations in HAE patients of non-European origin. We conclude that the spectrum of C1NH gene mutations in HAE patients is wider due to the likely presence of novel and recurrent mutations in patients of other ethnicities. 2009 S. Karger AG, Basel.

  19. Missense SLC25A38 variations play an important role in autosomal recessive inherited sideroblastic anemia

    PubMed Central

    Kannengiesser, Caroline; Sanchez, Mayka; Sweeney, Marion; Hetet, Gilles; Kerr, Briedgeen; Moran, Erica; Fuster Soler, Jose L.; Maloum, Karim; Matthes, Thomas; Oudot, Caroline; Lascaux, Axelle; Pondarré, Corinne; Sevilla Navarro, Julian; Vidyatilake, Sudharma; Beaumont, Carole; Grandchamp, Bernard; May, Alison

    2011-01-01

    Background Congenital sideroblastic anemias are rare disorders with several genetic causes; they are characterized by erythroblast mitochondrial iron overload, differ greatly in severity and some occur within a syndrome. The most common cause of non-syndromic, microcytic sideroblastic anemia is a defect in the X-linked 5-aminolevulinate synthase 2 gene but this is not always present. Recently, variations in the gene for the mitochondrial carrier SLC25A38 were reported to cause a non-syndromic, severe type of autosomal-recessive sideroblastic anemia. Further evaluation of the importance of this gene was required to estimate the proportion of patients affected and to gain further insight into the range and types of variations involved. Design and Methods In three European diagnostic laboratories sequence analysis of SLC25A38 was performed on DNA from patients affected by congenital sideroblastic anemia of a non-syndromic nature not caused by variations in the 5-aminolevulinate synthase 2 gene. Results Eleven patients whose ancestral origins spread across several continents were homozygous or compound heterozygous for ten different SLC25A38 variations causing premature termination of translation (p.Arg117X, p.Tyr109LeufsX43), predicted splicing alteration (c.625G>C; p.Asp209His) or missense substitution (p.Gln56Lys, p.Arg134Cys, p.Ile147Asn, p.Arg187Gln, p.Pro190Arg, p.Gly228Val, p.Arg278Gly). Only three of these variations have been described previously (p.Arg117X, p.Tyr109LeufsX43 and p.Asp209His). All new variants reported here are missense and affect conserved amino acids. Structure modeling suggests that these variants may influence different aspects of transport as described for mutations in other mitochondrial carrier disorders. Conclusions Mutations in the SLC25A38 gene cause severe, non-syndromic, microcytic/hypochromic sideroblastic anemia in many populations. Missense mutations are shown to be of importance as are mutations that affect protein production. Further investigation of these mutations should shed light on structure-function relationships in this protein. PMID:21393332

  20. A novel MKRN3 missense mutation causing familial precocious puberty.

    PubMed

    de Vries, L; Gat-Yablonski, G; Dror, N; Singer, A; Phillip, M

    2014-12-01

    Central precocious puberty may be familial in about a quarter of the idiopathic cases. However, little is known about the genetic causes responsible for the disorder. In this report we describe a family with central precocious puberty associated with a mutation in the makorin RING-finger protein 3 (MKRN3) gene. A novel missense mutation (p.H420Q) in the imprinted MKRN3 gene was identified in the four affected siblings, in their unaffected father and in his affected mother. An in silico mutant MKRN3 model predicts that the mutation p.H420Q leads to reduced zinc binding and, subsequently, impaired RNA binding. These findings support the fundamental role of the MKRN3 protein in determining pubertal timing. © The Author 2014. Published by Oxford University Press on behalf of the European Society of Human Reproduction and Embryology. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  1. The impact of p53 protein core domain structural alteration on ovarian cancer survival.

    PubMed

    Rose, Stephen L; Robertson, Andrew D; Goodheart, Michael J; Smith, Brian J; DeYoung, Barry R; Buller, Richard E

    2003-09-15

    Although survival with a p53 missense mutation is highly variable, p53-null mutation is an independent adverse prognostic factor for advanced stage ovarian cancer. By evaluating ovarian cancer survival based upon a structure function analysis of the p53 protein, we tested the hypothesis that not all missense mutations are equivalent. The p53 gene was sequenced from 267 consecutive ovarian cancers. The effect of individual missense mutations on p53 structure was analyzed using the International Agency for Research on Cancer p53 Mutational Database, which specifies the effects of p53 mutations on p53 core domain structure. Mutations in the p53 core domain were classified as either explained or not explained in structural or functional terms by their predicted effects on protein folding, protein-DNA contacts, or mutation in highly conserved residues. Null mutations were classified by their mechanism of origin. Mutations were sequenced from 125 tumors. Effects of 62 of the 82 missense mutations (76%) could be explained by alterations in the p53 protein. Twenty-three (28%) of the explained mutations occurred in highly conserved regions of the p53 core protein. Twenty-two nonsense point mutations and 21 frameshift null mutations were sequenced. Survival was independent of missense mutation type and mechanism of null mutation. The hypothesis that not all missense mutations are equivalent is, therefore, rejected. Furthermore, p53 core domain structural alteration secondary to missense point mutation is not functionally equivalent to a p53-null mutation. The poor prognosis associated with p53-null mutation is independent of the mutation mechanism.

  2. Alteration of DNA binding, dimerization, and nuclear translocation of SHOX homeodomain mutations identified in idiopathic short stature and Leri-Weill dyschondrosteosis.

    PubMed

    Schneider, Katja U; Marchini, Antonio; Sabherwal, Nitin; Röth, Ralph; Niesler, Beate; Marttila, Tiina; Blaschke, Rüdiger J; Lawson, Margaret; Dumic, Miroslav; Rappold, Gudrun

    2005-07-01

    Haploinsufficiency of the short stature homeobox gene SHOX has been found in patients with idiopathic short stature (ISS) and Leri-Weill dyschondrosteosis (LWD). In addition to complete gene deletions and nonsense mutations, several missense mutations have been identified in both patient groups, leading to amino acid substitutions in the SHOX protein. The majority of missense mutations were found to accumulate in the region encoding the highly conserved homeodomain of the paired-like type. In this report, we investigated nine different amino acid exchanges in the homeodomain of SHOX patients with ISS and LWD. We were able show that these mutations cause an alteration of the biological function of SHOX by loss of DNA binding, reduced dimerization ability, and/or impaired nuclear translocation. Additionally, one of the mutations (c.458G>T, p.R153L) is defective in transcriptional activation even though it is still able to bind to DNA, dimerize, and translocate to the nucleus. Thus, we demonstrate that single missense mutations in the homeodomain fundamentally impair SHOX key functions, thereby leading to the phenotype observed in patients with LWD and ISS.

  3. A missense mutation in the cholesteryl ester transfer protein gene with possible dominant effects on plasma high density lipoproteins.

    PubMed Central

    Takahashi, K; Jiang, X C; Sakai, N; Yamashita, S; Hirano, K; Bujo, H; Yamazaki, H; Kusunoki, J; Miura, T; Kussie, P

    1993-01-01

    Plasma HDL are a negative risk factor for atherosclerosis. Cholesteryl ester transfer protein (CETP; 476 amino acids) transfers cholesteryl ester from HDL to other lipoproteins. Subjects with homozygous CETP deficiency caused by a gene splicing defect have markedly elevated HDL; however, heterozygotes have only mild increases in HDL. We describe two probands with a CETP missense mutation (442 D:G). Although heterozygous, they have threefold increases in HDL concentration and markedly decreased plasma CETP mass and activity, suggesting that the mutation has dominant effects on CETP and HDL in vivo. Cellular expression of mutant cDNA results in secretion of only 30% of wild type CETP activity. Moreover, coexpression of wild type and mutant cDNAs leads to inhibition of wild type secretion and activity. The dominant effects of the CETP missense mutation during cellular expression probably explains why the probands have markedly increased HDL in the heterozygous state, and suggests that the active molecular species of CETP may be multimeric. Images PMID:8408659

  4. Fabry disease presenting as apical left ventricular hypertrophy in a patient carrying the missense mutation R118C.

    PubMed

    Caetano, Francisca; Botelho, Ana; Mota, Paula; Silva, Joana; Leitão Marques, António

    2014-03-01

    Anderson-Fabry disease is an X-linked lysosomal storage disorder caused by abnormalities of the GLA gene, which encodes the enzyme α-galactosidase A. A deficiency of this enzyme leads to the lysosomal accumulation of glycosphingolipids, which may cause left ventricular hypertrophy that is typically concentric and symmetric. We present the case of a 60-year-old woman with symptoms of dyspnea, atypical chest pain and palpitations, in whom a transthoracic echocardiogram revealed an apical variant of hypertrophic cardiomyopathy. Analysis of specific sarcomeric genetic mutations was negative. The patient underwent a screening protocol for Anderson-Fabry disease, using a dried blood spot test, which was standard at our institution for patients with left ventricular hypertrophy. The enzymatic activity assay revealed reduced α-galactosidase A enzymatic activity. Molecular analysis identified a missense point mutation in the GLA gene (p.R118C). This case report shows that Anderson-Fabry disease may cause an apical form of left ventricular hypertrophy. The diagnosis was only achieved because of systematic screening, which highlights the importance of screening for Anderson-Fabry disease in patients with unexplained left ventricular hypertrophy, including those presenting with more unusual patterns, such as apical variants of left ventricular hypertrophy. This case also supports the idea that the missense mutation R118C is indeed a true pathogenic mutation of Anderson-Fabry disease. Copyright © 2012 Sociedade Portuguesa de Cardiologia. Published by Elsevier España. All rights reserved.

  5. ALS/FTLD-linked TDP-43 regulates neurite morphology and cell survival in differentiated neurons

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Han, Jeong-Ho; Yu, Tae-Hoon; Ryu, Hyun-Hee

    2013-08-01

    Tar-DNA binding protein of 43 kDa (TDP-43) has been characterized as a major component of protein aggregates in brains with neurodegenerative diseases such as frontotemporal lobar degeneration (FTLD) and amyotrophic lateral sclerosis (ALS). However, physiological roles of TDP-43 and early cellular pathogenic effects caused by disease associated mutations in differentiated neurons are still largely unknown. Here, we investigated the physiological roles of TDP-43 and the effects of missense mutations associated with diseases in differentiated cortical neurons. The reduction of TDP-43 by siRNA increased abnormal neurites and decreased cell viability. ALS/FTLD-associated missense mutant proteins (A315T, Q331K, and M337V) were partially mislocalizedmore » to the cytosol and neurites when compared to wild-type and showed abnormal neurites similar to those observed in cases of loss of TDP-43. Interestingly, cytosolic expression of wild-type TDP-43 with mutated nuclear localization signals also induced abnormal neurtie morphology and reduction of cell viability. However, there was no significant difference in the effects of cytosolic expression in neuronal morphology and cell toxicity between wild-type and missense mutant proteins. Thus, our results suggest that mislocalization of missense mutant TDP-43 may contribute to loss of TDP-43 function and affect neuronal morphology, probably via dominant negative action before severe neurodegeneration in differentiated cortical neurons. Highlights: • The function of nuclear TDP-43 in neurite morphology in mature neurons. • Partial mislocalization of TDP-43 missense mutants into cytosol from nucleus. • Abnormal neurite morphology caused by missense mutants of TDP-43. • The effect of cytosolic expression of TDP-43 in neurite morphology and in cell survival.« less

  6. Validate Mitotic Checkpoint and Kinetochore Motor Proteins in Breast Cancer Cells as Targets for the Development of Novel Anti-Mitotic Drugs

    DTIC Science & Technology

    2005-07-01

    families. In all cases, mutations in one allele results in the inactivation of the gene while missense mutations were found in the second allele. Four...of the five missense mutations occurred in the catalytic domain and thus suggest a dysfunctional BubRi kinase. The fifth missense mutation was found in...a region of the protein with no ascribed function. Nevertheless, this missense mutation along with one found in the kinase domain were associated

  7. Characterization of the mutations in the glucose-6-phosphatase gene in Israeli patients with glycogen storage disease type 1a: R83C in six Jews and a novel V166G mutation in a Muslim Arab.

    PubMed

    Parvari, R; Moses, S; Hershkovitz, E; Carmi, R; Bashan, N

    1995-01-01

    Glycogen storage disease type 1a (GSD 1a), an autosomal recessive disease, is caused by the inactivity of glucose-6-phosphatase, the gene of which has been recently cloned. We report on the missense mutation C-->T at nucleotide 326 of the G6Pase gene, causing the change of the Arg codon at position 83 into a Cys codon, as the single mutation detected in six Jewish patients. This finding suggests that this mutation might be prevalent among the Jewish population. A new missense mutation T-->G at nucleotide 576 resulting in V166G was found in an Arab Muslim patient. These families may benefit now from pre- and postnatal diagnosis by analysis of DNA from blood and amniotic fluid or chorionic villus cells rather than liver biopsy. No mutations in the G6Pase gene were detected in two GSD 1b patients.

  8. A Novel Rasopathy Caused by Recurrent De Novo Missense Mutations In PPP1CB Closely Resembles Noonan Syndrome with Loose Anagen Hair

    PubMed Central

    Gripp, Karen W.; Aldinger, Kimberly A.; Bennett, James T.; Baker, Laura; Tusi, Jessica; Powell-Hamilton, Nina; Stabley, Deborah; Sol-Church, Katia; Timms, Andrew E.; Dobyns, William B.

    2016-01-01

    Noonan syndrome is a rasopathy caused by mutations in multiple genes encoding components of the RAS/MAPK pathway. Despite its variable phenotype, limited genotype-phenotype correlations exist. Noonan syndrome with loose anagen hair (NS-LAH) is characterized by its distinctive hair anomalies, developmental differences and structural brain abnormalities and is caused by a single recurrent missense SHOC2 mutation. SHOC2 forms a complex with protein phosphatase 1 (PP1C). Protein phosphatases counterbalance kinases and control activation of signaling proteins, such as the mitogen activated protein kinases of the RAS/MAPK pathway. Here we report four patients with de novo missense mutations in protein phosphatase 1 catalytic subunit beta (PPP1CB), sharing a recognizable phenotype. Three individuals had the recurrent PPP1CB c.146G>C, p.Pro49Arg mutation, the fourth had a c.166G>C, p.Ala56Pro change. All had relative or absolute macrocephaly, low-set and posteriorly angulated ears and developmental delay. Slow growing and/or sparse hair and/or an unruly hair texture was present in all. Three individuals had feeding difficulties requiring feeding tubes. One of two males had cryptorchidism, another had pectus excavatum. Short stature was present in three. A female with the recurrent mutation had a Dandy-Walker malformation and optic nerve hypoplasia. Mild ventriculomegaly occurred in all, cerebellar tonsillar ectopia was seen in two and progressed to Chiari 1 malformation in one individual. Based on the combination of phenotypic findings and PPP1CB’s effect on RAF dephosphorylation within the RAS/MAPK pathway, this novel condition can be considered a rasopathy, most similar to NS-LAH. Collectively, these mutations meet the standardized criteria for pathogenicity. PMID:27264673

  9. Biophysical Properties of 9 KCNQ1 Mutations Associated with Long QT Syndrome (LQTS)

    PubMed Central

    Yang, Tao; Chung, Seo-Kyung; Zhang, Wei; Mullins, Jonathan G.L.; McCulley, Caroline H.; Crawford, Jackie; MacCormick, Judith; Eddy, Carey-Anne; Shelling, Andrew N.; French, John K.; Yang, Ping; Skinner, Jonathan R.; Roden, Dan M.; Rees, Mark I.

    2009-01-01

    Background Inherited long QT syndrome (LQTS) is characterized by prolonged QT interval on the EKG, syncope and sudden death due to ventricular arrhythmia. Causative mutations occur mostly in cardiac potassium and sodium channel subunit genes. Confidence in mutation pathogenicity is usually reached through family genotype-phenotype tracking, control population studies, molecular modelling and phylogenetic alignments, however, biophysical testing offers a higher degree of validating evidence. Methods and Results By using in-vitro electrophysiological testing of transfected mutant and wild-type LQTS constructs into Chinese Hamster Ovary cells, we investigated the biophysical properties of 9 KCNQ1 missense mutations (A46T, T265I, F269S, A302V, G316E, F339S, R360G, H455Y, and S546L) identified in a New Zealand based LQTS screening programme. We demonstrate through electrophysiology and molecular modeling that seven of the missense mutations have profound pathological dominant negative loss-of-function properties confirming their likely disease-causing nature. This supports the use of these mutations in diagnostic family screening. Two mutations (A46T, T265I) show suggestive evidence of pathogenicity within the experimental limits of biophysical testing, indicating that these variants are disease-causing via delayed or fast activation kinetics. Further investigation of the A46T family has revealed an inconsistent co-segregation of the variant with the clinical phenotype. Conclusions Electrophysiological characterisation should be used to validate LQTS pathogenicity of novel missense channelopathies. When such results are inconclusive, great care should be taken with genetic counselling and screening of such families, and alternative disease causing mechanisms should be considered. PMID:19808498

  10. Novel NEK8 Mutations Cause Severe Syndromic Renal Cystic Dysplasia through YAP Dysregulation

    PubMed Central

    Grampa, Valentina; Odye, Gweltas; Thomas, Sophie; Elkhartoufi, Nadia; Filhol, Emilie; Niel, Olivier; Silbermann, Flora; Lebreton, Corinne; Collardeau-Frachon, Sophie; Rouvet, Isabelle; Alessandri, Jean-Luc; Devisme, Louise; Dieux-Coeslier, Anne; Cordier, Marie-Pierre; Capri, Yline; Khung-Savatovsky, Suonavy; Sigaudy, Sabine; Salomon, Rémi; Antignac, Corinne; Gubler, Marie-Claire; Benmerah, Alexandre; Terzi, Fabiola; Attié-Bitach, Tania; Jeanpierre, Cécile; Saunier, Sophie

    2016-01-01

    Ciliopathies are a group of genetic multi-systemic disorders related to dysfunction of the primary cilium, a sensory organelle present at the cell surface that regulates key signaling pathways during development and tissue homeostasis. In order to identify novel genes whose mutations would cause severe developmental ciliopathies, >500 patients/fetuses were analyzed by a targeted high throughput sequencing approach allowing exome sequencing of >1200 ciliary genes. NEK8/NPHP9 mutations were identified in five cases with severe overlapping phenotypes including renal cystic dysplasia/hypodysplasia, situs inversus, cardiopathy with hypertrophic septum and bile duct paucity. These cases highlight a genotype-phenotype correlation, with missense and nonsense mutations associated with hypodysplasia and enlarged cystic organs, respectively. Functional analyses of NEK8 mutations in patient fibroblasts and mIMCD3 cells showed that these mutations differentially affect ciliogenesis, proliferation/apoptosis/DNA damage response, as well as epithelial morphogenesis. Notably, missense mutations exacerbated some of the defects due to NEK8 loss of function, highlighting their likely gain-of-function effect. We also showed that NEK8 missense and loss-of-function mutations differentially affect the regulation of the main Hippo signaling effector, YAP, as well as the expression of its target genes in patient fibroblasts and renal cells. YAP imbalance was also observed in enlarged spheroids of Nek8-invalidated renal epithelial cells grown in 3D culture, as well as in cystic kidneys of Jck mice. Moreover, co-injection of nek8 MO with WT or mutated NEK8-GFP RNA in zebrafish embryos led to shortened dorsally curved body axis, similar to embryos injected with human YAP RNA. Finally, treatment with Verteporfin, an inhibitor of YAP transcriptional activity, partially rescued the 3D spheroid defects of Nek8-invalidated cells and the abnormalities of NEK8-overexpressing zebrafish embryos. Altogether, our study demonstrates that NEK8 human mutations cause major organ developmental defects due to altered ciliogenesis and cell differentiation/proliferation through deregulation of the Hippo pathway. PMID:26967905

  11. [A study on mutations of the overlapping hepatitis B virus surface and polymerase gene in patients with HBV reinfection after liver transplantations].

    PubMed

    Song, Hong-li; Shen, Zhong-yang; Wang, Jian; Zheng, Wei-ping; Wang, Zheng-lu

    2008-04-01

    To investigate the influence of combined hepatitis B immune globulin (HBIG) and lamivudine (LMV) treatment on hepatitis B virus (HBV) surface antigen and polymerase overlapping gene mutations in HBV reinfected liver transplant recipients. From June 2002 to December 2003, 320 patients who underwent liver transplantations due to HBV-related end-stage liver diseases were followed-up for 1.5 to 3 years postoperatively. Fourteen patients developed HBV reinfection. They had LMV before their liver transplantations and had LMV and HBIG after the transplantations to prevent HBV infections. Their serum levels of HBV DNA were measured by polymerase chain reaction. Gene sequencing method was used to analyze HBV genotype and mutations of the S gene. Micro-particle enzyme immunoassay was used to measure the serum concentration of HBIG. (1) There was no obvious difference in the number of amino acid mutation sites in S and P regions before and after the transplantations. (2) The HBV genotypes were B-type (n=2) and C-type (n=12) in the reinfected group before the transplantations, and genotypes after the transplantations remained the same. (3) HBIG concentrations were 0 U/L in 7 patients, less than 100 U/L in 5 patients, and more than 100 U/L in 2 patients. Mutations were detected as I126S, T131N, S143T and G145R in 'a' determinant and L110F, I113S, T160K in up- or down-stream of 'a' determinant. (4) Mutations in S gene caused missense mutation in the surface antigen region. These mutations also caused corresponding missense mutations in the polymerase region. The missense mutation in the polymerase region involved lamivudine mutation sites and other mutation sites. Immunosuppressant therapy has no obvious influence on the numbers of mutations, but it can influence the sites of the mutations. Besides 'a' determinant mutations, there exist mutations in up- or down-streams of 'a' determinant and they may cause HBV reinfection.

  12. Genetic and bioinformatics analysis of four novel GCK missense variants detected in Caucasian families with GCK-MODY phenotype.

    PubMed

    Costantini, S; Malerba, G; Contreas, G; Corradi, M; Marin Vargas, S P; Giorgetti, A; Maffeis, C

    2015-05-01

    Heterozygous loss-of-function mutations in the glucokinase (GCK) gene cause maturity-onset diabetes of the young (MODY) subtype GCK (GCK-MODY/MODY2). GCK sequencing revealed 16 distinct mutations (13 missense, 1 nonsense, 1 splice site, and 1 frameshift-deletion) co-segregating with hyperglycaemia in 23 GCK-MODY families. Four missense substitutions (c.718A>G/p.Asn240Asp, c.757G>T/p.Val253Phe, c.872A>C/p.Lys291Thr, and c.1151C>T/p.Ala384Val) were novel and a founder effect for the nonsense mutation (c.76C>T/p.Gln26*) was supposed. We tested whether an accurate bioinformatics approach could strengthen family-genetic evidence for missense variant pathogenicity in routine diagnostics, where wet-lab functional assays are generally unviable. In silico analyses of the novel missense variants, including orthologous sequence conservation, amino acid substitution (AAS)-pathogenicity predictors, structural modeling and splicing predictors, suggested that the AASs and/or the underlying nucleotide changes are likely to be pathogenic. This study shows how a careful bioinformatics analysis could provide effective suggestions to help molecular-genetic diagnosis in absence of wet-lab validations. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  13. Laboratory and Genetic Investigation of Mutations Accounting for Congenital Fibrinogen Disorders.

    PubMed

    Neerman-Arbez, Marguerite; de Moerloose, Philippe; Casini, Alessandro

    2016-06-01

    Congenital fibrinogen disorders are classified into two types of plasma fibrinogen defects: type I (quantitative fibrinogen deficiencies), that is, hypofibrinogenemia or afibrinogenemia, in which there are low or absent plasma fibrinogen antigen levels, respectively, and type II (qualitative fibrinogen deficiencies), that is, dysfibrinogenemia or hypodysfibrinogenemia, in which there are normal or reduced antigen levels associated with disproportionately low functional activity. These disorders are caused by mutations in the three fibrinogen-encoding genes FGA, FGB, and FGG. Afibrinogenemia is associated with mild to severe bleeding, whereas hypofibrinogenemia is often asymptomatic. For these quantitative disorders, the majority of mutations prevent protein production. However, in some cases, missense or late-truncating nonsense mutations allow synthesis of the mutant fibrinogen chain, but intracellular fibrinogen assembly and/or secretion are impaired. Qualitative fibrinogen disorders are associated with bleeding, thrombosis, or both thrombosis and bleeding, but many dysfibrinogenemias are asymptomatic. The majority of cases are caused by heterozygous missense mutations. Here, we review the laboratory and genetic diagnosis of fibrinogen gene anomalies with an updated discussion of causative mutations identified. Thieme Medical Publishers 333 Seventh Avenue, New York, NY 10001, USA.

  14. The first missense mutation of NHS gene in a Tunisian family with clinical features of NHS syndrome including cardiac anomaly

    PubMed Central

    Chograni, Manèl; Rejeb, Imen; Jemaa, Lamia Ben; Châabouni, Myriam; Bouhamed, Habiba Chaabouni

    2011-01-01

    Nance-Horan Syndrome (NHS) or X-linked cataract-dental syndrome is a disease of unknown gene action mechanism, characterized by congenital cataract, dental anomalies, dysmorphic features and, in some cases, mental retardation. We performed linkage analysis in a Tunisian family with NHS in which affected males and obligate carrier female share a common haplotype in the Xp22.32-p11.21 region that contains the NHS gene. Direct sequencing of NHS coding exons and flanking intronic sequences allowed us to identify the first missense mutation (P551S) and a reported SNP-polymorphism (L1319F) in exon 6, a reported UTR–SNP (c.7422 C>T) and a novel one (c.8239 T>A) in exon 8. Both variations P551S and c.8239 T>A segregate with NHS phenotype in this family. Although truncations, frame-shift and copy number variants have been reported in this gene, no missense mutations have been found to segregate previously. This is the first report of a missense NHS mutation causing NHS phenotype (including cardiac defects). We hypothesize also that the non-reported UTR–SNP of the exon 8 (3′-UTR) is specific to the Tunisian population. PMID:21559051

  15. The first missense mutation of NHS gene in a Tunisian family with clinical features of NHS syndrome including cardiac anomaly.

    PubMed

    Chograni, Manèl; Rejeb, Imen; Jemaa, Lamia Ben; Châabouni, Myriam; Bouhamed, Habiba Chaabouni

    2011-08-01

    Nance-Horan Syndrome (NHS) or X-linked cataract-dental syndrome is a disease of unknown gene action mechanism, characterized by congenital cataract, dental anomalies, dysmorphic features and, in some cases, mental retardation. We performed linkage analysis in a Tunisian family with NHS in which affected males and obligate carrier female share a common haplotype in the Xp22.32-p11.21 region that contains the NHS gene. Direct sequencing of NHS coding exons and flanking intronic sequences allowed us to identify the first missense mutation (P551S) and a reported SNP-polymorphism (L1319F) in exon 6, a reported UTR-SNP (c.7422 C>T) and a novel one (c.8239 T>A) in exon 8. Both variations P551S and c.8239 T>A segregate with NHS phenotype in this family. Although truncations, frame-shift and copy number variants have been reported in this gene, no missense mutations have been found to segregate previously. This is the first report of a missense NHS mutation causing NHS phenotype (including cardiac defects). We hypothesize also that the non-reported UTR-SNP of the exon 8 (3'-UTR) is specific to the Tunisian population.

  16. Screening for NDP mutations in 44 unrelated patients with familial exudative vitreoretinopathy or Norrie disease.

    PubMed

    Yang, Huiqin; Li, Shiqiang; Xiao, Xueshan; Guo, Xiangming; Zhang, Qingjiong

    2012-08-01

    To screen mutations in the norrin (NDP) gene in 44 unrelated Chinese patients with familial exudative vitreoretinopathy (FEVR, 38 cases) or Norrie disease (6 cases) and to describe the associated phenotypes. Of the 44 patients, mutation in FZD4, LRP5, and TSPAN12 was excluded in 38 patients with FEVR in previous study. Sanger sequencing was used to analyze the 2 coding exons and their adjacent regions of NDP in the 44 patients. Clinical data were presented for patients with mutation. NDP variants in 5 of the 6 patients with Norrie disease were identified, including a novel missense mutation (c.164G>A, p.Cys55Phe) in one patient, two known missense mutations (c.122G>A, p.Arg41Lys; c.220C>T, p.Arg74Cys) in two patients, and a gross deletion encompassing the two coding exons in two patients. Of the 5 patients, 3 had a family history and 2 were singleton cases. No mutation in NDP was detected in the 38 patients with FEVR. NDP mutations are common cause of Norrie disease but might be rare cause for FEVR in Chinese.

  17. A single-residue mutation, G203E, causes 3-hydroxy-3-methylglutaric aciduria by occluding the substrate channel in the 3D structural model of HMG-CoA lyase.

    PubMed

    Mir, C; Lopez-Viñas, E; Aledo, R; Puisac, B; Rizzo, C; Dionisi-Vici, C; Deodato, F; Pié, J; Gomez-Puertas, P; Hegardt, F G; Casals, N

    2006-02-01

    3-Hydroxy-3-methylglutaric aciduria is a rare autosomal recessive genetic disorder that affects ketogenesis and leucine metabolism. The disease is caused by mutations in the gene coding for 3-hydroxy-3-methylglutaryl-coenzyme A lyase (HL). To date 26 different mutations have been described. A (betaalpha)(8) TIM barrel structure has been proposed for the protein, and almost all missense mutations identified so far localize in the beta sheets that define the inside cavity. We report an Italian patient who bears homozygously a novel HL mutation, c.608G > A (p. G203E) in beta sheet six. A structural model of the mutated protein suggests that glutamic acid 203 impedes catalysis by blocking the entrance to the inner cavity of the enzyme. Loss of functionality has been confirmed in expression studies in E. coli, which demonstrate that the G203E mutation completely abolishes enzyme activity. Beta sheet six and beta sheet two are the two protein regions that accumulate most missense mutations, indicating their importance in enzyme functionality. A model for the mechanism of enzyme function is proposed.

  18. Mutations in POLR3A and POLR3B are a major cause of hypomyelinating leukodystrophies with or without dental abnormalities and/or hypogonadotropic hypogonadism.

    PubMed

    Daoud, Hussein; Tétreault, Martine; Gibson, William; Guerrero, Kether; Cohen, Ana; Gburek-Augustat, Janina; Synofzik, Matthis; Brais, Bernard; Stevens, Cathy A; Sanchez-Carpintero, Rocio; Goizet, Cyril; Naidu, Sakkubai; Vanderver, Adeline; Bernard, Geneviève

    2013-03-01

    Leukodystrophies are a heterogeneous group of inherited neurodegenerative disorders characterised by abnormal central nervous system white matter. Mutations in POLR3A and POLR3B genes were recently reported to cause four clinically overlapping hypomyelinating leukodystrophy phenotypes. Our aim was to investigate the presence and frequency of POLR3A and POLR3B mutations in patients with genetically unexplained hypomyelinating leukodystrophies with typical clinical and/or radiologic features of Pol III-related leukodystrophies. The entire coding region and the flanking exon/intron boundaries of POLR3A and/or POLR3B genes were amplified and sequenced in 14 patients. Recessive mutations in POLR3A or POLR3B were uncovered in all 14 patients. Eight novel mutations were identified in POLR3A: six missenses, one nonsense, and one frameshift mutation. Seven patients carried compound heterozygous mutations in POLR3B, of whom six shared the common mutation in exon 15 (p.V523E). Seven novel mutations were identified in POLR3B: four missenses, two splice sites, and one intronic mutation. To date, our group has described 37 patients, of whom 27 have mutations in POLR3A and 10 in POLR3B, respectively. Altogether, our results further support the proposal that POLR3A and POLR3B mutations are a major cause of hypomyelinating leukodystrophies and suggest that POLR3A mutations are more frequent.

  19. Mucopolysaccharidosis IVA: Identification of a common missense mutation I113F in the N-Acetylgalactosamine-6-sulfate sulfatase gene

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tomatsu, Shunji; Fukuda, Seiji; Rezvi, Maruf

    1995-09-01

    Mucopolysaccharidosis IVA is an autosomal recessive lysosomal storage disorder caused by a deficiency of N-acetylgalactosamine-6-sulfate sulfatase (GALNS). The recent isolation and characterization of cDNA and genomic sequences encoding GALNS has facilitated identification of the molecular lesions that cause MPS IVA. We identified a common missense mutation among Caucasian MPS IVA patients. The mutation was originally detected by SSCP, and successive sequencing revealed an A{yields}T transversion at nt 393. This substitution altered the isoleucine at position 113 to phenylalanine (I113F) in the 622 amino acid GALNS protein and was associated with a severe phenotype in a homozygote. Compound heterogzygotes with onemore » I113F-allele mutation have a wide range of clinical phenotypes. Transfection experiments in GALNS-deficient fibroblasts revealed that the mutation drastically reduces the enzyme activity of GALNS. Allele-specific oligonucleotide or SSCP analysis indicated that this mutation accounted for 22.5% (9/40) of unrelated MPS IVA chromosomes from 23 Caucasian patients, including 6 consanguineous cases. Of interest, the I1e 113{yields}Phe substitution occurred in only Caucasian MPS IVA patients and in none of the GALNS alleles of 20 Japanese patients. These findings identify a frequent missense mutation among MPS IVA patients of Caucasian ancestry that results in severe MPS IVA when homoallelic, and will facilitate molecular diagnosis of most such patients and identification of heterozygous carriers. In addition to this common mutation, 10 different point mutations and 2 small deletions were detected, suggesting allelic heterogeneity in GALNS gene. 32 refs., 2 figs., 3 tabs.« less

  20. Spectrum of MECP2 gene mutations in a cohort of Indian patients with Rett syndrome: report of two novel mutations.

    PubMed

    Das, Dhanjit Kumar; Raha, Sarbani; Sanghavi, Daksha; Maitra, Anurupa; Udani, Vrajesh

    2013-02-15

    Rett syndrome (RTT) is an X-linked neurodevelopmental disorder, primarily affecting females and characterized by developmental regression, epilepsy, stereotypical hand movements, and motor abnormalities. Its prevalence is about 1 in 10,000 female births. Rett syndrome is caused by mutations within methyl CpG-binding protein 2 (MECP2) gene. Over 270 individual nucleotide changes which cause pathogenic mutations have been reported. However, eight most commonly occurring missense and nonsense mutations account for almost 70% of all patients. We screened 90 individuals with Rett syndrome phenotype. A total of 19 different MECP2 mutations and polymorphisms were identified in 27 patients. Of the 19 mutations, we identified 7 (37%) frameshift, 6 (31%) nonsense, 14 (74%) missense mutations and one duplication (5%). The most frequent pathogenic changes were: missense p.T158M (11%), p.R133C (7.4%), and p.R306C (7.4%) and nonsense p.R168X (11%), p.R255X (7.4%) mutations. We have identified two novel mutations namely p.385-388delPLPP present in atypical patients and p.Glu290AlafsX38 present in a classical patient of Rett syndrome. Sequence homology for p.385-388delPLPP mutation revealed that these 4 amino acids were conserved across mammalian species. This indicated the importance of these 4 amino acids in structure and function of the protein. A novel variant p.T479T has also been identified in a patient with atypical Rett syndrome. A total of 62 (69%) patients remained without molecular genetics diagnosis that necessitates further search for mutations in other genes like CDKL5 and FOXG1 that are known to cause Rett phenotype. The majority of mutations are detected in exon 4 and only one mutation was present in exon 3. Therefore, our study suggests the need for screening exon 4 of MECP2 as first line of diagnosis in these patients. Copyright © 2012 Elsevier B.V. All rights reserved.

  1. Eight novel F13A1 gene missense mutations in patients with mild FXIII deficiency: in silico analysis suggests changes in FXIII-A subunit structure/function.

    PubMed

    Biswas, Arijit; Ivaskevicius, Vytautas; Thomas, Anne; Varvenne, Michael; Brand, Brigitte; Rott, Hannelore; Haussels, Iris; Ruehl, Heiko; Scholz, Ute; Klamroth, Robert; Oldenburg, Johannes

    2014-10-01

    Mild FXIII deficiency is an under-diagnosed disorder because the carriers of this deficiency are often asymptomatic and reveal a phenotype only under special circumstances like surgery or induced trauma. Mutational reports from this type of deficiency have been rare. In this study, we present the phenotypic and genotypic data of nine patients showing mild FXIII-A deficiency caused by eight novel heterozygous missense mutations (Pro166Leu, Arg171Gln, His342Tyr, Gln415Arg, Leu529Pro, Gln601Lys, Arg703Gln and Arg715Gly) in the F13A1 gene. None of these variants were seen in 200 healthy controls. In silico structural analysis of the local wild-type protein structures (activated and non-activated) from X-ray crystallographic models downloaded from the protein databank identified potential structural/functional effects for the identified mutations. The missense mutations in the core domain are suggested to be directly influencing the catalytic triad. Mutations on other domains might influence other critical factors such as activation peptide cleavage or the barrel domain integrity. In vitro expression and subsequent biochemical studies in the future will be able to confirm the pathophysiological mechanisms proposed for the mutations in this article.

  2. HMG CoA lyase deficiency: identification of five causal point mutations in codons 41 and 42, including a frequent Saudi Arabian mutation, R41Q.

    PubMed Central

    Mitchell, G A; Ozand, P T; Robert, M F; Ashmarina, L; Roberts, J; Gibson, K M; Wanders, R J; Wang, S; Chevalier, I; Plöchl, E; Miziorko, H

    1998-01-01

    The hereditary deficiency of 3-hydroxy-3-methylglutaryl (HMG) CoA lyase (HL; OMIM 246450 [http://www3.ncbi.nlm.nih. gov:80/htbin-post/Omim/dispmim?246450]) results in episodes of hypoketotic hypoglycemia and coma and is reported to be frequent and clinically severe in Saudi Arabia. We found genetic diversity among nine Saudi HL-deficient probands: six were homozygous for the missense mutation R41Q, and two were homozygous for the frameshift mutation F305fs(-2). In 32 non-Saudi HL-deficient probands, we found three R41Q alleles and also discovered four other deleterious point mutations in codons 41 and 42: R41X, D42E, D42G, and D42H. In purified mutant recombinant HL, all four missense mutations in codons 41 and 42 cause a marked decrease in HL activity. We developed a screening procedure for HL missense mutations that yields residual activity at levels comparable to those obtained using purified HL peptides. Codons 41 and 42 are important for normal HL catalysis and account for a disproportionate 21 (26%) of 82 of mutant alleles in our group of HL-deficient probands. PMID:9463337

  3. alpha-Mannosidosis in the guinea pig: cloning of the lysosomal alpha-mannosidase cDNA and identification of a missense mutation causing alpha-mannosidosis.

    PubMed

    Berg, Thomas; Hopwood, John J

    2002-03-16

    alpha-Mannosidosis is a lysosomal storage disorder caused by deficient activity of the lysosomal alpha-mannosidase. We report here the sequencing and expression of the lysosomal alpha-mannosidase cDNA from normal and alpha-mannosidosis guinea pigs. The amino acid sequence of the guinea pig enzyme displayed 82-85% identity to the lysosomal alpha-mannosidase in other mammals. The cDNA of the alpha-mannosidosis guinea pig contained a missense mutation, 679C>T, leading to substitution of arginine by tryptophan at amino acid position 227 (R227W). The R227W allele segregated with the alpha-mannosidosis genotype in the guinea pig colony and introduction of R227W into the wild-type sequence eliminated the production of recombinant alpha-mannosidase activity in heterologous expression studies. Furthermore, the guinea pig mutation has been found in human patients. Our results strongly indicate that the 679C>T mutation causes alpha-mannosidosis and suggest that the guinea pig will be an excellent model for investigation of pathogenesis and evaluation of therapeutic strategies for human alpha-mannosidosis.

  4. The identification of HESX1 mutations in Kallmann syndrome

    PubMed Central

    Newbern, Kayce; Natrajan, Nithya; Kim, Hyung-Goo; Chorich, Lynn .P.; Halvorson, Lisa; Cameron, Richard S.; Layman, Lawrence C.

    2013-01-01

    Objective To determine if HESX1 mutations are present in patients with idiopathic hypogonadotropic hypogonadism (IHH)/Kallmann syndrome (KS). HESX1 mutations have previously been characterized in patients with septo-optic dysplasia (SOD), isolated growth hormone deficiency (IGHD), and combined pituitary hormone deficiency (CPHD). We hypothesized that IHH/KS represents a milder phenotypic variant of SOD. Design PCR-based DNA sequencing was performed on 217 well-characterized IHH/KS patients. Putative missense mutations were analyzed by sorting intolerant from tolerant (SIFT) and Clustal Ω. Setting An academic medical center Patients 217 IHH/KS and 192 controls Interventions DNA was extracted from patients and controls; genotype/phenotype comparisons were made Main Outcome Measures DNA sequence of HESX1, SIFT analysis, and ortholog alignment Results Two novel heterozygous missense mutations (p.H42Y and p.V75L) and previously reported heterozygous missense mutation p.Q6H in HESX1 were identified in 3/217 (1.4%) patients. All were males with KS. Both p.Q6H and p.H42Y were predicted to be deleterious by SIFT, while p.V75L was conserved in 8/9 species. No other IHH/KS gene mutations were present. Conclusions HESX1 mutations may cause KS in addition to more severe phenotypes. Our findings expand the phenotypic spectrum of HESX1 mutations in humans, thereby broadening its role in development. PMID:23465708

  5. An integrated computational approach can classify VHL missense mutations according to risk of clear cell renal carcinoma

    PubMed Central

    Gossage, Lucy; Pires, Douglas E. V.; Olivera-Nappa, Álvaro; Asenjo, Juan; Bycroft, Mark; Blundell, Tom L.; Eisen, Tim

    2014-01-01

    Mutations in the von Hippel–Lindau (VHL) gene are pathogenic in VHL disease, congenital polycythaemia and clear cell renal carcinoma (ccRCC). pVHL forms a ternary complex with elongin C and elongin B, critical for pVHL stability and function, which interacts with Cullin-2 and RING-box protein 1 to target hypoxia-inducible factor for polyubiquitination and proteasomal degradation. We describe a comprehensive database of missense VHL mutations linked to experimental and clinical data. We use predictions from in silico tools to link the functional effects of missense VHL mutations to phenotype. The risk of ccRCC in VHL disease is linked to the degree of destabilization resulting from missense mutations. An optimized binary classification system (symphony), which integrates predictions from five in silico methods, can predict the risk of ccRCC associated with VHL missense mutations with high sensitivity and specificity. We use symphony to generate predictions for risk of ccRCC for all possible VHL missense mutations and present these predictions, in association with clinical and experimental data, in a publically available, searchable web server. PMID:24969085

  6. Identification of a Novel Missense FBN2 Mutation in a Chinese Family with Congenital Contractural Arachnodactyly Using Exome Sequencing

    PubMed Central

    Deng, Hao; Lu, Qian; Xu, Hongbo; Deng, Xiong; Yuan, Lamei; Yang, Zhijian; Guo, Yi; Lin, Qiongfen; Xiao, Jingjing; Guan, Liping; Song, Zhi

    2016-01-01

    Congenital contractural arachnodactyly (CCA, OMIM 121050), also known as Beals-Hecht syndrome, is an autosomal dominant disorder of connective tissue. CCA is characterized by arachnodactyly, dolichostenomelia, pectus deformities, kyphoscoliosis, congenital contractures and a crumpled appearance of the helix of the ear. The aim of this study is to identify the genetic cause of a 4-generation Chinese family of Tujia ethnicity with congenital contractural arachnodactyly by exome sequencing. The clinical features of patients in this family are consistent with CCA. A novel missense mutation, c.3769T>C (p.C1257R), in the fibrillin 2 gene (FBN2) was identified responsible for the genetic cause of our family with CCA. The p.C1257R mutation occurs in the 19th calcium-binding epidermal growth factor-like (cbEGF) domain. The amino acid residue cysteine in this domain is conserved among different species. Our findings suggest that exome sequencing is a powerful tool to discover mutation(s) in CCA. Our results may also provide new insights into the cause and diagnosis of CCA, and may have implications for genetic counseling and clinical management. PMID:27196565

  7. Alternating Hemiplegia of Childhood-Related Neural and Behavioural Phenotypes in Na+,K+-ATPase α3 Missense Mutant Mice

    PubMed Central

    Kirshenbaum, Greer S.; Dawson, Neil; Mullins, Jonathan G. L.; Johnston, Tom H.; Drinkhill, Mark J.; Edwards, Ian J.; Fox, Susan H.; Pratt, Judith A.; Brotchie, Jonathan M.; Roder, John C.; Clapcote, Steven J.

    2013-01-01

    Missense mutations in ATP1A3 encoding Na+,K+-ATPase α3 have been identified as the primary cause of alternating hemiplegia of childhood (AHC), a motor disorder with onset typically before the age of 6 months. Affected children tend to be of short stature and can also have epilepsy, ataxia and learning disability. The Na+,K+-ATPase has a well-known role in maintaining electrochemical gradients across cell membranes, but our understanding of how the mutations cause AHC is limited. Myshkin mutant mice carry an amino acid change (I810N) that affects the same position in Na+,K+-ATPase α3 as I810S found in AHC. Using molecular modelling, we show that the Myshkin and AHC mutations display similarly severe structural impacts on Na+,K+-ATPase α3, including upon the K+ pore and predicted K+ binding sites. Behavioural analysis of Myshkin mice revealed phenotypic abnormalities similar to symptoms of AHC, including motor dysfunction and cognitive impairment. 2-DG imaging of Myshkin mice identified compromised thalamocortical functioning that includes a deficit in frontal cortex functioning (hypofrontality), directly mirroring that reported in AHC, along with reduced thalamocortical functional connectivity. Our results thus provide validation for missense mutations in Na+,K+-ATPase α3 as a cause of AHC, and highlight Myshkin mice as a starting point for the exploration of disease mechanisms and novel treatments in AHC. PMID:23527305

  8. The A31P missense mutation in cardiac myosin binding protein C alters protein structure but does not cause haploinsufficiency.

    PubMed

    van Dijk, Sabine J; Bezold Kooiker, Kristina; Mazzalupo, Stacy; Yang, Yuanzhang; Kostyukova, Alla S; Mustacich, Debbie J; Hoye, Elaine R; Stern, Joshua A; Kittleson, Mark D; Harris, Samantha P

    2016-07-01

    Mutations in MYBPC3, the gene encoding cardiac myosin binding protein C (cMyBP-C), are a major cause of hypertrophic cardiomyopathy (HCM). While most mutations encode premature stop codons, missense mutations causing single amino acid substitutions are also common. Here we investigated effects of a single proline for alanine substitution at amino acid 31 (A31P) in the C0 domain of cMyBP-C, which was identified as a natural cause of HCM in cats. Results using recombinant proteins showed that the mutation disrupted C0 structure, altered sensitivity to trypsin digestion, and reduced recognition by an antibody that preferentially recognizes N-terminal domains of cMyBP-C. Western blots detecting A31P cMyBP-C in myocardium of cats heterozygous for the mutation showed a reduced amount of A31P mutant protein relative to wild-type cMyBP-C, but the total amount of cMyBP-C was not different in myocardium from cats with or without the A31P mutation indicating altered rates of synthesis/degradation of A31P cMyBP-C. Also, the mutant A31P cMyBP-C was properly localized in cardiac sarcomeres. These results indicate that reduced protein expression (haploinsufficiency) cannot account for effects of the A31P cMyBP-C mutation and instead suggest that the A31P mutation causes HCM through a poison polypeptide mechanism that disrupts cMyBP-C or myocyte function. Copyright © 2016 Elsevier Inc. All rights reserved.

  9. Novel mutations in GALNT3 causing hyperphosphatemic familial tumoral calcinosis.

    PubMed

    Yancovitch, Alan; Hershkovitz, Dov; Indelman, Margareta; Galloway, Peter; Whiteford, Margo; Sprecher, Eli; Kılıç, Esra

    2011-09-01

    Hyperphosphatemic familial tumoral calcinosis (HFTC) is known to be caused by mutations in at least three genes: FGF23, GALNT3 and KL. Two families with two affected members suffering from HFTC were scrutinized for mutations in these candidate genes. We identified in both families homozygous missense mutations affecting highly conserved amino acids in GALNT3. One of the mutations is a novel mutation, whereas the second mutation was reported before in a compound heterozygous state. Our data expand the spectrum of known mutations in GALNT3 and contribute to a better understanding of the phenotypic manifestations of mutations in this gene.

  10. Missense mutation in the USH2A gene: association with recessive retinitis pigmentosa without hearing loss.

    PubMed

    Rivolta, C; Sweklo, E A; Berson, E L; Dryja, T P

    2000-06-01

    Microdeletions Glu767(1-bp del), Thr967(1-bp del), and Leu1446(2-bp del) in the human USH2A gene have been reported to cause Usher syndrome type II, a disorder characterized by retinitis pigmentosa (RP) and mild-to-severe hearing loss. Each of these three frameshift mutations is predicted to lead to an unstable mRNA transcript that, if translated, would result in a truncated protein lacking the carboxy terminus. Here, we report Cys759Phe, a novel missense mutation in this gene that changes an amino-acid residue within the fifth laminin-epidermal growth factor-like domain of the USH2A gene and that is associated with recessive RP without hearing loss. This single mutation was found in 4.5% of 224 patients with recessive RP, suggesting that USH2A could cause more cases of nonsyndromic recessive RP than does any other gene identified to date.

  11. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Thibodeau, Patrick H.; Brautigam, Chad A.; Machius, Mischa

    Mutations in the cystic fibrosis transmembrane conductance regulator (CFTR), an integral membrane protein, cause cystic fibrosis (CF). The most common CF-causing mutant, deletion of Phe508, fails to properly fold. To elucidate the role Phe508 plays in the folding of CFTR, missense mutations at this position were generated. Only one missense mutation had a pronounced effect on the stability and folding of the isolated domain in vitro. In contrast, many substitutions, including those of charged and bulky residues, disrupted folding of full-length CFTR in cells. Structures of two mutant nucleotide-binding domains (NBDs) reveal only local alterations of the surface near positionmore » 508. These results suggest that the peptide backbone plays a role in the proper folding of the domain, whereas the side chain plays a role in defining a surface of NBD1 that potentially interacts with other domains during the maturation of intact CFTR.« less

  12. A novel missense mutation, p.(R102W) in WNT7A causes Al-Awadi Raas-Rothschild syndrome in a fetus.

    PubMed

    Mutlu, Mehmet Burak; Cetinkaya, Arda; Koc, Nermin; Ceylaner, Gulay; Erguner, Bekir; Aydın, Hatip; Karaman, Selin; Demirci, Oya; Goksu, Kamber; Karaman, Ali

    2016-11-01

    Al-Awadi-Raas-Rothschild syndrome (AARRS) is a rare autosomal recessive disorder which consists of severe malformations of the upper and lower limbs, abnormal genitalia and underdeveloped pelvis. Here, we present a fetus with severe limbs defects, including bilateral humeroradial synostosis, bilateral oligodactyly in hands, underdeveloped pelvis, short femora and tibiae, absence of fibulae, severely small feet, and absence of uterus. An autosomal recessively inherited novel mutation in WNT7A found in the fetus, c.304C > T, affects an evolutionarily well-conserved amino acid, causing the p.(R102W) missense change at protein level. The findings presented in this fetus are compatible with diagnosis of AARRS, expanding the mutational spectrum of limb malformations arising from defects in WNT7A. Crown Copyright © 2016. Published by Elsevier Masson SAS. All rights reserved.

  13. Selected missense mutations impair frataxin processing in Friedreich ataxia.

    PubMed

    Clark, Elisia; Butler, Jill S; Isaacs, Charles J; Napierala, Marek; Lynch, David R

    2017-08-01

    Frataxin (FXN) is a highly conserved mitochondrial protein. Reduced FXN levels cause Friedreich ataxia, a recessive neurodegenerative disease. Typical patients carry GAA repeat expansions on both alleles, while a subgroup of patients carry a missense mutation on one allele and a GAA repeat expansion on the other. Here, we report that selected disease-related FXN missense mutations impair FXN localization, interaction with mitochondria processing peptidase, and processing. Immunocytochemical studies and subcellular fractionation were performed to study FXN import into the mitochondria and examine the mechanism by which mutations impair FXN processing. Coimmunoprecipitation was performed to study the interaction between FXN and mitochondrial processing peptidase. A proteasome inhibitor was used to model traditional therapeutic strategies. In addition, clinical profiles of subjects with and without point mutations were compared in a large natural history study. FXN I 154F and FXN G 130V missense mutations decrease FXN 81-210 levels compared with FXN WT , FXN R 165C , and FXN W 155R , but do not block its association with mitochondria. FXN I 154F and FXN G 130V also impair FXN maturation and enhance the binding between FXN 42-210 and mitochondria processing peptidase. Furthermore, blocking proteosomal degradation does not increase FXN 81-210 levels. Additionally, impaired FXN processing also occurs in fibroblasts from patients with FXN G 130V . Finally, clinical data from patients with FXN G 130V and FXN I 154F mutations demonstrates a lower severity compared with other individuals with Friedreich ataxia. These data suggest that the effects on processing associated with FXN G 130V and FXN I 154F mutations lead to higher levels of partially processed FXN, which may contribute to the milder clinical phenotypes in these patients.

  14. Accumulation of multiple mutations in linezolid-resistant Staphylococcus epidermidis causing bloodstream infections; in silico analysis of L3 amino acid substitutions that might confer high-level linezolid resistance.

    PubMed

    Ikonomidis, Alexandros; Grapsa, Anastasia; Pavlioglou, Charikleia; Demiri, Antonia; Batarli, Alexandra; Panopoulou, Maria

    2016-12-01

    Fifty-six Staphylococcus epidermidis clinical isolates, showing high-level linezolid resistance and causing bacteremia in critically ill patients, were studied. All isolates belonged to ST22 clone and carried the T2504A and C2534T mutations in gene coding for 23SrRNA as well as the C189A, G208A, C209T and G384C missense mutations in L3 protein which resulted in Asp159Tyr, Gly152Asp and Leu94Val substitutions. Other silent mutations were also detected in genes coding for ribosomal proteins L3 and L22. In silico analysis of missense mutations showed that although L3 protein retained the sequence of secondary motifs, the tertiary structure was influenced. The observed alteration in L3 protein folding provides an indication on the putative role of L3-coding gene mutations in high-level linezolid resistance. Furthermore, linezolid pressure in health care settings where linezolid consumption is of high rates might lead to the selection of resistant mutants possessing L3 mutations that might confer high-level linezolid resistance.

  15. Modeling the effect of 3 missense AGXT mutations on dimerization of the AGT enzyme in primary hyperoxaluria type 1.

    PubMed

    Robbiano, Angela; Frecer, Vladimir; Miertus, Jan; Zadro, Cristina; Ulivi, Sheila; Bevilacqua, Elena; Mandrile, Giorgia; De Marchi, Mario; Miertus, Stanislav; Amoroso, Antonio

    2010-01-01

    Mutations of the AGXT gene encoding the alanine:glyoxylate aminotransferase liver enzyme (AGT) cause primary hyperoxaluria type 1 (PH1). Here we report a molecular modeling study of selected missense AGXT mutations: the common Gly170Arg and the recently described Gly47Arg and Ser81Leu variants, predicted to be pathogenic using standard criteria. Taking advantage of the refined 3D structure of AGT, we computed the dimerization energy of the wild-type and mutated proteins. Molecular modeling predicted that Gly47Arg affects dimerization with a similar effect to that shown previously for Gly170Arg through classical biochemical approaches. In contrast, no effect on dimerization was predicted for Ser81Leu. Therefore, this probably demonstrates pathogenic properties via a different mechanism, similar to that described for the adjacent Gly82Glu mutation that affects pyridoxine binding. This study shows that the molecular modeling approach can contribute to evaluating the pathogenicity of some missense variants that affect dimerization. However, in silico studies--aimed to assess the relationship between structural change and biological effects--require the integrated use of more than 1 tool.

  16. Exome capture sequencing identifies a novel mutation in BBS4

    PubMed Central

    Wang, Hui; Chen, Xianfeng; Dudinsky, Lynn; Patenia, Claire; Chen, Yiyun; Li, Yumei; Wei, Yue; Abboud, Emad B.; Al-Rajhi, Ali A.; Lewis, Richard Alan; Lupski, James R.; Mardon, Graeme; Gibbs, Richard A.; Perkins, Brian D.

    2011-01-01

    Purpose Leber congenital amaurosis (LCA) is one of the most severe eye dystrophies characterized by severe vision loss at an early stage and accounts for approximately 5% of all retinal dystrophies. The purpose of this study was to identify a novel LCA disease allele or gene and to develop an approach combining genetic mapping with whole exome sequencing. Methods Three patients from King Khaled Eye Specialist Hospital (KKESH205) underwent whole genome single nucleotide polymorphism genotyping, and a single candidate region was identified. Taking advantage of next-generation high-throughput DNA sequencing technologies, whole exome capture sequencing was performed on patient KKESH205#7. Sanger direct sequencing was used during the validation step. The zebrafish model was used to examine the function of the mutant allele. Results A novel missense mutation in Bardet-Biedl syndrome 4 protein (BBS4) was identified in a consanguineous family from Saudi Arabia. This missense mutation in the fifth exon (c.253G>C;p.E85Q) of BBS4 is likely a disease-causing mutation as it segregates with the disease. The mutation is not found in the single nucleotide polymorphism (SNP) database, the 1000 Genomes Project, or matching normal controls. Functional analysis of this mutation in zebrafish indicates that the G253C allele is pathogenic. Coinjection of the G253C allele cannot rescue the mislocalization of rhodopsin in the retina when BBS4 is knocked down by morpholino injection. Immunofluorescence analysis in cell culture shows that this missense mutation in BBS4 does not cause obvious defects in protein expression or pericentriolar localization. Conclusions This mutation likely mainly reduces or abolishes BBS4 function in the retina. Further studies of this allele will provide important insights concerning the pleiotropic nature of BBS4 function. PMID:22219648

  17. Cerebrospinal Fluid Progranulin, but Not Serum Progranulin, Is Reduced in GRN-Negative Frontotemporal Dementia.

    PubMed

    Wilke, Carlo; Gillardon, Frank; Deuschle, Christian; Hobert, Markus A; Jansen, Iris E; Metzger, Florian G; Heutink, Peter; Gasser, Thomas; Maetzler, Walter; Blauwendraat, Cornelis; Synofzik, Matthis

    2017-01-01

    Reduced progranulin levels are a hallmark of frontotemporal dementia (FTD) caused by loss-of-function (LoF) mutations in the progranulin gene (GRN). However, alterations of central nervous progranulin expression also occur in neurodegenerative disorders unrelated to GRN mutations, such as Alzheimer's disease. We hypothesised that central nervous progranulin levels are also reduced in GRN-negative FTD. Progranulin levels were determined in both cerebrospinal fluid (CSF) and serum in 75 subjects (37 FTD patients and 38 controls). All FTD patients were assessed by whole-exome sequencing for GRN mutations, yielding a target cohort of 34 patients without pathogenic mutations in GRN (GRN-negative cohort) and 3 GRN mutation carriers (2 LoF variants and 1 novel missense variant). Not only the GRN mutation carriers but also the GRN-negative patients showed decreased CSF levels of progranulin (serum levels in GRN-negative patients were normal). The decreased CSF progranulin levels were unrelated to patients' increased CSF levels of total tau, possibly indicating different destructive neuronal processes within FTD neurodegeneration. The patient with the novel GRN missense variant (c.1117C>T, p.P373S) showed substantially decreased CSF levels of progranulin, comparable to the 2 patients with GRN LoF mutations, suggesting a pathogenic effect of this missense variant. Our results indicate that central nervous progranulin reduction is not restricted to the relatively rare cases of FTD caused by GRN LoF mutations, but also contributes to the more common GRN-negative forms of FTD. Central nervous progranulin reduction might reflect a partially distinct pathogenic mechanism underlying FTD neurodegeneration and is not directly linked to tau alterations. © 2016 S. Karger AG, Basel.

  18. Simultaneous Occurence of an Autosomal Dominant Inherited MSX1 Mutation and an X-linked Recessive Inherited EDA Mutation in One Chinese Family with Non-syndromic Oligodontia.

    PubMed

    Zhang, Xiao Xia; Wong, Sing Wai; Han, Dong; Feng, Hai Lan

    2015-01-01

    To describe the simultaneous occurence of an autosomal dominant inherited MSX1 mutation and an X-linked recessive inherited EDA mutation in one Chinese family with nonsyndromic oligodontia. Clinical data of characteristics of tooth agenesis were collected. MSX1 and EDA gene mutations were detected in a Chinese family of non-syndromic oligodontia. Mild hypodontia in the parents and severe oligodontia in the son was recorded. A novel missense heterozygous mutation c.517C>A (p.Arg173Ser) was detected in the MSX1 gene in the boy and the father. A homozygous missense mutation c.1001G>A (p.Arg334His) was detected in the EDA gene in the boy and the same mutant occurred heterozygously in the mother. Simultaneous occurence of two different gene mutations with different inheritence patterns, which both caused oligodontia, which occurred in one subject and in one family, was reported.

  19. Recurrence of reported CDH23 mutations causing DFNB12 in a special cohort of South Indian hearing impaired assortative mating families - an evaluation.

    PubMed

    Vanniya S, Paridhy; Chandru, Jayasankaran; Pavithra, Amritkumar; Jeffrey, Justin Margret; Kalaimathi, Murugesan; Ramakrishnan, Rajagopalan; Karthikeyen, Natarajan P; C R Srikumari, Srisailapathy

    2018-03-01

    Mutations in CDH23 are known to cause autosomal-recessive nonsyndromic hearing loss (DFNB12). Until now, there was only one study describing its frequency in Indian population. We screened for CDH23 mutations to identify prevalent and recurring mutations among South Indian assortative mating hearing-impaired individuals who were identified as non-DFNB1 (GJB2 and GJB6). Whole-exome sequencing was performed in individuals found to be heterozygous for CDH23 to determine whether there was a second pathogenic allele. In our study, 19 variants including 6 pathogenic missense mutations were identified. The allelic frequency of pathogenic mutations accounts to 4.7% in our cohort, which is higher than that reported previously; three mutations (c.429+4G>A, c.2968G>A, and c.5660C>T) reported in the previous Indian study were found to recur. DFNB12 was found to be the etiology in 3.4% of our cohort, with missense mutation c.2968G>A (p.Asp990Asn) being the most prevalent (2.6%). These results suggest a need to investigate the possibility for higher proportion of CDH23 mutations in the South Indian hearing-impaired population. © 2017 John Wiley & Sons Ltd/University College London.

  20. Two novel mutations in NOTCH3 gene causes cerebral autosomal dominant arteriopathy with subcritical infarct and leucoencephalopathy in two Chinese families.

    PubMed

    Zhu, Yuyou; Wang, Juan; Wu, Yuanbo; Wang, Guoping; Hu, Bai

    2015-01-01

    To investigate the genetic pathogenic causes of cerebral autosomal dominant arteriopathy with subcritical infarct and leucoencephalopathy (CADASIL) in two Chinese families, to provide the molecular basis for genetic counseling and antenatal diagnosis. The genetic mutation of gene NOTCH3 of propositus and family members was analyzed in these two CADASIL families by polymerase chain reaction and DNA sequencing technology directly. At the same time, the NOTCH3 gene mutation point of 100 healthy collators was detected, to explicit the pathogenic mutation by function prediction with Polyphen-2 and SIFT. Both propositus of the two families and patients with symptom were all accorded with the clinical features of CADASIL. It was shown by DNA sequencing that the 19(th) exon [c. 3043 T > A (p.Cys1015Ser)] in gene NOTCH3 of propositus, 2 patients (II3, III7), and a presymptomatic patient (IV1) in Family I all had heterozygosity missense mutation; and the 3(rd) exon [c.316T > G, p. (Cys106Gly)] in gene NOTCH3 of the propositus, a patient (IV3) and two presymptomatic patients (IV5, 6) in Family II all had heterozygosity missense mutation; and no mutations were detected in the 100 healthy collators. It was indicated by analyzing the function prediction that the mutation of [c. 3043 T > A (p.Cys1015Ser)] and [c.316T > G, p. (Cys106Gly)] may both influence encoding protein in NOTCH3. By analysis of the conservatism of mutation point in each species, these two basic groups were highly conserved. The heterozygosity missense mutation of 19(th) exon [c. 3043 T > A (p.Cys1015Ser)] and the 3(rd) exon [c.316T > G, p. (Cys106Gly)] in NOTCH3 gene are the new pathogenic mutations of CADASIL, and enriches the mutation spectrum of NOTCH3 gene.

  1. Genes with mutation significance were highly associated with the clinical pattern of patients with breast cancer.

    PubMed

    Ding, Wan-Jun; Zeng, Tao; Wang, Li-Jun; Lei, Hong-Bo; Ge, Wei; Wang, Zhi

    2017-11-17

    In the United States, breast cancer is the second leading cause of cancer death in women. Over the past 20 years, breast cancer incidence and mortality rates increased rapidly in developing regions. We aimed to identify the gene mutation patterns that associated with the clinical patterns, including survival status, histo-pathological classes and so forth, of breast cancer. We retrieved 1098 cases of the clinical information, and level-3 legacy data of mRNA expression level, protein expression data and mutation files from GDC data portal. The genes with mutation significance were obtained. We studied the impacts of mutation types on the expression levels of mRNA and protein. Different statistics methods were used to calculate the correlation between the mutation types and the expression data or histo-clinical measures. There were 24 genes with mutation significance identified. The most mutated genes were selected to study the role of specific mutations played on the patients with breast cancer. One interesting finding was the missense mutations on TP53 were related with high expression levels of mRNA and protein. The missense mutations on TP53 were highly related with the morphology, race, ER status, PR status and HER2 Status, while the truncated mutations were only related with the morphology, ER status and PR status. The missense mutation on PIK3CA was highly associated with the morphology, race, ER status and PR status. The mutants with different mutants and the wild type of the most mutated genes had different impacts on the histo-clinical measures that might help personalized therapy.

  2. Discovery of mutations in homologous recombination genes in African-American women with breast cancer.

    PubMed

    Ding, Yuan Chun; Adamson, Aaron W; Steele, Linda; Bailis, Adam M; John, Esther M; Tomlinson, Gail; Neuhausen, Susan L

    2018-04-01

    African-American women are more likely to develop aggressive breast cancer at younger ages and experience poorer cancer prognoses than non-Hispanic Caucasians. Deficiency in repair of DNA by homologous recombination (HR) is associated with cancer development, suggesting that mutations in genes that affect this process may cause breast cancer. Inherited pathogenic mutations have been identified in genes involved in repairing DNA damage, but few studies have focused on African-Americans. We screened for germline mutations in seven HR repair pathway genes in DNA of 181 African-American women with breast cancer, evaluated the potential effects of identified missense variants using in silico prediction software, and functionally characterized a set of missense variants by yeast two-hybrid assays. We identified five likely-damaging variants, including two PALB2 truncating variants (Q151X and W1038X) and three novel missense variants (RAD51C C135R, and XRCC3 L297P and V337E) that abolish protein-protein interactions in yeast two-hybrid assays. Our results add to evidence that HR gene mutations account for a proportion of the genetic risk for developing breast cancer in African-Americans. Identifying additional mutations that diminish HR may provide a tool for better assessing breast cancer risk and improving approaches for targeted treatment.

  3. Genotype-Phenotype Correlation in Primary Carnitine Deficiency

    PubMed Central

    Rose, Emily Cornforth; di San Filippo, Cristina Amat; Ndukwe Erlingsson, Uzochi C.; Ardon, Orly; Pasquali, Marzia; Longo, Nicola

    2011-01-01

    Primary carnitine deficiency is caused by defective OCTN2 carnitine transporters encoded by the SLC22A5 gene. Lack of carnitine impairs fatty acid oxidation resulting in hypoketotic hypoglycemia, hepatic encephalopathy, skeletal and cardiac myopathy. Recently, asymptomatic mothers with primary carnitine deficiency were identified by low carnitine levels in their infant by newborn screening. Here we evaluate mutations in the SLC22A5 gene and carnitine transport in fibroblasts from symptomatic patients and asymptomatic women. Carnitine transport was significantly reduced in fibroblasts obtained from all patients with primary carnitine deficiency, but was significantly higher in the asymptomatic women’s than in the symptomatic patients’ fibroblasts (p<0.01). By contrast, ergothioneine transport (a selective substrate of the OCTN1 transporter, tested here as a control) was similar in cells from controls and patients with carnitine deficiency. DNA sequencing indicated an increased frequency of nonsense mutations in symptomatic patients (p<0.001). Expression of the missense mutations in CHO cells indicated that many mutations retained residual carnitine transport activity, with no difference in the average activity of missense mutations identified in symptomatic versus asymptomatic patients. These results indicate that cells from asymptomatic women have on average higher levels of residual carnitine transport activity as compared to that of symptomatic patients due to the presence of at least one missense mutation. PMID:21922592

  4. Isolated autosomal dominant growth hormone deficiency: an evolving pituitary deficit? A multicenter follow-up study.

    PubMed

    Mullis, Primus E; Robinson, Iain C A F; Salemi, Souzan; Eblé, Andrée; Besson, Amélie; Vuissoz, Jean-Marc; Deladoey, Johnny; Simon, Dominique; Czernichow, Paul; Binder, Gerhard

    2005-04-01

    Four distinct familial types of isolated GH deficiency have been described so far, of which type II is the autosomal dominant inherited form. It is mainly caused by mutations within the first 6 bp of intervening sequence 3. However, other splice site and missense mutations have been reported. Based on in vitro experiments and transgenic animal data, there is strong evidence that there is a wide variability in phenotype in terms of the severity of GH deficiency. Therefore, we studied a total of 57 subjects belonging to 19 families suffering from different splice site as well as missense mutations within the GH-1 gene. The subjects presenting with a splice site mutation within the first 2 bp of intervening sequence 3 (5'IVS +1/+2 bp) leading to a skipping of exon 3 were found to be more likely to present in the follow-up with other pituitary hormone deficiencies. In addition, although the patients with missense mutations have previously been reported to be less affected, a number of patients presenting with the P89L missense GH form, showed some pituitary hormone impairment. The development of multiple hormonal deficiencies is not age dependent, and there is a clear variability in onset, severity, and progression, even within the same families. The message of clinical importance from these studies is that the pituitary endocrine status of all such patients should continue to be monitored closely over the years because further hormonal deficiencies may evolve with time.

  5. Establishing the precise evolutionary history of a gene improves prediction of disease-causing missense mutations

    DOE PAGES

    Adebali, Ogun; Reznik, Alexander O.; Ory, Daniel S.; ...

    2016-02-18

    Here, predicting the phenotypic effects of mutations has become an important application in clinical genetic diagnostics. Computational tools evaluate the behavior of the variant over evolutionary time and assume that variations seen during the course of evolution are probably benign in humans. However, current tools do not take into account orthologous/paralogous relationships. Paralogs have dramatically different roles in Mendelian diseases. For example, whereas inactivating mutations in the NPC1 gene cause the neurodegenerative disorder Niemann-Pick C, inactivating mutations in its paralog NPC1L1 are not disease-causing and, moreover, are implicated in protection from coronary heart disease. Methods: We identified major events inmore » NPC1 evolution and revealed and compared orthologs and paralogs of the human NPC1 gene through phylogenetic and protein sequence analyses. We predicted whether an amino acid substitution affects protein function by reducing the organism s fitness. As a result, removing the paralogs and distant homologs improved the overall performance of categorizing disease-causing and benign amino acid substitutions. In conclusion, the results show that a thorough evolutionary analysis followed by identification of orthologs improves the accuracy in predicting disease-causing missense mutations. We anticipate that this approach will be used as a reference in the interpretation of variants in other genetic diseases as well.« less

  6. Establishing the precise evolutionary history of a gene improves prediction of disease-causing missense mutations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Adebali, Ogun; Reznik, Alexander O.; Ory, Daniel S.

    Here, predicting the phenotypic effects of mutations has become an important application in clinical genetic diagnostics. Computational tools evaluate the behavior of the variant over evolutionary time and assume that variations seen during the course of evolution are probably benign in humans. However, current tools do not take into account orthologous/paralogous relationships. Paralogs have dramatically different roles in Mendelian diseases. For example, whereas inactivating mutations in the NPC1 gene cause the neurodegenerative disorder Niemann-Pick C, inactivating mutations in its paralog NPC1L1 are not disease-causing and, moreover, are implicated in protection from coronary heart disease. Methods: We identified major events inmore » NPC1 evolution and revealed and compared orthologs and paralogs of the human NPC1 gene through phylogenetic and protein sequence analyses. We predicted whether an amino acid substitution affects protein function by reducing the organism s fitness. As a result, removing the paralogs and distant homologs improved the overall performance of categorizing disease-causing and benign amino acid substitutions. In conclusion, the results show that a thorough evolutionary analysis followed by identification of orthologs improves the accuracy in predicting disease-causing missense mutations. We anticipate that this approach will be used as a reference in the interpretation of variants in other genetic diseases as well.« less

  7. A novel missense mutation, Leu390Val, in the cardiac beta-myosin heavy chain associated with pronounced septal hypertrophy in two families with hypertrophic cardiomyopathy.

    PubMed

    Havndrup, O; Bundgaard, H; Andersen, P S; Larsen, L A; Vuust, J; Kjeldsen, K; Christiansen, M

    2000-12-01

    An examination of the genetic background and phenotypic presentation of familial hypertrophic cardiomyopathy (FHC) with respect to specific mutations in the MYH7-gene encoding the cardiac beta-myosin heavy chain. Two families (n = 22) from a cohort of 67 families with FHC were studied at the National University Hospital, Rigshospitalet, Copenhagen. Clinical, non-invasive examinations of all included family members followed by molecular genetic analysis including PCR-single strand conformation polymorphism/heteroduplex (SSCP/HD) analysis and sequencing of exon 3-23 of the MYH7-gene. We found FHC associated with a missense mutation in two families, i.e. a C > G transversion at position g10124 and a G > T transversion at position g10126 causing the change of a leucine residue at codon 390 to a valine residue. The mutation is located in the actin-binding region of the beta-myosin heavy chain. The leucine residue is evolutionarily conserved in vertebrate myosins. In the two families, the phenotypic presentations in the clinically affected were characterized by asymmetric septal hypertrophy (septum diameter 18.8 (5.0) mm (mean (SD)) with only minor involvement of the left ventricular free wall (posterior wall diameter 11.0 (2.2) mm). Furthermore, the left ventricular systolic and diastolic functions were well preserved, even at a high age. The symptomatic status of the clinically affected patients depended on the presence or absence of a concomitant left ventricular outflow tract gradient. We report a novel missense mutation associated with FHC caused by a double nucleotide transversion. The penetrance of the mutation was not complete, but in clinically affected patients the mutation gives rise to an echocardiographic phenotype, predominantly characterized by pronounced septal hypertrophy.

  8. Ubiquitin-proteasome system impairment caused by a missense cardiac myosin-binding protein C mutation and associated with cardiac dysfunction in hypertrophic cardiomyopathy.

    PubMed

    Bahrudin, Udin; Morisaki, Hiroko; Morisaki, Takayuki; Ninomiya, Haruaki; Higaki, Katsumi; Nanba, Eiji; Igawa, Osamu; Takashima, Seiji; Mizuta, Einosuke; Miake, Junichiro; Yamamoto, Yasutaka; Shirayoshi, Yasuaki; Kitakaze, Masafumi; Carrier, Lucie; Hisatome, Ichiro

    2008-12-26

    The ubiquitin-proteasome system is responsible for the disappearance of truncated cardiac myosin-binding protein C, and the suppression of its activity contributes to cardiac dysfunction. This study investigated whether missense cardiac myosin-binding protein C gene (MYBPC3) mutation in hypertrophic cardiomyopathy (HCM) leads to destabilization of its protein, causes UPS impairment, and is associated with cardiac dysfunction. Mutations were identified in Japanese HCM patients using denaturing HPLC and sequencing. Heterologous expression was investigated in COS-7 cells as well as neonatal rat cardiac myocytes to examine protein stability and proteasome activity. The cardiac function was measured using echocardiography. Five novel MYBPC3 mutations -- E344K, DeltaK814, Delta2864-2865GC, Q998E, and T1046M -- were identified in this study. Compared with the wild type and other mutations, the E334K protein level was significantly lower, it was degraded faster, it had a higher level of polyubiquination, and increased in cells pretreated with the proteasome inhibitor MG132 (50 microM, 6 h). The electrical charge of its amino acid at position 334 influenced its stability, but E334K did not affect its phosphorylation. The E334K protein reduced cellular 20 S proteasome activity, increased the proapoptotic/antiapoptotic protein ratio, and enhanced apoptosis in transfected Cos-7 cells and neonatal rat cardiac myocytes. Patients carrying the E334K mutation presented significant left ventricular dysfunction and dilation. The conclusion is the missense MYBPC3 mutation E334K destabilizes its protein through UPS and may contribute to cardiac dysfunction in HCM through impairment of the ubiquitin-proteasome system.

  9. Identification of a novel mutation in the myosin VIIA motor domain in a family with autosomal dominant hearing loss (DFNA11).

    PubMed

    Di Leva, Francesca; D'Adamo, Pio; Cubellis, Maria Vittoria; D'Eustacchio, Angela; Errichiello, Monica; Saulino, Claudio; Auletta, Gennaro; Giannini, Pasquale; Donaudy, Francesca; Ciccodicola, Alfredo; Gasparini, Paolo; Franzè, Annamaria; Marciano, Elio

    2006-01-01

    We ascertained a large Italian family with an autosomal dominant form of non-syndromic sensorineural hearing loss with vestibular involvement. A genome-wide scan found linkage to locus DFNA11. Sequencing of the MYO7A gene in the linked region identified a new missense mutation resulting in an Ala230Val change in the motor domain of the myosin VIIA. Myosin VIIA has already been implicated in several forms of deafness, but this is the third mutation causing a dominant form of deafness, located in the myosin VIIA motor domain in a region never involved in hearing loss until now. A modelled protein structure of myosin VII motor domain provides evidence for a significant functional effect of this missense mutation. Copyright (c) 2006 S. Karger AG, Basel.

  10. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Koivisto, U.M.; Viikari, J.S.; Kontula, K.

    Two deletions of the low-density lipoprotein (LDL) receptor gene were previously shown to account for about two thirds of all mutations causing familial hypercholesterolemia (FH) in Finland. We screened the DNA samples from a cohort representing the remaining 30% of Finnish heterozygous FH patients by amplifying all the 18 exons of the receptor gene by PCR and searching for DNA variations with the SSCP technique. Ten novel mutations were identified, comprising two nonsense and seven missense mutations as well as one frameshift mutation caused by a 13-bp deletion. A single nucleotide change, substituting adenine for guanidine at position 2533 andmore » resulting in an amino acid change of glycine to aspartic acid at codon 823, was found in DNA samples from 14 unrelated FH probands. This mutation (FH-Turku) affects the sequence encoding the putative basolateral sorting signal of the LDL receptor protein; however, the exact functional consequences of this mutation are yet to be examined. The FH-Turku gene and another point mutation (Leu380{r_arrow}His or FH-Pori) together account for {approximately}8% of the FH-causing genes in Finland and are particularly common among FH patients from the southwestern part of the country (combined, 30%). Primer-introduced restriction analysis was applied for convenient assay of the FH-Turku and FH-Pori point mutations. In conclusion, this paper demonstrates the unique genetic background of FH in Finland and describes a commonly occurring FH gene with a missense mutation closest to the C terminus thus far reported. 32 refs., 5 figs., 2 tabs.« less

  11. A novel rasopathy caused by recurrent de novo missense mutations in PPP1CB closely resembles Noonan syndrome with loose anagen hair.

    PubMed

    Gripp, Karen W; Aldinger, Kimberly A; Bennett, James T; Baker, Laura; Tusi, Jessica; Powell-Hamilton, Nina; Stabley, Deborah; Sol-Church, Katia; Timms, Andrew E; Dobyns, William B

    2016-09-01

    Noonan syndrome is a rasopathy caused by mutations in multiple genes encoding components of the RAS/MAPK pathway. Despite its variable phenotype, limited genotype-phenotype correlations exist. Noonan syndrome with loose anagen hair (NS-LAH) is characterized by its distinctive hair anomalies, developmental differences, and structural brain abnormalities and is caused by a single recurrent missense SHOC2 mutation. SHOC2 forms a complex with protein phosphatase 1 (PP1C). Protein phosphatases counterbalance kinases and control activation of signaling proteins, such as the mitogen-activated protein kinases of the RAS/MAPK pathway. Here we report four patients with de novo missense mutations in protein phosphatase one catalytic subunit beta (PPP1CB), sharing a recognizable phenotype. Three individuals had the recurrent PPP1CB c.146G>C, p.Pro49Arg mutation, the fourth had a c.166G>C, p.Ala56Pro change. All had relative or absolute macrocephaly, low-set and posteriorly angulated ears, and developmental delay. Slow growing and/or sparse hair and/or an unruly hair texture was present in all. Three individuals had feeding difficulties requiring feeding tubes. One of two males had cryptorchidism, another had pectus excavatum. Short stature was present in three. A female with the recurrent mutation had a Dandy-Walker malformation and optic nerve hypoplasia. Mild ventriculomegaly occurred in all, cerebellar tonsillar ectopia was seen in two and progressed to Chiari 1 malformation in one individual. Based on the combination of phenotypic findings and PPP1CB's effect on RAF dephosphorylation within the RAS/MAPK pathway, this novel condition can be considered a rasopathy, most similar to NS-LAH. Collectively, these mutations meet the standardized criteria for pathogenicity. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  12. HMG CoA Lyase (HL): Mutation detection and development of a bacterial expression system for screening the activity of mutant alleles from HL-deficient patients

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Robert, M.F.; Ashmarina, L.; Poitier, E.

    1994-09-01

    HL catalyzes the last step of ketogenesis, and autosomal recessive HL deficiency in humans can cause episodes of hypoglycemia and coma. Structurally, HL is a dimer of identical 325-residue peptides which requires a reducing environment to maintain activity. We cloned the human and mouse HL cDNAs and genes and have performed mutation analysis on cells from 30 HL-deficient probands. Using SSCP and also genomic Southern analysis we have identified putative mutations on 53/60 alleles of these patients (88%). To date, we have found 20 mutations: 3 large deletions, 4 termination mutations, 5 frameshift mutations, and 8 missense mutations which wemore » suspect to be pathogenic based on evolutionary conservation and/or our previous studies on purified HL protein. We have also identified 3 polymorphic variants. In order to directly test the activity of the missense mutations, we established a pGEX-based system, using a glutathione S transferase (GST)-HL fusion protein. Expressed wild-type GST-HL was insoluble. We previously located a reactive Cys at the C-terminus of chicken HL which is conserved in human HL. We produced a mutant HL peptide, C323S, which replaced Cys323 with Ser. Purified C323S is soluble and has similar kinetics to wild-type HL. C323S-containing GST-HL is soluble and enzymatically active. We are cloning and expressing the 8 missense mutations.« less

  13. Genetic heterogeneity of pseudoxanthoma elasticum: the Chinese signature profile of ABCC6 and ENPP1 mutations.

    PubMed

    Jin, Liang; Jiang, Qiujie; Wu, Zhengsheng; Shao, Changxia; Zhou, Yong; Yang, Luting; Uitto, Jouni; Wang, Gang

    2015-05-01

    Pseudoxanthoma elasticum (PXE), an autosomal recessive disorder characterized by ectopic mineralization, is caused by mutations in the ABCC6 gene. We examined clinically 29 Chinese PXE patients from unrelated families, so far the largest cohort of Asian PXE patients. In a subset of 22 patients, we sequenced ABCC6 and another candidate gene, ENPP1, and conducted pathogenicity analyses for each variant. We identified a total of 17 distinct mutations in ABCC6, 15 of them being, to our knowledge, previously unreported, including 5 frameshift and 10 missense variants. In addition, a missense mutation in combination with a recurrent nonsense mutation in ENPP1 was discovered in a pediatric PXE case. No cases with p.R1141X or del23-29 mutations, common in Caucasian patient populations, were identified. The 10 missense mutations in ABCC6 were expressed in the mouse liver via hydrodynamic tail-vein injections. One mutant protein showed cytoplasmic accumulation indicating abnormal subcellular trafficking, while the other nine mutants showed correct plasma membrane location. These nine mutations were further investigated for their pathogenicity using a recently developed zebrafish mRNA rescue assay. Minimal rescue of the morpholino-induced phenotype was achieved with eight of the nine mutant human ABCC6 mRNAs tested, implying pathogenicity. This study demonstrates that the Chinese PXE population harbors unique ABCC6 mutations. These genetic data have implications for allele-specific therapy currently being developed for PXE.

  14. Pathogenicity of missense mutations in SURF1 deficiency inducing the Leigh syndrome. Importance in diagnosis.

    PubMed

    Dubot, A; Hervouet, E; Mandon, G; Zabot, M T; Godinot, C

    2004-06-01

    Leigh syndrome with cytochrome oxidase (COX) deficiency has been associated with SURF1 mutations. For patient diagnosis, distinction between neutral polymorphisms and pathogenic missense SURF1 mutations in Leigh syndrome is essential. We show that several missense SURF1 mutations did not allow a stable protein to be expressed. Absence of immunologically reactive SURF1 is, therefore, helpful to demonstrate their pathogenicity. In addition, we show that out of two previously described missense mutations housed by the same allele, only one, the T737 C was pathogenic. Indeed, transfection of T737 C mutated SURF1 in SURF1-deficient cells did not restore normal SURF1 stability and COX activity. On the contrary, the G604 C-mutated SURF1 did it and, hence, is a neutral variant.

  15. Germline Missense Changes in the APC Gene and Their Relationship to Disease.

    PubMed

    Scott, Rodney J; Crooks, Renee; Rose, Lindy; Attia, John; Thakkinstian, Ammarin; Thomas, Lesley; Spigelman, Allan D; Meldrum, Cliff J

    2004-05-15

    Familial adenomatous polyposis (FAP) is characterized by the presence of hundreds to thousands of adenomas that carpet the entire colon and rectum. Nonsense and frameshift mutations in the adenomatous polyposis coli (APC) gene account for the majority of mutations identified to date and predispose primarily to the typical disease phenotype. Some APC mutations are associated with a milder form of the disease known as attenuated FAP. Virtually all mutations that have been described in the APC gene result in the formation of a premature stop codon and very little is known about missense mutations apart from a common Ashkenazi Jewish mutation (1307 K) and a British E1317Q missense change. The incidence of missense mutations in the APC gene has been underreported since the APC gene lends itself to analysis using an artificial transcription and translation assay known as the Protein Truncation Test (PTT) or the In Vitro Synthetic Protein assay (IVSP).In this report we have used denaturing high performance liquid chromatography to analyse the entire coding sequence of the APC gene to determine if a cohort of patients adhering to the diagnostic criteria of FAP to assess the frequency of missense mutations in the APC gene. Altogether 112 patients were studied and 22 missense mutations were identified. From the total of 22 missense changes, 13 were silent changes and the remaining 9 resulted in amino acid substitutions. One or more of these changes were identified multiple times in 62.5% of the population under study.The results reveal that missense mutations in the APC gene appear not to radically alter protein function but may be associated with more subtle processing of RNA transcripts which in turn could result in the expression of differentially spliced forms of the APC gene which may interfere with the functional activity of the APC protein.

  16. A novel ABCB11 mutation in an Iranian girl with progressive familial intrahepatic cholestasis

    PubMed Central

    Saber, Sassan; Vazifehmand, Reza; Bagherizadeh, Iman; Kasiri, Mahbubeh

    2013-01-01

    Progressive familial intrahepatic cholestasis is an autosomal recessive liver disorder caused by (biallelic) mutations in the ATP8B1 of ABCB11 gene. A nine-year-old girl with cholestasis was referred for genetic counseling. She had a family history of cholestasis in two previous expired siblings. Genetic analysis of the ABCB11 gene led to the identification of a novel homozygous mutation in exon 25. The mutation 3593- A > G lead to a missense mutation at the amino acid level (His1198Arg). This mutation caused PFIC2 due to abnormal function in the bile salt export pump protein (BSEP). PMID:24339557

  17. [Study of gene mutation in 62 hemophilia A children].

    PubMed

    Hu, Q; Liu, A G; Zhang, L Q; Zhang, A; Wang, Y Q; Wang, S M; Lu, Y J; Wang, X

    2017-11-02

    Objective: To analyze the mutation type of FⅧ gene in children with hemophilia A and to explore the relationship among hemophilia gene mutation spectrum, gene mutation and clinical phenotype. Method: Sixty-two children with hemophilia A from Department of Pediatric Hematology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology between January 2015 and March 2017 were enrolled. All patients were male, aged from 4 months to 7 years and F Ⅷ activity ranged 0.2%-11.0%. Fifty cases had severe, 10 cases had moderate and 2 cases had mild hemophilia A. DNA was isolated from peripheral blood in hemophilia A children and the target gene fragment was amplified by PCR, in combination with the second generation sequencing, 22 and 1 introns were detected. Negative cases were detected by the second generation sequencing and results were compared with those of the international FⅧ gene mutation database. Result: There were 20 cases (32%) of intron 22 inversion, 2 cases (3%) of intron 1 inversion, 18 cases (29%) of missense mutation, 5 cases (8%) of nonsense mutation, 7 cases (11%) of deletion mutation, 1 case(2%)of splice site mutation, 2 cases (3%) of large fragment deletion and 1 case of insertion mutation (2%). No mutation was detected in 2 cases (3%), and 4 cases (7%) failed to amplify. The correlation between phenotype and genotype showed that the most common gene mutation in severe hemophilia A was intron 22 inversion (20 cases), accounting for 40% of severe patients, followed by 11 cases of missense mutation (22%). The most common mutation in moderate hemophilia A was missense mutation (6 cases), accounting for 60% of moderate patients. Conclusion: The most frequent mutation type in hemophilia A was intron 22 inversion, followed by missense mutation, again for missing mutation. The relationship between phenotype and genotype: the most frequent gene mutation in severe hemophilia A is intron 22 inversion, followed by missense mutation; the most frequent gene mutation in medium hemophilia A is missense mutation.

  18. HER2 missense mutations have distinct effects on oncogenic signaling and migration

    PubMed Central

    Zabransky, Daniel J.; Yankaskas, Christopher L.; Cochran, Rory L.; Wong, Hong Yuen; Croessmann, Sarah; Chu, David; Kavuri, Shyam M.; Red Brewer, Monica; Rosen, D. Marc; Dalton, W. Brian; Cimino-Mathews, Ashley; Cravero, Karen; Button, Berry; Kyker-Snowman, Kelly; Cidado, Justin; Erlanger, Bracha; Parsons, Heather A.; Manto, Kristen M.; Bose, Ron; Lauring, Josh; Arteaga, Carlos L.; Konstantopoulos, Konstantinos; Park, Ben Ho

    2015-01-01

    Recurrent human epidermal growth factor receptor 2 (HER2) missense mutations have been reported in human cancers. These mutations occur primarily in the absence of HER2 gene amplification such that most HER2-mutant tumors are classified as “negative” by FISH or immunohistochemistry assays. It remains unclear whether nonamplified HER2 missense mutations are oncogenic and whether they are targets for HER2-directed therapies that are currently approved for the treatment of HER2 gene-amplified breast cancers. Here we functionally characterize HER2 kinase and extracellular domain mutations through gene editing of the endogenous loci in HER2 nonamplified human breast epithelial cells. In in vitro and in vivo assays, the majority of HER2 missense mutations do not impart detectable oncogenic changes. However, the HER2 V777L mutation increased biochemical pathway activation and, in the context of a PIK3CA mutation, enhanced migratory features in vitro. However, the V777L mutation did not alter in vivo tumorigenicity or sensitivity to HER2-directed therapies in proliferation assays. Our results suggest the oncogenicity and potential targeting of HER2 missense mutations should be considered in the context of cooperating genetic alterations and provide previously unidentified insights into functional analysis of HER2 mutations and strategies to target them. PMID:26508629

  19. Autosomal Recessive Hypotrichosis with Woolly Hair Caused by a Mutation in the Keratin 25 Gene Expressed in Hair Follicles.

    PubMed

    Zernov, Nikolay V; Skoblov, Mikhail Y; Marakhonov, Andrey V; Shimomura, Yutaka; Vasilyeva, Tatyana A; Konovalov, Fedor A; Abrukova, Anna V; Zinchenko, Rena A

    2016-06-01

    Hypotrichosis is an abnormal condition characterized by decreased hair density and various defects in hair structure and growth patterns. In particular, in woolly hair, hypotrichosis is characterized by a tightly curled structure and abnormal growth. In this study, we present a detailed comparative examination of individuals affected by autosomal-recessive hypotrichosis (ARH), which distinguishes two types of ARH. Earlier, we demonstrated that exon 4 deletion in the lipase H gene caused an ARH (hypotrichosis 7; MIM: 604379) in populations of the Volga-Ural region of Russia. Screening for this mutation in all affected individuals revealed its presence only in the group with the hypotrichosis 7 phenotype. Other patients formed a separate group of woolly hair-associated ARH, with a homozygous missense mutation c.712G>T (p.Val238Leu) in a highly conserved position of type I keratin KRT25 (K25). Haplotype analysis indicated a founder effect. An expression study in the HaCaT cell line demonstrated a deleterious effect of the p.Val238Leu mutation on the formation of keratin intermediate filaments. Hence, we have identified a previously unreported missense mutation in the KRT25 gene causing ARH with woolly hair. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  20. NDST1 missense mutations in autosomal recessive intellectual disability.

    PubMed

    Reuter, Miriam S; Musante, Luciana; Hu, Hao; Diederich, Stefan; Sticht, Heinrich; Ekici, Arif B; Uebe, Steffen; Wienker, Thomas F; Bartsch, Oliver; Zechner, Ulrich; Oppitz, Cornelia; Keleman, Krystyna; Jamra, Rami Abou; Najmabadi, Hossein; Schweiger, Susann; Reis, André; Kahrizi, Kimia

    2014-11-01

    NDST1 was recently proposed as a candidate gene for autosomal recessive intellectual disability in two families. It encodes a bifunctional GlcNAc N-deacetylase/N-sulfotransferase with important functions in heparan sulfate biosynthesis. In mice, Ndst1 is crucial for embryonic development and homozygous null mutations are perinatally lethal. We now report on two additional unrelated families with homozygous missense NDST1 mutations. All mutations described to date predict the substitution of conserved amino acids in the sulfotransferase domain, and mutation modeling predicts drastic alterations in the local protein conformation. Comparing the four families, we noticed significant overlap in the clinical features, including both demonstrated and apparent intellectual disability, muscular hypotonia, epilepsy, and postnatal growth deficiency. Furthermore, in Drosophila, knockdown of sulfateless, the NDST ortholog, impairs long-term memory, highlighting its function in cognition. Our data confirm NDST1 mutations as a cause of autosomal recessive intellectual disability with a distinctive phenotype, and support an important function of NDST1 in human development. © 2014 Wiley Periodicals, Inc.

  1. Dominant missense mutations in ABCC9 cause Cantú syndrome.

    PubMed

    Harakalova, Magdalena; van Harssel, Jeske J T; Terhal, Paulien A; van Lieshout, Stef; Duran, Karen; Renkens, Ivo; Amor, David J; Wilson, Louise C; Kirk, Edwin P; Turner, Claire L S; Shears, Debbie; Garcia-Minaur, Sixto; Lees, Melissa M; Ross, Alison; Venselaar, Hanka; Vriend, Gert; Takanari, Hiroki; Rook, Martin B; van der Heyden, Marcel A G; Asselbergs, Folkert W; Breur, Hans M; Swinkels, Marielle E; Scurr, Ingrid J; Smithson, Sarah F; Knoers, Nine V; van der Smagt, Jasper J; Nijman, Isaac J; Kloosterman, Wigard P; van Haelst, Mieke M; van Haaften, Gijs; Cuppen, Edwin

    2012-05-18

    Cantú syndrome is characterized by congenital hypertrichosis, distinctive facial features, osteochondrodysplasia and cardiac defects. By using family-based exome sequencing, we identified a de novo mutation in ABCC9. Subsequently, we discovered novel dominant missense mutations in ABCC9 in 14 of the 16 individuals with Cantú syndrome examined. The ABCC9 protein is part of an ATP-dependent potassium (K(ATP)) channel that couples the metabolic state of a cell with its electrical activity. All mutations altered amino acids in or close to the transmembrane domains of ABCC9. Using electrophysiological measurements, we show that mutations in ABCC9 reduce the ATP-mediated potassium channel inhibition, resulting in channel opening. Moreover, similarities between the phenotype of individuals with Cantú syndrome and side effects from the K(ATP) channel agonist minoxidil indicate that the mutations in ABCC9 result in channel opening. Given the availability of ABCC9 antagonists, our findings may have direct implications for the treatment of individuals with Cantú syndrome.

  2. Congenital Insensitivity to Pain: Novel SCN9A Missense and In-Frame Deletion Mutations

    PubMed Central

    Cox, James J; Sheynin, Jony; Shorer, Zamir; Reimann, Frank; Nicholas, Adeline K; Zubovic, Lorena; Baralle, Marco; Wraige, Elizabeth; Manor, Esther; Levy, Jacov; Woods, C Geoffery; Parvari, Ruti

    2010-01-01

    SCN9A encodes the voltage-gated sodium channel Nav1.7, a protein highly expressed in pain-sensing neurons. Mutations in SCN9A cause three human pain disorders: bi-allelic loss of function mutations result in Channelopathy-associated Insensitivity to Pain (CIP), whereas activating mutations cause severe episodic pain in Paroxysmal Extreme Pain Disorder (PEPD) and Primary Erythermalgia (PE). To date, all mutations in SCN9A that cause a complete inability to experience pain are protein truncating and presumably lead to no protein being produced. Here, we describe the identification and functional characterization of two novel non-truncating mutations in families with CIP: a homozygously-inherited missense mutation found in a consanguineous Israeli Bedouin family (Nav1.7-R896Q) and a five amino acid in-frame deletion found in a sporadic compound heterozygote (Nav1.7-ΔR1370-L1374). Both of these mutations map to the pore region of the Nav1.7 sodium channel. Using transient transfection of PC12 cells we found a significant reduction in membrane localization of the mutant protein compared to the wild type. Furthermore, voltage clamp experiments of mutant-transfected HEK293 cells show a complete loss of function of the sodium channel, consistent with the absence of pain phenotype. In summary, this study has identified critical amino acids needed for the normal subcellular localization and function of Nav1.7. © 2010 Wiley-Liss, Inc. PMID:20635406

  3. Congenital insensitivity to pain: novel SCN9A missense and in-frame deletion mutations.

    PubMed

    Cox, James J; Sheynin, Jony; Shorer, Zamir; Reimann, Frank; Nicholas, Adeline K; Zubovic, Lorena; Baralle, Marco; Wraige, Elizabeth; Manor, Esther; Levy, Jacov; Woods, C Geoffery; Parvari, Ruti

    2010-09-01

    SCN9Aencodes the voltage-gated sodium channel Na(v)1.7, a protein highly expressed in pain-sensing neurons. Mutations in SCN9A cause three human pain disorders: bi-allelic loss of function mutations result in Channelopathy-associated Insensitivity to Pain (CIP), whereas activating mutations cause severe episodic pain in Paroxysmal Extreme Pain Disorder (PEPD) and Primary Erythermalgia (PE). To date, all mutations in SCN9A that cause a complete inability to experience pain are protein truncating and presumably lead to no protein being produced. Here, we describe the identification and functional characterization of two novel non-truncating mutations in families with CIP: a homozygously-inherited missense mutation found in a consanguineous Israeli Bedouin family (Na(v)1.7-R896Q) and a five amino acid in-frame deletion found in a sporadic compound heterozygote (Na(v)1.7-DeltaR1370-L1374). Both of these mutations map to the pore region of the Na(v)1.7 sodium channel. Using transient transfection of PC12 cells we found a significant reduction in membrane localization of the mutant protein compared to the wild type. Furthermore, voltage clamp experiments of mutant-transfected HEK293 cells show a complete loss of function of the sodium channel, consistent with the absence of pain phenotype. In summary, this study has identified critical amino acids needed for the normal subcellular localization and function of Na(v)1.7. Copyright 2010 Wiley-Liss, Inc.

  4. Mutations in the Human Laminin β2 (LAMB2) Gene and the Associated Phenotypic Spectrum

    PubMed Central

    Matejas, Verena; Hinkes, Bernward; Alkandari, Faisal; Al-Gazali, Lihadh; Annexstad, Ellen; Aytac, Mehmet B.; Barrow, Margaret; Bláhová, Kvĕta; Bockenhauer, Detlef; Cheong, Hae Il; Maruniak-Chudek, Iwona; Cochat, Pierre; Dötsch, Jörg; Gajjar, Priya; Hennekam, Raoul C.; Janssen, Françoise; Kagan, Mikhail; Kariminejad, Ariana; Kemper, Markus J.; Koenig, Jens; Kogan, Jillene; Kroes, Hester Y.; Kuwertz-Bröking, Eberhard; Lewanda, Amy F.; Medeira, Ana; Muscheites, Jutta; Niaudet, Patrick; Pierson, Michel; Saggar, Anand; Seaver, Laurie; Suri, Mohnish; Tsygin, Alexey; Wühl, Elke; Zurowska, Aleksandra; Uebe, Steffen; Hildebrandt, Friedhelm; Antignac, Corinne; Zenker, Martin

    2010-01-01

    Mutations of LAMB2 typically cause autosomal recessive Pierson syndrome, a disorder characterized by congenital nephrotic syndrome, ocular and neurologic abnormalities, but may occasionally be associated with milder or oligosymptomatic disease variants. LAMB2 encodes the basement membrane protein laminin β2 which is incorporated in specific heterotrimeric laminin isoforms and has an expression pattern corresponding to the pattern of organ manifestations in Pierson syndrome. Herein we review all previously reported and several novel LAMB2 mutations in relation to the associated phenotype in patients from 39 unrelated families. The majority of disease-causing LAMB2 mutations are truncating, consistent with the hypothesis that loss of laminin β2 function is the molecular basis of Pierson syndrome. While truncating mutations are distributed across the entire gene, missense mutations are clearly clustered in the N-terminal LN domain, which is important for intermolecular interactions. There is an association of missense mutations and small in frame deletions with a higher mean age at onset of renal disease and with absence of neurologic abnormalities, thus suggesting that at least some of these may represent hypomorphic alleles. Nevertheless, genotype alone does not appear to explain the full range of clinical variability, and therefore hitherto unidentified modifiers are likely to exist. PMID:20556798

  5. Rescue of sarcoglycan mutations by inhibition of endoplasmic reticulum quality control is associated with minimal structural modifications.

    PubMed

    Soheili, Tayebeh; Gicquel, Evelyne; Poupiot, Jérôme; N'Guyen, Luu; Le Roy, Florence; Bartoli, Marc; Richard, Isabelle

    2012-02-01

    Sarcoglycanopathies (SGP) are a group of autosomal recessive muscle disorders caused by primary mutations in one of the four sarcoglycan genes. The sarcoglycans (α-, β-, γ-, and δ-sarcoglycan) form a tetrameric complex at the muscle membrane that is part of the dystrophin-glycoprotein complex and plays an essential role for membrane integrity during muscle contractions. We previously showed that the most frequent missense mutation in α-sarcoglycan (p.R77C) leads to the absence of the protein at the cell membrane due to its blockade by the endoplasmic reticulum (ER) quality control. Moreover, we demonstrated that inhibition of the ER α-mannosidase I activity using kifunensine could rescue the mutant protein localization at the cell membrane. Here, we investigate 25 additional disease-causing missense mutations in the sarcoglycan genes with respect to intracellular fate and localization rescue of the mutated proteins by kifunensine. Our studies demonstrate that, similarly to p.R77C, 22 of 25 of the selected mutations lead to defective intracellular trafficking of the SGs proteins. Six of these were saved from ER retention upon kifunensine treatment. The trafficking of SGs mutants rescued by kifunensine was associated with mutations that have moderate structural impact on the protein. © 2011 Wiley Periodicals, Inc.

  6. Identification and functional analysis of SOX10 missense mutations in different subtypes of Waardenburg syndrome.

    PubMed

    Chaoui, Asma; Watanabe, Yuli; Touraine, Renaud; Baral, Viviane; Goossens, Michel; Pingault, Veronique; Bondurand, Nadege

    2011-12-01

    Waardenburg syndrome (WS) is a rare disorder characterized by pigmentation defects and sensorineural deafness, classified into four clinical subtypes, WS1-S4. Whereas the absence of additional features characterizes WS2, association with Hirschsprung disease defines WS4. WS is genetically heterogeneous, with six genes already identified, including SOX10. About 50 heterozygous SOX10 mutations have been described in patients presenting with WS2 or WS4, with or without myelination defects of the peripheral and central nervous system (PCWH, Peripheral demyelinating neuropathy-Central dysmyelinating leukodystrophy-Waardenburg syndrome-Hirschsprung disease, or PCW, PCWH without HD). The majority are truncating mutations that most often remove the main functional domains of the protein. Only three missense mutations have been thus far reported. In the present study, novel SOX10 missense mutations were found in 11 patients and were examined for effects on SOX10 characteristics and functions. The mutations were associated with various phenotypes, ranging from WS2 to PCWH. All tested mutations were found to be deleterious. Some mutants presented with partial cytoplasmic redistribution, some lost their DNA-binding and/or transactivation capabilities on various tissue-specific target genes. Intriguingly, several mutants were redistributed in nuclear foci. Whether this phenomenon is a cause or a consequence of mutation-associated pathogenicity remains to be determined, but this observation could help to identify new SOX10 modes of action. © 2011 Wiley-Liss, Inc.

  7. Analysis of hMLH1 missense mutations in East Asian patients with suspected hereditary nonpolyposis colorectal cancer.

    PubMed

    Fan, Yimei; Wang, Wei; Zhu, Ming; Zhou, Jiji; Peng, Jingyuan; Xu, Lizhi; Hua, Zichun; Gao, Xiang; Wang, Yaping

    2007-12-15

    Germ line mutations in the DNA mismatch repair gene hMLH1 are a frequent cause of hereditary nonpolyposis colorectal cancer and about one-third of these are missense mutations. Several missense mutations in hMLH1 have frequently been detected in East Asian patients with suspected hereditary nonpolyposis colorectal cancer, but their pathogenic role has not been extensively assessed. The aim of this study was to perform functional analyses of these variants and their association with gastrointestinal cancer in East Asians. Altogether, 10 hMLH1 variants were analyzed by yeast two-hybrid and coimmunoprecipitation assays. The carboxyl-terminal replacements Q542L, L549P, L574P, and P581L in hMLH1 resulted in complete loss of activity in both yeast two-hybrid and coimmunoprecipitation tests and thus might be considered as pathogenic. The amino-terminal variants S46I, G65D, G67R, and R217C did not affect complex formation with hPMS2 in coimmunoprecipitation, but partly or fully lost their activity in yeast two-hybrid assay, and we suggested that these variants might reduce the efficiency of the heterodimer to go into the nucleus and thus the mismatch repair function might be blocked or reduced. The V384D and the Q701K variant resulted in the interaction of hMLH1 with hPMS2 at reduced efficiency and might raise the gastrointestinal cancer risk of the mutation carriers. This work availably evaluated the functional consequences of some missense mutations not previously determined in the hMLH1 gene and might be useful for the clinical diagnosis of hereditary gastrointestinal cancer, especially in East Asians.

  8. Mutations in the human GlyT2 gene define a presynaptic component of human startle disease

    PubMed Central

    Rees, Mark I.; Harvey, Kirsten; Pearce, Brian R.; Chung, Seo-Kyung; Duguid, Ian C.; Thomas, Philip; Beatty, Sarah; Graham, Gail E.; Armstrong, Linlea; Shiang, Rita; Abbott, Kim J.; Zuberi, Sameer M.; Stephenson, John B.P.; Owen, Michael J.; Tijssen, Marina A.J.; van den Maagdenberg, Arn M.J.M.; Smart, Trevor G.; Supplisson, Stéphane; Harvey, Robert J.

    2011-01-01

    Hyperekplexia is a human neurological disorder characterized by an excessive startle response and is typically caused by missense and nonsense mutations in the gene encoding the inhibitory glycine receptor (GlyR) α1 subunit (GLRA1)1-3. Genetic heterogeneity has been confirmed in isolated sporadic cases with mutations in other postsynaptic glycinergic proteins including the GlyR β subunit (GLRB)4, gephyrin (GPHN)5 and RhoGEF collybistin (ARHGEF9)6. However, many sporadic patients diagnosed with hyperekplexia do not carry mutations in these genes2-7. Here we reveal that missense, nonsense and frameshift mutations in the presynaptic glycine transporter 2 (GlyT2) gene (SLC6A5)8 also cause hyperekplexia. Patients harbouring mutations in SLC6A5 presented with hypertonia, an exaggerated startle response to tactile or acoustic stimuli, and life-threatening neonatal apnoea episodes. GlyT2 mutations result in defective subcellular localisation and/or decreased glycine uptake, with selected mutations affecting predicted glycine and Na+ binding sites. Our results demonstrate that SLC6A5 is a major gene for hyperekplexia and define the first neurological disorder linked to mutations in a Na+/Cl−-dependent transporter for a classical fast neurotransmitter. By analogy, we suggest that in other human disorders where defects in postsynaptic receptors have been identified, similar symptoms could result from defects in the cognate presynaptic neurotransmitter transporter. PMID:16751771

  9. Germline Mutations in BMPR1A/ALK3 Cause a Subset of Cases of Juvenile Polyposis Syndrome and of Cowden and Bannayan-Riley-Ruvalcaba Syndromes*

    PubMed Central

    Zhou, Xiao-Ping; Woodford-Richens, Kelly; Lehtonen, Rainer; Kurose, Keisuke; Aldred, Micheala; Hampel, Heather; Launonen, Virpi; Virta, Sanno; Pilarski, Robert; Salovaara, Reijo; Bodmer, Walter F.; Conrad, Beth A.; Dunlop, Malcolm; Hodgson, Shirley V.; Iwama, Takeo; Järvinen, Heikki; Kellokumpu, Ilmo; Kim, J. C.; Leggett, Barbara; Markie, David; Mecklin, Jukka-Pekka; Neale, Kay; Phillips, Robin; Piris, Juan; Rozen, Paul; Houlston, Richard S.; Aaltonen, Lauri A.; Tomlinson, Ian P. M.; Eng, Charis

    2001-01-01

    Juvenile polyposis syndrome (JPS) is an inherited hamartomatous-polyposis syndrome with a risk for colon cancer. JPS is a clinical diagnosis by exclusion, and, before susceptibility genes were identified, JPS could easily be confused with other inherited hamartoma syndromes, such as Bannayan-Riley-Ruvalcaba syndrome (BRRS) and Cowden syndrome (CS). Germline mutations of MADH4 (SMAD4) have been described in a variable number of probands with JPS. A series of familial and isolated European probands without MADH4 mutations were analyzed for germline mutations in BMPR1A, a member of the transforming growth-factor β–receptor superfamily, upstream from the SMAD pathway. Overall, 10 (38%) probands were found to have germline BMPR1A mutations, 8 of which resulted in truncated receptors and 2 of which resulted in missense alterations (C124R and C376Y). Almost all available component tumors from mutation-positive cases showed loss of heterozygosity (LOH) in the BMPR1A region, whereas those from mutation-negative cases did not. One proband with CS/CS-like phenotype was also found to have a germline BMPR1A missense mutation (A338D). Thus, germline BMPR1A mutations cause a significant proportion of cases of JPS and might define a small subset of cases of CS/BRRS with specific colonic phenotype. PMID:11536076

  10. AB071. Mutations of AR gene in Vietnamese patients: genotype and phenotype

    PubMed Central

    Dung, Vu Chi; Fukami, Maki; Ngoc, Can Thi Bich; Thao, Bui Phuong; Khanh, Nguyen Ngoc; Nga, Pham Thu; Dat, Nguyen Phu; Ogata, Tsutomu

    2015-01-01

    Androgen insensitivity syndrome (AIS) is the most common specific cause of 46,XY disorder in sex development. The androgen signaling pathway is complex but so far, the only gene linked with AIS is the androgen receptor (AR). Mutations in the AR are found in most subjects with complete AIS but in partial AIS, the rate has varied 28-73%, depending on the case selection. More than over 800 entries of mutations causing AIS, representing over 500 different AR mutations from more than 850 patients with AIS have been reported. We aim to describe clinical manifestations and to identify mutation of AR in Vietnamese patients with AIS. This case series study included 12 patients from 9 unrelated families with AIS. The gonadal position and external genitalia were evaluated clinically and using ultrasound. The mutation analysis of AR was performed using PCR and direct sequencing. The age of diagnosis was 1 to 83 years old. 8/12 cases were complete androgen insensitivity syndrome (CAIS) (female external genitalia) and 4 cases were predominantly female partial AIS phenotype. Four cases had two labial testes, six cases had inguinal testes and two cases had abdominal testes. Five different mutations of AR were identified from seven cases of three unrelated families including three novel ones. The novel missense mutation p.L701F (c.2103G > T) was identified in a patient of 83 years of age. The novel missense mutation p.L705F (c.2113C > T) was identified in two sibs. The novel mutation p. W752S (c.2256G > T) was identified in a child with CAIS phenotype and had family history. The reported missense mutation p.V747M was identified in two sibs. The reported mutation p.V867M (c.2599G > A) was identified in a child with female phenotype. Our study identified three novel and two reported mutation in the AR gene that may provide us new insights into the molecular mechanisms of AIS. The expanded database of these mutations should benefit patients in the diagnosis and treatment of this syndrome.

  11. Enhancing the Predictive Power of Mutations in the C-Terminus of the KCNQ1-Encoded Kv7.1 Voltage-Gated Potassium Channel.

    PubMed

    Kapplinger, Jamie D; Tseng, Andrew S; Salisbury, Benjamin A; Tester, David J; Callis, Thomas E; Alders, Marielle; Wilde, Arthur A M; Ackerman, Michael J

    2015-04-01

    Despite the overrepresentation of Kv7.1 mutations among patients with a robust diagnosis of long QT syndrome (LQTS), a background rate of innocuous Kv7.1 missense variants observed in healthy controls creates ambiguity in the interpretation of LQTS genetic test results. A recent study showed that the probability of pathogenicity for rare missense mutations depends in part on the topological location of the variant in Kv7.1's various structure-function domains. Since the Kv7.1's C-terminus accounts for nearly 50 % of the overall protein and nearly 50 % of the overall background rate of rare variants falls within the C-terminus, further enhancement in mutation calling may provide guidance in distinguishing pathogenic long QT syndrome type 1 (LQT1)-causing mutations from rare non-disease-causing variants in the Kv7.1's C-terminus. Therefore, we have used conservation analysis and a large case-control study to generate topology-based estimative predictive values to aid in interpretation, identifying three regions of high conservation within the Kv7.1's C-terminus which have a high probability of LQT1 pathogenicity.

  12. Mutations in CTNNA1 cause butterfly-shaped pigment dystrophy and perturbed retinal pigment epithelium integrity

    PubMed Central

    Saksens, Nicole T.M.; Krebs, Mark P.; Schoenmaker-Koller, Frederieke E.; Hicks, Wanda; Yu, Minzhong; Shi, Lanying; Rowe, Lucy; Collin, Gayle B.; Charette, Jeremy R.; Letteboer, Stef J.; Neveling, Kornelia; van Moorsel, Tamara W.; Abu-Ltaif, Sleiman; De Baere, Elfride; Walraedt, Sophie; Banfi, Sandro; Simonelli, Francesca; Cremers, Frans P.M.; Boon, Camiel J.F.; Roepman, Ronald; Leroy, Bart P.; Peachey, Neal S.; Hoyng, Carel B.; Nishina, Patsy M.; den Hollander, Anneke I.

    2015-01-01

    Butterfly-shaped pigment dystrophy is an eye disease characterized by lesions in the macula that can resemble the wings of a butterfly. Here, we report the identification of heterozygous missense mutations in the α-catenin 1 (CTNNA1) gene in three families with butterfly-shaped pigment dystrophy. In addition, we identified a Ctnna1 missense mutation in a chemically induced mouse mutant, tvrm5. Parallel clinical phenotypes were observed in the retinal pigment epithelium (RPE) of individuals with butterfly-shaped pigment dystrophy and in tvrm5 mice, including pigmentary abnormalities, focal thickening and elevated lesions, and decreased light-activated responses. Morphological studies in tvrm5 mice revealed increased cell shedding and large multinucleated RPE cells, suggesting defects in intercellular adhesion and cytokinesis. This study identifies CTNNA1 gene variants as a cause of macular dystrophy, suggests that CTNNA1 is involved in maintaining RPE integrity, and suggests that other components that participate in intercellular adhesion may be implicated in macular disease. PMID:26691986

  13. Urine screening for patients with developmental disabilities detected a patient with creatine transporter deficiency due to a novel missense mutation in SLC6A8.

    PubMed

    Kato, Hidekazu; Miyake, Fuyu; Shimbo, Hiroko; Ohya, Makoto; Sugawara, Hidenori; Aida, Noriko; Anzai, Rie; Takagi, Mariko; Okuda, Mitsuko; Takano, Kyoko; Wada, Takahito; Iai, Mizue; Yamashita, Sumimasa; Osaka, Hitoshi

    2014-08-01

    Creatine transporter deficiency (CTD) is an example of X-linked intellectual disability syndromes, caused by mutations in SLC6A8 on Xq28. Although this is the second most frequent genetic cause of intellectual disabilities in Europe or America after Fragile X syndrome, information on the morbidity of this disease is limited in Japan. Using the HPLC screening method we have established recently, we examined samples of urine of 105 patients (73 males and 32 females) with developmental disabilities at our medical center. And we have found a family with three ID boys with a novel missense mutation in SLC6A8. This is the second report of a Japanese family case of CTD. A systematic diagnostic system of this syndrome should be established in Japan to enable us to estimate its frequency and treatment. Copyright © 2013 The Japanese Society of Child Neurology. Published by Elsevier B.V. All rights reserved.

  14. A Case of Inflammatory Generalized Type of Peeling Skin Syndrome Possibly Caused by a Homozygous Missense Mutation of CDSN

    PubMed Central

    Kawakami, Hiroshi; Uchiyama, Masaki; Maeda, Tatsuo; Tsunoda, Takahiko; Mitsuhashi, Yoshihiko; Tsuboi, Ryoji

    2014-01-01

    A 54-year-old Japanese woman had repetitive superficial skin peeling and ensuing erythematous changes in the sites since infancy. Her parents had a consanguineous marriage, and she was the only individual affected in her family tree. The erythematous changes seemed to worsen in the summer. Histologically, hyperkeratosis and splitting of the epidermis within the stratum corneum was noted, and electron microscopy revealed shedding of corneal cells in the horny layer and normal-looking corneodesmosomes. Gene analysis revealed a homozygous missense mutation at c.1358G>A in CDSN. Electron microscopic examination of the length and number of corneodesmosomes revealed statistically significant shortness and sparsity in the affected individual (mean ± SD 386.2 ± 149.5 nm) compared with that of an age- and site-matched control (406.6 ± 182.3 nm). We speculate that this size shrinkage of corneodesmosomes might be the result of a missense mutation of CDSN and that this could be one of the factors contributing to the pathological process of skin peeling. PMID:25473393

  15. A Case of Inflammatory Generalized Type of Peeling Skin Syndrome Possibly Caused by a Homozygous Missense Mutation of CDSN.

    PubMed

    Kawakami, Hiroshi; Uchiyama, Masaki; Maeda, Tatsuo; Tsunoda, Takahiko; Mitsuhashi, Yoshihiko; Tsuboi, Ryoji

    2014-09-01

    A 54-year-old Japanese woman had repetitive superficial skin peeling and ensuing erythematous changes in the sites since infancy. Her parents had a consanguineous marriage, and she was the only individual affected in her family tree. The erythematous changes seemed to worsen in the summer. Histologically, hyperkeratosis and splitting of the epidermis within the stratum corneum was noted, and electron microscopy revealed shedding of corneal cells in the horny layer and normal-looking corneodesmosomes. Gene analysis revealed a homozygous missense mutation at c.1358G>A in CDSN. Electron microscopic examination of the length and number of corneodesmosomes revealed statistically significant shortness and sparsity in the affected individual (mean ± SD 386.2 ± 149.5 nm) compared with that of an age- and site-matched control (406.6 ± 182.3 nm). We speculate that this size shrinkage of corneodesmosomes might be the result of a missense mutation of CDSN and that this could be one of the factors contributing to the pathological process of skin peeling.

  16. A missense mutation in the CRBN gene that segregates with intellectual disability and self-mutilating behaviour in a consanguineous Saudi family

    PubMed Central

    Sheereen, Atia; Alaamery, Manal; Bawazeer, Shahad; Al Yafee, Yusra; Massadeh, Salam; Eyaid, Wafaa

    2017-01-01

    Background Autosomal-recessive non-syndromic intellectual disability (ARNS-ID) is an aetiologically heterogeneous disorder. Although little is known about the function of human cereblon (CRBN), its relationship to mild cognitive deficits suggests that it is involved in the basic processes of human memory and learning. Objectives We aim to identify the genetic cause of intellectual disability and self-mutilation in a consanguineous Saudi family with five affected members. Methods Clinical whole-exome sequencing was performed on the proband patient, and Sanger sequencing was done to validate and confirm segregation in other family members. Results A missense variant (c. 1171T>C) in the CRBN gene was identified in five individuals with severe intellectual disability (ID) in a consanguineous Saudi family. The homozygous variant was co-segregating in the family with the phenotype of severe ID, seizures and self-mutilating behaviour. The missense mutation (p.C391R) reported here results in the replacement of a conserved cysteine residue by an arginine in the CULT (cereblon domain of unknown activity, binding cellular ligands and thalidomide) domain of CRBN, which contains a zinc-binding site. Conclusions These findings thus contribute to a growing list of ID disorders caused by CRBN mutations, broaden the spectrum of phenotypes attributable to ARNS-ID and provide new insight into genotype–phenotype correlations between CRBN mutations and the aetiology of ARNS-ID. PMID:28143899

  17. X-exome sequencing in Finnish families with Intellectual Disability - four novel mutations and two novel syndromic phenotypes

    PubMed Central

    2014-01-01

    Background X-linked intellectual disability (XLID) is a group of genetically heterogeneous disorders characterized by substantial impairment in cognitive abilities, social and behavioral adaptive skills. Next generation sequencing technologies have become a powerful approach for identifying molecular gene mutations relevant for diagnosis. Methods & objectives Enrichment of X-chromosome specific exons and massively parallel sequencing was performed for identifying the causative mutations in 14 Finnish families, each of them having several males affected with intellectual disability of unknown cause. Results We found four novel mutations in known XLID genes. Two mutations; one previously reported missense mutation (c.1111C > T), and one novel frameshift mutation (c. 990_991insGCTGC) were identified in SLC16A2, a gene that has been linked to Allan-Herndon-Dudley syndrome (AHDS). One novel missense mutation (c.1888G > C) was found in GRIA3 and two novel splice donor site mutations (c.357 + 1G > C and c.985 + 1G > C) were identified in the DLG3 gene. One missense mutation (c.1321C > T) was identified in the candidate gene ZMYM3 in three affected males with a previously unrecognized syndrome characterized by unique facial features, aortic stenosis and hypospadia was detected. All of the identified mutations segregated in the corresponding families and were absent in > 100 Finnish controls and in the publicly available databases. In addition, a previously reported benign variant (c.877G > A) in SYP was identified in a large family with nine affected males in three generations, who have a syndromic phenotype. Conclusions All of the mutations found in this study are being reported for the first time in Finnish families with several affected male patients whose etiological diagnoses have remained unknown to us, in some families, for more than 30 years. This study illustrates the impact of X-exome sequencing to identify rare gene mutations and the challenges of interpreting the results. Further functional studies are required to confirm the cause of the syndromic phenotypes associated with ZMYM3 and SYP in this study. PMID:24721225

  18. Molecular analysis of mutations in DNA polymerase η in xeroderma pigmentosum-variant patients

    PubMed Central

    Broughton, Bernard C.; Cordonnier, Agnes; Kleijer, Wim J.; Jaspers, Nicolaas G. J.; Fawcett, Heather; Raams, Anja; Garritsen, Victor H.; Stary, Anne; Avril, Marie-Françoise; Boudsocq, François; Masutani, Chikahide; Hanaoka, Fumio; Fuchs, Robert P.; Sarasin, Alain; Lehmann, Alan R.

    2002-01-01

    Xeroderma pigmentosum variant (XP-V) cells are deficient in their ability to synthesize intact daughter DNA strands after UV irradiation. This deficiency results from mutations in the gene encoding DNA polymerase η, which is required for effecting translesion synthesis (TLS) past UV photoproducts. We have developed a simple cellular procedure to identify XP-V cell strains, and have subsequently analyzed the mutations in 21 patients with XP-V. The 16 mutations that we have identified fall into three categories. Many of them result in severe truncations of the protein and are effectively null alleles. However, we have also identified five missense mutations located in the conserved catalytic domain of the protein. Extracts of cells falling into these two categories are defective in the ability to carry out TLS past sites of DNA damage. Three mutations cause truncations at the C terminus such that the catalytic domains are intact, and extracts from these cells are able to carry out TLS. From our previous work, however, we anticipate that protein in these cells will not be localized in the nucleus nor will it be relocalized into replication foci during DNA replication. The spectrum of both missense and truncating mutations is markedly skewed toward the N-terminal half of the protein. Two of the missense mutations are predicted to affect the interaction with DNA, the others are likely to disrupt the three-dimensional structure of the protein. There is a wide variability in clinical features among patients, which is not obviously related to the site or type of mutation. PMID:11773631

  19. Clinical, genetic, and structural basis of apparent mineralocorticoid excess due to 11β-hydroxysteroid dehydrogenase type 2 deficiency.

    PubMed

    Yau, Mabel; Haider, Shozeb; Khattab, Ahmed; Ling, Chen; Mathew, Mehr; Zaidi, Samir; Bloch, Madison; Patel, Monica; Ewert, Sinead; Abdullah, Wafa; Toygar, Aysenur; Mudryi, Vitalii; Al Badi, Maryam; Alzubdi, Mouch; Wilson, Robert C; Al Azkawi, Hanan Said; Ozdemir, Hatice Nur; Abu-Amer, Wahid; Hertecant, Jozef; Razzaghy-Azar, Maryam; Funder, John W; Al Senani, Aisha; Sun, Li; Kim, Se-Min; Yuen, Tony; Zaidi, Mone; New, Maria I

    2017-12-26

    Mutations in 11β-hydroxysteroid dehydrogenase type 2 gene ( HSD11B2 ) cause an extraordinarily rare autosomal recessive disorder, apparent mineralocorticoid excess (AME). AME is a form of low renin hypertension that is potentially fatal if untreated. Mutations in the HSD11B2 gene result either in severe AME or a milder phenotype (type 2 AME). To date, ∼40 causative mutations have been identified. As part of the International Consortium for Rare Steroid Disorders, we have diagnosed and followed the largest single worldwide cohort of 36 AME patients. Here, we present the genotype and clinical phenotype of these patients, prominently from consanguineous marriages in the Middle East, who display profound hypertension and hypokalemic alkalosis. To correlate mutations with phenotypic severity, we constructed a computational model of the HSD11B2 protein. Having used a similar strategy for the in silico evaluation of 150 mutations of CYP21A2 , the disease-causing gene in congenital adrenal hyperplasia, we now provide a full structural explanation for the clinical severity of AME resulting from each known HSD11B2 missense mutation. We find that mutations that allow the formation of an inactive dimer, alter substrate/coenzyme binding, or impair structural stability of HSD11B2 yield severe AME. In contrast, mutations that cause an indirect disruption of substrate binding or mildly alter intramolecular interactions result in type 2 AME. A simple in silico evaluation of novel missense mutations could help predict the often-diverse phenotypes of an extremely rare monogenic disorder.

  20. High Incidence of Noonan Syndrome Features Including Short Stature and Pulmonic Stenosis in Patients carrying NF1 Missense Mutations Affecting p.Arg1809: Genotype-Phenotype Correlation.

    PubMed

    Rojnueangnit, Kitiwan; Xie, Jing; Gomes, Alicia; Sharp, Angela; Callens, Tom; Chen, Yunjia; Liu, Ying; Cochran, Meagan; Abbott, Mary-Alice; Atkin, Joan; Babovic-Vuksanovic, Dusica; Barnett, Christopher P; Crenshaw, Melissa; Bartholomew, Dennis W; Basel, Lina; Bellus, Gary; Ben-Shachar, Shay; Bialer, Martin G; Bick, David; Blumberg, Bruce; Cortes, Fanny; David, Karen L; Destree, Anne; Duat-Rodriguez, Anna; Earl, Dawn; Escobar, Luis; Eswara, Marthanda; Ezquieta, Begona; Frayling, Ian M; Frydman, Moshe; Gardner, Kathy; Gripp, Karen W; Hernández-Chico, Concepcion; Heyrman, Kurt; Ibrahim, Jennifer; Janssens, Sandra; Keena, Beth A; Llano-Rivas, Isabel; Leppig, Kathy; McDonald, Marie; Misra, Vinod K; Mulbury, Jennifer; Narayanan, Vinodh; Orenstein, Naama; Galvin-Parton, Patricia; Pedro, Helio; Pivnick, Eniko K; Powell, Cynthia M; Randolph, Linda; Raskin, Salmo; Rosell, Jordi; Rubin, Karol; Seashore, Margretta; Schaaf, Christian P; Scheuerle, Angela; Schultz, Meredith; Schorry, Elizabeth; Schnur, Rhonda; Siqveland, Elizabeth; Tkachuk, Amanda; Tonsgard, James; Upadhyaya, Meena; Verma, Ishwar C; Wallace, Stephanie; Williams, Charles; Zackai, Elaine; Zonana, Jonathan; Lazaro, Conxi; Claes, Kathleen; Korf, Bruce; Martin, Yolanda; Legius, Eric; Messiaen, Ludwine

    2015-11-01

    Neurofibromatosis type 1 (NF1) is one of the most frequent genetic disorders, affecting 1:3,000 worldwide. Identification of genotype-phenotype correlations is challenging because of the wide range clinical variability, the progressive nature of the disorder, and extreme diversity of the mutational spectrum. We report 136 individuals with a distinct phenotype carrying one of five different NF1 missense mutations affecting p.Arg1809. Patients presented with multiple café-au-lait macules (CALM) with or without freckling and Lisch nodules, but no externally visible plexiform neurofibromas or clear cutaneous neurofibromas were found. About 25% of the individuals had Noonan-like features. Pulmonic stenosis and short stature were significantly more prevalent compared with classic cohorts (P < 0.0001). Developmental delays and/or learning disabilities were reported in over 50% of patients. Melanocytes cultured from a CALM in a segmental NF1-patient showed two different somatic NF1 mutations, p.Arg1809Cys and a multi-exon deletion, providing genetic evidence that p.Arg1809Cys is a loss-of-function mutation in the melanocytes and causes a pigmentary phenotype. Constitutional missense mutations at p.Arg1809 affect 1.23% of unrelated NF1 probands in the UAB cohort, therefore this specific NF1 genotype-phenotype correlation will affect counseling and management of a significant number of patients. © 2015 The Authors. **Human Mutation published by Wiley Periodicals, Inc.

  1. Autoimmune Disease in a DFNA6/14/38 Family carrying a Novel Missense Mutation in WFS1

    PubMed Central

    Hildebrand, Michael S.; Sorensen, Jessica L.; Jensen, Maren; Kimberling, William J.; Smith, Richard J.H.

    2008-01-01

    Most familial cases of autosomal dominant low frequency sensorineural hearing loss (LFSNHL) are attributable to mutations in the Wolframin syndrome 1 (WFS1) gene at the DFNA6/14/38 locus. WFS1 mutations at this locus were first described in 2001 in six families segregating LFSNHL that was non-progressive below 2000 Hz; the causative mutations all clustered in the C-terminal domain of the wolframin protein. Mutations in WFS1 also cause Wolfram syndrome (WS), an autosomal recessive neurodegenerative disorder defined by diabetes mellitus, optic atrophy and often deafness, while numerous single nucleotide polymorphisms (SNPs) in WFS1 have been associated with increased risk for diabetes mellitus, psychiatric illnesses and Parkinson’s disease. This study was conducted in an American family segregating autosomal dominant LFSNHL. Two hearing impaired family members also had autoimmune diseases - Graves disease (GD) and Crohn’s disease (CD). Based on the low frequency audioprofile, mutation screening of WFS1 was completed and a novel missense mutation (c.2576G→A) that results in an arginine-to-glutamine substitution (p.R859Q) was identified in the C-terminal domain of the wolframin protein where most LFSNHL-causing mutations cluster. The family member with GD also carried polymorphisms in WFS1 that have been associated with other autoimmune diseases. PMID:18688868

  2. Loss of ATM kinase activity leads to embryonic lethality in mice.

    PubMed

    Daniel, Jeremy A; Pellegrini, Manuela; Lee, Baeck-Seung; Guo, Zhi; Filsuf, Darius; Belkina, Natalya V; You, Zhongsheng; Paull, Tanya T; Sleckman, Barry P; Feigenbaum, Lionel; Nussenzweig, André

    2012-08-06

    Ataxia telangiectasia (A-T) mutated (ATM) is a key deoxyribonucleic acid (DNA) damage signaling kinase that regulates DNA repair, cell cycle checkpoints, and apoptosis. The majority of patients with A-T, a cancer-prone neurodegenerative disease, present with null mutations in Atm. To determine whether the functions of ATM are mediated solely by its kinase activity, we generated two mouse models containing single, catalytically inactivating point mutations in Atm. In this paper, we show that, in contrast to Atm-null mice, both D2899A and Q2740P mutations cause early embryonic lethality in mice, without displaying dominant-negative interfering activity. Using conditional deletion, we find that the D2899A mutation in adult mice behaves largely similar to Atm-null cells but shows greater deficiency in homologous recombination (HR) as measured by hypersensitivity to poly (adenosine diphosphate-ribose) polymerase inhibition and increased genomic instability. These results may explain why missense mutations with no detectable kinase activity are rarely found in patients with classical A-T. We propose that ATM kinase-inactive missense mutations, unless otherwise compensated for, interfere with HR during embryogenesis.

  3. Isolated and Syndromic Retinal Dystrophy Caused by Biallelic Mutations in RCBTB1, a Gene Implicated in Ubiquitination.

    PubMed

    Coppieters, Frauke; Ascari, Giulia; Dannhausen, Katharina; Nikopoulos, Konstantinos; Peelman, Frank; Karlstetter, Marcus; Xu, Mingchu; Brachet, Cécile; Meunier, Isabelle; Tsilimbaris, Miltiadis K; Tsika, Chrysanthi; Blazaki, Styliani V; Vergult, Sarah; Farinelli, Pietro; Van Laethem, Thalia; Bauwens, Miriam; De Bruyne, Marieke; Chen, Rui; Langmann, Thomas; Sui, Ruifang; Meire, Françoise; Rivolta, Carlo; Hamel, Christian P; Leroy, Bart P; De Baere, Elfride

    2016-08-04

    Inherited retinal dystrophies (iRDs) are a group of genetically and clinically heterogeneous conditions resulting from mutations in over 250 genes. Here, homozygosity mapping and whole-exome sequencing (WES) in a consanguineous family revealed a homozygous missense mutation, c.973C>T (p.His325Tyr), in RCBTB1. In affected individuals, it was found to segregate with retinitis pigmentosa (RP), goiter, primary ovarian insufficiency, and mild intellectual disability. Subsequent analysis of WES data in different cohorts uncovered four additional homozygous missense mutations in five unrelated families in whom iRD segregates with or without syndromic features. Ocular phenotypes ranged from typical RP starting in the second decade to chorioretinal dystrophy with a later age of onset. The five missense mutations affect highly conserved residues either in the sixth repeat of the RCC1 domain or in the BTB1 domain. A founder haplotype was identified for mutation c.919G>A (p.Val307Met), occurring in two families of Mediterranean origin. We showed ubiquitous mRNA expression of RCBTB1 and demonstrated predominant RCBTB1 localization in human inner retina. RCBTB1 was very recently shown to be involved in ubiquitination, more specifically as a CUL3 substrate adaptor. Therefore, the effect on different components of the CUL3 and NFE2L2 (NRF2) pathway was assessed in affected individuals' lymphocytes, revealing decreased mRNA expression of NFE2L2 and several NFE2L2 target genes. In conclusion, our study puts forward mutations in RCBTB1 as a cause of autosomal-recessive non-syndromic and syndromic iRD. Finally, our data support a role for impaired ubiquitination in the pathogenetic mechanism of RCBTB1 mutations. Copyright © 2016 American Society of Human Genetics. Published by Elsevier Inc. All rights reserved.

  4. A case report of novel mutation in PRF1 gene, which causes familial autosomal recessive hemophagocytic lymphohistiocytosis.

    PubMed

    Bordbar, Mohammad Reza; Modarresi, Farzaneh; Farazi Fard, Mohammad Ali; Dastsooz, Hassan; Shakib Azad, Nader; Faghihi, Mohammad Ali

    2017-05-03

    Hemophagocytic Lymphohistiocytosis (HLH) is a life-threatening immunodeficiency and multi-organ disease that affects people of all ages and ethnic groups. Common symptoms and signs of this disease are high fever, hepatosplenomegaly, and cytopenias. Familial form of HLH disease, which is an autosomal recessive hematological disorder is due to disease-causing mutations in several genes essential for NK and T-cell granule-mediated cytotoxic function. For an effective cytotoxic response from cytotoxic T lymphocyte or NK cell encountering an infected cell or tumor cell, different processes are required, including trafficking, docking, priming, membrane fusion, and entry of cytotoxic granules into the target cell leading to apoptosis. Therefore, genes involved in these steps play important roles in the pathogenesis of HLH disease which include PRF1, UNC13D (MUNC13-4), STX11, and STXBP2 (MUNC18-2). Here, we report a novel missense mutation in an 8-year-old boy suffered from hepatosplenomegaly, hepatitis, epilepsy and pancytopenia. The patient was born to a first-cousin parents with no previous documented disease in his parents. To identify mutated gene in the proband, Whole Exome Sequencing (WES) utilizing next generation sequencing was used on an Illumina HiSeq 2000 platform on DNA sample from the patient. Results showed a novel deleterious homozygous missense mutation in PRF1 gene (NM_001083116: exon3: c. 1120 T > G, p.W374G) in the patient and then using Sanger sequencing it was confirmed in the proband and his parents. Since his parents were heterozygous for the identified mutation, autosomal recessive pattern of inheritance was confirmed in the family. Our study identified a rare new pathogenic missense mutation in PRF1 gene in patient with HLH disease and it is the first report of mutation in PRF1 in Iranian patients with this disease.

  5. Functional and splicing defect analysis of 23 ACVRL1 mutations in a cohort of patients affected by Hereditary Hemorrhagic Telangiectasia

    PubMed Central

    Alaa el Din, Ferdos; Patri, Sylvie; Thoreau, Vincent; Rodriguez-Ballesteros, Montserrat; Hamade, Eva; Bailly, Sabine; Gilbert-Dussardier, Brigitte; Abou Merhi, Raghida; Kitzis, Alain

    2015-01-01

    Hereditary Hemorrhagic Telangiectasia syndrome (HHT) or Rendu-Osler-Weber (ROW) syndrome is an autosomal dominant vascular disorder. Two most common forms of HHT, HHT1 and HHT2, have been linked to mutations in the endoglin (ENG) and activin receptor-like kinase 1 (ACVRL1or ALK1) genes respectively. This work was designed to examine the pathogenicity of 23 nucleotide variations in ACVRL1 gene detected in more than 400 patients. Among them, 14 missense mutations and one intronic variant were novels, and 8 missense mutations were previously identified with questionable implication in HHT2. The functionality of missense mutations was analyzed in response to BMP9 (specific ligand of ALK1), the maturation of the protein products and their localization were analyzed by western blot and fluorescence microscopy. The splicing impairment of the intronic and of two missense mutations was examined by minigene assay. Functional analysis showed that 18 out of 22 missense mutations were defective. Splicing analysis revealed that one missense mutation (c.733A>G, p.Ile245Val) affects the splicing of the harboring exon 6. Similarly, the intronic mutation outside the consensus splicing sites (c.1048+5G>A in intron 7) was seen pathogenic by splicing study. Both mutations induce a frame shift creating a premature stop codon likely resulting in mRNA degradation by NMD surveillance mechanism. Our results confirm the haploinsufficiency model proposed for HHT2. The affected allele of ACVRL1 induces mRNA degradation or the synthesis of a protein lacking the receptor activity. Furthermore, our data demonstrate that functional and splicing analyses together, represent two robust diagnostic tools to be used by geneticists confronted with novel or conflicted ACVRL1 mutations. PMID:26176610

  6. A novel missense mutation in the ACTG1 gene in a family with congenital autosomal dominant deafness: A case report.

    PubMed

    Lee, Cha Gon; Jang, Jahyeon; Jin, Hyun-Seok

    2018-06-01

    The ACTG1 gene encodes the cytoskeletal protein γ-actin, which functions in non‑muscle cells and is abundant in the auditory hair cells of the cochlea. Autosomal dominant missense mutations in ACTG1 are associated with DFNA20/26, a disorder that is typically characterized by post‑lingual progressive hearing loss. To date, 17 missense mutations in ACTG1 have been reported in 20 families with DFNA20/26. The present study described a small family with autosomal dominant nonsyndromic hearing loss. A novel heterozygous missense mutation, c.94C>T (p.Pro32Ser), in ACTG1 was identified using the TruSight One sequencing panel. Notably, congenital hearing loss in our proband was identified by newborn hearing screening at birth. In silico predictions of protein structure and function indicate that the p.Pro32Ser mutation may result in conformational changes in γ‑actin. The present study expands the understanding of the phenotypic effects of heterozygous missense mutations in the ACTG1 gene. In specific, the present results emphasize that mutations in ACTG1 result in a diverse spectrum of onset ages, including congenital in addition to post‑lingual onset.

  7. [Detection of gene mutation in glucose-6-phosphate dehydrogenase deficiency by RT-PCR sequencing].

    PubMed

    Lyu, Rong-Yu; Chen, Xiao-Wen; Zhang, Min; Chen, Yun-Sheng; Yu, Jie; Wen, Fei-Qiu

    2016-07-01

    Since glucose-6-phosphate dehydrogenase (G6PD) deficiency is the most common hereditary hemolytic erythrocyte enzyme deficiency, most cases have single nucleotide mutations in the coding region, and current test methods for gene mutation have some missed detections, this study aimed to investigate the feasibility of RT-PCR sequencing in the detection of gene mutation in G6PD deficiency. According to the G6PD/6GPD ratio, 195 children with anemia of unknown cause or who underwent physical examination between August 2013 and July 2014 were classified into G6PD-deficiency group with 130 children (G6PD/6GPD ratio <1.00) and control group with 65 children (G6PD/6GPD ratio≥1.00). The primer design and PCR amplification conditions were optimized, and RT-PCR sequencing was used to analyze the complete coding sequence and verify the genomic DNA sequence in the two groups. In the G6PD-deficiency group, the detection rate of gene mutation was 100% and 13 missense mutations were detected, including one new mutation. In the control group, no missense mutation was detected in 28 boys; 13 heterozygous missense mutations, 1 homozygous same-sense mutation (C1191T) which had not been reported in China and abroad, and 14 single nucleotide polymorphisms of C1311T were detected in 37 girls. The control group showed a high rate of missed detection of G6PD deficiency (carriers) in the specimens from girls (35%, 13/37). RT-PCR sequencing has a high detection rate of G6PD gene mutation and a certain value in clinical diagnosis of G6PD deficiency.

  8. Congenital nephrogenic diabetes insipidus with a novel mutation in the aquaporin 2 gene.

    PubMed

    Park, Youn Jong; Baik, Haing Woon; Cheong, Hae Il; Kang, Ju Hyung

    2014-07-01

    Congenital nephrogenic diabetes insipidus (CNDI) is a rare disorder caused by mutations of the arginine vasopressin (AVP) V2 receptor or aquaporin 2 ( AQP2 ) genes. The current study presented the case of CNDI in a 1-month-old male with a novel mutation in the AQP2 gene. The patient was referred due to the occurrence of hypernatremia and mild-intermittent fever since birth. An AVP stimulation test was compatible with CNDI as there was no significant response to desmopressin. Molecular genetic analysis demonstrated two mutations in exon 1 of the AQP2 gene: C to T transition, which resulted in a missense mutation of 108 Thr (ACG) to Met (ATG); and a 127, 128 delCA, which resulted in a deletion mutation of glutamine in position 43 at codon CAG as the first affected amino acid, with the new reading frame endign in a termination codon at position 62. The molecular genetic analysis of the parents showed that the missense mutation was inherited maternally and the deletion mutation was inherited paternally. The parents showed no signs or symptoms of CNDI, indicating autosomal recessive inheritance. The 108 Thr (ACG) to Met (ATG) mutation was confirmed as a novel mutation. Therefore, the molecular identification of the AQP2 gene has clinical significance, as early recognition of CNDI in infants that show only non-specific symptoms, can be facilitated. Thus, repeated episodes of dehydration, which may cause physical and mental retardation can be avoided.

  9. Congenital nephrogenic diabetes insipidus with a novel mutation in the aquaporin 2 gene

    PubMed Central

    PARK, YOUN JONG; BAIK, HAING WOON; CHEONG, HAE IL; KANG, JU HYUNG

    2014-01-01

    Congenital nephrogenic diabetes insipidus (CNDI) is a rare disorder caused by mutations of the arginine vasopressin (AVP) V2 receptor or aquaporin 2 (AQP2) genes. The current study presented the case of CNDI in a 1-month-old male with a novel mutation in the AQP2 gene. The patient was referred due to the occurrence of hypernatremia and mild-intermittent fever since birth. An AVP stimulation test was compatible with CNDI as there was no significant response to desmopressin. Molecular genetic analysis demonstrated two mutations in exon 1 of the AQP2 gene: C to T transition, which resulted in a missense mutation of 108Thr (ACG) to Met (ATG); and a 127, 128 delCA, which resulted in a deletion mutation of glutamine in position 43 at codon CAG as the first affected amino acid, with the new reading frame endign in a termination codon at position 62. The molecular genetic analysis of the parents showed that the missense mutation was inherited maternally and the deletion mutation was inherited paternally. The parents showed no signs or symptoms of CNDI, indicating autosomal recessive inheritance. The 108Thr (ACG) to Met (ATG) mutation was confirmed as a novel mutation. Therefore, the molecular identification of the AQP2 gene has clinical significance, as early recognition of CNDI in infants that show only non-specific symptoms, can be facilitated. Thus, repeated episodes of dehydration, which may cause physical and mental retardation can be avoided. PMID:24944815

  10. Mutations in POLR3A and POLR3B Encoding RNA Polymerase III Subunits Cause an Autosomal-Recessive Hypomyelinating Leukoencephalopathy

    PubMed Central

    Saitsu, Hirotomo; Osaka, Hitoshi; Sasaki, Masayuki; Takanashi, Jun-ichi; Hamada, Keisuke; Yamashita, Akio; Shibayama, Hidehiro; Shiina, Masaaki; Kondo, Yukiko; Nishiyama, Kiyomi; Tsurusaki, Yoshinori; Miyake, Noriko; Doi, Hiroshi; Ogata, Kazuhiro; Inoue, Ken; Matsumoto, Naomichi

    2011-01-01

    Congenital hypomyelinating disorders are a heterogeneous group of inherited leukoencephalopathies characterized by abnormal myelin formation. We have recently reported a hypomyelinating syndrome characterized by diffuse cerebral hypomyelination with cerebellar atrophy and hypoplasia of the corpus callosum (HCAHC). We performed whole-exome sequencing of three unrelated individuals with HCAHC and identified compound heterozygous mutations in POLR3B in two individuals. The mutations include a nonsense mutation, a splice-site mutation, and two missense mutations at evolutionally conserved amino acids. Using reverse transcription-PCR and sequencing, we demonstrated that the splice-site mutation caused deletion of exon 18 from POLR3B mRNA and that the transcript harboring the nonsense mutation underwent nonsense-mediated mRNA decay. We also identified compound heterozygous missense mutations in POLR3A in the remaining individual. POLR3A and POLR3B encode the largest and second largest subunits of RNA Polymerase III (Pol III), RPC1 and RPC2, respectively. RPC1 and RPC2 together form the active center of the polymerase and contribute to the catalytic activity of the polymerase. Pol III is involved in the transcription of small noncoding RNAs, such as 5S ribosomal RNA and all transfer RNAs (tRNA). We hypothesize that perturbation of Pol III target transcription, especially of tRNAs, could be a common pathological mechanism underlying POLR3A and POLR3B mutations. PMID:22036171

  11. Analysis of patients with atypical hemolytic uremic syndrome treated at the Mie University Hospital: concentration of C3 p.I1157T mutation.

    PubMed

    Matsumoto, Takeshi; Fan, Xinping; Ishikawa, Eiji; Ito, Masaaki; Amano, Keishirou; Toyoda, Hidemi; Komada, Yoshihiro; Ohishi, Kohshi; Katayama, Naoyuki; Yoshida, Yoko; Matsumoto, Masanori; Fujimura, Yoshihiro; Ikejiri, Makoto; Wada, Hideo; Miyata, Toshiyuki

    2014-11-01

    Atypical hemolytic uremic syndrome (aHUS) is caused by abnormalities of the complement system and has a significantly poor prognosis. The clinical phenotypes of 12 patients in nine families with aHUS with familial or recurrent onset and ADAMTS13 activity of ≥20 % treated at the Mie University Hospital were examined. In seven of the patients, the first episode of aHUS occurred during childhood and ten patients experienced a relapse. All patients had renal dysfunction and three had been treated with hemodialysis. Seven patients experienced probable triggering events including common cold, influenza, bacterial infection and/or vaccination for influenza. All patients had entered remission, and renal function was improved in 11 patients. DNA sequencing of six candidate genes, identified a C3 p.I1157T missense mutation in all eight patients in six families examined and this mutation was causative for aHUS. A causative mutation THBD p.D486Y was also identified in an aHUS patient. Four missense mutations, CFH p.V837I, p.Y1058H, p.V1060L and THBD p.R403K may predispose to aHUS manifestation; the remaining seven missense mutations were likely neutral. In conclusion, the clinical phenotypes of aHUS are various, and there are often trigger factors. The C3 p.I1157T mutation was identified as the causative mutation for aHUS in all patients examined, and may be geographically concentrated in or around the Mie prefecture in central Japan.

  12. Impairment of CDKL5 nuclear localisation as a cause for severe infantile encephalopathy.

    PubMed

    Rosas-Vargas, H; Bahi-Buisson, N; Philippe, C; Nectoux, J; Girard, B; N'Guyen Morel, M A; Gitiaux, C; Lazaro, L; Odent, S; Jonveaux, P; Chelly, J; Bienvenu, T

    2008-03-01

    Mutations in the human X-linked cyclin-dependent kinase-like 5 (CDKL5) gene have been shown to cause infantile spasms as well as Rett syndrome-like phenotype. To date, fewer than 20 different mutations have been reported. So far, no clear genotype-phenotype correlation has been established. We screened the entire coding region of CDKL5 in 151 affected girls with a clinically heterogeneous phenotype ranging from encephalopathy with epilepsy to atypical Rett syndrome by denaturing high liquid performance chromatography and direct sequencing, and we identified three novel missense mutations located in catalytic domain (p.Ala40Val, p.Arg65Gln, p.Leu220Pro). Segregation analysis showed that p.Arg65Gln was inherited from the healthy father, which rules out the involvement of CDKL5 in the aetiology of the phenotype in this patient. However, the de novo occurrence was shown for p.Ala40Val and p.Leu220Pro. The p.Ala40Val mutation was observed in two unrelated patients and represented the first recurrent mutation in the CDKL5 gene. For the two de novo mutations, we analysed the cellular localisation of the wild-type and CDKL5 mutants by transfection experiments. We showed that the two CDKL5 mutations cause mislocalisation of the mutant CDKL5 proteins in the cytoplasm. Interestingly these missense mutations that result in a mislocalisation of the CDKL5 protein are associated with severe developmental delay which was apparent within the first months of life characterised by early and generalised hypotonia, and autistic features, and as well as early infantile spasms.

  13. Missense Mutations in the N-Terminal Domain of Human Phenylalanine Hydroxylase Interfere with Binding of Regulatory Phenylalanine

    PubMed Central

    Gjetting, Torben; Petersen, Marie; Guldberg, Per; Güttler, Flemming

    2001-01-01

    Hyperphenylalaninemia due to a deficiency of phenylalanine hydroxylase (PAH) is an autosomal recessive disorder caused by >400 mutations in the PAH gene. Recent work has suggested that the majority of PAH missense mutations impair enzyme activity by causing increased protein instability and aggregation. In this study, we describe an alternative mechanism by which some PAH mutations may render PAH defective. Database searches were used to identify regions in the N-terminal domain of PAH with homology to the regulatory domain of prephenate dehydratase (PDH), the rate-limiting enzyme in the bacterial phenylalanine biosynthesis pathway. Naturally occurring N-terminal PAH mutations are distributed in a nonrandom pattern and cluster within residues 46–48 (GAL) and 65–69 (IESRP), two motifs highly conserved in PDH. To examine whether N-terminal PAH mutations affect the ability of PAH to bind phenylalanine at the regulatory domain, wild-type and five mutant (G46S, A47V, T63P/H64N, I65T, and R68S) forms of the N-terminal domain (residues 2–120) of human PAH were expressed as fusion proteins in Escherichia coli. Binding studies showed that the wild-type form of this domain specifically binds phenylalanine, whereas all mutations abolished or significantly reduced this phenylalanine-binding capacity. Our data suggest that impairment of phenylalanine-mediated activation of PAH may be an important disease-causing mechanism of some N-terminal PAH mutations, which may explain some well-documented genotype-phenotype discrepancies in PAH deficiency. PMID:11326337

  14. Identification of a Novel Mutation in BRD4 that Causes Autosomal Dominant Syndromic Congenital Cataracts Associated with Other Neuro-Skeletal Anomalies

    PubMed Central

    Jin, Hyun-Seok; Kim, Jeonhyun; Kwak, Woori; Jeong, Hyeonsoo; Lim, Gyu-Bin

    2017-01-01

    Congenital cataracts can occur as a non-syndromic isolated ocular disease or as a part of genetic syndromes accompanied by a multi-systemic disease. Approximately 50% of all congenital cataract cases have a heterogeneous genetic basis. Here, we describe three generations of a family with an autosomal dominant inheritance pattern and common complex phenotypes, including bilateral congenital cataracts, short stature, macrocephaly, and minor skeletal anomalies. We did not find any chromosomal aberrations or gene copy number abnormalities using conventional genetic tests; accordingly, we conducted whole-exome sequencing (WES) to identify disease-causing genetic alterations in this family. Based on family WES data, we identified a novel BRD4 missense mutation as a candidate causal variant and performed cell-based experiments by ablation of endogenous BRD4 expression in human lens epithelial cells. The protein expression levels of connexin 43, p62, LC3BII, and p53 differed significantly between control cells and cells in which endogenous BRD4 expression was inhibited. We inferred that a BRD4 missense mutation was the likely disease-causing mutation in this family. Our findings may improve the molecular diagnosis of congenital cataracts and support the use of WES to clarify the genetic basis of complex diseases. PMID:28076398

  15. Novel mutations in the long isoform of the USH2A gene in patients with Usher syndrome type II or non-syndromic retinitis pigmentosa

    PubMed Central

    McGee, Terri L.; Seyedahmadi, Babak Jian; Sweeney, Meredith O.; Dryja, Thaddeus P.; Berson, Eliot L.

    2010-01-01

    Background Usher syndrome type II (USH2) is an autosomal recessive disorder characterized by retinitis pigmentosa (RP) and mild to moderate sensorineural hearing loss. Mutations in the USH2A gene are the most common cause of USH2 and are also a cause of some forms of RP without hearing loss (ie non-syndromic RP). The USH2A gene was initially identified as a transcript comprised of 21 exons but subsequently a longer isoform containing 72 exons was identified. Methods The 51 exons unique to the long isoform of USH2A were screened for mutations among a core set of 108 patients diagnosed with USH2 and 80 patients with non-syndromic RP who were all included in a previously reported screen of the short isoform of USH2A. For several exons, additional patients were screened. Results In total, 35 deleterious mutations were identified including 17 nonsense mutations, 9 frameshift mutations, 5 splice-site mutations, and 4 small in-frame deletions or insertions. Twenty-seven mutations were novel. In addition, 65 rare missense changes were identified. A method of classifying the deleterious effect of the missense changes was developed using the summed results of 4 different mutation assessment algorithms, SIFT, pMUT, PolyPhen, and AGVGD. This system classified 8 of the 65 changes as “likely deleterious” and 9 as “possibly deleterious”. Conclusion At least one mutation was identified in 57–63% of USH2 cases and 19–23% of cases of non-syndromic recessive RP (calculated without and including probable/possible deleterious changes) thus supporting that USH2A is the most common known cause of RP in the United States. PMID:20507924

  16. Novel mutations in the long isoform of the USH2A gene in patients with Usher syndrome type II or non-syndromic retinitis pigmentosa.

    PubMed

    McGee, Terri L; Seyedahmadi, Babak Jian; Sweeney, Meredith O; Dryja, Thaddeus P; Berson, Eliot L

    2010-07-01

    Usher syndrome type II (USH2) is an autosomal recessive disorder characterised by retinitis pigmentosa (RP) and mild to moderate sensorineural hearing loss. Mutations in the USH2A gene are the most common cause of USH2 and are also a cause of some forms of RP without hearing loss (ie, non-syndromic RP). The USH2A gene was initially identified as a transcript comprised of 21 exons but subsequently a longer isoform containing 72 exons was identified. The 51 exons unique to the long isoform of USH2A were screened for mutations among a core set of 108 patients diagnosed with USH2 and 80 patients with non-syndromic RP who were all included in a previously reported screen of the short isoform of USH2A. For several exons, additional patients were screened. In total, 35 deleterious mutations were identified including 17 nonsense mutations, 9 frameshift mutations, 5 splice-site mutations, and 4 small in-frame deletions or insertions. Twenty-seven mutations were novel. In addition, 65 rare missense changes were identified. A method of classifying the deleterious effect of the missense changes was developed using the summed results of four different mutation assessment algorithms, SIFT, pMUT, PolyPhen, and AGVGD. This system classified 8 of the 65 changes as 'likely deleterious' and 9 as 'possibly deleterious'. At least one mutation was identified in 57-63% of USH2 cases and 19-23% of cases of non-syndromic recessive RP (calculated without and including probable/possible deleterious changes) thus supporting that USH2A is the most common known cause of RP in the USA.

  17. Rare, evolutionarily unlikely missense substitutions in CHEK2 contribute to breast cancer susceptibility: results from a breast cancer family registry case-control mutation-screening study.

    PubMed

    Le Calvez-Kelm, Florence; Lesueur, Fabienne; Damiola, Francesca; Vallée, Maxime; Voegele, Catherine; Babikyan, Davit; Durand, Geoffroy; Forey, Nathalie; McKay-Chopin, Sandrine; Robinot, Nivonirina; Nguyen-Dumont, Tù; Thomas, Alun; Byrnes, Graham B; Hopper, John L; Southey, Melissa C; Andrulis, Irene L; John, Esther M; Tavtigian, Sean V

    2011-01-18

    Both protein-truncating variants and some missense substitutions in CHEK2 confer increased risk of breast cancer. However, no large-scale study has used full open reading frame mutation screening to assess the contribution of rare missense substitutions in CHEK2 to breast cancer risk. This absence has been due in part to a lack of validated statistical methods for summarizing risk attributable to large numbers of individually rare missense substitutions. Previously, we adapted an in silico assessment of missense substitutions used for analysis of unclassified missense substitutions in BRCA1 and BRCA2 to the problem of assessing candidate genes using rare missense substitution data observed in case-control mutation-screening studies. The method involves stratifying rare missense substitutions observed in cases and/or controls into a series of grades ordered a priori from least to most likely to be evolutionarily deleterious, followed by a logistic regression test for trends to compare the frequency distributions of the graded missense substitutions in cases versus controls. Here we used this approach to analyze CHEK2 mutation-screening data from a population-based series of 1,303 female breast cancer patients and 1,109 unaffected female controls. We found evidence of risk associated with rare, evolutionarily unlikely CHEK2 missense substitutions. Additional findings were that (1) the risk estimate for the most severe grade of CHEK2 missense substitutions (denoted C65) is approximately equivalent to that of CHEK2 protein-truncating variants; (2) the population attributable fraction and the familial relative risk explained by the pool of rare missense substitutions were similar to those explained by the pool of protein-truncating variants; and (3) post hoc power calculations implied that scaling up case-control mutation screening to examine entire biochemical pathways would require roughly 2,000 cases and controls to achieve acceptable statistical power. This study shows that CHEK2 harbors many rare sequence variants that confer increased risk of breast cancer and that a substantial proportion of these are missense substitutions. The study validates our analytic approach to rare missense substitutions and provides a method to combine data from protein-truncating variants and rare missense substitutions into a one degree of freedom per gene test.

  18. A Rare Missense Mutation and a Polymorphism with High Frequency in LDLR Gene among Iranian Patients with Familial Hypercholesterolemia

    PubMed Central

    Tajamolian, Masoud; Kolahdouz, Parisa; Nikpour, Parvaneh; Forouzannia, Seyed Khalil; Sheikhha, Mohammad Hasan; Yazd, Ehsan Farashahi

    2018-01-01

    Background: Familial hypercholesterolemia (FH) is a disorder that is inherited by autosomal dominant pattern. The main cause of FH disease is the occurrence of mutations in low-density lipoprotein receptor (LDLR) gene sequence, as well as apolipoprotein B and proprotein convertase subtilisin/kexin type 9 genes, located in the next ranks, respectively. Materials and Methods: Forty-five unrelated Iranian patients with FH were screened using a high-resolution melting (HRM) method for exon 9 along with intron/exon boundaries of LDLR gene. Samples with shift in resultant HRM curves were compared to normal ones, sequenced, and analyzed. Results: Our findings revealed a missense mutation c. 1246C>T and a known variant IVS9-30C>T (rs1003723) that was recognized in 71% of the patients (22%: homozygous and 49%: heterozygous genotypes). In silico analysis, predicted the pathological effect of the c. 1246C>T mutation in LDLR protein structure, but IVS9-30C>T variant had no predicted effect on splice site and branch point function. Conclusion: FH is a hereditary type of hypercholesterolemia that leads to premature cardiovascular disease and atherosclerosis, and early diagnosis is needed. We detected a rare missense mutation (1246C>T) and a common single nucleotide polymorphism (SNP) in the Iranian population. These reports could help in the genetic diagnosis and counseling of FH patients. PMID:29531935

  19. A novel missense mutation of the paired box 3 gene in a Turkish family with Waardenburg syndrome type 1

    PubMed Central

    Ozturk, A.Taylan; Adibelli, Hamit; Unal, Nurettin; Tukun, Ajlan

    2013-01-01

    Purpose Screening of mutations in the paired box 3 (PAX3) gene in three generations of a Turkish family with Waardenburg syndrome type 1 (WS1). Methods WS1 was diagnosed in a 13-month-old girl according to the WS Consortium criteria. Detailed family history of the proband revealed eight affected members in three generations. Routine clinical and audiological examination and ophthalmologic evaluation were performed on eight affected and five healthy members of the study family. Dystopia canthorum was detected in all affected patients; however, a brilliant blue iris was present in five patients who also had mild retinal hypopigmentation. Genomic DNA was extracted from the peripheral blood of affected and unaffected individuals in the family as well as 50 unrelated healthy volunteers. All coding exons and adjacent intronic regions of PAX3 were sequenced directly. Results A novel missense heterozygous c.788T>G mutation was identified in eight patients. This nucleotide alteration was not found in unaffected members of the study family or in the 50 unrelated control subjects. The mutation causes V263G amino-acid substitution in the homeodomain of the PAX3 protein, which represents the 45th residue of helix 3. Conclusions We identified a novel missense c.788T>G mutation in PAX3 in a family with Waardenburg syndrome with intrafamilial phenotypic heterogeneity. PMID:23378733

  20. A novel missense mutation of the paired box 3 gene in a Turkish family with Waardenburg syndrome type 1.

    PubMed

    Hazan, Filiz; Ozturk, A Taylan; Adibelli, Hamit; Unal, Nurettin; Tukun, Ajlan

    2013-01-01

    Screening of mutations in the paired box 3 (PAX3) gene in three generations of a Turkish family with Waardenburg syndrome type 1 (WS1). WS1 was diagnosed in a 13-month-old girl according to the WS Consortium criteria. Detailed family history of the proband revealed eight affected members in three generations. Routine clinical and audiological examination and ophthalmologic evaluation were performed on eight affected and five healthy members of the study family. Dystopia canthorum was detected in all affected patients; however, a brilliant blue iris was present in five patients who also had mild retinal hypopigmentation. Genomic DNA was extracted from the peripheral blood of affected and unaffected individuals in the family as well as 50 unrelated healthy volunteers. All coding exons and adjacent intronic regions of PAX3 were sequenced directly. A novel missense heterozygous c.788T>G mutation was identified in eight patients. This nucleotide alteration was not found in unaffected members of the study family or in the 50 unrelated control subjects. The mutation causes V263G amino-acid substitution in the homeodomain of the PAX3 protein, which represents the 45(th) residue of helix 3. We identified a novel missense c.788T>G mutation in PAX3 in a family with Waardenburg syndrome with intrafamilial phenotypic heterogeneity.

  1. In Vivo-Selected Pyrazinoic Acid-Resistant Mycobacterium tuberculosis Strains Harbor Missense Mutations in the Aspartate Decarboxylase PanD and the Unfoldase ClpC1.

    PubMed

    Gopal, Pooja; Tasneen, Rokeya; Yee, Michelle; Lanoix, Jean-Philippe; Sarathy, Jansy; Rasic, George; Li, Liping; Dartois, Véronique; Nuermberger, Eric; Dick, Thomas

    2017-07-14

    Through mutant selection on agar containing pyrazinoic acid (POA), the bioactive form of the prodrug pyrazinamide (PZA), we recently showed that missense mutations in the aspartate decarboxylase PanD and the unfoldase ClpC1, and loss-of-function mutation of polyketide synthases Mas and PpsA-E involved in phthiocerol dimycocerosate synthesis, cause resistance to POA and PZA in Mycobacterium tuberculosis. Here we first asked whether these in vitro-selected POA/PZA-resistant mutants are attenuated in vivo, to potentially explain the lack of evidence of these mutations among PZA-resistant clinical isolates. Infection of mice with panD, clpC1, and mas/ppsA-E mutants showed that whereas growth of clpC1 and mas/ppsA-E mutants was attenuated, the panD mutant grew as well as the wild-type. To determine whether these resistance mechanisms can emerge within the host, mice infected with wild-type M. tuberculosis were treated with POA, and POA-resistant colonies were confirmed for PZA and POA resistance. Genome sequencing revealed that 82 and 18% of the strains contained missense mutations in panD and clpC1, respectively. Consistent with their lower fitness and POA resistance level, independent mas/ppsA-E mutants were not found. In conclusion, we show that the POA/PZA resistance mechanisms due to panD and clpC1 missense mutations are recapitulated in vivo. Whereas the representative clpC1 mutant was attenuated for growth in the mouse infection model, providing a possible explanation for their absence among clinical isolates, the growth kinetics of the representative panD mutant was unaffected. Why POA/PZA resistance-conferring panD mutations are observed in POA-treated mice but not yet among clinical strains isolated from PZA-treated patients remains to be determined.

  2. Gain-of-Function Mutations in SCN11A Cause Familial Episodic Pain

    PubMed Central

    Zhang, Xiang Yang; Wen, Jingmin; Yang, Wei; Wang, Cheng; Gao, Luna; Zheng, Liang Hong; Wang, Tao; Ran, Kaikai; Li, Yulei; Li, Xiangyang; Xu, Ming; Luo, Junyu; Feng, Shenglei; Ma, Xixiang; Ma, Hongying; Chai, Zuying; Zhou, Zhuan; Yao, Jing; Zhang, Xue; Liu, Jing Yu

    2013-01-01

    Many ion channel genes have been associated with human genetic pain disorders. Here we report two large Chinese families with autosomal-dominant episodic pain. We performed a genome-wide linkage scan with microsatellite markers after excluding mutations in three known genes (SCN9A, SCN10A, and TRPA1) that cause similar pain syndrome to our findings, and we mapped the genetic locus to a 7.81 Mb region on chromosome 3p22.3–p21.32. By using whole-exome sequencing followed by conventional Sanger sequencing, we identified two missense mutations in the gene encoding voltage-gated sodium channel Nav1.9 (SCN11A): c.673C>T (p.Arg225Cys) and c.2423C>G (p.Ala808Gly) (one in each family). Each mutation showed a perfect cosegregation with the pain phenotype in the corresponding family, and neither of them was detected in 1,021 normal individuals. Both missense mutations were predicted to change a highly conserved amino acid residue of the human Nav1.9 channel. We expressed the two SCN11A mutants in mouse dorsal root ganglion (DRG) neurons and showed that both mutations enhanced the channel’s electrical activities and induced hyperexcitablity of DRG neurons. Taken together, our results suggest that gain-of-function mutations in SCN11A can be causative of an autosomal-dominant episodic pain disorder. PMID:24207120

  3. Identification of a novel heterozygous missense mutation in the CACNA1F gene in a chinese family with retinitis pigmentosa by next generation sequencing.

    PubMed

    Zhou, Qi; Cheng, Jingliang; Yang, Weichan; Tania, Mousumi; Wang, Hui; Khan, Md Asaduzzaman; Duan, Chengxia; Zhu, Li; Chen, Rui; Lv, Hongbin; Fu, Junjiang

    2015-01-01

    Retinitis pigmentosa (RP) is an inherited retinal degenerative disease, which is clinically and genetically heterogeneous, and the inheritance pattern is complex. In this study, we have intended to study the possible association of certain genes with X-linked RP (XLRP) in a Chinese family. A Chinese family with RP was recruited, and a total of seven individuals were enrolled in this genetic study. Genomic DNA was isolated from peripheral leukocytes, and used for the next generation sequencing (NGS). The affected individual presented the clinical signs of XLRP. A heterozygous missense mutation (c.1555C>T, p.R519W) was identified by NGS in exon 13 of the CACNA1F gene on X chromosome, and was confirmed by Sanger sequencing. It showed perfect cosegregation with the disease in the family. The mutation at this position in the CACNA1F gene of RP was found novel by database searching. By using NGS, we have found a novel heterozygous missense mutation (c.1555C>T, p.R519W) in CACNA1F gene, which is probably associated with XLRP. The findings might provide new insights into the cause and diagnosis of RP, and have implications for genetic counseling and clinical management in this family.

  4. Cardiac myosin missense mutations cause dilated cardiomyopathy in mouse models and depress molecular motor function.

    PubMed

    Schmitt, Joachim P; Debold, Edward P; Ahmad, Ferhaan; Armstrong, Amy; Frederico, Andrea; Conner, David A; Mende, Ulrike; Lohse, Martin J; Warshaw, David; Seidman, Christine E; Seidman, J G

    2006-09-26

    Dilated cardiomyopathy (DCM) leads to heart failure, a leading cause of death in industrialized nations. Approximately 30% of DCM cases are genetic in origin, with some resulting from point mutations in cardiac myosin, the molecular motor of the heart. The effects of these mutations on myosin's molecular mechanics have not been determined. We have engineered two murine models characterizing the physiological, cellular, and molecular effects of DCM-causing missense mutations (S532P and F764L) in the alpha-cardiac myosin heavy chain and compared them with WT mice. Mutant mice developed morphological and functional characteristics of DCM consistent with the human phenotypes. Contractile function of isolated myocytes was depressed and preceded left ventricular dilation and reduced fractional shortening. In an in vitro motility assay, both mutant cardiac myosins exhibited a reduced ability to translocate actin (V(actin)) but had similar force-generating capacities. Actin-activated ATPase activities were also reduced. Single-molecule laser trap experiments revealed that the lower V(actin) in the S532P mutant was due to a reduced ability of the motor to generate a step displacement and an alteration of the kinetics of its chemomechanical cycle. These results suggest that the depressed molecular function in cardiac myosin may initiate the events that cause the heart to remodel and become pathologically dilated.

  5. Molecular study of electron transfer flavoprotein alpha-subunit deficiency in two Japanese children with different phenotypes of glutaric acidemia type II.

    PubMed

    Purevjav, E; Kimura, M; Takusa, Y; Ohura, T; Tsuchiya, M; Hara, N; Fukao, T; Yamaguchi, S

    2002-09-01

    Electron transfer flavoprotein is a mitochondrial matrix protein composed of alpha- and beta-subunits (ETF alpha and ETF beta, respectively). This protein transfers electrons between several mitochondrial dehydrogenases and the main respiratory chain via ETF dehydrogenase (ETF-DH). Defects in ETF or ETF-DH cause glutaric acidemias type II (GAII). We investigated the molecular basis of ETF alpha deficiency in two Japanese children with different clinical phenotypes using expression study. Patient 1 had the severe form of GAII, a compound heterozygote of two mutations: 799G to A (alpha G267R) and nonsense 7C to T (alpha R3X). Patient 2 had the mild form and carried two heterozygous mutations: 764G to T (alpha G255V) and 478delG (frameshift). Both patients had one each of missense mutations in one allele; the others were either nonsense or truncated. Restriction enzyme digestion assay using genomic DNAs from 100 healthy Japanese revealed that these mutations were all novel. No signal for ETF alpha was detected by immunoblotting in cases of missense mutants, while wild-type cDNA resulted in expression of ETF alpha protein. Transfection with wild-type ETF alpha cDNA into cultured cells from both patients elevated incorporation of radioisotope-labelled fatty acids. These four mutations were pathogenic for GAII and missense mutations, alpha G255V and alpha G267R were considered anecdotal for mild and severe forms, respectively.

  6. Missense mutations in TENM4, a regulator of axon guidance and central myelination, cause essential tremor

    PubMed Central

    Hor, Hyun; Francescatto, Ludmila; Bartesaghi, Luca; Ortega-Cubero, Sara; Kousi, Maria; Lorenzo-Betancor, Oswaldo; Jiménez-Jiménez, Felix J.; Gironell, Alexandre; Clarimón, Jordi; Drechsel, Oliver; Agúndez, José A. G.; Kenzelmann Broz, Daniela; Chiquet-Ehrismann, Ruth; Lleó, Alberto; Coria, Francisco; García-Martin, Elena; Alonso-Navarro, Hortensia; Martí, Maria J.; Kulisevsky, Jaume; Hor, Charlotte N.; Ossowski, Stephan; Chrast, Roman; Katsanis, Nicholas; Pastor, Pau; Estivill, Xavier

    2015-01-01

    Essential tremor (ET) is a common movement disorder with an estimated prevalence of 5% of the population aged over 65 years. In spite of intensive efforts, the genetic architecture of ET remains unknown. We used a combination of whole-exome sequencing and targeted resequencing in three ET families. In vitro and in vivo experiments in oligodendrocyte precursor cells and zebrafish were performed to test our findings. Whole-exome sequencing revealed a missense mutation in TENM4 segregating in an autosomal-dominant fashion in an ET family. Subsequent targeted resequencing of TENM4 led to the discovery of two novel missense mutations. Not only did these two mutations segregate with ET in two additional families, but we also observed significant over transmission of pathogenic TENM4 alleles across the three families. Consistent with a dominant mode of inheritance, in vitro analysis in oligodendrocyte precursor cells showed that mutant proteins mislocalize. Finally, expression of human mRNA harboring any of three patient mutations in zebrafish embryos induced defects in axon guidance, confirming a dominant-negative mode of action for these mutations. Our genetic and functional data, which is corroborated by the existence of a Tenm4 knockout mouse displaying an ET phenotype, implicates TENM4 in ET. Together with previous studies of TENM4 in model organisms, our studies intimate that processes regulating myelination in the central nervous system and axon guidance might be significant contributors to the genetic burden of this disorder. PMID:26188006

  7. A Novel Mutation in the XLRS1 Gene in a Korean Family with X-linked Retinoschisis

    PubMed Central

    Jwa, Nam Soo; Kim, Sung Soo; Lee, Sung Chul; Kwon, Oh Woong

    2006-01-01

    Purpose To report a novel missense mutation in the XLRS1 gene in a Korean family with X-linked retinoschisis. Methods Observation case report of a family with a proband with X-linked retinoschisis underwent complete ophthalmologic examination. Genomic DNA was excluded from the family's blood and all exons of the XLRS1 gene were amplified by polymerase chain reaction and analyzed using a direct sequencing method. Results A novel Leu103Phe missense mutation was identified. Conclusions A novel Leu103Phe mutation is an additional missense mutation which is responsible for the pathogenesis of X-linked retinoschisis. PMID:16768192

  8. A missense mutation in the arginine-vasopressin neurophysin-II gene causes autosomal dominant neurohypophyseal diabetes insipidus in a Chinese family.

    PubMed

    Ye, Dan; Dong, FengQin; Lu, WeiQin; Zhang, Zhe; Lu, XunLiang; Li, ChengJiang; Liu, YanNing

    2013-06-01

    Familial neurohypophyseal diabetes insipidus, an autosomal dominant disorder, is mostly caused by mutations in the genes that encode AVP or its intracellular binding protein, neurophysin-II. The mutations lead to aberrant preprohormone processing and progressive destruction of AVP-secreting cells, which gradually manifests a progressive polyuria and polydipsia during early childhood, and a disorder of water homeostasis. We characterized the clinical and biochemical features, and sequenced the AVP neurophysin-II(AVP-NPII) gene of the affected individuals with autosomal dominant neurohypophyseal diabetes insipidus(ADNDI)to determine whether this disease was genetically determined. We obtained the histories of eight affected and four unaffected family individuals. The diagnosis of ADNDI was established using a water deprivation test and exogenous AVP administration. For molecular analysis, genomic DNA was extracted and the AVP-NPII gene was amplified using polymerase chain reaction and sequenced. The eight affected individuals showed different spectra of age of onsets (7-15 years) and urine volumes (132-253 ml/kg/24 h). All affected individuals responded to vasopressin administration, with a resolution of symptoms and an increase in urine osmolality by more than 50%. The characteristic hyperintense signal in the posterior pituitary on T1-weighted magnetic resonance imaging was absent in six family members and present in one. Sequencing analysis revealed a missense heterozygous mutation 1516G > T (Gly17Val) in exon 2 of the AVP-NPII gene among the ADNDI individuals. We identified a missense mutation in the AVP-NPII gene and the same mutation showed different spectra of age of onsets and urine volumes in a new Chinese family with ADNDI. The mutation may provide a molecular basis for understanding the characteristics of NPII and add to our knowledge of the pathogenesis of ADNDI, which would allow the presymptomatic diagnosis of asymptomatic subjects. © 2012 John Wiley & Sons Ltd.

  9. CDKL5 mutations in boys with severe encephalopathy and early-onset intractable epilepsy.

    PubMed

    Elia, M; Falco, M; Ferri, R; Spalletta, A; Bottitta, M; Calabrese, G; Carotenuto, M; Musumeci, S A; Lo Giudice, M; Fichera, M

    2008-09-23

    To search for CDKL5 gene mutations in boys presenting with severe early-onset encephalopathy and intractable epilepsy, a clinical picture very similar to that already described in girls with CDKL5 mutations. Eight boys (age range 3-16 years, mean age 8.5 years, SD 4.38) with severe or profound mental retardation and early-onset intractable seizures were selected for CDKL5 gene mutation screening by denaturing high-performance liquid chromatography analysis. We found three unrelated boys carrying three different missense mutations of the CDKL5 gene: c.872G>A (p.C291Y), c.863C>T (p.T288I), and c.533G>C (p.R178P). They presented early-onset, polymorphous, and drug-resistant seizures, mostly myoclonic and tonic or spasms. EEG showed epileptiform abnormalities which were multifocal during wakefulness, and pseudoperiodic bisynchronous during sleep. This study describes three boys carrying CDKL5 missense mutations and their detailed clinical and EEG data, and indicates that CDKL5 gene mutations may represent a cause of severe or profound mental retardation and early-onset intractable seizures, also in boys. Screening for CDKL5 mutations is strongly recommended in individuals with these clinical features.

  10. Mutations in Prickle Orthologs Cause Seizures in Flies, Mice, and Humans

    PubMed Central

    Tao, Hirotaka; Manak, J. Robert; Sowers, Levi; Mei, Xue; Kiyonari, Hiroshi; Abe, Takaya; Dahdaleh, Nader S.; Yang, Tian; Wu, Shu; Chen, Shan; Fox, Mark H.; Gurnett, Christina; Montine, Thomas; Bird, Thomas; Shaffer, Lisa G.; Rosenfeld, Jill A.; McConnell, Juliann; Madan-Khetarpal, Suneeta; Berry-Kravis, Elizabeth; Griesbach, Hilary; Saneto, Russell P.; Scott, Matthew P.; Antic, Dragana; Reed, Jordan; Boland, Riley; Ehaideb, Salleh N.; El-Shanti, Hatem; Mahajan, Vinit B.; Ferguson, Polly J.; Axelrod, Jeffrey D.; Lehesjoki, Anna-Elina; Fritzsch, Bernd; Slusarski, Diane C.; Wemmie, John; Ueno, Naoto; Bassuk, Alexander G.

    2011-01-01

    Epilepsy is heritable, yet few causative gene mutations have been identified, and thus far no human epilepsy gene mutations have been found to produce seizures in invertebrates. Here we show that mutations in prickle genes are associated with seizures in humans, mice, and flies. We identified human epilepsy patients with heterozygous mutations in either PRICKLE1 or PRICKLE2. In overexpression assays in zebrafish, prickle mutations resulted in aberrant prickle function. A seizure phenotype was present in the Prickle1-null mutant mouse, two Prickle1 point mutant (missense and nonsense) mice, and a Prickle2-null mutant mouse. Drosophila with prickle mutations displayed seizures that were responsive to anti-epileptic medication, and homozygous mutant embryos showed neuronal defects. These results suggest that prickle mutations have caused seizures throughout evolution. PMID:21276947

  11. The Drosophila mitochondrial translation elongation factor G1 contains a nuclear localization signal and inhibits growth and DPP signaling.

    PubMed

    Trivigno, Catherine; Haerry, Theodor E

    2011-02-25

    Mutations in the human mitochondrial elongation factor G1 (EF-G1) are recessive lethal and cause death shortly after birth. We have isolated mutations in iconoclast (ico), which encodes the highly conserved Drosophila orthologue of EF-G1. We find that EF-G1 is essential during fly development, but its function is not required in every tissue. In contrast to null mutations, missense mutations exhibit stronger, possibly neomorphic phenotypes that lead to premature death during embryogenesis. Our experiments show that EF-G1 contains a secondary C-terminal nuclear localization signal. Expression of missense mutant forms of EF-G1 can accumulate in the nucleus and cause growth and patterning defects and animal lethality. We find that transgenes that encode mutant human EF-G1 proteins can rescue ico mutants, indicating that the underlying problem of the human disease is not just the loss of enzymatic activity. Our results are consistent with a model where EF-G1 acts as a retrograde signal from mitochondria to the nucleus to slow down cell proliferation if mitochondrial energy output is low.

  12. The Drosophila Mitochondrial Translation Elongation Factor G1 Contains a Nuclear Localization Signal and Inhibits Growth and DPP Signaling

    PubMed Central

    Trivigno, Catherine; Haerry, Theodor E.

    2011-01-01

    Mutations in the human mitochondrial elongation factor G1 (EF-G1) are recessive lethal and cause death shortly after birth. We have isolated mutations in iconoclast (ico), which encodes the highly conserved Drosophila orthologue of EF-G1. We find that EF-G1 is essential during fly development, but its function is not required in every tissue. In contrast to null mutations, missense mutations exhibit stronger, possibly neomorphic phenotypes that lead to premature death during embryogenesis. Our experiments show that EF-G1 contains a secondary C-terminal nuclear localization signal. Expression of missense mutant forms of EF-G1 can accumulate in the nucleus and cause growth and patterning defects and animal lethality. We find that transgenes that encode mutant human EF-G1 proteins can rescue ico mutants, indicating that the underlying problem of the human disease is not just the loss of enzymatic activity. Our results are consistent with a model where EF-G1 acts as a retrograde signal from mitochondria to the nucleus to slow down cell proliferation if mitochondrial energy output is low. PMID:21364917

  13. A missense mutation in ALDH18A1, encoding Delta1-pyrroline-5-carboxylate synthase (P5CS), causes an autosomal recessive neurocutaneous syndrome.

    PubMed

    Bicknell, Louise S; Pitt, James; Aftimos, Salim; Ramadas, Ram; Maw, Marion A; Robertson, Stephen P

    2008-10-01

    There are several rare syndromes combining wrinkled, redundant skin and neurological abnormalities. Although phenotypic overlap between conditions has suggested that some might be allelic to one another, the aetiology for many of them remains unknown. A consanguineous New Zealand Maori family has been characterised that segregates an autosomal recessive connective tissue disorder (joint dislocations, lax skin) associated with neurological abnormalities (severe global developmental delay, choreoathetosis) without metabolic abnormalities in four affected children. A genome-screen performed under a hypothesis of homozygosity by descent for an ancestral mutation, identified a locus at 10q23 (Z = 3.63). One gene within the candidate interval, ALDH18A1, encoding Delta1-pyrroline-5-carboxylate synthase (P5CS), was considered a plausible disease gene since a missense mutation had previously been shown to cause progressive neurodegeneration, cataracts, skin laxity, joint dislocations and metabolic derangement in a consanguineous Algerian family. A missense mutation, 2350C>T, was identified in ALDH18A1, which predicts the substitution H784Y. H784 is invariant across all phyla and lies within a previously unrecognised, conserved C-terminal motif in P5CS. In an in vivo assay of flux through this metabolic pathway using dermal fibroblasts obtained from an affected individual, proline and ornithine biosynthetic activity of P5CS was not affected by the H784Y substitution. These data suggest that P5CS may possess additional uncharacterised functions that affect connective tissue and central nervous system function.

  14. A missense mutation in the CRBN gene that segregates with intellectual disability and self-mutilating behaviour in a consanguineous Saudi family.

    PubMed

    Sheereen, Atia; Alaamery, Manal; Bawazeer, Shahad; Al Yafee, Yusra; Massadeh, Salam; Eyaid, Wafaa

    2017-04-01

    Autosomal-recessive non-syndromic intellectual disability (ARNS-ID) is an aetiologically heterogeneous disorder. Although little is known about the function of human cereblon (CRBN), its relationship to mild cognitive deficits suggests that it is involved in the basic processes of human memory and learning. We aim to identify the genetic cause of intellectual disability and self-mutilation in a consanguineous Saudi family with five affected members. Clinical whole-exome sequencing was performed on the proband patient, and Sanger sequencing was done to validate and confirm segregation in other family members. A missense variant (c. 1171T>C) in the CRBN gene was identified in five individuals with severe intellectual disability (ID) in a consanguineous Saudi family. The homozygous variant was co-segregating in the family with the phenotype of severe ID, seizures and self-mutilating behaviour. The missense mutation (p.C391R) reported here results in the replacement of a conserved cysteine residue by an arginine in the CULT (cereblon domain of unknown activity, binding cellular ligands and thalidomide) domain of CRBN, which contains a zinc-binding site. These findings thus contribute to a growing list of ID disorders caused by CRBN mutations, broaden the spectrum of phenotypes attributable to ARNS-ID and provide new insight into genotype-phenotype correlations between CRBN mutations and the aetiology of ARNS-ID. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/.

  15. Mutations in DDX3X Are a Common Cause of Unexplained Intellectual Disability with Gender-Specific Effects on Wnt Signaling.

    PubMed

    Snijders Blok, Lot; Madsen, Erik; Juusola, Jane; Gilissen, Christian; Baralle, Diana; Reijnders, Margot R F; Venselaar, Hanka; Helsmoortel, Céline; Cho, Megan T; Hoischen, Alexander; Vissers, Lisenka E L M; Koemans, Tom S; Wissink-Lindhout, Willemijn; Eichler, Evan E; Romano, Corrado; Van Esch, Hilde; Stumpel, Connie; Vreeburg, Maaike; Smeets, Eric; Oberndorff, Karin; van Bon, Bregje W M; Shaw, Marie; Gecz, Jozef; Haan, Eric; Bienek, Melanie; Jensen, Corinna; Loeys, Bart L; Van Dijck, Anke; Innes, A Micheil; Racher, Hilary; Vermeer, Sascha; Di Donato, Nataliya; Rump, Andreas; Tatton-Brown, Katrina; Parker, Michael J; Henderson, Alex; Lynch, Sally A; Fryer, Alan; Ross, Alison; Vasudevan, Pradeep; Kini, Usha; Newbury-Ecob, Ruth; Chandler, Kate; Male, Alison; Dijkstra, Sybe; Schieving, Jolanda; Giltay, Jacques; van Gassen, Koen L I; Schuurs-Hoeijmakers, Janneke; Tan, Perciliz L; Pediaditakis, Igor; Haas, Stefan A; Retterer, Kyle; Reed, Patrick; Monaghan, Kristin G; Haverfield, Eden; Natowicz, Marvin; Myers, Angela; Kruer, Michael C; Stein, Quinn; Strauss, Kevin A; Brigatti, Karlla W; Keating, Katherine; Burton, Barbara K; Kim, Katherine H; Charrow, Joel; Norman, Jennifer; Foster-Barber, Audrey; Kline, Antonie D; Kimball, Amy; Zackai, Elaine; Harr, Margaret; Fox, Joyce; McLaughlin, Julie; Lindstrom, Kristin; Haude, Katrina M; van Roozendaal, Kees; Brunner, Han; Chung, Wendy K; Kooy, R Frank; Pfundt, Rolph; Kalscheuer, Vera; Mehta, Sarju G; Katsanis, Nicholas; Kleefstra, Tjitske

    2015-08-06

    Intellectual disability (ID) affects approximately 1%-3% of humans with a gender bias toward males. Previous studies have identified mutations in more than 100 genes on the X chromosome in males with ID, but there is less evidence for de novo mutations on the X chromosome causing ID in females. In this study we present 35 unique deleterious de novo mutations in DDX3X identified by whole exome sequencing in 38 females with ID and various other features including hypotonia, movement disorders, behavior problems, corpus callosum hypoplasia, and epilepsy. Based on our findings, mutations in DDX3X are one of the more common causes of ID, accounting for 1%-3% of unexplained ID in females. Although no de novo DDX3X mutations were identified in males, we present three families with segregating missense mutations in DDX3X, suggestive of an X-linked recessive inheritance pattern. In these families, all males with the DDX3X variant had ID, whereas carrier females were unaffected. To explore the pathogenic mechanisms accounting for the differences in disease transmission and phenotype between affected females and affected males with DDX3X missense variants, we used canonical Wnt defects in zebrafish as a surrogate measure of DDX3X function in vivo. We demonstrate a consistent loss-of-function effect of all tested de novo mutations on the Wnt pathway, and we further show a differential effect by gender. The differential activity possibly reflects a dose-dependent effect of DDX3X expression in the context of functional mosaic females versus one-copy males, which reflects the complex biological nature of DDX3X mutations. Copyright © 2015 The American Society of Human Genetics. Published by Elsevier Inc. All rights reserved.

  16. Genetic analysis of an Indian family with members affected with Waardenburg syndrome and Duchenne muscular dystrophy

    PubMed Central

    Kapoor, Saketh; Bindu, Parayil Sankaran; Taly, Arun B.; Sinha, Sanjib; Gayathri, Narayanappa; Rani, S. Vasantha; Chandak, Giriraj Ratan

    2012-01-01

    Purpose Waardenburg syndrome (WS) is characterized by sensorineural hearing loss and pigmentation defects of the eye, skin, and hair. It is caused by mutations in one of the following genes: PAX3 (paired box 3), MITF (microphthalmia-associated transcription factor), EDNRB (endothelin receptor type B), EDN3 (endothelin 3), SNAI2 (snail homolog 2, Drosophila) and SOX10 (SRY-box containing gene 10). Duchenne muscular dystrophy (DMD) is an X-linked recessive disorder caused by mutations in the DMD gene. The purpose of this study was to identify the genetic causes of WS and DMD in an Indian family with two patients: one affected with WS and DMD, and another one affected with only WS. Methods Blood samples were collected from individuals for genomic DNA isolation. To determine the linkage of this family to the eight known WS loci, microsatellite markers were selected from the candidate regions and used to genotype the family. Exon-specific intronic primers for EDN3 were used to amplify and sequence DNA samples from affected individuals to detect mutations. A mutation in DMD was identified by multiplex PCR and multiplex ligation-dependent probe amplification method using exon-specific probes. Results Pedigree analysis suggested segregation of WS as an autosomal recessive trait in the family. Haplotype analysis suggested linkage of the family to the WS4B (EDN3) locus. DNA sequencing identified a novel missense mutation p.T98M in EDN3. A deletion mutation was identified in DMD. Conclusions This study reports a novel missense mutation in EDN3 and a deletion mutation in DMD in the same Indian family. The present study will be helpful in genetic diagnosis of this family and increases the mutation spectrum of EDN3. PMID:22876130

  17. [Maple syrup urine disease caused by two novel BCKDHB gene mutations in a Chinese neonate].

    PubMed

    Shen, Yunlin; Gong, Xiaohui; Yan, Jingbin; Qin, Li; Qiu, Gang

    2015-01-01

    Maple syrup urine disease (MSUD) is an autosomal recessive metabolic disorder that is caused by mutations in the subunits of the branched chain α-ketoacid dehydrogenase (BCKD) complex. This report presents a Han ethnic Chinese newborn infant with the severe classic form of MSUD caused by two novel missense mutations in the BCKDHB gene. The clinical and biochemical data of a Chinese neonate with classic form of MSUD were analyzed, and the DNA sequences of BCKDHA, BCKDHB, DBT and DLD genes were investigated for mutations. Then the DNA samples of the proband and the patient's parents were tested with Sanger sequencing. The manifestations of this patient were poor feeding, low reaction, and compensatory metabolic acidosis. Tandem mass spectrometry (MS/MS) showed that leucine and valine were significantly higher than normal. Urine gas chromatography-mass spectrometry (GC/MS) showed significant abnormality. Brain CT scan showed white matter changes. We identified two previously unreported mutations in the BCKDHB gene, p.Leu194Phe (c.580 C>T) and p.Ser199Arg (c.597 T>G) in exon 5. Segregation analysis showed that the novel mutation p.Ser199Arg was maternally inherited and the novel mutation p.Leu194Phe was paternally inherited. Neither mutation was found in the 186 alleles of 93 normal Han ethnic Chinese individuals. In human BCKDHB protein crystal structure, the 194th and 199th amino acids changes are likely to affect the spatial structure of the protein. The 194th and 199th amino acid of human BCKDHB protein was conserved among species. PolyPhen protein function prediction indicated that the 194th and 199th amino acid changes were likely to affect protein function. Two novel missense mutations were identified in the BCKDHB gene in the Chinese patient with MSUD.

  18. Genetic analysis of an Indian family with members affected with Waardenburg syndrome and Duchenne muscular dystrophy.

    PubMed

    Kapoor, Saketh; Bindu, Parayil Sankaran; Taly, Arun B; Sinha, Sanjib; Gayathri, Narayanappa; Rani, S Vasantha; Chandak, Giriraj Ratan; Kumar, Arun

    2012-01-01

    Waardenburg syndrome (WS) is characterized by sensorineural hearing loss and pigmentation defects of the eye, skin, and hair. It is caused by mutations in one of the following genes: PAX3 (paired box 3), MITF (microphthalmia-associated transcription factor), EDNRB (endothelin receptor type B), EDN3 (endothelin 3), SNAI2 (snail homolog 2, Drosophila) and SOX10 (SRY-box containing gene 10). Duchenne muscular dystrophy (DMD) is an X-linked recessive disorder caused by mutations in the DMD gene. The purpose of this study was to identify the genetic causes of WS and DMD in an Indian family with two patients: one affected with WS and DMD, and another one affected with only WS. Blood samples were collected from individuals for genomic DNA isolation. To determine the linkage of this family to the eight known WS loci, microsatellite markers were selected from the candidate regions and used to genotype the family. Exon-specific intronic primers for EDN3 were used to amplify and sequence DNA samples from affected individuals to detect mutations. A mutation in DMD was identified by multiplex PCR and multiplex ligation-dependent probe amplification method using exon-specific probes. Pedigree analysis suggested segregation of WS as an autosomal recessive trait in the family. Haplotype analysis suggested linkage of the family to the WS4B (EDN3) locus. DNA sequencing identified a novel missense mutation p.T98M in EDN3. A deletion mutation was identified in DMD. This study reports a novel missense mutation in EDN3 and a deletion mutation in DMD in the same Indian family. The present study will be helpful in genetic diagnosis of this family and increases the mutation spectrum of EDN3.

  19. Identification and Functional Characterisation of Novel Glucokinase Mutations Causing Maturity-Onset Diabetes of the Young in Slovakia

    PubMed Central

    Valentínová, Lucia; Beer, Nicola L.; Staník, Juraj; Tribble, Nicholas D.; van de Bunt, Martijn; Hučková, Miroslava; Barrett, Amy; Klimeš, Iwar; Gašperíková, Daniela; Gloyn, Anna L.

    2012-01-01

    Heterozygous glucokinase (GCK) mutations cause a subtype of maturity-onset diabetes of the young (GCK-MODY). Over 600 GCK mutations have been reported of which ∼65% are missense. In many cases co-segregation has not been established and despite the importance of functional studies in ascribing pathogenicity for missense variants these have only been performed for <10% of mutations. The aim of this study was to determine the minimum prevalence of GCK-MODY amongst diabetic subjects in Slovakia by sequencing GCK in 100 Slovakian probands with a phenotype consistent with GCK-MODY and to explore the pathogenicity of identified variants through family and functional studies. Twenty-two mutations were identified in 36 families (17 missense) of which 7 (I110N, V200A, N204D, G258R, F419S, c.580-2A>C, c.1113–1114delGC) were novel. Parental DNA was available for 22 probands (covering 14/22 mutations) and co-segregation established in all cases. Bioinformatic analysis predicted all missense mutations to be damaging. Nine (I110N, V200A, N204D, G223S, G258R, F419S, V244G, L315H, I436N) mutations were functionally evaluated. Basic kinetic analysis explained pathogenicity for 7 mutants which showed reduced glucokinase activity with relative activity indices (RAI) between 0.6 to <0.001 compared to wild-type GCK (1.0). For the remaining 2 mutants additional molecular mechanisms were investigated. Differences in glucokinase regulatory protein (GKRP) –mediated-inhibition of GCK were observed for both L315H & I436N when compared to wild type (IC50 14.6±0.1 mM & 20.3±1.6 mM vs.13.3±0.1 mM respectively [p<0.03]). Protein instability as assessed by thermal lability studies demonstrated that both L315H and I436N show marked thermal instability compared to wild-type GCK (RAI at 55°C 8.8±0.8% & 3.1±0.4% vs. 42.5±3.9% respectively [p<0.001]). The minimum prevalence of GCK-MODY amongst Slovakian patients with diabetes was 0.03%. In conclusion, we have identified 22 GCK mutations in 36 Slovakian probands and demonstrate that combining family, bioinformatic and functional studies can aid the interpretation of variants identified by molecular diagnostic screening. PMID:22493702

  20. Identification and characterization of a novel DGAT1 missense mutation associated with congenital diarrhea[S

    PubMed Central

    Gluchowski, Nina L.; Chitraju, Chandramohan; Picoraro, Joseph A.; Mejhert, Niklas; Pinto, Shirly; Xin, Winnie; Kamin, Daniel S.; Winter, Harland S.; Chung, Wendy K.; Walther, Tobias C.; Farese, Robert V.

    2017-01-01

    Acyl-CoA:diacylglycerol acyltransferase (DGAT)1 and DGAT2 catalyze triglyceride (TG) biosynthesis in humans. Biallelic loss-of-function mutations in human DGAT1 result in severe congenital diarrhea and protein-losing enteropathy. Additionally, pharmacologic inhibition of DGAT1 led to dose-related diarrhea in human clinical trials. Here we identify a previously unknown DGAT1 mutation in identical twins of South Asian descent. These male patients developed watery diarrhea shortly after birth, with protein-losing enteropathy and failure to thrive. Exome sequencing revealed a homozygous recessive mutation in DGAT1, c.314T>C, p.L105P. We show here that the p.L105P DGAT1 enzyme produced from the mutant allele is less abundant, resulting in partial loss of TG synthesis activity and decreased formation of lipid droplets in patient-derived primary dermal fibroblasts. Thus, in contrast with complete loss-of-function alleles of DGAT1, the p.L105P missense allele partially reduces TG synthesis activity and causes a less severe clinical phenotype. Our findings add to the growing recognition of DGAT1 deficiency as a cause of congenital diarrhea with protein-losing enteropathy and indicate that DGAT1 mutations result in a spectrum of diseases. PMID:28373485

  1. Novel mutations in LRP6 highlight the role of WNT signaling in tooth agenesis

    PubMed Central

    Ludwig, Kerstin U.; Sullivan, Robert; van Rooij, Iris A.L.M.; Thonissen, Michelle; Swinnen, Steven; Phan, Milien; Conte, Federica; Ishorst, Nina; Gilissen, Christian; RoaFuentes, Laury; van de Vorst, Maartje; Henkes, Arjen; Steehouwer, Marloes; van Beusekom, Ellen; Bloemen, Marjon; Vankeirsbilck, Bruno; Bergé, Stefaan; Hens, Greet; Schoenaers, Joseph; Poorten, Vincent Vander; Roosenboom, Jasmien; Verdonck, An; Devriendt, Koen; Roeleveldt, Nel; Jhangiani, Shalini N.; Vissers, Lisenka E.L.M.; Lupski, James R.; de Ligt, Joep; Von den Hoff, Johannes W.; Pfundt, Rolph; Brunner, Han G.; Zhou, Huiqing; Dixon, Jill; Mangold, Elisabeth; van Bokhoven, Hans; Dixon, Michael J.; Kleefstra, Tjitske

    2016-01-01

    Purpose Here we aimed to identify a novel genetic cause of tooth agenesis (TA) and/or orofacial clefting (OFC) by combining whole exome sequencing (WES) and targeted re-sequencing in a large cohort of TA and OFC patients. Methods WES was performed in two unrelated patients, one with severe TA and OFC and another with severe TA only. After identifying deleterious mutations in a gene encoding the low density lipoprotein receptor-related protein 6 (LRP6), all its exons were re-sequenced with molecular inversion probes, in 67 patients with TA, 1,072 patients with OFC and in 706 controls. Results We identified a frameshift (c.4594delG, p.Cys1532fs) and a canonical splice site mutation (c.3398-2A>C, p.?) in LRP6 respectively in the patient with TA and OFC, and in the patient with severe TA only. The targeted re-sequencing showed significant enrichment of unique LRP6 variants in TA patients, but not in nonsyndromic OFC. From the 5 variants in patients with TA, 2 affect the canonical splice site and 3 were missense variants; all variants segregated with the dominant phenotype and in 1 case the missense mutation occurred de novo. Conclusion Mutations in LRP6 cause tooth agenesis in man. PMID:26963285

  2. A novel missense-mutation-related feature extraction scheme for 'driver' mutation identification.

    PubMed

    Tan, Hua; Bao, Jiguang; Zhou, Xiaobo

    2012-11-15

    It becomes widely accepted that human cancer is a disease involving dynamic changes in the genome and that the missense mutations constitute the bulk of human genetic variations. A multitude of computational algorithms, especially the machine learning-based ones, has consequently been proposed to distinguish missense changes that contribute to the cancer progression ('driver' mutation) from those that do not ('passenger' mutation). However, the existing methods have multifaceted shortcomings, in the sense that they either adopt incomplete feature space or depend on protein structural databases which are usually far from integrated. In this article, we investigated multiple aspects of a missense mutation and identified a novel feature space that well distinguishes cancer-associated driver mutations from passenger ones. An index (DX score) was proposed to evaluate the discriminating capability of each feature, and a subset of these features which ranks top was selected to build the SVM classifier. Cross-validation showed that the classifier trained on our selected features significantly outperforms the existing ones both in precision and robustness. We applied our method to several datasets of missense mutations culled from published database and literature and obtained more reasonable results than previous studies. The software is available online at http://www.methodisthealth.com/software and https://sites.google.com/site/drivermutationidentification/. xzhou@tmhs.org. Supplementary data are available at Bioinformatics online.

  3. Diffuse reticuloendothelial system involvement in type IV glycogen storage disease with a novel GBE1 mutation: a case report and review.

    PubMed

    Magoulas, Pilar L; El-Hattab, Ayman W; Roy, Angshumoy; Bali, Deeksha S; Finegold, Milton J; Craigen, William J

    2012-06-01

    Glycogen storage disease type IV is a rare autosomal recessive disorder of glycogen metabolism caused by mutations in the GBE1 gene that encodes the 1,4-alpha-glucan-branching enzyme 1. Its clinical presentation is variable, with the most common form presenting in early childhood with primary hepatic involvement. Histologic manifestations in glycogen storage disease type IV typically consist of intracytoplasmic non-membrane-bound inclusions containing abnormally branched glycogen (polyglucosan bodies) within hepatocytes and myocytes. We report a female infant with classic hepatic form of glycogen storage disease type IV who demonstrated diffuse reticuloendothelial system involvement with the spleen, bone marrow, and lymph nodes infiltrated by foamy histiocytes with intracytoplasmic polyglucosan deposits. Sequence analysis of the GBE1 gene revealed compound heterozygosity for a previously described frameshift mutation (c.1239delT) and a novel missense mutation (c.1279G>A) that is predicted to alter a conserved glycine residue. GBE enzyme analysis revealed no detectable activity. A review of the literature for glycogen storage disease type IV patients with characterized molecular defects and deficient enzyme activity reveals most GBE1 mutations to be missense mutations clustering in the catalytic enzyme domain. Individuals with the classic hepatic form of glycogen storage disease type IV tend to be compound heterozygotes for null and missense mutations. Although the extensive reticuloendothelial system involvement that was observed in our patient is not typical of glycogen storage disease type IV, it may be associated with severe enzymatic deficiency and a poor outcome. Copyright © 2012 Elsevier Inc. All rights reserved.

  4. Novel homozygous missense mutation in ALDH7A1 causes neonatal pyridoxine dependent epilepsy.

    PubMed

    Coci, Emanuele G; Codutti, Luca; Fink, Christian; Bartsch, Sophie; Grüning, Gunnar; Lücke, Thomas; Kurth, Ingo; Riedel, Joachim

    2017-04-01

    Pyridoxine dependent epilepsy (PDE) (OMIM#266100) is a neonatal form of epilepsy, caused by dysfunction of the enzyme α-aminoadipic semialdehyde dehydrogenase (ALDH7A1 or Antiquitin). This enzyme converts α-aminoadipic semialdehyde (α-AASA) into α-aminoadipate (AAA), a critical step in the lysine metabolism of the brain. ALDH7A1 dysfunction causes an accumulation of α-AASA and δ 1 -piperideine-6-carboxylic acid (P6C), which are in equilibrium with each other. P6C binds and inactivates pyridoxal 5'-phosphate (PLP), the active form of pyridoxine. Individuals affected by ALDH7A1 deficiency show pre-natal and post-natal seizures, which respond to oral pyridoxine but not to other pediatric anti-epileptic drugs. We discovered a novel missense mutation (c.566G > A, p.Gly189Glu) in homozygous state residing in the NAD+ binding domain coding region of exon 6 and affecting an highly conserved amino acid residue. The seizures stopped under post-natal pyridoxine therapy, nevertheless a longer follow-up is needed to evaluate the intellectual development of the child, who is additionally treated with oral l-arginine since the 13th month of life. Developmental delay with or without structural cortex abnormalities were reported in several patients. A brain MRI scan revealed hyperintense white matter in the right cerebellum compatible with cerebellar gliosis. Taken together, our studies enlarge the group of missense pathogenic mutations of ALDH7A1 gene and reveal a novel cerebellar finding within the PDE patients cohort. Copyright © 2016 Elsevier Ltd. All rights reserved.

  5. A novel missense mutation in GRIN2A causes a nonepileptic neurodevelopmental disorder.

    PubMed

    Fernández-Marmiesse, Ana; Kusumoto, Hirofumi; Rekarte, Saray; Roca, Iria; Zhang, Jin; Myers, Scott J; Traynelis, Stephen F; Couce, Mª Luz; Gutierrez-Solana, Luis; Yuan, Hongjie

    2018-04-11

    Mutations in the GRIN2A gene, which encodes the GluN2A (glutamate [NMDA] receptor subunit epsilon-1) subunit of the N-methyl-d-aspartate receptor, have been identified in patients with epilepsy-aphasia spectrum disorders, idiopathic focal epilepsies with centrotemporal spikes, and epileptic encephalopathies with severe developmental delay. However, thus far, mutations in this gene have not been associated with a nonepileptic neurodevelopmental disorder with dystonia. The objective of this study was to identify the disease-causing gene in 2 siblings with neurodevelopmental and movement disorders with no epileptiform abnormalities. The study method was targeted next-generation sequencing panel for neuropediatric disorders and subsequent electrophysiological studies. The 2 siblings carry a novel missense mutation in the GRIN2A gene (p.Ala643Asp) that was not detected in genomic DNA isolated from blood cells of their parents, suggesting that the mutation is the consequence of germinal mosaicism in 1 progenitor. In functional studies, the GluN2A-A643D mutation increased the potency of the agonists L-glutamate and glycine and decreased the potency of endogenous negative modulators, including protons, magnesium and zinc but reduced agonist-evoked peak current response in mammalian cells, suggesting that this mutation has a mixed effect on N-methyl-d-aspartate receptor function. De novo GRIN2A mutations can give rise to a neurodevelopmental and movement disorder without epilepsy. © 2018 International Parkinson and Movement Disorder Society. © 2018 International Parkinson and Movement Disorder Society.

  6. A novel mutation R190H in the AT-hook 1 domain of MeCP2 identified in an atypical Rett syndrome.

    PubMed

    Zhou, Xiao; Liao, Yuangao; Xu, Miaojing; Ji, Zhong; Xu, Yunqi; Zhou, Liang; Wei, Xiaoming; Hu, Peiqian; Han, Peng; Yang, Fanghan; Pan, Suyue; Hu, Yafang

    2017-10-10

    Mutations in Methyl-CpG binding protein 2 ( MECP2 ) have been identified as the disease-causing mutations in Rett Syndrome (RTT). However, no mutation in the AT-hook 1 domain of MECP2 has been reported in RTT yet. The function of AT-hook 1 domain of MECP2 has not been described either. The clinical and radiological features of a girl with progressive hyperactivity and loss of acquired linguistic and motor functions were presented. Next generation sequencing was used to screen the causative gene. Effect of the mutant protein on histone 3 methylation was assessed in vitro experiment. The patient was diagnosed with an atypical RTT at the age of nine. Magnetic resonance imaging revealed a loss of whole-brain volume and abnormal myelination. Genetic analysis identified a de novo novel missense mutation of MECP2 (NM_004992, c.570G->A, p.Arg190His). This mutation is located in the AT-hook 1 domain of MeCP2 protein. Overexpression of the mutant MeCP2 in cultured neuroblastoma cells SH-SY5Y revealed increased level of dimethylated histone 3 lysine 9, a transcriptional repressor marker. A novel missense mutation in AT-hook 1 domain of MeCP2 was identified in a patient with atypical RTT. Clinical data and in vitro experiment result imply that R190H mutation in AT-hook1 may cause dysfunction of MeCP2 and be a pathogenic variant.

  7. A novel missense mutation in the gene EDARADD associated with an unusual phenotype of hypohidrotic ectodermal dysplasia.

    PubMed

    Wohlfart, Sigrun; Söder, Stephan; Smahi, Asma; Schneider, Holm

    2016-01-01

    Hypohidrotic ectodermal dysplasia (HED) is a rare disorder characterized by deficient development of structures derived from the ectoderm including hair, nails, eccrine glands, and teeth. HED forms that are caused by mutations in the genes EDA, EDAR, or EDARADD may show almost identical phenotypes, explained by a common signaling pathway. Proper interaction of the proteins encoded by these three genes is important for the activation of the NF-κB signaling pathway and subsequent transcription of the target genes. Mutations in the gene EDARADD are most rarely implicated in HED. Here we describe a novel missense mutation, c.367G>A (p.Asp123Asn), in this gene which did not appear to influence the interaction between EDAR and EDARADD proteins, but led to an impaired ability to activate NF-κB signaling. Female members of the affected family showed either unilateral or bilateral amazia. In addition, an affected girl developed bilateral ovarian teratomas, possibly associated with her genetic condition. © 2015 Wiley Periodicals, Inc.

  8. Characterization of a germline mosaicism in families with Lowe syndrome, and identification of seven novel mutations in the OCRL1 gene.

    PubMed Central

    Satre, V; Monnier, N; Berthoin, F; Ayuso, C; Joannard, A; Jouk, P S; Lopez-Pajares, I; Megabarne, A; Philippe, H J; Plauchu, H; Torres, M L; Lunardi, J

    1999-01-01

    The oculocerebrorenal syndrome of Lowe (OCRL) is an X-linked disorder characterized by major abnormalities of eyes, nervous system, and kidneys. Mutations in the OCRL1 gene have been associated with the disease. OCRL1 encodes a phosphatidylinositol 4, 5-biphosphate (PtdIns[4,5]P2) 5-phosphatase. We have examined the OCRL1 gene in eight unrelated patients with OCRL and have found seven new mutations and one recurrent in-frame deletion. Among the new mutations, two nonsense mutations (R317X and E558X) and three other frameshift mutations caused premature termination of the protein. A missense mutation, R483G, was located in the highly conserved PtdIns(4,5)P2 5-phosphatase domain. Finally, one frameshift mutation, 2799delC, modifies the C-terminal part of OCRL1, with an extension of six amino acids. Altogether, 70% of missense mutations are located in exon 15, and 52% of all mutations cluster in exons 11-15. We also identified two new microsatellite markers for the OCRL1 locus, and we detected a germline mosaicism in one family. This observation has direct implications for genetic counseling of Lowe syndrome families. PMID:10364518

  9. Parkinson disease: α-synuclein mutational screening and new clinical insight into the p.E46K mutation.

    PubMed

    Pimentel, Márcia M G; Rodrigues, Fabíola C; Leite, Marco Antônio A; Campos Júnior, Mário; Rosso, Ana Lucia; Nicaretta, Denise H; Pereira, João S; Silva, Delson José; Della Coletta, Marcus V; Vasconcellos, Luiz Felipe R; Abreu, Gabriella M; Dos Santos, Jussara M; Santos-Rebouças, Cíntia B

    2015-06-01

    Amongst Parkinson's disease-causing genetic factors, missense mutations and genomic multiplications in the gene encoding α-synuclein are well established causes of the disease, although genetic data in populations with a high degree of admixture, such as the Brazilian one, are still scarce. In this study, we conducted a molecular screening of α-synuclein point mutations and copy number variation in the largest cohort of Brazilian patients with Parkinson's disease (n = 549) and also in twelve Portuguese and one Bolivian immigrants. Genomic DNA was isolated from peripheral blood leukocytes or saliva, and the mutational screening was performed by quantitative and qualitative real-time PCR. The only alteration identified was the p.E46K mutation in a 60-year-old man, born in Bolivia, with a familial history of autosomal dominant Parkinson's disease. This is the second family ever reported, in which this rare pathogenic mutation is segregating. The same mutation was firstly described ten years ago in a Spanish family with a neurodegenerative syndrome combining parkinsonism, dementia and visual hallucinations. The clinical condition of our proband reveals a less aggressive phenotype than previously described and reinforces that marked phenotypic heterogeneity is common among patients with Parkinson's disease, even among those carriers sharing the same mutation. Our findings add new insight into the preexisting information about α-synuclein p.E46K, improving our understanding about the endophenotypes associated to this mutation and corroborate that missense alterations and multiplications in α-synuclein are uncommon among Brazilian patients with Parkinson's disease. Copyright © 2015 Elsevier Ltd. All rights reserved.

  10. [Evaluation of performance of five bioinformatics software for the prediction of missense mutations].

    PubMed

    Chen, Qianting; Dai, Congling; Zhang, Qianjun; Du, Juan; Li, Wen

    2016-10-01

    To study the prediction performance evaluation with five kinds of bioinformatics software (SIFT, PolyPhen2, MutationTaster, Provean, MutationAssessor). From own database for genetic mutations collected over the past five years, Chinese literature database, Human Gene Mutation Database, and dbSNP, 121 missense mutations confirmed by functional studies, and 121 missense mutations suspected to be pathogenic by pedigree analysis were used as positive gold standard, while 242 missense mutations with minor allele frequency (MAF)>5% in dominant hereditary diseases were used as negative gold standard. The selected mutations were predicted with the five software. Based on the results, the performance of the five software was evaluated for their sensitivity, specificity, positive predict value, false positive rate, negative predict value, false negative rate, false discovery rate, accuracy, and receiver operating characteristic curve (ROC). In terms of sensitivity, negative predictive value and false negative rate, the rank was MutationTaster, PolyPhen2, Provean, SIFT, and MutationAssessor. For specificity and false positive rate, the rank was MutationTaster, Provean, MutationAssessor, SIFT, and PolyPhen2. For positive predict value and false discovery rate, the rank was MutationTaster, Provean, MutationAssessor, PolyPhen2, and SIFT. For area under the ROC curve (AUC) and accuracy, the rank was MutationTaster, Provean, PolyPhen2, MutationAssessor, and SIFT. The prediction performance of software may be different when using different parameters. Among the five software, MutationTaster has the best prediction performance.

  11. Gene structure and mutant alleles of PCDH15: nonsyndromic deafness DFNB23 and type 1 Usher syndrome.

    PubMed

    Ahmed, Zubair M; Riazuddin, Saima; Aye, Sandar; Ali, Rana A; Venselaar, Hanka; Anwar, Saima; Belyantseva, Polina P; Qasim, Muhammad; Riazuddin, Sheikh; Friedman, Thomas B

    2008-10-01

    Mutations of PCDH15, encoding protocadherin 15, can cause either combined hearing and vision impairment (type 1 Usher syndrome; USH1F) or nonsyndromic deafness (DFNB23). Human PCDH15 is reported to be composed of 35 exons and encodes a variety of isoforms with 3-11 ectodomains (ECs), a transmembrane domain and a carboxy-terminal cytoplasmic domain (CD). Building on these observations, we describe an updated gene structure that has four additional exons of PCDH15 and isoforms that can be subdivided into four classes. Human PCDH15 encodes three alternative, evolutionarily conserved unique cytoplasmic domains (CD1, CD2 or CD3). Families ascertained on the basis of prelingual hearing loss were screened for linkage of this phenotype to markers for PCDH15 on chromosome 10q21.1. In seven of twelve families segregating USH1, we identified homozygous mutant alleles (one missense, one splice site, three nonsense and two deletion mutations) of which six are novel. One family was segregating nonsyndromic deafness DFNB23 due to a homozygous missense mutation. To date, in our cohort of 557 Pakistani families, we have found 11 different PCDH15 mutations that account for deafness in 13 families. Molecular modeling provided mechanistic insight into the phenotypic variation in severity of the PCDH15 missense mutations. We did not find pathogenic mutations in five of the twelve USH1 families linked to markers for USH1F, which suggest either the presence of mutations of yet additional undiscovered exons of PCDH15, mutations in the introns or regulatory elements of PCDH15, or an additional locus for type I USH at chromosome 10q21.1.

  12. Gene structure and mutant alleles of PCDH15: nonsyndromic deafness DFNB23 and type 1 Usher syndrome

    PubMed Central

    Ahmed, Zubair M.; Riazuddin, Saima; Aye, Sandar; Ali, Rana A.; Venselaar, Hanka; Anwar, Saima; Belyantseva, Polina P.; Qasim, Muhammad; Riazuddin, Sheikh; Friedman, Thomas B.

    2009-01-01

    Mutations of PCDH15, encoding protocadherin 15, can cause either combined hearing and vision impairment (type 1 Usher syndrome; USH1F) or nonsyndromic deafness (DFNB23). Human PCDH15 is reported to be comprised of 35 exons and encodes a variety of isoforms with 3 to 11 ectodomains (EC), a transmembrane domain and a carboxy-terminal cytoplasmic domain (CD). Building on these observations we describe an updated gene structure that has four additional exons of PCDH15 and isoforms that can be subdivided into four classes. Human PCDH15 encodes three alternative, evolutionarily conserved unique cytoplasmic domains (CD1, CD2 or CD3). Families ascertained on the basis of prelingual hearing loss were screened for linkage of this phenotype to markers for PCDH15 on chromosome 10q21.1. In seven of twelve families segregating USH1 we identified homozygous mutant alleles (1 missense, 1 splice site, 3 nonsense and 2 deletion mutations) of which six are novel. One family was segregating nonsyndromic deafness DFNB23 due to a homozygous missense mutation. To date in our cohort of 557 Pakistani families, we have found 11 different PCDH15 mutations that account for deafness in 13 families. Molecular modeling provided mechanistic insight into the phenotypic variation in severity of the PCDH15 missense mutations. We did not find pathogenic mutations in five of the twelve USH1 families linked to markers for USH1F, which suggest either the presence of mutations of yet additional undiscovered exons of PCDH15, mutations in the introns or regulatory elements of PCDH15, or an additional locus for type I USH at chromosome 10q21.1. PMID:18719945

  13. Exome Sequencing Identifies Mitochondrial Alanyl-tRNA Synthetase Mutations in Infantile Mitochondrial Cardiomyopathy

    PubMed Central

    Götz, Alexandra; Tyynismaa, Henna; Euro, Liliya; Ellonen, Pekka; Hyötyläinen, Tuulia; Ojala, Tiina; Hämäläinen, Riikka H.; Tommiska, Johanna; Raivio, Taneli; Oresic, Matej; Karikoski, Riitta; Tammela, Outi; Simola, Kalle O.J.; Paetau, Anders; Tyni, Tiina; Suomalainen, Anu

    2011-01-01

    Infantile cardiomyopathies are devastating fatal disorders of the neonatal period or the first year of life. Mitochondrial dysfunction is a common cause of this group of diseases, but the underlying gene defects have been characterized in only a minority of cases, because tissue specificity of the manifestation hampers functional cloning and the heterogeneity of causative factors hinders collection of informative family materials. We sequenced the exome of a patient who died at the age of 10 months of hypertrophic mitochondrial cardiomyopathy with combined cardiac respiratory chain complex I and IV deficiency. Rigorous data analysis allowed us to identify a homozygous missense mutation in AARS2, which we showed to encode the mitochondrial alanyl-tRNA synthetase (mtAlaRS). Two siblings from another family, both of whom died perinatally of hypertrophic cardiomyopathy, had the same mutation, compound heterozygous with another missense mutation. Protein structure modeling of mtAlaRS suggested that one of the mutations affected a unique tRNA recognition site in the editing domain, leading to incorrect tRNA aminoacylation, whereas the second mutation severely disturbed the catalytic function, preventing tRNA aminoacylation. We show here that mutations in AARS2 cause perinatal or infantile cardiomyopathy with near-total combined mitochondrial respiratory chain deficiency in the heart. Our results indicate that exome sequencing is a powerful tool for identifying mutations in single patients and allows recognition of the genetic background in single-gene disorders of variable clinical manifestation and tissue-specific disease. Furthermore, we show that mitochondrial disorders extend to prenatal life and are an important cause of early infantile cardiac failure. PMID:21549344

  14. Primary Hyperoxaluria Type 1 with Homozygosity for a Double-mutated AGXT Allele in a 2-year-old Child.

    PubMed

    Krishnamurthy, S; Kartha, G B; Venkateswaran, V S; Prasannakumar, M; Mahadevan, S; Gowda, M; Pelle, A; Giachino, D

    2017-01-01

    Primary hyperoxaluria (PH) Type 1 is a rare, genetic disorder caused by deficiency of the liver enzyme alanine-glyoxylate aminotransferase, which is encoded by AGXT gene. We report a 2-year-old South Indian Tamil child with nephrocalcinosis due to PH Type 1, in whom a homozygous genotype for two missense mutations in the AGXT gene was found: first, a C to G transversion (c. 32C>G) in exon 1 resulting in the amino acid substitution p.Pro11Arg; second, a T to A transversion (c. 167T>A) in exon 2 resulting in p.Ile56Asn. A therapy based on potassium citrate and pyridoxine was started. This is the first report of molecular testing-proven childhood onset-PH Type 1 from South India and is notable for the co-occurrence of two missense mutations in one AGXT allele, which might lead to different and more severe phenotype than each mutation alone. To the best of our knowledge, AGXT allele carrying two already known mutations has not been previously reported.

  15. Primary Hyperoxaluria Type 1 with Homozygosity for a Double-mutated AGXT Allele in a 2-year-old Child

    PubMed Central

    Krishnamurthy, S.; Kartha, G. B.; Venkateswaran, V. S.; Prasannakumar, M.; Mahadevan, S.; Gowda, M.; Pelle, A.; Giachino, D.

    2017-01-01

    Primary hyperoxaluria (PH) Type 1 is a rare, genetic disorder caused by deficiency of the liver enzyme alanine-glyoxylate aminotransferase, which is encoded by AGXT gene. We report a 2-year-old South Indian Tamil child with nephrocalcinosis due to PH Type 1, in whom a homozygous genotype for two missense mutations in the AGXT gene was found: first, a C to G transversion (c. 32C>G) in exon 1 resulting in the amino acid substitution p.Pro11Arg; second, a T to A transversion (c. 167T>A) in exon 2 resulting in p.Ile56Asn. A therapy based on potassium citrate and pyridoxine was started. This is the first report of molecular testing-proven childhood onset-PH Type 1 from South India and is notable for the co-occurrence of two missense mutations in one AGXT allele, which might lead to different and more severe phenotype than each mutation alone. To the best of our knowledge, AGXT allele carrying two already known mutations has not been previously reported. PMID:28904440

  16. Identification and characterisation of mutations associated with von Willebrand disease in a Turkish patient cohort

    PubMed Central

    Hampshire, Daniel J.; Abuzenadah, Adel M.; Cartwright, Ashley; Al-Shammari, Nawal S.; Coyle, Rachael E.; Eckert, Michaela; Al-Buhairan, Ahlam M.; Messenger, Sarah L.; Budde, Ulrich; Gürsel, Türkiz; Ingerslev, Jørgen; Peake, Ian R.; Goodeve, Anne C.

    2014-01-01

    Summary Several cohort studies have investigated the molecular basis of von Willebrand disease (VWD); however these have mostly focused on European and North American populations. This study aimed to investigate mutation spectrum in 26 index cases (IC) from Turkey diagnosed with all three VWD types, the majority (73%) with parents who were knowingly related. IC were screened for mutations using multiplex ligation-dependent probe amplification and analysis of all von Willebrand factor gene (VWF) exons and exon/intron boundaries. Selected missense mutations were expressed in vitro. Candidate VWF mutations were identified in 25 of 26 IC and included propeptide missense mutations in four IC (two resulting in type 1 and two in recessive 2A), all influencing VWF expression in vitro. Four missense mutations, a nonsense mutation and a small in-frame insertion resulting in type 2A were also identified. Of 15 type 3 VWD IC, 13 were homozygous and two compound heterozygous for 14 candidate mutations predicted to result in lack of expression and two propeptide missense changes. Identification of intronic breakpoints of an exon 17–18 deletion suggested that the mutation resulted from non-homologous end joining. This study provides further insight into the pathogenesis of VWD in a population with a high degree of consanguineous partnerships. PMID:23702511

  17. Missense mutation in GRN gene affecting RNA splicing and plasma progranulin level in a family affected by frontotemporal lobar degeneration.

    PubMed

    Luzzi, Simona; Colleoni, Lara; Corbetta, Paola; Baldinelli, Sara; Fiori, Chiara; Girelli, Francesca; Silvestrini, Mauro; Caroppo, Paola; Giaccone, Giorgio; Tagliavini, Fabrizio; Rossi, Giacomina

    2017-06-01

    Gene coding for progranulin, GRN, is a major gene linked to frontotemporal lobar degeneration. While most of pathogenic GRN mutations are null mutations leading to haploinsufficiency, GRN missense mutations do not have an obvious pathogenicity, and only a few have been revealed to act through different pathogenetic mechanisms, such as cytoplasmic missorting, protein degradation, and abnormal cleavage by elastase. The aim of this study was to disclose the pathogenetic mechanisms of the GRN A199V missense mutation, which was previously reported not to alter physiological progranulin features but was associated with a reduced plasma progranulin level. After investigating the family pedigree, we performed genetic and biochemical analysis on its members and performed RNA expression studies. We found that the mutation segregates with the disease and discovered that its pathogenic feature is the alteration of GRN mRNA splicing, actually leading to haploinsufficiency. Thus, when facing with a missense GRN mutation, its pathogenetic effects should be investigated, especially if associated with low plasma progranulin levels, to determine its nature of either benign polymorphism or pathogenic mutation. Copyright © 2017 Elsevier Inc. All rights reserved.

  18. Identification of 16 novel mutations in the argininosuccinate synthetase gene and genotype-phenotype correlation in 38 classical citrullinemia patients.

    PubMed

    Gao, Hong-Zhi; Kobayashi, Keiko; Tabata, Ayako; Tsuge, Hideaki; Iijima, Mikio; Yasuda, Tomotsugu; Kalkanoglu, H Serap; Dursun, Ali; Tokatli, Aysegul; Coskun, Turgay; Trefz, Friedrich K; Skladal, Daniela; Mandel, Hanna; Seidel, Joerg; Kodama, Soichi; Shirane, Seiko; Ichida, Takafumi; Makino, Shigeru; Yoshino, Makoto; Kang, Jong-Hon; Mizuguchi, Masashi; Barshop, Bruce A; Fuchinoue, Shohei; Seneca, Sara; Zeesman, Susan; Knerr, Ina; Rodés, Margarita; Wasant, Pornswan; Yoshida, Ichiro; De Meirleir, Linda; Abdul Jalil, Md; Begum, Laila; Horiuchi, Masahisa; Katunuma, Nobuhiko; Nakagawa, Shiro; Saheki, Takeyori

    2003-07-01

    Classical citrullinemia (CTLN1), a rare autosomal recessive disorder, is caused by mutations of the argininosuccinate synthetase (ASS) gene, localized on chromosome 9q34.1. ASS functions as a rate-limiting enzyme in the urea cycle. Previously, we identified 32 mutations in the ASS gene of CTLN1 patients mainly in Japan and the United States, and to date 34 different mutations have been described in 50 families worldwide. In the present study, we report ASS mutations detected in 35 additional CTLN1 families from 11 countries. By analyzing the entire coding sequence and the intron-exon boundaries of the ASS gene using RT-PCR and/or genomic DNA-PCR, we have identified 16 novel mutations (two different 1-bp deletions, a 67-bp insertion, and 13 missense) and have detected 12 known mutations. Altogether, 50 different mutations (seven deletion, three splice site, one duplication, two nonsense, and 37 missense) in 85 CTLN1 families were identified. On the basis of primary sequence comparisons with the crystal structure of E. coli ASS protein, it may be concluded that any of the 37 missense mutations found at 30 different positions led to structural and functional impairments of the human ASS protein. It has been found that three mutations are particularly frequent: IVS6-2A>G in 23 families (Japan: 20 and Korea: three), G390R in 18 families (Turkey: six, U.S.: five, Spain: three, Israel: one, Austria: one, Canada: one, and Bolivia: one), and R304W in 10 families (Japan: nine and Turkey: one). Most mutations of the ASS gene are "private" and are distributed throughout the gene, except for exons 5 and 12-14. It seems that the clinical course of the patients with truncated mutations or the G390R mutation is early-onset/severe. The phenotype of the patients with certain missense mutations (G362V or W179R) is more late-onset/mild. Eight patients with R86H, A118T, R265H, or K310R mutations were adult/late-onset and four of them showed severe symptoms during pregnancy or postpartum. However, it is still difficult to prove the genotype-phenotype correlation, because many patients were compound heterozygotes (with two different mutations), lived in different environments at the time of diagnosis, and/or had several treatment regimes or various knowledge of the disease. Copyright 2003 Wiley-Liss, Inc.

  19. Detection of a novel silent deletion, a missense mutation and a nonsense mutation in TCOF1.

    PubMed

    Fujioka, Hirotaka; Ariga, Tadashi; Horiuchi, Katsumi; Ishikiriyama, Satoshi; Oyama, Kimie; Otsu, Makoto; Kawashima, Kunihiro; Yamamoto, Yuhei; Sugihara, Tsuneki; Sakiyama, Yukio

    2008-12-01

    Treacher Collins syndrome (TCS) is a disorder of craniofacial development, that is caused by mutations in the TCOF1 gene. TCS is inherited as an autosomal dominant trait, and haploinsufficiency of the TCOF1 gene product treacle is proposed to be etiologically involved. Mutational analysis of the TCOF1 gene was done in 10 patients diagnosed with TCS using single-strand conformation polymorphism and direct sequencing. Among these 10 patients, a novel 9 bp deletion was found, together with a previously reported 2 bp deletion, a novel missense mutation and a novel nonsense mutation in three different families. Familial studies allowed judgment of whether these abnormal findings were responsible for the TCS phenotype, or not. The 9 bp deletion of three amino acids Lys-Glu-Lys (1378-1380), which was located in the nuclear localization domain of treacle, seemed not essential for the treacle function. In contrast, the novel mutation of Ala26Val is considered to affect the LisH domain, an important domain of treacle. All of the mutations thus far detected in exon 5 have resulted in frameshift, but a nonsense mutation was detected (Lys159Stop). The information obtained in the present study provides additional insights into the functional domains of treacle.

  20. α-Synuclein Mutation Inhibits Endocytosis at Mammalian Central Nerve Terminals.

    PubMed

    Xu, Jianhua; Wu, Xin-Sheng; Sheng, Jiansong; Zhang, Zhen; Yue, Hai-Yuan; Sun, Lixin; Sgobio, Carmelo; Lin, Xian; Peng, Shiyong; Jin, Yinghui; Gan, Lin; Cai, Huaibin; Wu, Ling-Gang

    2016-04-20

    α-Synuclein (α-syn) missense and multiplication mutations have been suggested to cause neurodegenerative diseases, including Parkinson's disease (PD) and dementia with Lewy bodies. Before causing the progressive neuronal loss, α-syn mutations impair exocytosis, which may contribute to eventual neurodegeneration. To understand how α-syn mutations impair exocytosis, we developed a mouse model that selectively expressed PD-related human α-syn A53T (h-α-synA53T) mutation at the calyx of Held terminals, where release mechanisms can be dissected with a patch-clamping technique. With capacitance measurement of endocytosis, we reported that h-α-synA53T, either expressed transgenically or dialyzed in the short term in calyces, inhibited two of the most common forms of endocytosis, the slow and rapid vesicle endocytosis at mammalian central synapses. The expression of h-α-synA53Tin calyces also inhibited vesicle replenishment to the readily releasable pool. These findings may help to understand how α-syn mutations impair neurotransmission before neurodegeneration. α-Synuclein (α-syn) missense or multiplication mutations may cause neurodegenerative diseases, such as Parkinson's disease and dementia with Lewy bodies. The initial impact of α-syn mutations before neuronal loss is impairment of exocytosis, which may contribute to eventual neurodegeneration. The mechanism underlying impairment of exocytosis is poorly understood. Here we report that an α-syn mutant, the human α-syn A53T, inhibited two of the most commonly observed forms of endocytosis, slow and rapid endocytosis, at a mammalian central synapse. We also found that α-syn A53T inhibited vesicle replenishment to the readily releasable pool. These results may contribute to accounting for the widely observed early synaptic impairment caused by α-syn mutations in the progression toward neurodegeneration. Copyright © 2016 the authors 0270-6474/16/364408-07$15.00/0.

  1. A case of recurrent encephalopathy with SCN2A missense mutation.

    PubMed

    Fukasawa, Tatsuya; Kubota, Tetsuo; Negoro, Tamiko; Saitoh, Makiko; Mizuguchi, Masashi; Ihara, Yukiko; Ishii, Atsushi; Hirose, Shinichi

    2015-06-01

    Voltage-gated sodium channels regulate neuronal excitability, as well as survival and the patterning of neuronal connectivity during development. Mutations in SCN2A, which encodes the Na(+) channel Nav1.2, cause epilepsy syndromes and predispose children to acute encephalopathy. Here, we report the case of a young male with recurrent acute encephalopathy who carried a novel missense mutation in the SCN2A gene. He was born by normal delivery and developed repetitive apneic episodes at 2days of age. Diffusion-weighted imaging revealed high-intensity areas in diffuse subcortical white matter, bilateral thalami, and basal nuclei. His symptoms improved gradually without any specific treatment, but he exhibited a motor milestone delay after the episode. At the age of 10months, he developed acute cerebellopathy associated with a respiratory syncytial viral infection. He received high-dose intravenous gammaglobulin and methylprednisolone pulse therapy and seemed to have no obvious sequelae after the episode. He then developed severe diffuse encephalopathy associated with gastroenteritis at the age of 14months. He received high-dose intravenous gammaglobulin and methylprednisolone pulse therapy but was left with severe neurological sequelae. PCR-based analysis revealed a novel de novo missense mutation, c.4979T>G (p.Leu1660Trp), in the SCN2A gene. This case suggests that SCN2A mutations might predispose children to repetitive encephalopathy with variable clinical and imaging findings. Copyright © 2014 The Japanese Society of Child Neurology. Published by Elsevier B.V. All rights reserved.

  2. ELOVL5 Mutations Cause Spinocerebellar Ataxia 38

    PubMed Central

    Di Gregorio, Eleonora; Borroni, Barbara; Giorgio, Elisa; Lacerenza, Daniela; Ferrero, Marta; Lo Buono, Nicola; Ragusa, Neftj; Mancini, Cecilia; Gaussen, Marion; Calcia, Alessandro; Mitro, Nico; Hoxha, Eriola; Mura, Isabella; Coviello, Domenico A.; Moon, Young-Ah; Tesson, Christelle; Vaula, Giovanna; Couarch, Philippe; Orsi, Laura; Duregon, Eleonora; Papotti, Mauro Giulio; Deleuze, Jean-François; Imbert, Jean; Costanzi, Chiara; Padovani, Alessandro; Giunti, Paola; Maillet-Vioud, Marcel; Durr, Alexandra; Brice, Alexis; Tempia, Filippo; Funaro, Ada; Boccone, Loredana; Caruso, Donatella; Stevanin, Giovanni; Brusco, Alfredo

    2014-01-01

    Spinocerebellar ataxias (SCAs) are a heterogeneous group of autosomal-dominant neurodegenerative disorders involving the cerebellum and 23 different genes. We mapped SCA38 to a 56 Mb region on chromosome 6p in a SCA-affected Italian family by whole-genome linkage analysis. Targeted resequencing identified a single missense mutation (c.689G>T [p.Gly230Val]) in ELOVL5. Mutation screening of 456 independent SCA-affected individuals identified the same mutation in two further unrelated Italian families. Haplotyping showed that at least two of the three families shared a common ancestor. One further missense variant (c.214C>G [p.Leu72Val]) was found in a French family. Both missense changes affect conserved amino acids, are predicted to be damaging by multiple bioinformatics tools, and were not identified in ethnically matched controls or within variant databases. ELOVL5 encodes an elongase involved in the synthesis of polyunsaturated fatty acids of the ω3 and ω6 series. Arachidonic acid and docosahexaenoic acid, two final products of the enzyme, were reduced in the serum of affected individuals. Immunohistochemistry on control mice and human brain demonstrated high levels in Purkinje cells. In transfection experiments, subcellular localization of altered ELOVL5 showed a perinuclear distribution with a signal increase in the Golgi compartment, whereas the wild-type showed a widespread signal in the endoplasmic reticulum. SCA38 and SCA34 are examples of SCAs due to mutations in elongase-encoding genes, emphasizing the importance of fatty-acid metabolism in neurological diseases. PMID:25065913

  3. An APRT mutation is strongly associated with and likely causative for 2,8-dihydroxyadenine urolithiasis in dogs.

    PubMed

    Furrow, Eva; Pfeifer, Randall J; Osborne, Carl A; Lulich, Jody P

    2014-03-01

    2,8-Dihydroxyadenine (2,8-DHA) urolithiasis in people is caused by autosomal recessive mutations in the adenine phosphoribosyltransferase gene (APRT). 2,8-DHA urolithiasis has recently been reported in two dogs, but, to the authors' knowledge, no studies have yet investigated the genetic basis for susceptibility to the development of 2,8-DHA urolithiasis in this species. Our aim was to sequence APRT in dogs affected by 2,8-DHA urolithiasis and compare the results to clinically healthy dogs of similar ancestral lineages. Our hypothesis was that we would identify an autosomal recessive mutation in APRT that is associated with the disease. The case population consisted of six dogs with a history of 2,8-DHA urolithiasis: five Native American Indian Dogs (NAIDs) and a mixed breed. The control population consisted of adult NAIDs with no history of urolithiasis. We sequenced APRT and identified a missense mutation in a highly conserved codon of APRT (c.260G>A; p.Arg87Gln). The c.260A mutation was present in a homozygous state in all six dogs with 2,8-DHA urolithiasis, and it was strongly associated with the disease. This exact missense mutation has been previously reported to cause loss of APRT enzyme function in a human cell line, and it is likely a causative mutation in dogs. Therefore, the dog offers a naturally-occurring genetic animal model for 2,8-DHA urolithiasis. Copyright © 2013 Elsevier Inc. All rights reserved.

  4. Gain-of-function mutations in SCN11A cause familial episodic pain.

    PubMed

    Zhang, Xiang Yang; Wen, Jingmin; Yang, Wei; Wang, Cheng; Gao, Luna; Zheng, Liang Hong; Wang, Tao; Ran, Kaikai; Li, Yulei; Li, Xiangyang; Xu, Ming; Luo, Junyu; Feng, Shenglei; Ma, Xixiang; Ma, Hongying; Chai, Zuying; Zhou, Zhuan; Yao, Jing; Zhang, Xue; Liu, Jing Yu

    2013-11-07

    Many ion channel genes have been associated with human genetic pain disorders. Here we report two large Chinese families with autosomal-dominant episodic pain. We performed a genome-wide linkage scan with microsatellite markers after excluding mutations in three known genes (SCN9A, SCN10A, and TRPA1) that cause similar pain syndrome to our findings, and we mapped the genetic locus to a 7.81 Mb region on chromosome 3p22.3-p21.32. By using whole-exome sequencing followed by conventional Sanger sequencing, we identified two missense mutations in the gene encoding voltage-gated sodium channel Nav1.9 (SCN11A): c.673C>T (p.Arg225Cys) and c.2423C>G (p.Ala808Gly) (one in each family). Each mutation showed a perfect cosegregation with the pain phenotype in the corresponding family, and neither of them was detected in 1,021 normal individuals. Both missense mutations were predicted to change a highly conserved amino acid residue of the human Nav1.9 channel. We expressed the two SCN11A mutants in mouse dorsal root ganglion (DRG) neurons and showed that both mutations enhanced the channel's electrical activities and induced hyperexcitablity of DRG neurons. Taken together, our results suggest that gain-of-function mutations in SCN11A can be causative of an autosomal-dominant episodic pain disorder. Copyright © 2013 The American Society of Human Genetics. Published by Elsevier Inc. All rights reserved.

  5. Novel Homozygous Missense Mutation in RYR1 Leads to Severe Congenital Ptosis, Ophthalmoplegia, and Scoliosis in the Absence of Myopathy.

    PubMed

    Dilaver, Nafi; Mazaheri, Neda; Maroofian, Reza; Zeighami, Jawaher; Seifi, Tahere; Zamani, Mina; Sedaghat, Alireza; Shariati, Gholam Reza; Galehdari, Hamid

    2017-12-01

    Ryanodine receptor 1 ( RYR1 ) is an intracellular calcium receptor primarily expressed in skeletal muscle with a role in excitation contraction. Both dominant and recessive mutations in the RYR1 gene cause a range of RYR1 -related myopathies and/or susceptibility to malignant hyperthermia (MH). Recently, an atypical manifestation of ptosis, variably presenting with ophthalmoplegia, facial paralysis, and scoliosis but without significant muscle weakness, has been reported in 9 cases from 4 families with bialleic variants in RYR1 . Two affected children from a consanguineous family with severe congenital ptosis, ophthalmoplegia, scoliosis, and distinctive long faces but without skeletal myopathy were studied. To identify the cause of the hereditary condition, DNA from the proband was subjected to whole exome sequencing (WES). WES revealed a novel homozygous missense variant in RYR1 (c.14066T>A; p.IIe4689Asn), which segregated within the family. Although the phenotype of the affected siblings in this study was similar to previously described cases, the clinical features were more severely expressed. Our findings contribute to the expansion of phenotypes related to RYR1 dysfunction. Additionally, it supports a new RYR1 -related clinical presentation without musculoskeletal involvement. It is important that individuals with RYR1 mutations are considered susceptible to MH, as 70% of the MH cases are caused by mutations in the RYR1 gene.

  6. Missense mutations in TENM4, a regulator of axon guidance and central myelination, cause essential tremor.

    PubMed

    Hor, Hyun; Francescatto, Ludmila; Bartesaghi, Luca; Ortega-Cubero, Sara; Kousi, Maria; Lorenzo-Betancor, Oswaldo; Jiménez-Jiménez, Felix J; Gironell, Alexandre; Clarimón, Jordi; Drechsel, Oliver; Agúndez, José A G; Kenzelmann Broz, Daniela; Chiquet-Ehrismann, Ruth; Lleó, Alberto; Coria, Francisco; García-Martin, Elena; Alonso-Navarro, Hortensia; Martí, Maria J; Kulisevsky, Jaume; Hor, Charlotte N; Ossowski, Stephan; Chrast, Roman; Katsanis, Nicholas; Pastor, Pau; Estivill, Xavier

    2015-10-15

    Essential tremor (ET) is a common movement disorder with an estimated prevalence of 5% of the population aged over 65 years. In spite of intensive efforts, the genetic architecture of ET remains unknown. We used a combination of whole-exome sequencing and targeted resequencing in three ET families. In vitro and in vivo experiments in oligodendrocyte precursor cells and zebrafish were performed to test our findings. Whole-exome sequencing revealed a missense mutation in TENM4 segregating in an autosomal-dominant fashion in an ET family. Subsequent targeted resequencing of TENM4 led to the discovery of two novel missense mutations. Not only did these two mutations segregate with ET in two additional families, but we also observed significant over transmission of pathogenic TENM4 alleles across the three families. Consistent with a dominant mode of inheritance, in vitro analysis in oligodendrocyte precursor cells showed that mutant proteins mislocalize. Finally, expression of human mRNA harboring any of three patient mutations in zebrafish embryos induced defects in axon guidance, confirming a dominant-negative mode of action for these mutations. Our genetic and functional data, which is corroborated by the existence of a Tenm4 knockout mouse displaying an ET phenotype, implicates TENM4 in ET. Together with previous studies of TENM4 in model organisms, our studies intimate that processes regulating myelination in the central nervous system and axon guidance might be significant contributors to the genetic burden of this disorder. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  7. Molecular Evolution of the Tissue-nonspecific Alkaline Phosphatase Allows Prediction and Validation of Missense Mutations Responsible for Hypophosphatasia*

    PubMed Central

    Silvent, Jérémie; Gasse, Barbara; Mornet, Etienne; Sire, Jean-Yves

    2014-01-01

    ALPL encodes the tissue nonspecific alkaline phosphatase (TNSALP), which removes phosphate groups from various substrates. Its function is essential for bone and tooth mineralization. In humans, ALPL mutations lead to hypophosphatasia, a genetic disorder characterized by defective bone and/or tooth mineralization. To date, 275 ALPL mutations have been reported to cause hypophosphatasia, of which 204 were simple missense mutations. Molecular evolutionary analysis has proved to be an efficient method to highlight residues important for the protein function and to predict or validate sensitive positions for genetic disease. Here we analyzed 58 mammalian TNSALP to identify amino acids unchanged, or only substituted by residues sharing similar properties, through 220 millions years of mammalian evolution. We found 469 sensitive positions of the 524 residues of human TNSALP, which indicates a highly constrained protein. Any substitution occurring at one of these positions is predicted to lead to hypophosphatasia. We tested the 204 missense mutations resulting in hypophosphatasia against our predictive chart, and validated 99% of them. Most sensitive positions were located in functionally important regions of TNSALP (active site, homodimeric interface, crown domain, calcium site, …). However, some important positions are located in regions, the structure and/or biological function of which are still unknown. Our chart of sensitive positions in human TNSALP (i) enables to validate or invalidate at low cost any ALPL mutation, which would be suspected to be responsible for hypophosphatasia, by contrast with time consuming and expensive functional tests, and (ii) displays higher predictive power than in silico models of prediction. PMID:25023282

  8. A comprehensive approach to identification of pathogenic FANCA variants in Fanconi anemia patients and their families.

    PubMed

    Kimble, Danielle C; Lach, Francis P; Gregg, Siobhan Q; Donovan, Frank X; Flynn, Elizabeth K; Kamat, Aparna; Young, Alice; Vemulapalli, Meghana; Thomas, James W; Mullikin, James C; Auerbach, Arleen D; Smogorzewska, Agata; Chandrasekharappa, Settara C

    2018-02-01

    Fanconi anemia (FA) is a rare recessive DNA repair deficiency resulting from mutations in one of at least 22 genes. Two-thirds of FA families harbor mutations in FANCA. To genotype patients in the International Fanconi Anemia Registry (IFAR) we employed multiple methodologies, screening 216 families for FANCA mutations. We describe identification of 57 large deletions and 261 sequence variants, in 159 families. All but seven families harbored distinct combinations of two mutations demonstrating high heterogeneity. Pathogenicity of the 18 novel missense variants was analyzed functionally by determining the ability of the mutant cDNA to improve the survival of a FANCA-null cell line when treated with MMC. Overexpressed pathogenic missense variants were found to reside in the cytoplasm, and nonpathogenic in the nucleus. RNA analysis demonstrated that two variants (c.522G > C and c.1565A > G), predicted to encode missense variants, which were determined to be nonpathogenic by a functional assay, caused skipping of exons 5 and 16, respectively, and are most likely pathogenic. We report 48 novel FANCA sequence variants. Defining both variants in a large patient cohort is a major step toward cataloging all FANCA variants, and permitting studies of genotype-phenotype correlations. © Published 2017. This article is a U.S. Government work and is in the public domain in the USA.

  9. Identification of a Novel Heterozygous Missense Mutation in the CACNA1F Gene in a Chinese Family with Retinitis Pigmentosa by Next Generation Sequencing

    PubMed Central

    Tania, Mousumi; Wang, Hui; Khan, Md. Asaduzzaman; Duan, Chengxia; Zhu, Li; Chen, Rui; Lv, Hongbin

    2015-01-01

    Background. Retinitis pigmentosa (RP) is an inherited retinal degenerative disease, which is clinically and genetically heterogeneous, and the inheritance pattern is complex. In this study, we have intended to study the possible association of certain genes with X-linked RP (XLRP) in a Chinese family. Methods. A Chinese family with RP was recruited, and a total of seven individuals were enrolled in this genetic study. Genomic DNA was isolated from peripheral leukocytes, and used for the next generation sequencing (NGS). Results. The affected individual presented the clinical signs of XLRP. A heterozygous missense mutation (c.1555C>T, p.R519W) was identified by NGS in exon 13 of the CACNA1F gene on X chromosome, and was confirmed by Sanger sequencing. It showed perfect cosegregation with the disease in the family. The mutation at this position in the CACNA1F gene of RP was found novel by database searching. Conclusion. By using NGS, we have found a novel heterozygous missense mutation (c.1555C>T, p.R519W) in CACNA1F gene, which is probably associated with XLRP. The findings might provide new insights into the cause and diagnosis of RP, and have implications for genetic counseling and clinical management in this family. PMID:26075273

  10. Neonatal High Bone Mass With First Mutation of the NF-κB Complex: Heterozygous De Novo Missense (p.Asp512Ser) RELA (Rela/p65).

    PubMed

    Frederiksen, Anja L; Larsen, Martin J; Brusgaard, Klaus; Novack, Deborah V; Knudsen, Peter Juel Thiis; Schrøder, Henrik Daa; Qiu, Weimin; Eckhardt, Christina; McAlister, William H; Kassem, Moustapha; Mumm, Steven; Frost, Morten; Whyte, Michael P

    2016-01-01

    Heritable disorders that feature high bone mass (HBM) are rare. The etiology is typically a mutation(s) within a gene that regulates the differentiation and function of osteoblasts (OBs) or osteoclasts (OCs). Nevertheless, the molecular basis is unknown for approximately one-fifth of such entities. NF-κB signaling is a key regulator of bone remodeling and acts by enhancing OC survival while impairing OB maturation and function. The NF-κB transcription complex comprises five subunits. In mice, deletion of the p50 and p52 subunits together causes osteopetrosis (OPT). In humans, however, mutations within the genes that encode the NF-κB complex, including the Rela/p65 subunit, have not been reported. We describe a neonate who died suddenly and unexpectedly and was found at postmortem to have HBM documented radiographically and by skeletal histopathology. Serum was not available for study. Radiographic changes resembled malignant OPT, but histopathological investigation showed morphologically normal OCs and evidence of intact bone resorption excluding OPT. Furthermore, mutation analysis was negative for eight genes associated with OPT or HBM. Instead, accelerated bone formation appeared to account for the HBM. Subsequently, trio-based whole exome sequencing revealed a heterozygous de novo missense mutation (c.1534_1535delinsAG, p.Asp512Ser) in exon 11 of RELA encoding Rela/p65. The mutation was then verified using bidirectional Sanger sequencing. Lipopolysaccharide stimulation of patient fibroblasts elicited impaired NF-κB responses compared with healthy control fibroblasts. Five unrelated patients with unexplained HBM did not show a RELA defect. Ours is apparently the first report of a mutation within the NF-κB complex in humans. The missense change is associated with neonatal osteosclerosis from in utero increased OB function rather than failed OC action. These findings demonstrate the importance of the Rela/p65 subunit within the NF-κB pathway for human skeletal homeostasis and represent a new genetic cause of HBM. © 2015 American Society for Bone and Mineral Research.

  11. A novel missense Norrie disease mutation associated with a severe ocular phenotype.

    PubMed

    Khan, Arif O; Shamsi, Farrukh A; Al-Saif, Amr; Kambouris, Marios

    2004-01-01

    Clinical findings and pedigree analysis led to the diagnosis of severe Norrie disease in two brothers. DNA sequencing demonstrated a novel missense mutation (703G>T) that significantly alters predicted protein structure. Less severe retinal developmental disease may be associated with milder mutations in the Norrie disease gene.

  12. Structural impact analysis of missense SNPs present in the uroguanylin gene by long-term molecular dynamics simulations.

    PubMed

    Marcolino, Antonio C S; Porto, William F; Pires, Állan S; Franco, Octavio L; Alencar, Sérgio A

    2016-12-07

    The guanylate cyclase activator 2B, also known as uroguanylin, is part of the guanylin peptide family, which includes peptides such as guanylin and lymphoguanylin. The guanylin peptides could be related to sodium absorption inhibition and water secretion induction and their dysfunction may be related to various pathologies such as chronic renal failure, congestive heart failure and nephrotic syndrome. Besides, uroguanylin point mutations have been associated with essential hypertension. However, currently there are no studies on the impact of missense SNPs on uroguanylin structure. This study applied in silico SNP impact prediction tools to evaluate the impact of uroguanylin missense SNPs and to filter those considered as convergent deleterious, which were then further analyzed through long-term molecular dynamics simulations of 1μs of duration. The simulations suggested that all missense SNPs considered as convergent deleterious caused some kind of structural change to the uroguanylin peptide. Additionally, four of these SNPs were also shown to cause modifications in peptide flexibility, possibly resulting in functional changes. Copyright © 2016 Elsevier Ltd. All rights reserved.

  13. Structure-Function Analysis of Friedreich's Ataxia Mutants Reveals Determinants of Frataxin Binding and Activation of the Fe-S Assembly Complex

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bridwell-Rabb, Jennifer; Winn, Andrew M; Barondeau, David P

    2012-08-01

    Friedreich's ataxia (FRDA) is a progressive neurodegenerative disease associated with the loss of function of the protein frataxin (FXN) that results from low FXN levels due to a GAA triplet repeat expansion or, occasionally, from missense mutations in the FXN gene. Here biochemical and structural properties of FXN variants, including three FRDA missense mutations (N146K, Q148R, and R165C) and three related mutants (N146A, Q148G, and Q153A), were determined in an effort to understand the structural basis for the loss of function. In vitro assays revealed that although the three FRDA missense mutations exhibited similar losses of cysteine desulfurase and Fe-Smore » cluster assembly activities, the causes for these activation defects were distinct. The R165C variant exhibited a k cat/K M higher than that of native FXN but weak binding to the NFS1, ISD11, and ISCU2 (SDU) complex, whereas the Q148R variant exhibited the lowest k cat/K M of the six tested FXN variants and only a modest binding deficiency. The order of the FXN binding affinities for the SDU Fe-S assembly complex was as follows: FXN > Q148R > N146A > Q148G > N146K > Q153A > R165C. Four different classes of FXN variants were identified on the basis of their biochemical properties. Together, these structure-function studies reveal determinants for the binding and allosteric activation of the Fe-S assembly complex and provide insight into how FRDA missense mutations are functionally compromised.« less

  14. Panel-based whole exome sequencing identifies novel mutations in microphthalmia and anophthalmia patients showing complex Mendelian inheritance patterns.

    PubMed

    Riera, Marina; Wert, Ana; Nieto, Isabel; Pomares, Esther

    2017-11-01

    Microphthalmia and anophthalmia (MA) are congenital eye abnormalities that show an extremely high clinical and genetic complexity. In this study, we evaluated the implementation of whole exome sequencing (WES) for the genetic analysis of MA patients. This approach was used to investigate three unrelated families in which previous single-gene analyses failed to identify the molecular cause. A total of 47 genes previously associated with nonsyndromic MA were included in our panel. WES was performed in one affected patient from each family using the AmpliSeq TM Exome technology and the Ion Proton TM platform. A novel heterozygous OTX2 missense mutation was identified in a patient showing bilateral anophthalmia who inherited the variant from a parent who was a carrier, but showed no sign of the condition. We also describe a new PAX6 missense variant in an autosomal-dominant pedigree affected by mild bilateral microphthalmia showing high intrafamiliar variability, with germline mosaicism determined to be the most plausible molecular cause of the disease. Finally, a heterozygous missense mutation in RBP4 was found to be responsible in an isolated case of bilateral complex microphthalmia. This study highlights that panel-based WES is a reliable and effective strategy for the genetic diagnosis of MA. Furthermore, using this technique, the mutational spectrum of these diseases was broadened, with novel variants identified in each of the OTX2, PAX6, and RBP4 genes. Moreover, we report new cases of reduced penetrance, mosaicism, and variable phenotypic expressivity associated with MA, further demonstrating the heterogeneity of such disorders. © 2017 The Authors. Molecular Genetics & Genomic Medicine published by Wiley Periodicals, Inc.

  15. Bioinformatic Analysis of Pathogenic Missense Mutations of Activin Receptor Like Kinase 1 Ectodomain

    PubMed Central

    Scotti, Claudia; Olivieri, Carla; Boeri, Laura; Canzonieri, Cecilia; Ornati, Federica; Buscarini, Elisabetta; Pagella, Fabio; Danesino, Cesare

    2011-01-01

    Activin A receptor, type II-like kinase 1 (also called ALK1), is a serine-threonine kinase predominantly expressed on endothelial cells surface. Mutations in its ACVRL1 encoding gene (12q11-14) cause type 2 Hereditary Haemorrhagic Telangiectasia (HHT2), an autosomal dominant multisystem vascular dysplasia. The study of the structural effects of mutations is crucial to understand their pathogenic mechanism. However, while an X-ray structure of ALK1 intracellular domain has recently become available (PDB ID: 3MY0), structure determination of ALK1 ectodomain (ALK1EC) has been elusive so far. We here describe the building of a homology model for ALK1EC, followed by an extensive bioinformatic analysis, based on a set of 38 methods, of the effect of missense mutations at the sequence and structural level. ALK1EC potential interaction mode with its ligand BMP9 was then predicted combining modelling and docking data. The calculated model of the ALK1EC allowed mapping and a preliminary characterization of HHT2 associated mutations. Major structural changes and loss of stability of the protein were predicted for several mutations, while others were found to interfere mainly with binding to BMP9 or other interactors, like Endoglin (CD105), whose encoding ENG gene (9q34) mutations are known to cause type 1 HHT. This study gives a preliminary insight into the potential structure of ALK1EC and into the structural effects of HHT2 associated mutations, which can be useful to predict the potential effect of each single mutation, to devise new biological experiments and to interpret the biological significance of new mutations, private mutations, or non-synonymous polymorphisms. PMID:22028876

  16. Identification of A Novel Missense Mutation in The Norrie Disease Gene: The First Molecular Genetic Analysis and Prenatal Diagnosis of Norrie Disease in An Iranian Family.

    PubMed

    Talebi, Farah; Ghanbari Mardasi, Farideh; Mohammadi Asl, Javad; Lashgari, Ali; Farhadi, Freidoon

    2018-07-01

    Norrie disease (ND) is a rare X-linked recessive disorder, which is characterized by congenital blindness and, in several cases, accompanied with mental retardation and deafness. ND is caused by mutations in NDP, located on the proximal short arm of the X chromosome (Xp11.3). The disease has been observed in many ethnic groups worldwide, however, no such case has been reported from Iran. In this study, we present the molecular analysis of two patients with ND and the subsequent prenatal diagnosis. Screening of NDP identified a hemizygous missense mutation (p.Ser133Cys) in the affected male siblings of the family. The mother was the carrier for the mutation (p.Ser133Cys). In a subsequent chorionic amniotic pregnancy, we carried out prenatal diagnosis by sequencing NDP in the chorionic villi sample at 11 weeks of gestation. The fetus was carrying the mutation and thus unaffected. This is the first mutation report and prenatal diagnosis of an Iranian family with ND, and highlights the importance of prenatal diagnostic screening of this congenital disorder and relevant genetic counseling. Copyright© by Royan Institute. All rights reserved.

  17. Fukutin-related protein localizes to the Golgi apparatus and mutations lead to mislocalization in muscle in vivo.

    PubMed

    Keramaris-Vrantsis, Elizabeth; Lu, Pei J; Doran, Timothy; Zillmer, Allen; Ashar, Jignya; Esapa, Christopher T; Benson, Matthew A; Blake, Derek J; Rosenfeld, Jeffrey; Lu, Qi L

    2007-10-01

    Mutations in the fukutin-related protein gene (FKRP) are associated with a spectrum of diseases from mild limb-girdle muscular dystrophy type 2I to severe congenital muscular dystrophy type 1C, muscle-eye-brain disease (MEB), and Walker-Warburg syndrome (WWS). The effect of mutations on the transportation of the mutant proteins may constitute the underlying mechanisms for the pathogenesis of these diseases. Here we examined the subcellular localization of mouse and human normal and mutant FKRP proteins in cells and in muscle in vivo. Both normal human and mouse FKRPs localize in part of the Golgi apparatus in muscle fibers. Mutations in the FKRP gene invariably altered the localization of the protein, leading to endoplasmic reticulum retention within cells and diminished Golgi localization in muscle fibers. Our results therefore suggest that an individual missense point mutation can confer at least two independent effects on the protein, causing (1) reduction or loss of the presumed glycosyltransferase activity directly and (2) mislocalization that could further alter the function of the protein. The complexity of the effect of individual missense point mutations may partly explain the wide variation of the FKRP-related myopathies.

  18. A novel missense mutation in ANO5/TMEM16E is causative for gnathodiaphyseal dyplasia in a large Italian pedigree

    PubMed Central

    Marconi, Caterina; Brunamonti Binello, Paolo; Badiali, Giovanni; Caci, Emanuela; Cusano, Roberto; Garibaldi, Joseph; Pippucci, Tommaso; Merlini, Alberto; Marchetti, Claudio; Rhoden, Kerry J; Galietta, Luis J V; Lalatta, Faustina; Balbi, Paolo; Seri, Marco

    2013-01-01

    Gnathodiaphyseal dysplasia (GDD) is an autosomal dominant syndrome characterized by frequent bone fractures at a young age, bowing of tubular bones and cemento-osseus lesions of the jawbones. Anoctamin 5 (ANO5) belongs to the anoctamin protein family that includes calcium-activated chloride channels. However, recent data together with our own experiments reported here add weight to the hypothesis that ANO5 may not function as calcium-activated chloride channel. By sequencing the entire ANO5 gene coding region and untranslated regions in a large Italian GDD family, we found a novel missense mutation causing the p.Thr513Ile substitution. The mutation segregates with the disease in the family and has never been described in any database as a polymorphism. To date, only two mutations on the same cysteine residue at position 356 of ANO5 amino-acid sequence have been described in GDD families. As ANO5 has also been found to be mutated in two different forms of muscular dystrophy, the finding of this third mutation in GDD adds clues to the role of ANO5 in these disorders. PMID:23047743

  19. Allele-specific Characterization of Alanine: Glyoxylate Aminotransferase Variants Associated with Primary Hyperoxaluria

    PubMed Central

    Lage, Melissa D.; Pittman, Adrianne M. C.; Roncador, Alessandro; Cellini, Barbara; Tucker, Chandra L.

    2014-01-01

    Primary Hyperoxaluria Type 1 (PH1) is a rare autosomal recessive kidney stone disease caused by deficiency of the peroxisomal enzyme alanine: glyoxylate aminotransferase (AGT), which is involved in glyoxylate detoxification. Over 75 different missense mutations in AGT have been found associated with PH1. While some of the mutations have been found to affect enzyme activity, stability, and/or localization, approximately half of these mutations are completely uncharacterized. In this study, we sought to systematically characterize AGT missense mutations associated with PH1. To facilitate analysis, we used two high-throughput yeast-based assays: one that assesses AGT specific activity, and one that assesses protein stability. Approximately 30% of PH1-associated missense mutations are found in conjunction with a minor allele polymorphic variant, which can interact to elicit complex effects on protein stability and trafficking. To better understand this allele interaction, we functionally characterized each of 34 mutants on both the major (wild-type) and minor allele backgrounds, identifying mutations that synergize with the minor allele. We classify these mutants into four distinct categories depending on activity/stability results in the different alleles. Twelve mutants were found to display reduced activity in combination with the minor allele, compared with the major allele background. When mapped on the AGT dimer structure, these mutants reveal localized regions of the protein that appear particularly sensitive to interactions with the minor allele variant. While the majority of the deleterious effects on activity in the minor allele can be attributed to synergistic interaction affecting protein stability, we identify one mutation, E274D, that appears to specifically affect activity when in combination with the minor allele. PMID:24718375

  20. Titin Mutations in iPS cells Define Sarcomere Insufficiency as a Cause of Dilated Cardiomyopathy

    PubMed Central

    Hinson, John T.; Chopra, Anant; Nafissi, Navid; Polacheck, William J.; Benson, Craig C.; Swist, Sandra; Gorham, Joshua; Yang, Luhan; Schafer, Sebastian; Sheng, Calvin C.; Haghighi, Alireza; Homsy, Jason; Hubner, Norbert; Church, George; Cook, Stuart A.; Linke, Wolfgang A.; Chen, Christopher S.; Seidman, J. G.; Seidman, Christine E.

    2015-01-01

    Human mutations that truncate the massive sarcomere protein titin (TTNtv) are the most common genetic cause for dilated cardiomyopathy (DCM), a major cause of heart failure and premature death. Here we show that cardiac microtissues engineered from human induced pluripotent stem (iPS) cells are a powerful system for evaluating the pathogenicity of titin gene variants. We found that certain missense mutations, like TTNtv, diminish contractile performance and are pathogenic. By combining functional analyses with RNAseq, we explain why truncations in the A-band domain of TTN cause DCM while truncations in the I-band are better tolerated. Finally, we demonstrate that mutant titin protein in iPS-cardiomyocytes results in sarcomere insufficiency, impaired responses to mechanical and β-adrenergic stress, and attenuated growth factor and cell signaling activation. Our findings indicate that titin mutations cause DCM by disrupting critical linkages between sarcomerogenesis and adaptive remodelling. PMID:26315439

  1. Pitfalls and caveats in BRCA sequencing.

    PubMed

    Bellosillo, Beatriz; Tusquets, Ignacio

    2006-01-01

    Between 5 and 10% of breast cancer cases are considered to result from hereditary predisposition. Germ-line mutations in BRCA1 and BRCA2 are responsible for an inherited predisposition of breast and ovarian cancer. Direct nucleotide sequencing is considered the gold standard technique for mutation detection for genes such as BRCA1 and BRCA2. In many laboratories that analyze BRCA1 and BRCA2, previous to direct sequencing, screening techniques to identify sequence variants in the PCR amplicons are performed. The mutations detected in these genes may be frameshift mutations (insertions or deletions), nonsense mutations, or missense mutations. The clinical interpretation of the mutation as the cause of the disease may be difficult to establish in the case of missense mutations. Only in 30-70% of the families in which a hereditary component is suspected, a mutation in BRCA1 and/or BRCA2 is detected. Negative results may be due to: wrong selection of the proband; mutations in the regulatory portion of the genes; gene silencing due to epigenetic phenomena; or large genomic rearrangements that produce deletions of whole exons. Another possibility that explains the lack of detection of alterations in BRCA1 or BRCA2 is the presence of mutations in undiscovered genes or in genes that interact with BRCA1 and/or BRCA2, which may be low-penetrance genes, like CHEK2.

  2. Hereditary Angioedema Due to C1 Inhibitor Deficiency in Serbia: Two Novel Mutations and Evidence of Genotype-Phenotype Association

    PubMed Central

    Andrejević, Slađana; Korošec, Peter; Šilar, Mira; Košnik, Mitja; Mijanović, Radovan; Bonači-Nikolić, Branka; Rijavec, Matija

    2015-01-01

    Hereditary angioedema due to C1 inhibitor deficiency (C1-INH-HAE) is a rare autosomal dominant disease characterized by recurrent life-threatening oedemas and/or abdominal pain and caused by mutations affecting the C1 inhibitor gene, SERPING1. We sought to investigate the spectrum of SERPING1 mutations in Serbia and the possible genotype-phenotype association. C1-INH-HAE was diagnosed on the basis of clinical and laboratory criteria in 40 patients from 27 families; four were asymptomatic. Mutational analysis of the SERPING1 gene was performed by sequencing and multiplex ligation-dependent probe amplification. Disease-causing mutations in SERPING1 were identified in all patients. In C1-INH-HAE type I, we identified 19 different mutations, including 6 missense mutations, 6 nonsense mutations, 2 small deletions, 1 small insertion, 2 splicing defects and 2 large deletions. Two of the mutations (c.300C>T and c.1184_1185insTA) are reported here for the first time. All C1-INH-HAE type II patients from three families harboured the same substitution (c.1396C>T). Based on the type of mutation identified in the SERPING1 gene, patients were divided into two groups: group 1 (nonsense, frameshift, large deletions/insertions, splicing defect, and mutations at Arg444) or group 2 (missense, excluding mutations at Arg444). Significant differences were found in the clinical severity score (P = 0.005), prevalence of laryngeal (P = 0.040) and facial (P = 0.013) oedema, and long-term prophylaxis (P = 0.023) between the groups with different types of mutations. Because our population consisted of related subjects, differences in the severity score between mutation groups were further confirmed using the generalized estimating equation (P = 0.038). Our study identified 20 different disease-causing mutations, including two novel mutations, in all C1-INH-HAE patients, highlighting the heterogeneity of mutations in the SERPING1 gene. Furthermore, it appears that mutations with a clear effect on C1-INH function might be responsible for a more severe disease phenotype. PMID:26535898

  3. Hereditary Angioedema Due to C1 Inhibitor Deficiency in Serbia: Two Novel Mutations and Evidence of Genotype-Phenotype Association.

    PubMed

    Andrejević, Slađana; Korošec, Peter; Šilar, Mira; Košnik, Mitja; Mijanović, Radovan; Bonači-Nikolić, Branka; Rijavec, Matija

    2015-01-01

    Hereditary angioedema due to C1 inhibitor deficiency (C1-INH-HAE) is a rare autosomal dominant disease characterized by recurrent life-threatening oedemas and/or abdominal pain and caused by mutations affecting the C1 inhibitor gene, SERPING1. We sought to investigate the spectrum of SERPING1 mutations in Serbia and the possible genotype-phenotype association. C1-INH-HAE was diagnosed on the basis of clinical and laboratory criteria in 40 patients from 27 families; four were asymptomatic. Mutational analysis of the SERPING1 gene was performed by sequencing and multiplex ligation-dependent probe amplification. Disease-causing mutations in SERPING1 were identified in all patients. In C1-INH-HAE type I, we identified 19 different mutations, including 6 missense mutations, 6 nonsense mutations, 2 small deletions, 1 small insertion, 2 splicing defects and 2 large deletions. Two of the mutations (c.300C>T and c.1184_1185insTA) are reported here for the first time. All C1-INH-HAE type II patients from three families harboured the same substitution (c.1396C>T). Based on the type of mutation identified in the SERPING1 gene, patients were divided into two groups: group 1 (nonsense, frameshift, large deletions/insertions, splicing defect, and mutations at Arg444) or group 2 (missense, excluding mutations at Arg444). Significant differences were found in the clinical severity score (P = 0.005), prevalence of laryngeal (P = 0.040) and facial (P = 0.013) oedema, and long-term prophylaxis (P = 0.023) between the groups with different types of mutations. Because our population consisted of related subjects, differences in the severity score between mutation groups were further confirmed using the generalized estimating equation (P = 0.038). Our study identified 20 different disease-causing mutations, including two novel mutations, in all C1-INH-HAE patients, highlighting the heterogeneity of mutations in the SERPING1 gene. Furthermore, it appears that mutations with a clear effect on C1-INH function might be responsible for a more severe disease phenotype.

  4. De novo mutations in NALCN cause a syndrome characterized by congenital contractures of the limbs and face, hypotonia, and developmental delay.

    PubMed

    Chong, Jessica X; McMillin, Margaret J; Shively, Kathryn M; Beck, Anita E; Marvin, Colby T; Armenteros, Jose R; Buckingham, Kati J; Nkinsi, Naomi T; Boyle, Evan A; Berry, Margaret N; Bocian, Maureen; Foulds, Nicola; Uzielli, Maria Luisa Giovannucci; Haldeman-Englert, Chad; Hennekam, Raoul C M; Kaplan, Paige; Kline, Antonie D; Mercer, Catherine L; Nowaczyk, Malgorzata J M; Klein Wassink-Ruiter, Jolien S; McPherson, Elizabeth W; Moreno, Regina A; Scheuerle, Angela E; Shashi, Vandana; Stevens, Cathy A; Carey, John C; Monteil, Arnaud; Lory, Philippe; Tabor, Holly K; Smith, Joshua D; Shendure, Jay; Nickerson, Deborah A; Bamshad, Michael J

    2015-03-05

    Freeman-Sheldon syndrome, or distal arthrogryposis type 2A (DA2A), is an autosomal-dominant condition caused by mutations in MYH3 and characterized by multiple congenital contractures of the face and limbs and normal cognitive development. We identified a subset of five individuals who had been putatively diagnosed with "DA2A with severe neurological abnormalities" and for whom congenital contractures of the limbs and face, hypotonia, and global developmental delay had resulted in early death in three cases; this is a unique condition that we now refer to as CLIFAHDD syndrome. Exome sequencing identified missense mutations in the sodium leak channel, non-selective (NALCN) in four families affected by CLIFAHDD syndrome. We used molecular-inversion probes to screen for NALCN in a cohort of 202 distal arthrogryposis (DA)-affected individuals as well as concurrent exome sequencing of six other DA-affected individuals, thus revealing NALCN mutations in ten additional families with "atypical" forms of DA. All 14 mutations were missense variants predicted to alter amino acid residues in or near the S5 and S6 pore-forming segments of NALCN, highlighting the functional importance of these segments. In vitro functional studies demonstrated that NALCN alterations nearly abolished the expression of wild-type NALCN, suggesting that alterations that cause CLIFAHDD syndrome have a dominant-negative effect. In contrast, homozygosity for mutations in other regions of NALCN has been reported in three families affected by an autosomal-recessive condition characterized mainly by hypotonia and severe intellectual disability. Accordingly, mutations in NALCN can cause either a recessive or dominant condition characterized by varied though overlapping phenotypic features, perhaps based on the type of mutation and affected protein domain(s). Copyright © 2015 The American Society of Human Genetics. Published by Elsevier Inc. All rights reserved.

  5. CBS mutations and MTFHR SNPs causative of hyperhomocysteinemia in Pakistani children.

    PubMed

    Ibrahim, Shahnaz; Maqbool, Saadia; Azam, Maleeha; Iqbal, Mohammad Perwaiz; Qamar, Raheel

    2018-03-29

    Three index patients with hyperhomocysteinemia and ocular anomalies were screened for cystathionine beta synthase (CBS) and methylenetetrahydrofolate reductase (MTHFR) polymorphisms. Genotyping of hyperhomocysteinemia associated MTHFR polymorphisms C677T (rs1801133) and A1298C (rs1801131) was done by PCR-restriction fragment length polymorphism. Sanger sequencing was performed for CBS exonic sequences along with consensus splice sites. In the case of MTHFR polymorphisms, all the patients were heterozygous CT for the single nucleotide polymorphism (SNP) C677T and were therefore carriers of the risk allele (T), while the patients were homozygous CC for the risk genotype of the SNP A1298C. CBS sequencing resulted in the identification of two novel mutations, a missense change (c.467T>C; p.Leu156Pro) in exon 7 and an in-frame deletion (c.808_810del; p.Glu270del) in exon 10. In addition, a recurrent missense mutation (c.770C>T; p.Thr257Met) in exon 10 of the gene was also identified. The mutations were present homozygously in the patients and were inherited from the carrier parents. This is the first report from Pakistan where novel as well as recurrent CBS mutations causing hyperhomocysteinemia and lens dislocation in three patients from different families are being reported with the predicted effect of the risk allele of the MTHFR SNP in causing hyperhomocysteinemia.

  6. SHP-2 acts via ROCK to regulate the cardiac actin cytoskeleton

    PubMed Central

    Langdon, Yvette; Tandon, Panna; Paden, Erika; Duddy, Jennifer; Taylor, Joan M.; Conlon, Frank L.

    2012-01-01

    Noonan syndrome is one of the most common causes of human congenital heart disease and is frequently associated with missense mutations in the protein phosphatase SHP-2. Interestingly, patients with acute myelogenous leukemia (AML), acute lymphoblastic leukemia (ALL), juvenile myelomonocytic leukemia (JMML) and LEOPARD syndrome frequently carry a second, somatically introduced subset of missense mutations in SHP-2. To determine the cellular and molecular mechanisms by which SHP-2 regulates heart development and, thus, understand how Noonan-associated mutations affect cardiogenesis, we introduced SHP-2 encoding the most prevalent Noonan syndrome and JMML mutations into Xenopus embryos. Resulting embryos show a direct relationship between a Noonan SHP-2 mutation and its ability to cause cardiac defects in Xenopus; embryos expressing Noonan SHP-2 mutations exhibit morphologically abnormal hearts, whereas those expressing an SHP-2 JMML-associated mutation do not. Our studies indicate that the cardiac defects associated with the introduction of the Noonan-associated SHP-2 mutations are coupled with a delay or arrest of the cardiac cell cycle in M-phase and a failure of cardiomyocyte progenitors to incorporate into the developing heart. We show that these defects are a result of an underlying malformation in the formation and polarity of cardiac actin fibers and F-actin deposition. We show that these defects can be rescued in culture and in embryos through the inhibition of the Rho-associated, coiled-coil-containing protein kinase 1 (ROCK), thus demonstrating a direct relationship between SHP-2N308D and ROCK activation in the developing heart. PMID:22278918

  7. A missense mutation in Fgfr1 causes ear and skull defects in hush puppy mice.

    PubMed

    Calvert, Jennifer A; Dedos, Skarlatos G; Hawker, Kelvin; Fleming, Michelle; Lewis, Morag A; Steel, Karen P

    2011-06-01

    The hush puppy mouse mutant has been shown previously to have skull and outer, middle, and inner ear defects, and an increase in hearing threshold. The fibroblast growth factor receptor 1 (Fgfr1) gene is located in the region of chromosome 8 containing the mutation. Sequencing of the gene in hush puppy heterozygotes revealed a missense mutation in the kinase domain of the protein (W691R). Homozygotes were found to die during development, at approximately embryonic day 8.5, and displayed a phenotype similar to null mutants. Reverse transcription PCR indicated a decrease in Fgfr1 transcript in heterozygotes and homozygotes. Generation of a construct containing the mutation allowed the function of the mutated receptor to be studied. Immunocytochemistry showed that the mutant receptor protein was present at the cell membrane, suggesting normal expression and trafficking. Measurements of changes in intracellular calcium concentration showed that the mutated receptor could not activate the IP(3) pathway, in contrast to the wild-type receptor, nor could it initiate activation of the Ras/MAP kinase pathway. Thus, the hush puppy mutation in fibroblast growth factor receptor 1 appears to cause a loss of receptor function. The mutant protein appears to have a dominant negative effect, which could be due to it dimerising with the wild-type protein and inhibiting its activity, thus further reducing the levels of functional protein. A dominant modifier, Mhspy, which reduces the effect of the hush puppy mutation on pinna and stapes development, has been mapped to the distal end of chromosome 7 and may show imprinting.

  8. A rat model of hypohidrotic ectodermal dysplasia carries a missense mutation in the Edaradd gene

    PubMed Central

    2011-01-01

    Background Hypohidrotic ectodermal dysplasia (HED) is a congenital disorder characterized by sparse hair, oligodontia, and inability to sweat. It is caused by mutations in any of three Eda pathway genes: ectodysplasin (Eda), Eda receptor (Edar), and Edar-associated death domain (Edaradd), which encode ligand, receptor, and intracellular adaptor molecule, respectively. The Eda signaling pathway activates NF-κB, which is central to ectodermal differentiation. Although the causative genes and the molecular pathway affecting HED have been identified, no curative treatment for HED has been established. Previously, we found a rat spontaneous mutation that caused defects in hair follicles and named it sparse-and-wavy (swh). Here, we have established the swh rat as the first rat model of HED and successfully identified the swh mutation. Results The swh/swh rat showed sparse hair, abnormal morphology of teeth, and absence of sweat glands. The ectoderm-derived glands, meibomian, preputial, and tongue glands, were absent. We mapped the swh mutation to the most telomeric part of rat Chr 7 and found a Pro153Ser missense mutation in the Edaradd gene. This mutation was located in the death domain of EDARADD, which is crucial for signal transduction and resulted in failure to activate NF-κB. Conclusions These findings suggest that swh is a loss-of-function mutation in the rat Edaradd and indicate that the swh/swh rat would be an excellent animal model of HED that could be used to investigate the pathological basis of the disease and the development of new therapies. PMID:22013926

  9. SHP-2 acts via ROCK to regulate the cardiac actin cytoskeleton.

    PubMed

    Langdon, Yvette; Tandon, Panna; Paden, Erika; Duddy, Jennifer; Taylor, Joan M; Conlon, Frank L

    2012-03-01

    Noonan syndrome is one of the most common causes of human congenital heart disease and is frequently associated with missense mutations in the protein phosphatase SHP-2. Interestingly, patients with acute myelogenous leukemia (AML), acute lymphoblastic leukemia (ALL), juvenile myelomonocytic leukemia (JMML) and LEOPARD syndrome frequently carry a second, somatically introduced subset of missense mutations in SHP-2. To determine the cellular and molecular mechanisms by which SHP-2 regulates heart development and, thus, understand how Noonan-associated mutations affect cardiogenesis, we introduced SHP-2 encoding the most prevalent Noonan syndrome and JMML mutations into Xenopus embryos. Resulting embryos show a direct relationship between a Noonan SHP-2 mutation and its ability to cause cardiac defects in Xenopus; embryos expressing Noonan SHP-2 mutations exhibit morphologically abnormal hearts, whereas those expressing an SHP-2 JMML-associated mutation do not. Our studies indicate that the cardiac defects associated with the introduction of the Noonan-associated SHP-2 mutations are coupled with a delay or arrest of the cardiac cell cycle in M-phase and a failure of cardiomyocyte progenitors to incorporate into the developing heart. We show that these defects are a result of an underlying malformation in the formation and polarity of cardiac actin fibers and F-actin deposition. We show that these defects can be rescued in culture and in embryos through the inhibition of the Rho-associated, coiled-coil-containing protein kinase 1 (ROCK), thus demonstrating a direct relationship between SHP-2(N308D) and ROCK activation in the developing heart.

  10. Seven novel mutations in the factor XIII A-subunit gene causing hereditary factor XIII deficiency in 10 unrelated families.

    PubMed

    Vysokovsky, A; Saxena, R; Landau, M; Zivelin, A; Eskaraev, R; Rosenberg, N; Seligsohn, U; Inbal, A

    2004-10-01

    Hereditary factor (F)XIII deficiency is a rare bleeding disorder mostly due to mutations in FXIII A subunit. We studied the molecular basis of FXIII deficiency in patients from 10 unrelated families originating from Israel, India and Tunisia. Exons 2-15 of genomic DNA consisting of coding regions and intron/exon boundaries were amplified and sequenced. Structural analysis of the mutations was undertaken by computer modeling. Seven novel mutations were identified in the FXIIIA gene. The propositus from the Ethiopian-Jewish family was found to be a compound heterozygote for two novel mutations: a 10-bp deletion in exon 12 at nucleotides 1652-1661 (followed by 22 altered amino acids and termination codon) and Ala318Val mutation. The propositus of the Tunisian family was homozygous for C insertion after nucleotide 863 within a stretch of six cytosines of exon 7. This insertion results in generation of eight altered amino acids followed by a termination codon downstream. The propositus from Indian-Jewish origin was found to be homozygous for G to T substitution at IVS 11 [+1] resulting in skipping of exons 10 and 11. In addition to the Ala318Val mutation, three of the novel mutations identified are missense mutations: Arg260Leu, Thr398Asn and Gly210Arg each occurring in a homozygous state in an Israeli-Arab and two Indian families, respectively. Structure-function correlation analysis by computer modeling of the new missense mutations predicted that Gly210Arg will cause protein misfolding, Ala318Val and Thr398Asn will interfere with the catalytic process or protein stability, and Arg260Leu will impair dimerization.

  11. Novel FGFR1 mutations in Kallmann syndrome and normosmic idiopathic hypogonadotropic hypogonadism: evidence for the involvement of an alternatively spliced isoform.

    PubMed

    Gonçalves, Catarina; Bastos, Margarida; Pignatelli, Duarte; Borges, Teresa; Aragüés, José M; Fonseca, Fernando; Pereira, Bernardo D; Socorro, Sílvia; Lemos, Manuel C

    2015-11-01

    To determine the prevalence of fibroblast growth factor receptor 1 (FGFR1) mutations and their predicted functional consequences in patients with idiopathic hypogonadotropic hypogonadism (IHH). Cross-sectional study. Multicentric. Fifty unrelated patients with IHH (21 with Kallmann syndrome and 29 with normosmic IHH). None. Patients were screened for mutations in FGFR1. The functional consequences of mutations were predicted by in silico structural and conservation analysis. Heterozygous FGFR1 mutations were identified in six (12%) kindreds. These consisted of frameshift mutations (p.Pro33-Alafs*17 and p.Tyr654*) and missense mutations in the signal peptide (p.Trp4Cys), in the D1 extracellular domain (p.Ser96Cys) and in the cytoplasmic tyrosine kinase domain (p.Met719Val). A missense mutation was identified in the alternatively spliced exon 8A (p.Ala353Thr) that exclusively affects the D3 extracellular domain of FGFR1 isoform IIIb. Structure-based and sequence-based prediction methods and the absence of these variants in 200 normal controls were all consistent with a critical role for the mutations in the activity of the receptor. Oligogenic inheritance (FGFR1/CHD7/PROKR2) was found in one patient. Two FGFR1 isoforms, IIIb and IIIc, result from alternative splicing of exons 8A and 8B, respectively. Loss-of-function of isoform IIIc is a cause of IHH, whereas isoform IIIb is thought to be redundant. Ours is the first report of normosmic IHH associated with a mutation in the alternatively spliced exon 8A and suggests that this disorder can be caused by defects in either of the two alternatively spliced FGFR1 isoforms. Copyright © 2015 American Society for Reproductive Medicine. Published by Elsevier Inc. All rights reserved.

  12. PIK3CA missense mutation is associated with unfavorable outcome in grade 3 endometrioid carcinoma but not in serous endometrial carcinoma.

    PubMed

    McIntyre, John B; Nelson, Gregg S; Ghatage, Prafull; Morris, Don; Duggan, Máire A; Lee, Cheng-Han; Doll, Corinne M; Köbel, Martin

    2014-01-01

    To evaluate the outcome association of PIK3CA mutational status within histological types of rigorously classified high-grade endometrial carcinomas. We assessed PIK3CA mutational status in exon 9 and exon 20 hot spots by Sanger sequencing of DNA derived from formalin fixed paraffin embedded tissue of 57 grade 3 endometrioid, 26 serous, 11 clear cell and 5 dedifferentiated carcinomas. We correlated PIK3CA mutation status with clinicopathological and other molecular parameters. Univariate and multivariate disease specific survival analysis was performed using Kaplan-Meier and Cox regression analyses. PIK3CA exon 9 or exon 20 missense mutations were identified in 20 of 99 (20%) high-grade endometrial carcinomas without significant difference across histological types (p=0.22). Presence of PIK3CA exon 9 or exon 20 missense mutations was associated with shorter disease specific survival within grade 3 endometrioid (p=0.0029) but not endometrial serous (p=0.57) carcinoma based on univariate analysis. Within grade 3 endometrioid carcinoma, PIK3CA exon 9 or exon 20 missense mutations were more commonly observed in cases that were deficient for mismatch repair protein expression (p=0.0058) and showed loss of ARID1A expression (p=0.037). PIK3CA exon 9 or exon 20 missense mutations are present across all histological types of high-grade endometrial carcinomas but a significant outcome association is only seen in grade 3 endometrioid carcinoma, suggesting a greater biological importance in this tumor type. Copyright © 2013 Elsevier Inc. All rights reserved.

  13. Rescue of protein expression defects may not be enough to abolish the pro-arrhythmic phenotype of long QT type 2 mutations.

    PubMed

    Perry, Matthew D; Ng, Chai Ann; Phan, Kevin; David, Erikka; Steer, Kieran; Hunter, Mark J; Mann, Stefan A; Imtiaz, Mohammad; Hill, Adam P; Ke, Ying; Vandenberg, Jamie I

    2016-07-15

    Most missense long QT syndrome type 2 (LQTS2) mutations result in Kv11.1 channels that show reduced levels of membrane expression. Pharmacological chaperones that rescue mutant channel expression could have therapeutic potential to reduce the risk of LQTS2-associated arrhythmias and sudden cardiac death, but only if the mutant Kv11.1 channels function normally (i.e. like WT channels) after membrane expression is restored. Fewer than half of mutant channels exhibit relatively normal function after rescue by low temperature. The remaining rescued missense mutant Kv11.1 channels have perturbed gating and/or ion selectivity characteristics. Co-expression of WT subunits with gating defective missense mutations ameliorates but does not eliminate the functional abnormalities observed for most mutant channels. For patients with mutations that affect gating in addition to expression, it may be necessary to use a combination therapy to restore both normal function and normal expression of the channel protein. In the heart, Kv11.1 channels pass the rapid delayed rectifier current (IKr ) which plays critical roles in repolarization of the cardiac action potential and in the suppression of arrhythmias caused by premature stimuli. Over 500 inherited mutations in Kv11.1 are known to cause long QT syndrome type 2 (LQTS2), a cardiac electrical disorder associated with an increased risk of life threatening arrhythmias. Most missense mutations in Kv11.1 reduce the amount of channel protein expressed at the membrane and, as a consequence, there has been considerable interest in developing pharmacological agents to rescue the expression of these channels. However, pharmacological chaperones will only have clinical utility if the mutant Kv11.1 channels function normally after membrane expression is restored. The aim of this study was to characterize the gating phenotype for a subset of LQTS2 mutations to assess what proportion of mutations may be suitable for rescue. As an initial screen we used reduced temperature to rescue expression defects of mutant channels expressed in Xenopus laevis oocytes. Over half (∼56%) of Kv11.1 mutants exhibited functional gating defects that either dramatically reduced the amount of current contributing to cardiac action potential repolarization and/or reduced the amount of protective current elicited in response to premature depolarizations. Our data demonstrate that if pharmacological rescue of protein expression defects is going to have clinical utility in the treatment of LQTS2 then it will be important to assess the gating phenotype of LQTS2 mutations before attempting rescue. © 2016 The Authors. The Journal of Physiology © 2016 The Physiological Society.

  14. A novel missense NDP mutation [p.(Cys93Arg)] with a manifesting carrier in an austrian family with Norrie disease.

    PubMed

    Parzefall, Thomas; Lucas, Trevor; Ritter, Markus; Ludwig, Martin; Ramsebner, Reinhard; Frohne, Alexandra; Schöfer, Christian; Hengstschläger, Markus; Frei, Klemens

    2014-01-01

    Norrie disease is a rare, X-linked genetic syndrome characterized by combined congenital blindness and progressive hearing impairment. Norrie disease is caused by alterations in the NDP gene encoding the growth factor norrin that plays a key role in vascular development and stabilization of the eye, inner ear and brain. We identified a family with 3 affected deafblind males and a single female carrier presenting with a serous retinal detachment but normal hearing. Genetic analysis revealed a novel c.277T>C missense mutation causing the substitution of a hydrophobic cysteine to a hydrophilic arginine [p.(Cys93Arg)] within the highly conserved cysteine knot domain of the norrin protein. These results should expand the scope for amniocentesis and genetic testing for Norrie disease which is gaining in importance due to novel postnatal therapeutic concepts to alleviate the devastating retinal symptoms of Norrie disease. © 2014 S. Karger AG, Basel.

  15. Role of FGF/FGFR signaling in skeletal development and homeostasis: learning from mouse models

    PubMed Central

    Su, Nan; Jin, Min; Chen, Lin

    2014-01-01

    Fibroblast growth factor (FGF)/fibroblast growth factor receptor (FGFR) signaling plays essential roles in bone development and diseases. Missense mutations in FGFs and FGFRs in humans can cause various congenital bone diseases, including chondrodysplasia syndromes, craniosynostosis syndromes and syndromes with dysregulated phosphate metabolism. FGF/FGFR signaling is also an important pathway involved in the maintenance of adult bone homeostasis. Multiple kinds of mouse models, mimicking human skeleton diseases caused by missense mutations in FGFs and FGFRs, have been established by knock-in/out and transgenic technologies. These genetically modified mice provide good models for studying the role of FGF/FGFR signaling in skeleton development and homeostasis. In this review, we summarize the mouse models of FGF signaling-related skeleton diseases and recent progresses regarding the molecular mechanisms, underlying the role of FGFs/FGFRs in the regulation of bone development and homeostasis. This review also provides a perspective view on future works to explore the roles of FGF signaling in skeletal development and homeostasis. PMID:26273516

  16. Mutational Survey of the PHEX Gene in Patients with X-linked Hypophosphatemic Rickets

    PubMed Central

    Ichikawa, Shoji; Traxler, Elizabeth A.; Estwick, Selina A.; Curry, Leah R.; Johnson, Michelle L.; Sorenson, Andrea H.; Imel, Erik A.; Econs, Michael J.

    2008-01-01

    X-linked hypophosphatemic rickets (XLH) is a dominantly inherited disorder characterized by renal phosphate wasting, aberrant vitamin D metabolism, and abnormal bone mineralization. XLH is caused by inactivating mutations in PHEX (phosphate-regulating gene with homologies to endopeptidases on the X chromosome). In this study, we sequenced the PHEX gene in subjects from 26 kindreds who were clinically diagnosed with XLH. Sequencing revealed 18 different mutations, of which thirteen have not been reported previously. In addition to deletions, splice site mutations, and missense and nonsense mutations, a rare point mutation in the 3’-untranslated region (3’-UTR) was identified as a novel cause of XLH. In summary, we identified a wide spectrum of mutations in the PHEX gene. Our data, in accord with those of others, indicate that there is no single predominant PHEX mutation responsible for XLH. PMID:18625346

  17. Development of km23-Based Diagnostics and Therapeutics

    DTIC Science & Technology

    2005-05-01

    A107km23), instead of the wild-type 96-amino acid form of km23. Furthermore, five missense mutations (T381, S55G, T56S, 189V, and V90A) were detected in...acid form of 1um23. Furthermore, five TPR-I, and T41R-II can lead to disruption of TGF-P3-signaling missense mutations (T381, S55G, T56S, 189V, and V9OA...these alterations, the three other missense mutations detected (CKII) in km23. For these sites, the prediction scores for serine and in three other

  18. Nonketotic hyperglycinemia: Functional assessment of missense variants in GLDC to understand phenotypes of the disease.

    PubMed

    Bravo-Alonso, Irene; Navarrete, Rosa; Arribas-Carreira, Laura; Perona, Almudena; Abia, David; Couce, María Luz; García-Cazorla, Angels; Morais, Ana; Domingo, Rosario; Ramos, María Antonia; Swanson, Michael A; Van Hove, Johan L K; Ugarte, Magdalena; Pérez, Belén; Pérez-Cerdá, Celia; Rodríguez-Pombo, Pilar

    2017-06-01

    The rapid analysis of genomic data is providing effective mutational confirmation in patients with clinical and biochemical hallmarks of a specific disease. This is the case for nonketotic hyperglycinemia (NKH), a Mendelian disorder causing seizures in neonates and early-infants, primarily due to mutations in the GLDC gene. However, understanding the impact of missense variants identified in this gene is a major challenge for the application of genomics into clinical practice. Herein, a comprehensive functional and structural analysis of 19 GLDC missense variants identified in a cohort of 26 NKH patients was performed. Mutant cDNA constructs were expressed in COS7 cells followed by enzymatic assays and Western blot analysis of the GCS P-protein to assess the residual activity and mutant protein stability. Structural analysis, based on molecular modeling of the 3D structure of GCS P-protein, was also performed. We identify hypomorphic variants that produce attenuated phenotypes with improved prognosis of the disease. Structural analysis allows us to interpret the effects of mutations on protein stability and catalytic activity, providing molecular evidence for clinical outcome and disease severity. Moreover, we identify an important number of mutants whose loss-of-functionality is associated with instability and, thus, are potential targets for rescue using folding therapeutic approaches. © 2017 Wiley Periodicals, Inc.

  19. Genes for spinocerebellar ataxia with blindness and deafness (SCABD/SCAR3, MIM# 271250 and SCABD2).

    PubMed

    Guissart, Claire; Drouot, Nathalie; Oncel, Ibrahim; Leheup, Bruno; Gershoni-Barush, Ruth; Muller, Jean; Ferdinandusse, Sacha; Larrieu, Lise; Anheim, Mathieu; Arslan, Elif Acar; Claustres, Mireille; Tranchant, Christine; Topaloglu, Haluk; Koenig, Michel

    2016-08-01

    Ataxia is a symptom that is often associated with syndromic inherited diseases. We previously reported the linkage of a novel syndrome, ataxia with blindness and deafness (SCAR3/SCABD, OMIM# 271250), to chromosome 6p21-p23 by linkage mapping of an Arab Israeli consanguineous family. We have now identified by whole-exome sequencing a homozygous missense mutation in the Arab Israeli family in the SLC52A2 gene located in 8qter, therefore excluding linkage of this family to 6p. We confirmed the involvement of SLC52A2 by the identification of a second mutation in an independent family with an identical syndromic presentation, which we suggest to name SCABD2. SCABD2 is therefore allelic to Brown-Vialleto-Van Laere syndrome type 2 defined by prominent motoneuronopathy and deafness, and also caused by SLC52A2 mutations. In the course of this project, we identified a clinically similar family with a homozygous missense mutation in PEX6, which is located in 6p21. Therefore, despite false linkage in the initial family, SCABD1/SCAR3 is located in 6p21 and is caused by PEX6 mutations. Both SLC52A2 and PEX6 should be included in screening panels for the diagnosis of syndromic inherited ataxias, particularly as patients with mutations in SLC52A2 can be ameliorated by riboflavin supplementation.

  20. Genes for spinocerebellar ataxia with blindness and deafness (SCABD/SCAR3, MIM# 271250 and SCABD2)

    PubMed Central

    Guissart, Claire; Drouot, Nathalie; Oncel, Ibrahim; Leheup, Bruno; Gershoni-Barush, Ruth; Muller, Jean; Ferdinandusse, Sacha; Larrieu, Lise; Anheim, Mathieu; Arslan, Elif Acar; Claustres, Mireille; Tranchant, Christine; Topaloglu, Haluk; Koenig, Michel

    2016-01-01

    Ataxia is a symptom that is often associated with syndromic inherited diseases. We previously reported the linkage of a novel syndrome, ataxia with blindness and deafness (SCAR3/SCABD, OMIM# 271250), to chromosome 6p21–p23 by linkage mapping of an Arab Israeli consanguineous family. We have now identified by whole-exome sequencing a homozygous missense mutation in the Arab Israeli family in the SLC52A2 gene located in 8qter, therefore excluding linkage of this family to 6p. We confirmed the involvement of SLC52A2 by the identification of a second mutation in an independent family with an identical syndromic presentation, which we suggest to name SCABD2. SCABD2 is therefore allelic to Brown–Vialleto–Van Laere syndrome type 2 defined by prominent motoneuronopathy and deafness, and also caused by SLC52A2 mutations. In the course of this project, we identified a clinically similar family with a homozygous missense mutation in PEX6, which is located in 6p21. Therefore, despite false linkage in the initial family, SCABD1/SCAR3 is located in 6p21 and is caused by PEX6 mutations. Both SLC52A2 and PEX6 should be included in screening panels for the diagnosis of syndromic inherited ataxias, particularly as patients with mutations in SLC52A2 can be ameliorated by riboflavin supplementation. PMID:26669662

  1. The HCM-linked W792R mutation in cardiac myosin-binding protein C reduces C6 FnIII domain stability.

    PubMed

    Smelter, Dan F; de Lange, Willem J; Cai, Wenxuan; Ge, Ying; Ralphe, J Carter

    2018-06-01

    Cardiac myosin-binding protein C (cMyBP-C) is a functional sarcomeric protein that regulates contractility in response to contractile demand, and many mutations in cMyBP-C lead to hypertrophic cardiomyopathy (HCM). To gain insight into the effects of disease-causing cMyBP-C missense mutations on contractile function, we expressed the pathogenic W792R mutation (substitution of a highly conserved tryptophan residue by an arginine residue at position 792) in mouse cardiomyocytes lacking endogenous cMyBP-C and studied the functional effects using three-dimensional engineered cardiac tissue constructs (mECTs). Based on complete conservation of tryptophan at this location in fibronectin type II (FnIII) domains, we hypothesized that the W792R mutation affects folding of the C6 FnIII domain, destabilizing the mutant protein. Adenoviral transduction of wild-type (WT) and W792R cDNA achieved equivalent mRNA transcript abundance, but not equivalent protein levels, with W792R compared with WT controls. mECTs expressing W792R demonstrated abnormal contractile kinetics compared with WT mECTs that were nearly identical to cMyBP-C-deficient mECTs. We studied whether common pathways of protein degradation were responsible for the rapid degradation of W792R cMyBP-C. Inhibition of both ubiquitin-proteasome and lysosomal degradation pathways failed to increase full-length mutant protein abundance to WT equivalence, suggesting rapid cytosolic degradation. Bacterial expression of WT and W792R protein fragments demonstrated decreased mutant stability with altered thermal denaturation and increased susceptibility to trypsin digestion. These data suggest that the W792R mutation destabilizes the C6 FnIII domain of cMyBP-C, resulting in decreased full-length protein expression. This study highlights the vulnerability of FnIII-like domains to mutations that alter domain stability and further indicates that missense mutations in cMyBP-C can cause disease through a mechanism of haploinsufficiency. NEW & NOTEWORTHY This study is one of the first to describe a disease mechanism for a missense mutation in cardiac myosin-binding protein C linked to hypertrophic cardiomyopathy. The mutation decreases stability of the fibronectin type III domain and results in substantially reduced mutant protein expression dissonant to transcript abundance.

  2. BRCA1/2 missense mutations and the value of in-silico analyses.

    PubMed

    Sadowski, Carolin E; Kohlstedt, Daniela; Meisel, Cornelia; Keller, Katja; Becker, Kerstin; Mackenroth, Luisa; Rump, Andreas; Schröck, Evelin; Wimberger, Pauline; Kast, Karin

    2017-11-01

    The clinical implications of genetic variants in BRCA1/2 in healthy and affected individuals are considerable. Variant interpretation, however, is especially challenging for missense variants. The majority of them are classified as variants of unknown clinical significance (VUS). Computational (in-silico) predictive programs are easy to access, but represent only one tool out of a wide range of complemental approaches to classify VUS. With this single-center study, we aimed to evaluate the impact of in-silico analyses in a spectrum of different BRCA1/2 missense variants. We conducted mutation analysis of BRCA1/2 in 523 index patients with suspected hereditary breast and ovarian cancer (HBOC). Classification of the genetic variants was performed according to the German Consortium (GC)-HBOC database. Additionally, all missense variants were classified by the following three in-silico prediction tools: SIFT, Mutation Taster (MT2) and PolyPhen2 (PPH2). Overall 201 different variants, 68 of which constituted missense variants were ranked as pathogenic, neutral, or unknown. The classification of missense variants by in-silico tools resulted in a higher amount of pathogenic mutations (25% vs. 13.2%) compared to the GC-HBOC-classification. Altogether, more than fifty percent (38/68, 55.9%) of missense variants were ranked differently. Sensitivity of in-silico-tools for mutation prediction was 88.9% (PPH2), 100% (SIFT) and 100% (MT2). We found a relevant discrepancy in variant classification by using in-silico prediction tools, resulting in potential overestimation and/or underestimation of cancer risk. More reliable, notably gene-specific, prediction tools and functional tests are needed to improve clinical counseling. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  3. Frequent Association between Alteration of the rdxA Gene and Metronidazole Resistance in French and North African Isolates of Helicobacter pylori

    PubMed Central

    Tankovic, Jacques; Lamarque, Dominique; Delchier, Jean-Charles; Soussy, Claude-James; Labigne, Agnes; Jenks, Peter J.

    2000-01-01

    Mutations in the rdxA gene have been associated with the acquisition of resistance to metronidazole in Helicobacter pylori. This gene encodes an NADPH nitroreductase whose expression is necessary for intracellular activation of the drug. We wished to examine whether mutations in rdxA were present in resistant H. pylori isolates infecting either French or North African patients. We determined the complete nucleotide sequences of the rdxA genes from seven French and six North African patients infected with paired resistant and sensitive strains. Genotyping by random amplified polymorphic DNA analysis confirmed the close genetic relatedness of the susceptible and resistant isolates from individual biopsies. Eight French and five North African individual resistant strains were also studied. For the French strains, an alteration in rdxA most probably implicated in resistance was found in 10 cases (seven frameshift mutations, two missense mutations, and one deletion of 211 bp). One to three putative missense mutations were identified in four cases, and a missense mutation possibly not implicated in resistance was discovered in the last case. For the North African strains, an alteration in rdxA was found in eight cases (three frameshift mutations, three missense mutations, one deletion of 6 bp, and one insertion of a variant of IS605). Two strains contained putative missense mutations, and no change was observed in rdxA of the last strain. Thus, inactivation of the rdxA gene is frequently, but not always, associated with resistance to metronidazole in French and North African clinical isolates of H. pylori. In addition, a variety of alterations of rdxA are associated with the resistant phenotype. PMID:10681326

  4. Large deletion in PIGL: a common mutational mechanism in CHIME syndrome?

    PubMed

    Ceroni, José Rm; Yamamoto, Guilherme L; Honjo, Rachel S; Kim, Chong A; Passos-Bueno, Maria R; Bertola, Débora R

    2018-01-01

    CHIME syndrome is an extremely rare autosomal recessive multisystemic disorder caused by mutations in PIGL. PIGL is an endoplasmic reticulum localized enzyme that catalyzes the second step of glycosylphosphatidylinositol (GPI) biosynthesis, which plays a role in the anchorage of cell-surface proteins including receptors, enzymes, and adhesion molecules. Germline mutations in other members of GPI and Post GPI Attachment to Proteins (PGAP) family genes have been described and constitute a group of diseases within the congenital disorders of glycosylation. Patients in this group often present alkaline phosphatase serum levels abnormalities and neurological symptoms. We report a CHIME syndrome patient who harbors a missense mutation c.500T > C (p.Leu167Pro) and a large deletion involving the 5' untranslated region and part of exon 1 of PIGL. In CHIME syndrome, a recurrent missense mutation c.500T > C (p.Leu167Pro) is found in the majority of patients, associated with a null mutation in the other allele, including an overrepresentation of large deletions. The latter are not detected by the standard analysis in sequencing techniques, including next-generation sequencing. Thus, in individuals with a clinical diagnosis of CHIME syndrome in which only one mutation is found, an active search for a large deletion should be sought.

  5. Large deletion in PIGL: a common mutational mechanism in CHIME syndrome?

    PubMed Central

    Ceroni, José RM; Yamamoto, Guilherme L; Honjo, Rachel S; Kim, Chong A; Passos-Bueno, Maria R; Bertola, Débora R

    2018-01-01

    Abstract CHIME syndrome is an extremely rare autosomal recessive multisystemic disorder caused by mutations in PIGL. PIGL is an endoplasmic reticulum localized enzyme that catalyzes the second step of glycosylphosphatidylinositol (GPI) biosynthesis, which plays a role in the anchorage of cell-surface proteins including receptors, enzymes, and adhesion molecules. Germline mutations in other members of GPI and Post GPI Attachment to Proteins (PGAP) family genes have been described and constitute a group of diseases within the congenital disorders of glycosylation. Patients in this group often present alkaline phosphatase serum levels abnormalities and neurological symptoms. We report a CHIME syndrome patient who harbors a missense mutation c.500T > C (p.Leu167Pro) and a large deletion involving the 5’ untranslated region and part of exon 1 of PIGL. In CHIME syndrome, a recurrent missense mutation c.500T > C (p.Leu167Pro) is found in the majority of patients, associated with a null mutation in the other allele, including an overrepresentation of large deletions. The latter are not detected by the standard analysis in sequencing techniques, including next-generation sequencing. Thus, in individuals with a clinical diagnosis of CHIME syndrome in which only one mutation is found, an active search for a large deletion should be sought. PMID:29473937

  6. A missense mutation in the human cytochrome b5 gene causes 46,XY disorder of sex development due to true isolated 17,20 lyase deficiency.

    PubMed

    Idkowiak, Jan; Randell, Tabitha; Dhir, Vivek; Patel, Pushpa; Shackleton, Cedric H L; Taylor, Norman F; Krone, Nils; Arlt, Wiebke

    2012-03-01

    Isolated 17,20 lyase deficiency is commonly defined by apparently normal 17α-hydroxylase activity but severely reduced 17,20 lyase activity of the bifunctional enzyme cytochrome P450 (CYP) enzyme 17A1 (CYP17A1), resulting in sex steroid deficiency but normal glucocorticoid and mineralocorticoid reserve. Cytochrome b5 (CYB5A) is thought to selectively enhance 17,20 lyase activity by facilitating the allosteric interaction of CYP17A1 with its electron donor P450 oxidoreductase (POR). We investigated a large consanguineous family including three siblings with 46,XY disorder of sex development (DSD) presenting with isolated 17,20 lyase deficiency. We investigated the clinical and biochemical phenotype, conducted genetic analyses, and functionally characterized the identified CYB5A mutation in cell-based CYP17A1 coexpression assays. All three siblings presented with 46,XY DSD, sex steroid deficiency, normal mineralocorticoids and glucocorticoids, and a urine steroid metabolome suggestive of isolated 17,20 lyase deficiency. CYP17A1 and POR sequences were normal, but we detected a homozygous CYB5A missense mutation (g.28,400A→T; p.H44L). Functional in vitro analysis revealed normal CYP17A1 17α-hydroxylase activity but severely impaired 17,20 lyase activity. In silico analysis suggested the disruption of CYB5A heme binding by p.H44L. We have identified the first human CYB5A missense mutation as the cause of isolated 17,20 lyase deficiency in three individuals with 46,XY DSD. Detailed review of previously reported cases with apparently isolated 17,20 lyase deficiency due to mutant CYP17A1 and POR reveals impaired 17α-hydroxylase activity as assessed by steroid metabolome analysis and short cosyntropin testing. This suggests that truly isolated 17,20 lyase deficiency is observed only in individuals with inactivating CYB5A mutations.

  7. TBX15 mutations cause craniofacial dysmorphism, hypoplasia of scapula and pelvis, and short stature in Cousin syndrome.

    PubMed

    Lausch, Ekkehart; Hermanns, Pia; Farin, Henner F; Alanay, Yasemin; Unger, Sheila; Nikkel, Sarah; Steinwender, Christoph; Scherer, Gerd; Spranger, Jürgen; Zabel, Bernhard; Kispert, Andreas; Superti-Furga, Andrea

    2008-11-01

    Members of the evolutionarily conserved T-box family of transcription factors are important players in developmental processes that include mesoderm formation and patterning and organogenesis both in vertebrates and invertebrates. The importance of T-box genes for human development is illustrated by the association between mutations in several of the 17 human family members and congenital errors of morphogenesis that include cardiac, craniofacial, and limb malformations. We identified two unrelated individuals with a complex cranial, cervical, auricular, and skeletal malformation syndrome with scapular and pelvic hypoplasia (Cousin syndrome) that recapitulates the dysmorphic phenotype seen in the Tbx15-deficient mice, droopy ear. Both affected individuals were homozygous for genomic TBX15 mutations that resulted in truncation of the protein and addition of a stretch of missense amino acids. Although the mutant proteins had an intact T-box and were able to bind to their target DNA sequence in vitro, the missense amino acid sequence directed them to early degradation, and cellular levels were markedly reduced. We conclude that Cousin syndrome is caused by TBX15 insufficiency and is thus the human counterpart of the droopy ear mouse.

  8. Leigh syndrome caused by mutations in the flavoprotein (Fp) subunit of succinate dehydrogenase (SDHA).

    PubMed

    Horváth, R; Abicht, A; Holinski-Feder, E; Laner, A; Gempel, K; Prokisch, H; Lochmüller, H; Klopstock, T; Jaksch, M

    2006-01-01

    Detailed clinical, neuroradiological, histological, biochemical, and genetic investigations were undertaken in a child suffering from Leigh syndrome. The clinical symptoms started at age five months and led to a severe progressive neurodegenerative disorder causing epilepsy, psychomotor retardation, and tetraspasticity. Biochemical measurement of skeletal muscle showed a severe decrease in mitochondrial complex II. Sequencing of SDHA revealed compound heterozygosity for a nonsense mutation in exon 4 (W119X) and a missense mutation in exon 3 (A83V), both absent in normal controls. In six additional patients--five with Leigh or Leigh-like syndrome and one with neuropathy and ataxia associated with isolated deficiency of complex II--mutations in SDHA were not detected, indicating genetic heterogeneity.

  9. A de novo missense mutation of FGFR2 causes facial dysplasia syndrome in Holstein cattle.

    PubMed

    Agerholm, Jørgen S; McEvoy, Fintan J; Heegaard, Steffen; Charlier, Carole; Jagannathan, Vidhya; Drögemüller, Cord

    2017-08-02

    Surveillance for bovine genetic diseases in Denmark identified a hitherto unreported congenital syndrome occurring among progeny of a Holstein sire used for artificial breeding. A genetic aetiology due to a dominant inheritance with incomplete penetrance or a mosaic germline mutation was suspected as all recorded cases were progeny of the same sire. Detailed investigations were performed to characterize the syndrome and to reveal its cause. Seven malformed calves were submitted examination. All cases shared a common morphology with the most striking lesions being severe facial dysplasia and complete prolapse of the eyes. Consequently the syndrome was named facial dysplasia syndrome (FDS). Furthermore, extensive brain malformations, including microencephaly, hydrocephalus, lobation of the cerebral hemispheres and compression of the brain were present. Subsequent data analysis of progeny of the sire revealed that around 0.5% of his offspring suffered from FDS. High density single nucleotide polymorphism (SNP) genotyping data of the seven cases and their parents were used to map the defect in the bovine genome. Significant genetic linkage was obtained for three regions, including chromosome 26 where whole genome sequencing of a case-parent trio revealed two de novo variants perfectly associated with the disease: an intronic SNP in the DMBT1 gene and a single non-synonymous variant in the FGFR2 gene. This FGFR2 missense variant (c.927G>T) affects a gene encoding a member of the fibroblast growth factor receptor family, where amino acid sequence is highly conserved between members and across species. It is predicted to change an evolutionary conserved tryptophan into a cysteine residue (p.Trp309Cys). Both variant alleles were proven to result from de novo mutation events in the germline of the sire. FDS is a novel genetic disorder of Holstein cattle. Mutations in the human FGFR2 gene are associated with various dominant inherited craniofacial dysostosis syndromes. Given the phenotypic similarities in FDS affected calves, the genetic mapping and absence of further high impact variants in the critical genome regions, it is highly likely that the missense mutation in the FGFR2 gene caused the FDS phenotype in a dominant mode of inheritance.

  10. Sudden Cardiac Death Due to Deficiency of the Mitochondrial Inorganic Pyrophosphatase PPA2.

    PubMed

    Kennedy, Hannah; Haack, Tobias B; Hartill, Verity; Mataković, Lavinija; Baumgartner, E Regula; Potter, Howard; Mackay, Richard; Alston, Charlotte L; O'Sullivan, Siobhan; McFarland, Robert; Connolly, Grainne; Gannon, Caroline; King, Richard; Mead, Scott; Crozier, Ian; Chan, Wandy; Florkowski, Chris M; Sage, Martin; Höfken, Thomas; Alhaddad, Bader; Kremer, Laura S; Kopajtich, Robert; Feichtinger, René G; Sperl, Wolfgang; Rodenburg, Richard J; Minet, Jean Claude; Dobbie, Angus; Strom, Tim M; Meitinger, Thomas; George, Peter M; Johnson, Colin A; Taylor, Robert W; Prokisch, Holger; Doudney, Kit; Mayr, Johannes A

    2016-09-01

    We have used whole-exome sequencing in ten individuals from four unrelated pedigrees to identify biallelic missense mutations in the nuclear-encoded mitochondrial inorganic pyrophosphatase (PPA2) that are associated with mitochondrial disease. These individuals show a range of severity, indicating that PPA2 mutations may cause a spectrum of mitochondrial disease phenotypes. Severe symptoms include seizures, lactic acidosis, cardiac arrhythmia, and death within days of birth. In the index family, presentation was milder and manifested as cardiac fibrosis and an exquisite sensitivity to alcohol, leading to sudden arrhythmic cardiac death in the second decade of life. Comparison of normal and mutant PPA2-containing mitochondria from fibroblasts showed that the activity of inorganic pyrophosphatase was significantly reduced in affected individuals. Recombinant PPA2 enzymes modeling hypomorphic missense mutations had decreased activity that correlated with disease severity. These findings confirm the pathogenicity of PPA2 mutations and suggest that PPA2 is a cardiomyopathy-associated protein, which has a greater physiological importance in mitochondrial function than previously recognized. Copyright © 2016 The Author(s). Published by Elsevier Inc. All rights reserved.

  11. ALDH1A3 Mutations Cause Recessive Anophthalmia and Microphthalmia

    PubMed Central

    Fares-Taie, Lucas; Gerber, Sylvie; Chassaing, Nicolas; Clayton-Smith, Jill; Hanein, Sylvain; Silva, Eduardo; Serey, Margaux; Serre, Valérie; Gérard, Xavier; Baumann, Clarisse; Plessis, Ghislaine; Demeer, Bénédicte; Brétillon, Lionel; Bole, Christine; Nitschke, Patrick; Munnich, Arnold; Lyonnet, Stanislas; Calvas, Patrick; Kaplan, Josseline; Ragge, Nicola; Rozet, Jean-Michel

    2013-01-01

    Anophthalmia and microphthalmia (A/M) are early-eye-development anomalies resulting in absent or small ocular globes, respectively. A/M anomalies occur in syndromic or nonsyndromic forms. They are genetically heterogeneous, some mutations in some genes being responsible for both anophthalmia and microphthalmia. Using a combination of homozygosity mapping, exome sequencing, and Sanger sequencing, we identified homozygosity for one splice-site and two missense mutations in the gene encoding the A3 isoform of the aldehyde dehydrogenase 1 (ALDH1A3) in three consanguineous families segregating A/M with occasional orbital cystic, neurological, and cardiac anomalies. ALDH1A3 is a key enzyme in the formation of a retinoic acid gradient along the dorso-ventral axis during early eye development. Transitory expression of mutant ALDH1A3 open reading frames showed that both missense mutations reduce the accumulation of the enzyme, potentially leading to altered retinoic acid synthesis. Although the role of retinoic acid signaling in eye development is well established, our findings provide genetic evidence of a direct link between retinoic-acid-synthesis dysfunction and early-eye-development anomalies in humans. PMID:23312594

  12. Disease-associated missense mutations in GluN2B subunit alter NMDA receptor ligand binding and ion channel properties.

    PubMed

    Fedele, Laura; Newcombe, Joseph; Topf, Maya; Gibb, Alasdair; Harvey, Robert J; Smart, Trevor G

    2018-03-06

    Genetic and bioinformatic analyses have identified missense mutations in GRIN2B encoding the NMDA receptor GluN2B subunit in autism, intellectual disability, Lennox Gastaut and West Syndromes. Here, we investigated several such mutations using a near-complete, hybrid 3D model of the human NMDAR and studied their consequences with kinetic modelling and electrophysiology. The mutants revealed reductions in glutamate potency; increased receptor desensitisation; and ablation of voltage-dependent Mg 2+ block. In addition, we provide new views on Mg 2+ and NMDA channel blocker binding sites. We demonstrate that these mutants have significant impact on excitatory transmission in developing neurons, revealing profound changes that could underlie their associated neurological disorders. Of note, the NMDAR channel mutant GluN2B V618G unusually allowed Mg 2+ permeation, whereas nearby N615I reduced Ca 2+ permeability. By identifying the binding site for an NMDAR antagonist that is used in the clinic to rescue gain-of-function phenotypes, we show that drug binding may be modified by some GluN2B disease-causing mutations.

  13. Truncating mutations of HIBCH tend to cause severe phenotypes in cases with HIBCH deficiency: a case report and brief literature review.

    PubMed

    Tan, Hu; Chen, Xin; Lv, Weigang; Linpeng, Siyuan; Liang, Desheng; Wu, Lingqian

    2018-04-27

    3-hydroxyisobutryl-CoA hydrolase (HIBCH) deficiency is a rare inborn error of valine metabolism characterized by neurodegenerative symptoms and caused by recessive mutations in the HIBCH gene. In this study, utilizing whole exome sequencing, we identified two novel splicing mutations of HIBCH (c.304+3A>G; c.1010_1011+3delTGGTA) in a Chinese patient with characterized neurodegenerative features of HIBCH deficiency and bilateral syndactyly which was not reported in previous studies. Functional tests showed that both of these two mutations destroyed the normal splicing and reduced the expression of HIBCH protein. Through a literature review, a potential phenotype-genotype correlation was found that patients carrying truncating mutations tended to have more severe phenotypes compared with those with missense mutations. Our findings would widen the mutation spectrum of HIBCH causing HIBCH deficiency and the phenotypic spectrum of the disease. The potential genotype-phenotype correlation would be profitable for the treatment and management of patients with HIBCH deficiency.

  14. Mutations in CTC1, Encoding the CTS Telomere Maintenance Complex Component 1, Cause Cerebroretinal Microangiopathy with Calcifications and Cysts

    PubMed Central

    Polvi, Anne; Linnankivi, Tarja; Kivelä, Tero; Herva, Riitta; Keating, James P.; Mäkitie, Outi; Pareyson, Davide; Vainionpää, Leena; Lahtinen, Jenni; Hovatta, Iiris; Pihko, Helena; Lehesjoki, Anna-Elina

    2012-01-01

    Cerebroretinal microangiopathy with calcifications and cysts (CRMCC) is a rare multisystem disorder characterized by extensive intracranial calcifications and cysts, leukoencephalopathy, and retinal vascular abnormalities. Additional features include poor growth, skeletal and hematological abnormalities, and recurrent gastrointestinal bleedings. Autosomal-recessive inheritance has been postulated. The pathogenesis of CRMCC is unknown, but its phenotype has key similarities with Revesz syndrome, which is caused by mutations in TINF2, a gene encoding a member of the telomere protecting shelterin complex. After a whole-exome sequencing approach in four unrelated individuals with CRMCC, we observed four recessively inherited compound heterozygous mutations in CTC1, which encodes the CTS telomere maintenance complex component 1. Sanger sequencing revealed seven more compound heterozygous mutations in eight more unrelated affected individuals. Two individuals who displayed late-onset cerebral findings, a normal fundus appearance, and no systemic findings did not have CTC1 mutations, implying that systemic findings are an important indication for CTC1 sequencing. Of the 11 mutations identified, four were missense, one was nonsense, two resulted in in-frame amino acid deletions, and four were short frameshift-creating deletions. All but two affected individuals were compound heterozygous for a missense mutation and a frameshift or nonsense mutation. No individuals with two frameshift or nonsense mutations were identified, which implies that severe disturbance of CTC1 function from both alleles might not be compatible with survival. Our preliminary functional experiments did not show evidence of severely affected telomere integrity in the affected individuals. Therefore, determining the underlying pathomechanisms associated with deficient CTC1 function will require further studies. PMID:22387016

  15. Impacts of Usher syndrome type IB mutations on human myosin VIIa motor function.

    PubMed

    Watanabe, Shinya; Umeki, Nobuhisa; Ikebe, Reiko; Ikebe, Mitsuo

    2008-09-09

    Usher syndrome (USH) is a human hereditary disorder characterized by profound congenital deafness, retinitis pigmentosa, and vestibular dysfunction. Myosin VIIa has been identified as the responsible gene for USH type 1B, and a number of missense mutations have been identified in the affected families. However, the molecular basis of the dysfunction of USH gene, myosin VIIa, in the affected families is unknown to date. Here we clarified the effects of USH1B mutations on human myosin VIIa motor function for the first time. The missense mutations of USH1B significantly inhibited the actin activation of ATPase activity of myosin VIIa. G25R, R212C, A397D, and E450Q mutations abolished the actin-activated ATPase activity completely. P503L mutation increased the basal ATPase activity for 2-3-fold but reduced the actin-activated ATPase activity to 50% of the wild type. While all of the mutations examined, except for R302H, reduced the affinity for actin and the ATP hydrolysis cycling rate, they did not largely decrease the rate of ADP release from actomyosin, suggesting that the mutations reduce the duty ratio of myosin VIIa. Taken together, the results suggest that the mutations responsible for USH1B cause the complete loss of the actin-activated ATPase activity or the reduction of duty ratio of myosin VIIa.

  16. Impacts of Usher Syndrome Type IB Mutations on Human Myosin VIIa Motor Function†

    PubMed Central

    Watanabe, Shinya; Umeki, Nobuhisa; Ikebe, Reiko; Ikebe, Mitsuo

    2010-01-01

    Usher syndrome (USH) is a human hereditary disorder characterized by profound congenital deafness, retinitis pigmentosa and vestibular dysfunction. Myosin VIIa has been identified as the responsible gene for USH type 1B, and a number of missense mutations have been identified in the affected families. However, the molecular basis of the dysfunction of USH gene, myosin VIIa, in the affected families is unknown to date. Here we clarified the effects of USH1B mutations on human myosin VIIa motor function for the first time. The missense mutations of USH1B significantly inhibited the actin activation of ATPase activity of myosin VIIa. G25R, R212C, A397D and E450Q mutations abolished the actin-activated ATPase activity completely. P503L mutation increased the basal ATPase activity for 2-3 fold, but reduced the actin-activated ATPase activity to 50% of the wild type. While all the mutations examined, except for R302H, reduced the affinity for actin and the ATP hydrolysis cycling rate, they did not largely decrease the rate of ADP release from acto-myosin, suggesting that the mutations reduce the duty ratio of myosin VIIa. Taken together, the results suggest that the mutations responsible for USH1B cause the complete loss of the actin-activated ATPase activity or the reduction of duty ratio of myosin VIIa. PMID:18700726

  17. Assessment of the potential pathogenicity of missense mutations identified in the GTPase-activating protein (GAP)-related domain of the neurofibromatosis type-1 (NF1) gene.

    PubMed

    Thomas, Laura; Richards, Mark; Mort, Matthew; Dunlop, Elaine; Cooper, David N; Upadhyaya, Meena

    2012-12-01

    Neurofibromatosis type-1 (NF1) is caused by constitutional mutations of the NF1 tumor-suppressor gene. Although ∼85% of inherited NF1 microlesions constitute truncating mutations, the remaining ∼15% are missense mutations whose pathological relevance is often unclear. The GTPase-activating protein-related domain (GRD) of the NF1-encoded protein, neurofibromin, serves to define its major function as a negative regulator of the Ras-MAPK (mitogen-activated protein kinase) signaling pathway. We have established a functional assay to assess the potential pathogenicity of 15 constitutional nonsynonymous NF1 missense mutations (11 novel and 4 previously reported but not functionally characterized) identified in the NF1-GRD (p.R1204G, p.R1204W, p.R1276Q, p.L1301R, p.I1307V, p.T1324N, p.E1327G, p.Q1336R, p.E1356G, p.R1391G, p.V1398D, p.K1409E, p.P1412R, p.K1436Q, p.S1463F). Individual mutations were introduced into an NF1-GRD expression vector and activated Ras was assayed by an enzyme-linked immunosorbent assay (ELISA). Ten NF1-GRD variants were deemed to be potentially pathogenic by virtue of significantly elevated levels of activated GTP-bound Ras in comparison to wild-type NF1 protein. The remaining five NF1-GRD variants were deemed less likely to be of pathological significance as they exhibited similar levels of activated Ras to the wild-type protein. These conclusions received broad support from both bioinformatic analysis and molecular modeling and serve to improve our understanding of NF1-GRD structure and function. © 2012 Wiley Periodicals, Inc.

  18. Mutations in LOXHD1, a Recessive-Deafness Locus, Cause Dominant Late-Onset Fuchs Corneal Dystrophy

    PubMed Central

    Riazuddin, S. Amer; Parker, David S.; McGlumphy, Elyse J.; Oh, Edwin C.; Iliff, Benjamin W.; Schmedt, Thore; Jurkunas, Ula; Schleif, Robert; Katsanis, Nicholas; Gottsch, John D.

    2012-01-01

    Fuchs corneal dystrophy (FCD) is a genetic disorder of the corneal endothelium and is the most common cause of corneal transplantation in the United States. Previously, we mapped a late-onset FCD locus, FCD2, on chromosome 18q. Here, we present next-generation sequencing of all coding exons in the FCD2 critical interval in a multigenerational pedigree in which FCD segregates as an autosomal-dominant trait. We identified a missense change in LOXHD1, a gene causing progressive hearing loss in humans, as the sole variant capable of explaining the phenotype in this pedigree. We observed LOXHD1 mRNA in cultured human corneal endothelial cells, whereas antibody staining of both human and mouse corneas showed staining in the corneal epithelium and endothelium. Corneal sections of the original proband were stained for LOXHD1 and demonstrated a distinct increase in antibody punctate staining in the endothelium and Descemet membrane; punctate staining was absent from both normal corneas and FCD corneas negative for causal LOXHD1 mutations. Subsequent interrogation of a cohort of >200 sporadic affected individuals identified another 15 heterozygous missense mutations that were absent from >800 control chromosomes. Furthermore, in silico analyses predicted that these mutations reside on the surface of the protein and are likely to affect the protein's interface and protein-protein interactions. Finally, expression of the familial LOXHD1 mutant allele as well as two sporadic mutations in cells revealed prominent cytoplasmic aggregates reminiscent of the corneal phenotype. All together, our data implicate rare alleles in LOXHD1 in the pathogenesis of FCD and highlight how different mutations in the same locus can potentially produce diverse phenotypes. PMID:22341973

  19. Presence of novel compound BCR-ABL mutations in late chronic and advanced phase imatinib sensitive CML patients indicates their possible role in CML progression.

    PubMed

    Akram, Afia Muhammad; Iqbal, Zafar; Akhtar, Tanveer; Khalid, Ahmed Mukhtar; Sabar, Muhammad Farooq; Qazi, Mahmood Hussain; Aziz, Zeba; Sajid, Nadia; Aleem, Aamer; Rasool, Mahmood; Asif, Muhammad; Aloraibi, Saleh; Aljamaan, Khaled; Iqbal, Mudassar

    2017-04-03

    BCR-ABL kinase domain (K D ) mutations are well known for causing resistance against tyrosine kinase inhibitors (TKIs) and disease progression in chronic myeloid leukemia (CML). In recent years, compound BCR-ABL mutations have emerged as a new threat to CML patients by causing higher degrees of resistance involving multiple TKIs, including ponatinib. However, there are limited reports about association of compound BCR-ABL mutations with disease progression in imatinib (IM) sensitive CML patients. Therefore, we investigated presence of ABL-K D mutations in chronic phase (n = 41), late chronic phase (n = 33) and accelerated phase (n = 16) imatinib responders. Direct sequencing analysis was used for this purpose. Eleven patients (12.22%) in late-CP CML were detected having total 24 types of point mutations, out of which 8 (72.72%) harbored compound mutated sites. SH2 contact site mutations were dominant in our study cohort, with E355G (3.33%) being the most prevalent. Five patients (45%) all having compound mutated sites, progressed to advanced phases of disease during follow up studies. Two novel silent mutations G208G and E292E/E were detected in combination with other mutants, indicating limited tolerance for BCR-ABL1 kinase domain for missense mutations. However, no patient in early CP of disease manifested mutated ABL-K D . Occurrence of mutations was found associated with elevated platelet count (p = 0.037) and patients of male sex (p = 0.049). The median overall survival and event free survival of CML patients (n = 90) was 6.98 and 5.8 y respectively. The compound missense mutations in BCR-ABL kinase domain responsible to elicit disease progression, drug resistance or disease relapse in CML, can be present in yet Imatinib sensitive patients. Disease progression observed here, emphasizes the need of ABL-K D mutation screening in late chronic phase CML patients for improved clinical management of disease.

  20. NSD1 Mutations Are the Major Cause of Sotos Syndrome and Occur in Some Cases of Weaver Syndrome but Are Rare in Other Overgrowth Phenotypes

    PubMed Central

    Douglas, Jenny; Hanks, Sandra; Temple, I. Karen; Davies, Sally; Murray, Alexandra; Upadhyaya, Meena; Tomkins, Susan; Hughes, Helen E.; Cole, Trevor R. P.; Rahman, Nazneen

    2003-01-01

    Sotos syndrome is a childhood overgrowth syndrome characterized by a distinctive facial appearance, height and head circumference >97th percentile, advanced bone age, and developmental delay. Weaver syndrome is characterized by the same criteria but has its own distinctive facial gestalt. Recently, a 2.2-Mb chromosome 5q35 microdeletion, encompassing NSD1, was reported as the major cause of Sotos syndrome, with intragenic NSD1 mutations identified in a minority of cases. We evaluated 75 patients with childhood overgrowth, for intragenic mutations and large deletions of NSD1. The series was phenotypically scored into four groups, prior to the molecular analyses: the phenotype in group 1 (n=37) was typical of Sotos syndrome; the phenotype in group 2 (n=13) was Sotos-like but with some atypical features; patients in group 3 (n=7) had Weaver syndrome, and patients in group 4 (n=18) had an overgrowth condition that was neither Sotos nor Weaver syndrome. We detected three deletions and 32 mutations (13 frameshift, 8 nonsense, 2 splice-site, and 9 missense) that are likely to impair NSD1 functions. The truncating mutations were spread throughout NSD1, but there was evidence of clustering of missense mutations in highly conserved functional domains between exons 13 and 23. There was a strong correlation between presence of an NSD1 alteration and clinical phenotype, in that 28 of 37 (76%) patients in group 1 had NSD1 mutations or deletions, whereas none of the patients in group 4 had abnormalities of NSD1. Three patients with Weaver syndrome had NSD1 mutations, all between amino acids 2142 and 2184. We conclude that intragenic mutations of NSD1 are the major cause of Sotos syndrome and account for some Weaver syndrome cases but rarely occur in other childhood overgrowth phenotypes. PMID:12464997

  1. GNE missense mutation in recessive familial amyotrophic lateral sclerosis.

    PubMed

    Köroğlu, Çiğdem; Yılmaz, Rezzak; Sorgun, Mine Hayriye; Solakoğlu, Seyhun; Şener, Özden

    2017-12-01

    Amyotrophic lateral sclerosis (ALS) is a motor neuron disease eventually leading to death from respiratory failure. Recessive inheritance is very rare. Here, we describe the clinical findings in a consanguineous family with five men afflicted with recessive ALS and the identification of the homozygous mutation responsible for the disorder. The onset of the disease ranged from 12 to 35 years of age, with variable disease progressions. We performed clinical investigations including metabolic and paraneoplastic screening, cranial and cervical imaging, and electrophysiology. We mapped the disease gene to 9p21.1-p12 with a LOD score of 5.2 via linkage mapping using genotype data for single-nucleotide polymorphism markers and performed exome sequence analysis to identify the disease-causing gene variant. We also Sanger sequenced all coding sequences of SIGMAR1, a gene reported as responsible for juvenile ALS in a family. We did not find any mutation in SIGMAR1. Instead, we identified a novel homozygous missense mutation p.(His705Arg) in GNE which was predicted as damaging by online tools. GNE has been associated with inclusion body myopathy and is expressed in many tissues. We propose that the GNE mutation underlies the pathology in the family.

  2. A G to C transversion at the last nucleotide of exon 25 of the MYH9 gene results in a missense mutation rather than in a splicing defect.

    PubMed

    Vettore, Silvia; De Rocco, Daniela; Gerber, Bernhard; Scandellari, Raffaella; Bianco, Anna Monica; Balduini, Carlo L; Pecci, Alessandro; Fabris, Fabrizio; Savoia, Anna

    2010-01-01

    MYH9-related disease (MYH9-RD) is a rare autosomal dominant disorder caused by mutations in MYH9, the gene encoding the heavy chain of non-muscle myosin IIA. Patients present with congenital macrothrombocytopenia and inclusion bodies in neutrophils and might develop sensorineural deafness, presenile cataract, and/or progressive nephropathy leading to end-stage renal failure. In two families with macrothrombocytopenia we identified a novel c.3485G > C mutation in the last nucleotide of exon 25. Bioinformatic tools for splice site prediction and minigene functional test predicted splicing anomalies of exon 25. However, analysis of RNA purified from patient's peripheral blood did not allowed us to detect any anomalies, suggesting that RNA processing is correct at least in this tissue. Therefore, we concluded that c.3485G > C leads to a novel missense mutation (p.Arg1162Thr) of myosin-9, which resulted to be slightly degraded in patient platelets. A precise definition of the effect of mutations is fundamental to improve our knowledge into the pathogenetic mechanisms responsible for the disease. Copyright © 2010 Elsevier Masson SAS. All rights reserved.

  3. Identification of novel FBN1 and TGFBR2 mutations in 65 probands with Marfan syndrome or Marfan-like phenotypes.

    PubMed

    Chung, Brian Hon-Yin; Lam, Stephen Tak-Sum; Tong, Tony Ming-For; Li, Susanna Yuk-Han; Lun, Kin-Shing; Chan, Daniel Hon-Chuen; Fok, Susanna Fung-Shan; Or, June Siu-Fong; Smith, David Keith; Yang, Wanling; Lau, Yu-Lung

    2009-07-01

    Marfan syndrome is an autosomal dominant connective tissue disorder, and mutations in the FBN1 and TGFBR2 genes have been identified in probands with MFS and related phenotypes. Using DHPLC and sequencing, we studied the mutation spectrum in 65 probands with Marfan syndrome and related phenotypes. A total of 24 mutations in FBN1 were identified, of which 19 (nine missense, six frameshift, two nonsense and two affecting splice junctions) were novel. In the remaining 41 probands, six were identified to have novel TGFBR2 mutations (one frameshift and five missense mutations). All novel mutations found in this study were confirmed to be absent in 50 unrelated normal individuals of the same ethnic background. In probands who fulfilled the Ghent criteria (n = 16), mutations in FBN1 were found in 81% of cases. None of those with TGFBR2 mutations fulfilled the Ghent criteria. Novel missense mutations of unknown significance were classified according to the latest ACMG guidelines and their likelihood to be causative was evaluated.

  4. A new de novo missense mutation in MYH2 expands clinical and genetic findings in hereditary myosin myopathies.

    PubMed

    D'Amico, A; Fattori, F; Bellacchio, E; Catteruccia, M; Servidei, S; Bertini, E

    2013-05-01

    Congenital myopathy related to mutations in myosin MyHC IIa gene (MYH2) is a rare neuromuscular disease. A single dominant missense mutation has been reported so far in a family in which the affected members had congenital joint contractures at birth, external ophthalmoplegia and proximal muscle weakness. Afterward only additional 4 recessive mutations have been identified in 5 patients presenting a mild non-progressive early-onset myopathy associated with ophthalmoparesis. We report a new de novo MYH2 missense mutation in a baby affected by a congenital myopathy characterized by severe dysphagia, respiratory distress at birth and external ophthalmoplegia. We describe clinical, histopathological and muscle imaging findings expanding the clinical and genetic spectrum of MYH2-related myopathy. Copyright © 2013 Elsevier B.V. All rights reserved.

  5. Axonal transport of TDP-43 mRNA granules in neurons is impaired by ALS-causing mutations

    PubMed Central

    Carrasco, Monica A.; Williams, Luis A.; Winborn, Christina S.; Han, Steve S. W.; Kiskinis, Evangelos; Winborn, Brett; Freibaum, Brian D.; Kanagaraj, Anderson; Clare, Alison J.; Badders, Nisha M.; Bilican, Bilada; Chaum, Edward; Chandran, Siddharthan; Shaw, Christopher E.; Eggan, Kevin C.; Maniatis, Tom; Taylor, J. Paul

    2014-01-01

    Summary The RNA binding protein TDP-43 regulates RNA metabolism at multiple levels, including transcription, RNA splicing, and mRNA stability. TDP-43 is a major component of the cytoplasmic inclusions characteristic of amyotrophic lateral sclerosis and some types of frontotemporal lobar degeneration. The importance of TDP-43 in disease is underscored by the fact that dominant missense mutations are sufficient to cause disease, although the role of TDP-43 in pathogenesis is unknown. Here we show that TDP-43 forms cytoplasmic mRNP granules that undergo bidirectional, microtubule-dependent transport in neurons in vitro and in vivo and facilitate delivery of target mRNA to distal neuronal compartments. TDP-43 mutations impair this mRNA transport function in vivo and in vitro, including in stem cell-derived motor neurons from ALS patients bearing any one of three different TDP-43 ALS-causing mutations. Thus, TDP43 mutations that cause ALS lead to partial loss of a novel cytoplasmic function of TDP-43. PMID:24507191

  6. A Hemoglobin Variant Associated with Neonatal Cyanosis and Anemia

    PubMed Central

    Crowley, Moira A.; Mollan, Todd L.; Abdulmalik, Osheisa Y.; Butler, Andrew D.; Goodwin, Emily F.; Sarkar, Arindam; Stolle, Catherine A.; Gow, Andrew J.; Olson, John S.; Weiss, Mitchell J.

    2013-01-01

    SUMMARY Globin-gene mutations are a rare but important cause of cyanosis. We identified a missense mutation in the fetal G γ-globin gene (HBG2) in a father and daughter with transient neonatal cyanosis and anemia. This new mutation modifies the ligand-binding pocket of fetal hemoglobin by means of two mechanisms. First, the relatively large side chain of methionine decreases both the affinity of oxygen for binding to the mutant hemoglobin subunit and the rate at which it does so. Second, the mutant methionine is converted to aspartic acid post-translationally, probably through oxidative mechanisms. The presence of this polar amino acid in the heme pocket is predicted to enhance hemoglobin denaturation, causing anemia. PMID:21561349

  7. Café-au-lait macules and pediatric malignancy caused by biallelic mutations in the DNA mismatch repair (MMR) gene PMS2.

    PubMed

    Jackson, Carl-Christian; Holter, Spring; Pollett, Aaron; Clendenning, Mark; Chou, Shirley; Senter, Leigha; Ramphal, Raveena; Gallinger, Steven; Boycott, Kym

    2008-06-01

    A 14-year-old male presented with a T4 sigmoid adenocarcinoma, <10 colonic adenomas and multiple café-au-lait macules. Family history was not suggestive of a dominant hereditary form of colorectal cancer. Evaluation of the tumor revealed abnormal immunohistochemical staining of the PMS2 protein and high frequency microsatellite instability. Germline analysis identified biallelic PMS2 missense mutations. A new cancer syndrome caused by biallelic mutations in the mismatch repair genes, including PMS2, is now emerging and is characterized by café-au-lait macules, colonic polyps and a distinctive tumor spectrum. (c) 2007 Wiley-Liss, Inc.

  8. [Mutations of amyloid precursor protein in early-onset familial Alzheimer's disease].

    PubMed

    Naruse, S; Tsuji, S; Miyatake, T

    1992-09-01

    Genetic linkage studies of familial Alzheimer's disease (FAD) have suggested that some form of early-onset FAD is linked to proximal long arm of chromosome 21. It has been also suggested that some form of late-onset FAD is linked to long arm of chromosome 19. Goate et al have identified a mis-sense mutation (Val to Ile) in exon 17 of the amyloid precursor protein (APP) gene in 2 of 16 early-onset FAD families, and have shown that the FAD locus in an FAD family is tightly linked to the mis-sense mutation. To determine if the mis-sense mutation is observed in different ethnic origine, we have studied some early-onset FAD families. Two early-onset FAD families showed the existence of the mutation. As the mutation has been identified in different ethnic origine and the mutation has not been observed in normal individuals, it strengthen hypothesis that the mutation is pathogenic. Recently, Val to Phe and Val to Gly mutations have been also identified at the same codon (Codon 717) of the APP gene.

  9. Prevalence of the Pro12Ala missense mutation in the PPARG2 gene in Kuwaiti patients with primary knee osteoarthritis

    PubMed Central

    Al-Jarallah, Khaled F.; Shehab, Diaa K.; Haider, Mohammad Z.

    2011-01-01

    BACKGROUND AND OBJECTIVES: Peroxisome proliferator–activated receptors (PPARs) play an important role in a number of cellular and metabolic functions. This study was carried out to determine the prevalence of a missense mutation (Pro12Ala) in the PPARG2 gene in Kuwaiti Arab patients with primary knee osteoarthritis (OA) and healthy controls with the aim of identifying a possible association. DESIGN AND SETTING: A prospective cross-sectional study carried out at three major teaching hospitals (referral centers) in the country over a one-year period. PATIENTS AND METHODS: The prevalence of PPARG2 gene Pro12Ala missense mutation was determined in 104 Kuwaiti Arab patients with primary knee OA and 111 ethnically matched healthy controls. The prevalence of this Pro12Ala missense mutation was also determined in clinical subgroups of OA patients divided on the basis of age at onset, function and radiologic grading. RESULTS The Pro-Pro genotype of the PPARG2 gene Pro12Ala missense mutation was detected in 95/104 (91.3%) cases compared to 111/111 (100%) in the control subjects. The heterozygous Pro-Ala genotype was detected in 9/104 (8.7%) of the OA patients, while it was not detected in any of the controls. The Ala-Ala genotype was not detected in any of the OA patients or the controls. No significant differences were detected in the PPARG2 gene Pro12Ala genotypes in the subgroups of patients classified on the basis of age at onset, functional assessment using Lequesne’s functional index, and radiological grading using Kellgren-Lawrence (K-L) grading. CONCLUSIONS This study found no significant association between the PPARG2 gene Pro12Ala missense mutation and knee OA. However, the presence of the Pro-Pro genotype of the PPARG2 gene mutation has a protective effect against development of OA. PMID:21245597

  10. Comparison of the effects of a truncating and a missense MYBPC3 mutation on contractile parameters of engineered heart tissue.

    PubMed

    Wijnker, Paul J M; Friedrich, Felix W; Dutsch, Alexander; Reischmann, Silke; Eder, Alexandra; Mannhardt, Ingra; Mearini, Giulia; Eschenhagen, Thomas; van der Velden, Jolanda; Carrier, Lucie

    2016-08-01

    Hypertrophic cardiomyopathy (HCM) is a cardiac genetic disease characterized by left ventricular hypertrophy, diastolic dysfunction and myocardial disarray. The most frequently mutated gene is MYBPC3, encoding cardiac myosin-binding protein-C (cMyBP-C). We compared the pathomechanisms of a truncating mutation (c.2373_2374insG) and a missense mutation (c.1591G>C) in MYBPC3 in engineered heart tissue (EHT). EHTs enable to study the direct effects of mutants without interference of secondary disease-related changes. EHTs were generated from Mybpc3-targeted knock-out (KO) and wild-type (WT) mouse cardiac cells. MYBPC3 WT and mutants were expressed in KO EHTs via adeno-associated virus. KO EHTs displayed higher maximal force and sensitivity to external [Ca(2+)] than WT EHTs. Expression of WT-Mybpc3 at MOI-100 resulted in ~73% cMyBP-C level but did not prevent the KO phenotype, whereas MOI-300 resulted in ≥95% cMyBP-C level and prevented the KO phenotype. Expression of the truncating or missense mutation (MOI-300) or their combination with WT (MOI-150 each), mimicking the homozygous or heterozygous disease state, respectively, failed to restore force to WT level. Immunofluorescence analysis revealed correct incorporation of WT and missense, but not of truncated cMyBP-C in the sarcomere. In conclusion, this study provides evidence in KO EHTs that i) haploinsufficiency affects EHT contractile function if WT cMyBP-C protein levels are ≤73%, ii) missense or truncating mutations, but not WT do not fully restore the disease phenotype and have different pathogenic mechanisms, e.g. sarcomere poisoning for the missense mutation, iii) the direct impact of (newly identified) MYBPC3 gene variants can be evaluated. Copyright © 2016 Elsevier Ltd. All rights reserved.

  11. Homozygosity for a novel missense mutation in the leptin receptor gene (P316T) in two Egyptian cousins with severe early onset obesity.

    PubMed

    Mazen, I; El-Gammal, M; Abdel-Hamid, M; Farooqi, I S; Amr, K

    2011-04-01

    Congenital deficiency of the leptin receptor is a very rare cause of severe early-onset obesity. To date, only 9 families have been reported in the literature to have mutations in the leptin receptor gene. The clinical features include severe early onset obesity, severe hyperphagia, hypogonadotropic hypogonadism, and T cell and neuroendocrine/metabolic dysfunction. Here we report two cousins with severe early onset obesity and recurrent respiratory tract infections. Their serum leptin levels were elevated but they were within the range predicted by the elevated fat mass in both cousins. Direct sequencing of the entire coding sequence of the leptin receptor gene revealed a novel homozygous missense mutation in exon 6, P316T. The mutation was found in the homozygous form in both cousins and in the heterozygote state in their parents. This mutation was not found in 200 chromosomes from 100 unrelated normal weight control subjects of Egyptian origin using PCR-RFLP analysis. In conclusion, finding this new mutation in the LEPR beside our previous mutation in the LEP gene implies that monogenic obesity syndromes may be common in the Egyptian population owing to the high rates of consanguineous marriages. Further screening of more families for mutations in LEP, LEPR, and MC4 might confirm this assumption. Copyright © 2010 Elsevier Inc. All rights reserved.

  12. Erythrocytosis and Pulmonary Hypertension in a Mouse Model of Human HIF2A Gain of Function Mutation*

    PubMed Central

    Tan, Qiulin; Kerestes, Heddy; Percy, Melanie J.; Pietrofesa, Ralph; Chen, Li; Khurana, Tejvir S.; Christofidou-Solomidou, Melpo; Lappin, Terence R. J.; Lee, Frank S.

    2013-01-01

    The central pathway for oxygen-dependent control of red cell mass is the prolyl hydroxylase domain protein (PHD):hypoxia inducible factor (HIF) pathway. PHD site specifically prolyl hydroxylates the transcription factor HIF-α, thereby targeting the latter for degradation. Under hypoxia, this modification is attenuated, allowing stabilized HIF-α to activate target genes, including that for erythropoietin (EPO). Studies employing genetically modified mice point to Hif-2α, one of two main Hif-α isoforms, as being the critical regulator of Epo in the adult mouse. More recently, erythrocytosis patients with heterozygous point mutations in the HIF2A gene have been identified; whether these mutations were polymorphisms unrelated to the phenotype could not be ruled out. In the present report, we characterize a mouse line bearing a G536W missense mutation in the Hif2a gene that corresponds to the first such human mutation identified (G537W). We obtained mice bearing both heterozygous and homozygous mutations at this locus. We find that these mice display, in a mutation dose-dependent manner, erythrocytosis and pulmonary hypertension with a high degree of penetrance. These findings firmly establish missense mutations in HIF-2α as a cause of erythrocytosis, highlight the importance of this HIF-α isoform in erythropoiesis, and point to physiologic consequences of HIF-2α dysregulation. PMID:23640890

  13. Detection of a large duplication mutation in the myosin-binding protein C3 gene in a case of hypertrophic cardiomyopathy.

    PubMed

    Meyer, Thomas; Pankuweit, Sabine; Richter, Anette; Maisch, Bernhard; Ruppert, Volker

    2013-09-15

    Hypertrophic cardiomyopathy (HCM) is a cardiovascular disease with autosomal dominant inheritance caused by mutations in genes coding for sarcomeric and/or regulatory proteins expressed in cardiomyocytes. In a small cohort of HCM patients (n=8), we searched for mutations in the two most common genes responsible for HCM and found four missense mutations in the MYH7 gene encoding cardiac β-myosin heavy chain (R204H, M493V, R719W, and R870H) and three mutations in the myosin-binding protein C3 gene (MYBPC3) including one missense (A848V) and two frameshift mutations (c.3713delTG and c.702ins26bp). The c.702ins26bp insertion resulted from the duplication of a 26-bp fragment in a 54-year-old female HCM patient presenting with clinical signs of heart failure due to diastolic dysfunction. Although such large duplications (>10 bp) in the MYBPC3 gene are very rare and have been identified only in 4 families reported so far, the identical duplication mutation was found earlier in a Dutch patient, demonstrating that it may constitute a hitherto unknown founder mutation in central European populations. This observation underscores the significance of insertions into the coding sequence of the MYBPC3 gene for the development and pathogenesis of HCM. © 2013 Elsevier B.V. All rights reserved.

  14. Structural and functional analysis of rare missense mutations in human chorionic gonadotrophin β-subunit

    PubMed Central

    Nagirnaja, Liina; Venclovas, Česlovas; Rull, Kristiina; Jonas, Kim C.; Peltoketo, Hellevi; Christiansen, Ole B.; Kairys, Visvaldas; Kivi, Gaily; Steffensen, Rudi; Huhtaniemi, Ilpo T.; Laan, Maris

    2012-01-01

    Heterodimeric hCG is one of the key hormones determining early pregnancy success. We have previously identified rare missense mutations in hCGβ genes with potential pathophysiological importance. The present study assessed the impact of these mutations on the structure and function of hCG by applying a combination of in silico (sequence and structure analysis, molecular dynamics) and in vitro (co-immunoprecipitation, immuno- and bioassays) approaches. The carrier status of each mutation was determined for 1086 North-Europeans [655 patients with recurrent miscarriage (RM)/431 healthy controls from Estonia, Finland and Denmark] using PCR-restriction fragment length polymorphism. The mutation CGB5 p.Val56Leu (rs72556325) was identified in a single heterozygous RM patient and caused a structural hindrance in the formation of the hCGα/β dimer. Although the amount of the mutant hCGβ assembled into secreted intact hCG was only 10% compared with the wild-type, a stronger signaling response was triggered upon binding to its receptor, thus compensating the effect of poor dimerization. The mutation CGB8 p.Pro73Arg (rs72556345) was found in five heterozygotes (three RM cases and two control individuals) and was inherited by two of seven studied live born children. The mutation caused ∼50% of secreted β-subunits to acquire an alternative conformation, but did not affect its biological activity. For the CGB8 p.Arg8Trp (rs72556341) substitution, the applied in vitro methods revealed no alterations in the assembly of intact hCG as also supported by an in silico analysis. In summary, the accumulated data indicate that only mutations with neutral or mild functional consequences might be tolerated in the major hCGβ genes CGB5 and CGB8. PMID:22554618

  15. In silico analysis of a disease-causing mutation in PCDH15 gene in a consanguineous Pakistani family with Usher phenotype.

    PubMed

    Saleha, Shamim; Ajmal, Muhammad; Jamil, Muhammad; Nasir, Muhammad; Hameed, Abdul

    2016-01-01

    To map Usher phenotype in a consanguineous Pakistani family and identify disease-associated mutation in a causative gene to establish phenotype-genotype correlation. A consanguineous Pakistani family in which Usher phenotype was segregating as an autosomal recessive trait was ascertained. On the basis of results of clinical investigations of affected members of this family disease was diagnosed as Usher syndrome (USH). To identify the locus responsible for the Usher phenotype in this family, genomic DNA from blood sample of each individual was genotyped using microsatellite Short Tandem Repeat (STR) markers for the known Usher syndrome loci. Then direct sequencing was performed to find out disease associated mutations in the candidate gene. By genetic linkage analysis, the USH phenotype of this family was mapped to PCDH15 locus on chromosome 10q21.1. Three different point mutations in exon 11 of PCDH15 were identified and one of them, c.1304A>C was found to be segregating with the disease phenotype in Pakistani family with Usher phenotype. This, c.1304A>C transversion mutation predicts an amino-acid substitution of aspartic acid with an alanine at residue number 435 (p.D435A) of its protein product. Moreover, in silico analysis revealed conservation of aspartic acid at position 435 and predicated this change as pathogenic. The identification of c.1304A>C pathogenic mutation in PCDH15 gene and its association with Usher syndrome in a consanguineous Pakistani family is the first example of a missense mutation of PCDH15 causing USH1 phenotype. In previous reports, it was hypothesized that severe mutations such as truncated protein of PCDH15 led to the Usher I phenotype and that missense variants are mainly responsible for non-syndromic hearing impairment.

  16. A novel pathogenic mutation of the CYP27B1 gene in a patient with vitamin D-dependent rickets type 1: a case report.

    PubMed

    Babiker, Amir M I; Al Gadi, Iman; Al-Jurayyan, Nasir A M; Al Nemri, Abdulrahman M H; Al Haboob, Ali Abdu N; Al Boukai, Ahmed Amer; Al Zahrani, Ali; Habib, Hanan Ahmed

    2014-11-05

    Rickets can occur due to Vitamin D deficiency or defects in its metabolism. Three rare genetic types of rickets with different alterations of genes have been reported, including: Vitamin D dependent rickets type 1, Vitamin D dependent rickets type 2 or also known as Vitamin D resistant rickets and 25 hydroxylase deficiency rickets. Vitamin D dependent rickets type 1 is inherited in an autosomal recessive pattern, and is caused by mutations in the CYP27B1 gene encoding the 1α-hydroxylase enzyme. We report here a new mutation in CYP27B1, which lead to Vitamin D dependent rickets type 1. We report on a 13-month-old Arabic Saudi girl with Vitamin D dependent rickets type 1 presented with multiple fractures and classic features of rickets. A whole exome sequencing identified a novel pathogenic missense mutation (CYP27B1:Homozygous c.1510C > T(p.Q504X)) which results in a protein truncating alteration. Both parents are heterozygous carriers of the mutation. Based on data search in Human Gene Mutation Database, 63 CYP27B1 alterations were reported: only 28.6% are protein truncating (5 nonsense, 13 frameshift insertions/deletions, 0 gross deletions), while 61.9% are non-truncating (38 missense, 1 small in-frame insertions/deletion), and 9.5% are possible protein-truncating (5 splice, 1 regulatory). The deleterious effect of this alteration, which was the only mutation detected in the CYP27B1 common gene of Vitamin D dependent rickets type 1 in the proband, and its autosomal recessive inheritance fashion, both support a pathogenic nature of this mutation as the cause of Vitamin D dependent rickets type 1.

  17. Spectrum of rhodopsin mutations in Korean patients with retinitis pigmentosa

    PubMed Central

    Kim, Kwang Joong; Kim, Cinoo; Bok, Jeong; Kim, Kyung-Seon; Lee, Eun-Ju; Park, Sung Pyo; Chung, Hum; Han, Bok-Ghee; Kim, Hyung-Lae; Kimm, Kuchan; Yu, Hyeong Gon

    2011-01-01

    Purpose To determine the spectrum and frequency of rhodopsin gene (RHO) mutations in Korean patients with retinitis pigmentosa (RP) and to characterize genotype–phenotype correlations in patients with mutations. Methods The RHO mutations were screened by direct sequencing, and mutation prevalence was measured in patients and controls. The impact of missense mutations to RP was predicted by segregation analysis, peptide sequence alignment, and in silico analysis. The severity of disease in patients with the missense mutations was compared by visual acuity, electroretinography, optical coherence tomography, and kinetic visual field testing. Results Five heterozygous mutations were identified in six of 302 probands with RP, including a novel mutation (c.893C>A, p.A298D) and four known mutations (c.50C>T, p.T17M; c.533A>G, p.Y178C; c.888G>T, p.K296N; and c.1040C>T, p.P347L). The allele frequency of missense mutations was measured in 114 ethnically matched controls. p.A298D, newly identified in a sporadic patient, had never been found in controls and was predicted to be pathogenic. Among the patients with the missense mutations, we observed the most severe phenotype in patients with p.P347L, less severe phenotypes in patients with p.Y178C or p.A298D, and a relatively moderate phenotype in a patient with p.T17M. Conclusions The results reveal the spectrum of RHO mutations in Korean RP patients and clinical features that vary according to mutations. Our findings will be useful for understanding these genetic spectra and the genotype–phenotype correlations and will therefore help with predicting disease prognosis and facilitating the development of gene therapy. PMID:21677794

  18. Mutations in the human UBR1 gene and the associated phenotypic spectrum.

    PubMed

    Sukalo, Maja; Fiedler, Ariane; Guzmán, Celina; Spranger, Stephanie; Addor, Marie-Claude; McHeik, Jiad N; Oltra Benavent, Manuel; Cobben, Jan M; Gillis, Lynette A; Shealy, Amy G; Deshpande, Charu; Bozorgmehr, Bita; Everman, David B; Stattin, Eva-Lena; Liebelt, Jan; Keller, Klaus-Michael; Bertola, Débora Romeo; van Karnebeek, Clara D M; Bergmann, Carsten; Liu, Zhifeng; Düker, Gesche; Rezaei, Nima; Alkuraya, Fowzan S; Oğur, Gönül; Alrajoudi, Abdullah; Venegas-Vega, Carlos A; Verbeek, Nienke E; Richmond, Erick J; Kirbiyik, Ozgür; Ranganath, Prajnya; Singh, Ankur; Godbole, Koumudi; Ali, Fouad A M; Alves, Crésio; Mayerle, Julia; Lerch, Markus M; Witt, Heiko; Zenker, Martin

    2014-05-01

    Johanson-Blizzard syndrome (JBS) is a rare, autosomal recessive disorder characterized by exocrine pancreatic insufficiency, typical facial features, dental anomalies, hypothyroidism, sensorineural hearing loss, scalp defects, urogenital and anorectal anomalies, short stature, and cognitive impairment of variable degree. This syndrome is caused by a defect of the E3 ubiquitin ligase UBR1, which is part of the proteolytic N-end rule pathway. Herein, we review previously reported (n = 29) and a total of 31 novel UBR1 mutations in relation to the associated phenotype in patients from 50 unrelated families. Mutation types include nonsense, frameshift, splice site, missense, and small in-frame deletions consistent with the hypothesis that loss of UBR1 protein function is the molecular basis of JBS. There is an association of missense mutations and small in-frame deletions with milder physical abnormalities and a normal intellectual capacity, thus suggesting that at least some of these may represent hypomorphic UBR1 alleles. The review of clinical data of a large number of molecularly confirmed JBS cases allows us to define minimal clinical criteria for the diagnosis of JBS. For all previously reported and novel UBR1 mutations together with their clinical data, a mutation database has been established at LOVD. © 2014 WILEY PERIODICALS, INC.

  19. Oligonucleotide-directed mutagenesis screen to identify pathogenic Lynch syndrome-associated MSH2 DNA mismatch repair gene variants

    PubMed Central

    Houlleberghs, Hellen; Dekker, Marleen; Lantermans, Hildo; Kleinendorst, Roos; Dubbink, Hendrikus Jan; Hofstra, Robert M. W.; Verhoef, Senno; te Riele, Hein

    2016-01-01

    Single-stranded DNA oligonucleotides can achieve targeted base-pair substitution with modest efficiency but high precision. We show that “oligo targeting” can be used effectively to study missense mutations in DNA mismatch repair (MMR) genes. Inherited inactivating mutations in DNA MMR genes are causative for the cancer predisposition Lynch syndrome (LS). Although overtly deleterious mutations in MMR genes can clearly be ascribed as the cause of LS, the functional implications of missense mutations are often unclear. We developed a genetic screen to determine the pathogenicity of these variants of uncertain significance (VUS), focusing on mutator S homolog 2 (MSH2). VUS were introduced into the endogenous Msh2 gene of mouse embryonic stem cells by oligo targeting. Subsequent selection for MMR-deficient cells using the guanine analog 6-thioguanine allowed the detection of MMR-abrogating VUS. The screen was able to distinguish weak and strong pathogenic variants from polymorphisms and was used to investigate 59 Msh2 VUS. Nineteen of the 59 VUS were identified as pathogenic. Functional assays revealed that 14 of the 19 detected variants fully abrogated MMR activity and that five of the detected variants attenuated MMR activity. Implementation of the screen in clinical practice allows proper counseling of mutation carriers and treatment of their tumors. PMID:26951660

  20. A novel mutation in DDR2 causing spondylo-meta-epiphyseal dysplasia with short limbs and abnormal calcifications (SMED-SL) results in defective intra-cellular trafficking.

    PubMed

    Al-Kindi, Adila; Kizhakkedath, Praseetha; Xu, Huifang; John, Anne; Sayegh, Abeer Al; Ganesh, Anuradha; Al-Awadi, Maha; Al-Anbouri, Lamya; Al-Gazali, Lihadh; Leitinger, Birgit; Ali, Bassam R

    2014-04-11

    The rare autosomal genetic disorder, Spondylo-meta-epiphyseal dysplasia with short limbs and abnormal calcifications (SMED-SL), is reported to be caused by missense or splice site mutations in the human discoidin domain receptor 2 (DDR2) gene. Previously our group has established that trafficking defects and loss of ligand binding are the underlying cellular mechanisms of several SMED-SL causing mutations. Here we report the clinical characteristics of two siblings of consanguineous marriage with suspected SMED-SL and identification of a novel disease-causing mutation in the DDR2 gene. Clinical evaluation and radiography were performed to evaluate the patients. All the coding exons and splice sites of the DDR2 gene were sequenced by Sanger sequencing. Subcellular localization of the mutated DDR2 protein was determined by confocal microscopy, deglycosylation assay and Western blotting. DDR2 activity was measured by collagen activation and Western analysis. In addition to the typical features of SMED-SL, one of the patients has an eye phenotype including visual impairment due to optic atrophy. DNA sequencing revealed a novel homozygous dinucleotide deletion mutation (c.2468_2469delCT) on exon 18 of the DDR2 gene in both patients. The mutation resulted in a frameshift leading to an amino acid change at position S823 and a predicted premature termination of translation (p.S823Cfs*2). Subcellular localization of the mutant protein was analyzed in mammalian cell lines, and it was found to be largely retained in the endoplasmic reticulum (ER), which was further supported by its N-glycosylation profile. In keeping with its cellular mis-localization, the mutant protein was found to be deficient in collagen-induced receptor activation, suggesting protein trafficking defects as the major cellular mechanism underlying the loss of DDR2 function in our patients. Our results indicate that the novel mutation results in defective trafficking of the DDR2 protein leading to loss of function and disease. This confirms our previous findings that DDR2 missense mutations occurring at the kinase domain result in retention of the mutant protein in the ER.

  1. A mutation-led search for novel functional domains in MeCP2.

    PubMed

    Guy, Jacky; Alexander-Howden, Beatrice; FitzPatrick, Laura; DeSousa, Dina; Koerner, Martha V; Selfridge, Jim; Bird, Adrian

    2018-04-27

    Most missense mutations causing Rett syndrome affect domains of MeCP2 that have been shown to either bind methylated DNA or interact with a transcriptional co-repressor complex. Several mutations, however, including the C-terminal truncations that account for ∼10% of cases, fall outside these characterised domains. We studied the molecular consequences of four of these "non-canonical" mutations in cultured neurons and mice to see if they reveal additional essential domains without affecting known properties of MeCP2. The results show that the mutations partially or strongly deplete the protein and also in some cases interfere with co-repressor recruitment. These mutations therefore impact the activity of known functional domains and do not invoke new molecular causes of Rett syndrome. The finding that a stable C-terminal truncation does not compromise MeCP2 function raises the possibility that small molecules which stabilise these mutant proteins may be of therapeutic value.

  2. Novel CLCN7 compound heterozygous mutations in intermediate autosomal recessive osteopetrosis.

    PubMed

    Okamoto, Nana; Kohmoto, Tomohiro; Naruto, Takuya; Masuda, Kiyoshi; Komori, Takahide; Imoto, Issei

    2017-01-01

    Osteopetrosis is a heritable disorder of the skeleton that is characterized by increased bone density on radiographs caused by defects in osteoclast formation and function. Mutations in >10 genes are identified as causative for this clinically and genetically heterogeneous disease in humans. We report two novel missense variations in a compound heterozygous state in the CLCN7 gene, detected through targeted exome sequencing, in a 15-year-old Japanese female with intermediate autosomal recessive osteopetrosis.

  3. Functional Studies of Tyrosine Hydroxylase Missense Variants Reveal Distinct Patterns of Molecular Defects in Dopa-Responsive Dystonia

    PubMed Central

    Fossbakk, Agnete; Kleppe, Rune; Knappskog, Per M; Martinez, Aurora; Haavik, Jan

    2014-01-01

    Congenital tyrosine hydroxylase deficiency (THD) is found in autosomal-recessive Dopa-responsive dystonia and related neurological syndromes. The clinical manifestations of THD are variable, ranging from early-onset lethal disease to mild Parkinson disease-like symptoms appearing in adolescence. Until 2014, approximately 70 THD patients with a total of 40 different disease-related missense mutations, five nonsense mutations, and three mutations in the promoter region of the tyrosine hydroxylase (TH) gene have been reported. We collected clinical and biochemical data in the literature for all variants, and also generated mutant forms of TH variants previously not studied (N = 23). We compared the in vitro solubility, thermal stability, and kinetic properties of the TH variants to determine the cause(s) of their impaired enzyme activity, and found great heterogeneity in all these properties among the mutated forms. Some TH variants had specific kinetic anomalies and phenylalanine hydroxylase, and Dopa oxidase activities were measured for variants that showed signs of altered substrate binding. p.Arg233His, p.Gly247Ser, and p.Phe375Leu had shifted substrate specificity from tyrosine to phenylalanine and Dopa, whereas p.Cys359Phe had an impaired activity toward these substrates. The new data about pathogenic mechanisms presented are expected to contribute to develop individualized therapy for THD patients. PMID:24753243

  4. Signal Transduction Pathway in Maspin-induced Tumor Suppression of Prostate Cancer

    DTIC Science & Technology

    2002-03-01

    the zip Ebr allele is tested in similar assays with BR-C or Sb-sbd mutants. The zipEbr mutation is associated with a missense alteration in the myosin ...cytoskeletal dynamics in elongating legs via by inducing contraction of the apical actin- myosin belt. 8 Recent evidence has shown that mutations in...the RhoA mutations used in these studies have been characterized at a molecular level (Table 2). RhoAE3 °o is a CAAX box missense mutation (C to Y

  5. Molecular analysis of mucopolysaccharidosis IVA: Common mutations and racial difference

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tomatsu, S.; Hori, T.; Nakashima, Y.

    1994-09-01

    Mucopolysaccharidosis IVA (MPS IVA) is an autosomal recessive disorder caused by a deficiency in N-acetylgalactosamine -6-sulfate sulfatase (GALNS). Studies on the molecular basis of MPS IVA have been facilitated following cloning of the full-length cDNA and genomic DNA. In this study we detected mutations from 20 Caucasian and 19 Japanese MPS IVA patients using SSCP system and compared mutations of Caucasian origin with those of Japanese origin. The results showed the presence of 16 various mutations (3 small, deletions, 2 nonsense and 11 missense mutations) for Caucasian patients and 15 (1 deletion, 1 large alteration and 13 missense mutations) formore » Japanese. Moreover, two common mutations existed; one is double gene deletion characteristic for Japanese (6 alleles; 15%) and the other is a point mutation (1113F A{yields}T transition) characteristic for Caucasian (9 alleles; 22.5%). And the clear genotype/phenotype relationship among 1342delCA, IVS1(-2), P151S, Q148X, R386C, I113F, Q473X, W220G, P151L, A291T, R90W, and P77R, for a severe type, G96B N204K and V138A for a milder type, was observed. Only R386 mutation was seen in both of the populations. Further, the precise DNA analysis for double gene deletion of a common double gene deletion has been performed by defining the breakpoints and the results showed that one deletion was caused by homologous recombination due to Alu repetitive sequences and the other was due to nonhomologous recombination of short direct repeat. Haplotype analysis for six alleles with double deletion were different, indicating the different origin of this mutation or the frequent recombination events before a mutational event. Thus the mutations in GALNS gene are very heterogeneous and the racial difference is characteristic.« less

  6. Functional consequences and rescue potential of pathogenic missense mutations in tripeptidyl peptidase I.

    PubMed

    Walus, Mariusz; Kida, Elizabeth; Golabek, Adam A

    2010-06-01

    There are 35 missense mutations among 68 different mutations in the TPP1 gene, which encodes tripeptidyl peptidase I (TPPI), a lysosomal aminopeptidase associated with classic late-infantile neuronal ceroid lipofuscinosis (CLN2 disease). To elucidate the molecular mechanisms underlying TPPI deficiency in patients carrying missense mutations and to test the amenability of mutant proteins to chemical chaperones and permissive temperature treatment, we introduced individually 14 disease-associated missense mutations into human TPP1 cDNA and analyzed the cell biology of these TPPI variants expressed in Chinese hamster ovary cells. Most TPPI variants displayed obstructed transport to the lysosomes, prolonged half-life of the proenzyme, and residual or no enzymatic activity, indicating folding abnormalities. Protein misfolding was produced by mutations located in both the prosegment (p.Gly77Arg) and throughout the length of the mature enzyme. However, the routes of removal of misfolded proteins by the cells varied, ranging from their efficient degradation by the ubiquitin/proteasome system to abundant secretion. Two TPPI variants demonstrated enhanced processing in response to folding improvement treatment, and the activity of one of them, p.Arg447His, showed a fivefold increase under permissive temperature conditions, which suggests that folding improvement strategies may ameliorate the function of some misfolding TPPI mutant proteins.

  7. Epidermal Growth Factor Receptor Activation in Glioblastoma through Novel Missense Mutations in the Extracellular Domain

    PubMed Central

    Lee, Jeffrey C; Vivanco, Igor; Beroukhim, Rameen; Huang, Julie H. Y; Feng, Whei L; DeBiasi, Ralph M; Yoshimoto, Koji; King, Jennifer C; Nghiemphu, Phioanh; Yuza, Yuki; Xu, Qing; Greulich, Heidi; Thomas, Roman K; Paez, J. Guillermo; Peck, Timothy C; Linhart, David J; Glatt, Karen A; Getz, Gad; Onofrio, Robert; Ziaugra, Liuda; Levine, Ross L; Gabriel, Stacey; Kawaguchi, Tomohiro; O'Neill, Keith; Khan, Haumith; Liau, Linda M; Nelson, Stanley F; Rao, P. Nagesh; Mischel, Paul; Pieper, Russell O; Cloughesy, Tim; Leahy, Daniel J; Sellers, William R; Sawyers, Charles L; Meyerson, Matthew; Mellinghoff, Ingo K

    2006-01-01

    Background Protein tyrosine kinases are important regulators of cellular homeostasis with tightly controlled catalytic activity. Mutations in kinase-encoding genes can relieve the autoinhibitory constraints on kinase activity, can promote malignant transformation, and appear to be a major determinant of response to kinase inhibitor therapy. Missense mutations in the EGFR kinase domain, for example, have recently been identified in patients who showed clinical responses to EGFR kinase inhibitor therapy. Methods and Findings Encouraged by the promising clinical activity of epidermal growth factor receptor (EGFR) kinase inhibitors in treating glioblastoma in humans, we have sequenced the complete EGFR coding sequence in glioma tumor samples and cell lines. We identified novel missense mutations in the extracellular domain of EGFR in 13.6% (18/132) of glioblastomas and 12.5% (1/8) of glioblastoma cell lines. These EGFR mutations were associated with increased EGFR gene dosage and conferred anchorage-independent growth and tumorigenicity to NIH-3T3 cells. Cells transformed by expression of these EGFR mutants were sensitive to small-molecule EGFR kinase inhibitors. Conclusions Our results suggest extracellular missense mutations as a novel mechanism for oncogenic EGFR activation and may help identify patients who can benefit from EGFR kinase inhibitors for treatment of glioblastoma. PMID:17177598

  8. MCM5: a new actor in the link between DNA replication and Meier-Gorlin syndrome.

    PubMed

    Vetro, Annalisa; Savasta, Salvatore; Russo Raucci, Annalisa; Cerqua, Cristina; Sartori, Geppo; Limongelli, Ivan; Forlino, Antonella; Maruelli, Silvia; Perucca, Paola; Vergani, Debora; Mazzini, Giuliano; Mattevi, Andrea; Stivala, Lucia Anna; Salviati, Leonardo; Zuffardi, Orsetta

    2017-05-01

    Meier-Gorlin syndrome (MGORS) is a rare disorder characterized by primordial dwarfism, microtia, and patellar aplasia/hypoplasia. Recessive mutations in ORC1, ORC4, ORC6, CDT1, CDC6, and CDC45, encoding members of the pre-replication (pre-RC) and pre-initiation (pre-IC) complexes, and heterozygous mutations in GMNN, a regulator of cell-cycle progression and DNA replication, have already been associated with this condition. We performed whole-exome sequencing (WES) in a patient with a clinical diagnosis of MGORS and identified biallelic variants in MCM5. This gene encodes a subunit of the replicative helicase complex, which represents a component of the pre-RC. Both variants, a missense substitution within a conserved domain critical for the helicase activity, and a single base deletion causing a frameshift and a premature stop codon, were predicted to be detrimental for the MCM5 function. Although variants of MCM5 have never been reported in specific human diseases, defect of this gene in zebrafish causes a phenotype of growth restriction overlapping the one associated with orc1 depletion. Complementation experiments in yeast showed that the plasmid carrying the missense variant was unable to rescue the lethal phenotype caused by mcm5 deletion. Moreover cell-cycle progression was delayed in patient's cells, as already shown for mutations in the ORC1 gene. Altogether our findings support the role of MCM5 as a novel gene involved in MGORS, further emphasizing that this condition is caused by impaired DNA replication.

  9. MLL2 mutation detection in 86 patients with Kabuki syndrome: a genotype-phenotype study.

    PubMed

    Makrythanasis, P; van Bon, B W; Steehouwer, M; Rodríguez-Santiago, B; Simpson, M; Dias, P; Anderlid, B M; Arts, P; Bhat, M; Augello, B; Biamino, E; Bongers, E M H F; Del Campo, M; Cordeiro, I; Cueto-González, A M; Cuscó, I; Deshpande, C; Frysira, E; Izatt, L; Flores, R; Galán, E; Gener, B; Gilissen, C; Granneman, S M; Hoyer, J; Yntema, H G; Kets, C M; Koolen, D A; Marcelis, C l; Medeira, A; Micale, L; Mohammed, S; de Munnik, S A; Nordgren, A; Psoni, S; Reardon, W; Revencu, N; Roscioli, T; Ruiterkamp-Versteeg, M; Santos, H G; Schoumans, J; Schuurs-Hoeijmakers, J H M; Silengo, M C; Toledo, L; Vendrell, T; van der Burgt, I; van Lier, B; Zweier, C; Reymond, A; Trembath, R C; Perez-Jurado, L; Dupont, J; de Vries, B B A; Brunner, H G; Veltman, J A; Merla, G; Antonarakis, S E; Hoischen, A

    2013-12-01

    Recently, pathogenic variants in the MLL2 gene were identified as the most common cause of Kabuki (Niikawa-Kuroki) syndrome (MIM#147920). To further elucidate the genotype-phenotype correlation, we studied a large cohort of 86 clinically defined patients with Kabuki syndrome (KS) for mutations in MLL2. All patients were assessed using a standardized phenotype list and all were scored using a newly developed clinical score list for KS (MLL2-Kabuki score 0-10). Sequencing of the full coding region and intron-exon boundaries of MLL2 identified a total of 45 likely pathogenic mutations (52%): 31 nonsense, 10 missense and four splice-site mutations, 34 of which were novel. In five additional patients, novel, i.e. non-dbSNP132 variants of clinically unknown relevance, were identified. Patients with likely pathogenic nonsense or missense MLL2 mutations were usually more severely affected (median 'MLL2-Kabuki score' of 6) as compared to the patients without MLL2 mutations (median 'MLL2-Kabuki score' of 5), a significant difference (p < 0.0014). Several typical facial features such as large dysplastic ears, arched eyebrows with sparse lateral third, blue sclerae, a flat nasal tip with a broad nasal root, and a thin upper and a full lower lip were observed more often in mutation positive patients. © 2013 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  10. Identification and functional characterization of three novel human melanocortin-4 receptor gene variants in an obese Chinese population.

    PubMed

    Rong, Rong; Tao, Ya-Xiong; Cheung, Bernard M Y; Xu, Aimin; Cheung, Grace C N; Lam, Karen S L

    2006-08-01

    Mutations in the melanocortin-4 receptor gene (MC4R) are the most common monogenic form of human obesity. However, the contribution of MC4R mutations to obesity in Chinese has not been investigated. We studied the frequency of MC4R mutations in an obese southern Chinese population and the functional consequences of the novel variants identified. We screened for MC4R mutations in 227 obese [body mass index (BMI) 35.29 +/- 5.75 kg/m2] and 100 lean (BMI 21.57 +/- 0.29 kg/m2) southern Chinese subjects using PCR-direct sequencing. In vitro functional studies, including cell surface expression, ligand binding, and cyclic adenosine monophosphate (cAMP) accumulation, were performed to examine the functional properties of three novel missense mutations. Apart from two previously reported polymorphisms, V103I and -176 A > C, three novel missense heterozygous variants (Y35C, C40R and M218T) were identified. The polymorphisms -176 A > C and Y35C were detected in both obese and normal subjects with similar frequency. C40R was identified only in an obese subject. Pedigree analysis revealed M218T carriers in both lean and obese subjects. The prevalence of V103I carriers in normal-weight controls was significantly higher than that in obese subjects (5.3%vs. 1.3%, P < 0.05). In vitro functional studies showed that all three novel missense variants have normal functions. Two known polymorphisms and three novel variants of the MC4R were identified. No overt functional defects were observed for the three novel MC4R variants, suggesting that they might not be the cause of obesity in variant carriers.

  11. A rare missense mutation in MYH6 associates with non-syndromic coarctation of the aorta.

    PubMed

    Bjornsson, Thorsteinn; Thorolfsdottir, Rosa B; Sveinbjornsson, Gardar; Sulem, Patrick; Norddahl, Gudmundur L; Helgadottir, Anna; Gretarsdottir, Solveig; Magnusdottir, Audur; Danielsen, Ragnar; Sigurdsson, Emil L; Adalsteinsdottir, Berglind; Gunnarsson, Sverrir I; Jonsdottir, Ingileif; Arnar, David O; Helgason, Hrodmar; Gudbjartsson, Tomas; Gudbjartsson, Daniel F; Thorsteinsdottir, Unnur; Holm, Hilma; Stefansson, Kari

    2018-03-24

    Coarctation of the aorta (CoA) accounts for 4-8% of congenital heart defects (CHDs) and confers substantial morbidity despite treatment. It is increasingly recognized as a highly heritable condition. The aim of the study was to search for sequence variants that affect the risk of CoA. We performed a genome-wide association study of CoA among Icelanders (120 cases and 355 166 controls) based on imputed variants identified through whole-genome sequencing. We found association with a rare (frequency = 0.34%) missense mutation p.Arg721Trp in MYH6 (odds ratio = 44.2, P = 5.0 × 10-22), encoding the alpha-heavy chain subunit of cardiac myosin, an essential sarcomere protein. Approximately 20% of individuals with CoA in Iceland carry this mutation. We show that p.Arg721Trp also associates with other CHDs, in particular bicuspid aortic valve. We have previously reported broad effects of p.Arg721Trp on cardiac electrical function and strong association with sick sinus syndrome and atrial fibrillation. Through a population approach, we found that a rare missense mutation p.Arg721Trp in the sarcomere gene MYH6 has a strong effect on the risk of CoA and explains a substantial fraction of the Icelanders with CoA. This is the first mutation associated with non-familial or sporadic form of CoA at a population level. The p.Arg721Trp in MYH6 causes a cardiac syndrome with highly variable expressivity and emphasizes the importance of sarcomere integrity for cardiac development and function.

  12. The major origin of seedless grapes is associated with a missense mutation in the MADS-box gene VviAGL11.

    PubMed

    Royo, Carolina; Torres-Pérez, Rafael; Mauri, Nuria; Diestro, Nieves; Cabezas, José Antonio; Marchal, Cécile; Lacombe, Thierry; Ibáñez, Javier; Tornel, Manuel; Carreño, Juan; Martínez-Zapater, José M; Carbonell-Bejerano, Pablo

    2018-05-31

    Seedlessness is greatly prized by consumers of fresh grapes. While stenospermocarpic seed abortion determined by the SEED DEVELOPMENT INHIBITOR (SDI) locus is the usual source of seedlessness in commercial grapevine (Vitis vinifera) cultivars, the underlying sdi mutation remains unknown. Here, we undertook an integrative approach to identify the causal mutation. Quantitative genetics and fine mapping in two 'Crimson Seedless' (CS)-derived F1 mapping populations confirmed the major effect of the SDI locus and delimited the sdi mutation to a 323-kb region on chromosome 18. RNA-seq comparing seed traces of seedless and seeds of seeded F1 individuals identified processes triggered during sdi-determined seed abortion, including activation of salicylic acid-dependent defenses. The RNA-seq dataset was investigated for candidate genes and, while no evidence for causal cis-acting regulatory mutations was detected, deleterious nucleotide changes in coding sequences of the seedless haplotype were predicted in two genes within the sdi fine mapping interval. Targeted re-sequencing of the two genes in a collection of 124 grapevine cultivars showed that only the point variation causing the Arg197Leu substitution in the seed morphogenesis regulator gene AGAMOUS-LIKE 11 (VviAGL11) was fully linked with stenospermocarpy. The concurrent post-zygotic variation identified for this missense polymorphism and seedlessness phenotype in seeded somatic variants of the original stenospermocarpic cultivar supports a causal effect. We postulate that seed abortion caused by this amino acid substitution in VviAGL11 is the major cause of seedlessness in cultivated grapevine. This information can be exploited to boost seedless grape breeding. {copyright, serif} 2018 American Society of Plant Biologists. All rights reserved.

  13. Allelic hierarchy of CDH23 mutations causing non-syndromic deafness DFNB12 or Usher syndrome USH1D in compound heterozygotes.

    PubMed

    Schultz, Julie M; Bhatti, Rashid; Madeo, Anne C; Turriff, Amy; Muskett, Julie A; Zalewski, Christopher K; King, Kelly A; Ahmed, Zubair M; Riazuddin, Saima; Ahmad, Nazir; Hussain, Zawar; Qasim, Muhammad; Kahn, Shaheen N; Meltzer, Meira R; Liu, Xue Z; Munisamy, Murali; Ghosh, Manju; Rehm, Heidi L; Tsilou, Ekaterini T; Griffith, Andrew J; Zein, Wadih M; Brewer, Carmen C; Riazuddin, Sheikh; Friedman, Thomas B

    2011-11-01

    Recessive mutant alleles of MYO7A, USH1C, CDH23, and PCDH15 cause non-syndromic deafness or type 1 Usher syndrome (USH1) characterised by deafness, vestibular areflexia, and vision loss due to retinitis pigmentosa. For CDH23, encoding cadherin 23, non-syndromic DFNB12 deafness is associated primarily with missense mutations hypothesised to have residual function. In contrast, homozygous nonsense, frame shift, splice site, and some missense mutations of CDH23, all of which are presumably functional null alleles, cause USH1D. The phenotype of a CDH23 compound heterozygote for a DFNB12 allele in trans configuration to an USH1D allele is not known and cannot be predicted from current understanding of cadherin 23 function in the retina and vestibular labyrinth. To address this issue, this study sought CDH23 compound heterozygotes by sequencing this gene in USH1 probands, and families segregating USH1D or DFNB12. Five non-syndromic deaf individuals were identified with normal retinal and vestibular phenotypes that segregate compound heterozygous mutations of CDH23, where one mutation is a known or predicted USH1 allele. One DFNB12 allele in trans configuration to an USH1D allele of CDH23 preserves vision and balance in deaf individuals, indicating that the DFNB12 allele is phenotypically dominant to an USH1D allele. This finding has implications for genetic counselling and the development of therapies for retinitis pigmentosa in Usher syndrome. ACCESSION NUMBERS: The cDNA and protein Genbank accession numbers for CDH23 and cadherin 23 used in this paper are AY010111.2 and AAG27034.2, respectively.

  14. SMA-Causing Missense Mutations in Survival motor neuron (Smn) Display a Wide Range of Phenotypes When Modeled in Drosophila

    PubMed Central

    Praveen, Kavita; Wen, Ying; Gray, Kelsey M.; Noto, John J.; Patlolla, Akash R.; Van Duyne, Gregory D.; Matera, A. Gregory

    2014-01-01

    Mutations in the human survival motor neuron 1 (SMN) gene are the primary cause of spinal muscular atrophy (SMA), a devastating neuromuscular disorder. SMN protein has a well-characterized role in the biogenesis of small nuclear ribonucleoproteins (snRNPs), core components of the spliceosome. Additional tissue-specific and global functions have been ascribed to SMN; however, their relevance to SMA pathology is poorly understood and controversial. Using Drosophila as a model system, we created an allelic series of twelve Smn missense mutations, originally identified in human SMA patients. We show that animals expressing these SMA-causing mutations display a broad range of phenotypic severities, similar to the human disease. Furthermore, specific interactions with other proteins known to be important for SMN's role in RNP assembly are conserved. Intragenic complementation analyses revealed that the three most severe mutations, all of which map to the YG box self-oligomerization domain of SMN, display a stronger phenotype than the null allele and behave in a dominant fashion. In support of this finding, the severe YG box mutants are defective in self-interaction assays, yet maintain their ability to heterodimerize with wild-type SMN. When expressed at high levels, wild-type SMN is able to suppress the activity of the mutant protein. These results suggest that certain SMN mutants can sequester the wild-type protein into inactive complexes. Molecular modeling of the SMN YG box dimer provides a structural basis for this dominant phenotype. These data demonstrate that important structural and functional features of the SMN YG box are conserved between vertebrates and invertebrates, emphasizing the importance of self-interaction to the proper functioning of SMN. PMID:25144193

  15. SMA-causing missense mutations in survival motor neuron (Smn) display a wide range of phenotypes when modeled in Drosophila.

    PubMed

    Praveen, Kavita; Wen, Ying; Gray, Kelsey M; Noto, John J; Patlolla, Akash R; Van Duyne, Gregory D; Matera, A Gregory

    2014-08-01

    Mutations in the human survival motor neuron 1 (SMN) gene are the primary cause of spinal muscular atrophy (SMA), a devastating neuromuscular disorder. SMN protein has a well-characterized role in the biogenesis of small nuclear ribonucleoproteins (snRNPs), core components of the spliceosome. Additional tissue-specific and global functions have been ascribed to SMN; however, their relevance to SMA pathology is poorly understood and controversial. Using Drosophila as a model system, we created an allelic series of twelve Smn missense mutations, originally identified in human SMA patients. We show that animals expressing these SMA-causing mutations display a broad range of phenotypic severities, similar to the human disease. Furthermore, specific interactions with other proteins known to be important for SMN's role in RNP assembly are conserved. Intragenic complementation analyses revealed that the three most severe mutations, all of which map to the YG box self-oligomerization domain of SMN, display a stronger phenotype than the null allele and behave in a dominant fashion. In support of this finding, the severe YG box mutants are defective in self-interaction assays, yet maintain their ability to heterodimerize with wild-type SMN. When expressed at high levels, wild-type SMN is able to suppress the activity of the mutant protein. These results suggest that certain SMN mutants can sequester the wild-type protein into inactive complexes. Molecular modeling of the SMN YG box dimer provides a structural basis for this dominant phenotype. These data demonstrate that important structural and functional features of the SMN YG box are conserved between vertebrates and invertebrates, emphasizing the importance of self-interaction to the proper functioning of SMN.

  16. Mutations in FUS cause FALS and SALS in French and French Canadian populations

    PubMed Central

    Belzil, V. V.; Valdmanis, P. N.; Dion, P. A.; Daoud, H.; Kabashi, E.; Noreau, A.; Gauthier, J.; Hince, P.; Desjarlais, A.; Bouchard, J. -P.; Lacomblez, L.; Salachas, F.; Pradat, P. -F.; Camu, W.; Meininger, V.; Dupré, N.; Rouleau, G. A.

    2009-01-01

    Background: The identification of mutations in the TARDBP and more recently the identification of mutations in the FUS gene as the cause of amyotrophic lateral sclerosis (ALS) is providing the field with new insight about the mechanisms involved in this severe neurodegenerative disease. Methods: To extend these recent genetic reports, we screened the entire gene in a cohort of 200 patients with ALS. An additional 285 patients with sporadic ALS were screened for variants in exon 15 for which mutations were previously reported. Results: In total, 3 different mutations were identified in 4 different patients, including 1 3-bp deletion in exon 3 of a patient with sporadic ALS and 2 missense mutations in exon 15 of 1 patient with familial ALS and 2 patients with sporadic ALS. Conclusions: Our study identified sporadic patients with mutations in the FUS gene. The accumulation and description of different genes and mutations helps to develop a more comprehensive picture of the genetic events underlying amyotrophic lateral sclerosis. PMID:19741216

  17. Mutations in FUS cause FALS and SALS in French and French Canadian populations.

    PubMed

    Belzil, V V; Valdmanis, P N; Dion, P A; Daoud, H; Kabashi, E; Noreau, A; Gauthier, J; Hince, P; Desjarlais, A; Bouchard, J-P; Lacomblez, L; Salachas, F; Pradat, P-F; Camu, W; Meininger, V; Dupré, N; Rouleau, G A

    2009-10-13

    The identification of mutations in the TARDBP and more recently the identification of mutations in the FUS gene as the cause of amyotrophic lateral sclerosis (ALS) is providing the field with new insight about the mechanisms involved in this severe neurodegenerative disease. To extend these recent genetic reports, we screened the entire gene in a cohort of 200 patients with ALS. An additional 285 patients with sporadic ALS were screened for variants in exon 15 for which mutations were previously reported. In total, 3 different mutations were identified in 4 different patients, including 1 3-bp deletion in exon 3 of a patient with sporadic ALS and 2 missense mutations in exon 15 of 1 patient with familial ALS and 2 patients with sporadic ALS. Our study identified sporadic patients with mutations in the FUS gene. The accumulation and description of different genes and mutations helps to develop a more comprehensive picture of the genetic events underlying amyotrophic lateral sclerosis.

  18. Identification and molecular characterisation of a homozygous missense mutation in the ADAMTS10 gene in a patient with Weill-Marchesani syndrome.

    PubMed

    Steinkellner, Hannes; Etzler, Julia; Gogoll, Laura; Neesen, Jürgen; Stifter, Eva; Brandau, Oliver; Laccone, Franco

    2015-09-01

    Weill-Marchesani syndrome is a rare disorder of the connective tissue. Functional variants in ADAMTS10 are associated with Weill-Marchesani syndrome-1. We identified a homozygous missense mutation, c.41T>A, of the ADAMTS10 gene in a 19-year-old female with typical symptoms of WMS1: proportionate short stature, brachydactyly, joint stiffness, and microspherophakia. The ADAMTS10 missense mutation was analysed in silico, with conflicting results as to its effects on protein function, but it was predicted to affect the leader sequence. Molecular characterisation in HEK293 Ebna cells revealed an intracellular mis-targeting of the ADAMTS10 protein with a reduced concentration of the polypeptide in the endoplasmic reticulum. A large reduction in glycosylation of the cytoplasmic fraction of the mutant ADAMTS10 protein versus the wild-type protein and a lack of secretion of the mutant protein are also evident in our results.In conclusion, we identified a novel missense mutation of the ADAMTS10 gene and confirmed the functional consequences suggested by the in silico analysis by conducting molecular studies.

  19. Hypomyelinating leukodystrophy-associated missense mutation in HSPD1 blunts mitochondrial dynamics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Miyamoto, Yuki; Eguchi, Takahiro; Kawahara, Kazuko

    Myelin-forming glial cells undergo dynamic morphological changes in order to produce mature myelin sheaths with multiple layers. In the central nervous system (CNS), oligodendrocytes differentiate to insulate neuronal axons with myelin sheaths. Myelin sheaths play a key role in homeostasis of the nervous system, but their related disorders lead not only to dismyelination and repeated demyelination but also to severe neuropathies. Hereditary hypomyelinating leukodystrophies (HLDs) are a group of such diseases affecting oligodendrocytes and are often caused by missense mutations of the respective responsible genes. Despite increasing identification of gene mutations through advanced nucleotide sequencing technology, studies on the relationshipsmore » between gene mutations and their effects on cellular and subcellular aberrance have not followed at the same rapid pace. In this study, we report that an HLD4-associated (Asp-29-to-Gly) mutant of mitochondrial heat shock 60-kDa protein 1 (HSPD1) causes short-length morphologies and increases the numbers of mitochondria due to their aberrant fission and fusion cycles. In experiments using a fluorescent dye probe, this mutation decreases the mitochondrial membrane potential. Also, mitochondria accumulate in perinuclear regions. HLD4-associated HSPD1 mutant blunts mitochondrial dynamics, probably resulting in oligodendrocyte malfunction. This study constitutes a first finding concerning the relationship between disease-associated HSPD1 mutation and mitochondrial dynamics, which may be similar to the relationship between another disease-associated HSPD1 mutation (MitCHAP-60 disease) and aberrant mitochondrial dynamics. - Highlights: • The HLD4 mutant of HSPD1 decreases mitochondrial fission frequency. • The HLD4 mutant decreases mitochondrial fusion frequency. • Mitochondria harboring the HLD4 mutant exhibit slow motility. • The HLD4 mutant of HSPD1 decreases mitochondrial membrane potential. • HLD4-related diseases may be due to decreased mitochondrial dynamics.« less

  20. Alagille syndrome in a Vietnamese cohort: mutation analysis and assessment of facial features.

    PubMed

    Lin, Henry C; Le Hoang, Phuc; Hutchinson, Anne; Chao, Grace; Gerfen, Jennifer; Loomes, Kathleen M; Krantz, Ian; Kamath, Binita M; Spinner, Nancy B

    2012-05-01

    Alagille syndrome (ALGS, OMIM #118450) is an autosomal dominant disorder that affects multiple organ systems including the liver, heart, eyes, vertebrae, and face. ALGS is caused by mutations in one of two genes in the Notch Signaling Pathway, Jagged1 (JAG1) or NOTCH2. In this study, analysis of 21 Vietnamese ALGS individuals led to the identification of 19 different mutations (18 JAG1 and 1 NOTCH2), 17 of which are novel, including the third reported NOTCH2 mutation in Alagille Syndrome. The spectrum of JAG1 mutations in the Vietnamese patients is similar to that previously reported, including nine frameshift, three missense, two splice site, one nonsense, two whole gene, and one partial gene deletion. The missense mutations are all likely to be disease causing, as two are loss of cysteines (C22R and C78G) and the third creates a cryptic splice site in exon 9 (G386R). No correlation between genotype and phenotype was observed. Assessment of clinical phenotype revealed that skeletal manifestations occur with a higher frequency than in previously reported Alagille cohorts. Facial features were difficult to assess and a Vietnamese pediatric gastroenterologist was only able to identify the facial phenotype in 61% of the cohort. To assess the agreement among North American dysmorphologists at detecting the presence of ALGS facial features in the Vietnamese patients, 37 clinical dysmorphologists evaluated a photographic panel of 20 Vietnamese children with and without ALGS. The dysmorphologists were unable to identify the individuals with ALGS in the majority of cases, suggesting that evaluation of facial features should not be used in the diagnosis of ALGS in this population. This is the first report of mutations and phenotypic spectrum of ALGS in a Vietnamese population. Copyright © 2012 Wiley Periodicals, Inc.

  1. A Restricted Repertoire of De Novo Mutations in ITPR1 Cause Gillespie Syndrome with Evidence for Dominant-Negative Effect

    PubMed Central

    McEntagart, Meriel; Williamson, Kathleen A.; Rainger, Jacqueline K.; Wheeler, Ann; Seawright, Anne; De Baere, Elfride; Verdin, Hannah; Bergendahl, L. Therese; Quigley, Alan; Rainger, Joe; Dixit, Abhijit; Sarkar, Ajoy; López Laso, Eduardo; Sanchez-Carpintero, Rocio; Barrio, Jesus; Bitoun, Pierre; Prescott, Trine; Riise, Ruth; McKee, Shane; Cook, Jackie; McKie, Lisa; Ceulemans, Berten; Meire, Françoise; Temple, I. Karen; Prieur, Fabienne; Williams, Jonathan; Clouston, Penny; Németh, Andrea H.; Banka, Siddharth; Bengani, Hemant; Handley, Mark; Freyer, Elisabeth; Ross, Allyson; van Heyningen, Veronica; Marsh, Joseph A.; Elmslie, Frances; FitzPatrick, David R.

    2016-01-01

    Gillespie syndrome (GS) is characterized by bilateral iris hypoplasia, congenital hypotonia, non-progressive ataxia, and progressive cerebellar atrophy. Trio-based exome sequencing identified de novo mutations in ITPR1 in three unrelated individuals with GS recruited to the Deciphering Developmental Disorders study. Whole-exome or targeted sequence analysis identified plausible disease-causing ITPR1 mutations in 10/10 additional GS-affected individuals. These ultra-rare protein-altering variants affected only three residues in ITPR1: Glu2094 missense (one de novo, one co-segregating), Gly2539 missense (five de novo, one inheritance uncertain), and Lys2596 in-frame deletion (four de novo). No clinical or radiological differences were evident between individuals with different mutations. ITPR1 encodes an inositol 1,4,5-triphosphate-responsive calcium channel. The homo-tetrameric structure has been solved by cryoelectron microscopy. Using estimations of the degree of structural change induced by known recessive- and dominant-negative mutations in other disease-associated multimeric channels, we developed a generalizable computational approach to indicate the likely mutational mechanism. This analysis supports a dominant-negative mechanism for GS variants in ITPR1. In GS-derived lymphoblastoid cell lines (LCLs), the proportion of ITPR1-positive cells using immunofluorescence was significantly higher in mutant than control LCLs, consistent with an abnormality of nuclear calcium signaling feedback control. Super-resolution imaging supports the existence of an ITPR1-lined nucleoplasmic reticulum. Mice with Itpr1 heterozygous null mutations showed no major iris defects. Purkinje cells of the cerebellum appear to be the most sensitive to impaired ITPR1 function in humans. Iris hypoplasia is likely to result from either complete loss of ITPR1 activity or structure-specific disruption of multimeric interactions. PMID:27108798

  2. A Novel Missense Mutation in SLC5A5 Gene in a Sudanese Family with Congenital Hypothyroidism.

    PubMed

    Watanabe, Yui; Ebrhim, Reham S; Abdullah, Mohamed A; Weiss, Roy E

    2018-06-05

    Thyroid hormone synthesis requires the presence of iodide. The sodium-iodide symporter (NIS) is a glycoprotein that mediates the active uptake of iodide from the blood stream into the thyroid grand. NIS defects due to SLC5A5 gene mutations are known to cause congenital hypothyroidism (CH). The proposita is a 28-year-old female whose origin is North Sudan where neonatal screening for CH is not available. She presented with severe constipation and a goiter at the age of 40 days. Laboratory testing confirmed CH, and she was started on levothyroxine. Presumably due to the delayed treatment, the patient developed mental retardation. Her younger sister presented with a goiter, tongue protrusion, and umbilical hernia, and the youngest brother was also diagnosed with CH based on a thyrotropin level >100 μIU/mL at the age of 22 days and 8 days, respectively. The two siblings were treated with levothyroxine and had normal development. Their consanguineous parents had no history of thyroid disorders. Whole-exome sequencing was performed on the proposita. This identified a novel homozygous missense mutation in the SLC5A5 gene-c.1042T>G, p.Y348D-which was subsequently confirmed by Sanger sequencing. All affected children were homozygous for the same mutation, and their unaffected mother was heterozygous. The NIS protein is composed of 13 transmembrane segments (TMS), an extracellular amino-terminus, and an intracellular carboxy-terminus. The mutation is located in the TMS IX, which has the most β-OH group-containing amino acids (serine and threonine), which is implicated in Na + binding and translocation. In conclusion, a novel homozygous missense mutation in the SLC5A5 gene was identified in this Sudanese family with CH. The mutation is located in the TMS IX of the NIS protein, which is essential for NIS function. Low iodine intake in Sudan is considered to affect the severity of hypothyroidism in patients.

  3. Contributions of PTCH Gene Variants to Isolated Cleft Lip and Palate

    PubMed Central

    Mansilla, M.A.; Cooper, M.E.; Goldstein, T.; Castilla, E.E.; Camelo, J.S. Lopez; Marazita, M.L.; Murray, J.C.

    2007-01-01

    Objective Mutations in patched (PTCH) cause the nevoid basal cell carcinoma syndrome (NBCCS), or Gorlin syndrome. Nevoid basal cell carcinoma syndrome may present with developmental anomalies, including rib and craniofacial abnormalities, and predisposes to several tumor types, including basal cell carcinoma and medulloblastoma. Cleft palate is found in 4% of individuals with nevoid basal cell carcinoma syndrome. Because there might be specific sequence alterations in PTCH that limit expression to orofacial clefting, a genetic study of PTCH was undertaken in cases with cleft lip and/or palate (CL/P) known not to have nevoid basal cell carcinoma syndrome. Results Seven new normal variants spread along the entire gene and three missense mutations were found among cases with cleft lip and/or palate. One of these variants (P295S) was not found in any of 1188 control samples. A second variant was found in a case and also in 1 of 1119 controls. The third missense (S827G) was found in 5 of 1369 cases and in 5 of 1104 controls and is likely a rare normal variant. Linkage and linkage desequilibrium also was assessed using normal variants in and adjacent to the PTCH gene in 220 families (1776 individuals), each with two or more individuals with isolated clefting. Although no statistically significant evidence of linkage (multipoint HLOD peak = 2.36) was uncovered, there was borderline evidence of significant transmission distortion for one haplotype of two single nucleotide polymorphisms located within the PTCH gene (p = .08). Conclusion Missense mutations in PTCH may be rare causes of isolated cleft lip and/or palate. An as yet unidentified variant near PTCH may act as a modifier of cleft lip and/or palate. PMID:16405370

  4. A Novel Homozygous Missense Mutation in HOXC13 Leads to Autosomal Recessive Pure Hair and Nail Ectodermal Dysplasia.

    PubMed

    Li, Xiaoxiao; Orseth, Meredith Lee; Smith, J Michael; Brehm, Mary Abigail; Agim, Nnenna Gebechi; Glass, Donald Alexander

    2017-03-01

    Pure hair and nail ectodermal dysplasia (PHNED) is a rare disorder that presents with hypotrichosis and nail dystrophy while sparing other ectodermal structures such as teeth and sweat glands. We describe a homozygous novel missense mutation in the HOXC13 gene that resulted in autosomal recessive PHNED in a Hispanic child. The mutation c.812A>G (p.Gln271Arg) is located within the DNA-binding domain of the HOXC13 gene, cosegregates within the family, and is predicted to be maximally damaging. This is the first reported case of a missense HOXC13 mutation resulting in PHNED and the first reported case of PHNED identified in a North American family. Our findings illustrate the critical role of HOXC13 in human hair and nail development. © 2017 Wiley Periodicals, Inc.

  5. CDH23 mutation and phenotype heterogeneity: a profile of 107 diverse families with Usher syndrome and nonsyndromic deafness.

    PubMed

    Astuto, L M; Bork, J M; Weston, M D; Askew, J W; Fields, R R; Orten, D J; Ohliger, S J; Riazuddin, S; Morell, R J; Khan, S; Riazuddin, S; Kremer, H; van Hauwe, P; Moller, C G; Cremers, C W R J; Ayuso, C; Heckenlively, J R; Rohrschneider, K; Spandau, U; Greenberg, J; Ramesar, R; Reardon, W; Bitoun, P; Millan, J; Legge, R; Friedman, T B; Kimberling, W J

    2002-08-01

    Usher syndrome type I is characterized by congenital hearing loss, retinitis pigmentosa (RP), and variable vestibular areflexia. Usher syndrome type ID, one of seven Usher syndrome type I genetic localizations, have been mapped to a chromosomal interval that overlaps with a nonsyndromic-deafness localization, DFNB12. Mutations in CDH23, a gene that encodes a putative cell-adhesion protein with multiple cadherin-like domains, are responsible for both Usher syndrome and DFNB12 nonsyndromic deafness. Specific CDH23 mutational defects have been identified that differentiate these two phenotypes. Only missense mutations of CDH23 have been observed in families with nonsyndromic deafness, whereas nonsense, frameshift, splice-site, and missense mutations have been identified in families with Usher syndrome. In the present study, a panel of 69 probands with Usher syndrome and 38 probands with recessive nonsyndromic deafness were screened for the presence of mutations in the entire coding region of CDH23, by heteroduplex, single-strand conformation polymorphism, and direct sequence analyses. A total of 36 different CDH23 mutations were detected in 45 families; 33 of these mutations were novel, including 18 missense, 3 nonsense, 5 splicing defects, 5 microdeletions, and 2 insertions. A total of seven mutations were common to more than one family. Numerous exonic and intronic polymorphisms also were detected. Results of ophthalmologic examinations of the patients with nonsyndromic deafness have found asymptomatic RP-like manifestations, indicating that missense mutations may have a subtle effect in the retina. Furthermore, patients with mutations in CDH23 display a wide range of hearing loss and RP phenotypes, differing in severity, age at onset, type, and the presence or absence of vestibular areflexia.

  6. Missense mutations of MLH1 and MSH2 genes detected in patients with gastrointestinal cancer are associated with exonic splicing enhancers and silencers

    PubMed Central

    ZHU, MING; CHEN, HUI-MEI; WANG, YA-PING

    2013-01-01

    The MLH1 and MSH2 genes in DNA mismatch repair are important in the pathogenesis of gastrointestinal cancer. Recent studies of normal and alternative splicing suggest that the deleterious effects of missense mutations may in fact be splicing-related when they are located in exonic splicing enhancers (ESEs) or exonic splicing silencers (ESSs). In this study, we used ESE-finder and FAS-ESS software to analyze the potential ESE/ESS motifs of the 114 missense mutations detected in the two genes in East Asian gastrointestinal cancer patients. In addition, we used the SIFT tool to functionally analyze these mutations. The amount of the ESE losses (68) was 51.1% higher than the ESE gains (45) of all the mutations. However, the amount of the ESS gains (27) was 107.7% higher than the ESS losses (13). In total, 56 (49.1%) mutations possessed a potential exonic splicing regulator (ESR) error. Eighty-one mutations (71.1%) were predicted to be deleterious with a lower tolerance index as detected by the Sorting Intolerant from Tolerant (SIFT) tool. Among these, 38 (33.3%) mutations were predicted to be functionally deleterious and possess one potential ESR error, while 18 (15.8%) mutations were predicted to be functionally deleterious and exhibit two potential ESR errors. These may be more likely to affect exon splicing. Our results indicated that there is a strong correlation between missense mutations in MLH1 and MSH2 genes detected in East Asian gastrointestinal cancer patients and ESR motifs. In order to correctly understand the molecular nature of mutations, splicing patterns should be compared between wild-type and mutant samples. PMID:23760103

  7. Missense mutations located in structural p53 DNA-binding motifs are associated with extremely poor survival in chronic lymphocytic leukemia.

    PubMed

    Trbusek, Martin; Smardova, Jana; Malcikova, Jitka; Sebejova, Ludmila; Dobes, Petr; Svitakova, Miluse; Vranova, Vladimira; Mraz, Marek; Francova, Hana Skuhrova; Doubek, Michael; Brychtova, Yvona; Kuglik, Petr; Pospisilova, Sarka; Mayer, Jiri

    2011-07-01

    There is a distinct connection between TP53 defects and poor prognosis in chronic lymphocytic leukemia (CLL). It remains unclear whether patients harboring TP53 mutations represent a homogenous prognostic group. We evaluated the survival of patients with CLL and p53 defects identified at our institution by p53 yeast functional assay and complementary interphase fluorescence in situ hybridization analysis detecting del(17p) from 2003 to 2010. A defect of the TP53 gene was identified in 100 of 550 patients. p53 mutations were strongly associated with the deletion of 17p and the unmutated IgVH locus (both P < .001). Survival assessed from the time of abnormality detection was significantly reduced in patients with both missense (P < .001) and nonmissense p53 mutations (P = .004). In addition, patients harboring missense mutation located in p53 DNA-binding motifs (DBMs), structurally well-defined parts of the DNA-binding domain, manifested a clearly shorter median survival (12 months) compared with patients having missense mutations outside DBMs (41 months; P = .002) or nonmissense alterations (36 months; P = .005). The difference in survival was similar in the analysis limited to patients harboring mutation accompanied by del(17p) and was also confirmed in a subgroup harboring TP53 defect at diagnosis. The patients with p53 DBMs mutation (at diagnosis) also manifested a short median time to first therapy (TTFT; 1 month). The substantially worse survival and the short TTFT suggest a strong mutated p53 gain-of-function phenotype in patients with CLL with DBMs mutations. The impact of p53 DBMs mutations on prognosis and response to therapy should be analyzed in investigative clinical trials.

  8. CDH23 Mutation and Phenotype Heterogeneity: A Profile of 107 Diverse Families with Usher Syndrome and Nonsyndromic Deafness

    PubMed Central

    Astuto, L. M.; Bork, J. M.; Weston, M. D.; Askew, J. W.; Fields, R. R.; Orten, D. J.; Ohliger, S. J.; Riazuddin, S.; Morell, R. J.; Khan, S.; Riazuddin, S.; Kremer, H.; van Hauwe, P.; Moller, C. G.; Cremers, C. W. R. J.; Ayuso, C.; Heckenlively, J. R.; Rohrschneider, K.; Spandau, U.; Greenberg, J.; Ramesar, R.; Reardon, W.; Bitoun, P.; Millan, J.; Legge, R.; Friedman, T. B.; Kimberling, W. J.

    2002-01-01

    Usher syndrome type I is characterized by congenital hearing loss, retinitis pigmentosa (RP), and variable vestibular areflexia. Usher syndrome type ID, one of seven Usher syndrome type I genetic localizations, have been mapped to a chromosomal interval that overlaps with a nonsyndromic-deafness localization, DFNB12. Mutations in CDH23, a gene that encodes a putative cell-adhesion protein with multiple cadherin-like domains, are responsible for both Usher syndrome and DFNB12 nonsyndromic deafness. Specific CDH23 mutational defects have been identified that differentiate these two phenotypes. Only missense mutations of CDH23 have been observed in families with nonsyndromic deafness, whereas nonsense, frameshift, splice-site, and missense mutations have been identified in families with Usher syndrome. In the present study, a panel of 69 probands with Usher syndrome and 38 probands with recessive nonsyndromic deafness were screened for the presence of mutations in the entire coding region of CDH23, by heteroduplex, single-strand conformation polymorphism, and direct sequence analyses. A total of 36 different CDH23 mutations were detected in 45 families; 33 of these mutations were novel, including 18 missense, 3 nonsense, 5 splicing defects, 5 microdeletions, and 2 insertions. A total of seven mutations were common to more than one family. Numerous exonic and intronic polymorphisms also were detected. Results of ophthalmologic examinations of the patients with nonsyndromic deafness have found asymptomatic RP–like manifestations, indicating that missense mutations may have a subtle effect in the retina. Furthermore, patients with mutations in CDH23 display a wide range of hearing loss and RP phenotypes, differing in severity, age at onset, type, and the presence or absence of vestibular areflexia. PMID:12075507

  9. Recessive cardiac phenotypes in induced pluripotent stem cell models of Jervell and Lange-Nielsen syndrome: disease mechanisms and pharmacological rescue.

    PubMed

    Zhang, Miao; D'Aniello, Cristina; Verkerk, Arie O; Wrobel, Eva; Frank, Stefan; Ward-van Oostwaard, Dorien; Piccini, Ilaria; Freund, Christian; Rao, Jyoti; Seebohm, Guiscard; Atsma, Douwe E; Schulze-Bahr, Eric; Mummery, Christine L; Greber, Boris; Bellin, Milena

    2014-12-16

    Jervell and Lange-Nielsen syndrome (JLNS) is one of the most severe life-threatening cardiac arrhythmias. Patients display delayed cardiac repolarization, associated high risk of sudden death due to ventricular tachycardia, and congenital bilateral deafness. In contrast to the autosomal dominant forms of long QT syndrome, JLNS is a recessive trait, resulting from homozygous (or compound heterozygous) mutations in KCNQ1 or KCNE1. These genes encode the α and β subunits, respectively, of the ion channel conducting the slow component of the delayed rectifier K(+) current, IKs. We used complementary approaches, reprogramming patient cells and genetic engineering, to generate human induced pluripotent stem cell (hiPSC) models of JLNS, covering splice site (c.478-2A>T) and missense (c.1781G>A) mutations, the two major classes of JLNS-causing defects in KCNQ1. Electrophysiological comparison of hiPSC-derived cardiomyocytes (CMs) from homozygous JLNS, heterozygous, and wild-type lines recapitulated the typical and severe features of JLNS, including pronounced action and field potential prolongation and severe reduction or absence of IKs. We show that this phenotype had distinct underlying molecular mechanisms in the two sets of cell lines: the previously unidentified c.478-2A>T mutation was amorphic and gave rise to a strictly recessive phenotype in JLNS-CMs, whereas the missense c.1781G>A lesion caused a gene dosage-dependent channel reduction at the cell membrane. Moreover, adrenergic stimulation caused action potential prolongation specifically in JLNS-CMs. Furthermore, sensitivity to proarrhythmic drugs was strongly enhanced in JLNS-CMs but could be pharmacologically corrected. Our data provide mechanistic insight into distinct classes of JLNS-causing mutations and demonstrate the potential of hiPSC-CMs in drug evaluation.

  10. Linkage and candidate gene analysis of X-linked familial exudative vitreoretinopathy.

    PubMed

    Shastry, B S; Hejtmancik, J F; Plager, D A; Hartzer, M K; Trese, M T

    1995-05-20

    Familial exudative vitreoretinopathy (FEVR) is a hereditary eye disorder characterized by avascularity of the peripheral retina, retinal exudates, tractional detachment, and retinal folds. The disorder is most commonly transmitted as an autosomal dominant trait, but X-linked transmission also occurs. To initiate the process of identifying the gene responsible for the X-linked disorder, linkage analysis has been performed with three previously unreported three- or four-generation families. Two-point analysis showed linkage to MAOA (Zmax = 2.1, theta max = 0) and DXS228 (Zmax = 0.5, theta max = 0.11), and this was further confirmed by multipoint analysis with these same markers (Zmax = 2.81 at MAOA), which both lie near the gene causing Norrie disease. Molecular genetic analysis further reveals a missense mutation (R121W) in the third exon of the Norrie's disease gene that perfectly cosegregates with the disease through three generations in one family. This mutation was not detected in the unaffected family members and six normal unrelated controls, suggesting that it is likely to be the pathogenic mutation. Additionally, a polymorphic missense mutation (H127R) was detected in a severely affected patient.

  11. ALDH1A3 mutations cause recessive anophthalmia and microphthalmia.

    PubMed

    Fares-Taie, Lucas; Gerber, Sylvie; Chassaing, Nicolas; Clayton-Smith, Jill; Hanein, Sylvain; Silva, Eduardo; Serey, Margaux; Serre, Valérie; Gérard, Xavier; Baumann, Clarisse; Plessis, Ghislaine; Demeer, Bénédicte; Brétillon, Lionel; Bole, Christine; Nitschke, Patrick; Munnich, Arnold; Lyonnet, Stanislas; Calvas, Patrick; Kaplan, Josseline; Ragge, Nicola; Rozet, Jean-Michel

    2013-02-07

    Anophthalmia and microphthalmia (A/M) are early-eye-development anomalies resulting in absent or small ocular globes, respectively. A/M anomalies occur in syndromic or nonsyndromic forms. They are genetically heterogeneous, some mutations in some genes being responsible for both anophthalmia and microphthalmia. Using a combination of homozygosity mapping, exome sequencing, and Sanger sequencing, we identified homozygosity for one splice-site and two missense mutations in the gene encoding the A3 isoform of the aldehyde dehydrogenase 1 (ALDH1A3) in three consanguineous families segregating A/M with occasional orbital cystic, neurological, and cardiac anomalies. ALDH1A3 is a key enzyme in the formation of a retinoic acid gradient along the dorso-ventral axis during early eye development. Transitory expression of mutant ALDH1A3 open reading frames showed that both missense mutations reduce the accumulation of the enzyme, potentially leading to altered retinoic acid synthesis. Although the role of retinoic acid signaling in eye development is well established, our findings provide genetic evidence of a direct link between retinoic-acid-synthesis dysfunction and early-eye-development anomalies in humans. Copyright © 2013 The American Society of Human Genetics. Published by Elsevier Inc. All rights reserved.

  12. A novel TRPS1 mutation in a Moroccan family with Tricho-rhino-phalangeal syndrome type III: case report.

    PubMed

    Smaili, W; Elalaoui, S Chafai; Meier, S; Zerkaoui, M; Sefiani, A; Heinimann, K

    2017-05-03

    Tricho-rhino-phalangeal syndrome (TRPS) is an autosomal dominant disorder characterized by craniofacial and skeletal malformations including short stature, thin scalp hair, sparse lateral eyebrows, pear-shaped nose and cone shaped epiphyses. This condition is caused by haploinsufficiency of the TRPS1 gene. Previous genotype-phenotype studies have correlated exon 6 missense mutations with TRPS type III, a severe form of type I with pronounced, facial characteristics, short stature and brachydactyly and differing from type II by the absence of exostoses and mental retardation. We report the first case of a Moroccan family, a father and his three children, in which the diagnosis of type III TRPS was suspected based on severe clinical and radiological features. Molecular analysis of the TRPS1 gene revealed a novel missense mutation in exon 6, (p.Ala932Ser), located in the GATA-type DNA-binding zinc finger domain. Our observations in this kindred support the previous genotype-phenotype results suggesting that patients with more pronounced facial characteristics and more severe shortening of hands and feet are more likely to have mutation in exon 6 of TRPS1.

  13. Hereditary spastic paraplegia type 43 (SPG43) is caused by mutation in C19orf12

    PubMed Central

    Landouré, Guida; Zhu, Peng-Peng; Lourenço, Charles M.; Johnson, Janel O.; Toro, Camilo; Bricceno, Katherine V.; Rinaldi, Carlo; Meilleur, Katherine G.; Sangaré, Modibo; Diallo, Oumarou; Pierson, Tyler M.; Ishiura, Hiroyuki; Tsuji, Shoji; Hein, Nichole; Fink, John K.; Stoll, Marion; Nicholson, Garth; Gonzalez, Michael; Speziani, Fiorella; Dürr, Alexandra; Stevanin, Giovanni; Biesecker, Leslie G.; Accardi, John; Landis, Dennis M. D.; Gahl, William A.; Traynor, Bryan J.; Marques, Wilson; Züchner, Stephan; Blackstone, Craig; Fischbeck, Kenneth H.; Burnett, Barrington G.

    2013-01-01

    We report here the genetic basis for a form of progressive hereditary spastic paraplegia (SPG43) previously described in two Malian sisters. Exome sequencing revealed a homozygous missense variant (c.187G>C; p.Ala63Pro) in C19orf12, a gene recently implicated in neurodegeneration with brain iron accumulation (NBIA). The same mutation was subsequently also found in a Brazilian family with features of NBIA, and we identified another NBIA patient with a three-nucleotide deletion (c.197_199del; p.Gly66del). Haplotype analysis revealed that the p.Ala63Pro mutations have a common origin, but MRI scans showed no brain iron deposition in the Malian SPG43 subjects. Heterologous expression of these SPG43 and NBIA variants resulted in similar alterations in the subcellular distribution of C19orf12. The SPG43 and NBIA variants reported here as well as the most common C19orf12 missense mutation reported in NBIA patients are found within a highly-conserved, extended hydrophobic domain in C19orf12, underscoring the functional importance of this domain. PMID:23857908

  14. Cancer genes mutation profiling in calcifying epithelial odontogenic tumour.

    PubMed

    de Sousa, Sílvia Ferreira; Diniz, Marina Gonçalves; França, Josiane Alves; Fontes Pereira, Thaís Dos Santos; Moreira, Rennan Garcias; Santos, Jean Nunes Dos; Gomez, Ricardo Santiago; Gomes, Carolina Cavalieri

    2018-03-01

    To identify calcifying epithelial odontogenic tumour (CEOT) mutations in oncogenes and tumour suppressor genes. A panel of 50 genes commonly mutated in cancer was sequenced in CEOT by next-generation sequencing. Sanger sequencing was used to cover the region of the frameshift deletion identified in one sample. Missense single nucleotide variants (SNVs) with minor allele frequency (MAF) <1% were detected in PTEN , MET and JAK3 . A frameshift deletion in CDKN2A occurred in association with a missense mutation in the same gene region, suggesting a second hit in the inactivation of this gene. APC, KDR, KIT, PIK3CA and TP53 missense SNVs were identified; however, these are common SNVs, showing MAF >1%. CEOT harbours mutations in the tumour suppressor PTEN and CDKN2A and in the oncogenes JAK3 and MET . As these mutations occurred in only one case each, they are probably not driver mutations for these tumours. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2018. All rights reserved. No commercial use is permitted unless otherwise expressly granted.

  15. Cryopyrin-associated periodic syndrome: a case report and review of the Japanese literature.

    PubMed

    Aoyama, Kumi; Amano, Hiroo; Takaoka, Yuki; Nishikomori, Ryuta; Ishikawa, Osamu

    2012-07-01

    Cryopyrin-associated periodic syndrome is an autoinflammatory syndrome caused by mutations of the CIAS1 gene (currently named NLRP3), and is characterized by periodic attacks of an urticaria-like rash, fever, head-ache, conjunctivitis and arthralgia. We report here a case of a 1-year-old boy with cryopyrin-associated periodic syndrome, which manifested as a recurrent skin rash in the postnatal period. Genetic analysis revealed a missense mutation of the CIAS1 gene in the mother and infant.

  16. Novel CLCN7 compound heterozygous mutations in intermediate autosomal recessive osteopetrosis

    PubMed Central

    Okamoto, Nana; Kohmoto, Tomohiro; Naruto, Takuya; Masuda, Kiyoshi; Komori, Takahide; Imoto, Issei

    2017-01-01

    Osteopetrosis is a heritable disorder of the skeleton that is characterized by increased bone density on radiographs caused by defects in osteoclast formation and function. Mutations in >10 genes are identified as causative for this clinically and genetically heterogeneous disease in humans. We report two novel missense variations in a compound heterozygous state in the CLCN7 gene, detected through targeted exome sequencing, in a 15-year-old Japanese female with intermediate autosomal recessive osteopetrosis. PMID:28819563

  17. [Myosin storage myopathy: a rare subtype of protein aggregate myopathies].

    PubMed

    Kiphuth, I C; Neuen-Jacob, E; Struffert, T; Wehner, M; Wallefeld, W; Laing, N; Schröder, R

    2010-04-01

    Myopathies with pathological protein aggregates comprise a numerically significant group of sporadic and hereditary muscle disorders. A rare disease entity within the group of protein aggregate myopathies is the myosin storage myopathy, which is caused by heterozygous mutations in the MYH7 gene which encodes the slow/beta-myosin heavy chain. We report the clinical, myopathological and MRI findings in the first German patient suffering from a myosin storage myopathy due to a heterozygous R 1845W missense mutation.

  18. Loss of Association of REEP2 with Membranes Leads to Hereditary Spastic Paraplegia

    PubMed Central

    Esteves, Typhaine; Durr, Alexandra; Mundwiller, Emeline; Loureiro, José L.; Boutry, Maxime; Gonzalez, Michael A.; Gauthier, Julie; El-Hachimi, Khalid H.; Depienne, Christel; Muriel, Marie-Paule; Acosta Lebrigio, Rafael F.; Gaussen, Marion; Noreau, Anne; Speziani, Fiorella; Dionne-Laporte, Alexandre; Deleuze, Jean-François; Dion, Patrick; Coutinho, Paula; Rouleau, Guy A.; Zuchner, Stephan; Brice, Alexis; Stevanin, Giovanni; Darios, Frédéric

    2014-01-01

    Hereditary spastic paraplegias (HSPs) are clinically and genetically heterogeneous neurological conditions. Their main pathogenic mechanisms are thought to involve alterations in endomembrane trafficking, mitochondrial function, and lipid metabolism. With a combination of whole-genome mapping and exome sequencing, we identified three mutations in REEP2 in two families with HSP: a missense variant (c.107T>A [p.Val36Glu]) that segregated in the heterozygous state in a family with autosomal-dominant inheritance and a missense change (c.215T>A [p.Phe72Tyr]) that segregated in trans with a splice site mutation (c.105+3G>T) in a family with autosomal-recessive transmission. REEP2 belongs to a family of proteins that shape the endoplasmic reticulum, an organelle that was altered in fibroblasts from an affected subject. In vitro, the p.Val36Glu variant in the autosomal-dominant family had a dominant-negative effect; it inhibited the normal binding of wild-type REEP2 to membranes. The missense substitution p.Phe72Tyr, in the recessive family, decreased the affinity of the mutant protein for membranes that, together with the splice site mutation, is expected to cause complete loss of REEP2 function. Our findings illustrate how dominant and recessive inheritance can be explained by the effects and nature of mutations in the same gene. They have also important implications for genetic diagnosis and counseling in clinical practice because of the association of various modes of inheritance to this new clinico-genetic entity. PMID:24388663

  19. Snyder-Robinson Syndrome: Rescuing the Disease-Causing Effect of G56S mutant by Small Molecule Binding

    NASA Astrophysics Data System (ADS)

    Zhang, Zhe; Martiny, Virginie; Lagorce, David; Alexov, Emil; Miteva, Maria; Clemson University Team; Université Paris Diderot Team

    2013-03-01

    Snyder-Robinson Syndrome (SRS) is an X-linked mental retardation disorder, which is caused by defects in a particular gene coding for the spermine synthase (SMS) protein. Among the missense mutations known to be disease-causing is the G56S, which is positioned at the interface of the SMS homo-dimer. Previous computational and experimental investigations have shown that G56S mutation destabilizes the homo-dimer and thus greatly reduces the SMS enzymatic activity. In this study, we explore the possibility of mitigating the effect of G56S mutation by binding small molecules to suitable pockets around the mutation site. It is done by combined efforts of molecular dynamics simulations and in silico screening. The binding of selected molecules was calculated to fully compensate the effect of the mutation and rescue the wild type dimer affinity. This work was supported by NIH, NLM grant. No. 1R03LM009748

  20. Hypomorphic mutation in mouse Nppc gene causes retarded bone growth due to impaired endochondral ossification

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tsuji, Takehito; Kondo, Eri; Yasoda, Akihiro

    2008-11-07

    Long bone abnormality (lbab/lbab) is a spontaneous mutant mouse characterized by dwarfism with shorter long bones. A missense mutation was reported in the Nppc gene, which encodes C-type natriuretic peptide (CNP), but it has not been confirmed whether this mutation is responsible for the dwarf phenotype. To verify that the mutation causes the dwarfism of lbab/lbab mice, we first investigated the effect of CNP in lbab/lbab mice. By transgenic rescue with chondrocyte-specific expression of CNP, the dwarf phenotype in lbab/lbab mice was completely compensated. Next, we revealed that CNP derived from the lbab allele retained only slight activity to inducemore » cGMP production through its receptor. Histological analysis showed that both proliferative and hypertrophic zones of chondrocytes in the growth plate of lbab/lbab mice were markedly reduced. Our results demonstrate that lbab/lbab mice have a hypomorphic mutation in the Nppc gene that is responsible for dwarfism caused by impaired endochondral ossification.« less

  1. Classification of rare missense substitutions, using risk surfaces, with genetic- and molecular-epidemiology applications.

    PubMed

    Tavtigian, Sean V; Byrnes, Graham B; Goldgar, David E; Thomas, Alun

    2008-11-01

    Many individually rare missense substitutions are encountered during deep resequencing of candidate susceptibility genes and clinical mutation screening of known susceptibility genes. BRCA1 and BRCA2 are among the most resequenced of all genes, and clinical mutation screening of these genes provides an extensive data set for analysis of rare missense substitutions. Align-GVGD is a mathematically simple missense substitution analysis algorithm, based on the Grantham difference, which has already contributed to classification of missense substitutions in BRCA1, BRCA2, and CHEK2. However, the distribution of genetic risk as a function of Align-GVGD's output variables Grantham variation (GV) and Grantham deviation (GD) has not been well characterized. Here, we used data from the Myriad Genetic Laboratories database of nearly 70,000 full-sequence tests plus two risk estimates, one approximating the odds ratio and the other reflecting strength of selection, to display the distribution of risk in the GV-GD plane as a series of surfaces. We abstracted contours from the surfaces and used the contours to define a sequence of missense substitution grades ordered from greatest risk to least risk. The grades were validated internally using a third, personal and family history-based, measure of risk. The Align-GVGD grades defined here are applicable to both the genetic epidemiology problem of classifying rare missense substitutions observed in known susceptibility genes and the molecular epidemiology problem of analyzing rare missense substitutions observed during case-control mutation screening studies of candidate susceptibility genes. (c) 2008 Wiley-Liss, Inc.

  2. Phenotypic Variation in 46,XX Disorders of Sex Development due to the NR5A1 p.R92W Variant: A Sibling Case Report and Literature Review.

    PubMed

    Takasawa, Kei; Igarashi, Maki; Ono, Makoto; Takemoto, Akira; Takada, Shuji; Yamataka, Atsuyuki; Ogata, Tsutomu; Morio, Tomohiro; Fukami, Maki; Kashimada, Kenichi

    2017-01-01

    Recently, a heterozygous missense mutation in NR5A1, p.R92W, was identified as a cause of 46,XX testicular/ovo-testicular disorders of sexual development (DSD). We report a sibling pair with 46,XX DSD due to an NR5A1 mutation with distinct phenotypes, including external and internal genitalia and gonads, for whom different rearing sexes were selected. Thus, the phenotypes of p.R92W vary, even within a family. The father of the patients showed oligozoospermia with the p.R92W mutation, suggesting that in 46,XY individuals, the mutation would cause various gonadal phenotypes. We review and discuss the general role of the R92W mutation in sexual development. © 2018 S. Karger AG, Basel.

  3. Identification and functional characterization of a novel ryanodine receptor mutation causing malignant hyperthermia in North American and South American families.

    PubMed

    Sambuughin, N; Nelson, T E; Jankovic, J; Xin, C; Meissner, G; Mullakandov, M; Ji, J; Rosenberg, H; Sivakumar, K; Goldfarb, L G

    2001-09-01

    Malignant hyperthermia is a pharmacogenetic disorder associated with mutations in Ca(2+) regulatory proteins. It manifests as a hypermetabolic crisis triggered by commonly used anesthetics. Malignant hyperthermia susceptibility is a dominantly inherited predisposition to malignant hyperthermia that can be diagnosed by using caffeine/halothane contracture tests. In a multigenerational North American family with a severe form of malignant hyperthermia that has caused four deaths, a novel RYR1 A2350T missense mutation was identified in all individuals testing positive for malignant hyperthermia susceptibility. The same A2350T mutation was identified in an Argentinean family with two known fatal MH reactions. Functional analysis in HEK-293 cells revealed an altered Ca(2+) dependence and increased caffeine sensitivity of the expressed mutant protein thus confirming the pathogenic potential of the RYR1 A2350T mutation.

  4. Natural gene therapy in monozygotic twins with Fanconi anemia.

    PubMed

    Mankad, Anuj; Taniguchi, Toshiyasu; Cox, Barbara; Akkari, Yassmine; Rathbun, R Keaney; Lucas, Lora; Bagby, Grover; Olson, Susan; D'Andrea, Alan; Grompe, Markus

    2006-04-15

    Monozygotic twin sisters, with nonhematologic symptoms of Fanconi anemia (FA), were discovered to be somatic mosaics for mutations in the FANCA gene. Skin fibroblasts, but not lymphocytes or committed hematopoietic progenitors, were sensitive to DNA cross-linking agents. Molecular analysis revealed, in skin cells of both twins, a frameshift causing deletion in exon 27 (2555deltaT) and an exon 28 missense mutation (2670G>A/R880Q). The latter resulted in primarily cytoplasmic expression and reduced function of the mutant FANCA (R880Q) protein. Surprisingly, the same acquired exon 30 missense change (2927G>A/E966K) was detected in the hematopoietic cells of both sisters, but not in their fibroblasts, nor in either parent. This compensatory mutation existed in cis with the maternal exon 28 mutation, and it restored function and nuclear localization of the resulting protein. Both sisters have been free of hematologic symptoms for more than 2 decades, suggesting that this de novo mutation occurred prenatally in a single hematopoietic stem cell (HSC) in one twin and that descendants of this functionally corrected HSC, via intra-uterine circulation, repopulated the blood lineages of both sisters. This finding suggests that treating FA patients with gene therapy might require transduction of only a few hematopoietic stem cells.

  5. Homozygous YME1L1 mutation causes mitochondriopathy with optic atrophy and mitochondrial network fragmentation.

    PubMed

    Hartmann, Bianca; Wai, Timothy; Hu, Hao; MacVicar, Thomas; Musante, Luciana; Fischer-Zirnsak, Björn; Stenzel, Werner; Gräf, Ralph; van den Heuvel, Lambert; Ropers, Hans-Hilger; Wienker, Thomas F; Hübner, Christoph; Langer, Thomas; Kaindl, Angela M

    2016-08-06

    Mitochondriopathies often present clinically as multisystemic disorders of primarily high-energy consuming organs. Assembly, turnover, and surveillance of mitochondrial proteins are essential for mitochondrial function and a key task of AAA family members of metalloproteases. We identified a homozygous mutation in the nuclear encoded mitochondrial escape 1-like 1 gene YME1L1, member of the AAA protease family, as a cause of a novel mitochondriopathy in a consanguineous pedigree of Saudi Arabian descent. The homozygous missense mutation, located in a highly conserved region in the mitochondrial pre-sequence, inhibits cleavage of YME1L1 by the mitochondrial processing peptidase, which culminates in the rapid degradation of YME1L1 precursor protein. Impaired YME1L1 function causes a proliferation defect and mitochondrial network fragmentation due to abnormal processing of OPA1. Our results identify mutations in YME1L1 as a cause of a mitochondriopathy with optic nerve atrophy highlighting the importance of YME1L1 for mitochondrial functionality in humans.

  6. First report of HGD mutations in a Chinese with alkaptonuria.

    PubMed

    Yang, Yong-jia; Guo, Ji-hong; Chen, Wei-jian; Zhao, Rui; Tang, Jin-song; Meng, Xiao-hua; Zhao, Liu; Tu, Ming; He, Xin-yu; Wu, Ling-qian; Zhu, Yi-min

    2013-04-15

    Alkaptonuria (AKU) is one of the first prototypic inborn errors in metabolism and the first human disease found to be transmitted via Mendelian autosomal recessive inheritance. It is caused by HGD mutations, which leads to a deficiency in homogentisate 1,2-dioxygenase (HGD) activity. To date, several HGD mutations have been identified as the cause of the prototypic disease across different ethnic populations worldwide. However, in Asia, the HGD mutation is very rarely reported. For the Chinese population, no literature on HGD mutation screening is available to date. In this paper, we describe two novel HGD mutations in a Chinese AKU family, the splicing mutation of IVS7+1G>C, a donor splice site of exon 7, and a missense mutation of F329C in exon 12. The predicted new splicing site of the mutated exon 7 sequence demonstrated a 303bp extension after the mutation site. The F329C mutation most probably disturbed the stability of the conformation of the two loops critical to the Fe(2+) active site of the HGD enzyme. Copyright © 2013 Elsevier B.V. All rights reserved.

  7. Glioma Specific Extracellular Missense Mutations in the First Cysteine Rich Region of Epidermal Growth Factor Receptor (EGFR) Initiate Ligand Independent Activation

    PubMed Central

    Ymer, Susie I.; Greenall, Sameer A.; Cvrljevic, Anna; Cao, Diana X.; Donoghue, Jacqui F.; Epa, V. Chandana; Scott, Andrew M.; Adams, Timothy E.; Johns, Terrance G.

    2011-01-01

    The epidermal growth factor receptor (EGFR) is overexpressed or mutated in glioma. Recently, a series of missense mutations in the extracellular domain (ECD) of EGFR were reported in glioma patients. Some of these mutations clustered within a cysteine-rich region of the EGFR targeted by the therapeutic antibody mAb806. This region is only exposed when EGFR activates and appears to locally misfold during activation. We expressed two of these mutations (R324L and E330K) in NR6 mouse fibroblasts, as they do not express any EGFR-related receptors. Both mutants were autophosphorylated in the absence of ligand and enhanced cell survival and anchorage-independent and xenograft growth. The ECD truncation that produces the de2-7EGFR (or EGFRvIII), the most common EGFR mutation in glioma, generates a free cysteine in this same region. Using a technique optimized for detecting disulfide-bonded dimers, we definitively demonstrated that the de2-7EGFR is robustly dimerized and that ablation of the free cysteine prevents dimerization and activation. Modeling of the R324L mutation suggests it may cause transient breaking of disulfide bonds, leading to similar disulfide-bonded dimers as seen for the de2-7EGFR. These ECD mutations confirm that the cysteine-rich region of EGFR around the mAb806 epitope has a significant role in receptor activation. PMID:24212795

  8. Overrepresentation of missense mutations in mild hemophilia A patients from Belgium: founder effect or independent occurrence?

    PubMed

    Lannoy, N; Lambert, C; Vikkula, M; Hermans, C

    2015-06-01

    Roughly 40% of observed mutations responsible for hemophilia A (HA) are novel and present in either a single family or a limited number of unrelated families. During routine diagnostic analysis of 73 unrelated Belgian patients with mild HA, 4 out of 43 different mutations (p.Ser2030Asn, p.Arg2178Cys, p.Arg2178His, and p.Pro2311His) were detected in more than one family, representing 35% of total identified mutations. To discriminate between an independent recurrence or a founder effect, an analysis of intra- and -extragenic single nucleotide polymorphisms (SNPs) and short tandem repeats (STRs) flanking the F8 gene was conducted. SNP haplotype and microsatellite analysis revealed strong evidence that p.Ser2030Asn and p.Pro2311His mutations were probably associated with a founder effect. The two other mutations localized in an F8 cytosine-phosphate-guanine (CpG) site likely resulted from recurrent de novo events. This study suggests that missense mutations producing C-to-T or G-to-A substitutions in CpG dinucleotide can occur de novo with more repetition than other causal substitutions that do not affect the CpG site. Analysis of F8 database implied that CpG sites throughout the F8 gene are not all mutated with the same frequency. Causes are still unknown and remain to be identified. Copyright © 2015 Elsevier Ltd. All rights reserved.

  9. Novel NCC mutants and functional analysis in a new cohort of patients with Gitelman syndrome.

    PubMed

    Glaudemans, Bob; Yntema, Helger G; San-Cristobal, Pedro; Schoots, Jeroen; Pfundt, Rolph; Kamsteeg, Erik-J; Bindels, René J; Knoers, Nine V A M; Hoenderop, Joost G; Hoefsloot, Lies H

    2012-03-01

    Gitelman syndrome (GS) is an autosomal recessive disorder characterized by hypokalemic metabolic alkalosis in conjunction with significant hypomagnesemia and hypocalciuria. The GS phenotype is caused by mutations in the solute carrier family 12, member 3 (SLC12A3) gene that encodes the thiazide-sensitive NaCl cotransporter (NCC). We analyzed DNA samples of 163 patients with a clinical suspicion of GS by direct sequencing of all 26 exons of the SLC12A3 gene. In total, 114 different mutations were identified, 31 of which have not been reported before. These novel variants include 3 deletions, 18 missense, 6 splice site and 4 nonsense mutations. We selected seven missense mutations to investigate their effect on NCC activity and plasma membrane localization by using the Xenopus laevis oocyte expression system. The Thr392Ile mutant did not display transport activity (probably class 2 mutation), while the Asn442Ser and Gln1030Arg NCC mutants showed decreased plasma membrane localization and consequently function, likely due to impaired trafficking (class 3 mutation). Even though the NaCl uptake was hampered for NCC mutants Glu121Asp, Pro751Leu, Ser475Cys and Tyr489His, the transporters reached the plasma membrane (class 4 mutation), suggesting an effect on NCC regulation or ion affinity. The present study shows the identification of 38 novel mutations in the SLC12A3 gene and provides insight into the mechanisms that regulate NCC.

  10. PhosphoSitePlus, 2014: mutations, PTMs and recalibrations

    PubMed Central

    Hornbeck, Peter V.; Zhang, Bin; Murray, Beth; Kornhauser, Jon M.; Latham, Vaughan; Skrzypek, Elzbieta

    2015-01-01

    PhosphoSitePlus® (PSP, http://www.phosphosite.org/), a knowledgebase dedicated to mammalian post-translational modifications (PTMs), contains over 330 000 non-redundant PTMs, including phospho, acetyl, ubiquityl and methyl groups. Over 95% of the sites are from mass spectrometry (MS) experiments. In order to improve data reliability, early MS data have been reanalyzed, applying a common standard of analysis across over 1 000 000 spectra. Site assignments with P > 0.05 were filtered out. Two new downloads are available from PSP. The ‘Regulatory sites’ dataset includes curated information about modification sites that regulate downstream cellular processes, molecular functions and protein-protein interactions. The ‘PTMVar’ dataset, an intersect of missense mutations and PTMs from PSP, identifies over 25 000 PTMVars (PTMs Impacted by Variants) that can rewire signaling pathways. The PTMVar data include missense mutations from UniPROTKB, TCGA and other sources that cause over 2000 diseases or syndromes (MIM) and polymorphisms, or are associated with hundreds of cancers. PTMVars include 18 548 phosphorlyation sites, 3412 ubiquitylation sites, 2316 acetylation sites, 685 methylation sites and 245 succinylation sites. PMID:25514926

  11. Sarcomere protein gene mutations and inherited heart disease: a beta-cardiac myosin heavy chain mutation causing endocardial fibroelastosis and heart failure.

    PubMed

    Kamisago, Mitsuhiro; Schmitt, Joachim P; McNamara, Dennis; Seidman, Christine; Seidman, J G

    2006-01-01

    Inherited human cardiomyopathies often lead to heart failure. A common feature of these conditions is that affected individuals can express the disease causing mutations for many years without showing clinical signs of the disease. Previous studies have demonstrated that sarcomere protein gene mutations can cause either dilated cardiomyopathy or hypertrophic cardiomyopathy. Here we demonstrate that the Arg442His missense mutation in beta-cardiac myosin heavy chain (betaMHC) causes dilated cardiomyopathy, endocardial fibroelastosis and heart failure at a very early age. Using standard genetic engineering tools we and others have made murine models by introducing human disease causing mutations into mice. The central hypothesis of these studies has been that by identifying the pathophysiological pathways activated by these mutations we can define enzymatic activities that are modified during the disease process and which may be involved in pathways that involve more common forms of cardiac disease. Murine models bearing different mutant myosins are being used to address whether each disease causing mutant betaMHC activates the same or different cellular pathways. Dissecting the molecular pathways modulated by mutations in sarcomere protein genes as well as other genes has already demonstrated that there are multiple pathways leading to cardiac remodelling and heart failure. Defining the mechanisms by which mutations in the same genes activate different cellular pathways remains an important question.

  12. FCCC Institutional Breast Cancer Training Program (FCCC-IBCTP)

    DTIC Science & Technology

    2005-01-01

    impact on cancer risk; however, in support of this possibility, missense mutations of amino acid 47 (proline to leucine) are reported in the p53...differences in cancer incidence possibility, missense mutations of amino acid 47 between Caucasian and African American (proline to leucine) are reported in...was phosphorylated by active Aurora A in vitro (Fig. 1c). We made the following mutations at that site and in some cases at an adjacent Ser (Ser298

  13. Severe coagulation factor VII deficiency caused by a novel homozygous mutation (p. Trp284Gly) in loop 140s.

    PubMed

    Hao, Xiuping; Cheng, XiaoLi; Ye, Jiajia; Wang, Yingyu; Yang, LiHong; Wang, Mingshan; Jin, Yanhui

    2016-06-01

    Congenital coagulation factor VII (FVII) deficiency is a rare disorder caused by mutation in F7 gene. Herein, we reported a patient who had unexplained hematuria and vertigo with consanguineous parents. He has been diagnosed as having FVII deficiency based on the results of reduced FVII activity (2.0%) and antigen (12.8%). The thrombin generation tests verified that the proband has obstacles in producing thrombin. Direct sequencing analysis revealed a novel homozygous missense mutation p.Trp284Gly. Also noteworthy is the fact that the mutational residue belongs to structurally conserved loop 140s, which majorly undergo rearrangement after FVII activation. Model analysis indicated that the substitution disrupts these native hydrophobic interactions, which are of great importance to the conformation in the activation domain of FVIIa.

  14. Gain-of-function mutations in the phosphatidylserine synthase 1 (PTDSS1) gene cause Lenz-Majewski syndrome.

    PubMed

    Sousa, Sérgio B; Jenkins, Dagan; Chanudet, Estelle; Tasseva, Guergana; Ishida, Miho; Anderson, Glenn; Docker, James; Ryten, Mina; Sa, Joaquim; Saraiva, Jorge M; Barnicoat, Angela; Scott, Richard; Calder, Alistair; Wattanasirichaigoon, Duangrurdee; Chrzanowska, Krystyna; Simandlová, Martina; Van Maldergem, Lionel; Stanier, Philip; Beales, Philip L; Vance, Jean E; Moore, Gudrun E

    2014-01-01

    Lenz-Majewski syndrome (LMS) is a syndrome of intellectual disability and multiple congenital anomalies that features generalized craniotubular hyperostosis. By using whole-exome sequencing and selecting variants consistent with the predicted dominant de novo etiology of LMS, we identified causative heterozygous missense mutations in PTDSS1, which encodes phosphatidylserine synthase 1 (PSS1). PSS1 is one of two enzymes involved in the production of phosphatidylserine. Phosphatidylserine synthesis was increased in intact fibroblasts from affected individuals, and end-product inhibition of PSS1 by phosphatidylserine was markedly reduced. Therefore, these mutations cause a gain-of-function effect associated with regulatory dysfunction of PSS1. We have identified LMS as the first human disease, to our knowledge, caused by disrupted phosphatidylserine metabolism. Our results point to an unexplored link between phosphatidylserine synthesis and bone metabolism.

  15. Data from a large European study indicate that the outcome of primary hyperoxaluria type 1 correlates with the AGXT mutation type.

    PubMed

    Mandrile, Giorgia; van Woerden, Christiaan S; Berchialla, Paola; Beck, Bodo B; Acquaviva Bourdain, Cécile; Hulton, Sally-Anne; Rumsby, Gill

    2014-12-01

    Primary hyperoxaluria type 1 displays a heterogeneous phenotype, likely to be affected by genetic and non-genetic factors, including timeliness of diagnosis and quality of care. As previous genotype-phenotype studies were hampered by limited patient numbers the European OxalEurope Consortium was constituted. This preliminary retrospective report is based on 526 patients of which 410 have the AGXT genotype defined. We grouped mutations by the predicted effect as null, missense leading to mistargeting (G170R), and other missense, and analyzed their phenotypic correlations. Median age of end-stage renal disease increased from 9.9 for 88 homozygous null patients, 11.5 for 42 heterozygous null/missense, 16.9 for 116 homozygous missense patients, 25.1 for 61 G170R/null patients, 31.2 for 32 G170R/missense patients, and 33.9 years for 71 homozygous G170R patients. The outcome of some recurrent missense mutations (p.I244T, p.F152I, p.M195R, p.D201E, p.S81L, p.R36C) and an unprecedented number of G170R homozygotes is described in detail. Diagnosis is still delayed and actions aimed at increasing awareness of primary hyperoxaluria type 1 are recommended. Thus, in addition to G170R, other causative mutations are associated with later onset of end-stage renal disease. The OxalEurope registry will provide necessary tools for characterizing those genetic and non-genetic factors through a combination of genetic, functional, and biostatistical approaches.

  16. Genotype-Phenotype Correlation in NF1: Evidence for a More Severe Phenotype Associated with Missense Mutations Affecting NF1 Codons 844-848.

    PubMed

    Koczkowska, Magdalena; Chen, Yunjia; Callens, Tom; Gomes, Alicia; Sharp, Angela; Johnson, Sherrell; Hsiao, Meng-Chang; Chen, Zhenbin; Balasubramanian, Meena; Barnett, Christopher P; Becker, Troy A; Ben-Shachar, Shay; Bertola, Debora R; Blakeley, Jaishri O; Burkitt-Wright, Emma M M; Callaway, Alison; Crenshaw, Melissa; Cunha, Karin S; Cunningham, Mitch; D'Agostino, Maria D; Dahan, Karin; De Luca, Alessandro; Destrée, Anne; Dhamija, Radhika; Eoli, Marica; Evans, D Gareth R; Galvin-Parton, Patricia; George-Abraham, Jaya K; Gripp, Karen W; Guevara-Campos, Jose; Hanchard, Neil A; Hernández-Chico, Concepcion; Immken, LaDonna; Janssens, Sandra; Jones, Kristi J; Keena, Beth A; Kochhar, Aaina; Liebelt, Jan; Martir-Negron, Arelis; Mahoney, Maurice J; Maystadt, Isabelle; McDougall, Carey; McEntagart, Meriel; Mendelsohn, Nancy; Miller, David T; Mortier, Geert; Morton, Jenny; Pappas, John; Plotkin, Scott R; Pond, Dinel; Rosenbaum, Kenneth; Rubin, Karol; Russell, Laura; Rutledge, Lane S; Saletti, Veronica; Schonberg, Rhonda; Schreiber, Allison; Seidel, Meredith; Siqveland, Elizabeth; Stockton, David W; Trevisson, Eva; Ullrich, Nicole J; Upadhyaya, Meena; van Minkelen, Rick; Verhelst, Helene; Wallace, Margaret R; Yap, Yoon-Sim; Zackai, Elaine; Zonana, Jonathan; Zurcher, Vickie; Claes, Kathleen; Martin, Yolanda; Korf, Bruce R; Legius, Eric; Messiaen, Ludwine M

    2018-01-04

    Neurofibromatosis type 1 (NF1), a common genetic disorder with a birth incidence of 1:2,000-3,000, is characterized by a highly variable clinical presentation. To date, only two clinically relevant intragenic genotype-phenotype correlations have been reported for NF1 missense mutations affecting p.Arg1809 and a single amino acid deletion p.Met922del. Both variants predispose to a distinct mild NF1 phenotype with neither externally visible cutaneous/plexiform neurofibromas nor other tumors. Here, we report 162 individuals (129 unrelated probands and 33 affected relatives) heterozygous for a constitutional missense mutation affecting one of five neighboring NF1 codons-Leu844, Cys845, Ala846, Leu847, and Gly848-located in the cysteine-serine-rich domain (CSRD). Collectively, these recurrent missense mutations affect ∼0.8% of unrelated NF1 mutation-positive probands in the University of Alabama at Birmingham (UAB) cohort. Major superficial plexiform neurofibromas and symptomatic spinal neurofibromas were more prevalent in these individuals compared with classic NF1-affected cohorts (both p < 0.0001). Nearly half of the individuals had symptomatic or asymptomatic optic pathway gliomas and/or skeletal abnormalities. Additionally, variants in this region seem to confer a high predisposition to develop malignancies compared with the general NF1-affected population (p = 0.0061). Our results demonstrate that these NF1 missense mutations, although located outside the GAP-related domain, may be an important risk factor for a severe presentation. A genotype-phenotype correlation at the NF1 region 844-848 exists and will be valuable in the management and genetic counseling of a significant number of individuals. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  17. Report of a patient with a constitutional missense mutation in SMARCB1, Coffin-Siris phenotype, and schwannomatosis.

    PubMed

    Gossai, Nathan; Biegel, Jaclyn A; Messiaen, Ludwine; Berry, Susan A; Moertel, Christopher L

    2015-12-01

    We report a patient with a constitutional missense mutation in SMARCB1, Coffin-Siris Syndrome (CSS), and schwannomatosis. CSS is a rare congenital syndrome with characteristic clinical findings. This thirty-three-year-old man was diagnosed early in life with the constellation of moderate intellectual disability, hypotonia, mild microcephaly, coarse facies, wide mouth with full lips, hypoplasia of the digits, and general hirsutism. At age 26, he was found to have schwannomatosis after presenting with acute spinal cord compression. Blood and tissue analysis of multiple subsequent schwannoma resections revealed a germline missense mutation of SMARCB1, acquired loss of 22q including SMARCB1 and NF2 and mutation of the remaining NF2 wild-type allele-thus completing the four-hit, three-event mechanism associated with schwannomatosis. Variations in five genes have been associated with the Coffin-Siris phenotype: ARID1A, ARID1B, SMARCA4, SMARCB1, and SMARCE1. Of these genes, SMARCB1 has a well-established association with schwannomatosis and malignancy. This is the first report of a patient with a constitutional missense mutation of SMARCB1 resulting in CSS and subsequent development of schwannomatosis. This finding demonstrates that a SMARCB1 mutation may be the initial "hit" (constitutional) for a genetic disorder with subsequent risk of developing schwannomas and other malignancies, and raises the possibility that other patients with switch/sucrose non-fermenting (SWI/SNF) mutations may be at increased risk for tumors. © 2015 Wiley Periodicals, Inc.

  18. A homozygous missense mutation in human KLOTHO causes severe tumoral calcinosis

    PubMed Central

    Ichikawa, Shoji; Imel, Erik A.; Kreiter, Mary L.; Yu, Xijie; Mackenzie, Donald S.; Sorenson, Andrea H.; Goetz, Regina; Mohammadi, Moosa; White, Kenneth E.; Econs, Michael J.

    2007-01-01

    Familial tumoral calcinosis is characterized by ectopic calcifications and hyperphosphatemia due to inactivating mutations in FGF23 or UDP-N-acetyl-α-D-galactosamine:polypeptide N-acetylgalactosaminyltransferase 3 (GALNT3). Herein we report a homozygous missense mutation (H193R) in the KLOTHO (KL) gene of a 13-year-old girl who presented with severe tumoral calcinosis with dural and carotid artery calcifications. This patient exhibited defects in mineral ion homeostasis with marked hyperphosphatemia and hypercalcemia as well as elevated serum levels of parathyroid hormone and FGF23. Mapping of H193R mutation onto the crystal structure of myrosinase, a plant homolog of KL, revealed that this histidine residue was at the base of the deep catalytic cleft and mutation of this histidine to arginine should destabilize the putative glycosidase domain (KL1) of KL, thereby attenuating production of membrane-bound and secreted KL. Indeed, compared with wild-type KL, expression and secretion of H193R KL were markedly reduced in vitro, resulting in diminished ability of FGF23 to signal via its cognate FGF receptors. Taken together, our findings provide what we believe to be the first evidence that loss-of-function mutations in human KL impair FGF23 bioactivity, underscoring the essential role of KL in FGF23-mediated phosphate and vitamin D homeostasis in humans. PMID:17710231

  19. PRPF3-Associated Autosomal Dominant Retinitis Pigmentosa and CYP4V2-Associated Bietti's Crystalline Corneoretinal Dystrophy Coexist in a Multigenerational Chinese Family.

    PubMed

    Meng, Xiaohong; Li, Qiyou; Guo, Hong; Xu, Haiwei; Li, Shiying; Yin, Zhengqin

    2017-01-01

    To characterize the clinical and molecular genetic characteristics of a large, multigenerational Chinese family showing different phenotypes. A pedigree consisted of 56 individuals in 5 generations was recruited. Comprehensive ophthalmic examinations were performed in 16 family members affected. Mutation screening of CYP4V2 was performed by Sanger sequencing. Next-generation sequencing (NGS) was performed to capture and sequence all exons of 47 known retinal dystrophy-associated genes in two affected family members who had no mutations in CYP4V2 . The detected variants in NGS were validated by Sanger sequencing in the family members. Two compound heterozygous CYP4V2 mutations (c.802-8_810del17insGC and c.992A>C) were detected in the proband who presented typical clinical features of BCD. One missense mutation (c.1482C>T, p.T494M) in the PRPF3 gene was detected in 9 out of 22 affected family members who manifested classical clinical features of RP. Our results showed that two compound heterozygous CYP4V2 mutations caused BCD, and one missense mutation in PRPF3 was responsible for adRP in this large family. This study suggests that accurate phenotypic diagnosis, molecular diagnosis, and genetic counseling are necessary for patients with hereditary retinal degeneration in some large mutigenerational family.

  20. Mutations affecting the cytoplasmic functions of the co-chaperone DNAJB6 cause limb-girdle muscular dystrophy

    PubMed Central

    Sarparanta, Jaakko; Jonson, Per Harald; Golzio, Christelle; Sandell, Satu; Luque, Helena; Screen, Mark; McDonald, Kristin; Stajich, Jeffrey M.; Mahjneh, Ibrahim; Vihola, Anna; Raheem, Olayinka; Penttilä, Sini; Lehtinen, Sara; Huovinen, Sanna; Palmio, Johanna; Tasca, Giorgio; Ricci, Enzo; Hackman, Peter; Hauser, Michael; Katsanis, Nicholas; Udd, Bjarne

    2012-01-01

    Limb-girdle muscular dystrophy type 1D (LGMD1D) was linked to 7q36 over a decade ago1, but its genetic cause has remained elusive. We have studied nine LGMD families from Finland, the U.S., and Italy, and identified four dominant missense mutations leading to p.Phe93Leu or p.Phe89Ile changes in the ubiquitously expressed co-chaperone DNAJB6. Functional testing in vivo showed that the mutations have a dominant toxic effect mediated specifically by the cytoplasmic isoform of DNAJB6. In vitro studies demonstrated that the mutations increase the half-life of DNAJB6, extending this effect to the wild-type protein, and reduce its protective anti-aggregation effect. Further, we show that DNAJB6 interacts with members of the CASA complex, including the myofibrillar-myopathy-causing protein BAG3. Our data provide the genetic cause of LGMD1D, suggest that the pathogenesis is mediated by defective chaperone function, and highlight how mutations expressed ubiquitously can exert their effect in a tissue-, cellular compartment-, and isoform-specific manner. PMID:22366786

  1. Structural determinants of adhesion by Protocadherin-19 and implications for its role in epilepsy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cooper, Sharon R.; Jontes, James D.; Sotomayor, Marcos

    2016-10-26

    Non-clustered δ-protocadherins are homophilic cell adhesion molecules essential for the development of the vertebrate nervous system, as several are closely linked to neurodevelopmental disorders. Mutations inprotocadherin-19(PCDH19) result in a female-limited, infant-onset form of epilepsy (PCDH19-FE). Over 100 mutations inPCDH19have been identified in patients with PCDH19-FE, about half of which are missense mutations in the adhesive extracellular domain. Neither the mechanism of homophilic adhesion by PCDH19, nor the biochemical effects of missense mutations are understood. Here we present a crystallographic structure of the minimal adhesive fragment of the zebrafish Pcdh19 extracellular domain. This structure reveals the adhesive interface for Pcdh19, whichmore » is broadly relevant to both non-clustered δ and clustered protocadherin subfamilies. In addition, we show that several PCDH19-FE missense mutations localize to the adhesive interface and abolish Pcdh19 adhesion inin vitroassays, thus revealing the biochemical basis of their pathogenic effects during brain development.« less

  2. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cooper, Sharon R.; Jontes, James D.; Sotomayor, Marcos

    Non-clustered δ-protocadherins are homophilic cell adhesion molecules essential for the development of the vertebrate nervous system, as several are closely linked to neurodevelopmental disorders. Mutations in protocadherin-19 ( PCDH19) result in a female-limited, infant-onset form of epilepsy (PCDH19-FE). Over 100 mutations in PCDH19 have been identified in patients with PCDH19-FE, about half of which are missense mutations in the adhesive extracellular domain. Neither the mechanism of homophilic adhesion by PCDH19, nor the biochemical effects of missense mutations are understood. Here we present a crystallographic structure of the minimal adhesive fragment of the zebrafish Pcdh19 extracellular domain. This structure reveals themore » adhesive interface for Pcdh19, which is broadly relevant to both non-clustered δ and clustered protocadherin subfamilies. Additionally, we show that several PCDH19-FE missense mutations localize to the adhesive interface and abolish Pcdh19 adhesion in in vitro assays, thus revealing the biochemical basis of their pathogenic effects during brain development.« less

  3. Targeted rescue of a polycystic kidney disease mutation by lysosomal inhibition.

    PubMed

    Hofherr, Alexis; Wagner, Claudius J; Watnick, Terry; Köttgen, Michael

    2016-04-01

    Autosomal dominant polycystic kidney disease (ADPKD) is the most common monogenic cause of end-stage renal disease. The molecular pathogenesis of ADPKD is not completely known, and there is no approved therapy. To date, there is limited knowledge concerning the molecular consequences of specific disease-causing mutations. Here we show that the ADPKD missense variant TRPP2(D511V) greatly reduces TRPP2 protein stability, and that TRPP2(D511V) function can be rescued in vivo by small molecules targeting the TRPP2 degradation pathway. Expression of the TRPP2(D511V) protein was significantly reduced compared to wild-type TRPP2. Inhibition of lysosomal degradation of TRPP2(D511V) by the US Food and Drug Administration (FDA)-approved drug chloroquine strongly increased TRPP2 protein levels in vitro. The validation of these results in vivo requires appropriate animal models. However, there are currently no mouse models harboring human PKD2 missense mutations, and screening for chemical rescue of patient mutations in rodent models is time-consuming and expensive. Therefore, we developed a Drosophila melanogaster model expressing the ortholog of TRPP2(D511V) to test chemical rescue of mutant TRPP2 in vivo. Notably, chloroquine was sufficient to improve the phenotype of flies expressing mutant TRPP2. Thus, this proof-of-concept study highlights the potential of directed therapeutic approaches for ADPKD, and provides a rapid-throughput experimental model to screen PKD2 patient mutations and small molecules in vivo. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  4. Response to Lefebvre et al.

    PubMed

    Takeda, K; Kou, I; Kawakami, N; Yasuhiko, Y; Ogura, Y; Imagawa, E; Miyake, N; Matsumoto, N; Sudo, H; Kotani, T; Nakamura, M; Matsumoto, M; Watanabe, K; Ikegawa, S

    2017-11-01

    Congenital scoliosis (CS) is a common vertebral malformation with incidence of up to 1 of 1000 births worldwide. Recently, TBX6 has been reported as the first disease gene for CS: about 10% of CS patients are compound heterozygotes of rare null mutations and a common haplotype composed by 3 SNPs in TBX6. Lefebvre et al in this journal reported that 2 patients with spondylocostal dysostosis (SCD), a rare skeletal dysplasia affecting spine and ribs also have TBX6 mutations: 1 carried the microdeletion and a rare missense variant, and another 2 rare missense variants. We investigated the pathogenicity of the 3 missense variants in SCD by a luciferase assay. The results were negative for the proposal of Lefebvre et al. We consider these 2 SCD patients are more probably compound heterozygotes of null mutations and a common risk haplotype just as CS patients with TBX6 mutations. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  5. Analysis of Hungarian patients with Rett syndrome phenotype for MECP2, CDKL5 and FOXG1 gene mutations.

    PubMed

    Hadzsiev, Kinga; Polgar, Noemi; Bene, Judit; Komlosi, Katalin; Karteszi, Judit; Hollody, Katalin; Kosztolanyi, Gyorgy; Renieri, Alessandra; Melegh, Bela

    2011-03-01

    Rett syndrome (RTT) is characterized by a relatively specific clinical phenotype. We screened 152 individuals with RTT phenotype. A total of 22 different known MECP2 mutations were identified in 42 subjects (27.6%). Of the 22 mutations, we identified 7 (31.8%) frameshift-causing deletions, 4 (18.2%) nonsense, 10 (45.5%) missense mutations and one insertion (4.5%). The most frequent pathologic changes were: p.Thr158Met (14.2%) and p.Arg133Cys (11.9%) missense, and p.Arg255Stop (9.5%) and p.Arg294Stop (9.5%) nonsense mutations. We also detected the c.925C >T (p.Arg309Trp) mutation in an affected patient, whose role in RTT pathogenesis is still unknown. Patients without detectable MECP2 defects were screened for mutations of cyclin-dependent kinase-like 5 (CDKL5) gene, responsible for the early-onset variant of RTT. We discovered two novel mutations: c.607G >T resulting in a termination codon at aa203, disrupting the catalytic domain, and c.1708G >T leading to a stop at aa570 of the C terminus. Both patients with CDKL5 mutation presented therapy-resistant epilepsy and a phenotype fitting with the diagnosis of early-onset variant of RTT. No FOXG1 mutation was detected in any of the remaining patients. A total of 110 (72.5%) patients remained without molecular genetic diagnosis that necessitates further search for novel gene mutations in this phenotype. Our results also suggest the need of screening for CDKL5 mutations in patients with Rett phenotype tested negative for MECP2 mutations.

  6. The phenotypic spectrum in patients with arginine to cysteine mutations in the COL2A1 gene

    PubMed Central

    Hoornaert, K P; Dewinter, C; Vereecke, I; Beemer, F A; Courtens, W; Fryer, A; Fryssira, H; Lees, M; Müllner‐Eidenböck, A; Rimoin, D L; Siderius, L; Superti‐Furga, A; Temple, K; Willems, P J; Zankl, A; Zweier, C; De Paepe, A; Coucke, P; Mortier, G R

    2006-01-01

    Background The majority of COL2A1 missense mutations are substitutions of obligatory glycine residues in the triple helical domain. Only a few non‐glycine missense mutations have been reported and among these, the arginine to cysteine substitutions predominate. Objective To investigate in more detail the phenotype resulting from arginine to cysteine mutations in the COL2A1 gene. Methods The clinical and radiographic phenotype of all patients in whom an arginine to cysteine mutation in the COL2A1 gene was identified in our laboratory, was studied and correlated with the abnormal genotype. The COL2A1 genotyping involved DHPLC analysis with subsequent sequencing of the abnormal fragments. Results Six different mutations (R75C, R365C, R519C, R704C, R789C, R1076C) were found in 11 unrelated probands. Each mutation resulted in a rather constant and site‐specific phenotype, but a perinatally lethal disorder was never observed. Spondyloarthropathy with normal stature and no ocular involvement were features of patients with the R75C, R519C, or R1076C mutation. Short third and/or fourth toes was a distinguishing feature of the R75C mutation and brachydactyly with enlarged finger joints a key feature of the R1076C substitution. Stickler dysplasia with brachydactyly was observed in patients with the R704C mutation. The R365C and R789C mutations resulted in classic Stickler dysplasia and spondyloepiphyseal dysplasia congenita (SEDC), respectively. Conclusions Arginine to cysteine mutations are rather infrequent COL2A1 mutations which cause a spectrum of phenotypes including classic SEDC and Stickler dysplasia, but also some unusual entities that have not yet been recognised and described as type II collagenopathies. PMID:16155195

  7. Mutational analysis of COL1A1 and COL1A2 genes among Estonian osteogenesis imperfecta patients.

    PubMed

    Zhytnik, Lidiia; Maasalu, Katre; Reimann, Ene; Prans, Ele; Kõks, Sulev; Märtson, Aare

    2017-08-15

    Osteogenesis imperfecta (OI) is a rare bone disorder. In 90% of cases, OI is caused by mutations in the COL1A1/2 genes, which code procollagen α1 and α2 chains. The main aim of the current research was to identify the mutational spectrum of COL1A1/2 genes in Estonian patients. The small population size of Estonia provides a unique chance to explore the collagen I mutational profile of 100% of OI families in the country. We performed mutational analysis of peripheral blood gDNA of 30 unrelated Estonian OI patients using Sanger sequencing of COL1A1 and COL1A2 genes, including all intron-exon junctions and 5'UTR and 3'UTR regions, to identify causative OI mutations. We identified COL1A1/2 mutations in 86.67% of patients (26/30). 76.92% of discovered mutations were located in the COL1A1 (n = 20) and 23.08% in the COL1A2 (n = 6) gene. Half of the COL1A1/2 mutations appeared to be novel. The percentage of quantitative COL1A1/2 mutations was 69.23%. Glycine substitution with serine was the most prevalent among missense mutations. All qualitative mutations were situated in the chain domain of pro-α1/2 chains. Our study shows that among the Estonian OI population, the range of collagen I mutations is quite high, which agrees with other described OI cohorts of Northern Europe. The Estonian OI cohort differs due to the high number of quantitative variants and simple missense variants, which are mostly Gly to Ser substitutions and do not extend the chain domain of COL1A1/2 products.

  8. The refractive state of the eye in Icelandic horses with the Silver mutation.

    PubMed

    Johansson, Maria K; Jäderkvist Fegraeus, Kim; Lindgren, Gabriella; Ekesten, Björn

    2017-06-02

    The syndrome Multiple Congenital Ocular Anomalies (MCOA) is a congenital eye disorder in horses. Both the MCOA syndrome and the Silver coat colour in horses are caused by the same missense mutation in the premelanosome protein (PMEL) gene. Horses homozygous for the Silver mutation (TT) are affected by multiple ocular defects causing visual impairment or blindness. Horses heterozygous for the Silver mutation (CT) have less severe clinical signs, usually cysts arising from the ciliary body iris or retina temporally. It is still unknown if the vision is impaired in horses heterozygous for the Silver mutation. A recent study reported that Comtois horses carrying the Silver mutation had significantly deeper anterior chambers of the eye compared to wild-type horses. This could potentially cause refractive errors. The purpose of the present study was to investigate if Icelandic horses with the Silver mutation have refractive errors compared to wild-type horses. One hundred and fifty-two Icelandic horses were included in the study, 71 CT horses and five TT horses. All horses were genotyped for the missense mutation in PMEL. Each CT and TT horse was matched by a wild-type (CC) horse of the same age ± 1 year. Skiascopy and a brief ophthalmic examination were performed in all horses. Association between refraction and age, eye, genotype and sex was tested by linear mixed-effect model analysis. TT horses with controls were not included in the statistical analyses as they were too few. The interaction between age and genotype had a significant impact on the refractive state (P = 0.0001). CT horses older than 16 years were on average more myopic than wild-type horses of the same age. No difference in the refractive state could be observed between genotypes (CT and CC) in horses younger than 16 years. TT horses were myopic (-2 D or more) in one or both eyes regardless of age. Our results indicate that an elderly Icelandic horse (older than 16 years) carrying the Silver mutation is more likely to be myopic than a wild-type horse of the same age.

  9. Gain-of-Function Mutations in ZIC1 Are Associated with Coronal Craniosynostosis and Learning Disability.

    PubMed

    Twigg, Stephen R F; Forecki, Jennifer; Goos, Jacqueline A C; Richardson, Ivy C A; Hoogeboom, A Jeannette M; van den Ouweland, Ans M W; Swagemakers, Sigrid M A; Lequin, Maarten H; Van Antwerp, Daniel; McGowan, Simon J; Westbury, Isabelle; Miller, Kerry A; Wall, Steven A; van der Spek, Peter J; Mathijssen, Irene M J; Pauws, Erwin; Merzdorf, Christa S; Wilkie, Andrew O M

    2015-09-03

    Human ZIC1 (zinc finger protein of cerebellum 1), one of five homologs of the Drosophila pair-rule gene odd-paired, encodes a transcription factor previously implicated in vertebrate brain development. Heterozygous deletions of ZIC1 and its nearby paralog ZIC4 on chromosome 3q25.1 are associated with Dandy-Walker malformation of the cerebellum, and loss of the orthologous Zic1 gene in the mouse causes cerebellar hypoplasia and vertebral defects. We describe individuals from five families with heterozygous mutations located in the final (third) exon of ZIC1 (encoding four nonsense and one missense change) who have a distinct phenotype in which severe craniosynostosis, specifically involving the coronal sutures, and variable learning disability are the most characteristic features. The location of the nonsense mutations predicts escape of mutant ZIC1 transcripts from nonsense-mediated decay, which was confirmed in a cell line from an affected individual. Both nonsense and missense mutations are associated with altered and/or enhanced expression of a target gene, engrailed-2, in a Xenopus embryo assay. Analysis of mouse embryos revealed a localized domain of Zic1 expression at embryonic days 11.5-12.5 in a region overlapping the supraorbital regulatory center, which patterns the coronal suture. We conclude that the human mutations uncover a previously unsuspected role for Zic1 in early cranial suture development, potentially by regulating engrailed 1, which was previously shown to be critical for positioning of the murine coronal suture. The diagnosis of a ZIC1 mutation has significant implications for prognosis and we recommend genetic testing when common causes of coronal synostosis have been excluded. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.

  10. Pathogenicity of a Human Laminin β2 Mutation Revealed in Models of Alport Syndrome.

    PubMed

    Funk, Steven D; Bayer, Raymond H; Malone, Andrew F; McKee, Karen K; Yurchenco, Peter D; Miner, Jeffrey H

    2018-03-01

    Pierson syndrome is a congenital nephrotic syndrome with eye and neurologic defects caused by mutations in laminin β 2 ( LAMB2 ), a major component of the glomerular basement membrane (GBM). Pathogenic missense mutations in human LAMB2 cluster in or near the laminin amino-terminal (LN) domain, a domain required for extracellular polymerization of laminin trimers and basement membrane scaffolding. Here, we investigated an LN domain missense mutation, LAMB2-S80R, which was discovered in a patient with Pierson syndrome and unusually late onset of proteinuria. Biochemical data indicated that this mutation impairs laminin polymerization, which we hypothesized to be the cause of the patient's nephrotic syndrome. Testing this hypothesis in genetically altered mice showed that the corresponding amino acid change (LAMB2-S83R) alone is not pathogenic. However, expression of LAMB2-S83R significantly increased the rate of progression to kidney failure in a Col4a3 -/- mouse model of autosomal recessive Alport syndrome and increased proteinuria in Col4a5 +/- females that exhibit a mild form of X-linked Alport syndrome due to mosaic deposition of collagen α 3 α 4 α 5(IV) in the GBM. Collectively, these data show the pathogenicity of LAMB2-S80R and provide the first evidence of genetic modification of Alport phenotypes by variation in another GBM component. This finding could help explain the wide range of Alport syndrome onset and severity observed in patients with Alport syndrome, even for family members who share the same COL4 mutation. Our results also show the complexities of using model organisms to investigate genetic variants suspected of being pathogenic in humans. Copyright © 2018 by the American Society of Nephrology.

  11. Gain-of-Function Mutations in ZIC1 Are Associated with Coronal Craniosynostosis and Learning Disability

    PubMed Central

    Twigg, Stephen R.F.; Forecki, Jennifer; Goos, Jacqueline A.C.; Richardson, Ivy C.A.; Hoogeboom, A. Jeannette M.; van den Ouweland, Ans M.W.; Swagemakers, Sigrid M.A.; Lequin, Maarten H.; Van Antwerp, Daniel; McGowan, Simon J.; Westbury, Isabelle; Miller, Kerry A.; Wall, Steven A.; van der Spek, Peter J.; Mathijssen, Irene M.J.; Pauws, Erwin; Merzdorf, Christa S.; Wilkie, Andrew O.M.

    2015-01-01

    Human ZIC1 (zinc finger protein of cerebellum 1), one of five homologs of the Drosophila pair-rule gene odd-paired, encodes a transcription factor previously implicated in vertebrate brain development. Heterozygous deletions of ZIC1 and its nearby paralog ZIC4 on chromosome 3q25.1 are associated with Dandy-Walker malformation of the cerebellum, and loss of the orthologous Zic1 gene in the mouse causes cerebellar hypoplasia and vertebral defects. We describe individuals from five families with heterozygous mutations located in the final (third) exon of ZIC1 (encoding four nonsense and one missense change) who have a distinct phenotype in which severe craniosynostosis, specifically involving the coronal sutures, and variable learning disability are the most characteristic features. The location of the nonsense mutations predicts escape of mutant ZIC1 transcripts from nonsense-mediated decay, which was confirmed in a cell line from an affected individual. Both nonsense and missense mutations are associated with altered and/or enhanced expression of a target gene, engrailed-2, in a Xenopus embryo assay. Analysis of mouse embryos revealed a localized domain of Zic1 expression at embryonic days 11.5–12.5 in a region overlapping the supraorbital regulatory center, which patterns the coronal suture. We conclude that the human mutations uncover a previously unsuspected role for Zic1 in early cranial suture development, potentially by regulating engrailed 1, which was previously shown to be critical for positioning of the murine coronal suture. The diagnosis of a ZIC1 mutation has significant implications for prognosis and we recommend genetic testing when common causes of coronal synostosis have been excluded. PMID:26340333

  12. Case reports of juvenile GM1 gangliosidosisis type II caused by mutation in GLB1 gene.

    PubMed

    Karimzadeh, Parvaneh; Naderi, Samaneh; Modarresi, Farzaneh; Dastsooz, Hassan; Nemati, Hamid; Farokhashtiani, Tayebeh; Shamsian, Bibi Shahin; Inaloo, Soroor; Faghihi, Mohammad Ali

    2017-07-17

    Type II or juvenile GM1-gangliosidosis is an autosomal recessive lysosomal storage disorder, which is clinically distinct from infantile form of the disease by the lack of characteristic cherry-red spot and hepatosplenomegaly. The disease is characterized by slowly progressive neurodegeneration and mild skeletal changes. Due to the later age of onset and uncharacteristic presentation, diagnosis is frequently puzzled with other ataxic and purely neurological disorders. Up to now, 3-4 types of GM1-gangliosidosis have been reported and among them type I is the most common phenotype with the age of onset around 6 months. Various forms of GM1-gangliosidosis are caused by GLB1 gene mutations but severity of the disease and age of onset are directly related to the position and the nature of deleterious mutations. However, due to its unique genetic cause and overlapping clinical features, some researchers believe that GM1 gangliosidosis represents an overlapped disease spectrum instead of four distinct types. Here, we report a less frequent type of autosomal recessive GM1 gangliosidosis with perplexing clinical presentation in three families in the southwest part of Iran, who are unrelated but all from "Lurs" ethnic background. To identify disease-causing mutations, Whole Exome Sequencing (WES) utilizing next generation sequencing was performed. Four patients from three families were investigated with the age of onset around 3 years old. Clinical presentations were ataxia, gate disturbances and dystonia leading to wheelchair-dependent disability, regression of intellectual abilities, and general developmental regression. They all were born in consanguineous families with no previous documented similar disease in their parents. A homozygote missense mutation in GLB1 gene (c. 601 G > A, p.R201C) was found in all patients. Using Sanger sequencing this identified mutation was confirmed in the proband, their parents, grandparents, and extended family members, confirming its autosomal recessive pattern of inheritance. Our study identified a rare pathogenic missense mutation in GLB1 gene in patients with complex neurodevelopmental findings, which can extend the list of differential diagnoses for childhood ataxia in Iranian patients.

  13. Late-onset Stargardt disease is associated with missense mutations that map outside known functional regions of ABCR (ABCA4).

    PubMed

    Yatsenko, A N; Shroyer, N F; Lewis, R A; Lupski, J R

    2001-04-01

    Based on recent studies of the photoreceptor-specific ABC transporter gene ABCR (ABCA4) in Stargardt disease (STGD1) and other retinal dystrophies, we and others have developed a model in which the severity of retinal disease correlates inversely with residual ABCR activity. This model predicts that patients with late-onset STGDI may retain partial ABCR activity attributable to mild missense alleles. To test this hypothesis, we used late-onset STGDI patients (onset: > or =35 years) to provide an in vivo functional analysis of various combinations of mutant alleles. We sequenced directly the entire coding region of ABCR and detected mutations in 33/50 (66%) disease chromosomes, but surprisingly, 11/33 (33%) were truncating alleles. Importantly, all 22 missense mutations were located outside the known functional domains of ABCR (ATP-binding or transmembrane), whereas in our general cohort of STGDI subjects, alterations occurred with equal frequency across the entire protein. We suggest that these missense mutations in regions of unknown function are milder alleles and more susceptible to modifier effects. Thus, we have corroborated a prediction from the model of ABCR pathogenicity that (1) one mutant ABCR allele is always missense in late-onset STGD1 patients, and (2) the age-of-onset is correlated with the amount of ABCR activity of this allele. In addition, we report three new pseudodominant families that now comprise eight of 178 outbred STGD1 families and suggest a carrier frequency of STGD1-associated ABCR mutations of about 4.5% (approximately 1/22).

  14. Hypertension is a characteristic complication of X-linked hypophosphatemia.

    PubMed

    Nakamura, Yoshie; Takagi, Masaki; Takeda, Ryojun; Miyai, Kentaro; Hasegawa, Yukihiro

    2017-03-31

    X-linked hypophosphatemia (XLH) is a group of rare disorders caused by defective proximal tubular reabsorption of phosphate. Mutations in the PHEX gene are responsible for the majority of cases. There are very few reports of long-term complications of XLH other than skeletal and dental diseases. The aim of this study was to identify the phenotypic presentation of XLH during adulthood including complications other than skeletal and dental diseases. The clinical and biochemical phenotype of 22 adult patients with a PHEX gene mutation were examined retrospectively from their medical records. 6 patients had hypertension. The average age of hypertension onset was 29.0 years. Secondary hyperparathyroidism preceded the development of hypertension in 5 patients. 1 patient developed tertiary hyperparathyroidism. 15 patients had nephrocalcinosis. 2 patients had chronic renal dysfunction. Patients with hypertension had a significantly lower eGFR (p=0.010) compared to patients without hypertension. No significant difference was found in any other parameters. To examine the genotype-phenotype correlation, 10 adult males were chosen for analysis. No significant genotype-phenotype correlation analysis was revealed in any of the complications. However, there was a possibility that the age at nephrocalcinosis onset was younger in the non-missense mutation group than in the missense mutation group (p=0.063). This study corroborated the view that early-onset hypertension could be one of the characteristic complications seen in XLH patients. Considering the limited number of our patients, further study is necessary to address a potential cause of hypertension. XLH patients require careful lifelong treatment.

  15. A homozygous missense variant in VWA2, encoding an interactor of the Fraser-complex, in a patient with vesicoureteral reflux.

    PubMed

    van der Ven, Amelie T; Kobbe, Birgit; Kohl, Stefan; Shril, Shirlee; Pogoda, Hans-Martin; Imhof, Thomas; Ityel, Hadas; Vivante, Asaf; Chen, Jing; Hwang, Daw-Yang; Connaughton, Dervla M; Mann, Nina; Widmeier, Eugen; Taglienti, Mary; Schmidt, Johanna Magdalena; Nakayama, Makiko; Senguttuvan, Prabha; Kumar, Selvin; Tasic, Velibor; Kehinde, Elijah O; Mane, Shrikant M; Lifton, Richard P; Soliman, Neveen; Lu, Weining; Bauer, Stuart B; Hammerschmidt, Matthias; Wagener, Raimund; Hildebrandt, Friedhelm

    2018-01-01

    Congenital anomalies of the kidney and urinary tract (CAKUT) are the most common cause (40-50%) of chronic kidney disease (CKD) in children. About 40 monogenic causes of CAKUT have so far been discovered. To date less than 20% of CAKUT cases can be explained by mutations in these 40 genes. To identify additional monogenic causes of CAKUT, we performed whole exome sequencing (WES) and homozygosity mapping (HM) in a patient with CAKUT from Indian origin and consanguineous descent. We identified a homozygous missense mutation (c.1336C>T, p.Arg446Cys) in the gene Von Willebrand factor A domain containing 2 (VWA2). With immunohistochemistry studies on kidneys of newborn (P1) mice, we show that Vwa2 and Fraser extracellular matrix complex subunit 1 (Fras1) co-localize in the nephrogenic zone of the renal cortex. We identified a pronounced expression of Vwa2 in the basement membrane of the ureteric bud (UB) and derivatives of the metanephric mesenchyme (MM). By applying in vitro assays, we demonstrate that the Arg446Cys mutation decreases translocation of monomeric VWA2 protein and increases translocation of aggregated VWA2 protein into the extracellular space. This is potentially due to the additional, unpaired cysteine residue in the mutated protein that is used for intermolecular disulfide bond formation. VWA2 is a known, direct interactor of FRAS1 of the Fraser-Complex (FC). FC-encoding genes and interacting proteins have previously been implicated in the pathogenesis of syndromic and/or isolated CAKUT phenotypes in humans. VWA2 therefore constitutes a very strong candidate in the search for novel CAKUT-causing genes. Our results from in vitro experiments indicate a dose-dependent neomorphic effect of the Arg446Cys homozygous mutation in VWA2.

  16. Mutations in STX1B, encoding a presynaptic protein, cause fever-associated epilepsy syndromes.

    PubMed

    Schubert, Julian; Siekierska, Aleksandra; Langlois, Mélanie; May, Patrick; Huneau, Clément; Becker, Felicitas; Muhle, Hiltrud; Suls, Arvid; Lemke, Johannes R; de Kovel, Carolien G F; Thiele, Holger; Konrad, Kathryn; Kawalia, Amit; Toliat, Mohammad R; Sander, Thomas; Rüschendorf, Franz; Caliebe, Almuth; Nagel, Inga; Kohl, Bernard; Kecskés, Angela; Jacmin, Maxime; Hardies, Katia; Weckhuysen, Sarah; Riesch, Erik; Dorn, Thomas; Brilstra, Eva H; Baulac, Stephanie; Møller, Rikke S; Hjalgrim, Helle; Koeleman, Bobby P C; Jurkat-Rott, Karin; Lehman-Horn, Frank; Roach, Jared C; Glusman, Gustavo; Hood, Leroy; Galas, David J; Martin, Benoit; de Witte, Peter A M; Biskup, Saskia; De Jonghe, Peter; Helbig, Ingo; Balling, Rudi; Nürnberg, Peter; Crawford, Alexander D; Esguerra, Camila V; Weber, Yvonne G; Lerche, Holger

    2014-12-01

    Febrile seizures affect 2-4% of all children and have a strong genetic component. Recurrent mutations in three main genes (SCN1A, SCN1B and GABRG2) have been identified that cause febrile seizures with or without epilepsy. Here we report the identification of mutations in STX1B, encoding syntaxin-1B, that are associated with both febrile seizures and epilepsy. Whole-exome sequencing in independent large pedigrees identified cosegregating STX1B mutations predicted to cause an early truncation or an in-frame insertion or deletion. Three additional nonsense or missense mutations and a de novo microdeletion encompassing STX1B were then identified in 449 familial or sporadic cases. Video and local field potential analyses of zebrafish larvae with antisense knockdown of stx1b showed seizure-like behavior and epileptiform discharges that were highly sensitive to increased temperature. Wild-type human syntaxin-1B but not a mutated protein rescued the effects of stx1b knockdown in zebrafish. Our results thus implicate STX1B and the presynaptic release machinery in fever-associated epilepsy syndromes.

  17. AR mutations in 28 patients with androgen insensitivity syndrome (Prader grade 0-3).

    PubMed

    Wang, Yi; Gong, Chunxiu; Wang, Xiou; Qin, Miao

    2017-07-01

    We investigated the androgen receptor (AR) gene mutation profiles of Chinese patients exhibiting severe androgen insensitivity syndrome (AIS) phenotypes. The present study enrolled 28 patients with genetically diagnosed AIS, who presented with severe phenotypes (Prader grade 0-3). Patients and some family members were screened via amplification and sequencing of their AR exons 1-8, including the corresponding intronic flanking regions. Luteinizing (LH), follicle-stimulating (FSH), and testosterone (T) hormone levels were found to be slightly, but not significantly, higher in patients with complete androgen insensitivity syndrome (CAIS) than in patients with partial androgen insensitivity syndrome (PAIS) (P>0.05). We identified 24 different AR mutations, including 12 that were novel. Ten patients (cases 2, 3, 10, 28, 11, 12, 19, 20, 24, and 25) were found to carry five recurrent mutations (p.Y572S, p.P914S, p.S176R, p.Y782N, and p.R841H); of these, p.Y572S, p.S176R, and p.Y782N were novel. Among the mutations identified in patients with CAIS, six (66.7%) were characterized as single-nucleotide missense mutations, and six (66.7%) were found to be located in the AR ligand-binding domain (LBD). Among the mutations identified in patients with PAIS, 15 (93.8%) were found to be missense, and 11 (68.8%) were found to be located in the LBD. Patients 10 and 28 were determined to harbor the same missense mutation (p.P914S), but were diagnosed with CAIS and PAIS, respectively. Sex hormone levels were slightly, but not significantly, elevated in patients with CAIS compared to those with PAIS. Missense mutations spanning AR exons 1-8 were the predominant form of identified mutations, and these were mostly located in the AR LBD. Approximately 50% of the identified mutations were novel, and have enriched the AR gene-mutation database. Patients harboring identical mutations were in some instances found to exhibit divergent phenotypes.

  18. Novel mutations in PATL2 cause female infertility with oocyte germinal vesicle arrest.

    PubMed

    Huang, Lingli; Tong, Xianhong; Wang, Fengsong; Luo, Lihua; Jin, Rentao; Fu, Yingyun; Zhou, Guixiang; Li, Daojing; Song, Gaojie; Liu, Yusheng; Zhu, Fuxi

    2018-06-01

    Do PATL2 mutations account for female infertility with oocyte germinal vesicle (GV) arrest? Four of nine independent families with oocyte GV arrest were identified with biallelic PATL2 mutations, suggesting that these mutations may be responsible for oocyte maturation arrest in primary infertile women. Recently, two independent studies have demonstrated that infertility in some women with oocyte maturation arrest at the GV stage was caused by biallelic mutations in PATL2. PATL2 encodes protein PAT1 homolog 2, an RNA-binding protein that may act as a translational repressor. In this study, nine unrelated primary infertile females presenting with oocyte GV arrest were recruited during the treatment of early rescue ICSI or ICSI from January 2013 to December 2016. Genomic DNA was isolated from blood samples obtained from all nine affected individuals and all of their available family members. All the coding regions of PATL2 were sequenced by Sanger sequencing. The pathogenicity of the identified variants and their possible effects on the protein were evaluated in silico. Five novel point mutations and one recurrent splicing mutation in PATL2 were identified in four of nine (44.4%) unrelated patients. We found a consanguineous family with a homozygous missense mutation in two affected sisters, and their fertile brother. There were no clear phenotypic differences in oocytes between the patient with the homozygous missense mutation, patients with nonsense mutations and undiagnosed patients. n/a. The function of PATL2 remains largely unknown. Both the exact pathogenic mechanism(s) of mutated PATL2 causing human oocyte maturation arrest and the strategies to overcome this condition should be further investigated in the future. According to our data, mutations in PATL2 account for 44.4% of the individuals with oocyte GV arrest. Our study further confirms that PATL2 is required for human oocyte maturation and female fertility, which indicates a potential prognostic value of testing for PATL2 mutations in primary infertile women with oocyte maturation arrest. Natural Science Foundation of Anhui Province (1808085MH241), National Natural Science Foundation of China (81401251 and 81370757) and Central Guided Local Development of Science and Technology Special Fund (2016080802D114) supported this study. None of the authors have any competing interests.

  19. Comprehensive assessment of cancer missense mutation clustering in protein structures.

    PubMed

    Kamburov, Atanas; Lawrence, Michael S; Polak, Paz; Leshchiner, Ignaty; Lage, Kasper; Golub, Todd R; Lander, Eric S; Getz, Gad

    2015-10-06

    Large-scale tumor sequencing projects enabled the identification of many new cancer gene candidates through computational approaches. Here, we describe a general method to detect cancer genes based on significant 3D clustering of mutations relative to the structure of the encoded protein products. The approach can also be used to search for proteins with an enrichment of mutations at binding interfaces with a protein, nucleic acid, or small molecule partner. We applied this approach to systematically analyze the PanCancer compendium of somatic mutations from 4,742 tumors relative to all known 3D structures of human proteins in the Protein Data Bank. We detected significant 3D clustering of missense mutations in several previously known oncoproteins including HRAS, EGFR, and PIK3CA. Although clustering of missense mutations is often regarded as a hallmark of oncoproteins, we observed that a number of tumor suppressors, including FBXW7, VHL, and STK11, also showed such clustering. Beside these known cases, we also identified significant 3D clustering of missense mutations in NUF2, which encodes a component of the kinetochore, that could affect chromosome segregation and lead to aneuploidy. Analysis of interaction interfaces revealed enrichment of mutations in the interfaces between FBXW7-CCNE1, HRAS-RASA1, CUL4B-CAND1, OGT-HCFC1, PPP2R1A-PPP2R5C/PPP2R2A, DICER1-Mg2+, MAX-DNA, SRSF2-RNA, and others. Together, our results indicate that systematic consideration of 3D structure can assist in the identification of cancer genes and in the understanding of the functional role of their mutations.

  20. Comprehensive assessment of cancer missense mutation clustering in protein structures

    PubMed Central

    Kamburov, Atanas; Lawrence, Michael S.; Polak, Paz; Leshchiner, Ignaty; Lage, Kasper; Golub, Todd R.; Lander, Eric S.; Getz, Gad

    2015-01-01

    Large-scale tumor sequencing projects enabled the identification of many new cancer gene candidates through computational approaches. Here, we describe a general method to detect cancer genes based on significant 3D clustering of mutations relative to the structure of the encoded protein products. The approach can also be used to search for proteins with an enrichment of mutations at binding interfaces with a protein, nucleic acid, or small molecule partner. We applied this approach to systematically analyze the PanCancer compendium of somatic mutations from 4,742 tumors relative to all known 3D structures of human proteins in the Protein Data Bank. We detected significant 3D clustering of missense mutations in several previously known oncoproteins including HRAS, EGFR, and PIK3CA. Although clustering of missense mutations is often regarded as a hallmark of oncoproteins, we observed that a number of tumor suppressors, including FBXW7, VHL, and STK11, also showed such clustering. Beside these known cases, we also identified significant 3D clustering of missense mutations in NUF2, which encodes a component of the kinetochore, that could affect chromosome segregation and lead to aneuploidy. Analysis of interaction interfaces revealed enrichment of mutations in the interfaces between FBXW7-CCNE1, HRAS-RASA1, CUL4B-CAND1, OGT-HCFC1, PPP2R1A-PPP2R5C/PPP2R2A, DICER1-Mg2+, MAX-DNA, SRSF2-RNA, and others. Together, our results indicate that systematic consideration of 3D structure can assist in the identification of cancer genes and in the understanding of the functional role of their mutations. PMID:26392535

  1. Phenotypic and genotypic characterization of four factor VII deficiency patients from central China.

    PubMed

    Liu, Hui; Wang, Hua-Fang; Cheng, Zhi-peng; Wang, Qing-yun; Hu, Bei; Zeng, Wei; Wu, Ying-ying; Guo, Tao; Tang, Liang; Hu, Yu

    2015-06-01

    Hereditary coagulation factor VII deficiency (FVIID) is a rare autosomal, recessive inherited hemorrhagic disorder related to a variety of mutations or polymorphisms throughout the factor VII (FVII) gene (F7). The aims of this study were to characterize the molecular defect of the F7 gene in four unrelated patients with FVIID and to find the genotype-phenotype correlation. All nine exons, exon-intron boundaries, and 5' and 3'-untranslated regions of the F7 gene were amplified by PCR and the purified PCR products were sequenced directly. Suspected mutations were confirmed by another PCR and sequencing of the opposite strand. Family studies were also performed. A total of five unique lesions were identified, including three missense mutations (c.384A>G, c.839A>C, c.1163T>G, predicting p.Tyr128Cys, p.Glu280Ala and p.Phe388Cys substitution, respectively) and two splice junction mutations (c.572-1G>A, c.681+1G>T), among which two (p.Glu280Ala, p.Phe388Cys) were novel. A previously reported mutation p.Tyr128Cys was seen in the homozygous state in two unrelated patients. The other two cases were both compound heterozygotes of a missense mutation and a splicing site mutation. Multiple sequence alignment using DNAMAN analysis showed that all the missense mutations were found in residues that highly conserved across species and vitamin K-dependent serine proteases. Online software Polyphen and SIFT were used to confirm the pathogenic of the missense mutation. p.Tyr128Cys seems to be a hotspot of the F7 gene in ethnic Han Chinese population.

  2. Novel mutations in the helix termination motif of keratin 3 and keratin 12 in 2 Taiwanese families with Meesmann corneal dystrophy.

    PubMed

    Chen, Ying-Ting; Tseng, Sung-Huei; Chao, Sheau-Chiou

    2005-11-01

    To analyze mutations of the keratin 3 gene (KRT3) and keratin 12 gene (KRT12) in 2 Taiwanese families with Meesmann corneal dystrophy (MCD). Diagnosis of MCD was confirmed by slit-lamp examination of the cornea in 4 members of family 1 and 6 members of family 2. All exons and flanking intron boundaries of KRT3 and KRT12 were amplified by polymerase chain reaction (PCR), and products were subjected to direct sequencing. Restriction fragment length polymorphism analysis (RFLP) with created mismatch primers, Bst XI and Nsp I, was used to confirm the presence of the mutations in affected individuals in family 1 and family 2, respectively. A novel heterozygous missense mutation (1508G-->C), predicting the substitution of a proline for an arginine (R503P) was detected in the helix termination motif of the keratin 3 polypeptide in family 1. Another novel heterozygous missense mutation (1286A-->G), predicting the substitution of a cysteine for a tyrosine at codon 429 (Y429C) was detected in the helix termination motif of the keratin 12 polypeptide in family 2. These 2 mutations were excluded from 50 normal controls by RFLP analysis, indicating that they were not common polymorphisms. A novel missense mutation (R503P) in KRT3 and another novel missense mutation (Y429C) in KRT12 lead to MCD in 2 unrelated Taiwanese families. The mutant codons in our study are all located in the highly conserved alpha-helix-termination motif, which is essential for keratin filament assembly. Mutation at this area may account for the disruption of keratin filament assembly, leading to MCD.

  3. Identification of a novel missense mutation of MAF in a Japanese family with congenital cataract by whole exome sequencing: a clinical report and review of literature.

    PubMed

    Narumi, Yoko; Nishina, Sachiko; Tokimitsu, Motoharu; Aoki, Yoko; Kosaki, Rika; Wakui, Keiko; Azuma, Noriyuki; Murata, Toshinori; Takada, Fumio; Fukushima, Yoshimitsu; Kosho, Tomoki

    2014-05-01

    Congenital cataracts are the most important cause of severe visual impairment in infants. Genetic factors contribute to the disease development and 29 genes are known to cause congenital cataracts. Identifying the genetic cause of congenital cataracts can be difficult because of genetic heterogeneity. V-maf avian musculoaponeurotic fibrosarcoma oncogene homolog (MAF) encodes a basic region/leucine zipper transcription factor that plays a key role as a regulator of embryonic lens fiber cell development. MAF mutations have been reported to cause juvenile-onset pulverulent cataract, microcornea, iris coloboma, and other anterior segment dysgenesis. We report on six patients in a family who have congenital cataracts were identified MAF mutation by whole exome sequencing (WES). The heterozygous MAF mutation Q303L detected in the present family occurs in a well conserved glutamine residue at the basic region of the DNA-binding domain. All affected members showed congenital cataracts. Three of the six members showed microcornea and one showed iris coloboma. Congenital cataracts with MAF mutation exhibited phenotypically variable cataracts within the family. Review of the patients with MAF mutations supports the notion that congenital cataracts caused by MAF mutations could be accompanied by microcornea and/or iris coloboma. WES is a useful tool for detecting disease-causing mutations in patients with genetically heterogeneous conditions. © 2014 Wiley Periodicals, Inc.

  4. Clinical and Mutational Analysis of the GCDH Gene in Malaysian Patients with Glutaric Aciduria Type 1.

    PubMed

    Abdul Wahab, Siti Aishah; Yakob, Yusnita; Abdul Azize, Nor Azimah; Md Yunus, Zabedah; Huey Yin, Leong; Mohd Khalid, Mohd Khairul Nizam; Lock Hock, Ngu

    Glutaric aciduria type 1 (GA1) is an autosomal recessive metabolic disorder caused by deficiency of glutaryl-CoA dehydrogenase enzyme encoded by the GCDH gene. In this study, we presented the clinical and molecular findings of seven GA1 patients in Malaysia. All the patients were symptomatic from infancy and diagnosed clinically from large excretion of glutaric and 3-hydroxyglutaric acids. Bidirectional sequencing of the GCDH gene revealed ten mutations, three of which were novel (Gln76Pro, Glu131Val, and Gly390Trp). The spectrum of mutations included eight missense mutations, a nonsense mutation, and a splice site mutation. Two mutations (Gln76Pro and Arg386Gln) were homozygous in two patients with parental consanguinity. All mutations were predicted to be disease causing by MutationTaster2. In conclusion, this is the first report of both clinical and molecular aspects of GA1 in Malaysian patients. Despite the lack of genotype and phenotype correlation, early diagnosis and timely treatment remained the most important determinant of patient outcome.

  5. Clinical and Mutational Analysis of the GCDH Gene in Malaysian Patients with Glutaric Aciduria Type 1

    PubMed Central

    Yakob, Yusnita; Abdul Azize, Nor Azimah; Md Yunus, Zabedah; Huey Yin, Leong; Mohd Khalid, Mohd Khairul Nizam; Lock Hock, Ngu

    2016-01-01

    Glutaric aciduria type 1 (GA1) is an autosomal recessive metabolic disorder caused by deficiency of glutaryl-CoA dehydrogenase enzyme encoded by the GCDH gene. In this study, we presented the clinical and molecular findings of seven GA1 patients in Malaysia. All the patients were symptomatic from infancy and diagnosed clinically from large excretion of glutaric and 3-hydroxyglutaric acids. Bidirectional sequencing of the GCDH gene revealed ten mutations, three of which were novel (Gln76Pro, Glu131Val, and Gly390Trp). The spectrum of mutations included eight missense mutations, a nonsense mutation, and a splice site mutation. Two mutations (Gln76Pro and Arg386Gln) were homozygous in two patients with parental consanguinity. All mutations were predicted to be disease causing by MutationTaster2. In conclusion, this is the first report of both clinical and molecular aspects of GA1 in Malaysian patients. Despite the lack of genotype and phenotype correlation, early diagnosis and timely treatment remained the most important determinant of patient outcome. PMID:27672653

  6. Computational Modeling of Molecular Effects of Mutations Causing Snyder-Robinson Syndrome

    NASA Astrophysics Data System (ADS)

    Zhang, Zhe; Teng, Shaolei; Alexov, Emil

    2009-11-01

    Snyder-Robinson syndrome is an X-linked mental retardation disorder disease. The disease is associated with defects in a particular biomolecule, the spermine synthase (SMS) protein. Specifically, three missense mutations, G56S, I150T and V132G in SMS were identified to cause the disease, but molecular mechanism of their effect is unknown. We apply single-point energy calculations, molecular dynamics simulations and pKa calculations to reveal the effects of these mutations on SMS's stability, flexibility and interactions. It is demonstrated that even saddle changes as very conservative mutations can significantly affect wild type properties of SMS protein. While the mutations do not involve ionizable groups, still slight changes in the protonation of neighboring amino acids are suggested by the computational protocol. The dynamics of SMS was also affected by the mutations resulting in larger structural fluctuations in the mutant protein compared to the wild type. At the same time, the effect on SMS's stability was found to depend on the location of the mutation site with respect to the surface of the protein. Our investigation suggests that the disease is caused by diverse molecular mechanisms depending on the site of mutation and amino acid type substitution.

  7. Identification of Sequence Variation in the Apolipoprotein A2 Gene and Their Relationship with Serum High-Density Lipoprotein Cholesterol Levels.

    PubMed

    Bandarian, Fatemeh; Daneshpour, Maryam Sadat; Hedayati, Mehdi; Naseri, Mohsen; Azizi, Fereidoun

    2016-01-01

    Apolipoprotein A2 (APOA2) is the second major apolipoprotein of the high-density lipoprotein cholesterol (HDL-C). The study aim was to identify APOA2 gene variation in individuals within two extreme tails of HDL-C levels and its relationship with HDL-C level. This cross-sectional survey was conducted on participants from Tehran Glucose and Lipid Study (TLGS) at Research Institute for Endocrine Sciences, Tehran, Iran from April 2012 to February 2013. In total, 79 individuals with extreme low HDL-C levels (≤5th percentile for age and gender) and 63 individuals with extreme high HDL-C levels (≥95th percentile for age and gender) were selected. Variants were identified using DNA amplification and direct sequencing. Screen of all exons and the core promoter region of APOA2 gene identified nine single nucleotide substitutions and one microsatellite; five of which were known and four were new variants. Of these nine variants, two were common tag single nucleotide polymorphisms (SNPs) and seven were rare SNPs. Both exonic substitutions were missense mutations and caused an amino acid change. There was a significant association between the new missense mutation (variant Chr.1:16119226, Ala98Pro) and HDL-C level. None of two common tag SNPs of rs6413453 and rs5082 contributes to the HDL-C trait in Iranian population, but a new missense mutation in APOA2 in our population has a significant association with HDL-C.

  8. Establishment and rapid detection of a heterozygous missense mutation in the CACNA1F gene by ARMS technique with double-base mismatched primers.

    PubMed

    Yang, W C; Zhu, L; Zhou, B X; Tania, S; Zhou, Q; Khan, M A; Fu, X L; Cheng, J L; Lv, H B; Fu, J J

    2015-09-25

    Retinitis pigmentosa (RP) is a retinal degenerative disorder that often causes complete blindness. Mutations of more than 50 genes have been identified as associated with RP, including the CACNA1F gene. In a recent study, by employing next-generation sequencing, we identified a novel mutation in the CACNA1F gene. In this study, we used the amplification refractory mutation system (ARMS) and identified a single nucleotide change c.1555C>T in exon 13 of the CACNA1F gene, leading to the substitution of arginine by tryptophan (p.R519W) in a Chinese individual affected by RP. This study actually confirms this novel mutation, and establishes the ARMS technique for the detection of mutations in RP.

  9. Novel HSF4 mutation causes congenital total white cataract in a Chinese family.

    PubMed

    Ke, Tie; Wang, Qing K; Ji, Binchu; Wang, Xu; Liu, Ping; Zhang, Xianqin; Tang, Zhaohui; Ren, Xiang; Liu, Mugen

    2006-08-01

    To identify the disease-causing gene (mutation) in a Chinese family affected with autosomal dominant congenital total white cataract. Observational case series. Genotyping and linkage analyses were used to identify the linkage of the disease-causing gene in the Chinese family to the HSF4 gene encoding a member of the family of heat shock transcription factors (HSFs). Direct DNA sequence analysis was used to identify the disease-causing mutation. Polymerase chain reaction/restriction fragment length polymorphism analysis was used to demonstrate cosegregation of the HSF4 mutation with the cataract and the absence of the mutation in the normal controls. The cataract gene in the Chinese family was linked to marker D16S3043, and further haplotype analysis defined the causative gene between D16S515 and D16S415 within which HSF4 is located. A novel mutation c.221G>A was identified in HSF4, which results in substitution of a highly conserved arginine residue by histidine at codon 74 (p.R74H). The R74H mutation cosegregated with the affected individuals in the family and did not exist in unaffected family members and 150 unrelated normal controls. These results identified a novel missense mutation R74H in the transcription factor gene HSF4 in a Chinese cataract family and expand the spectrum of HSF4 mutations causing cataract.

  10. Severe manifestation of Bartter syndrome Type IV caused by a novel insertion mutation in the BSND gene.

    PubMed

    de Pablos, Augusto Luque; García-Nieto, Victor; López-Menchero, Jesús C; Ramos-Trujillo, Elena; González-Acosta, Hilaria; Claverie-Martín, Félix

    2014-05-01

    Bartter syndrome Type IV is a rare subtype of the Bartter syndromes that leads to both severe renal salt wasting and sensorineural deafness. This autosomal recessive disease is caused by mutations in the gene encoding barttin, BSND, an essential subunit of the ClC-K chloride channels expressed in renal and inner ear epithelia. Patients differ in the severity of renal symptoms, which appears to depend on the modification of channel function by the mutant barttin. To date, only a few BSND mutations have been reported, most of which are missense or nonsense mutations. In this study, we report the identification of the first insertion mutation, p.W102Vfs*7, in the BSND gene of a newborn girl with acute clinical symptoms including early-onset chronic renal failure. The results support previous data indicating that mutations that are predicted to abolish barttin expression are associated with a severe phenotype and early onset renal failure.

  11. De novo mutations in HCN1 cause early infantile epileptic encephalopathy.

    PubMed

    Nava, Caroline; Dalle, Carine; Rastetter, Agnès; Striano, Pasquale; de Kovel, Carolien G F; Nabbout, Rima; Cancès, Claude; Ville, Dorothée; Brilstra, Eva H; Gobbi, Giuseppe; Raffo, Emmanuel; Bouteiller, Delphine; Marie, Yannick; Trouillard, Oriane; Robbiano, Angela; Keren, Boris; Agher, Dahbia; Roze, Emmanuel; Lesage, Suzanne; Nicolas, Aude; Brice, Alexis; Baulac, Michel; Vogt, Cornelia; El Hajj, Nady; Schneider, Eberhard; Suls, Arvid; Weckhuysen, Sarah; Gormley, Padhraig; Lehesjoki, Anna-Elina; De Jonghe, Peter; Helbig, Ingo; Baulac, Stéphanie; Zara, Federico; Koeleman, Bobby P C; Haaf, Thomas; LeGuern, Eric; Depienne, Christel

    2014-06-01

    Hyperpolarization-activated, cyclic nucleotide-gated (HCN) channels contribute to cationic Ih current in neurons and regulate the excitability of neuronal networks. Studies in rat models have shown that the Hcn1 gene has a key role in epilepsy, but clinical evidence implicating HCN1 mutations in human epilepsy is lacking. We carried out exome sequencing for parent-offspring trios with fever-sensitive, intractable epileptic encephalopathy, leading to the discovery of two de novo missense HCN1 mutations. Screening of follow-up cohorts comprising 157 cases in total identified 4 additional amino acid substitutions. Patch-clamp recordings of Ih currents in cells expressing wild-type or mutant human HCN1 channels showed that the mutations had striking but divergent effects on homomeric channels. Individuals with mutations had clinical features resembling those of Dravet syndrome with progression toward atypical absences, intellectual disability and autistic traits. These findings provide clear evidence that de novo HCN1 point mutations cause a recognizable early-onset epileptic encephalopathy in humans.

  12. Novel mutations of the carbohydrate sulfotransferase-6 (CHST6) gene causing macular corneal dystrophy in India.

    PubMed

    Sultana, Afia; Sridhar, Mittanamalli S; Jagannathan, Aparna; Balasubramanian, Dorairajan; Kannabiran, Chitra; Klintworth, Gordon K

    2003-12-22

    Macular corneal dystrophy (MCD) is an autosomal recessive disorder characterized by progressive central haze, confluent punctate opacities and abnormal deposits in the cornea. It is caused by mutations in the carbohydrate sulfotransferase-6 (CHST6) gene, encoding corneal N-acetyl glucosamine-6-O-sulfotransferase (C-GlcNAc-6-ST). We screened the CHST6 gene for mutations in Indian families with MCD, in order to determine the range of pathogenic mutations. Genomic DNA was isolated from peripheral blood leukocytes of patients with MCD and normal controls. The coding regions of the CHST6 gene were amplified using three pairs of primers and amplified products were directly sequenced. We identified 22 (5 nonsense, 5 frameshift, 2 insertion, and 10 missense) mutations in 36 patients from 31 families with MCD, supporting the conclusion that loss of function of this gene is responsible for this corneal disease. Seventeen of these mutations are novel. These data highlight the allelic heterogeneity of macular corneal dystrophy in Indian patients.

  13. Novel AVPR2 mutation causing partial nephrogenic diabetes insipidus in a Japanese family.

    PubMed

    Yamashita, Sumie; Hata, Astuko; Usui, Takeshi; Oda, Hirotsugu; Hijikata, Atsushi; Shirai, Tsuyoshi; Kaneko, Naoto; Hata, Daisuke

    2016-05-01

    X-linked recessive congenital nephrogenic diabetes insipidus (NDI) is caused by mutations of the arginine vasopressin type 2 receptor gene (AVPR2). More than 200 mutations of the AVPR2 gene with complete NDI have been reported although only 15 mutations with partial NDI has been reported to date. We herein report a Japanese kindred with partial NDI. The proband is an 8-year-old boy who was referred to our hospital for nocturnal enuresis. Water deprivation test and hypertonic saline test suggested partial renal antidiuretic hormone arginine vasopressin (AVP) resistance. Analysis of genomic DNA revealed a novel missense mutation (p.L161P) in the patient. The patient's mother was heterozygous for the mutation. Three-dimensional (3-D) modeling study showed that L161P possibly destabilizes the transmembrane domain of the V2 receptor, resulting in its misfolding or mislocalization. Distinguishing partial NDI from nocturnal enuresis is important. A clinical clue for diagnosis of partial NDI is an incompatibly high level of AVP despite normal serum osmolality.

  14. Detection of the mtDNA 14484 mutation on an African-specific haplotype: Implications about its role in causing Leber hereditary optic neuropathy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Torroni, A.; Petrozzi, M.; Terracina, M.

    1996-07-01

    Leber hereditary optic neuropathy (LHON) is a maternally transmitted disease whose primary clinical manifestation is acute or subacute bilateral loss of central vision leading to central scotoma and blindness. To date, LHON has been associated with 18 mtDNA missense mutations, even though, for many of these mutations, it remains unclear whether they cause the disease, contribute to the pathology, or are nonpathogenic mtDNA polymorphisms. On the basis of numerous criteria, which include the specificity for LHON, the frequency in the general population, and the penetrance within affected pedigrees, the detection of associated defects in the respiratory chain, mutations at threemore » nucleotide positions (nps), 11778 (G{r_arrow}A), 3460 (G{r_arrow}A), and 14484 (T{r_arrow}C) have been classified as high-risk and primary LHON mutations. Overall, these three mutations encompass {ge}90% of the LHON cases. 29 refs., 1 fig.« less

  15. Mutations in the gene for X-linked adrenoleukodystrophy in patients with different clinical phenotypes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Braun, A.; Ambach, H.; Kammerer, S.

    Recently, the gene for the most common peroxisomal disorder, X-linked adrenoleukodystrophy (X-ALD), has been described encoding a peroxisomal membrane transporter protein. We analyzed the entire protein-coding sequence of this gene by reverse-transcription PCR, SSCP, and DNA sequencing in five patients with different clinical expressions were cerebral childhood ALD, adrenomyecloneuropathy (AMN), and {open_quotes}Addison disease only{close_quotes} (AD) phenotype. In the three patients exhibiting the classical picture of severe childhood ALD we identified in the 5{prime} portion of the X-ALD gene a 38-bp deletion that causes a frameshift mutation, a 3-bp deletion leading to a deletion of an amino acid in the ATP-bindingmore » domain of the ALD protein, and a missense mutation. In the patient with the clinical phenotype of AMN, a nonsense mutation in codon 212, along with a second site mutation at codon 178, was observed. Analysis of the patient with the ADO phenotype revealed a further missense mutation at a highly conserved position in the ALDP/PMP70 comparison. The disruptive nature of two mutations (i.e., the frameshift and the nonsense mutation) in patients with biochemically proved childhood ALD and AMN further strongly supports the hypothesis that alterations in this gene play a crucial role in the pathogenesis of X-ALD. Since the current biochemical techniques for X-ALD carrier detection in affected families lack sufficient reliability, our procedure described for systematic mutation scanning is also capable of improving genetic counseling and prenatal diagnosis. 19 refs., 6 figs., 3 tabs.« less

  16. A Mutation Associated with Stuttering Alters Mouse Pup Ultrasonic Vocalizations.

    PubMed

    Barnes, Terra D; Wozniak, David F; Gutierrez, Joanne; Han, Tae-Un; Drayna, Dennis; Holy, Timothy E

    2016-04-13

    A promising approach to understanding the mechanistic basis of speech is to study disorders that affect speech without compromising other cognitive or motor functions. Stuttering, also known as stammering, has been linked to mutations in the lysosomal enzyme-targeting pathway, but how this remarkably specific speech deficit arises from mutations in a family of general "cellular housekeeping" genes is unknown. To address this question, we asked whether a missense mutation associated with human stuttering causes vocal or other abnormalities in mice. We compared vocalizations from mice engineered to carry a mutation in the Gnptab (N-acetylglucosamine-1-phosphotransferase subunits alpha/beta) gene with wild-type littermates. We found significant differences in the vocalizations of pups with the human Gnptab stuttering mutation compared to littermate controls. Specifically, we found that mice with the mutation emitted fewer vocalizations per unit time and had longer pauses between vocalizations and that the entropy of the temporal sequence was significantly reduced. Furthermore, Gnptab missense mice were similar to wild-type mice on an extensive battery of non-vocal behaviors. We then used the same language-agnostic metrics for auditory signal analysis of human speech. We analyzed speech from people who stutter with mutations in this pathway and compared it to control speech and found abnormalities similar to those found in the mouse vocalizations. These data show that mutations in the lysosomal enzyme-targeting pathway produce highly specific effects in mouse pup vocalizations and establish the mouse as an attractive model for studying this disorder. Copyright © 2016 Elsevier Ltd. All rights reserved.

  17. FOXC2 disease-mutations identified in lymphedema-distichiasis patients cause both loss and gain of protein function

    PubMed Central

    Tavian, Daniela; Missaglia, Sara; Maltese, Paolo E.; Michelini, Sandro; Fiorentino, Alessandro; Ricci, Maurizio; Serrani, Roberta; Walter, Michael A.; Bertelli, Matteo

    2016-01-01

    Dominant mutations in the FOXC2 gene cause a form of lymphedema primarily of the limbs that usually develops at or after puberty. In 90-95% of patients, lymphedema is accompanied by distichiasis. FOXC2 is a member of the forkhead/winged-helix family of transcription factors and plays essential roles in different developmental pathways and physiological processes. We previously described six unrelated families with primary lymphedema-distichiasis in which patients showed different FOXC2 mutations located outside of the forkhead domain. Of those, four were missense mutations, one a frameshift mutation, and the last a stop mutation. To assess their pathogenic potential, we have now examined the subcellular localization and the transactivation activity of the mutated FOXC2 proteins. All six FOXC2 mutant proteins were able to localize into the nucleus; however, the frameshift truncated protein appeared to be sequestered into nuclear aggregates. A reduction in the ability to activate FOXC1/FOXC2 response elements was detected in 50% of mutations, while the remaining ones caused an increase of protein transactivation activity. Our data reveal that either a complete loss or a significant gain of FOXC2 function can cause a perturbation of lymphatic vessel formation leading to lymphedema. PMID:27276711

  18. Waardenburg syndrome: a rare cause of inherited neuropathy due to SOX10 mutation.

    PubMed

    Bogdanova-Mihaylova, Petya; Alexander, Michael D; Murphy, Raymond P J; Murphy, Sinéad M

    2017-09-01

    Waardenburg syndrome (WS) is a rare disorder comprising sensorineural deafness and pigmentation abnormalities. Four distinct subtypes are defined based on the presence or absence of additional symptoms. Mutations in six genes have been described in WS. SOX10 mutations are usually associated with a more severe phenotype of WS with peripheral demyelinating neuropathy, central dysmyelinating leukodystrophy, and Hirschsprung disease. Here we report a 32-year-old man with a novel heterozygous missense variant in SOX10 gene, who presented with congenital deafness, Hirschsprung disease, iris heterochromia, foot deformity, and intermediate conduction velocity length-dependent sensorimotor neuropathy. This case highlights that the presence of other non-neuropathic features in a patient with presumed hereditary neuropathy should alert the clinician to possible atypical rare causes. © 2017 Peripheral Nerve Society.

  19. A novel mutation in DDR2 causing spondylo-meta-epiphyseal dysplasia with short limbs and abnormal calcifications (SMED-SL) results in defective intra-cellular trafficking

    PubMed Central

    2014-01-01

    Background The rare autosomal genetic disorder, Spondylo-meta-epiphyseal dysplasia with short limbs and abnormal calcifications (SMED-SL), is reported to be caused by missense or splice site mutations in the human discoidin domain receptor 2 (DDR2) gene. Previously our group has established that trafficking defects and loss of ligand binding are the underlying cellular mechanisms of several SMED-SL causing mutations. Here we report the clinical characteristics of two siblings of consanguineous marriage with suspected SMED-SL and identification of a novel disease-causing mutation in the DDR2 gene. Methods Clinical evaluation and radiography were performed to evaluate the patients. All the coding exons and splice sites of the DDR2 gene were sequenced by Sanger sequencing. Subcellular localization of the mutated DDR2 protein was determined by confocal microscopy, deglycosylation assay and Western blotting. DDR2 activity was measured by collagen activation and Western analysis. Results In addition to the typical features of SMED-SL, one of the patients has an eye phenotype including visual impairment due to optic atrophy. DNA sequencing revealed a novel homozygous dinucleotide deletion mutation (c.2468_2469delCT) on exon 18 of the DDR2 gene in both patients. The mutation resulted in a frameshift leading to an amino acid change at position S823 and a predicted premature termination of translation (p.S823Cfs*2). Subcellular localization of the mutant protein was analyzed in mammalian cell lines, and it was found to be largely retained in the endoplasmic reticulum (ER), which was further supported by its N-glycosylation profile. In keeping with its cellular mis-localization, the mutant protein was found to be deficient in collagen-induced receptor activation, suggesting protein trafficking defects as the major cellular mechanism underlying the loss of DDR2 function in our patients. Conclusions Our results indicate that the novel mutation results in defective trafficking of the DDR2 protein leading to loss of function and disease. This confirms our previous findings that DDR2 missense mutations occurring at the kinase domain result in retention of the mutant protein in the ER. PMID:24725993

  20. Hot-spot KIF5A mutations cause familial ALS

    PubMed Central

    Yilmaz, Rüstem; Müller, Kathrin; Grehl, Torsten; Petri, Susanne; Meyer, Thomas; Grosskreutz, Julian; Weydt, Patrick; Ruf, Wolfgang; Neuwirth, Christoph; Weber, Markus; Pinto, Susana; Claeys, Kristl G; Schrank, Berthold; Jordan, Berit; Knehr, Antje; Günther, Kornelia; Hübers, Annemarie; Zeller, Daniel; Kubisch, Christian; Jablonka, Sibylle; Klopstock, Thomas; de Carvalho, Mamede; Sperfeld, Anne; Borck, Guntram; Volk, Alexander E; Dorst, Johannes; Weis, Joachim; Otto, Markus; Schuster, Joachim; Del Tredici, Kelly; Braak, Heiko; Danzer, Karin M; Freischmidt, Axel; Meitinger, Thomas; Strom, Tim M; Ludolph, Albert C; Andersen, Peter M; Weishaupt, Jochen H; Weyen, Ute; Hermann, Andreas; Hagenacker, Tim; Koch, Jan Christoph; Lingor, Paul; Göricke, Bettina; Zierz, Stephan; Baum, Petra; Wolf, Joachim; Winkler, Andrea; Young, Peter; Bogdahn, Ulrich; Prudlo, Johannes; Kassubek, Jan

    2018-01-01

    Abstract Heterozygous missense mutations in the N-terminal motor or coiled-coil domains of the kinesin family member 5A (KIF5A) gene cause monogenic spastic paraplegia (HSP10) and Charcot-Marie-Tooth disease type 2 (CMT2). Moreover, heterozygous de novo frame-shift mutations in the C-terminal domain of KIF5A are associated with neonatal intractable myoclonus, a neurodevelopmental syndrome. These findings, together with the observation that many of the disease genes associated with amyotrophic lateral sclerosis disrupt cytoskeletal function and intracellular transport, led us to hypothesize that mutations in KIF5A are also a cause of amyotrophic lateral sclerosis. Using whole exome sequencing followed by rare variant analysis of 426 patients with familial amyotrophic lateral sclerosis and 6137 control subjects, we detected an enrichment of KIF5A splice-site mutations in amyotrophic lateral sclerosis (2/426 compared to 0/6137 in controls; P = 4.2 × 10−3), both located in a hot-spot in the C-terminus of the protein and predicted to affect splicing exon 27. We additionally show co-segregation with amyotrophic lateral sclerosis of two canonical splice-site mutations in two families. Investigation of lymphoblast cell lines from patients with KIF5A splice-site mutations revealed the loss of mutant RNA expression and suggested haploinsufficiency as the most probable underlying molecular mechanism. Furthermore, mRNA sequencing of a rare non-synonymous missense mutation (predicting p.Arg1007Gly) located in the C-terminus of the protein shortly upstream of the splice donor of exon 27 revealed defective KIF5A pre-mRNA splicing in respective patient-derived cell lines owing to abrogation of the donor site. Finally, the non-synonymous single nucleotide variant rs113247976 (minor allele frequency = 1.00% in controls, n = 6137), also located in the C-terminal region [p.(Pro986Leu) in exon 26], was significantly enriched in familial amyotrophic lateral sclerosis patients (minor allele frequency = 3.40%; P = 1.28 × 10−7). Our study demonstrates that mutations located specifically in a C-terminal hotspot of KIF5A can cause a classical amyotrophic lateral sclerosis phenotype, and underline the involvement of intracellular transport processes in amyotrophic lateral sclerosis pathogenesis. PMID:29342275

  1. Hot-spot KIF5A mutations cause familial ALS.

    PubMed

    Brenner, David; Yilmaz, Rüstem; Müller, Kathrin; Grehl, Torsten; Petri, Susanne; Meyer, Thomas; Grosskreutz, Julian; Weydt, Patrick; Ruf, Wolfgang; Neuwirth, Christoph; Weber, Markus; Pinto, Susana; Claeys, Kristl G; Schrank, Berthold; Jordan, Berit; Knehr, Antje; Günther, Kornelia; Hübers, Annemarie; Zeller, Daniel; Kubisch, Christian; Jablonka, Sibylle; Sendtner, Michael; Klopstock, Thomas; de Carvalho, Mamede; Sperfeld, Anne; Borck, Guntram; Volk, Alexander E; Dorst, Johannes; Weis, Joachim; Otto, Markus; Schuster, Joachim; Del Tredici, Kelly; Braak, Heiko; Danzer, Karin M; Freischmidt, Axel; Meitinger, Thomas; Strom, Tim M; Ludolph, Albert C; Andersen, Peter M; Weishaupt, Jochen H

    2018-01-12

    Heterozygous missense mutations in the N-terminal motor or coiled-coil domains of the kinesin family member 5A (KIF5A) gene cause monogenic spastic paraplegia (HSP10) and Charcot-Marie-Tooth disease type 2 (CMT2). Moreover, heterozygous de novo frame-shift mutations in the C-terminal domain of KIF5A are associated with neonatal intractable myoclonus, a neurodevelopmental syndrome. These findings, together with the observation that many of the disease genes associated with amyotrophic lateral sclerosis disrupt cytoskeletal function and intracellular transport, led us to hypothesize that mutations in KIF5A are also a cause of amyotrophic lateral sclerosis. Using whole exome sequencing followed by rare variant analysis of 426 patients with familial amyotrophic lateral sclerosis and 6137 control subjects, we detected an enrichment of KIF5A splice-site mutations in amyotrophic lateral sclerosis (2/426 compared to 0/6137 in controls; P = 4.2 × 10-3), both located in a hot-spot in the C-terminus of the protein and predicted to affect splicing exon 27. We additionally show co-segregation with amyotrophic lateral sclerosis of two canonical splice-site mutations in two families. Investigation of lymphoblast cell lines from patients with KIF5A splice-site mutations revealed the loss of mutant RNA expression and suggested haploinsufficiency as the most probable underlying molecular mechanism. Furthermore, mRNA sequencing of a rare non-synonymous missense mutation (predicting p.Arg1007Gly) located in the C-terminus of the protein shortly upstream of the splice donor of exon 27 revealed defective KIF5A pre-mRNA splicing in respective patient-derived cell lines owing to abrogation of the donor site. Finally, the non-synonymous single nucleotide variant rs113247976 (minor allele frequency = 1.00% in controls, n = 6137), also located in the C-terminal region [p.(Pro986Leu) in exon 26], was significantly enriched in familial amyotrophic lateral sclerosis patients (minor allele frequency = 3.40%; P = 1.28 × 10-7). Our study demonstrates that mutations located specifically in a C-terminal hotspot of KIF5A can cause a classical amyotrophic lateral sclerosis phenotype, and underline the involvement of intracellular transport processes in amyotrophic lateral sclerosis pathogenesis. © The Author(s) (2018). Published by Oxford University Press on behalf of the Guarantors of Brain.

  2. Novel XLRS1 gene mutations cause X-linked juvenile retinoschisis in Chinese families.

    PubMed

    Ma, Xiang; Li, Xiaoxin; Wang, Lihua

    2008-01-01

    To investigate various XLRS1 (RS1) gene mutations in Chinese families with X-linked juvenile retinoschisis (XLRS or RS). Genomic DNA was isolated from leukocytes of 29 male patients with X-linked juvenile retinoschisis, 38 female carriers, and 100 normal controls. All 6 exons of the RS1 gene were amplified by polymerase chain reaction, and the RS1 gene mutations were determined by direct sequencing. Eleven different RS1 mutations in 12 families were identified in the 29 male patients. The mutations comprised eight missense, two frameshift, and one splice donor site mutation. Four of these mutations, one frameshift mutation (26 del T) in exon 1, one frameshift mutation (488 del G) in exon 5, Asp145His and Arg156Gly in exon 5, have not been previously described. One novel non-disease-related polymorphism, 576C to T (Pro192Pro) in exon 6, was also found. Six recurrent mutations, Ser73Pro and Arg102Gln mutations in exon 4 and Arg200Cys, Arg209His, Arg213Gln, and Cys223Arg mutations in exon 6, were also identified in this study. RS1 gene mutations caused X-linked juvenile retinoschisis in these Chinese families.

  3. A novel mutation in the JH4 domain of JAK3 causing severe combined immunodeficiency complicated by vertebral osteomyelitis.

    PubMed

    Qamar, Farah; Junejo, Samina; Qureshi, Sonia; Seleman, Michael; Bainter, Wayne; Massaad, Michel; Chou, Janet; Geha, Raif S

    2017-10-01

    JAK3 is a tyrosine kinase essential for signaling downstream of the common gamma chain subunit shared by multiple cytokine receptors. JAK3 deficiency results in T - B + NK - severe combined immune deficiency (SCID). We report a patient with SCID due to a novel mutation in the JAK3 JH4 domain. The function of the JH4 domain remains unknown. This is the first report of a missense mutation in the JAK3 JH4 domain, thereby demonstrating the importance of the JH4 domain of JAK3 in host immunity. Copyright © 2017 Elsevier Inc. All rights reserved.

  4. A novel missense mutation in CCDC88C activates the JNK pathway and causes a dominant form of spinocerebellar ataxia.

    PubMed

    Tsoi, Ho; Yu, Allen C S; Chen, Zhefan S; Ng, Nelson K N; Chan, Anne Y Y; Yuen, Liz Y P; Abrigo, Jill M; Tsang, Suk Ying; Tsui, Stephen K W; Tong, Tony M F; Lo, Ivan F M; Lam, Stephen T S; Mok, Vincent C T; Wong, Lawrence K S; Ngo, Jacky C K; Lau, Kwok-Fai; Chan, Ting-Fung; Chan, H Y Edwin

    2014-09-01

    Spinocerebellar ataxias (SCAs) are a group of clinically and genetically diverse and autosomal-dominant disorders characterised by neurological deficits in the cerebellum. At present, there is no cure for SCAs. Of the different distinct subtypes of autosomal-dominant SCAs identified to date, causative genes for only a fraction of them are currently known. In this study, we investigated the cause of an autosomal-dominant SCA phenotype in a family that exhibits cerebellar ataxia and pontocerebellar atrophy along with a global reduction in brain volume. Whole-exome analysis revealed a missense mutation c.G1391A (p.R464H) in the coding region of the coiled-coil domain containing 88C (CCDC88C) gene in all affected individuals. Functional studies showed that the mutant form of CCDC88C activates the c-Jun N-terminal kinase (JNK) pathway, induces caspase 3 cleavage and triggers apoptosis. This study expands our understanding of the cause of autosomal-dominant SCAs, a group of heterogeneous congenital neurological conditions in humans, and unveils a link between the JNK stress pathway and cerebellar atrophy. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.

  5. Adenosine kinase deficiency disrupts the methionine cycle and causes hypermethioninemia, encephalopathy, and abnormal liver function.

    PubMed

    Bjursell, Magnus K; Blom, Henk J; Cayuela, Jordi Asin; Engvall, Martin L; Lesko, Nicole; Balasubramaniam, Shanti; Brandberg, Göran; Halldin, Maria; Falkenberg, Maria; Jakobs, Cornelis; Smith, Desiree; Struys, Eduard; von Döbeln, Ulrika; Gustafsson, Claes M; Lundeberg, Joakim; Wedell, Anna

    2011-10-07

    Four inborn errors of metabolism (IEMs) are known to cause hypermethioninemia by directly interfering with the methionine cycle. Hypermethioninemia is occasionally discovered incidentally, but it is often disregarded as an unspecific finding, particularly if liver disease is involved. In many individuals the hypermethioninemia resolves without further deterioration, but it can also represent an early sign of a severe, progressive neurodevelopmental disorder. Further investigation of unclear hypermethioninemia is therefore important. We studied two siblings affected by severe developmental delay and liver dysfunction. Biochemical analysis revealed increased plasma levels of methionine, S-adenosylmethionine (AdoMet), and S-adenosylhomocysteine (AdoHcy) but normal or mildly elevated homocysteine (Hcy) levels, indicating a block in the methionine cycle. We excluded S-adenosylhomocysteine hydrolase (SAHH) deficiency, which causes a similar biochemical phenotype, by using genetic and biochemical techniques and hypothesized that there was a functional block in the SAHH enzyme as a result of a recessive mutation in a different gene. Using exome sequencing, we identified a homozygous c.902C>A (p.Ala301Glu) missense mutation in the adenosine kinase gene (ADK), the function of which fits perfectly with this hypothesis. Increased urinary adenosine excretion confirmed ADK deficiency in the siblings. Four additional individuals from two unrelated families with a similar presentation were identified and shown to have a homozygous c.653A>C (p.Asp218Ala) and c.38G>A (p.Gly13Glu) mutation, respectively, in the same gene. All three missense mutations were deleterious, as shown by activity measurements on recombinant enzymes. ADK deficiency is a previously undescribed, severe IEM shedding light on a functional link between the methionine cycle and adenosine metabolism. Copyright © 2011 The American Society of Human Genetics. Published by Elsevier Inc. All rights reserved.

  6. Novel POC1A mutation in primordial dwarfism reveals new insights for centriole biogenesis.

    PubMed

    Koparir, Asuman; Karatas, Omer F; Yuceturk, Betul; Yuksel, Bayram; Bayrak, Ali O; Gerdan, Omer F; Sagiroglu, Mahmut S; Gezdirici, Alper; Kirimtay, Koray; Selcuk, Ece; Karabay, Arzu; Creighton, Chad J; Yuksel, Adnan; Ozen, Mustafa

    2015-10-01

    POC1A encodes a WD repeat protein localizing to centrioles and spindle poles and is associated with short stature, onychodysplasia, facial dysmorphism and hypotrichosis (SOFT) syndrome. These main features are related to the defect in cell proliferation of chondrocytes in growth plate. In the current study, we aimed at identifying the molecular basis of two patients with primordial dwarfism (PD) in a single family through utilization of whole-exome sequencing. A novel homozygous p.T120A missense mutation was detected in POC1A in both patients, a known causative gene of SOFT syndrome, and confirmed using Sanger sequencing. To test the pathogenicity of the detected mutation, primary fibroblast cultures obtained from the patients and a control individual were used. For evaluating the global gene expression profile of cells carrying p.T120A mutation in POC1A, we performed the gene expression array and compared their expression profiles to those of control fibroblast cells. The gene expression array analysis showed that 4800 transcript probes were significantly deregulated in cells with p.T120A mutation in comparison to the control. GO term association results showed that deregulated genes are mostly involved in the extracellular matrix and cytoskeleton. Furthermore, the p.T120A missense mutation in POC1A caused the formation of abnormal mitotic spindle structure, including supernumerary centrosomes, and changes in POC1A were accompanied by alterations in another centrosome-associated WD repeat protein p80-katanin. As a result, we identified a novel mutation in POC1A of patients with PD and showed that this mutation causes the formation of multiple numbers of centrioles and multipolar spindles with abnormal chromosome arrangement. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  7. Antisense oligonucleotide therapeutics for iron-sulphur cluster deficiency myopathy.

    PubMed

    Kollberg, Gittan; Holme, Elisabeth

    2009-12-01

    Iron-sulphur cluster deficiency myopathy is caused by a deep intronic mutation in ISCU resulting in inclusion of a cryptic exon in the mature mRNA. ISCU encodes the iron-sulphur cluster assembly protein IscU. Iron-sulphur clusters are essential for most basic redox transformations including the respiratory-chain function. Most patients are homozygous for the mutation with a phenotype characterized by a non-progressive myopathy with childhood onset of early fatigue, dyspnoea and palpitation on trivial exercise. A more severe phenotype with early onset of a slowly progressive severe muscle weakness, severe exercise intolerance and cardiomyopathy is caused by a missense mutation in compound with the intronic mutation. Treatment of cultured fibroblasts derived from three homozygous patients with an antisense phosphorodiamidate morpholino oligonucleotide for 48 h resulted in 100% restoration of the normal splicing pattern. The restoration was stable and after 21 days the correctly spliced mRNA still was the dominating RNA species.

  8. Identification of novel mutations in the XLRS1 gene in Chinese patients with X-linked juvenile retinoschisis.

    PubMed

    Zeng, Meizhen; Yi, Changxian; Guo, Xiangming; Jia, Xiaoyun; Deng, Yan; Wang, Juan; Shen, Huangxuan

    2007-01-01

    X-linked juvenile retinoschisis (XLRS) is a major cause of macular degeneration in young men. In this study we analyzed all six exons of the XLRS1 gene in four sporadic XLRS patients and in an affected family in China who were recently diagnosed. We found there are five different mutations with four containing missense point mutations and one having a frame-shift deletion. Among these mutations both c.644A>T and c.520delC are novel and have not been previously reported. Moreover all the second-generation offsprings and most of the third-generation ones in the affected family were found to carry the mutations bearing X chromosome. The discovery of novel mutations in the XLRS1 gene would increase the available information about the spectrum of genetic abnormalities causing XLRS. Although the limited data failed to reveal a correlation between mutations and disease phenotypes our identification of novel mutations in the XLRS1 gene will facilitate early and correct diagnosis and genetic counseling regarding the prognosis of XLRS disease.

  9. Mutations in WNT7A cause a range of limb malformations, including Fuhrmann syndrome and Al-Awadi/Raas-Rothschild/Schinzel phocomelia syndrome.

    PubMed

    Woods, C G; Stricker, S; Seemann, P; Stern, R; Cox, J; Sherridan, E; Roberts, E; Springell, K; Scott, S; Karbani, G; Sharif, S M; Toomes, C; Bond, J; Kumar, D; Al-Gazali, L; Mundlos, S

    2006-08-01

    Fuhrmann syndrome and the Al-Awadi/Raas-Rothschild/Schinzel phocomelia syndrome are considered to be distinct limb-malformation disorders characterized by various degrees of limb aplasia/hypoplasia and joint dysplasia in humans. In families with these syndromes, we found homozygous missense mutations in the dorsoventral-patterning gene WNT7A and confirmed their functional significance in retroviral-mediated transfection of chicken mesenchyme cell cultures and developing limbs. The results suggest that a partial loss of WNT7A function causes Fuhrmann syndrome (and a phenotype similar to mouse Wnt7a knockout), whereas the more-severe limb truncation phenotypes observed in Al-Awadi/Raas-Rothschild/Schinzel phocomelia syndrome result from null mutations (and cause a phenotype similar to mouse Shh knockout). These findings illustrate the specific and conserved importance of WNT7A in multiple aspects of vertebrate limb development.

  10. Mutations in WNT7A Cause a Range of Limb Malformations, Including Fuhrmann Syndrome and Al-Awadi/Raas-Rothschild/Schinzel Phocomelia Syndrome

    PubMed Central

    Woods, C. G.; Stricker, S.; Seemann, P.; Stern, R.; Cox, J.; Sherridan, E.; Roberts, E.; Springell, K.; Scott, S.; Karbani, G.; Sharif, S. M.; Toomes, C.; Bond, J.; Kumar, D.; Al-Gazali, L.; Mundlos, S.

    2006-01-01

    Fuhrmann syndrome and the Al-Awadi/Raas-Rothschild/Schinzel phocomelia syndrome are considered to be distinct limb-malformation disorders characterized by various degrees of limb aplasia/hypoplasia and joint dysplasia in humans. In families with these syndromes, we found homozygous missense mutations in the dorsoventral-patterning gene WNT7A and confirmed their functional significance in retroviral-mediated transfection of chicken mesenchyme cell cultures and developing limbs. The results suggest that a partial loss of WNT7A function causes Fuhrmann syndrome (and a phenotype similar to mouse Wnt7a knockout), whereas the more-severe limb truncation phenotypes observed in Al-Awadi/Raas-Rothschild/Schinzel phocomelia syndrome result from null mutations (and cause a phenotype similar to mouse Shh knockout). These findings illustrate the specific and conserved importance of WNT7A in multiple aspects of vertebrate limb development. PMID:16826533

  11. MBTPS2 mutations cause defective regulated intramembrane proteolysis in X-linked osteogenesis imperfecta

    PubMed Central

    Lindert, Uschi; Cabral, Wayne A.; Ausavarat, Surasawadee; Tongkobpetch, Siraprapa; Ludin, Katja; Barnes, Aileen M.; Yeetong, Patra; Weis, Maryann; Krabichler, Birgit; Srichomthong, Chalurmpon; Makareeva, Elena N.; Janecke, Andreas R.; Leikin, Sergey; Röthlisberger, Benno; Rohrbach, Marianne; Kennerknecht, Ingo; Eyre, David R.; Suphapeetiporn, Kanya; Giunta, Cecilia; Marini, Joan C.; Shotelersuk, Vorasuk

    2016-01-01

    Osteogenesis imperfecta (OI) is a collagen-related bone dysplasia. We identified an X-linked recessive form of OI caused by defects in MBTPS2, which encodes site-2 metalloprotease (S2P). MBTPS2 missense mutations in two independent kindreds with moderate/severe OI cause substitutions at highly conserved S2P residues. Mutant S2P has normal stability, but impaired functioning in regulated intramembrane proteolysis (RIP) of OASIS, ATF6 and SREBP transcription factors, consistent with decreased proband secretion of type I collagen. Further, hydroxylation of the collagen lysine residue (K87) critical for crosslinking is reduced in proband bone tissue, consistent with decreased lysyl hydroxylase 1 in proband osteoblasts. Reduced collagen crosslinks presumptively undermine bone strength. Also, proband osteoblasts have broadly defective differentiation. These mutations provide evidence that RIP plays a fundamental role in normal bone development. PMID:27380894

  12. Screening Mutations of MYBPC3 in 114 Unrelated Patients with Hypertrophic Cardiomyopathy by Targeted Capture and Next-generation Sequencing.

    PubMed

    Liu, Xuxia; Jiang, Tengyong; Piao, Chunmei; Li, Xiaoyan; Guo, Jun; Zheng, Shuai; Zhang, Xiaoping; Cai, Tao; Du, Jie

    2015-06-19

    Hypertrophic cardiomyopathy (HCM) is a major cause of sudden cardiac death. Mutations in the MYBPC3 gene represent the cause of HCM in ~35% of patients with HCM. However, genetic testing in clinic setting has been limited due to the cost and relatively time-consuming by Sanger sequencing. Here, we developed a HCM Molecular Diagnostic Kit enabling ultra-low-cost targeted gene resequencing in a large cohort and investigated the mutation spectrum of MYBPC3. In a cohort of 114 patients with HCM, a total of 20 different mutations (8 novel and 12 known mutations) of MYBPC3 were identified from 25 patients (21.9%). We demonstrated that the power of targeted resequencing in a cohort of HCM patients, and found that MYBPC3 is a common HCM-causing gene in Chinese patients. Phenotype-genotype analyses showed that the patients with double mutations (n = 2) or premature termination codon mutations (n = 12) showed more severe manifestations, compared with patients with missense mutations (n = 11). Particularly, we identified a recurrent truncation mutation (p.Y842X) in four unrelated cases (4/25, 16%), who showed severe phenotypes, and suggest that the p.Y842X is a frequent mutation in Chinese HCM patients with severe phenotypes.

  13. Machine learning classifier for identification of damaging missense mutations exclusive to human mitochondrial DNA-encoded polypeptides.

    PubMed

    Martín-Navarro, Antonio; Gaudioso-Simón, Andrés; Álvarez-Jarreta, Jorge; Montoya, Julio; Mayordomo, Elvira; Ruiz-Pesini, Eduardo

    2017-03-07

    Several methods have been developed to predict the pathogenicity of missense mutations but none has been specifically designed for classification of variants in mtDNA-encoded polypeptides. Moreover, there is not available curated dataset of neutral and damaging mtDNA missense variants to test the accuracy of predictors. Because mtDNA sequencing of patients suffering mitochondrial diseases is revealing many missense mutations, it is needed to prioritize candidate substitutions for further confirmation. Predictors can be useful as screening tools but their performance must be improved. We have developed a SVM classifier (Mitoclass.1) specific for mtDNA missense variants. Training and validation of the model was executed with 2,835 mtDNA damaging and neutral amino acid substitutions, previously curated by a set of rigorous pathogenicity criteria with high specificity. Each instance is described by a set of three attributes based on evolutionary conservation in Eukaryota of wildtype and mutant amino acids as well as coevolution and a novel evolutionary analysis of specific substitutions belonging to the same domain of mitochondrial polypeptides. Our classifier has performed better than other web-available tested predictors. We checked performance of three broadly used predictors with the total mutations of our curated dataset. PolyPhen-2 showed the best results for a screening proposal with a good sensitivity. Nevertheless, the number of false positive predictions was too high. Our method has an improved sensitivity and better specificity in relation to PolyPhen-2. We also publish predictions for the complete set of 24,201 possible missense variants in the 13 human mtDNA-encoded polypeptides. Mitoclass.1 allows a better selection of candidate damaging missense variants from mtDNA. A careful search of discriminatory attributes and a training step based on a curated dataset of amino acid substitutions belonging exclusively to human mtDNA genes allows an improved performance. Mitoclass.1 accuracy could be improved in the future when more mtDNA missense substitutions will be available for updating the attributes and retraining the model.

  14. Genetic Studies of the Prp17 Gene of Saccharomyces Cerevisiae: A Domain Essential for Function Maps to a Nonconserved Region of the Protein

    PubMed Central

    Seshadri, V.; Vaidya, V. C.; Vijayraghavan, U.

    1996-01-01

    The PRP17 gene product is required for the second step of pre-mRNA splicing reactions. The C-terminal half of this protein bears four repeat units with homology to the β transducin repeat. Missense mutations in three temperature-sensitive prp17 mutants map to a region in the N-terminal half of the protein. We have generated, in vitro, 11 missense alleles at the β transducin repeat units and find that only one affects function in vivo. A phenotypically silent missense allele at the fourth repeat unit enhances the slow-growing phenotype conferred by an allele at the third repeat, suggesting an interaction between these domains. Although many missense mutations in highly conserved amino acids lack phenotypic effects, deletion analysis suggests an essential role for these units. Only mutations in the N-terminal nonconserved domain of PRP17 are synthetically lethal in combination with mutations in PRP16 and PRP18, two other gene products required for the second splicing reaction. A mutually allele-specific interaction between prp17 and snr7, with mutations in U5 snRNA, was observed. We therefore suggest that the functional region of Prp17p that interacts with Prp18p, Prp16p, and U5 snRNA is in the N terminal region of the protein. PMID:8722761

  15. Alzheimer neuropathology without frontotemporal lobar degeneration hallmarks (TAR DNA-binding protein 43 inclusions) in missense progranulin mutation Cys139Arg.

    PubMed

    Redaelli, Veronica; Rossi, Giacomina; Maderna, Emanuela; Kovacs, Gabor G; Piccoli, Elena; Caroppo, Paola; Cacciatore, Francesca; Spinello, Sonia; Grisoli, Marina; Sozzi, Giuliano; Salmaggi, Andrea; Tagliavini, Fabrizio; Giaccone, Giorgio

    2018-01-01

    Null mutations in progranulin gene (GRN) reduce the progranulin production resulting in haploinsufficiency and are tightly associated with tau-negative frontotemporal lobar degeneration with TAR DNA-binding protein 43-positive inclusions (FTLD-TDP). Missense mutations of GRN were also identified, but their effects are not completely clear, in particular unanswered is the question of what neuropathology they elicit, also considering that their occurrence has been reported in patients with typical clinical features of Alzheimer disease. They describe two fraternal twins carrying the missense GRN Cys139Arg mutation affected by late-onset dementia and we report the neuropathological study of one of them. Both patients were examined by neuroimaging, neuropsychological assessment and genetic analysis of GRN and other genes associated with dementia. The brain of one was obtained at autopsy and examined neuropathologically. One sister presented clinical and MRI features leading to the diagnosis of Alzheimer disease. The other underwent autopsy and the brain showed neuropathological hallmarks of Alzheimer disease with abundant Aβ-amyloid deposition and Braak stage V of neurofibrillary pathology, in the absence of the hallmark lesions of FTLD-TDP. Their findings may contribute to better clarify the role of progranulin in neurodegenerative diseases indicating that some GRN mutations, in particular missense ones, may act as strong risk factor for Alzheimer disease rather than induce FTLD-TDP. © 2016 International Society of Neuropathology.

  16. The Chemical Chaperone, PBA, Reduces ER Stress and Autophagy and Increases Collagen IV α5 Expression in Cultured Fibroblasts From Men With X-Linked Alport Syndrome and Missense Mutations.

    PubMed

    Wang, Dongmao; Mohammad, Mardhiah; Wang, Yanyan; Tan, Rachel; Murray, Lydia S; Ricardo, Sharon; Dagher, Hayat; van Agtmael, Tom; Savige, Judy

    2017-07-01

    X-linked Alport syndrome (OMIM 301050) is caused by COL4A5 missense variants in 40% of families. This study examined the effects of chemical chaperone treatment (sodium 4-phenylbutyrate) on fibroblast cell lines derived from men with missense mutations. Dermal fibroblast cultures were established from 2 affected men and 3 normals. Proliferation rates were examined, the collagen IV α5 chain localized with immunostaining, and levels of the intra- and extracellular chains quantitated with an in-house enzyme-linked immunosorbent assay. COL4A5 mRNA was measured using quantitative reverse transcriptase polymerase chain reaction. Endoplasmic reticulum (ER) size was measured on electron micrographs and after HSP47 immunostaining. Markers of ER stress (ATF6, HSPA5, DDIT3), autophagy (ATG5, BECN1, ATG7), and apoptosis (CASP3, BAD, BCL 2 ) were also quantitated by quantitative reverse transcriptase polymerase chain reaction. Measurements were repeated after 48 hours of incubation with 10 mM sodium 4-phenylbutyrate acid. Both COL4A5 missense variants were associated with reduced proliferation rates on day 6 ( P  = 0.01 and P  = 0.03), ER enlargement, and increased mRNA for ER stress and autophagy (all P values < 0.05) when compared with normal. Sodium 4-phenylbutyrate treatment increased COL4A5 transcript levels ( P  < 0.01), and reduced ER size ( P  < 0.01 by EM and P  < 0.001 by immunostaining), ER stress (p HSPA5 and DDIT3, all P values < 0.01) and autophagy (ATG7, P  < 0.01). Extracellular collagen IV α5 chain was increased in the M1 line only ( P  = 0.06). Sodium 4-phenylbutyrate increases collagen IV α5 mRNA levels, reduces ER stress and autophagy, and possibly facilitates collagen IV α5 extracellular transport. Whether these actions delay end-stage renal failure in men with X-linked Alport syndrome and missense mutations will only be determined with clinical trials.

  17. A novel mutation of the high-temperature requirement A serine peptidase 1 (HTRA1) gene in a Chinese family with cerebral autosomal recessive arteriopathy with subcortical infarcts and leukoencephalopathy (CARASIL).

    PubMed

    Chen, Yan; He, Zhiyi; Meng, Su; Li, Lei; Yang, Hua; Zhang, Xiaotang

    2013-10-01

    Mutations in the high-temperature requirement A serine peptidase 1 (HTRA1) gene were studied in a Chinese family with cerebral autosomal recessive arteriopathy with subcortical infarcts and leukoencephalopathy (CARASIL). Exons 1-9 of the HTRA1 gene were amplified and bidirectionally sequenced in a Chinese family with CARASIL. Mutation effects were analysed by three-dimensional modelling of the serine protease HTRA1 protein. The proband was found to be homozygous for a novel missense mutation (c.854 C > T) identified in exon 4 of the HTRA1 gene; the parents of the proband were heterozygous for the same missense mutation. This c.854 C > T mutation resulted in a change from proline to leucine (p.P285L) in serine protease HTRA1, and was absent in 260 control chromosomes. Three-dimensional models showed that the change from proline to leucine (p.P285L) could attenuate the hydrogen bond between S284 and S287 residues, which might affect function of serine protease HTRA1. Discovery of a novel missense mutation (c.854C>T) associated with CARASIL expands the known CARASIL-related mutations in HTRA1.

  18. Seven novel mutations in the methylenetetrahydrofolate reductase gene and genotype/phenotype correlations in severe methylenetetrahydrofolate reductase deficiency

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Goyette, P.; Frosst, P.; Rosenblatt, D.S.

    1995-05-01

    5-Methyltetrahydrofolate, the major form of folate in plasma, is a carbon donor for the remethylation of homocysteine to methionine. This form of folate is generated from 5,10-methylenetetrahydrofolate through the action of 5,10-methylenetetrahydrofolate reductase (MTHFR), a cytosolic flavoprotein. Patients with an autosomal recessive severe deficiency of MTHFR have homocystinuria and a wide range of neurological and vascular disturbances. We have recently described the isolation of a cDNA for MTHFR and the identification of two mutations in patients with severe MTHFR deficiency. We report here the characterization of seven novel mutations in this gene: six missense mutations and a 5{prime} splice-site defectmore » that activates a cryptic splice in the coding sequence. We also present a preliminary analysis of the relationship between genotype and phenotype for all nine mutations identified thus far in this gene. A nonsense mutation and two missense mutations (proline to leucine and threonine to methionine) in the homozygous state are associated with extremely low activity (0%-3%) and onset of symptoms within the 1st year of age. Other missense mutations (arginine to cysteine and arginine to glutamine) are associated with higher enzyme activity and later onset of symptoms. 19 refs., 4 figs., 2 tabs.« less

  19. Orphan missense mutations in the cystic fibrosis transmembrane conductance regulator: A three-step biological approach to establishing a correlation between genotype and phenotype.

    PubMed

    Fresquet, Fleur; Clement, Romain; Norez, Caroline; Sterlin, Adélaïde; Melin, Patricia; Becq, Frédéric; Kitzis, Alain; Thoreau, Vincent; Bilan, Frédéric

    2011-09-01

    More than 1860 mutations have been found within the human cystic fibrosis transmembrane conductance regulator (CFTR) gene sequence. These mutations can be classified according to their degree of severity in CF disease. Although the most common mutations are well characterized, few data are available for rare mutations. Thus, genetic counseling is particularly difficult when fetuses or patients with CF present these orphan variations. We describe a three-step in vitro assay that can evaluate rare missense CFTR mutation consequences to establish a correlation between genotype and phenotype. By using a green fluorescent protein-tagged CFTR construct, we expressed mutated proteins in COS-7 cells. CFTR trafficking was visualized by confocal microscopy, and the cellular localization of CFTR was determined using intracellular markers. We studied the CFTR maturation process using Western blot analysis and evaluated CFTR channel activity by automated iodide efflux assays. Of six rare mutations that we studied, five have been isolated in our laboratory. The cellular and functional impact that we observed in each case was compared with the clinical data concerning the patients in whom we encountered these mutations. In conclusion, we propose that performing this type of analysis for orphan CFTR missense mutations can improve CF genetic counseling. Copyright © 2011 American Society for Investigative Pathology and the Association for Molecular Pathology. Published by Elsevier Inc. All rights reserved.

  20. Independent role for presynaptic FMRP revealed by an FMR1 missense mutation associated with intellectual disability and seizures

    PubMed Central

    Myrick, Leila K.; Deng, Pan-Yue; Hashimoto, Hideharu; Oh, Young Mi; Cho, Yongcheol; Poidevin, Mickael J.; Suhl, Joshua A.; Visootsak, Jeannie; Cavalli, Valeria; Jin, Peng; Cheng, Xiaodong; Warren, Stephen T.; Klyachko, Vitaly A.

    2015-01-01

    Fragile X syndrome (FXS) results in intellectual disability (ID) most often caused by silencing of the fragile X mental retardation 1 (FMR1) gene. The resulting absence of fragile X mental retardation protein 1 (FMRP) leads to both pre- and postsynaptic defects, yet whether the pre- and postsynaptic functions of FMRP are independent and have distinct roles in FXS neuropathology remain poorly understood. Here, we demonstrate an independent presynaptic function for FMRP through the study of an ID patient with an FMR1 missense mutation. This mutation, c.413G > A (R138Q), preserves FMRP’s canonical functions in RNA binding and translational regulation, which are traditionally associated with postsynaptic compartments. However, neuronally driven expression of the mutant FMRP is unable to rescue structural defects at the neuromuscular junction in fragile x mental retardation 1 (dfmr1)-deficient Drosophila, suggesting a presynaptic-specific impairment. Furthermore, mutant FMRP loses the ability to rescue presynaptic action potential (AP) broadening in Fmr1 KO mice. The R138Q mutation also disrupts FMRP’s interaction with the large-conductance calcium-activated potassium (BK) channels that modulate AP width. These results reveal a presynaptic- and translation-independent function of FMRP that is linked to a specific subset of FXS phenotypes. PMID:25561520

  1. A missense mutation in the vasopressin-neurophysin precursor gene cosegregates with human autosomal dominant neurohypophyseal diabetes insipidus.

    PubMed Central

    Bahnsen, U; Oosting, P; Swaab, D F; Nahke, P; Richter, D; Schmale, H

    1992-01-01

    Familial neurohypophyseal diabetes insipidus in humans is a rare disease transmitted as an autosomal dominant trait. Affected individuals have very low or undetectable levels of circulating vasopressin and suffer from polydipsia and polyuria. An obvious candidate gene for the disease is the vasopressin-neurophysin (AVP-NP) precursor gene on human chromosome 20. The 2 kb gene with three exons encodes a composite precursor protein consisting of the neuropeptide vasopressin and two associated proteins, neurophysin and a glycopeptide. Cloning and nucleotide sequence analysis of both alleles of the AVP-NP gene present in a Dutch ADNDI family reveals a point mutation in one allele of the affected family members. Comparison of the nucleotide sequences shows a G----T transversion within the neurophysin-encoding exon B. This missense mutation converts a highly conserved glycine (Gly17 of neurophysin) to a valine residue. RFLP analysis of six related family members indicates cosegregation of the mutant allele with the DI phenotype. The mutation is not present in 96 chromosomes of an unrelated control group. These data suggest that a single amino acid exchange within a highly conserved domain of the human vasopressin-associated neurophysin is the primary cause of one form of ADNDI. Images PMID:1740104

  2. A Missense Mutation in the Capza3 Gene and Disruption of F-actin Organization in Spermatids of repro32 Infertile Male Mice

    PubMed Central

    Geyer, Christopher B.; Inselman, Amy L.; Sunman, Jeffrey A.; Bornstein, Sheila; Handel, Mary Ann; Eddy, Edward M.

    2009-01-01

    Males homozygous for the repro32 ENU-induced mutation produced by the Reproductive Genomics program at The Jackson Laboratory are infertile, have low epididymal sperm concentrations, and produce sperm with abnormally shaped heads and poor motility. The purpose of the present study was to identify the mutated gene in repro32 mice and to define the structural and functional changes causing infertility and the aberrant sperm phenotype. In repro32/repro32 mice, we discovered a failure to shed excess cytoplasm and disorganization of the middle piece of the flagellum at spermiation, resulting in the outer dense fibers being wrapped around the sperm head within a bag of cytoplasm. Using a candidate-gene approach, a mutation was identified in the spermatid-specific “capping protein (actin filament) muscle Z-line, alpha 3” gene (Capza3). CAPZA3 protein localization was altered in spermatids concurrent with altered localization of a unique CAPZB variant isoform and disruption of the filamentous actin (F-actin) network. These observations strongly suggest the missense mutation in Capza3 is responsible for the mutant phenotype of repro32/repro32 sperm and regulation of F-actin dynamics by a spermatogenic cell-specific CAPZ heterodimer is essential for removal of the cytoplasm and maintenance of midpiece integrity during spermiation in the mouse. PMID:19341723

  3. Allelic Heterogeneity at the Equine KIT Locus in Dominant White (W) Horses

    PubMed Central

    Haase, Bianca; Brooks, Samantha A; Schlumbaum, Angela; Azor, Pedro J; Bailey, Ernest; Alaeddine, Ferial; Mevissen, Meike; Burger, Dominik; Poncet, Pierre-André; Rieder, Stefan; Leeb, Tosso

    2007-01-01

    White coat color has been a highly valued trait in horses for at least 2,000 years. Dominant white (W) is one of several known depigmentation phenotypes in horses. It shows considerable phenotypic variation, ranging from ∼50% depigmented areas up to a completely white coat. In the horse, the four depigmentation phenotypes roan, sabino, tobiano, and dominant white were independently mapped to a chromosomal region on ECA 3 harboring the KIT gene. KIT plays an important role in melanoblast survival during embryonic development. We determined the sequence and genomic organization of the ∼82 kb equine KIT gene. A mutation analysis of all 21 KIT exons in white Franches-Montagnes Horses revealed a nonsense mutation in exon 15 (c.2151C>G, p.Y717X). We analyzed the KIT exons in horses characterized as dominant white from other populations and found three additional candidate causative mutations. Three almost completely white Arabians carried a different nonsense mutation in exon 4 (c.706A>T, p.K236X). Six Camarillo White Horses had a missense mutation in exon 12 (c.1805C>T, p.A602V), and five white Thoroughbreds had yet another missense mutation in exon 13 (c.1960G>A, p.G654R). Our results indicate that the dominant white color in Franches-Montagnes Horses is caused by a nonsense mutation in the KIT gene and that multiple independent mutations within this gene appear to be responsible for dominant white in several other modern horse populations. PMID:17997609

  4. A Comprehensive Functional Analysis of NTRK1 Missense Mutations Causing Hereditary Sensory and Autonomic Neuropathy Type IV (HSAN IV).

    PubMed

    Shaikh, Samiha S; Chen, Ya-Chun; Halsall, Sally-Anne; Nahorski, Michael S; Omoto, Kiyoyuki; Young, Gareth T; Phelan, Anne; Woods, Christopher Geoffrey

    2017-01-01

    Hereditary sensory and autonomic neuropathy type IV (HSAN IV) is an autosomal recessive disorder characterized by a complete lack of pain perception and anhidrosis. Here, we studied a cohort of seven patients with HSAN IV and describe a comprehensive functional analysis of seven novel NTRK1 missense mutations, c.1550G >A, c.1565G >A, c.1970T >C, c.2096T >C, c.2254T >A, c.2288G >C, and c.2311C >T, corresponding to p.G517E, p.G522E, p.L657P, p.I699T, p.C752S, p.C763S, and p.R771C, all of which were predicted pathogenic by in silico analysis. The results allowed us to assess the pathogenicity of each mutation and to gain novel insights into tropomyosin receptor kinase A (TRKA) downstream signaling. Each mutation was systematically analyzed for TRKA glycosylation states, intracellular and cell membrane expression patterns, nerve growth factor stimulated TRKA autophosphorylation, TRKA-Y496 phosphorylation, PLCγ activity, and neurite outgrowth. We showed a diverse range of functional effects: one mutation appeared fully functional, another had partial activity in all assays, one mutation affected only the PLCγ pathway and four mutations were proved null in all assays. Thus, we conclude that complete abolition of TRKA kinase activity is not the only pathogenic mechanism underlying HSAN IV. By corollary, the assessment of the clinical pathogenicity of HSAN IV mutations is more complex than initially predicted and requires a multifaceted approach. © 2016 WILEY PERIODICALS, INC.

  5. Novel and recurrent NDP gene mutations in familial cases of Norrie disease and X-linked exudative vitreoretinopathy.

    PubMed

    Pelcastre, Erika L; Villanueva-Mendoza, Cristina; Zenteno, Juan C

    2010-05-01

    To present the results of molecular analysis of the NDP gene in Mexican families with Norrie disease (ND) and X-linked familial exudative vitreoretinopathy (XL-FEVR). Two unrelated families with ND and two with XL-FEVR were studied. Clinical diagnosis was suspected on the basis of a complete ophthalmologic examination. Molecular methods included DNA isolation from peripheral blood leucocytes, polymerase chain reaction amplification and direct nucleotide sequencing analysis of the complete coding region and exon-intron junctions of NDP. Haplotype analysis using NDP-linked microsatellites markers was performed in both ND families. A novel Norrin missense mutation, p.Arg41Thr, was identified in two apparently unrelated families with ND. Haplotype analysis demonstrated that affected males in these two families shared the same ND-linked haplotype, suggesting a common origin for this novel mutation. The previously reported p.Arg121Trp and p.Arg121Gln Norrin mutations were identified in the two families with XL-FEVR. Our results expand the mutational spectrum in ND. This is the first report of ND resulting from mutation at arginine position 41 of Norrin. Interestingly, mutations at the same residue but resulting in a different missense change were previously described in subjects with XL-FEVR (p.Arg41Lys) or persistent fetal vasculature syndrome (p.Arg41Ser), indicating that the novel p.Arg41Thr change causes a more severe retinal phenotype. Preliminary data suggest a founder effect for the ND p.Arg41Thr mutation in these two Mexican families.

  6. Biological, Biochemical, and Molecular Characterization of a New Clinical Trichophyton rubrum Isolate Resistant to Terbinafine

    PubMed Central

    Osborne, Colin S.; Leitner, Ingrid; Hofbauer, Bettina; Fielding, Ceri A.; Favre, Bertrand; Ryder, Neil S.

    2006-01-01

    We have characterized a new clinical strain of Trichophyton rubrum highly resistant to terbinafine but exhibiting normal susceptibility to drugs with other mechanisms of action. Resistance to terbinafine in this strain is caused by a missense mutation in the squalene epoxidase gene leading to the amino acid substitution F397L. PMID:16723593

  7. Effect of CHEK2 missense variant I157T on the risk of breast cancer in carriers of other CHEK2 or BRCA1 mutations.

    PubMed

    Cybulski, C; Górski, B; Huzarski, T; Byrski, T; Gronwald, J; Debniak, T; Wokolorczyk, D; Jakubowska, A; Serrano-Fernández, P; Dork, T; Narod, S A; Lubinski, J

    2009-02-01

    Carriers of heterozygous mutations in CHEK2 or BRCA1 are at increased risk of breast cancer. These mutations are rare and a very small number of women in a population will carry two mutations. However, it is of interest to estimate the breast cancer risks associated with carrying two mutations because this information may be informative for genetic counsellors and may provide clues to the carcinogenic process. We genotyped 7782 Polish breast cancer patients and 6233 controls for seven founder mutations in BRCA1 and CHEK2. Odds ratios (OR) and 95% confidence intervals (CI) were estimated for the mutations, singly and in combination. Of the 7782 women with breast cancer, 1091 had one mutation (14.0%) and 37 had two mutations (0.5%). Compared to controls, the odds ratio for a BRCA1 mutation in isolation was 13.1 (95% CI 8.2 to 21). The odds ratio was smaller for BRCA1 mutation carriers who also carried a CHEK2 mutation (OR 6.6, 95% CI 1.5 to 29), but the difference was not statistically significant. In contrast, the odds ratio for women who carried two CHEK2 mutations (OR 3.9, 95% CI 1.5 to 10) was greater than that for women who carried one CHEK2 mutation (OR 1.9, 95% CI 1.6 to 2.1). The odds ratio for women who carried both a truncating mutation and the missense mutation in CHEK2 was 7.0 (95% CI 0.9 to 56) and was greater than for women who carried the truncating mutation alone (OR 3.3, 95% CI 2.4 to 4.3) or the missense mutation alone (OR 1.6, 95% CI 1.4 to 1.9), but the difference was not statistically significant. Our study suggests that the risk of breast cancer in carriers of a deleterious CHEK2 mutation is increased if the second allele is the I157T missense variant. However, the presence of a CHEK2 mutation in women with a BRCA1 mutation may not increase their risk beyond that of the BRCA1 mutation alone. These suggestive findings need to be verified in other studies.

  8. Familial neonatal isolated cardiomyopathy caused by a mutation in the flavoprotein subunit of succinate dehydrogenase

    PubMed Central

    Levitas, Aviva; Muhammad, Emad; Harel, Gali; Saada, Ann; Caspi, Vered Chalifa; Manor, Esther; Beck, John C; Sheffield, Val; Parvari, Ruti

    2010-01-01

    Cardiomyopathies are common disorders resulting in heart failure; the most frequent form is dilated cardiomyopathy (DCM), which is characterized by dilatation of the left or both ventricles and impaired systolic function. DCM causes considerable morbidity and mortality, and is one of the major causes of sudden cardiac death. Although about one-third of patients are reported to have a genetic form of DCM, reported mutations explain only a minority of familial DCM. Moreover, the recessive neonatal isolated form of DCM has rarely been associated with a mutation. In this study, we present the association of a mutation in the SDHA gene with recessive neonatal isolated DCM in 15 patients of two large consanguineous Bedouin families. The cardiomyopathy is presumably caused by the significant tissue-specific reduction in SDH enzymatic activity in the heart muscle, whereas substantial activity is retained in the skeletal muscle and lymphoblastoid cells. Notably, the same mutation was previously reported to cause a multisystemic failure leading to neonatal death and Leigh's syndrome. This study contributes to the molecular characterization of a severe form of neonatal cardiomyopathy and highlights extreme phenotypic variability resulting from a specific missense mutation in a nuclear gene encoding a protein of the mitochondrial respiratory chain. PMID:20551992

  9. Familial neonatal isolated cardiomyopathy caused by a mutation in the flavoprotein subunit of succinate dehydrogenase.

    PubMed

    Levitas, Aviva; Muhammad, Emad; Harel, Gali; Saada, Ann; Caspi, Vered Chalifa; Manor, Esther; Beck, John C; Sheffield, Val; Parvari, Ruti

    2010-10-01

    Cardiomyopathies are common disorders resulting in heart failure; the most frequent form is dilated cardiomyopathy (DCM), which is characterized by dilatation of the left or both ventricles and impaired systolic function. DCM causes considerable morbidity and mortality, and is one of the major causes of sudden cardiac death. Although about one-third of patients are reported to have a genetic form of DCM, reported mutations explain only a minority of familial DCM. Moreover, the recessive neonatal isolated form of DCM has rarely been associated with a mutation. In this study, we present the association of a mutation in the SDHA gene with recessive neonatal isolated DCM in 15 patients of two large consanguineous Bedouin families. The cardiomyopathy is presumably caused by the significant tissue-specific reduction in SDH enzymatic activity in the heart muscle, whereas substantial activity is retained in the skeletal muscle and lymphoblastoid cells. Notably, the same mutation was previously reported to cause a multisystemic failure leading to neonatal death and Leigh's syndrome. This study contributes to the molecular characterization of a severe form of neonatal cardiomyopathy and highlights extreme phenotypic variability resulting from a specific missense mutation in a nuclear gene encoding a protein of the mitochondrial respiratory chain.

  10. Mucopolysaccharidosis type I in 21 Czech and Slovak patients: Mutation analysis suggests a functional importance of C-terminus of the IDUA protein

    PubMed Central

    Vazna, Alzbeta; Beesley, Clare; Berna, Linda; Stolnaja, Larisa; Myskova, Helena; Bouckova, Michaela; Vlaskova, Hana; Poupetova, Helena; Zeman, Jiri; Magner, Martin; Hlavata, Anna; Winchester, Bryan; Hrebicek, Martin; Dvorakova, Lenka

    2009-01-01

    Abstract Mucopolysaccharidosis type I (MPS I) is an autosomal recessive lysosomal storage disorder that is caused by a deficiency of the enzyme α-l-iduronidase (IDUA). Of the 21 Czech and Slovak patients who have been diagnosed with MPS I in the last 30 years, 16 have a severe clinical presentation (Hurler syndrome), 2 less severe manifestations (Scheie syndrome), and 3 an intermediate severity (Hurler/Scheie phenotype). Mutation analysis was performed in 20 MPS I patients and 39 mutant alleles were identified. There was a high prevalence of the null mutations p.W402X (12 alleles) and p.Q70X (7 alleles) in this cohort. Four of the 13 different mutations were novel: p.V620F (3 alleles), p.W626X (1 allele), c.1727 + 2T > G (1 allele) and c.1918_1927del (2 alleles). The pathogenicity of the novel mutations was verified by transient expression studies in Chinese hamster ovary cells. Seven haplotypes were observed in the patient alleles using 13 intragenic polymorphisms. One of the two haplotypes associated with the mutation p.Q70X was not found in any of the controls. Haplotype analysis showed, that mutations p.Q70X, p.V620F, and p.D315Y probably have more than one ancestor. Missense mutations localized predominantly in the hydrophobic core of the enzyme are associated with the severe phenotype, whereas missense mutations localized to the surface of the enzyme are usually associated with the attenuated phenotypes. Mutations in the 130 C-terminal amino acids lead to clinical manifestations, which indicates a functional importance of the C-terminus of the IDUA protein. © 2009 Wiley-Liss, Inc. PMID:19396826

  11. Mutation discovery for Mendelian traits in non-laboratory animals: a review of achievements up to 2012

    PubMed Central

    Nicholas, Frank W; Hobbs, Matthew

    2014-01-01

    Within two years of the re-discovery of Mendelism, Bateson and Saunders had described six traits in non-laboratory animals (five in chickens and one in cattle) that show single-locus (Mendelian) inheritance. In the ensuing decades, much progress was made in documenting an ever-increasing number of such traits. In 1987 came the first discovery of a causal mutation for a Mendelian trait in non-laboratory animals: a non-sense mutation in the thyroglobulin gene (TG), causing familial goitre in cattle. In the years that followed, the rate of discovery of causal mutations increased, aided mightily by the creation of genome-wide microsatellite maps in the 1990s and even more mightily by genome assemblies and single-nucleotide polymorphism (SNP) chips in the 2000s. With sequencing costs decreasing rapidly, by 2012 causal mutations were being discovered in non-laboratory animals at a rate of more than one per week. By the end of 2012, the total number of Mendelian traits in non-laboratory animals with known causal mutations had reached 499, which was half the number of published single-locus (Mendelian) traits in those species. The distribution of types of mutations documented in non-laboratory animals is fairly similar to that in humans, with almost half being missense or non-sense mutations. The ratio of missense to non-sense mutations in non-laboratory animals to the end of 2012 was 193:78. The fraction of non-sense mutations (78/271 = 0.29) was not very different from the fraction of non-stop codons that are just one base substitution away from a stop codon (21/61 = 0.34). PMID:24372556

  12. Structural determinants of adhesion by Protocadherin-19 and implications for its role in epilepsy

    DOE PAGES

    Cooper, Sharon R.; Jontes, James D.; Sotomayor, Marcos

    2016-10-26

    Non-clustered δ-protocadherins are homophilic cell adhesion molecules essential for the development of the vertebrate nervous system, as several are closely linked to neurodevelopmental disorders. Mutations in protocadherin-19 ( PCDH19) result in a female-limited, infant-onset form of epilepsy (PCDH19-FE). Over 100 mutations in PCDH19 have been identified in patients with PCDH19-FE, about half of which are missense mutations in the adhesive extracellular domain. Neither the mechanism of homophilic adhesion by PCDH19, nor the biochemical effects of missense mutations are understood. Here we present a crystallographic structure of the minimal adhesive fragment of the zebrafish Pcdh19 extracellular domain. This structure reveals themore » adhesive interface for Pcdh19, which is broadly relevant to both non-clustered δ and clustered protocadherin subfamilies. Additionally, we show that several PCDH19-FE missense mutations localize to the adhesive interface and abolish Pcdh19 adhesion in in vitro assays, thus revealing the biochemical basis of their pathogenic effects during brain development.« less

  13. A novel AARS mutation in a family with dominant myeloneuropathy.

    PubMed

    Motley, William W; Griffin, Laurie B; Mademan, Inès; Baets, Jonathan; De Vriendt, Els; De Jonghe, Peter; Antonellis, Anthony; Jordanova, Albena; Scherer, Steven S

    2015-05-19

    To determine the genetic cause of neurodegeneration in a family with myeloneuropathy. We studied 5 siblings in a family with a mild, dominantly inherited neuropathy by clinical examination and electrophysiology. One patient had a sural nerve biopsy. After ruling out common genetic causes of axonal Charcot-Marie-Tooth disease, we sequenced 3 tRNA synthetase genes associated with neuropathy. All affected family members had a mild axonal neuropathy, and 3 of 4 had lower extremity hyperreflexia, evidence of a superimposed myelopathy. A nerve biopsy showed evidence of chronic axonal loss. All affected family members had a heterozygous missense mutation c.304G>C (p.Gly102Arg) in the alanyl-tRNA synthetase (AARS) gene; this allele was not identified in unaffected individuals or control samples. The equivalent change in the yeast ortholog failed to complement a strain of yeast lacking AARS function, suggesting that the mutation is damaging. A novel mutation in AARS causes a mild myeloneuropathy, a novel phenotype for patients with mutations in one of the tRNA synthetase genes. © 2015 American Academy of Neurology.

  14. Identification of novel mutations of the WFS1 gene in Brazilian patients with Wolfram syndrome.

    PubMed

    Gasparin, Maria Regina R; Crispim, Felipe; Paula, Sílvia L; Freire, Maria Beatriz S; Dalbosco, Ivaldir S; Manna, Thais Della; Salles, João Eduardo N; Gasparin, Fábio; Guedes, Aléxis; Marcantonio, João M; Gambini, Márcio; Salim, Camila P; Moisés, Regina S

    2009-02-01

    Wolfram syndrome (WS) is a rare, progressive, neurodegenerative disorder with an autosomal recessive pattern of inheritance. The gene for WS, WFS1, was identified on chromosome 4p16 and most WS patients carry mutations in this gene. However, some studies have provided evidence for genetic heterogeneity and the genotype-phenotype relationships are not clear. Our aim was to ascertain the spectrum of WFS1 mutations in Brazilian patients with WS and to examine the phenotype-genotype relationships in these patients. Clinical characterization and analyses of the WFS1 gene were performed in 27 Brazilian patients with WS from 19 families. We identified 15 different mutations in the WFS1 gene in 26 patients, among which nine are novel. All mutations occurred in exon 8, except for one missense mutation which was located in exon 5. Although we did not find any clear phenotype-genotype relationship in patients with mutations in exon 8, the homozygous missense mutation in exon 5 was associated with a mild phenotype: onset of diabetes mellitus and optic atrophy during adulthood with good metabolic control being achieved with low doses of sulfonylurea. Our data show that WFS1 is the major gene involved in WS in Brazilian patients and most mutations are concentrated in exon 8. Also, our study increases the spectrum of WFS1 mutations. Although no clear phenotype-genotype relationship was found for mutations in exon 8, a mild phenotype was associated with a homozygous missense mutation in exon 5.

  15. Molecular Mechanisms of Soft Tissue Regeneration and Bone Formation in Mice: Implications in Fracture Repair and Wound Healing in Humans

    DTIC Science & Technology

    2006-04-01

    nitrosourea mutagenesis, is the result of a missense mutation in the glucokinase gene. Diabetes 53(6):1577- 83. 7. Meyer CW, Korthaus D, Jagla W...Cornali E, Grosse J, Fuchs H, Klingenspor M, Roemheld S, Tschop M, Heldmaier G, De Angelis MH, Nehls M 2004 A novel missense mutation in the mouse...DNA polymorphisms or mutations that may be responsible for the QTLs. In order to identify the candidate genes for the Chr 9 QTL regions, we used

  16. Thermal denaturation of the BRCT tandem repeat region of human tumour suppressor gene product BRCA1.

    PubMed

    Pyrpassopoulos, Serapion; Ladopoulou, Angela; Vlassi, Metaxia; Papanikolau, Yannis; Vorgias, Constantinos E; Yannoukakos, Drakoulis; Nounesis, George

    2005-04-01

    Reduced stability of the tandem BRCT domains of human BReast CAncer 1 (BRCA1) due to missense mutations may be critical for loss of function in DNA repair and damage-induced checkpoint control. In the present thermal denaturation study of the BRCA1 BRCT region, high-precision differential scanning calorimetry (DSC) and circular dichroism (CD) spectroscopy provide evidence for the existence of a denatured state that is structurally very similar to the native. Consistency between theoretical structure-based estimates of the enthalpy (DeltaH) and heat capacity change (DeltaCp) and the calorimetric results is obtained when considering partial thermal unfolding contained in the region of the conserved hydrophobic pocket formed at the interface of the two BRCT repeats. The structural integrity of this region has been shown to be crucial for the interaction of BRCA1 with phosphorylated peptides. In addition, cancer-causing missense mutations located at the inter-BRCT-repeat interface have been linked to the destabilization of the tandem BRCT structure.

  17. [Hereditary hypomelanocytoses: the role of PAX3, SOX10, MITF, SNAI2, KIT, EDN3 and EDNRB genes].

    PubMed

    Otręba, Michał; Miliński, Maciej; Buszman, Ewa; Wrześniok, Dorota; Beberok, Artur

    2013-11-26

    Hypo- and hyperpigmentation disorders are the most severe dermatological diseases observed in patients from all over the world. These disorders can be divided into melanoses connected with disorders of melanocyte function and melanocytoses connected with melanocyte development. The article presents some hereditary hypomelanocytoses, which are caused by abnormal melanoblast development, migration and proliferation as well as by abnormal melanocyte viability and proliferation. These disorders are represented by Waardenburg syndrome, piebaldism and Tietz syndrome, and are caused by different mutations of various or the same genes. The types of mutations comprise missense and nonsense mutations, frameshifts (in-frame insertions or deletions), truncating variations, splice alterations and non-stop mutations. It has been demonstrated that mutations of the same gene may cause different hypopigmentation syndromes that may have similar phenotypes. For example, mutations of the MITF gene cause Waardenburg syndrome type 2A as well as Tietz syndrome. It has also been demonstrated that mutations of different genes may cause an identical syndrome. For example, mutations of MITF, SNAI2 and SOX10 genes are observed in Waardenburg syndrome type II and mutations of EDNRB, EDN3 and SOX10 genes are responsible for Waardenburg syndrome type IV. In turn, mutation of the KIT gene and/or heterozygous deletion of the SNAI2 gene result in piebaldism disease. The knowledge of the exact mechanisms of pigmentary disorders may be useful in the development of new therapeutic approaches to their treatment.

  18. Prospective investigation of FOXP1 syndrome.

    PubMed

    Siper, Paige M; De Rubeis, Silvia; Trelles, Maria Del Pilar; Durkin, Allison; Di Marino, Daniele; Muratet, François; Frank, Yitzchak; Lozano, Reymundo; Eichler, Evan E; Kelly, Morgan; Beighley, Jennifer; Gerdts, Jennifer; Wallace, Arianne S; Mefford, Heather C; Bernier, Raphael A; Kolevzon, Alexander; Buxbaum, Joseph D

    2017-01-01

    Haploinsufficiency of the forkhead-box protein P1 ( FOXP1 ) gene leads to a neurodevelopmental disorder termed FOXP1 syndrome. Previous studies in individuals carrying FOXP1 mutations and deletions have described the presence of autism spectrum disorder (ASD) traits, intellectual disability, language impairment, and psychiatric features. The goal of the present study was to comprehensively characterize the genetic and clinical spectrum of FOXP1 syndrome. This is the first study to prospectively examine the genotype-phenotype relationship in multiple individuals with FOXP1 syndrome, using a battery of standardized clinical assessments. Genetic and clinical data was obtained and analyzed from nine children and adolescents between the ages of 5-17 with mutations in FOXP1 . Phenotypic characterization included gold standard ASD testing and norm-referenced measures of cognition, adaptive behavior, language, motor, and visual-motor integration skills. In addition, psychiatric, medical, neurological, and dysmorphology examinations were completed by a multidisciplinary team of clinicians. A comprehensive review of reported cases was also performed. All missense and in-frame mutations were mapped onto the three-dimensional structure of DNA-bound FOXP1. We have identified nine de novo mutations, including three frameshift, one nonsense, one mutation in an essential splice site resulting in frameshift and insertion of a premature stop codon, three missense, and one in-frame deletion. Reviewing prior literature, we found seven instances of recurrent mutations and another 34 private mutations. The majority of pathogenic missense and in-frame mutations, including all four missense mutations in our cohort, lie in the DNA-binding domain. Through structural analyses, we show that the mutations perturb amino acids necessary for binding to the DNA or interfere with the domain swapping that mediates FOXP1 dimerization. Individuals with FOXP1 syndrome presented with delays in early motor and language milestones, language impairment (expressive language > receptive language), ASD symptoms, visual-motor integration deficits, and complex psychiatric presentations characterized by anxiety, obsessive-compulsive traits, attention deficits, and externalizing symptoms. Medical features included non-specific structural brain abnormalities and dysmorphic features, endocrine and gastrointestinal problems, sleep disturbances, and sinopulmonary infections. This study identifies novel FOXP1 mutations associated with FOXP1 syndrome, identifies recurrent mutations, and demonstrates significant clustering of missense mutations in the DNA-binding domain. Clinical findings confirm the role FOXP1 plays in development across multiple domains of functioning. The genetic findings can be incorporated into clinical genetics practice to improve accurate genetic diagnosis of FOXP1 syndrome and the clinical findings can inform monitoring and treatment of individuals with FOXP1 syndrome.

  19. Analysis of the ABCR (ABCA4) gene in 4-aminoquinoline retinopathy: is retinal toxicity by chloroquine and hydroxychloroquine related to Stargardt disease?

    PubMed

    Shroyer, N F; Lewis, R A; Lupski, J R

    2001-06-01

    To determine if mutations in ABCR (ABCA4) are associated with chloroquine/hydroxychloroquine retinopathy. DNA from eight patients with chloroquine or hydroxychloroquine retinopathy was studied. Controls were 80 individuals over age 65 years with normal retinal examinations. Ophthalmoscopy, color vision testing, visual fields, retinal photography, and fluorescein angiography were performed on the eight patients. Direct DNA sequencing of the exons and flanking intronic regions of the ABCR gene was completed for all patients. Clinical evaluation confirmed the diagnosis of chloroquine/hydroxychloroquine retinopathy and excluded Stargardt disease in each patient. Two patients had heterozygous ABCR missense mutations previously associated with Stargardt disease. None of the controls had these missense mutations. Three other patients had other missense polymorphisms. Some individuals who have ABCR mutations may be predisposed to develop retinal toxicity when exposed to chloroquine/hydroxychloroquine. We urge further study of a larger cohort of patients with chloroquine/hydroxychloroquine retinopathy.

  20. Kinase-dead ATM protein is highly oncogenic and can be preferentially targeted by Topo-isomerase I inhibitors.

    PubMed

    Yamamoto, Kenta; Wang, Jiguang; Sprinzen, Lisa; Xu, Jun; Haddock, Christopher J; Li, Chen; Lee, Brian J; Loredan, Denis G; Jiang, Wenxia; Vindigni, Alessandro; Wang, Dong; Rabadan, Raul; Zha, Shan

    2016-06-15

    Missense mutations in ATM kinase, a master regulator of DNA damage responses, are found in many cancers, but their impact on ATM function and implications for cancer therapy are largely unknown. Here we report that 72% of cancer-associated ATM mutations are missense mutations that are enriched around the kinase domain. Expression of kinase-dead ATM (Atm(KD/-)) is more oncogenic than loss of ATM (Atm(-/-)) in mouse models, leading to earlier and more frequent lymphomas with Pten deletions. Kinase-dead ATM protein (Atm-KD), but not loss of ATM (Atm-null), prevents replication-dependent removal of Topo-isomerase I-DNA adducts at the step of strand cleavage, leading to severe genomic instability and hypersensitivity to Topo-isomerase I inhibitors. Correspondingly, Topo-isomerase I inhibitors effectively and preferentially eliminate Atm(KD/-), but not Atm-proficientor Atm(-/-) leukemia in animal models. These findings identify ATM kinase-domain missense mutations as a potent oncogenic event and a biomarker for Topo-isomerase I inhibitor based therapy.

  1. Annotating Mutational Effects on Proteins and Protein Interactions: Designing Novel and Revisiting Existing Protocols.

    PubMed

    Li, Minghui; Goncearenco, Alexander; Panchenko, Anna R

    2017-01-01

    In this review we describe a protocol to annotate the effects of missense mutations on proteins, their functions, stability, and binding. For this purpose we present a collection of the most comprehensive databases which store different types of sequencing data on missense mutations, we discuss their relationships, possible intersections, and unique features. Next, we suggest an annotation workflow using the state-of-the art methods and highlight their usability, advantages, and limitations for different cases. Finally, we address a particularly difficult problem of deciphering the molecular mechanisms of mutations on proteins and protein complexes to understand the origins and mechanisms of diseases.

  2. Disease-Associated Mutations Disrupt Functionally Important Regions of Intrinsic Protein Disorder

    PubMed Central

    Vacic, Vladimir; Markwick, Phineus R. L.; Oldfield, Christopher J.; Zhao, Xiaoyue; Haynes, Chad; Uversky, Vladimir N.; Iakoucheva, Lilia M.

    2012-01-01

    The effects of disease mutations on protein structure and function have been extensively investigated, and many predictors of the functional impact of single amino acid substitutions are publicly available. The majority of these predictors are based on protein structure and evolutionary conservation, following the assumption that disease mutations predominantly affect folded and conserved protein regions. However, the prevalence of the intrinsically disordered proteins (IDPs) and regions (IDRs) in the human proteome together with their lack of fixed structure and low sequence conservation raise a question about the impact of disease mutations in IDRs. Here, we investigate annotated missense disease mutations and show that 21.7% of them are located within such intrinsically disordered regions. We further demonstrate that 20% of disease mutations in IDRs cause local disorder-to-order transitions, which represents a 1.7–2.7 fold increase compared to annotated polymorphisms and neutral evolutionary substitutions, respectively. Secondary structure predictions show elevated rates of transition from helices and strands into loops and vice versa in the disease mutations dataset. Disease disorder-to-order mutations also influence predicted molecular recognition features (MoRFs) more often than the control mutations. The repertoire of disorder-to-order transition mutations is limited, with five most frequent mutations (R→W, R→C, E→K, R→H, R→Q) collectively accounting for 44% of all deleterious disorder-to-order transitions. As a proof of concept, we performed accelerated molecular dynamics simulations on a deleterious disorder-to-order transition mutation of tumor protein p63 and, in agreement with our predictions, observed an increased α-helical propensity of the region harboring the mutation. Our findings highlight the importance of mutations in IDRs and refine the traditional structure-centric view of disease mutations. The results of this study offer a new perspective on the role of mutations in disease, with implications for improving predictors of the functional impact of missense mutations. PMID:23055912

  3. Homozygous YME1L1 mutation causes mitochondriopathy with optic atrophy and mitochondrial network fragmentation

    PubMed Central

    Hartmann, Bianca; Wai, Timothy; Hu, Hao; MacVicar, Thomas; Musante, Luciana; Fischer-Zirnsak, Björn; Stenzel, Werner; Gräf, Ralph; van den Heuvel, Lambert; Ropers, Hans-Hilger; Wienker, Thomas F; Hübner, Christoph; Langer, Thomas; Kaindl, Angela M

    2016-01-01

    Mitochondriopathies often present clinically as multisystemic disorders of primarily high-energy consuming organs. Assembly, turnover, and surveillance of mitochondrial proteins are essential for mitochondrial function and a key task of AAA family members of metalloproteases. We identified a homozygous mutation in the nuclear encoded mitochondrial escape 1-like 1 gene YME1L1, member of the AAA protease family, as a cause of a novel mitochondriopathy in a consanguineous pedigree of Saudi Arabian descent. The homozygous missense mutation, located in a highly conserved region in the mitochondrial pre-sequence, inhibits cleavage of YME1L1 by the mitochondrial processing peptidase, which culminates in the rapid degradation of YME1L1 precursor protein. Impaired YME1L1 function causes a proliferation defect and mitochondrial network fragmentation due to abnormal processing of OPA1. Our results identify mutations in YME1L1 as a cause of a mitochondriopathy with optic nerve atrophy highlighting the importance of YME1L1 for mitochondrial functionality in humans. DOI: http://dx.doi.org/10.7554/eLife.16078.001 PMID:27495975

  4. An activating NLRC4 inflammasome mutation causes autoinflammation with recurrent macrophage activation syndrome

    PubMed Central

    Canna, Scott W.; de Jesus, Adriana Almeida; Gouni, Sushanth; Brooks, Stephen R.; Marrero, Bernadette; Liu, Yin; DiMattia, Michael A.; Zaal, Kristien J.M.; Montealegre Sanchez, Gina A.; Kim, Hanna; Chapelle, Dawn; Plass, Nicole; Huang, Yan; Villarino, Alejandro V.; Biancotto, Angelique; Fleisher, Thomas A.; Duncan, Joseph A.; O’Shea, John J; Benseler, Susanne; Grom, Alexei; Deng, Zuoming; Laxer, Ronald M; Goldbach-Mansky, Raphaela

    2014-01-01

    Inflammasomes are innate immune sensors that respond to pathogen and damage-associated signals with caspase-1 activation, IL-1β and IL-18 secretion, and macrophage pyroptosis. The discovery that dominant gain-of-function mutations in NLRP3 cause the Cryopyrin Associated Periodic Syndromes (CAPS) and trigger spontaneous inflammasome activation and IL-1β oversecretion, led to successful treatment with IL-1 blocking agents1. Herein, we report a de novo missense mutation, c.1009A>T, p.Thr337Ser, in the nucleotide-binding domain of inflammasome component NLRC4 (IPAF/CARD12) that causes early-onset recurrent fever flares and Macrophage Activation Syndrome (MAS). Functional analyses demonstrated spontaneous inflammasome formation and production of the inflammasome-dependent cytokines IL-1β and IL-18, the latter exceeding levels in CAPS. The NLRC4 mutation caused constitutive caspase-1 cleavage in transduced cells and increased production of IL-18 by both patient and NLRC4 mutant macrophages. Thus, we describe a novel monoallelic inflammasome defect that expands the monogenic autoinflammatory disease spectrum to include MAS and suggests novel targets for therapy. PMID:25217959

  5. Sector Retinitis Pigmentosa Associated With Novel Compound Heterozygous Mutations of CDH23.

    PubMed

    Branson, Sara V; McClintic, Jedediah I; Stamper, Tara H; Haldeman-Englert, Chad R; John, Vishak J

    2016-02-01

    Usher syndrome is an autosomal recessive condition characterized by retinitis pigmentosa (RP) and congenital hearing loss, with or without vestibular dysfunction. Allelic variants of CDH23 cause both Usher syndrome type 1D (USH1D) and a form of nonsyndromic hearing loss (DFNB12). The authors describe here a 34-year-old patient with congenital hearing loss and a new diagnosis of sector RP who was found to have two novel compound heterozygous mutations in CDH23, including one missense (c.8530C > A; p.Pro2844Thr) and one splice-site (c.5820 + 5G > A) mutation. This is the first report of sector RP associated with these types of mutations in CDH23. Copyright 2016, SLACK Incorporated.

  6. Mutations Affecting G-Protein Subunit α11 in Hypercalcemia and Hypocalcemia

    PubMed Central

    Babinsky, Valerie N.; Head, Rosie A.; Cranston, Treena; Rust, Nigel; Hobbs, Maurine R.; Heath, Hunter; Thakker, Rajesh V.

    2013-01-01

    BACKGROUND Familial hypocalciuric hypercalcemia is a genetically heterogeneous disorder with three variants: types 1, 2, and 3. Type 1 is due to loss-of-function mutations of the calcium-sensing receptor, a guanine nucleotide–binding protein (G-protein)–coupled receptor that signals through the G-protein subunit α11 (Gα11). Type 3 is associated with adaptor-related protein complex 2, sigma 1 subunit (AP2S1) mutations, which result in altered calcium-sensing receptor endocytosis. We hypothesized that type 2 is due to mutations effecting Gα11 loss of function, since Gα11 is involved in calcium-sensing receptor signaling, and its gene (GNA11) and the type 2 locus are colocalized on chromosome 19p13.3. We also postulated that mutations effecting Gα11 gain of function, like the mutations effecting calcium-sensing receptor gain of function that cause autosomal dominant hypocalcemia type 1, may lead to hypocalcemia. METHODS We performed GNA11 mutational analysis in a kindred with familial hypocalciuric hypercalcemia type 2 and in nine unrelated patients with familial hypocalciuric hypercalcemia who did not have mutations in the gene encoding the calcium-sensing receptor (CASR) or AP2S1. We also performed this analysis in eight unrelated patients with hypocalcemia who did not have CASR mutations. In addition, we studied the effects of GNA11 mutations on Gα11 protein structure and calcium-sensing receptor signaling in human embryonic kidney 293 (HEK293) cells. RESULTS The kindred with familial hypocalciuric hypercalcemia type 2 had an in-frame deletion of a conserved Gα11 isoleucine (Ile200del), and one of the nine unrelated patients with familial hypocalciuric hypercalcemia had a missense GNA11 mutation (Leu135Gln). Missense GNA11 mutations (Arg181Gln and Phe341Leu) were detected in two unrelated patients with hypocalcemia; they were therefore identified as having autosomal dominant hypocalcemia type 2. All four GNA11 mutations predicted disrupted protein structures, and assessment on the basis of in vitro expression showed that familial hypocalciuric hypercalcemia type 2–associated mutations decreased the sensitivity of cells expressing calcium-sensing receptors to changes in extracellular calcium concentrations, whereas autosomal dominant hypocalcemia type 2–associated mutations increased cell sensitivity. CONCLUSIONS Gα11 mutants with loss of function cause familial hypocalciuric hypercalcemia type 2, and Gα11 mutants with gain of function cause a clinical disorder designated as autosomal dominant hypocalcemia type 2. (Funded by the United Kingdom Medical Research Council and others.) PMID:23802516

  7. Gain-of-function SOS1 mutations cause a distinctive form of noonansyndrome

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tartaglia, Marco; Pennacchio, Len A.; Zhao, Chen

    2006-09-01

    Noonan syndrome (NS) is a developmental disordercharacterized by short stature, facial dysmorphia, congenital heartdefects and skeletal anomalies1. Increased RAS-mitogenactivated proteinkinase (MAPK) signaling due to PTPN11 and KRAS mutations cause 50 percentof NS2-6. Here, we report that 22 of 129 NS patients without PTPN11 orKRAS mutation (17 percent) have missense mutations in SOS1, which encodesa RAS-specific guanine nucleotide exchange factor (GEF). SOS1 mutationscluster at residues implicated in the maintenance of SOS1 in itsautoinhibited form and ectopic expression of two NS-associated mutantsinduced enhanced RAS activation. The phenotype associated with SOS1defects is distinctive, although within NS spectrum, with a highprevalence of ectodermal abnormalitiesmore » but generally normal developmentand linear growth. Our findings implicate for the first timegain-of-function mutations in a RAS GEF in inherited disease and define anew mechanism by which upregulation of the RAS pathway can profoundlychange human development.« less

  8. Homozygous MYH7 R1820W mutation results in recessive myosin storage myopathy: scapuloperoneal and respiratory weakness with dilated cardiomyopathy.

    PubMed

    Yüceyar, Nur; Ayhan, Özgecan; Karasoy, Hatice; Tolun, Aslıhan

    2015-04-01

    Myosin storage myopathy (MSM) is a protein aggregate myopathy caused by the accumulation of myosin in muscle fibres and results from MYH7 mutation. Although MYH7 mutation is also an established cause of variable cardiomyopathy with or without skeletal myopathy, cardiomyopathy with MSM is a rare combination. Here, we update the clinical findings in the two brothers that we previously reported as having recessively inherited MSM characterized by scapuloperoneal distribution of weakness and typical hyaline-like bodies in type 1 muscle fibres. One of the patients, weak from childhood but not severely symptomatic until 28 years of age, had an unusual combination of MSM, severe dilated cardiomyopathy, and respiratory impairment at the age of 44 years. We identified homozygous missense mutation c.5458C>T (p.R1820W) in exon 37 in these patients as the second recessive MYH7 mutation reported to date. Copyright © 2015 Elsevier B.V. All rights reserved.

  9. Genetic Epidemiology of Glucose-6-Dehydrogenase Deficiency in the Arab World.

    PubMed

    Doss, C George Priya; Alasmar, Dima R; Bux, Reem I; Sneha, P; Bakhsh, Fadheela Dad; Al-Azwani, Iman; Bekay, Rajaa El; Zayed, Hatem

    2016-11-17

    A systematic search was implemented using four literature databases (PubMed, Embase, Science Direct and Web of Science) to capture all the causative mutations of Glucose-6-phosphate dehydrogenase (G6PD) deficiency (G6PDD) in the 22 Arab countries. Our search yielded 43 studies that captured 33 mutations (23 missense, one silent, two deletions, and seven intronic mutations), in 3,430 Arab patients with G6PDD. The 23 missense mutations were then subjected to phenotypic classification using in silico prediction tools, which were compared to the WHO pathogenicity scale as a reference. These in silico tools were tested for their predicting efficiency using rigorous statistical analyses. Of the 23 missense mutations, p.S188F, p.I48T, p.N126D, and p.V68M, were identified as the most common mutations among Arab populations, but were not unique to the Arab world, interestingly, our search strategy found four other mutations (p.N135T, p.S179N, p.R246L, and p.Q307P) that are unique to Arabs. These mutations were exposed to structural analysis and molecular dynamics simulation analysis (MDSA), which predicting these mutant forms as potentially affect the enzyme function. The combination of the MDSA, structural analysis, and in silico predictions and statistical tools we used will provide a platform for future prediction accuracy for the pathogenicity of genetic mutations.

  10. The importance of genotype-phenotype correlation in the clinical management of Marfan syndrome.

    PubMed

    Becerra-Muñoz, Víctor Manuel; Gómez-Doblas, Juan José; Porras-Martín, Carlos; Such-Martínez, Miguel; Crespo-Leiro, María Generosa; Barriales-Villa, Roberto; de Teresa-Galván, Eduardo; Jiménez-Navarro, Manuel; Cabrera-Bueno, Fernando

    2018-01-22

    Marfan syndrome (MFS) is a disorder of autosomal dominant inheritance, in which aortic root dilation is the main cause of morbidity and mortality. Fibrillin-1 (FBN-1) gene mutations are found in more than 90% of MFS cases. The aim of our study was to summarise variants in FBN-1 and establish the genotype-phenotype correlation, with particular interest in the onset of aortic events, in a broad population of patients with an initial clinical suspicion of MFS. This single centre prospective cohort study included all patients presenting variants in the FBN-1 gene who visited a Hereditary Aortopathy clinic between September 2010 and October 2016. The study included 90 patients with FBN-1 variants corresponding to 58 non-interrelated families. Of the 57 FBN-1 variants found, 25 (43.9%) had previously been described, 23 of which had been identified as associated with MFS, while the the remainder are described for the first time. For 84 patients (93.3%), it was possible to give a definite diagnosis of Marfan syndrome in accordance with Ghent criteria. 44 of them had missense mutations, 6 of whom had suffered an aortic event (with either prophylactic surgery for aneurysm or dissection), whereas 20 of the 35 patients with truncating mutations had suffered an event (13.6% vs. 57.1%, p < 0.001). These events tended to occur at earlier ages in patients with truncating compared to those with missense mutations, although not significantly (41.33 ± 3.77 vs. 37.5 ± 9.62 years, p = 0.162). Patients with MFS and truncating variants in FBN-1 presented a higher proportion of aortic events, compared to a more benign course in patients with missense mutations. Genetic findings could, therefore, have importance not only in the diagnosis, but also in risk stratification and clinical management of patients with suspected MFS.

  11. Mutations in CUL4B, which encodes a ubiquitin E3 ligase subunit, cause an X-linked mental retardation syndrome associated with aggressive outbursts, seizures, relative macrocephaly, central obesity, hypogonadism, pes cavus, and tremor.

    PubMed

    Tarpey, Patrick S; Raymond, F Lucy; O'Meara, Sarah; Edkins, Sarah; Teague, Jon; Butler, Adam; Dicks, Ed; Stevens, Claire; Tofts, Calli; Avis, Tim; Barthorpe, Syd; Buck, Gemma; Cole, Jennifer; Gray, Kristian; Halliday, Kelly; Harrison, Rachel; Hills, Katy; Jenkinson, Andrew; Jones, David; Menzies, Andrew; Mironenko, Tatiana; Perry, Janet; Raine, Keiran; Richardson, David; Shepherd, Rebecca; Small, Alexandra; Varian, Jennifer; West, Sofie; Widaa, Sara; Mallya, Uma; Moon, Jenny; Luo, Ying; Holder, Susan; Smithson, Sarah F; Hurst, Jane A; Clayton-Smith, Jill; Kerr, Bronwyn; Boyle, Jackie; Shaw, Marie; Vandeleur, Lucianne; Rodriguez, Jayson; Slaugh, Rachel; Easton, Douglas F; Wooster, Richard; Bobrow, Martin; Srivastava, Anand K; Stevenson, Roger E; Schwartz, Charles E; Turner, Gillian; Gecz, Jozef; Futreal, P Andrew; Stratton, Michael R; Partington, Michael

    2007-02-01

    We have identified three truncating, two splice-site, and three missense variants at conserved amino acids in the CUL4B gene on Xq24 in 8 of 250 families with X-linked mental retardation (XLMR). During affected subjects' adolescence, a syndrome emerged with delayed puberty, hypogonadism, relative macrocephaly, moderate short stature, central obesity, unprovoked aggressive outbursts, fine intention tremor, pes cavus, and abnormalities of the toes. This syndrome was first described by Cazebas et al., in a family that was included in our study and that carried a CUL4B missense variant. CUL4B is a ubiquitin E3 ligase subunit implicated in the regulation of several biological processes, and CUL4B is the first XLMR gene that encodes an E3 ubiquitin ligase. The relatively high frequency of CUL4B mutations in this series indicates that it is one of the most commonly mutated genes underlying XLMR and suggests that its introduction into clinical diagnostics should be a high priority.

  12. A Missense Mutation in the Aggrecan C-type Lectin Domain Disrupts Extracellular Matrix Interactions and Causes Dominant Familial Osteochondritis Dissecans

    PubMed Central

    Stattin, Eva-Lena; Wiklund, Fredrik; Lindblom, Karin; Önnerfjord, Patrik; Jonsson, Björn-Anders; Tegner, Yelverton; Sasaki, Takako; Struglics, André; Lohmander, Stefan; Dahl, Niklas; Heinegård, Dick; Aspberg, Anders

    2010-01-01

    Osteochondritis dissecans is a disorder in which fragments of articular cartilage and subchondral bone dislodge from the joint surface. We analyzed a five-generation family in which affected members had autosomal-dominant familial osteochondritis dissecans. A genome-wide linkage analysis identified aggrecan (ACAN) as a prime candidate gene for the disorder. Sequence analysis of ACAN revealed heterozygosity for a missense mutation (c.6907G > A) in affected individuals, resulting in a p.V2303M amino acid substitution in the aggrecan G3 domain C-type lectin, which mediates interactions with other proteins in the cartilage extracellular matrix. Binding studies with recombinant mutated and wild-type G3 proteins showed loss of fibulin-1, fibulin-2, and tenascin-R interactions for the V2303M protein. Mass spectrometric analyses of aggrecan purified from patient cartilage verified that V2303M aggrecan is produced and present in the tissue. Our results provide a molecular mechanism for the etiology of familial osteochondritis dissecans and show the importance of the aggrecan C-type lectin interactions for cartilage function in vivo. PMID:20137779

  13. Clinical and molecular phenotype of Aicardi-Goutieres syndrome.

    PubMed

    Rice, Gillian; Patrick, Teresa; Parmar, Rekha; Taylor, Claire F; Aeby, Alec; Aicardi, Jean; Artuch, Rafael; Montalto, Simon Attard; Bacino, Carlos A; Barroso, Bruno; Baxter, Peter; Benko, Willam S; Bergmann, Carsten; Bertini, Enrico; Biancheri, Roberta; Blair, Edward M; Blau, Nenad; Bonthron, David T; Briggs, Tracy; Brueton, Louise A; Brunner, Han G; Burke, Christopher J; Carr, Ian M; Carvalho, Daniel R; Chandler, Kate E; Christen, Hans-Jurgen; Corry, Peter C; Cowan, Frances M; Cox, Helen; D'Arrigo, Stefano; Dean, John; De Laet, Corinne; De Praeter, Claudine; Dery, Catherine; Ferrie, Colin D; Flintoff, Kim; Frints, Suzanna G M; Garcia-Cazorla, Angels; Gener, Blanca; Goizet, Cyril; Goutieres, Francoise; Green, Andrew J; Guet, Agnes; Hamel, Ben C J; Hayward, Bruce E; Heiberg, Arvid; Hennekam, Raoul C; Husson, Marie; Jackson, Andrew P; Jayatunga, Rasieka; Jiang, Yong-Hui; Kant, Sarina G; Kao, Amy; King, Mary D; Kingston, Helen M; Klepper, Joerg; van der Knaap, Marjo S; Kornberg, Andrew J; Kotzot, Dieter; Kratzer, Wilfried; Lacombe, Didier; Lagae, Lieven; Landrieu, Pierre Georges; Lanzi, Giovanni; Leitch, Andrea; Lim, Ming J; Livingston, John H; Lourenco, Charles M; Lyall, E G Hermione; Lynch, Sally A; Lyons, Michael J; Marom, Daphna; McClure, John P; McWilliam, Robert; Melancon, Serge B; Mewasingh, Leena D; Moutard, Marie-Laure; Nischal, Ken K; Ostergaard, John R; Prendiville, Julie; Rasmussen, Magnhild; Rogers, R Curtis; Roland, Dominique; Rosser, Elisabeth M; Rostasy, Kevin; Roubertie, Agathe; Sanchis, Amparo; Schiffmann, Raphael; Scholl-Burgi, Sabine; Seal, Sunita; Shalev, Stavit A; Corcoles, C Sierra; Sinha, Gyan P; Soler, Doriette; Spiegel, Ronen; Stephenson, John B P; Tacke, Uta; Tan, Tiong Yang; Till, Marianne; Tolmie, John L; Tomlin, Pam; Vagnarelli, Federica; Valente, Enza Maria; Van Coster, Rudy N A; Van der Aa, Nathalie; Vanderver, Adeline; Vles, Johannes S H; Voit, Thomas; Wassmer, Evangeline; Weschke, Bernhard; Whiteford, Margo L; Willemsen, Michel A A; Zankl, Andreas; Zuberi, Sameer M; Orcesi, Simona; Fazzi, Elisa; Lebon, Pierre; Crow, Yanick J

    2007-10-01

    Aicardi-Goutieres syndrome (AGS) is a genetic encephalopathy whose clinical features mimic those of acquired in utero viral infection. AGS exhibits locus heterogeneity, with mutations identified in genes encoding the 3'-->5' exonuclease TREX1 and the three subunits of the RNASEH2 endonuclease complex. To define the molecular spectrum of AGS, we performed mutation screening in patients, from 127 pedigrees, with a clinical diagnosis of the disease. Biallelic mutations in TREX1, RNASEH2A, RNASEH2B, and RNASEH2C were observed in 31, 3, 47, and 18 families, respectively. In five families, we identified an RNASEH2A or RNASEH2B mutation on one allele only. In one child, the disease occurred because of a de novo heterozygous TREX1 mutation. In 22 families, no mutations were found. Null mutations were common in TREX1, although a specific missense mutation was observed frequently in patients from northern Europe. Almost all mutations in RNASEH2A, RNASEH2B, and RNASEH2C were missense. We identified an RNASEH2C founder mutation in 13 Pakistani families. We also collected clinical data from 123 mutation-positive patients. Two clinical presentations could be delineated: an early-onset neonatal form, highly reminiscent of congenital infection seen particularly with TREX1 mutations, and a later-onset presentation, sometimes occurring after several months of normal development and occasionally associated with remarkably preserved neurological function, most frequently due to RNASEH2B mutations. Mortality was correlated with genotype; 34.3% of patients with TREX1, RNASEH2A, and RNASEH2C mutations versus 8.0% RNASEH2B mutation-positive patients were known to have died (P=.001). Our analysis defines the phenotypic spectrum of AGS and suggests a coherent mutation-screening strategy in this heterogeneous disorder. Additionally, our data indicate that at least one further AGS-causing gene remains to be identified.

  14. WHIM syndrome caused by a single amino acid substitution in the carboxy-tail of chemokine receptor CXCR4

    PubMed Central

    Liu, Qian; Chen, Haoqian; Ojode, Teresa; Gao, Xiangxi; Anaya-O'Brien, Sandra; Turner, Nicholas A.; Ulrick, Jean; DeCastro, Rosamma; Kelly, Corin; Cardones, Adela R.; Gold, Stuart H.; Hwang, Eugene I.; Wechsler, Daniel S.; Malech, Harry L.; Murphy, Philip M.

    2012-01-01

    WHIM syndrome is a rare, autosomal dominant, immunodeficiency disorder so-named because it is characterized by warts, hypogammaglobulinemia, infections, and myelokathexis (defective neutrophil egress from the BM). Gain-of-function mutations that truncate the C-terminus of the chemokine receptor CXCR4 by 10-19 amino acids cause WHIM syndrome. We have identified a family with autosomal dominant inheritance of WHIM syndrome that is caused by a missense mutation in CXCR4, E343K (1027G → A). This mutation is also located in the C-terminal domain, a region responsible for negative regulation of the receptor. Accordingly, like CXCR4R334X, the most common truncation mutation in WHIM syndrome, CXCR4E343K mediated approximately 2-fold increased signaling in calcium flux and chemotaxis assays relative to wild-type CXCR4; however, CXCR4E343K had a reduced effect on blocking normal receptor down-regulation from the cell surface. Therefore, in addition to truncating mutations in the C-terminal domain of CXCR4, WHIM syndrome may be caused by a single charge-changing amino acid substitution in this domain, E343K, that results in increased receptor signaling. PMID:22596258

  15. Frontotemporal dementia with Pick-type histology associated with Q336R mutation in the tau gene.

    PubMed

    Pickering-Brown, S M; Baker, M; Nonaka, T; Ikeda, K; Sharma, S; Mackenzie, J; Simpson, S A; Moore, J W; Snowden, J S; de Silva, R; Revesz, T; Hasegawa, M; Hutton, M; Mann, D M A

    2004-06-01

    In this report, we describe the clinical and neuropathological features of a case of familial frontotemporal dementia (FTD), with onset at 58 years of age and disease duration of 10 years, associated with a novel mutation, Q336R, in the tau gene (tau). In vitro studies concerning the properties of tau proteins bearing this mutation, with respect to microtubule assembly and tau filament aggregation, are reported. Clinically, the patient showed alterations in memory, language and executive functions and marked behavioural change consistent with FTD, although the extent of memory impairment was more than is characteristic of FTD. At autopsy, there was degeneration of the frontal and temporal lobes associated with the presence of hyperphosphorylated tau proteins in swollen (Pick) cells and intraneuronal inclusions (Pick bodies). By immunohistochemistry, the Pick bodies contained both 3-repeat and 4-repeat tau proteins although, because no fresh tissues were available for analysis, the exact isoform composition of the aggregated tau proteins could not be determined. Neurons within frontal cortex contained neurofibrillary tangle-like structures, comprising both straight and twisted tubules, or Pick bodies in which the filaments were short and randomly orientated. In vitro, and in common with other tau missense mutations, Q336R caused an increase in tau fibrillogenesis. However, in contrast to most other tau missense mutations, Q336R increased, not decreased, the ability of mutant tau to promote microtubule assembly. Nonetheless, this latter functional change may likewise be detrimental to neuronal function by inducing a compensatory phosphorylation that may yield increased intracellular hyperphosphorylated tau species that are also liable to fibrillize. We believe the mutation is indeed pathogenic and disease causing and not simply a coincidental rare and benign polymorphism. Since this mutation is segregating with the FTD clinical and neuropathological phenotype, it has not been found in unaffected individuals and it has novel functional properties in vitro which are likely to be detrimental to neuronal function in vivo.

  16. Phenotype/genotype correlation in a case series of Stargardt's patients identifies novel mutations in the ABCA4 gene.

    PubMed

    Gemenetzi, M; Lotery, A J

    2013-11-01

    To investigate phenotypic variability in terms of best-corrected visual acuity (BCVA) in patients with Stargardt disease (STGD) and confirmed ABCA4 mutations. Entire coding region analysis of the ABCA4 gene by direct sequencing of seven patients with clinical findings of STGD seen in the Retina Clinics of Southampton Eye Unit between 2002 and 2011.Phenotypic variables recorded were BCVA, fluorescein angiographic appearance, electrophysiology, and visual fields. All patients had heterozygous amino acid-changing variants (missense mutations) in the ABCA4 gene. A splice sequence change was found in a 30-year-old patient with severly affected vision. Two novel sequence changes were identified: a missense mutation in a mildly affected 44-year-old patient and a frameshift mutation in a severly affected 34-year-old patient. The identified ABCA4 mutations were compatible with the resulting phenotypes in terms of BCVA. Higher BCVAs were recorded in patients with missense mutations. Sequence changes, predicted to have more deleterious effect on protein function, resulted in a more severe phenotype. This case series of STGD patients demonstrates novel genotype/phenotype correlations, which may be useful to counselling of patients. This information may prove useful in selection of candidates for clinical trials in ABCA4 disease.

  17. A novel missense mutation of NDP in a Chinese family with X-linked familial exudative vitreoretinopathy.

    PubMed

    Liu, Hong Yan; Huang, Jia; Wang, Rui Li; Wang, Yue; Guo, Liang Jie; Li, Tao; Wu, Dong; Wang, Hong Dan; Guo, Qian Nan; Dong, Dao Quan

    2016-11-01

    Familial exudative vitreoretinopathy (FEVR) is a hereditary ocular disorder characterized by a failure of peripheral retinal vascularization. In this report, we describe a novel missense mutation of the Norrie disease gene (NDP) in a Chinese family with X-linked FEVR. Ophthalmologic evaluation was performed on four male patients and seven unaffected individuals after informed consent was obtained. Venous blood was collected from the 11 members of this family, and genomic DNA was extracted using standard methods. The coding exons 2 and 3 and their corresponding exon-intron junctions of NDP were amplified by polymerase chain reaction and then subjected to direct DNA sequencing. A novel missense mutation (c.310A>C) in exon 3, leading to a lysine-to-glutamine substitution at position 104 (p.Lys104Gln), was identified in all four patients with X-linked FEVR. Three unaffected female individuals (III2, IV3, and IV11) were found to be carriers of the mutation. This mutation was not detected in other unaffected individuals. The mutation c.310A>C (p.Lys104Gln) in exon 3 of NDP is associated with FEVR in the studied family. This result further enriches the mutation spectrum of FEVR. Copyright © 2016. Published by Elsevier Taiwan LLC.

  18. Mutations in apoptosis-inducing factor cause X-linked recessive auditory neuropathy spectrum disorder

    PubMed Central

    Zong, Liang; Guan, Jing; Ealy, Megan; Zhang, Qiujing; Wang, Dayong; Wang, Hongyang; Zhao, Yali; Shen, Zhirong; Campbell, Colleen A; Wang, Fengchao; Yang, Ju; Sun, Wei; Lan, Lan; Ding, Dalian; Xie, Linyi; Qi, Yue; Lou, Xin; Huang, Xusheng; Shi, Qiang; Chang, Suhua; Xiong, Wenping; Yin, Zifang; Yu, Ning; Zhao, Hui; Wang, Jun; Wang, Jing; Salvi, Richard J; Petit, Christine; Smith, Richard J H; Wang, Qiuju

    2015-01-01

    Background Auditory neuropathy spectrum disorder (ANSD) is a form of hearing loss in which auditory signal transmission from the inner ear to the auditory nerve and brain stem is distorted, giving rise to speech perception difficulties beyond that expected for the observed degree of hearing loss. For many cases of ANSD, the underlying molecular pathology and the site of lesion remain unclear. The X-linked form of the condition, AUNX1, has been mapped to Xq23-q27.3, although the causative gene has yet to be identified. Methods We performed whole-exome sequencing on DNA samples from the AUNX1 family and another small phenotypically similar but unrelated ANSD family. Results We identified two missense mutations in AIFM1 in these families: c.1352G>A (p.R451Q) in the AUNX1 family and c.1030C>T (p.L344F) in the second ANSD family. Mutation screening in a large cohort of 3 additional unrelated families and 93 sporadic cases with ANSD identified 9 more missense mutations in AIFM1. Bioinformatics analysis and expression studies support this gene as being causative of ANSD. Conclusions Variants in AIFM1 gene are a common cause of familial and sporadic ANSD and provide insight into the expanded spectrum of AIFM1-associated diseases. The finding of cochlear nerve hypoplasia in some patients was AIFM1-related ANSD implies that MRI may be of value in localising the site of lesion and suggests that cochlea implantation in these patients may have limited success. PMID:25986071

  19. Defective cellular trafficking of the bone morphogenetic protein receptor type II by mutations underlying familial pulmonary arterial hypertension.

    PubMed

    John, Anne; Kizhakkedath, Praseetha; Al-Gazali, Lihadh; Ali, Bassam R

    2015-04-25

    Familial pulmonary arterial hypertension (FPAH) is a relatively rare but fatal disorder characterized by elevated arterial pressure caused by abnormal proliferation of endothelial cells of the arteries, which eventually leads to heart failure and death. FPAH is inherited as an autosomal dominant trait and is caused by heterozygous mutations in the BMPR2 gene encoding the bone morphogenetic protein type II receptor (BMPR2). BMPR2 belongs to the TGF β/BMP super-family of receptors involved in a signal transduction cascade via the SMAD signaling pathway. The BMPR2 polypeptide is composed of 1038 amino acids and consists of a ligand binding domain, a kinase domain and a cytoplasmic tail. To investigate the cellular and functional consequence of BMPR2 mutations, C-terminally FLAG-tagged constructs of eighteen pathogenic BMPR2 missense mutants were generated by site directed mutagenesis and expressed in HeLa and HEK-293T cell lines. The subcellular localizations of the mutant proteins were investigated using immunostaining and confocal microscopy. Post-translational modifications of the proteins were analyzed by Endoglycosidase H deglycosylation assay. Our results indicated that mutations in the ligand binding domain affecting highly conserved cysteine residues resulted in retention of the mutant proteins in the endoplasmic reticulum (ER), as evident from their co-localization with the ER resident protein calnexin. The kinase domain mutants showed both ER and plasma membrane (PM) distributions, while the cytoplasmic tail domain variants were localized exclusively to the PM. The subcellular localizations of the mutants were further confirmed by their characteristic glycosylation profiles. In conclusion, our results indicate that ER quality control (ERQC) is involved in the pathological mechanism of several BMPR2 receptor missense mutations causing FPAH, which can be explored as a potential therapeutic target in the future. Copyright © 2015. Published by Elsevier B.V.

  20. Novel mutations in the Wiskott-Aldrich syndrome protein gene and their effects on transcriptional, translational, and clinical phenotypes.

    PubMed

    Lemahieu, V; Gastier, J M; Francke, U

    1999-01-01

    Wiskott-Aldrich syndrome (WAS) is an X-linked recessive immunodeficiency characterized by thrombocytopenia, eczema, and recurrent infections, and caused by mutations in the WAS protein (WASP) gene. WASP contains several functional domains through which it interacts with proteins involved in intracellular signaling and regulation of the actin cytoskeleton. In this report, 17 WASP gene mutations were identified, 12 of which are novel. DNA of affected males and obligate carriers was PCR amplified and analyzed by SSCA, heteroduplex analysis, and direct sequencing. The effects of the mutations at the mRNA and protein level were ascertained by RT-PCR and Western blot analyses. All missense mutations were located in exons 1-4. Most of the nonsense, frameshift and splice site mutations were found in exons 6-11. Mutations that alter splice sites led to the synthesis of several types of mRNAs, a fraction of which represented the normally spliced product. The presence of normally spliced transcripts was correlated with a milder phenotype. When one such case was studied by Western blotting, reduced amounts of normal-size WASP were present. In other cases as well, a correlation was found between the amount of normal or mutant WASP present and the phenotypes of the affected individuals. No protein was detected in two individuals with severe WAS. Reduced levels of a normal-size WASP with a missense mutation were seen in two individuals with XLT. It is concluded that mutation analysis at the DNA level is not sufficient for predicting clinical course. Studies at the transcript and protein level are needed for a better assessment.

  1. Seven novel mutations at the 5,10-methylenetetrahydrofolate reductase locus

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Goyette, P.; Frosst, P.; Rosenblatt, D.S.

    1994-09-01

    5,10-methylenetetrahydrofolate reductase (MTHFR), a flavoprotein, catalyzes the conversion of 5,10-methylenetetrahydrofolate to 5-methyltetrahydrofolate, a cofactor for methionine synthase in the methylation of homocysteine to methionine. Severe MTHFR deficiency, which causes homocysteinemia, is an autosomal recessive disorder with variable clinical features; developmental delay, perinatal death, mental retardation and asymptomatic individuals have been observed. A milder deficiency has been reported in patients with cardiovascular disease. We have recently described the isolation of a cDNA for MTHFR and the identification of 2 mutations in patients with severe MTHFR deficiency. We report here the characterization of 7 additional mutations at this locus: 5 missense mutationsmore » and 2 splicing mutations. Mutation analysis was performed by SSCP on PCR products generated either from reverse transcription-PCR of patients` total fibroblast RNA or from PCR of patients` genomic DNA. The 5 missense mutations are as follows: 1 Arg to Cys substitution in a hydrophilic segment proposed to be the hinge region that connects the catalytic and regulatory domains, 2 different Arg to Cys substitutions in 2 patients whose enzymatic thermolability is responsive to FAD, 1 Thr to Met substitution affecting an evolutionarily-conserved residue and a Pro to Leu substitution. The 2 splicing mutations affect the 5{prime} splice site and the 3{prime} splice site of 2 introns, respectively. The 5{prime} splice site mutation generates a 57 bp in-frame deletion of the RNA through the utilization of a cryptic 5{prime} splice site within the coding sequence. The identification of 9 mutations at this locus has allowed us to make preliminary correlations between genotype and phenotype and to contribute to a structure:function analysis of the enzyme.« less

  2. Norrie disease: first mutation report and prenatal diagnosis in an Indian family.

    PubMed

    Ghosh, Manju; Sharma, Shipra; Shastri, Shivaram; Arora, Sadhna; Shukla, Rashmi; Gupta, Neerja; Deka, Deepika; Kabra, Madhulika

    2012-11-01

    Norrie Disease (ND) is a rare X-linked recessive disorder characterised by congenital blindness due to severe retinal dysgenesis. Hearing loss and intellectual disability is present in 30-50 % cases. ND is caused by mutations in the NDP gene, located at Xp11.3. The authors describe mutation analysis of a proband with ND and subsequently prenatal diagnosis. Sequence analysis of the NDP gene revealed a hemizygous missense mutation arginine to serine in codon 41 (p.Arg41Ser) in the affected child. Mother was carrier for the mutation. In a subsequent di-chorionic di-amniotic pregnancy, the authors performed prenatal diagnosis by mutation analysis on chorionic villi sample at 11 wk of gestation. The fetuses were unaffected. This is a first mutation report and prenatal diagnosis of a familial case of Norrie disease from India. The importance of genetic testing of Norrie disease for confirmation, carrier testing, prenatal diagnosis and genetic counseling is emphasized.

  3. A somatic T15091C mutation in the Cytb gene of mouse mitochondrial DNA dominantly induces respiration defects.

    PubMed

    Hayashi, Chisato; Takibuchi, Gaku; Shimizu, Akinori; Mito, Takayuki; Ishikawa, Kaori; Nakada, Kazuto; Hayashi, Jun-Ichi

    2015-08-07

    Our previous studies provided evidence that mammalian mitochondrial DNA (mtDNA) mutations that cause mitochondrial respiration defects behave in a recessive manner, because the induction of respiration defects could be prevented with the help of a small proportion (10%-20%) of mtDNA without the mutations. However, subsequent studies found the induction of respiration defects by the accelerated accumulation of a small proportion of mtDNA with various somatic mutations, indicating the presence of mtDNA mutations that behave in a dominant manner. Here, to provide the evidence for the presence of dominant mutations in mtDNA, we used mouse lung carcinoma P29 cells and examined whether some mtDNA molecules possess somatic mutations that dominantly induce respiration defects. Cloning and sequence analysis of 40-48 mtDNA molecules from P29 cells was carried out to screen for somatic mutations in protein-coding genes, because mutations in these genes could dominantly regulate respiration defects by formation of abnormal polypeptides. We found 108 missense mutations existing in one or more of 40-48 mtDNA molecules. Of these missense mutations, a T15091C mutation in the Cytb gene was expected to be pathogenic due to the presence of its orthologous mutation in mtDNA from a patient with cardiomyopathy. After isolation of many subclones from parental P29 cells, we obtained subclones with various proportions of T15091C mtDNA, and showed that the respiration defects were induced in a subclone with only 49% T15091C mtDNA. Because the induction of respiration defects could not be prevented with the help of the remaining 51% mtDNA without the T15091C mutation, the results indicate that the T15091C mutation in mtDNA dominantly induced the respiration defects. Copyright © 2015 Elsevier Inc. All rights reserved.

  4. Clinical and Molecular Phenotype of Aicardi-Goutières Syndrome

    PubMed Central

    Rice, Gillian ; Patrick, Teresa ; Parmar, Rekha ; Taylor, Claire F. ; Aeby, Alec ; Aicardi, Jean ; Artuch, Rafael ; Montalto, Simon Attard ; Bacino, Carlos A. ; Barroso, Bruno ; Baxter, Peter ; Benko, Willam S. ; Bergmann, Carsten ; Bertini, Enrico ; Biancheri, Roberta ; Blair, Edward M. ; Blau, Nenad ; Bonthron, David T. ; Briggs, Tracy ; Brueton, Louise A. ; Brunner, Han G. ; Burke, Christopher J. ; Carr, Ian M. ; Carvalho, Daniel R. ; Chandler, Kate E. ; Christen, Hans-Jürgen ; Corry, Peter C. ; Cowan, Frances M. ; Cox, Helen ; D’Arrigo, Stefano ; Dean, John ; De Laet, Corinne ; De Praeter, Claudine ; Déry, Catherine ; Ferrie, Colin D. ; Flintoff, Kim ; Frints, Suzanna G. M. ; Garcia-Cazorla, Angels ; Gener, Blanca ; Goizet, Cyril ; Goutières, Françoise ; Green, Andrew J. ; Guët, Agnès ; Hamel, Ben C. J. ; Hayward, Bruce E. ; Heiberg, Arvid ; Hennekam, Raoul C. ; Husson, Marie ; Jackson, Andrew P. ; Jayatunga, Rasieka ; Jiang, Yong-Hui ; Kant, Sarina G. ; Kao, Amy ; King, Mary D. ; Kingston, Helen M. ; Klepper, Joerg ; van der Knaap, Marjo S. ; Kornberg, Andrew J. ; Kotzot, Dieter ; Kratzer, Wilfried ; Lacombe, Didier ; Lagae, Lieven ; Landrieu, Pierre Georges ; Lanzi, Giovanni ; Leitch, Andrea ; Lim, Ming J. ; Livingston, John H. ; Lourenco, Charles M. ; Lyall, E. G. Hermione ; Lynch, Sally A. ; Lyons, Michael J. ; Marom, Daphna ; McClure, John P. ; McWilliam, Robert ; Melancon, Serge B. ; Mewasingh, Leena D. ; Moutard, Marie-Laure ; Nischal, Ken K. ; Østergaard, John R. ; Prendiville, Julie ; Rasmussen, Magnhild ; Rogers, R. Curtis ; Roland, Dominique ; Rosser, Elisabeth M. ; Rostasy, Kevin ; Roubertie, Agathe ; Sanchis, Amparo ; Schiffmann, Raphael ; Scholl-Bürgi, Sabine ; Seal, Sunita ; Shalev, Stavit A. ; Corcoles, C. Sierra ; Sinha, Gyan P. ; Soler, Doriette ; Spiegel, Ronen ; Stephenson, John B. P. ; Tacke, Uta ; Tan, Tiong Yang ; Till, Marianne ; Tolmie, John L. ; Tomlin, Pam ; Vagnarelli, Federica ; Valente, Enza Maria ; Van Coster, Rudy N. A. ; Van der Aa, Nathalie ; Vanderver, Adeline ; Vles, Johannes S. H. ; Voit, Thomas ; Wassmer, Evangeline ; Weschke, Bernhard ; Whiteford, Margo L. ; Willemsen, Michel A. A. ; Zankl, Andreas ; Zuberi, Sameer M. ; Orcesi, Simona ; Fazzi, Elisa ; Lebon, Pierre ; Crow, Yanick J. 

    2007-01-01

    Aicardi-Goutières syndrome (AGS) is a genetic encephalopathy whose clinical features mimic those of acquired in utero viral infection. AGS exhibits locus heterogeneity, with mutations identified in genes encoding the 3′→5′ exonuclease TREX1 and the three subunits of the RNASEH2 endonuclease complex. To define the molecular spectrum of AGS, we performed mutation screening in patients, from 127 pedigrees, with a clinical diagnosis of the disease. Biallelic mutations in TREX1, RNASEH2A, RNASEH2B, and RNASEH2C were observed in 31, 3, 47, and 18 families, respectively. In five families, we identified an RNASEH2A or RNASEH2B mutation on one allele only. In one child, the disease occurred because of a de novo heterozygous TREX1 mutation. In 22 families, no mutations were found. Null mutations were common in TREX1, although a specific missense mutation was observed frequently in patients from northern Europe. Almost all mutations in RNASEH2A, RNASEH2B, and RNASEH2C were missense. We identified an RNASEH2C founder mutation in 13 Pakistani families. We also collected clinical data from 123 mutation-positive patients. Two clinical presentations could be delineated: an early-onset neonatal form, highly reminiscent of congenital infection seen particularly with TREX1 mutations, and a later-onset presentation, sometimes occurring after several months of normal development and occasionally associated with remarkably preserved neurological function, most frequently due to RNASEH2B mutations. Mortality was correlated with genotype; 34.3% of patients with TREX1, RNASEH2A, and RNASEH2C mutations versus 8.0% RNASEH2B mutation–positive patients were known to have died (P=.001). Our analysis defines the phenotypic spectrum of AGS and suggests a coherent mutation-screening strategy in this heterogeneous disorder. Additionally, our data indicate that at least one further AGS-causing gene remains to be identified. PMID:17846997

  5. Hyperinsulinism–hyperammonaemia syndrome: novel mutations in the GLUD1 gene and genotype–phenotype correlations

    PubMed Central

    Kapoor, Ritika R; Flanagan, Sarah E; Fulton, Piers; Chakrapani, Anupam; Chadefaux, Bernadette; Ben-Omran, Tawfeg; Banerjee, Indraneel; Shield, Julian P; Ellard, Sian; Hussain, Khalid

    2009-01-01

    Background Activating mutations in the GLUD1 gene (which encodes for the intra-mitochondrial enzyme glutamate dehydrogenase, GDH) cause the hyperinsulinism–hyperammonaemia (HI/HA) syndrome. Patients present with HA and leucine-sensitive hypoglycaemia. GDH is regulated by another intra-mitochondrial enzyme sirtuin 4 (SIRT4). Sirt4 knockout mice demonstrate activation of GDH with increased amino acid-stimulated insulin secretion. Objectives To study the genotype–phenotype correlations in patients with GLUD1 mutations. To report the phenotype and functional analysis of a novel mutation (P436L) in the GLUD1 gene associated with the absence of HA. Patients and methods Twenty patients with HI from 16 families had mutational analysis of the GLUD1 gene in view of HA (n=19) or leucine sensitivity (n=1). Patients negative for a GLUD1 mutation had sequence analysis of the SIRT4 gene. Functional analysis of the novel P436L GLUD1 mutation was performed. Results Heterozygous missense mutations were detected in 15 patients with HI/HA, 2 of which are novel (N410D and D451V). In addition, a patient with a normal serum ammonia concentration (21 μmol/l) was heterozygous for a novel missense mutation P436L. Functional analysis of this mutation confirms that it is associated with a loss of GTP inhibition. Seizure disorder was common (43%) in our cohort of patients with a GLUD1 mutation. No mutations in the SIRT4 gene were identified. Conclusion Patients with HI due to mutations in the GLUD1 gene may have normal serum ammonia concentrations. Hence, GLUD1 mutational analysis may be indicated in patients with leucine sensitivity; even in the absence of HA. A high frequency of epilepsy (43%) was observed in our patients with GLUD1 mutations. PMID:19690084

  6. Fine-mapping, mutation analyses, and structural mapping of cerebrotendinous xanthomatosis in U.S. pedigrees.

    PubMed

    Lee, M H; Hazard, S; Carpten, J D; Yi, S; Cohen, J; Gerhardt, G T; Salen, G; Patel, S B

    2001-02-01

    Cerebrotendinous xanthomatosis (CTX) is a rare autosomal recessive disorder of bile acid biosynthesis. Clinically, CTX patients present with tendon xanthomas, juvenile cataracts, and progressive neurological dysfunction and can be diagnosed by the detection of elevated plasma cholestanol levels. CTX is caused by mutations affecting the sterol 27-hydroxylase gene (CYP27 ). CTX has been identified in a number of populations, but seems to have a higher prevalence in the Japanese, Sephardic Jewish, and Italian populations. We have assembled 12 previously unreported pedigrees from the United States. The CYP27 locus had been previously mapped to chromosome 2q33-qter. We performed linkage analyses and found no evidence of genetic heterogeneity. All CTX patients showed segregation with the CYP27 locus, and haplotype analysis and recombinant events allowed us to precisely map CYP27 to chromosome 2q35, between markers D2S1371 and D2S424. Twenty-three mutations were identified from 13 probands analyzed thus far; 11 were compound heterozygotes and 2 had homozygous mutations. Of these, five are novel mutations [Trp100Stop, Pro408Ser, Gln428Stop, a 10-base pair (bp) deletion in exon 1, and a 2-bp deletion in exon 6 of the CYP27 gene]. Three-dimensional structural modeling of sterol 27-hydroxylase showed that, while the majority of the missense mutations disrupt the heme-binding and adrenodoxin-binding domains critical for enzyme activity, two missense mutations (Arg94Trp/Gln and Lys226Arg) are clearly located outside these sites and may identify a potential substrate-binding or other protein contact site.

  7. Identification of Sequence Variation in the Apolipoprotein A2 Gene and Their Relationship with Serum High-Density Lipoprotein Cholesterol Levels

    PubMed Central

    Bandarian, Fatemeh; Daneshpour, Maryam Sadat; Hedayati, Mehdi; Naseri, Mohsen; Azizi, Fereidoun

    2016-01-01

    Background: Apolipoprotein A2 (APOA2) is the second major apolipoprotein of the high-density lipoprotein cholesterol (HDL-C). The study aim was to identify APOA2 gene variation in individuals within two extreme tails of HDL-C levels and its relationship with HDL-C level. Methods: This cross-sectional survey was conducted on participants from Tehran Glucose and Lipid Study (TLGS) at Research Institute for Endocrine Sciences, Tehran, Iran from April 2012 to February 2013. In total, 79 individuals with extreme low HDL-C levels (≤5th percentile for age and gender) and 63 individuals with extreme high HDL-C levels (≥95th percentile for age and gender) were selected. Variants were identified using DNA amplification and direct sequencing. Results: Screen of all exons and the core promoter region of APOA2 gene identified nine single nucleotide substitutions and one microsatellite; five of which were known and four were new variants. Of these nine variants, two were common tag single nucleotide polymorphisms (SNPs) and seven were rare SNPs. Both exonic substitutions were missense mutations and caused an amino acid change. There was a significant association between the new missense mutation (variant Chr.1:16119226, Ala98Pro) and HDL-C level. Conclusion: None of two common tag SNPs of rs6413453 and rs5082 contributes to the HDL-C trait in Iranian population, but a new missense mutation in APOA2 in our population has a significant association with HDL-C. PMID:26590203

  8. A FRMD7 variant in a Japanese family causes congenital nystagmus.

    PubMed

    Kohmoto, Tomohiro; Okamoto, Nana; Satomura, Shigeko; Naruto, Takuya; Komori, Takahide; Hashimoto, Toshiaki; Imoto, Issei

    2015-01-01

    Idiopathic congenital nystagmus (ICN) is a genetically heterogeneous eye movement disorder that causes a large proportion of childhood visual impairment. Here we describe a missense variant (p.L292P) within a mutation-rich region of FRMD7 detected in three affected male siblings in a Japanese family with X-linked ICN. Combining sequence analysis and results from structural and functional predictions, we report p.L292P as a variant potentially disrupting FRMD7 function associated with X-linked ICN.

  9. A FRMD7 variant in a Japanese family causes congenital nystagmus

    PubMed Central

    Kohmoto, Tomohiro; Okamoto, Nana; Satomura, Shigeko; Naruto, Takuya; Komori, Takahide; Hashimoto, Toshiaki; Imoto, Issei

    2015-01-01

    Idiopathic congenital nystagmus (ICN) is a genetically heterogeneous eye movement disorder that causes a large proportion of childhood visual impairment. Here we describe a missense variant (p.L292P) within a mutation-rich region of FRMD7 detected in three affected male siblings in a Japanese family with X-linked ICN. Combining sequence analysis and results from structural and functional predictions, we report p.L292P as a variant potentially disrupting FRMD7 function associated with X-linked ICN. PMID:27081518

  10. Fibulin-4 E57K Knock-in Mice Recapitulate Cutaneous, Vascular and Skeletal Defects of Recessive Cutis Laxa 1B with both Elastic Fiber and Collagen Fibril Abnormalities.

    PubMed

    Igoucheva, Olga; Alexeev, Vitali; Halabi, Carmen M; Adams, Sheila M; Stoilov, Ivan; Sasaki, Takako; Arita, Machiko; Donahue, Adele; Mecham, Robert P; Birk, David E; Chu, Mon-Li

    2015-08-28

    Fibulin-4 is an extracellular matrix protein essential for elastic fiber formation. Frameshift and missense mutations in the fibulin-4 gene (EFEMP2/FBLN4) cause autosomal recessive cutis laxa (ARCL) 1B, characterized by loose skin, aortic aneurysm, arterial tortuosity, lung emphysema, and skeletal abnormalities. Homozygous missense mutations in FBLN4 are a prevalent cause of ARCL 1B. Here we generated a knock-in mouse strain bearing a recurrent fibulin-4 E57K homozygous missense mutation. The mutant mice survived into adulthood and displayed abnormalities in multiple organ systems, including loose skin, bent forelimb, aortic aneurysm, tortuous artery, and pulmonary emphysema. Biochemical studies of dermal fibroblasts showed that fibulin-4 E57K mutant protein was produced but was prone to dimer formation and inefficiently secreted, thereby triggering an endoplasmic reticulum stress response. Immunohistochemistry detected a low level of fibulin-4 E57K protein in the knock-in skin along with altered expression of selected elastic fiber components. Processing of a precursor to mature lysyl oxidase, an enzyme involved in cross-linking of elastin and collagen, was compromised. The knock-in skin had a reduced level of desmosine, an elastin-specific cross-link compound, and ultrastructurally abnormal elastic fibers. Surprisingly, structurally aberrant collagen fibrils and altered organization into fibers were characteristics of the knock-in dermis and forelimb tendons. Type I collagen extracted from the knock-in skin had decreased amounts of covalent intermolecular cross-links, which could contribute to the collagen fibril abnormalities. Our studies provide the first evidence that fibulin-4 plays a role in regulating collagen fibril assembly and offer a preclinical platform for developing treatments for ARCL 1B. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  11. Two homozygous mutations in the exon 5 of BCKDHB gene that may cause the classic form of maple syrup urine disease.

    PubMed

    Su, Ling; Lu, Zhikun; Li, Fatao; Shao, Yongxian; Sheng, Huiying; Cai, Yanna; Liu, Li

    2017-06-01

    Maple syrup urine disease (MSUD) is a rare autosomal recessive genetic disorder caused by defects in the catabolism of the branched-chain amino acids (BCAAs). Classic form of MSUD (CMSUD) is caused by mutations in BCKDHA, BCKDHB, DBT genes mostly. In this study, we analyzed the clinical and genetic characteristics of two patients with CMSUD. Two homozygous mutations, c.517G > T (p.Asp173Tyr) and c.503G > A (p.Arg168His), both in the exon 5 of BCKDHB were detected respectively. The novel mutation p.Asp173Tyr of patient A, inherited from his parents, is predicted to affect conformation of protein by computer analysis. The reported mutation p.Arg168His observed in patient B seemed to occur in a maternal uniparental disomy inheritance manner. Review of related literature revealed that most missense mutations in exon 5 of BCKDHB in homozygous genotype often result in CMSUD because of its incorrect conformation, and exon 5 of BCKDHB might be a susceptible region. Thus the novel homozygous mutation p.Asp173Tyr and the founder homozygous mutation p.Arg168His may be responsible for the clinical presentation of the two CMSUD patients, facilitating the future genetic counselling and prenatal diagnosis.

  12. E2-EPF UCP regulates stability and functions of missense mutant pVHL via ubiquitin mediated proteolysis.

    PubMed

    Park, Kyeong-Su; Kim, Ju Hee; Shin, Hee Won; Chung, Kyung-Sook; Im, Dong-Soo; Lim, Jung Hwa; Jung, Cho-Rok

    2015-10-26

    Missense mutation of VHL gene is frequently detected in type 2 VHL diseases and linked to a wide range of pVHL functions and stability. Certain mutant pVHLs retain ability to regulate HIFs but lose their function by instability. In this case, regulating of degradation of mutant pVHLs, can be postulated as therapeutic method. The stability and cellular function of missense mutant pVHLs were determine in HEK293T transient expressing cell and 786-O stable cell line. Ubiquitination assay of mutant VHL proteins was performed in vitro system. Anticancer effect of adenovirus mediated shUCP expressing was evaluated using ex vivo mouse xenograft assay. Three VHL missense mutants (V155A, L158Q, and Q164R) are directly ubiquitinated by E2-EPF UCP (UCP) in vitro. Mutant pVHLs are more unstable than wild type in cell. Missense mutant pVHLs interact with UCP directly in both in vitro and cellular systems. Lacking all of lysine residues of pVHL result in resistance to ubiquitination thereby increase its stability. Missense mutant pVHLs maintained the function of E3 ligase to ubiquitinate HIF-1α in vitro. In cells expressing mutant pVHLs, Glut-1 and VEGF were relatively upregulated compared to their levels in cells expressing wild-type. Depletion of UCP restored missense mutant pVHLs levels and inhibited cell growth. Adenovirus-mediated shUCP RNA delivery inhibited tumor growth in ex vivo mouse xenograft model. These data suggest that targeting of UCP can be one of therapeutic method in type 2 VHL disease caused by unstable but functional missense mutant pVHL.

  13. Correlation between connexin 32 gene mutations and clinical phenotype in X-linked dominant Charcot-Marie-Tooth neuropathy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ionasescu, V.; Ionasescu, R.; Searby, C.

    1996-06-14

    We studied the relationship between the genotype and clinical phenotype in 27 families with dominant X-linked Charcot-Marie-Tooth (CMTX1) neuropathy. Twenty-two families showed mutations in the coding region of the connexin32 (cx32) gene. The mutations include four nonsense mutations, eight missense mutations, two medium size deletions, and one insertion. Most missense mutations showed a mild clinical phenotype (five out of eight), whereas all nonsense mutations, the larger of the two deletions, and the insertion that produced frameshifts showed severe phenotypes. Five CMTX1 families with mild clinical phenotype showed no point mutations of the cx32 gene coding region. Three of these familiesmore » showed positive genetic linkage with the markers of the Xq13.1 region. The genetic linkage of the remaining two families could not be evaluated because of their small size. 25 refs., 1 fig., 1 tab.« less

  14. Mutational Spectrum of MYO15A and the Molecular Mechanisms of DFNB3 Human Deafness

    PubMed Central

    Rehman, Atteeq U.; Bird, Jonathan E.; Faridi, Rabia; Shahzad, Mohsin; Shah, Sujay; Lee, Kwanghyuk; Khan, Shaheen N.; Imtiaz, Ayesha; Ahmed, Zubair M.; Riazuddin, Saima; Santos-Cortez, Regie Lyn P.; Ahmad, Wasim; Leal, Suzanne M.; Riazuddin, Sheikh; Friedman, Thomas B.

    2016-01-01

    Deafness in humans is a common neurosensory disorder and is genetically heterogeneous. Across diverse ethnic groups, mutations of MYO15A at the DFNB3 locus appear to be the third or fourth most common cause of autosomal recessive, nonsyndromic deafness. In 49 of the 67 exons of MYO15A, there are currently 192 recessive mutations identified, including 14 novel mutations reported here. These mutations are distributed uniformly across MYO15A with one enigmatic exception; the alternatively spliced giant exon 2, encoding 1,233 residues, has 17 truncating mutations but no convincing deafness-causing missense mutations. MYO15A encodes three distinct isoform classes, one of which is 395 kDa (3,530 residues), the largest member of the myosin superfamily of molecular motors. Studies of Myo15 mouse models that recapitulate DFNB3 revealed two different pathogenic mechanisms of hearing loss. In the inner ear, myosin 15 is necessary both for the development and the long-term maintenance of stereocilia, mechanosensory sound-transducing organelles that extend from the apical surface of hair cells. The goal of this Mutation Update is to provide a comprehensive review of mutations and functions of MYO15A. PMID:27375115

  15. RARE VARIANTS IN THE NEUROTROPHIN SIGNALING PATHWAY IMPLICATED IN SCHIZOPHRENIA RISK

    PubMed Central

    Kranz, Thorsten M.; Goetz, Ray R.; Walsh-Messinger, Julie; Goetz, Deborah; Antonius, Daniel; Dolgalev, Igor; Heguy, Adriana; Seandel, Marco; Malaspina, Dolores; Chao, Moses V.

    2015-01-01

    Multiple lines of evidence corroborate impaired signaling pathways as relevant to the underpinnings of schizophrenia. There has been an interest in neurotrophins, since they are crucial mediators of neurodevelopment and in synaptic connectivity in the adult brain. Neurotrophins and their receptors demonstrate aberrant expression patterns in cortical areas for schizophrenia cases in comparison to control subjects. There is little known about the contribution of neurotrophin genes in psychiatric disorders. To begin to address this issue, we conducted high-coverage targeted exome capture in a subset of neurotrophin genes in 48 comprehensively characterized cases with schizophrenia-related psychosis. We herein report rare missense polymorphisms and novel missense mutations in neurotrophin receptor signaling pathway genes. Furthermore, we observed that several genes have a higher propensity to harbor missense coding variants than others. Based on this initial analysis we suggest that rare variants and missense mutations in neurotrophin genes might represent genetic contributions involved across psychiatric disorders. PMID:26215504

  16. Effects of missense mutations in sortase A gene on enzyme activity in Streptococcus mutans.

    PubMed

    Zhuang, P L; Yu, L X; Tao, Y; Zhou, Y; Zhi, Q H; Lin, H C

    2016-04-11

    Streptococcus mutans (S. mutans) is the major aetiological agent of dental caries, and the transpeptidase Sortase A (SrtA) plays a major role in cariogenicity. The T168G and G470A missense mutations in the srtA gene may be linked to caries susceptibility, as demonstrated in our previous studies. This study aimed to investigate the effects of these missense mutations of the srtA gene on SrtA enzyme activity in S. mutans. The point mutated recombinant S.mutans T168G and G470A sortases were expressed in expression plasmid pET32a. S. mutans UA159 sortase coding gene srtA was used as the template for point mutation. Enzymatic activity was assessed by quantifying increases in the fluorescence intensity generated when a substrate Dabcyl-QALPNTGEE-Edans was cleaved by SrtA. The kinetic constants were calculated based on the curve fit for the Michaelis-Menten equation. SrtA△N40(UA159) and the mutant enzymes, SrtA△N40(D56E) and SrtA△N40(R157H), were expressed and purified. A kinetic analysis showed that the affinity of SrtA△N40(D56E) and SrtA△N40(R157H) remained approximately equal to the affinity of SrtA△N40(UA159), as determined by the Michaelis constant (K m ). However, the catalytic rate constant (k cat ) and catalytic efficiency (k cat /K m ) of SrtA△N40(D56E) were reduced compared with those of SrtA△N40(R157H) and SrtA△N40(UA159), whereas the k cat and k cat /K m values of SrtA△N40(R157H) were slightly lower than those of SrtA△N40(UA159). The findings of this study indicate that the T168G missense mutation of the srtA gene results in a significant reduction in enzymatic activity compared with S. mutans UA159, suggesting that the T168G missense mutation of the srtA gene may be related to low cariogenicity.

  17. Patterns and severity of vascular amyloid in Alzheimer's disease associated with duplications and missense mutations in APP gene, Down syndrome and sporadic Alzheimer's disease.

    PubMed

    Mann, David M A; Davidson, Yvonne S; Robinson, Andrew C; Allen, Nancy; Hashimoto, Tadafumi; Richardson, Anna; Jones, Matthew; Snowden, Julie S; Pendleton, Neil; Potier, Marie-Claude; Laquerrière, Annie; Prasher, Vee; Iwatsubo, Takeshi; Strydom, Andre

    2018-05-16

    In this study, we have compared the severity of amyloid plaque formation and cerebral amyloid angiopathy (CAA), and the subtype pattern of CAA pathology itself, between APP genetic causes of AD (APPdup, APP mutations), older individuals with Down syndrome (DS) showing the pathology of Alzheimer's disease (AD) and individuals with sporadic (early and late onset) AD (sEOAD and sLOAD, respectively). The aim of this was to elucidate important group differences and to provide mechanistic insights related to clinical and neuropathological phenotypes. Since lipid and cholesterol metabolism is implicated in AD as well as vascular disease, we additionally aimed to explore the role of APOE genotype in CAA severity and subtypes. Plaque formation was greater in DS and missense APP mutations than in APPdup, sEOAD and sLOAD cases. Conversely, CAA was more severe in APPdup and missense APP mutations, and in DS, compared to sEOAD and sLOAD. When stratified by CAA subtype from 1 to 4, there were no differences in plaque scores between the groups, though in patients with APPdup, APP mutations and sEOAD, types 2 and 3 CAA were more common than type 1. Conversely, in DS, sLOAD and controls, type 1 CAA was more common than types 2 and 3. APOE ε4 allele frequency was greater in sEOAD and sLOAD compared to APPdup, missense APP mutations, DS and controls, and varied between each of the CAA phenotypes with APOE ε4 homozygosity being more commonly associated with type 3 CAA than types 1 and 2 CAA in sLOAD and sEOAD. The differing patterns in CAA within individuals of each group could be a reflection of variations in the efficiency of perivascular drainage, this being less effective in types 2 and 3 CAA leading to a greater burden of CAA in parenchymal arteries and capillaries. Alternatively, as suggested by immunostaining using carboxy-terminal specific antibodies, it may relate to the relative tissue burdens of the two major forms of Aβ, with higher levels of Aβ 40 promoting a more 'aggressive' form of CAA, and higher levels of Aβ 42(3) favouring a greater plaque burden. Possession of APOE ε4 allele, especially ε4 homozygosity, favours development of CAA generally, and as type 3 particularly, in sEOAD and sLOAD.

  18. Missense and nonsense mutations in melanocortin 1 receptor (MC1R) gene of different goat breeds: association with red and black coat colour phenotypes but with unexpected evidences

    PubMed Central

    2009-01-01

    Background Agouti and Extension loci control the relative amount of eumelanin and pheomelanin production in melanocytes that, in turn, affects pigmentation of skin and hair. The Extension locus encodes the melanocortin 1 receptor (MC1R) whose permanent activation, caused by functional mutations, results in black coat colour, whereas other inactivating mutations cause red coat colour in different mammals. Results The whole coding region of the MC1R gene was sequenced in goats of six different breeds showing different coat colours (Girgentana, white cream with usually small red spots in the face; Maltese, white with black cheeks and ears; Derivata di Siria, solid red; Murciano-Granadina, solid black or solid brown; Camosciata delle Alpi, brown with black stripes; Saanen, white; F1 goats and the parental animals). Five single nucleotide polymorphisms (SNPs) were identified: one nonsense mutation (p.Q225X), three missense mutations (p.A81V, p.F250V, and p.C267W), and one silent mutation. The stop codon at position 225 should cause the production of a shorter MC1R protein whose functionality may be altered. These SNPs were investigated in a larger sample of animals belonging to the six breeds. The Girgentana breed was almost fixed for the p.225X allele. However, there was not complete association between the presence of red spots in the face and the presence of this allele in homozygous condition. The same allele was identified in the Derivata di Siria breed. However, its frequency was only 33%, despite the fact that these animals are completely red. The p.267W allele was present in all Murciano-Granadina black goats, whereas it was never identified in the brown ones. Moreover, the same substitution was present in almost all Maltese goats providing evidence of association between this mutation and black coat colour. Conclusion According to the results obtained in the investigated goat breeds, MC1R mutations may determine eumelanic and pheomelanic phenotypes. However, they are probably not the only factors. In particular, the surprising not complete association of the nonsense mutation (p.Q225X) with red coat colour raises a few hypotheses on the determination of pheomelanic phenotypes in goats that should be further investigated. PMID:19706191

  19. Missense and nonsense mutations in melanocortin 1 receptor (MC1R) gene of different goat breeds: association with red and black coat colour phenotypes but with unexpected evidences.

    PubMed

    Fontanesi, Luca; Beretti, Francesca; Riggio, Valentina; Dall'Olio, Stefania; González, Elena Gómez; Finocchiaro, Raffaella; Davoli, Roberta; Russo, Vincenzo; Portolano, Baldassare

    2009-08-25

    Agouti and Extension loci control the relative amount of eumelanin and pheomelanin production in melanocytes that, in turn, affects pigmentation of skin and hair. The Extension locus encodes the melanocortin 1 receptor (MC1R) whose permanent activation, caused by functional mutations, results in black coat colour, whereas other inactivating mutations cause red coat colour in different mammals. The whole coding region of the MC1R gene was sequenced in goats of six different breeds showing different coat colours (Girgentana, white cream with usually small red spots in the face; Maltese, white with black cheeks and ears; Derivata di Siria, solid red; Murciano-Granadina, solid black or solid brown; Camosciata delle Alpi, brown with black stripes; Saanen, white; F1 goats and the parental animals). Five single nucleotide polymorphisms (SNPs) were identified: one nonsense mutation (p.Q225X), three missense mutations (p.A81V, p.F250V, and p.C267W), and one silent mutation. The stop codon at position 225 should cause the production of a shorter MC1R protein whose functionality may be altered. These SNPs were investigated in a larger sample of animals belonging to the six breeds. The Girgentana breed was almost fixed for the p.225X allele. However, there was not complete association between the presence of red spots in the face and the presence of this allele in homozygous condition. The same allele was identified in the Derivata di Siria breed. However, its frequency was only 33%, despite the fact that these animals are completely red. The p.267W allele was present in all Murciano-Granadina black goats, whereas it was never identified in the brown ones. Moreover, the same substitution was present in almost all Maltese goats providing evidence of association between this mutation and black coat colour. According to the results obtained in the investigated goat breeds, MC1R mutations may determine eumelanic and pheomelanic phenotypes. However, they are probably not the only factors. In particular, the surprising not complete association of the nonsense mutation (p.Q225X) with red coat colour raises a few hypotheses on the determination of pheomelanic phenotypes in goats that should be further investigated.

  20. Novel USH2A compound heterozygous mutations cause RP/USH2 in a Chinese family.

    PubMed

    Liu, Xiaowen; Tang, Zhaohui; Li, Chang; Yang, Kangjuan; Gan, Guanqi; Zhang, Zibo; Liu, Jingyu; Jiang, Fagang; Wang, Qing; Liu, Mugen

    2010-03-17

    To identify the disease-causing gene in a four-generation Chinese family affected with retinitis pigmentosa (RP). Linkage analysis was performed with a panel of microsatellite markers flanking the candidate genetic loci of RP. These loci included 38 known RP genes. The complete coding region and exon-intron boundaries of Usher syndrome 2A (USH2A) were sequenced with the proband DNA to screen the disease-causing gene mutation. Restriction fragment length polymorphism (RFLP) analysis and direct DNA sequence analysis were done to demonstrate co-segregation of the USH2A mutations with the family disease. One hundred normal controls were used without the mutations. The disease-causing gene in this Chinese family was linked to the USH2A locus on chromosome 1q41. Direct DNA sequence analysis of USH2A identified two novel mutations in the patients: one missense mutation p.G1734R in exon 26 and a splice site mutation, IVS32+1G>A, which was found in the donor site of intron 32 of USH2A. Neither the p.G1734R nor the IVS32+1G>A mutation was found in the unaffected family members or the 100 normal controls. One patient with a homozygous mutation displayed only RP symptoms until now, while three patients with compound heterozygous mutations in the family of study showed both RP and hearing impairment. This study identified two novel mutations: p.G1734R and IVS32+1G>A of USH2A in a four-generation Chinese RP family. In this study, the heterozygous mutation and the homozygous mutation in USH2A may cause Usher syndrome Type II or RP, respectively. These two mutations expand the mutant spectrum of USH2A.

  1. Next-generation sequencing reveals a novel NDP gene mutation in a Chinese family with Norrie disease.

    PubMed

    Huang, Xiaoyan; Tian, Mao; Li, Jiankang; Cui, Ling; Li, Min; Zhang, Jianguo

    2017-11-01

    Norrie disease (ND) is a rare X-linked genetic disorder, the main symptoms of which are congenital blindness and white pupils. It has been reported that ND is caused by mutations in the NDP gene. Although many mutations in NDP have been reported, the genetic cause for many patients remains unknown. In this study, the aim is to investigate the genetic defect in a five-generation family with typical symptoms of ND. To identify the causative gene, next-generation sequencing based target capture sequencing was performed. Segregation analysis of the candidate variant was performed in additional family members using Sanger sequencing. We identified a novel missense variant (c.314C>A) located within the NDP gene. The mutation cosegregated within all affected individuals in the family and was not found in unaffected members. By happenstance, in this family, we also detected a known pathogenic variant of retinitis pigmentosa in a healthy individual. c.314C>A mutation of NDP gene is a novel mutation and broadens the genetic spectrum of ND.

  2. A novel mutation in PGAP2 gene causes developmental delay, intellectual disability, epilepsy and microcephaly in consanguineous Saudi family.

    PubMed

    Naseer, Muhammad Imran; Rasool, Mahmood; Jan, Mohammed M; Chaudhary, Adeel G; Pushparaj, Peter Natesan; Abuzenadah, Adel M; Al-Qahtani, Mohammad H

    2016-12-15

    PGAP2 (Post-GPI Attachment to Proteins 2) gene is involved in lipid remodeling steps of Glycosylphosphatidylinositol (GPI)-anchor maturation. At the surface of the cell this gene is required for proper expression of GPI-anchored proteins. Hyperphosphatasia with mental retardation syndrome-3 is an autosomal recessive disorder usually characterized by severe mental retardation. Mutations in the PGAP2 gene cause hyperphosphatasia mental retardation syndrome-3. We have identified a large consanguineous family from Saudi origin segregating developmental delay, intellectual disability, epilepsy and microcephaly. Whole exome sequencing with 100× coverage was performed on two affected siblings of the family. Data analysis in the patient revealed a novel missense mutation c.191C>T in PGAP2 gene resulting in Alanine to Valine substitution (Ala64Val). The mutation was reconfirmed and validated by subsequent Sanger sequencing method. The mutation was ruled out in 100 unrelated healthy controls. We suggest that this pathogenic mutation disrupts the proper function of the gene proteins resulting in the disease state. Copyright © 2016 Elsevier B.V. All rights reserved.

  3. Novel LRPPRC Mutation in a Boy With Mild Leigh Syndrome, French-Canadian Type Outside of Québec.

    PubMed

    Han, Velda Xinying; Tan, Teresa S; Wang, Furene S; Tay, Stacey Kiat-Hong

    2017-01-01

    Leigh syndrome, French-Canadian type is unique to patients from a genetic isolate in the Saguenay-Lac-Saint-Jean region of Québec. It has also been recently described in 10 patients with LRPPRC mutation outside of Québec. It is an autosomal recessive genetic disorder with fatal metabolic crisis and severe neurological morbidity in infancy caused by LRPPRC mutation. The authors report a boy with a novel LRPPRC compound heterozygous missense mutations c.3130C>T, c.3430C>T, and c.4078G>A found on whole-exome sequencing which correlated with isolated cytochrome c-oxidase deficiency found in skeletal muscle. LRPPRC mutation is a rare cause of cytochrome c-oxidase-deficient form of Leigh syndrome outside of Québec. Our patient broadens the spectrum of phenotypes of Leigh syndrome, French-Canadian type. LRPPRC mutation should be considered in children with early childhood neurodegenerative disorder, even in the absence of metabolic crisis. Early evaluation with whole-exome sequencing is useful for early diagnosis and for genetic counseling.

  4. Next-generation sequencing reveals a novel NDP gene mutation in a Chinese family with Norrie disease

    PubMed Central

    Huang, Xiaoyan; Tian, Mao; Li, Jiankang; Cui, Ling; Li, Min; Zhang, Jianguo

    2017-01-01

    Purpose: Norrie disease (ND) is a rare X-linked genetic disorder, the main symptoms of which are congenital blindness and white pupils. It has been reported that ND is caused by mutations in the NDP gene. Although many mutations in NDP have been reported, the genetic cause for many patients remains unknown. In this study, the aim is to investigate the genetic defect in a five-generation family with typical symptoms of ND. Methods: To identify the causative gene, next-generation sequencing based target capture sequencing was performed. Segregation analysis of the candidate variant was performed in additional family members using Sanger sequencing. Results: We identified a novel missense variant (c.314C>A) located within the NDP gene. The mutation cosegregated within all affected individuals in the family and was not found in unaffected members. By happenstance, in this family, we also detected a known pathogenic variant of retinitis pigmentosa in a healthy individual. Conclusion: c.314C>A mutation of NDP gene is a novel mutation and broadens the genetic spectrum of ND. PMID:29133643

  5. Clinical and Genetic Spectrum of Bartter Syndrome Type 3.

    PubMed

    Seys, Elsa; Andrini, Olga; Keck, Mathilde; Mansour-Hendili, Lamisse; Courand, Pierre-Yves; Simian, Christophe; Deschenes, Georges; Kwon, Theresa; Bertholet-Thomas, Aurélia; Bobrie, Guillaume; Borde, Jean Sébastien; Bourdat-Michel, Guylhène; Decramer, Stéphane; Cailliez, Mathilde; Krug, Pauline; Cozette, Paul; Delbet, Jean Daniel; Dubourg, Laurence; Chaveau, Dominique; Fila, Marc; Jourde-Chiche, Noémie; Knebelmann, Bertrand; Lavocat, Marie-Pierre; Lemoine, Sandrine; Djeddi, Djamal; Llanas, Brigitte; Louillet, Ferielle; Merieau, Elodie; Mileva, Maria; Mota-Vieira, Luisa; Mousson, Christiane; Nobili, François; Novo, Robert; Roussey-Kesler, Gwenaëlle; Vrillon, Isabelle; Walsh, Stephen B; Teulon, Jacques; Blanchard, Anne; Vargas-Poussou, Rosa

    2017-08-01

    Bartter syndrome type 3 is a clinically heterogeneous hereditary salt-losing tubulopathy caused by mutations of the chloride voltage-gated channel Kb gene ( CLCNKB ), which encodes the ClC-Kb chloride channel involved in NaCl reabsorption in the renal tubule. To study phenotype/genotype correlations, we performed genetic analyses by direct sequencing and multiplex ligation-dependent probe amplification and retrospectively analyzed medical charts for 115 patients with CLCNKB mutations. Functional analyses were performed in Xenopus laevis oocytes for eight missense and two nonsense mutations. We detected 60 mutations, including 27 previously unreported mutations. Among patients, 29.5% had a phenotype of ante/neonatal Bartter syndrome (polyhydramnios or diagnosis in the first month of life), 44.5% had classic Bartter syndrome (diagnosis during childhood, hypercalciuria, and/or polyuria), and 26.0% had Gitelman-like syndrome (fortuitous discovery of hypokalemia with hypomagnesemia and/or hypocalciuria in childhood or adulthood). Nine of the ten mutations expressed in vitro decreased or abolished chloride conductance. Severe (large deletions, frameshift, nonsense, and essential splicing) and missense mutations resulting in poor residual conductance were associated with younger age at diagnosis. Electrolyte supplements and indomethacin were used frequently to induce catch-up growth, with few adverse effects. After a median follow-up of 8 (range, 1-41) years in 77 patients, chronic renal failure was detected in 19 patients (25%): one required hemodialysis and four underwent renal transplant. In summary, we report a genotype/phenotype correlation for Bartter syndrome type 3: complete loss-of-function mutations associated with younger age at diagnosis, and CKD was observed in all phenotypes. Copyright © 2017 by the American Society of Nephrology.

  6. Loss of function mutations in VARS encoding cytoplasmic valyl-tRNA synthetase cause microcephaly, seizures, and progressive cerebral atrophy.

    PubMed

    Stephen, Joshi; Nampoothiri, Sheela; Banerjee, Aditi; Tolman, Nathanial J; Penninger, Josef Martin; Elling, Ullrich; Agu, Chukwuma A; Burke, John D; Devadathan, Kalpana; Kannan, Rajesh; Huang, Yan; Steinbach, Peter J; Martinis, Susan A; Gahl, William A; Malicdan, May Christine V

    2018-04-01

    Progressive microcephaly and neurodegeneration are genetically heterogenous conditions, largely associated with genes that are essential for the survival of neurons. In this study, we interrogate the genetic etiology of two siblings from a non-consanguineous family with severe early onset of neurological manifestations. Whole exome sequencing identified novel compound heterozygous mutations in VARS that segregated with the proband: a missense (c.3192G>A; p.Met1064Ile) and a splice site mutation (c.1577-2A>G). The VARS gene encodes cytoplasmic valyl-tRNA synthetase (ValRS), an enzyme that is essential during eukaryotic translation. cDNA analysis on patient derived fibroblasts revealed that the splice site acceptor variant allele led to nonsense mediated decay, thus resulting in a null allele. Three-dimensional modeling of ValRS predicts that the missense mutation lies in a highly conserved region and could alter side chain packing, thus affecting tRNA binding or destabilizing the interface between the catalytic and tRNA binding domains. Further quantitation of the expression of VARS showed remarkably reduced levels of mRNA and protein in skin derived fibroblasts. Aminoacylation experiments on patient derived cells showed markedly reduced enzyme activity of ValRS suggesting the mutations to be loss of function. Bi-allelic mutations in cytoplasmic amino acyl tRNA synthetases are well-known for their role in neurodegenerative disorders, yet human disorders associated with VARS mutations have not yet been clinically well characterized. Our study describes the phenotype associated with recessive VARS mutations and further functional delineation of the pathogenicity of novel variants identified, which widens the clinical and genetic spectrum of patients with progressive microcephaly.

  7. Mutation analysis of BRCA1/2 mutations with special reference to polymorphic SNPs in Indian breast cancer patients.

    PubMed

    Shah, Nidhi D; Shah, Parth S; Panchal, Yash Y; Katudia, Kalpesh H; Khatri, Nikunj B; Ray, Hari Shankar P; Bhatiya, Upti R; Shah, Sandip C; Shah, Bhavini S; Rao, Mandava V

    2018-01-01

    Germline mutations BRCA1 and BRCA2 contribute almost equally in the causation of breast cancer (BC). The type of mutations in the Indian population that cause this condition is largely unknown. In this cohort, 79 randomized BC patients were screened for various types of BRCA1 and BRCA2 mutations including frameshift, nonsense, missense, in-frame and splice site types. The purified extracted DNA of each referral patient was subjected to Sanger gene sequencing using Codon Code Analyzer and Mutation Surveyor and next-generation sequencing (NGS) methods with Ion torrent software, after appropriate care. The data revealed that 35 cases were positive for BRCA1 or BRCA2 (35/79: 44.3%). BRCA2 mutations were higher (52.4%) than BRCA1 mutations (47.6%). Five novel mutations detected in this study were p.pro163 frameshift, p.asn997 frameshift, p.ser148 frameshift and two splice site single-nucleotide polymorphisms (SNPs). Additionally, four nonsense and one in-frame deletion were identified, which all seemed to be pathogenic. Polymorphic SNPs contributed the highest percentage of mutations (72/82: 87.8%) and contributed to pathogenic, likely pathogenic, likely benign, benign and variant of unknown significance (VUS). Young age groups (20-60 years) had a high frequency of germline mutations (62/82;75.6%) in the Indian population. This study suggested that polymorphic SNPs contributed a high percentage of mutations along with five novel types. Younger age groups are prone to having BC with a higher mutational rate. Furthermore, the SNPs detected in exons 10, 11 and 16 of BRCA1 and BRCA2 were higher than those in other exons 2, 3 and 9 polymorphic sites in two germline genes. These may be contributory for BC although missense types are known to be susceptible for cancer depending on the type of amino acid replaced in the protein and associated with pathologic events. Accordingly, appropriate counseling and treatment may be suggested.

  8. Epidermolysis bullosa with congenital pyloric atresia: novel mutations in the beta 4 integrin gene (ITGB4) and genotype/phenotype correlations.

    PubMed

    Nakano, A; Pulkkinen, L; Murrell, D; Rico, J; Lucky, A W; Garzon, M; Stevens, C A; Robertson, S; Pfendner, E; Uitto, J

    2001-05-01

    Epidermolysis bullosa with pyloric atresia (EB-PA: OMIM 226730), also known as Carmi syndrome, is a rare autosomal recessive genodermatosis that manifests with neonatal mucocutaneous fragility associated with congenital pyloric atresia. The disease is frequently lethal within the first year, but nonlethal cases have been reported. Mutations in the genes encoding subunit polypeptides of the alpha 6 beta 4 integrin (ITGA6 and ITGB4) have been demonstrated in EB-PA patients. To extend the repertoire of mutations and to identify genotype-phenotype correlations, we examined seven new EB-PA families, four with lethal and three with nonlethal disease variants. DNA from patients was screened for mutations using heteroduplex analysis followed by nucleotide sequencing of PCR products spanning all beta 4 integrin-coding sequences. Mutation analysis disclosed 12 distinct mutations, 11 of them novel. Four mutations predicted a premature termination codon as a result of nonsense mutations or small out-of-frame insertions or deletions, whereas seven were missense mutations. This brings the total number of distinct ITGB4 mutations to 33. The mutation database indicates that premature termination codons are associated predominantly with the lethal EB-PA variants, whereas missense mutations are more prevalent in nonlethal forms. However, the consequences of the missense mutations are position dependent, and substitutions of highly conserved amino acids may have lethal consequences. In general, indirect immunofluorescence studies of affected skin revealed negative staining for beta 4 integrin in lethal cases and positive, but attenuated, staining in nonlethal cases and correlated with clinical phenotype. The data on specific mutations in EB-PA patients allows prenatal testing and preimplantation genetic diagnosis in families at risk.

  9. Identification of 14 novel mutations in the long isoform of USH2A in Spanish patients with Usher syndrome type II

    PubMed Central

    Aller, E; Jaijo, T; Beneyto, M; Nájera, C; Oltra, S; Ayuso, C; Baiget, M; Carballo, M; Antiñolo, G; Valverde, D; Moreno, F; Vilela, C; Collado, D; Pérez‐Garrigues, H; Navea, A; Millán, J M

    2006-01-01

    Mutations in USH2A gene have been shown to be responsible for Usher syndrome type II, an autosomal recessive disorder characterised by hearing loss and retinitis pigmentosa. USH2A was firstly described as consisting of 21 exons, but 52 novel exons at the 3' end of the gene were recently identified. In this report, a mutation analysis of the new 52 exons of USH2A gene was carried out in 32 unrelated patients in which both disease‐causing mutations could not be found after the screening of the first 21 exons of the USH2A gene. On analysing the new 52 exons, fourteen novel mutations were identified in 14 out of the 32 cases studied, including 7 missense, 5 frameshift, 1 duplication and a putative splice-site mutation. PMID:17085681

  10. Cytoplasm-predominant Pten associates with increased region-specific brain tyrosine hydroxylase and dopamine D2 receptors in mouse model with autistic traits.

    PubMed

    He, Xin; Thacker, Stetson; Romigh, Todd; Yu, Qi; Frazier, Thomas W; Eng, Charis

    2015-01-01

    Autism spectrum disorder (ASD) is a group of neurodevelopmental disorders characterized by impairment in social communication/interaction and inflexible/repetitive behavior. Several lines of evidence support genetic factors as a predominant cause of ASD. Among those autism susceptibility genes that have been identified, the PTEN tumor suppressor gene, initially identified as predisposing to Cowden heritable cancer syndrome, was found to be mutated in a subset of ASD patients with extreme macrocephaly. However, the ASD-relevant molecular mechanism mediating the effect of PTEN mutations remains elusive. We developed a Pten knock-in murine model to study the effects of Pten germline mutations, specifically altering subcellular localization, in ASD. Proteins were isolated from the hemispheres of the male littermates, and Western blots were performed to determine protein expression levels of tyrosine hydroxylase (TH). Immunohistochemical stains were carried out to validate the localization of TH and dopamine D2 receptors (D2R). PC12 cells ectopically expressing either wild-type or missense mutant PTEN were then compared for the differences in TH expression. Mice carrying Pten mutations have high TH and D2R in the striatum and prefrontal cortex. They also have increased phosphorylation of cAMP response element-binding protein (CREB) and TH. Mechanistically, PTEN downregulates TH production in PC12 cells via inhibiting the phosphoinositide 3-kinase (PI3K)/CREB signaling pathway, while PTEN reduces TH phosphorylation via suppressing MAPK pathway. Unlike wild-type PTEN but similar to the mouse knock-in mutant Pten, three naturally occurring missense mutations of PTEN that we previously identified in ASD patients, H93R, F241S, and D252G, were not able to suppress TH when overexpressed in PC12 cells. In addition, two other PTEN missense mutations, C124S (pan phosphatase dead) and G129E (lipid phosphatase dead), failed to suppress TH when ectopically expressed in PC12 cells. Our data reveal a non-canonical PTEN-TH pathway in the brain that may work as a core regulator of dopamine signaling, which when dysfunctional is pathogenic in ASD.

  11. Novel GABRG2 mutations cause familial febrile seizures

    PubMed Central

    Boillot, Morgane; Morin-Brureau, Mélanie; Picard, Fabienne; Weckhuysen, Sarah; Lambrecq, Virginie; Minetti, Carlo; Striano, Pasquale; Zara, Federico; Iacomino, Michele; Ishida, Saeko; An-Gourfinkel, Isabelle; Daniau, Mailys; Hardies, Katia; Baulac, Michel; Dulac, Olivier; Leguern, Eric; Nabbout, Rima

    2015-01-01

    Objective: To identify the genetic cause in a large family with febrile seizures (FS) and temporal lobe epilepsy (TLE) and subsequently search for additional mutations in a cohort of 107 families with FS, with or without epilepsy. Methods: The cohort consisted of 1 large family with FS and TLE, 64 smaller French families recruited through a national French campaign, and 43 Italian families. Molecular analyses consisted of whole-exome sequencing and mutational screening. Results: Exome sequencing revealed a p.Glu402fs*3 mutation in the γ2 subunit of the GABAA receptor gene (GABRG2) in the large family with FS and TLE. Three additional nonsense and frameshift GABRG2 mutations (p.Arg136*, p.Val462fs*33, and p.Pro59fs*12), 1 missense mutation (p.Met199Val), and 1 exonic deletion were subsequently identified in 5 families of the follow-up cohort. Conclusions: We report GABRG2 mutations in 5.6% (6/108) of families with FS, with or without associated epilepsy. This study provides evidence that GABRG2 mutations are linked to the FS phenotype, rather than epilepsy, and that loss-of-function of GABAA receptor γ2 subunit is the probable underlying pathogenic mechanism. PMID:27066572

  12. Novel GABRG2 mutations cause familial febrile seizures.

    PubMed

    Boillot, Morgane; Morin-Brureau, Mélanie; Picard, Fabienne; Weckhuysen, Sarah; Lambrecq, Virginie; Minetti, Carlo; Striano, Pasquale; Zara, Federico; Iacomino, Michele; Ishida, Saeko; An-Gourfinkel, Isabelle; Daniau, Mailys; Hardies, Katia; Baulac, Michel; Dulac, Olivier; Leguern, Eric; Nabbout, Rima; Baulac, Stéphanie

    2015-12-01

    To identify the genetic cause in a large family with febrile seizures (FS) and temporal lobe epilepsy (TLE) and subsequently search for additional mutations in a cohort of 107 families with FS, with or without epilepsy. The cohort consisted of 1 large family with FS and TLE, 64 smaller French families recruited through a national French campaign, and 43 Italian families. Molecular analyses consisted of whole-exome sequencing and mutational screening. Exome sequencing revealed a p.Glu402fs*3 mutation in the γ2 subunit of the GABAA receptor gene (GABRG2) in the large family with FS and TLE. Three additional nonsense and frameshift GABRG2 mutations (p.Arg136*, p.Val462fs*33, and p.Pro59fs*12), 1 missense mutation (p.Met199Val), and 1 exonic deletion were subsequently identified in 5 families of the follow-up cohort. We report GABRG2 mutations in 5.6% (6/108) of families with FS, with or without associated epilepsy. This study provides evidence that GABRG2 mutations are linked to the FS phenotype, rather than epilepsy, and that loss-of-function of GABAA receptor γ2 subunit is the probable underlying pathogenic mechanism.

  13. Novel molecular variants of the Na-Cl cotransporter gene are responsible for Gitelman syndrome

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mastroianni, N.; De Fusco, M.; Casari, G.

    1996-11-01

    A hereditary defect of the distal tubule accounts for the clinical features of Gitelman syndrome (GS), an autosomal recessive disease characterized by hypokalemia, hypomagnesemia, metabolic alkalosis, and hypocalciuria. Recently, we cloned the cDNA coding for the human Na-Cl thiazide-sensitive cotransporter (TSC; also known as {open_quotes}NCCT{close_quotes} or {open_quotes}SLC12A3{close_quotes}) as a possible candidate for GS, and Simon et al., independently, described rotation in patients with GS. Now, we show 12 additional mutations consistent with a loss of function of the Na-Cl cotransporter in GS. Two missense replacements, R09W and P349L, are common to both studies and could represent ancient mutations. The othermore » mutations include three deletions, two insertions, and six missense mutations. When all mutations from both studies are considered, missense mutations seem to be more frequently localized within the intracellular domains of the molecule, rather than in transmembrane or extracellular domains. One family, previously reported as a GS form with dominant inheritance, has proved to be recessive, with the affected child being a compound heterozygote. A highly informative intragenic tetranucleotide marker, useful for molecular diagnostic studies, has been identified at the acceptor splice site of exon 9. 12 refs., 3 figs., 2 tabs.« less

  14. Report of a Novel SHOX Missense Variant in a Boy With Short Stature and His Mother With Leri–Weill Dyschondrosteosis

    PubMed Central

    Lucchetti, Laura; Prontera, Paolo; Mencarelli, Amedea; Sallicandro, Ester; Mencarelli, Annalisa; Cofini, Marta; Leonardi, Alberto; Stangoni, Gabriela; Penta, Laura; Esposito, Susanna

    2018-01-01

    Heterozygous mutations in the SHOX gene or in the upstream and downstream enhancer elements are associated with 2–22% of cases of idiopathic short stature (OMIM #300582) and with 60% of cases of Leri–Weill dyschondrosteosis (OMIM #127300) with which female subjects are generally more severely affected. Approximately 80–90% of SHOX pathogenic variants are deletions or duplications, and the remaining 10–20% are point mutations that primarily give rise to missense variants. The clinical interpretation of novel variants, particularly missense variants, can be challenging and can remain of uncertain significance. Here, we describe a novel missense variant (c.1044 G>T, p.Arg118Met) in a Moroccan boy with a disproportionately short stature and without any radiological traits or bone deformities and in his mother, who had a disproportionately short stature and a Madelung deformity. This variant has not been reported to date in the updated SHOX allelic variant or Human Gene Mutation Databases nor is it listed as a polymorphism in the ExAC browser, dbSNP, or 1000G. This mutation was predicted to be deleterious by three different bioinformatics tools since it modifies an amino acid in a highly conserved DNA-binding domain of the SHOX protein. Based on this evidence, the patient was treated with recombinant human growth hormone. PMID:29692759

  15. A glycogene mutation map for discovery of diseases of glycosylation

    PubMed Central

    Hansen, Lars; Lind-Thomsen, Allan; Joshi, Hiren J; Pedersen, Nis Borbye; Have, Christian Theil; Kong, Yun; Wang, Shengjun; Sparso, Thomas; Grarup, Niels; Vester-Christensen, Malene Bech; Schjoldager, Katrine; Freeze, Hudson H; Hansen, Torben; Pedersen, Oluf; Henrissat, Bernard; Mandel, Ulla; Clausen, Henrik; Wandall, Hans H; Bennett, Eric P

    2015-01-01

    Glycosylation of proteins and lipids involves over 200 known glycosyltransferases (GTs), and deleterious defects in many of the genes encoding these enzymes cause disorders collectively classified as congenital disorders of glycosylation (CDGs). Most known CDGs are caused by defects in glycogenes that affect glycosylation globally. Many GTs are members of homologous isoenzyme families and deficiencies in individual isoenzymes may not affect glycosylation globally. In line with this, there appears to be an underrepresentation of disease-causing glycogenes among these larger isoenzyme homologous families. However, genome-wide association studies have identified such isoenzyme genes as candidates for different diseases, but validation is not straightforward without biomarkers. Large-scale whole-exome sequencing (WES) provides access to mutations in, for example, GT genes in populations, which can be used to predict and/or analyze functional deleterious mutations. Here, we constructed a draft of a functional mutational map of glycogenes, GlyMAP, from WES of a rather homogenous population of 2000 Danes. We cataloged all missense mutations and used prediction algorithms, manual inspection and in case of carbohydrate-active enzymes family GT27 experimental analysis of mutations to map deleterious mutations. GlyMAP (http://glymap.glycomics.ku.dk) provides a first global view of the genetic stability of the glycogenome and should serve as a tool for discovery of novel CDGs. PMID:25267602

  16. Mutations in DYNC1H1 cause severe intellectual disability with neuronal migration defects.

    PubMed

    Willemsen, Marjolein H; Vissers, Lisenka E L; Willemsen, Michèl A A P; van Bon, Bregje W M; Kroes, Thessa; de Ligt, Joep; de Vries, Bert B; Schoots, Jeroen; Lugtenberg, Dorien; Hamel, Ben C J; van Bokhoven, Hans; Brunner, Han G; Veltman, Joris A; Kleefstra, Tjitske

    2012-03-01

    DYNC1H1 encodes the heavy chain protein of the cytoplasmic dynein 1 motor protein complex that plays a key role in retrograde axonal transport in neurons. Furthermore, it interacts with the LIS1 gene of which haploinsufficiency causes a severe neuronal migration disorder in humans, known as classical lissencephaly or Miller-Dieker syndrome. To describe the clinical spectrum and molecular characteristics of DYNC1H1 mutations. A family based exome sequencing approach was used to identify de novo mutations in patients with severe intellectual disability. In this report the identification of two de novo missense mutations in DYNC1H1 (p.Glu1518Lys and p.His3822Pro) in two patients with severe intellectual disability and variable neuronal migration defects is described. Since an autosomal dominant mutation in DYNC1H1 was previously identified in a family with the axonal (type 2) form of Charcot- Marie-Tooth (CMT2) disease and mutations in Dync1h1 in mice also cause impaired neuronal migration in addition to neuropathy, these data together suggest that mutations in DYNC1H1 can lead to a broad phenotypic spectrum and confirm the importance of DYNC1H1 in both central and peripheral neuronal functions.

  17. De novo missense mutations in the NAA10 gene cause severe non-syndromic developmental delay in males and females

    PubMed Central

    Popp, Bernt; Støve, Svein I; Endele, Sabine; Myklebust, Line M; Hoyer, Juliane; Sticht, Heinrich; Azzarello-Burri, Silvia; Rauch, Anita; Arnesen, Thomas; Reis, André

    2015-01-01

    Recent studies revealed the power of whole-exome sequencing to identify mutations in sporadic cases with non-syndromic intellectual disability. We now identified de novo missense variants in NAA10 in two unrelated individuals, a boy and a girl, with severe global developmental delay but without any major dysmorphism by trio whole-exome sequencing. Both de novo variants were predicted to be deleterious, and we excluded other variants in this gene. This X-linked gene encodes N-alpha-acetyltransferase 10, the catalytic subunit of the NatA complex involved in multiple cellular processes. A single hypomorphic missense variant p.(Ser37Pro) was previously associated with Ogden syndrome in eight affected males from two different families. This rare disorder is characterized by a highly recognizable phenotype, global developmental delay and results in death during infancy. In an attempt to explain the discrepant phenotype, we used in vitro N-terminal acetylation assays which suggested that the severity of the phenotype correlates with the remaining catalytic activity. The variant in the Ogden syndrome patients exhibited a lower activity than the one seen in the boy with intellectual disability, while the variant in the girl was the most severe exhibiting only residual activity in the acetylation assays used. We propose that N-terminal acetyltransferase deficiency is clinically heterogeneous with the overall catalytic activity determining the phenotypic severity. PMID:25099252

  18. Selected exonic sequencing of the AGXT gene provides a genetic diagnosis in 50% of patients with primary hyperoxaluria type 1.

    PubMed

    Williams, Emma; Rumsby, Gill

    2007-07-01

    Definitive diagnosis of primary hyperoxaluria type 1 (PH1) requires analysis of alanine:glyoxylate aminotransferase (AGT) activity in the liver. We have previously shown that targeted screening for the 3 most common mutations in the AGXT gene (c.33_34insC, c.508G>A, and c.731T>C) can provide a molecular diagnosis in 34.5% of PH1 patients, eliminating the need for a liver biopsy. Having reviewed the distribution of all AGXT mutations, we have evaluated a diagnostic strategy that uses selected exon sequencing for the molecular diagnosis of PH1. We sequenced exons 1, 4, and 7 for 300 biopsy-confirmed PH1 patients and expressed the identified missense mutations in vitro. Our identification of at least 1 mutation in 224 patients (75%) and 2 mutations in 149 patients increased the diagnostic sensitivity to 50%. We detected 29 kinds of sequence changes, 15 of which were novel. Four of these mutations were in exon 1 (c.2_3delinsAT, c.30_32delCC, c.122G>A, c.126delG), 7 were in exon 4 (c.447_454delGCTGCTGT, c.449T>C, c.473C>T, c.481G>A, c.481G>T, c.497T>C, c.424-2A>G), and 4 were in exon 7 (c.725insT, c.737G>A, c.757T>C, c.776 + 1G>A). The missense changes were associated with severely decreased AGT catalytic activity and negative immunoreactivity when expressed in vitro. Missense mutation c.26C>A, previously described as a pathological mutation, had activity similar to that of the wild-type enzyme. Selective exon sequencing can allow a definitive diagnosis in 50% of PH1 patients. The test offers a rapid turnaround time (15 days) with minimal risk to the patient. Demonstration of the expression of missense changes is essential to demonstrate pathogenicity.

  19. Compound heterozygosity for two GHR missense mutations in a patient affected by Laron Syndrome: a case report.

    PubMed

    Moia, Stefania; Tessaris, Daniele; Einaudi, Silvia; de Sanctis, Luisa; Bona, Gianni; Bellone, Simonetta; Prodam, Flavia

    2017-10-12

    Mutations localized in the Growth Hormone Receptor (GHR) gene are often associated with the pathogenesis of Laron Syndrome, an autosomal recessive hereditary disorder characterized by severe growth retardation. Biochemically, patients present normal to high circulating GH levels, in presence of very low or undetectable IGF-I levels, which do not rise after rhGH treatment. We describe the case of a 3.8 years old girl with symmetrical short stature (-3.76 SDS), low IGF-1 and IGFBP-3, in presence of normal GH levels. Parents were not relatives and there was no family history of short stature. During the second day of birth, she developed severe hypoglycaemia that required glucose infusion. She presented frontal bossing and depressed nasal bridge. IGF-1 generation test showed no response, suggesting a GH resistance evidence. In the hypothesis of Laron Syndrome, we decided to perform a molecular analysis of Growth Hormone Receptor (GHR) gene. This analysis demonstrated that the patient was compound heterozygote for two missense mutations. GHR gene mutations are a well demonstrated cause of GH insensitivity. In heterozygous patients, probably the normal stature may be achieved by a compensatory mechanism of GH secretion or signalling. On the contrary, in homozygous or compound heterozygous patients these compensatory mechanisms are inadequate, and short stature may be the consequence.

  20. A novel homozygous Arg222Trp missense mutation in WNT7A in two sisters with severe Al-Awadi/Raas-Rothschild/Schinzel phocomelia syndrome.

    PubMed

    Kantaputra, Piranit N; Mundlos, Stefan; Sripathomsawat, Warissara

    2010-11-01

    Al-Awadi/Raas-Rothschild/Schinzel phocomelia (AARRS) syndrome, a rare autosomal recessive disorder, comprises malformations of upper and lower limbs with severely hypoplastic pelvis and abnormal genitalia. Mutations in WNT7A have been reported as cause of the syndrome. We report on two sisters in a Thai family with short and malformed long bones, absent fibulae, flexion contracture of digits, and a/hypoplastic nails. Fusion between severely malformed femora and slender tibiae has never been reported in patients with WNT7A mutations. Lower limbs were more severely malformed than the upper ones and the pelvis was also severely affected. Multiple fusions of long bones and of the femoral heads to the acetabula were evident. A novel homozygous missense mutation in coding exon 4 of the WNT7A was detected in both affected daughters (c.664C > T) leading to an amino acid exchange from arginine to tryptophan (p.Arg222Trp; R222W). The phenotype is likely to result from an abnormality of all three signaling centers in the developing limb resulting in ventralization with a loss of dorsal structures (aplasia/hypoplasia of nails) a loss of anterior-posterior identity (single distal bones in lower limb without polarity) and an outgrowth defect resulting in distal truncations. © 2010 Wiley-Liss, Inc.

  1. A germline missense mutation in COQ6 is associated with susceptibility to familial schwannomatosis

    PubMed Central

    Zhang, Keqiang; Lin, Jia-Wei; Wang, Jinhui; Wu, Xiwei; Gao, Hanlin; Hsieh, Yi-Chen; Hwu, Peter; Liu, Yun-Ru; Su, Leila; Chiou, Hung-Yi; Wang, Daidong; Yuan, Yate-Ching; Whang-Peng, Jacqueline; Chiu, Wen-Ta; Yen, Yun

    2014-01-01

    Purpose: Schwannomatosis, a subtype of neurofibromatosis, is characterized by multiple benign, nonvestibular, nonintradermal schwannomas. Although the tumor suppressor SMARCB1 gene has been frequently identified as the underlying genetic cause of half of familial and ~10% of sporadic schwannomatosis, for most other cases, further causative genes remain to be discovered. Herein, we characterize the genome of a schwannomatosis family without constitutional inactivation of the SMARCB1 gene to explore novel genomic alterations predisposing individuals to the familial disease. Methods: We performed whole-genome/exome sequencing on genomic DNA of both schwannomatosis-affected and normal members of the family. Results: We identified a novel missense mutation (p.Asp208His; c.622G>C) in the coenzyme Q10 (CoQ10) biosynthesis monooxygenase 6 gene (COQ6) in schwannomatosis-affected members. The deleterious effects of the COQ6 mutations were validated by their lack of complementation in a coq6-deficient yeast mutant. Our study further indicated that the resultant haploinsufficiency of COQ6 might lead to CoQ10 deficiency and chronic overproduction of reactive oxygen species in Schwann cells. Conclusion: Although the exact oncogenetic mechanisms in this schwannomatosis family remain to be elucidated, our data strongly indicate a probable role of COQ6 mutation and CoQ10 deficiency in the development of familial schwannomatosis. PMID:24763291

  2. A germline missense mutation in COQ6 is associated with susceptibility to familial schwannomatosis.

    PubMed

    Zhang, Keqiang; Lin, Jia-Wei; Wang, Jinhui; Wu, Xiwei; Gao, Hanlin; Hsieh, Yi-Chen; Hwu, Peter; Liu, Yun-Ru; Su, Leila; Chiou, Hung-Yi; Wang, Daidong; Yuan, Yate-Ching; Whang-Peng, Jacqueline; Chiu, Wen-Ta; Yen, Yun

    2014-10-01

    Schwannomatosis, a subtype of neurofibromatosis, is characterized by multiple benign, nonvestibular, nonintradermal schwannomas. Although the tumor suppressor SMARCB1 gene has been frequently identified as the underlying genetic cause of half of familial and ~10% of sporadic schwannomatosis, for most other cases, further causative genes remain to be discovered. Herein, we characterize the genome of a schwannomatosis family without constitutional inactivation of the SMARCB1 gene to explore novel genomic alterations predisposing individuals to the familial disease. We performed whole-genome/exome sequencing on genomic DNA of both schwannomatosis-affected and normal members of the family. We identified a novel missense mutation (p.Asp208His; c.622G>C) in the coenzyme Q10 (CoQ10) biosynthesis monooxygenase 6 gene (COQ6) in schwannomatosis-affected members. The deleterious effects of the COQ6 mutations were validated by their lack of complementation in a coq6-deficient yeast mutant. Our study further indicated that the resultant haploinsufficiency of COQ6 might lead to CoQ10 deficiency and chronic overproduction of reactive oxygen species in Schwann cells. Although the exact oncogenetic mechanisms in this schwannomatosis family remain to be elucidated, our data strongly indicate a probable role of COQ6 mutation and CoQ10 deficiency in the development of familial schwannomatosis.Genet Med 16 10, 787-792.

  3. Variable hearing impairment in a DFNB2 family with a novel MYO7A missense mutation.

    PubMed

    Hildebrand, M S; Thorne, N P; Bromhead, C J; Kahrizi, K; Webster, J A; Fattahi, Z; Bataejad, M; Kimberling, W J; Stephan, D; Najmabadi, H; Bahlo, M; Smith, R J H

    2010-06-01

    Myosin VIIA mutations have been associated with non-syndromic hearing loss (DFNB2; DFNA11) and Usher syndrome type 1B (USH1B). We report clinical and genetic analyses of a consanguineous Iranian family segregating autosomal recessive non-syndromic hearing loss (ARNSHL). The hearing impairment was mapped to the DFNB2 locus using Affymetrix 50K GeneChips; direct sequencing of the MYO7A gene was completed. The Iranian family (L-1419) was shown to segregate a novel homozygous missense mutation (c.1184G>A) that results in a p.R395H amino acid substitution in the motor domain of the myosin VIIA protein. As one affected family member had significantly less severe hearing loss, we used a candidate approach to search for a genetic modifier. This novel MYO7A mutation is the first reported to cause DFNB2 in the Iranian population and this DFNB2 family is the first to be associated with a potential modifier. The absence of vestibular and retinal defects, and less severe low frequency hearing loss, is consistent with the phenotype of a recently reported Pakistani DFNB2 family. Thus, we conclude this family has non-syndromic hearing loss (DFNB2) rather than USH1B, providing further evidence that these two diseases represent discrete disorders.

  4. A population-based analysis of germline BAP1 mutations in melanoma.

    PubMed

    O'Shea, Sally J; Robles-Espinoza, Carla Daniela; McLellan, Lauren; Harrigan, Jeanine; Jacq, Xavier; Hewinson, James; Iyer, Vivek; Merchant, Will; Elliott, Faye; Harland, Mark; Bishop, D Timothy; Newton-Bishop, Julia A; Adams, David J

    2017-02-15

    Germline mutation of the BRCA1 associated protein-1 (BAP1) gene has been linked to uveal melanoma, mesothelioma, meningioma, renal cell carcinoma and basal cell carcinoma. Germline variants have also been found in familial cutaneous melanoma pedigrees, but their contribution to sporadic melanoma has not been fully assessed. We sequenced BAP1 in 1,977 melanoma cases and 754 controls and used deubiquitinase assays, a pedigree analysis, and a histopathological review to assess the consequences of the mutations found. Sequencing revealed 30 BAP1 variants in total, of which 27 were rare (ExAc allele frequency <0.002). Of the 27 rare variants, 22 were present in cases (18 missense, one splice acceptor, one frameshift and two near splice regions) and five in controls (all missense). A missense change (S98R) in a case that completely abolished BAP1 deubiquitinase activity was identified. Analysis of cancers in the pedigree of the proband carrying the S98R variant and in two other pedigrees carrying clear loss-of-function alleles showed the presence of BAP1-associated cancers such as renal cell carcinoma, mesothelioma and meningioma, but not uveal melanoma. Two of these three probands carrying BAP1 loss-of-function variants also had melanomas with histopathological features suggestive of a germline BAP1 mutation. The remaining cases with germline mutations, which were predominantly missense mutations, were associated with less typical pedigrees and tumours lacking a characteristic BAP1-associated histopathological appearances, but may still represent less penetrant variants. Germline BAP1 alleles defined as loss-of-function or predicted to be deleterious/damaging are rare in cutaneous melanoma. © The Author 2017. Published by Oxford University Press.

  5. A population-based analysis of germline BAP1 mutations in melanoma

    PubMed Central

    O’Shea, Sally J.; Robles-Espinoza, Carla Daniela; Harrigan, Jeanine; Jacq, Xavier; Hewinson, James; Iyer, Vivek; Merchant, Will; Elliott, Faye; Harland, Mark; Bishop, D. Timothy; Newton-Bishop, Julia A.

    2017-01-01

    Abstract Germline mutation of the BRCA1 associated protein-1 (BAP1) gene has been linked to uveal melanoma, mesothelioma, meningioma, renal cell carcinoma and basal cell carcinoma. Germline variants have also been found in familial cutaneous melanoma pedigrees, but their contribution to sporadic melanoma has not been fully assessed. We sequenced BAP1 in 1,977 melanoma cases and 754 controls and used deubiquitinase assays, a pedigree analysis, and a histopathological review to assess the consequences of the mutations found. Sequencing revealed 30 BAP1 variants in total, of which 27 were rare (ExAc allele frequency <0.002). Of the 27 rare variants, 22 were present in cases (18 missense, one splice acceptor, one frameshift and two near splice regions) and five in controls (all missense). A missense change (S98R) in a case that completely abolished BAP1 deubiquitinase activity was identified. Analysis of cancers in the pedigree of the proband carrying the S98R variant and in two other pedigrees carrying clear loss-of-function alleles showed the presence of BAP1-associated cancers such as renal cell carcinoma, mesothelioma and meningioma, but not uveal melanoma. Two of these three probands carrying BAP1 loss-of-function variants also had melanomas with histopathological features suggestive of a germline BAP1 mutation. The remaining cases with germline mutations, which were predominantly missense mutations, were associated with less typical pedigrees and tumours lacking a characteristic BAP1-associated histopathological appearances, but may still represent less penetrant variants. Germline BAP1 alleles defined as loss-of-function or predicted to be deleterious/damaging are rare in cutaneous melanoma. PMID:28062663

  6. Low incidence of ADAMTS13 missense mutation R1060W in adult Egyptian patients with thrombotic thrombocytopenic purpura.

    PubMed

    El Sissy, Maha H; El Hafez, A Abd; El Sissy, A H

    2014-01-01

    Thrombotic thrombocytopenic purpura (TTP) is an acute life-threatening disorder, characterized by thrombocytopenia, microangiopathic hemolytic anemia, widespread microvascular thrombi and consequent clinical sequelae due to ischemic organ damage. TTP is most commonly associated with deficiency or inhibition of von Willebrand factor-cleaving protease (ADAMTS13) activity. ADAMTS13 mutations and polymorphisms have been reported in childhood congenital TTP, but their significance in adult-onset TTP is still under investigation. Two mutations stand out: the single base insertion 4143insA in exon 29 and the missense mutation R1060W in exon 24 have both been observed in several unrelated families, mainly in adult-onset TTP, and over a wide geographic area. Our objective in this study is to identify the prevalence of R1060W missense mutation in exon 24 ADAMTS13 in a sample of adult Egyptian TTP patients. Thirty-one adult-onset TTP patients were included in this study, with a male/female ratio of 1:4. Twenty-six cases (84%) presented with acute idiopathic TTP, 2 cases were drug abusers and 3 cases were pregnant. None of the study cases provided a history of suspicious TTP symptoms during childhood (2 cases gave a history of episodes of thrombocytopenia during childhood). All cases showed statistically significant decreased ADAMTS13 activity compared to normal controls (p < 0.001). The study revealed a high statistical difference regarding the ADAMTS13 inhibitor level in primary versus secondary cases (p = 0.003). None of our Egyptian cases or of the healthy normal controls are positive for exon 24 missense mutation. Larger studies and regional and national TTP registries are recommended. © 2013 S. Karger AG, Basel.

  7. Not all neuroligin 3 and 4X missense variants lead to significant functional inactivation.

    PubMed

    Xu, Xiaojuan; Hu, Zhengmao; Zhang, Lusi; Liu, Hongfang; Cheng, Yuemei; Xia, Kun; Zhang, Xuehong

    2017-09-01

    Neuroligins are postsynaptic cell adhesion molecules that interact with neurexins to regulate the fine balance between excitation and inhibition of synapses. Recently, accumulating evidence, involving mutation analysis, cellular assays, and mouse models, has suggested that neuroligin (NLGN) mutations affect synapse maturation and function. Previously, four missense variations [p.G426S (NLGN3), p.G84R (NLGN4X), p.Q162K (NLGN4X), and p.A283T (NLGN4X)] in four different unrelated patients have been identified by PCR and direct sequencing. In this study, we analyzed the functional effect of these missense variations by in vitro experiment via the stable HEK293 cells expressing wild-type and mutant neuroligin. We found that the four mutations did not significantly impair the expression of neuroligin 3 and neuroligin 4X, and also did not measurably inhibit the neurexin 1-neuroligin interaction. These variants might play a modest role in the pathogenesis of autism or might simply be unreported infrequent polymorphisms. Our data suggest that these four previously described neuroligin mutations are not primary risk factors for autism.

  8. Kinase-dead ATM protein is highly oncogenic and can be preferentially targeted by Topo-isomerase I inhibitors

    PubMed Central

    Yamamoto, Kenta; Wang, Jiguang; Sprinzen, Lisa; Xu, Jun; Haddock, Christopher J; Li, Chen; Lee, Brian J; Loredan, Denis G; Jiang, Wenxia; Vindigni, Alessandro; Wang, Dong; Rabadan, Raul; Zha, Shan

    2016-01-01

    Missense mutations in ATM kinase, a master regulator of DNA damage responses, are found in many cancers, but their impact on ATM function and implications for cancer therapy are largely unknown. Here we report that 72% of cancer-associated ATM mutations are missense mutations that are enriched around the kinase domain. Expression of kinase-dead ATM (AtmKD/-) is more oncogenic than loss of ATM (Atm-/-) in mouse models, leading to earlier and more frequent lymphomas with Pten deletions. Kinase-dead ATM protein (Atm-KD), but not loss of ATM (Atm-null), prevents replication-dependent removal of Topo-isomerase I-DNA adducts at the step of strand cleavage, leading to severe genomic instability and hypersensitivity to Topo-isomerase I inhibitors. Correspondingly, Topo-isomerase I inhibitors effectively and preferentially eliminate AtmKD/-, but not Atm-proficientor Atm-/- leukemia in animal models. These findings identify ATM kinase-domain missense mutations as a potent oncogenic event and a biomarker for Topo-isomerase I inhibitor based therapy. DOI: http://dx.doi.org/10.7554/eLife.14709.001 PMID:27304073

  9. Myosin storage myopathy associated with a heterozygous missense mutation in MYH7.

    PubMed

    Tajsharghi, Homa; Thornell, Lars-Eric; Lindberg, Christopher; Lindvall, Björn; Henriksson, Karl-Gösta; Oldfors, Anders

    2003-10-01

    Myosin constitutes the major part of the thick filaments in the contractile apparatus of striated muscle. MYH7 encodes the slow/beta-cardiac myosin heavy chain (MyHC), which is the main MyHC isoform in slow, oxidative, type 1 muscle fibers of skeletal muscle. It is also the major MyHC isoform of cardiac ventricles. Numerous missense mutations in the globular head of slow/beta-cardiac MyHC are associated with familial hypertrophic cardiomyopathy. We identified a missense mutation, Arg1845Trp, in the rod region of slow/beta-cardiac MyHC in patients with a skeletal myopathy from two different families. The myopathy was characterized by muscle weakness and wasting with onset in childhood and slow progression, but no overt cardiomyopathy. Slow, oxidative, type 1 muscle fibers showed large inclusions consisting of slow/beta-cardiac MyHC. The features were similar to a previously described entity: hyaline body myopathy. Our findings indicate that the mutated residue of slow/beta-cardiac MyHC is essential for the assembly of thick filaments in skeletal muscle. We propose the term myosin storage myopathy for this disease.

  10. PDE3A mutations cause autosomal dominant hypertension with brachydactyly.

    PubMed

    Maass, Philipp G; Aydin, Atakan; Luft, Friedrich C; Schächterle, Carolin; Weise, Anja; Stricker, Sigmar; Lindschau, Carsten; Vaegler, Martin; Qadri, Fatimunnisa; Toka, Hakan R; Schulz, Herbert; Krawitz, Peter M; Parkhomchuk, Dmitri; Hecht, Jochen; Hollfinger, Irene; Wefeld-Neuenfeld, Yvette; Bartels-Klein, Eireen; Mühl, Astrid; Kann, Martin; Schuster, Herbert; Chitayat, David; Bialer, Martin G; Wienker, Thomas F; Ott, Jürg; Rittscher, Katharina; Liehr, Thomas; Jordan, Jens; Plessis, Ghislaine; Tank, Jens; Mai, Knut; Naraghi, Ramin; Hodge, Russell; Hopp, Maxwell; Hattenbach, Lars O; Busjahn, Andreas; Rauch, Anita; Vandeput, Fabrice; Gong, Maolian; Rüschendorf, Franz; Hübner, Norbert; Haller, Hermann; Mundlos, Stefan; Bilginturan, Nihat; Movsesian, Matthew A; Klussmann, Enno; Toka, Okan; Bähring, Sylvia

    2015-06-01

    Cardiovascular disease is the most common cause of death worldwide, and hypertension is the major risk factor. Mendelian hypertension elucidates mechanisms of blood pressure regulation. Here we report six missense mutations in PDE3A (encoding phosphodiesterase 3A) in six unrelated families with mendelian hypertension and brachydactyly type E (HTNB). The syndrome features brachydactyly type E (BDE), severe salt-independent but age-dependent hypertension, an increased fibroblast growth rate, neurovascular contact at the rostral-ventrolateral medulla, altered baroreflex blood pressure regulation and death from stroke before age 50 years when untreated. In vitro analyses of mesenchymal stem cell-derived vascular smooth muscle cells (VSMCs) and chondrocytes provided insights into molecular pathogenesis. The mutations increased protein kinase A-mediated PDE3A phosphorylation and resulted in gain of function, with increased cAMP-hydrolytic activity and enhanced cell proliferation. Levels of phosphorylated VASP were diminished, and PTHrP levels were dysregulated. We suggest that the identified PDE3A mutations cause the syndrome. VSMC-expressed PDE3A deserves scrutiny as a therapeutic target for the treatment of hypertension.

  11. Germline mutations affecting the histone H4 core cause a developmental syndrome by altering DNA damage response and cell cycle control.

    PubMed

    Tessadori, Federico; Giltay, Jacques C; Hurst, Jane A; Massink, Maarten P; Duran, Karen; Vos, Harmjan R; van Es, Robert M; Scott, Richard H; van Gassen, Koen L I; Bakkers, Jeroen; van Haaften, Gijs

    2017-11-01

    Covalent modifications of histones have an established role as chromatin effectors, as they control processes such as DNA replication and transcription, and repair or regulate nucleosomal structure. Loss of modifications on histone N tails, whether due to mutations in genes belonging to histone-modifying complexes or mutations directly affecting the histone tails, causes developmental disorders or has a role in tumorigenesis. More recently, modifications affecting the globular histone core have been uncovered as being crucial for DNA repair, pluripotency and oncogenesis. Here we report monoallelic missense mutations affecting lysine 91 in the histone H4 core (H4K91) in three individuals with a syndrome of growth delay, microcephaly and intellectual disability. Expression of the histone H4 mutants in zebrafish embryos recapitulates the developmental anomalies seen in the patients. We show that the histone H4 alterations cause genomic instability, resulting in increased apoptosis and cell cycle progression anomalies during early development. Mechanistically, our findings indicate an important role for the ubiquitination of H4K91 in genomic stability during embryonic development.

  12. Two novel AGXT mutations identified in primary hyperoxaluria type-1 and distinct morphological and structural difference in kidney stones

    PubMed Central

    Wang, Cui; Lu, Jingru; Lang, Yanhua; Liu, Ting; Wang, Xiaoling; Zhao, Xiangzhong; Shao, Leping

    2016-01-01

    Primary hyperoxaluria type 1 (PH1) is a rare genetic disease characterized by excessive oxalate accumulation in plasma and urine, resulting in various phenotypes because of allelic and clinical heterogeneity. This study aimed to detect disease-associated genetic mutations in three PH1 patients in a Chinese family. All AGXT exons and 3 common polymorphisms which might synergistically interact with mutations, including P11L, I340 M and IVSI+74 bp were analyzed by direct sequencing in all family members. It demonstrated that in each of three patients, a previously reported nonsense mutation p.R333* was in cis with a novel missense mutation p.M49L in the minor allele characterized by the polymorphism of 74-bp duplication in intron 1, while the other novel missense mutation p.N72I was in trans with both p.R333* and P.M49L in the major allele. Kidney stones from two sibling patients were also observed though stereomicroscopic examination and scanning electron microscopy. Distinct morphological and inner-structure differences in calculi were noticed, suggesting clinical heterozygosity of PH1 to a certain extent. In brief, two novel missense mutations were identified probably in association with PH1, a finding which should provide an accurate tool for prenatal diagnosis, genetic counseling and screening for potential presymptomatic individuals. PMID:27644547

  13. Two novel AGXT mutations identified in primary hyperoxaluria type-1 and distinct morphological and structural difference in kidney stones.

    PubMed

    Wang, Cui; Lu, Jingru; Lang, Yanhua; Liu, Ting; Wang, Xiaoling; Zhao, Xiangzhong; Shao, Leping

    2016-09-20

    Primary hyperoxaluria type 1 (PH1) is a rare genetic disease characterized by excessive oxalate accumulation in plasma and urine, resulting in various phenotypes because of allelic and clinical heterogeneity. This study aimed to detect disease-associated genetic mutations in three PH1 patients in a Chinese family. All AGXT exons and 3 common polymorphisms which might synergistically interact with mutations, including P11L, I340 M and IVSI+74 bp were analyzed by direct sequencing in all family members. It demonstrated that in each of three patients, a previously reported nonsense mutation p.R333(*) was in cis with a novel missense mutation p.M49L in the minor allele characterized by the polymorphism of 74-bp duplication in intron 1, while the other novel missense mutation p.N72I was in trans with both p.R333(*) and P.M49L in the major allele. Kidney stones from two sibling patients were also observed though stereomicroscopic examination and scanning electron microscopy. Distinct morphological and inner-structure differences in calculi were noticed, suggesting clinical heterozygosity of PH1 to a certain extent. In brief, two novel missense mutations were identified probably in association with PH1, a finding which should provide an accurate tool for prenatal diagnosis, genetic counseling and screening for potential presymptomatic individuals.

  14. Mutations of the aminoacyl-tRNA-synthetases SARS and WARS2 are implicated in the etiology of autosomal recessive intellectual disability.

    PubMed

    Musante, Luciana; Püttmann, Lucia; Kahrizi, Kimia; Garshasbi, Masoud; Hu, Hao; Stehr, Henning; Lipkowitz, Bettina; Otto, Sabine; Jensen, Lars R; Tzschach, Andreas; Jamali, Payman; Wienker, Thomas; Najmabadi, Hossein; Ropers, Hans Hilger; Kuss, Andreas W

    2017-06-01

    Intellectual disability (ID) is the hallmark of an extremely heterogeneous group of disorders that comprises a wide variety of syndromic and non-syndromic phenotypes. Here, we report on mutations in two aminoacyl-tRNA synthetases that are associated with ID in two unrelated Iranian families. In the first family, we identified a homozygous missense mutation (c.514G>A, p.Asp172Asn) in the cytoplasmic seryl-tRNA synthetase (SARS) gene. The mutation affects the enzymatic core domain of the protein and impairs its enzymatic activity, probably leading to reduced cytoplasmic tRNA Ser concentrations. The mutant protein was predicted to be unstable, which could be substantiated by investigating ectopic mutant SARS in transfected HEK293T cells. In the second family, we found a compound heterozygous genotype of the mitochondrial tryptophanyl-tRNA synthetase (WARS2) gene, comprising a nonsense mutation (c.325delA, p.Ser109Alafs*15), which very likely entails nonsense-mediated mRNA decay and a missense mutation (c.37T>G, p.Trp13Gly). The latter affects the mitochondrial localization signal of WARS2, causing protein mislocalization. Including AIMP1, which we have recently implicated in the etiology of ID, three genes with a role in tRNA-aminoacylation are now associated with this condition. We therefore suggest that the functional integrity of tRNAs in general is an important factor in the development and maintenance of human cognitive functions. © 2017 Wiley Periodicals, Inc.

  15. CRIMEtoYHU: a new web tool to develop yeast-based functional assays for characterizing cancer-associated missense variants.

    PubMed

    Mercatanti, Alberto; Lodovichi, Samuele; Cervelli, Tiziana; Galli, Alvaro

    2017-12-01

    Evaluation of the functional impact of cancer-associated missense variants is more difficult than for protein-truncating mutations and consequently standard guidelines for the interpretation of sequence variants have been recently proposed. A number of algorithms and software products were developed to predict the impact of cancer-associated missense mutations on protein structure and function. Importantly, direct assessment of the variants using high-throughput functional assays using simple genetic systems can help in speeding up the functional evaluation of newly identified cancer-associated variants. We developed the web tool CRIMEtoYHU (CTY) to help geneticists in the evaluation of the functional impact of cancer-associated missense variants. Humans and the yeast Saccharomyces cerevisiae share thousands of protein-coding genes although they have diverged for a billion years. Therefore, yeast humanization can be helpful in deciphering the functional consequences of human genetic variants found in cancer and give information on the pathogenicity of missense variants. To humanize specific positions within yeast genes, human and yeast genes have to share functional homology. If a mutation in a specific residue is associated with a particular phenotype in humans, a similar substitution in the yeast counterpart may reveal its effect at the organism level. CTY simultaneously finds yeast homologous genes, identifies the corresponding variants and determines the transferability of human variants to yeast counterparts by assigning a reliability score (RS) that may be predictive for the validity of a functional assay. CTY analyzes newly identified mutations or retrieves mutations reported in the COSMIC database, provides information about the functional conservation between yeast and human and shows the mutation distribution in human genes. CTY analyzes also newly found mutations and aborts when no yeast homologue is found. Then, on the basis of the protein domain localization and functional conservation between yeast and human, the selected variants are ranked by the RS. The RS is assigned by an algorithm that computes functional data, type of mutation, chemistry of amino acid substitution and the degree of mutation transferability between human and yeast protein. Mutations giving a positive RS are highly transferable to yeast and, therefore, yeast functional assays will be more predictable. To validate the web application, we have analyzed 8078 cancer-associated variants located in 31 genes that have a yeast homologue. More than 50% of variants are transferable to yeast. Incidentally, 88% of all transferable mutations have a reliability score >0. Moreover, we analyzed by CTY 72 functionally validated missense variants located in yeast genes at positions corresponding to the human cancer-associated variants. All these variants gave a positive RS. To further validate CTY, we analyzed 3949 protein variants (with positive RS) by the predictive algorithm PROVEAN. This analysis shows that yeast-based functional assays will be more predictable for the variants with positive RS. We believe that CTY could be an important resource for the cancer research community by providing information concerning the functional impact of specific mutations, as well as for the design of functional assays useful for decision support in precision medicine. © FEMS 2017. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  16. The Survival Motor Neuron Protein Forms Soluble Glycine Zipper Oligomers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Martin, Renee; Gupta, Kushol; Ninan, Nisha S.

    2012-11-01

    The survival motor neuron (SMN) protein forms the oligomeric core of a multiprotein complex that functions in spliceosomal snRNP biogenesis. Loss of function mutations in the SMN gene cause spinal muscular atrophy (SMA), a leading genetic cause of infant mortality. Nearly half of the known SMA patient missense mutations map to the SMN YG-box, a highly conserved oligomerization domain of unknown structure that contains a (YxxG)3 motif. Here, we report that the SMN YG-box forms helical oligomers similar to the glycine zippers found in transmembrane channel proteins. A network of tyrosine-glycine packing between helices drives formation of soluble YG-box oligomers,more » providing a structural basis for understanding SMN oligomerization and for relating defects in oligomerization to the mutations found in SMA patients. These results have important implications for advancing our understanding of SMN function and glycine zipper-mediated helix-helix interactions.« less

  17. Catalytically Active Guanylyl Cyclase B Requires Endoplasmic Reticulum-mediated Glycosylation, and Mutations That Inhibit This Process Cause Dwarfism.

    PubMed

    Dickey, Deborah M; Edmund, Aaron B; Otto, Neil M; Chaffee, Thomas S; Robinson, Jerid W; Potter, Lincoln R

    2016-05-20

    C-type natriuretic peptide activation of guanylyl cyclase B (GC-B), also known as natriuretic peptide receptor B or NPR2, stimulates long bone growth, and missense mutations in GC-B cause dwarfism. Four such mutants (L658F, Y708C, R776W, and G959A) bound (125)I-C-type natriuretic peptide on the surface of cells but failed to synthesize cGMP in membrane GC assays. Immunofluorescence microscopy also indicated that the mutant receptors were on the cell surface. All mutant proteins were dephosphorylated and incompletely glycosylated, but dephosphorylation did not explain the inactivation because the mutations inactivated a "constitutively phosphorylated" enzyme. Tunicamycin inhibition of glycosylation in the endoplasmic reticulum or mutation of the Asn-24 glycosylation site decreased GC activity, but neither inhibition of glycosylation in the Golgi by N-acetylglucosaminyltransferase I gene inactivation nor PNGase F deglycosylation of fully processed GC-B reduced GC activity. We conclude that endoplasmic reticulum-mediated glycosylation is required for the formation of an active catalytic, but not ligand-binding domain, and that mutations that inhibit this process cause dwarfism. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  18. A Novel Whole Gene Deletion of BCKDHB by Alu-Mediated Non-allelic Recombination in a Chinese Patient With Maple Syrup Urine Disease

    PubMed Central

    Liu, Gang; Ma, Dingyuan; Hu, Ping; Wang, Wen; Luo, Chunyu; Wang, Yan; Sun, Yun; Zhang, Jingjing; Jiang, Tao; Xu, Zhengfeng

    2018-01-01

    Maple syrup urine disease (MSUD) is an autosomal recessive inherited metabolic disorder caused by mutations in the BCKDHA, BCKDHB, DBT, and DLD genes. Among the wide range of disease-causing mutations in BCKDHB, only one large deletion has been associated with MSUD. Compound heterozygous mutations in BCKDHB were identified in a Chinese patient with typical MSUD using next-generation sequencing, quantitative PCR, and array comparative genomic hybridization. One allele presented a missense mutation (c.391G > A), while the other allele had a large deletion; both were inherited from the patient’s unaffected parents. The deletion breakpoints were characterized using long-range PCR and sequencing. A novel 383,556 bp deletion (chr6: g.80811266_81194921del) was determined, which encompassed the entire BCKDHB gene. The junction site of the deletion was localized within a homologous sequence in two AluYa5 elements. Hence, Alu-mediated non-allelic homologous recombination is speculated as the mutational event underlying the large deletion. In summary, this study reports a recombination mechanism in the BCKDHB gene causing a whole gene deletion in a newborn with MSUD. PMID:29740478

  19. A Novel Whole Gene Deletion of BCKDHB by Alu-Mediated Non-allelic Recombination in a Chinese Patient With Maple Syrup Urine Disease.

    PubMed

    Liu, Gang; Ma, Dingyuan; Hu, Ping; Wang, Wen; Luo, Chunyu; Wang, Yan; Sun, Yun; Zhang, Jingjing; Jiang, Tao; Xu, Zhengfeng

    2018-01-01

    Maple syrup urine disease (MSUD) is an autosomal recessive inherited metabolic disorder caused by mutations in the BCKDHA, BCKDHB, DBT , and DLD genes. Among the wide range of disease-causing mutations in BCKDHB , only one large deletion has been associated with MSUD. Compound heterozygous mutations in BCKDHB were identified in a Chinese patient with typical MSUD using next-generation sequencing, quantitative PCR, and array comparative genomic hybridization. One allele presented a missense mutation (c.391G > A), while the other allele had a large deletion; both were inherited from the patient's unaffected parents. The deletion breakpoints were characterized using long-range PCR and sequencing. A novel 383,556 bp deletion (chr6: g.80811266_81194921del) was determined, which encompassed the entire BCKDHB gene. The junction site of the deletion was localized within a homologous sequence in two AluYa5 elements. Hence, Alu-mediated non-allelic homologous recombination is speculated as the mutational event underlying the large deletion. In summary, this study reports a recombination mechanism in the BCKDHB gene causing a whole gene deletion in a newborn with MSUD.

  20. EXOSC8 mutations alter mRNA metabolism and cause hypomyelination with spinal muscular atrophy and cerebellar hypoplasia

    PubMed Central

    Boczonadi, Veronika; Müller, Juliane S.; Pyle, Angela; Munkley, Jennifer; Dor, Talya; Quartararo, Jade; Ferrero, Ileana; Karcagi, Veronika; Giunta, Michele; Polvikoski, Tuomo; Birchall, Daniel; Princzinger, Agota; Cinnamon, Yuval; Lützkendorf, Susanne; Piko, Henriett; Reza, Mojgan; Florez, Laura; Santibanez-Koref, Mauro; Griffin, Helen; Schuelke, Markus; Elpeleg, Orly; Kalaydjieva, Luba; Lochmüller, Hanns; Elliott, David J.; Chinnery, Patrick F.; Edvardson, Shimon; Horvath, Rita

    2014-01-01

    The exosome is a multi-protein complex, required for the degradation of AU-rich element (ARE) containing messenger RNAs (mRNAs). EXOSC8 is an essential protein of the exosome core, as its depletion causes a severe growth defect in yeast. Here we show that homozygous missense mutations in EXOSC8 cause progressive and lethal neurological disease in 22 infants from three independent pedigrees. Affected individuals have cerebellar and corpus callosum hypoplasia, abnormal myelination of the central nervous system or spinal motor neuron disease. Experimental downregulation of EXOSC8 in human oligodendroglia cells and in zebrafish induce a specific increase in ARE mRNAs encoding myelin proteins, showing that the imbalanced supply of myelin proteins causes the disruption of myelin, and explaining the clinical presentation. These findings show the central role of the exosomal pathway in neurodegenerative disease. PMID:24989451

Top