Sample records for missile defense program

  1. Department of Defense high power laser program guidance

    NASA Astrophysics Data System (ADS)

    Muller, Clifford H.

    1994-06-01

    The DoD investment of nominally $200 million per year is focused on four high power laser (HPL) concepts: Space-Based Laser (SBL), a Ballistic Missile Defense Organization effort that addresses boost-phase intercept for Theater Missile Defense and National Missile Defense; Airborne Laser (ABL), an Air Force effort that addresses boost-phase intercept for Theater Missile Defense; Ground-Based Laser (GBL), an Air Force effort addressing space control; and Anti-Ship Missile Defense (ASMD), a Navy effort addressing ship-based defense. Each organization is also supporting technology development with the goal of achieving less expensive, brighter, and lighter high power laser systems. These activities represent the building blocks of the DoD program to exploit the compelling characteristics of the high power laser. Even though DoD's HPL program are focused and moderately strong, additional emphasis in a few technical areas could help reduce risk in these programs. In addition, a number of options are available for continuing to use the High-Energy Laser System Test Facility (HELSTF) at White Sands Missile Range. This report provides a brief overview and guidance for the five efforts which comprise the DoD HPL program (SBL, ABL, GBL, ASMD, HELSTF).

  2. 75 FR 60090 - Membership of the Performance Review Board

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-09-29

    ...: Missile Defense Agency (MDA), DoD. ACTION: Notice. SUMMARY: This notice announces the appointment of the members of the Performance Review Board (PRB) of the Missile Defense Agency (MDA). The publication of PRB... CONTACT: Jovey Martir, MDA SES Program Management, Missile Defense Agency, Arlington, Virginia, (703) 693...

  3. Ballistic missile defense technologies

    NASA Astrophysics Data System (ADS)

    1985-09-01

    A report on Ballistic Missile Technologies includes the following: Executive summary; Introduction; Ballistic missiles then and now; Deterrence, U.S. nuclear strategy, and BMD; BMD capabilities and the strategic balance; Crisis stability, arms race stability, and arms control issues; Ballistic missile defense technologies; Feasibility; Alternative future scenarios; Alternative R&D programs.

  4. An operational computer program to control Self Defense Surface Missile System operations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Roe, C.L.

    1991-12-01

    An account is given of the system architecture and operational protocols of the NATO Seasparrow Surface Missile System (NSSMS) Operational Computer Program (OCP) which has been developed, and is being deployed multinationally, to respond against antiship missiles. Flowcharts are presented for the target detection and tracking, control, and engagement phases of the Self Defense Surface Missile System that is controlled by the OCP. USN and other NATO vessels will carry the NSSMS well into the next century; the OCP presently described will be deployed in the course of 1992 to enhance the self-defense capabilities of the NSSMS-equipped fleet. 8 refs.

  5. USN shipboard infrared search and track (IRST) program

    NASA Astrophysics Data System (ADS)

    Misanin, Joseph E.

    1997-08-01

    On May 17, 1987 two EXOCET missiles hit and crippled the frigate USS STARK. Thirty seven sailors lost their lives due to the inability of the ship to defend itself against a sea- skimming cruise missile attack. In 1991, as a result of this incident, Congress mandated the establishment of a Program Executive Office for Ship Self Defense. The purpose of the legislation was to preclude another incident by placing a high priority on the combat system engineering process used to design and field the anti-ship cruise missile (ASCM) defense capability of surface ships. Over 35 countries now have sea- skimming ASCMs and this type of threat continues to proliferate. The use of IRST is a critical element of ship self defense, providing early and reliable detection of sea- skimming cruise missiles. This paper describes the contribution of IRST in providing self-defense and the current status of the United States Navy (USN) shipboard IRST development program.

  6. DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    Although the Cold War has ended, the threat of proliferation with chemical, biological, and nuclear warheads continues. Two factors further increase the threat from these weapons of mass destruction: knowledge of missile technology has spread extensively, and, in recent years, many countries - some of them unfriendly to the US and its allies - have obtained short- and intermediate-range missiles. The threat posed by such missiles was amply demonstrated during the Gulf War. Thus, the need to protect US and allied forces from these weapons has never been greater. When nuclear-tipped defensive missiles, such as Sprint and Spartan, were phasedmore » out years ago, the US turned for its defense to kinetic-energy {open_quotes}kill{close_quotes} interceptors - missiles that destroy an enemy missile by striking it with lethal force and accuracy at some point in its trajectory. The Patriot missile is probably the best-known kinetic-energy (KE) interceptor in the US defensive arsenal. To counter the spreading threat of proliferation, LLNL and other laboratories have been participating in a joint program funded by the Ballistic Missile Defense Organization (BMDO), within the Department of Defense, to develop defensive missile systems. Participants are designing, testing, and certifying KE interceptors to defend against current and future missile threats. These research efforts are described.« less

  7. 48 CFR 225.7016-4 - Solicitation provision.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... Prohibition of Certain Contracts With Foreign Entities for the Conduct of Ballistic Missile Defense Research... Ballistic Missile Defense Program. [68 FR 15627, Mar. 31, 2003. Redesignated at 74 FR 53413, Oct. 19, 2009] ...

  8. Ground-Based Midcourse Defense (GMD) Sea-Based X-Band Radar (SBX) Placement and Operation, Adak, Alaska

    DTIC Science & Technology

    2005-08-03

    Finding of No Significant Impact and the Environmental Assessment for Theater Missile Defense Ground- Based Radar Testing Program at Fort Devens ...2000 "* Record of Decision for Site Preparation Activities at the Missile Defense System Test Bed at Fort Greely, Alaska, 2001 "* Record of Decision...to Establish a Ground-Based Midcourse Defense Initial Defensive Operations Capability at Fort Greely, Alaska, 2003 These documents are available at the

  9. 23 CFR 660.519 - Missile installations and facilities.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 23 Highways 1 2014-04-01 2014-04-01 false Missile installations and facilities. 660.519 Section... OPERATIONS SPECIAL PROGRAMS (DIRECT FEDERAL) Defense Access Roads § 660.519 Missile installations and...). (1) To implement 23 U.S.C. 210(h), DOD must make the determination that a contractor for a missile...

  10. 23 CFR 660.519 - Missile installations and facilities.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 23 Highways 1 2013-04-01 2013-04-01 false Missile installations and facilities. 660.519 Section... OPERATIONS SPECIAL PROGRAMS (DIRECT FEDERAL) Defense Access Roads § 660.519 Missile installations and...). (1) To implement 23 U.S.C. 210(h), DOD must make the determination that a contractor for a missile...

  11. Navy Aegis Ballistic Missile Defense (BMD) Program: Background and Issues for Congress

    DTIC Science & Technology

    2016-10-25

    for European BMD On September 17, 2009, the Obama Administration announced a new approach for regional BMD operations called the Phased Adaptive...December 2010, the U.S. missile defense approach in Europe commits MDA to delivering systems and associated capabilities on a schedule that requires...announcement of the European Phased Adaptive Approach on September 17, 2009, stated, “This approach is based on an assessment of the Iranian missile

  12. Air and Missile Defense Radar (AMDR)

    DTIC Science & Technology

    2015-12-01

    Selected Acquisition Report ( SAR ) RCS: DD-A&T(Q&A)823-384 Air and Missile Defense Radar (AMDR) As of FY 2017 President’s Budget Defense Acquisition...Management Information Retrieval (DAMIR) March 8, 2016 11:04:34 UNCLASSIFIED AMDR December 2015 SAR March 8, 2016 11:04:34 UNCLASSIFIED 2 Table...OSD - Office of the Secretary of Defense O&S - Operating and Support PAUC - Program Acquisition Unit Cost AMDR December 2015 SAR March 8, 2016 11:04:34

  13. Feasibility Study On Missile Launch Detection And Trajectory Tracking

    DTIC Science & Technology

    2016-09-01

    Vehicles ( UAVs ) in military operations, their role in a missile defense operation is not well defined. The simulation program discussed in this thesis ...targeting information to an attacking UAV to reliably intercept the missile. B . FURTHER STUDIES The simulation program can be enhanced to improve the...intercept the threat. This thesis explores the challenges in creating a simulation program to process video footage from an unstable platform and the

  14. Missile Defense: LBJ's Bid To Curb Arms Race Gains Support.

    PubMed

    Carter, L J

    1967-04-14

    In the article of 31 March on antiballistic missile defense, the last sentence of paragraph 2, p. 1654, should read: "Manpower for producing . . . but the outer limit would be about 200,000, or half the number of contractor employees and civil servants working for NASA at the peak of the Apollo program."

  15. Ground-Based Missile Defense (National Missile Defense): Is It Feasible?

    DTIC Science & Technology

    2004-03-19

    Westview Press), 191. 47 Ibid. 192. 48 Dr. Nicholas Berry, National Missile Defense: What Does It All Mean ? National Missile Defense: Views from Asia...153. 18 19 BIBLIOGRAPHY Berry, Nicholas. National Missile Defense: What Does It All Mean ? National Missile Defense: Views from Asia, Center for

  16. Joint Land Attack Cruise Missile Defense Elevated Netted Sensor System Not Ready for Production Decision (REDACTED)

    DTIC Science & Technology

    2012-09-07

    Average Procurement Unit Cost CMDS Cruise Missile Defense Systems CPD Capability Production Document EMD Engineering and Manufacturing...Defense for Acquisition, Technology and Logistics also determined that continuing test and evaluation of the two JLENS Engineering and Manufacturing...Program (Category ID) that was established in January 1996 and, during the audit, was in the Engineering and Manufacturing Development (EMD) phase of

  17. 48 CFR 225.7016-2 - Restriction.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... the Ballistic Missile Defense Program. [68 FR 15627, Mar. 31, 2003. Redesignated at 74 FR 53413, Oct... Section 225.7016-2 Federal Acquisition Regulations System DEFENSE ACQUISITION REGULATIONS SYSTEM, DEPARTMENT OF DEFENSE SOCIOECONOMIC PROGRAMS FOREIGN ACQUISITION Authorization Acts, Appropriations Acts, and...

  18. DDG 51 Arleigh Burke Class Guided Missile Destroyer (DDG 51)

    DTIC Science & Technology

    2015-12-01

    Selected Acquisition Report ( SAR ) RCS: DD-A&T(Q&A)823-180 DDG 51 Arleigh Burke Class Guided Missile Destroyer (DDG 51) As of FY 2017 President’s...Budget Defense Acquisition Management Information Retrieval (DAMIR) UNCLASSIFIED DDG 51 December 2015 SAR UNCLASSIFIED 2 Table of Contents Common Acronyms...Defense O&S - Operating and Support PAUC - Program Acquisition Unit Cost DDG 51 December 2015 SAR UNCLASSIFIED 3 PB - President’s Budget PE - Program

  19. Integrated Air and Missile Defense (IAMD)

    DTIC Science & Technology

    2015-12-01

    equal to or greater than the effectiveness levels of fielded TBM and CM/ABT defense systems. Common Command and Control The Army IAMD SoS common C2...externally developed sensors and shooters to provide an effective IAMD capability. The IAMD program will allow transformation to a network-centric system of...systems capability, also referred to as "Plug and Fight", that integrates all Air and Missile Defense (AMD) sensors, weapons, and mission control

  20. Missile Defense: Ballistic Missile Defense System Testing Delays Affect Delivery of Capabilities

    DTIC Science & Technology

    2016-04-28

    Page 1 GAO- 16 -339R Ballistic Missile Defense 441 G St. N.W. Washington, DC 20548 April 28, 2016 Congressional Committees Missile Defense...Ballistic Missile Defense System Testing Delays Affect Delivery of Capabilities For over half a century , the Department of Defense (DOD) has been...81, § 232 (a) (2011). 2 GAO- 16 -339R Ballistic Missile Defense baselines, we analyzed the testing goals for selected elements, which are

  1. Worldwide missile defense and the war on terrorism

    NASA Astrophysics Data System (ADS)

    Kane, Francis X.

    2002-07-01

    At the end of a long developmental road, dating back nearly a half-century, we are on the verge of having a defense against ballistic missiles. Starting some fifty years ago, we have initiated, and halted various programs to explore technology for missile defense. The reason for the go and stop program was the theological debate on deterrence. The issue was whether we would deter the Soviets from attacking us if we were to deploy a defense against their ballistic missiles. Our assessment was it would not, because they would expand their offensive. If you watched the President on TV after 9/11, you could sense the depth of his reaction. He is determined that it won't happen again. Furthermore, he must be conscious that this attack was the first time in nearly two centuries when an enemy caused damage in the US. He has created a new national effort to insure that it doesn't happen again. The efforts devoted to this objective are many, complex, and innovative. I will try to cover the most important activities, then describe how they are integrated to reach that objective in dynamic circumstances, of a long war.

  2. 75 FR 77848 - Closed Meeting of the Missile Defense Advisory Committee

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-12-14

    ... DEPARTMENT OF DEFENSE Office of the Secretary Closed Meeting of the Missile Defense Advisory Committee AGENCY: Department of Defense; Missile Defense Agency (MDA). ACTION: Notice. SUMMARY: Under the... Defense announces that the following Federal advisory committee meeting of the Missile Defense Advisory...

  3. 75 FR 77849 - Closed Meeting of the Missile Defense Advisory Committee

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-12-14

    ... DEPARTMENT OF DEFENSE Office of the Secretary Closed Meeting of the Missile Defense Advisory Committee AGENCY: Department of Defense; Missile Defense Agency (MDA). ACTION: Notice. SUMMARY: Under the... Defense announces that the following Federal advisory committee meeting of the Missile Defense Advisory...

  4. 76 FR 71556 - Missile Defense Advisory Committee; Notice of Closed Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-11-18

    ... DEPARTMENT OF DEFENSE Office of the Secretary Missile Defense Advisory Committee; Notice of Closed Meeting AGENCY: Missile Defense Agency (MDA), Department of Defense. ACTION: Notice of closed meeting... Missile Defense Advisory Committee will take place. DATES: Tuesday, December 13, 2011 through Wednesday...

  5. Ballistic missile defense effectiveness

    NASA Astrophysics Data System (ADS)

    Lewis, George N.

    2017-11-01

    The potential effectiveness of ballistic missile defenses today remains a subject of debate. After a brief discussion of terminal and boost phase defenses, this chapter will focus on long-range midcourse defenses. The problems posed by potential countermeasures to such midcourse defenses are discussed as are the sensor capabilities a defense might have available to attempt to discriminate the actual missile warhead in a countermeasures environment. The role of flight testing in assessing ballistic missile defense effectiveness is discussed. Arguments made about effectiveness by missile defense supporters and critics are summarized.

  6. 75 FR 43156 - Federal Advisory Committee; Missile Defense Advisory Committee

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-07-23

    ... DEPARTMENT OF DEFENSE Office of the Secretary Federal Advisory Committee; Missile Defense Advisory Committee AGENCY: Missile Defense Agency (MDA), DoD. ACTION: Notice of closed meeting. SUMMARY: Under the... Defense announces that the Missile Defense Advisory Committee will meet on August 4 and 5, 2010, in...

  7. KSC-2009-2670

    NASA Image and Video Library

    2009-04-15

    CAPE CANAVERAL, Fla. – On Cape Canaveral Air Force Station's Launch Complex 17-B in Florida, the first stage of a Delta II rocket is lifted into the mobile service tower. The rocket is the launch vehicle for the STSS Demonstrators Program. STSS Demonstrators Program is a midcourse tracking technology demonstrator and is part of an evolving ballistic missile defense system. STSS is capable of tracking objects after boost phase and provides trajectory information to other sensors. It will be launched by NASA for the Missile Defense Agency on July 29. Photo credit: NASA/Jack Pfaller

  8. KSC-2009-2668

    NASA Image and Video Library

    2009-04-15

    CAPE CANAVERAL, Fla. – On Cape Canaveral Air Force Station's Launch Complex 17-B in Florida, workers check the first stage of a Delta II rocket before it is lifted into the mobile service tower. The rocket is the launch vehicle for the STSS Demonstrators Program. STSS Demonstrators Program is a midcourse tracking technology demonstrator and is part of an evolving ballistic missile defense system. STSS is capable of tracking objects after boost phase and provides trajectory information to other sensors. It will be launched by NASA for the Missile Defense Agency on July 29. Photo credit: NASA/Jack Pfaller

  9. KSC-2009-2669

    NASA Image and Video Library

    2009-04-15

    CAPE CANAVERAL, Fla. – On Cape Canaveral Air Force Station's Launch Complex 17-B in Florida, the first stage of a Delta II rocket is ready to be lifted into the mobile service tower. The rocket is the launch vehicle for the STSS Demonstrators Program. STSS Demonstrators Program is a midcourse tracking technology demonstrator and is part of an evolving ballistic missile defense system. STSS is capable of tracking objects after boost phase and provides trajectory information to other sensors. It will be launched by NASA for the Missile Defense Agency on July 29. Photo credit: NASA/Jack Pfaller

  10. 48 CFR 225.7016-1 - Definitions.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... with Foreign Entities for the Conduct of Ballistic Missile Defense Research, Development, Test, and... Section 225.7016-1 Federal Acquisition Regulations System DEFENSE ACQUISITION REGULATIONS SYSTEM, DEPARTMENT OF DEFENSE SOCIOECONOMIC PROGRAMS FOREIGN ACQUISITION Authorization Acts, Appropriations Acts, and...

  11. 75 FR 52732 - Renewal of Department of Defense Federal Advisory Committee; Missile Defense Advisory Committee

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-08-27

    ... DEPARTMENT OF DEFENSE Office of the Secretary Renewal of Department of Defense Federal Advisory Committee; Missile Defense Advisory Committee AGENCY: Department of Defense (DoD). ACTION: Renewal of..., the Department of Defense gives notice that it is renewing the charter for the Missile Defense...

  12. 76 FR 4322 - Availability of the Fiscal Year 2009 Missile Defense Agency Services Contracts Inventory Pursuant...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-01-25

    ... DEPARTMENT OF DEFENSE Office of the Secretary Availability of the Fiscal Year 2009 Missile Defense... Act AGENCY: Missile Defense Agency (MDA), DoD. ACTION: Notice of availability. SUMMARY: In accordance... for Fiscal Year 2008 (NDAA 08) Section 807, the Director of the Missile Defense Agency and the Office...

  13. The Gulf War's impact on ballistic missile defense systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Likourezos, G.

    1993-01-01

    During Desert Storm the United States and its allies had an overwhelming advantage over the Iraqi armed forces. Nonetheless, the Iraqis managed to strike Israel and Saudi Arabia with Scud missiles. Because of the changing political climate and the expanding transfer of technology among nations, there is great concern by the US Government about missile proliferation and the ability of any country to obtain weapons of mass destruction. The US Government tried to downplay this concern for many years until the recent events in the Middle East affirmed its seriousness. The truth is that every year countries once thought tomore » pose no international threat are acquiring biological, chemical, and nuclear weapons. Moreover, state-sponsored terrorist organizations could conceivably acquire these weapons in the future. In response to these concerns and in light of the lessons learned from the Gulf War, President George Bush in January 1991 redirected the SDI Program to concentrate on providing protection from limited ballistic missile strikes, rather than from an all-out nuclear missile attack by the Soviet Union. The Patriot air defense system, after knocking out Iraqi Scuds in the Gulf War with a near perfect record, appears for now to be the working model for the development of advanced ballistic missile defense systems - direct-kill missiles and projectiles instead of laser and particle beams. Even though the Patriot's use in Desert Storm has been argued by some to have been militarily insignificant, it has managed to change the viewpoint of many political and scientific leaders into believing that ballistic missile defense systems are needed to defend peaceful population centers and military installations from missile strikes like the ones on Israel and Saudi Arabia. 18 refs.« less

  14. What to Do About That Pack of Wolves at the Door: A Binational Organization and Acquisitions Approach to Homeland Cruise Missile Defense

    DTIC Science & Technology

    2016-04-04

    land attack cruise missiles (LACMs) within the context of the changing geopolitical environment. The research analyzes the current state of NORAD’s...homeland cruise missile defense apparatus with respect to its organization and technical capability. The principle argument is that land attack cruise...defense for the homeland. 15. SUBJECT TERMS: land attack cruise missiles, cruise missile defense, homeland defense, NORAD, directed energy 16

  15. Another Brick in the Wall: The Israeli Experience in Missile Defense

    DTIC Science & Technology

    2015-04-01

    region. In particular, the way the Is- raelis decapitated the Egyptian Air Force on June 5 in only 3 hours engendered tremendous awe among the Arab...in a memo, “Iraq has the most aggressive and advanced ballistic missile development program in the Arab World.”8 Like the Egyptians , the Iraqis...range ballistic missile (SRBM) delivered in 1973 shortly be- fore the war with Israel. Like the Egyptians , the Syr- ians also used their missiles

  16. 76 FR 14589 - Defense Federal Acquisition Regulation Supplement; Repeal of Restriction on Ballistic Missile...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-03-17

    ...-AH18 Defense Federal Acquisition Regulation Supplement; Repeal of Restriction on Ballistic Missile...). Section 222 repeals the restriction on purchase of Ballistic Missile Defense research, development, test... Ballistic Missile Defense research, development, test, and evaluation that was required by section 222 of...

  17. KSC-2009-2666

    NASA Image and Video Library

    2009-04-15

    CAPE CANAVERAL, Fla. – On Cape Canaveral Air Force Station's Launch Complex 17-B in Florida, the first stage of a Delta II rocket is raised to vertical before it can be moved into the mobile service tower for processing. The rocket is the launch vehicle for the STSS Demonstrators Program. STSS Demonstrators Program is a midcourse tracking technology demonstrator and is part of an evolving ballistic missile defense system. STSS is capable of tracking objects after boost phase and provides trajectory information to other sensors. It will be launched by NASA for the Missile Defense Agency on July 29. Photo credit: NASA/Jack Pfaller

  18. KSC-2009-2662

    NASA Image and Video Library

    2009-04-15

    CAPE CANAVERAL, Fla. – The first stage of a Delta II rocket arrives on Cape Canaveral Air Force Station's Launch Complex 17-B in Florida. The rocket is the launch vehicle for the STSS Demonstrators Program and will be raised and lifted into the mobile service tower for processing. STSS Demonstrators Program is a midcourse tracking technology demonstrator and is part of an evolving ballistic missile defense system. STSS is capable of tracking objects after boost phase and provides trajectory information to other sensors. It will be launched by NASA for the Missile Defense Agency on July 29. Photo credit: NASA/Jack Pfaller

  19. KSC-2009-2661

    NASA Image and Video Library

    2009-04-15

    CAPE CANAVERAL, Fla. – The first stage of a Delta II rocket arrives on Cape Canaveral Air Force Station's Launch Complex 17-B in Florida. The rocket is the launch vehicle for the STSS Demonstrators Program and will be raised and lifted into the mobile service tower for processing. STSS Demonstrators Program is a midcourse tracking technology demonstrator and is part of an evolving ballistic missile defense system. STSS is capable of tracking objects after boost phase and provides trajectory information to other sensors. It will be launched by NASA for the Missile Defense Agency on July 29. Photo credit: NASA/Jack Pfaller

  20. KSC-2009-2667

    NASA Image and Video Library

    2009-04-15

    CAPE CANAVERAL, Fla. – On Cape Canaveral Air Force Station's Launch Complex 17-B in Florida, after being raised to vertical, the first stage of a Delta II rocket will be lifted into the mobile service tower on for processing. The rocket is the launch vehicle for the STSS Demonstrators Program. STSS Demonstrators Program is a midcourse tracking technology demonstrator and is part of an evolving ballistic missile defense system. STSS is capable of tracking objects after boost phase and provides trajectory information to other sensors. It will be launched by NASA for the Missile Defense Agency on July 29. Photo credit: NASA/Jack Pfaller

  1. KSC-2009-2663

    NASA Image and Video Library

    2009-04-15

    CAPE CANAVERAL, Fla. – On Cape Canaveral Air Force Station's Launch Complex 17-B in Florida, the first stage of a Delta II rocket is prepared to lift it into the mobile service tower for processing. The rocket is the launch vehicle for the STSS Demonstrators Program . STSS Demonstrators Program is a midcourse tracking technology demonstrator and is part of an evolving ballistic missile defense system. STSS is capable of tracking objects after boost phase and provides trajectory information to other sensors. It will be launched by NASA for the Missile Defense Agency on July 29. Photo credit: NASA/Jack Pfaller

  2. KSC-2009-2665

    NASA Image and Video Library

    2009-04-15

    CAPE CANAVERAL, Fla. – On Cape Canaveral Air Force Station's Launch Complex 17-B in Florida, the first stage of a Delta II rocket is raised to vertical before it can be moved into the mobile service tower for processing. The rocket is the launch vehicle for the STSS Demonstrators Program. STSS Demonstrators Program is a midcourse tracking technology demonstrator and is part of an evolving ballistic missile defense system. STSS is capable of tracking objects after boost phase and provides trajectory information to other sensors. It will be launched by NASA for the Missile Defense Agency on July 29. Photo credit: NASA/Jack Pfaller

  3. Issues in national missile defense

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Canavan, G.H.

    1998-12-01

    Strategic missiles and weapons are proliferating rapidly; thus, the US and its Allies are likely to face both capable bilateral threats and multilateral configurations with complex coalitions for which defenses could be essential for stability. Current hit-to-kill interceptor and radar and infrared detection, track, and discrimination technology should suffice for limited threats, but it is necessary to meet those threats in time while maintaining growth potential for the more sophisticated threats likely to follow. National Missile Defense faces a confusing array of threats, programs, and alternatives, but the technologies in development are clearly an appropriate first step towards any ofmore » them. They are likely to succeed in the near term; the challenge is to retain flexibility to provide needed options in the mid and long terms.« less

  4. 23 CFR 660.519 - Missile installations and facilities.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... extraordinary maintenance as necessary to keep the roads serviceable and maintain adequate supporting records of... OPERATIONS SPECIAL PROGRAMS (DIRECT FEDERAL) Defense Access Roads § 660.519 Missile installations and...) Restoration under the contract. (1) The highway agency having jurisdiction over the road shall take...

  5. Cost of space-based laser ballistic missile defense.

    PubMed

    Field, G; Spergel, D

    1986-03-21

    Orbiting platforms carrying infrared lasers have been proposed as weapons forming the first tier of a ballistic missile defense system under the President's Strategic Defense Initiative. As each laser platform can destroy a limited number of missiles, one of several methods of countering such a system is to increase the number of offensive missiles. Hence it is important to know whether the cost-exchange ratio, defined as the ratio of the cost to the defense of destroying a missile to the cost to the offense of deploying an additional missile, is greater or less than 1. Although the technology to be used in a ballistic missile defense system is still extremely uncertain, it is useful to examine methods for calculating the cost-exchange ratio. As an example, the cost of an orbiting infrared laser ballistic missile defense system employed against intercontinental ballistic missiles launched simultaneously from a small area is compared to the cost of additional offensive missiles. If one adopts lower limits to the costs for the defense and upper limits to the costs for the offense, the cost-exchange ratio comes out substantially greater than 1. If these estimates are confirmed, such a ballistic missile defense system would be unable to maintain its effectiveness at less cost than it would take to proliferate the ballistic missiles necessary to overcome it and would therefore not satisfy the President's requirements for an effective strategic defense. Although the method is illustrated by applying it to a space-based infrared laser system, it should be straightforward to apply it to other proposed systems.

  6. Cost of space-based laser ballistic missile defense

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Field, G.; Spergel, D.

    1986-03-21

    Orbiting platforms carrying infrared lasers have been proposed as weapons forming the first tier of a ballistic missile defense system under the President's Strategic Defense Initiative. As each laser platform can destroy a limited number of missiles, one of several methods of countering such a system is to increase the number of offensive missiles. Hence it is important to know whether the cost-exchange ratio, defined as the ratio of the cost to the defense of destroying a missile to the cost to the offense of deploying an additional missile, is greater or less than 1. Although the technology to bemore » used in a ballistic missile defense system is still extremely uncertain, it is useful to examine methods for calculating the cost-exchange ration. As an example, the cost of an orbiting infrared laser ballistic missile defense system employed against intercontinental ballistic missiles launched simultaneously from a small area is compared to the cost of additional offensive missiles. If one adopts lower limits to the costs for the defense and upper limits to the costs for the offense, the cost-exchange ratio comes out substantially greater than 1. If these estimates are confirmed, such a ballistic missile defense system would be unable to maintain its effectiveness at less cost than it would take to proliferate the ballistic missiles necessary to overcome it and would therefore not satisfy the President's requirements for an effective strategic defense. Although the method is illustrated by applying it to a space-based infrared laser system, it should be straightforward to apply it to other proposed systems. 28 references, 2 tables.« less

  7. The Aegis BMD Global Enterprise: A High End Maritime Partnership

    DTIC Science & Technology

    2016-04-13

    have been dealing with ballistic-missile defense through the alliance’s Active Layered Theatre Ballistic Missile Defence (ALTBMD) program and, since...Defense Agency (MDA) budgets.18 The twenty-fifth test— designated Flight Test Mission (FTM) 15—occurred on 15 April 2011, when the MDA conducted the...original design , which focused on short- and medium-range threats. The LV-2 had flown in two previous BMD live-fire tests but had not been hit—until FTM

  8. Joint Air-to-Ground Missile (JAGM)

    DTIC Science & Technology

    2015-12-01

    Selected Acquisition Report ( SAR ) RCS: DD-A&T(Q&A)823-355 Joint Air-to-Ground Missile (JAGM) As of FY 2017 President’s Budget Defense Acquisition...Management Information Retrieval (DAMIR) March 4, 2016 09:30:05 UNCLASSIFIED JAGM December 2015 SAR March 4, 2016 09:30:05 UNCLASSIFIED 2 Table of...Office of the Secretary of Defense O&S - Operating and Support PAUC - Program Acquisition Unit Cost JAGM December 2015 SAR March 4, 2016 09:30:05

  9. Directed Energy Technology Working Group Report (IDA/OSD R&M (Institute for Defense Analyses/Office of the Secretary of Defense Reliability and Maintainability) Study).

    DTIC Science & Technology

    1983-08-01

    Missile (SLBM) Defense Scenario ............................................ B-1 C Space-Based Anti-Ballistic Missile ( ABM ) Defense Scenario...Ballistic Missile (SLBM) Defense Scenario, and at Strategic Space-Based Anti-Ballistic Missile ( ABM ) Defense Scenario. These case studies are provided...of flight. 3.5.3 Spaced-Based ABM Defense Scenario In this scenario, an orbiting battle station is operating as an element of GBMD System, and it is

  10. Development and qualification of the US Cruise Missile Propulsion System

    NASA Astrophysics Data System (ADS)

    Reardon, William H.; Cifone, Anthony J.

    1992-09-01

    This paper provides a description of the very successful Cruise Missile gas turbine propulsion program managed by the United States Department of Defense. The paper contains a summary of the procurement process, the technical and programmatic milestones, issues and challenges, and lessons learned. In the past fifteen years, testing at the Naval Air Propulsion Center has included over 800 cruise engine development and component substantiation efforts spanning the engine specification qualification requirements. This paper provides a detailed account of environmental test techniques used to qualify the F107 family of gas turbine engines which propel the U.S. Cruise Missile. In addition, a missile freestream flight test simulation for the TOMAHAWK Cruise Missile is discussed along with current and future program efforts.

  11. Study on combat effectiveness of air defense missile weapon system based on queuing theory

    NASA Astrophysics Data System (ADS)

    Zhao, Z. Q.; Hao, J. X.; Li, L. J.

    2017-01-01

    Queuing Theory is a method to analyze the combat effectiveness of air defense missile weapon system. The model of service probability based on the queuing theory was constructed, and applied to analyzing the combat effectiveness of "Sidewinder" and "Tor-M1" air defense missile weapon system. Finally aimed at different targets densities, the combat effectiveness of different combat units of two types' defense missile weapon system is calculated. This method can be used to analyze the usefulness of air defense missile weapon system.

  12. Advancements in hardware-in-the-loop simulations at the U.S. Army Aviation and Missile Command

    NASA Astrophysics Data System (ADS)

    Buford, James A.; Jolly, Alexander C.; Mobley, Scott B.; Sholes, William J.

    2000-07-01

    A greater awareness of and increased interest in the use of modeling and simulation (M&S) has been demonstrated at many levels within the Department of Defense (DoD) and all the Armed Services agencies in recent years. M&S application is regarded as a viable means of lowering the life cycle costs of missile defense and tactical missile weapon system acquisition beginning with studies of new concepts of war-fighting through user training and post-deployment support. The Aviation and Missile Research, Engineering, and Development Center (AMRDEC) of the U.S. Army Aviation and Missile Command (AMCOM) has an extensive history of applying all types of M&S to weapons system development and has been a particularly strong advocate of hardware-in-the-loop (HWIL) simulation and test for many years. Over the past 40 years AMRDEC has developed and maintained the Advanced Simulation Center (ASC) which provides world-class, high fidelity, specific and dedicated HWIL simulation and test capabilities for the Army's missile defense and tactical missile program offices in both the infrared and radio frequency sensor domains. The ASC facility uses M&S to conduct daily HWIL missile simulations and tests to support flight tests, missile/system development, independent verification and validation of weapon system embedded software and simulations, and missile/system performance against current and future threat environments. This paper describes the ASC role, recaps the past year, describes the HWIL components and advancements, and outlines the path-ahead for the ASC in terms of both missile and complete system HWIL simulations and test with a focus on the imaging infrared systems.

  13. Ship Design

    NASA Technical Reports Server (NTRS)

    1982-01-01

    Guided missile cruiser equipped with advanced Aegis fleet defense system which automatically tracks hundreds of attacking aircraft or missiles, then fires and guides the ship's own weapons in response. Designed by Ingalls Shipbuilding for the US Navy, the U.S.S. Ticonderoga is the first of four CG-47 cruisers to be constructed. NASTRAN program was used previously in another Navy/Ingalls project involving design and construction of four DDG-993 Kidd Class guided missile destroyers.

  14. The Clinton plan for theater missile defenses: Costs and alternatives

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mosher, D.; Hall, R.

    1994-09-01

    Since the Gulf War, the Department of Defense has placed a high priority on developing defenses against theater ballistic missiles (TBMs). Over the past two years the Clinton administration has redirected the focus of the Ballistic Missile Organization (BMDO, formerly the Strategic Defense Initiative Organization) away from a national missile defense system and toward the development of theater missile defenses (TMDs). But the plan put forward by the administration is expensive - as much as $50 billion through the year 2010 - and it also raises several important issues about compliance with the Anti-Ballistic Missile (ABM) Treaty. But other approachesmore » to TMD would address some of these cost and compliance concerns, so it is worthwhile to look at several alternatives and analyze their costs and effects on capability.« less

  15. KSC-2009-2664

    NASA Image and Video Library

    2009-04-15

    CAPE CANAVERAL, Fla. – On Cape Canaveral Air Force Station's Launch Complex 17-B in Florida, the first stage of a Delta II rocket is lifted off its transporter. It will be raised to vertical and lifted into the mobile service tower for processing. The rocket is the launch vehicle for the STSS Demonstrators Program. STSS Demonstrators Program is a midcourse tracking technology demonstrator and is part of an evolving ballistic missile defense system. STSS is capable of tracking objects after boost phase and provides trajectory information to other sensors. It will be launched by NASA for the Missile Defense Agency on July 29. Photo credit: NASA/Jack Pfaller

  16. KSC-2009-5021

    NASA Image and Video Library

    2009-08-03

    CAPE CANAVERAL, Fla. –At the Astrotech payload processing facility in Titusville, Fla., the SV1 spacecraft is lowered onto the SV2 for mating. The two spacecraft are part of the Space Tracking and Surveillance System – Demonstrators, or STSS Demo, Program. The STSS Demo is a space-based sensor component of a layered Ballistic Missile Defense System designed for the overall mission of detecting, tracking and discriminating ballistic missiles. STSS is capable of tracking objects after boost phase and provides trajectory information to other sensors. It will be launched by NASA for the Missile Defense Agency between 8 and 8:58 a.m. EDT Sept. 18. Approved for Public Release 09-MDA-04886 (10 SEPT 09) Photo credit: NASA/Jim Grossmann

  17. KSC-2009-5023

    NASA Image and Video Library

    2009-08-03

    CAPE CANAVERAL, Fla. – At the Astrotech payload processing facility in Titusville, Fla., the SV1 spacecraft is lowered onto the SV2 for mating. The two spacecraft are part of the Space Tracking and Surveillance System – Demonstrators, or STSS Demo, Program. The STSS Demo is a space-based sensor component of a layered Ballistic Missile Defense System designed for the overall mission of detecting, tracking and discriminating ballistic missiles. STSS is capable of tracking objects after boost phase and provides trajectory information to other sensors. It will be launched by NASA for the Missile Defense Agency between 8 and 8:58 a.m. EDT Sept. 18. Approved for Public Release 09-MDA-04886 (10 SEPT 09) Photo credit: NASA/Jim Grossmann

  18. KSC-2009-5020

    NASA Image and Video Library

    2009-08-03

    CAPE CANAVERAL, Fla. – At the Astrotech payload processing facility in Titusville, Fla., the SV1 spacecraft is lowered toward the SV2 for mating. The two spacecraft are part of the Space Tracking and Surveillance System – Demonstrators, or STSS Demo, Program. The STSS Demo is a space-based sensor component of a layered Ballistic Missile Defense System designed for the overall mission of detecting, tracking and discriminating ballistic missiles. STSS is capable of tracking objects after boost phase and provides trajectory information to other sensors. It will be launched by NASA for the Missile Defense Agency between 8 and 8:58 a.m. EDT Sept. 18. Approved for Public Release 09-MDA-04886 (10 SEPT 09) Photo credit: NASA/Jim Grossmann

  19. KSC-2009-5025

    NASA Image and Video Library

    2009-08-03

    CAPE CANAVERAL, Fla. – At the Astrotech payload processing facility in Titusville, Fla., workers check the mating of the SV1 spacecraft onto the SV2. The two spacecraft are part of the Space Tracking and Surveillance System – Demonstrators, or STSS Demo, Program. The STSS Demo is a space-based sensor component of a layered Ballistic Missile Defense System designed for the overall mission of detecting, tracking and discriminating ballistic missiles. STSS is capable of tracking objects after boost phase and provides trajectory information to other sensors. It will be launched by NASA for the Missile Defense Agency between 8 and 8:58 a.m. EDT Sept. 18. Approved for Public Release 09-MDA-04886 (10 SEPT 09) Photo credit: NASA/Jim Grossmann

  20. KSC-2009-5012

    NASA Image and Video Library

    2009-08-03

    CAPE CANAVERAL, Fla. – At the Astrotech payload processing facility in Titusville, Fla., the SV1 and SV2 spacecraft are ready for mating for launch. The two spacecraft are part of the Space Tracking and Surveillance System – Demonstrators, or STSS Demo, Program. STSS-Demo is a space-based sensor component of a layered Ballistic Missile Defense System designed for the overall mission of detecting, tracking and discriminating ballistic missiles. The spacecraft is capable of tracking objects after boost phase and provides trajectory information to other sensors. It will be launched by NASA for the Missile Defense Agency between 8 and 8:58 a.m. EDT Sept. 18. Approved for Public Release 09-MDA-04886 (10 SEPT 09) Photo credit: NASA/Jim Grossmann

  1. KSC-2009-5013

    NASA Image and Video Library

    2009-08-03

    CAPE CANAVERAL, Fla. – At the Astrotech payload processing facility in Titusville, Fla., workers prepare to lift the SV1 and mate it to the SV2 spacecraft for the Space Tracking and Surveillance System – Demonstrators, or STSS Demo, Program. STSS-Demo is a space-based sensor component of a layered Ballistic Missile Defense System designed for the overall mission of detecting, tracking and discriminating ballistic missiles. The spacecraft is capable of tracking objects after boost phase and provides trajectory information to other sensors. It will be launched by NASA for the Missile Defense Agency between 8 and 8:58 a.m. EDT Sept. 18. Approved for Public Release 09-MDA-04886 (10 SEPT 09) Photo credit: NASA/Jim Grossmann

  2. Overcoming Space and Time Disadvantages in Joint Theater Missile Defense

    DTIC Science & Technology

    2002-02-04

    Disadvantages in Joint Theater Missile Defense (Unclassified) 9. Personal Authors: Major Robert Kelley 10.Type of Report: FINAL 11. Date of Report...Classification of This Page Unclassified NAVAL WAR COLLEGE Newport, RI Overcoming Space and Time Disadvantages in Joint Theater Missile Defense By Robert...Covered (from... to) - Title and Subtitle Overcoming Space and Time Disadvantages in Joint Theater Missile Defense Contract Number Grant Number

  3. Strategic Missile Defense & Nuclear Deterrence

    NASA Astrophysics Data System (ADS)

    Grego, Laura

    The United States has pursued defenses against nuclear-armed long-range ballistic missiles since at least the 1950s. At the same time, concerns that missile defenses could undermine nuclear deterrence and potentially spark an arms race led the United States and Soviet Union to negotiate limits on these systems. The 1972 Anti-Ballistic Missile Treaty constrained strategic missile defenses for thirty years. After abandoning the treaty in 2002, President George W. Bush began fielding the Ground-based Midcourse Defense (GMD) homeland missile defense system on an extremely aggressive schedule, nominally to respond to threats from North Korea and Iran. Today, nearly fifteen years after its initial deployment, the potential and the limits of this homeland missile defense are apparent. Its test record is poor and it has no demonstrated ability to stop an incoming missile under real-world conditions. No credible strategy is in place to solve the issue of discriminating countermeasures. Insufficient oversight has not only exacerbated the GMD system's problems, but has obscured their full extent, which could encourage politicians and military leaders to make decisions that actually increase the risk of a missile attack against the United States. These are not the only costs. Both Russia and China have repeatedly expressed concerns that U.S. missile defenses adversely affect their own strategic capabilities and interests, particularly taken in light of the substantial US nuclear forces. This in turn affects these countries' nuclear modernization priorities. This talk will provide a technical overview of the US strategic missile defense system, and how it relates to deterrence against non-peer adversaries as well as how it affects deterrence with Russia and China and the long-term prospects for nuclear reductions

  4. Alternatives for Boost-Phase Missile Defense

    DTIC Science & Technology

    2004-07-01

    NFIRE ) to better understand the characteristics of that signature for intercontinental ballistic missiles (ICBMs). The information that NFIRE might...ballistic missile Isp: specific impulse kg: kilogram km: kilometer MDA: Missile Defense Agency NFIRE : Near-Field Infrared Experiment NMD: national missile

  5. AIM-120 Advanced Medium Range Air-to-Air Missile (AMRAAM)

    DTIC Science & Technology

    2015-12-01

    Selected Acquisition Report ( SAR ) RCS: DD-A&T(Q&A)823-185 AIM-120 Advanced Medium Range Air-to-Air Missile (AMRAAM) As of FY 2017 President’s...Budget Defense Acquisition Management Information Retrieval (DAMIR) March 23, 2016 16:04:24 UNCLASSIFIED AMRAAM December 2015 SAR March 23, 2016 16:04...2015 SAR March 23, 2016 16:04:24 UNCLASSIFIED 3 PB - President’s Budget PE - Program Element PEO - Program Executive Officer PM - Program Manager POE

  6. The Why, What, and How of the Strategic Defense Initiative.

    ERIC Educational Resources Information Center

    Rankine, Jr., Robert R.

    1985-01-01

    Addresses the strategy and policy implications of effective ballistic missile defense and the scope/priorities of a research program underway to determine its technical feasibility. Several types of "smart bullets" are described, along with sensing devices for space, air, and ground. Procedures established to centrally plan/control the program are…

  7. 48 CFR 225.7016-3 - Exceptions.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... Section 225.7016-3 Federal Acquisition Regulations System DEFENSE ACQUISITION REGULATIONS SYSTEM, DEPARTMENT OF DEFENSE SOCIOECONOMIC PROGRAMS FOREIGN ACQUISITION Authorization Acts, Appropriations Acts, and... RDT&E in connection with antitactical ballistic missile systems; or (3) The foreign government or firm...

  8. 48 CFR 225.7003-2 - Restrictions.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... Section 225.7003-2 Federal Acquisition Regulations System DEFENSE ACQUISITION REGULATIONS SYSTEM, DEPARTMENT OF DEFENSE SOCIOECONOMIC PROGRAMS FOREIGN ACQUISITION Authorization Acts, Appropriations Acts, and...) Missile or space systems. (3) Ships. (4) Tank or automotive items. (5) Weapon systems. (6) Ammunition. (b...

  9. 48 CFR 225.7003-2 - Restrictions.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... Section 225.7003-2 Federal Acquisition Regulations System DEFENSE ACQUISITION REGULATIONS SYSTEM, DEPARTMENT OF DEFENSE SOCIOECONOMIC PROGRAMS FOREIGN ACQUISITION Authorization Acts, Appropriations Acts, and...) Missile or space systems. (3) Ships. (4) Tank or automotive items. (5) Weapon systems. (6) Ammunition. (b...

  10. 48 CFR 225.7003-2 - Restrictions.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... Section 225.7003-2 Federal Acquisition Regulations System DEFENSE ACQUISITION REGULATIONS SYSTEM, DEPARTMENT OF DEFENSE SOCIOECONOMIC PROGRAMS FOREIGN ACQUISITION Authorization Acts, Appropriations Acts, and...) Missile or space systems. (3) Ships. (4) Tank or automotive items. (5) Weapon systems. (6) Ammunition. (b...

  11. 48 CFR 225.7003-2 - Restrictions.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... Section 225.7003-2 Federal Acquisition Regulations System DEFENSE ACQUISITION REGULATIONS SYSTEM, DEPARTMENT OF DEFENSE SOCIOECONOMIC PROGRAMS FOREIGN ACQUISITION Authorization Acts, Appropriations Acts, and...) Missile or space systems. (3) Ships. (4) Tank or automotive items. (5) Weapon systems. (6) Ammunition. (b...

  12. 48 CFR 225.7003-2 - Restrictions.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... Section 225.7003-2 Federal Acquisition Regulations System DEFENSE ACQUISITION REGULATIONS SYSTEM, DEPARTMENT OF DEFENSE SOCIOECONOMIC PROGRAMS FOREIGN ACQUISITION Authorization Acts, Appropriations Acts, and...) Missile or space systems. (3) Ships. (4) Tank or automotive items. (5) Weapon systems. (6) Ammunition. (b...

  13. Missile Defense Acquisition: Failure Is Not An Option

    DTIC Science & Technology

    2016-01-26

    Missile Defense Acquisition: Failure is Not an Option 8 capabilities. Retired Marine General James Mattis ’ renowned quote rings true, “The enemy...american-missile-defense-why-failure-is- an-option. 18 Vago Muradian, “Interview: Gen. James Mattis , Commander, U.S. Joint Forces Command,” 23 May...2010, http://archive.defensenews.com/article/20100523/DEFFEAT03/5230301/Gen- James - Mattis . 19 Institute for Defense Analyses, p. II-3. 20 Missile

  14. 75 FR 64714 - Meeting of the Chief of Naval Operations Executive Panel

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-10-20

    ... recommendations of the Subcommittee on Navy's Role in Ballistic Missile Defense. The meeting will consist of discussions of Navy's role in ballistic missile defense, development of the global missile defense network and evolution of the growing ballistic missile threat. DATES: The meeting will be held on November 12, 2010...

  15. The Science and Technology of the US National Missile Defense System

    NASA Astrophysics Data System (ADS)

    Postol, Theodore A.

    2010-03-01

    The National Missile Defense System utilizes UHF and X-band radars for search, track and discrimination, and interceptors that use long-wave infrared sensors to identify and home on attacking warheads. The radars and infrared sensors in the missile defense system perform at near the theoretical limits predicted by physics. However, in spite of the fantastic technical advances in sensor technology, signal processing, and computational support functions, the National Missile Defense System cannot be expected to ever work in realistic combat environments. This talk will describe why these impressive technologies can never deliver on the promise of a credible defense against long-range ballistic missiles.

  16. Detection technique of targets for missile defense system

    NASA Astrophysics Data System (ADS)

    Guo, Hua-ling; Deng, Jia-hao; Cai, Ke-rong

    2009-11-01

    Ballistic missile defense system (BMDS) is a weapon system for intercepting enemy ballistic missiles. It includes ballistic-missile warning system, target discrimination system, anti-ballistic-missile guidance systems, and command-control communication system. Infrared imaging detection and laser imaging detection are widely used in BMDS for surveillance, target detection, target tracking, and target discrimination. Based on a comprehensive review of the application of target-detection techniques in the missile defense system, including infrared focal plane arrays (IRFPA), ground-based radar detection technology, 3-dimensional imaging laser radar with a photon counting avalanche photodiode (APD) arrays and microchip laser, this paper focuses on the infrared and laser imaging detection techniques in missile defense system, as well as the trends for their future development.

  17. Development of System Architecture to Investigate the Impact of Integrated Air and Missile Defense in a Distributed Lethality Environment

    DTIC Science & Technology

    2017-12-01

    SYSTEM ARCHITECTURE TO INVESTIGATE THE IMPACT OF INTEGRATED AIR AND MISSILE DEFENSE IN A DISTRIBUTED LETHALITY ENVIRONMENT by Justin K. Davis...TO INVESTIGATE THE IMPACT OF INTEGRATED AIR AND MISSILE DEFENSE IN A DISTRIBUTED LETHALITY ENVIRONMENT 5. FUNDING NUMBERS 6. AUTHOR(S) Justin K...ARCHITECTURE TO INVESTIGATE THE IMPACT OF INTEGRATED AIR AND MISSILE DEFENSE IN A DISTRIBUTED LETHALITY ENVIRONMENT Justin K. Davis Lieutenant

  18. KSC-2009-5015

    NASA Image and Video Library

    2009-08-03

    CAPE CANAVERAL, Fla. – At the Astrotech payload processing facility in Titusville, Fla., a crane moves the SV1 spacecraft, which will be mated with the SV2 at right. The two spacecraft are part of the Space Tracking and Surveillance System – Demonstrators, or STSS Demo, Program. STSS-Demo is a space-based sensor component of a layered Ballistic Missile Defense System designed for the overall mission of detecting, tracking and discriminating ballistic missiles. The spacecraft is capable of tracking objects after boost phase and provides trajectory information to other sensors. It will be launched by NASA for the Missile Defense Agency between 8 and 8:58 a.m. EDT Sept. 18. Approved for Public Release 09-MDA-04886 (10 SEPT 09) Photo credit: NASA/Jim Grossmann

  19. KSC-2009-5017

    NASA Image and Video Library

    2009-08-03

    CAPE CANAVERAL, Fla. – At the Astrotech payload processing facility in Titusville, Fla., a crane moves the SV1 spacecraft, toward the SV2 at right. The two spacecraft , which will be mated, are part of the Space Tracking and Surveillance System – Demonstrators, or STSS Demo, Program. The STSS Demo is a space-based sensor component of a layered Ballistic Missile Defense System designed for the overall mission of detecting, tracking and discriminating ballistic missiles. STSS is capable of tracking objects after boost phase and provides trajectory information to other sensors. It will be launched by NASA for the Missile Defense Agency between 8 and 8:58 a.m. EDT Sept. 18. Approved for Public Release 09-MDA-04886 (10 SEPT 09) Photo credit: NASA/Jim Grossmann

  20. KSC-2009-5018

    NASA Image and Video Library

    2009-08-03

    CAPE CANAVERAL, Fla. – At the Astrotech payload processing facility in Titusville, Fla., workers help guide the movement of the SV1 spacecraft as it is moved toward the SV2 at right. The two spacecraft are part of the Space Tracking and Surveillance System – Demonstrators, or STSS Demo, Program. The STSS Demo is a space-based sensor component of a layered Ballistic Missile Defense System designed for the overall mission of detecting, tracking and discriminating ballistic missiles. STSS is capable of tracking objects after boost phase and provides trajectory information to other sensors. It will be launched by NASA for the Missile Defense Agency between 8 and 8:58 a.m. EDT Sept. 18. Approved for Public Release 09-MDA-04886 (10 SEPT 09) Photo credit: NASA/Jim Grossmann

  1. KSC-2009-5016

    NASA Image and Video Library

    2009-08-03

    CAPE CANAVERAL, Fla. – At the Astrotech payload processing facility in Titusville, Fla., workers help guide the movement of the SV1 spacecraft as it is moved toward the SV2 behind it. The two spacecraft are part of the Space Tracking and Surveillance System – Demonstrators, or STSS Demo, Program. The STSS Demo is a space-based sensor component of a layered Ballistic Missile Defense System designed for the overall mission of detecting, tracking and discriminating ballistic missiles. STSS is capable of tracking objects after boost phase and provides trajectory information to other sensors. It will be launched by NASA for the Missile Defense Agency between 8 and 8:58 a.m. EDT Sept. 18. Approved for Public Release 09-MDA-04886 (10 SEPT 09) Photo credit: NASA/Jim Grossmann

  2. KSC-2009-5022

    NASA Image and Video Library

    2009-08-03

    CAPE CANAVERAL, Fla. – At the Astrotech payload processing facility in Titusville, Fla., workers observe as the SV1 spacecraft is lowered onto the SV2 for mating. The two spacecraft are part of the Space Tracking and Surveillance System – Demonstrators, or STSS Demo, Program. The STSS Demo is a space-based sensor component of a layered Ballistic Missile Defense System designed for the overall mission of detecting, tracking and discriminating ballistic missiles. STSS is capable of tracking objects after boost phase and provides trajectory information to other sensors. It will be launched by NASA for the Missile Defense Agency between 8 and 8:58 a.m. EDT Sept. 18. Approved for Public Release 09-MDA-04886 (10 SEPT 09) Photo credit: NASA/Jim Grossmann

  3. KSC-2009-5024

    NASA Image and Video Library

    2009-08-03

    CAPE CANAVERAL, Fla. – At the Astrotech payload processing facility in Titusville, Fla., a worker checks the mating of the SV1 spacecraft onto the SV2. The two spacecraft are part of the Space Tracking and Surveillance System – Demonstrators, or STSS Demo, Program. The STSS Demo is a space-based sensor component of a layered Ballistic Missile Defense System designed for the overall mission of detecting, tracking and discriminating ballistic missiles. STSS is capable of tracking objects after boost phase and provides trajectory information to other sensors. It will be launched by NASA for the Missile Defense Agency between 8 and 8:58 a.m. EDT Sept. 18. Approved for Public Release 09-MDA-04886 (10 SEPT 09) Photo credit: NASA/Jim Grossmann

  4. KSC-2009-5019

    NASA Image and Video Library

    2009-08-03

    CAPE CANAVERAL, Fla. – At the Astrotech payload processing facility in Titusville, Fla., workers help guide the movement of the SV1 spacecraft as it is moved toward the SV2 at right. The two spacecraft are part of the Space Tracking and Surveillance System – Demonstrators, or STSS Demo, Program. The STSS Demo is a space-based sensor component of a layered Ballistic Missile Defense System designed for the overall mission of detecting, tracking and discriminating ballistic missiles. STSS is capable of tracking objects after boost phase and provides trajectory information to other sensors. It will be launched by NASA for the Missile Defense Agency between 8 and 8:58 a.m. EDT Sept. 18. Approved for Public Release 09-MDA-04886 (10 SEPT 09) Photo credit: NASA/Jim Grossmann

  5. DefenseLink Special: Travels with Gates, April 2007

    Science.gov Websites

    leg of a three-day trip to Moscow, Warsaw and Berlin to discuss U.S. plans to base a missile defense U.S. plan to base missile defense assets in Eastern Europe. "We've made some very far-reaching to discuss the proposed U.S. plan to base missile defenses in Eastern Europe, Defense Secretary

  6. 76 FR 46756 - Privacy Act of 1974; System of Records

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-08-03

    ...; System of Records AGENCY: Missile Defense Agency, Department of Defense (DoD). ACTION: Notice to Delete a System of Records. SUMMARY: The Missile Defense Agency proposes to delete a system of records notice in.... Peter Shearston, Missile Defense Agency, MDA/DXCM, 730 Irwin Ave, Schriever AFB, CO 80912-2101, or by...

  7. FY 1972-1976 Defense Program and the 1972 Defense Budget.

    DTIC Science & Technology

    1971-03-01

    Thai Government. This assessment was given me by Thai officials during my recent visit there. Insurgents along the Thai/ Malaysian border are under the...Development and Initial Procurement of Maverick Air-to-Ground Missile 31 87 Air Superiority and Air Defense Continued Procurement of F-4 Air Force Fighter... MAVERICK . The MAVERICK is another program that is of importance in providing increased capabilities for support of troops on the battlefield. MAVERICK is

  8. The National Research Council study: "Making sense of ballistic missile defense"

    NASA Astrophysics Data System (ADS)

    Wilkening, Dean A.

    2014-05-01

    This chapter explains and summarizes the main findings of a recent National Research Council study entitled Making Sense of Ballistic Missile Defense: An Assessment of Concepts and Systems for U.S. Boost-Phase Missile Defense in Comparison to Other Alternatives.

  9. Cost Effective Regional Ballistic Missile Defense

    DTIC Science & Technology

    2016-02-16

    deploying advanced air defense systems18, such as the Russian S-300 and S-500, and concealing them in hardened, camouflaged sites, such as extensive... Russian objections to the European Phased Adaptive Approach (EPAA) and fund homeland defense priorities.39 Furthermore, the PTSS system was also... Theatre Ballistic Missile Defence Capability Becomes Operational,” Jane’s Missiles & Rockets, 1 February 2011. 55 Joseph W. Kirschbaum, REGIONAL MISSILE

  10. 32 CFR 644.531 - Warning to public of danger in handling explosive missiles.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... missiles. 644.531 Section 644.531 National Defense Department of Defense (Continued) DEPARTMENT OF THE ARMY... explosive missiles. When any land which has been contaminated with explosive objects, or chemical/biological..., in the event of the discovery of an explosive missile, or an object resembling an explosive missile...

  11. 32 CFR 644.531 - Warning to public of danger in handling explosive missiles.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... missiles. 644.531 Section 644.531 National Defense Department of Defense (Continued) DEPARTMENT OF THE ARMY... explosive missiles. When any land which has been contaminated with explosive objects, or chemical/biological..., in the event of the discovery of an explosive missile, or an object resembling an explosive missile...

  12. 32 CFR 644.531 - Warning to public of danger in handling explosive missiles.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... missiles. 644.531 Section 644.531 National Defense Department of Defense (Continued) DEPARTMENT OF THE ARMY... explosive missiles. When any land which has been contaminated with explosive objects, or chemical/biological..., in the event of the discovery of an explosive missile, or an object resembling an explosive missile...

  13. 32 CFR 644.531 - Warning to public of danger in handling explosive missiles.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... explosive missiles. 644.531 Section 644.531 National Defense Department of Defense (Continued) DEPARTMENT OF... handling explosive missiles. When any land which has been contaminated with explosive objects, or chemical..., in the event of the discovery of an explosive missile, or an object resembling an explosive missile...

  14. 32 CFR 644.531 - Warning to public of danger in handling explosive missiles.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... explosive missiles. 644.531 Section 644.531 National Defense Department of Defense (Continued) DEPARTMENT OF... handling explosive missiles. When any land which has been contaminated with explosive objects, or chemical..., in the event of the discovery of an explosive missile, or an object resembling an explosive missile...

  15. Missile defense and strategic stability: Terminal High Altitude Area Defense (THAAD) in South Korea

    DOE PAGES

    Sankaran, Jaganath; Fearey, Bryan L.

    2017-02-06

    South Korea is threatened by its troubled relationship with North Korea. North Korea possesses a large cache of missiles as well as chemical and biological weapons, and the future potential to mount nuclear weapons on its missiles. The United States is also challenged because of its defense commitments to Seoul. As a countermeasure, the United States and South Korea decided to deploy Terminal High Altitude Area Defense (THAAD) missile defenses in South Korea. However, China has objected. Chinese scholars believe the THAAD radar would be able to track Chinese inter-continental ballistic missiles, thereby weakening their deterrent. A technical analysis doesmore » not support this assertion. But, it is vital for South Korea, given its proximity and economic interdependence, to reassure China. The United States Forces Korea will deploy THAD and that is not a commitment by Seoul to become part of U.S.-led missile defenses in the Asia-Pacific.« less

  16. Missile defense and strategic stability: Terminal High Altitude Area Defense (THAAD) in South Korea

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sankaran, Jaganath; Fearey, Bryan L.

    South Korea is threatened by its troubled relationship with North Korea. North Korea possesses a large cache of missiles as well as chemical and biological weapons, and the future potential to mount nuclear weapons on its missiles. The United States is also challenged because of its defense commitments to Seoul. As a countermeasure, the United States and South Korea decided to deploy Terminal High Altitude Area Defense (THAAD) missile defenses in South Korea. However, China has objected. Chinese scholars believe the THAAD radar would be able to track Chinese inter-continental ballistic missiles, thereby weakening their deterrent. A technical analysis doesmore » not support this assertion. But, it is vital for South Korea, given its proximity and economic interdependence, to reassure China. The United States Forces Korea will deploy THAD and that is not a commitment by Seoul to become part of U.S.-led missile defenses in the Asia-Pacific.« less

  17. 48 CFR 225.7003-5 - Solicitation provision and contract clauses.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... contract clauses. 225.7003-5 Section 225.7003-5 Federal Acquisition Regulations System DEFENSE ACQUISITION REGULATIONS SYSTEM, DEPARTMENT OF DEFENSE SOCIOECONOMIC PROGRAMS FOREIGN ACQUISITION Authorization Acts...: (A) Aircraft. (B) Missile or space systems. (C) Ships. (D) Tank or automotive items. (E) Weapon...

  18. 48 CFR 225.7003-5 - Solicitation provision and contract clauses.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... contract clauses. 225.7003-5 Section 225.7003-5 Federal Acquisition Regulations System DEFENSE ACQUISITION REGULATIONS SYSTEM, DEPARTMENT OF DEFENSE SOCIOECONOMIC PROGRAMS FOREIGN ACQUISITION Authorization Acts...: (A) Aircraft. (B) Missile or space systems. (C) Ships. (D) Tank or automotive items. (E) Weapon...

  19. 48 CFR 225.7003-5 - Solicitation provision and contract clauses.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... contract clauses. 225.7003-5 Section 225.7003-5 Federal Acquisition Regulations System DEFENSE ACQUISITION REGULATIONS SYSTEM, DEPARTMENT OF DEFENSE SOCIOECONOMIC PROGRAMS FOREIGN ACQUISITION Authorization Acts...: (A) Aircraft. (B) Missile or space systems. (C) Ships. (D) Tank or automotive items. (E) Weapon...

  20. 48 CFR 225.7003-5 - Solicitation provision and contract clauses.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... contract clauses. 225.7003-5 Section 225.7003-5 Federal Acquisition Regulations System DEFENSE ACQUISITION REGULATIONS SYSTEM, DEPARTMENT OF DEFENSE SOCIOECONOMIC PROGRAMS FOREIGN ACQUISITION Authorization Acts...: (A) Aircraft. (B) Missile or space systems. (C) Ships. (D) Tank or automotive items. (E) Weapon...

  1. 48 CFR 225.7003-5 - Solicitation provision and contract clauses.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... contract clauses. 225.7003-5 Section 225.7003-5 Federal Acquisition Regulations System DEFENSE ACQUISITION REGULATIONS SYSTEM, DEPARTMENT OF DEFENSE SOCIOECONOMIC PROGRAMS FOREIGN ACQUISITION Authorization Acts...: (A) Aircraft. (B) Missile or space systems. (C) Ships. (D) Tank or automotive items. (E) Weapon...

  2. The science, technology, and politics of ballistic missile defense

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Coyle, Philip E.

    America's missile defense systems are deployed at home and abroad. This includes the Groundbased Missile Defense (GMD) system in Alaska and California, the Phased Adaptive Approach in Europe (EPAA), and regional systems in the Middle East and Asia. Unfortunately these systems lack workable architectures, and many of the required elements either don't work or are missing. Major review and reconsideration is needed of all elements of these systems. GMD performance in tests has gotten worse with time, when it ought to be getting better. A lack of political support is not to blame as the DoD spends about $10 billionmore » per year, and proposes to add about $5 billion over the next five years. Russia objects to the EPAA as a threat to its ICBM forces, and to the extensive deployment of U.S. military forces in countries such as Poland, the Czech Republic and Romania, once part of the Soviet Union. Going forward the U.S. should keep working with Russia whose cooperation will be key to diplomatic gains in the Middle East and elsewhere. Meanwhile, America's missile defenses face an enduring set of issues, especially target discrimination in the face of attacks designed to overwhelm the defenses, stage separation debris, chaff, decoys, and stealth. Dealing with target discrimination while also replacing, upgrading, or adding to the many elements of U.S. missiles defenses presents daunting budget priorities. A new look at the threat is warranted, and whether the U.S. needs to consider every nation that possesses even short-range missiles a threat to America. The proliferation of missiles of all sizes around the world is a growing problem, but expecting U.S. missile defenses to deal with all those missiles everywhere is unrealistic, and U.S. missile defenses, effective or not, are justifying more and more offensive missiles.« less

  3. The science, technology, and politics of ballistic missile defense

    NASA Astrophysics Data System (ADS)

    Coyle, Philip E.

    2014-05-01

    America's missile defense systems are deployed at home and abroad. This includes the Groundbased Missile Defense (GMD) system in Alaska and California, the Phased Adaptive Approach in Europe (EPAA), and regional systems in the Middle East and Asia. Unfortunately these systems lack workable architectures, and many of the required elements either don't work or are missing. Major review and reconsideration is needed of all elements of these systems. GMD performance in tests has gotten worse with time, when it ought to be getting better. A lack of political support is not to blame as the DoD spends about 10 billion per year, and proposes to add about 5 billion over the next five years. Russia objects to the EPAA as a threat to its ICBM forces, and to the extensive deployment of U.S. military forces in countries such as Poland, the Czech Republic and Romania, once part of the Soviet Union. Going forward the U.S. should keep working with Russia whose cooperation will be key to diplomatic gains in the Middle East and elsewhere. Meanwhile, America's missile defenses face an enduring set of issues, especially target discrimination in the face of attacks designed to overwhelm the defenses, stage separation debris, chaff, decoys, and stealth. Dealing with target discrimination while also replacing, upgrading, or adding to the many elements of U.S. missiles defenses presents daunting budget priorities. A new look at the threat is warranted, and whether the U.S. needs to consider every nation that possesses even short-range missiles a threat to America. The proliferation of missiles of all sizes around the world is a growing problem, but expecting U.S. missile defenses to deal with all those missiles everywhere is unrealistic, and U.S. missile defenses, effective or not, are justifying more and more offensive missiles.

  4. KSC-2009-5014

    NASA Image and Video Library

    2009-08-03

    CAPE CANAVERAL, Fla. – At the Astrotech payload processing facility in Titusville, Fla., a crane is attached to the SV1 spacecraft, part of the Space Tracking and Surveillance System – Demonstrators, or STSS Demo, Program. The SV1 will be lifted and moved to mate with the SV2 on another stand nearby. STSS-Demo is a space-based sensor component of a layered Ballistic Missile Defense System designed for the overall mission of detecting, tracking and discriminating ballistic missiles. The spacecraft is capable of tracking objects after boost phase and provides trajectory information to other sensors. It will be launched by NASA for the Missile Defense Agency between 8 and 8:58 a.m. EDT Sept. 18. Approved for Public Release 09-MDA-04886 (10 SEPT 09) Photo credit: NASA/Jim Grossmann

  5. 48 CFR 225.7016 - Restriction on Ballistic Missile Defense research, development, test, and evaluation.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 48 Federal Acquisition Regulations System 3 2010-10-01 2010-10-01 false Restriction on Ballistic Missile Defense research, development, test, and evaluation. 225.7016 Section 225.7016 Federal Acquisition... Acquisition 225.7016 Restriction on Ballistic Missile Defense research, development, test, and evaluation. [68...

  6. Deterrence and Space-Based Missile Defense

    DTIC Science & Technology

    2009-01-01

    8. Curt Weldon , “Charting a New Course on Missile Defense,” in Spacepower for a New Millen­ nium: Space and U.S. National Security, ed. Peter L...Stimson Center, 2003), 4. 45. See Baker Spring , “The Enduring Features of the Debate over Missile Defense,” Backgrounder no. 1972, Heritage Foundation

  7. Options for Deploying Missile Defenses in Europe

    DTIC Science & Technology

    2009-02-01

    missile attacks from North Korea or Iran. The GMD system consists of interceptors (missiles designed to destroy other missiles) located at Fort Greely... location yet to be specified. This Congressional Budget Office (CBO) study—prepared at the request of the Chairman and Ranking Member of the House...Options 57FiguresS-1. Components of the Options for European Missile Defenses and Their Locations xivS-2. Distances from a Potential Missile Launch

  8. U.S. Arms Control Objectives and the Implications for Ballistic Missile Defense. Proceedings of a Symposium Held at the Center for Science and International Affairs, Harvard University, November 1-2, 1979.

    DTIC Science & Technology

    1980-06-30

    are no firm indications that the Soviet Union in- tends to expand this sytem to the full 100 launchers permitted under the ABM Treaty. Although the...Ballistic Missile Defense; Arms Control; ABM Treaty; SALT ABSTRACT (Continue on reverse eid@ If necessary and Identify by block number) IvOn November 1-2...the significance of constraints imposed by the ABM Treaty on the implementation of current and planned BMD R&D programs; (4) to explore the status of

  9. Ballistic Missile Defense: National Security and the High Frontier of Space.

    ERIC Educational Resources Information Center

    Adragna, Steven P.

    1985-01-01

    Ballistic missile defense is discussed, and the rationale behind the proposal to place defensive weapons in space is examined. Strategic defense is a national security, political, and moral imperative. (RM)

  10. By Land or By Sea: An Analysis of National Missile Defense Options

    DTIC Science & Technology

    2000-01-01

    technology evolves x and the design and specifications for elements of both systems change, having an understanding of the concepts will allow...successful program, the Nike-Zeus system claimed thirteen successful intercepts of ballistic missiles. As the program developed, Nike-Zeus became Nike- X ...5 11,185 14.56 X -33 single stage to orbit prototype 5.2 11,521 15 Nominal V(bo) GBI 6 13,422 17.48 Notional ICBM 10000 7.2 16,106 20.98 Space

  11. 48 CFR 252.225-7018 - Notice of prohibition of certain contracts with foreign entities for the conduct of ballistic...

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... certain contracts with foreign entities for the conduct of ballistic missile defense research, development... foreign entities for the conduct of ballistic missile defense research, development, test, and evaluation... With Foreign Entities for the Conduct of Ballistic Missile Defense Research, Development, Test, and...

  12. Whither Ballistic Missile Defense?

    DTIC Science & Technology

    1992-11-30

    Conference on Technical Marketing 2000: Opportunities and Strategies for a Changing World) I intend to discuss the prospects for SDI in a changing...Technical Marketing 2000: Opportunities and Strategies for a Changing World) Descriptors, Keywords: Cooper Speech Ballistic Missile Defense...WHITHER BALLISTIC MISSILE DEFENSE? BY AMBASSADOR HENRY F. COOPER NOVEMBER 30,1992 TECHNICAL MARKETING SOCIETY OF AMERICA WASHINGTON, DC

  13. JPRS Report, Arms Control.

    DTIC Science & Technology

    1989-06-14

    in New Delhi on Thurs- day said that the integrated guided missile development program aims at developing capabilities for ensuring national...defense minis- ter and the chief of the Defense Research and Develop - ment Program , has said Agni would have to be further tested. The scientists and...physicists of continuous loading of the nuclear fuel from above and unloading of the core from below in order to guarantee its more completely

  14. Missile Defense: European Phased Adaptive Approach Acquisitions Face Synchronization, Transparency, and Accountability Challenges

    DTIC Science & Technology

    2010-12-21

    House of Representatives Subject: Missile Defense: European Phased Adaptive Approach Acquisitions Face Synchronization , Transparency, and...TITLE AND SUBTITLE Missile Defense: European Phased Adaptive Approach Acquisitions Face Synchronization , Transparency, and Accountability...However, we found that DOD has not fully implemented a management process that synchronizes EPAA acquisition activities and ensures transparency and

  15. Defense Acquisitions. Missile Defense Agency Fields Initial Capability but Falls Short of Original Goals

    DTIC Science & Technology

    2006-03-01

    Implementation Plan MAP Missile Defense System Assurance Provisions MDA Missile Defense System NASA National Aeronautics and Space Administration NFIRE ...fourth element, KEI, also delayed some activities related to its Near Field Infrared Experiment ( NFIRE ), which is being conducted to gather data on the...to complete a number of tasks that would have enabled it to conduct the NFIRE experiment. The experiment places sensors aboard a satellite that

  16. The DTIC Review. Volume 5, Number 4. Homeland Defense

    DTIC Science & Technology

    2001-07-01

    proliferated enormously in recent years. Approximately 19 nations currently produce cruise missiles of some type , while more than 75 countries possess them... types are deployed in 81 different countries. 14. http://www.ceip.org/programs/npp/cruise4.htm. 15. The United States Commission on National Security...MD WASHINGTON DC NATIONAL SECURITY AND INTERNATIONAL AFFAIRS DIV Biological Warfare Improved Defense Program Response Decision Tree Workshop, 29-30

  17. The Patriot Experience in the Gulf War -- Implications for Today

    NASA Astrophysics Data System (ADS)

    Lewis, George

    2001-04-01

    As the U.S. moves towards deployment of a National Missile Defense system, it is useful to review our only actual experience with ballistic missile defense the use of the Patriot air defense system against Iraqi Scuds in the 1991 Gulf War. During and immediately after the end of the War, the U.S. Army claimed that Patriot was 96the Scuds. As criticisms of the Army’s assessment were raised, this claim was gradually reduced -- until by April 1992 it was at 61Essentially all of the data used in the Army’s assessment, even the outcome of individual engagements (which were released during the war), are now classified. However, independent analysis of Patriot’s performance using news media videos and other publicly available data shows conclusively that Patriot’s performance was very poor -- that it destroyed very few, and most likely no, Scud warheads. Although this analysis was criticized by Patriot supporters, a review by a panel appointed by the APS Panel on Physics and Public Affairs found no flaws in this analysis and rejected the arguments of its critics. This talk will discuss the publicly available video evidence and show how it can be used to assess the outcome of individual Patriot-Scud engagements. It will then summarize the results of analyzing all of the data, which show that Patriot was ineffective. It will next discuss how the U.S. Army reached its assessed success rate of 61this assessment was based on an incorrect methodology that would give a high success rate even if the actual success rate was zero. Finally, it will discuss why the performance of Patriot in the Gulf War is relevant today and what lessons we can draw from it with regard to current missile defense programs, and the National Missile Defense program in particular.

  18. 75 FR 81589 - Notice of Advisory Committee Meeting Date Change

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-12-28

    ... DEPARTMENT OF DEFENSE Office of the Secretary of Defense Notice of Advisory Committee Meeting Date Change AGENCY: Missile Defense Agency (MDA), DoD. ACTION: Notice. SUMMARY: On Tuesday, December 14, 2010... meetings of the Missile Defense [[Page 81590

  19. SpaceX CRS-12 "What's on Board?" Science Briefing

    NASA Image and Video Library

    2017-08-13

    John London, an engineer for the U.S. Army Space and Missile Defense Command, left, and Chip Hardy, Kestrel Eye program manager for the U.S. Army Space and Missile Defense Command, speak to members of social media in the Kennedy Space Center’s Press Site auditorium. The briefing focused on research planned for launch to the International Space Station. The scientific materials and supplies will be aboard a Dragon spacecraft scheduled for launch from Kennedy’s Launch Complex 39A on Aug. 14 atop a SpaceX Falcon 9 rocket on the company's 12th Commercial Resupply Services mission to the space station.

  20. Navy Aegis Ballistic Missile Defense (BMD) Program: Background and Issues for Congress

    DTIC Science & Technology

    2013-10-17

    and Gettysburg (CG-64), Chosin (CG-65), and Hue City (CG-66), which were proposed for retirement in FY2014. These ships entered service between 1991...continued) IOT &E With A Bang, Full-Rate Production Review,” Inside the Navy, October 7, 2013. 85...upgraded and rearchitectured SMART -L D-band volume search radar that will give the ships a ballistic missile defence (BMD) early warning capability

  1. KSC-2009-5237

    NASA Image and Video Library

    2009-09-25

    CAPE CANAVERAL, Fla. – Public Affairs Officer Tracy Young moderates a post-launch news conference for the media about the Space Tracking and Satellite System – Demonstrator spacecraft. Seated at center is Omar Baez, NASA launch manager, and Rear Adm. Joseph Horn, deputy director, with the U.S. Missile Defense Agency. The STSS-Demo is a space-based sensor component of a layered Ballistic Missile Defense System designed for the overall mission of detecting, tracking and discriminating ballistic missiles. The spacecraft was launched by NASA for the U.S. Missile Defense Agency. Photo credit: NASA/Jim Grossmann

  2. The Potential Transfer of Industrial Skills from Defense to Nondefense Industries. Volume II, Technical Appendix.

    ERIC Educational Resources Information Center

    California State Dept. of Employment, Sacramento.

    This study of skill transferability between missile production and nondefense industries provides the necessary data to help formulate retraining and other programs designed to help workers adjust to cutbacks in defense spending. This technical appendix to the project report contains the data upon which the report's conclusions are based. The…

  3. Theater Missile Defenses and U.S. Foreign Policy

    DTIC Science & Technology

    1992-01-01

    Tactical Missile Defense Initiative, which have as primary objectives the following: (A) The development of deployable and rapidly relocatable...countries as having some form of ballistic missile. Missiles are not only growing in numbers, but also in capabilities. In an even more disturbing trend...are advantageous in that they offer a specific counter to a growing threat that has until now gone unanswered without inherently increasing the

  4. KSC-2009-5238

    NASA Image and Video Library

    2009-09-25

    CAPE CANAVERAL, Fla. – At a post-launch news conference for the media about launch of the Space Tracking and Satellite System – Demonstrator spacecraft, NASA Launch Manager Omar Baez, at center, responds to a question. At right is Rear Adm. Joseph Horn, deputy director, with the U.S. Missile Defense Agency. At left, Public Affairs Officer Tracy Young moderates. The STSS-Demo is a space-based sensor component of a layered Ballistic Missile Defense System designed for the overall mission of detecting, tracking and discriminating ballistic missiles. The spacecraft was launched by NASA for the U.S. Missile Defense Agency. Photo credit: NASA/Jim Grossmann

  5. KSC-2009-5239

    NASA Image and Video Library

    2009-09-25

    CAPE CANAVERAL, Fla. – At a post-launch news conference for the media about launch of the Space Tracking and Satellite System – Demonstrator spacecraft, Rear Adm. Joseph Horn, deputy director with the U.S. Missile Defense Agency, answers a question. NASA Launch Manager Omar Baez is at center. At left, Public Affairs Officer Tracy Young moderates. The STSS-Demo is a space-based sensor component of a layered Ballistic Missile Defense System designed for the overall mission of detecting, tracking and discriminating ballistic missiles. The spacecraft was launched by NASA for the U.S. Missile Defense Agency. Photo credit: NASA/Jim Grossmann

  6. Annular resonators for high-power chemical lasers

    NASA Astrophysics Data System (ADS)

    Wade, Richard C.

    1993-08-01

    Resonators capable of extracting highly coherent energy from DF and HF chemical laser annular gain media have been under investigation for weapon application since 1974. This survey article traces the background of interest in these devices, describes the various concepts that have been experimentally and analytically investigated, and discusses the issues associated with their operation. From the discussion of issues, preferred concepts are selected. Applicability of these concepts to high-power operation is addressed through discussions of past and ongoing high-power demonstration programs and the issues facing their application to weapon sized devices capable of strategic and tactical missions such as ballistic missile defense (BMD), theater missile defense (TMD), and anti satellite (ASAT).

  7. 76 FR 3098 - Advisory Committee Meeting Cancellation

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-01-19

    ... DEPARTMENT OF DEFENSE Office of the Secretary Advisory Committee Meeting Cancellation AGENCY: Missile Defense Agency (MDA), DoD. ACTION: Notice. SUMMARY: On Tuesday, January 4, 2011 (Volume 76, Number... Missile Defense Advisory Committee. Due to administrative matters, these meetings scheduled for January 19...

  8. Department of Defense Program Solicitation 94; Small Business Technology Transfer (STTR) Program; Fiscal Year 1994.

    DTIC Science & Technology

    1994-01-01

    advanced diesel engine components; high-temperature titanium aluminide and Al-Fe alloys for aircraft and missile engines; environmentally compliant...gun-chamber liners and KE penetrator stabilizer fins, tips, and leading edges; low cost, ceramic thermal barrier coatings for gas turbine blades and

  9. Navy Aegis Ballistic Missile Defense (BMD) Program: Background and Issues for Congress

    DTIC Science & Technology

    2010-09-28

    co-development with Japan, for chemical vapor composite silicon carbide and silicon carbide corrugated mirror processes for the SM–3 Block IIA...all the more urgent in light of Iran’s continued uranium enrichment program. Iran continues to defy international obligations, and there continues to

  10. Report of the analysis of the joint medium range air to surface missile program

    NASA Astrophysics Data System (ADS)

    1980-01-01

    The objective of this effort completed between July, 1979 and January, 1980 was to investigate technical alternatives and make recommendations concerning management approaches to accomplish the project goals. The purpose of this report is to formalize those recommendations and to identify future courses of action alternatives. The basic concepts incorporated in a supersonic stand-off, air-to-surface missile have existed in Navy advance planning for many years. Navy action on this concept was formalized in 1967 with the decision to initiate a funded technology program to produce a system technology prototype of an advance tactical stand-off missile. Parallel development of propulsion, guidance, and other subsystem technologies conducted by the Air Force, industry, and other countries have also contributed to the current technology base. In May 1978, the Chief of Naval Operations established a requirement for a survivable medium range air-to-surface missile with the issuance of operational requirement W-0650-TW, 'Medium Range Air-to-Surface Missile'. The requirements delineate the need for an offensive air-to-surface missile that can penetrate and survive against defenses expected to be encountered in the 80's and 90's.

  11. 9th Annual Systems Engineering Conference: Volume-1 Monday Tutorial

    DTIC Science & Technology

    2006-10-26

    Joint Integrating Concepts (JIC) • Forceable Entry Ops • Undersea Superiority • Global Strike Ops • Sea-Basing Ops • Air & Missile Defense • JC2 • Joint...Forceable Entry Ops o Undersea Superiority o Global Strike Ops o Sea-Basing Ops o Air & Missile Defense o JC2 o Joint Logistics Includes an illustrative... Undersea Superiority • Global Strike Ops • Sea-Basing Ops • Air & Missile Defense • JC2 • Joint Logistics Universal Joint Task List (UJTL) • Strategic

  12. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Peglow, S.G.

    We feel that the concept of intercepting a fractionated threat from a tactical ballistic missile is potentially feasible and would have very high payoff for the defense. Many other concepts have been suggested to solve this problem, although they have mostly been more futuristic approaches, e.g. aircrafty based lasers. We also believe that current technologies are not likely to be adequate for the expected types of very small submunition payloads, especially in the presence of relatively simple countermeasures. The MEDUSA concept, or its clones, may very well provide a vehicle for the study of less stressing threats, e.g. separating warheadsmore » and provide a lethality enhancement for non-deployed payloads. An opportunity also exists to investigate alternative technologies, such as the explosively-formed ``disk`` idea. The use of high-precision, limited field-of-view sensor-fuzed munitions is a subject of interest in other Defense Department programs and may have application to the important area of theater missile defense.« less

  13. On limiting technology by negotiated agreement

    NASA Astrophysics Data System (ADS)

    Carnesale, Albert

    1983-10-01

    The substance of my remarks tonight will be far narrower in scope than the prescribed title of my talk would indicate. This reflects two considerations: first, this topical meeting is focused on technologies associated with nuclear weapons systems; and, second, President Reagan recently (i.e., on March 23, 1983) called for ``a program to counter the awesome Soviet missile threat with measures that are defensive.'' In light of these considerations, I will concentrate tonight on the case of anti-ballistic missile (ABM) systems as an example of a countinuing effort to limit technology by negotiated agreement? Why limit ABM systems? After all, such systems are defensive in nature, not offensive. Defensive systems are intended to protect people and the things of value to them. It is the offensive systems that cause death and destruction. Why don't we just go ahead and deploy the best available ABM system, and develop and test even better systems for deployment in the future?

  14. Advanced Concepts Research for Flywheel Technology Applications

    NASA Technical Reports Server (NTRS)

    Keith, Theo G., Jr.; Wagner, Robert

    2004-01-01

    The Missile Defense Agency (MDA) (formerly the Ballistic Missile Defense Organization) is embarking on a program to employ the use of High Altitude Airships (HAAs) for surveillance of coastal areas as a part of homeland defense. It is envisioned that these HAAs will fly at 70,000 feet continuously for at least a year, therefore requiring a regenerative electric power system. As part of a program to entice the MDA to utilize the NASA GRC expertise in electric power and propulsion as a means of risk reduction, an internal study program was performed to examine possible configurations that may be employed on a HAA to meet a theoretical surveillance need. This entailed the development of a set of program requirements which were flowed down to system and subsystem level requirements as well as the identification of environmental and infrastructure constraints. Such infrastructure constraints include the ability to construct a reasonably sized HAA within existing airship hangers, as the size of such vehicles could reach in excess of 600 ft. The issues regarding environments at this altitude are similar to those that would be imposed on satellite in Low Earth Orbit. Additionally, operational constraints, due to high winds at certain times of the year were also examined to determine options that could be examined to allow year round coverage of the US coast.

  15. Department of Defense Dictionary of Military and Associated Terms

    DTIC Science & Technology

    2016-02-15

    05) active air defense — Direct defensive action taken to destroy, nullify, or reduce the effectiveness of hostile air and missile threats against...JP 3-60) air and missile defense — Direct [active and passive] defensive actions taken to destroy, nullify, or reduce the effectiveness of...troops especially trained to effect , following transport by air, an assault debarkation, either by parachuting or touchdown. 2. In relation to

  16. Iranian Ballistic Missile Threat and a Phased, Adaptive Approach for Missile Defense in Europe: Perceptions, Policies and Scenarios

    DTIC Science & Technology

    2010-09-15

    any other provision of law , no person shall be subject to any penalty for failing to comply with a collection of information if it does not display a...COVERED (From - To) 4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR( S ) 5d...PROJECT NUMBER 5e. TASK NUMBER 5f. WORK UNIT NUMBER 7. PERFORMING ORGANIZATION NAME( S ) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION

  17. Aviation Warrant Officer Program and Enlisted Aviator Study

    DTIC Science & Technology

    1977-11-01

    MOS. No direct appointment into this MOS. (b) 961A (ATTACHE TECHNICIAN) Entry and advanced MOS. (c) 221B ( NIKE MISSILE ASSEMBLY TECHNICIAN) Entry MOS...Advanced level is MOS, 251B (Air Defense Missile System Repair Technician, NIKE ) (d) 963A (INTERROGATION TECHNICIAN) Entry and advanced MOS, but...30 SEP 77 021A - Club Manager 9 2 222B - AD MSL Fire Tech, Nike 13 39 *Authorization equals 10.0% of the assigned strength for FY 77. 18 To make a

  18. Tailoring and Critical Thinking - Key Principles for Acquisition Success

    DTIC Science & Technology

    2015-10-01

    Defense AT&L: September–October 2015 6 Tailoring and Critical Thinking— Key Principles for Acquisition Success Mike Kotzian, D.M. n Michael Paul...well as program success . 7 Defense AT&L: September–October 2015 The Long Range Anti-Ship Missile Opportunity To ensure DARPA maintains its ability... successful flight demonstra- tions that initially proved the technical approach. Concurrent with these technical accomplishments came two important

  19. FY 1978 Budget, FY 1979 Authorization Request and FY 1978-1982 Defense Programs,

    DTIC Science & Technology

    1977-01-17

    technological opportunities with defense applica- tions -- such as long-range cruise missiles and guidance, improved sensors, 25 miniaturization, and computer ...Various methods exist for computing the number of theater nuclear weapons needed to perform these missions with an acceptable level of confidence...foreign military forces. Mini-micro computers are especially interesting. -- Finally, since geography remains important, we must recognize that the

  20. Analysis of Defense Products Contract Trends, 1990-2014

    DTIC Science & Technology

    2015-04-30

    contract obligations) are not properly classified under their parent programs. Electronics & Communications Contract obligations for Electronics...Electronics & Communications , Engines & Power Plants, Fuels, Ground Vehicles, Launchers & Munitions, Missiles & Space, Ships, and “Other.”3 This...mostly comprised of platforms and programs related to MDAPs (Clothing & Subsistence, Electronics & Communications , Fuels, Launchers & Munitions, and

  1. Navy Aegis Ballistic Missile Defense (BMD) Program: Background and Issues for Congress

    DTIC Science & Technology

    2011-04-19

    for SM-3 Block IIA co-development with Japan, for chemical vapor composite silicon carbide and silicon carbide corrugated mirror processes for the SM...to say, this concern is all the more urgent in light of Iran’s continued uranium enrichment program. Iran continues to defy international obligations

  2. Penaid Nonproliferation: Hindering the Spread of Countermeasures Against Ballistic Missile Defenses

    DTIC Science & Technology

    2014-01-01

    50 Penaid Nonproliferation: Hindering the Spread of Countermeasures Against Ballistic Missile Defenses 42 /2010! Plume Signature Control...and Richard Speier, “Penaid Nonproliferation: Analysis and Recommendations,” briefing, Veridian Corp., Arlington, Va., June 29, 2000. “ Missile ...is a nonprofit institution that helps improve policy and decisionmaking through research and analysis . This electronic document was made available

  3. Cult of deterrence: A moral and strategic critique of the anti-ballistic missile treaty. Master`s thesis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pringle, C.S.

    1997-12-30

    Ballistic missile defense is the morally and strategically superior alternative to the current system of deterrence, provided that it is responsibly implemented. Analysis of the Just War Criteria and the utilitarian justifications of deterrence present a moral obligation to pursue the alternative strategy of missile defense as a means of defending the United States. However, the Anti-Ballistic Missile (ABM) Treaty does not allow earnest pursuit of this alternative, despite recent efforts to exploit its loopholes and broaden its meaning beyond any reasonable limit. Moreover, deterrence can no longer provide the guarantee of security that it did during the Cold War.more » Offense-Defense Theory shows that revisionist states are not subject to the same calculations of effective deterrence that the Soviet Union was during that period. This strategic analysis underlies the moral evaluations and further supports missile defense. The cult of deterrence is presented as an explanation for the failure to adapt national security policy to the new international structure, as European powers failed to perceive the offense-defense balance prior to World War I. The ABM regime threatens to reproduce those same mistakes with even greater consequences.« less

  4. 77 FR 34357 - Missile Defense Advisory Committee; Notice of Closed Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-06-11

    ... Missile Defense Advisory Committee, in the following formats: One hard copy with original signature and one electronic copy via email (acceptable file formats: Adobe Acrobat PDF, MS Word or MS PowerPoint...

  5. Defense Acquisitions: Assessments of Selected Weapon Programs

    DTIC Science & Technology

    2009-03-01

    a field experiment , but program officials report that it will take additional efforts to transition the waveform to an operational platform. The...successfully demonstrated during a field experiment ending in October 2008 that included a multi-subnet test by Future Combat Systems personnel. The...Individual Programs 29 Advanced Extremely High Frequency (AEHF) Satellites 31 Advanced Threat Infrared Countermeasure/Common Missile Warning System

  6. Missile airframe simulation testbed: MANPADS (MAST-M) for test and evaluation of aircraft survivability equipment

    NASA Astrophysics Data System (ADS)

    Clements, Jim; Robinson, Richard; Bunt, Leslie; Robinson, Joe

    2011-06-01

    A number of techniques have been utilized to evaluate the performance of Aircraft Survivability Equipment (ASE) against threat Man-Portable Air Defense Systems (MANPADS). These techniques include flying actual threat MANPADS against stationary ASE with simulated aircraft signatures, testing installed ASE systems against simulated threat signatures, and laboratory hardware-in-the-loop (HWIL) testing with simulated aircraft and simulated missile signatures. All of these tests lack the realism of evaluating installed ASE against in-flight MANPADS on a terminal homing intercept path toward the actual ASE equipped aircraft. This limitation is due primarily to the current inability to perform non-destructive MANPADS/Aircraft flight testing. The U.S. Army Aviation and Missile Research and Development and Engineering Center (AMRDEC) is working to overcome this limitation with the development of a recoverable surrogate MANPADS missile system capable of engaging aircraft equipped with ASE while guaranteeing collision avoidance with the test aircraft. Under its Missile Airframe Simulation Testbed - MANPADS (MAST-M) program, the AMRDEC is developing a surrogate missile system which will utilize actual threat MANPADS seeker/guidance sections to control the flight of a surrogate missile which will perform a collision avoidance and recovery maneuver prior to intercept to insure non-destructive test and evaluation of the ASE and reuse of the MANPADS seeker/guidance section. The remainder of this paper provides an overview of this development program and intended use.

  7. The Full Costs of Ballistic Missile Defense

    DTIC Science & Technology

    2003-01-01

    following words: “We assess that countries developing ballistic missiles would also develop various responses to US theater and national defenses. Russia...and China each have developed numerous countermeasures and probably are willing to sell the requisite technologies. • Many countries , such as North...penetration aids and countermeasures. • These countries could develop countermeasures based on these technologies by the time they flight test their missiles

  8. 76 FR 16736 - Closed Meeting of the Missile Defense Advisory Committee

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-03-25

    ... Missile Defense Advisory Committee, in the following formats: One hard copy with original signature and one electronic copy via e-mail (acceptable file formats: Adobe Acrobat PDF, MS Word or MS PowerPoint...

  9. Transaction Costs and Cost Breaches in Major Defense Acquisition Programs

    DTIC Science & Technology

    2014-02-04

    bases, schools, missile storage facilities, maintenance facilities, medical/ dental clinics, libraries, and military family housing (DAU, 2011b...AIM-9_Sidewinder Allison, P. D. (2001). Logistic regression using the SAS system. Cary , NC: SAS Institute. Angelis, D., Dillard, J., Franck, C

  10. What really bothers China about THAAD? 'WHY CHINA BOTHERS ABOUT THAAD MISSILE DEFENSE'

    DOE PAGES

    Sankaran, Jaganath; Fearey, Bryan Leo

    2017-02-07

    The United States has announced that it will deploy Terminal High Altitude Area Defense (THAAD) missile defense system to the Republic of Korea. Here, China has objected as it fears encirclement. The United States should continue to engage with China via official and other channels to mitigate concerns and avoid misperceptions.

  11. What really bothers China about THAAD? 'WHY CHINA BOTHERS ABOUT THAAD MISSILE DEFENSE'

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sankaran, Jaganath; Fearey, Bryan Leo

    The United States has announced that it will deploy Terminal High Altitude Area Defense (THAAD) missile defense system to the Republic of Korea. Here, China has objected as it fears encirclement. The United States should continue to engage with China via official and other channels to mitigate concerns and avoid misperceptions.

  12. Report of the Secretary of Defense Frank C. Carlucci to the Congress on the FY 1990/FY 1991 Biennial Budget and FY 1990-94 Defense Programs

    DTIC Science & Technology

    1990-01-01

    effective ways of promoting U.S. interests. Finally, our Denton Amendment space-available transportation program continues assisting generous American hu... Eglin AFB, FL 9th SOS, Eglin AFB, FL 55th SOS, Eglin AFB, FL 1724th Special Tactics Squadron, Pope AFB, NC 67th SOS, RAF Woodbridge, UK 21st SOS...almost all of which were built from 1962 to 1966 - faced block obsolescence within a decade, and their missiles would not be effective against hardened

  13. Defense Acquisitions: Assessments of Selected Weapon Programs

    DTIC Science & Technology

    2016-03-01

    Increment 3 81 Indirect Fire Protection Capability Increment 2-Intercept Block 1 (IFPC Inc 2-I Block 1) 83 Improved Turbine Engine Program (ITEP...ITEP Improved Turbine Engine Program JAGM Joint Air-to-Ground Missile JLTV Joint Light Tactical Vehicle JSTARS Recap Joint Surveillance Target...Attack Radar System Recap 09/2017 —-   Improved Turbine Engine Program 06/2018 O O O Amphibious Ship Replacement 09/2018 O O Advanced Pilot

  14. Computer Science Research Funding: How Much Is Too Little?

    DTIC Science & Technology

    2009-06-01

    Bioinformatics Parallel computing Computational biology Principles of programming Computational neuroscience Real-time and embedded systems Scientific...National Security Agency ( NSA ) • Missile Defense Agency (MDA) and others The various research programs have been coordinated through the DDR&E...DOD funding included only DARPA and OSD programs. FY07 and FY08 PBR funding included DARPA, NSA , some of the Services’ basic and applied research

  15. Role of premission testing in the National Missile Defense system

    NASA Astrophysics Data System (ADS)

    Tillman, Janice V.; Atkinson, Beverly

    2001-09-01

    The purpose of the National Missile Defense (NMD) system is to provide detection, discrimination, engagement, interception, and negation of ballistic missile attacks targeted at the United States (U.S.), including Alaska and Hawaii. This capability is achieved through the integration of weapons, sensors, and a battle management, command, control and communications (BMC3) system. The NMD mission includes surveillance, warning, cueing, and engagement of threat objects prior to potential impact on U.S. targets. The NMD Acquisition Strategy encompasses an integrated test program using Integrated Ground Tests (IGTs), Integrated Flight Tests (IFTs), Risk Reduction Flights (RRFs), Pre Mission Tests (PMTs), Command and Control (C2) Simulations, and other Specialty Tests. The IGTs utilize software-in-the-loop/hardware-in-the-loop (SWIL / HWIL) and digital simulations. The IFTs are conducted with targets launched from Vandenberg Air Force Base (VAFB) and interceptors launched from Kwajalein Missile Range (KMR). The RRFs evaluate NMD BMC3 and NMD sensor functional performance and integration by leveraging planned Peacekeeper and Minuteman III operational test flights and other opportunities without employing the NMD interceptor. The PMTs are nondestructive System-level tests representing the use of NMD Element Test Assets in their IFT configuration and are conducted to reduce risks in achieving the IFT objectives. Specifically, PMTs are used to reduce integration, interface, and performance risks associated with Flight Tests to ensure that as much as possible, the System is tested without expending a target or an interceptor. This paper examines several critical test planning and analysis functions as they relate to the NMD Integrated Flight Test program and, in particular, to Pre-Mission Testing. Topics to be discussed include: - Flight-test program planning; - Pre-Test Integration activities; and - Test Execution, Analysis, and Post-Flight Reconstruction.

  16. Missile Defense Agency Ballistic Missile Defense System (BMDS): Programmatic Environmental Impact Statement. Volume 2. Appendices A - J

    DTIC Science & Technology

    2007-01-01

    buffalo grass (Buchloe dactuloides), peppergrass (Lepidium lasiocarpum), and Bermuda grass ( Cynodon dactylon). Some examples of indigenous... aethiopicus ), zebra (Equus burchelli), rhinoceros (Diceros bicornis [black], Ceratotherium simum [white]), giraffe (Giraffa camelopardalis), gazelle

  17. Ballistic Missile Defense in the European Theater: Political, Military and Technical Considerations

    DTIC Science & Technology

    2007-04-15

    currently valid OMB control number. PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS. 1. REPORT DATE (DD-MM-YYYY) 15 04 2007 2. REPORT TYPE...the European Security Strategy. These strategic documents implicitly and explicitly build a strong case for bolstering missile defense capabilities...states. The NMS advocates the building of a defense in depth by extending defensive capabilities well beyond United States borders, and uses the

  18. Historic American engineering record. Nevada national security site, Bren Tower Complex. Written historical and descriptive data and field records

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Edwards, Susan R.; Goldenberg, Nancy

    The BREN (Bare Reactor Experiment, Nevada) Tower Complex is significant for its role in the history of nuclear testing, radiation dosimetry studies, and early field testing of the Strategic Missile Defense System designs. At the time it was built in 1962, the 1,527 ft (465 m) BREN Tower was the tallest structure west of the Mississippi River and exceeded the height of the Empire State Building by 55 ft (17 m). It remains the tallest ever erected specifically for scientific purposes and was designed and built to facilitate the experimental dosimetry studies necessary for the development of accurate radiation dosemore » rates for the survivors of Hiroshima and Nagasaki. The tower was a key component of the Atomic Bomb Casualty Commission’s (ABCC) mission to predict the health effects of radiation exposure. Moved to its current location in 1966, the crucial dosimetry studies continued with Operation HENRE (High Energy Neutron Reactions Experiment). These experiments and the data they generated became the basis for a dosimetry system called the Tentative 1965 Dose or more commonly the T65D model. Used to estimate radiation doses received by individuals, the T65D model was applied until the mid-1980s when it was replaced by a new dosimetry system known as DS86 based on the Monte Carlo method of dose rate calculation. However, the BREN Tower data are still used for verification of the validity of the DS86 model. In addition to its importance in radiation heath effects research, the BREN Tower Complex is also significant for its role in the Brilliant Pebbles research project, a major component of the Strategic Defense Initiative popularly known as the “Star Wars” Initiative. Instigated under the Reagan Administration, the program’s purpose was to develop a system to shield the United States and allies from a ballistic missile attack. The centerpiece of the Strategic Defense System was space-based, kinetic-kill vehicles. In 1991, BREN Tower was used for the tether tests of the Brilliant Pebbles prototype vehicle at the earth’s surface prior to the more costly space testing program. The success of these tests established the Brilliant Pebbles program as an essential component of America’s space-based missile defense system even after the dismantling of the Soviet Union. Data from the Brilliant Pebbles research program continues to inspire current missile defense system research (Independent Working Group 2009).« less

  19. Missile Defense: Actions Needed to Improve Transparency and Accountability

    DTIC Science & Technology

    2011-04-13

    suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway...Established resource, schedule, test, operational capacity, technical, and contract baselines for several missile defense systems. It reported...Europe as well as the Ground-based Midcourse Defense system. View GAO-11-555T or key components. For more information, contact Cristina T

  20. Department of Defense Annual Report to Congress on Defense Acquisition Challenge Program for FY 2006

    DTIC Science & Technology

    2007-06-01

    Synthetic Instrument Measurement and Stimulus System – Improves aircraft avionics and electronic attack pod testing to expedite repair of critical...integration into CIWS • Navy requirement Cancelled / Not procured Air Force (4 Projects) • Quiet Eyes • On Aircraft (B-2) Laser Additive...System • Met Requirement/Rolled into FY07 Cost Effective Light Aircraft Missile Protect DAC for Army, Navy and Air Force helicopters • Did Not

  1. Mind-Sets and Missiles: A First Hand Account of the Cuban Missile Crisis

    DTIC Science & Technology

    2009-09-01

    was still in session, Deputy Secretary of Defense Roswell Gilpatric gave a speech to the Business Council at White Sulfur Springs, West Virginia...Bundy and Roswell Gilpatric in Paris to warn them that he believed the Soviets would place offensive missiles in Cuba. In a series of cables between...repeat missions of recent reconnaissance operations which [Deputy Secretary of Defense Roswell ] Gilpatric advises informative. Also I support use of R

  2. European Missile Defense and Russia

    DTIC Science & Technology

    2014-07-01

    defense system in Europe by 2018 , which involved four phases at the time. The first phase consisted of an early warning radar estab- lished in Turkey...bal- listic missile interceptor site in Europe, slated to be operational in Redizkowo, Poland, by 2018 , equipped with the SM-3 Block IIA interceptor...fourth phases, that is towards 2018 and 2020, the U.S. missile defence sector almost reaches Russia’s Urals. This is not what we have agreed on.29

  3. Design trade-offs for homing missiles

    NASA Astrophysics Data System (ADS)

    Spencer, Allen; Moore, William

    1992-05-01

    Major design considerations, trade-offs and technology issues for future hypervelocity, anti-missile interceptors are presented in an overview format. Two classes of interceptors are considered: a low altitude interceptor using an active radar seeker for defense against tactical ballistic missiles (TBMs) and a higher altitude interceptor using a passive infra-red seeker for defense against ICBMs. Considerations are presented in the areas of mission requirements, seeker selection, aerodynamic and aerothermal environments, control systems, and guidance performance.

  4. Planetary Defense From Space: Part 2 (Simple) Asteroid Deflection Law

    NASA Astrophysics Data System (ADS)

    Maccone, Claudio

    2006-06-01

    A system of two space bases housing missiles for an efficient Planetary Defense of the Earth from asteroids and comets was firstly proposed by this author in 2002. It was then shown that the five Lagrangian points of the Earth Moon system lead naturally to only two unmistakable locations of these two space bases within the sphere of influence of the Earth. These locations are the two Lagrangian points L1 (in between the Earth and the Moon) and L3 (in the direction opposite to the Moon from the Earth). In fact, placing missiles based at L1 and L3 would enable the missiles to deflect the trajectory of incoming asteroids by hitting them orthogonally to their impact trajectory toward the Earth, thus maximizing the deflection at best. It was also shown that confocal conics are the only class of missile trajectories fulfilling this “best orthogonal deflection” requirement. The mathematical theory developed by the author in the years 2002 2004 was just the beginning of a more expanded research program about the Planetary Defense. In fact, while those papers developed the formal Keplerian theory of the Optimal Planetary Defense achievable from the Earth Moon Lagrangian points L1 and L3, this paper is devoted to the proof of a simple “(small) asteroid deflection law” relating directly the following variables to each other:the speed of the arriving asteroid with respect to the Earth (known from the astrometric observations);the asteroid's size and density (also supposed to be known from astronomical observations of various types);the “security radius” of the Earth, that is, the minimal sphere around the Earth outside which we must force the asteroid to fly if we want to be safe on Earth. Typically, we assume the security radius to equal about 10,000 km from the Earth center, but this number might be changed by more refined analyses, especially in the case of “rubble pile” asteroids;the distance from the Earth of the two Lagrangian points L1 and L3 where the defense missiles are to be housed;the deflecting missile's data, namely its mass and especially its “extra-boost”, that is, the extra-energy by which the missile must hit the asteroid to achieve the requested minimal deflection outside the security radius around the Earth.This discovery of the simple “asteroid deflection law” presented in this paper was possible because:In the vicinity of the Earth, the hyperbola of the arriving asteroid is nearly the same as its own asymptote, namely, the asteroid's hyperbola is very much like a straight line. We call this approximation the line/circle approximation. Although “rough” compared to the ordinary Keplerian theory, this approximation simplifies the mathematical problem to such an extent that two simple, final equations can be derived.The confocal missile trajectory, orthogonal to this straight line, ceases then to be an ellipse to become just a circle centered at the Earth. This fact also simplifies things greatly. Our results are thus to be regarded as a good engineering approximation, valid for a preliminary astronautical design of the missiles and bases at L1 and L3.Still, many more sophisticated refinements would be needed for a complete Planetary Defense System:taking into account many perturbation forces of all kinds acting on both the asteroids and missiles shot from L1 and L3;adding more (non-optimal) trajectories of missiles shot from either the Lagrangian points L4 and L5 of the Earth Moon system or from the surface of the Moon itself;encompassing the full range of missiles currently available to the USA (and possibly other countries) so as to really see “which missiles could divert which asteroids”, even just within the very simplified scheme proposed in this paper.In summary: outlined for the first time in February 2002, our Confocal Planetary Defense concept is a simplified Keplerian Theory that already proved simple enough to catch the attention of scholars, popular writers, and representatives of the US Military. These developments would hopefully mark the beginning of a general mathematical vision for building an efficient Planetary Defense System in space and in the vicinity of the Earth, although not on the surface of the Earth itself! We must make a real progress beyond academic papers, Hollywood movies and secret military plans, before asteroids like 99942 Apophis get close enough to destroy us in 2029 or a little later.

  5. 29 CFR 1952.243 - Final approval determination.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... Lisburne Long Range Missile Base, Point Lay Short Range Missile Base, Eareckson Air Station on Shemya Island, Fort Greeley Missile Defense in Delta Junction, the U.S. Coast Guard Integrated Support Commands...

  6. 29 CFR 1952.243 - Final approval determination.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... Lisburne Long Range Missile Base, Point Lay Short Range Missile Base, Eareckson Air Station on Shemya Island, Fort Greeley Missile Defense in Delta Junction, the U.S. Coast Guard Integrated Support Commands...

  7. 29 CFR 1952.243 - Final approval determination.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... Lisburne Long Range Missile Base, Point Lay Short Range Missile Base, Eareckson Air Station on Shemya Island, Fort Greeley Missile Defense in Delta Junction, the U.S. Coast Guard Integrated Support Commands...

  8. 29 CFR 1952.243 - Final approval determination.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Lisburne Long Range Missile Base, Point Lay Short Range Missile Base, Eareckson Air Station on Shemya Island, Fort Greeley Missile Defense in Delta Junction, the U.S. Coast Guard Integrated Support Commands...

  9. 29 CFR 1952.243 - Final approval determination.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... Lisburne Long Range Missile Base, Point Lay Short Range Missile Base, Eareckson Air Station on Shemya Island, Fort Greeley Missile Defense in Delta Junction, the U.S. Coast Guard Integrated Support Commands...

  10. Navy Littoral Combat Ship (LCS)/Frigate Program: Background and Issues for Congress

    DTIC Science & Technology

    2016-04-18

    each shipyard will deliver an LCS, on average, every six months for the remainder of the block buy. LCS 5 and 6 delivered with the fewest trial cards ...News (http://news.usni.org), April 9, 2014; Mike McCarthy, “LCS Program Dumping Griffin Missile In Favor Of Army’s Longbow,” Defense Daily, April 10

  11. NPS TINYSCOPE Program Management

    DTIC Science & Technology

    2010-09-01

    SMDC - Space and Missile Defense Command SOW - Statement of Work STEM - Science, Technology, Engineering and Mathematics STP - Space Test Program...the project. A statement of work ( SOW ) is typically used to document broad responsibilities, deliverables, and the work activities required in a...given project. The SOW acts as a guideline Summary of TINYSCOPE and Argus Requirements Requirement Threshold Objective Mission IOC Sep 2011 ASAP

  12. Navy CG(X) Cruiser Program: Background for Congress

    DTIC Science & Technology

    2010-06-10

    PROGRAM ELEMENT NUMBER 6. AUTHOR(S) 5d. PROJECT NUMBER 5e . TASK NUMBER 5f. WORK UNIT NUMBER 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES...Navy’s Top Officer Sees Lessons in Shipbuilding Program Failures,” GovernmentExecutive.com, September 24, 2008) quoted Admiral Gary Roughead, the Chief...procuring CG(X)s was properly aligned with foreign-country ballistic missile development programs. A 2005 defense trade press report, for example, stated

  13. Assessing Weapon System Acquisition Cycle Times: Setting Program Schedules

    DTIC Science & Technology

    2015-06-01

    additional research, focused as follows: 1 . Acquisition schedule development: How are schedules for acquisition programs actually set and how are they...the germinating requirements documents specific to systems reviewed. A clear statement was found for only one system (Air and Missile Defense Radar...AMDR) when specific threat capabilities were projected to be operational. • Program schedule setting varies in rigor: 1 Up to the interim version of

  14. 29 CFR 1952.244 - Level of Federal enforcement.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... private contractors at Cape Lisburne Long Range Missile Base, Point Lay Short Range Missile Base, Eareckson Air Station on Shemya Island, Fort Greeley Missile Defense in Delta Junction, the U.S. Coast Guard...

  15. 29 CFR 1952.244 - Level of Federal enforcement.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... private contractors at Cape Lisburne Long Range Missile Base, Point Lay Short Range Missile Base, Eareckson Air Station on Shemya Island, Fort Greeley Missile Defense in Delta Junction, the U.S. Coast Guard...

  16. 29 CFR 1952.244 - Level of Federal enforcement.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... private contractors at Cape Lisburne Long Range Missile Base, Point Lay Short Range Missile Base, Eareckson Air Station on Shemya Island, Fort Greeley Missile Defense in Delta Junction, the U.S. Coast Guard...

  17. 29 CFR 1952.244 - Level of Federal enforcement.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... private contractors at Cape Lisburne Long Range Missile Base, Point Lay Short Range Missile Base, Eareckson Air Station on Shemya Island, Fort Greeley Missile Defense in Delta Junction, the U.S. Coast Guard...

  18. Evolution in strategic forces and doctrine

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Canavan, G.H.

    The era of the deterrence through the threat of retaliation is ending. Strategic defense opens new options for deep reductions without loss of stability, which could be a guide for shifting from the residual forces from the offensive era into those appropriate for a multipolar world. There are strong arguments for retiring missiles under the cover of missile defenses and returning to fewer but more capable aircraft for strategic roles. Developing the technologies for theater and strategic defenses could largely eliminate the incentive for the development of missiles by the third world and shift their efforts into more stabilizing areas.more » 20 refs.« less

  19. Using hardware-in-the-loop (HWIL) simulation to provide low-cost testing of TMD IR missile systems

    NASA Astrophysics Data System (ADS)

    Buford, James A., Jr.; Paone, Thad

    1998-07-01

    A greater awareness of and increased interest in the use of modeling and simulation (M&S) has been demonstrated at many levels within the Department of Defense (DoD) and all the Armed Services agencies in recent years. M&S application is regarded as a viable means of lowering the life cycle costs of theater missile defense (TMD) weapon system acquisition beginning with studies of new concepts of warfighting through user training and post-deployment support. The Missile Research, Engineering, and Development Center (MRDEC) of the U.S. Army Aviation and Missile Command (AMCOM) has an extensive history of applying all types of M&S to TMD weapon system development and has been a particularly strong advocate of hardware-in-the-loop (HWIL) simulation for many years. Over the past 10 years MRDEC has developed specific and dedicated HWIL capabilities for TMD applications in both the infrared and radio frequency sensor domains. This paper provides an overview of the infrared-based TMD HWIL missile facility known as the Imaging Infrared System Simulation (I2RSS) which is used to support the Theater High Altitude Air Defense (THAAD) missile system. This facility uses M&S to conduct daily THAAD HWIL missile simulations to support flight tests, missile/system development, independent verification and validation of weapon system embedded software and simulations, and missile/system performance against current and future threat environments. This paper describes the THAAD TMD HWIL role, process, major components, HWIL verification/validation, and daily HWIL support areas in terms of both missile and complete system.

  20. Definition of an anti-missile ballistic defense architecture for Europe

    NASA Astrophysics Data System (ADS)

    Deas, M.; Tanter, A.

    1995-01-01

    The end of the Seventies and beginning of the Eighties showed significant technological developments in ballistic missiles, in particular,impact precision. These improvements caused Western strategists to be concerned with use of ballistic missiles equipped with conventional loads against military objectives (the Pact of Varsovie). The concept of ballistic missile tactical had been born. The ballistic vector, which until this time was marked with a 'strategic' label, was then 'standardized' and has interested a number of countries in the process of its development. The world has just entered the era of the ballistic proliferation. From the very start of the Eighties, the United States and, to a lesser degree, NATO lead studies and reflections concerned with defense against tactical ballistic missiles within a East West framework. From these studies the ATBM (Anti Tactical Ballistic Missile) made its appearance. In spite of the attempts at control, missile proliferation has accelerated and led, towards the end of the Eighties and the beginning of the Nineties, to the awakening of a new risk known as proliferating. The 1991 Gulf War was accelerated in this manner. This conflict also clarified the fact that the ballistic weapon constituted a formidable means of pressure for countries which had it, in spite of the PATRIOT, which demonstrated the feasibility of an active defense against ballistic missiles, in spite of their limited performances. This present presentation proposes an overall analysis of the ballistic risk and the possible threat which could result from it and examines the means available for protection against this risk by looking further into all the defensive means. This will constitute the main part of the speech. Lastly, we will endeavor to evaluate the difficulties faced by the architects of the DAMB.

  1. Information Management Principles Applied to the Ballistic Missile Defense System

    DTIC Science & Technology

    2007-03-01

    of a BMDS. From this, the Army produced the Nike -Zeus system comprised of four radars, the Zeus missile, and a computer fire control system (General...made the Nike -Zeus our first National Missile Defense (NMD) system named Sentinel. The architecture was to cover 14 locations, 10 of which were...1999). Additionally, there are cultural impacts (Gordon & Gordon, 1999). A company choosing an Apple OS may have to wage a big fight against the

  2. Department of Defense Annual Report Fiscal Year 1981,

    DTIC Science & Technology

    1980-01-29

    and a small West African naval patrol "shows the flag" using ports such as Cotonou , as well as Luanda. Other countries have resisted Soviet efforts...breakthrough. The first submarine finished conversion in December 1978, and the SSBN was deployed with the TRIDENT I missile in October 1979; program

  3. CNN Newsroom Classroom Guides, May 2001.

    ERIC Educational Resources Information Center

    Cable News Network, Atlanta, GA.

    These classroom guides, designed to accompany the daily CNN (Cable News Network) Newsroom broadcasts for the month of May 2001, provide program rundowns, suggestions for class activities and discussion, student handouts, and a list of related news terms. Top stories include: President Bush will announce his plans for a missile defense system,…

  4. Heterogeneous Air Defense Battery Location: A Game Theoretic Approach

    DTIC Science & Technology

    In the air defense context of a missile-and-interceptor engagement, a challenge for the defender is that surface to air interceptor missile batteries ...often must be located to protect high-value targets dispersed over a vast area, subject to an attacker observing the disposition of batteries prior

  5. KSC-2009-5235

    NASA Image and Video Library

    2009-09-25

    CAPE CANAVERAL, Fla. – Smoke billows around the United Launch Alliance Delta II rocket as it launches into space carrying the Space Tracking and Surveillance System - Demonstrator, or STSS-Demo, spacecraft. STSS-Demo was launched at 8:20:22 a.m. EDT by NASA for the U.S. Missile Defense Agency. The STSS-Demo is a space-based sensor component of a layered Ballistic Missile Defense System designed for the overall mission of detecting, tracking and discriminating ballistic missiles. Photo credit: NASA/Regina Mitchell-Tom Farrar

  6. The Influence of Politics, Technology, and Asia on the Future of US Missile Defense (Walker Paper, Number 7)

    DTIC Science & Technology

    2007-08-01

    velopment of the first US missile-defense system, the Nike - Zeus, that was successfully tested in 1962. The Nike -Zeus system achieved several...discriminating the warhead from other objects, • tracking the warhead, • and then guiding the Nike -Zeus missile to the intercept point. Beyond...an effective kill vehicle. The quality of radar tracking was not adequate for a conven- tional warhead; therefore, the Nike -Zeus and all other ABM

  7. Building a Persian Gulf Ballistic Missile Defense Umbrella: A Comparative Case Study Analysis of Regional Phased Adaptive Approaches

    DTIC Science & Technology

    2013-06-01

    following literature is in addition to the literature already cited that focuses on threat capability and strategic balance, Tom Sauer, Eliminating Nuclear...Missile Defenses (Claremont: Regina Books, 2003 ), 15. 16 have constituted something of a sibling rivalry with the offense gaining favor and eventually...Freedman, The Evolution of Nuclear Strategy, 3rd ed. (New York: Palgrave Macmillan, 2003 ), 242. 30 Ibid., 232–242; Burns and Brune, The Quest for Missile

  8. Navy CG(X) Cruiser Program: Background, Oversight Issues, and Options for Congress

    DTIC Science & Technology

    2009-04-10

    Options for Congress 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) 5d. PROJECT NUMBER 5e . TASK NUMBER 5f. WORK...Sees Lessons in Shipbuilding Program Failures,” GovernmentExecutive.com, September 24, 2008) quoted Admiral Gary Roughead, the Chief of Naval...question is whether the schedule for procuring CG(X)s is properly aligned with foreign-country ballistic missile development programs. A 2005 defense

  9. Navy CG(X) Cruiser Program: Background, Oversight Issues, and Options for Congress

    DTIC Science & Technology

    2009-09-18

    and Options for Congress 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) 5d. PROJECT NUMBER 5e . TASK NUMBER 5f...October 27, 2008. Another press report (Katherine McIntire Peters, “Navy’s Top Officer Sees Lessons in Shipbuilding Program Failures... aligned with foreign-country ballistic missile development programs. A 2005 defense trade press report, for example, states that “navy officials

  10. 1997 Report to the Congress on Ballistic Missile Defense.

    DTIC Science & Technology

    1997-10-01

    Infrared Arrays • Quantum Well Infrared Photodector (QWIP) Focal Plane Array (FPA) • Staring Si Impurity Band Conduction Extremely Sensitive Focal...to be flown on STRV lc/d include a Quantum Well Infrared Photometer (QWIP) sensor and a multifunctional compos- ite structure. The Space Technology...Peoples Republic of China Platinum Silicide Quick Reaction Program Quick Response Program Quantum Well Infrared Photometer Research and

  11. Joint Land Attack Cruise Missile Defense Elevated Netted Sensor System (JLENS)

    DTIC Science & Technology

    2013-12-01

    Initial Production $M - Millions of Dollars MILCON - Military Construction N /A - Not Applicable O&S - Operating and Support Oth - Other PAUC - Program...RDT&E - Research, Development, Test, and Evaluation SAR - Selected Acquisition Report Sch - Schedule Spt - Support TBD - To Be Determined TY - Then...completion, assess test results, correct short comings/deficiencies, and develop documentation to track and assess program status. On January 31

  12. Navy CG(X) Cruiser Program: Background, Oversight Issues, and Options for Congress

    DTIC Science & Technology

    2008-11-18

    ELEMENT NUMBER 6. AUTHOR(S) 5d. PROJECT NUMBER 5e . TASK NUMBER 5f. WORK UNIT NUMBER 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES... Lessons in Shipbuilding Program Failures,” GovernmentExecutive.com, September 24, 2008) quoted Admiral Gary Roughead, the Chief of Naval Operations, as...the schedule for procuring CG(X)s is properly aligned with foreign-country ballistic missile development programs. A 2005 defense trade press report

  13. Using a Red Team to devise countermeasures

    NASA Astrophysics Data System (ADS)

    Swedenburg, R. L.

    1995-01-01

    The ability of a defense system to operate effectively when deployed in battle is dependent on designs able to deal with countermeasures against the defense. The formation of a technical Red Team to stress the preliminary designs of the defensive system with technologically feasible and effective potential countermeasures provides a means to identify such potential countermeasures. This paper describes the experience of the U.S. Ballistic Missile Defense Organization's (BMDO) Theater Missile Defense Red Team since the Gulf War in 1991, the Red-Blue Exchange process, and the value it has provided to the designers of the U.S. Theater Missile Defense systems for developing robust systems. A wide-range of technologically feasible countermeasures has been devised, analyzed, tested for feasibility, and provided to the system developers for mitigation design. The process for independently analyzing possible susceptibilities of preliminary designs and exploiting the susceptibilities to identify possible countermeasures is explained. Designing and characterizing the Red Team's countermeasures, determining their feasibility, and analyzing their potential effectiveness against the defense are explained. A technique for the Blue Team's designers to deal with a wide range of potential countermeasures is explained.

  14. The Army Needs to Recoup Funds Expended on Property Damaged in an Accident at a Development Subcontractor’s Facility (Redacted)

    DTIC Science & Technology

    2012-05-24

    liability for the JLENS prope1iy damaged in an accident at a subcontractor’s facility. The accident occmTed when high winds caused an Airship ...modernization proponent for space, high - altitude and global missile defense, is the Almy operational integrator for global missile defense, and conducts...Alexandria, VA 22350-1500 Acronyms and Abbreviations AMS Airship Management Services DCMA Defense Contract

  15. Army National Guard Air Defense Artillery Modernization: A Vision for the Future

    DTIC Science & Technology

    1994-05-15

    plan to replace Stinger Under Armor (SUA) for the ARNG, and no guarantee that the BSFV will be in the future ARNG force, divisional assets will remain...Ballistic Missile SUA Stinger Under Armor TAA Total Army Analysis TAAD Theater Area Air Defense TASM Tactical Air-to-Surface Missiles TBM Tactical

  16. AIM-9X Block II Sidewinder (AIM-9X Blk II)

    DTIC Science & Technology

    2015-12-01

    Selected Acquisition Report (SAR) RCS: DD- A &T(Q& A )823-442 AIM-9X Block II Sidewinder (AIM-9X Blk II) As of FY 2017 President’s Budget Defense...MDAP - Major Defense Acquisition Program MILCON - Military Construction N/ A - Not Applicable O&M - Operations and Maintenance ORD - Operational...15:14:10 UNCLASSIFIED 5 Mission and Description The AIM-9X Block II Sidewinder (AIM-9X Blk II) short-range air-to-air missile is a long term

  17. Origins of the Strategic Defense Initiative: Ballistic Missile Defense, 1944-1983

    DTIC Science & Technology

    1989-12-01

    interactionwith NASA on the Space Station Freedom program and helpedwrite a research guide on military space activities for the National Air and Space...black stood up in the gallery and shouted : "I prophesy against ABM in the name of Jesus Christ!" After she was removed, the Senators began their...error at 7,575 miles. However, NASA had the advantage of having a much longer time to focus its telescope. A laser weapon must be swiftly pointed and

  18. Clementine. Mining new uses for SDI technology

    NASA Astrophysics Data System (ADS)

    Rustan, Pedro L.

    1994-01-01

    Using ballistic missile defense technologies for NASA science missions can dramatically reduce program costs and development time. Described is the Clementine spacecraft scheduled for launch to flight-qualify advanced lightweight technologies. The 500-lb spacecraft, which uses lightweight components and minimal redundancy, was built by the Naval Research Laboratory in less than two years.

  19. Implementing a Strategically-Focused Science and Technology Program for Missile Defense

    DTIC Science & Technology

    2004-07-01

    Development Practices: Updating Trends and Benchmarking Best Practices,” Journal of Product Innovation Management , Vol 14, 1997, pp. 429–458. V-18...Development,” Journal of Product Innovation Management , Vol. 15, 1998, pp. 57–74. V-32 situation. Thus, each stage-gate process must be customized to meet the

  20. 78 FR 703 - 36(b)(1) Arms Sales Notification

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-01-04

    ... Value: Major Defense Equipment $110 million Other $30 million Total $140 million * as defined in Section... Cueing System. The software algorithms are the most sensitive portion of the AIM-9X-2 missile. The software continues to be modified via a pre- planned product improvement (P\\3\\I) program in order to...

  1. Government-Industry Data Exchange Program (GIDEP)

    NASA Technical Reports Server (NTRS)

    Richards, E. T.

    1974-01-01

    The Government-Industry Data Exchange Program (GIDEP) was originated in 1959 by the Army, Navy, and Air Force Ballistic Missile Agencies. Known at that time as IDEP--Interservice Data Exchange Program--its intent was to eliminate duplicate testing of parts and components by disseminating pertinent test data among Department of Defense contractors and various government agencies. In 1966 both the National Aeronautics and Space Administration and the Canadian Military Electronics Standards Agency (CAMESA) recognized the value of the data provided by the program and became participants. Today, GIDEP provides the interchange of specialized technical data to all the military services, participating government contractors and numerous government agencies such as the Atomic Energy Commission, Federal Aviation Administration, Defense Supply Agency, and the Small Business Administration.

  2. Navy CG(X) Cruiser Program: Background, Oversight Issues, and Options for Congress

    DTIC Science & Technology

    2009-11-20

    and Options for Congress 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) 5d. PROJECT NUMBER 5e . TASK NUMBER 5f. WORK...Another press report (Katherine McIntire Peters, “Navy’s Top Officer Sees Lessons in Shipbuilding Program Failures,” GovernmentExecutive.com, September...whether the schedule for procuring CG(X)s is properly aligned with foreign-country ballistic missile development programs. A 2005 defense trade

  3. KSC-2009-5233

    NASA Image and Video Library

    2009-09-25

    CAPE CANAVERAL, Fla. – The United Launch Alliance Delta II rocket with Space Tracking and Surveillance System - Demonstrator, or STSS-Demo, spacecraft leaps through a mantle of smoke as it lifts off from Launch Pad 17-B at Cape Canaveral Air Force Station. STSS-Demo was launched at 8:20:22 a.m. EDT by NASA for the U.S. Missile Defense Agency. The STSS-Demo is a space-based sensor component of a layered Ballistic Missile Defense System designed for the overall mission of detecting, tracking and discriminating ballistic missiles. Photo credit: NASA/Regina Mitchell-Tom Farrar

  4. KSC-2009-5236

    NASA Image and Video Library

    2009-09-25

    CAPE CANAVERAL, Fla. – From Hangar AE at Cape Canaveral Air Force Station in Florida, Garrett Lee Skrobot, who is NASA's mission manager for the Space Tracking and Surveillance System – Demonstrator, oversees the launch. The STSS-Demo spacecraft launched at 8:20:22 a.m. EDT aboard a United Launch Alliance Delta II rocket. It was launched by NASA for the U.S. Missile Defense Agency. The STSS-Demo is a space-based sensor component of a layered Ballistic Missile Defense System designed for the overall mission of detecting, tracking and discriminating ballistic missiles. Photo credit: NASA/Kim Shiflett

  5. KSC-2009-5230

    NASA Image and Video Library

    2009-09-25

    CAPE CANAVERAL, Fla. – The United Launch Alliance Delta II rocket with Space Tracking and Surveillance System - Demonstrator, or STSS-Demo, spacecraft leaps from Launch Pad 17-B at Cape Canaveral Air Force Station amid clouds of smoke. STSS-Demo was launched at 8:20:22 a.m. EDT by NASA for the U.S. Missile Defense Agency. The STSS-Demo is a space-based sensor component of a layered Ballistic Missile Defense System designed for the overall mission of detecting, tracking and discriminating ballistic missiles. Photo credit: NASA/Regina Mitchell-Tom Farrar

  6. KSC-2009-5232

    NASA Image and Video Library

    2009-09-25

    CAPE CANAVERAL, Fla. – The United Launch Alliance Delta II rocket with Space Tracking and Surveillance System - Demonstrator, or STSS-Demo, spacecraft leaps through a mantle of smoke as it lifts off from Launch Pad 17-B at Cape Canaveral Air Force Station. STSS-Demo was launched at 8:20:22 a.m. EDT by NASA for the U.S. Missile Defense Agency. The STSS-Demo is a space-based sensor component of a layered Ballistic Missile Defense System designed for the overall mission of detecting, tracking and discriminating ballistic missiles. Photo credit: NASA/Regina Mitchell-Tom Farrar

  7. KSC-2009-5229

    NASA Image and Video Library

    2009-09-25

    CAPE CANAVERAL, Fla. – The United Launch Alliance Delta II rocket with Space Tracking and Surveillance System - Demonstrator, or STSS-Demo, spacecraft emerges from a blanket of smoke after liftoff from Launch Pad 17-B at Cape Canaveral Air Force Station. STSS-Demo was launched at 8:20:22 a.m. EDT by NASA for the Missile Defense System. The STSS-Demo is a space-based sensor component of a layered Ballistic Missile Defense System designed for the overall mission of detecting, tracking and discriminating ballistic missiles. Photo credit: NASA/Tony Gray-Tim Powers

  8. KSC-2009-5234

    NASA Image and Video Library

    2009-09-25

    CAPE CANAVERAL, Fla. – Fire erupts across Launch Pad 17-B at Cape Canaveral Air Force Station as the United Launch Alliance Delta II rocket lifts off with the Space Tracking and Surveillance System - Demonstrator, or STSS-Demo, spacecraft. STSS-Demo was launched at 8:20:22 a.m. EDT by NASA for the U.S. Missile Defense Agency. The STSS-Demo is a space-based sensor component of a layered Ballistic Missile Defense System designed for the overall mission of detecting, tracking and discriminating ballistic missiles. Photo credit: NASA/Regina Mitchell-Tom Farrar

  9. KSC-2009-5231

    NASA Image and Video Library

    2009-09-25

    CAPE CANAVERAL, Fla. – The Space Tracking and Surveillance System - Demonstrator, or STSS-Demo, spacecraft lifts off through a cloud of smoke from Launch Pad 17-B at Cape Canaveral Air Force Station aboard a United Launch Alliance Delta II rocket. It was launched by NASA for the U.S. Missile Defense Agency. Launch was at 8:20:22 a.m. EDT. The STSS-Demo is a space-based sensor component of a layered Ballistic Missile Defense System designed for the overall mission of detecting, tracking and discriminating ballistic missiles. Photo credit: NASA/Regina Mitchell-Tom Farrar

  10. KSC-2009-5228

    NASA Image and Video Library

    2009-09-25

    CAPE CANAVERAL, Fla. – The United Launch Alliance Delta II rocket with Space Tracking and Surveillance System - Demonstrator, or STSS-Demo, spacecraft leaps from Launch Pad 17-B at Cape Canaveral Air Force Station amid clouds of smoke. STSS-Demo was launched at 8:20:22 a.m. EDT by NASA for the U.S. Missile Defense Agency. The STSS-Demo is a space-based sensor component of a layered Ballistic Missile Defense System designed for the overall mission of detecting, tracking and discriminating ballistic missiles. Photo credit: NASA/Tony Gray-Tim Powers

  11. KSC-2009-5227

    NASA Image and Video Library

    2009-09-25

    CAPE CANAVERAL, Fla. – The United Launch Alliance Delta II rocket with Space Tracking and Surveillance System - Demonstrator, or STSS-Demo, spacecraft emerges from a blanket of smoke after liftoff from Launch Pad 17-B at Cape Canaveral Air Force Station. STSS-Demo was launched at 8:20:22 a.m. EDT by NASA for the U.S. Missile Defense Agency. The STSS-Demo is a space-based sensor component of a layered Ballistic Missile Defense System designed for the overall mission of detecting, tracking and discriminating ballistic missiles. Photo credit: NASA/Tony Gray-Tim Powers

  12. A Systems Approach to Finding Cost-Effective Alternatives to European Ballistic Missile Defense

    DTIC Science & Technology

    2013-09-01

    has holes in its ability to cover the entire region as required. What are the existing approaches to ballistic missile defense in Europe? 4. What Are...however, this report focuses on ballistic missiles which use stellar or inertial guidance systems which are not subject to electromagnetic...location as the Baseline system (35.6° N, 32.5° E) while the other was placed north of Turkey in the Black Sea (41.5° N, 38.1° E). Each Aegis ship was

  13. An Empirical Development of Parallelization Guidelines for Time-Driven Simulation

    DTIC Science & Technology

    1989-12-01

    wives, who though not Cub fans, put on a good show during our trip, to waich some games . I would also like to recognize the help of my professors at...program parallelization. in this research effort a Ballistic Missile Defense (BMD) time driven simulation program, developed by DESE Research and...continuously, or continuously with discrete changes superimposed. The distinguishing feature of these simulations is the interaction between discretely

  14. Multi-Hazard Shelter Incentive Programs

    DTIC Science & Technology

    1985-09-01

    by strategic "nuclear missiles. This could pave the way for arms control measures to eliminate the weapons themselves." 9 The following year, the...the idea of a policy change that would emphasize strategic defense. The Arms Control and Disarmament Agency (ACDA), in response to a question from...emergency control centers and program N> management) has been equally divided between the Federal government and the States. Therefore, the rfecedent e

  15. Issues Identified in 21 Recently Published Major Weapon System Reports

    DTIC Science & Technology

    1980-06-12

    reports. This re- ^*-< port consolidates the summaries and high - er lights the issues in those reports. c @_2£/ 8 Uj 4fC2^ "ttDuirt1 This...Ground Weapon Systems program 77 The High Speed Antiradiation Missile may not be the answer to the services’ lethal defense suppression...generally applies to exceedingly high -cost programs that tend to disrupt the procurement expectations for other programs and result in compromises

  16. Soviet Concepts of Ballistic Missile Defense

    DTIC Science & Technology

    1988-06-01

    manned space operations, ABM Treaty, SDI 19 Abstract (continue on reverse if necessary and identify by block number The purpose of this thesis is to...THE EARLY YEARS OF SOVIET BMD ................................................ 6 B. SOVIET BMD AND THE ABM TREATY OF 1972...10 C. SOVIET BMD SINCE THE ABM TREATY .......................................... 14 III. BALLISTIC MISSILE DEFENSE IN SOVIET MILITARY THOUGHT

  17. Missile Defense Agency Ballistic Missile Defense System (BMDS): Programmatic Environmental Impact Statement. Volume 1 Final BMDS PEIS

    DTIC Science & Technology

    2007-01-01

    4-22 Exhibit 4-8. Freshwater Species Tolerance to Acidity...environments or specific threatened or endangered species . Radio frequency use and testing would be coordinated with the appropriate resource management...impacts to the environment and the threatened and endangered species , the unique or sensitive environments, and the migratory, breeding, and

  18. Ballistic Missile Defense. Past and Future

    DTIC Science & Technology

    2010-04-01

    the Author” at the end of this book . x • Jacques S. Gansler even nuclear) are more likely than ballistic missile attacks, we should not waste ...Portions of this book may be quoted or reprinted without permission, provided that a standard source credit line is included...This book was published by the Center for Technology and National Security Policy, National Defense University, Fort Lesley J

  19. 2015 Assessment of the Ballistic Missile Defense System (BMDS)

    DTIC Science & Technology

    2016-04-01

    performance and test adequacy of the BMDS, its four autonomous BMDS systems, and its sensor/command and control architecture. The four autonomous BMDS...Patriot. The Command and Control , Battle Management, and Communications (C2BMC) element anchors the sensor/command and control architecture. This...Warfare operations against a cruise missile surrogate. Ground-based Midcourse Defense (GMD). GMD has demonstrated capability against small

  20. Missile Defense Agency Ballistic Missile Defense System (BMDS): Programmatic Environmental Impact Statement. Volume 3 Appendices K - N

    DTIC Science & Technology

    2007-01-01

    Bering Sea through direct affects on the fish, as well as the thousands of people dependent upon the fish for their nutrition , health, and economy...Newfoundland to British Columbia; however, the width of the migratory path narrows to 400 miles from east-west at the latitude of the Yucatan . (Lincoln et

  1. Technology Program Management Model (TPMM) Overview

    DTIC Science & Technology

    2006-05-10

    1 1 “Secure the High Ground” Jeff Craver Project Manager Space and Missile Defense Technical Center Jeff.Craver@US.Army.Mil ff r r r j t r i il...f i l t r ff. r r . r . il UNCLASSIFIED UNCLASSIFIED Technology Program Management Model (TPMM) Overview 05-10-2006 Report Documentation Page Form...DATES COVERED 00-00-2006 to 00-00-2006 4. TITLE AND SUBTITLE Technology Program Management Model (TPMM) Overview 5a. CONTRACT NUMBER 5b. GRANT

  2. Establishing a Department of Defense Program Management Body of Knowledge

    DTIC Science & Technology

    1991-09-01

    systems included, "...thousands of jet fighters, bombers and transport aircraft; one hundred new combat and support vessels; and thousands of tanks and...cannon-carrying troop transports and strategic and tactical missiles" (12:9). Such systems were designed to achieve goals and performance levels never...to L. A a 20-week Program Mnageme-.nt .ur., ’ DSMc b-,o : taking command of a mra or pLog-im. A Major De ?-n.5 Acquisition (Category I) Program in the

  3. Military Role in Space Control: A Primer

    DTIC Science & Technology

    2004-09-23

    on the KEAsat program, NFIRE , and other space control activities, see CRS Issue Brief IB92011, U.S. Space Programs: Civilian, Military and Commercial...Missile Defense Agency’s (MDA’s) Near Field Infrared Experiment ( NFIRE ) to study exhaust plumes from rockets to assist in the design of sensors for...other MDA systems. NFIRE is designed to carry one sensor on the main NFIRE spacecraft, and a second sensor on a “Kinetic Kill Vehicle” (KKV) that

  4. An Analysis of the Future Combat Systems (FCS) Spin Out 1 Low-Rate of Initial Production (LRIP) Contract

    DTIC Science & Technology

    2008-09-16

    interests are strategic resource management, strategic control, and corporate financial reporting. Joseph G. San Miguel Professor Graduate School of...Missile Defense PEO – Program Executive Officer PM – Program Manager SAIC – Science Applications International Corporation SAP – Systems Applications...International Corporation (SAIC) team (DoD, 2002). In addition to providing important personnel, the LSI team would provide an important advantage in

  5. KSC-2009-5208

    NASA Image and Video Library

    2009-09-23

    CAPE CANAVERAL, Fla. – Approaching rain clouds at dawn hover over Central Florida's east coast, effectively causing the scrub of the Space Tracking and Surveillance System - Demonstrator spacecraft from Launch Pad 17-B at Cape Canaveral Air Force Station. STSS Demo is a space-based sensor component of a layered Ballistic Missile Defense System designed for the overall mission of detection, tracking and discriminating ballistic missiles. STSS is capable of tracking objects after boost phase and provides trajectory information to other sensors. It will be launched by NASA for the Missile Defense Agency between 8 and 8:58 a.m. EDT Sept. 24. Photo credit: NASA/Jack Pfaller

  6. KSC-2009-5068

    NASA Image and Video Library

    2009-08-27

    CAPE CANAVERAL, Fla. – The enclosed Space Tracking and Surveillance System – Demonstrators, or STSS-Demo, spacecraft arrives on Cape Canaveral Air Force Station's Launch Pad 17-B. The STSS Demo is a space-based sensor component of a layered Ballistic Missile Defense System designed for the overall mission of detecting, tracking and discriminating ballistic missiles. STSS is capable of tracking objects after boost phase and provides trajectory information to other sensors. It will be launched by NASA for the Missile Defense Agency between 8 and 8:58 a.m. EDT Sept. 18. Approved for Public Release 09-MDA-04886 (10 SEPT 09) Photo credit: NASA/Jack Pfaller

  7. Planetary Defense From Space: Part 1-Keplerian Theory

    NASA Astrophysics Data System (ADS)

    Maccone, Claudio

    A system of two space bases housing missiles is proposed to achieve the Planetary Defense of the Earth against dangerous asteroids and comets. We show that the layout of the Earth-Moon system with the five relevant Lagrangian (or libration) points in space leads naturally to only one, unmistakable location of these two space bases within the sphere of influence of the Earth. These locations are at the two Lagrangian points L1 (in between the Earth and the Moon) and L3 (in the direction opposite to the Moon from the Earth). We show that placing bases of missiles at L1 and L3 would cause those missiles to deflect the trajectory of asteroids by hitting them orthogonally to their impact trajectory toward the Earth, so as to maximize their deflection. We show that the confocal conics are the best class of trajectories fulfilling this orthogonal deflection requirement. An additional remark is that the theory developed in this paper is just a beginning of a larger set of future research work. In fact, while in this paper we only develop the Keplerian analytical theory of the Optimal Planetary Defense achievable from the Earth-Moon Lagrangian points L1 and L3, much more sophisticated analytical refinements would be needed to: Take into account many perturbation forces of all kinds acting on both the asteroids and missiles shot from L1 and L3; add more (non-optimal) trajectories of missiles shot from either the Lagrangian points L4 and L5 of the Earth-Moon system or from the surface of the Moon itself; encompass the full range of missiles currently available to the US (and possibly other countries) so as to really see "which asteroids could be diverted by which missiles", even in the very simplified scheme outlined here. Outlined for the first time in February 2002, our Confocal Planetary Defense concept is a Keplerian Theory that proved simple enough to catch the attention of scholars, representatives of the US Military and popular writers. These developments could possibly mark the beginning of an "all embracing" mathematical vision of Planetary Defense beyond all learned activities, dramatic movies and unknown military plans covered by secret.

  8. The scientists' opposition to SDI: How political views affect technical analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tait, G.E.

    1989-01-01

    This study examines the scientists' opposition to President Reagan's Strategic Defense Initiative (1983-1989) with a focus on the relationship between the scientists' political and strategic opposition to ballistic missile defenses (BMD) and their technical doubts about BMD technologies. The study begins with a review of the scientists' increased influence in United State's national security decision making because of the development of atomic weapons. The study then examines the scientists' role in developing and promoting a theory of arms control based upon mutual societal vulnerability. Because of this theory, a large segment of the American scientific community came to believe thatmore » the development of ballistic missile defenses would destabilize the strategic balance and therefore took the lead in arguing against BMD deployments. These background chapters conclude with an analysis of the scientists' involvement in the political campaign to stop the proposed Sentinel and Safeguard Anti-Ballistic Missile defense. The study then turns to the contemporary scientific opposition to BMD deployments and the SDI research program. After examining the polls and petitions that identify the scientists opposed to SDI, the study analyzes the tactics that three scientists use in their political effort to prevent BMD deployments. Next, an examination of the political and strategic assumptions behind the scientists' opposition to BMD reveals that a belief in the arms control process and deterrence by punishment, especially Assured Destruction deterrence, with a fear of an action-reaction arms race inspires much of the contemporary opposition to BMD. Finally, the scientists' technical doubts about BMD technologies are analyzed through the prism of peer critique. These critiques show that the scientists opposed to BMD deployments us pessimistic and unrealistic assumptions to skew their technical analysis of BMD technologies.« less

  9. Modeling of the 6DOF Missile Dynamics using the NED Axes System

    DTIC Science & Technology

    1997-08-01

    representer le corps du missile, l’autodirecteur ainsi que Ia ligne missile-but. Le systeme d’axes le plus couramment utilise dans le domaine de la ...simulation de missiles tactiques ainsi que dans la librairie de composantes de modele de simulation du CRDV est le systeme d’axes NED, qui utilise l’axe x...RESEARCH ESTABLISHMENT CENTRE DE RECHERCHES POUR LA DEFENSE VALCARTIER,QuEBEC DREV- N-9703 MODELING OF THE 6DOF MISSILE DYNAMICS USING THE NED AXES

  10. DDG 1000 Zumwalt Class Destroyer (DDG 1000)

    DTIC Science & Technology

    2013-12-01

    Missile Defense Radar is the most cost-effective solution to fleet air and missile defense requirements. The Secretary of the Navy notified Congress...not reach an affordable solution and deliveries of these components for DDG 1002 were becoming time-critical. The Navy concurrently pursued a steel...DD(X) Construction (Shared) (Sunk) 2464 DD(X) Sys Design, Dev & Integration (Shared) (Sunk) 2465 DC Survivability (Shared) (Sunk) 2466 MFR

  11. The Missile Defense Agency's space tracking and surveillance system

    NASA Astrophysics Data System (ADS)

    Watson, John; Zondervan, Keith

    2008-10-01

    The Ballistic Missile Defense System (BMDS) is a layered system incorporating elements in space. In addition to missile warning systems at geosynchronous altitudes, an operational BMDS will include a low Earth orbit (LEO) system-the Space Tracking and Surveillance System (STSS). It will use infrared sensing technologies synergistically with the Space Based Infrared Systems (SBIRS) and will provide a seamless adjunct to radars and sensors on the ground and in airborne platforms. STSS is being designed for a future operational capability to defend against evolving threats. STSS development is divided into phases, commencing with a two-satellite demonstration constellation scheduled for launch in 2008. The demonstration satellites will conduct a menu of tests and experiments to prove the system concept, including the ground segment. They will have limited operational capability within the integrated BMDS. Data from the demonstration satellites will be received and processed by the Missile Defense Space Experiment Center (MDSEC), a part of the Missile Defense Integration and Operations Center (MDIOC). MDA launched in 2007 into LEO a satellite (NFIRE) designed to make near-field multispectral measurements of boosting targets and to demonstrate laser communication, the latter in conjunction with the German satellite TerraSAR-X. The gimbaled, lightweight laser terminal has demonstrated on orbit a 5.5 gbps rate in both directions. The filter passbands of NFIRE are similar to the STSS demonstrator track sensor. While providing useful phenomenology during its time on orbit, NFIRE will also serve as a pathfinder in the development of STSS operations procedures.

  12. Physics and technology of the arms race

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Garwin, R.L.

    1983-01-01

    Traditional military concepts of superiority and effectiveness (as embodied in Lanchester's law) have little relevance to thermonuclear weapons, with their enormous effectiveness in destruction of society. Few are needed to saturate their deterrent effect, but their military effectiveness is limited. The evolution and future of strategic nuclear forces is discussed, and their declining marginal utility emphasized. Some calculations relevant to the nuclear confrontation are presented (Lanchester's Law; skin effect of VLF and ELF signals to submarines; the rocket equation; simple radar-range equation) and recommendations presented for future strategic forces and arms control initiatives. Recommended programs include a silo-based 12-ton single-warheadmore » missile (SICM), the development of buried-bomb defense of individual Minuteman silos, the completion of the deployment of air-launched cruise missiles on the B-52 fleet, and the development of small (1000-ton) submarines for basing ICBM-range missiles.« less

  13. Theater Land Attack Cruise Missile Defense: Guarding the Back Door

    DTIC Science & Technology

    1999-06-01

    employ radio command, laser, anti- radiation homing, or electro-optical guidance systems. TASMs will benefit from the same technological developments...mile-range Al-Husayn missile within range of all major Israeli cities, and its nuclear facilities in the Negev desert. The existence of these sites...solutions (“engage on remote”), or simply launch missiles without radiating , and allow the AFCR to guide the missiles to the target

  14. 75 FR 33271 - Information Collection Requirement; Defense Federal Acquisition Regulation Supplement; Foreign...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-06-11

    ... DEPARTMENT OF DEFENSE Defense Acquisition Regulations System [OMB Control Number 0704-0229... AGENCY: Defense Acquisition Regulations System, Department of Defense (DoD). ACTION: Notice and request... Certain Contracts with Foreign Entities for the Conduct of Ballistic Missile Defense Research, Development...

  15. Influence of IR sensor technology on the military and civil defense

    NASA Astrophysics Data System (ADS)

    Becker, Latika

    2006-02-01

    Advances in basic infrared science and developments in pertinent technology applications have led to mature designs being incorporated in civil as well as military area defense systems. Military systems include both tactical and strategic, and civil area defense includes homeland security. Technical challenges arise in applying infrared sensor technology to detect and track targets for space and missile defense. Infrared sensors are valuable due to their passive capability, lower mass and power consumption, and their usefulness in all phases of missile defense engagements. Nanotechnology holds significant promise in the near future by offering unique material and physical properties to infrared components. This technology is rapidly developing. This presentation will review the current IR sensor technology, its applications, and future developments that will have an influence in military and civil defense applications.

  16. Drone Control System

    NASA Technical Reports Server (NTRS)

    1983-01-01

    Drones, subscale vehicles like the Firebees, and full scale retired military aircraft are used to test air defense missile systems. The DFCS (Drone Formation Control System) computer, developed by IBM (International Business Machines) Federal Systems Division, can track ten drones at once. A program called ORACLS is used to generate software to track and control Drones. It was originally developed by Langley and supplied by COSMIC (Computer Software Management and Information Center). The program saved the company both time and money.

  17. Life of War, Death of the Rest: The Shining Path of Cormac McCarthy's Thermonuclear America

    ERIC Educational Resources Information Center

    Blackmore, Tim

    2009-01-01

    The Bush Administration's quiet resumption of, or initiation of new, nuclear weapons programs aimed militarizing space, and erecting a missile defense shield that would have the effect of rolling back 19 years of solid detente, has gone largely unnoticed over the last eight years. Weapons makers, government officials and politicians have expressed…

  18. Ballistic Missile Defense System (BMDS)

    DTIC Science & Technology

    2015-12-01

    Assessment and Program Evaluation CARD - Cost Analysis Requirements Description CDD - Capability Development Document CLIN - Contract Line Item Number CPD...Estimate RDT&E - Research, Development, Test, and Evaluation SAR - Selected Acquisition Report SCP - Service Cost Position TBD - To Be Determined TY - Then...BMDS December 2015 SAR March 23, 2016 16:29:09 UNCLASSIFIED 5 Mission and Description Mission and Description To develop, test, and field a layered

  19. KSC-2009-5225

    NASA Image and Video Library

    2009-09-25

    CAPE CANAVERAL, Fla. – The United Launch Alliance Delta II rocket carrying the Space Tracking and Surveillance System - Demonstrator, or STSS-Demo, spacecraft leaps into the sky from Launch Pad 17-B at Cape Canaveral Air Force Station. STSS-Demo was launched at 8:20:22 a.m. EDT by NASA for the U.S. Missile Defense Agency. The STSS-Demo is a space-based sensor component of a layered Ballistic Missile Defense System designed for the overall mission of detecting, tracking and discriminating ballistic missiles. STSS is capable of tracking objects after boost phase and provides trajectory information to other sensors. Photo credit: NASA/Sandra Joseph- Kevin O'Connell

  20. KSC-2009-5221

    NASA Image and Video Library

    2009-09-25

    CAPE CANAVERAL, Fla. – The United Launch Alliance Delta II rocket with Space Tracking and Surveillance System - Demonstrator, or STSS-Demo, spacecraft leaps from Launch Pad 17-B at Cape Canaveral Air Force Station amid clouds of smoke. STSS-Demo was launched at 8:20:22 a.m. EDT by NASA for the U.S. Missile Defense Agency. The STSS-Demo is a space-based sensor component of a layered Ballistic Missile Defense System designed for the overall mission of detecting, tracking and discriminating ballistic missiles. STSS is capable of tracking objects after boost phase and provides trajectory information to other sensors. Photo credit: NASA/Sandra Joseph- Kevin O'Connell

  1. KSC-2009-5220

    NASA Image and Video Library

    2009-09-25

    CAPE CANAVERAL, Fla. – The United Launch Alliance Delta II rocket with Space Tracking and Surveillance System - Demonstrator, or STSS-Demo, spacecraft aboard races into the sky leaving a trail of fire and smoke after liftoff from Launch Pad 17-B at Cape Canaveral Air Force Station. It was launched by NASA for the U.S. Missile Defense Agency at 8:20:22 a.m. EDT. The STSS-Demo is a space-based sensor component of a layered Ballistic Missile Defense System designed for the overall mission of detecting, tracking and discriminating ballistic missiles. STSS is capable of tracking objects after boost phase and provides trajectory information to other sensors. Photo credit: NASA/Alan Ault

  2. KSC-2009-5191

    NASA Image and Video Library

    2009-09-23

    CAPE CANAVERAL, Fla. – The mobile service tower on Launch Pad 17-B at Cape Canaveral Air Force Station rolls back to reveal the United Launch Alliance Delta II rocket that will launch the Space Tracking and Surveillance System - Demonstrator into orbit. It is being launched by NASA for the Missile Defense System. The hour-long launch window opens at 8 a.m. EDT today. The STSS Demo is a space-based sensor component of a layered Ballistic Missile Defense System designed for the overall mission of detecting, tracking and discriminating ballistic missiles. STSS is capable of tracking objects after boost phase and provides trajectory information to other sensors. Photo credit: NASA/Dimitri Gerondidakis

  3. KSC-2009-5067

    NASA Image and Video Library

    2009-08-27

    CAPE CANAVERAL, Fla. – The enclosed Space Tracking and Surveillance System – Demonstrators, or STSS-Demo, spacecraft leaves the Astrotech payload processing facility on its way to Cape Canaveral Air Force Station's Launch Pad 17-B. The STSS Demo is a space-based sensor component of a layered Ballistic Missile Defense System designed for the overall mission of detecting, tracking and discriminating ballistic missiles. STSS is capable of tracking objects after boost phase and provides trajectory information to other sensors. It will be launched by NASA for the Missile Defense Agency between 8 and 8:58 a.m. EDT Sept. 18. Approved for Public Release 09-MDA-04886 (10 SEPT 09) Photo credit: NASA/Jack Pfaller

  4. KSC-2009-5193

    NASA Image and Video Library

    2009-09-23

    CAPE CANAVERAL, Fla. – The mobile service tower on Launch Pad 17-B at Cape Canaveral Air Force Station has been rolled back to reveal the United Launch Alliance Delta II rocket ready to launch the Space Tracking and Surveillance System - Demonstrator into orbit. It is being launched by NASA for the Missile Defense System. The hour-long launch window opens at 8 a.m. EDT today. The STSS Demo is a space-based sensor component of a layered Ballistic Missile Defense System designed for the overall mission of detecting, tracking and discriminating ballistic missiles. STSS is capable of tracking objects after boost phase and provides trajectory information to other sensors. Photo credit: NASA/Dimitri Gerondidakis

  5. KSC-2009-5226

    NASA Image and Video Library

    2009-09-25

    CAPE CANAVERAL, Fla. –The United Launch Alliance Delta II rocket with Space Tracking and Surveillance System - Demonstrator, or STSS-Demo, spacecraft leaps from Launch Pad 17-B at Cape Canaveral Air Force Station amid clouds of smoke. STSS-Demo was launched at 8:20:22 a.m. EDT by NASA for the U.S. Missile Defense Agency. The STSS-Demo is a space-based sensor component of a layered Ballistic Missile Defense System designed for the overall mission of detecting, tracking and discriminating ballistic missiles. STSS is capable of tracking objects after boost phase and provides trajectory information to other sensors. Photo credit: NASA/Tony Gray-Tim Powers

  6. KSC-2009-5223

    NASA Image and Video Library

    2009-09-25

    CAPE CANAVERAL, Fla. – The United Launch Alliance Delta II rocket carrying the Space Tracking and Surveillance System - Demonstrator, or STSS-Demo, spacecraft rises from a mantle of smoke as it lifts off from Launch Pad 17-B at Cape Canaveral Air Force Station. STSS-Demo was launched at 8:20:22 a.m. EDT by NASA for the U.S. Missile Defense Agency. The STSS-Demo is a space-based sensor component of a layered Ballistic Missile Defense System designed for the overall mission of detecting, tracking and discriminating ballistic missiles. STSS is capable of tracking objects after boost phase and provides trajectory information to other sensors. Photo credit: NASA/Sandra Joseph- Kevin O'Connell

  7. KSC-2009-5192

    NASA Image and Video Library

    2009-09-23

    CAPE CANAVERAL, Fla. – The mobile service tower on Launch Pad 17-B at Cape Canaveral Air Force Station has been rolled back to reveal the United Launch Alliance Delta II rocket that will launch the Space Tracking and Surveillance System - Demonstrator into orbit. It is being launched by NASA for the Missile Defense System. The hour-long launch window opens at 8 a.m. EDT today. The STSS Demo is a space-based sensor component of a layered Ballistic Missile Defense System designed for the overall mission of detecting, tracking and discriminating ballistic missiles. STSS is capable of tracking objects after boost phase and provides trajectory information to other sensors. Photo credit: NASA/Dimitri Gerondidakis

  8. KSC-2009-5219

    NASA Image and Video Library

    2009-09-25

    CAPE CANAVERAL, Fla. – The Space Tracking and Surveillance System - Demonstrator, or STSS-Demo, spacecraft lifts off through a cloud of smoke from Launch Pad 17-B at Cape Canaveral Air Force Station aboard a United Launch Alliance Delta II rocket. It was launched by NASA for the U.S. Missile Defense Agency. Launch was at 8:20:22 a.m. EDT. The STSS-Demo is a space-based sensor component of a layered Ballistic Missile Defense System designed for the overall mission of detecting, tracking and discriminating ballistic missiles. STSS is capable of tracking objects after boost phase and provides trajectory information to other sensors. Photo credit: NASA/Alan Ault

  9. KSC-2009-5215

    NASA Image and Video Library

    2009-09-25

    CAPE CANAVERAL, Fla. – Under a cloud-streaked sky, the Space Tracking and Surveillance System – Demonstrator, or STSS-Demo, waits through the countdown to liftoff Launch Pad 17-B at Cape Canaveral Air Force Station aboard a United Launch Alliance Delta II rocket. STSS-Demo is being launched by NASA for the U.S. Missile Defense Agency. Liftoff is at 8:20 a.m. EDT. The STSS-Demo is a space-based sensor component of a layered Ballistic Missile Defense System designed for the overall mission of detecting, tracking and discriminating ballistic missiles. STSS is capable of tracking objects after boost phase and provides trajectory information to other sensors. Photo credit: NASA/Jack Pfaller

  10. KSC-2009-5216

    NASA Image and Video Library

    2009-09-25

    CAPE CANAVERAL, Fla. – Under a cloud-streaked sky, the Space Tracking and Surveillance System – Demonstrator, or STSS-Demo, waits through the countdown to liftoff Launch Pad 17-B at Cape Canaveral Air Force Station aboard a United Launch Alliance Delta II rocket. STSS-Demo is being launched by NASA for the U.S. Missile Defense Agency. Liftoff was at 8:20:22 a.m. EDT. The STSS-Demo is a space-based sensor component of a layered Ballistic Missile Defense System designed for the overall mission of detecting, tracking and discriminating ballistic missiles. STSS is capable of tracking objects after boost phase and provides trajectory information to other sensors. Photo credit: NASA/Jack Pfaller

  11. KSC-2009-5209

    NASA Image and Video Library

    2009-09-23

    CAPE CANAVERAL, Fla. – On Launch Pad 17-B at Cape Canaveral Air Force Station in Florida, the Space Tracking and Surveillance System - Demonstrator spacecraft is bathed in light under a dark, cloudy sky. Rain over Central Florida's east coast caused the scrub of the launch. STSS Demo is a space-based sensor component of a layered Ballistic Missile Defense System designed for the overall mission of detection, tracking and discriminating ballistic missiles. STSS is capable of tracking objects after boost phase and provides trajectory information to other sensors. It will be launched by NASA for the Missile Defense Agency between 8 and 8:58 a.m. EDT Sept. 24. Photo credit: NASA/Jack Pfaller

  12. KSC-2009-5070

    NASA Image and Video Library

    2009-08-27

    CAPE CANAVERAL, Fla. – The enclosed Space Tracking and Surveillance System – Demonstrators, or STSS-Demo, spacecraft is being lifted into the mobile service tower on Cape Canaveral Air Force Station's Launch Pad 17-B. The STSS Demo is a space-based sensor component of a layered Ballistic Missile Defense System designed for the overall mission of detecting, tracking and discriminating ballistic missiles. STSS is capable of tracking objects after boost phase and provides trajectory information to other sensors. It will be launched by NASA for the Missile Defense Agency between 8 and 8:58 a.m. EDT Sept. 18. Approved for Public Release 09-MDA-04886 (10 SEPT 09) Photo credit: NASA/Jack Pfaller

  13. KSC-2009-5217

    NASA Image and Video Library

    2009-09-25

    CAPE CANAVERAL, Fla. – The Space Tracking and Surveillance System - Demonstrator, or STSS-Demo, spacecraft lifts off through a cloud of smoke from Launch Pad 17-B at Cape Canaveral Air Force Station aboard a United Launch Alliance Delta II rocket. It was launched by NASA for the U.S. Missile Defense Agency. Launch was at 8:20:22 a.m. EDT. The STSS-Demo is a space-based sensor component of a layered Ballistic Missile Defense System designed for the overall mission of detecting, tracking and discriminating ballistic missiles. STSS is capable of tracking objects after boost phase and provides trajectory information to other sensors. Photo credit: NASA/Jack Pfaller

  14. KSC-2009-5210

    NASA Image and Video Library

    2009-09-23

    CAPE CANAVERAL, Fla. – On Launch Pad 17-B at Cape Canaveral Air Force Station in Florida, the Space Tracking and Surveillance System Demonstrator spacecraft waits for launch under dark, cloudy sky. Rain over Central Florida's east coast caused the scrub of the launch. STSS Demo is a space-based sensor component of a layered Ballistic Missile Defense System designed for the overall mission of detection, tracking and discriminating ballistic missiles. STSS is capable of tracking objects after boost phase and provides trajectory information to other sensors. It will be launched by NASA for the Missile Defense Agency between 8 and 8:58 a.m. EDT Sept. 24. Photo credit: NASA/Jack Pfaller

  15. Diode-pumped Tunable 3 Micron Laser Sources

    DTIC Science & Technology

    2000-02-21

    DoD Ballistic Missile Defense Organization U.S. Army Space and Missile Defense Command SBIR Phase I Final Report AC Materials, Inc. 2721 Forsyth...pumped tunable 3 micron laser sources 6. AUTHORISI Arlete Cassanho, Hans Jenssen 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) AC Materials, Inc...impurities in the final crystal, starting materials for the crystal growth were prepared at AC Materials from optical grade barium fluoride and

  16. Regional Joint-Integrated Air and Missile Defense (RF-IAMD): An Operational Level Integrated Air and Missile Defense (IAMD) Command and Control (C2) Organization

    DTIC Science & Technology

    2015-05-15

    ELEMENT NUMBER 6. AUTHOR( S ) 5d. PROJECT NUMBER Major Arthur Bruggeman, USMC 5e. TASK NUMBER Paper Advisor...Commander Charles Broomfield, USN 5f. WORK UNIT NUMBER 7. PERFORMING ORGANIZATION NAME( S ) AND ADDRESS(ES) 8. PERFORMING...Newport, RI 02841-1207 9. SPONSORING/MONITORING AGENCY NAME( S ) AND ADDRESS(ES) 10. SPONSOR

  17. Uncertainties in building a strategic defense.

    PubMed

    Zraket, C A

    1987-03-27

    Building a strategic defense against nuclear ballistic missiles involves complex and uncertain functional, spatial, and temporal relations. Such a defensive system would evolve and grow over decades. It is too complex, dynamic, and interactive to be fully understood initially by design, analysis, and experiments. Uncertainties exist in the formulation of requirements and in the research and design of a defense architecture that can be implemented incrementally and be fully tested to operate reliably. The analysis and measurement of system survivability, performance, and cost-effectiveness are critical to this process. Similar complexities exist for an adversary's system that would suppress or use countermeasures against a missile defense. Problems and opportunities posed by these relations are described, with emphasis on the unique characteristics and vulnerabilities of space-based systems.

  18. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Canavan, G.H.

    Optimal offensive missile allocations for moderate offensive and defensive forces are derived and used to study their sensitivity to force structure parameters levels. It is shown that the first strike cost is a product of the number of missiles and a function of the optimum allocation. Thus, the conditions under which the number of missiles should increase or decrease in time is also determined by this allocation.

  19. Validation of the Comprehensive Assessment of Defense Style (CADS): mothers' and children's responses to the stresses of missile attacks.

    PubMed

    Wolmer, L; Laor, N; Cicchetti, D V

    2001-06-01

    This study furthers the validation of the Comprehensive Assessment of Defense Style (CADS) as a measure of children's defensive behavior. Participants were 81 mothers who assessed the defense style (CADS) of their 8- to 10-year-old children, as well as their own defense style and level of object relations. Five years earlier, the mothers had rated their children's symptom level and personality after the missile attacks during the Gulf War. The original factor structure of the CADS was replicated for the most part. Self-oriented and other-oriented defenses were related to the children's early personality and symptomatic reaction, as well as to their mother's defense style and level of object relations. The CADS factors correlated with the defenses of the Defense Mechanisms Manual. The results provide further validation of the CADS and suggest possible areas of implementation, such as longitudinal examination of defenses, psychopathology screening, and therapeutic improvement.

  20. Reusable launch vehicle development research

    NASA Technical Reports Server (NTRS)

    1995-01-01

    NASA has generated a program approach for a SSTO reusable launch vehicle technology (RLV) development which includes a follow-on to the Ballistic Missile Defense Organization's (BMDO) successful DC-X program, the DC-XA (Advanced). Also, a separate sub-scale flight demonstrator, designated the X-33, will be built and flight tested along with numerous ground based technologies programs. For this to be a successful effort, a balance between technical, schedule, and budgetary risks must be attained. The adoption of BMDO's 'fast track' management practices will be a key element in the eventual success of NASA's effort.

  1. Countermeasures to the US National Missile Defense

    NASA Astrophysics Data System (ADS)

    Gronlund, Lisbeth

    2001-04-01

    One of the key technical questions about national missile defenses is whether they can be expected to work under real-world conditions if the attacker takes steps to defeat the defense. This talk will discuss steps that an emerging missile state could take to confuse, overwhelm, or otherwise defeat the planned US NMD system developed by the Clinton administration. It will consider three such ``countermeasures" that would be within the technical capability of a state that could develop and deploy a long-range missile capable of reaching the United States, which is the threat the NMD system is intended to defend against. The talk will be based on the April 2000 report ``Countermeasures: A Technical Evaluation of the Operational Effectiveness of the Planned US National Missile Defense System," which was co-authored by the speaker and 10 other physicists and engineers. Although the talk will refer to the ground-based NMD system under development, the conclusions are applicable to any mid-course NMD system using hit-to-kill infrared-homing interceptors, regardless of their basing mode. The three countermeasures considered are: (1) biological weapons deployed on 100 or more small bomblets, or submunitions, that would be released shortly after the boost phase; (2) nuclear warheads with anti-simulation balloon decoys, in which the attacker disguises the warhead by enclosing it in an aluminum-coated mylar balloon and releasing it along with a large number of otherwise similar but empty balloons; and (3) nuclear warheads with cooled shrouds, in which the attacker foils the kill vehicle's homing process by covering each nuclear warhead with a double-walled cone containing liquid nitrogen.

  2. System Requirements Analysis and Technological Support for the Ballistic Missile Defense System (BMDS) - FY07 Progress Report

    DTIC Science & Technology

    2007-07-01

    Systems , Boeing-led Airborne Laser Team Actively Tracks Airborne Target, Compensates for Atmospheric Turbulence and Fires Sur- rogate High-Energy Laser...7100 System Requirements Analysis and Technological Support for the Ballistic Missile Defense System (BMDS) FY07 Progress Report By...Office of Management and Budget , Paperwork Reduction Project (0704-0188) Washington DC 20503. 1. AGENCY USE ONLY (Leave blank) 2. REPORT DATE July

  3. Modular Open System Architecture for Reducing Contamination Risk in the Space and Missile Defense Supply Chain

    NASA Technical Reports Server (NTRS)

    Seasly, Elaine

    2015-01-01

    To combat contamination of physical assets and provide reliable data to decision makers in the space and missile defense community, a modular open system architecture for creation of contamination models and standards is proposed. Predictive tools for quantifying the effects of contamination can be calibrated from NASA data of long-term orbiting assets. This data can then be extrapolated to missile defense predictive models. By utilizing a modular open system architecture, sensitive data can be de-coupled and protected while benefitting from open source data of calibrated models. This system architecture will include modules that will allow the designer to trade the effects of baseline performance against the lifecycle degradation due to contamination while modeling the lifecycle costs of alternative designs. In this way, each member of the supply chain becomes an informed and active participant in managing contamination risk early in the system lifecycle.

  4. Defense Small Business Innovation Research Program (SBIR). Volume 1. Army Abstracts of Phase 1 Awards from FY 1988 SBIR Solicitation

    DTIC Science & Technology

    1989-05-01

    CONSTRUCTION). CONCEPT ANALYSIS CORP 14789 KEEL ST PLYMOUTH, MI 48170 CONTRACT NUMBER: DAHO -88-C-0942 DR’S WALDEN & GLANCE TITLE: MISSILE GEOMETRY PACKAGE TOPIC...COUNTING STUDY CAN BE UTILIZED TO EVALUATE THE EFFECTIVENESS OF AN EXPLOSION MONITORING SYSTEM. E SMALL BUSINESS INNOVATION RESEARCH (SBIR) PROGRAM - PHASE... EXPLOSIVE OR GROUND PENETRATING MUNITIONS ARE TO BE EVALUATED. IN THAT CASE THE SYSTEM WILL BE ENHANCED WITH SEISMIC SENSORS. THE SEISMIC SIGNALS MAY

  5. The Budget of the United States Government. Department of Defense Extract for Fiscal Years 1990 and 1991

    DTIC Science & Technology

    1988-01-01

    i.e., programs gen - erally subject to control by annual appropriations) were $6.3 billion above the Administration’s original request for policy reasons...unobligated balance avail- Amounts for proposed new legislation are shown gen - able, end of year. That balance is carried forward and erally in separate...Program and Financing (in thousands of dollars) Trident strategic missile and submarine continues. Gen - lan 97-0819-0-1-051 199 actual 1909 e. 19eral

  6. Damping Goes the Distance in Golf

    NASA Technical Reports Server (NTRS)

    2004-01-01

    In the late 1980s, Dr. Benjamin Dolgin of NASA s Jet Propulsion Laboratory developed a concept for a high-damping graphite/viscoelastic material for the Strategic Defense Initiative (popularly referred to as "Star Wars"), as part of a space-based laser anti-missile program called "Asterix." Dolgin drummed up this concept with the intention of stabilizing weapons launch platforms in space, where there is no solid ground to firmly support these structures. Without the inclusion of high-damping material, the orbital platforms were said to vibrate for 20 minutes after force was applied - a rate deemed "unacceptable" by leaders of the Strategic Defense Initiative.

  7. Business Case Analysis: Continuous Integrated Logistics Support-Targeted Allowance Technique (CILS-TAT)

    DTIC Science & Technology

    2013-06-01

    In this research, we examine the Naval Sea Logistics Command s Continuous Integrated Logistics Support Targeted Allowancing Technique (CILS TAT) and... the feasibility of program re-implementation. We conduct an analysis of this allowancing method s effectiveness onboard U.S. Navy Ballistic Missile...Defense (BMD) ships, measure the costs associated with performing a CILS TAT, and provide recommendations concerning possible improvements to the

  8. NATO and U.S. Ballistic Missile Defense Programs: Divergent or Convergent Paths?

    DTIC Science & Technology

    2008-12-01

    PERFORMING ORGANIZATION REPORT NUMBER 9. SPONSORING /MONITORING AGENCY NAME(S) AND ADDRESS(ES) N /A 10. SPONSORING/MONITORING AGENCY...Gray, 280. 36 n alliances. insecurity are the norm and periods of peace are more akin to interwar...Destruction, ed. Janne E. Nolan, Bernard I. Finel and Brian D. Finlay (New York: Century Foundation Press, 2003), 204. 118 “Iran,” The European

  9. Long-Range Ballistic Missile Defense in Europe

    DTIC Science & Technology

    2010-04-26

    land-based configurations. • Phase 3 ( 2018 timeframe): Deploy improved area coverage in Europe against medium- and intermediate-range Iranian...military services. “I think that all our military programs should be managed through those regular processes,” he said, and “that would include...10 interceptors itself would likely have comprised an area somewhat larger than a football field. The area of supporting infrastructure was likely

  10. KSC-2009-5060

    NASA Image and Video Library

    2009-08-22

    CAPE CANAVERAL, Fla. – At the Astrotech payload processing facility in Titusville, Fla., the upper segment of the transportation canister is moved toward the Space Tracking and Surveillance System – Demonstrators, or STSS Demo, spacecraft, at left. The STSS Demo is a space-based sensor component of a layered Ballistic Missile Defense System designed for the overall mission of detecting, tracking and discriminating ballistic missiles. STSS is capable of tracking objects after boost phase and provides trajectory information to other sensors. It will be launched by NASA for the Missile Defense Agency between 8 and 8:58 a.m. EDT Sept. 18. Approved for Public Release 09-MDA-04886 (10 SEPT 09) Photo credit: NASA/Kim Shiflett

  11. KSC-2009-5050

    NASA Image and Video Library

    2009-08-20

    CAPE CANAVERAL, Fla. – At the Astrotech payload processing facility in Titusville, Fla., workers observe as the SV1-SV2 spacecraft is lifted for weighing. The two spacecraft are known as the Space Tracking and Surveillance System – Demonstrators, or STSS Demo, which is a space-based sensor component of a layered Ballistic Missile Defense System designed for the overall mission of detecting, tracking and discriminating ballistic missiles. STSS is capable of tracking objects after boost phase and provides trajectory information to other sensors. It will be launched by NASA for the Missile Defense Agency between 8 and 8:58 a.m. EDT Sept. 18. Approved for Public Release 09-MDA-04886 (10 SEPT 09) Photo credit: NASA/Jim Grossmann

  12. KSC-2009-5048

    NASA Image and Video Library

    2009-08-20

    CAPE CANAVERAL, Fla. – At the Astrotech payload processing facility in Titusville, Fla., the SV1-SV2 spacecraft is ready to be weighed. The two spacecraft are known as the Space Tracking and Surveillance System – Demonstrators, or STSS Demo, which is a space-based sensor component of a layered Ballistic Missile Defense System designed for the overall mission of detecting, tracking and discriminating ballistic missiles. STSS is capable of tracking objects after boost phase and provides trajectory information to other sensors. It will be launched by NASA for the Missile Defense Agency between 8 and 8:58 a.m. EDT Sept. 18. Approved for Public Release 09-MDA-04886 (10 SEPT 09) Photo credit: NASA/Jim Grossmann

  13. KSC-2009-5059

    NASA Image and Video Library

    2009-08-22

    CAPE CANAVERAL, Fla. – At the Astrotech payload processing facility in Titusville, Fla., the upper segment of the transportation canister is lifted to be placed on the top of the Space Tracking and Surveillance System – Demonstrators, or STSS Demo, spacecraft. The STSS Demo is a space-based sensor component of a layered Ballistic Missile Defense System designed for the overall mission of detecting, tracking and discriminating ballistic missiles. STSS is capable of tracking objects after boost phase and provides trajectory information to other sensors. It will be launched by NASA for the Missile Defense Agency between 8 and 8:58 a.m. EDT Sept. 18. Approved for Public Release 09-MDA-04886 (10 SEPT 09) Photo credit: NASA/Kim Shiflett

  14. KSC-2009-5049

    NASA Image and Video Library

    2009-08-20

    CAPE CANAVERAL, Fla. – At the Astrotech payload processing facility in Titusville, Fla., workers observe as the SV1-SV2 spacecraft is lifted for weighing. The two spacecraft are known as the Space Tracking and Surveillance System – Demonstrators, or STSS Demo, which is a space-based sensor component of a layered Ballistic Missile Defense System designed for the overall mission of detecting, tracking and discriminating ballistic missiles. STSS is capable of tracking objects after boost phase and provides trajectory information to other sensors. It will be launched by NASA for the Missile Defense Agency between 8 and 8:58 a.m. EDT Sept. 18. Approved for Public Release 09-MDA-04886 (10 SEPT 09) Photo credit: NASA/Jim Grossmann

  15. KSC-2009-5066

    NASA Image and Video Library

    2009-08-27

    CAPE CANAVERAL, Fla. – The enclosed Space Tracking and Surveillance System – Demonstrators, or STSS-Demo, spacecraft moves out of the Astrotech payload processing facility. It is being moved to Cape Canaveral Air Force Station's Launch Pad 17-B. The STSS Demo is a space-based sensor component of a layered Ballistic Missile Defense System designed for the overall mission of detecting, tracking and discriminating ballistic missiles. STSS is capable of tracking objects after boost phase and provides trajectory information to other sensors. It will be launched by NASA for the Missile Defense Agency between 8 and 8:58 a.m. EDT Sept. 18. Approved for Public Release 09-MDA-04886 (10 SEPT 09) Photo credit: NASA/Jack Pfaller

  16. KSC-2009-5057

    NASA Image and Video Library

    2009-08-22

    CAPE CANAVERAL, Fla. – At the Astrotech payload processing facility in Titusville, Fla., workers maneuver one of the second-row segments of the transportation canister that will be placed around the Space Tracking and Surveillance System – Demonstrators, or STSS Demo, spacecraft. The STSS Demo is a space-based sensor component of a layered Ballistic Missile Defense System designed for the overall mission of detecting, tracking and discriminating ballistic missiles. STSS is capable of tracking objects after boost phase and provides trajectory information to other sensors. It will be launched by NASA for the Missile Defense Agency between 8 and 8:58 a.m. EDT Sept. 18. Approved for Public Release 09-MDA-04886 (10 SEPT 09) Photo credit: NASA/Kim Shiflett

  17. KSC-2009-5053

    NASA Image and Video Library

    2009-08-20

    CAPE CANAVERAL, Fla. – At the Astrotech payload processing facility in Titusville, Fla., the SV1-SV2 spacecraft sits on the rotation stand after weighing. The two spacecraft are known as the Space Tracking and Surveillance System – Demonstrators, or STSS Demo, which is a space-based sensor component of a layered Ballistic Missile Defense System designed for the overall mission of detecting, tracking and discriminating ballistic missiles. STSS is capable of tracking objects after boost phase and provides trajectory information to other sensors. It will be launched by NASA for the Missile Defense Agency between 8 and 8:58 a.m. EDT Sept. 18. Approved for Public Release 09-MDA-04886 (10 SEPT 09) Photo credit: NASA/Jim Grossmann

  18. KSC-2009-5042

    NASA Image and Video Library

    2009-08-20

    CAPE CANAVERAL, Fla. – At the Astrotech payload processing facility in Titusville, Fla., workers begin center of gravity testing, weighing and balancing on the SV1-SV2 spacecraft. The two spacecraft are known as the Space Tracking and Surveillance System – Demonstrators, or STSS Demo, which is a space-based sensor component of a layered Ballistic Missile Defense System designed for the overall mission of detecting, tracking and discriminating ballistic missiles. STSS is capable of tracking objects after boost phase and provides trajectory information to other sensors. It will be launched by NASA for the Missile Defense Agency between 8 and 8:58 a.m. EDT Sept. 18. Approved for Public Release 09-MDA-04886 (10 SEPT 09) Photo credit: NASA/Jim Grossmann

  19. KSC-2009-5061

    NASA Image and Video Library

    2009-08-22

    CAPE CANAVERAL, Fla. – At the Astrotech payload processing facility in Titusville, Fla., the upper segment of the transportation canister is moved toward the Space Tracking and Surveillance System – Demonstrators, or STSS Demo, spacecraft, at bottom left. The STSS Demo is a space-based sensor component of a layered Ballistic Missile Defense System designed for the overall mission of detecting, tracking and discriminating ballistic missiles. STSS is capable of tracking objects after boost phase and provides trajectory information to other sensors. It will be launched by NASA for the Missile Defense Agency between 8 and 8:58 a.m. EDT Sept. 18. Approved for Public Release 09-MDA-04886 (10 SEPT 09) Photo credit: NASA/Kim Shiflett

  20. KSC-2009-5056

    NASA Image and Video Library

    2009-08-22

    CAPE CANAVERAL, Fla. – At the Astrotech payload processing facility in Titusville, Fla., workers place the second row of segments of the transportation canister around the Space Tracking and Surveillance System – Demonstrators, or STSS Demo, spacecraft. The STSS Demo is a space-based sensor component of a layered Ballistic Missile Defense System designed for the overall mission of detecting, tracking and discriminating ballistic missiles. STSS is capable of tracking objects after boost phase and provides trajectory information to other sensors. It will be launched by NASA for the Missile Defense Agency between 8 and 8:58 a.m. EDT Sept. 18. Approved for Public Release 09-MDA-04886 (10 SEPT 09) Photo credit: NASA/Kim Shiflett

  1. KSC-2009-5065

    NASA Image and Video Library

    2009-08-22

    CAPE CANAVERAL, Fla. – At the Astrotech payload processing facility in Titusville, Fla., workers attach the upper segment of the transportation canister to the lower segments around the Space Tracking and Surveillance System – Demonstrators, or STSS Demo, spacecraft. The STSS Demo is a space-based sensor component of a layered Ballistic Missile Defense System designed for the overall mission of detecting, tracking and discriminating ballistic missiles. STSS is capable of tracking objects after boost phase and provides trajectory information to other sensors. It will be launched by NASA for the Missile Defense Agency between 8 and 8:58 a.m. EDT Sept. 18. Approved for Public Release 09-MDA-04886 (10 SEPT 09) Photo credit: NASA/Kim Shiflett

  2. KSC-2009-5055

    NASA Image and Video Library

    2009-08-22

    CAPE CANAVERAL, Fla. – At the Astrotech payload processing facility in Titusville, Fla., workers place the first segments of the transportation canister around the base of the Space Tracking and Surveillance System – Demonstrators, or STSS Demo, spacecraft. The STSS Demo is a space-based sensor component of a layered Ballistic Missile Defense System designed for the overall mission of detecting, tracking and discriminating ballistic missiles. STSS is capable of tracking objects after boost phase and provides trajectory information to other sensors. It will be launched by NASA for the Missile Defense Agency between 8 and 8:58 a.m. EDT Sept. 18. Approved for Public Release 09-MDA-04886 (10 SEPT 09) Photo credit: NASA/Kim Shiflett

  3. KSC-2009-5194

    NASA Image and Video Library

    2009-09-23

    CAPE CANAVERAL, Fla. – The mobile service tower on Launch Pad 17-B at Cape Canaveral Air Force Station has been rolled back as the countdown proceeds to launch of the United Launch Alliance Delta II rocket with the Space Tracking and Surveillance System - Demonstrator spacecraft aboard. It is being launched by NASA for the Missile Defense System. The hour-long launch window opens at 8 a.m. EDT today. The STSS Demo is a space-based sensor component of a layered Ballistic Missile Defense System designed for the overall mission of detecting, tracking and discriminating ballistic missiles. STSS is capable of tracking objects after boost phase and provides trajectory information to other sensors. Photo credit: NASA/Dimitri Gerondidakis

  4. KSC-2009-5051

    NASA Image and Video Library

    2009-08-20

    CAPE CANAVERAL, Fla. – At the Astrotech payload processing facility in Titusville, Fla., the SV1-SV2 spacecraft is lifted for weighing. The two spacecraft are known as the Space Tracking and Surveillance System – Demonstrators, or STSS Demo, which is a space-based sensor component of a layered Ballistic Missile Defense System designed for the overall mission of detecting, tracking and discriminating ballistic missiles. STSS is capable of tracking objects after boost phase and provides trajectory information to other sensors. It will be launched by NASA for the Missile Defense Agency between 8 and 8:58 a.m. EDT Sept. 18. Approved for Public Release 09-MDA-04886 (10 SEPT 09) Photo credit: NASA/Jim Grossmann

  5. KSC-2009-5054

    NASA Image and Video Library

    2009-08-22

    CAPE CANAVERAL, Fla. – At the Astrotech payload processing facility in Titusville, Fla., the Space Tracking and Surveillance System – Demonstrators, or STSS Demo, spacecraft is under a protective cover before being encased in the transportation canister. The STSS Demo is a space-based sensor component of a layered Ballistic Missile Defense System designed for the overall mission of detecting, tracking and discriminating ballistic missiles. STSS is capable of tracking objects after boost phase and provides trajectory information to other sensors. It will be launched by NASA for the Missile Defense Agency between 8 and 8:58 a.m. EDT Sept. 18. Approved for Public Release 09-MDA-04886 (10 SEPT 09) Photo credit: NASA/Kim Shiflett

  6. KSC-2009-5218

    NASA Image and Video Library

    2009-09-25

    CAPE CANAVERAL, Fla. – The United Launch Alliance Delta II rocket with Space Tracking and Surveillance System - Demonstrator, or STSS-Demo, spacecraft aboard races into the sky leaving a trail of fire and smoke after liftoff from Launch Pad 17-B at Cape Canaveral Air Force Station. It was launched by NASA for the U.S. Missile Defense Agency. Launch was at 8:20:22 a.m. EDT. The STSS-Demo is a space-based sensor component of a layered Ballistic Missile Defense System designed for the overall mission of detecting, tracking and discriminating ballistic missiles. STSS is capable of tracking objects after boost phase and provides trajectory information to other sensors. Photo credit: NASA/Jack Pfaller

  7. KSC-2009-5058

    NASA Image and Video Library

    2009-08-22

    CAPE CANAVERAL, Fla. – At the Astrotech payload processing facility in Titusville, Fla., workers maneuver one of the second-row segments of the transportation canister that will be placed around the Space Tracking and Surveillance System – Demonstrators, or STSS Demo, spacecraft. The STSS Demo is a space-based sensor component of a layered Ballistic Missile Defense System designed for the overall mission of detecting, tracking and discriminating ballistic missiles. STSS is capable of tracking objects after boost phase and provides trajectory information to other sensors. It will be launched by NASA for the Missile Defense Agency between 8 and 8:58 a.m. EDT Sept. 18. Approved for Public Release 09-MDA-04886 (10 SEPT 09) Photo credit: NASA/Kim Shiflett

  8. 77 FR 68073 - Prevailing Rate Systems; Redefinition of the St. Louis, MO; Southern Missouri; Cleveland, OH; and...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-11-15

    ... Albuquerque, NM, and El Paso, TX, wage areas to White Sands Missile Range. DATES: We must receive comments on... because the Department of Defense now refers to it as that White Sands Missile Range. OPM announced these... not include White Sands Missile Range portion) Los Alamos Mora Quay Rio Arriba Roosevelt San Miguel...

  9. The Unsinkable Aircraft Carrier: An American Response to the Chinese Anti-Access/Area Denial (A2/AD) Challenge

    DTIC Science & Technology

    2013-04-01

    Battalion-71 st Artillery to Taiwan with the new Nike -Hercules missile batteries. 121 The idea of an active defense against missiles has been...The 2nd Missile Battalion, 71st Artillery ( Nike -Hercules) Defends Northern Taiwan 1958-1959.” http://www.2-71adataiwan.com/Member%20Articles/RHM...Beijing: PLA Literature and Arts Publishing House, February 1999. Mackintosh, Robert H. “The 2nd Missile Battalion, 71st Artillery ( Nike -Hercules

  10. Missile Defense: Assessment of DODs Reports on Status of Efforts and Options for Improving Homeland Missile Defense

    DTIC Science & Technology

    2016-02-17

    However, MDA may encounter challenges with the RKV’s contract strategy, industry collaboration efforts, and schedule because MDA has not yet...negotiated the terms of the RKV modification with the prime contractor, is relying on potential industry competitors to collaborate on developing the RKV...interfaces and standards for its subsystems, called modules. Under the DSC, MDA plans to form a cross industry team consisting of Boeing, Raytheon, and

  11. THE DECENNIAL OF AIR FORCE SPACE COMMAND’S ONLY GROUND BASED MISSILE WARNING CLASSIC ASSOCIATE UNIT: BENEFITS, DRAWBACKS, AND CHALLENGES

    DTIC Science & Technology

    2016-02-16

    for future threats and challenges. In the Ground Based Missile Warning and Space Surveillance mission set, this means developing...Warning and Space Surveillance for North America .43 For 45 years, Clear AFS was solely an Active Duty remote assignment. That was up until 2006 when the ...National Guard and Homeland Defense activities. § 901 provides a definition for the term “homeland defense activity” and it

  12. KSC-2009-2816

    NASA Image and Video Library

    2009-04-21

    CAPE CANAVERAL, Fla. – On Launch Pad 17-B at Cape Canaveral Air Force Station, a worker attaches solid rocket boosters to a Delta II rocket for launch of the STSS Demonstrator spacecraft. The spacecraft is a midcourse tracking technology demonstrator, part of an evolving ballistic missile defense system. STSS is capable of tracking objects after boost phase and provides trajectory information to other sensors. It will be launched by NASA for the Missile Defense Agency on July 29. Photo credit: NASA/Kim Shiflett

  13. KSC-2009-3667

    NASA Image and Video Library

    2009-05-01

    CAPE CANAVERAL, Fla. – The STSS Demonstrator SV-2spacecraft arrives at the Astrotech payload processing facility in Titusville, Fla. The spacecraft is a midcourse tracking technology demonstrator, part of an evolving ballistic missile defense system. STSS is capable of tracking objects after boost phase and provides trajectory information to other sensors. It will be launched by NASA for the Missile Defense Agency in late summer. Photo credit: NASA/Jack Pfaller (Approved for Public Release 09-MDA-4616 [27 May 09])

  14. KSC-2009-2815

    NASA Image and Video Library

    2009-04-21

    CAPE CANAVERAL, Fla. – On Launch Pad 17-B at Cape Canaveral Air Force Station, solid rocket boosters are attached to a Delta II rocket for launch of the STSS Demonstrator spacecraft. The spacecraft is a midcourse tracking technology demonstrator, part of an evolving ballistic missile defense system. STSS is capable of tracking objects after boost phase and provides trajectory information to other sensors. It will be launched by NASA for the Missile Defense Agency on July 29. Photo credit: NASA/Kim Shiflett

  15. KSC-2009-2819

    NASA Image and Video Library

    2009-04-21

    CAPE CANAVERAL, Fla. – On Launch Pad 17-B at Cape Canaveral Air Force Station, solid rocket boosters are installed on a Delta II rocket for launch of the STSS Demonstrator spacecraft. The spacecraft is a midcourse tracking technology demonstrator, part of an evolving ballistic missile defense system. STSS is capable of tracking objects after boost phase and provides trajectory information to other sensors. It will be launched by NASA for the Missile Defense Agency on July 29. Photo credit: NASA/Kim Shiflett

  16. Strategic Stability Through the Strategic Defense Initiative

    DTIC Science & Technology

    1989-03-09

    Alliance, pp. 35-36. 23. Ibid. 24. Ibid., p. 37. 25. Steven P. Adragna , On Guard for Victory: Military Doctrine and Ballistic Missile Defense in the USSR...their fundamental policy of survival of the motherland. ENDNOTES 1. Steven P. Adragna , On Guard for Victory: Military Doctrine and Ballistic Missile...Approach to Nuclear Arms Control," Survival, Nov/Dee 1987, p. 494. 5. Adragna , p. 59. 6. Rivkin, p. 495. 7. Johnson, p. 184. 8. Senator Malcomb Wallop

  17. What to Do About That Pack of Wolves at the Door: A Binational Organization and Acquisitions Approach to Homeland Cruise Missile Defense

    DTIC Science & Technology

    2016-04-04

    throughout the world . While the United States and its near-peer competitors have focused their non-proliferation treaties, missile defense...The Absolute Weapon: Atomic Power and World Order (Yale: Harcourt Brace, 1946), 76. 2 US Census Bureau Report (2010). 3 destruction (WMDs). The...spending, procurement, and capabilities. Russia’s involvement in Georgia, Ukraine, and Syria demonstrate this desire for greater influence in world

  18. 48 CFR 214.407-3 - Other mistakes disclosed before award.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ...) Missile Defense Agency: General Counsel, MDA. (ix) Defense Contract Management Agency: General Counsel... before award. 214.407-3 Section 214.407-3 Federal Acquisition Regulations System DEFENSE ACQUISITION REGULATIONS SYSTEM, DEPARTMENT OF DEFENSE CONTRACTING METHODS AND CONTRACT TYPES SEALED BIDDING Opening of...

  19. 48 CFR 214.407-3 - Other mistakes disclosed before award.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ...) Missile Defense Agency: General Counsel, MDA. (ix) Defense Contract Management Agency: General Counsel... before award. 214.407-3 Section 214.407-3 Federal Acquisition Regulations System DEFENSE ACQUISITION REGULATIONS SYSTEM, DEPARTMENT OF DEFENSE CONTRACTING METHODS AND CONTRACT TYPES SEALED BIDDING Opening of...

  20. 48 CFR 214.407-3 - Other mistakes disclosed before award.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ...) Missile Defense Agency: General Counsel, MDA. (ix) Defense Contract Management Agency: General Counsel... before award. 214.407-3 Section 214.407-3 Federal Acquisition Regulations System DEFENSE ACQUISITION REGULATIONS SYSTEM, DEPARTMENT OF DEFENSE CONTRACTING METHODS AND CONTRACT TYPES SEALED BIDDING Opening of...

  1. 48 CFR 214.407-3 - Other mistakes disclosed before award.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ...) Missile Defense Agency: General Counsel, MDA. (ix) Defense Contract Management Agency: General Counsel... before award. 214.407-3 Section 214.407-3 Federal Acquisition Regulations System DEFENSE ACQUISITION REGULATIONS SYSTEM, DEPARTMENT OF DEFENSE CONTRACTING METHODS AND CONTRACT TYPES SEALED BIDDING Opening of...

  2. 48 CFR 214.407-3 - Other mistakes disclosed before award.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ...) Missile Defense Agency: General Counsel, MDA. (ix) Defense Contract Management Agency: General Counsel... before award. 214.407-3 Section 214.407-3 Federal Acquisition Regulations System DEFENSE ACQUISITION REGULATIONS SYSTEM, DEPARTMENT OF DEFENSE CONTRACTING METHODS AND CONTRACT TYPES SEALED BIDDING Opening of...

  3. Peeling the onion: an heuristic overview of hit-to-kill missile defense in the 21st century

    NASA Astrophysics Data System (ADS)

    LaCroix, Len; Kurzius, Shelby

    2005-03-01

    Researchers engaged in the development of infrared detector technologies may well benefit from a broader understanding of their products from the perspective of the end-user. An appreciation of how this technology is to be used by system designers, many of whom possess only a rudimentary understanding of quantum physics, is highly germane. Answers to questions like: "What device technology will be employed," "How will the device be used?" and "What are the impacts on signal-to-noise?" are of critical importance. In this paper, some of the fundamentals of hit-to-kill missile defense technology are examined in a largely non-mathematical context. From its "Star Wars" inception during the Reagan administration, to today"s Missile Defense Agency, the core requirement of missile defense has not changed - find the threat and destroy it before it reaches its destination. This fundamental requirement, while conceptually straightforward, is extraordinarily difficult to satisfy, and is almost exclusively dependent on our ability to detect and designate a relatively small, very fast-moving, room-temperature object, at great distances, and usually in a severe environment of shock and vibration further clouded by error and uncertainty. With an obvious bias toward passive IR detection and associated focal plane array characteristics, the flight of a fictitious interceptor is followed from launch to impact. At various points along the interceptor"s trajectory, a "peel the onion" approach is utilized to expose increasingly detailed layers of behavior, including the eventual release of the kinetic kill vehicle, and its autonomous flight to a body-to-body impact with its target. Various sources of error and their impact on the success of the mission are examined, and an overall understanding of the key features of the infrared seeker and its critical role in missile defense are ultimately developed.

  4. Extended Range Intercept Technology

    DTIC Science & Technology

    1991-09-01

    particle size other than Freon class fluids. The requirements for a solvent used in grinding ammonium perchlorate to a one micron particle size are high...demonstrate a preprototype missile and launch control systems technology for tactical missile defense applications, including performance ...these two flights would be to verify flight performance and stability of the basic air frame and control system design (LTV Missiles and 1 -2 wp«-2a

  5. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mark, H.

    A development history and development status evaluation is presented for weapons technologies capable of serving as defenses against nuclear-tipped ballistic missiles. The decisive turning-point in this history was the March 23, 1983 announcement by President Reagan of the Strategic Defense Initiative (SDI). Due to President Reagan's emphasis on population protection, 'global' defense systems have tended to dominate SDI design efforts. The most important SDI technical achievements to date encompass (1) miniature homig devices, (2) the upgrade of the Patriot SAM for missile-interception capabilities, (3) light exoatmospheric projectiles, such as 'Brilliant Pebbles', (4) successful laser-communications experiments, and (5) the warhead/decoy-discriminating Firepondmore » lidar system. 7 refs.« less

  6. KSC-2009-4627

    NASA Image and Video Library

    2009-07-23

    CAPE CANAVERAL, Fla. – In the Astrotech payload processing facility in Titusville, Fla. , technicians monitor the STSS Demonstrator SV-1 spacecraft as it is lowered to the orbital insertion system. The spacecraft is a midcourse tracking technology demonstrator, part of an evolving ballistic missile defense system. STSS is capable of tracking objects after boost phase and provides trajectory information to other sensors. It will be launched by NASA for the Missile Defense Agency in late summer. Photo credit: NASA/Tim Jacobs (Approved for Public Release 09-MDA-4800 [30 July 09] )

  7. KSC-2009-2818

    NASA Image and Video Library

    2009-04-21

    CAPE CANAVERAL, Fla. – On Launch Pad 17-B at Cape Canaveral Air Force Station, workers monitor the placement of a solid rocket booster on a Delta II rocket for launch of the STSS Demonstrator spacecraft. The spacecraft is a midcourse tracking technology demonstrator, part of an evolving ballistic missile defense system. STSS is capable of tracking objects after boost phase and provides trajectory information to other sensors. It will be launched by NASA for the Missile Defense Agency on July 29. Photo credit: NASA/Kim Shiflett

  8. KSC-2009-3666

    NASA Image and Video Library

    2009-05-01

    CAPE CANAVERAL, Fla. – A flatbed truck carrying the STSS Demonstrator SV-2spacecraft arrives at the Astrotech payload processing facility in Titusville, Fla. The spacecraft is a midcourse tracking technology demonstrator, part of an evolving ballistic missile defense system. STSS is capable of tracking objects after boost phase and provides trajectory information to other sensors. It will be launched by NASA for the Missile Defense Agency in late summer. Photo credit: NASA/Jack Pfaller (Approved for Public Release 09-MDA-4616 [27 May 09])

  9. KSC-2009-4625

    NASA Image and Video Library

    2009-07-23

    CAPE CANAVERAL, Fla. – In the Astrotech payload processing facility in Titusville, Fla. , the STSS Demonstrator SV-1 spacecraft is lowered toward the orbital insertion system. The spacecraft is a midcourse tracking technology demonstrator, part of an evolving ballistic missile defense system. STSS is capable of tracking objects after boost phase and provides trajectory information to other sensors. It will be launched by NASA for the Missile Defense Agency in late summer. Photo credit: NASA/Tim Jacobs (Approved for Public Release 09-MDA-4800 [30 July 09] )

  10. KSC-2009-4617

    NASA Image and Video Library

    2009-06-25

    CAPE CANAVERAL, Fla. – The flatbed truck with the SV-1 cargo of the STSS Demonstrator spacecraft arrives at the Astrotech payload processing facility in Titusville, Fla. The spacecraft is a midcourse tracking technology demonstrator, part of an evolving ballistic missile defense system. STSS is capable of tracking objects after boost phase and provides trajectory information to other sensors. It will be launched by NASA for the Missile Defense Agency in late summer. Photo credit: NASA/Kim Shiflett (Approved for Public Release 09-MDA-4804 [4 Aug 09] )

  11. KSC-2009-4626

    NASA Image and Video Library

    2009-07-23

    CAPE CANAVERAL, Fla. – In the Astrotech payload processing facility in Titusville, Fla. , technicians monitor the STSS Demonstrator SV-1 spacecraft as it is lowered to the orbital insertion system. The spacecraft is a midcourse tracking technology demonstrator, part of an evolving ballistic missile defense system. STSS is capable of tracking objects after boost phase and provides trajectory information to other sensors. It will be launched by NASA for the Missile Defense Agency in late summer. Photo credit: NASA/Tim Jacobs (Approved for Public Release 09-MDA-4800 [30 July 09] )

  12. KSC-2009-4622

    NASA Image and Video Library

    2009-07-23

    CAPE CANAVERAL, Fla. – In the Astrotech payload processing facility in Titusville, Fla. , the STSS Demonstrator SV-1 spacecraft is being moved to a stand. The spacecraft is a midcourse tracking technology demonstrator, part of an evolving ballistic missile defense system. STSS is capable of tracking objects after boost phase and provides trajectory information to other sensors. It will be launched by NASA for the Missile Defense Agency in late summer. Photo credit: NASA/Tim Jacobs (Approved for Public Release 09-MDA-4800 [30 July 09] )

  13. KSC-2009-3668

    NASA Image and Video Library

    2009-05-01

    CAPE CANAVERAL, Fla. – The STSS Demonstrator SV-2spacecraft is moved inside a building at the Astrotech payload processing facility in Titusville, Fla. The spacecraft is a midcourse tracking technology demonstrator, part of an evolving ballistic missile defense system. STSS is capable of tracking objects after boost phase and provides trajectory information to other sensors. It will be launched by NASA for the Missile Defense Agency in late summer. Photo credit: NASA/Jack Pfaller (Approved for Public Release 09-MDA-4616 [27 May 09])

  14. KSC-2009-4618

    NASA Image and Video Library

    2009-06-25

    CAPE CANAVERAL, Fla. – The SV-1 cargo of the STSS Demonstrator spacecraft is moved into the Astrotech payload processing facility in Titusville, Fla. The spacecraft is a midcourse tracking technology demonstrator, part of an evolving ballistic missile defense system. STSS is capable of tracking objects after boost phase and provides trajectory information to other sensors. It will be launched by NASA for the Missile Defense Agency in late summer. Photo credit: NASA/Kim Shiflett (Approved for Public Release 09-MDA-4804 [4 Aug 09] )

  15. KSC-2009-4628

    NASA Image and Video Library

    2009-07-23

    CAPE CANAVERAL, Fla. – In the Astrotech payload processing facility in Titusville, Fla. , the STSS Demonstrator SV-1 spacecraft is lowered to the orbital insertion system. The spacecraft is a midcourse tracking technology demonstrator, part of an evolving ballistic missile defense system. STSS is capable of tracking objects after boost phase and provides trajectory information to other sensors. It will be launched by NASA for the Missile Defense Agency in late summer. Photo credit: NASA/Tim Jacobs (Approved for Public Release 09-MDA-4800 [30 July 09] )

  16. KSC-2009-4624

    NASA Image and Video Library

    2009-07-23

    CAPE CANAVERAL, Fla. – In the Astrotech payload processing facility in Titusville, Fla. , the STSS Demonstrator SV-1 spacecraft is moved toward the orbital insertion system. The spacecraft is a midcourse tracking technology demonstrator, part of an evolving ballistic missile defense system. STSS is capable of tracking objects after boost phase and provides trajectory information to other sensors. It will be launched by NASA for the Missile Defense Agency in late summer. Photo credit: NASA/Tim Jacobs (Approved for Public Release 09-MDA-4800 [30 July 09] )

  17. KSC-2009-4619

    NASA Image and Video Library

    2009-07-23

    CAPE CANAVERAL, Fla. – The shipping crate is being removed from the STSS Demonstrator SV-1 spacecraft in the Astrotech payload processing facility in Titusville, Fla. The spacecraft is a midcourse tracking technology demonstrator, part of an evolving ballistic missile defense system. STSS is capable of tracking objects after boost phase and provides trajectory information to other sensors. It will be launched by NASA for the Missile Defense Agency in late summer. Photo credit: NASA/Tim Jacobs (Approved for Public Release 09-MDA-4800 [30 July 09] )

  18. KSC-2009-2817

    NASA Image and Video Library

    2009-04-21

    CAPE CANAVERAL, Fla. – On Launch Pad 17-B at Cape Canaveral Air Force Station, a worker monitors the placement of a solid rocket booster on a Delta II rocket for launch of the STSS Demonstrator spacecraft. The spacecraft is a midcourse tracking technology demonstrator, part of an evolving ballistic missile defense system. STSS is capable of tracking objects after boost phase and provides trajectory information to other sensors. It will be launched by NASA for the Missile Defense Agency on July 29. Photo credit: NASA/Kim Shiflett

  19. KSC-2009-4623

    NASA Image and Video Library

    2009-07-23

    CAPE CANAVERAL, Fla. – In the Astrotech payload processing facility in Titusville, Fla. , the STSS Demonstrator SV-1 spacecraft is lowered onto a stand. The spacecraft is a midcourse tracking technology demonstrator, part of an evolving ballistic missile defense system. STSS is capable of tracking objects after boost phase and provides trajectory information to other sensors. It will be launched by NASA for the Missile Defense Agency in late summer. Photo credit: NASA/Tim Jacobs (Approved for Public Release 09-MDA-4800 [30 July 09] )

  20. KSC-2009-2711

    NASA Image and Video Library

    2009-04-16

    CAPE CANAVERAL, Fla. – On Launch Complex 17-B at Cape Canaveral Air Force Station, the first stage of the Delta II rocket waits on the gantry for the solid rocket boosters. The STSS Demonstrators is a midcourse tracking technology demonstrator and is part of an evolving ballistic missile defense system. STSS is capable of tracking objects after boost phase and provides trajectory information to other sensors. It will be launched by NASA for the Missile Defense Agency on July 29. Photo credit: NASA/Kim Shiflett

  1. KSC-2009-4616

    NASA Image and Video Library

    2009-06-25

    CAPE CANAVERAL, Fla. – The flatbed truck with the SV-1 cargo of the STSS Demonstrator spacecraft arrives at the Astrotech payload processing facility in Titusville, Fla. The spacecraft is a midcourse tracking technology demonstrator, part of an evolving ballistic missile defense system. STSS is capable of tracking objects after boost phase and provides trajectory information to other sensors. It will be launched by NASA for the Missile Defense Agency in late summer. Photo credit: NASA/Kim Shiflett (Approved for Public Release 09-MDA-4804 [4 Aug 09] )

  2. KSC-2009-4620

    NASA Image and Video Library

    2009-07-23

    CAPE CANAVERAL, Fla. – In the Astrotech payload processing facility in Titusville, Fla. , the STSS Demonstrator SV-1 spacecraft is lifted from its shipping crate. The spacecraft is a midcourse tracking technology demonstrator, part of an evolving ballistic missile defense system. STSS is capable of tracking objects after boost phase and provides trajectory information to other sensors. It will be launched by NASA for the Missile Defense Agency in late summer. Photo credit: NASA/Tim Jacobs (Approved for Public Release 09-MDA-4800 [30 July 09] )

  3. KSC-2009-4621

    NASA Image and Video Library

    2009-07-23

    CAPE CANAVERAL, Fla. – In the Astrotech payload processing facility in Titusville, Fla. , the STSS Demonstrator SV-1 spacecraft is lifted clear from its shipping crate. The spacecraft is a midcourse tracking technology demonstrator, part of an evolving ballistic missile defense system. STSS is capable of tracking objects after boost phase and provides trajectory information to other sensors. It will be launched by NASA for the Missile Defense Agency in late summer. Photo credit: NASA/Tim Jacobs (Approved for Public Release 09-MDA-4800 [30 July 09] )

  4. KSC-2009-4630

    NASA Image and Video Library

    2009-07-23

    CAPE CANAVERAL, Fla. – In the Astrotech payload processing facility in Titusville, Fla. , technicians get ready to remove the overhead crane from the STSS Demonstrator SV-1 spacecraft. The spacecraft is a midcourse tracking technology demonstrator, part of an evolving ballistic missile defense system. STSS is capable of tracking objects after boost phase and provides trajectory information to other sensors. It will be launched by NASA for the Missile Defense Agency in late summer. Photo credit: NASA/Tim Jacobs (Approved for Public Release 09-MDA-4800 [30 July 09] )

  5. Seeing 2020: America’s New Vision for Integrated Air and Missile Defense

    DTIC Science & Technology

    2015-01-01

    powered missile in war dates back to 13th- century China, but it was not until the early 19th century in Europe that these rockets gained the range and...relevant is that it accounts for the volatility and reality of 21st- century strategic and threat environments characterized more often than not by...adapted by fashioning primitive defenses, which at the time consisted exclusively of passive measures such as shields or armor to survive an attack and

  6. KSC-2009-5032

    NASA Image and Video Library

    2009-08-19

    CAPE CANAVERAL, Fla. – At the Astrotech payload processing facility in Titusville, Fla., workers remove a cover from around the mated SV1 and SV2 spacecraft before center of gravity testing, weighing and balancing. The two spacecraft are known as the Space Tracking and Surveillance System – Demonstrators, or STSS Demo, which is a space-based sensor component of a layered Ballistic Missile Defense System designed for the overall mission of detecting, tracking and discriminating ballistic missiles. STSS is capable of tracking objects after boost phase and provides trajectory information to other sensors. It will be launched by NASA for the Missile Defense Agency between 8 and 8:58 a.m. EDT Sept. 18. Approved for Public Release 09-MDA-04886 (10 SEPT 09) Photo credit: NASA/Jim Grossmann

  7. KSC-2009-5033

    NASA Image and Video Library

    2009-08-19

    CAPE CANAVERAL, Fla. – At the Astrotech payload processing facility in Titusville, Fla., the mated SV1 and SV2 spacecraft are largely uncovered before center of gravity testing, weighing and balancing. The two spacecraft are known as the Space Tracking and Surveillance System – Demonstrators, or STSS Demo, which is a space-based sensor component of a layered Ballistic Missile Defense System designed for the overall mission of detecting, tracking and discriminating ballistic missiles. STSS is capable of tracking objects after boost phase and provides trajectory information to other sensors. It will be launched by NASA for the Missile Defense Agency between 8 and 8:58 a.m. EDT Sept. 18. Approved for Public Release 09-MDA-04886 (10 SEPT 09) Photo credit: NASA/Jim Grossmann

  8. KSC-2009-5062

    NASA Image and Video Library

    2009-08-22

    CAPE CANAVERAL, Fla. – At the Astrotech payload processing facility in Titusville, Fla., the upper segment of the transportation canister is lowered toward the Space Tracking and Surveillance System – Demonstrators, or STSS Demo, spacecraft. It will be installed onto the lower segments already in place. The STSS Demo is a space-based sensor component of a layered Ballistic Missile Defense System designed for the overall mission of detecting, tracking and discriminating ballistic missiles. STSS is capable of tracking objects after boost phase and provides trajectory information to other sensors. It will be launched by NASA for the Missile Defense Agency between 8 and 8:58 a.m. EDT Sept. 18. Approved for Public Release 09-MDA-04886 (10 SEPT 09) Photo credit: NASA/Kim Shiflett

  9. KSC-2009-5028

    NASA Image and Video Library

    2009-08-19

    CAPE CANAVERAL, Fla. – At the Astrotech payload processing facility in Titusville, Fla., workers remove covers around the mated SV1 and SV2 spacecraft before center of gravity testing, weighing and balancing. The two spacecraft are known as the Space Tracking and Surveillance System – Demonstrators, or STSS Demo, which is a space-based sensor component of a layered Ballistic Missile Defense System designed for the overall mission of detecting, tracking and discriminating ballistic missiles. STSS is capable of tracking objects after boost phase and provides trajectory information to other sensors. It will be launched by NASA for the Missile Defense Agency between 8 and 8:58 a.m. EDT Sept. 18. Approved for Public Release 09-MDA-04886 (10 SEPT 09) Photo credit: NASA/Jim Grossmann

  10. KSC-2009-5039

    NASA Image and Video Library

    2009-08-19

    CAPE CANAVERAL, Fla. – At the Astrotech payload processing facility in Titusville, Fla., the mated SV1 and SV2 spacecraft are on a rotation stand for center of gravity testing, weighing and balancing. The two spacecraft are known as the Space Tracking and Surveillance System – Demonstrators, or STSS Demo, which is a space-based sensor component of a layered Ballistic Missile Defense System designed for the overall mission of detecting, tracking and discriminating ballistic missiles. STSS is capable of tracking objects after boost phase and provides trajectory information to other sensors. It will be launched by NASA for the Missile Defense Agency between 8 and 8:58 a.m. EDT Sept. 18. Approved for Public Release 09-MDA-04886 (10 SEPT 09) Photo credit: NASA/Jim Grossmann

  11. KSC-2009-5047

    NASA Image and Video Library

    2009-08-20

    CAPE CANAVERAL, Fla. – At the Astrotech payload processing facility in Titusville, Fla., an overhead crane with a scale is being attached to the SV1-SV2 spacecraft, which will be weighed. The two spacecraft are known as the Space Tracking and Surveillance System – Demonstrators, or STSS Demo, which is a space-based sensor component of a layered Ballistic Missile Defense System designed for the overall mission of detecting, tracking and discriminating ballistic missiles. STSS is capable of tracking objects after boost phase and provides trajectory information to other sensors. It will be launched by NASA for the Missile Defense Agency between 8 and 8:58 a.m. EDT Sept. 18. Approved for Public Release 09-MDA-04886 (10 SEPT 09) Photo credit: NASA/Jim Grossmann

  12. KSC-2009-5041

    NASA Image and Video Library

    2009-08-19

    CAPE CANAVERAL, Fla. – At the Astrotech payload processing facility in Titusville, Fla., workers check the SV1-SV2 spacecraft that will undergo center of gravity testing, weighing and balancing. The two spacecraft are known as the Space Tracking and Surveillance System – Demonstrators, or STSS Demo, which is a space-based sensor component of a layered Ballistic Missile Defense System designed for the overall mission of detecting, tracking and discriminating ballistic missiles. STSS is capable of tracking objects after boost phase and provides trajectory information to other sensors. It will be launched by NASA for the Missile Defense Agency between 8 and 8:58 a.m. EDT Sept. 18. Approved for Public Release 09-MDA-04886 (10 SEPT 09) Photo credit: NASA/Jim Grossmann

  13. KSC-2009-5030

    NASA Image and Video Library

    2009-08-19

    CAPE CANAVERAL, Fla. – At the Astrotech payload processing facility in Titusville, Fla., workers remove covers around the mated SV1 and SV2 spacecraft before center of gravity testing, weighing and balancing. The two spacecraft are known as the Space Tracking and Surveillance System – Demonstrators, or STSS Demo, which is a space-based sensor component of a layered Ballistic Missile Defense System designed for the overall mission of detecting, tracking and discriminating ballistic missiles. STSS is capable of tracking objects after boost phase and provides trajectory information to other sensors. It will be launched by NASA for the Missile Defense Agency between 8 and 8:58 a.m. EDT Sept. 18. Approved for Public Release 09-MDA-04886 (10 SEPT 09) Photo credit: NASA/Jim Grossmann

  14. KSC-2009-5045

    NASA Image and Video Library

    2009-08-20

    CAPE CANAVERAL, Fla. – At the Astrotech payload processing facility in Titusville, Fla., an overhead crane with a scale is being attached to the SV1-SV2 spacecraft, which will be weighed. The two spacecraft are known as the Space Tracking and Surveillance System – Demonstrators, or STSS Demo, which is a space-based sensor component of a layered Ballistic Missile Defense System designed for the overall mission of detecting, tracking and discriminating ballistic missiles. STSS is capable of tracking objects after boost phase and provides trajectory information to other sensors. It will be launched by NASA for the Missile Defense Agency between 8 and 8:58 a.m. EDT Sept. 18. Approved for Public Release 09-MDA-04886 (10 SEPT 09) Photo credit: NASA/Jim Grossmann

  15. KSC-2009-5027

    NASA Image and Video Library

    2009-08-19

    CAPE CANAVERAL, Fla. –At the Astrotech payload processing facility in Titusville, Fla., the mated SV1 and SV2 spacecraft are being prepared for center of gravity testing, weighing and balancing. The two spacecraft are known as the Space Tracking and Surveillance System – Demonstrators, or STSS Demo, which is a space-based sensor component of a layered Ballistic Missile Defense System designed for the overall mission of detecting, tracking and discriminating ballistic missiles. STSS is capable of tracking objects after boost phase and provides trajectory information to other sensors. It will be launched by NASA for the Missile Defense Agency between 8 and 8:58 a.m. EDT Sept. 18. Approved for Public Release 09-MDA-04886 (10 SEPT 09) Photo credit: NASA/Jim Grossmann

  16. KSC-2009-5063

    NASA Image and Video Library

    2009-08-22

    CAPE CANAVERAL, Fla. – At the Astrotech payload processing facility in Titusville, Fla., the upper segment of the transportation canister is lowered over the Space Tracking and Surveillance System – Demonstrators, or STSS Demo, spacecraft. It will be installed onto the lower segments already in place. The STSS Demo is a space-based sensor component of a layered Ballistic Missile Defense System designed for the overall mission of detecting, tracking and discriminating ballistic missiles. STSS is capable of tracking objects after boost phase and provides trajectory information to other sensors. It will be launched by NASA for the Missile Defense Agency between 8 and 8:58 a.m. EDT Sept. 18. Approved for Public Release 09-MDA-04886 (10 SEPT 09) Photo credit: NASA/Kim Shiflett

  17. KSC-2009-5052

    NASA Image and Video Library

    2009-08-20

    CAPE CANAVERAL, Fla. – At the Astrotech payload processing facility in Titusville, Fla., workers observe as the SV1-SV2 spacecraft is lowered again onto the rotation stand after weighing. The two spacecraft are known as the Space Tracking and Surveillance System – Demonstrators, or STSS Demo, which is a space-based sensor component of a layered Ballistic Missile Defense System designed for the overall mission of detecting, tracking and discriminating ballistic missiles. STSS is capable of tracking objects after boost phase and provides trajectory information to other sensors. It will be launched by NASA for the Missile Defense Agency between 8 and 8:58 a.m. EDT Sept. 18. Approved for Public Release 09-MDA-04886 (10 SEPT 09) Photo credit: NASA/Jim Grossmann

  18. KSC-2009-5195

    NASA Image and Video Library

    2009-09-12

    CAPE CANAVERAL, Fla. – The two halves of the fairing are moved into the mobile service tower on Launch Pad 17-B at Cape Canaveral Air Force Station in Florida. The two-part fairing will be placed around the Space Tracking and Surveillance System – Demonstrator spacecraft for protection during launch. STSS Demo is a space-based sensor component of a layered Ballistic Missile Defense System designed for the overall mission of detection, tracking and discriminating ballistic missiles. STSS is capable of tracking objects after boost phase and provides trajectory information to other sensors. It will be launched by NASA for the Missile Defense Agency between 8 and 8:58 a.m. EDT Sept. 18. Approved for Public Release 09-MDA-4934 (09-22-09) Photo credit: NASA/Cory Huston

  19. KSC-2009-5040

    NASA Image and Video Library

    2009-08-19

    CAPE CANAVERAL, Fla. – At the Astrotech payload processing facility in Titusville, Fla., a canister and protective cover are being prepared for placement around the SV1-SV2 spacecraft. The two spacecraft are known as the Space Tracking and Surveillance System – Demonstrators, or STSS Demo, which is a space-based sensor component of a layered Ballistic Missile Defense System designed for the overall mission of detecting, tracking and discriminating ballistic missiles. STSS is capable of tracking objects after boost phase and provides trajectory information to other sensors. It will be launched by NASA for the Missile Defense Agency between 8 and 8:58 a.m. EDT Sept. 18. Approved for Public Release 09-MDA-04886 (10 SEPT 09) Photo credit: NASA/Jim Grossmann

  20. KSC-2009-5036

    NASA Image and Video Library

    2009-08-19

    CAPE CANAVERAL, Fla. – At the Astrotech payload processing facility in Titusville, Fla., the mated SV1 and SV2 spacecraft are being prepared for center of gravity testing, weighing and balancing. The two spacecraft are known as the Space Tracking and Surveillance System – Demonstrators, or STSS Demo, which is a space-based sensor component of a layered Ballistic Missile Defense System designed for the overall mission of detecting, tracking and discriminating ballistic missiles. STSS is capable of tracking objects after boost phase and provides trajectory information to other sensors. It will be launched by NASA for the Missile Defense Agency between 8 and 8:58 a.m. EDT Sept. 18. Approved for Public Release 09-MDA-04886 (10 SEPT 09) Photo credit: NASA/Jim Grossmann

  1. KSC-2009-5026

    NASA Image and Video Library

    2009-08-19

    CAPE CANAVERAL, Fla. – At the Astrotech payload processing facility in Titusville, Fla., the mated SV1 and SV2 spacecraft are being prepared for center of gravity testing, weighing and balancing. The two spacecraft are known as the Space Tracking and Surveillance System – Demonstrators, or STSS Demo, which is a space-based sensor component of a layered Ballistic Missile Defense System designed for the overall mission of detecting, tracking and discriminating ballistic missiles. STSS is capable of tracking objects after boost phase and provides trajectory information to other sensors. It will be launched by NASA for the Missile Defense Agency between 8 and 8:58 a.m. EDT Sept. 18. Approved for Public Release 09-MDA-04886 (10 SEPT 09) Photo credit: NASA/Jim Grossmann

  2. KSC-2009-5046

    NASA Image and Video Library

    2009-08-20

    CAPE CANAVERAL, Fla. – At the Astrotech payload processing facility in Titusville, Fla., an overhead crane with a scale is being attached to the SV1-SV2 spacecraft, which will be weighed. The two spacecraft are known as the Space Tracking and Surveillance System – Demonstrators, or STSS Demo, which is a space-based sensor component of a layered Ballistic Missile Defense System designed for the overall mission of detecting, tracking and discriminating ballistic missiles. STSS is capable of tracking objects after boost phase and provides trajectory information to other sensors. It will be launched by NASA for the Missile Defense Agency between 8 and 8:58 a.m. EDT Sept. 18. Approved for Public Release 09-MDA-04886 (10 SEPT 09) Photo credit: NASA/Jim Grossmann

  3. KSC-2009-5043

    NASA Image and Video Library

    2009-08-20

    CAPE CANAVERAL, Fla. – At the Astrotech payload processing facility in Titusville, Fla., an overhead crane with a scale is being moved to attach to the SV1-SV2 spacecraft, which will be weighed. The two spacecraft are known as the Space Tracking and Surveillance System – Demonstrators, or STSS Demo, which is a space-based sensor component of a layered Ballistic Missile Defense System designed for the overall mission of detecting, tracking and discriminating ballistic missiles. STSS is capable of tracking objects after boost phase and provides trajectory information to other sensors. It will be launched by NASA for the Missile Defense Agency between 8 and 8:58 a.m. EDT Sept. 18. Approved for Public Release 09-MDA-04886 (10 SEPT 09) Photo credit: NASA/Jim Grossmann

  4. KSC-2009-5038

    NASA Image and Video Library

    2009-08-19

    CAPE CANAVERAL, Fla. – At the Astrotech payload processing facility in Titusville, Fla., the mated SV1 and SV2 spacecraft are placed on a rotation stand for center of gravity testing, weighing and balancing. The two spacecraft are known as the Space Tracking and Surveillance System – Demonstrators, or STSS Demo, which is a space-based sensor component of a layered Ballistic Missile Defense System designed for the overall mission of detecting, tracking and discriminating ballistic missiles. STSS is capable of tracking objects after boost phase and provides trajectory information to other sensors. It will be launched by NASA for the Missile Defense Agency between 8 and 8:58 a.m. EDT Sept. 18. Approved for Public Release 09-MDA-04886 (10 SEPT 09) Photo credit: NASA/Jim Grossmann

  5. KSC-2009-5044

    NASA Image and Video Library

    2009-08-20

    CAPE CANAVERAL, Fla. – At the Astrotech payload processing facility in Titusville, Fla., an overhead crane with a scale is being moved to attach to the SV1-SV2 spacecraft, which will be weighed. The two spacecraft are known as the Space Tracking and Surveillance System – Demonstrators, or STSS Demo, which is a space-based sensor component of a layered Ballistic Missile Defense System designed for the overall mission of detecting, tracking and discriminating ballistic missiles. STSS is capable of tracking objects after boost phase and provides trajectory information to other sensors. It will be launched by NASA for the Missile Defense Agency between 8 and 8:58 a.m. EDT Sept. 18. Approved for Public Release 09-MDA-04886 (10 SEPT 09) Photo credit: NASA/Jim Grossmann

  6. KSC-2009-5031

    NASA Image and Video Library

    2009-08-19

    CAPE CANAVERAL, Fla. – At the Astrotech payload processing facility in Titusville, Fla., workers remove covers around the mated SV1 and SV2 spacecraft before center of gravity testing, weighing and balancing. The two spacecraft are known as the Space Tracking and Surveillance System – Demonstrators, or STSS Demo, which is a space-based sensor component of a layered Ballistic Missile Defense System designed for the overall mission of detecting, tracking and discriminating ballistic missiles. STSS is capable of tracking objects after boost phase and provides trajectory information to other sensors. It will be launched by NASA for the Missile Defense Agency between 8 and 8:58 a.m. EDT Sept. 18. Approved for Public Release 09-MDA-04886 (10 SEPT 09) Photo credit: NASA/Jim Grossmann

  7. KSC-2009-5029

    NASA Image and Video Library

    2009-08-19

    CAPE CANAVERAL, Fla. – At the Astrotech payload processing facility in Titusville, Fla., workers remove covers around the mated SV1 and SV2 spacecraft before center of gravity testing, weighing and balancing. The two spacecraft are known as the Space Tracking and Surveillance System – Demonstrators, or STSS Demo, which is a space-based sensor component of a layered Ballistic Missile Defense System designed for the overall mission of detecting, tracking and discriminating ballistic missiles. STSS is capable of tracking objects after boost phase and provides trajectory information to other sensors. It will be launched by NASA for the Missile Defense Agency between 8 and 8:58 a.m. EDT Sept. 18. Approved for Public Release 09-MDA-04886 (10 SEPT 09) Photo credit: NASA/Jim Grossmann

  8. KSC-2009-5064

    NASA Image and Video Library

    2009-08-22

    CAPE CANAVERAL, Fla. – At the Astrotech payload processing facility in Titusville, Fla., the upper segment of the transportation canister is lowered over the Space Tracking and Surveillance System – Demonstrators, or STSS Demo, spacecraft. It will be installed onto the lower segments already in place. The STSS Demo is a space-based sensor component of a layered Ballistic Missile Defense System designed for the overall mission of detecting, tracking and discriminating ballistic missiles. STSS is capable of tracking objects after boost phase and provides trajectory information to other sensors. It will be launched by NASA for the Missile Defense Agency between 8 and 8:58 a.m. EDT Sept. 18. Approved for Public Release 09-MDA-04886 (10 SEPT 09) Photo credit: NASA/Kim Shiflett

  9. Business Case Analysis: Continuous Integrated Logistics Support-Targeted Allowance Technique (CILS-TAT)

    DTIC Science & Technology

    2013-05-30

    In this research, we examine the Naval Sea Logistics Command’s Continuous Integrated Logistics Support-Targeted Allowancing Technique (CILS-TAT) and... the feasibility of program re-implementation. We conduct an analysis of this allowancing method’s effectiveness onboard U.S. Navy Ballistic Missile...Defense (BMD) ships, measure the costs associated with performing a CILS-TAT, and provide recommendations concerning possible improvements to the

  10. Report of the Defense Science Board Task Force on Nuclear Deterrence Skills

    DTIC Science & Technology

    2008-09-01

    entail modeling and simulation capability analogous to that for weapon design. A minimum “national” nuclear weapons effects simulator enterprise...systems programs (design, develop, produce, deploy, and sustain) relies 18 I C HA P TE R 3 upon a variety of management models . For example, the Air...entry vehicle design, modeling and simulation efforts, command and control, launch system infrastructure, intermediate-range missile concepts, advanced

  11. Modelling the infrared ManPAD Track Angle Bias missile countermeasure

    NASA Astrophysics Data System (ADS)

    Birchenall, Richard Peter; Richardson, Mark A.; Butters, Brian; Walmsley, Roy

    2011-09-01

    The paper describes the concept of missile evolution and the development of a range of missile advancements designed to defeat the evolving array of aircraft defensive measures. The paper describes a typical military aircraft infrared signature and looks at how examination of different spectral parts of the target signature can be used to determine if an aircraft has deployed flare countermeasures. This information can then be used to trigger a missile countermeasure in attempt for the missile to continue with a successful engagement. The paper examines the Track Angle Bias missile countermeasure and details the results of over 1000 engagement simulations designed to test the effectiveness of the missile countermeasure. The paper references the work published in IRPT Volume 53, Issue 5, September 2010, Pages 372-380.

  12. Toward a new task assignment and path evolution (TAPE) for missile defense system (MDS) using intelligent adaptive SOM with recurrent neural networks (RNNs).

    PubMed

    Wang, Chi-Hsu; Chen, Chun-Yao; Hung, Kun-Neng

    2015-06-01

    In this paper, a new adaptive self-organizing map (SOM) with recurrent neural network (RNN) controller is proposed for task assignment and path evolution of missile defense system (MDS). We address the problem of N agents (defending missiles) and D targets (incoming missiles) in MDS. A new RNN controller is designed to force an agent (or defending missile) toward a target (or incoming missile), and a monitoring controller is also designed to reduce the error between RNN controller and ideal controller. A new SOM with RNN controller is then designed to dispatch agents to their corresponding targets by minimizing total damaging cost. This is actually an important application of the multiagent system. The SOM with RNN controller is the main controller. After task assignment, the weighting factors of our new SOM with RNN controller are activated to dispatch the agents toward their corresponding targets. Using the Lyapunov constraints, the weighting factors for the proposed SOM with RNN controller are updated to guarantee the stability of the path evolution (or planning) system. Excellent simulations are obtained using this new approach for MDS, which show that our RNN has the lowest average miss distance among the several techniques.

  13. 22 CFR 126.7 - Denial, revocation, suspension or amendment of licenses and other approvals.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... relevant U.S. laws (e.g., the Missile Technology Controls title of the National Defense Authorization Act... a license or other authorization to import defense articles or defense services from, any agency of... manufacturer of the defense article or defense service or any person who has a significant interest in the...

  14. The art and science of missile defense sensor design

    NASA Astrophysics Data System (ADS)

    McComas, Brian K.

    2014-06-01

    A Missile Defense Sensor is a complex optical system, which sits idle for long periods of time, must work with little or no on-­board calibration, be used to find and discriminate targets, and guide the kinetic warhead to the target within minutes of launch. A short overview of the Missile Defense problem will be discussed here, as well as, the top-level performance drivers, like Noise Equivalent Irradiance (NEI), Acquisition Range, and Dynamic Range. These top-level parameters influence the choice of optical system, mechanical system, focal plane array (FPA), Read Out Integrated Circuit (ROIC), and cryogenic system. This paper will not only discuss the physics behind the performance of the sensor, but it will also discuss the "art" of optimizing the performance of the sensor given the top level performance parameters. Balancing the sensor sub-­systems is key to the sensor's performance in these highly stressful missions. Top-­level performance requirements impact the choice of lower level hardware and requirements. The flow down of requirements to the lower level hardware will be discussed. This flow down directly impacts the FPA, where careful selection of the detector is required. The flow down also influences the ROIC and cooling requirements. The key physics behind the detector and cryogenic system interactions will be discussed, along with the balancing of subsystem performance. Finally, the overall system balance and optimization will be discussed in the context of missile defense sensors and expected performance of the overall kinetic warhead.

  15. KSC-2009-5035

    NASA Image and Video Library

    2009-08-19

    CAPE CANAVERAL, Fla. – At the Astrotech payload processing facility in Titusville, Fla., the top of the mated SV1 and SV2 remains covered. The spacecraft are being prepared for center of gravity testing, weighing and balancing. The two spacecraft are known as the Space Tracking and Surveillance System – Demonstrators, or STSS Demo, which is a space-based sensor component of a layered Ballistic Missile Defense System designed for the overall mission of detecting, tracking and discriminating ballistic missiles. STSS is capable of tracking objects after boost phase and provides trajectory information to other sensors. It will be launched by NASA for the Missile Defense Agency between 8 and 8:58 a.m. EDT Sept. 18. Approved for Public Release 09-MDA-04886 (10 SEPT 09) Photo credit: NASA/Jim Grossmann

  16. KSC-2009-5034

    NASA Image and Video Library

    2009-08-19

    CAPE CANAVERAL, Fla. – At the Astrotech payload processing facility in Titusville, Fla., the mated SV1 and SV2 spacecraft retain the covers on the top which are being removed before center of gravity testing, weighing and balancing. The two spacecraft are known as the Space Tracking and Surveillance System – Demonstrators, or STSS Demo, which is a space-based sensor component of a layered Ballistic Missile Defense System designed for the overall mission of detecting, tracking and discriminating ballistic missiles. STSS is capable of tracking objects after boost phase and provides trajectory information to other sensors. It will be launched by NASA for the Missile Defense Agency between 8 and 8:58 a.m. EDT Sept. 18. Approved for Public Release 09-MDA-04886 (10 SEPT 09) Photo credit: NASA/Jim Grossmann

  17. KSC-2009-5037

    NASA Image and Video Library

    2009-08-19

    CAPE CANAVERAL, Fla. – At the Astrotech payload processing facility in Titusville, Fla., this closeup shows part of the mated SV1 and SV2 spacecraft, which is being prepared for center of gravity testing, weighing and balancing. The two spacecraft are known as the Space Tracking and Surveillance System – Demonstrators, or STSS Demo, which is a space-based sensor component of a layered Ballistic Missile Defense System designed for the overall mission of detecting, tracking and discriminating ballistic missiles. STSS is capable of tracking objects after boost phase and provides trajectory information to other sensors. It will be launched by NASA for the Missile Defense Agency between 8 and 8:58 a.m. EDT Sept. 18. Approved for Public Release 09-MDA-04886 (10 SEPT 09) Photo credit: NASA/Jim Grossmann

  18. KSC-2009-2935

    NASA Image and Video Library

    2009-05-05

    VANDENBERG AIR FORCE BASE, Calif. -- A United Launch Alliance Delta II rocket, on behalf of the NASA Launch Services Program, is poised on its Space Launch Complex-2 launch pad at Vandenberg AFB, Calif., ready for launch. The Delta II will carry the Missile Defense Agency's Space Tracking and Surveillance System (STSS) Advanced Technology Risk Reduction (ATRR) payload into orbit. The launch is scheduled for 1:24 p.m. PDT. Photo by Carleton Bailie, United Launch Alliance.

  19. Military Applications of Nanotechnology: Implications for Strategic Security 1

    DTIC Science & Technology

    2014-12-01

    three prongs of Skolkovo, the concept underlying the second step, “preparatory measures,” has more resonance . While the Skolkovo program is a very...of both defensive and offensive systems, including vulnerability to enemy cruise, anti-ship, and ballistic missiles; anti- satellite systems; and enemy...Institute of Crystallography (IC), all of which are part of the RAS.169 Nine publications focusing on “nano- bio -med” also were cited more than 100

  20. Why Not Extended Deterrence from Romania? U.S. European Phased Adaptive Approach (EPAA) and NATO’s Ballistic Missile Defense (BMD) Site at Deveselu Air Base in Romania

    DTIC Science & Technology

    2011-12-01

    RADM Dorin Danila, both expressed to the CNE-C6F Maritime Partnership Program Team representatives that “it is good to see the strength of America...Military Technology 34, no. 5 (2010): 14. 31. RADM Dorin Danila, interview witnessed by the author, August 17, 2007. 32. Scott Miller, “U.S. 6th

  1. Kernel ADA Programming Support Environment (KAPSE) Interface Team Public Report. Volume 4.

    DTIC Science & Technology

    1984-04-30

    the document until further discussion has taken place among the group metbers. RACWG announced their editor, Reed Kotler . The RACWG plans to narrow...KRUTAR, Rudy NRL *LAPLANT, Bill HQ USAF LOPER, Warren NOSC *MAGLIERI, Lucas Canadian National Defense HQ MILLER, Jo NWC MYERS, Gil NOSC *MYERS, Philip ...HUMPHREY, Dianna Control Data Corp. JOHNSON, Ron Boeing Aerospace Co. KERNER, Judy Norden Systems KOTLER , Reed Lockheed Missiles & Space LAMB, J. Eli

  2. Cruise Missile Penaid Nonproliferation: Hindering the Spread of Countermeasures Against Cruise Missile Defenses

    DTIC Science & Technology

    2014-01-01

    this report treats cruise missile penaids and UAV penaids, sometimes called “self-protection” (see La Franchi , 2004), interchangeably. 8 Cruise...Penaid Export Controls 41 2. Anti-Jam Equipment MTCR Item 11.A.3.b.3 (Avionics): Current text: “Receiving equipment for Global Navigation Satellite...subsystems beyond those for global navigation satellite systems to all sensor, navigation, and communications systems, and add “including multi-mode

  3. 32 CFR 750.43 - Claims payable.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 32 National Defense 5 2010-07-01 2010-07-01 false Claims payable. 750.43 Section 750.43 National Defense Department of Defense (Continued) DEPARTMENT OF THE NAVY CLAIMS GENERAL CLAIMS REGULATIONS... of missiles and weapons, sonic booms, training and field exercises, and maneuvers that include...

  4. 32 CFR 750.43 - Claims payable.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 32 National Defense 5 2014-07-01 2014-07-01 false Claims payable. 750.43 Section 750.43 National Defense Department of Defense (Continued) DEPARTMENT OF THE NAVY CLAIMS GENERAL CLAIMS REGULATIONS... of missiles and weapons, sonic booms, training and field exercises, and maneuvers that include...

  5. 32 CFR 750.43 - Claims payable.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 32 National Defense 5 2012-07-01 2012-07-01 false Claims payable. 750.43 Section 750.43 National Defense Department of Defense (Continued) DEPARTMENT OF THE NAVY CLAIMS GENERAL CLAIMS REGULATIONS... of missiles and weapons, sonic booms, training and field exercises, and maneuvers that include...

  6. 32 CFR 750.43 - Claims payable.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 32 National Defense 5 2011-07-01 2011-07-01 false Claims payable. 750.43 Section 750.43 National Defense Department of Defense (Continued) DEPARTMENT OF THE NAVY CLAIMS GENERAL CLAIMS REGULATIONS... of missiles and weapons, sonic booms, training and field exercises, and maneuvers that include...

  7. 32 CFR 750.43 - Claims payable.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 32 National Defense 5 2013-07-01 2013-07-01 false Claims payable. 750.43 Section 750.43 National Defense Department of Defense (Continued) DEPARTMENT OF THE NAVY CLAIMS GENERAL CLAIMS REGULATIONS... of missiles and weapons, sonic booms, training and field exercises, and maneuvers that include...

  8. Resource Letter PSNAC-1: Physics and society: Nuclear arms control

    NASA Astrophysics Data System (ADS)

    Glaser, Alexander; Mian, Zia

    2008-01-01

    This Resource Letter provides a guide to the literature on nuclear arms control for the nonspecialist. Journal articles and books are cited for the following topics: nuclear weapons, fissile materials, nonproliferation, missiles and missile defenses, verification, disarmament, and the role of scientists in arms control.

  9. KSC-2009-2718

    NASA Image and Video Library

    2009-04-16

    CAPE CANAVERAL, Fla. – On Launch Complex 17-B at Cape Canaveral Air Force Station, the mobile service tower encloses the first stage of the Delta II rocket. The boosters in the tower will be attached to the rocket for launch of the STSS Demonstrator spacecraft. The STSS Demonstrators is a midcourse tracking technology demonstrator and is part of an evolving ballistic missile defense system. STSS is capable of tracking objects after boost phase and provides trajectory information to other sensors. It will be launched by NASA for the Missile Defense Agency on July 29. Photo credit: NASA/Kim Shiflett

  10. Research on air and missile defense task allocation based on extended contract net protocol

    NASA Astrophysics Data System (ADS)

    Zhang, Yunzhi; Wang, Gang

    2017-10-01

    Based on the background of air and missile defense distributed element corporative engagement, the interception task allocation problem of multiple weapon units with multiple targets under network condition is analyzed. Firstly, a mathematical model of task allocation is established by combat task decomposition. Secondly, the initialization assignment based on auction contract and the adjustment allocation scheme based on swap contract were introduced to the task allocation. Finally, through the simulation calculation of typical situation, the model can be used to solve the task allocation problem in complex combat environment.

  11. KSC-2009-2710

    NASA Image and Video Library

    2009-04-16

    CAPE CANAVERAL, Fla. – On Launch Complex 17-B at Cape Canaveral Air Force Station, solid rocket boosters are lifted into the mobile service tower. The boosters will be attached to the Delta II rocket that will launch the STSS Demonstrator spacecraft. The STSS Demonstrators is a midcourse tracking technology demonstrator and is part of an evolving ballistic missile defense system. STSS is capable of tracking objects after boost phase and provides trajectory information to other sensors. It will be launched by NASA for the Missile Defense Agency on July 29. Photo credit: NASA/Kim Shiflett

  12. KSC-2009-2709

    NASA Image and Video Library

    2009-04-16

    CAPE CANAVERAL, Fla. – On Launch Complex 17-B at Cape Canaveral Air Force Station, solid rocket boosters are lifted into the mobile service tower. The boosters will be attached to the Delta II rocket that will launch the STSS Demonstrator spacecraft. The STSS Demonstrators is a midcourse tracking technology demonstrator and is part of an evolving ballistic missile defense system. STSS is capable of tracking objects after boost phase and provides trajectory information to other sensors. It will be launched by NASA for the Missile Defense Agency on July 29. Photo credit: NASA/Kim Shiflett

  13. KSC-2009-3665

    NASA Image and Video Library

    2009-05-01

    CAPE CANAVERAL, Fla. – At NASA Kennedy Space Center's Shuttle Landing Facility, the shipping container with the STSS Demonstrator SV-2spacecraft is secured on a trailer for transfer to the Astrotech payload processing facility in Titusville, Fla. The spacecraft is a midcourse tracking technology demonstrator, part of an evolving ballistic missile defense system. STSS is capable of tracking objects after boost phase and provides trajectory information to other sensors. It will be launched by NASA for the Missile Defense Agency in late summer. Photo credit: NASA/Jack Pfaller (Approved for Public Release 09-MDA-4616 [27 May 09])

  14. KSC-2009-3664

    NASA Image and Video Library

    2009-05-01

    CAPE CANAVERAL, Fla. – At NASA Kennedy Space Center's Shuttle Landing Facility, the shipping container with the STSS Demonstrator SV-2spacecraft is secured on a trailer for transfer to the Astrotech payload processing facility in Titusville, Fla. The spacecraft is a midcourse tracking technology demonstrator, part of an evolving ballistic missile defense system. STSS is capable of tracking objects after boost phase and provides trajectory information to other sensors. It will be launched by NASA for the Missile Defense Agency in late summer. Photo credit: NASA/Jack Pfaller (Approved for Public Release 09-MDA-4616 [27 May 09])

  15. KSC-2009-4629

    NASA Image and Video Library

    2009-07-23

    CAPE CANAVERAL, Fla. – In the Astrotech payload processing facility in Titusville, Fla. , technicians check equipment on the STSS Demonstrator SV-1 spacecraft after it was lowered onto the orbital insertion system. The spacecraft is a midcourse tracking technology demonstrator, part of an evolving ballistic missile defense system. STSS is capable of tracking objects after boost phase and provides trajectory information to other sensors. It will be launched by NASA for the Missile Defense Agency in late summer. Photo credit: NASA/Tim Jacobs (Approved for Public Release 09-MDA-4800 [30 July 09] )

  16. KSC-2009-4614

    NASA Image and Video Library

    2009-06-25

    CAPE CANAVERAL, Fla. – At NASA Kennedy Space Center's Shuttle Landing Facility, the SV-1 cargo of the STSS Demonstrator spacecraft is moved onto a flatbed truck for transfer to the Astrotech payload processing facility in Titusville, Fla. The spacecraft is a midcourse tracking technology demonstrator, part of an evolving ballistic missile defense system. STSS is capable of tracking objects after boost phase and provides trajectory information to other sensors. It will be launched by NASA for the Missile Defense Agency in late summer. Photo credit: NASA/Kim Shiflett (Approved for Public Release 09-MDA-4804 [4 Aug 09] )

  17. KSC-2009-4615

    NASA Image and Video Library

    2009-06-25

    CAPE CANAVERAL, Fla. – At NASA Kennedy Space Center's Shuttle Landing Facility, the flatbed truck with the SV-1 cargo of the STSS Demonstrator spacecraft begins moving to the Astrotech payload processing facility in Titusville, Fla. The spacecraft is a midcourse tracking technology demonstrator, part of an evolving ballistic missile defense system. STSS is capable of tracking objects after boost phase and provides trajectory information to other sensors. It will be launched by NASA for the Missile Defense Agency in late summer. Photo credit: NASA/Kim Shiflett (Approved for Public Release 09-MDA-4804 [4 Aug 09] )

  18. Origins of the Tactical Nuclear Weapons Modernization Program: 1969-1979

    NASA Astrophysics Data System (ADS)

    Yaffe, Michael David

    On December 12, 1979, the North Atlantic Treaty Organization decided to deploy new long-range theater nuclear forces, Pershing II and Ground-Launched Cruise Missiles. This marked the first major change in NATO's nuclear stockpile since the adoption of the flexible response strategy in 1967. The decision was controversial inasmuch as the Allies disagreed on the fundamental role of nuclear weapons in this strategy and, thereby, the types and number of weapons required for an effective deterrent posture. Europeans generally preferred long-range weapons capable of striking the Soviet Union and small conventional forces while Americans preferred shorter-range nuclear weapons and a stalwart conventional defense. Thus, the December decision is often described as purely politically motivated, in which the Americans reluctantly acquiesced to a European initiative for long-range weapons, prominently expressed by West German Chancellor Helmut Schmidt in 1977. Recently declassified US government documents reveal, however, that long-range missiles were part of a long-term comprehensive nuclear modernization program conceived in the Pentagon under Defense Secretary James Schlesinger during the period of 1973 through 1975, and presented to skeptical European elites who favored arms control negotiations over costly new deployments. This program was motivated as much by changes in the American national security culture as by an increase in the Soviet military threat to Europe. It was grounded on a clear military rationale: "that a feasible and affordable conventional defense is only possible if NATO has modern nuclear forces" that can effectively hold at risk Warsaw Pact ground and air forces throughout the depth of their employment from the inner-German border to the western military districts of the Soviet Union. When the new US administration in 1977 disagreed with the modernization plan and its rationale, opting instead for more conventional forces, the Allies in a reversal of roles lobbied the US President to deploy the long-range weapons being developed by the Defense Department. In the course of deliberations, political preferences suppressed military considerations of deterrence and only a small portion of the original modernization program was implemented.

  19. 76 FR 335 - Notice of Advisory Committee Meeting Date Change

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-01-04

    ... DEPARTMENT OF DEFENSE Office of the Secretary Notice of Advisory Committee Meeting Date Change AGENCY: Missile Defense Agency (MDA), DoD. ACTION: Notice. SUMMARY: On Tuesday, December 28, 2010 (75 FR...

  20. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Garwin, Richard L.

    The Bush Administration is steaming ahead with the deployment of the Clinton-designed mid-course hit-to-kill intercept system for national missile defense. This has serious disabilities against even the simplest strategic ballistic missiles. What is the threat to the United States from such missiles, in context? Is NMD a rational response, considering the always limited resources of the U.S. government? What are the other threats and needs? If protection is demanded against potential emerging missile states, what are the options? Answers to these questions will be provided in the talk and some are already available at the author’s web site: http://www.fas.org/rlg.

  1. 32 CFR 811.1 - Exceptions.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 32 National Defense 6 2010-07-01 2010-07-01 false Exceptions. 811.1 Section 811.1 National Defense Department of Defense (Continued) DEPARTMENT OF THE AIR FORCE SALES AND SERVICES RELEASE, DISSEMINATION, AND... Force investigations of aircraft or missile mishaps according to AFI 91-204, Safety Investigations and...

  2. 32 CFR 811.1 - Exceptions.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 32 National Defense 6 2013-07-01 2013-07-01 false Exceptions. 811.1 Section 811.1 National Defense Department of Defense (Continued) DEPARTMENT OF THE AIR FORCE SALES AND SERVICES RELEASE, DISSEMINATION, AND... Force investigations of aircraft or missile mishaps according to AFI 91-204, Safety Investigations and...

  3. 32 CFR 811.1 - Exceptions.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 32 National Defense 6 2012-07-01 2012-07-01 false Exceptions. 811.1 Section 811.1 National Defense Department of Defense (Continued) DEPARTMENT OF THE AIR FORCE SALES AND SERVICES RELEASE, DISSEMINATION, AND... Force investigations of aircraft or missile mishaps according to AFI 91-204, Safety Investigations and...

  4. 32 CFR 811.1 - Exceptions.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 32 National Defense 6 2011-07-01 2011-07-01 false Exceptions. 811.1 Section 811.1 National Defense Department of Defense (Continued) DEPARTMENT OF THE AIR FORCE SALES AND SERVICES RELEASE, DISSEMINATION, AND... Force investigations of aircraft or missile mishaps according to AFI 91-204, Safety Investigations and...

  5. 32 CFR 811.1 - Exceptions.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 32 National Defense 6 2014-07-01 2014-07-01 false Exceptions. 811.1 Section 811.1 National Defense Department of Defense (Continued) DEPARTMENT OF THE AIR FORCE SALES AND SERVICES RELEASE, DISSEMINATION, AND... Force investigations of aircraft or missile mishaps according to AFI 91-204, Safety Investigations and...

  6. Missile Defense Certification: Examination of the U.S. Navy Aegis Warship and U.S. Army Patriot Crew Certification Process

    DTIC Science & Technology

    2008-09-01

    C. Ensure FP Status indicators posted IAW SSTO : ___ (1) WCS ___ (2) DEFCON ___ (3) MOC ___ (4) Alert State ___ (5) ADW... SSTO . ___ 6. Denial and destruction plans. ___ 7. Missile hazard/misfire procedures. ___ 8. General Knowledge of TABS, Switch/Indicator

  7. After the First Shots: Managing Escalation in Northeast Asia

    DTIC Science & Technology

    2015-01-01

    office and several days after North Korea’s third nuclear test, President Park Geun- hye pledged that “Missile capabil- ity will be expanded to develop...a ‘Kill Chain’ system to preemptively strike North Korean missile launchers and nuclear facilities.” See Sangwon Yoon, “ Park Lists Top Priorities...Selects the Taurus KEPD 350 Cruise Missile,” Defense Update, April 5, 2013; and Kim Eun-jung, “State Arms Procurer Requests 11 [Trillion] Won Budget for

  8. Report to Congress on the Strategic Defense System Architecture

    DTIC Science & Technology

    1988-01-01

    1 25 B. Architecture Analysis - Phase I 25 C. Architecture Work - Follow-on 25 ANNEX A Figures 26 0, LIST OF ACRONYMS ABM Antiballistic Missile ALS...vehicles greater mass and complexity. 5. EXOATMOSPHERIC REENTRY VEHICLE INTERCEPTOR SYTEM V A ground-based, multistage missile that would use hit-to-kill...velocity change to heavy decoys. The GBL’s greatest potential as an antiballistic missile ( ABM ) system element is in a synergistic mix of SBI and GBL

  9. Laser countermeasures for commercial airlines

    NASA Astrophysics Data System (ADS)

    Keirstead, Burt

    2005-05-01

    Since the attempted shoot down of an Israeli airliner departing from Mombasa, Kenya in November of 2002, there has been heightened concern that Al Qaeda, or other terrorist factions, will use shoulder-fired heat seeking missiles as part of their tactics. These weapons, known more formally as man-portable air defense systems, or MANPADS, have been widely proliferated, are easy to conceal and deploy, and can be purchased on the black market for as little as $10,000. Recognizing that MANPADS pose a potential threat to commercial airplanes throughout the world, the Department of Homeland Security (DHS) is executing a system design and development (SDD) program to evaluate the viability of missile countermeasures that would be installed on commercial airplanes. This paper provides an overview of the MANPADS threat, a discussion of associated countermeasure requirements for systems installed on commercial airplanes, and a description of a laser countermeasure system that is being prototyped and demonstrated as part of the DHS Counter-MANPADS program.

  10. An opportunity analysis system for space surveillance experiments with the MSX

    NASA Technical Reports Server (NTRS)

    Sridharan, Ramaswamy; Duff, Gary; Hayes, Tony; Wiseman, Andy

    1994-01-01

    The Mid-Course Space Experiment consists of a set of payloads on a satellite being designed and built under the sponsorship of Ballistic Missile Defense Office. The MSX satellite will conduct a series of measurements of phenomenology of backgrounds, missile targets, plumes and resident space objects (RSO's); and will engage in functional demonstrations in support of detection, acquisition and tracking for ballistic missile defense and space-based space surveillance missions. A complex satellite like the MSX has several constraints imposed on its operation by the sensors, the supporting instrumentation, power resources, data recording capability, communications and the environment in which all these operate. This paper describes the implementation of an opportunity and feasibility analysis system, developed at Lincoln Laboratory, Massachusetts Institute of Technology, specifically to support the experiments of the Principal Investigator for space-based surveillance.

  11. High-energy laser-summator based on Raman scattering principle

    NASA Astrophysics Data System (ADS)

    Eugeniy Mikhalovich, Zemskov; Zarubin, Peter Vasilievich; Cook, Joung

    2013-02-01

    This paper is a summary of the history, theory, and development efforts of summator, an all-in-one device that coherently combines multiple high-power laser beams, lowers the beam divergence, and shifts the wavelength based on stimulated Raman scattering principle in USSR from early 1960s to late 1970s. This was a part of the Terra-3 program, which was an umbrella program of highly classified high-energy laser weapons development efforts. Some parts of the Terra-3 program, specifically the terminal missile defense portion, were declassified recently, including the information on summator development efforts.

  12. 15 CFR 764.3 - Sanctions.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... to the Secretary of Defense, except in the case of an individual, shall be fined not more than five... licenses (See section 11B of the EAA, Missile Proliferation Violations, and the Iran-Iraq Arms Non... Department of State may deny licenses or approvals for the export or reexport of defense articles and defense...

  13. 77 FR 25706 - Notice of Advisory Committee Closed Meeting; U.S. Strategic Command Strategic Advisory Group

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-05-01

    ..., Command and Control, Science and Technology, Missile Defense. Meeting Accessibility: Pursuant to 5 U.S.C... DEPARTMENT OF DEFENSE Notice of Advisory Committee Closed Meeting; U.S. Strategic Command Strategic Advisory Group AGENCY: Department of Defense. ACTION: Notice of Advisory Committee closed meeting...

  14. 32 CFR 806.28 - Records with special disclosure procedures.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 32 National Defense 6 2014-07-01 2014-07-01 false Records with special disclosure procedures. 806.28 Section 806.28 National Defense Department of Defense (Continued) DEPARTMENT OF THE AIR FORCE...-501, Tort Claims. (p) AFI 51-503, Aircraft, Missile, Nuclear and Space Accident Investigations. (q...

  15. 32 CFR 806.28 - Records with special disclosure procedures.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 32 National Defense 6 2012-07-01 2012-07-01 false Records with special disclosure procedures. 806.28 Section 806.28 National Defense Department of Defense (Continued) DEPARTMENT OF THE AIR FORCE...-501, Tort Claims. (p) AFI 51-503, Aircraft, Missile, Nuclear and Space Accident Investigations. (q...

  16. The DoD Manufacturing Technology Program Strategic Plan: Delivering Defense Affordability

    DTIC Science & Technology

    2009-03-01

    58%) engineering time savings required for critical spares for the M2 Machine Gun , widely used by U.S. and NATO forces. 12 Report to Congress on...Machine Gun used by U.S. and NATO ground and sea forces. This 1930s-era legacy weapon system continues to experience critical spare parts shortages due...Missiles and the Mid-Range-Munition. Durable Gun Barrel Materials–Composite Overwrap Process. Future Combat Systems (FCS) could not meet weight and

  17. Conceptual design of a space-based O2 laser for defense

    NASA Astrophysics Data System (ADS)

    Takehisa, K.

    2016-10-01

    A new concept of a space-based-laser (SBL) defense system is proposed. It is based on a chemical oxygen laser (COL) which has been investigated to achieve its oscillation 1-3). A COL is suitable as a high energy laser (HEL) directed energy weapon (DEW) 4) because it could produce a giant pulse of 0.1 ms which can damage a target by a single shot without producing plasma during the propagation. However since the beam cannot propagate for a long distance due to the absorption in air, it should be used in space considering the capability of operation without electric power supply. Therefore a new SBL defense system using a COL is proposed in order to destroy a ballistic missile in its boost phase. It is based on an SBL at geostationary Earth orbit (GEO) with the altitude of 36,000 km. Since the beam needs to propagate for a long distance, the focused beam diameter is 8 m even if the initial beam diameter is 8 m. Therefore an 8 m-diameter focusing mirror, carried by a high altitude airship (HAA) flying at the altitude of more than 20 km, could be used to focus the beam at the target. Although such a large focusing mirror is necessary, the focused spot size can be <1 cm at 30 km away. Thus, much less than 100 kJ pulse can cause a fatal damage. Unlike a conventional SBL defense system based on SBLs and/or relay-mirror satellites in low Earth orbit (LEO), the new defense system needs only a single SBL and a single relay mirror HAA (RM HAA) to intercept a ballistic missile if the enemy is a small country since the HAA can always stay close to the enemy's missile site. Another concept of the defense system is also proposed, which is based on a COL equipped with anther HAA because a COL can be lightweight. These geostationary defense systems can also intercept a submarine-launched ballistic missile (SLBM) if the submarine's location is monitored.

  18. Optimal trajectories from the Earth-Moon L1 and L3 points to deflect hazardous asteroids and comets.

    PubMed

    Maccone, Claudio

    2004-05-01

    Software code named asteroff was recently created by the author to simulate the deflection of hazardous asteroids off of their collision course with the Earth. This code was both copyrighted and patented to avoid unauthorized use of ideas that could possibly be vital to construct a planetary defense system in the vicinity of the Earth. Having so said, the basic ideas and equations underlying the asteroff simulation code are openly described in this paper. A system of two space bases housing missiles is proposed to achieve the planetary defense of the Earth against dangerous asteroids and comets, collectively called impactors herein. We show that the layout of the Earth-Moon system with the five relevant Lagrangian (or libration) points in space leads naturally to only one, unmistakable location of these two space bases within the sphere of influence of the Earth. These locations are at the two Lagrangian points L(1) (between the Earth and the Moon) and L(3) (in the direction opposite to the Moon from the Earth). We show that placing missile bases at L(1) and L(3) would enable those missiles to deflect the trajectory of impactors by hitting them orthogonally to their impact trajectory toward the Earth, so as to maximize their deflection. We show that confocal conics are the best class of trajectories fulfilling this orthogonal deflection requirement. One additional remark is that the theory developed in this paper is just a beginning for a wider set of future research. In fact, we only develop the Keplerian analytical theory for the optimal planetary defense achievable from the Earth-Moon Lagrangian points L(1) and L(3). Much more sophisticated analytical refinements would be needed to: (1) take into account many perturbation forces of all kinds acting on both the impactors and missiles shot from L(1) and L(3); (2) add more (non-optimal) trajectories of missiles shot from either the Lagrangian points L(4) and L(5) of the Earth-Moon System or from the surface of the Moon itself; and (3) encompass the full range of missiles currently available to the US (and possibly other countries) so as to really see which impactors could be diverted by which missiles, even in the very simplified scheme outlined here. Published for the first time in February 2002, our Keplerian planetary defense theory has proved, in just one year, to be simple enough to catch the attention of scholars, in addition to popular writers, and even of someone from the US Military. These recent developments might possibly mark the beginning of an all embracing vision in planetary defense beyond all learned congressional activities, dramatic movies, and unknown military plans covered by secrecy.

  19. The United States’ European Phased Adaptive Approach Missile Defense System: Defending Against Iranian Missile Threats Without Diluting the Russian Deterrent

    DTIC Science & Technology

    2015-01-01

    between the two positions in the orbit. Although derived by Kepler for orbiting bodies, this method can be used to model and simulate missile...laws in the Lambert and Kepler problems and numerically solving them is the universal formulation method.56 This method allows multiple propagations...Publications, Inc., New York, 1971. 57 The algorithm for the universal formulation of Lambert and the Kepler problem can be found in Vallado, 1997, pp. 262

  20. The Unsinkable Aircraft Carrier - An American Response to the Chinese Anti-Access/Area Denial (A2/AD) Challenge

    DTIC Science & Technology

    2013-04-01

    new Nike -Hercules missile batteries. 121 The idea of an active defense against missiles has been disregarded by some because the necessary... Nike -Hercules) Defends Northern Taiwan 1958-1959.” http://www.2-71adataiwan.com/Member%20Articles/RHM%20Deployment%20Article.htm 122 Martin...House, February 1999. Mackintosh, Robert H. “The 2nd Missile Battalion, 71st Artillery ( Nike -Hercules) Defends Northern Taiwan 1958-1959.” http

  1. The Pentomic Era. The U. S. Army Between Korea and Vietnam

    DTIC Science & Technology

    1986-01-01

    Army recruiters advertise their Service’s commit. ment to high technology by carrying replicas of the NIKE Ajax missile on top of their sedans in the...by replacing the olive drab uniform 23 US Army recruiters advertise their Service’s commitment to high technology 25 Secretary of Defense Charles E...Staff, 1955-59 45 A NIKE missila guards America in 1957 79 A NIKE missile knocks down a B-17 drone 81 The Army shows off its new NIKE Ajax missile dur

  2. Space Tracking and Surveillance System (STSS) Cryogenic Technology Efforts and Needs

    NASA Astrophysics Data System (ADS)

    Kolb, I. L.; Curran, D. G. T.; Lee, C. S.

    2004-06-01

    The Missile Defense Agency's (MDA) STSS program, the former Space Based Infrared Systems (SBIRS) Low, has been actively supporting and working to advance space-borne cryocooler technology through efforts with the Air Force Research Lab (AFRL) and Small Business Innovation Research (SBIR) program. The envisioned infrared satellite system requires high efficiency, low power, and low weight cooling in a range of temperature and cooling loads below 120K for reliable 10-year operation to meet mission needs. This paper describes cryocooler efforts previously and currently supported by STSS and the possible future cryogenic requirements for later technology insertion.

  3. Nuclear Hell On Wheels Examining The Need For A Mobile ICBM

    DTIC Science & Technology

    2015-02-17

    www.defenseone.com/ideas/2014/11/last-thing- us-needs-are-mobile-nuclear-missiles/98828/?oref=d- skybox (accessed 28 Nov 2014) 4 Department of Defense...last-thing-us-needs- are-mobile-nuclear-missiles/98828/?oref=d- skybox (accessed 28 Nov 2014) Craig, Campbell. Destroying the Village: Eisenhower and

  4. 8 CFR 204.10 - Petitions by, or for, certain scientists of the Commonwealth of Independent States or the Baltic...

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... ballistic missiles, nuclear, biological, chemical, or other high-technology weapons of mass destruction, or who are working on nuclear, chemical, biological, or other high-technology defense projects, as... production of ballistic missiles, nuclear, biological, chemical, or other high-technology weapons of mass...

  5. 8 CFR 204.10 - Petitions by, or for, certain scientists of the Commonwealth of Independent States or the Baltic...

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... ballistic missiles, nuclear, biological, chemical, or other high-technology weapons of mass destruction, or who are working on nuclear, chemical, biological, or other high-technology defense projects, as... production of ballistic missiles, nuclear, biological, chemical, or other high-technology weapons of mass...

  6. Defense Threat Reduction Agency > About > Locations

    Science.gov Websites

    Air Force Base, Ca. Mercury, Nev. Albuquerque, N.M. White Sands Missile Range, N.M. Omaha, Neb . (USSTRATCOM) Eglin Air Force Base, Fla. National Capital Region Georgia Azerbaijan Armenia Japan Republic of , Md. Eglin Air Force Base, Fla. Albuquerque, N.M. White Sands Missile Range, N.M. Mercury, Nev. Travis

  7. Ballistic Missile Defense: Let's Look Again before We Leap into Star Wars.

    ERIC Educational Resources Information Center

    Morrison, David C.

    1985-01-01

    Americans must look beyond the superficial allure of President Reagan's Strategic Defense Initiative; they must search out the facts. Five pernicious myths on which this ill-considered proposal is founded are discussed. (RM)

  8. DOE Office of Scientific and Technical Information (OSTI.GOV)

    King, J.R.

    Proliferation of chemical weapons and ballistic missiles in the Middle East and North Africa represents a growing risk to NATOs Southern Region. Several countries in the region possess chemical weapons and other are seeking the capability to develop and employ them. Likewise, ballistic missile trends and emerging capabilities in the region give reason for concern since the not-too-distant future may see missiles tipped with chemical warheads. The region faces explosive population growth, economic difficulties, and political turmoil. When you add the Arab/Israeli animosities and the spread of Islamic fundamentalism to this instability, the region becomes volatile. Thus, the heightened concernmore » over the proliferation of weapons use and negotiations and a discussion of the region's volatility, examines the proliferation of chemical weapons and ballistic missiles in the Middle East and North Africa. The resulting future risks to NATOs Southern Region are discussed with the focus on chemical defense preparedness. Conclusions address the continued proliferation and the risks to NATOs Southern Region. Some brief thoughts for the way ahead are offered on security, confidence-building, and cooperation in the region, as well as, on strengthening the chemical defense posture of the Southern Region.« less

  9. STS-44 DSP satellite and IUS during preflight processing at Cape Canaveral

    NASA Image and Video Library

    1991-10-19

    S91-50773 (19 Oct 1991) --- At a processing facility on Cape Canaveral Air Force Station, the Defense Support Program (DSP) satellite is being transferred into the payload canister transporter for shipment to Launch Pad 39A at KSC. The DSP will be deployed during Space Shuttle Mission STS-44 later this year. It is a surveillance satellite, developed for the Department of Defense, which can detect missile and space launches, as well as nuclear detonations. The Inertial Upper Stage which will boost the DSP satellite to its proper orbital position is the lower portion of the payload. DSP satellites have comprised the spaceborne segment of NORAD's (North American Air Defense Command) Tactical Warning and Attack Assessment System since 1970. STS- 44, carrying a crew of six, will be a ten-day flight.

  10. KSC-2009-2716

    NASA Image and Video Library

    2009-04-16

    CAPE CANAVERAL, Fla. – On Launch Complex 17-B at Cape Canaveral Air Force Station, the mobile service tower at right moves toward the first stage of the Delta II rocket. The boosters in the tower will be attached to the rocket for launch of the STSS Demonstrator spacecraft. The STSS Demonstrators is a midcourse tracking technology demonstrator and is part of an evolving ballistic missile defense system. STSS is capable of tracking objects after boost phase and provides trajectory information to other sensors. It will be launched by NASA for the Missile Defense Agency on July 29. Photo credit: NASA/Kim Shiflett

  11. KSC-2009-2717

    NASA Image and Video Library

    2009-04-16

    CAPE CANAVERAL, Fla. – On Launch Complex 17-B at Cape Canaveral Air Force Station, the mobile service tower at right moves closer to the first stage of the Delta II rocket. The boosters in the tower will be attached to the rocket for launch of the STSS Demonstrator spacecraft. The STSS Demonstrators is a midcourse tracking technology demonstrator and is part of an evolving ballistic missile defense system. STSS is capable of tracking objects after boost phase and provides trajectory information to other sensors. It will be launched by NASA for the Missile Defense Agency on July 29. Photo credit: NASA/Kim Shiflett

  12. KSC-2009-2713

    NASA Image and Video Library

    2009-04-16

    CAPE CANAVERAL, Fla. – On Launch Complex 17-B at Cape Canaveral Air Force Station, a third solid rocket booster is raised from the transporter. It will join the others in the mobile service tower for attachment to the Delta II rocket that will launch the STSS Demonstrator spacecraft. The STSS Demonstrators is a midcourse tracking technology demonstrator and is part of an evolving ballistic missile defense system. STSS is capable of tracking objects after boost phase and provides trajectory information to other sensors. It will be launched by NASA for the Missile Defense Agency on July 29. Photo credit: NASA/Kim Shiflett

  13. KSC-2009-2712

    NASA Image and Video Library

    2009-04-16

    CAPE CANAVERAL, Fla. – On Launch Complex 17-B at Cape Canaveral Air Force Station, a third solid rocket booster is raised from the transporter. It will join the others in the mobile service tower for attachment to the Delta II rocket that will launch the STSS Demonstrator spacecraft. The STSS Demonstrators is a midcourse tracking technology demonstrator and is part of an evolving ballistic missile defense system. STSS is capable of tracking objects after boost phase and provides trajectory information to other sensors. It will be launched by NASA for the Missile Defense Agency on July 29. Photo credit: NASA/Kim Shiflett

  14. KSC-2009-2714

    NASA Image and Video Library

    2009-04-16

    CAPE CANAVERAL, Fla. – On Launch Complex 17-B at Cape Canaveral Air Force Station, a third solid rocket booster is lifted into the mobile service tower next to the other two. The boosters will be attached to the Delta II rocket that will launch the STSS Demonstrator spacecraft. The STSS Demonstrators is a midcourse tracking technology demonstrator and is part of an evolving ballistic missile defense system. STSS is capable of tracking objects after boost phase and provides trajectory information to other sensors. It will be launched by NASA for the Missile Defense Agency on July 29. Photo credit: NASA/Kim Shiflett

  15. MILITARY RESEARCH: Researchers Target Flaws in Ballistic Missile Defense Plan.

    PubMed

    Malakoff, D; Cho, A

    2000-06-16

    More than three dozen scientists journeyed to Washington, D.C., this week to warn lawmakers that a proposed $60 billion U.S. missile defense system, designed to knock incoming warheads out of the sky, is technically flawed because it can't pick out real warheads from decoys. Pentagon officials heatedly deny a new report by one scientist that contractors have rigged trials to hide the problem, although they admit that some tests were simplified to save time. In the wake of these events, a leading Democrat is urging President Bill Clinton to delay a pending decision on building the system.

  16. KSC-2009-3662

    NASA Image and Video Library

    2009-05-01

    CAPE CANAVERAL, Fla. – At NASA Kennedy Space Center's Shuttle Landing Facility, the shipping container with the STSS Demonstrator SV-2spacecraft moves out of the U.S. Air Force C-17 aircraft. The spacecraft will be transferred to the Astrotech payload processing facility in Titusville, Fla. The spacecraft is a midcourse tracking technology demonstrator, part of an evolving ballistic missile defense system. STSS is capable of tracking objects after boost phase and provides trajectory information to other sensors. It will be launched by NASA for the Missile Defense Agency in late summer. Photo credit: NASA/Jack Pfaller (Approved for Public Release 09-MDA-4616 [27 May 09])

  17. KSC-2009-3658

    NASA Image and Video Library

    2009-05-01

    CAPE CANAVERAL, Fla. – The U.S. Air Force C-17 aircraft arrives at NASA Kennedy Space Center's Shuttle Landing Facility with its cargo of the STSS Demonstrator SV-2 spacecraft. The spacecraft will be transferred to the Astrotech payload processing facility in Titusville, Fla. The spacecraft is a midcourse tracking technology demonstrator, part of an evolving ballistic missile defense system. STSS is capable of tracking objects after boost phase and provides trajectory information to other sensors. It will be launched by NASA for the Missile Defense Agency in late summer. Photo credit: NASA/Jack Pfaller (Approved for Public Release 09-MDA-4616 [27 May 09])

  18. KSC-2009-4611

    NASA Image and Video Library

    2009-06-25

    CAPE CANAVERAL, Fla. – The U.S. Air Force C-17 aircraft arrives at NASA Kennedy Space Center's Shuttle Landing Facility with its SV-1 cargo of the STSS Demonstrator spacecraft. The cargo will be transferred to the Astrotech payload processing facility in Titusville, Fla. The spacecraft is a midcourse tracking technology demonstrator, part of an evolving ballistic missile defense system. STSS is capable of tracking objects after boost phase and provides trajectory information to other sensors. It will be launched by NASA for the Missile Defense Agency in late summer. Photo credit: NASA/Kim Shiflett (Approved for Public Release 09-MDA-4804 [4 Aug 09] )

  19. KSC-2009-4612

    NASA Image and Video Library

    2009-06-25

    CAPE CANAVERAL, Fla. – At NASA Kennedy Space Center's Shuttle Landing Facility, the SV-1 cargo of the STSS Demonstrator spacecraft moves out of the U.S. Air Force C-17. The cargo will be transferred to the Astrotech payload processing facility in Titusville, Fla. The spacecraft is a midcourse tracking technology demonstrator, part of an evolving ballistic missile defense system. STSS is capable of tracking objects after boost phase and provides trajectory information to other sensors. It will be launched by NASA for the Missile Defense Agency in late summer. Photo credit: NASA/Kim Shiflett (Approved for Public Release 09-MDA-4804 [4 Aug 09] )

  20. KSC-2009-3660

    NASA Image and Video Library

    2009-05-01

    CAPE CANAVERAL, Fla. – At NASA Kennedy Space Center's Shuttle Landing Facility, more equipment for the STSS Demonstrator SV-2 spacecraft is offloaded from the U.S. Air Force C-17 aircraft. The spacecraft will be transferred to the Astrotech payload processing facility in Titusville, Fla.The spacecraft is a midcourse tracking technology demonstrator, part of an evolving ballistic missile defense system. STSS is capable of tracking objects after boost phase and provides trajectory information to other sensors. It will be launched by NASA for the Missile Defense Agency in late summer. Photo credit: NASA/Jack Pfaller (Approved for Public Release 09-MDA-4616 [27 May 09])

  1. KSC-2009-4613

    NASA Image and Video Library

    2009-06-25

    CAPE CANAVERAL, Fla. – At NASA Kennedy Space Center's Shuttle Landing Facility, the SV-1 cargo of the STSS Demonstrator spacecraft moves out of the U.S. Air Force C-17. The cargo will be transferred to the Astrotech payload processing facility in Titusville, Fla. The spacecraft is a midcourse tracking technology demonstrator, part of an evolving ballistic missile defense system. STSS is capable of tracking objects after boost phase and provides trajectory information to other sensors. It will be launched by NASA for the Missile Defense Agency in late summer. Photo credit: NASA/Kim Shiflett (Approved for Public Release 09-MDA-4804 [4 Aug 09] )

  2. Investigation of systematic effects in atmospheric microthermal probe data

    NASA Astrophysics Data System (ADS)

    Roper, Daniel S.

    1992-12-01

    The propagation of electromagnetic radiation through the atmosphere is a crucial aspect of laser target acquisition and surveillance systems and is vital to the effective implementation of some Theater Missile Defense systems. Atmospheric turbulence degrades the image or laser beam quality along an optical path. During the past decade, the U.S. Air Force's Geophysics Directorate of Phillips Laboratory collected high speed differential temperature measurements of the atmospheric temperature structure parameter, C sub(t exp 2), and the related index of refraction structure parameter, C sub(n exp 2). The stratospheric results show a 1-2 order of magnitude increase in day turbulence values compared to night. Resolving whether these results were real or an artifact of solar contamination is a critical Theater Missile Defense issue. This thesis analyzed the thermosonde data from an experimental program conducted by the Geophysics Directorate in December 1990 and found strong evidence of solar induced artifacts in the daytime thermal probe data. In addition, this thesis performed a theoretical analysis of the thermal response versus altitude of fine wire probes being used in a new thermosonde system under development at the Naval Postgraduate School. Experimental wind tunnel measurements were conducted to validate the analytical predictions.

  3. Projection technologies for imaging sensor calibration, characterization, and HWIL testing at AEDC

    NASA Astrophysics Data System (ADS)

    Lowry, H. S.; Breeden, M. F.; Crider, D. H.; Steely, S. L.; Nicholson, R. A.; Labello, J. M.

    2010-04-01

    The characterization, calibration, and mission simulation testing of imaging sensors require continual involvement in the development and evaluation of radiometric projection technologies. Arnold Engineering Development Center (AEDC) uses these technologies to perform hardware-in-the-loop (HWIL) testing with high-fidelity complex scene projection technologies that involve sophisticated radiometric source calibration systems to validate sensor mission performance. Testing with the National Institute of Standards and Technology (NIST) Ballistic Missile Defense Organization (BMDO) transfer radiometer (BXR) and Missile Defense Agency (MDA) transfer radiometer (MDXR) offers improved radiometric and temporal fidelity in this cold-background environment. The development of hardware and test methodologies to accommodate wide field of view (WFOV), polarimetric, and multi/hyperspectral imaging systems is being pursued to support a variety of program needs such as space situational awareness (SSA). Test techniques for the acquisition of data needed for scene generation models (solar/lunar exclusion, radiation effects, etc.) are also needed and are being sought. The extension of HWIL testing to the 7V Chamber requires the upgrade of the current satellite emulation scene generation system. This paper provides an overview of pertinent technologies being investigated and implemented at AEDC.

  4. 22 CFR 123.9 - Country of ultimate destination and approval of reexports or retransfers.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... subchapter as Missile Technology Control Regime (MTCR) items; and (3) The person reexporting the defense... ARMS REGULATIONS LICENSES FOR THE EXPORT AND TEMPORARY IMPORT OF DEFENSE ARTICLES § 123.9 Country of... written approval of the Directorate of Defense Trade Controls must be obtained before reselling...

  5. Comprehensive missile aerodynamics programs for preliminary design

    NASA Technical Reports Server (NTRS)

    Dillenius, M. F. E.; Hemsch, M. J.; Sawyer, W. C.; Allen, J. M.; Blair, A. B., Jr.

    1982-01-01

    Two different classes of missile aeroprediction programs have been recently developed. The first class of programs provides rapid engineering predictions and includes MISSILE1 and MISSILE2 applicable to missile configurations with axisymmetric bodies. The second class of programs consists of the DEMON series, including a simplified version NSWCDM, designed to calculate detailed loadings acting on supersonic missiles which may have non-circular body cross sections. Both classes account for high angles of attack and track vortices from canard or wing section to the tail section. Extensive comparisons with experimental data are presented including nonlinear effects of canard control.

  6. 48 CFR 233.215 - Contract clause.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... Section 233.215 Federal Acquisition Regulations System DEFENSE ACQUISITION REGULATIONS SYSTEM, DEPARTMENT OF DEFENSE GENERAL CONTRACTING REQUIREMENTS PROTESTS, DISPUTES, AND APPEALS Disputes and Appeals 233... acquisition is for— (i) Aircraft (ii) Spacecraft and launch vehicles (iii) Naval vessels (iv) Missile systems...

  7. 48 CFR 233.215 - Contract clause.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... Section 233.215 Federal Acquisition Regulations System DEFENSE ACQUISITION REGULATIONS SYSTEM, DEPARTMENT OF DEFENSE GENERAL CONTRACTING REQUIREMENTS PROTESTS, DISPUTES, AND APPEALS Disputes and Appeals 233... acquisition is for— (i) Aircraft (ii) Spacecraft and launch vehicles (iii) Naval vessels (iv) Missile systems...

  8. 48 CFR 228.370 - Additional clauses.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ....370 Section 228.370 Federal Acquisition Regulations System DEFENSE ACQUISITION REGULATIONS SYSTEM, DEPARTMENT OF DEFENSE GENERAL CONTRACTING REQUIREMENTS BONDS AND INSURANCE Insurance 228.370 Additional... Involving Aircraft, Missiles, and Space Launch Vehicles, may be used in solicitations and contracts which...

  9. 48 CFR 228.370 - Additional clauses.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ....370 Section 228.370 Federal Acquisition Regulations System DEFENSE ACQUISITION REGULATIONS SYSTEM, DEPARTMENT OF DEFENSE GENERAL CONTRACTING REQUIREMENTS BONDS AND INSURANCE Insurance 228.370 Additional... Involving Aircraft, Missiles, and Space Launch Vehicles, may be used in solicitations and contracts which...

  10. 48 CFR 233.215 - Contract clause.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... Section 233.215 Federal Acquisition Regulations System DEFENSE ACQUISITION REGULATIONS SYSTEM, DEPARTMENT OF DEFENSE GENERAL CONTRACTING REQUIREMENTS PROTESTS, DISPUTES, AND APPEALS Disputes and Appeals 233... acquisition is for— (i) Aircraft (ii) Spacecraft and launch vehicles (iii) Naval vessels (iv) Missile systems...

  11. 48 CFR 228.370 - Additional clauses.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ....370 Section 228.370 Federal Acquisition Regulations System DEFENSE ACQUISITION REGULATIONS SYSTEM, DEPARTMENT OF DEFENSE GENERAL CONTRACTING REQUIREMENTS BONDS AND INSURANCE Insurance 228.370 Additional... Involving Aircraft, Missiles, and Space Launch Vehicles, may be used in solicitations and contracts which...

  12. Alaskan Air Defense and Early Warning Systems Clear Air ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Alaskan Air Defense and Early Warning Systems - Clear Air Force Station, Ballistic Missile Early Warning System Site II, One mile west of mile marker 293.5 on Parks Highway, 5 miles southwest of Anderson, Anderson, Denali Borough, AK

  13. 48 CFR 233.215 - Contract clause.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... Section 233.215 Federal Acquisition Regulations System DEFENSE ACQUISITION REGULATIONS SYSTEM, DEPARTMENT OF DEFENSE GENERAL CONTRACTING REQUIREMENTS PROTESTS, DISPUTES, AND APPEALS Disputes and Appeals 233... acquisition is for— (i) Aircraft (ii) Spacecraft and launch vehicles (iii) Naval vessels (iv) Missile systems...

  14. 48 CFR 233.215 - Contract clause.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... Section 233.215 Federal Acquisition Regulations System DEFENSE ACQUISITION REGULATIONS SYSTEM, DEPARTMENT OF DEFENSE GENERAL CONTRACTING REQUIREMENTS PROTESTS, DISPUTES, AND APPEALS Disputes and Appeals 233... acquisition is for— (i) Aircraft (ii) Spacecraft and launch vehicles (iii) Naval vessels (iv) Missile systems...

  15. 48 CFR 228.370 - Additional clauses.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ....370 Section 228.370 Federal Acquisition Regulations System DEFENSE ACQUISITION REGULATIONS SYSTEM, DEPARTMENT OF DEFENSE GENERAL CONTRACTING REQUIREMENTS BONDS AND INSURANCE Insurance 228.370 Additional... Involving Aircraft, Missiles, and Space Launch Vehicles, may be used in solicitations and contracts which...

  16. KSC-2009-5198

    NASA Image and Video Library

    2009-09-12

    CAPE CANAVERAL, Fla. – Inside the mobile service tower on Launch Pad 17-B at Cape Canaveral Air Force Station in Florida, workers check the progress of the fairing being moved toward the Space Tracking and Surveillance System – Demonstrator spacecraft for encapsulation. The fairing is a two-part molded structure that fits flush with the outside surface of the rocket and forms an aerodynamically smooth nose cone, protecting the spacecraft during launch and ascent. STSS Demo is a space-based sensor component of a layered Ballistic Missile Defense System designed for the overall mission of detection, tracking and discriminating ballistic missiles. STSS is capable of tracking objects after boost phase and provides trajectory information to other sensors. It will be launched by NASA for the Missile Defense Agency between 8 and 8:58 a.m. EDT Sept. 18. Approved for Public Release 09-MDA-4934 (09-22-09) Photo credit: NASA/Cory Huston

  17. KSC-2009-5199

    NASA Image and Video Library

    2009-09-12

    CAPE CANAVERAL, Fla. – Inside the mobile service tower on Launch Pad 17-B at Cape Canaveral Air Force Station in Florida, the Space Tracking and Surveillance System – Demonstrator spacecraft (foreground) is waiting for encapsulation in the fairing, behind it at left. The fairing is a two-part molded structure that fits flush with the outside surface of the rocket and forms an aerodynamically smooth nose cone, protecting the spacecraft during launch and ascent. STSS Demo is a space-based sensor component of a layered Ballistic Missile Defense System designed for the overall mission of detection, tracking and discriminating ballistic missiles. STSS is capable of tracking objects after boost phase and provides trajectory information to other sensors. It will be launched by NASA for the Missile Defense Agency between 8 and 8:58 a.m. EDT Sept. 18. Approved for Public Release 09-MDA-4934 (09-22-09) Photo credit: NASA/Cory Huston

  18. KSC-2009-5201

    NASA Image and Video Library

    2009-09-12

    CAPE CANAVERAL, Fla. – Inside the mobile service tower on Launch Pad 17-B at Cape Canaveral Air Force Station in Florida, workers help guide the fairing (at right) into place around the Space Tracking and Surveillance System – Demonstrator spacecraft for encapsulation. The fairing is a two-part molded structure that fits flush with the outside surface of the rocket and forms an aerodynamically smooth nose cone, protecting the spacecraft during launch and ascent. STSS Demo is a space-based sensor component of a layered Ballistic Missile Defense System designed for the overall mission of detection, tracking and discriminating ballistic missiles. STSS is capable of tracking objects after boost phase and provides trajectory information to other sensors. It will be launched by NASA for the Missile Defense Agency between 8 and 8:58 a.m. EDT Sept. 18. Approved for Public Release 09-MDA-4934 (09-22-09) Photo credit: NASA/Cory Huston

  19. KSC-2009-5205

    NASA Image and Video Library

    2009-09-12

    CAPE CANAVERAL, Fla. – Inside the mobile service tower on Launch Pad 17-B at Cape Canaveral Air Force Station in Florida, the second half of the fairing is being moved toward the Space Tracking and Surveillance System – Demonstrator spacecraft. The fairing is a two-part molded structure that fits flush with the outside surface of the rocket and forms an aerodynamically smooth nose cone, protecting the spacecraft during launch and ascent. STSS Demo is a space-based sensor component of a layered Ballistic Missile Defense System designed for the overall mission of detection, tracking and discriminating ballistic missiles. STSS is capable of tracking objects after boost phase and provides trajectory information to other sensors. It will be launched by NASA for the Missile Defense Agency between 8 and 8:58 a.m. EDT Sept. 18. Approved for Public Release 09-MDA-4934 (09-22-09) Photo credit: NASA/Cory Huston

  20. KSC-2009-5202

    NASA Image and Video Library

    2009-09-12

    CAPE CANAVERAL, Fla. – Inside the mobile service tower on Launch Pad 17-B at Cape Canaveral Air Force Station in Florida, the first half of the two-part fairing is in place around the Space Tracking and Surveillance System – Demonstrator spacecraft. The fairing is a molded structure that fits flush with the outside surface of the rocket and forms an aerodynamically smooth nose cone, protecting the spacecraft during launch and ascent. STSS Demo is a space-based sensor component of a layered Ballistic Missile Defense System designed for the overall mission of detection, tracking and discriminating ballistic missiles. STSS is capable of tracking objects after boost phase and provides trajectory information to other sensors. It will be launched by NASA for the Missile Defense Agency between 8 and 8:58 a.m. EDT Sept. 18. Approved for Public Release 09-MDA-4934 (09-22-09) Photo credit: NASA/Cory Huston

  1. KSC-2009-5196

    NASA Image and Video Library

    2009-09-12

    CAPE CANAVERAL, Fla. – Inside the mobile service tower on Launch Pad 17-B at Cape Canaveral Air Force Station in Florida, the Space Tracking and Surveillance System – Demonstrator spacecraft is waiting for encapsulation in the fairing. The fairing is a two-part molded structure that fits flush with the outside surface of the rocket and forms an aerodynamically smooth nose cone, protecting the spacecraft during launch and ascent. STSS Demo is a space-based sensor component of a layered Ballistic Missile Defense System designed for the overall mission of detection, tracking and discriminating ballistic missiles. STSS is capable of tracking objects after boost phase and provides trajectory information to other sensors. It will be launched by NASA for the Missile Defense Agency between 8 and 8:58 a.m. EDT Sept. 18. Approved for Public Release 09-MDA-4934 (09-22-09) Photo credit: NASA/Cory Huston

  2. Defense Small Business Innovation Research Program (SBIR). Volume 1. Army Abstracts of Phase 1 Awards 1991

    DTIC Science & Technology

    1991-01-01

    Office: MICOM HUNTSVILLE, AL 35805 Contract #: DAAHO1-92-C-R150 Phone: (205) 876-7502 Pi: D. BRETI BEASLEY Title: INFRARED LASER DIODE BASED INFRARED ...TECHNIQUES WILL BE INVESTIGATED TO DESIGN A FORM FIT GIMBALL-MOUNTED 94 GHZ/ INFRARED FOCAL PLANE ARRAY DUAL-MODE MISSILE SEEKER SENSOR BASED ON LOW...RESOLUTION AT 94 GHZ AND A 128X128 ARRAY IR IMAGE PROCESSING FOR AUTONOMOUS TARGET RECOGNITION AND AIMPOINT SELECTION. THE 94 GHZ AND INFRARED ELECTRONICS

  3. Determining the Surface-to-Air Missile Requirement for Western and Southern Part of the Turkish Air Defense System

    DTIC Science & Technology

    2008-03-01

    been shown to yield success in such applications as well. ( Daskin ,1995). LP optimization, matrix row reduction, a combination of both, or cutting...integer solution (Current, 2002). If the LP relaxation of the SCLP results in a fractional solution, Current, Daskin , and Schilling (2002) recommend...coverage for a given number of SAM sites. The model is formulated as an integer program, and the LINGO 10 software package is used to solve the model

  4. Space and Missile Defense Acquisitions: Periodic Assessment Needed to Correct Parts Quality Problems in Major Programs

    DTIC Science & Technology

    2011-06-01

    understanding of the global water cycle and the accuracy of precipitation forecasts. GPM is composed of a core spacecraft carrying two main instruments: a dual...developed by NASA and the Space Agency of Argentina (Comisión Nacional de Actividades Espaciales) to investigate the links between the global water ... cycle , ocean circulation, and the climate. It will measure global sea surface salinity. The Aquarius science goals are to observe and model the

  5. Navy Ohio Replacement (SSBN[X]) Ballistic Missile Submarine Program: Background and Issues for Congress

    DTIC Science & Technology

    2012-12-10

    nuclear powered submarines, which are powered by energy sources such as diesel engines. A submarine’s use of nuclear or non-nuclear power as its energy ...WA, in Puget Sound; the other six are homeported at Kings Bay, GA, close to the Florida border. Unlike most Navy ships, which are operated by...countries on nuclear-related issues that is carried out under the 1958 Agreement for Cooperation on the Uses of Atomic Energy for Mutual Defense

  6. Trident II (D-5) Sea Launched Ballistic Missile UGM 133A (Trident II Missile)

    DTIC Science & Technology

    2015-12-01

    Selected Acquisition Report ( SAR ) RCS: DD-A&T(Q&A)823-178 Trident II (D-5) Sea-Launched Ballistic Missile UGM 133A (Trident II Missile) As of FY...December 2015 SAR March 17, 2016 12:10:33 UNCLASSIFIED 2 Table of Contents Common Acronyms and Abbreviations for MDAP Programs 3 Program...Acquisition Unit Cost Trident II Missile December 2015 SAR March 17, 2016 12:10:33 UNCLASSIFIED 3 PB - President’s Budget PE - Program Element PEO - Program

  7. CVN’s, is Eleven Too Many or Too Few?

    DTIC Science & Technology

    2011-03-10

    allows for transit and work ups for deployment. The complete cycle has one ship on post, one corning off post and one preparing to take post in each of...developed the Silk Missile, an. anti -ship missile that can sink a smaller vessel with one burst. Many of the defenses used in the modem carrier

  8. The problem of missile defence

    NASA Astrophysics Data System (ADS)

    Webber, Philip

    2014-05-01

    The idea of building a missile system to defend a nation from the horrors of nuclear attack first entered the public consciousness in the 1980s, when US president Ronald Reagan - backed by prominent (and controversial) scientific advisers such as the physicist Edward Teller - promoted the Strategic Defense Initiative as a supposedly impenetrable shield against the Soviet Union's nuclear arsenal.

  9. Countermeasure effectiveness against an intelligent imaging infrared anti-ship missile

    NASA Astrophysics Data System (ADS)

    Gray, Greer J.; Aouf, Nabil; Richardson, Mark; Butters, Brian; Walmsley, Roy

    2013-02-01

    Ship self defense against heat-seeking anti-ship missiles is of great concern to modern naval forces. One way of protecting ships against these threats is to use infrared (IR) offboard countermeasures. These decoys need precise placement to maximize their effectiveness, and simulation is an invaluable tool used in determining optimum deployment strategies. To perform useful simulations, high-fidelity models of missiles are required. We describe the development of an imaging IR anti-ship missile model for use in countermeasure effectiveness simulations. The missile model's tracking algorithm is based on a target recognition system that uses a neural network to discriminate between ships and decoys. The neural network is trained on shape- and intensity-based features extracted from simulated imagery. The missile model is then used within ship-decoy-missile engagement simulations, to determine how susceptible it is to the well-known walk-off seduction countermeasure technique. Finally, ship survivability is improved by adjusting the decoy model to increase its effectiveness against the tracker.

  10. Annual Industrial Capabilities Report to Congress

    DTIC Science & Technology

    2009-03-01

    thermal batteries . Military unique, high performance batteries are the only viable power source for many defense systems. The Missile Defense Agency...armor. Thermal Battery Production The objective of this Title III initiative is to strengthen and expand a domestic source for advanced

  11. 22 CFR 121.14 - Submersible vessels.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ..., launching rockets, firing missiles, deploying mines, deploying countermeasures) or deploy military payloads... subchapter) that are defense articles that perform specific military functions such as by providing military...; or (6) Are developmental vessels funded or contracted by the Department of Defense. (b) Submersible...

  12. Defense.gov Special Report: Travels with Panetta - December 2012

    Science.gov Websites

    Order to Deploy 400 U.S. Personnel to Turkey Defense Secretary Leon E. Panetta has signed an order that will deploy 400 U.S. personnel to Turkey to support the deployment of Patriot missile capability there

  13. The Potential Transfer of Industrial Skills from Defense to Nondefense Industries. Volume 1.

    ERIC Educational Resources Information Center

    California State Dept. of Employment, Sacramento.

    Because of lack of knowledge of specific occupations in defense production, assessment of the impact of defense cutbacks on the economy has been difficult. This project was undertaken to determine which skills of industrial workers in missile production are transferable to nondefense industries and to anticipate manpower problems involved in mass…

  14. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Flax, A.

    The growing number of short- to medium-range ballistic missiles (SMBMs) in the inventories of many smaller states that have had recent or less recent armed conflicts with one another has been a source of concern to many countries. Inevitably this concern over ballistic missiles had been linked to their use as delivery vehicles for {open_quotes}weapons of mass destruction{close_quotes}, a category that now includes nuclear, chemical and biological weapons. But it can be argued that this categorization is not particularly useful as a point of departure for discussions of ballistic missile defense (BMD) against SMBMs.

  15. 103. View of transmitter building no. 102, missile warning operation ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    103. View of transmitter building no. 102, missile warning operation center, overall view of center in operation with staff at consoles. Note defcon (defense condition) display panel (upper right) showing "simulated status"activity level. Also note fiber optic display panel at upper right-center. Official photograph BMEWS Project by Hansen 30 September, 1976, clear as negative no. A-14568. - Clear Air Force Station, Ballistic Missile Early Warning System Site II, One mile west of mile marker 293.5 on Parks Highway, 5 miles southwest of Anderson, Anderson, Denali Borough, AK

  16. KSC-2009-2715

    NASA Image and Video Library

    2009-04-16

    CAPE CANAVERAL, Fla. – On Launch Complex 17-B at Cape Canaveral Air Force Station, the first stage of the Delta II rocket in the background waits for the mobile service tower and the solid rocket boosters (top foreground) that will be attached. The Delta II is the launch vehicle for the STSS Demonstrator spacecraft. The STSS Demonstrators is a midcourse tracking technology demonstrator and is part of an evolving ballistic missile defense system. STSS is capable of tracking objects after boost phase and provides trajectory information to other sensors. It will be launched by NASA for the Missile Defense Agency on July 29. Photo credit: NASA/Kim Shiflett

  17. An anthology: Rationale for a US ballistic missile defense (1969 - 1984)

    NASA Astrophysics Data System (ADS)

    Tircuit, E. C.

    1985-04-01

    This anthology is a selection and short synopsis of representative articles on the rationale for a US ballistic missile defense (BMD). Unclassified articles and documents were reviewed and analyzed to identify and include nine representative articles in the anthology. The anthology reduces the search for quality material on the subject and documents the fundamental rationale for a BMD. The author concluded that the fundamental rationale for a US BMD is to deter nuclear war. In addition, specific rationale for a US BMD is provided in the anthology. Finally, an extensive bibliography is included in the anthology to enhance further research on the subject.

  18. KSC-2009-3663

    NASA Image and Video Library

    2009-05-01

    CAPE CANAVERAL, Fla. – At NASA Kennedy Space Center's Shuttle Landing Facility, the shipping container with the STSS Demonstrator SV-2spacecraft has been moved out of the U.S. Air Force C-17 aircraft. The spacecraft will be transferred to the Astrotech payload processing facility in Titusville, Fla. The spacecraft is a midcourse tracking technology demonstrator, part of an evolving ballistic missile defense system. STSS is capable of tracking objects after boost phase and provides trajectory information to other sensors. It will be launched by NASA for the Missile Defense Agency in late summer. Photo credit: NASA/Jack Pfaller (Approved for Public Release 09-MDA-4616 [27 May 09])

  19. KSC-2009-3661

    NASA Image and Video Library

    2009-05-01

    CAPE CANAVERAL, Fla. – At NASA Kennedy Space Center's Shuttle Landing Facility, the shipping container with the STSS Demonstrator SV-2spacecraft waits to be offloaded from the U.S. Air Force C-17 aircraft. The spacecraft will be transferred to the Astrotech payload processing facility in Titusville, Fla. The spacecraft is a midcourse tracking technology demonstrator, part of an evolving ballistic missile defense system. STSS is capable of tracking objects after boost phase and provides trajectory information to other sensors. It will be launched by NASA for the Missile Defense Agency in late summer. Photo credit: NASA/Jack Pfaller (Approved for Public Release 09-MDA-4616 [27 May 09])

  20. KSC-2009-3659

    NASA Image and Video Library

    2009-05-01

    CAPE CANAVERAL, Fla. – At NASA Kennedy Space Center's Shuttle Landing Facility, workers move STSS Demonstrator SV-2 spacecraft equipment out of the cargo hold of the U.S. Air Force C-17 aircraft. The spacecraft will be transferred to the Astrotech payload processing facility in Titusville, Fla. The spacecraft is a midcourse tracking technology demonstrator, part of an evolving ballistic missile defense system. STSS is capable of tracking objects after boost phase and provides trajectory information to other sensors. It will be launched by NASA for the Missile Defense Agency in late summer. Photo credit: NASA/Jack Pfaller (Approved for Public Release 09-MDA-4616 [27 May 09])

  1. From detection to deflection: Mitigation techniques for hidden global threats of natural space objects with short warning time

    NASA Astrophysics Data System (ADS)

    Hussein, Alaa; Rozenheck, Oshri; Entrena Utrilla, Carlos Manuel

    2016-09-01

    Throughout recorded history, hundreds of Earth impacts have been reported, with some catastrophic localized consequences. Based on the International Space University (ISU) Planetary Defense project named READI, we address the impact event problem by giving recommendations for the development of a planetary defense program. This paper reviews the current detection and tracking techniques and gives a set of recommendations for a better preparation to shield Earth from asteroid and cometary impacts. We also extend the use of current deflection techniques and propose a new compilation of those to deflect medium-sized potentially hazardous objects (PHOs). Using an array of techniques from high-energy lasers to defensive missiles, we present a set of protective layers to defend our planet. The paper focused on threats with a short warning period from discovery to impact with Earth, within few years.

  2. Self-Defense Distributed Engagement Coordinator

    DTIC Science & Technology

    2016-02-01

    its countermeasures. Whether a missile is defeated with an interceptor, undermined by a signal jammer, or diverted by a decoy, there is Self - Defense ...anti-ship threats and recommends actions to the personnel coordinating ship self - defense . This tool was recognized with a 2015 R&D 100 Award. a cost...reloading process, and may not be possible at all. The Self - Defense Distributed Engagement Coordinator (SDDEC) is designed to provide automated battle

  3. Canadian Decisions in a Shifting North American Security Landscape

    DTIC Science & Technology

    2003-04-15

    operations. But the biggest bugaboo , National Missile Defense, could change public perceptions, when USSTRATCOM has both the offensive and defensive...Canada and the United States receive a number of benefits out of the close defense relationship. According to the Defense Portfolio 2002, Canadian...Defence, The Defence Portfolio , 2002, 2002. 11, available at http://www.forces.gc.ca. 21 Department of National Defence, 1994 Defence White Paper, 1994

  4. Civilian casualties of Iraqi ballistic missile attack to Tehran, capital of Iran.

    PubMed

    Khaji, Ali; Fallahdoost, Shoaodin; Soroush, Mohammad-Reza; Rahimi-Movaghar, Vafa

    2012-01-01

    To determine the pattern of causalities of Iraqi ballistic missile attacks on Tehran, the capital of Iran, during Iraq-Iran war. Data were extracted from the Army Staff Headquarters based on daily reports of Iranian army units during the war. During 52 days, Tehran was stroked by 118 Al-Hussein missiles (a modified version of Scud missile). Eighty-six missiles landed in populated areas. During Iraqi missile attacks, 422 civilians died and 1 579 injured (4.9 deaths and 18.3 injuries per missile). During 52 days, 8.1 of the civilians died and 30.4 injured daily. Of the cases that died, 101 persons (24%) were excluded due to the lack of information. Among the remainders, 179 (55.8%) were male and 142 (44.2%) were female. The mean age of the victims was 25.3 years+/-19.9 years. Our results show that the high accuracy of modified Scud missiles landed in crowded areas is the major cause of high mortality in Tehran. The presence of suitable warning system and shelters could reduce civilian casualties. The awareness and readiness of civilian defense forces, rescue services and all medical facilities for dealing with mass casualties caused by ballistic missile attacks are necessary.

  5. Diode Pumped Alkaline Laser System: A High Powered, Low SWaP Directed Energy Option for Ballistic Missile Defense High-Level Summary - April 2017

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wisoff, P. J.

    The Diode-Pumped Alkali Laser (DPAL) system is an R&D effort funded by the Missile Defense Agency (MDA) underway at Lawrence Livermore National Laboratory (LLNL). MDA has described the characteristics needed for a Boost Phase directed energy (DE) weapon to work against ICBM-class threat missiles. In terms of the platform, the mission will require a high altitude Unmanned Aerial Vehicle (UAV) that can fly in the “quiet” stratosphere and display long endurance – i.e., days on station. In terms of the laser, MDA needs a high power, low size and weight laser that could be carried by such a platform andmore » deliver lethal energy to an ICBM-class threat missile from hundreds of kilometers away. While both the military and industry are pursuing Directed Energy for tactical applications, MDA’s objectives pose a significantly greater challenge than other current efforts in terms of the power needed from the laser, the low size and weight required, and the range, speed, and size of the threat missiles. To that end, MDA is funding two R&D efforts to assess the feasibility of a high power (MWclass) and low SWaP (size, weight and power) laser: a fiber combining laser (FCL) project at MIT’s Lincoln Laboratory, and LLNL’s Diode-Pumped Alkali Laser (DPAL) system.« less

  6. UCAV path planning in the presence of radar-guided surface-to-air missile threats

    NASA Astrophysics Data System (ADS)

    Zeitz, Frederick H., III

    This dissertation addresses the problem of path planning for unmanned combat aerial vehicles (UCAVs) in the presence of radar-guided surface-to-air missiles (SAMs). The radars, collocated with SAM launch sites, operate within the structure of an Integrated Air Defense System (IADS) that permits communication and cooperation between individual radars. The problem is formulated in the framework of the interaction between three sub-systems: the aircraft, the IADS, and the missile. The main features of this integrated model are: The aircraft radar cross section (RCS) depends explicitly on both the aspect and bank angles; hence, the RCS and aircraft dynamics are coupled. The probabilistic nature of IADS tracking is accounted for; namely, the probability that the aircraft has been continuously tracked by the IADS depends on the aircraft RCS and range from the perspective of each radar within the IADS. Finally, the requirement to maintain tracking prior to missile launch and during missile flyout are also modeled. Based on this model, the problem of UCAV path planning is formulated as a minimax optimal control problem, with the aircraft bank angle serving as control. Necessary conditions of optimality for this minimax problem are derived. Based on these necessary conditions, properties of the optimal paths are derived. These properties are used to discretize the dynamic optimization problem into a finite-dimensional, nonlinear programming problem that can be solved numerically. Properties of the optimal paths are also used to initialize the numerical procedure. A homotopy method is proposed to solve the finite-dimensional, nonlinear programming problem, and a heuristic method is proposed to improve the discretization during the homotopy process. Based upon the properties of numerical solutions, a method is proposed for parameterizing and storing information for later recall in flight to permit rapid replanning in response to changing threats. Illustrative examples are presented that confirm the standard flying tactics of "denying range, aspect, and aim," by yielding flight paths that "weave" to avoid long exposures of aspects with large RCS.

  7. Reagan Test Site Distributed Operations

    DTIC Science & Technology

    2012-01-01

    for missile testing because of its geography and its strategic location in the Pacific [ 1 ]. The atoll’s distance from launch facilities at Vandenberg...research on ballistic missile defense 50 years ago (Figure 1 ). The subsequent development of RTS’s unique instrumentation sensors, including high...control center including hardware, software, networks, and the facility functioned successfully. FIGURE 1 . The map shows the isolated location of the

  8. Joint Counterair and Theater Missile Defense Doctrine to Defend against Unmanned Aerial Vehicles and Cruise Missiles in Asymmetric Warfare

    DTIC Science & Technology

    2009-02-12

    features an Active Electronic Scan Array ( ASEA ) radar and improved electronics to enhance the capability of current front line fighter aircraft to...equipped with the APG-79 ASEA radar and selected squadrons of Air Force F-16 and F-15E have been approved for ASEA upgrades. Next generation fighter

  9. Deterrence of ballistic missile systems and their effects on today's air operations

    NASA Astrophysics Data System (ADS)

    Durak, Hasan

    2015-05-01

    Lately, the effect-based approach has gained importance in executing air operations. Thus, it makes more successful in obtaining the desired results by breaking the enemy's determination in a short time. Air force is the first option to be chosen in order to defuse the strategic targets. However, the problems such as the defense of targets and country, radars, range…etc. becoming serious problems. At this level ballistic missiles emerge as a strategic weapon. Ultimate emerging technologies guided by the INS and GPS can also be embedded with multiple warheads and reinforced with conventional explosive, ballistic missiles are weapons that can destroy targets with precision. They have the advantage of high speed, being easily launched from every platform and not being easily detected by air defense systems contrary to other air platforms. While these are the advantages, there are also disadvantages of the ballistic missiles. The high cost, unavailability of nuclear, biological and chemical weapons, and its limited effect while using conventional explosives against destroying the fortified targets are the disadvantages. The features mentioned above should be considered as limitation to the impact of the ballistic missiles. The aim is to impose the requests on enemies without starting a war with all components and to ensure better implementation of the operation functions during the air operations. In this study, effects of ballistic missiles in the future on air battle theatre will be discussed in the beginning, during the process and at the end phase of air operations within the scope of an effect-based approach.

  10. Seizing the Ultimate High Ground: Weaponizing Space

    DTIC Science & Technology

    2013-03-12

    Recommended Distribution Statement: Distribution A, Approved for public release, distribution unlimited. 3. RECOMMENDA TJON: Sign Approve/Review blocks...factsheets/missi les 12 Missile Defense Agency. 13 Ibid. 14 Ibid. 15 ’J\\ir Defense of the United States;’ The Nike Historical Society, http:// nike

  11. Physics and technology of the arms race

    NASA Astrophysics Data System (ADS)

    Garwin, R. L.

    1983-10-01

    Traditional military concepts of superiority and effectiveness (as embodied in Lanchester's law) have little relevance to thermonuclear weapons, with their enormous effectiveness in destruction of society. Few are needed to saturate their deterrent effect, but their military effectiveness is limited. The evolution and future of strategic nuclear forces is discussed, and their declining marginal utility emphasized. Some calculatons relevant to the nuclear confrontation are presented (Lanchester's Law; skin effect of VLF and ELF signals to submarines; the rocket equation; simple radar-range equation) and recommendations presented for future strategic forces and arms control initiatives. Recommended programs include a silo-based 12-ton single-warhead missile (SICM), the development of buried-bomb defense of individual Minuteman silos, the completion of the deployment of air-launched cruise missiles on the B-52 fleet, and the development of small (1000-ton) submarines for basing ICBM-range missiles. Limiting the threat by arms control should include ratification of SALT II, followed by negotiation of a protrocool to allow a SICM and dedicated silo to be deployed for each two, SALT-II-allowed warheads given up; a ban on weapons in space and anti-satellite tests; and an eventual reduction to 1000 nuclear warheads in U.S. and Soviet inventories.

  12. Picking up the shield: Incorporating defense into strategic nuclear doctrine. Research report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ruotsala, M.G.

    Picking up the Shield is an interesting and enlightening account of the evolution of strategic nuclear doctrine. It puts the offense-defense relationship into a historical perspective that lends important insight into the ongoing debate over strategic defenses. Although this debate centers on the active defenses contemplated by the strategic defense initiative, Lt Col Michael G. Ruotsala makes the point that passive defenses are also an important component of strategic defense. He sees the inherent passive defenses of the Triad as being a key to maintaining offense-oriented deterrence, and he makes a good case for survivable Peacekeeper basing and a smallmore » mobile intercontinental ballistic missile (ICBM) to enhance deterrence and pave the way for active defense. Although the future may hold a strategic defense with new, even revolutionary, weapons, any future program will embody old concepts of offense and defense. For the foreseeable future, offensive strategic forces will continue to play a dominant role in US defense policy. However, strategic defenses are consistent with US strategic doctrine. More important for deterrence, defenses are consistent with Soviet doctrine. Clearly, complementing roles for both the offense and defense are critical for developing a doctrine that enhances deterrence of a nuclear exchange between the United States and the Soviet Union. It is also clear that Picking up the Shield makes a significant contribution to understanding the challenge we face as we incorporate defense into strategic nuclear doctrine.« less

  13. 32 CFR Appendix A to Part 1285 - Gaining Access to DLA Records

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ..., medical, chemical, petroleum, industrial, construction, electronics, and general items of supply. The six... aircraft, surface ships, submarines, combat vehicles, and missile systems. b. Defense Electronics Supply... Center, Attn: DCSC-WXA, 3990 E. Broad Street, Columbus, OH 43216-5000. Defense Electronics Supply Center...

  14. National Defense on the High Frontier.

    ERIC Educational Resources Information Center

    Graham, Daniel O.

    1983-01-01

    A new American defense policy based on satellites which can track down and destroy Soviet missiles is less expensive and more workable than is commonly believed. Such a policy would provide a greater margin of safety than the present policy of deterence based on mutually assured destruction. (IS)

  15. 48 CFR 252.211-7008 - Use of Government-Assigned Serial Numbers

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... Serial Numbers 252.211-7008 Section 252.211-7008 Federal Acquisition Regulations System DEFENSE ACQUISITION REGULATIONS SYSTEM, DEPARTMENT OF DEFENSE CLAUSES AND FORMS SOLICITATION PROVISIONS AND CONTRACT..., tracked, and towed vehicles for use on highway or rough terrain; weapon and missile end items; ammunition...

  16. 48 CFR 252.223-7002 - Safety precautions for ammunition and explosives.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... ammunition and explosives. 252.223-7002 Section 252.223-7002 Federal Acquisition Regulations System DEFENSE ACQUISITION REGULATIONS SYSTEM, DEPARTMENT OF DEFENSE CLAUSES AND FORMS SOLICITATION PROVISIONS AND CONTRACT...) Ammunition; (iii) Rockets; (iv) Missiles; (v) Warheads; (vi) Devices; and (vii) Components of (i) through (vi...

  17. 48 CFR 252.223-7002 - Safety precautions for ammunition and explosives.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... ammunition and explosives. 252.223-7002 Section 252.223-7002 Federal Acquisition Regulations System DEFENSE ACQUISITION REGULATIONS SYSTEM, DEPARTMENT OF DEFENSE CLAUSES AND FORMS SOLICITATION PROVISIONS AND CONTRACT...) Ammunition; (iii) Rockets; (iv) Missiles; (v) Warheads; (vi) Devices; and (vii) Components of (i) through (vi...

  18. 48 CFR 252.223-7002 - Safety precautions for ammunition and explosives.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... ammunition and explosives. 252.223-7002 Section 252.223-7002 Federal Acquisition Regulations System DEFENSE ACQUISITION REGULATIONS SYSTEM, DEPARTMENT OF DEFENSE CLAUSES AND FORMS SOLICITATION PROVISIONS AND CONTRACT...) Ammunition; (iii) Rockets; (iv) Missiles; (v) Warheads; (vi) Devices; and (vii) Components of (i) through (vi...

  19. Aegis International and Ballistic Missile Defense: A New Interoperability Network

    DTIC Science & Technology

    2011-06-01

    the 1950’s and 1960s ( NIKE Hercules, Sentinel, Safeguard, Site Defense, etc.). The objectives have been pursued by a centralized organization (the...from land. This means greater geographic flexibility, greater survivability and greater scalability in response to an evolving threat. That’s

  20. Counterproliferation strategy: The influence of technology, budget, and arms control on theater missile defenses. Strategic research project

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Parlier, G.H.

    1996-05-20

    This paper describes the historical evolution of the theater missile threat during World War II and the Persian Gulf War, and analyzes current technological challenges, budgetary pressures, and arms control restraints which constrain the development and deployment of effective theater missile defenses. The impact of these trends on strategic concepts as outlined in the National Military Strategy and their implications for attaining national policy objectives is assessed. A systems approach is used to described analyze, and evaluate the effectiveness of emerging counterproliferation strategy within the framework of an ends-ways-means strategy formulation paradigm. I conclude that current trends will lead tomore » a self-deterring strategy: resources are inadequate to support the ways we intend to achieve our national objectives. Recommendations are made to eliminate unacceptable risk and enhance the concept of `extended conventional deterrence` consistent with U.S. national values and security interests for our role in a new world order.« less

  1. Germanium Requirements for National Defense,

    DTIC Science & Technology

    1991-07-01

    work in this area involves development of hard exterior coating materials that will protect Ge windows but not adversely affect their optical...advanced electronic materials, is used in semiconductor devices, fiber optic systems, and infrared sensors for ships, aircraft, missiles, tanks and anti -tank...infrared sensors for ships, aircraft, missiles, tanks and anti -tank units. Because of its importance in these applications, germanium was added to the

  2. Early Rockets

    NASA Image and Video Library

    1957-03-01

    The Jupiter rocket was designed and developed by the Army Ballistic Missile Agency (ABMA). ABMA launched the Jupiter-A at Cape Canaveral, Florida, on March 1, 1957. The Jupiter vehicle was a direct derivative of the Redstone. The Army Ballistic Missile Agency (ABMA) at Redstone Arsenal, Alabama, continued Jupiter development into a successful intermediate ballistic missile, even though the Department of Defense directed its operational development to the Air Force. ABMA maintained a role in Jupiter RD, including high-altitude launches that added to ABMA's understanding of rocket vehicle operations in the near-Earth space environment. It was knowledge that paid handsome dividends later.

  3. Index for aerodynamic data from the Bumblebee program

    NASA Technical Reports Server (NTRS)

    Cronvich, L. L.; Barnes, G. A.

    1978-01-01

    The Bumblebee program, was designed to provide a supersonic guided missile. The aerodynamics program included a fundamental research effort in supersonic aerodynamics as well as a design task in developing both test vehicles and prototypes of tactical missiles. An index of aerodynamic missile data developed in this program is presented.

  4. Jamming effect analysis of infrared reticle seeker for directed infrared countermeasures

    NASA Astrophysics Data System (ADS)

    Bae, Tae-Wuk; Kim, Byoung-Ik; Kim, Young-Choon; Ahn, Sang-Ho

    2012-09-01

    In directed infrared countermeasures (DIRCM), the purpose of jamming toward missiles is making missiles miss the target (aircraft of our forces) in the field of view. Since the DIRCM system directly emits the pulsing flashes of infrared (IR) energy to missiles, it is more effective than present flare method emitting IR source to omni-direction. In this paper, we implemented a reticle seeker simulation tool using MATLAB-SIMULINK, in order to analyze jamming effect of spin-scan and con-scan reticle missile seeker used widely in the world, though it was developed early. Because the jammer signal has influence on the missile guidance system using its variable frequency, it is very important technique among military defense systems protecting our forces from missiles of enemy. Simulation results show that jamming effect is greatly influenced according to frequency, phase and intensity of jammer signal. Especially, jammer frequency has the largest influence on jamming effect. Through our reticle seeker simulation tool, we can confirm that jamming effect toward missiles is significantly increased when jammer frequency is similar to reticle frequency. Finally, we evaluated jamming effect according to jammer frequencies, by using correlation coefficient as an evaluation criterion of jamming performance in two reticle missile seekers.

  5. Applicability of existing C3 (command, control and communications) vulnerability and hardness analyses to sentry system issues. Technical report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, R.C.

    1983-01-13

    This report is a compilation of abstracts resulting from a literature search of reports relevant to Sentry Ballistic missile system C3 vulnerability and hardness. Primary sources consulted were the DOD Nuclear Information Analysis Center (DASIAC) and the Defense Technical Information Center (DTIC). Approximately 175 reports were reviewed and abstracted, including several related to computer programs for estimating nuclear effects on electromagnetic propagation. The reports surveyed were ranked in terms of their importance for Sentry C3 VandH issues.

  6. An Assessment of China’s Anti-Satellite and Space Warfare Programs, Policies and Doctrines

    DTIC Science & Technology

    2008-01-19

    selling their ballistic missile assets and space launch capabilities.” 14 8. According to Steven Lambakis, a 1994 U.S. Navy war game showed that China...of China conducted at the Naval War College in the spring of 1994. The war game , set in the year 2010, was a part of the Pentagon’s ongoing study of...enhance the effectiveness of their own forces. U.S. players in this war game were routed, their forces hit before they could throw up adequate defenses

  7. SpaceX CRS-12 "What's on Board?" Science Briefing

    NASA Image and Video Library

    2017-08-13

    Chip Hardy, Kestrel Eye program manager for the U.S. Army Space and Missile Defense Command, speaks to members of social media in the Kennedy Space Center’s Press Site auditorium. The briefing focused on research planned for launch to the International Space Station. The scientific materials and supplies will be aboard a Dragon spacecraft scheduled for launch from Kennedy’s Launch Complex 39A on Aug. 14 atop a SpaceX Falcon 9 rocket on the company's 12th Commercial Resupply Services mission to the space station.

  8. Navy Ohio Replacement (SSBN[X]) Ballistic Missile Submarine Program: Background and Issues for Congress

    DTIC Science & Technology

    2013-03-14

    submarines, which are powered by energy sources such as diesel engines. A submarine’s use of nuclear or non-nuclear power as its energy source is not an...current force of 14 Ohio-class SSBNs, all of which are armed with D-5 SLBMs. Eight of the 14 Ohio-class SSBNs are homeported at Bangor, WA, in Puget ...nuclear-related issues that is carried out under the 1958 Agreement for Cooperation on the Uses of Atomic Energy for Mutual Defense Purposes (also known as

  9. Joint Force Quarterly (Issue 71, 4th Quarter, October 2013)

    DTIC Science & Technology

    2013-01-01

    for a better future and two perspectives in the on-going debate on missile defense in Europe. Drawing on...commended the students for their critical thinking skills and writing talent. In the winning Secretary of Defense essay, Colonel Jonathan Rice...Leadership: Priorities for 21st Century Defense T he Nation and its allies face a strategic turning point that necessitates the optimization of joint and

  10. Morrison Rebuttal to Adragna.

    ERIC Educational Resources Information Center

    Morrison, David C.

    1985-01-01

    Steven Adragna's arguments for a space-based ballistic missile defense (Georgia Social Science Journal; v16 n2 p14-16 Spr 1985) are founded on the High Frontier organization's usual distortions of the historical record, coupled with a wildly optimistic technological euphoria shared by few of even the Strategic Defense Initiative's most ardent…

  11. Adragna Rebuttal to Morrison.

    ERIC Educational Resources Information Center

    Adragna, Steven P.

    1985-01-01

    Morrison's critique of the Reagan Administration's Strategic Defense Initiative is representative of the views of those who oppose ballistic missile defense (Georgia Social Science Journal; v16 n2 p12-14 Spr 1985). Morrison's analysis is thoughtful, well structured, and well presented. However, it is quite wrong. Fallacies in his analysis are…

  12. An overview of some monoplanar missile programs

    NASA Technical Reports Server (NTRS)

    Spearman, M. L.

    1984-01-01

    A historical review is presented of some monoplanar missile systems in which the vehicle flight control was similar to that for a conventional aircraft. The review is essentially chronological, beginning prior to World War I, and includes worldwise programs. Illustrative examples of aerodynamic research with monoplanar missiles are presented including some comparisons with cruciform missiles. Some examples of current programs are presented and some particular mission applications for monoplanar systems are discussed.

  13. X-ray lasers: Strategic problems and potential as an in-orbit exoatmospheric ballistic missile defense system

    NASA Astrophysics Data System (ADS)

    Perusich, Karl Anthony

    1986-12-01

    The problems and potential of a single proposed ballistic missile defense system, the X-ray laser-armed satellite, are examined in this research. Specifically, the X-ray laser satellite system is examined to determine its impact on the issues of cost-effectiveness and crisis stability. To examime the cost-effectiveness and the crisis stability of the X-ray laser satellites, a simulation of a nuclear exchange was constructed. The X-ray laser satellites were assumed to be vulnerable to attack from energy satellites with limited satellite-to-satellite lethal ranges. Symmetric weapons and force postures were used. Five principal weapon classes were used in the model: ICMBs, SLBMs, X-ray laser satellites, bombers, and endo-atmospheric silo defenses. Also, the orbital dynamics of the ballistic missiles and satellites were simulated. The cost-effectiveness of the X-ray laser satellites was determined for two different operational capabilities, damage-limitation and assured destruction. The following conclusions were reached. The effects of deployment of a new weapon system on the Triad as a whole should be examined. The X-ray laser was found to have little effectiveness as a damage-limiting weapon for a defender. For an assured destruction capability, X-ray laser satellites could be part of a minimum-cost force mix with that capability.

  14. Physics of a ballistic missile defense - The chemical laser boost-phase defense

    NASA Technical Reports Server (NTRS)

    Grabbe, Crockett L.

    1988-01-01

    The basic physics involved in proposals to use a chemical laser based on satellites for a boost-phase defense are investigated. After a brief consideration of simple physical conditions for the defense, a calculation of an equation for the number of satellites needed for the defense is made along with some typical values of this for possible future conditions for the defense. Basic energy and power requirements for the defense are determined. A sumary is made of probable minimum conditions that must be achieved for laser power, targeting accuracy, number of satellites, and total sources for power needed.

  15. Engineering Provision of Assault Crossing of Rivers,

    DTIC Science & Technology

    1983-01-21

    in the first place, in the missile and nuclear weapons warfare sharply they increased frontage and the depth of troop dispositions in the defense...modern missile and nuclear weapons warfare the medium * and wide rivers, reinforced by mine fields and decomposition of water-engineering and other...PMP and transport motor pool PVD -20. The existing pontoon trains make it possible to mechanize labor-consuming fitters work, to the minimum to bring

  16. Safe Heavens: Military Strategy and Space Sanctuary Thought

    DTIC Science & Technology

    1997-06-01

    November 1957, his service proposed two ASAT solutions: a modified Nike Zeus antiballistic missile and a “homing satellite” carrying a destructive charge.18...May 1962, Secretary of Defense (SECDEF) McNamara ordered the Army to modify the Nike Zeus antiballistic missile for a future ASAT role. The modified...would never become operational. President Carter’s 1978 Presidential Directive on Space Policy stated: The United States finds itself under increasing

  17. China and Proliferation of Weapons of Mass Destruction and Missiles: Policy Issues

    DTIC Science & Technology

    2009-12-23

    including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson...Congressional Research Service 5 Operational since 2001, the Chashma reactor has IAEA safeguards but not full scope safeguards (Nucleonics Week, April 26...reports indicated that M-11 missiles were “ operational ” in Pakistan, but these findings were disputed by some policymakers. Secretary of Defense William

  18. Emerging national space launch programs: Economics and safeguards

    NASA Astrophysics Data System (ADS)

    Chow, Brian G.

    Most ballistic missile nonproliferation studies have focused on trends in the numbers and performance of missiles and the resulting security threats. This report concentrates on the economic viability of emerging national space launch programs and the prospects for imposing effective safeguards against the use of space launch technology for military missiles. For the convenience of discussion in this report, a reference to ballistic missiles hereafter means surface-to-surface guided ballistic missiles only. Space launch vehicles (SLV's) are surface-to-space ballistic missiles, and they will be referred to explicitly as 'space launch vehicles' or 'space launchers'. Surface-to-surface unguided ballistic missiles will be referred to as 'rockets.'

  19. Considerations of a ship defense with a pulsed COIL

    NASA Astrophysics Data System (ADS)

    Takehisa, K.

    2015-10-01

    Ship defense system with a pulsed COIL (Chemical Oxygen-Iodine Laser) has been considered. One of the greatest threats for battle ships and carriers in warfare are supersonic anti-ship cruise missiles (ASCMs). A countermeasure is considered to be a supersonic RAM (Rolling Airframe Missile) at first. A gun-type CIWS (Close-In Weapon System) should be used as the last line of defense. However since an ASCM can be detected at only 30-50km away due to radar horizon, a speed-of-light weapon is desirable as the first defense especially if the ASCM flies at >Mach 6. Our previous report explained several advantages of a giant pulse from a chemical oxygen laser (COL) to shoot down supersonic aircrafts. Since the first defense has the target distance of ~30km, the use of COIL is better considering its beam having high transmissivity in air. Therefore efficient operation of a giant-pulsed COIL has been investigated with rate-equation simulations. The simulation results indicate that efficient single-pass amplification can be expected. Also a design example of a giant-pulsed COIL MOPA (master oscillator and power amplifier) system has been shown, in which the output energy can be increased without limit.

  20. Strategy alternatives for homeland air and cruise missile defense.

    PubMed

    Murphy, Eric M; Payne, Michael D; Vanderwoude, Glenn W

    2010-10-01

    Air and cruise missile defense of the U.S. homeland is characterized by a requirement to protect a large number of critical assets nonuniformly dispersed over a vast area with relatively few defensive systems. In this article, we explore strategy alternatives to make the best use of existing defense resources and suggest this approach as a means of reducing risk while mitigating the cost of developing and acquiring new systems. We frame the issue as an attacker-defender problem with simultaneous moves. First, we outline and examine the relatively simple problem of defending comparatively few locations with two surveillance systems. Second, we present our analysis and findings for a more realistic scenario that includes a representative list of U.S. critical assets. Third, we investigate sensitivity to defensive strategic choices in the more realistic scenario. As part of this investigation, we describe two complementary computational methods that, under certain circumstances, allow one to reduce large computational problems to a more manageable size. Finally, we demonstrate that strategic choices can be an important supplement to material solutions and can, in some cases, be a more cost-effective alternative. © 2010 Society for Risk Analysis.

Top