Huan, Tao; Li, Liang
2015-07-21
Generating precise and accurate quantitative information on metabolomic changes in comparative samples is important for metabolomics research where technical variations in the metabolomic data should be minimized in order to reveal biological changes. We report a method and software program, IsoMS-Quant, for extracting quantitative information from a metabolomic data set generated by chemical isotope labeling (CIL) liquid chromatography mass spectrometry (LC-MS). Unlike previous work of relying on mass spectral peak ratio of the highest intensity peak pair to measure relative quantity difference of a differentially labeled metabolite, this new program reconstructs the chromatographic peaks of the light- and heavy-labeled metabolite pair and then calculates the ratio of their peak areas to represent the relative concentration difference in two comparative samples. Using chromatographic peaks to perform relative quantification is shown to be more precise and accurate. IsoMS-Quant is integrated with IsoMS for picking peak pairs and Zero-fill for retrieving missing peak pairs in the initial peak pairs table generated by IsoMS to form a complete tool for processing CIL LC-MS data. This program can be freely downloaded from the www.MyCompoundID.org web site for noncommercial use.
Biological Sciences Division 1991 Programs
1991-08-01
missing offending polysaccharides and 2) identify monosaccharide peaks in gas chromatography that we know are not holdfast- derived and can ignore. 3-On...ACCOMPLISHMENTS: 1. The polysaccharidic component of the extracellular slime of Flexibacter maritimus is predominantly a glucose polymer. In collaboration...are due to the presence of polypeptide(s), not polysaccharide as predicted. W.H. Schwarz (John Hopkins) has performed rheological analysis of this
Mahieu, Nathaniel G.; Spalding, Jonathan L.; Patti, Gary J.
2016-01-01
Motivation: Current informatic techniques for processing raw chromatography/mass spectrometry data break down under several common, non-ideal conditions. Importantly, hydrophilic liquid interaction chromatography (a key separation technology for metabolomics) produces data which are especially challenging to process. We identify three critical points of failure in current informatic workflows: compound specific drift, integration region variance, and naive missing value imputation. We implement the Warpgroup algorithm to address these challenges. Results: Warpgroup adds peak subregion detection, consensus integration bound detection, and intelligent missing value imputation steps to the conventional informatic workflow. When compared with the conventional workflow, Warpgroup made major improvements to the processed data. The coefficient of variation for peaks detected in replicate injections of a complex Escherichia Coli extract were halved (a reduction of 19%). Integration regions across samples were much more robust. Additionally, many signals lost by the conventional workflow were ‘rescued’ by the Warpgroup refinement, thereby resulting in greater analyte coverage in the processed data. Availability and implementation: Warpgroup is an open source R package available on GitHub at github.com/nathaniel-mahieu/warpgroup. The package includes example data and XCMS compatibility wrappers for ease of use. Supplementary information: Supplementary data are available at Bioinformatics online. Contact: nathaniel.mahieu@wustl.edu or gjpattij@wustl.edu PMID:26424859
Application of survival analysis methodology to the quantitative analysis of LC-MS proteomics data.
Tekwe, Carmen D; Carroll, Raymond J; Dabney, Alan R
2012-08-01
Protein abundance in quantitative proteomics is often based on observed spectral features derived from liquid chromatography mass spectrometry (LC-MS) or LC-MS/MS experiments. Peak intensities are largely non-normal in distribution. Furthermore, LC-MS-based proteomics data frequently have large proportions of missing peak intensities due to censoring mechanisms on low-abundance spectral features. Recognizing that the observed peak intensities detected with the LC-MS method are all positive, skewed and often left-censored, we propose using survival methodology to carry out differential expression analysis of proteins. Various standard statistical techniques including non-parametric tests such as the Kolmogorov-Smirnov and Wilcoxon-Mann-Whitney rank sum tests, and the parametric survival model and accelerated failure time-model with log-normal, log-logistic and Weibull distributions were used to detect any differentially expressed proteins. The statistical operating characteristics of each method are explored using both real and simulated datasets. Survival methods generally have greater statistical power than standard differential expression methods when the proportion of missing protein level data is 5% or more. In particular, the AFT models we consider consistently achieve greater statistical power than standard testing procedures, with the discrepancy widening with increasing missingness in the proportions. The testing procedures discussed in this article can all be performed using readily available software such as R. The R codes are provided as supplemental materials. ctekwe@stat.tamu.edu.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Willse, Alan R.; Belcher, Ann; Preti, George
2005-04-15
Gas chromatography (GC), combined with mass spectrometry (MS) detection, is a powerful analytical technique that can be used to separate, quantify, and identify volatile compounds in complex mixtures. This paper examines the application of GC-MS in a comparative experiment to identify volatiles that differ in concentration between two groups. A complex mixture might comprise several hundred or even thousands of volatile compounds. Because their number and location in a chromatogram generally are unknown, and because components overlap in populous chromatograms, the statistical problems offer significant challenges beyond traditional two-group screening procedures. We describe a statistical procedure to compare two-dimensional GC-MSmore » profiles between groups, which entails (1) signal processing: baseline correction and peak detection in single ion chromatograms; (2) aligning chromatograms in time; (3) normalizing differences in overall signal intensities; and (4) detecting chromatographic regions that differ between groups. Compared to existing approaches, the proposed method is robust to errors made at earlier stages of analysis, such as missed peaks or slightly misaligned chromatograms. To illustrate the method, we identify differences in GC-MS chromatograms of ether-extracted urine collected from two nearly identical inbred groups of mice, to investigate the relationship between odor and genetics of the major histocompatibility complex.« less
Huan, Tao; Li, Liang
2015-01-20
Metabolomics requires quantitative comparison of individual metabolites present in an entire sample set. Unfortunately, missing intensity values in one or more samples are very common. Because missing values can have a profound influence on metabolomic results, the extent of missing values found in a metabolomic data set should be treated as an important parameter for measuring the analytical performance of a technique. In this work, we report a study on the scope of missing values and a robust method of filling the missing values in a chemical isotope labeling (CIL) LC-MS metabolomics platform. Unlike conventional LC-MS, CIL LC-MS quantifies the concentration differences of individual metabolites in two comparative samples based on the mass spectral peak intensity ratio of a peak pair from a mixture of differentially labeled samples. We show that this peak-pair feature can be explored as a unique means of extracting metabolite intensity information from raw mass spectra. In our approach, a peak-pair peaking algorithm, IsoMS, is initially used to process the LC-MS data set to generate a CSV file or table that contains metabolite ID and peak ratio information (i.e., metabolite-intensity table). A zero-fill program, freely available from MyCompoundID.org , is developed to automatically find a missing value in the CSV file and go back to the raw LC-MS data to find the peak pair and, then, calculate the intensity ratio and enter the ratio value into the table. Most of the missing values are found to be low abundance peak pairs. We demonstrate the performance of this method in analyzing an experimental and technical replicate data set of human urine metabolome. Furthermore, we propose a standardized approach of counting missing values in a replicate data set as a way of gauging the extent of missing values in a metabolomics platform. Finally, we illustrate that applying the zero-fill program, in conjunction with dansylation CIL LC-MS, can lead to a marked improvement in finding significant metabolites that differentiate bladder cancer patients and their controls in a metabolomics study of 109 subjects.
Wang, Xiaohong; Liang, Yong; Zhu, Licai; Xie, Huichun; Li, Hang; He, Junting; Pan, Man; Zhang, Tianyou; Ito, Yoichiro
2009-01-01
Combined with medium-pressure liquid chromatography (MPLC) and preparative high-performance liquid chromatography (perp-HPLC), high-speed countercurrent chromatography (HSCCC) was applied for separation and purification of flavone C-glycosides from the crude extract of leaves of Ficus microcarpae L. f. HSCCC separation was performed on a two-phase solvent system composed of methyl tert- butyl ether - ethyl acetate – 1-butanol – acetonitrile – 0.1% aqueous trifluoroacetic acid at a volume ratio of 1:3:1:1:5. Partially resolved peak fractions from HSCCC separation were further purified by preparative HPLC. Four well-separated compounds were obtained and their purities were determined by HPLC. The purities of these peaks were 97.28%, 97.20%, 92.23%, and 98.40%.. These peaks were characterized by ESI-MSn. According to the reference, they were identified as orientin (peak I), isovitexin-3″-O-glucopyranoside (peak II), isovitexin (peak III), and vitexin (peak IV), yielded 1.2 mg, 4.5 mg, 3.3 mg, and 1.8 mg, respectively. PMID:20190866
IPO: a tool for automated optimization of XCMS parameters.
Libiseller, Gunnar; Dvorzak, Michaela; Kleb, Ulrike; Gander, Edgar; Eisenberg, Tobias; Madeo, Frank; Neumann, Steffen; Trausinger, Gert; Sinner, Frank; Pieber, Thomas; Magnes, Christoph
2015-04-16
Untargeted metabolomics generates a huge amount of data. Software packages for automated data processing are crucial to successfully process these data. A variety of such software packages exist, but the outcome of data processing strongly depends on algorithm parameter settings. If they are not carefully chosen, suboptimal parameter settings can easily lead to biased results. Therefore, parameter settings also require optimization. Several parameter optimization approaches have already been proposed, but a software package for parameter optimization which is free of intricate experimental labeling steps, fast and widely applicable is still missing. We implemented the software package IPO ('Isotopologue Parameter Optimization') which is fast and free of labeling steps, and applicable to data from different kinds of samples and data from different methods of liquid chromatography - high resolution mass spectrometry and data from different instruments. IPO optimizes XCMS peak picking parameters by using natural, stable (13)C isotopic peaks to calculate a peak picking score. Retention time correction is optimized by minimizing relative retention time differences within peak groups. Grouping parameters are optimized by maximizing the number of peak groups that show one peak from each injection of a pooled sample. The different parameter settings are achieved by design of experiments, and the resulting scores are evaluated using response surface models. IPO was tested on three different data sets, each consisting of a training set and test set. IPO resulted in an increase of reliable groups (146% - 361%), a decrease of non-reliable groups (3% - 8%) and a decrease of the retention time deviation to one third. IPO was successfully applied to data derived from liquid chromatography coupled to high resolution mass spectrometry from three studies with different sample types and different chromatographic methods and devices. We were also able to show the potential of IPO to increase the reliability of metabolomics data. The source code is implemented in R, tested on Linux and Windows and it is freely available for download at https://github.com/glibiseller/IPO . The training sets and test sets can be downloaded from https://health.joanneum.at/IPO .
Wang, Xiaohong; Liang, Yong; Peng, Cuilin; Xie, Huichun; Pan, Man; Zhang, Tianyou; Ito, Yoichiro
2010-01-01
Combined with medium-pressure liquid chromatography (MPLC) and preparative high-pressure liquid chromatography (Prep-HPLC), high-speed countercurrent chromatography (HSCCC) was successfully applied for separation and purification of isoflavonoids from the extract of belamcanda. HSCCC separation was performed on a two-phase solvent system composed of methyl tert-butyl ether -ethyl acetate - n-butyl alcohol – acetonitrile −0.1% aqueous trifluoroacetic acid at a volume radio of 1:2:1:1:5. Semi-purified peak fractions from HSCCC separation were further purified by Prep-HPLC. Nine well-separated fractions were analyzed by HPLC-UV absorption spectrometry to determine their purities and characterized with ESI-MSn. Except for peaksland VII (unknown) seven compounds were identified as apocynin (peak II), mangiferin (peak III), 7-O-methylmangiferin (peak IV), hispidulin (peak V), 3′-hydroxyltectoridin (peak VI), iristectorin B (peak VII), isoiridin (peak IX). PMID:21552369
Review of Peak Detection Algorithms in Liquid-Chromatography-Mass Spectrometry
Zhang, Jianqiu; Gonzalez, Elias; Hestilow, Travis; Haskins, William; Huang, Yufei
2009-01-01
In this review, we will discuss peak detection in Liquid-Chromatography-Mass Spectrometry (LC/MS) from a signal processing perspective. A brief introduction to LC/MS is followed by a description of the major processing steps in LC/MS. Specifically, the problem of peak detection is formulated and various peak detection algorithms are described and compared. PMID:20190954
NASA Astrophysics Data System (ADS)
Cahyono, Bambang; Maduwu, Ratna Dewi; Widayat, Suzery, Meiny
2015-12-01
Commercial silica gel only used once by many researchers and affected high cost for purification process, also less support the green chemistry program. This research focused in regeneration silica gel that used purification of temulawak's extracts (Curcuma xanthorrhiza Roxb) by vacuum column chromatography. Sample extracts (contains 10.1195±0.5971% of curcuminoids) was purified by vacuum column chromatography (pressure: 45 kPa, column: 100mm on length and 16mm on diameter). Ethanol 96% and acetone were compared as eluent. The amount of solvent and yield of curcuminoids used as indicator purification. The silica gel was regenerated with heating in 600°C for 8 hours The silica gels were analyzed by IR spectroscopy and X-ray diffraction. Furthermore, regenerated silica gel was used as the stationary phase in vacuum column chromatography under the same conditions with the previous purification. All the purification experiments were performed in three repetitions. Based on regression equation, y=0.132x+0.0011 (r2=0.9997) the yield of curcuminoids on purified products using ethanol as the eluent was improved 4.26% (to 14.3724±0.5749%) and by acetone was improved 3,03% (to 13.1450 ±0.6318%). The IR spectrum of both silica gel showed the same vibration profile and also there were three crystallinity peaks missing on its X-ray diffraction. Regenerated silica gel has the same performance with new silica gel in purification of temulawak's extract: by ethanol has increased 4.08% (14.1947±0.7415%) and 2.93% (13.0447±0.4822) by acetone. In addition, all purification products showed similar TLC profiles. Purification using regenerated silica gel as the adsorbent on vacuum column chromatography has exactly same potential with the new silica gel.
Hetzel, Terence; Blaesing, Christina; Jaeger, Martin; Teutenberg, Thorsten; Schmidt, Torsten C
2017-02-17
The performance of micro-liquid chromatography columns with an inner diameter of 0.3mm was investigated on a dedicated micro-LC system for gradient elution. Core-shell as well as fully porous particle packed columns were compared on the basis of peak capacity and gradient kinetic plot limits. The results for peak capacity showed the superior performance of columns packed with sub-2μm fully porous particles compared to 3.0μm fully porous and 2.7μm core-shell particles within a range of different gradient time to column void time ratios. For ultra-fast chromatography a maximum peak capacity of 16 can be obtained using a 30s gradient for the sub-2μm fully porous particle packed column. A maximum peak capacity of 121 can be achieved using a 5min gradient. In addition, the influence of an alternative detector cell on the basis of optical waveguide technology and contributing less to system variance was investigated showing an increased peak capacity for all applied gradient time/column void time ratios. Finally, the influence of pressure was evaluated indicating increased peak capacity for maximum performance whereas a limited benefit for ultra-fast chromatography with gradient times below 30s was observed. Copyright © 2017 Elsevier B.V. All rights reserved.
Chen, Zhen-Zhen; Zhang, Dou-Sheng; Wang, Nan; Feng, Fang; Hu, Chang-Qin
2012-04-01
A novel qualitative analytical method by using two-dimensional chromatographic correlation spectroscopy techniques for recognizing impurity peaks of HPLC methods of quality control and LC-MS chromatographic system was established. The structures of major degradation products of ceftizoxime and cefdinir were identified by LC-MS and MassWorks application; the standard chromatographic and spectral data of the degradation impurities were obtained by high-performance liquid chromatography with diode array detection. The impurity peaks of two-dimensional chromatography were matched by comparison of spectra and calculating correlation coefficients. Peaks in chromatography can be identified accurately and rapidly in different chromatographic systems such as column and mobile phase changed. The method provides a new way and thought to identify the peaks in quality control of impurities without reference impurity substances.
Groundwater at or near Superfund sites often contains much organic matter,as indicated by total organic carbon (TOC) measurements. Analyses by standard GC and GC/MS methodology often miss the more polar or nonvolatile of these organic compounds. The identification of the highly p...
Panyasai, Sitthichai; Pornprasert, Sakorn
2016-12-01
Hemoglobin (Hb) New York [β113 (G15) Val→Glu, GTG>GAG] is a very rare β-chain variant found in Thailand. This variant is often missed by routine laboratory testing because Hb New York and Hb A have the identical retention time on high performance liquid chromatography. We reported here for the first time that the detection of Hb New York in a Thai woman by using capillary electrophoresis (CE). A peak of Hb New York located ahead of Hb A at the electrophoretic zone 11 with a level of 42.8 %. The DNA sequencing revealed the GTG>GAG mutation at codon 113 for Hb New York on one allele of β-globin gene. Therefore, the CE has a high efficiency to prevent the misinterpretation of hemoglobin analysis in patients who are heterozygote of this variant.
Column Chromatography To Obtain Organic Cation Sorption Isotherms.
Jolin, William C; Sullivan, James; Vasudevan, Dharni; MacKay, Allison A
2016-08-02
Column chromatography was evaluated as a method to obtain organic cation sorption isotherms for environmental solids while using the peak skewness to identify the linear range of the sorption isotherm. Custom packed HPLC columns and standard batch sorption techniques were used to intercompare sorption isotherms and solid-water sorption coefficients (Kd) for four organic cations (benzylamine, 2,4-dichlorobenzylamine, phenyltrimethylammonium, oxytetracycline) with two aluminosilicate clay minerals and one soil. A comparison of Freundlich isotherm parameters revealed isotherm linearity or nonlinearity was not significantly different between column chromatography and traditional batch experiments. Importantly, skewness (a metric of eluting peak symmetry) analysis of eluting peaks can establish isotherm linearity, thereby enabling a less labor intensive means to generate the extensive data sets of linear Kd values required for the development of predictive sorption models. Our findings clearly show that column chromatography can reproduce sorption measures from conventional batch experiments with the benefit of lower labor-intensity, faster analysis times, and allow for consistent sorption measures across laboratories with distinct chromatography instrumentation.
Ennis, Erin J; Foley, Joe P
2016-07-15
A stochastic approach was utilized to estimate the probability of a successful isocratic or gradient separation in conventional chromatography for numbers of sample components, peak capacities, and saturation factors ranging from 2 to 30, 20-300, and 0.017-1, respectively. The stochastic probabilities were obtained under conditions of (i) constant peak width ("gradient" conditions) and (ii) peak width increasing linearly with time ("isocratic/constant N" conditions). The isocratic and gradient probabilities obtained stochastically were compared with the probabilities predicted by Martin et al. [Anal. Chem., 58 (1986) 2200-2207] and Davis and Stoll [J. Chromatogr. A, (2014) 128-142]; for a given number of components and peak capacity the same trend is always observed: probability obtained with the isocratic stochastic approach
Behavioral, hyperthermic and pharmacokinetic profile of para-methoxymethamphetamine (PMMA) in rats.
Páleníček, Tomáš; Balíková, Marie; Rohanová, Miroslava; Novák, Tomáš; Horáček, Jiří; Fujáková, Michaela; Höschl, Cyril
2011-03-01
Despite poisoning with the ecstasy substitute para-methoxymethamphetamine (PMMA) being typically associated with severe hyperthermia and death, behavioral and toxicological data on this drug are missing. Herein we present the behavioral profile of PMMA, its hyperthermic potency and pharmacokinetic profile in rats. The effects of PMMA 5 and 20 mg/kg on locomotion, on prepulse inhibition (PPI) of acoustic startle reaction (ASR), on body temperature under isolated and crowded conditions and on the pharmacokinetics analyzed with gas chromatography mass spectrometry (GC-MS) were evaluated. PMMA increased overall locomotion with the higher dose showing a biphasic effect. PPI was decreased dose-dependently. The hyperthermic response was present only with PMMA 20 mg/kg and was accompanied by extensive perspiration under crowded conditions. Serum levels of PMMA peaked at approximately 30 min after both treatments; on the contrary the maximum brain concentrations of PMMA at 20 mg/kg peaked approximately 1h after the administration, which was rather delayed compared to maximum after 5mg/kg dose. These data indicate that PMMA has a similar behavioral profile to stimulants and hallucinogens and that the toxicity might be increased in a crowded environment. High doses of PMMA have a gradual penetration to the brain which might lead to the delayed peak concentrations and prolonged effects of the drug. Copyright © 2010 Elsevier Inc. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cahyono, Bambang; Maduwu, Ratna Dewi; Widayat,
Commercial silica gel only used once by many researchers and affected high cost for purification process, also less support the green chemistry program. This research focused in regeneration silica gel that used purification of temulawak’s extracts (Curcuma xanthorrhiza Roxb) by vacuum column chromatography. Sample extracts (contains 10.1195±0.5971% of curcuminoids) was purified by vacuum column chromatography (pressure: 45 kPa, column: 100mm on length and 16mm on diameter). Ethanol 96% and acetone were compared as eluent. The amount of solvent and yield of curcuminoids used as indicator purification. The silica gel was regenerated with heating in 600°C for 8 hours The silica gelsmore » were analyzed by IR spectroscopy and X-ray diffraction. Furthermore, regenerated silica gel was used as the stationary phase in vacuum column chromatography under the same conditions with the previous purification. All the purification experiments were performed in three repetitions. Based on regression equation, y=0.132x+0.0011 (r{sup 2}=0.9997) the yield of curcuminoids on purified products using ethanol as the eluent was improved 4.26% (to 14.3724±0.5749%) and by acetone was improved 3,03% (to 13.1450 ±0.6318%). The IR spectrum of both silica gel showed the same vibration profile and also there were three crystallinity peaks missing on its X-ray diffraction. Regenerated silica gel has the same performance with new silica gel in purification of temulawak’s extract: by ethanol has increased 4.08% (14.1947±0.7415%) and 2.93% (13.0447±0.4822) by acetone. In addition, all purification products showed similar TLC profiles. Purification using regenerated silica gel as the adsorbent on vacuum column chromatography has exactly same potential with the new silica gel.« less
Fast, comprehensive two-dimensional liquid chromatography
Stoll, Dwight R.; Li, Xiaoping; Wang, Xiaoli; Carr, Peter W.; Porter, Sarah E. G.; Rutan, Sarah C.
2011-01-01
The absolute need to improve the separating power of liquid chromatography, especially for multi-constituent biological samples, is becoming increasingly evident. In response, over the past few years, there has been a great deal of interest in the development of two dimension liquid chromatography (2DLC). Just as 1DLC is preferred to 1DGC based on its compatibility with biological materials we believe that ultimately 2DLC will be preferred to the much more highly developed 2DGC for such samples. The huge advantage of 2D chromatographic techniques over 1D methods is inherent in the tremendous potential increase in peak capacity (resolving power). This is especially true of comprehensive 2D chromatography wherein it is possible, under ideal conditions, to obtain a total peak capacity equal to the product of the peak capacities of the first and second dimension separations. However, the very long timescale (typically several hours to tens of hours) of comprehensive 2DLC is clearly its chief drawback. Recent advances in the use of higher temperatures to speed up isocratic and gradient elution liquid chromatography have been used to decrease the time needed to do the second dimension LC separation of 2DLC to about 20 seconds for a full gradient elution run. Thus fast, high temperature LC is becoming a very promising technique. Peak capacities of over 2000 and rates of peak capacity production of nearly 1 peak/s have been achieved. In consequence, many real samples showing more than 200 peaks with signal to noise ratios of better than 10:1 have been run in total times of under 30 minutes. This report is not intended to be a comprehensive review of 2DLC, but is deliberately focused on the issues involved in doing fast 2DLC by means of elevating the column temperature; however, many issues of broader applicability will be discussed. PMID:17888443
Optimization of throughput in semipreparative chiral liquid chromatography using stacked injection.
Taheri, Mohammadreza; Fotovati, Mohsen; Hosseini, Seyed-Kiumars; Ghassempour, Alireza
2017-10-01
An interesting mode of chromatography for preparation of pure enantiomers from pure samples is the method of stacked injection as a pseudocontinuous procedure. Maximum throughput and minimal production costs can be achieved by the use of total chiral column length in this mode of chromatography. To maximize sample loading, often touching bands of the two enantiomers is automatically achieved. Conventional equations show direct correlation between touching-band loadability and the selectivity factor of two enantiomers. The important question for one who wants to obtain the highest throughput is "How to optimize different factors including selectivity, resolution, run time, and loading of the sample in order to save time without missing the touching-band resolution?" To answer this question, tramadol and propranolol were separated on cellulose 3,5-dimethyl phenyl carbamate, as two pure racemic mixtures with low and high solubilities in mobile phase, respectively. The mobile phase composition consisted of n-hexane solvent with alcohol modifier and diethylamine as the additive. A response surface methodology based on central composite design was used to optimize separation factors against the main responses. According to the stacked injection properties, two processes were investigated for maximizing throughput: one with a poorly soluble and another with a highly soluble racemic mixture. For each case, different optimization possibilities were inspected. It was revealed that resolution is a crucial response for separations of this kind. Peak area and run time are two critical parameters in optimization of stacked injection for binary mixtures which have low solubility in the mobile phase. © 2017 Wiley Periodicals, Inc.
Optimizing separations in online comprehensive two‐dimensional liquid chromatography
Gargano, Andrea F.G.; Schoenmakers, Peter J.
2017-01-01
Abstract Online comprehensive two‐dimensional liquid chromatography has become an attractive option for the analysis of complex nonvolatile samples found in various fields (e.g. environmental studies, food, life, and polymer sciences). Two‐dimensional liquid chromatography complements the highly popular hyphenated systems that combine liquid chromatography with mass spectrometry. Two‐dimensional liquid chromatography is also applied to the analysis of samples that are not compatible with mass spectrometry (e.g. high‐molecular‐weight polymers), providing important information on the distribution of the sample components along chemical dimensions (molecular weight, charge, lipophilicity, stereochemistry, etc.). Also, in comparison with conventional one‐dimensional liquid chromatography, two‐dimensional liquid chromatography provides a greater separation power (peak capacity). Because of the additional selectivity and higher peak capacity, the combination of two‐dimensional liquid chromatography with mass spectrometry allows for simpler mixtures of compounds to be introduced in the ion source at any given time, improving quantitative analysis by reducing matrix effects. In this review, we summarize the rationale and principles of two‐dimensional liquid chromatography experiments, describe advantages and disadvantages of combining different selectivities and discuss strategies to improve the quality of two‐dimensional liquid chromatography separations. PMID:29027363
Gika, Helen G; Theodoridis, Georgios; Extance, Jon; Edge, Anthony M; Wilson, Ian D
2008-08-15
The applicability and potential of using elevated temperatures and sub 2-microm porous particles in chromatography for metabonomics/metabolomics was investigated using, for the first time, solvent temperatures higher than the boiling point of water (up to 180 degrees C) and thermal gradients to reduce the use of organic solvents. Ultra performance liquid chromatography, combined with mass spectrometry, was investigated for the global metabolite profiling of the plasma and urine of normal and Zucker (fa/fa) obese rats (a well established disease animal model). "Isobaric" high temperature chromatography, where the temperature and flow rate follow a gradient program, was developed and evaluated against a conventional organic solvent gradient. LC-MS data were first examined by established chromatographic criteria in order to evaluate the chromatographic performance and next were treated by special peak picking algorithms to allow the application of multivariate statistics. These studies showed that, for urine (but not plasma), chromatography at elevated temperatures provided better results than conventional reversed-phase LC with higher peak capacity and better peak asymmetry. From a systems biology point of view, better group clustering and separation was obtained with a larger number of variables of high importance when using high temperature-ultra performance liquid chromatography (HT-UPLC) compared to conventional solvent gradients.
Liquid Chromatography in 1982.
ERIC Educational Resources Information Center
Freeman, David H.
1982-01-01
Reviews trends in liquid chromatography including apparatus, factors affecting efficient separation of a mixture (peak sharpness and speed), simplified problem-solving, adsorption, bonded phase chromatography, ion selectivity, and size exclusion. The current trend is to control chemical selectivity by the liquid phase. (Author/JN)
Sol-gel coated ion sources for liquid chromatography-direct electron ionization mass spectrometry.
Riboni, Nicolò; Magrini, Laura; Bianchi, Federica; Careri, Maria; Cappiello, Achille
2017-07-25
Advances in interfacing liquid chromatography and electron ionization mass spectrometry are presented. New ion source coatings synthesized by sol-gel technology were developed and tested as vaporization surfaces in terms of peak intensity, peak width and peak delay for the liquid chromatography-direct electron ionization mass spectrometry (Direct-EI) determination of environmental pollutants like polycyclic aromatic hydrocarbons and steroids. Silica-, titania-, and zirconia-based coatings were sprayed inside the stainless steel ion source and characterized in terms of thermal stability, film thickness and morphology. Negligible weight losses until 350-400 °C were observed for all the materials, with coating thicknesses in the 6 (±1)-11 (±2) μm range for optimal ionization process. The best performances in terms of both peak intensity and peak width were obtained by using the silica-based coating: the detection of the investigated compounds was feasible at low ng μl -1 levels with a good precision (RSD < 9% for polycyclic aromatic hydrocarbons and <11% for hormones). Copyright © 2017 Elsevier B.V. All rights reserved.
Peak distortion effects in analytical ion chromatography.
Wahab, M Farooq; Anderson, Jordan K; Abdelrady, Mohamed; Lucy, Charles A
2014-01-07
The elution profile of chromatographic peaks provides fundamental understanding of the processes that occur in the mobile phase and the stationary phase. Major advances have been made in the column chemistry and suppressor technology in ion chromatography (IC) to handle a variety of sample matrices and ions. However, if the samples contain high concentrations of matrix ions, the overloaded peak elution profile is distorted. Consequently, the trace peaks shift their positions in the chromatogram in a manner that depends on the peak shape of the overloading analyte. In this work, the peak shapes in IC are examined from a fundamental perspective. Three commercial IC columns AS16, AS18, and AS23 were studied with borate, hydroxide and carbonate as suppressible eluents. Monovalent ions (chloride, bromide, and nitrate) are used as model analytes under analytical (0.1 mM) to overload conditions (10-500 mM). Both peak fronting and tailing are observed. On the basis of competitive Langmuir isotherms, if the eluent anion is more strongly retained than the analyte ion on an ion exchanger, the analyte peak is fronting. If the eluent is more weakly retained on the stationary phase, the analyte peak always tails under overload conditions regardless of the stationary phase capacity. If the charge of the analyte and eluent anions are different (e.g., Br(-) vs CO3(2-)), the analyte peak shapes depend on the eluent concentration in a more complex pattern. It was shown that there are interesting similarities with peak distortions due to strongly retained mobile phase components in other modes of liquid chromatography.
Zhang, Ya; Lucy, Charles A
2014-12-05
In HPLC, injection of solvents that differ from the eluent can result in peak broadening due to solvent strength mismatch or viscous fingering. Broadened, distorted or even split analyte peaks may result. Past studies of this injection-induced peak distortion in reversed phase (RPLC) and hydrophilic interaction (HILIC) liquid chromatography have led to the conclusion that the sample should be injected in the eluent or a weaker solvent. However, there have been no studies of injection-induced peak distortion in ion chromatography (IC). To address this, injection-induced effects were studied for six inorganic anions (F-, Cl-, NO2-, Br-, NO3- and SO4(2-)) on a Dionex AS23 IC column using a HCO3-/CO3(2-) eluent. The VanMiddlesworth-Dorsey injection sensitivity parameter (s) showed that IC of anions has much greater tolerance to the injection matrix (HCO3-/CO3(2-) herein) mismatch than RPLC or HILIC. Even when the injection contained a ten-fold greater concentration of HCO3-/CO3(2-) than the eluent, the peak shapes and separation efficiencies of six analyte ions did not change significantly. At more than ten-fold greater matrix concentrations, analyte anions that elute near the system peak of the matrix were distorted, and in the extreme cases exhibited a small secondary peak on the analyte peak front. These studies better guide the degree of dilution needed prior to IC analysis of anions. Copyright © 2014 Elsevier B.V. All rights reserved.
Optimizing separations in online comprehensive two-dimensional liquid chromatography.
Pirok, Bob W J; Gargano, Andrea F G; Schoenmakers, Peter J
2018-01-01
Online comprehensive two-dimensional liquid chromatography has become an attractive option for the analysis of complex nonvolatile samples found in various fields (e.g. environmental studies, food, life, and polymer sciences). Two-dimensional liquid chromatography complements the highly popular hyphenated systems that combine liquid chromatography with mass spectrometry. Two-dimensional liquid chromatography is also applied to the analysis of samples that are not compatible with mass spectrometry (e.g. high-molecular-weight polymers), providing important information on the distribution of the sample components along chemical dimensions (molecular weight, charge, lipophilicity, stereochemistry, etc.). Also, in comparison with conventional one-dimensional liquid chromatography, two-dimensional liquid chromatography provides a greater separation power (peak capacity). Because of the additional selectivity and higher peak capacity, the combination of two-dimensional liquid chromatography with mass spectrometry allows for simpler mixtures of compounds to be introduced in the ion source at any given time, improving quantitative analysis by reducing matrix effects. In this review, we summarize the rationale and principles of two-dimensional liquid chromatography experiments, describe advantages and disadvantages of combining different selectivities and discuss strategies to improve the quality of two-dimensional liquid chromatography separations. © 2017 The Authors. Journal of Separation Science published by WILEY-VCH Verlag GmbH & Co. KGaA.
Ishihara, Takashi; Kadoya, Toshihiko; Yamamoto, Shuichi
2007-08-24
We applied the model described in our previous paper to the rapid scale-up in the ion exchange chromatography of proteins, in which linear flow velocity, column length and gradient slope were changed. We carried out linear gradient elution experiments, and obtained data for the peak salt concentration and peak width. From these data, the plate height (HETP) was calculated as a function of the mobile phase velocity and iso-resolution curve (the separation time and elution volume relationship for the same resolution) was calculated. The scale-up chromatography conditions were determined by the iso-resolution curve. The scale-up of the linear gradient elution from 5 to 100mL and 2.5L column sizes was performed both by the separation of beta-lactoglobulin A and beta-lactoglobulin B with anion-exchange chromatography and by the purification of a recombinant protein with cation-exchange chromatography. Resolution, recovery and purity were examined in order to verify the proposed method.
Zhou, Xuan; Chen, Cen; Ye, Xiaolan; Song, Fenyun; Fan, Guorong; Wu, Fuhai
2017-01-01
In this paper, by coupling reversed phase liquid chromatography (RPLC) and hydrophilic interaction liquid chromatography (HILIC), a two-dimensional liquid chromatography system was developed for separation and identification of the active ingredients in Gardenia jasminoides Ellis (GJE). By applying the semi-preparative C18 column as the first dimension and the core-shell column as the second dimension, a total of 896 peaks of GJE were separated. Among the 896 peaks, 16 active ingredients including geniposide, gardenoside, gardoside, etc. were identified by mass spectrometry analysis. The results indicated that the proposed two-dimensional RPLC/HILIC system was an effective method for the analysis of GJE and might hold a high potential to become a useful tool for analysis of other complex mixtures. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Waneesorn, Jarurin; Panyasai, Sitthichai; Kongthai, Kanyakan; Singboottra, Panthong; Pornprasert, Sakorn
2011-01-01
Hb Constant Spring [Hb CS; α142, Term→Gln (TAA>CAA in α2)] is often missed by routine laboratory testing since its mRNA as well as gene product are unstable and presented at a low level in peripheral blood. This study aimed to analyze the efficacy of capillary electrophoresis (CE) and high performance liquid chromatography (HPLC) for detecting and quantifying Hb CS in 19 heterozygotes and 14 homozygotes with Hb CS as well as 10 Hb H-CS disease subjects who were detected by molecular analysis. In the CE electrophoregram, Hb CS was seen at zone 2 and was observed in all samples, while the chromatogram of Hb CS peaks was found in 26.32% heterozygotes, 42.86% homozygotes and 90% Hb H-CS disease subjects, respectively. In addition, the Hb CS levels in each group of subjects quantified by CE were significantly higher than those quantified by HPLC. Based on the CE method, the lowest Hb CS level was found in the heterozygotes, whereas the highest level was found in the Hb H-CS disease patients. Therefore, the CE method was superior to the HPLC method for detecting Hb CS. Furthermore, the level of Hb CS quantified by CE proved useful in screening heterozygotes and homozygotes with Hb CS as well as Hb H-CS disease.
Oh, Cheolhwan; Huang, Xiaodong; Regnier, Fred E; Buck, Charles; Zhang, Xiang
2008-02-01
We report a novel peak sorting method for the two-dimensional gas chromatography/time-of-flight mass spectrometry (GC x GC/TOF-MS) system. The objective of peak sorting is to recognize peaks from the same metabolite occurring in different samples from thousands of peaks detected in the analytical procedure. The developed algorithm is based on the fact that the chromatographic peaks for a given analyte have similar retention times in all of the chromatograms. Raw instrument data are first processed by ChromaTOF (Leco) software to provide the peak tables. Our algorithm achieves peak sorting by utilizing the first- and second-dimension retention times in the peak tables and the mass spectra generated during the process of electron impact ionization. The algorithm searches the peak tables for the peaks generated by the same type of metabolite using several search criteria. Our software also includes options to eliminate non-target peaks from the sorting results, e.g., peaks of contaminants. The developed software package has been tested using a mixture of standard metabolites and another mixture of standard metabolites spiked into human serum. Manual validation demonstrates high accuracy of peak sorting with this algorithm.
Kostanyan, Artak E; Erastov, Andrey A
2016-09-02
The non-ideal recycling equilibrium-cell model including the effects of extra-column dispersion is used to simulate and analyze closed-loop recycling counter-current chromatography (CLR CCC). Previously, the operating scheme with the detector located before the column was considered. In this study, analysis of the process is carried out for a more realistic and practical scheme with the detector located immediately after the column. Peak equation for individual cycles and equations describing the transport of single peaks and complex chromatograms inside the recycling closed-loop, as well as equations for the resolution between single solute peaks of the neighboring cycles, for the resolution of peaks in the recycling chromatogram and for the resolution between the chromatograms of the neighboring cycles are presented. It is shown that, unlike conventional chromatography, increasing of the extra-column volume (the recycling line length) may allow a better separation of the components in CLR chromatography. For the experimental verification of the theory, aspirin, caffeine, coumarin and the solvent system hexane/ethyl acetate/ethanol/water (1:1:1:1) were used. Comparison of experimental and simulated processes of recycling and distribution of the solutes in the closed-loop demonstrated a good agreement between theory and experiment. Copyright © 2016 Elsevier B.V. All rights reserved.
Allen, Robert C; John, Mallory G; Rutan, Sarah C; Filgueira, Marcelo R; Carr, Peter W
2012-09-07
A singular value decomposition-based background correction (SVD-BC) technique is proposed for the reduction of background contributions in online comprehensive two-dimensional liquid chromatography (LC×LC) data. The SVD-BC technique was compared to simply subtracting a blank chromatogram from a sample chromatogram and to a previously reported background correction technique for one dimensional chromatography, which uses an asymmetric weighted least squares (AWLS) approach. AWLS was the only background correction technique to completely remove the background artifacts from the samples as evaluated by visual inspection. However, the SVD-BC technique greatly reduced or eliminated the background artifacts as well and preserved the peak intensity better than AWLS. The loss in peak intensity by AWLS resulted in lower peak counts at the detection thresholds established using standards samples. However, the SVD-BC technique was found to introduce noise which led to detection of false peaks at the lower detection thresholds. As a result, the AWLS technique gave more precise peak counts than the SVD-BC technique, particularly at the lower detection thresholds. While the AWLS technique resulted in more consistent percent residual standard deviation values, a statistical improvement in peak quantification after background correction was not found regardless of the background correction technique used. Copyright © 2012 Elsevier B.V. All rights reserved.
Fu, Hai-Yan; Guo, Jun-Wei; Yu, Yong-Jie; Li, He-Dong; Cui, Hua-Peng; Liu, Ping-Ping; Wang, Bing; Wang, Sheng; Lu, Peng
2016-06-24
Peak detection is a critical step in chromatographic data analysis. In the present work, we developed a multi-scale Gaussian smoothing-based strategy for accurate peak extraction. The strategy consisted of three stages: background drift correction, peak detection, and peak filtration. Background drift correction was implemented using a moving window strategy. The new peak detection method is a variant of the system used by the well-known MassSpecWavelet, i.e., chromatographic peaks are found at local maximum values under various smoothing window scales. Therefore, peaks can be detected through the ridge lines of maximum values under these window scales, and signals that are monotonously increased/decreased around the peak position could be treated as part of the peak. Instrumental noise was estimated after peak elimination, and a peak filtration strategy was performed to remove peaks with signal-to-noise ratios smaller than 3. The performance of our method was evaluated using two complex datasets. These datasets include essential oil samples for quality control obtained from gas chromatography and tobacco plant samples for metabolic profiling analysis obtained from gas chromatography coupled with mass spectrometry. Results confirmed the reasonability of the developed method. Copyright © 2016 Elsevier B.V. All rights reserved.
Kawano, M; Kuwabara, T
2000-09-15
The redox enzyme violaxanthin de-epoxidase (VDE) was found to be sensitive to pepstatin, a specific inhibitor of aspartic protease. The inhibition was similar to that of aspartic protease in that it was reversible and accompanied by the protonation of the enzyme. Of the two peaks of VDE appearing on anion exchange chromatography, VDE-I predominated at pH 7.2. On lowering the pH of the chromatography, VDE-I decreased and VDE-II increased. Furthermore, re-chromatography of either peak yielded both peaks. These results suggest that VDE-I and VDE-II are interconvertible depending on pH, and thus, they represent the de-protonated and protonated forms of the enzyme, respectively. Presumably the protonation-induced structural change of the enzyme is responsible for the interaction with pepstatin, and also with substrate.
2013-01-01
Peak alignment is a critical procedure in mass spectrometry-based biomarker discovery in metabolomics. One of peak alignment approaches to comprehensive two-dimensional gas chromatography mass spectrometry (GC×GC-MS) data is peak matching-based alignment. A key to the peak matching-based alignment is the calculation of mass spectral similarity scores. Various mass spectral similarity measures have been developed mainly for compound identification, but the effect of these spectral similarity measures on the performance of peak matching-based alignment still remains unknown. Therefore, we selected five mass spectral similarity measures, cosine correlation, Pearson's correlation, Spearman's correlation, partial correlation, and part correlation, and examined their effects on peak alignment using two sets of experimental GC×GC-MS data. The results show that the spectral similarity measure does not affect the alignment accuracy significantly in analysis of data from less complex samples, while the partial correlation performs much better than other spectral similarity measures when analyzing experimental data acquired from complex biological samples. PMID:24151524
Rey, M A
2001-06-22
One of the advantages of ion chromatography [Anal Chem. 47 (1975) 1801] as compared to other analytical techniques is that several ions may be analyzed simultaneously. One of the most important contributions of cation-exchange chromatography is its sensitivity to ammonium ion, which is difficult to analyze by other techniques [J. Weiss, in: E.L. Johnson (Ed.), Handbook of Ion Chromatography, Dionex, Sunnyvale, CA, USA]. The determination of low concentrations of ammonium ion in the presence of high concentrations of sodium poses a challenge in cation-exchange chromatography [J. Weiss, Ion Chromatography, VCH, 2nd Edition, Weinheim, 1995], as both cations have similar selectivities for the common stationary phases containing either sulfonate or carboxylate functional groups. The task was to develop a new cation-exchange stationary phase (for diverse concentration ratios of adjacent peaks) to overcome limitations experienced in previous trails. Various cation-exchange capacities and column body formats were investigated to optimize this application and others. The advantages and disadvantages of two carboxylic acid columns of different cation-exchange capacities and different column formats will be discussed.
Blair, D; Rumack, B H
1977-01-01
We describe a capillary-sampling method for serum or plasma acetaminophen by cation-exchange chromatography. As little as 1.5 mul of plasma or serum and an equal volume of the internal standard (N-butyryl-p-aminophenol) were run, with a precision of +/- 5% between duplicates. Acetaminophen and the internal standard chromatographed in 32 and 50 min, respectively, distinct from intrinsic plasma peaks and peaks caused by other medications.
Sheng, Yanghao; Zhou, Boting
2017-05-26
Therapeutic drug monitoring (TDM) is one of the most important services of clinical laboratories. Two main techniques are commonly used: the immunoassay and chromatography method. We have developed a cost-effective system of two-dimensional liquid chromatography with ultraviolet detection (2D-LC-UV) for high-throughput determination of vancomycin in human plasma that combines the automation and low start-up costs of the immunoassay with the high selectivity and sensitivity of the liquid chromatography coupled with mass spectrometric detection without incurring their disadvantages, achieving high cost-effectiveness. This 2D-LC system offers a large volume injection to provide sufficient sensitivity and uses simulated gradient peak compression technology to control peak broadening and to improve peak shape. A middle column was added to reduce the analysis cycle time and make it suitable for high-throughput routine clinical assays. The analysis cycle time was 4min and the peak width was 0.8min. Compared with other chromatographic methods that have been developed, the analysis cycle time and peak width for vancomycin was reduced significantly. The lower limit of quantification was 0.20μg/mL for vancomycin, which is the same as certain LC-MS/MS methods that have been recently developed and validated. The method is rapid, automated, and low-cost and has high selectivity and sensitivity for the quantification of vancomycin in human plasma, thus making it well-suited for use in hospital clinical laboratories. Copyright © 2017 Elsevier B.V. All rights reserved.
Bayesian approach for peak detection in two-dimensional chromatography.
Vivó-Truyols, Gabriel
2012-03-20
A new method for peak detection in two-dimensional chromatography is presented. In a first step, the method starts with a conventional one-dimensional peak detection algorithm to detect modulated peaks. In a second step, a sophisticated algorithm is constructed to decide which of the individual one-dimensional peaks have been originated from the same compound and should then be arranged in a two-dimensional peak. The merging algorithm is based on Bayesian inference. The user sets prior information about certain parameters (e.g., second-dimension retention time variability, first-dimension band broadening, chromatographic noise). On the basis of these priors, the algorithm calculates the probability of myriads of peak arrangements (i.e., ways of merging one-dimensional peaks), finding which of them holds the highest value. Uncertainty in each parameter can be accounted by adapting conveniently its probability distribution function, which in turn may change the final decision of the most probable peak arrangement. It has been demonstrated that the Bayesian approach presented in this paper follows the chromatographers' intuition. The algorithm has been applied and tested with LC × LC and GC × GC data and takes around 1 min to process chromatograms with several thousands of peaks.
Kim, Seongho; Ouyang, Ming; Jeong, Jaesik; Shen, Changyu; Zhang, Xiang
2014-06-01
We develop a novel peak detection algorithm for the analysis of comprehensive two-dimensional gas chromatography time-of-flight mass spectrometry (GC×GC-TOF MS) data using normal-exponential-Bernoulli (NEB) and mixture probability models. The algorithm first performs baseline correction and denoising simultaneously using the NEB model, which also defines peak regions. Peaks are then picked using a mixture of probability distribution to deal with the co-eluting peaks. Peak merging is further carried out based on the mass spectral similarities among the peaks within the same peak group. The algorithm is evaluated using experimental data to study the effect of different cut-offs of the conditional Bayes factors and the effect of different mixture models including Poisson, truncated Gaussian, Gaussian, Gamma, and exponentially modified Gaussian (EMG) distributions, and the optimal version is introduced using a trial-and-error approach. We then compare the new algorithm with two existing algorithms in terms of compound identification. Data analysis shows that the developed algorithm can detect the peaks with lower false discovery rates than the existing algorithms, and a less complicated peak picking model is a promising alternative to the more complicated and widely used EMG mixture models.
Jin, Gaowa; Guo, Zhimou; Xiao, Yuansheng; Yan, Jingyu; Dong, Xuefang; Shen, Aijin; Wang, Chaoran; Liang, Xinmiao
2016-10-01
A practical method was established for the definition of chromatographic parameters in preparative liquid chromatography. The parameters contained both the peak broadening level under different amounts of sample loading and the concentration distribution of the target compound in the elution. The parameters of the peak broadening level were defined and expressed as a matrix, which consisted of sample loading, the forward broadening and the backward broadening levels. The concentration distribution of the target compound was described by the heat map of the elution profile. The most suitable stationary phase should exhibit the narrower peak broadening and it was best to broaden to both sides to compare to the peak under analytical conditions. Besides, the concentration distribution of the target compounds should be focused on the middle of the elution. The guiding principles were validated by purification of amitriptyline from the mixture of desipramine and amitriptyline. On the selected column, when the content of the impurity desipramine was lower than 0.1%, the recovery of target compound was much higher than the other columns even when the sample loading was as high as 8.03 mg/cm 3 . The parameters and methods could be used for the evaluation and selection of stationary phases in preparative chromatography. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Data preprocessing method for liquid chromatography-mass spectrometry based metabolomics.
Wei, Xiaoli; Shi, Xue; Kim, Seongho; Zhang, Li; Patrick, Jeffrey S; Binkley, Joe; McClain, Craig; Zhang, Xiang
2012-09-18
A set of data preprocessing algorithms for peak detection and peak list alignment are reported for analysis of liquid chromatography-mass spectrometry (LC-MS)-based metabolomics data. For spectrum deconvolution, peak picking is achieved at the selected ion chromatogram (XIC) level. To estimate and remove the noise in XICs, each XIC is first segmented into several peak groups based on the continuity of scan number, and the noise level is estimated by all the XIC signals, except the regions potentially with presence of metabolite ion peaks. After removing noise, the peaks of molecular ions are detected using both the first and the second derivatives, followed by an efficient exponentially modified Gaussian-based peak deconvolution method for peak fitting. A two-stage alignment algorithm is also developed, where the retention times of all peaks are first transferred into the z-score domain and the peaks are aligned based on the measure of their mixture scores after retention time correction using a partial linear regression. Analysis of a set of spike-in LC-MS data from three groups of samples containing 16 metabolite standards mixed with metabolite extract from mouse livers demonstrates that the developed data preprocessing method performs better than two of the existing popular data analysis packages, MZmine2.6 and XCMS(2), for peak picking, peak list alignment, and quantification.
Comparative analysis of peak-detection techniques for comprehensive two-dimensional chromatography.
Latha, Indu; Reichenbach, Stephen E; Tao, Qingping
2011-09-23
Comprehensive two-dimensional gas chromatography (GC×GC) is a powerful technology for separating complex samples. The typical goal of GC×GC peak detection is to aggregate data points of analyte peaks based on their retention times and intensities. Two techniques commonly used for two-dimensional peak detection are the two-step algorithm and the watershed algorithm. A recent study [4] compared the performance of the two-step and watershed algorithms for GC×GC data with retention-time shifts in the second-column separations. In that analysis, the peak retention-time shifts were corrected while applying the two-step algorithm but the watershed algorithm was applied without shift correction. The results indicated that the watershed algorithm has a higher probability of erroneously splitting a single two-dimensional peak than the two-step approach. This paper reconsiders the analysis by comparing peak-detection performance for resolved peaks after correcting retention-time shifts for both the two-step and watershed algorithms. Simulations with wide-ranging conditions indicate that when shift correction is employed with both algorithms, the watershed algorithm detects resolved peaks with greater accuracy than the two-step method. Copyright © 2011 Elsevier B.V. All rights reserved.
Brestrich, Nina; Briskot, Till; Osberghaus, Anna; Hubbuch, Jürgen
2014-07-01
Selective quantification of co-eluting proteins in chromatography is usually performed by offline analytics. This is time-consuming and can lead to late detection of irregularities in chromatography processes. To overcome this analytical bottleneck, a methodology for selective protein quantification in multicomponent mixtures by means of spectral data and partial least squares regression was presented in two previous studies. In this paper, a powerful integration of software and chromatography hardware will be introduced that enables the applicability of this methodology for a selective inline quantification of co-eluting proteins in chromatography. A specific setup consisting of a conventional liquid chromatography system, a diode array detector, and a software interface to Matlab® was developed. The established tool for selective inline quantification was successfully applied for a peak deconvolution of a co-eluting ternary protein mixture consisting of lysozyme, ribonuclease A, and cytochrome c on SP Sepharose FF. Compared to common offline analytics based on collected fractions, no loss of information regarding the retention volumes and peak flanks was observed. A comparison between the mass balances of both analytical methods showed, that the inline quantification tool can be applied for a rapid determination of pool yields. Finally, the achieved inline peak deconvolution was successfully applied to make product purity-based real-time pooling decisions. This makes the established tool for selective inline quantification a valuable approach for inline monitoring and control of chromatographic purification steps and just in time reaction on process irregularities. © 2014 Wiley Periodicals, Inc.
Xu, Jucai; Sun-Waterhouse, Dongxiao; Qiu, Chaoying; Zhao, Mouming; Sun, Baoguo; Lin, Lianzhu; Su, Guowan
2017-10-27
The need to improve the peak capacity of liquid chromatography motivates the development of two-dimensional analysis systems. This paper presented a fully automated stop-flow two-dimensional liquid chromatography system with size exclusion chromatography followed by reversed phase liquid chromatography (SEC×RPLC) to efficiently separate peptides. The effects of different stop-flow operational parameters (stop-flow time, peak parking position, number of stop-flow periods and column temperature) on band broadening in the first dimension (1 st D) SEC column were quantitatively evaluated by using commercial small proteins and peptides. Results showed that the effects of peak parking position and the number of stop-flow periods on band broadening were relatively small. Unlike stop-flow analysis of large molecules with a long running time, additional band broadening was evidently observed for small molecule analytes due to the relatively high effective diffusion coefficient (D eff ). Therefore, shorter analysis time and lower 1 st D column temperature were suggested for analyzing small molecules. The stop-flow two-dimensional liquid chromatography (2D-LC) system was further tested on peanut peptides and an evidently improved resolution was observed for both stop-flow heart-cutting and comprehensive 2D-LC analysis (in spite of additional band broadening in SEC). The stop-flow SEC×RPLC, especially heart-cutting analysis with shorter analysis time and higher 1 st D resolution for selected fractions, offers a promising approach for efficient analysis of complex samples. Copyright © 2017 Elsevier B.V. All rights reserved.
Trends in data processing of comprehensive two-dimensional chromatography: state of the art.
Matos, João T V; Duarte, Regina M B O; Duarte, Armando C
2012-12-01
The operation of advanced chromatographic systems, namely comprehensive two-dimensional (2D) chromatography coupled to multidimensional detectors, allows achieving a great deal of data that need special care to be processed in order to characterize and quantify as much as possible the analytes under study. The aim of this review is to identify the main trends, research needs and gaps on the techniques for data processing of multidimensional data sets obtained from comprehensive 2D chromatography. The following topics have been identified as the most promising for new developments in the near future: data acquisition and handling, peak detection and quantification, measurement of overlapping of 2D peaks, and data analysis software for 2D chromatography. The rational supporting most of the data processing techniques is based on the generalization of one-dimensional (1D) chromatography although algorithms, such as the inverted watershed algorithm, use the 2D chromatographic data as such. However, for processing more complex N-way data there is a need for using more sophisticated techniques. Apart from using other concepts from 1D chromatography, which have not been tested for 2D chromatography, there is still room for new improvements and developments in algorithms and software for dealing with 2D comprehensive chromatographic data. Copyright © 2012 Elsevier B.V. All rights reserved.
Hammar, L; Hjertén, S
1980-04-01
Histidine decarboxylase from a murine mastocytoma has been submitted to different separation methods. In these experiments the activity peaks were often very broad. This heterogeneity of the enzyme is traced back to the formation of aggregates, differing in apparent molecular weight by a multiple of about 55,000, as a result of oxidation. Under non-oxidative conditions the histidine decarboxylase activity is confined to one peak in both molecular sieve chromatography, hydrophic interaction chromatography, chromatography on hydroxy apatite, pore gradient electrophoresis and electrofocusing. The molecular weight of the enzyme is estimated to be 110,000 by pore gradient electrophoresis (alkylated enzyme). The isoelectric point is pH 4.9--5.0, determined by electrofocusing under reducing conditions.
BiPACE 2D--graph-based multiple alignment for comprehensive 2D gas chromatography-mass spectrometry.
Hoffmann, Nils; Wilhelm, Mathias; Doebbe, Anja; Niehaus, Karsten; Stoye, Jens
2014-04-01
Comprehensive 2D gas chromatography-mass spectrometry is an established method for the analysis of complex mixtures in analytical chemistry and metabolomics. It produces large amounts of data that require semiautomatic, but preferably automatic handling. This involves the location of significant signals (peaks) and their matching and alignment across different measurements. To date, there exist only a few openly available algorithms for the retention time alignment of peaks originating from such experiments that scale well with increasing sample and peak numbers, while providing reliable alignment results. We describe BiPACE 2D, an automated algorithm for retention time alignment of peaks from 2D gas chromatography-mass spectrometry experiments and evaluate it on three previously published datasets against the mSPA, SWPA and Guineu algorithms. We also provide a fourth dataset from an experiment studying the H2 production of two different strains of Chlamydomonas reinhardtii that is available from the MetaboLights database together with the experimental protocol, peak-detection results and manually curated multiple peak alignment for future comparability with newly developed algorithms. BiPACE 2D is contained in the freely available Maltcms framework, version 1.3, hosted at http://maltcms.sf.net, under the terms of the L-GPL v3 or Eclipse Open Source licenses. The software used for the evaluation along with the underlying datasets is available at the same location. The C.reinhardtii dataset is freely available at http://www.ebi.ac.uk/metabolights/MTBLS37.
Kim, Seongho; Ouyang, Ming; Jeong, Jaesik; Shen, Changyu; Zhang, Xiang
2014-01-01
We develop a novel peak detection algorithm for the analysis of comprehensive two-dimensional gas chromatography time-of-flight mass spectrometry (GC×GC-TOF MS) data using normal-exponential-Bernoulli (NEB) and mixture probability models. The algorithm first performs baseline correction and denoising simultaneously using the NEB model, which also defines peak regions. Peaks are then picked using a mixture of probability distribution to deal with the co-eluting peaks. Peak merging is further carried out based on the mass spectral similarities among the peaks within the same peak group. The algorithm is evaluated using experimental data to study the effect of different cut-offs of the conditional Bayes factors and the effect of different mixture models including Poisson, truncated Gaussian, Gaussian, Gamma, and exponentially modified Gaussian (EMG) distributions, and the optimal version is introduced using a trial-and-error approach. We then compare the new algorithm with two existing algorithms in terms of compound identification. Data analysis shows that the developed algorithm can detect the peaks with lower false discovery rates than the existing algorithms, and a less complicated peak picking model is a promising alternative to the more complicated and widely used EMG mixture models. PMID:25264474
Simultaneous concentration and purification through gradient deformation chromatography
NASA Technical Reports Server (NTRS)
Velayudhan, A.; Hendrickson, R. L.; Ladisch, M. R.; Mitchell, C. A. (Principal Investigator)
1995-01-01
Mobile-phase additives, commonly used to modulate absorbate retention in gradient elution chromatography, are usually assumed to be either linearly retained or unretained. Previous theoretical work from our laboratory has shown that these modulators, such as salts in ion-exchange and hydrophobic interaction chromatography and organic modifiers in reversed-phase chromatography, can absorb nonlinearly, giving rise to gradient deformation. Consequently, adsorbate peaks that elute in the vicinity of the head of the deformed gradient may exhibit unusual shapes, form shoulders, and/or be concentrated. These effects for a reversed-phase sorbent with aqueous acetonitrile (ACN) as the modulator are verified experimentally. Gradient deformation is demonstrated experimentally and agrees with simulations based on ACN isotherm parameters that are independently determined from batch equilibrium studies using the layer model. Unusual absorbate peak shapes were found experimentally for single-component injections of phenylalanine, similar to those calculated by the simulations. A binary mixture of tryptophan and phenylalanine is used to demonstrate simultaneous concentration and separation, again in agreement with simulations. The possibility of gradient deformation in ion-exchange and hydrophobic interaction chromatography is discussed.
The Calculation of Adsorption Isotherms from Chromatographic Peak Shapes
ERIC Educational Resources Information Center
Neumann, M. G.
1976-01-01
Discusses the relationship between adsorption isotherms and elution peak shapes in gas chromatography, and describes a laboratory experiment which involves the adsorption of hexane, cyclohexane, and benzene on alumina at different temperatures. (MLH)
Gutteridge, C S; Norris, J R
1980-01-01
High-resolution pyrolysis gas-liquid chromatography was applied to three bacteria (Escherichia coli NCTC 9001, Pseudomonas putida (NCIB 9494, and Staphylococcus aureus NCTC 8532) grown under a variety of conditions. Changing the culture medium drastically altered the quantitative aspects of the pyrograms of all three organisms, but the effects of culture time and incubation temperature were less severe. Mathematical analysis of the relative peak heights showed that four peaks could be used to discriminate the three bacteria however they were cultured. PMID:6999989
Kim, Seongho; Jang, Hyejeong; Koo, Imhoi; Lee, Joohyoung; Zhang, Xiang
2017-01-01
Compared to other analytical platforms, comprehensive two-dimensional gas chromatography coupled with mass spectrometry (GC×GC-MS) has much increased separation power for analysis of complex samples and thus is increasingly used in metabolomics for biomarker discovery. However, accurate peak detection remains a bottleneck for wide applications of GC×GC-MS. Therefore, the normal-exponential-Bernoulli (NEB) model is generalized by gamma distribution and a new peak detection algorithm using the normal-gamma-Bernoulli (NGB) model is developed. Unlike the NEB model, the NGB model has no closed-form analytical solution, hampering its practical use in peak detection. To circumvent this difficulty, three numerical approaches, which are fast Fourier transform (FFT), the first-order and the second-order delta methods (D1 and D2), are introduced. The applications to simulated data and two real GC×GC-MS data sets show that the NGB-D1 method performs the best in terms of both computational expense and peak detection performance.
McKenzie, Erica R; Young, Thomas M
2013-01-01
Size exclusion chromatography (SEC), which separates molecules based on molecular volume, can be coupled with online inductively coupled plasma mass spectrometry (ICP-MS) to explore size-dependent metal-natural organic matter (NOM) complexation. To make effective use of this analytical dual detector system, the operator should be mindful of quality control measures. Al, Cr, Fe, Se, and Sn all exhibited columnless attenuation, which indicated unintended interactions with system components. Based on signal-to-noise ratio and peak reproducibility between duplicate analyses of environmental samples, consistent peak time and height were observed for Mg, Cl, Mn, Cu, Br, and Pb. Al, V, Fe, Co, Ni, Zn, Se, Cd, Sn, and Sb were less consistent overall, but produced consistent measurements in select samples. Ultrafiltering and centrifuging produced similar peak distributions, but glass fiber filtration produced more high molecular weight (MW) peaks. Storage in glass also produced more high MW peaks than did plastic bottles.
Bean, Heather D.; Hill, Jane E.; Dimandja, Jean-Marie D.
2015-01-01
The potential of high-resolution analytical technologies like GC×GC/TOF MS in untargeted metabolomics and biomarker discovery has been limited by the development of fully automated software that can efficiently align and extract information from multiple chromatographic data sets. In this work we report the first investigation on a peak-by-peak basis of the chromatographic factors that impact GC×GC data alignment. A representative set of 16 compounds of different chromatographic characteristics were followed through the alignment of 63 GC×GC chromatograms. We found that varying the mass spectral match parameter had a significant influence on the alignment for poorly- resolved peaks, especially those at the extremes of the detector linear range, and no influence on well- chromatographed peaks. Therefore, optimized chromatography is required for proper GC×GC data alignment. Based on these observations, a workflow is presented for the conservative selection of biomarker candidates from untargeted metabolomics analyses. PMID:25857541
Omar, Jone; Olivares, Maitane; Amigo, José Manuel; Etxebarria, Nestor
2014-04-01
Comprehensive Two Dimensional Gas Chromatography - Mass Spectrometry (GC × GC/qMS) analysis of Cannabis sativa extracts shows a high complexity due to the large variety of terpenes and cannabinoids and to the fact that the complete resolution of the peaks is not straightforwardly achieved. In order to support the resolution of the co-eluted peaks in the sesquiterpene and the cannabinoid chromatographic region the combination of Multivariate Curve Resolution and Alternating Least Squares algorithms was satisfactorily applied. As a result, four co-eluting areas were totally resolved in the sesquiterpene region and one in the cannabinoid region in different samples of Cannabis sativa. The comparison of the mass spectral profiles obtained for each resolved peak with theoretical mass spectra allowed the identification of some of the co-eluted peaks. Finally, the classification of the studied samples was achieved based on the relative concentrations of the resolved peaks. Copyright © 2014 Elsevier B.V. All rights reserved.
McGregor, Gordon; Nichols, Simon; Hamborg, Thomas; Bryning, Lucy; Tudor-Edwards, Rhiannon; Markland, David; Mercer, Jenny; Birkett, Stefan; Ennis, Stuart; Powell, Richard; Begg, Brian; Haykowsky, Mark J; Banerjee, Prithwish; Ingle, Lee; Shave, Rob; Backx, Karianne
2016-11-16
Current international guidelines for cardiac rehabilitation (CR) advocate moderate-intensity exercise training (MISS, moderate-intensity steady state). This recommendation predates significant advances in medical therapy for coronary heart disease (CHD) and may not be the most appropriate strategy for the 'modern' patient with CHD. High-intensity interval training (HIIT) appears to be a safe and effective alternative, resulting in greater improvements in peak oxygen uptake (VO 2 peak ). To date, HIIT trials have predominantly been proof-of-concept studies in the laboratory setting and conducted outside the UK. The purpose of this multicentre randomised controlled trial is to compare the effects of HIIT and MISS training in patients with CHD attending UK CR programmes. This pragmatic study will randomly allocate 510 patients with CHD to 8 weeks of twice weekly HIIT or MISS training at 3 centres in the UK. HIIT will consist of 10 high-intensity (85-90% peak power output (PPO)) and 10 low-intensity (20-25% PPO) intervals, each lasting 1 min. MISS training will follow usual care recommendations, adhering to currently accepted UK guidelines (ie, >20 min continuous exercise at 40-70% heart rate reserve). Outcome measures will be assessed at baseline, 8 weeks and 12 months. The primary outcome for the trial will be change in VO 2 peak as determined by maximal cardiopulmonary exercise testing. Secondary measures will assess physiological, psychosocial and economic outcomes. The study protocol V.1.0, dated 1 February 2016, was approved by the NHS Health Research Authority, East Midlands-Leicester South Research Ethics Committee (16/EM/0079). Recruitment will start in August 2016 and will be completed in June 2018. Results will be published in peer-reviewed journals, presented at national and international scientific meetings and are expected to inform future national guidelines for exercise training in UK CR. NCT02784873; pre-results. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/.
McGregor, Gordon; Nichols, Simon; Hamborg, Thomas; Bryning, Lucy; Tudor-Edwards, Rhiannon; Markland, David; Mercer, Jenny; Birkett, Stefan; Ennis, Stuart; Powell, Richard; Begg, Brian; Haykowsky, Mark J; Banerjee, Prithwish; Ingle, Lee; Shave, Rob; Backx, Karianne
2016-01-01
Introduction Current international guidelines for cardiac rehabilitation (CR) advocate moderate-intensity exercise training (MISS, moderate-intensity steady state). This recommendation predates significant advances in medical therapy for coronary heart disease (CHD) and may not be the most appropriate strategy for the ‘modern’ patient with CHD. High-intensity interval training (HIIT) appears to be a safe and effective alternative, resulting in greater improvements in peak oxygen uptake (VO2 peak). To date, HIIT trials have predominantly been proof-of-concept studies in the laboratory setting and conducted outside the UK. The purpose of this multicentre randomised controlled trial is to compare the effects of HIIT and MISS training in patients with CHD attending UK CR programmes. Methods and analysis This pragmatic study will randomly allocate 510 patients with CHD to 8 weeks of twice weekly HIIT or MISS training at 3 centres in the UK. HIIT will consist of 10 high-intensity (85–90% peak power output (PPO)) and 10 low-intensity (20–25% PPO) intervals, each lasting 1 min. MISS training will follow usual care recommendations, adhering to currently accepted UK guidelines (ie, >20 min continuous exercise at 40–70% heart rate reserve). Outcome measures will be assessed at baseline, 8 weeks and 12 months. The primary outcome for the trial will be change in VO2 peak as determined by maximal cardiopulmonary exercise testing. Secondary measures will assess physiological, psychosocial and economic outcomes. Ethics and dissemination The study protocol V.1.0, dated 1 February 2016, was approved by the NHS Health Research Authority, East Midlands—Leicester South Research Ethics Committee (16/EM/0079). Recruitment will start in August 2016 and will be completed in June 2018. Results will be published in peer-reviewed journals, presented at national and international scientific meetings and are expected to inform future national guidelines for exercise training in UK CR. Trial registration number NCT02784873; pre-results. PMID:27852718
Dass, Jasmita; Gupta, Aastha; Mittal, Suchi; Saraf, Amrita; Langer, Sabina; Bhargava, Manorama
2017-06-01
Cation exchange-high performance liquid chromatography (CE-HPLC) is most commonly used to evaluate hemoglobin (Hb) variants, which elute in the Hb A2 window. This study aimed to assess prevalence of an uncommon Hb variant, Hb D-Iran, and compare its red cell parameters and peak characteristics with those of Hb E that commonly elutes in the Hb A2 window. Generally, we assess abnormal Hb using CE-HPLC as the primary technique along with alkaline and acid electrophoresis. All cases with Hb A2 window >9%, as assessed by CE-HPLCs during 2009-2013, were selected. Twenty-nine cases with Hb D-Iran variant were identified-25 heterozygous, 2 homozygous, 1 compound heterozygous Hb D-Iran/β-thalassemia, and 1 Hb D-Iran/Hb D-Punjab. Overall prevalence of Hb D-Iran was 0.23%. Compared to patients with Hb E, those with Hb D-Iran had significantly higher Hb (12.1 vs. 11.3 g/dL, P =0.03), MCV (82.4 vs. 76.4 fL, P =0.0044), MCH (27.9 vs. 25.45 pg, P =0.0006), and MCHC (33.9 vs. 33.3 g/dL, P =0.0005). Amount of abnormal Hb (40.7 vs. 26.4%, P =0.0001) was significantly higher while retention time (3.56 vs. 3.70 min, P =0.0001) was significantly lower in Hb D-Iran than in Hb E. Hb D-Iran peak can be easily missed if area and retention time of the Hb A2 window are not carefully analyzed. To distinguish between variants, careful analysis of peak area and retention time is sufficient in most cases and may be further confirmed by the second technique-alkaline electrophoresis.
Wang, Bing; Fang, Aiqin; Heim, John; Bogdanov, Bogdan; Pugh, Scott; Libardoni, Mark; Zhang, Xiang
2010-01-01
A novel peak alignment algorithm using a distance and spectrum correlation optimization (DISCO) method has been developed for two-dimensional gas chromatography time-of-flight mass spectrometry (GC×GC/TOF-MS) based metabolomics. This algorithm uses the output of the instrument control software, ChromaTOF, as its input data. It detects and merges multiple peak entries of the same metabolite into one peak entry in each input peak list. After a z-score transformation of metabolite retention times, DISCO selects landmark peaks from all samples based on both two-dimensional retention times and mass spectrum similarity of fragment ions measured by Pearson’s correlation coefficient. A local linear fitting method is employed in the original two-dimensional retention time space to correct retention time shifts. A progressive retention time map searching method is used to align metabolite peaks in all samples together based on optimization of the Euclidean distance and mass spectrum similarity. The effectiveness of the DISCO algorithm is demonstrated using data sets acquired under different experiment conditions and a spiked-in experiment. PMID:20476746
Li, Duxin; Schmitz, Oliver J
2013-08-01
Comprehensive two-dimensional liquid chromatography (LC × LC) has received much attention because it offers much higher peak capacities than separation in a single dimension. The advantageous peak capacity makes it attractive for the separation of complex samples. Various gradient methods have been used in LC × LC systems. The use of continuous shift gradient is advantageous because it combines the peak compression effect of full gradient mode and the tailed gradient program in parallel gradient mode. Here, a comparison of LC × LC analysis of Chinese herbal medicine with full gradient mode and shift gradient mode in the second dimension was performed. A correlation between the first and second dimensions was found in full gradient mode, and this was significantly reduced with shift gradient mode. The orthogonality increased by 43.7%. The effective peak distribution area increased significantly, which produced better separation.
Origin of bombesin-like peptides in human fetal lung.
Yoshizaki, K; de Bock, V; Solomon, S
1984-02-27
Four different forms of bombesin-like immunoreactive peaks were detected in extracts of human fetal lung by the use of reversed-phase high performance liquid chromatography (HPLC). Peaks I, II, III and IV, (increasing retention time), were eluted using a 14-38% of acetonitrile gradient containing 0.1% trifluoroacetic acid (TFA). Peak II was the major material found in the extract of human fetal lung obtained at 16-20 weeks gestation. None of the four compounds contained in the eluted peaks had the same retention time as amphibian bombesin or porcine gastrin releasing peptide (GRP). On reversed-phase HPLC using two different solvent systems TFA or heptafluorobutyric acid (HFBA) as a hydrophobic counter ion, and in gel filtration chromatography, the chromatographic behavior of the main peak (peak II) was the same as that of the carboxyl terminal fragments of GRP, GRP18-27 or GRP19-27. This suggested that the peptide(s) in peak II resembled in composition the carboxy terminal 9 or 10 amino acids of porcine GRP. Following tryptic digestion the material in peak IV was converted to the more polar compound present in peak II. Two other peptide peaks were eluted close to peak II and these were presumed to be a modification of this main peak. One of the possible biosynthetic steps in the formation of bombesin-like peptides in human fetal lung could be a tryptic conversion of a less polar peptide to a more polar form (peak IV to II).
Development and Efficacy Testing of Next Generation Cyanide Antidotes
2013-10-01
Preparation of mDMTS A-2.2. HPLC method for DMTS determination in Micelles A-2.3. Head-space solid phase micro-extraction- gas chromatography -mass...Simultaneous determination of cyanide and thiocyanate in plasma by chemical ionization gas chromatography mass-spectrometry (CI-GC-MS). Analytical and...min. Peak integration was performed using Star Chromatography Workstation Version 6.20. A-2.3. Head-space solid phase micro-extraction- gas
Kuwabara, T; Hasegawa, M; Kawano, M; Takaichi, S
1999-11-01
Violaxanthin de-epoxidase (VDE) was purified from thylakoid membranes of spinach by conventional column chromatography in the presence of Tween 20. The neutral detergent was necessary to prevent non-specific interaction of VDE with column resins. In anion-exchange chromatography on Mono Q, VDE appeared in two peaks. Both peaks exhibited a polypeptide of 41 kDa when fully reduced with 5 mM dithiothreitol. Re-chromatography of either peak gave rise to both peaks, suggesting that the two forms of VDE are interconvertible. VDE characteristically changed its electrophoretic mobility depending on the concentration of dithiothreitol with which the protein was treated. When non-reduced, it showed two polypeptides of 43 and 42 kDa. These polypeptides moved down to the position of 40 kDa, and then up to the position of 41 kDa, along with the increase in the dithiothreitol concentration from 0 to 2 mM. These findings suggest that VDE has more than one disulfide bond and takes multiple forms depending on the extent of the reduction. Studies with various types of protein-modifying reagent revealed that VDE is sensitive to pepstatin A, a specific inhibitor of aspartic protease. This finding suggests that the reaction center of VDE contains a reactive aspartic acid residue(s).
Bassanese, Danielle N; Conlan, Xavier A; Barnett, Neil W; Stevenson, Paul G
2015-05-01
This paper explores the analytical figures of merit of two-dimensional high-performance liquid chromatography for the separation of antioxidant standards. The cumulative two-dimensional high-performance liquid chromatography peak area was calculated for 11 antioxidants by two different methods--the areas reported by the control software and by fitting the data with a Gaussian model; these methods were evaluated for precision and sensitivity. Both methods demonstrated excellent precision in regards to retention time in the second dimension (%RSD below 1.16%) and cumulative second dimension peak area (%RSD below 3.73% from the instrument software and 5.87% for the Gaussian method). Combining areas reported by the high-performance liquid chromatographic control software displayed superior limits of detection, in the order of 1 × 10(-6) M, almost an order of magnitude lower than the Gaussian method for some analytes. The introduction of the countergradient eliminated the strong solvent mismatch between dimensions, leading to a much improved peak shape and better detection limits for quantification. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Axial thermal gradients in microchip gas chromatography.
Wang, Anzi; Hynynen, Sampo; Hawkins, Aaron R; Tolley, Samuel E; Tolley, H Dennis; Lee, Milton L
2014-12-29
Fabrication technologies for microelectromechanical systems (MEMS) allow miniaturization of conventional benchtop gas chromatography (GC) to portable, palm-sized microfabricated GC (μGC) devices, which are suitable for on-site chemical analysis and remote sensing. The separation performance of μGC systems, however, has not been on par with conventional GC. Column efficiency, peak symmetry and resolution are often compromised by column defects and non-ideal injections. The relatively low performance of μGC devices has impeded their further commercialization and broader application. In this work, the separation performance of μGC columns was improved by incorporating thermal gradient gas chromatography (TGGC). The analysis time was ∼20% shorter for TGGC separations compared to conventional temperature-programmed GC (TPGC) when a wide sample band was introduced into the column. Up to 50% reduction in peak tailing was observed for polar analytes, which improved their resolution. The signal-to-noise ratios (S/N) of late-eluting peaks were increased by 3-4 fold. The unique focusing effect of TGGC overcomes many of the previous shortcomings inherent in μGC analyses. Copyright © 2014 Elsevier B.V. All rights reserved.
Despommier, D D
1981-01-01
The soluble portion of a large particle fraction which was derived from the muscle larva of T. spiralis was subjected to molecular sizing column chromatography using Sephacryl S-200. Five major peaks of 280 nm absorbing material were obtained. Analysis by immunoelectrophoresis revealed that each peak contained antigens, with the majority of them occurring in peaks 3, 4 and 5. Preliminary studies indicated that peak 4(mol. wt range 20 000--10 000) contained protection-inducing antigens. Crossed-immunoelectrophoretic and single-dimension electrophoretic analysis of peak 4 revealed a minimum of 10 antigens, while analytical isoelectric focusing demonstrated the presence of proteins with widely different pl, ranging from 4.0 to 9.0. Peak 4 was fractionated by preparative flatbed isoelectric focusing (PIEF) using two gradients: one from 3.5 to 9.5 and the other from 3.5 to 5.5. Fused rocket immunoelectrophoretic (FRIEP) analysis of both runs indicated that several antigens were separated from the others: one at pl 4.0 and the other at pl 9.0. The remaining antigens focused between pl 4.3 and 4.9. One hundred micrograms of whole peak 4, pl 9.0 antigen and the group of antigens at pl 4.3--4.9 were each separately injected, along with Freund's complete adjuvant, into mice. In addition, a portion of the pl 4.0 antigen was also assayed for protection. All antigenic preparations induced significant levels of protection. The pl 4.0 was further analysed on high-performance liquid chromatography (HPLC). Two sharp peaks of antigen, as detected by FRIEP, were eluted isocratically with 65% acetonitrile from a C-18 (aliphatic) column. Both peaks of antigen showed complete cross-reactivity on FRIEP and absorbed at 220 nm. Amino acid analysis of each HPLC peak revealed no detectable differences in composition. Each peak contained predominance of aspartic (13 mol%) and glutamic (18 mol%) acid. This antigen did not contain significant quantities of aromatic amino acids, and absorbed strongly at 206 nm. Neither the pl 4.0 or pl 9.0 antigen stained positively with the PAS reaction.
van Stee, Leo L P; Brinkman, Udo A Th
2011-10-28
A method is presented to facilitate the non-target analysis of data obtained in temperature-programmed comprehensive two-dimensional (2D) gas chromatography coupled to time-of-flight mass spectrometry (GC×GC-ToF-MS). One main difficulty of GC×GC data analysis is that each peak is usually modulated several times and therefore appears as a series of peaks (or peaklets) in the one-dimensionally recorded data. The proposed method, 2DAid, uses basic chromatographic laws to calculate the theoretical shape of a 2D peak (a cluster of peaklets originating from the same analyte) in order to define the area in which the peaklets of each individual compound can be expected to show up. Based on analyte-identity information obtained by means of mass spectral library searching, the individual peaklets are then combined into a single 2D peak. The method is applied, amongst others, to a complex mixture containing 362 analytes. It is demonstrated that the 2D peak shapes can be accurately predicted and that clustering and further processing can reduce the final peak list to a manageable size. Copyright © 2011 Elsevier B.V. All rights reserved.
Ho, Tsung-Jung; Kuo, Ching-Hua; Wang, San-Yuan; Chen, Guan-Yuan; Tseng, Yufeng J
2013-02-01
Liquid Chromatography-Time of Flight Mass Spectrometry has become an important technique for toxicological screening and metabolomics. We describe TIPick a novel algorithm that accurately and sensitively detects target compounds in biological samples. TIPick comprises two main steps: background subtraction and peak picking. By subtracting a blank chromatogram, TIPick eliminates chemical signals of blank injections and reduces false positive results. TIPick detects peaks by calculating the S(CC(INI)) values of extracted ion chromatograms (EICs) without considering peak shapes, and it is able to detect tailing and fronting peaks. TIPick also uses duplicate injections to enhance the signals of the peaks and thus improve the peak detection power. Commonly seen split peaks caused by either saturation of the mass spectrometer detector or a mathematical background subtraction algorithm can be resolved by adjusting the mass error tolerance of the EICs and by comparing the EICs before and after background subtraction. The performance of TIPick was tested in a data set containing 297 standard mixtures; the recall, precision and F-score were 0.99, 0.97 and 0.98, respectively. TIPick was successfully used to construct and analyze the NTU MetaCore metabolomics chemical standards library, and it was applied for toxicological screening and metabolomics studies. Copyright © 2013 John Wiley & Sons, Ltd.
Zhang, Shijuan; Sun, Yuanpeng; Sun, Zhiwei; Wang, Xiaoyan; You, Jinmao; Suo, Yourui
2014-03-01
A novel and interesting pre-column derivatisation method was developed for the analysis of triterpenic acids by high-performance liquid chromatography (HPLC) with fluorescence detection. Each triterpenic acid produced two HPLC peaks with similar peak areas after derivatising with chiral 1-(9H-carbazol-9-yl) propan-2-yl-methanesulfonate (CPMS), while the fatty acid derivative of CPMS had only one peak. This phenomenon greatly increased the confidence in analyte confirmation. Compound with only one peak or two peaks differing greatly in their peak areas could be excluded from the target compound list. CPMS was compared with five other derivatising reagents, four of which produced only one peak for one triterpenic acid, to study the possible mechanism. Analytes with different behaviours were also studied to better interpret the mechanism. The proposed method also showed the merits of high sensitivity and less sample consumption. It was successfully applied to the analysis of triterpenic acids in fruit peels and flesh. There is no prior report on the two peak phenomenon of triterpenic acids. The information provided in this study will be helpful for those who are also engaged in derivatisation study. Copyright © 2013 Elsevier Ltd. All rights reserved.
Tokunaga, Takashi; Akagi, Ken-Ichi; Okamoto, Masahiko
2017-07-28
High performance liquid chromatography can be coupled with nuclear magnetic resonance (NMR) spectroscopy to give a powerful analytical method known as liquid chromatography-nuclear magnetic resonance (LC-NMR) spectroscopy, which can be used to determine the chemical structures of the components of complex mixtures. However, intrinsic limitations in the sensitivity of NMR spectroscopy have restricted the scope of this procedure, and resolving these limitations remains a critical problem for analysis. In this study, we coupled ultra-high performance liquid chromatography (UHPLC) with NMR to give a simple and versatile analytical method with higher sensitivity than conventional LC-NMR. UHPLC separation enabled the concentration of individual peaks to give a volume similar to that of the NMR flow cell, thereby maximizing the sensitivity to the theoretical upper limit. The UHPLC concentration of compound peaks present at typical impurity levels (5.0-13.1 nmol) in a mixture led to at most three-fold increase in the signal-to-noise ratio compared with LC-NMR. Furthermore, we demonstrated the use of UHPLC-NMR for obtaining structural information of a minor impurity in a reaction mixture in actual laboratory-scale development of a synthetic process. Using UHPLC-NMR, the experimental run times for chromatography and NMR were greatly reduced compared with LC-NMR. UHPLC-NMR successfully overcomes the difficulties associated with analyses of minor components in a complex mixture by LC-NMR, which are problematic even when an ultra-high field magnet and cryogenic probe are used. Copyright © 2017 Elsevier B.V. All rights reserved.
Detailed budget analysis of HONO in central London reveals a missing daytime source
NASA Astrophysics Data System (ADS)
Lee, J. D.; Whalley, L. K.; Heard, D. E.; Stone, D.; Dunmore, R. E.; Hamilton, J. F.; Young, D. E.; Allan, J. D.; Laufs, S.; Kleffmann, J.
2015-08-01
Measurements of HONO were carried out at an urban background site near central London as part of the Clean air for London (ClearfLo) project in summer 2012. Data was collected from 22 July-18 August 2014, with peak values of up to 1.8 ppbV at night and non-zero values of between 0.2 and 0.6 ppbV seen during the day. A wide range of other gas phase, aerosol, radiation and meteorological measurements were made concurrently at the same site, allowing a detailed analysis of the chemistry to be carried out. The peak HONO/NOx ratio of 0.04 is seen at ~ 02:00 UTC, with the presence of a second, daytime peak in HONO/NOx of similar magnitude to the night-time peak suggesting a significant secondary daytime HONO source. A photostationary state calculation of HONO involving formation from the reaction of OH and NO and loss from photolysis, reaction with OH and dry deposition shows a significant underestimation during the day, with calculated values being close to zero, compared to the measurement average of 0.4 ppbV at midday. The addition of further HONO sources, including postulated formation from the reaction of HO2 with NO2 and photolysis of HNO3, increases the daytime modelled HONO to 0.1 ppbV, still leaving a significant extra daytime source. The missing HONO is plotted against a series of parameters including NO2 and OH reactivity, with little correlation seen. Much better correlation is observed with the product of these species with j(NO2), in particular NO2 and the product of NO2 with OH reactivity. This suggests the missing HONO source is in some way related to NO2 and also requires sunlight. The effect of the missing HONO to OH radical production is also investigated and it is shown that the model needs to be constrained to measured HONO in order to accurately reproduce the OH radical measurements.
Non-targeted analysis of unexpected food contaminants using LC-HRMS.
Kunzelmann, Marco; Winter, Martin; Åberg, Magnus; Hellenäs, Karl-Erik; Rosén, Johan
2018-03-29
A non-target analysis method for unexpected contaminants in food is described. Many current methods referred to as "non-target" are capable of detecting hundreds or even thousands of contaminants. However, they will typically still miss all other possible contaminants. Instead, a metabolomics approach might be used to obtain "true non-target" analysis. In the present work, such a method was optimized for improved detection capability at low concentrations. The method was evaluated using 19 chemically diverse model compounds spiked into milk samples to mimic unknown contamination. Other milk samples were used as reference samples. All samples were analyzed with UHPLC-TOF-MS (ultra-high-performance liquid chromatography time-of-flight mass spectrometry), using reversed-phase chromatography and electrospray ionization in positive mode. Data evaluation was performed by the software TracMass 2. No target lists of specific compounds were used to search for the contaminants. Instead, the software was used to sort out all features only occurring in the spiked sample data, i.e., the workflow resembled a metabolomics approach. Procedures for chemical identification of peaks were outside the scope of the study. Method, study design, and settings in the software were optimized to minimize manual evaluation and faulty or irrelevant hits and to maximize hit rate of the spiked compounds. A practical detection limit was established at 25 μg/kg. At this concentration, most compounds (17 out of 19) were detected as intact precursor ions, as fragments or as adducts. Only 2 irrelevant hits, probably natural compounds, were obtained. Limitations and possible practical use of the approach are discussed.
Doshi, Gaurav Mahesh; Une, Hemant Devidas
2016-01-01
In Indian Ayurvedic system, Benincasa hispida (BH) and Carissa congesta (CC) are well-known plants used for major and minor ailments. BH has been regarded as Kushmanda, whereas CC has been used in immune-related disorders of the human system. Quercetin and rutin identified from the vast plethora of plant extracts have proved to possess ethnopharmacological relevance. In present studies, we have determined quercetin and rutin in terms of percentage in BH seeds and CC roots by high-performance thin layer chromatography (HPTLC) and high-performance liquid chromatography (HPLC). After extraction and phytochemical screening, the extracts were subjected to quantification for the presence of quercetin and rutin by HPTLC and HPLC. HPTLC showed quercetin as 44.60, 27.13% and rutin as 32.00, 36.31% w/w, whereas HPLC revealed quercetin as 34.00, 35.00% and rutin as 21.99, 45.03% w/v in BH and CC extracts, respectively. The BH and CC extracts have elucidated peaks that were corresponding with standard peaks on undertaking chromatographic studies. Quercetin and rutin are isolated from BH seeds and CC roots by High Performance. Thin Layer Chromatography and High Performance Liquid Chromatography. HPTLC revealed presence of quercetin as 44.60, 27.13 % and rutin as 32.00, 36.31 % w/w. HPLC revealed presence of quercetin as 34.00, 35.00 % and rutin as 21.99, 45.03 % w/v. Abbreviation Used: HPTLC: High Performance Thin Layer Chromatography; HPLC: High Pressure Liquid Chromatography, UV: Ultraviolet, CC: Carissa congesta, BH: Benincasa hispida.
2014-01-01
Background Extracted ion chromatogram (EIC) extraction and chromatographic peak detection are two important processing procedures in liquid chromatography/mass spectrometry (LC/MS)-based metabolomics data analysis. Most commonly, the LC/MS technique employs electrospray ionization as the ionization method. The EICs from LC/MS data are often noisy and contain high background signals. Furthermore, the chromatographic peak quality varies with respect to its location in the chromatogram and most peaks have zigzag shapes. Therefore, there is a critical need to develop effective metrics for quality evaluation of EICs and chromatographic peaks in LC/MS based metabolomics data analysis. Results We investigated a comprehensive set of potential quality evaluation metrics for extracted EICs and detected chromatographic peaks. Specifically, for EIC quality evaluation, we analyzed the mass chromatographic quality index (MCQ index) and propose a novel quality evaluation metric, the EIC-related global zigzag index, which is based on an EIC's first order derivatives. For chromatographic peak quality evaluation, we analyzed and compared six metrics: sharpness, Gaussian similarity, signal-to-noise ratio, peak significance level, triangle peak area similarity ratio and the local peak-related local zigzag index. Conclusions Although the MCQ index is suited for selecting and aligning analyte components, it cannot fairly evaluate EICs with high background signals or those containing only a single peak. Our proposed EIC related global zigzag index is robust enough to evaluate EIC qualities in both scenarios. Of the six peak quality evaluation metrics, the sharpness, peak significance level, and zigzag index outperform the others due to the zigzag nature of LC/MS chromatographic peaks. Furthermore, using several peak quality metrics in combination is more efficient than individual metrics in peak quality evaluation. PMID:25350128
Zhang, Wenchao; Zhao, Patrick X
2014-01-01
Extracted ion chromatogram (EIC) extraction and chromatographic peak detection are two important processing procedures in liquid chromatography/mass spectrometry (LC/MS)-based metabolomics data analysis. Most commonly, the LC/MS technique employs electrospray ionization as the ionization method. The EICs from LC/MS data are often noisy and contain high background signals. Furthermore, the chromatographic peak quality varies with respect to its location in the chromatogram and most peaks have zigzag shapes. Therefore, there is a critical need to develop effective metrics for quality evaluation of EICs and chromatographic peaks in LC/MS based metabolomics data analysis. We investigated a comprehensive set of potential quality evaluation metrics for extracted EICs and detected chromatographic peaks. Specifically, for EIC quality evaluation, we analyzed the mass chromatographic quality index (MCQ index) and propose a novel quality evaluation metric, the EIC-related global zigzag index, which is based on an EIC's first order derivatives. For chromatographic peak quality evaluation, we analyzed and compared six metrics: sharpness, Gaussian similarity, signal-to-noise ratio, peak significance level, triangle peak area similarity ratio and the local peak-related local zigzag index. Although the MCQ index is suited for selecting and aligning analyte components, it cannot fairly evaluate EICs with high background signals or those containing only a single peak. Our proposed EIC related global zigzag index is robust enough to evaluate EIC qualities in both scenarios. Of the six peak quality evaluation metrics, the sharpness, peak significance level, and zigzag index outperform the others due to the zigzag nature of LC/MS chromatographic peaks. Furthermore, using several peak quality metrics in combination is more efficient than individual metrics in peak quality evaluation.
Baeza-Baeza, J J; Ruiz-Angel, M J; García-Alvarez-Coque, M C
2007-09-07
A simple model is proposed that relates the parameters describing the peak width with the retention time, which can be easily predicted as a function of mobile phase composition. This allows the further prediction of peak shape with global errors below 5%, using a modified Gaussian model with a parabolic variance. The model is useful in the optimisation of chromatographic resolution to assess an eventual overlapping of close peaks. The dependence of peak shape with mobile phase composition was studied for mobile phases containing acetonitrile in the presence and absence of micellised surfactant (micellar-organic and hydro-organic reversed-phase liquid chromatography, RPLC). In micellar RPLC, both modifiers (surfactant and acetonitrile) were observed to decrease or improve the efficiencies in the same percentage, at least in the studied concentration ranges. The study also revealed that the problem of achieving smaller efficiencies in this chromatographic mode, compared to hydro-organic RPLC, is not only related to the presence of surfactant covering the stationary phase, but also to the smaller concentration of organic solvent in the mobile phase.
Desfontaine, Vincent; Veuthey, Jean-Luc; Guillarme, Davy
2016-03-18
Similar to reversed phase liquid chromatography, basic compounds can be highly challenging to analyze by supercritical fluid chromatography (SFC), as they tend to exhibit poor peak shape, especially those with high pKa values. In this study, three new stationary phase ligand chemistries available in sub -2 μm particle sizes, namely 2-picolylamine (2-PIC), 1-aminoanthracene (1-AA) and diethylamine (DEA), were tested in SFC conditions for the analysis of basic drugs. Due to the basic properties of these ligands, it is expected that the repulsive forces may improve peak shape of basic substances, similarly to the widely used 2-ethypyridine (2-EP) phase. However, among the 38 tested basic drugs, less of 10% displayed Gaussian peaks (asymmetry between 0.8 and 1.4) using pure CO2/methanol on these phases. The addition of 10mM ammonium formate as mobile phase additive, drastically improved peak shapes and increased this proportion to 67% on 2-PIC. Introducing the additive in the injection solvent rather than in the organic modifier, gave acceptable results for 2-PIC only, with 31% of Gaussian peaks with an average asymmetry of 1.89 for the 38 selected basic drugs. These columns were also compared to hybrid silica (BEH), DIOL and 2-EP stationary phases, commonly employed in SFC. These phases commonly exhibit alternative retention and selectivity. In the end, the two most interesting ligands used as complementary columns were 2-PIC and BEH, as they provided suitable peak shapes for the basic drugs and almost orthogonal selectivities. Copyright © 2016 Elsevier B.V. All rights reserved.
Li, Wei; Wang, Jun; Yan, Zheng-Yu
2015-10-10
A novel simple, fast and efficient supercritical fluid chromatography (SFC) method was developed and compared with RPLC method for the separation and determination of impurities in rifampicin. The separation was performed using a packed diol column and a mobile phase B (modifier) consisting of methanol with 0.1% ammonium formate (w/v) and 2% water (v/v). Overall satisfactory resolutions and peak shapes for rifampicin quinone (RQ), rifampicin (RF), rifamycin SV (RSV), rifampicin N-oxide (RNO) and 3-formylrifamycinSV (3-FR) were obtained by optimization of the chromatography system. With gradient elution of mobile phase, all of the impurities and the active were separated within 4 min. Taking full advantage of features of SFC (such as particular selectivity, non-sloping baseline in gradient elution, and without injection solvent effects), the method was successfully used for determination of impurities in rifampicin, with more impurity peaks detected, better resolution achieved and much less analysis time needed compared with conventional reversed-phase liquid chromatography (RPLC) methods. Copyright © 2015 Elsevier B.V. All rights reserved.
Qureshi, A A; Elson, C E; Lebeck, L A
1982-11-19
The isolation and identification of three major alpha-keto end products (glyoxylate, pyruvate, alpha-ketoglutarate) of the isocitrate lyase reaction in 18-day chick embryo liver have been described. This was accomplished by the separation of these alpha-keto acids as their 2,4-dinitrophenylhydrazones (DNPHs) by high-performance liquid chromatography (HPLC). The DNPHs of alpha-keto acids were eluted with an isocratic solvent system of methanol-water-acetic acid (60:38.5:1.5) containing 5 mM tetrabutylammonium phosphate from a reversed-phase ultrasphere C18 (IP) and from a radial compression C18 column. The separation can be completed on the radial compression column within 15-20 min as compared to 30-40 min with a conventional reversed-phase column. Retention times and peak areas were integrated for both the assay samples and reference compounds. A relative measure of alpha-keto acid in the peak was calculated by comparison with the standard. The identification of each peak was done on the basis of retention time matching, co-chromatography with authentic compounds, and stopped flow UV-VIS scanning between 240 and 440 nm. Glyoxylate represented 5% of the total product of the isocitrate lyase reaction. Day 18 parallels the peak period of embryonic hepatic glycogenesis which occurs at a time when the original egg glucose reserve has been depleted.
Wilson, Ryan B; Siegler, W Christopher; Hoggard, Jamin C; Fitz, Brian D; Nadeau, Jeremy S; Synovec, Robert E
2011-05-27
By taking into consideration band broadening theory and using those results to select experimental conditions, and also by reducing the injection pulse width, peak capacity production (i.e., peak capacity per separation time) is substantially improved for one dimensional (1D-GC) and comprehensive two dimensional (GC×GC) gas chromatography. A theoretical framework for determining the optimal linear gas velocity (the linear gas velocity producing the minimum H), from experimental parameters provides an in-depth understanding of the potential for GC separations in the absence of extra-column band broadening. The extra-column band broadening is referred to herein as off-column band broadening since it is additional band broadening not due to the on-column separation processes. The theory provides the basis to experimentally evaluate and improve temperature programmed 1D-GC separations, but in order to do so with a commercial 1D-GC instrument platform, off-column band broadening from injection and detection needed to be significantly reduced. Specifically for injection, a resistively heated transfer line is coupled to a high-speed diaphragm valve to provide a suitable injection pulse width (referred to herein as modified injection). Additionally, flame ionization detection (FID) was modified to provide a data collection rate of 5kHz. The use of long, relatively narrow open tubular capillary columns and a 40°C/min programming rate were explored for 1D-GC, specifically a 40m, 180μm i.d. capillary column operated at or above the optimal average linear gas velocity. Injection using standard auto-injection with a 1:400 split resulted in an average peak width of ∼1.5s, hence a peak capacity production of 40peaks/min. In contrast, use of modified injection produced ∼500ms peak widths for 1D-GC, i.e., a peak capacity production of 120peaks/min (a 3-fold improvement over standard auto-injection). Implementation of modified injection resulted in retention time, peak width, peak height, and peak area average RSD%'s of 0.006, 0.8, 3.4, and 4.0%, respectively. Modified injection onto the first column of a GC×GC coupled with another high-speed valve injection onto the second column produced an instrument with high peak capacity production (500-800peaks/min), ∼5-fold to 8-fold higher than typically reported for GC×GC. Copyright © 2011 Elsevier B.V. All rights reserved.
Kaufmann, A; Butcher, P; Maden, K; Walker, S; Widmer, M
2010-07-12
The selectivity of mass traces obtained by monitoring liquid chromatography coupled to high resolution mass spectrometry (LC-HRMS) and liquid chromatography coupled to tandem mass spectrometry (LC-MS/MS) was compared. A number of blank extracts (fish, pork kidney, pork liver and honey) were separated by ultra performance liquid chromatography (UPLC). Detected were some 100 dummy transitions respectively dummy exact masses (traces). These dummy masses were the product of a random generator. The range of the permitted masses corresponded to those which are typical for analytes (e.g. veterinary drugs). The large number of monitored dummy traces ensured that endogenous compounds present in the matrix extract, produced a significant number of detectable chromatographic peaks. All obtained chromatographic peaks were integrated and standardized. Standardisation was done by dividing these absolute peak areas by the average response of a set of 7 different veterinary drugs. This permitted a direct comparison between the LC-HRMS and LC-MS/MS data. The data indicated that the selectivity of LC-HRMS exceeds LC-MS/MS, if high resolution mass spectrometry (HRMS) data is recorded with a resolution of 50,000 full width at half maximum (FWHM) and a corresponding mass window. This conclusion was further supported by experimental data (MS/MS based trace analysis), where a false positive finding was observed. An endogenous matrix compound present in honey matrix behaved like a banned nitroimidazole drug. This included identical retention time and two MRM traces, producing an MRM ratio between them, which perfectly matched the ratio observed in the external standard. HRMS measurement clearly resolved the interfering matrix compound and unmasked the false positive MS/MS finding. Copyright 2010 Elsevier B.V. All rights reserved.
An isozyme of acid alpha-glucosidase with reduced catalytic activity for glycogen.
Beratis, N G; LaBadie, G U; Hirschhorn, K
1980-03-01
Both the common and a variant isozyme of acid alpha-glucosidase have been purified from a heterozygous placenta with CM-Sephadex, ammonium sulfate precipitation, dialysis, Amicon filtration, affinity chromatography by Sephadex G-100, and DEAE-cellulose chromatography. Three and two activity peaks, from the common and variant isozymes, respectively, were obtained by DEAE-cellulose chromatography using a linear NaCl gradient. The three peaks of activity of the common isozyme were eluted with 0.08, 0.12, and 0.17 M NaCl, whereas the two peaks of the variant, with 0.01 and 0.06 M NaCl. The pH optimum and thermal denaturation at 57 degrees C were the same in all enzyme peaks of both isozymes. Rabbit antiacid alpha-glucosidase antibodies produced against the common isozyme were found to cross-react with both peaks of the variant isozyme. The two isozymes shared antigenic identity and had similar Km's with maltose as substrate. Normal substrate saturation kinetics were observed with the common isozyme when glycogen was the substrate, but the variant produced an S-shaped saturation curve indicating a phase of negative and positive cooperativity at low and high glycogen concentrations, respectively. The activity of the variant was only 8.6% and 19.2% of the common isozyme when assayed with nonsaturating and saturating concentrations of glycogen, respectively. A similar rate of hydrolysis of isomaltose by both isozymes was found indicating that the reduced catalytic activity of the variant isozyme toward glycogen is not the result of a reduced ability of this enzyme to cleave the alpha-1,6 linkages of glycogen.
An evolutionary view of chromatography data systems used in bioanalysis.
McDowall, R D
2010-02-01
This is a personal view of how chromatographic peak measurement and analyte quantification for bioanalysis have evolved from the manual methods of 1970 to the electronic working possible in 2010. In four decades there have been major changes from a simple chart recorder output (that was interpreted and quantified manually) through simple automation of peak measurement, calculation of standard curves and quality control values and instrument control to the networked chromatography data systems of today that are capable of interfacing with Laboratory Information Management Systems and other IT applications. The incorporation of electronic signatures to meet regulatory requirements offers a great opportunity for business improvement and electronic working.
Iglesias, M Teresa; Martín-Alvarez, Pedro J; Polo, M Carmen; de Lorenzo, Cristina; Pueyo, Encarnación
2006-10-18
Fast protein liquid chromatography on a Superdex 75 HR column has been applied to analyze the proteins of 29 honeys, 12 of floral origin and 17 from honeydew. The molecular masses were comprised between 13100 and 94000 Da. Seven peaks have been separated; four of them were present in all of the honeys, and three were only present in some honeys. Direct observation of the chromatograms of the floral and honeydew honeys did not reveal any information about their botanical origins. However, both types of honeys can be distinguished with the percentages of the areas of four of the seven chromatographic peaks obtained.
McEntire, John E.; Kuo, Kenneth C.; Smith, Mark E.; Stalling, David L.; Richens, Jack W.; Zumwalt, Robert W.; Gehrke, Charles W.; Papermaster, Ben W.
1989-01-01
A wide spectrum of modified nucleosides has been quantified by high-performance liquid chromatography in serum of 49 male lung cancer patients, 35 patients with other cancers, and 48 patients hospitalized for nonneoplastic diseases. Data for 29 modified nucleoside peaks were normalized to an internal standard and analyzed by discriminant analysis and stepwise discriminant analysis. A model based on peaks selected by a stepwise discriminant procedure correctly classified 79% of the cancer and 75% of the noncancer subjects. It also demonstrated 84% sensitivity and 79% specificity when comparing lung cancer to noncancer subjects, and 80% sensitivity and 55% specificity in comparing lung cancer to other cancers. The nucleoside peaks having the greatest influence on the models varied dependent on the subgroups compared, confirming the importance of quantifying a wide array of nucleosides. These data support and expand previous studies which reported the utility of measuring modified nucleoside levels in serum and show that precise measurement of an array of 29 modified nucleosides in serum by high-performance liquid chromatography with UV scanning with subsequent data modeling may provide a clinically useful approach to patient classification in diagnosis and subsequent therapeutic monitoring.
2012-01-01
Background Chemical shift mapping is an important technique in NMR-based drug screening for identifying the atoms of a target protein that potentially bind to a drug molecule upon the molecule's introduction in increasing concentrations. The goal is to obtain a mapping of peaks with known residue assignment from the reference spectrum of the unbound protein to peaks with unknown assignment in the target spectrum of the bound protein. Although a series of perturbed spectra help to trace a path from reference peaks to target peaks, a one-to-one mapping generally is not possible, especially for large proteins, due to errors, such as noise peaks, missing peaks, missing but then reappearing, overlapped, and new peaks not associated with any peaks in the reference. Due to these difficulties, the mapping is typically done manually or semi-automatically, which is not efficient for high-throughput drug screening. Results We present PeakWalker, a novel peak walking algorithm for fast-exchange systems that models the errors explicitly and performs many-to-one mapping. On the proteins: hBclXL, UbcH5B, and histone H1, it achieves an average accuracy of over 95% with less than 1.5 residues predicted per target peak. Given these mappings as input, we present PeakAssigner, a novel combined structure-based backbone resonance and NOE assignment algorithm that uses just 15N-NOESY, while avoiding TOCSY experiments and 13C-labeling, to resolve the ambiguities for a one-to-one mapping. On the three proteins, it achieves an average accuracy of 94% or better. Conclusions Our mathematical programming approach for modeling chemical shift mapping as a graph problem, while modeling the errors directly, is potentially a time- and cost-effective first step for high-throughput drug screening based on limited NMR data and homologous 3D structures. PMID:22536902
Zonta, F; Stancher, B
1985-07-19
A high-performance liquid chromatographic method for determining phylloquinone (vitamin K1) in soy bean oils is described. Resolution of vitamin K1 from interfering peaks of the matrix was obtained after enzymatic digestion, extraction and liquid-solid chromatography on alumina. An isocratic reversed-phase chromatography with UV detection was used in the final stage. The quantitation was carried out by the standard addition method, and the recovery of the whole procedure was 88.2%.
Doshi, Gaurav Mahesh; Une, Hemant Devidas
2016-01-01
Objective: In Indian Ayurvedic system, Benincasa hispida (BH) and Carissa congesta (CC) are well-known plants used for major and minor ailments. BH has been regarded as Kushmanda, whereas CC has been used in immune-related disorders of the human system. Quercetin and rutin identified from the vast plethora of plant extracts have proved to possess ethnopharmacological relevance. Materials and Methods: In present studies, we have determined quercetin and rutin in terms of percentage in BH seeds and CC roots by high-performance thin layer chromatography (HPTLC) and high-performance liquid chromatography (HPLC). After extraction and phytochemical screening, the extracts were subjected to quantification for the presence of quercetin and rutin by HPTLC and HPLC. Results: HPTLC showed quercetin as 44.60, 27.13% and rutin as 32.00, 36.31% w/w, whereas HPLC revealed quercetin as 34.00, 35.00% and rutin as 21.99, 45.03% w/v in BH and CC extracts, respectively. Conclusion: The BH and CC extracts have elucidated peaks that were corresponding with standard peaks on undertaking chromatographic studies. SUMMARY Quercetin and rutin are isolated from BH seeds and CC roots by High Performance. Thin Layer Chromatography and High Performance Liquid Chromatography. HPTLC revealed presence of quercetin as 44.60, 27.13 % and rutin as 32.00, 36.31 % w/w. HPLC revealed presence of quercetin as 34.00, 35.00 % and rutin as 21.99, 45.03 % w/v. Abbreviation Used: HPTLC: High Performance Thin Layer Chromatography; HPLC: High Pressure Liquid Chromatography, UV: Ultraviolet, CC: Carissa congesta, BH: Benincasa hispida PMID:26941534
Rafiei, Atefeh; Sleno, Lekha
2015-01-15
Data analysis is a key step in mass spectrometry based untargeted metabolomics, starting with the generation of generic peak lists from raw liquid chromatography/mass spectrometry (LC/MS) data. Due to the use of various algorithms by different workflows, the results of different peak-picking strategies often differ widely. Raw LC/HRMS data from two types of biological samples (bile and urine), as well as a standard mixture of 84 metabolites, were processed with four peak-picking softwares: Peakview®, Markerview™, MetabolitePilot™ and XCMS Online. The overlaps between the results of each peak-generating method were then investigated. To gauge the relevance of peak lists, a database search using the METLIN online database was performed to determine which features had accurate masses matching known metabolites as well as a secondary filtering based on MS/MS spectral matching. In this study, only a small proportion of all peaks (less than 10%) were common to all four software programs. Comparison of database searching results showed peaks found uniquely by one workflow have less chance of being found in the METLIN metabolomics database and are even less likely to be confirmed by MS/MS. It was shown that the performance of peak-generating workflows has a direct impact on untargeted metabolomics results. As it was demonstrated that the peaks found in more than one peak detection workflow have higher potential to be identified by accurate mass as well as MS/MS spectrum matching, it is suggested to use the overlap of different peak-picking workflows as preliminary peak lists for more rugged statistical analysis in global metabolomics investigations. Copyright © 2014 John Wiley & Sons, Ltd.
USDA-ARS?s Scientific Manuscript database
Conventional HPLC provides ready detection of the major phenolic compounds in methanol extracts of orange leaves, yet conventional HPLC also shows the presence of many more compounds, to an extent where extensive peak overlap prevents distinct peak detection and reliable quantitation. A more complet...
Czech, K; Słomkiewicz, P M
2013-05-03
Inverse gas chromatographic methods of isotherm determination peak maximum (PM) and peak division (PD) were compared. These methods were applied to determine adsorption isotherms of dichloroethylene, trichloroethylene and tetrachloroethylene on acid-activated halloysite and adsorption enthalpy. Copyright © 2013 Elsevier B.V. All rights reserved.
Detection of honey adulteration with starch syrup by high performance liquid chromatography.
Wang, Shaoqing; Guo, Qilei; Wang, Linlin; Lin, Li; Shi, Hailiang; Cao, Hong; Cao, Baosen
2015-04-01
According to saccharide profile comparison between starch syrups and pure honeys analysed through high performance liquid chromatography (HPLC), a characteristic peak was found at 15.25 min retention time in HPLC chromatogram of syrup, but no peak was observed at the same retention time in chromatogram of pure honeys. This characteristic peak for syrup was identified as an overlapping peak of oligosaccharides with more than 5 degree of polymerisation (DP) based on HPLC chromatogram comparison between starch syrup and a series of standard mono-, di- and oligosaccharides of 3-7 DP. Additionally syrup content correlated linearly with the height of the characteristic peak of syrup under different slope in two ranges 2.5-7.5% and 10-100%, respectively. Therefore, the characteristic peak at 15.25 min retention time can serve as a syrup indicator in HPLC analysis of the adulterated honeys. This new HPLC method for honey adulteration detection was further applied in an authenticity inspection on more than 100 commercial honeys. In addition to the improved accuracy of honey adulteration detection, the proposed HPLC method was simple, low cost and easy practice for honey product quality control by government department considering the popularity of HPLC device and technology. Copyright © 2014 Elsevier Ltd. All rights reserved.
Baglai, Anna; Gargano, Andrea F G; Jordens, Jan; Mengerink, Ynze; Honing, Maarten; van der Wal, Sjoerd; Schoenmakers, Peter J
2017-12-29
Recent advancements in separation science have resulted in the commercialization of multidimensional separation systems that provide higher peak capacities and, hence, enable a more-detailed characterization of complex mixtures. In particular, two powerful analytical tools are increasingly used by analytical scientists, namely online comprehensive two-dimensional liquid chromatography (LC×LC, having a second-dimension separation in the liquid phase) and liquid chromatography-ion mobility-spectrometry (LC-IMS, second dimension separation in the gas phase). The goal of the current study was a general assessment of the liquid-chromatography-trapped-ion-mobility-mass spectrometry (LC-TIMS-MS) and comprehensive two-dimensional liquid chromatography-mass spectrometry (LC×LC-MS) platforms for untargeted lipid mapping in human plasma. For the first time trapped-ion-mobility spectrometry (TIMS) was employed for the separation of the major lipid classes and ion-mobility-derived collision-cross-section values were determined for a number of lipid standards. The general effects of a number of influencing parameters have been inspected and possible directions for improvements are discussed. We aimed to provide a general indication and practical guidelines for the analyst to choose an efficient multidimensional separation platform according to the particular requirements of the application. Analysis time, orthogonality, peak capacity, and an indicative measure for the resolving power are discussed as main characteristics for multidimensional separation systems. Copyright © 2017 Elsevier B.V. All rights reserved.
Xu, R; Huang, X; Kramer, K J; Hawley, M D
1995-10-10
The chromatographic behavior of quinones derived from the oxidation of dopamine and N-acetyldopamine has been studied using liquid chromatography (LC) with both a diode array detector and an electrochemical detector that has parallel dual working electrodes. When stainless steel columns are used, an anodic peak for the oxidation of the catecholamine is observed at the same retention time as a cathodic peak for the reduction of the catecholamine quinone. In addition, the anodic peak exhibits a tail that extends to a second anodic peak for the catecholamine. The latter peak occurs at the normal retention time of the catecholamine. The origin of this phenomenon has been studied and metallic iron in the stainless steel components of the LC system has been found to reduce the quinones to their corresponding catecholamines. The simultaneous appearance of a cathodic peak for the reduction of catecholamine quinone and an anodic peak for the oxidation of the corresponding catecholamine occurs when metallic iron in the exit frit reduces some of the quinones as the latter exits the column. This phenomenon is designated as the "concurrent anodic-cathodic response." It is also observed for quinones of of 3,4-dihydroxybenzoic acid and probably occurs with o- or p-quinones of other dihydroxyphenyl compounds. The use of nonferrous components in LC systems is recommended to eliminate possible on-column reduction of quinones.
Fredriksson, Mattias J; Petersson, Patrik; Axelsson, Bengt-Olof; Bylund, Dan
2011-10-17
A strategy for rapid optimization of liquid chromatography column temperature and gradient shape is presented. The optimization as such is based on the well established retention and peak width models implemented in software like e.g. DryLab and LC simulator. The novel part of the strategy is a highly automated processing algorithm for detection and tracking of chromatographic peaks in noisy liquid chromatography-mass spectrometry (LC-MS) data. The strategy is presented and visualized by the optimization of the separation of two degradants present in ultraviolet (UV) exposed fluocinolone acetonide. It should be stressed, however, that it can be utilized for LC-MS analysis of any sample and application where several runs are conducted on the same sample. In the application presented, 30 components that were difficult or impossible to detect in the UV data could be automatically detected and tracked in the MS data by using the proposed strategy. The number of correctly tracked components was above 95%. Using the parameters from the reconstructed data sets to the model gave good agreement between predicted and observed retention times at optimal conditions. The area of the smallest tracked component was estimated to 0.08% compared to the main component, a level relevant for the characterization of impurities in the pharmaceutical industry. Copyright © 2011 Elsevier B.V. All rights reserved.
Davidson, Robert L; Weber, Ralf J M; Liu, Haoyu; Sharma-Oates, Archana; Viant, Mark R
2016-01-01
Metabolomics is increasingly recognized as an invaluable tool in the biological, medical and environmental sciences yet lags behind the methodological maturity of other omics fields. To achieve its full potential, including the integration of multiple omics modalities, the accessibility, standardization and reproducibility of computational metabolomics tools must be improved significantly. Here we present our end-to-end mass spectrometry metabolomics workflow in the widely used platform, Galaxy. Named Galaxy-M, our workflow has been developed for both direct infusion mass spectrometry (DIMS) and liquid chromatography mass spectrometry (LC-MS) metabolomics. The range of tools presented spans from processing of raw data, e.g. peak picking and alignment, through data cleansing, e.g. missing value imputation, to preparation for statistical analysis, e.g. normalization and scaling, and principal components analysis (PCA) with associated statistical evaluation. We demonstrate the ease of using these Galaxy workflows via the analysis of DIMS and LC-MS datasets, and provide PCA scores and associated statistics to help other users to ensure that they can accurately repeat the processing and analysis of these two datasets. Galaxy and data are all provided pre-installed in a virtual machine (VM) that can be downloaded from the GigaDB repository. Additionally, source code, executables and installation instructions are available from GitHub. The Galaxy platform has enabled us to produce an easily accessible and reproducible computational metabolomics workflow. More tools could be added by the community to expand its functionality. We recommend that Galaxy-M workflow files are included within the supplementary information of publications, enabling metabolomics studies to achieve greater reproducibility.
Battersby, J E; Snedecor, B; Chen, C; Champion, K M; Riddle, L; Vanderlaan, M
2001-08-24
An automated dual-column liquid chromatography assay comprised of affinity and reversed-phase separations that quantifies the majority of antibody-related protein species found in crude cell extracts of recombinant origin is described. Although potentially applicable to any antibody preparation, we here use samples of anti-CD18 (Fab'2LZ) and a full-length antibody, anti-tissue factor (anti-TF), from various stages throughout a biopharmaceutical production process to describe the assay details. The targeted proteins were captured on an affinity column containing an anti-light-chain (kappa) Fab antibody (AME5) immobilized on controlled pore glass. The affinity column was placed in-line with a reversed-phase column and the captured components were transferred by elution with dilute acid and subsequently resolved by eluting the reversed-phase column with a shallow acetonitrile gradient. Characterization of the resolved components showed that most antibody fragment preparations contained a light-chain fragment, free light chain, light-chain dimer and multiple forms of Fab'. Analysis of full-length antibody preparations also resolved these fragments as well as a completely assembled form. Co-eluting with the full-length antibody were high-molecular-mass variants that were missing one or both light chains. Resolved components were quantified by comparison with peak areas of similarly treated standards. By comparing the two-dimensional polyacrylamide gel electrophoresis patterns of an Escherichia coli blank run, a production run and the material affinity captured (AME5) from a production run, it was determined that the AME5 antibody captured isoforms of light chain, light chain covalently attached to heavy chain, and truncated light chain isoforms. These forms comprise the bulk of the soluble product-related fragments found in E. coli cell extracts of recombinantly produced antibody fragments.
An isozyme of acid alpha-glucosidase with reduced catalytic activity for glycogen.
Beratis, N G; LaBadie, G U; Hirschhorn, K
1980-01-01
Both the common and a variant isozyme of acid alpha-glucosidase have been purified from a heterozygous placenta with CM-Sephadex, ammonium sulfate precipitation, dialysis, Amicon filtration, affinity chromatography by Sephadex G-100, and DEAE-cellulose chromatography. Three and two activity peaks, from the common and variant isozymes, respectively, were obtained by DEAE-cellulose chromatography using a linear NaCl gradient. The three peaks of activity of the common isozyme were eluted with 0.08, 0.12, and 0.17 M NaCl, whereas the two peaks of the variant, with 0.01 and 0.06 M NaCl. The pH optimum and thermal denaturation at 57 degrees C were the same in all enzyme peaks of both isozymes. Rabbit antiacid alpha-glucosidase antibodies produced against the common isozyme were found to cross-react with both peaks of the variant isozyme. The two isozymes shared antigenic identity and had similar Km's with maltose as substrate. Normal substrate saturation kinetics were observed with the common isozyme when glycogen was the substrate, but the variant produced an S-shaped saturation curve indicating a phase of negative and positive cooperativity at low and high glycogen concentrations, respectively. The activity of the variant was only 8.6% and 19.2% of the common isozyme when assayed with nonsaturating and saturating concentrations of glycogen, respectively. A similar rate of hydrolysis of isomaltose by both isozymes was found indicating that the reduced catalytic activity of the variant isozyme toward glycogen is not the result of a reduced ability of this enzyme to cleave the alpha-1,6 linkages of glycogen. Images Fig. 2 Fig. 4 Fig. 6 PMID:6770674
Characterization of hsp27 kinases activated by elevated aortic pressure in heart
Boivin, Benoit; Khairallah, Maya; Cartier, Raymond; Allen, Bruce G.
2013-01-01
Chronic hemodynamic overload results in left ventricular hypertrophy, fibroblast proliferation, and interstitial fibrosis. The small heat shock protein hsp27 has been shown to be cardioprotective and this requires a phosphorylatable form of this protein. To further understand the regulation of hsp27 in heart in response to stress, we investigated the ability of elevated aortic pressure to activate hsp27-kinase activities. Isolated hearts were subjected to retrograde perfusion and then snap-frozen. Hsp27-kinase activity was measured in vitro as hsp27 phosphorylation. Immune complex assays revealed that MK2 activity was low in non-perfused hearts and increased following crystalline perfusion at 60 or 120 mmHg. Hsp27-kinase activities were further studied following ion-exchange chromatography. Anion exchange chromatography on Mono Q revealed 2 peaks (‘b’ and ‘c’) of hsp27-kinase activity. A third peak ‘a’ was detected upon chromatography of the Mono Q flow-through fractions on the cation exchange resin, Mono S. The hsp27-kinase activity underlying peaks ‘a’ and ‘c’ increased as perfusion pressure was increased from 40 to 120 mmHg. In contrast, peak ‘b’ increased over pressures 60–100 mmHg but was decreased at 120 mmHg. Peaks ‘a’, ‘b’, and ‘c’ contained MK2 immunoreactivity, whereas MK3 and MK5 immunoreactivity was detected in peak ‘a’. p38 MAPK and phospho-p38 MAPK were also detected in peaks ‘b’ and ‘c’ but absent from peak ‘a’. Hsp27-kinase activity in peaks ‘b’ and ‘c’ (120 mmHg) eluted from a Superose 12 gel filtration column with an apparent molecular mass of 50-kDa. Hence, peaks ‘b’ and ‘c’ were not a result of MK2 forming complexes. In-gel hsp27-kinase assays revealed a single 49-kDa renaturable hsp27-kinase activity in peaks ‘b’ and ‘c’ at 60 mmHg, whereas several hsp27-kinases (p43, p49, p54, p66) were detected in peaks ‘b’ and ‘c’ from hearts perfused at 120 mmHg. Thus, multiple hsp27-kinases were activated in response to elevated aortic pressure in isolated, perfused rat hearts and hence may be implicated in regulating the cardioprotective effects of hsp27 and thus may represent targets for cardioprotective therapy. PMID:22878564
Restaino, Odile Francesca; Finamore, Rosario; Diana, Paola; Marseglia, Mariacarmela; Vitiello, Mario; Casillo, Angela; Bedini, Emiliano; Parrilli, Michelangelo; Corsaro, Maria Michela; Trifuoggi, Marco; De Rosa, Mario; Schiraldi, Chiara
2017-03-15
Chondroitin sulfate is a glycosaminoglycan widely used as active principle of anti-osteoarthritis drugs and nutraceuticals, manufactured by extraction from animal cartilaginous tissues. During the manufacturing procedures, another glycosaminoglycan, the keratan sulfate, might be contemporarily withdrawn, thus eventually constituting a contaminant difficult to be determined because of its structural similarity. Considering the strict regulatory rules on the pureness of pharmaceutical grade chondrotin sulfate there is an urgent need and interest to determine the residual keratan sulfate with specific, sensitive and reliable methods. To pursue this aim, in this paper, for the first time, we set up a multi-analytical and preparative approach based on: i) a newly developed method by high performance anion-exchange chromatography with pulsed amperometric detection, ii) gas chromatography-mass spectrometry analyses, iii) size exclusion chromatography analyses coupled with triple detector array module and on iv) strong anion exchange chromatography separation. Varied KS percentages, in the range from 0.1 to 19.0% (w/w), were determined in seven pharmacopeia and commercial standards and nine commercial samples of different animal origin and manufacturers. Strong anion exchange chromatography profiles of the samples showed three or four different peaks. These peaks analyzed by high performance anion-exchange with pulsed amperometric detection and size exclusion chromatography with triple detector array, ion chromatography and by mono- or two-dimensional nuclear magnetic resonance revealed a heterogeneous composition of both glycosaminoglycans in terms of sulfation grade and molecular weight. High molecular weight species (>100 KDa) were also present in the samples that counted for chains still partially linked to a proteoglycan core. Copyright © 2016 The Author(s). Published by Elsevier B.V. All rights reserved.
Stevenson, Paul G; Tarafder, Abhijit; Guiochon, Georges
2012-01-13
A 2D comprehensive chromatographic separation of blackberry sage fragrant oil was performed by using HPLC in the first dimension and SFC in the second. A C(18)-bonded silica column eluted with an ACN gradient was used in the HPLC dimension and an amino-bonded silica column eluted with ACN as a modifier in the SFC dimension. This 2D separation was completed in the off-line mode, the fractions from the HPLC column being collected and injected in the SFC column. The retention factors on the two columns have a -0.757 correlation coefficient. The method provides a practical peak capacity of 2400 in 280 min. The first eluted peaks in HPLC are the last ones eluted in SFC and vice versa. The results demonstrate that the coupling of an HPLC and an SFC separation have a great potential for 2D chromatographic separations. Copyright © 2011 Elsevier B.V. All rights reserved.
Biotransformation of bromhexine by Cunninghamella elegans, C. echinulata and C. blakesleeana.
Dube, Aman K; Kumar, Maushmi S
Fungi is a well-known model used to study drug metabolism and its production in in vitro condition. We aim to screen the most efficient strain of Cunninghamella sp. among C. elegans, C. echinulata and C. blakesleeana for bromhexine metabolites production. We characterized the metabolites produced using various analytical tools and compared them with mammalian metabolites in Rat liver microsomes (RLM). The metabolites were collected by two-stage fermentation of bromhexine with different strains of Cunninghamella sp. followed by extraction. Analysis was done by thin layer chromatography, high performance thin layer chromatography, Fourier transform infrared spectroscopy, high performance liquid chromatography and Liquid chromatography-mass spectrometry. The role of Cytochrome P3A4 (CYP3A4) enzymes in bromhexine metabolism was studied. Fungal incubates were spiked with reference standard - clarithromycin to confirm the role of CYP3A4 enzyme in bromhexine metabolism. Three metabolites appeared at 4.7, 5.5 and 6.4min retention time in HPLC. Metabolites produced by C. elegans and RLM were concluded to be similar based on their retention time, peak area and peak response of 30.05%, 21.06%, 1.34%, and 47.66% of three metabolites and bromhexine in HPLC. The role of CYP3A4 enzyme in metabolism of bromhexine and the presence of these enzymes in Cunninghamella species was confirmed due to absence of peaks at 4.7, 5.4 and 6.7min when RLM were incubated with a CYP3A4 enzyme inhibitor - clarithromycin. Copyright © 2016 Sociedade Brasileira de Microbiologia. Published by Elsevier Editora Ltda. All rights reserved.
Yu, Kate; Little, David; Plumb, Rob; Smith, Brian
2006-01-01
A quantitative Ultra Performance liquid chromatography/tandem mass spectrometry (UPL/MS/MS) protocol was developed for a five-compound mixture in rat plasma. A similar high-performance liquid chromatography/tandem mass spectrometry (HPLC/MS/MS) quantification protocol was developed for comparison purposes. Among the five test compounds, three preferred positive electrospray ionization (ESI) and two preferred negative ESI. As a result, both UPLC/MS/MS and HPLC/MS/MS analyses were performed by having the mass spectrometer collecting ESI multiple reaction monitoring (MRM) data in both positive and negative ion modes during a single injection. Peak widths for most standards were 4.8 s for the HPLC analysis and 2.4 s for the UPLC analysis. There were 17 to 20 data points obtained for each of the LC peaks. Compared with the HPLC/MS/MS method, the UPLC/MS/MS method offered 3-fold decrease in retention time, up to 10-fold increase in detected peak height, with 2-fold decrease in peak width. Limits of quantification (LOQs) for both HPLC and UPLC methods were evaluated. For UPLC/MS/MS analysis, a linear range up to four orders of magnitude was obtained with r2 values ranging from 0.991 to 0.998. The LOQs for the five analytes ranged from 0.08 to 9.85 ng/mL. Three levels of quality control (QC) samples were analyzed. For the UPLC/MS/MS protocol, the percent relative standard deviation (RSD%) for low QC (2 ng/mL) ranged from 3.42 to 8.67% (N = 18). The carryover of the UPLC/MS/MS protocol was negligible and the robustness of the UPLC/MS/MS system was evaluated with up to 963 QC injections. Copyright 2006 John Wiley & Sons, Ltd.
Muhammad, Saqib; Han, Shengli; Xie, Xiaoyu; Wang, Sicen; Aziz, Muhammad Majid
2017-01-01
Cell membrane chromatography is a simple, specific, and time-saving technique for studying drug-receptor interactions, screening of active components from complex mixtures, and quality control of traditional Chinese medicines. However, the short column life, low sensitivity, low column efficiency (so cannot resolve satisfactorily mixture of compounds), low peak capacity, and inefficient in structure identification were bottleneck in its application. Combinations of cell membrane chromatography with multidimensional chromatography such as two-dimensional liquid chromatography and high sensitivity detectors like mass have significantly reduced many of the above-mentioned shortcomings. This paper provides an overview of the current advances in online two-dimensional-based cell membrane chromatography for screening target components from traditional Chinese medicines with particular emphasis on the instrumentation, preparation of cell membrane stationary phase, advantages, and disadvantages compared to alternative approaches. The last section of the review summarizes the applications of the online two-dimensional high-performance liquid chromatography based cell membrane chromatography reported since its emergence to date (2010-June 2016). © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Kshirsagar, Parthraj R; Hegde, Harsha; Pai, Sandeep R
2016-05-01
This study was designed to understand the effect of storage in polypropylene microcentrifuge tubes and glass vials during ultra-flow liquid chromatographic (UFLC) analysis. One ml of methanol was placed in polypropylene microcentrifuge tubes (PP material, Autoclavable) and glass vials (Borosilicate) separately for 1, 2, 4, 8, 10, 20, 40, and 80 days intervals stored at -4°C. Contaminant peak was detected in methanol stored in polypropylene microcentrifuge tubes using UFLC analysis. The contaminant peak detected was prominent, sharp detectable at 9.176 ± 0.138 min on a Waters 250-4.6 mm, 4 μ, Nova-Pak C18 column with mobile phase consisting of methanol:water (70:30). It was evident from the study that long-term storage of biological samples prepared using methanol in polypropylene microcentrifuge tubes produce contaminant peak. Further, this may mislead in future reporting an unnatural compound by researchers. Long-term storage of biological samples prepared using methanol in polypropylene microcentrifuge tubes produce contaminant peakContamination peak with higher area under the curve (609993) was obtained in ultra-flow liquid chromatographic run for methanol stored in PP microcentrifuge tubesContamination peak was detected at retention time 9.113 min with a lambda max of 220.38 nm and 300 mAU intensity on the given chromatographic conditionsGlass vials serve better option over PP microcentrifuge tubes for storing biological samples. Abbreviations used: UFLC: Ultra Flow Liquid Chromatography; LC: Liquid Chromatography; MS: Mass spectrometry; AUC: Area Under Curve.
Åsberg, Dennis; Samuelsson, Jörgen; Leśko, Marek; Cavazzini, Alberto; Kaczmarski, Krzysztof; Fornstedt, Torgny
2015-07-03
The importance of the generated temperature and pressure gradients in ultra-high-pressure liquid chromatography (UHPLC) are investigated and compared to high-pressure liquid chromatography (HPLC). The drug Omeprazole, together with three other model compounds (with different chemical characteristics, namely uncharged, positively and negatively charged) were used. Calculations of the complete temperature profile in the column at UHPLC conditions showed, in our experiments, a temperature difference between the inlet and outlet of 16 °C and a difference of 2 °C between the column center and the wall. Through van't Hoff plots, this information was used to single out the decrease in retention factor (k) solely due to the temperature gradient. The uncharged solute was least affected by temperature with a decrease in k of about 5% while for charged solutes the effect was more pronounced, with k decreases up to 14%. A pressure increase of 500 bar gave roughly 5% increase in k for the uncharged solute, while omeprazole and the other two charged solutes gave about 25, 20 and 15% increases in k, respectively. The stochastic model of chromatography was applied to estimate the dependence of the average number of adsorption/desorption events (n) and the average time spent by a molecule in the stationary phase (τs) on temperature and pressure on peak shape for the tailing, basic solute. Increasing the temperature yielded an increase in n and decrease in τs which resulted in less skew at high temperatures. With increasing pressure, the stochastic modeling gave interesting results for the basic solute showing that the skew of the peak increased with pressure. The conclusion is that pressure effects are more pronounced for both retention and peak shape than the temperature effects for the polar or charged compounds in our study. Copyright © 2015 Elsevier B.V. All rights reserved.
Dores, R M; Sei, C A; Morrissey, M A; Crim, J W; Kawauchi, H
1988-01-01
Acid extracts of the intermediate pituitary of the holostean fish, Amia calva, were fractionated by gel filtration chromatography and analyzed with radioimmunoassays specific for N-acetylated beta-endorphin and C-terminally amidated alpha-MSH. In these extracts beta-endorphin-related immunoreactive material and alpha-MSH-related immunoreactive material were present in roughly equimolar amounts. The immunoreactive beta-endorphin-sized material was tested for opiate receptor binding activity using a beta-endorphin radioreceptor assay. The results of these studies were negative. The immunoreactive beta-endorphin-sized material was further analyzed by cation exchange chromatography at pH 2.5. Two major and three minor peaks of immunoreactive material were isolated. Peak 5 exhibited a net charge of +7 at pH 2.5 and represented 53% of the total immunoreactivity recovered. Peak 2 with a net charge of +3 at this pH represented 38% of the total immunoreactivity recovered. The minor forms, Peaks 1, 3 and 4, exhibited net charges of +2, +4 and +6, respectively. The apparent molecular weights of Peaks 2 and 5 were determined on a Sephadex G-50 column. Peak 2 had an apparent molecular weight of 2.7 Kd and Peak 5 had an apparent molecular weight of 3.5 Kd. Reverse phase HPLC analysis of Peak 5 indicates that this form of Amia beta-endorphin had chromatographic properties similar to salmon beta-endorphin II. These results would suggest that N-terminal acetylation and C-terminal proteolytic cleavage are important post-translational modifications of the forms of Amia beta-endorphin.
Accurate LC peak boundary detection for ¹⁶O/¹⁸O labeled LC-MS data.
Cui, Jian; Petritis, Konstantinos; Tegeler, Tony; Petritis, Brianne; Ma, Xuepo; Jin, Yufang; Gao, Shou-Jiang S J; Zhang, Jianqiu Michelle
2013-01-01
In liquid chromatography-mass spectrometry (LC-MS), parts of LC peaks are often corrupted by their co-eluting peptides, which results in increased quantification variance. In this paper, we propose to apply accurate LC peak boundary detection to remove the corrupted part of LC peaks. Accurate LC peak boundary detection is achieved by checking the consistency of intensity patterns within peptide elution time ranges. In addition, we remove peptides with erroneous mass assignment through model fitness check, which compares observed intensity patterns to theoretically constructed ones. The proposed algorithm can significantly improve the accuracy and precision of peptide ratio measurements.
Accurate LC Peak Boundary Detection for 16 O/ 18 O Labeled LC-MS Data
Cui, Jian; Petritis, Konstantinos; Tegeler, Tony; Petritis, Brianne; Ma, Xuepo; Jin, Yufang; Gao, Shou-Jiang (SJ); Zhang, Jianqiu (Michelle)
2013-01-01
In liquid chromatography-mass spectrometry (LC-MS), parts of LC peaks are often corrupted by their co-eluting peptides, which results in increased quantification variance. In this paper, we propose to apply accurate LC peak boundary detection to remove the corrupted part of LC peaks. Accurate LC peak boundary detection is achieved by checking the consistency of intensity patterns within peptide elution time ranges. In addition, we remove peptides with erroneous mass assignment through model fitness check, which compares observed intensity patterns to theoretically constructed ones. The proposed algorithm can significantly improve the accuracy and precision of peptide ratio measurements. PMID:24115998
Le Fresne, Sophie; Popova, Milena; Le Vacon, Françoise; Carton, Thomas
2011-12-14
The identification of fish species in transformed food products is difficult because the existing methods are not adapted to heat-processed products containing more than one species. Using a common to all vertebrates region of the cytochrome b gene, we have developed a denaturing high-performance liquid chromatography (DHPLC) fingerprinting method, which allowed us to identify most of the species in commercial crab sticks. Whole fish and fillets were used for the creation of a library of referent DHPLC profiles. Crab sticks generated complex DHPLC profiles in which the number of contained fish species can be estimated by the number of major fluorescence peaks. The identity of some of the species was predicted by comparison of the peaks with the referent profiles, and others were identified after collection of the peak fractions, reamplification, and sequencing. DHPLC appears to be a quick and efficient method to analyze the species composition of complex heat-processed fish products.
NASA Astrophysics Data System (ADS)
Syarifah, V. B.; Rafi, M.; Wahyuni, W. T.
2017-05-01
Brotowali (Tinospora crispa) is widely used in Indonesia as ingredient of herbal medicine formulation. To ensure the quality, safety, and efficacy of herbal medicine products, its chemical constituents should be continuously evaluated. High performance liquid chromatography (HPLC) fingerprint is one of powerful technique for this quality control process. In this study, HPLC fingerprint analysis method was developed for quality control of brotowali. HPLC analysis was performed in C18 column and detection was performed using photodiode array detector. The optimum mobile phase for brotowali fingerprint was acetonitrile (ACN) and 0.1% formic acid in gradient elution mode at a flow rate of 1 mL/min. The number of peaks detected in HPLC fingerprint of brotowali was 32 peaks and 23 peaks for stems and leaves, respectively. Berberine as marker compound was detected at retention time of 20.525 minutes. Evaluation of analytical performance including precision, reproducibility, and stability prove that this HPLC fingerprint analysis was reliable and could be applied for quality control of brotowali.
Dangi, Priya; Khatkar, B S
2018-03-01
Crude glutenin of four commercial wheat varieties viz. C 306, HI 977, HW 2004 and PBW 550 of diverse origin and breadmaking quality were fractionated by size-exclusion chromatography into three fractions of decreasing molecular weights. The relative quantity of peak II, containing LMW-GS specifically, varied considerably among the varieties as reflected from their discrete SEC profiles. The area % of peak II, containing protein of interest, was maximal for C 306 (22.08%) followed by PBW 550 (15.86%). The least proportion of LMW-GS were recovered from variety HW 2004 (9.68%). As the concentration of the sample extract injected to the column increased, the resolution of the peak declined in association with the slight shifting of retention time to the higher values. The best results were obtained for variety C 306 at 100 mg protein concentration with 3 M urea buffer. Consequently, the optimized conditions for purification of LMW-GS in appreciable amounts using SEC were established.
ERIC Educational Resources Information Center
Haddad, Paul R.; Shaw, Matthew J.; Madden, John E.; Dicinoski, Greg W.
2004-01-01
The ability to scan retention data over a wide range of eluent composition opens up the possibility of a computerized selection of the optimal separation conditions. The major characteristics of retention behavior, peak-shape effects and pH effects evident in ion chromatography (IC) using common stationary phases and eluents are illustrated.
Niu, Min; Liu, Hong-Yan; Li, Jia; Zhang, Yong-qing
2015-03-01
To explore the effective components represented by fingerprint contributed to allelopathic effect of different Salvia miltiorrhiza aqueous concentration on seeds and seedlings of radish, grey relational analysis was used to establish the chromatography-efficacy relation. The results show that 15 peaks devote high allelopathic contribution to radish seeds and seedlings. The study will provide a new concept for allelochemicals screening and study.
Martín-Ortiz, A.; Salcedo, J.; Barile, D.; Bunyatratchata, A.; Moreno, F.J.; Martin-García, I.; Clemente, A.; Sanz, M.L.; Ruiz-Matute, A.I.
2016-01-01
A detailed qualitative and quantitative characterization of goat colostrum oligosaccharides (GCO) has been carried out for the first time. Defatted and deproteinized colostrum samples, previously treated by size exclusion chromatography (SEC) to remove lactose, were analyzed by nanoflow liquid chromatography-quadrupole-time of flight mass spectrometry (Nano-LC-Chip-Q-TOF MS). Up to 78 oligosaccharides containing hexose, hexosamine, fucose, N-acetylneuraminic acid or N-glycolylneuraminic acid monomeric units were identified in the samples, some of them detected for the first time in goat colostra. As a second step, a hydrophilic interaction liquid chromatography coupled to mass spectrometry (HILIC-MS) methodology was developed for the separation and quantitation of the main GCO, both acidic and neutral carbohydrates. Among other experimental chromatographic conditions, mobile phase additives and column temperature were evaluated in terms of retention time, resolution, peak width and symmetry of target carbohydrates. Narrow peaks (wh: 0.2–0.6 min) and good symmetry (As: 0.8–1.4) were obtained for GCO using an acetonitrile:water gradient with 0.1% ammonium hydroxide at 40 °C. These conditions were selected to quantify the main oligosaccharides in goat colostrum samples. Values ranging from 140 to 315 mg L−1 for neutral oligosaccharides and from 83 to 251 mg L−1 for acidic oligosaccharides were found. The combination of both techniques resulted to be useful to achieve a comprehensive characterization of GCO. PMID:26427327
NASA Astrophysics Data System (ADS)
Compton, Duane C.; Snapp, Robert R.
2007-09-01
TWiGS (two-dimensional wavelet transform with generalized cross validation and soft thresholding) is a novel algorithm for denoising liquid chromatography-mass spectrometry (LC-MS) data for use in "shot-gun" proteomics. Proteomics, the study of all proteins in an organism, is an emerging field that has already proven successful for drug and disease discovery in humans. There are a number of constraints that limit the effectiveness of liquid chromatography-mass spectrometry (LC-MS) for shot-gun proteomics, where the chemical signals are typically weak, and data sets are computationally large. Most algorithms suffer greatly from a researcher driven bias, making the results irreproducible and unusable by other laboratories. We thus introduce a new algorithm, TWiGS, that removes electrical (additive white) and chemical noise from LC-MS data sets. TWiGS is developed to be a true two-dimensional algorithm, which operates in the time-frequency domain, and minimizes the amount of researcher bias. It is based on the traditional discrete wavelet transform (DWT), which allows for fast and reproducible analysis. The separable two-dimensional DWT decomposition is paired with generalized cross validation and soft thresholding. The Haar, Coiflet-6, Daubechie-4 and the number of decomposition levels are determined based on observed experimental results. Using a synthetic LC-MS data model, TWiGS accurately retains key characteristics of the peaks in both the time and m/z domain, and can detect peaks from noise of the same intensity. TWiGS is applied to angiotensin I and II samples run on a LC-ESI-TOF-MS (liquid-chromatography-electrospray-ionization) to demonstrate its utility for the detection of low-lying peaks obscured by noise.
Freye, Chris E; Bahaghighat, H Daniel; Synovec, Robert E
2018-01-15
Partial modulation via a pulsed flow valve for comprehensive two-dimensional (2D) gas chromatography (GC × GC) is demonstrated, producing narrow peak widths, 2 W b , on the secondary separation dimension, 2 D, coupled with short modulation periods, P M , thus producing a high peak capacity on the 2 D dimension, 2 n c . The GC × GC modulator is a pulse flow valve that injects a pulse of carrier gas at the specified P M , at the connection between the primary, 1 D, column and the 2 D column. Using a commercially available pulse flow valve, this injection technique performs a combination of vacancy chromatography and frontal analysis, whereby each pulse disturbance in the analyte concentration profile as it exits the 1 D column results in data that is readily converted into a 2 D separation. A three-step process converts the raw data into a format analogous to a GC × GC separation, incorporating signal differentiation, baseline correction and conversion to a GC × GC chromatogram representation. A 115-component test mixture with a wide range of boiling points (36-372°C) of nine compound classes is demonstrated using modulation periods of P M = 50, 100, 250, and 500ms, respectively. For the test mixture with a P M of 250ms, peak shapes on 2 D are symmetric with apparent 2 W b ranging from 12 to 45ms producing a 2 n c of ~ 10. Based on the average peak width of 0.93s on the 1 D separation for a time window of 400s, the 1 D peak capacity is 1 n c ∼ 430. Thus, the ideal 2D peak capacity n c,2D is 4300 or a peak capacity production of 650 peaks/min using the P M of 250ms. Additionally, for a P M of 50, 100 and 500ms, the 2 n c are 4, 7, and 12, respectively. Retention times on 2 D, 2 t R , are reproducible having standard deviations less than 1ms. Finally, the processed data is shown to be quantitative, with an average RSD of 4.7% for test analytes. Copyright © 2017 Elsevier B.V. All rights reserved.
Roberts, Mark T; Dufour, Jean-Pierre; Lewis, Alastair C
2004-04-01
The selection and quality of hops is a major determinant in beer flavour. Brewers acknowledge that distinctive characteristics of different hop varieties can be traced to the composition of their essential oils. The difficulty in characterising complex mixtures such as hop oil using 1-D chromatography is that many compounds co-elute. With the introduction of comprehensive multidimensional capillary gas chromatography (GC x GC), there is a tremendous improvement in the separation power or peak capacity. Recent work using GC x GC with flame ionisation detection has suggested that there may be over 1,000 compounds in hop oil. This work describes the use of GC x GC combined with TOFMS detection (Leco Pegasus 4D instrument) to analyse Target hop oil. The TOFMS spectral acquisition rate of 60 Hz provided sufficient spectra per peak (2-D peak base width of 0.1-0.2 s) for identification (119 components were identified with 45 previously unreported compounds). When analysing results, an advantage of GC x GC coupled to TOFMS is that 2-D chromatograms can be viewed for individual masses that are characteristic of particular functional groups. This allows the analyst to view the various homologous series of compounds although in certain cases coelution may still be present as shown by the esters with mass 75.
Lim, Soon Sung; Lee, Min Young; Ahn, Hong Ryul; Choi, Soon Jung; Lee, Jae-Yong; Jung, Sang Hoon
2011-12-01
This study employed the online HPLC-2,2'-azino-bis(3-ethylbenzthiazoline-6-sulphonic acid) (ABTS)(+) bioassay to rapidly determine the antioxidant compounds occurring in the crude extract of Alnus japonica. The negative peaks of the ABTS(+) radical scavenging detection system, which indicated the presence of antioxidant activity, were monitored by measuring the decrease in absorbance at 734 nm. The ABTS(+)-based antioxidant activity profile showed that three negative peaks exhibited antioxidant activity. High-speed counter-current chromatography (HSCCC) was used for preparative scale separation of the three active peaks from the extract. The purity of the isolated compounds was analyzed by HPLC and their structures were identified by (1)H- and (13)C-nuclear magnetic resonance spectrometry (NMR), heteronuclear multiple bond correlation (HMBC), and heteronuclear single quantum correlation (HSQC). Two solvent systems composed of n-hexane/ethylacetate/methanol/water (4:6:4:6, v/v) and of ethyl acetate/methanol/water (1:0.1:1, v/v) were performed in high-speed counter-current chromatography. Consequently, a total of 527 mg of hirsutanonol 5-O-β-D-glucopyranoside, 80.04 mg of 3-deoxohirsutenonol 5-O-β-D-glucopyranoside, and 91.0 mg of hirsutenone were obtained with purity of 94.7, 90.5, and 98.6%, respectively. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Deng, Haishan; Shang, Erxin; Xiang, Bingren; Xie, Shaofei; Tang, Yuping; Duan, Jin-ao; Zhan, Ying; Chi, Yumei; Tan, Defei
2011-03-15
The stochastic resonance algorithm (SRA) has been developed as a potential tool for amplifying and determining weak chromatographic peaks in recent years. However, the conventional SRA cannot be applied directly to ultra-performance liquid chromatography/time-of-flight mass spectrometry (UPLC/TOFMS). The obstacle lies in the fact that the narrow peaks generated by UPLC contain high-frequency components which fall beyond the restrictions of the theory of stochastic resonance. Although there already exists an algorithm that allows a high-frequency weak signal to be detected, the sampling frequency of TOFMS is not fast enough to meet the requirement of the algorithm. Another problem is the depression of the weak peak of the compound with low concentration or weak detection response, which prevents the simultaneous determination of multi-component UPLC/TOFMS peaks. In order to lower the frequencies of the peaks, an interpolation and re-scaling frequency stochastic resonance (IRSR) is proposed, which re-scales the peak frequencies via linear interpolating sample points numerically. The re-scaled UPLC/TOFMS peaks could then be amplified significantly. By introducing an external energy field upon the UPLC/TOFMS signals, the method of energy gain was developed to simultaneously amplify and determine weak peaks from multi-components. Subsequently, a multi-component stochastic resonance algorithm was constructed for the simultaneous quantitative determination of multiple weak UPLC/TOFMS peaks based on the two methods. The optimization of parameters was discussed in detail with simulated data sets, and the applicability of the algorithm was evaluated by quantitative analysis of three alkaloids in human plasma using UPLC/TOFMS. The new algorithm behaved well in the improvement of signal-to-noise (S/N) compared to several normally used peak enhancement methods, including the Savitzky-Golay filter, Whittaker-Eilers smoother and matched filtration. Copyright © 2011 John Wiley & Sons, Ltd.
Rapid identification of Clostridium species by high-pressure liquid chromatography.
Harpold, D J; Wasilauskas, B L; O'Connor, M L
1985-01-01
High-pressure liquid chromatography was evaluated as a rapid means of identifying various species of clostridia. Isolates were inoculated into a defined medium and incubated aerobically for 1 h at 35 degrees C. The organisms were removed, and the supernatants were derivatized for 1 min at room temperature by the addition of o-phthalaldehyde. The total time required to run each chromatogram was approximately 50 min. Standardized peak heights for each medium component and any new peaks formed were calculated for each isolate and compared with those for uninoculated control medium. Multiple isolates of various Clostridium species gave consistent patterns of medium utilization that could be used for identification. This rapid method can easily be adapted for laboratory use and has the potential for automation. PMID:3905852
Ammonium fluoride as a mobile phase additive in aqueous normal phase chromatography.
Pesek, Joseph J; Matyska, Maria T
2015-07-03
The use of ammonium fluoride as a mobile phase additive in aqueous normal phase chromatography with silica hydride-based stationary phases and mass spectrometry detection is evaluated. Retention times, peak shape, efficiency and peak intensity are compared to the more standard additives formic acid and ammonium formate. The test solutes were NAD, 3-hydroxyglutaric acid, α-ketoglutaric acid, p-aminohippuric acid, AMP, ATP, aconitic acid, threonine, N-acetyl carnitine, and 3-methyladipic acid. The column parameters are assessed in both the positive and negative ion detection modes. Ammonium fluoride is potentially an aggressive mobile phase additive that could have detrimental effects on column lifetime. Column reproducibility is measured and the effects of switching between different additives are also tested. Copyright © 2015 Elsevier B.V. All rights reserved.
Alcalde-Eon, Cristina; Saavedra, Gloria; de Pascual-Teresa, Sonia; Rivas-Gonzalo, Julián C
2004-10-29
High-performance liquid chromatography (HPLC)-diode array detection (DAD)-mass spectrometry (MS) techniques have been successfully employed in the identification of the anthocyanins of the coloured tubers of isla oca (Oxalis tuberosa), the second most cultivated tuber in the Andean region. Tubers underwent a pre-treatment step in order to inhibit enzymatic reactions and to obtain a stable powder or "concentrate". This concentrate was dissolved, purified and then analysed. Eight different compounds were found. The major peaks were malvidin glucosides (malvidin 3-O-glucoside and 3,5-O-diglucoside). The rest of the peaks were 3,5-O-diglucosides of petunidin and peonidin, and 3-O-glucosides of delphinidin, petunidin and peonidin. Only malvidin 3-O-acetylglucoside-5-O-glucoside was found as an acylated anthocyanin.
Cooke, Darren N; Thomasset, Sarah; Boocock, David J; Schwarz, Michael; Winterhalter, Peter; Steward, William P; Gescher, Andreas J; Marczylo, Timothy H
2006-09-20
Anthocyanins are potent antioxidants that may possess chronic disease preventive properties. Here, rapid, reliable, and reproducible solid-phase extraction, high-performance liquid chromatography (HPLC), and mass spectrometry techniques are described for the isolation, separation, and identification of anthocyanins in human plasma and urine. Recoveries of cyanidin-3-glucoside (C3G) were 91% from water, 71% from plasma, and 81% from urine. Intra- and interday variations for C3G extraction were 9 and 9.1% in plasma and 7.1 and 9.1% in urine and were less than 15% for all anthocyanins from a standardized bilberry extract (mirtoselect). Analysis of mirtoselect by HPLC with UV detection produced spectra with 15 peaks compatible with anthocyanin components found in mirtoselect within a total run time of 15 min. Chromatographic analysis of human urine obtained after an oral dose of mirtoselect yielded 19 anthocyanin peaks. Mass spectrometric analysis employing multiple reaction monitoring suggests the presence of unchanged anthocyanins and anthocyanidin glucuronide metabolites.
Savary, B J
2001-08-01
A rapid and simple method was developed, using perfusion chromatography media, to separate the fruit-specific pectin methylesterase (PME) isoform from the depolymerizing enzyme polygalacturonase (PG) and other contaminating pectinases present in a commercial tomato enzyme preparation. Pectinase activities were adsorbed onto a Poros HS (a strong cation exchanger) column in 20 M HEPES buffer at pH 7.5. The fruit-specific PME was eluted from the column with 80 mM NaCl, followed by a step to 300 mM NaCl to elute PG activity. Rechromatography of the PME activity peak with a linear gradient further resolved two PME isoenzymes and removed residual traces of PG activity. The PG activity peak was further treated with lectin affinity chromatography to provide purified PG enzyme, which was separated from a salt-dependent PME (tentatively identified as a "ubiquitous-type" isoform), and a pectin acetylesterase. The later enzyme has not been reported previously in tomato. This method provides monocomponent enzymes that will be useful for studying enzyme mechanisms and for modifying pectin structure and functional properties.
Yuan, Yu-feng; Tao, Zhan-hua; Wang, Xue; Li, Yong-qing; Liu, Jun-xian
2012-03-01
The pigments from Rhodotorula glutinis were separated by using thin layer chromatography, and the result showed that Rhodotorula glutinis cells could synthesize at least three kinds of pigments, which were beta-carotene, torulene, and torularhodin. The Raman spectra based on the three pigments were acquired, and original spectra were preprocessed by background elimination, baseline correction, and three-point-smoothing, then the averaged spectra from different pigments were investigated, and the result indicated that Raman shift which represents C-C bond was different, and the wave number of beta-carotene demonstrated the largest deviation, finally torulene and torularhodin in Rhodotorula glutinis had more content than beta-carotene. Quantitative analysis of Raman peak height ratio revealed that peak height ratio of pigments showed little difference, which could be used as parameters for further research on living cells, providing reference content of pigments. The above results suggest that Raman spectroscopy combined with thin layer chromatography can be applied to analyze pigments from Rhodotorula glutinis, provides abundant information about pigments, and serves as an effective method to study pigments.
Solubilization and purification of melatonin receptors from lizard brain.
Rivkees, S A; Conron, R W; Reppert, S M
1990-09-01
Melatonin receptors in lizard brain were identified and characterized using 125I-labeled melatonin ([125I]MEL) after solubilization with the detergent digitonin. Saturation studies of solubilized material revealed a high affinity binding site, with an apparent equilibrium dissociation constant of 181 +/- 45 pM. Binding was reversible and inhibited by melatonin and closely related analogs, but not by serotonin or norepinephrine. Treatment of solubilized material with the non-hydrolyzable GTP analog, guanosine 5'-(3-O-thiotriphosphate) (GTP-gamma-S), significantly reduced receptor affinity. Gel filtration chromatography of solubilized melatonin receptors revealed a high affinity, large (Mr 400,000) peak of specific binding. Pretreatment with GTP-gamma-S before solubilization resulted in elution of a lower affinity, smaller (Mr 150,000) peak of specific binding. To purify solubilized receptors, a novel affinity chromatography resin was developed by coupling 6-hydroxymelatonin with Epoxy-activated Sepharose 6B. Using this resin, melatonin receptors were purified approximately 10,000-fold. Purified material retained the pharmacologic specificity of melatonin receptors. These results show that melatonin receptors that bind ligand after detergent treatment can be solubilized and substantially purified by affinity chromatography.
Chemical markers of shiikuwasha juice adulterated with calamondin juice.
Yamamoto, Kenta; Yahada, Ayumi; Sasaki, Kumi; Ogawa, Kazunori; Koga, Nobuyuki; Ohta, Hideaki
2012-11-07
Detection of shiikuwasha (Citrus depressa Hayata) juice adulterated with calamondin (Citrus madurensis Lour.) juice was investigated by the analyses of (1) phloretin dihydrochalcone glucoside, 3',5'-di-C-β-glucopyranosylphloretin (PD) detected by thin-layer chromatography and high-performance liquid chromatography (HPLC), (2) polymethoxylated flavones (PMFs), included nobiletin, tangeretin, and sinensetin, detected by HPLC, and (3) γ-terpinene peak percentage obtained by headspace solid-phase microextraction gas chromatography with cryofocusing. PD was detected in calamondin juice (25.5 mg/100 mL) but not in shiikuwasha juice. Shiikuwasha juice contained higher levels of nobiletin (48.8 mg/100 mL) than calamondin juice (2.4 mg/100 mL). Shiikuwasha juice was characterized by containing a higher percentage of γ-terpinene (12.3%) than calamondin juice (0.7%). A discrimination function obtained by a linear discriminant analysis with PMFs and a peak ratio of [nobiletin/tangeretin] and γ-terpinene detected the adulteration with accuracies of 91.7%. These three chemical markers were useful to detect shiikuwasha juice that is suspected of being adulterated with calamondin juice.
Wang, Shau-Chun; Huang, Chih-Min; Chiang, Shu-Min
2007-08-17
This paper reports a simple chemometric technique to alter the noise spectrum of liquid chromatography-tandem mass spectrometry (LC-MS-MS) chromatogram between two consecutive matched filter procedures to improve the peak signal-to-noise (S/N) ratio enhancement. This technique is to multiply one match-filtered LC-MS-MS chromatogram with another artificial chromatogram added with thermal noises prior to the second matched filter. Because matched filter cannot eliminate low-frequency components inherent in the flicker noises of spike-like sharp peaks randomly riding on LC-MS-MS chromatograms, efficient peak S/N ratio improvement cannot be accomplished using one-step or consecutive matched filter procedures to process LC-MS-MS chromatograms. In contrast, when the match-filtered LC-MS-MS chromatogram is conditioned with the multiplication alteration prior to the second matched filter, much better efficient ratio improvement is achieved. The noise frequency spectrum of match-filtered chromatogram, which originally contains only low-frequency components, is altered to span a boarder range with multiplication operation. When the frequency range of this modified noise spectrum shifts toward higher frequency regime, the second matched filter, working as a low-pass filter, is able to provide better filtering efficiency to obtain higher peak S/N ratios. Real LC-MS-MS chromatograms containing random spike-like peaks, of which peak S/N ratio improvement is less than four times with two consecutive matched filters typically, are remedied to accomplish much better ratio enhancement approximately 16-folds when the noise frequency spectrum is modified between two matched filters.
Herath, H M D R; Shaw, P N; Cabot, P; Hewavitharana, A K
2010-06-15
The high-performance liquid chromatography (HPLC) column is capable of enrichment/pre-concentration of trace impurities in the mobile phase during the column equilibration, prior to sample injection and elution. These impurities elute during gradient elution and result in significant chromatographic peaks. Three types of purified water were tested for their impurity levels, and hence their performances as mobile phase, in HPLC followed by total ion current (TIC) mode of MS. Two types of HPLC-grade water produced 3-4 significant peaks in solvent blanks while LC/MS-grade water produced no peaks (although peaks were produced by LC/MS-grade water also after a few days of standing). None of the three waters produced peaks in HPLC followed by UV-Vis detection. These peaks, if co-eluted with analyte, are capable of suppressing or enhancing the analyte signal in a MS detector. As it is not common practice to run solvent blanks in TIC mode, when quantification is commonly carried out using single ion monitoring (SIM) or single or multiple reaction monitoring (SRM or MRM), the effect of co-eluting impurities on the analyte signal and hence on the accuracy of the results is often unknown to the analyst. Running solvent blanks in TIC mode, regardless of the MS mode used for quantification, is essential in order to detect this problem and to take subsequent precautions. Copyright (c) 2010 John Wiley & Sons, Ltd.
Chromaligner: a web server for chromatogram alignment.
Wang, San-Yuan; Ho, Tsung-Jung; Kuo, Ching-Hua; Tseng, Yufeng J
2010-09-15
Chromaligner is a tool for chromatogram alignment to align retention time for chromatographic methods coupled to spectrophotometers such as high performance liquid chromatography and capillary electrophoresis for metabolomics works. Chromaligner resolves peak shifts by a constrained chromatogram alignment. For a collection of chromatograms and a set of defined peaks, Chromaligner aligns the chromatograms on defined peaks using correlation warping (COW). Chromaligner is faster than the original COW algorithm by k(2) times, where k is the number of defined peaks in a chromatogram. It also provides alignments based on known component peaks to reach the best results for further chemometric analysis. Chromaligner is freely accessible at http://cmdd.csie.ntu.edu.tw/~chromaligner.
Robinson, Mark D; De Souza, David P; Keen, Woon Wai; Saunders, Eleanor C; McConville, Malcolm J; Speed, Terence P; Likić, Vladimir A
2007-10-29
Gas chromatography-mass spectrometry (GC-MS) is a robust platform for the profiling of certain classes of small molecules in biological samples. When multiple samples are profiled, including replicates of the same sample and/or different sample states, one needs to account for retention time drifts between experiments. This can be achieved either by the alignment of chromatographic profiles prior to peak detection, or by matching signal peaks after they have been extracted from chromatogram data matrices. Automated retention time correction is particularly important in non-targeted profiling studies. A new approach for matching signal peaks based on dynamic programming is presented. The proposed approach relies on both peak retention times and mass spectra. The alignment of more than two peak lists involves three steps: (1) all possible pairs of peak lists are aligned, and similarity of each pair of peak lists is estimated; (2) the guide tree is built based on the similarity between the peak lists; (3) peak lists are progressively aligned starting with the two most similar peak lists, following the guide tree until all peak lists are exhausted. When two or more experiments are performed on different sample states and each consisting of multiple replicates, peak lists within each set of replicate experiments are aligned first (within-state alignment), and subsequently the resulting alignments are aligned themselves (between-state alignment). When more than two sets of replicate experiments are present, the between-state alignment also employs the guide tree. We demonstrate the usefulness of this approach on GC-MS metabolic profiling experiments acquired on wild-type and mutant Leishmania mexicana parasites. We propose a progressive method to match signal peaks across multiple GC-MS experiments based on dynamic programming. A sensitive peak similarity function is proposed to balance peak retention time and peak mass spectra similarities. This approach can produce the optimal alignment between an arbitrary number of peak lists, and models explicitly within-state and between-state peak alignment. The accuracy of the proposed method was close to the accuracy of manually-curated peak matching, which required tens of man-hours for the analyzed data sets. The proposed approach may offer significant advantages for processing of high-throughput metabolomics data, especially when large numbers of experimental replicates and multiple sample states are analyzed.
Fitz, Brian D; Mannion, Brandyn C; To, Khang; Hoac, Trinh; Synovec, Robert E
2015-05-01
Low thermal mass gas chromatography (LTM-GC) was evaluated for rapid, high peak capacity separations with three injection methods: liquid, headspace solid phase micro-extraction (HS-SPME), and direct vapor. An Agilent LTM equipped with a short microbore capillary column was operated at a column heating rate of 250 °C/min to produce a 60s separation. Two sets of experiments were conducted in parallel to characterize the instrumental platform. First, the three injection methods were performed in conjunction with in-house built high-speed cryo-focusing injection (HSCFI) to cryogenically trap and re-inject the analytes onto the LTM-GC column in a narrower band. Next, the three injection methods were performed natively with LTM-GC. Using HSCFI, the peak capacity of a separation of 50 nl of a 73 component liquid test mixture was 270, which was 23% higher than without HSCFI. Similar peak capacity gains were obtained when using the HSCFI with HS-SPME (25%), and even greater with vapor injection (56%). For the 100 μl vapor sample injected without HSCFI, the preconcentration factor, defined as the ratio of the maximum concentration of the detected analyte peak relative to the analyte concentration injected with the syringe, was determined to be 11 for the earliest eluting peak (most volatile analyte). In contrast, the preconcentration factor for the earliest eluting peak using HSCFI was 103. Therefore, LTM-GC is demonstrated to natively provide in situ analyte trapping, although not to as great an extent as with HSCFI. We also report the use of LTM-GC applied with time-of-flight mass spectrometry (TOFMS) detection for rapid, high peak capacity separations from SPME sampled banana peel headspace. Copyright © 2015 Elsevier B.V. All rights reserved.
1988-11-01
coccolithophorids 19. ABSTRACT (CanMyw on rviosfe Inhcesway aM den*t byblock nmber) Until the application of high-performance liquid chromatography (HPLC) to... phycocyanin , has a maximum 0 01 absorption peak. The spectra for the 008 chlorophyll degradation products (chlo- 0.06 rophyllides, phaeophorbides and...phaeo- phytins) which are not shown in Figure z I have similar absorption maxima as their associated chlorophylls, 002 , Until the application of high
Detailed budget analysis of HONO in central London reveals a missing daytime source
NASA Astrophysics Data System (ADS)
Lee, J. D.; Whalley, L. K.; Heard, D. E.; Stone, D.; Dunmore, R. E.; Hamilton, J. F.; Young, D. E.; Allan, J. D.; Laufs, S.; Kleffmann, J.
2016-03-01
Measurements of HONO were carried out at an urban background site near central London as part of the Clean air for London (ClearfLo) project in summer 2012. Data were collected from 22 July to 18 August 2014, with peak values of up to 1.8 ppbV at night and non-zero values of between 0.2 and 0.6 ppbV seen during the day. A wide range of other gas phase, aerosol, radiation, and meteorological measurements were made concurrently at the same site, allowing a detailed analysis of the chemistry to be carried out. The peak HONO/NOx ratio of 0.04 is seen at ˜ 02:00 UTC, with the presence of a second, daytime, peak in HONO/NOx of similar magnitude to the night-time peak, suggesting a significant secondary daytime HONO source. A photostationary state calculation of HONO involving formation from the reaction of OH and NO and loss from photolysis, reaction with OH, and dry deposition shows a significant underestimation during the day, with calculated values being close to 0, compared to the measurement average of 0.4 ppbV at midday. The addition of further HONO sources from the literature, including dark conversion of NO2 on surfaces, direct emission, photolysis of ortho-substituted nitrophenols, the postulated formation from the reaction of HO2 × H2O with NO2, photolysis of adsorbed HNO3 on ground and aerosols, and HONO produced by photosensitized conversion of NO2 on the surface increases the daytime modelled HONO to 0.1 ppbV, still leaving a significant missing daytime source. The missing HONO is plotted against a series of parameters including NO2 and OH reactivity (used as a proxy for organic material), with little correlation seen. Much better correlation is observed with the product of these species with j(NO2), in particular NO2 and the product of NO2 with OH reactivity. This suggests the missing HONO source is in some way related to NO2 and also requires sunlight. Increasing the photosensitized surface conversion rate of NO2 by a factor of 10 to a mean daytime first-order loss of ˜ 6 × 10-5 s-1 (but which varies as a function of j(NO2)) closes the daytime HONO budget at all times (apart from the late afternoon), suggesting that urban surfaces may enhance this photosensitized source. The effect of the missing HONO to OH radical production is also investigated and it is shown that the model needs to be constrained to measured HONO in order to accurately reproduce the OH radical measurements.
Gritti, Fabrice; McDonald, Thomas; Gilar, Martin
2016-06-17
250μm×100mm fused silica glass capillaries were packed with 1.8μm high-strength silica (HSS) fully porous particles. They were prepared without bulky stainless steel endfittings and metal frits, which both generate significant sample dispersion. The isocratic efficiencies and gradient peak capacities of these prototype capillary columns were measured for small molecules (n-alkanophenones) using a home-made ultra-low dispersive micro-HPLC instrument. Their resolution power was compared to that of standard 2.1mm×100mm very high-pressure liquid chromatography (vHPLC) narrow-bore columns packed with the same particles. The results show that, for the same column efficiency (25000 plates) and gradient steepness (0.04min(-1)), the peak capacity of the 250μm i.d. capillary columns is systematically 15-20% higher than that of the 2.1mm i.d. narrow-bore columns. A validated model of gradient chromatography enabled one to predict accurately the observed peak capacities of the capillary columns for non-linear solvation strength retention behavior and under isothermal conditions. Thermodynamics applied to the eluent quantified the temperature difference for the thermal gradients in both capillary and narrow-bore columns. Experimental data revealed that the gradient peak capacity is more affected by viscous heating than the column efficiency. Unlike across 2.1mm i.d. columns, the changes in eluent composition across the 250μm i.d. columns during the gradient is rapidly relaxed by transverse dispersion. The combination of (1) the absence of viscous heating and (2) the high uniformity of the eluent composition across the diameter of capillary columns explains the intrinsic advantage of capillary over narrow-bore columns in gradient vHPLC. Copyright © 2016 Elsevier B.V. All rights reserved.
Shu-Jiang, Liu; Zhan-Ying, Chen; Yin-Zhong, Chang; Shi-Lian, Wang; Qi, Li; Yuan-Qing, Fan
2013-10-11
Multidimensional gas chromatography is widely applied to atmospheric xenon monitoring for the Comprehensive Nuclear-Test-Ban Treaty (CTBT). To improve the capability for xenon sampling from the atmosphere, sampling techniques have been investigated in detail. The sampling techniques are designed by xenon outflow curves which are influenced by many factors, and the injecting condition is one of the key factors that could influence the xenon outflow curves. In this paper, the xenon outflow curves of single-pulse injection in two-dimensional gas chromatography has been tested and fitted as a function of exponential modified Gaussian distribution. An inference formula of the xenon outflow curve for six-pulse injection is derived, and the inference formula is also tested to compare with its fitting formula of the xenon outflow curve. As a result, the curves of both the one-pulse and six-pulse injections obey the exponential modified Gaussian distribution when the temperature of the activated carbon column's temperature is 26°C and the flow rate of the carrier gas is 35.6mLmin(-1). The retention time of the xenon peak for one-pulse injection is 215min, and the peak width is 138min. For the six-pulse injection, however, the retention time is delayed to 255min, and the peak width broadens to 222min. According to the inferred formula of the xenon outflow curve for the six-pulse injection, the inferred retention time is 243min, the relative deviation of the retention time is 4.7%, and the inferred peak width is 225min, with a relative deviation of 1.3%. Copyright © 2013 Elsevier B.V. All rights reserved.
Wang, San-Yuan; Kuo, Ching-Hua; Tseng, Yufeng J
2015-03-03
Able to detect known and unknown metabolites, untargeted metabolomics has shown great potential in identifying novel biomarkers. However, elucidating all possible liquid chromatography/time-of-flight mass spectrometry (LC/TOF-MS) ion signals in a complex biological sample remains challenging since many ions are not the products of metabolites. Methods of reducing ions not related to metabolites or simply directly detecting metabolite related (pure) ions are important. In this work, we describe PITracer, a novel algorithm that accurately detects the pure ions of a LC/TOF-MS profile to extract pure ion chromatograms and detect chromatographic peaks. PITracer estimates the relative mass difference tolerance of ions and calibrates the mass over charge (m/z) values for peak detection algorithms with an additional option to further mass correction with respect to a user-specified metabolite. PITracer was evaluated using two data sets containing 373 human metabolite standards, including 5 saturated standards considered to be split peaks resultant from huge m/z fluctuation, and 12 urine samples spiked with 50 forensic drugs of varying concentrations. Analysis of these data sets show that PITracer correctly outperformed existing state-of-art algorithm and extracted the pure ion chromatograms of the 5 saturated standards without generating split peaks and detected the forensic drugs with high recall, precision, and F-score and small mass error.
Zang, Qing-Ce; Wang, Jia-Bo; Kong, Wei-Jun; Jin, Cheng; Ma, Zhi-Jie; Chen, Jing; Gong, Qian-Feng; Xiao, Xiao-He
2011-12-01
The fingerprints of artificial Calculus bovis extracts from different solvents were established by ultra-performance liquid chromatography (UPLC) and the anti-bacterial activities of artificial C. bovis extracts on Staphylococcus aureus (S. aureus) growth were studied by microcalorimetry. The UPLC fingerprints were evaluated using hierarchical clustering analysis. Some quantitative parameters obtained from the thermogenic curves of S. aureus growth affected by artificial C. bovis extracts were analyzed using principal component analysis. The spectrum-effect relationships between UPLC fingerprints and anti-bacterial activities were investigated using multi-linear regression analysis. The results showed that peak 1 (taurocholate sodium), peak 3 (unknown compound), peak 4 (cholic acid), and peak 6 (chenodeoxycholic acid) are more significant than the other peaks with the standard parameter estimate 0.453, -0.166, 0.749, 0.025, respectively. So, compounds cholic acid, taurocholate sodium, and chenodeoxycholic acid might be the major anti-bacterial components in artificial C. bovis. Altogether, this work provides a general model of the combination of UPLC chromatography and anti-bacterial effect to study the spectrum-effect relationships of artificial C. bovis extracts, which can be used to discover the main anti-bacterial components in artificial C. bovis or other Chinese herbal medicines with anti-bacterial effects. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Gritti, Fabrice; Sehajpal, Jyotsna; Fairchild, Jacob
2017-03-17
The peak distortion observed in hydrophilic interaction chromatography (HILIC) may be caused by the sample diluent to mobile phase mismatch. The United States Pharmacopeia (USP) method for organic impurities in cetirizine HCl tablets calls for such a mismatch, having a higher concentration of strong solvent in the sample diluent than in the mobile phase. A significant peak deformation is reported for cetirizine (a second-generation antihistamine) when it is purified on a Ethylene Bridged Hybrid (BEH) HILIC column (4.6mm×100mm, 2.5μm particles) using an acetonitrile-water eluent mixture and a sample diluent containing 7% and 9% water (in volume), respectively. The mechanism and physical origin of such peak distortion are related to (1) the diluent-to-eluent excess of water that propagates along the column at a velocity similar to that of the analyte, (2) the significant drop of the Henry's constant of the analyte upon increasing water concentration in the eluent, (3) the sample volume injected, and (4) to the pre-column sample dilution factor that depends on the characteristics of the LC instrument used. This proposed mechanism is validated from the calculation of the concentration profiles of cetirizine and water by using the equilibrium-dispersive (ED) model of chromatography. The observed distortion of cetirizine peaks is successfully predicted from the measurement of (1) the excess adsorption isotherm of water from acetonitrile onto the BEH HILIC adsorbent, (2) the retention factor of cetirizine as a function of the volume fraction (7, 8, and 9%) of water in the mobile phase, and (3) of the pre-column sample dispersion related to the instrument used (HPLC or UHPLC). The results of the calculations enables the user to anticipate the impacts of the diluent-to-eluent mismatch in water content, the injection volume, the analyte retention under infinite dilution, and of the pre-column sample dispersion on the amplitude of peak distortion in HILIC. Appropriate and permitted alterations of the USP method are then suggested based on a sound physico-chemical approach. Copyright © 2017 Elsevier B.V. All rights reserved.
Gianfrilli, P; Pantosti, A; Luzzi, I
1985-01-01
Direct gas-liquid chromatography of faecal specimens with isocaproic acid as a marker was used for the rapid diagnosis of Clostridium difficile associated diarrhoeal diseases. Ninety stools were examined and results were compared with conventional culture on selective medium and cytotoxin assay in tissue culture. Using a combined analysis of isocaproic acid and butyric acid peak heights we defined three categories: positive, negative, and indeterminate. When the indeterminate group was excluded, the positive and negative predictive values of gas-liquid chromatography analysis were 86.9% and 85% respectively compared with culture and 71.4% and 95% respectively compared with cytotoxin assay. PMID:4008667
Smith, Philip A; Lockhart, Bonnie; Besser, Brett W; Michalski, Michael A R
2014-01-01
Hazardous atmospheres in confined spaces may be obvious when a source of air contamination or oxygen (O2) deficiency is recognized. Such is often the case in general industry settings, especially with work processes which create hazardous atmospheres that may be anticipated. Hazards present in active sewers are also well recognized; but the possibility that O2 deficiency or high airborne contaminant concentrations may exist in new construction sewers or storm drains has been repeatedly ignored with deadly results. Low O2 and high carbon dioxide (CO2) concentrations may exist in new construction manholes that have not yet been connected to an active sewer or drain system, and these concentrations have been shown to vary over time. A recent incident is described where workers repeatedly entered such a confined space without incident, but subsequent entry resulted in a fatality and a near-miss for a co-worker rescuer. Additional cases are discussed, with an emphasis placed on elevated CO2 concentrations as a causative factor. A description is provided for the adsorptive gas chromatography whole-air analysis methodology used to quantitatively determine atmospheric conditions present at this type of fatality site or others after an incident, and for the gas chromatography-mass spectrometry method used to provide confirmation of analyte identity with high certainty. Many types of confined spaces may be encountered in addition to the underground varieties discussed, and many possible atmospheric hazards are possible. The definitive whole-air analysis approach described here may be of use and should be considered to investigate many confined space fatality and near-miss cases, and to better understand the causes of dangerous atmosphere conditions that may arise in confined spaces.
Müller, Tobias K H; Cao, Ping; Ewert, Stephanie; Wohlgemuth, Jonas; Liu, Haiyang; Willett, Thomas C; Theodosiou, Eirini; Thomas, Owen R T; Franzreb, Matthias
2013-04-12
An integrated approach to temperature-controlled chromatography, involving copolymer modified agarose adsorbents and a novel travelling cooling zone reactor (TCZR) arrangement, is described. Sepharose CL6B was transformed into a thermoresponsive cation exchange adsorbent (thermoCEX) in four synthetic steps: (i) epichlorohydrin activation; (ii) amine capping; (iii) 4,4'-azobis(4-cyanovaleric acid) immobilization; and 'graft from' polymerization of poly(N-isopropylacrylamide-co-N-tert-butylacrylamide-co-acrylic acid-co-N,N'-methylenebisacrylamide). FT-IR, (1)H NMR, gravimetry and chemical assays allowed precise determination of the adsorbent's copolymer composition and loading, and identified the initial epoxy activation step as a critical determinant of 'on-support' copolymer loading, and in turn, protein binding performance. In batch binding studies with lactoferrin, thermoCEX's binding affinity and maximum adsorption capacity rose smoothly with temperature increase from 20 to 50 °C. In temperature shifting chromatography experiments employing thermoCEX in thermally jacketed columns, 44-51% of the lactoferrin adsorbed at 42 °C could be desorbed under binding conditions by cooling the column to 22 °C, but the elution peaks exhibited strong tailing. To more fully exploit the potential of thermoresponsive chromatography adsorbents, a new column arrangement, the TCZR, was developed. In TCZR chromatography, a narrow discrete cooling zone (special assembly of copper blocks and Peltier elements) is moved along a bespoke fixed-bed separation columnfilled with stationary phase. In tests with thermoCEX, it was possible to recover 65% of the lactoferrin bound at 35 °C using 8 successive movements of the cooling zone at a velocity of 0.1mm/s; over half of the recovered protein was eluted in the first peak in more concentrated form than in the feed. Intra-particle diffusion of desorbed protein out of the support pores, and the ratio between the velocities of the cooling zone and mobile phase were identified as the main parameters affecting TCZR performance. In contrast to conventional systems, which rely on cooling the whole column to effect elution and permit only batch-wise operation, TCZR chromatography generates sharp concentrated elution peaks without tailing effects and appears ideally suited for continuous operation. Copyright © 2013 Elsevier B.V. All rights reserved.
Transfusion associated peak in hb HPLC chromatogram - a case report.
Jain, Sonal; Dass, Jasmita; Pati, Hara Prasad
2012-01-01
High performance liquid chromatography (HPLC) and electrophoresis are commonly used to diagnose various hemoglobinopathies. However, insufficient information about the transfusion history can lead to unexpected and confusing results. We are reporting a case of Juvenile myelomonocytic leukemia (JMML) in which HbHPLC was done to quantify fetal hemoglobin (HbF). The chromatogram showed elevated HbF along with a peak in the HbD window. A transfusion acquired peak was suspected based on the unexpectedly low percentage of HbD and was subsequently confirmed using parental HbHPLC.
Transfusion Associated Peak in Hb HPLC Chromatogram – a Case Report
Jain, Sonal; Dass, Jasmita; Pati, Hara Prasad
2012-01-01
High performance liquid chromatography (HPLC) and electrophoresis are commonly used to diagnose various hemoglobinopathies. However, insufficient information about the transfusion history can lead to unexpected and confusing results. We are reporting a case of Juvenile myelomonocytic leukemia (JMML) in which HbHPLC was done to quantify fetal hemoglobin (HbF). The chromatogram showed elevated HbF along with a peak in the HbD window. A transfusion acquired peak was suspected based on the unexpectedly low percentage of HbD and was subsequently confirmed using parental HbHPLC. PMID:22348188
Martín-Ortiz, A; Salcedo, J; Barile, D; Bunyatratchata, A; Moreno, F J; Martin-García, I; Clemente, A; Sanz, M L; Ruiz-Matute, A I
2016-01-08
A detailed qualitative and quantitative characterization of goat colostrum oligosaccharides (GCO) has been carried out for the first time. Defatted and deproteinized colostrum samples, previously treated by size exclusion chromatography (SEC) to remove lactose, were analyzed by nanoflow liquid chromatography-quadrupole-time of flight mass spectrometry (Nano-LC-Chip-Q-TOF MS). Up to 78 oligosaccharides containing hexose, hexosamine, fucose, N-acetylneuraminic acid or N-glycolylneuraminic acid monomeric units were identified in the samples, some of them detected for the first time in goat colostra. As a second step, a hydrophilic interaction liquid chromatography coupled to mass spectrometry (HILIC-MS) methodology was developed for the separation and quantitation of the main GCO, both acidic and neutral carbohydrates. Among other experimental chromatographic conditions, mobile phase additives and column temperature were evaluated in terms of retention time, resolution, peak width and symmetry of target carbohydrates. Narrow peaks (wh: 0.2-0.6min) and good symmetry (As: 0.8-1.4) were obtained for GCO using an acetonitrile:water gradient with 0.1% ammonium hydroxide at 40°C. These conditions were selected to quantify the main oligosaccharides in goat colostrum samples. Values ranging from 140 to 315mgL(-1) for neutral oligosaccharides and from 83 to 251mgL(-1) for acidic oligosaccharides were found. The combination of both techniques resulted to be useful to achieve a comprehensive characterization of GCO. Copyright © 2015 Elsevier B.V. All rights reserved.
Chen, Chen; Liu, Xiaohui; Zheng, Weimin; Zhang, Lei; Yao, Jun; Yang, Pengyuan
2014-04-04
To completely annotate the human genome, the task of identifying and characterizing proteins that currently lack mass spectrometry (MS) evidence is inevitable and urgent. In this study, as the first effort to screen missing proteins in large scale, we developed an approach based on SDS-PAGE followed by liquid chromatography-multiple reaction monitoring (LC-MRM), for screening of those missing proteins with only a single peptide hit in the previous liver proteome data set. Proteins extracted from normal human liver were separated in SDS-PAGE and digested in split gel slice, and the resulting digests were then subjected to LC-schedule MRM analysis. The MRM assays were developed through synthesized crude peptides for target peptides. In total, the expressions of 57 target proteins were confirmed from 185 MRM assays in normal human liver tissues. Among the proved 57 one-hit wonders, 50 proteins are of the minimally redundant set in the PeptideAtlas database, 7 proteins even have none MS-based information previously in various biological processes. We conclude that our SDS-PAGE-MRM workflow can be a powerful approach to screen missing or poorly characterized proteins in different samples and to provide their quantity if detected. The MRM raw data have been uploaded to ISB/SRM Atlas/PASSEL (PXD000648).
Lou, Qiong; Ye, Xiaolan; Zhou, Yingyi; Li, Hua; Song, Fenyun
2015-06-01
A method incorporating double-wavelength ultra high performance liquid chromatography with quadrupole time-of-flight mass spectrometry was developed for the investigation of the chemical fingerprint of Ganmaoling granule. The chromatographic separations were performed on an ACQUITY UPLC HSS C18 column (2.1 × 50 mm, 1.8 μm) at 30°C using gradient elution with water/formic acid (1%) and acetonitrile at a flow rate of 0.4 mL/min. A total of 11 chemical constituents of Ganmaoling granule were identified from their molecular weight, UV spectra, tandem mass spectrometry data, and retention behavior by comparing the results with those of the reference standards or literature. And 25 peaks were selected as the common peaks for fingerprint analysis to evaluate the similarities among 25 batches of Ganmaoling granule. The results of principal component analysis and orthogonal projection to latent structures discriminant analysis showed that the important chemical markers that could distinguish the different batches were revealed as 4,5-di-O-caffeoylquinic acid, 3,5-di-O-caffeoylquinic acid, and 4-O-caffeoylquinic acid. This is the first report of the ultra high performance liquid chromatography chemical fingerprint and component identification of Ganmaoling granule, which could lay a foundation for further studies of Ganmaoling granule. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Hammann, Simon; Kröpfl, Alexander; Vetter, Walter
2016-12-09
Tocopherols and tocotrienols (usually summed up as vitamin E) are a class of structurally related natural antioxidants. Commonly, only some of the eight classic representatives (four tocopherols and four tocotrienols) are found with varied composition in food. In this study we fractionated 230mg oil from commercial vitamin E supplement capsules by countercurrent chromatography (CCC) and subsequent analysis by gas chromatography with mass spectrometry (GC/MS) of silylated CCC fractions showed that these eight isomers represented only about 70% of total tocopherol compounds. Detailed analysis enabled the detection of 161T 3 isomers (α-, γ- and δ-T 3 ) along with 18 tetra- and several penta-unsaturated isomers (tocools), two tocomonoenol isomers, and several degradation products with shorter isoprenoid side chain (apo-tocools). Altogether, over 170 tocool compounds, most likely artefacts which originated from an inappropriate oil refining process were described in this study. Silver ion high performance liquid chromatography (Ag + -HPLC) was used to separate one fraction rich in γ-T 3 into four peaks each consisting of at least five peaks according to GC/MS. About ten γ-T 3 isomers were also detected in rice bran oils from one producer bought retail in Germany. Copyright © 2016 Elsevier B.V. All rights reserved.
Interpretation of small-angle diffraction experiments on opal-like photonic crystals
NASA Astrophysics Data System (ADS)
Marlow, F.; Muldarisnur, M.; Sharifi, P.; Zabel, H.
2011-08-01
Comprehensive structural information on artificial opals involving the deviations from the strongly dominating face-centered cubic structure is still missing. Recent structure investigations with neutrons and synchrotron sources have shown a high degree of order but also a number of unexpected scattering features. Here, we point out that the exclusion of the allowed 002-type diffraction peaks by a small atomic form factor is not obvious and that surface scattering has to be included as a possible source for the diffraction peaks. Our neutron diffraction data indicate that surface scattering is the main reason for the smallest-angle peaks in the diffraction patterns.
NASA Astrophysics Data System (ADS)
Xiang, Suyun; Wang, Wei; Xiang, Bingren; Deng, Haishan; Xie, Shaofei
2007-05-01
The periodic modulation-based stochastic resonance algorithm (PSRA) was used to amplify and detect the weak liquid chromatography-mass spectrometry (LC-MS) signal of granisetron in plasma. In the algorithm, the stochastic resonance (SR) was achieved by introducing an external periodic force to the nonlinear system. The optimization of parameters was carried out in two steps to give attention to both the signal-to-noise ratio (S/N) and the peak shape of output signal. By applying PSRA with the optimized parameters, the signal-to-noise ratio of LC-MS peak was enhanced significantly and distorted peak shape that often appeared in the traditional stochastic resonance algorithm was corrected by the added periodic force. Using the signals enhanced by PSRA, this method extended the limit of detection (LOD) and limit of quantification (LOQ) of granisetron in plasma from 0.05 and 0.2 ng/mL, respectively, to 0.01 and 0.02 ng/mL, and exhibited good linearity, accuracy and precision, which ensure accurate determination of the target analyte.
Larsson, L
1983-08-01
Mycobacterium avium-intracellulare and M.gastri were analyzed with capillary gas chromatography after each strain had been subjected to acidic methanolysis or to alkaline saponification followed by methylation. Prominent peaks of myristic, palmitoleic, palmitic, oleic, stearic and tuberculostearic acids were found in the chromatograms of both species, whereas 2-octadecanol and 2-eicosanol were detected only in M. avium-intracellulare. In initial runs, both of the derivatization principles yielded virtually identical chromatograms for a given strain. After repeated injections of extracts from alkaline saponification, however, the alcohol peaks showed pronounced tailing and finally almost disappeared from the chromatograms. This disadvantage, which was not observed when only acid methanolysis was used, could be overcome with trifluoroacetylation. Restored peak shape of the underivatized alcohols could be achieved by washing the cross-linked stationary phase in the capillary tubing with organic solvents. The study demonstrated the importance of conditions which enable separation of 2-octadecanol and 2-eicosanol when gas chromatography is used for species identification of mycobacteria.
Mondello, Luigi; Casillia, Alessandro; Tranchida, Peter Quinto; Dugo, Giovanni; Dugo, Paola
2005-03-04
Single column gas chromatography (GC) in combination with a flame ionization detector (FID) and/or a mass spectrometer is routinely employed in the determination of perfume profiles. The latter are to be considered medium to highly complex matrices and, as such, can only be partially separated even on long capillaries. Inevitably, several monodimensional peaks are the result of two or more overlapping components, often hindering reliable identification and quantitation. The present investigation is based on the use of a comprehensive GC (GC x GC) method, in vacuum outlet conditions, for the near to complete resolution of a complex perfume sample. A rapid scanning quadrupole mass spectrometry (qMS) system, employed for the assignment of GC x GC peaks, supplied high quality mass spectra. The validity of the three-dimensional (3D) GC x GC-qMS application was measured and compared to that of GC-qMS analysis on the same matrix. Peak identification, in all applications, was achieved through MS spectra library matching and the interactive use of linear retention indices (LRI).
Desiderio, C; Marra, C; Fanali, S
1998-06-01
The separation of synthetic dyes, used as color additives in cosmetics, by micellar electrokinetic capillary chromatography (MEKC) is described in this study. The separation of seven dyes, namely eosine, erythrosine, cyanosine, rhodamine B, orange II, chromotrope FB and tartrazine has been achieved in about 3 min in an untreated fused silica capillary containing as background electrolyte a 25 mM tetraborate/phosphate buffer, pH 8.0, and 30 mM sodium dodecyl sulfate. The electrophoretic method exhibits precision and relatively high sensitivity. A detection limit (LOD, signal/noise = 3) in the range of 5-7.5 X 10(-7) M of standard compounds was recorded. Intra-day repeatability of all the studied dye determinations (8 runs) gave the following results (limit values), % standard deviation: 0.24-1.54% for migration time, 0.99-1.24% for corrected peak areas, 0.99-1.24% for corrected peak area ratio (analyte/internal standard) and 1.56-2.74% for peak areas. The optimized method was successfully applied to the analysis of a lipstick sample where eosine and cyanosine were present.
Sendker, Jandirk; Petereit, Frank; Lautenschläger, Marcus; Hellenbrand, Nils; Hensel, Andreas
2013-01-01
The rational use of hawthorn leafs and flowers from Crataegus spp. for declining cardiac performance is mainly due to flavon-C-glycosides and oligomeric procyanidins (OPC). From OPC-enriched extracts from different batches, a dimeric phenylpropanoid-substituted procyanidin (cinchonain II b, 1) was isolated and characterized by MS, CD, and NMR. Also the presence of higher oligomeric cinchonains (degree of polymerization 3 to 8) in hawthorn extracts was shown by a specific ultrahigh-pressure liquid chromatography-ESI-qTOF-MS method. Interestingly, strong evidence for the occurrence of oligomeric procyanidin hexosides was found by ultrahigh-pressure liquid chromatography-ESI-qTOF-MS analysis which additionally revealed the presence of peaks indicative of dimeric procyanidin hexosides by their exact mass, which were clearly distinguishable from the cinchonain II type peaks. Georg Thieme Verlag KG Stuttgart · New York.
Toxicological Assessment and UV/TiO2-Based Induced Degradation Profile of Reactive Black 5 Dye
NASA Astrophysics Data System (ADS)
Bilal, Muhammad; Rasheed, Tahir; Iqbal, Hafiz M. N.; Hu, Hongbo; Wang, Wei; Zhang, Xuehong
2018-01-01
In this study, the toxicological and degradation profile of Reactive Black 5 (RB5) dye was evaluated using a UV/TiO2-based degradation system. Fourier transform infrared spectroscopy (FT-IR), thin layer chromatography (TLC), high-performance liquid chromatography (HPLC) and ultra-performance liquid chromatography coupled with mass spectrometry (UPLC-MS) techniques were used to evaluate the degradation level of RB5. The UV-Vis spectral analysis revealed the disappearance of peak intensity at 599 nm (λmax). The FT-IR spectrum of UV/TiO2 treated dye sample manifest appearance of new peaks mainly because of the degraded product and/or disappearance of some characteristics peaks which were present in the untreated spectrum. The HPLC profile verified the RB5 degradation subject to the formation of metabolites at different retention times. A stable color removal higher than 96% with COD removal in the range of 74-82.3% was noted at all evaluated dye concentrations. The tentative degradation pathway of RB5 is proposed following a careful analysis of the intermediates identified by UPLC-MS. Toxicity profile of untreated and degraded dye samples was monitored using three types of human cell lines via MTT assay and acute toxicity testing with Artemia salina. In conclusion, the UV/TiO2-based degradation system could be effectively employed for the remediation of textile wastewater comprising a high concentration of reactive dyes.
Compact type-I coil planet centrifuge for counter-current chromatography
Yang, Yi; Gu, Dongyu; Liu, Yongqiang; Aisa, Haji Akber; Ito, Yoichiro
2009-01-01
A compact type-I coil planet centrifuge has been developed for performing counter-current chromatography. It has a revolution radius of 10 cm and a column holder height of 5 cm compared with 37 cm and 50 cm in the original prototype, respectively. The reduction in the revolution radius and column length permits application of higher revolution speed and more stable balancing of the rotor which leads us to learn more about its performance and the future potential of type-I coil planet centrifuge. The chromatographic performance of this apparatus was evaluated in terms of retention of the stationary phase (Sf), peak resolution (Rs), theoretical plate (N) and peak retention time (tR). The results of the experiment indicated that increasing the revolution speed slightly improved both the retention of the stationary phase and the peak resolution while the separation time is remarkably shortened to yield an excellent peak resolution at a revolution speed of 800 rpm. With a 12 ml capacity coiled column, DNP-glu, DNP-β-ala and DNP-ala were resolved at Rs of 2.75 and 2.16 within 90 min at a flow rate of 0.4 ml/min. We believe that the compact type-I coil planet centrifuge has a high analytical potential. PMID:20060979
Compact type-I coil planet centrifuge for counter-current chromatography.
Yang, Yi; Gu, Dongyu; Liu, Yongqiang; Aisa, Haji Akber; Ito, Yoichiro
2010-02-19
A compact type-I coil planet centrifuge has been developed for performing counter-current chromatography. It has a revolution radius of 10 cm and a column holder height of 5 cm compared with 37 and 50 cm in the original prototype, respectively. The reduction in the revolution radius and column length permits application of higher revolution speed and more stable balancing of the rotor which leads us to learn more about its performance and the future potential of type-I coil planet centrifuge. The chromatographic performance of this apparatus was evaluated in terms of retention of the stationary phase (S(f)), peak resolution (R(s)), theoretical plate (N) and peak retention time (t(R)). The results of the experiment indicated that increasing the revolution speed slightly improved both the retention of the stationary phase and the peak resolution while the separation time is remarkably shortened to yield an excellent peak resolution at a revolution speed of 800 rpm. With a 12 ml capacity coiled column, DNP-DL-glu, DNP-beta-ala and DNP-l-ala were resolved at R(s) of 2.75 and 2.16 within 90 min at a flow rate of 0.4 ml/min. We believe that the compact type-I coil planet centrifuge has a high analytical potential. Published by Elsevier B.V.
Azir, Marliana; Abbasiliasi, Sahar; Tengku Ibrahim, Tengku Azmi; Manaf, Yanty Noorzianna Abdul; Sazili, Awis Qurni; Mustafa, Shuhaimi
2017-01-01
The present study investigates the detection of lard in cocoa butter through changes in fatty acids composition, triacylglycerols profile, and thermal characteristics. Cocoa butter was mixed with 1% to 30% (v/v) of lard and analyzed using a gas chromatography flame ionization detector, high performance liquid chromatography, and differential scanning calorimetry. The results revealed that the mixing of lard in cocoa butter showed an increased amount of oleic acid in the cocoa butter while there was a decrease in the amount of palmitic acid and stearic acids. The amount of POS, SOS, and POP also decreased with the addition of lard. A heating thermogram from the DSC analysis showed that as the concentration of lard increased from 3% to 30%, two minor peaks at −26 °C and 34.5 °C started to appear and a minor peak at 34.5 °C gradually overlapped with the neighbouring major peak. A cooling thermogram of the above adulterated cocoa butter showed a minor peak shift to a lower temperature of −36 °C to −41.5 °C. Values from this study could be used as a basis for the identification of lard from other fats in the food authentication process. PMID:29120362
Stochastic theory of size exclusion chromatography by the characteristic function approach.
Dondi, Francesco; Cavazzini, Alberto; Remelli, Maurizio; Felinger, Attila; Martin, Michel
2002-01-18
A general stochastic theory of size exclusion chromatography (SEC) able to account for size dependence on both pore ingress and egress processes, moving zone dispersion and pore size distribution, was developed. The relationship between stochastic-chromatographic and batch equilibrium conditions are discussed and the fundamental role of the 'ergodic' hypothesis in establishing a link between them is emphasized. SEC models are solved by means of the characteristic function method and chromatographic parameters like plate height, peak skewness and excess are derived. The peak shapes are obtained by numerical inversion of the characteristic function under the most general conditions of the exploited models. Separate size effects on pore ingress and pore egress processes are investigated and their effects on both retention selectivity and efficiency are clearly shown. The peak splitting phenomenon and peak tailing due to incomplete sample sorption near to the exclusion limit is discussed. An SEC model for columns with two types of pores is discussed and several effects on retention selectivity and efficiency coming from pore size differences and their relative abundance are singled out. The relevance of moving zone dispersion on separation is investigated. The present approach proves to be general and able to account for more complex SEC conditions such as continuous pore size distributions and mixed retention mechanism.
1977-10-04
pentadeca— noic (Cl5 :0) #29 , and heptadeconic (Cl9:0) #30. Eicosenoic acid had been reported to be present in Strepto- coccus salivarius and Streptococcus ...Inutans but not in other oral streptococci. We noted in the chromnatograms of both S. mutans and S. salivarius cultures there was a shoulder off peak...representative chromatogram of S. mutans is shown in Fig. 14. Several points about these representative chromatograms should be emphasized. The first is the
Leitner, Alexander; Castro-Rubio, Florentina; Marina, Maria Luisa; Lindner, Wolfgang
2006-09-01
Soybean proteins are frequently added to processed meat products for economic reasons and to improve their functional properties. Monitoring of the addition of soybean protein to meat products is of high interest due to the existence of regulations forbidding or limiting the amount of soybean proteins that can be added during the processing of meat products. We have used chromatographic prefractionation on the protein level by perfusion liquid chromatography to isolate peaks of interest from extracts of soybean protein isolate (SPI) and of meat products containing SPI. After enzymatic digestion using trypsin, the collected fractions were analyzed by nanoflow liquid chromatography-tandem mass spectrometry. Several variants and subunits of the major seed proteins, glycinin and beta-conglycinin, were identified in SPI, along with two other proteins. In soybean-protein-containing meat samples, different glycinin A subunits could be identified from the peak discriminating between samples with and without soybean proteins added. Among those, glycinin G4 subunit A4 was consistently found in all samples. Consequently, this protein (subunit) can be used as a target for new analytical techniques in the course of identifying the addition of soybean protein to meat products.
Solubilization and purification of melatonin receptors from lizard brain
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rivkees, S.A.; Conron, R.W. Jr.; Reppert, S.M.
Melatonin receptors in lizard brain were identified and characterized using {sup 125}I-labeled melatonin (({sup 125}I)MEL) after solubilization with the detergent digitonin. Saturation studies of solubilized material revealed a high affinity binding site, with an apparent equilibrium dissociation constant of 181 +/- 45 pM. Binding was reversible and inhibited by melatonin and closely related analogs, but not by serotonin or norepinephrine. Treatment of solubilized material with the non-hydrolyzable GTP analog, guanosine 5'-(3-O-thiotriphosphate) (GTP-gamma-S), significantly reduced receptor affinity. Gel filtration chromatography of solubilized melatonin receptors revealed a high affinity, large (Mr 400,000) peak of specific binding. Pretreatment with GTP-gamma-S before solubilization resultedmore » in elution of a lower affinity, smaller (Mr 150,000) peak of specific binding. To purify solubilized receptors, a novel affinity chromatography resin was developed by coupling 6-hydroxymelatonin with Epoxy-activated Sepharose 6B. Using this resin, melatonin receptors were purified approximately 10,000-fold. Purified material retained the pharmacologic specificity of melatonin receptors. These results show that melatonin receptors that bind ligand after detergent treatment can be solubilized and substantially purified by affinity chromatography.« less
Yang, Yu; Fritzsching, Keith J; Hong, Mei
2013-11-01
A multi-objective genetic algorithm is introduced to predict the assignment of protein solid-state NMR (SSNMR) spectra with partial resonance overlap and missing peaks due to broad linewidths, molecular motion, and low sensitivity. This non-dominated sorting genetic algorithm II (NSGA-II) aims to identify all possible assignments that are consistent with the spectra and to compare the relative merit of these assignments. Our approach is modeled after the recently introduced Monte-Carlo simulated-annealing (MC/SA) protocol, with the key difference that NSGA-II simultaneously optimizes multiple assignment objectives instead of searching for possible assignments based on a single composite score. The multiple objectives include maximizing the number of consistently assigned peaks between multiple spectra ("good connections"), maximizing the number of used peaks, minimizing the number of inconsistently assigned peaks between spectra ("bad connections"), and minimizing the number of assigned peaks that have no matching peaks in the other spectra ("edges"). Using six SSNMR protein chemical shift datasets with varying levels of imperfection that was introduced by peak deletion, random chemical shift changes, and manual peak picking of spectra with moderately broad linewidths, we show that the NSGA-II algorithm produces a large number of valid and good assignments rapidly. For high-quality chemical shift peak lists, NSGA-II and MC/SA perform similarly well. However, when the peak lists contain many missing peaks that are uncorrelated between different spectra and have chemical shift deviations between spectra, the modified NSGA-II produces a larger number of valid solutions than MC/SA, and is more effective at distinguishing good from mediocre assignments by avoiding the hazard of suboptimal weighting factors for the various objectives. These two advantages, namely diversity and better evaluation, lead to a higher probability of predicting the correct assignment for a larger number of residues. On the other hand, when there are multiple equally good assignments that are significantly different from each other, the modified NSGA-II is less efficient than MC/SA in finding all the solutions. This problem is solved by a combined NSGA-II/MC algorithm, which appears to have the advantages of both NSGA-II and MC/SA. This combination algorithm is robust for the three most difficult chemical shift datasets examined here and is expected to give the highest-quality de novo assignment of challenging protein NMR spectra.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Coble, Jamie B.; Fraga, Carlos G.
2014-07-07
Preprocessing software is crucial for the discovery of chemical signatures in metabolomics, chemical forensics, and other signature-focused disciplines that involve analyzing large data sets from chemical instruments. Here, four freely available and published preprocessing tools known as metAlign, MZmine, SpectConnect, and XCMS were evaluated for impurity profiling using nominal mass GC/MS data and accurate mass LC/MS data. Both data sets were previously collected from the analysis of replicate samples from multiple stocks of a nerve-agent precursor. Each of the four tools had their parameters set for the untargeted detection of chromatographic peaks from impurities present in the stocks. The peakmore » table generated by each preprocessing tool was analyzed to determine the number of impurity components detected in all replicate samples per stock. A cumulative set of impurity components was then generated using all available peak tables and used as a reference to calculate the percent of component detections for each tool, in which 100% indicated the detection of every component. For the nominal mass GC/MS data, metAlign performed the best followed by MZmine, SpectConnect, and XCMS with detection percentages of 83, 60, 47, and 42%, respectively. For the accurate mass LC/MS data, the order was metAlign, XCMS, and MZmine with detection percentages of 80, 45, and 35%, respectively. SpectConnect did not function for the accurate mass LC/MS data. Larger detection percentages were obtained by combining the top performer with at least one of the other tools such as 96% by combining metAlign with MZmine for the GC/MS data and 93% by combining metAlign with XCMS for the LC/MS data. In terms of quantitative performance, the reported peak intensities had average absolute biases of 41, 4.4, 1.3 and 1.3% for SpectConnect, metAlign, XCMS, and MZmine, respectively, for the GC/MS data. For the LC/MS data, the average absolute biases were 22, 4.5, and 3.1% for metAlign, MZmine, and XCMS, respectively. In summary, metAlign performed the best in terms of peak discovery; however, more than one preprocessing tool should be considered to avoid missing potential chemical signatures.« less
Suzuki, Shigeru
2014-01-01
The techniques and measurement methods developed in the Environmental Survey and Monitoring of Chemicals by Japan’s Ministry of the Environment, as well as a large amount of knowledge archived in the survey, have led to the advancement of environmental analysis. Recently, technologies such as non-target liquid chromatography/high resolution mass spectrometry and liquid chromatography with micro bore column have further developed the field. Here, the general strategy of a method developed for the liquid chromatography/mass spectrometry (LC/MS) analysis of environmental chemicals with a brief description is presented. Also, a non-target analysis for the identification of environmental pollutants using a provisional fragment database and “MsMsFilter,” an elemental composition elucidation tool, is presented. This analytical method is shown to be highly effective in the identification of a model chemical, the pesticide Bendiocarb. Our improved micro-liquid chromatography injection system showed substantially enhanced sensitivity to perfluoroalkyl substances, with peak areas 32–71 times larger than those observed in conventional LC/MS. PMID:26819891
Lee, Changgook; Lee, Younghoon; Lee, Jae-Gon; Buglass, Alan J
2013-06-21
A simultaneous multiple solid-phase microextraction-single shot-gas chromatography mass spectrometry (smSPME-ss-GC/MS) method has been developed for headspace analysis. Up to four fibers (50/30 μm DVB/CAR/PDMS) were used simultaneously for the extraction of aroma components from the headspace of a single sample chamber in order to increase sensitivity of aroma extraction. To avoid peak broadening and to maximize resolution, a simple cryofocusing technique was adopted during sequential thermal desorption of multiple SPME fibers prior to a 'single shot' chromatographic run. The method was developed and validated on a model flavor mixture, containing 81 known pure components. With the conditions of 10 min of incubation and 30 min of extraction at 50 °C, single, dual, triple and quadruple SPME extractions were compared. The increase in total peak area with increase in the number of fibers showed good linearity (R(2)=0.9917) and the mean precision was 12.0% (RSD) for the total peak sum, with quadruple simultaneous SPME extraction. Using a real sample such as commercial coffee granules, aroma profile analysis was conducted using single, dual, triple and quadruple SPME fibers. The increase in total peak intensity again showed good linearity with increase in the number of SPME fibers used (R(2)=0.9992) and the precision of quadruple SPME extraction was 9.9% (RSD) for the total peak sum. Copyright © 2013 Elsevier B.V. All rights reserved.
Samanipour, Saer; Dimitriou-Christidis, Petros; Gros, Jonas; Grange, Aureline; Samuel Arey, J
2015-01-02
Comprehensive two-dimensional gas chromatography (GC×GC) is used widely to separate and measure organic chemicals in complex mixtures. However, approaches to quantify analytes in real, complex samples have not been critically assessed. We quantified 7 PAHs in a certified diesel fuel using GC×GC coupled to flame ionization detector (FID), and we quantified 11 target chlorinated hydrocarbons in a lake water extract using GC×GC with electron capture detector (μECD), further confirmed qualitatively by GC×GC with electron capture negative chemical ionization time-of-flight mass spectrometer (ENCI-TOFMS). Target analyte peak volumes were determined using several existing baseline correction algorithms and peak delineation algorithms. Analyte quantifications were conducted using external standards and also using standard additions, enabling us to diagnose matrix effects. We then applied several chemometric tests to these data. We find that the choice of baseline correction algorithm and peak delineation algorithm strongly influence the reproducibility of analyte signal, error of the calibration offset, proportionality of integrated signal response, and accuracy of quantifications. Additionally, the choice of baseline correction and the peak delineation algorithm are essential for correctly discriminating analyte signal from unresolved complex mixture signal, and this is the chief consideration for controlling matrix effects during quantification. The diagnostic approaches presented here provide guidance for analyte quantification using GC×GC. Copyright © 2014 The Authors. Published by Elsevier B.V. All rights reserved.
Walker, S. Hunter; Carlisle, Brandon C.; Muddiman, David C.
2013-01-01
Due to the hydrophilic nature of glycans, reverse phase chromatography has not been widely used as a glycomic separation technique coupled to mass spectrometry. Other approaches such as hydrophilic interaction chromatography and porous graphitized carbon chromatography are often employed, though these strategies frequently suffer from decreased chromatographic resolution, long equilibration times, indefinite retention, and column bleed. Herein, it is shown that through an efficient hydrazone formation derivatization of N-linked glycans (∼4 hr of additional sample preparation time which is carried out in parallel), numerous experimental and practical advantages are gained when analyzing the glycans by online reverse phase chromatography. These benefits include an increased number of glycans detected, increased peak capacity of the separation, and the ability to analyze glycans on the identical liquid chromatography-mass spectrometry platform commonly used for proteomic analyses. The data presented show that separation of derivatized N-linked glycans by reverse phase chromatography significantly out-performs traditional separation of native or derivatized glycans by hydrophilic interaction chromatography. Furthermore, the movement to a more ubiquitous separation technique will afford numerous research groups the opportunity to analyze both proteomic and glycomic samples on the same platform with minimal time and physical change between experiments, increasing the efficiency of ‘multi-omic’ biological approaches. PMID:22954204
Lumbopelvic control and days missed due to injury in professional baseball pitchers
Chaudhari, Ajit M.W.; McKenzie, Christopher S.; Pan, Xueliang; Oñate, James A.
2014-01-01
Background Recently lumbopelvic control has been linked to pitching performance, kinematics and loading; however, poor lumbopelvic control has not been prospectively investigated as a risk factor for injury in baseball pitchers. Hypothesis Pitchers with poor lumbopelvic control during spring training are more likely to miss 30 or more days due to injury through an entire baseball season than pitchers with good lumbopelvic control. Study design Cohort study. Methods Three hundred forty-seven professional baseball pitchers were enrolled into the study during the last 2 weeks of spring training and stayed with the same team for the entire season. Lumbopelvic control was quantified by peak anterior-posterior deviation of the pelvis relative to starting position during a single leg raise test (APScore). Days missed due to injury through the entire season were recorded by each team's medical staff. Results Higher APScore was significantly associated with a higher likelihood of missing 30 days or more (Chi-Square, p=0.023). When divided into tertiles based on their APScore, participants in the highest tertile were 3.0 times and 2.2 times more likely to miss at least 30 days throughout the course of a baseball season relative to those in the lowest or middle tertiles, respectively. Higher APScore was also significantly associated with missing more days due to injury within participants who missed at least one day to injury (ANOVA, p=0.018), with the highest tertile missing significantly more days (mean=98.6 d) than the middle tertile (mean=45.8d, p=0.017) or the lowest tertile (mean=43.8, p=0.017). Conclusion This study found that poor lumbopelvic control in professional pitchers was associated with increased risk of missing significant time due to injury. PMID:25159541
Lumbopelvic control and days missed because of injury in professional baseball pitchers.
Chaudhari, Ajit M W; McKenzie, Christopher S; Pan, Xueliang; Oñate, James A
2014-11-01
Recently, lumbopelvic control has been linked to pitching performance, kinematics, and loading; however, poor lumbopelvic control has not been prospectively investigated as a risk factor for injuries in baseball pitchers. Pitchers with poor lumbopelvic control during spring training are more likely to miss ≥30 days because of an injury through an entire baseball season than pitchers with good lumbopelvic control. Cohort study; Level of evidence, 2. A total of 347 professional baseball pitchers were enrolled into the study during the last 2 weeks of spring training and stayed with the same team for the entire season. Lumbopelvic control was quantified by peak anterior-posterior deviation of the pelvis relative to the starting position during a single-leg raise test (APScore). Days missed because of an injury through the entire season were recorded by each team's medical staff. A higher APScore was significantly associated with a higher likelihood of missing ≥30 days (P = .023, χ(2) test). When divided into tertiles based on their APScore, participants in the highest tertile were 3.0 times and 2.2 times more likely to miss at least 30 days throughout the course of a baseball season relative to those in the lowest or middle tertiles, respectively. A higher APScore was also significantly associated with missing more days because of an injury within participants who missed at least 1 day (P = .018, ANOVA), with participants in the highest tertile missing significantly more days (mean, 98.6 days) than those in the middle tertile (mean, 45.8 days; P = .017) or lowest tertile (mean, 43.8 days; P = .017). This study found that poor lumbopelvic control in professional pitchers was associated with an increased risk of missing significant time because of an injury. © 2014 The Author(s).
Agrawal, A; Pandey, V C; Kumar, S; Sagar, P
1989-01-01
Entamoeba histolytica (NIH-200) secreted large amounts of acid phosphatase in its external environment when grown axenically in modified TPS-II medium. Fractionation by DEAE-cellulose chromatography of the precipitate obtained from the cell-free medium at 60% ammonium sulfate saturation yielded 3 distinct peaks of enzyme activity. The enzyme in all the peaks showed resistance to tartrate but was inhibited by fluoride, cupric chloride, ethylene diamine-tetra acetic acid, ammonium molybdate and cysteine; however, enzyme associated with different peaks differed in its polyacrylamide gel electrophoretic profiles and behavior towards concanavalin A.
Johnson, Kevin J; Wright, Bob W; Jarman, Kristin H; Synovec, Robert E
2003-05-09
A rapid retention time alignment algorithm was developed as a preprocessing utility to be used prior to chemometric analysis of large datasets of diesel fuel profiles obtained using gas chromatography (GC). Retention time variation from chromatogram-to-chromatogram has been a significant impediment against the use of chemometric techniques in the analysis of chromatographic data due to the inability of current chemometric techniques to correctly model information that shifts from variable to variable within a dataset. The alignment algorithm developed is shown to increase the efficacy of pattern recognition methods applied to diesel fuel chromatograms by retaining chemical selectivity while reducing chromatogram-to-chromatogram retention time variations and to do so on a time scale that makes analysis of large sets of chromatographic data practical. Two sets of diesel fuel gas chromatograms were studied using the novel alignment algorithm followed by principal component analysis (PCA). In the first study, retention times for corresponding chromatographic peaks in 60 chromatograms varied by as much as 300 ms between chromatograms before alignment. In the second study of 42 chromatograms, the retention time shifting exhibited was on the order of 10 s between corresponding chromatographic peaks, and required a coarse retention time correction prior to alignment with the algorithm. In both cases, an increase in retention time precision afforded by the algorithm was clearly visible in plots of overlaid chromatograms before and then after applying the retention time alignment algorithm. Using the alignment algorithm, the standard deviation for corresponding peak retention times following alignment was 17 ms throughout a given chromatogram, corresponding to a relative standard deviation of 0.003% at an average retention time of 8 min. This level of retention time precision is a 5-fold improvement over the retention time precision initially provided by a state-of-the-art GC instrument equipped with electronic pressure control and was critical to the performance of the chemometric analysis. This increase in retention time precision does not come at the expense of chemical selectivity, since the PCA results suggest that essentially all of the chemical selectivity is preserved. Cluster resolution between dissimilar groups of diesel fuel chromatograms in a two-dimensional scores space generated with PCA is shown to substantially increase after alignment. The alignment method is robust against missing or extra peaks relative to a target chromatogram used in the alignment, and operates at high speed, requiring roughly 1 s of computation time per GC chromatogram.
Shellie, Robert; Marriott, Philip; Morrison, Paul
2004-09-01
The use of gas chromatography (GC)-mass spectrometry (MS), GC-time-of-flight MS (TOFMS), comprehensive two-dimensional GC (GCxGC)-flame ionization detection (FID), and GCxGC-TOFMS is discussed for the characterization of the eight important representative components, including Z-alpha-santalol, epi-alpha-bisabolol, Z-alpha-trans-bergamotol, epi-beta-santalol, Z-beta-santalol, E,E-farnesol, Z-nuciferol, and Z-lanceol, in the oil of west Australian sandalwood (Santalum spicatum). Single-column GC-MS lacks the resolving power to separate all of the listed components as pure peaks and allow precise analytical measurement of individual component abundances. With enhanced peak resolution capabilities in GCxGC, these components are sufficiently well resolved to be quantitated using flame ionization detection, following initial characterization of components by using GCxGC-TOFMS.
Liquid chromatographic assay of ceftizoxime in sera of normal and uremic patients.
McCormick, E M; Echols, R M; Rosano, T G
1984-01-01
The application of high-pressure liquid chromatography assays for cephalosporin serum concentrations is difficult in uremic patients because of interference from nondialyzable substances. We developed a high-pressure liquid chromatography method for determining the serum concentration of ceftizoxime in normal and uremic patients. The method involves protein precipitation with acetonitrile, followed by removal of the acetonitrile with dichloromethane. Separation was accomplished with a reverse-phase (C-18) column and a mobile phase of 13% acetonitrile and 2.8% acetic acid. UV detection at 310 nm was used to monitor the peaks. This assay produced a linear relationship between peak height ratio and ceftizoxime concentration from 1.5 to 100 micrograms/ml. Samples from 30 patients were assayed by this method and by a bioassay, with a good correlation of results (r = 0.9832). The method was applicable equally to normal and uremic serum samples. PMID:6326665
Longitudinal On-Column Thermal Modulation for Comprehensive Two-Dimensional Liquid Chromatography.
Creese, Mari E; Creese, Mathew J; Foley, Joe P; Cortes, Hernan J; Hilder, Emily F; Shellie, Robert A; Breadmore, Michael C
2017-01-17
Longitudinal on-column thermal modulation for comprehensive two-dimensional liquid chromatography is introduced. Modulation optimization involved a systematic investigation of heat transfer, analyte retention, and migration velocity at a range of temperatures. Longitudinal on-column thermal modulation was realized using a set of alkylphenones and compared to a conventional valve-modulator employing sample loops. The thermal modulator showed a reduced modulation-induced pressure impact than valve modulation, resulting in reduced baseline perturbation by a factor of 6; yielding a 6-14-fold improvement in signal-to-noise. A red wine sample was analyzed to demonstrate the potential of the longitudinal on-column thermal modulator for separation of a complex sample. Discrete peaks in the second dimension using the thermal modulator were 30-55% narrower than with the valve modulator. The results shown herein demonstrate the benefits of an active focusing modulator, such as reduced detection limits and increased total peak capacity.
Bhat, Nandini; Dulmovits, Eric; Lane, Andrew; Messina, Catherine; Wilson, Thomas
2018-06-01
The aims of this study were to determine if it is possible to truncate a combined simultaneous arginine clonidine stimulation test, and to correlate the outcome of the test with clinical indices of GH status. Charts of subjects who underwent a combined simultaneous arginine clonidine stimulation test between January 1, 2007 and August 31, 2016 were reviewed. 131/203 (64.5%) tests performed in children with growth failure demonstrated a peak GH ≥ 10 ng/ml. 6/7 (85.7%) tests performed in adolescents at the end of GH treatment had a peak GH ≥ 5 ng/ml. Among these negative tests, 97.8% had a passing GH by 120 min. 58/98 (59.1%) tests that had a sample at 150 min were negative. 3/58 (5.2%) had a passing GH level only at 150 min. Therefore, if the test were shortened to 120 min, 5.2% of normal responders would be missed. There was a weak correlation of peak GH with baseline growth velocity and serum IGF-1 z-score. A trend towards an inverse correlation between peak GH level and change in growth velocity pre- and post-GH was seen. If the combined simultaneous arginine clonidine test were shortened to 120 min, 5.2% of normal responders would be missed. Although this test has not been compared to any "gold standard" GH stimulation test, the outcome of this test does correlate weakly with clinical indices of GH status and spares patients the inconvenience of sequential testing. Copyright © 2018 Elsevier Ltd. All rights reserved.
Pattern-Recognition Algorithm for Locking Laser Frequency
NASA Technical Reports Server (NTRS)
Karayan, Vahag; Klipstein, William; Enzer, Daphna; Yates, Philip; Thompson, Robert; Wells, George
2006-01-01
A computer program serves as part of a feedback control system that locks the frequency of a laser to one of the spectral peaks of cesium atoms in an optical absorption cell. The system analyzes a saturation absorption spectrum to find a target peak and commands a laser-frequency-control circuit to minimize an error signal representing the difference between the laser frequency and the target peak. The program implements an algorithm consisting of the following steps: Acquire a saturation absorption signal while scanning the laser through the frequency range of interest. Condition the signal by use of convolution filtering. Detect peaks. Match the peaks in the signal to a pattern of known spectral peaks by use of a pattern-recognition algorithm. Add missing peaks. Tune the laser to the desired peak and thereafter lock onto this peak. Finding and locking onto the desired peak is a challenging problem, given that the saturation absorption signal includes noise and other spurious signal components; the problem is further complicated by nonlinearity and shifting of the voltage-to-frequency correspondence. The pattern-recognition algorithm, which is based on Hausdorff distance, is what enables the program to meet these challenges.
1975-02-28
max this peak , which varies substantially over Az = a A0 = 1 , r max we pick an angular increment Ae = T5— o 2 a max 2-72...22°, as into the main diffraction peak . This effect if. en- tirely missed by an equi"alent sphere model. The error incurred by assumption (7...minimize the sum of squares, we pick Q so that this expression is as negative as possible (if it is never negative for 0 ^ 0 £ 1, we are already
Li, Wei-hua; Mao, Qin-yan; Liu, Yi-xin; Sheng, Guo-ping; Yu, Han-qing; Huang, Xian-huai; Liu, Shao-geng; Ling, Qi; Yan, Guo-bing
2014-06-01
Enhanced biological phosphorus removal (EBPR) is the main phosphorus removal technique for wastewater treatment. During the anaerobic-aerobic alternative process, the activated sludge experienced the anaerobic storage of polyhydroxy-β-alkonates (PHA) and aerobic degradation, corresponding the infrared peak intensity of sludge at 1 740 cm(-1) increased in the aerobic phase and declined in the anaerobic phase. Compared with PHA standard, this peak was indentified to attribute the carbonyl of PHA. The overlapping peaks of PHA, protein I and II bands were separated using Gaussian peak fitting method. The infrared peak area ratios of PHA versus protein I had a good relationship with the PHA contents measured by gas chromatography, and the correlation coefficient was 0.873. Thus, the ratio of the peak area of PHA versus protein I can be considered as the indicator of the PHA content in the sludge. The infrared spectra of 1 480-1 780 cm(-1) was selected, normalized and transferred to the absorption data. Combined with the chromatography analysis of PHA content in the sludge sample, a model between the Fourier-transform infrared spectroscopy (ETIR) spectra of the sludge and PHA content was established, which could be used for the prediction of the PHA content in the unknown sample. The PHA content in the sludge sample could be acquired by the infrared spectra of the sludge sample and the established model, and the values fitted well with the results obtained from chromatograph. The results would provide a novel analysis method for the rapid characterization and quantitative determination of the intracellular PHA content in the activated sludge.
Furlong, Michael; Bessire, Andrew; Song, Wei; Huntington, Christopher; Groeber, Elizabeth
2010-07-15
During routine liquid chromatography/tandem mass spectrometric (LC/MS/MS) bioanalysis of a small molecule analyte in rat serum samples from a toxicokinetic study, an unexpected interfering peak was observed in the extracted ion chromatogram of the internal standard. No interfering peaks were observed in the extracted ion chromatogram of the analyte. The dose-dependent peak area response and peak area response versus time profiles of the interfering peak suggested that it might have been related to a metabolite of the dosed compound. Further investigation using high-resolution mass spectrometry led to unequivocal identification of the interfering peak as an N-desmethyl metabolite of the parent analyte. High-resolution mass spectrometry (HRMS) was also used to demonstrate that the interfering response of the metabolite in the multiple reaction monitoring (MRM) channel of the internal standard was due to an isobaric relationship between the (13)C-isotope of the metabolite and the internal standard (i.e., common precursor ion mass), coupled with a metabolite product ion with identical mass to the product ion used in the MRM transition of the internal standard. These results emphasize (1) the need to carefully evaluate internal standard candidates with regard to potential interferences from metabolites during LC/MS/MS method development, validation and bioanalysis of small molecule analytes in biological matrices; (2) the value of HRMS as a tool to investigate unexpected interferences encountered during LC/MS/MS analysis of small molecules in biological matrices; and (3) the potential for interference regardless of choice of IS and therefore the importance of conducting assay robustness on incurred in vitro or in vivo study samples. Copyright 2010 John Wiley & Sons, Ltd.
New metabolic pathway for N,N-dimethyltryptamine
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hryhorczuk, L.M.; Rainey, J.M. Jr.; Frohman, C.E.
1986-01-01
N,N-Dimethyltryptamine (DMT) undergoes a major structural alteration when added to whole human blood or its red blood cells in vitro. A new high-pressure liquid chromatography (HPLC) peak is present in extracts of these treated tissues. The compound responsible for this peak has been identified by ultraviolet spectrophotometry and by mass spectrometry as dimethylkynuramine (DMK). The enzyme responsible for this appears to be different from tryptophan 2,3-dioxygenase and also from indoleamine 2,3-dioxygenase.
Liu, Sifei; Zhang, Guangrui; Qiu, Ying; Wang, Xiaobo; Guo, Lihan; Zhao, Yanxin; Tong, Meng; Wei, Lan; Sun, Lixin
2016-12-01
In this study, we aimed to establish a comprehensive and practical quality evaluation system for Shenmaidihuang pills. A simple and reliable high-performance liquid chromatography coupled with photodiode array detection method was developed both for fingerprint analysis and quantitative determination. In fingerprint analysis, relative retention time and relative peak area were used to identify the common peaks in 18 samples for investigation. Twenty one peaks were selected as the common peaks to evaluate the similarities of 18 Shenmaidihuang pills samples with different manufacture dates. Furthermore, similarity analysis was applied to evaluate the similarity of samples. Hierarchical cluster analysis and principal component analysis were also performed to evaluate the variation of Shenmaidihuang pills. In quantitative analysis, linear regressions, injection precisions, recovery, repeatability and sample stability were all tested and good results were obtained to simultaneously determine the seven identified compounds, namely, 5-hydroxymethylfurfural, morroniside, loganin, paeonol, paeoniflorin, psoralen, isopsoralen in Shenmaidihuang pills. The contents of some analytes in different batches of samples indicated significant difference, especially for 5-hydroxymethylfurfural. So, it was concluded that the chromatographic fingerprint method obtained by high-performance liquid chromatography coupled with photodiode array detection associated with multiple compounds determination is a powerful and meaningful tool to comprehensively conduct the quality control of Shenmaidihuang pills. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Search of non-ionic surfactants suitable for micellar liquid chromatography.
Peris-García, Ester; Rodríguez-Martínez, Jorge; Baeza-Baeza, Juan J; García-Alvarez-Coque, María Celia; Ruiz-Angel, María José
2018-06-19
Most reports in reversed-phase liquid chromatography (RPLC) with micellar mobile phases make use of the anionic sodium dodecyl sulfate. This surfactant masks efficiently the silanol groups that are the origin of the poor efficiencies and tailing peaks observed for basic compounds in conventional RPLC. However, it has the handicap of yielding excessive retention, which forces the addition of an organic solvent to reduce the retention times to practical values. Other surfactants, such as the non-ionic polyoxyethylene(23)lauryl ether (Brij-35), are rarely used. Brij-35 allows the separation of a large range of analytes in adequate retention times, without the need of adding an organic solvent to the mobile phase. However, this non-ionic surfactant shows irreversible adsorption on chromatographic columns and peak shape is poorer. Therefore, the search of non-ionic surfactants with similar properties to Brij-35, but showing reversible adsorption and better peak shape, can be of great interest. In this work, the adequacy of several non-ionic surfactants as modifiers in RPLC has been explored, being polyoxyethylene(10)tridecyl ether particularly attractive. The separation of different types of compounds was checked: sulfonamides (acidic), β-adrenoceptor antagonists and tricyclic antidepressants (basic with diverse polarity), and flavonoids (with and without hydroxyl groups on the aromatic rings). The chromatographic behaviors were examined in terms of retention and peak shape. The results were compared with those obtained with Brij-35.
Radiologic Errors in Patients With Lung Cancer
Forrest, John V.; Friedman, Paul J.
1981-01-01
Some 20 percent to 50 percent of detectable malignant lesions are missed or misdiagnosed at the time of their first radiologic appearance. These errors can result in delayed diagnosis and treatment, which may affect a patient's survival. Use of moderately high (130 to 150) kilovolt peak films, awareness of portions of the lung where lesions are often missed (such as lung apices and paramediastinal and hilar areas), careful comparison of current roentgenograms with those taken previously and the use of an independent second observer can help to minimize the rate of radiologic diagnostic errors in patients with lung cancer. ImagesFigure 3.Figure 4. PMID:7257363
Parastar, Hadi; Garreta-Lara, Elba; Campos, Bruno; Barata, Carlos; Lacorte, Silvia; Tauler, Roma
2018-06-01
The performances of gas chromatography with mass spectrometry and of comprehensive two-dimensional gas chromatography with time-of-flight mass spectrometry are examined through the comparison of Daphnia magna metabolic profiles. Gas chromatography with mass spectrometry and comprehensive two-dimensional gas chromatography with mass spectrometry were used to compare the concentration changes of metabolites under saline conditions. In this regard, a chemometric strategy based on wavelet compression and multivariate curve resolution-alternating least squares is used to compare the performances of gas chromatography with mass spectrometry and comprehensive two-dimensional gas chromatography with time-of-flight mass spectrometry for the untargeted metabolic profiling of Daphnia magna in control and salinity-exposed samples. Examination of the results confirmed the outperformance of comprehensive two-dimensional gas chromatography with time-of-flight mass spectrometry over gas chromatography with mass spectrometry for the detection of metabolites in D. magna samples. The peak areas of multivariate curve resolution-alternating least squares resolved elution profiles in every sample analyzed by comprehensive two-dimensional gas chromatography with time-of-flight mass spectrometry were arranged in a new data matrix that was then modeled by partial least squares discriminant analysis. The control and salt-exposed daphnids samples were discriminated and the most relevant metabolites were estimated using variable importance in projection and selectivity ratio values. Salinity de-regulated 18 metabolites from metabolic pathways involved in protein translation, transmembrane cell transport, carbon metabolism, secondary metabolism, glycolysis, and osmoregulation. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Analysis of 62 synthetic cannabinoids by gas chromatography-mass spectrometry with photoionization.
Akutsu, Mamoru; Sugie, Ken-Ichi; Saito, Koichi
2017-01-01
Gas chromatography-mass spectrometry (GC-MS) in electron ionization (EI) mode is one of the most commonly used techniques for analysis of synthetic cannabinoids, because the GC-EI-MS spectra contain characteristic fragment ions for identification of a compound; however, the information on its molecular ions is frequently lacking. To obtain such molecular ion information, GC-MS in chemical ionization (CI) mode is frequently used. However, GC-CI-MS requires a relatively tedious process using reagent gas such as methane or isobutane. In this study, we show that GC-MS in photoionization (PI) mode provided molecular ions in all spectra of 62 synthetic cannabinoids, and 35 of the 62 compounds showed only the molecular radical cations. Except for the 35 compounds, the PI spectra showed very simple patterns with the molecular peak plus only a few fragment peak(s). An advantage is that the ion source for GC-PI-MS can easily be used for GC-EI-MS as well. Therefore, GC-EI/PI-MS will be a useful tool for the identification of synthetic cannabinoids contained in a dubious product. To the best of our knowledge, this is the first report to use GC-PI-MS for analysis of synthetic cannabinoids.
Metabolism of tilmicosin by rabbit liver microsomes and hepatocytes.
Montesissa, C; Capolongo, F; Santi, A; Biancotto, G; Dacasto, M
2004-01-01
We investigated tilmicosin (TIM) metabolism, at 25, 50 or 100 microM, in cultures of primary hepatocytes from rabbits bred commercially for food and in liver microsomes prepared from both untreated and rifampicin (RIF)-treated rabbits. RIF is a well-known cytochrome P4503A (CYP 3A) inducer in rabbits and most macrolides are known to be substrates of CYP 3A. No peaks in addition to those of the cis and trans forms of TIM were observed by high performance liquid chromatography (HPLC) in extracts of microsomes from untreated rabbits. When TIM was incubated with induced microsomes, at least two peaks were found by HPLC and an additional peak, eluting at shorter retention time was isolated from hepatocytes incubated for 24h with the macrolide. The structures of the metabolites were then estimated by liquid chromatography-mass spectrometry (LC-MS) in concentrated extracts from induced microsomes. Five metabolites were separated and putatively identified: cis and trans demethylated tilmicosin, tilmicosin N-oxide and cis and trans tilmicosin epoxide. The overall amount of metabolites produced in vitro using livers of untreated and RIF treated rabbits was very low, has also been observed in vivo and in vitro in cattle, chickens and pigs.
Analysis of Wastewater for Organic Compounds Unique to RDX/HMX manufacturing and Processing
1979-12-01
Evaporation 6.. ............ 6 Analytical Separation’and Identification.• 6Gas Chromatography. 6 Liquid Chromatography ( LC )’and’Infrared Analyses (iR...steam-heated system. This conclusion was arrived at by comparing chromatograms relative to numbers of, and intensity of the component peaks . Analytical...for chromatographing the samples are listed below: (1) 10% UC-W-98 on Chrom G-AW-DMCS 0.61 m x 6.3 mm (2 ft. x ¼ in.) glass col umn (2) 10% UC-W-98 on
DOE Office of Scientific and Technical Information (OSTI.GOV)
Crowell, Kevin L.; Slysz, Gordon W.; Baker, Erin Shammel
2013-09-05
We introduce a command line software application LC-IMS-MS Feature Finder that searches for molecular ion signatures in multidimensional liquid chromatography-ion mobility spectrometry-mass spectrometry (LC-IMS-MS) data by clustering deisotoped peaks with similar monoisotopic mass, charge state, LC elution time, and ion mobility drift time values. The software application includes an algorithm for detecting and quantifying co-eluting chemical species, including species that exist in multiple conformations that may have been separated in the IMS dimension.
Pirok, Bob W J; Knip, Jitske; van Bommel, Maarten R; Schoenmakers, Peter J
2016-03-04
In the late 19th century, newly invented synthetic dyes rapidly replaced the natural dyes on the market. The characterization of mixtures of these so-called early synthetic dyes is complicated through the occurrence of many impurities and degradation products. Conventional one-dimensional liquid chromatography does not suffice to obtain fingerprints with sufficient resolution and baseline integrity. Comprehensive two-dimensional liquid chromatography (LC×LC) is employed in this study, with ion-exchange chromatography in the first dimension and fast ion-pair liquid chromatography in the second. Retention in the first dimension is largely determined by the number of charges, while the selection of a small ion-pair reagent (tetramethylammonium hydroxide) in the second dimension causes retention to be largely determined by the molecular structure of the dye. As a result, there is a high degree of orthogonality of the two dimensions, similar to the values typically encountered in GC×GC. The proposed LC×LC method shows a theroretical peak capacity of about 2000 in an analysis time of about three hours. Clear, informative fingerprints are obtained that open a way to a more efficient characterization of dyes used in objects of cultural heritage. Copyright © 2016 Elsevier B.V. All rights reserved.
Vedadi, Farhang; Shirani, Shahram
2014-01-01
A new method of image resolution up-conversion (image interpolation) based on maximum a posteriori sequence estimation is proposed. Instead of making a hard decision about the value of each missing pixel, we estimate the missing pixels in groups. At each missing pixel of the high resolution (HR) image, we consider an ensemble of candidate interpolation methods (interpolation functions). The interpolation functions are interpreted as states of a Markov model. In other words, the proposed method undergoes state transitions from one missing pixel position to the next. Accordingly, the interpolation problem is translated to the problem of estimating the optimal sequence of interpolation functions corresponding to the sequence of missing HR pixel positions. We derive a parameter-free probabilistic model for this to-be-estimated sequence of interpolation functions. Then, we solve the estimation problem using a trellis representation and the Viterbi algorithm. Using directional interpolation functions and sequence estimation techniques, we classify the new algorithm as an adaptive directional interpolation using soft-decision estimation techniques. Experimental results show that the proposed algorithm yields images with higher or comparable peak signal-to-noise ratios compared with some benchmark interpolation methods in the literature while being efficient in terms of implementation and complexity considerations.
Metabolic pathway reconstruction of eugenol to vanillin bioconversion in Aspergillus niger
Srivastava, Suchita; Luqman, Suaib; Khan, Feroz; Chanotiya, Chandan S; Darokar, Mahendra P
2010-01-01
Identification of missing genes or proteins participating in the metabolic pathways as enzymes are of great interest. One such class of pathway is involved in the eugenol to vanillin bioconversion. Our goal is to develop an integral approach for identifying the topology of a reference or known pathway in other organism. We successfully identify the missing enzymes and then reconstruct the vanillin biosynthetic pathway in Aspergillus niger. The procedure combines enzyme sequence similarity searched through BLAST homology search and orthologs detection through COG & KEGG databases. Conservation of protein domains and motifs was searched through CDD, PFAM & PROSITE databases. Predictions regarding how proteins act in pathway were validated experimentally and also compared with reported data. The bioconversion of vanillin was screened on UV-TLC plates and later confirmed through GC and GC-MS techniques. We applied a procedure for identifying missing enzymes on the basis of conserved functional motifs and later reconstruct the metabolic pathway in target organism. Using the vanillin biosynthetic pathway of Pseudomonas fluorescens as a case study, we indicate how this approach can be used to reconstruct the reference pathway in A. niger and later results were experimentally validated through chromatography and spectroscopy techniques. PMID:20978605
Detection of Golden apples' climacteric peak by laser biospeckle measurements.
Nassif, Rana; Nader, Christelle Abou; Afif, Charbel; Pellen, Fabrice; Le Brun, Guy; Le Jeune, Bernard; Abboud, Marie
2014-12-10
In this paper, we report a study in which a laser biospeckle technique is used to detect the climacteric peak indicating the optimal ripeness of fruits. We monitor two batches of harvested Golden apples going through the ripening phase in low- and room-temperature environments, determine speckle parameters, and measure the emitted ethylene concentration using gas chromatography as reference method. Speckle results are then correlated to the emitted ethylene concentration by a principal component analysis. From a practical point of view, this approach allows us to validate biospeckle as a noninvasive and alternative method to respiration rate and ethylene production for climacteric peak detection as a ripening index.
Desmons, Aurore; Jaisson, Stéphane; Gillery, Philippe; Guillard, Emmanuelle
2013-01-01
D-10(®) (Bio-Rad) analyzer using cationic exchange high performance chromatography (HPLC) allows the detection of the main hemoglobin variants. This observation shows the presence of a peak on chromatogram with a low intensity and no quantifiable which can lead to different diagnosis. Inter-sample contaminations can be confused with the presence of an hemoglobin variant. This case highlights the importance of the knowledge of technicals limits for validation and clinical use of results.
Lee, Hun Joo; Han, Eunyoung; Lee, Jaesin; Chung, Heesun; Min, Sung-Gi
2016-11-01
The aim of this study is to improve resolution of impurity peaks using a newly devised normalization algorithm for multi-internal standards (ISs) and to describe a visual peak selection system (VPSS) for efficient support of impurity profiling. Drug trafficking routes, location of manufacture, or synthetic route can be identified from impurities in seized drugs. In the analysis of impurities, different chromatogram profiles are obtained from gas chromatography and used to examine similarities between drug samples. The data processing method using relative retention time (RRT) calculated by a single internal standard is not preferred when many internal standards are used and many chromatographic peaks present because of the risk of overlapping between peaks and difficulty in classifying impurities. In this study, impurities in methamphetamine (MA) were extracted by liquid-liquid extraction (LLE) method using ethylacetate containing 4 internal standards and analyzed by gas chromatography-flame ionization detection (GC-FID). The newly developed VPSS consists of an input module, a conversion module, and a detection module. The input module imports chromatograms collected from GC and performs preprocessing, which is converted with a normalization algorithm in the conversion module, and finally the detection module detects the impurities in MA samples using a visualized zoning user interface. The normalization algorithm in the conversion module was used to convert the raw data from GC-FID. The VPSS with the built-in normalization algorithm can effectively detect different impurities in samples even in complex matrices and has high resolution keeping the time sequence of chromatographic peaks the same as that of the RRT method. The system can widen a full range of chromatograms so that the peaks of impurities were better aligned for easy separation and classification. The resolution, accuracy, and speed of impurity profiling showed remarkable improvement. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
Hydrograph Predictions of Glacial Lake Outburst Floods From an Ice-Dammed Lake
NASA Astrophysics Data System (ADS)
McCoy, S. W.; Jacquet, J.; McGrath, D.; Koschitzki, R.; Okuinghttons, J.
2017-12-01
Understanding the time evolution of glacial lake outburst floods (GLOFs), and ultimately predicting peak discharge, is crucial to mitigating the impacts of GLOFs on downstream communities and understanding concomitant surface change. The dearth of in situ measurements taken during GLOFs has left many GLOF models currently in use untested. Here we present a dataset of 13 GLOFs from Lago Cachet Dos, Aysen Region, Chile in which we detail measurements of key environmental variables (total volume drained, lake temperature, and lake inflow rate) and high temporal resolution discharge measurements at the source lake, in addition to well-constrained ice thickness and bedrock topography. Using this dataset we test two common empirical equations as well as the physically-based model of Spring-Hutter-Clarke. We find that the commonly used empirical relationships based solely on a dataset of lake volume drained fail to predict the large variability in observed peak discharges from Lago Cachet Dos. This disagreement is likely because these equations do not consider additional environmental variables that we show also control peak discharge, primarily, lake water temperature and the rate of meltwater inflow to the source lake. We find that the Spring-Hutter-Clarke model can accurately simulate the exponentially rising hydrographs that are characteristic of ice-dammed GLOFs, as well as the order of magnitude variation in peak discharge between events if the hydraulic roughness parameter is allowed to be a free fitting parameter. However, the Spring-Hutter-Clarke model over predicts peak discharge in all cases by 10 to 35%. The systematic over prediction of peak discharge by the model is related to its abrupt flood termination that misses the observed steep falling limb of the flood hydrograph. Although satisfactory model fits are produced, the range in hydraulic roughness required to obtain these fits across all events was large, which suggests that current models do not completely capture the physics of these systems, thus limiting their ability to truly predict peak discharges using only independently constrained parameters. We suggest what some of these missing physics might be.
Fitz, Brian D; Wilson, Ryan B; Parsons, Brendon A; Hoggard, Jamin C; Synovec, Robert E
2012-11-30
Peak capacity production is substantially improved for two-dimensional gas chromatography coupled with time-of-flight mass spectrometry (GC×GC-TOFMS) and applied to the fast separation of a 28 component liquid test mixture, and two complex vapor samples (a 65 component volatile organic compound test mixture, and the headspace of warm ground coffee beans). A high peak capacity is achieved in a short separation time by selecting appropriate experimental conditions based on theoretical modeling of on-column band broadening, and by reducing the off-column band broadening by applying a narrow, concentrated injection pulse onto the primary column using high-speed cryo-focusing injection (HSCFI), referred to as thermal injection. A long, relatively narrow open tubular capillary column (20 m, 100 μm inner diameter (i.d.) with a 0.4 μm film thickness to benefit column capacity) was used as the primary column. The initial flow rate was 2 ml/min (60 cm/s average linear flow velocity) which is slightly below the optimal average linear gas velocity of 83 cm/s, due to the flow rate constraint of the TOFMS vacuum system. The oven temperature programming rate was 30°C/min. The secondary column (1.8m, 100 μm i.d. with a 0.1 μm film thickness) provided a relatively high peak capacity separation, concurrent with a significantly shorter modulation period, P(M), than commonly applied with the commercial instrument. With this GC×GC-TOFMS instrumental platform, compounds in the 28 component liquid test mixture provided a ∼7 min separation (with a ∼6.5 min separation time window), producing average peak widths of ∼600 ms full width half maximum (FWHM), resulting in a peak capacity on the primary column of ∼400 peaks (at unit resolution). Using a secondary column with a 500 ms P(M), average peak widths of ∼20 ms FWHM were achieved, thus providing a peak capacity of 15 peaks on the second dimension. Overall, an ideal orthogonal GC×GC peak capacity of ∼6000 peaks (at unit resolution) was achieved (or a β-corrected orthogonal peak capacity of ∼4400, at an average modulation ratio, M(R), of ∼2). This corresponds to an ideal orthogonal peak capacity production of ∼1000 peaks/min (or ∼700 peaks/min, β-corrected). For comparison, standard split/split-less injection techniques with a 1:100 split, when combined with standard GC×GC conditions typically provide a peak capacity production of ∼100 peaks/min, hence the instrumental platform we report provides a ∼7-fold to 10-fold improvement. Copyright © 2012 Elsevier B.V. All rights reserved.
Structural analysis of commercial ceramides by gas chromatography-mass spectrometry.
Bleton, J; Gaudin, K; Chaminade, P; Goursaud, S; Baillet, A; Tchapla, A
2001-05-11
A simple method using gas chromatography-mass spectrometry was applied to analyse structures of ceramides. Identification of trimethylsilylated ceramides were obtained in short analysis times (derivatization of ceramides in 30 min at room temperature and 20 min gas chromatography mass spectrometry run) even for complex mixtures. For example in ceramide Type III, 18 peaks were observed which represent 27 various structures. The coeluted compounds were ceramides containing the same functional groups and the same carbon number but with a different distribution on the two alkyl chains of the molecule. They were accurately differentiated by mass spectrometry. Therefore, 83 structures of trimethylsilylated ceramides were identified in 11 different commercial mixtures. For 52 structures of these, mass spectral data were not described in the literature, neither full mass spectra nor characteristic fragments.
Nieć, Dawid; Kunicki, Paweł K
2015-10-01
Measurements of plasma concentrations of free normetanephrine (NMN), metanephrine (MN) and methoxytyramine (MTY) constitute the most diagnostically accurate screening test for pheochromocytomas and paragangliomas. The aim of this article is to present the results from a validation of an analytical method utilizing high performance liquid chromatography with coulometric detection (HPLC-CD) for quantifying plasma free NMN, MN and MTY. Additionally, peak integration by height and area and the use of one calibration curve for all batches or individual calibration curve for each batch of samples was explored as to determine the optimal approach with regard to accuracy and precision. The method was validated using charcoal stripped plasma spiked with solutions of NMN, MN, MTY and internal standard (4-hydroxy-3-methoxybenzylamine) with the exception of selectivity which was evaluated by analysis of real plasma samples. Calibration curve performance, accuracy, precision and recovery were determined following both peak-area and peak-height measurements and the obtained results were compared. The most accurate and precise method of calibration was evaluated by analyzing quality control samples at three concentration levels in 30 analytical runs. The detector response was linear over the entire tested concentration range from 10 to 2000pg/mL with R(2)≥0.9988. The LLOQ was 10pg/mL for each analyte of interest. To improve accuracy for measurements at low concentrations, a weighted (1/amount) linear regression model was employed, which resulted in inaccuracies of -2.48 to 9.78% and 0.22 to 7.81% following peak-area and peak-height integration, respectively. The imprecisions ranged from 1.07 to 15.45% and from 0.70 to 11.65% for peak-area and peak-height measurements, respectively. The optimal approach to calibration was the one utilizing an individual calibration curve for each batch of samples and peak-height measurements. It was characterized by inaccuracies ranging from -3.39 to +3.27% and imprecisions from 2.17 to 13.57%. The established HPLC-CD method enables accurate and precise measurements of plasma free NMN, MN and MTY with reasonable selectivity. Preparing calibration curve based on peak-height measurements for each batch of samples yields optimal accuracy and precision. Copyright © 2015. Published by Elsevier B.V.
NASA Astrophysics Data System (ADS)
Moriizumi, M.; Mutsunaga, T.
2012-04-01
The application of compost can improve the fertility of the agricultural soils. The compost organic nitrogen is absorbed by plants after degradation and mineralization. To investigate the degradation process of compost organic nitrogen in soil, we conducted soil burial test of compost and observed the molecular weight distribution of hot-water extractable organic nitrogen from the compost. The cattle manure compost (1g) was mixed with soil (25g), put into glass fiber-filter paper bag and buried in 15 cm under surface of the ground for 6 months. The soils used were Andosol, Gray Lowland soil, and Yellow soil without organic matter application for 25 years in Tsukuba, Japan. Organic matter was extracted from the buried sample with 80° C of water for 16 hours. The molecular weight distribution of the hot-water extractable organic matter (HWEOM) was measured by high-performance size exclusion chromatography and chemiluminescent nitrogen detection (HPSEC/CLND). In this system, N-containing compound eluted from a SEC column was introduced into a furnace at 1050° C, and N in the compound was oxidized to nitric oxide and then detected using a chemiluminescent reaction with ozone. The N chromatogram showed that N in the HWEOM from the soil with compost had various molecular weights ranging from 0.1 to 100 kDa. A void peak (>100 kDa), a broad peak around 30 kDa, and several sharp peaks less than 30 kDa were observed in the chromatogram. The broad peak (~ 30kDa) was likely to be derived from the compost, because it was not observed in the chromatogram of HWEOM from soil alone. The N intensities of all peaks decreased with burial time, especially, the broad peak (~30 kDa) intensity rapidly decreased by 10 - 50 % in only first 2 months. The decreasing rates of the broad peak were higher than that of the sharp peaks, indicating that the organic nitrogen with a larger molecular weight decomposed faster. The broad peak (~ 30 kDa) had visible (420nm) absorption and less fulvic acid like florescence (Ex340nm, Em440 nm). The several sharp peaks had small visible absorption and intense florescence. Further studies are needed to assign the chemical forms for each peak.
A practical approach to determination of laboratory GC-MS limits of detection.
Underwood, P J; Kananen, G E; Armitage, E K
1997-01-01
Determination of limit of detection (LOD) values in a forensic laboratory serves a fundamental forensic requirement for assay performance. In addition to demonstrating assay capability, LOD values can also be used to fulfill certification requirements of a high-volume forensic drug laboratory. The LOD was defined as the lowest concentration of drug that the laboratory can detect in a specimen with forensic certainty at a minimum of 85% of the time. Overall batch acceptance criteria included acceptable quantitation of control materials (within 20% of target), acceptable chromatography (symmetry, peak integration, peak shape, peak, and baseline resolution), retention time within +/-1% of the extracted standard, and mass ion ratios within +/-20% of the extracted standard mass ion ratios. Individual specimen acceptance criteria were the same as the batch acceptance criteria excluding the quantitation requirement. Data were collected from all instruments on different runs. A minimum of ten data points was required for each certified instrument, and a minimum of 85% of data points was acceptable. Quantitation within +/-20% of the LOD concentration was not required, but acceptable mass ratios were required. Data points with poor chromatography (internal standard failed mass ratios; interference of the baseline, for example, shoulders; asymmetry; and baseline resolution) was omitted from the acceptable rate calculation. Data points with good chromatography with failed mass ion ratios were included in the acceptable rate calculation. With these criteria, we established the following LODs: 11-nor-delta 9-tetrahydrocannabinol-9-carboxylic acid, 2 ng/mL; benzoylecgonine, 5 ng/mL; phencyclidine, 2.5 ng/mL; amphetamine, 150 ng/mL; methamphetamine, 100 ng/mL; codeine, 500 ng/mL; and morphine, 1000 ng/mL.
Yang, Yang; Zhang, Yongmin; Wei, Chong; Li, Jing; Sun, Wenji
2018-09-01
Silver ion chromatography, utilizing columns packed with silver ions bonded to silica gel, has proved to be an invaluable technique for the analysis of some positional isomers. In this work, silver ion chromatography by combination with online heart-cutting LC-LC technique for the preparative separation of two sesquiterpenes positional isomers from a natural product was investigated. On the basis of the evaluation that silver ion content impacts on the separation, the laboratory-made silver ion columns, utilizing silica gel impregnated with 15% silver nitrate as column packing materials, were used for peak resolution improvement of these two isomers and the preparative separation of them in heart-cutting LC-LC. The relationship among the maximal sample load, flow rate and peak resolution in the silver ion column were optimized, and the performance of the silver ion column was compared with conventional C 18 column and silica gel column. Based on the developed chromatographic conditions, online heart-cutting LC-LC chromatographic separation system in combination with a silica gel column and a silver ion column that was applied to preparative separation of these two isomers from a traditional Chinese medicine, Inula racemosa Hook.f., was established. The results showed that the online heart-cutting LC-LC technique by combination of a silica gel column and a silver ion column for the preparative separation of these two positional isomers from this natural plant was superior to the preparative separation performed on a single-column system with C 18 column or silica gel column. Copyright © 2018 Elsevier B.V. All rights reserved.
Li, Austin C; Li, Yinghe; Guirguis, Micheal S; Caldwell, Robert G; Shou, Wilson Z
2007-01-04
A new analytical method is described here for the quantitation of anti-inflammatory drug cyclosporin A (CyA) in monkey and rat plasma. The method used tetrahydrofuran (THF)-water mobile phases to elute the analyte and internal standard, cyclosporin C (CyC). The gradient mobile phase program successfully eluted CyA into a sharp peak and therefore improved resolution between the analyte and possible interfering materials compared with previously reported analytical approaches, where CyA was eluted as a broad peak due to the rapid conversion between different conformers. The sharp peak resulted from this method facilitated the quantitative calculation as multiple smoothing and large number of bunching factors were not necessary. The chromatography in the new method was performed at 30 degrees C instead of 65-70 degrees C as reported previously. Other advantages of the method included simple and fast sample extraction-protein precipitation, direct injection of the extraction supernatant to column for analysis, and elimination of evaporation and reconstitution steps, which were needed in solid phase extraction or liquid-liquid extraction reported before. This method is amenable to high-throughput analysis with a total chromatographic run time of 3 min. This approach has been verified as sensitive, linear (0.977-4000 ng/mL), accurate and precise for the quantitation of CyA in monkey and rat plasma. However, compared with the usage of conventional mobile phases, the only drawback of this approach was the reduced detection response from the mass spectrometer that was possibly caused by poor desolvation in the ionization source. This is the first report to demonstrate the advantages of using THF-water mobile phases to elute CyA in liquid chromatography.
Speybrouck, David; Doublet, Charline; Cardinael, Pascal; Fiol-Petit, Catherine; Corens, David
2017-08-11
Supercritical Fluid Chromatography is frequently used to efficiently handle separations of enantiomers. The separation of basic analytes usually requires the addition of a basic additive in the mobile phase to improve the peak shape or even to elute the compounds. The effect of increasing the concentration of 2-propylamine as additive on the elution of a series of basic compounds on a Chiralpak-AD stationary phase was studied. In this study, unusual additive concentrations ranging from 0.3% to 10% of 2-propylamine 2-propylaminein the modifier were explored and the effect on retention, peak shape, selectivity and resolution was evaluated. The addition of a large quantity of additive allowed to drastically improve the selectivity and the resolution, and even enantiomers elution order reversal was observed by changing the concentration of basic additive. The role of the ratio additive/modifier appeared a key to tune the enantioselectivity. Finally, the impact of these drastic conditions on the column material was evaluated. Copyright © 2017 Elsevier B.V. All rights reserved.
Hughey, Christine A; Wilcox, Bruce; Minardi, Carina S; Takehara, Chiyo W; Sundararaman, Meenakshi; Were, Lilian M
2008-05-30
A rapid negative ion ESI high-performance capillary liquid chromatography-mass spectrometry method was developed to identify and quantify flavonoids (e.g., flavanols, flavonols, flavanones and glycosides). Fifteen standards and two varieties of almond skin extract powder (Carmel and Nonpareil) were used to demonstrate the chromatographic separation, reproducibility and accuracy of the method that employed a 150 mm x 0.3 mm ChromXP 3C18-EP-120 column. All standards eluted in less than 10 min, providing a 9-12x reduction in analysis time compared to existing methods (90-120 min). However, isomers (e.g., catechin/epicatechin and galactosides/glucosides) were not resolved and, therefore, identified and quantified collectively. RSDs for retention time and peak area reproducibility (mass spectrometry data) were <0.5% and <5.0%, respectively. Peak area reproducibility was greatly improved (from a RSD>10%) after the implementation of a low-flow metal needle in the ESI source. Quantitation by mass spectrometry also afforded a % error less than 5% for most compounds.
Mondello, Luigi; Casilli, Alessandro; Tranchida, Peter Quinto; Lo Presti, Maria; Dugo, Paola; Dugo, Giovanni
2007-11-01
The present research is focused on the development of a comprehensive two-dimensional gas chromatography-rapid scanning quadrupole mass spectrometric (GC x GC-qMS) methodology for the analysis of trace-amount pesticides contained in a complex real-world sample. Reliable peak assignment was carried out by using a recently developed, dedicated pesticide MS library (for comprehensive GC analysis), characterized by a twin-filter search procedure, the first based on a minimum degree of spectral similarity and the second on the interactive use of linear retention indices (LRI). The library was constructed by subjecting mixtures of commonly used pesticides to GC x GC-qMS analysis and then deriving their pure mass spectra and LRI values. In order to verify the effectiveness of the approach, a pesticide-contaminated red grapefruit extract was analysed. The certainty of peak assignment was attained by exploiting both the enhanced separation power of dual-oven GC x GC and the highly effective search procedure.
Khan, Nymul E; Adewuyi, Yusuf G
2011-01-21
A new method for the determination of peroxydisulfate using ion chromatography has been developed. Elution of peroxydisulfate was effected by isocratic elution using 200 mM NaOH at 40°C. A modification of the method using gradient elution was able to simultaneously determine other common inorganic ions (nitrate, nitrite, sulfate and chloride) down to significantly low concentrations in a peroxydisulfate matrix. The relative standard deviations (RSD) were in the range of 0.5-5%, for peak areas and <0.2% for peak retention times. The recoveries were between 95% and 120% for a concentration range of about 0.5-42 ppm. The limit of detection for peroxydisulfate ion was 0.2 ppm and for the other ions were ≤2×10(-2) ppm. The calibration curves were linear with slope and intercepts close to 1 and 0, respectively. Copyright © 2010 Elsevier B.V. All rights reserved.
Hoh, Carmen S L; Boocock, David J; Marczylo, Timothy H; Brown, V A; Cai, Hong; Steward, William P; Berry, David P; Gescher, Andreas J
2007-04-04
Silibinin has recently received attention as a potential cancer chemopreventive agent because of its antiproliferative and anticarcinogenic effects. A simple and specific reversed-phase high-performance liquid chromatography method was developed and validated for the quantitation of silibinin in human plasma. Sample preparation involved simple protein precipitation, and separation was achieved on a Waters Atlantis C18 column with flow rate of 1.0 mL/min at 40 degrees C and UV detection at 290 nm. Silibinin was detected as two peaks corresponding to trans-diastereoisomers. The peak area was linear over the investigated concentration range (0-5000 ng/mL). The limits of detection were 2 and 1 ng/mL for the two diastereoisomers (d1 and d2), with a recovery of 53-58%. This method was utilized to detect silibinin in plasma of colorectal patients after 7 days of treatment with silipide (silibinin formulated with phosphatidyl choline).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nicholas, R.A.; Suzuki, H.; Hirota, Y.
This paper reports the sequence of the active site peptide of penicillin-binding protein 1b from Escherichia coli. Purified penicillin-binding protein 1b was labeled with (/sup 14/C)penicillin G, digested with trypsin, and partially purified by gel filtration. Upon further purification by high-pressure liquid chromatography, two radioactive peaks were observed, and the major peak, representing over 75% of the applied radioactivity, was submitted to amino acid analysis and sequencing. The sequence Ser-Ile-Gly-Ser-Leu-Ala-Lys was obtained. The active site nucleophile was identified by digesting the purified peptide with aminopeptidase M and separating the radioactive products on high-pressure liquid chromatography. Amino acid analysis confirmed thatmore » the serine residue in the middle of the sequence was covalently bonded to the (/sup 14/C)penicilloyl moiety. A comparison of this sequence to active site sequences of other penicillin-binding proteins and beta-lactamases is presented.« less
Liang, Yuan; Wang, Jing; Fei, Fuhuan; Sun, Huanmei; Liu, Ting; Li, Qian; Zhao, Xinfeng; Zheng, Xiaohui
2018-02-23
Investigations of drug-protein interactions have advanced our knowledge of ways to design more rational drugs. In addition to extensive thermodynamic studies, ongoing works are needed to enhance the exploration of drug-protein binding kinetics. In this work, the beta2-adrenoceptor (β 2 -AR) was immobilized on N, N'-carbonyldiimidazole activated amino polystyrene microspheres to prepare an affinity column (4.6 mm × 5.0 cm, 8 μm). The β 2 -AR column was utilized to determine the binding kinetics of five drugs to the receptor. Introducing peak profiling method into this receptor chromatographic analysis, we determined the dissociation rate constants (k d ) of salbutamol, terbutaline, methoxyphenamine, isoprenaline hydrochloride and ephedrine hydrochloride to β 2 -AR to be 15 (±1), 22 (±1), 3.3 (±0.2), 2.3 (±0.2) and 2.1 (±0.1) s -1 , respectively. The employment of nonlinear chromatography (NLC) in this case exhibited the same rank order of k d values for the five drugs bound to β 2 -AR. We confirmed that both the peak profiling method and NLC were capable of routine measurement of receptor-drug binding kinetics. Compared with the peak profiling method, NLC was advantageous in the simultaneous assessment of the kinetic and apparent thermodynamic parameters. It will become a powerful method for high throughput drug-receptor interaction analysis. Copyright © 2018 Elsevier B.V. All rights reserved.
Silica, hybrid silica, hydride silica and non-silica stationary phases for liquid chromatography.
Borges, Endler M
2015-04-01
Free silanols on the surface of silica are the "villains", which are responsible for detrimental interactions of those compounds and the stationary phase (i.e., bad peak shape, low efficiency) as well as low thermal and chemical stability. For these reasons, we began this review describing new silica and hybrid silica stationary phases, which have reduced and/or shielded silanols. At present, in liquid chromatography for the majority of analyses, reversed-phase liquid chromatography is the separation mode of choice. However, the needs for increased selectivity and increased retention of hydrophilic bases have substantially increased the interest in hydrophilic interaction chromatography (HILIC). Therefore, stationary phases and this mode of separation are discussed. Then, non-silica stationary phases (i.e., zirconium oxide, titanium oxide, alumina and porous graphitized carbon), which afford increased thermal and chemical stability and also selectivity different from those obtained with silica and hybrid silica, are discussed. In addition, the use of these materials in HILIC is also reviewed. © Crown copyright 2014.
Ichikawa, Akio; Ono, Hiroshi; Furuta, Kenjiro; Shiotsuki, Takahiro; Shinoda, Tetsuro
2007-08-17
Juvenile hormone III (JH III) racemate was prepared from methyl (2E,6E)-farnesoate via epoxidation with 3-chloroperbenzoic acid (mCPBA). Enantioselective separation of JH III was conducted using normal-phase high-performance liquid chromatography (HPLC) on a chiral stationary phase. [(2)H(3)]Methyl (2E,6E)-farnesoate was also prepared from (2E,6E)-farnesoic acid and [(2)H(4)]methanol (methanol-d(4)) using 1-(3-dimethylaminopropyl)-3-ethylcarbodiimide hydrochloride (EDC) and 4-dimethylaminopyridine (DMAP); the conjugated double bond underwent isomerization to some degree. Epoxidation of [(2)H(3)]methyl (2E,6E)-farnesoate with mCPBA gave a novel deuterium-substituted internal standard [(2)H(3)]JH III (JH III-d(3)). The standard curve was produced by linear regression using the peak area ratios of JH III and JH III-d(3) in liquid chromatography-mass spectrometry (LC-MS).
King, Cory; Patel, Rekha; Ponniah, Gomathinayagam; Nowak, Christine; Neill, Alyssa; Gu, Zhenyu; Liu, Hongcheng
2018-05-15
In-depth characterization of the commonly observed variants is critical to the successful development of recombinant monoclonal antibody therapeutics. Multiple peaks of a recombinant monoclonal antibody were observed when analyzed by hydrophobic interaction chromatography and imaged capillary isoelectric focusing. The potential modification causing the heterogeneity was localized to F(ab')2 region by analyzing the antibody after IdeS digestion using hydrophobic interaction chromatography. LC-MS analysis identified asparagine deamidation as the root cause of the observed multiple variants. While the isoelectric focusing method is expected to separate deamidated species, the similar profile observed in hydrophobic interaction chromatography indicates that the single site deamidation caused differences in hydrophobicity. Forced degradation demonstrated that the susceptible asparagine residue is highly exposed, which is expected as it is located in the light chain complementarity determining region. Deamidation of this single site decreased the mAb binding affinity to its specific antigen. Copyright © 2018 Elsevier B.V. All rights reserved.
van Veldhuisen, Dirk J; Ponikowski, Piotr; van der Meer, Peter; Metra, Marco; Böhm, Michael; Doletsky, Artem; Voors, Adriaan A; Macdougall, Iain C; Anker, Stefan D; Roubert, Bernard; Zakin, Lorraine; Cohen-Solal, Alain
2017-10-10
Iron deficiency is common in patients with heart failure (HF) and is associated with reduced exercise capacity and poor outcomes. Whether correction of iron deficiency with (intravenous) ferric carboxymaltose (FCM) affects peak oxygen consumption [peak VO 2 ], an objective measure of exercise intolerance in HF, has not been examined. We studied patients with systolic HF (left ventricular ejection fraction ≤45%) and mild to moderate symptoms despite optimal HF medication. Patients were randomized 1:1 to treatment with FCM for 24 weeks or standard of care. The primary end point was the change in peak VO 2 from baseline to 24 weeks. Secondary end points included the effect on hematinic and cardiac biomarkers, quality of life, and safety. For the primary analysis, patients who died had a value of 0 imputed for 24-week peak VO 2 . Additional sensitivity analyses were performed to determine the impact of imputation of missing peak VO 2 data. A total of 172 patients with HF were studied and received FCM (n=86) or standard of care (control group, n=86). At baseline, the groups were well matched; mean age was 64 years, 75% were male, mean left ventricular ejection fraction was 32%, and peak VO 2 was 13.5 mL/min/kg. FCM significantly increased serum ferritin and transferrin saturation. At 24 weeks, peak VO 2 had decreased in the control group (least square means -1.19±0.389 mL/min/kg) but was maintained on FCM (-0.16±0.387 mL/min/kg; P =0.020 between groups). In a sensitivity analysis, in which missing data were not imputed, peak VO 2 at 24 weeks decreased by -0.63±0.375 mL/min/kg in the control group and by -0.16±0.373 mL/min/kg in the FCM group; P =0.23 between groups). Patients' global assessment and functional class as assessed by the New York Heart Association improved on FCM versus standard of care. Treatment with intravenous FCM in patients with HF and iron deficiency improves iron stores. Although a favorable effect on peak VO 2 was observed on FCM, compared with standard of care in the primary analysis, this effect was highly sensitive to the imputation strategy for peak VO 2 among patients who died. Whether FCM is associated with an improved outcome in these high-risk patients needs further study. URL: http://www.clinicaltrials.gov. Unique identifier: NCT01394562. © 2017 The Authors.
Ponikowski, Piotr; van der Meer, Peter; Metra, Marco; Böhm, Michael; Doletsky, Artem; Voors, Adriaan A.; Macdougall, Iain C.; Anker, Stefan D.; Roubert, Bernard; Zakin, Lorraine; Cohen-Solal, Alain
2017-01-01
Background: Iron deficiency is common in patients with heart failure (HF) and is associated with reduced exercise capacity and poor outcomes. Whether correction of iron deficiency with (intravenous) ferric carboxymaltose (FCM) affects peak oxygen consumption [peak VO2], an objective measure of exercise intolerance in HF, has not been examined. Methods: We studied patients with systolic HF (left ventricular ejection fraction ≤45%) and mild to moderate symptoms despite optimal HF medication. Patients were randomized 1:1 to treatment with FCM for 24 weeks or standard of care. The primary end point was the change in peak VO2 from baseline to 24 weeks. Secondary end points included the effect on hematinic and cardiac biomarkers, quality of life, and safety. For the primary analysis, patients who died had a value of 0 imputed for 24-week peak VO2. Additional sensitivity analyses were performed to determine the impact of imputation of missing peak VO2 data. Results: A total of 172 patients with HF were studied and received FCM (n=86) or standard of care (control group, n=86). At baseline, the groups were well matched; mean age was 64 years, 75% were male, mean left ventricular ejection fraction was 32%, and peak VO2 was 13.5 mL/min/kg. FCM significantly increased serum ferritin and transferrin saturation. At 24 weeks, peak VO2 had decreased in the control group (least square means −1.19±0.389 mL/min/kg) but was maintained on FCM (−0.16±0.387 mL/min/kg; P=0.020 between groups). In a sensitivity analysis, in which missing data were not imputed, peak VO2 at 24 weeks decreased by −0.63±0.375 mL/min/kg in the control group and by −0.16±0.373 mL/min/kg in the FCM group; P=0.23 between groups). Patients’ global assessment and functional class as assessed by the New York Heart Association improved on FCM versus standard of care. Conclusions: Treatment with intravenous FCM in patients with HF and iron deficiency improves iron stores. Although a favorable effect on peak VO2 was observed on FCM, compared with standard of care in the primary analysis, this effect was highly sensitive to the imputation strategy for peak VO2 among patients who died. Whether FCM is associated with an improved outcome in these high-risk patients needs further study. Clinical Trial Registration: URL: http://www.clinicaltrials.gov. Unique identifier: NCT01394562. PMID:28701470
Khutorianskiĭ, V A; Smirnov, A I; Matveev, D A
2014-01-01
The method of microcolumn reversed phase high performance liquid chromatography (rp-HPLC) was employed to determine the content of elemental sulphur in mineral waters. The study envisaged the analysis of the samples of sulphide-containing mineral waters Novonukutskaya and Matsesta obtained by the solid phase extraction technique. Based on these data, the authors discuss the origin and the circulation of sulphur in the hydrogen sulphide sources. The elution conditions selected in this study ensured the high-resolution separation of the octasulphur peak from the peaks of allotropic components of the extract whereas the two-wave detection technique allowed to identify the peaks of molecular sulphur.
Yu, Yong-Jie; Xia, Qiao-Ling; Wang, Sheng; Wang, Bing; Xie, Fu-Wei; Zhang, Xiao-Bing; Ma, Yun-Ming; Wu, Hai-Long
2014-09-12
Peak detection and background drift correction (BDC) are the key stages in using chemometric methods to analyze chromatographic fingerprints of complex samples. This study developed a novel chemometric strategy for simultaneous automatic chromatographic peak detection and BDC. A robust statistical method was used for intelligent estimation of instrumental noise level coupled with first-order derivative of chromatographic signal to automatically extract chromatographic peaks in the data. A local curve-fitting strategy was then employed for BDC. Simulated and real liquid chromatographic data were designed with various kinds of background drift and degree of overlapped chromatographic peaks to verify the performance of the proposed strategy. The underlying chromatographic peaks can be automatically detected and reasonably integrated by this strategy. Meanwhile, chromatograms with BDC can be precisely obtained. The proposed method was used to analyze a complex gas chromatography dataset that monitored quality changes in plant extracts during storage procedure. Copyright © 2014 Elsevier B.V. All rights reserved.
Compatibility studies of acyclovir and lactose in physical mixtures and commercial tablets.
Monajjemzadeh, Farnaz; Hassanzadeh, Davoud; Valizadeh, Hadi; Siahi-Shadbad, Mohammad R; Mojarrad, Javid Shahbazi; Robertson, Thomas A; Roberts, Michael S
2009-11-01
This study documents drug-excipient incompatibility studies of acyclovir in physical mixtures with lactose and in different tablet brands. Differential scanning calorimetry (DSC) was initially used to assess compatibility of mixtures. The Fourier-transform infrared (FTIR) spectrum was also compared with the spectra of pure drug and excipient. Although DSC results indicated incompatibility with lactose, FTIR spectra were mostly unmodified due to overlapping peaks. Samples of isothermally stressed physical mixture were stored at 95 degrees C for 24 h. The residual drug was monitored using a validated high-performance liquid chromatography (HPLC) assay and data fitting to solid-state kinetic models was performed. The drug loss kinetics followed a diffusion model. The aqueous mixture of drug and excipient was heated in order to prepare an adduct mixture. HPLC analysis revealed one extra peak that was fractionated and subsequently injected into the liquid chromatography-mass spectrometry/mass spectrometry (LC-MS/MS) system. The MRM (Multiple Reaction Monitoring) chromatograms characterized the peak with molecular mass corresponding to an acyclovir-lactose Maillard reaction product. The presence of lactose in commercial tablets was checked using a new TLC method. Overall, the incompatibility of acyclovir with lactose was successfully evaluated using a combination of thermal methods and LC-MS/MS.
Cytokinin nucleotides contents in sexual buds of Douglas-fir
DOE Office of Scientific and Technical Information (OSTI.GOV)
Imbault, N.; Doumas, P.; Bonnet-Masimbert, N.
1989-04-01
Cytokinin nucleotides were extracted from male and female buds of Pseudotsuga menxiesii by 10 % perchloric acid. They were prepurified on cation exchanger columns (CBA, Amersham) and then separated by two HPLC systems. The first one (Partisil 10 SAX, 10{mu}m, Wathman) separates the mono-, di- and tri-phosphates groups which were collected. The second one (Ultraspher, 5 {mu}m, Beckman) separates the cytokinin nucleotides inside each group. After separation, cytokinin nucleotides were assayed by radioimmunoassay with anti ribosyl zeatin (RZ) and anti isopentenyladenosine (iPA) antibodies. The analysis showed in the monophosphate (mono-P) group one immunoreactant peak in RZ fraction which co-chromatographied withmore » RZ-5{prime}-mono-P and two peaks in the iPA fraction. One of them co-chromatographied with iPA-5{prime}-mono-P. In the diphosphate group, there were three peaks which reacted with anti RZ antibodies and one with anti iPA antibodies. The nucleotides obtained after the first HPLC system, were hydrolysed by a 5{prime}-nucleotidase showed compounds co-chromatographing with RZ and iPA. We did not observe any qualitative differences between the male and female buds. This is the first evidence of cytokinin nucleotides in tissue from woody plants.« less
Bai, Cheng; Reilly, Charles C.; Wood, Bruce W.
2007-01-01
High-performance liquid chromatography (HPLC) analysis was used for identification of two problematic ureides, asparagine and citrulline. We report here a technique that takes advantage of the predictable delay in retention time of the co-asparagine/citrulline peak to enable both qualitative and quantitative analysis of asparagine and citrulline using the Platinum EPS reverse-phase C18 column (Alltech Associates). Asparagine alone is eluted earlier than citrulline alone, but when both of them are present in biological samples they may co-elute. HPLC retention times for asparagine and citrulline were influenced by other ureides in the mixture. We found that at various asparagines and citrulline ratios [= 3:1, 1:1, and 1:3; corresponding to 75:25, 50:50, and 25:75 (μMol ml−1/μMol ml−1)], the resulting peak exhibited different retention times. Adjustment of ureide ratios as internal standards enables peak identification and quantification. Both chemicals were quantified in xylem sap samples of pecan [Carya illinoinensis (Wangenh.) K. Koch] trees. Analysis revealed that tree nickel nutrition status affects relative concentrations of Urea Cycle intermediates, asparagine and citrulline, present in sap. Consequently, we concluded that the HPLC methods are presented to enable qualitative and quantitative analysis of these metabolically important ureides. PMID:19662174
Kojima, T; Ishii, A; Watanabe-Suzuki, K; Kurihara, R; Seno, H; Kumazawa, T; Suzuki, O; Katsumata, Y
2001-10-05
Four general anaesthetics, sevoflurane, isoflurane, enflurane and halothane, in human whole blood, have been found measurable with very high sensitivity by capillary gas chromatography-flame ionization detection (GC-FID) with cryogenic oven trapping upon injection of headspace (HS) vapor sample. To a 7-ml vial, containing 0.48 ml of distilled water and 20 microl of internal standard solution (5 microg), a 0.5-ml of whole blood sample spiked with or without anaesthetics, was added, and the mixture was heated at 55 degrees C for 15 min. A measure of 10 ml HS vapor was injected into the GC in the splitless mode at -40 degrees C oven temperature, which was programmed up to 250 degrees C. All four peaks were clearly separated; no impurity peaks were found among their peaks. Their extraction efficiencies were about 10%. The calibration curves showed good linearity in the range of 0.5-20 microg/ml; their detection limits were 10-100 ng/ml, which are almost comparable to those by previous reports. The coefficients of intra-day and day-to-day variations were 6.5-9.8 and 7.3-17.2%, respectively. Isoflurane or enflurane was also measured from whole blood samples in which three volunteers inhaled each compound.
Kavita, Kumari; Mishra, Avinash; Jha, Bhavanath
2011-03-01
A marine bacterial strain identified as Vibrio parahaemolyticus by 16S rRNA gene (HM355955) sequencing and gas chromatography (GC) coupled with MIDI was selected from a natural biofilm by its capability to produce extracellular polymeric substances (EPS). The EPS had an average molecule size of 15.278 μm and exhibited characteristic diffraction peaks at 5.985°, 9.150° and 22.823°, with d-spacings of 14.76661, 9.29989 and 3.89650 Å, respectively. The Fourier-transform infrared spectroscopy (FTIR) spectrum revealed aliphatic methyl, primary amine, halide groups, uronic acid and saccharides. Gas chromatography mass spectrometry (GCMS) confirmed the presence of arabinose, galactose, glucose and mannose. (1)HNMR (nuclear magnetic resonance) revealed functional groups characteristic of polysaccharides. The EPS were amorphous in nature (CI(xrd) 0.092), with a 67.37% emulsifying activity, thermostable up to 250°C and displayed pseudoplastic rheology. MALDI-TOF-TOF analysis revealed a series of masses, exhibiting low-mass peaks (m/z) corresponding to oligosaccharides and higher-mass peaks for polysaccharides consisting of different ratios of pentose and hexose moieties. This is the first report of a detailed characterisation of the EPS produced by V. parahaemolyticus, which could be further explored for biotechnological and industrial use.
Bai, Cheng; Reilly, Charles C; Wood, Bruce W
2007-03-28
High-performance liquid chromatography (HPLC) analysis was used for identification of two problematic ureides, asparagine and citrulline. We report here a technique that takes advantage of the predictable delay in retention time of the co-asparagine/citrulline peak to enable both qualitative and quantitative analysis of asparagine and citrulline using the Platinum EPS reverse-phase C18 column (Alltech Associates). Asparagine alone is eluted earlier than citrulline alone, but when both of them are present in biological samples they may co-elute. HPLC retention times for asparagine and citrulline were influenced by other ureides in the mixture. We found that at various asparagines and citrulline ratios [= 3:1, 1:1, and 1:3; corresponding to 75:25, 50:50, and 25:75 (microMol ml(-1)/microMol ml(-1))], the resulting peak exhibited different retention times. Adjustment of ureide ratios as internal standards enables peak identification and quantification. Both chemicals were quantified in xylem sap samples of pecan [Carya illinoinensis (Wangenh.) K. Koch] trees. Analysis revealed that tree nickel nutrition status affects relative concentrations of Urea Cycle intermediates, asparagine and citrulline, present in sap. Consequently, we concluded that the HPLC methods are presented to enable qualitative and quantitative analysis of these metabolically important ureides.
Brookes, Emre; Vachette, Patrice; Rocco, Mattia; Pérez, Javier
2016-01-01
Size-exclusion chromatography coupled with SAXS (small-angle X-ray scattering), often performed using a flow-through capillary, should allow direct collection of monodisperse sample data. However, capillary fouling issues and non-baseline-resolved peaks can hamper its efficacy. The UltraScan solution modeler (US-SOMO) HPLC-SAXS (high-performance liquid chromatography coupled with SAXS) module provides a comprehensive framework to analyze such data, starting with a simple linear baseline correction and symmetrical Gaussian decomposition tools [Brookes, Pérez, Cardinali, Profumo, Vachette & Rocco (2013 ▸). J. Appl. Cryst. 46, 1823–1833]. In addition to several new features, substantial improvements to both routines have now been implemented, comprising the evaluation of outcomes by advanced statistical tools. The novel integral baseline-correction procedure is based on the more sound assumption that the effect of capillary fouling on scattering increases monotonically with the intensity scattered by the material within the X-ray beam. Overlapping peaks, often skewed because of sample interaction with the column matrix, can now be accurately decomposed using non-symmetrical modified Gaussian functions. As an example, the case of a polydisperse solution of aldolase is analyzed: from heavily convoluted peaks, individual SAXS profiles of tetramers, octamers and dodecamers are extracted and reliably modeled. PMID:27738419
Arase, Shuntaro; Horie, Kanta; Kato, Takashi; Noda, Akira; Mito, Yasuhiro; Takahashi, Masatoshi; Yanagisawa, Toshinobu
2016-10-21
Multivariate curve resolution-alternating least squares (MCR-ALS) method was investigated for its potential to accelerate pharmaceutical research and development. The fast and efficient separation of complex mixtures consisting of multiple components, including impurities as well as major drug substances, remains a challenging application for liquid chromatography in the field of pharmaceutical analysis. In this paper we suggest an integrated analysis algorithm functioning on a matrix of data generated from HPLC coupled with photo-diode array detector (HPLC-PDA) and consisting of the mathematical program for the developed multivariate curve resolution method using an expectation maximization (EM) algorithm with a bidirectional exponentially modified Gaussian (BEMG) model function as a constraint for chromatograms and numerous PDA spectra aligned with time axis. The algorithm provided less than ±1.0% error between true and separated peak area values at resolution (R s ) of 0.6 using simulation data for a three-component mixture with an elution order of a/b/c with similarity (a/b)=0.8410, (b/c)=0.9123 and (a/c)=0.9809 of spectra at peak apex. This software concept provides fast and robust separation analysis even when method development efforts fail to achieve complete separation of the target peaks. Additionally, this approach is potentially applicable to peak deconvolution, allowing quantitative analysis of co-eluted compounds having exactly the same molecular weight. This is complementary to the use of LC-MS to perform quantitative analysis on co-eluted compounds using selected ions to differentiate the proportion of response attributable to each compound. Copyright © 2016 Elsevier B.V. All rights reserved.
Hiraguchi, Ryuji; Hazama, Hisanao; Masuda, Katsuyoshi; Awazu, Kunio
2015-01-01
Due to the characteristic absorption peaks in the IR region, various molecules can be used as a matrix for infrared matrix-assisted laser desorption/ionization (IR-MALDI). Especially in the 6-7 µm-band IR region, solvents used as the mobile phase for liquid chromatography have absorption peaks that correspond to their functional groups, such as O-H, C=O, and CH3. Additionally, atmospheric pressure (AP) IR-MALDI, which is applicable to liquid-state samples, is a promising technique to directly analyze untreated samples. Herein we perform AP-IR-MALDI mass spectrometry of a peptide, angiotensin II, using a mid-IR tunable laser with a tunable wavelength range of 5.50-10.00 µm and several different matrices. The wavelength dependences of the ion signal intensity of [M + H](+) of the peptide are measured using a conventional solid matrix, α-cyano-4-hydroxycinnamic acid (CHCA) and a liquid matrix composed of CHCA and 3-aminoquinoline. Other than the O-H stretching and bending vibration modes, the characteristic absorption peaks are useful for AP-IR-MALDI. Peptide ions are also observed from an aqueous solution of the peptide without an additional matrix, and the highest peak intensity of [M + H](+) is at 6.00 µm, which is somewhat shorter than the absorption peak wavelength of liquid water corresponding to the O-H bending vibration mode. Moreover, long-lasting and stable ion signals are obtained from the aqueous solution. AP-IR-MALDI using a 6-7 µm-band IR tunable laser and solvents as the matrix may provide a novel on-line interface between liquid chromatography and mass spectrometry. Copyright © 2015 John Wiley & Sons, Ltd.
Desmons, Aurore; Jaisson, Stéphane; Leroy, Nathalie; Gillery, Philippe; Guillard, Emmanuelle
2017-06-15
Haemoglobin A 1c (HbA 1c ) is a key analyte for the monitoring of glycemic balance in diabetic patients and is used for diabetes diagnosis in many countries. The potential interference of carbamylated haemoglobin (cHb) and labile glycated haemoglobin (LA 1c ) on HbA 1c assays must remain a matter of vigilance. Such a situation has occurred in our laboratory with a kit replacement on the Bio-Rad Variant™ II testing system, a cation-exchange high performance liquid chromatography (HPLC) system. With this method, LA 1c and cHb coeluted in a same peak which may have different consequences on HbA 1c values. The influence of increasing LA 1c and cHb values on HbA 1c results was studied with in vitro glycation and carbamylation of samples. Samples from patients with high and normal blood urea concentrations were assayed by HPLC and immunological assay. We observed that the degree of interference greatly varied depending on the nature of the interfering Hb fractions found under the so-called "LA 1c peak". Thus, we have decided to apply a decision tree using "LA 1c " thresholds depending on: (i) the retention time, (ii) the shape of the peak, (iii) other analytes, like urea. If the peak recognized as "LA 1c " is mainly formed by LA 1c, we consider that there is no interference until 4%. If the peak is mainly formed by cHb, we consider an interference threshold equal to 2%. This situation reminds that cHb and LA 1c remain critical issues in chromatography-based HbA 1c assays and that adapted criteria must be set up for result interpretation.
Method to determine the true modulation ratio for comprehensive two-dimensional gas chromatography.
Pinkerton, David K; Parsons, Brendon A; Synovec, Robert E
2016-12-09
A new method is presented to determine the true modulation ratio, M R , from the measurable effective modulation ratio, M R *, in comprehensive two-dimensional gas chromatography, GC×GC, without the requirement for a detector at the end of the primary column. The method was developed through the investigation of modulator induced band broadening, as a function of 1 W b and the selected modulation period, P M , for simulated GC×GC data, by first defining primary column 1 D peak(s) and simulating the modulation process. Gaussian curve fitting is used to model each modulated secondary column separation peaklet, 2 D, in the unfolded GC×GC data to accurately determine the maxima of the peaklet distribution, followed by Gaussian curve fitting to the maxima to determine the effective 1 D peak profile and width, 1 W b *. The relationship between 1 W b and 1 W b * is studied as a function of the effective modulation ratio, M R *, which is 1 W b * divided by P M , in order to determine the true modulation ratio, M R , which is 1 W b divided by P M . We explore how peak sampling phase (in-phase and out-of-phase) plays a role in the relationship between M R and M R *. Experimental validation of the simulated results is also provided, to span a range of commonly implemented conditions with typical 1 W b (2-4.5s) and P M (0.25-8s). Use of M R <2 significantly broadens the 1 D peak (M R *≥1.2M R ) corresponding to a loss in 1 D peak capacity, 1 n c ≥20%. The new method relies upon mapping from M R * to M R , which is discussed in relation to peak capacity theories for GC×GC. It is found that optimizing 1 n c in GC×GC requires that 1 W b is minimized and must be sampled with a sufficiently short P M (1-2s) to minimize modulator induced band broadening and a subsequent reduction in the effective 1 D peak capacity. Copyright © 2016 Elsevier B.V. All rights reserved.
Wang, Yu-Qing; Tang, Xu; Li, Jia-Fu; Wu, Yun-Long; Sun, Yu-Ying; Fang, Mei-Juan; Wu, Zhen; Wang, Xiu-Min; Qiu, Ying-Kun
2017-10-13
A novel on-line comprehensive two-dimensional liquid chromatography (2D-LC) method by coupling mixed-mode gel liquid chromatography (MMG-LC) with reversed phase liquid chromatography (RPLC) was developed. A mixture of 17 reference compounds was used to study the separation mechanism. A crude water extract of Flos Carthami was applied to evaluate the performance of the novel 2D-LC system. In the first dimension, the extract was eluted with a gradient of water/methanol over a cross-linked dextran gel Sephadex LH-20 column. Meanwhile, the advantages of size exclusion, reversed phase partition and adsorption separation mechanism were exploited before further on-line reversed phase purification on the second dimension. This novel on-line mixed-mode Sephadex LH-20×RPLC method provided higher peak resolution, sample processing ability (2.5mg) and better orthogonality (72.9%) versus RPLC×RPLC and hydrophilic interaction liquid chromatography (HILIC)×RPLC. To the best of our knowledge, this is the first report of a mixed-mode Sephadex LH-20×RPLC separation method with successful applications in on-line mode, which might be beneficial for harvesting targets from complicated medicinal plants. Copyright © 2017 Elsevier B.V. All rights reserved.
Comprehensive two-dimensional liquid chromatography for polyphenol analysis in foodstuffs.
Cacciola, Francesco; Farnetti, Sara; Dugo, Paola; Marriott, Philip John; Mondello, Luigi
2017-01-01
Polyphenols are a class of plant secondary metabolites that are recently drawing a special interest because of their broad spectrum of pharmacological effects. As they are characterized by an enormous structural variability, the identification of these molecules in food samples is a difficult task, and sometimes having only a limited number of commercially available reference materials is not of great help. One-dimensional liquid chromatography is the most widely applied analytical approach for their analysis. In particular, the hyphenation of liquid chromatography to mass spectrometry has come to play an influential role by allowing relatively fast tentative identification and accurate quantification of polyphenolic compounds at trace levels in vegetable media. However, when dealing with very complex real-world food samples, a single separation system often does not provide sufficient resolving power for attaining rewarding results. Comprehensive two-dimensional liquid chromatography is a technique of great analytical impact, since it offers much higher peak capacities than separations in a single dimension. In the present review, we describe applications in the field of comprehensive two-dimensional liquid chromatography for polyphenol analysis in real-world food samples. Comprehensive two-dimensional liquid chromatography applications to nonfood matrices fall outside the scope of the current report and will not be discussed. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Zoccali, Mariosimone; Barp, Laura; Beccaria, Marco; Sciarrone, Danilo; Purcaro, Giorgia; Mondello, Luigi
2016-02-01
Mineral oils, which are mainly composed of saturated hydrocarbons and aromatic hydrocarbons, are widespread food contaminants. Liquid chromatography coupled to gas chromatography with flame ionization detection represents the method of choice to determine these two families. However, despite the high selectivity of this technique, the presence of olefins (particularly squalene and its isomers) in some samples as in olive oils, does not allow the correct quantification of the mineral oil aromatic hydrocarbons fraction, requiring additional off-line tools to eliminate them. In the present research, a novel on-line liquid chromatography coupled to gas chromatography method is described for the determination of hydrocarbon contamination in edible oils. Two different liquid chromatography columns, namely a silica one (to retain the bulk of the matrix) and a silver-ion one (which better retains the olefins), were coupled in series to obtain the mineral oil aromatic hydrocarbons hump free of interfering peaks. Furthermore, the use of a simultaneous dual detection, flame ionization detector and triple quadrupole mass spectrometer allowed us not only to quantify the mineral oil contamination, but also to evaluate the presence of specific markers (i.e. hopanes) to confirm the petrogenic origin of the contamination. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
A Data Pre-processing Method for Liquid Chromatography Mass Spectrometry-based Metabolomics
Wei, Xiaoli; Shi, Xue; Kim, Seongho; Zhang, Li; Patrick, Jeffrey S.; Binkley, Joe; McClain, Craig; Zhang, Xiang
2012-01-01
A set of data pre-processing algorithms for peak detection and peak list alignment are reported for analysis of LC-MS based metabolomics data. For spectrum deconvolution, peak picking is achieved at selected ion chromatogram (XIC) level. To estimate and remove the noise in XICs, each XIC is first segmented into several peak groups based on the continuity of scan number, and the noise level is estimated by all the XIC signals, except the regions potentially with presence of metabolite ion peaks. After removing noise, the peaks of molecular ions are detected using both the first and the second derivatives, followed by an efficient exponentially modified Gaussian-based peak deconvolution method for peak fitting. A two-stage alignment algorithm is also developed, where the retention times of all peaks are first transferred into z-score domain and the peaks are aligned based on the measure of their mixture scores after retention time correction using a partial linear regression. Analysis of a set of spike-in LC-MS data from three groups of samples containing 16 metabolite standards mixed with metabolite extract from mouse livers, demonstrates that the developed data pre-processing methods performs better than two of the existing popular data analysis packages, MZmine2.6 and XCMS2, for peak picking, peak list alignment and quantification. PMID:22931487
Hoffmann, Nils; Keck, Matthias; Neuweger, Heiko; Wilhelm, Mathias; Högy, Petra; Niehaus, Karsten; Stoye, Jens
2012-08-27
Modern analytical methods in biology and chemistry use separation techniques coupled to sensitive detectors, such as gas chromatography-mass spectrometry (GC-MS) and liquid chromatography-mass spectrometry (LC-MS). These hyphenated methods provide high-dimensional data. Comparing such data manually to find corresponding signals is a laborious task, as each experiment usually consists of thousands of individual scans, each containing hundreds or even thousands of distinct signals. In order to allow for successful identification of metabolites or proteins within such data, especially in the context of metabolomics and proteomics, an accurate alignment and matching of corresponding features between two or more experiments is required. Such a matching algorithm should capture fluctuations in the chromatographic system which lead to non-linear distortions on the time axis, as well as systematic changes in recorded intensities. Many different algorithms for the retention time alignment of GC-MS and LC-MS data have been proposed and published, but all of them focus either on aligning previously extracted peak features or on aligning and comparing the complete raw data containing all available features. In this paper we introduce two algorithms for retention time alignment of multiple GC-MS datasets: multiple alignment by bidirectional best hits peak assignment and cluster extension (BIPACE) and center-star multiple alignment by pairwise partitioned dynamic time warping (CeMAPP-DTW). We show how the similarity-based peak group matching method BIPACE may be used for multiple alignment calculation individually and how it can be used as a preprocessing step for the pairwise alignments performed by CeMAPP-DTW. We evaluate the algorithms individually and in combination on a previously published small GC-MS dataset studying the Leishmania parasite and on a larger GC-MS dataset studying grains of wheat (Triticum aestivum). We have shown that BIPACE achieves very high precision and recall and a very low number of false positive peak assignments on both evaluation datasets. CeMAPP-DTW finds a high number of true positives when executed on its own, but achieves even better results when BIPACE is used to constrain its search space. The source code of both algorithms is included in the OpenSource software framework Maltcms, which is available from http://maltcms.sf.net. The evaluation scripts of the present study are available from the same source.
2012-01-01
Background Modern analytical methods in biology and chemistry use separation techniques coupled to sensitive detectors, such as gas chromatography-mass spectrometry (GC-MS) and liquid chromatography-mass spectrometry (LC-MS). These hyphenated methods provide high-dimensional data. Comparing such data manually to find corresponding signals is a laborious task, as each experiment usually consists of thousands of individual scans, each containing hundreds or even thousands of distinct signals. In order to allow for successful identification of metabolites or proteins within such data, especially in the context of metabolomics and proteomics, an accurate alignment and matching of corresponding features between two or more experiments is required. Such a matching algorithm should capture fluctuations in the chromatographic system which lead to non-linear distortions on the time axis, as well as systematic changes in recorded intensities. Many different algorithms for the retention time alignment of GC-MS and LC-MS data have been proposed and published, but all of them focus either on aligning previously extracted peak features or on aligning and comparing the complete raw data containing all available features. Results In this paper we introduce two algorithms for retention time alignment of multiple GC-MS datasets: multiple alignment by bidirectional best hits peak assignment and cluster extension (BIPACE) and center-star multiple alignment by pairwise partitioned dynamic time warping (CeMAPP-DTW). We show how the similarity-based peak group matching method BIPACE may be used for multiple alignment calculation individually and how it can be used as a preprocessing step for the pairwise alignments performed by CeMAPP-DTW. We evaluate the algorithms individually and in combination on a previously published small GC-MS dataset studying the Leishmania parasite and on a larger GC-MS dataset studying grains of wheat (Triticum aestivum). Conclusions We have shown that BIPACE achieves very high precision and recall and a very low number of false positive peak assignments on both evaluation datasets. CeMAPP-DTW finds a high number of true positives when executed on its own, but achieves even better results when BIPACE is used to constrain its search space. The source code of both algorithms is included in the OpenSource software framework Maltcms, which is available from http://maltcms.sf.net. The evaluation scripts of the present study are available from the same source. PMID:22920415
Hofmeister, Stefan J; Veronig, Astrid; Temmer, Manuela; Vennerstrom, Susanne; Heber, Bernd; Vršnak, Bojan
2018-03-01
We study the properties of 115 coronal holes in the time range from August 2010 to March 2017, the peak velocities of the corresponding high-speed streams as measured in the ecliptic at 1 AU, and the corresponding changes of the Kp index as marker of their geoeffectiveness. We find that the peak velocities of high-speed streams depend strongly on both the areas and the co-latitudes of their solar source coronal holes with regard to the heliospheric latitude of the satellites. Therefore, the co-latitude of their source coronal hole is an important parameter for the prediction of the high-speed stream properties near the Earth. We derive the largest solar wind peak velocities normalized to the coronal hole areas for coronal holes located near the solar equator and that they linearly decrease with increasing latitudes of the coronal holes. For coronal holes located at latitudes ≳ 60°, they turn statistically to zero, indicating that the associated high-speed streams have a high chance to miss the Earth. Similarly, the Kp index per coronal hole area is highest for the coronal holes located near the solar equator and strongly decreases with increasing latitudes of the coronal holes. We interpret these results as an effect of the three-dimensional propagation of high-speed streams in the heliosphere; that is, high-speed streams arising from coronal holes near the solar equator propagate in direction toward and directly hit the Earth, whereas solar wind streams arising from coronal holes at higher solar latitudes only graze or even miss the Earth.
Micoli, F; Adamo, R; Proietti, D; Gavini, M; Romano, M R; MacLennan, C A; Costantino, P; Berti, F
2013-11-15
A method for meningococcal X (MenX) polysaccharide quantification by high-performance anion-exchange chromatography with pulsed amperometric detection (HPAEC-PAD) is described. The polysaccharide is hydrolyzed by strong acidic treatment, and the peak of glucosamine-4-phosphate (4P-GlcN) is detected and measured after chromatography. In the selected conditions of hydrolysis, 4P-GlcN is the prevalent species formed, with GlcN detected for less than 5% in moles. As standard for the analysis, the monomeric unit of MenX polysaccharide, N-acetylglucosamine-4-phosphate (4P-GlcNAc), was used. This method for MenX quantification is highly selective and sensitive, and it constitutes an important analytical tool for the development of a conjugate vaccine against MenX. Copyright © 2013 Elsevier Inc. All rights reserved.
Hamilton, Theron J; Qui, Harry Z; Dozier, Katherine V R; Fuller, Zachary J
2014-09-01
In order to achieve chromatographic separation, urine samples shown to be initially positive for amphetamines and methamphetamines in US Department of Defense immunoassays are derivatized with R-(-)-α-methoxy-α-(trifluoromethyl)phenylacetyl chloride (R-(-)-MTPA) prior to gas chromatography-electron impact-mass spectrometry (GC-EI-MS) analysis. Phentermine, a member of the phenethylamine class of drugs and a common appetite suppressant, interferes with GC-EI-MS assays of R-(-)-MTPA-derivatized d-amphetamine, degrading the chromatography of the internal standard and analyte ions and skewing concentration calculations. Additionally, when specimens with high concentrations of l-methamphetamine are derivatized with R-(-)-MTPA, signal peaks have the potential to be misidentified by integration software as d-methamphetamine. We have found that replacing R-(-) MTPA with (S)-(+)-α-methoxy-α-(trifluoromethyl)phenylacetyl chloride reduces phentermine interference problems related to internal standard chromatography, reduces the possibility of concentrated l-methamphetamine peaks being misidentified by integration software, improves resolution of d-methamphetamine in the presence of high l-methamphetamine concentrations, and is a cost-neutral change that can be applied to current amphetamines GC-EI-MS methods without the need for method modification. Published by Oxford University Press 2014. This work is written by (a) US Government employee(s) and is in the public domain in the US.
Zhang, Hui; Zhang, Xiaojing; Jiang, Huijie; Xu, Cong; Tong, Shengqiang; Yan, Jizhong
2018-02-01
Shenqi Jiangtang Granule, a well-known traditional Chinese herbal preparation, has been widely used for the treatment of type II diabetes mellitus. In this work, an ultrafiltration liquid chromatography with quadrupole time-of-flight mass spectrometry method was proposed for the rapid identification of bioactive ingredients from Shenqi Jiangtang Granule using α-glucosidase as an example. First, the chemical profile of this preparation was clarified, including 37 saponins, 17 flavonoids, 37 lignans, and seven other compounds. After incubation with α-glucosidase in vitro, the methanol extract with an IC 50 value of 0.19 mg/mL exhibited significant inhibitory activity. Then, 18 specific binding peaks were screened, and 15 peaks were identified. Among these, ten compounds were reported to have potential α-glucosidase inhibitory activity for the first time. Subsequently, the inhibitory activities of these active compounds were evaluated by ultraviolet spectrophotometry with p-nitrophenyl α-d-glucopyranoside as a substrate. As a result, gomisin J and gomisin D exhibited stronger α-glucosidase inhibitory activities than other active compounds with IC 50 values of 77.69 and 133.85 μM, respectively. The results demonstrated that the integrated ultrafiltration liquid chromatography with mass spectrometry method was an effective and powerful tool for the discovery of active ingredients in Shenqi Jiangtang Granule. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Carballo, Silvia; Prats, Soledad; Maestre, Salvador; Todolí, José-Luis
2015-04-01
In this manuscript, a study of the effect of microwave radiation on the high-performance liquid chromatography separation of tocopherols and vitamin K1 was conducted. The novelty of the application was the use of a relatively low polarity mobile phase in which the dielectric heating effect was minimized to evaluate the nonthermal effect of the microwave radiation over the separation process. Results obtained show that microwave-assisted high-performance liquid chromatography had a shorter analysis time from 31.5 to 13.3 min when the lowest microwave power was used. Moreover, narrower peaks were obtained; hence the separation was more efficient maintaining or even increasing the resolution between the peaks. This result confirms that the increase in mobile phase temperature is not the only variable for improving the separation process but also other nonthermal processes must intervene. Fluorescence detection demonstrated better signal-to-noise compared to photodiode arrayed detection mainly due to the independent effect of microwave pulses on the baseline noise, but photodiode array detection was finally chosen as it allowed a simultaneous detection of nonfluorescent compounds. Finally, a determination of the content of the vitamin E homologs was carried out in different vegetable oils. Results were coherent with those found in the literature. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Immunoreactive dynorphin in pituitary and brain.
Goldstein, A; Ghazarossian, V E
1980-01-01
Distribution of the potent opioid peptide dynorphin has been determined in pituitary gland (pig, beef, rat), in the various regions of rat brain, and in rat spinal cord, by using a highly specific antiserum. By gel permeation chromatography in 4 M guanidine, the porcine pituitary immunoreactivity is found in a major peak of apparent molecular weight about 1700 and a minor peak of about 3400. Similar peaks are found in rat pituitary extracts, whereas rat brain contains, in addition, two peaks of larger apparent molecular weight. In the pituitary, immunoreactive dynorphin is found predominantly in pars nervosa. In the central nervous system, it is distributed widely, with highest concentrations in hypothalamus, medulla-pons, midbrain, and spinal cord. Although dynorphin contains leucine-enkephalin, the regional distribution of dynorphin is different from that of enkephalin or of any other known opioid peptide. PMID:6108564
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hurtubise, R.J.; Allen, T.W.; Hussain, A.
1981-03-29
Dry-column chromatography with an aluminum oxide stationary phase and a n-hexane-ether (19:1) mobile phase was used to separate polycyclic aromatic hydrocarbons (PAH) by ring size. Prior to the dry-column chromatography step, the coal derived solvents were added to an acid treated silica gel column and eluted with chloroform. This step removed pyridine-type nitrogen heterocycles. After separation of the individual ring fractions, the fractions were further separated by either thin layer chromatography (TLC) or high performance liquid chromatography (HPLC). If TLC was used, then after separation fluorescence profiles of each PAH ring fraction distributed on 30%-acetylated cellulose chromatoplates were obtained withmore » a spectrodensitometer. Measurement of fluorescence peak heights gave an approximate measure of the amount of the 3-, 4-, 5-, and 6- ring PAH. For HPLC separation, the 3- and 4- ring PAH fractions obtained from the dry-column chromatography step were separated with a ..mu..-Bondapak C/sub 18/ column and methanol:water (65:35) mobile phase. The HPLC separated PAH were characterized by chromatographic correlation factors and corrected fluorescence excitation spectra. Alkylphenols were identified in coal recycle solvent sample following separation by HPLC.« less
Davletbaeva, Polina; Chocholouš, Petr; Bulatov, Andrey; Šatínský, Dalibor; Solich, Petr
2017-09-05
Sequential Injection Chromatography (SIC) evolved from fast and automated non-separation Sequential Injection Analysis (SIA) into chromatographic separation method for multi-element analysis. However, the speed of the measurement (sample throughput) is due to chromatography significantly reduced. In this paper, a sub-1min separation using medium polar cyano monolithic column (5mm×4.6mm) resulted in fast and green separation with sample throughput comparable with non-separation flow methods The separation of three synthetic water-soluble dyes (sunset yellow FCF, carmoisine and green S) was in a gradient elution mode (0.02% ammonium acetate, pH 6.7 - water) with flow rate of 3.0mLmin -1 corresponding with sample throughput of 30h -1 . Spectrophotometric detection wavelengths were set to 480, 516 and 630nm and 10Hz data collection rate. The performance of the separation was described and discussed (peak capacities 3.48-7.67, peak symmetries 1.72-1.84 and resolutions 1.42-1.88). The method was represented by validation parameters: LODs of 0.15-0.35mgL -1 , LOQs of 0.50-1.25mgL -1 , calibration ranges 0.50-150.00mgL -1 (r>0.998) and repeatability at 10.0mgL -1 of RSD≤0.98% (n=6). The method was used for determination of the dyes in "forest berries" colored pharmaceutical cough-cold formulation. The sample matrix - pharmaceuticals and excipients were not interfering with vis determination because of no retention in the separation column and colorless nature. The results proved the concept of fast and green chromatography approach using very short medium polar monolithic column in SIC. Copyright © 2017 Elsevier B.V. All rights reserved.
USDA-ARS?s Scientific Manuscript database
A polygalacturonase (PG) was extracted and purified from decayed tissue of ‘Anjou’ pear fruit inoculated with Penicillium expansum. Ammonium sulfate precipitation, gel filtration and cation exchange chromatography were used to purify the enzyme. Both chromatographic methods revealed a single peak co...
Lithium-Inorganic Electrolyte Batteries
1975-01-01
soluble and therefore would not cause large pressure increases. Analysis by gas chromatography and cyclic voltametry is in progress. The fact that no...the large peak at 2.2 V again appears. Following a cathodic sweep , the Ni electrode is covered with a film which, after washing with SOC12 and drying
Assessing Friction Stress on a Liquid Lubricant by Stable Isotope Analysis
2014-07-17
military use (aviation) and demonstrated readily identifiable peaks via standard temperature gas chromatography (GC) analysis. Hercolube-A (Herc-A) was...Atmospheric Chemistry. 2004;47:191-208. [18] Handbook of Chemistry and Physics. Cleveland, OH: CRC Press; 2008. 12 [19] van de Voort FR, Sedman J
An experimental system for the study of active vibration control - Development and modeling
NASA Astrophysics Data System (ADS)
Batta, George R.; Chen, Anning
A modular rotational vibration system designed to facilitate the study of active control of vibrating systems is discussed. The model error associated with four common types of identification problems has been studied. The general multiplicative uncertainty shape for a vibration system is small in low frequencies, large at high frequencies. The frequency-domain error function has sharp peaks near the frequency of each mode. The inability to identify a high-frequency mode causes an increase of uncertainties at all frequencies. Missing a low-frequency mode causes the uncertainties to be much larger at all frequencies than missing a high-frequency mode. Hysteresis causes a small increase of uncertainty at low frequencies, but its overall effect is relatively small.
Observation of shape isomers states in fission fragments
NASA Astrophysics Data System (ADS)
Kamanin, D. V.; Pyatkov, Yu V.; Alexandrov, A. A.; Alexandrova, I. A.; Mkaza, N.; Malaza, V.; Kuznetsova, E. A.; Strekalovsky, A. O.; Strekalovsky, O. V.; Zhuchko, V. E.
2017-06-01
We discuss the manifestations of a new original effect appeared at crossing of the metal foils by fission fragments. We have observed significant mass deficit in the total mass Ms of the fission fragments detected in coincidence with ions knocked out from the foil. It was shown that at the large angles of scattering of the knocked-out ions from the foil predominantly conventional elastic Rutherford scattering takes place. As the result Ms corresponds to the mean mass of the mother system after emission of fission neutrons (no missing mass). In contrast, in near frontal impacts fission fragment misses essential part of its mass. Residual nuclei at least for the fragments from the heavy mass peak show magic nucleon composition.
Investigation of the impact of higher molecular weight organics on OH reactivity in London
NASA Astrophysics Data System (ADS)
Holmes, Rachel; Hamilton, Jacqueline; Hopkins, Jimmy; Lee, James; Lidster, Richard; Lewis, Alistair
2014-05-01
Volatile organic compounds (VOCs) play an important role in the formation of pollution in the air, particularly in the boundary layer of the atmosphere. VOCs in an urban atmosphere react with radical species to form ozone (O3), which at ground levels can pose a significant threat to health.[1] Air quality models have been developed to predict the effect of emissions on air quality. Numerous studies of urban environments show discrepancies between measured and predicted estimates of the lifetime of OH radicals. One possibility is that the magnitude of VOCs as a sink for reactive species is underestimated in models, including unmeasured and larger aromatic species. To study some of these additional compounds we have developed a method using comprehensive two dimensional gas chromatography coupled to a flame ionisation detector (GC×GC-FID). GC×GC is a hyphenated technique where two columns are coupled together via a modulator, providing two discrete separations of each species based on boiling point and polarity.[2] This provides a high resolution method, with increased separation power and improved peak capacity when compared to many single column systems.[3] This technique was used in conjunction with a dual channel GC (DC-GC) during the Clean Air for London (ClearfLo) project to increase the speciation of the complex air matrix. Target compounds were in the range C1 to C13+ VOCs, including oxygenates, aromatics, saturated and unsaturated aliphatics. Calculations of the pseudo first order OH reactivity indicates that higher carbon number VOCs may account for some of the missing OH sinks in comparison to emission inventory estimates. During summer measurements the role of biogenic VOCs increases, with isoprene and monoterpenes acting as important OH sinks. Including these should enhance the prediction capability of air quality models. This can then lead to the introduction of new policies for the reduction of pollution precursors and hopefully result in improved air quality. References 1. Atkinson, R., Atmospheric chemistry of VOCs and NOx. Atmospheric Environment, 2000. 34(12-14): p. 2063-2101. 2. Hamilton, J.F., Using Comprehensive Two-Dimensional Gas Chromatography to Study the Atmosphere. Journal of Chromatographic Science, 2010. 48(4): p. 274-. 3. Lidster, R.T., J.F. Hamilton, and A.C. Lewis, The application of two total transfer valve modulators for comprehensive two-dimensional gas chromatography of volatile organic compounds. Journal of Separation Science, 2011. 34(7): p. 812-821.
Sasaki, T; Asano, T; Takakura, K; Sano, K; Nakamura, T; Suzuki, N; Imabayashi, S; Ishikawa, Y
1982-12-01
The relationship between lipid peroxides in cerebrospinal fluid (CSF) and the occurrence of cerebral vasospasm following subarachnoid hemorrhage (SAH) was evaluated by analyzing CSF with high-performance liquid chromatography (HPLC) and gas chromatography mass spectrometry (GC-MS). Hydroperoxy eicosatetraenoic acids (HPETEs) and hydroxy eicosatetraenoic acids (HETEs) were synthesized by the treatment of arachidonic acid with hydrogen peroxide and cupric chloride. The retention time of these HPETEs and HETEs were determined on HPLC. The position of oxydation occurred was determined after methylation, reduction and trimethyl silylation using GC-MS. Thus the elucidation of positional isomers of HPETEs and HETEs was made possible by the retention time on HPLC. The supernant of CSF after SAH was adjusted to pH 3.0 and then absorbed to octadecyl silyl silica column. The eluted fraction with 15% ethanol-water from octadecyl silyl silica column was analyzed by HPLC detecting at 238 nm. No peak was observed on HPLC at the region of HPETEs and HETEs in the CSF obtained from healthy person. In SAH patients, several peaks were recognized in accordance with the occurrence of cerebral vasospasm. One of the peaks was identified as 5-HETE by HPLC and GC-MS. In 10 SAH patients, semi-quantitative analysis of 5-HETE in the CSF was performed by measuring the height of the peak identified as 5-HETE on HPLC. The close correlation was recognized between the occurrence of cerebral vasospasm and the appearance of 5-HETE in the CSF. The results of the present study suggest that lipid peroxidation is involved in the pathogenesis of chronic vasospasm after SAH.
Moschet, Christoph; Piazzoli, Alessandro; Singer, Heinz; Hollender, Juliane
2013-11-05
In this study, the efficiency of a suspect screening strategy using liquid chromatography-high resolution mass spectrometry (LC-HRMS) without the prior purchase of reference standards was systematically optimized and evaluated for assessing the exposure of rarely investigated pesticides and their transformation products (TPs) in 76 surface water samples. Water-soluble and readily ionizable (electrospray ionization) substances, 185 in total, were selected from a list of all insecticides and fungicides registered in Switzerland and their major TPs. Initially, a solid phase extraction-LC-HRMS method was established using 45 known, persistent, and high sales volume pesticides. Seventy percent of these target substances had limit of quantitation (LOQ) < 5 ng L(-1). This compound set was then used to develop and optimize a HRMS suspect screening method using only the exact mass as a priori information. Thresholds for blank subtraction, peak area, peak shape, signal-to-noise, and isotopic pattern were applied to automatically filter the initially picked peaks. The success rate was 70%; false negatives mainly resulted from low intense peaks. The optimized approach was applied to the remaining 140 substances. Nineteen additional substances were detected in environmental samples, two TPs for the first time in the environment. Sixteen substances were confirmed with reference standards purchased subsequently, while three TP standards could be obtained from industry or other laboratories. Overall, this screening approach was fast and very successful and can easily be expanded to other micropollutant classes for which reference standards are not readily accessible such as TPs of household chemicals.
Yang, Yi; Aisa, Haji Akber; Ito, Yoichiro
2009-01-01
The toroidal column using a zigzag pattern has been improved in both retention of the stationary phase and peak resolution. To further improve the retention of stationary phase and peak resolution, a series of novel geometric designs of tubing (plain, mid-clamping, flattened and flat-twisted tubing) was evaluated their performance in CCC. The results showed that the tubing which was flattened vertically against centrifugal force (vert-flattened tubing) produced the best peak resolution among them. Using vert-flattened tubing a series of experiments was performed to study the effects of column capacity and sample size. The results indicated that a 0.25 ml capacity column is ideal for analysis of small amount samples. PMID:20454530
Ortega, Nàdia; Macià, Alba; Romero, Maria-Paz; Trullols, Esther; Morello, Jose-Ramón; Anglès, Neus; Motilva, Maria-Jose
2009-08-26
An improved chromatographic method was developed using ultra-performance liquid chromatography-tandem mass spectrometry to identify and quantify phenolic compounds and alkaloids, theobromine and caffeine, in carob flour samples. The developed method has been validated in terms of speed, sensitivity, selectivity, peak efficiency, linearity, reproducibility, limits of detection, and limits of quantification. The chromatographic method allows the identification and quantification of 20 phenolic compounds, that is, phenolic acids, flavonoids, and their aglycone and glucoside forms, together with the determination of the alkaloids, caffeine and theobromine, at low concentration levels all in a short analysis time of less than 20 min.
Armstrong, David W J; Matangi, Murray F
2010-02-01
To determine the normal range of estimated right ventricular systolic pressure (RVSP) at peak exercise during exercise stress echocardiography (ExECHO) in a series of consecutive patients referred for the investigation of coronary artery disease. Of 1057 ExECHO examinations over a span of 11 months, 807 met the study criteria. A total of 250 patients were excluded, 188 for missing rest or peak RVSP measurements, 16 for a resting RVSP above 50 mmHg, 16 for nondiagnostic echocardiographic images and the remaining 30 for missing data. The maximal tricuspid regurgitant jet was recorded at rest and following acquisition of the stress images (mean [+/- SD] time 103.1+/-35.2 s). A mean right atrial pressure of 10 mmHg was used in the calculation of RVSP. All data were entered into a cardiology database (CARDIOfile; Registered trademark, Kingston Heart Clinic) for later retrieval and analysis. There were 206 male (58.9+/-12.0 years of age) and 601 female patients (57.4+/-12.0 years of age). Patient age ranged from 18 to 90 years. The mean resting and peak exercise RVSP was 27.8+/-7.8 mmHg and 34.8+/-11.3 mmHg in men, and 27.8+/-7.7 mmHg and 34.6+/-11.7 mmHg in women, respectively. The mean increase in RVSP was 7.0+/-8.8 mmHg in men and 6.7+/-8.9 mmHg in women. The 95% CI for peak RVSP was 12.2 mmHg to 57.4 mmHg in men, and 11.2 mmHg to 58.0 mmHg in women. There was no significant difference in peak RVSP for a normal ExECHO compared with an abnormal ExECHO. RVSP at rest and at peak exercise increased with both age and left atrial size. In individual patients, the RVSP should not increase above the resting value by more than 24.6 mmHg in men and 24.5 mmHg in women. This value was calculated as the increase in RVSP plus 2xSD of the RVSP. Peak RVSP should not exceed 57.4 mmHg in men and 58.0 mmHg in women. If either of these criteria is exceeded, the response of RVSP to exercise should be considered abnormal.
Sun, Min; Qiu, Hongdeng; Wang, Licheng; Liu, Xia; Jiang, Shengxiang
2009-05-01
A new specific stationary phase based on poly(1-allylimidazole)-grafted silica has been synthesized and characterized, by infrared spectra, elemental analysis, thermogravimetric analysis and X-ray photoelectron spectroscopy. The results of test showed that poly(1-allylimidazole) can effectively mask the residual silanol groups and reduce the adverse effect of residual silanol. Using this stationary phase, phenol compounds, aniline compounds, and polycyclic aromatic hydrocarbons were successfully separated with symmetric peak shapes in the reversed-phase chromatography. Inorganic anions (IO(3)(-), BrO(3)(-), Br(-), NO(3)(-), I(-), SCN(-)) were also separated completely in the anion-exchange chromatography using sodium chloride solution as the mobile phase. The effects of pH and the concentration of eluent on the separation of inorganic anions were studied. The separation mechanism appears to involve the mixed interactions of hydrogen bonding, hydrophobic, pi-pi, electrostatic, and anion-exchange interactions.
Salghi, Rachid; Armbruster, Wolfgang; Schwack, Wolfgang
2014-06-15
Triacylglycerol profiles were selected as indicator of adulteration of argan oils to carry out a rapid screening of samples for the evaluation of authenticity. Triacylglycerols were separated by high-performance liquid chromatography-evaporative light scattering detection. Different peak area ratios were defined to sensitively detect adulteration of argan oil with vegetable oils such as sunflower, soy bean, and olive oil up to the level of 5%. Based on four reference argan oils, mean limits of detection and quantitation were calculated to approximately 0.4% and 1.3%, respectively. Additionally, 19 more argan oil reference samples were analysed by high-performance liquid chromatography-refractive index detection, resulting in highly comparative results. The overall strategy demonstrated a good applicability in practise, and hence a high potential to be transferred to routine laboratories. Copyright © 2013 Elsevier Ltd. All rights reserved.
Probabilistic Model for Untargeted Peak Detection in LC-MS Using Bayesian Statistics.
Woldegebriel, Michael; Vivó-Truyols, Gabriel
2015-07-21
We introduce a novel Bayesian probabilistic peak detection algorithm for liquid chromatography-mass spectroscopy (LC-MS). The final probabilistic result allows the user to make a final decision about which points in a chromatogram are affected by a chromatographic peak and which ones are only affected by noise. The use of probabilities contrasts with the traditional method in which a binary answer is given, relying on a threshold. By contrast, with the Bayesian peak detection presented here, the values of probability can be further propagated into other preprocessing steps, which will increase (or decrease) the importance of chromatographic regions into the final results. The present work is based on the use of the statistical overlap theory of component overlap from Davis and Giddings (Davis, J. M.; Giddings, J. Anal. Chem. 1983, 55, 418-424) as prior probability in the Bayesian formulation. The algorithm was tested on LC-MS Orbitrap data and was able to successfully distinguish chemical noise from actual peaks without any data preprocessing.
NASA Technical Reports Server (NTRS)
Becker, Joseph F.; Valentin, Jose
1996-01-01
The maximum entropy technique was successfully applied to the deconvolution of overlapped chromatographic peaks. An algorithm was written in which the chromatogram was represented as a vector of sample concentrations multiplied by a peak shape matrix. Simulation results demonstrated that there is a trade off between the detector noise and peak resolution in the sense that an increase of the noise level reduced the peak separation that could be recovered by the maximum entropy method. Real data originated from a sample storage column was also deconvoluted using maximum entropy. Deconvolution is useful in this type of system because the conservation of time dependent profiles depends on the band spreading processes in the chromatographic column, which might smooth out the finer details in the concentration profile. The method was also applied to the deconvolution of previously interpretted Pioneer Venus chromatograms. It was found in this case that the correct choice of peak shape function was critical to the sensitivity of maximum entropy in the reconstruction of these chromatograms.
Venkatramani, C J; Al-Sayah, Mohammad; Li, Guannan; Goel, Meenakshi; Girotti, James; Zang, Lisa; Wigman, Larry; Yehl, Peter; Chetwyn, Nik
2016-02-01
A new interface was designed to enable the coupling of reversed phase liquid chromatography (RPLC) and supercritical fluid chromatography (SFC). This online two-dimensional chromatographic system utilizing RPLC in the first dimension and SFC in the second was developed to achieve simultaneous achiral and chiral analysis of pharmaceutical compounds. The interface consists of an eight-port, dual-position switching valve with small volume C-18 trapping columns. The peaks of interest eluting from the first RPLC dimension column were effectively focused as sharp concentration pulses on small volume C-18 trapping column/s and then injected onto the second dimension SFC column. The first dimension RPLC separation provides the achiral purity result, and the second dimension SFC separation provides the chiral purity result (enantiomeric excess). The results are quantitative enabling simultaneous achiral, chiral analysis of compounds. The interface design and proof of concept demonstration are presented. Additionally, comparative studies to conventional SFC and case studies of the applications of 2D LC-SFC in pharmaceutical analysis is presented. Copyright © 2015 Elsevier B.V. All rights reserved.
Jia, Youmei; Cai, Jianfeng; Xin, Huaxia; Feng, Jiatao; Fu, Yanhui; Fu, Qing; Jin, Yu
2017-06-08
A preparative two dimensional hydrophilic interaction liquid chromatography/reversed-phase liquid chromatography (Pre-2D-HILIC/RPLC) method was established to separate and purify the components in Trachelospermum jasminoides . The pigments and strongly polar components were removed from the crude extract after the active carbon decolorization and solid phase extraction processes. A Click XIon column (250 mm×20 mm, 10 μm) was selected as stationary phase and water-acetonitrile as mobile phases in the first dimensional HILIC. Finally, 15 fractions were collected under UV-triggered mode. In the second dimensional RPLC, a C18 column (250 mm×20 mm, 5 μm) was selected and water-acetonitrile was used as mobile phases. As a result, 14 compounds with high purity were obtained, which were further identified by mass spectrometry (MS) and nuclear magnetic resonance (NMR). Finally, 11 lignan compounds and three flavonoid compounds were obtained. The method has a good orthogonality, and can improve the resolution and the peak capacity. It is significant for the separation of complex components from Trachelospermum jasminoides .
Bennett, Raffeal; Olesik, Susan V
2018-01-25
The value of exploring selectivity and solvent strength ternary gradients in enhanced fluidity liquid chromatography (EFLC) is demonstrated for the separation of inulin-type fructans from chicory. Commercial binary pump systems for supercritical fluid chromatography only allow for the implementation of ternary solvent strength gradients which can be restrictive for the separation of polar polymeric analytes. In this work, a custom system was designed to extend the capability of EFLC to allow tuning of selectivity or solvent strength in ternary gradients. Gradient profiles were evaluated using the Berridge function (RF 1 ), normalized resolution product (NRP), and gradient peak capacity (P c ). Selectivity gradients provided the separation of more analytes over time. The RF 1 function showed favor to selectivity gradients with comparable P c to that of solvent strength gradients. NRP did not strongly correlate with P c or RF 1 score. EFLC with the hydrophilic interaction chromatography, HILIC, separation mode was successfully employed to separate up to 47 fructan analytes in less than 25 min using a selectivity gradient. Copyright © 2017 Elsevier B.V. All rights reserved.
François, Isabelle; Pereira, Alberto dos Santos; Sandra, Pat
2010-06-01
The separation of the triacylglycerols in fish oil was performed by comprehensive and off-line supercritical fluid chromatography combined with RP-LC. The first dimension consisted of two serially coupled silver-ion (SI)-loaded columns operated with a supercritical mobile phase (supercritical fluid chromatography, SFC) in both the cases, whereas the second dimension was performed in non-aqueous RP mode (NARP-LC) on a 10-cm monolithic octadecyl silica (ODS) or a 45-cm long ODS column packed with 1.8 microm particles for the comprehensive and off-line separations, respectively. Despite the outstanding performance of the SI-SFC x NARP-LC interface, the high complexity of the sample rendered the online separation far from complete. The off-line approach gave much better separation mainly because of the higher peak capacity of the second-dimension column, but even in this case, the use of MS was mandatory to elucidate the different triacylglycerols in fish oil. The disadvantage of the off-line procedure was the long analysis time.
Purification and partial characterization of Flavotoxin A.
Hu, W J; Zhang, G S; Chu, F S; Meng, H D; Meng, Z H
1984-01-01
A heat-resistant, low-molecular-weight toxin was isolated from semisolid potato dextrose agar medium after inoculation with Flavobacterium farinofermentans sp. nov., which was isolated from fermented corn meal that caused some outbreaks of food poisoning in China. The toxin was purified by solvent partition, Sephadex LH-20 gel filtration, and C-18 reversed-phase column chromatography. Thin-layer chromatography and high-pressure liquid chromatographic methods were developed for the identification and analysis of the toxin. The purified toxin exhibited a single spot in thin-layer chromatography and a single peak in high-pressure liquid chromatography and had adsorption maxima at 232 and 267 nm. Mass spectral analysis indicated a molecular weight of 169 with an experimental formula of C9H13O3. The 50% lethal dose of purified toxin in mice (oral) was less than 6.84 mg/kg, but greater than 0.68 mg/kg. Postmortem examination showed that the mice died of some type of neurological and cardiovascular system toxicity. The name Flavotoxin A is being assigned to the toxin. PMID:6391376
Colgrave, Michelle L; Byrne, Keren; Howitt, Crispin A
2017-11-08
During brewing, gluten proteins may be solubilized, modified, complexed, hydrolyzed, and/or precipitate. Gluten fragments that persist in conventional beers render them unsuitable for people with celiac disease (CD) or gluten intolerance. Barley-based beers crafted to remove gluten using proprietary precipitation and/or application of enzymes, e.g. prolyl endopeptidases (PEP) that degrade the proline-rich gluten molecules, are available commercially. Gluten measurement in fermented products remains controversial. The industry standard, a competitive ELISA, may indicate gluten values <20 mg/kg, which is deemed safe for people with CD. However, in this study, liquid chromatography-mass spectrometry analyses revealed gluten peptides derived from hydrolyzed fragments, many >30 kDa in size. Barley gluten (hordeins) were detected in all beers analyzed with peptides representing all hordein classes detected in conventional beers but also, alarmingly, in many gluten-reduced beers. It is evident that PEP digestion was incomplete in several commercial beers, and peptides comprising missed cleavages were identified, warranting further optimization of PEP application in an industrial setting.
Alley, William R; Mann, Benjamin F; Hruska, Vlastimil; Novotny, Milos V
2013-11-05
Among of the most urgent needs of the glycobiology community is to generate libraries of pure carbohydrate standards. While many oligosaccharides have recently been synthesized, some glycans of biomedical importance are still missing in existing collections or are available in only limited amounts. To address this need, we demonstrate the use of the relatively unexplored technique of recycling high-performance liquid chromatography (R-HPLC) to isolate and purify glycoconjugates from several natural sources. We were able to routinely achieve purities greater than 98%. In several cases, we were able to obtain isomerically pure substances, particularly for glycans with different positional isomerism. These purified substances can then be used in different analytical applications, for example, as standards for mass spectrometry (MS) and capillary-based separations. Moreover, using a bifunctional aromatic amine, the same derivatization agent can be used to enable UV detection of oligosaccharides during their purification and link the isolated molecules to functionalized surfaces and potentially create glycan arrays.
Jing, Peng; Kaneta, Takashi; Imasaka, Totaro
2002-08-01
The degree of labeling, i.e., dye/protein ratio (D/P) is important for characterizing properties of dye labeling with proteins. A method for the determination of this ratio between a fluorescent cyanine dye and bovine serum albumin (BSA), based on the separation of the labeling mixture using micellar electrokinetic chromatography with diode laser-induced fluorescence detection, is described. Two methods for the determination of D/P were examined in this study. In these methods, a hydrolysis product and impurities, which are usually unfavorable compounds that are best excluded for protein analysis, were utilized to determine the amounts of dye bound to BSA. One is a direct method in which a ratio of the peak area of BSA to the total peak area of all the products produced in the labeling reaction was used for determining the average number of dye molecules bound to a single BSA molecule. The other is an indirect determination, which is based on diminution of all peak areas related to the products except for the labeled BSA. These methods were directly compared by means of a spectrophotometric method. The experimental results show that the indirect method is both reliable and sensitive. Therefore, D/P values can be determined at trace levels using the indirect method.
Liu, Fang; Ren, Dequan; Guo, De-an; Pan, Yifeng; Zhang, Huzhe; Hu, Ping
2008-03-01
In this paper, a new method for liquid chromatographic fingerprint of saponins in Gynostemma pentaphyllum (THUNB.) MAKINO was developed. The G. pentaphyllum powder was defatted by Soxhlet extraction with petroleum ether and then gypenosides were extracted from the residue with methanol by sonicating. Column chromatography with macro pore resin was then used to separate and enrich gypenosides. HPLC fingerprint analysis of gypenosides fraction was performed on a C18 column, with an isocratic elution of 34% acetonitrile for 60 min at 0.8 ml/min, sample injection volume was 20 microl and the wavelength was 203 nm. To cover the lack of standard compounds, the addition of an internal standard of ginsenoside Rb2 was employed in the gypenosides fingerprint profile. The relative retention time (RRT) and relative peak area (RPA) of the gypenosides peaks in the fingerprint were calculated by setting the ginsenoside Rb2 as the marker compound. The relative standard deviation (RSDs) of RRT of five common peaks vs. ginsenoside Rb2 in precision, repeatability and stability test were less than 1%, and the RSDs of RPA were less than 5%. The method validation data proved that the proposed method for the fingerprint with internal standard of G. pentaphyllum saponins is adequate, valid and applicable. Finally, three batches of crude drug samples collected from Shanxi province were tested by following the established method.
Chen, Tao; Fan, Jun; Gao, Ruiqi; Wang, Tai; Yu, Ying; Zhang, Weiguang
2016-10-07
Chiral stationary phase-high performance liquid chromatography coupled with various detectors has been one of most commonly used methods for analysis and separation of chiral compounds over the past decades. Various detectors exhibit different characteristics in qualitative and quantitative studies under different chromatographic conditions. Herein, a comparative evaluation of HPLC coupled with ultraviolet, optical rotation, refractive index, and evaporative light scattering detectors has been conducted for qualitative and quantitative analyses of metalaxyl racemate. Effects of separation conditions on the peak area ratio between two enantiomers, including sample concentration, column temperature, mobile phase composition, as well as flow rate, have been investigated in detail. In addition, the limits of detection, the limits of quantitation, quantitative range and precision for these two enantiomers by using four detectors have been also studied. As indicated, the chromatographic separation conditions have been slight effects on ultraviolet and refractive index detections and the peak area ratio between two enantiomers remains almost unchanged, but the evaporative light scattering detection has been significantly affected by the above-mentioned chromatographic conditions and the corresponding peak area ratios varied greatly. Moreover, the limits of detection, the limits of quantitation, and the quantitative ranges of two enantiomers with UV detection were remarkably lower by 1-2 magnitudes than the others. Copyright © 2016 Elsevier B.V. All rights reserved.
Allen, Robert C; Rutan, Sarah C
2011-10-31
Simulated and experimental data were used to measure the effectiveness of common interpolation techniques during chromatographic alignment of comprehensive two-dimensional liquid chromatography-diode array detector (LC×LC-DAD) data. Interpolation was used to generate a sufficient number of data points in the sampled first chromatographic dimension to allow for alignment of retention times from different injections. Five different interpolation methods, linear interpolation followed by cross correlation, piecewise cubic Hermite interpolating polynomial, cubic spline, Fourier zero-filling, and Gaussian fitting, were investigated. The fully aligned chromatograms, in both the first and second chromatographic dimensions, were analyzed by parallel factor analysis to determine the relative area for each peak in each injection. A calibration curve was generated for the simulated data set. The standard error of prediction and percent relative standard deviation were calculated for the simulated peak for each technique. The Gaussian fitting interpolation technique resulted in the lowest standard error of prediction and average relative standard deviation for the simulated data. However, upon applying the interpolation techniques to the experimental data, most of the interpolation methods were not found to produce statistically different relative peak areas from each other. While most of the techniques were not statistically different, the performance was improved relative to the PARAFAC results obtained when analyzing the unaligned data. Copyright © 2011 Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Synovec, R.E.; Johnson, E.L.; Bahowick, T.J.
1990-08-01
This paper describes a new technique for data analysis in chromatography, based on taking the point-by-point ratio of sequential chromatograms that have been base line corrected. This ratio chromatogram provides a robust means for the identification and the quantitation of analytes. In addition, the appearance of an interferent is made highly visible, even when it coelutes with desired analytes. For quantitative analysis, the region of the ratio chromatogram corresponding to the pure elution of an analyte is identified and is used to calculate a ratio value equal to the ratio of concentrations of the analyte in sequential injections. For themore » ratio value calculation, a variance-weighted average is used, which compensates for the varying signal-to-noise ratio. This ratio value, or equivalently the percent change in concentration, is the basis of a chromatographic standard addition method and an algorithm to monitor analyte concentration in a process stream. In the case of overlapped peaks, a spiking procedure is used to calculate both the original concentration of an analyte and its signal contribution to the original chromatogram. Thus, quantitation and curve resolution may be performed simultaneously, without peak modeling or curve fitting. These concepts are demonstrated by using data from ion chromatography, but the technique should be applicable to all chromatographic techniques.« less
Jakobsen, Simon S; Christensen, Jan H; Verdier, Sylvain; Mallet, Claude R; Nielsen, Nikoline J
2017-09-05
This work demonstrates the development of an online two-dimensional liquid chromatography (2D-LC) method where the first dimension column is eluted by a sequence of pulses of increasing eluotropic strength generated by the LC pumps (pulsed-elution 2D-LC). Between the pulses, the first dimension is kept in a no-elution state using low eluent strength. The eluate from the first dimension is actively modulated using trap columns and subsequently analyzed in the second dimension. We demonstrate that by tuning the length and eluotropic strength of the pulses, peaks with retention factors in water, k w , above 150 can be manipulated to elute in 3-4 pulses. The no-elution state can be kept for 1-10 min with only minor changes as to which and how many pulses the peaks elute in. Pulsed-elution 2D-LC combined with active modulation tackles three of the main challenges encountered in 2D-LC and specifically online comprehensive 2D-LC: undersampling, difficulties in refocusing, and lack of flexibility in the selection of column dimensions and flow rates because the two dimensions constrain each other. The pulsed-elution 2D-LC was applied for the analysis of a basic fraction of vacuum gas oil. Peak capacity was 4018 for a 540 min analysis and 4610 for a 1040 min analysis.
Wouters, Bert; Broeckhoven, Ken; Wouters, Sam; Bruggink, Cees; Agroskin, Yury; Pohl, Christopher A; Eeltink, Sebastiaan
2014-11-28
The gradient-performance limits of capillary ion chromatography have been assessed at maximum system pressure (34.5 MPa) using capillary columns packed with 4.1 μm macroporous anion-exchange particles coated with 65 nm positively-charged nanobeads. In analogy to the van-Deemter curve, the gradient performance was assessed applying different flow rates, while decreasing the gradient time inversely proportional to the increase in flow rate in order to maintain the same retention properties. The gradient kinetic-performance limits were determined at maximum system pressure, applying tG/t0=5, 10, and 20. In addition, the effect of retention on peak width was assessed in gradient mode for mono-, di-, and trivalent inorganic anions. The peak width of late-eluting ions can be significantly reduced by using concave gradient, resulting in better detection sensitivity. A signal enhancement factor of 8 was measured for a late-eluting ion when applying a concave instead of a linear gradient. For the analysis of a complex anion mixture, a coupled column with a total length of 1.05 m was operated at the kinetic-performance limit applying a linear 250 min gradient (tG/t0=10). The peak capacity varied between 200 and 380 depending on analyte retention, and hence on charge and size of the ion. Copyright © 2014 Elsevier B.V. All rights reserved.
Wang, P; Wang, J; Cong, R; Dong, B
1997-05-01
A bonded phase for high performance liquid chromatography (HPLC) has been prepared by the new reaction between silica and silicon ether. The ether was synthesized from alkylchlorosilane and pentane-2,4-dione in the presence of imidazole under inert conditions by using anhydrous tetrahydrofuran as solvent. The bonded phase thus obtained was characterized by elemental analysis, diffuse reflectance infrared Fourier transform (DRIFT) spectroscopy and HPLC evaluation. The carbon content was 9.4% and the surface coverage almost attained 3.0micromol/m2 without end-capping. The silanol absorption peaks of the product cannot be observed from the DRIFT spectrum, which revealed that the silanization reaction proceeded thoroughly. The basic solutes, such as aniline, o-toluidine, p-toluidine, N,N-dimethylaniline and pyridine were used as the probe solutes to examine their interaction with the residual silanols on the surface of the products. No buffer or salt was used in the mobile phase for these experiments. In comparison with an acidic solute, such as, phenol, basic aniline eluted in front of phenol, and the ratio of asymmetry of aniline peak to that of the phenol peak was 1.1. Furthermore the relative k' value of p-toluidine to that of o-toluidine was also 1.1. All the results showed that the stationary phase has better quality and reproducibility and can be used for the separation of basic solutes efficiently.
Luan, Tian; Fang, Shuang-xi; Zhou, Ling-xi; Wang, Hong-yang; Zhang, Gen
2015-01-01
A high precision GC system with a pulsed discharge helium ionization detector was set up based on the commercial Agilent 7890A gas chromatography. The gas is identified by retention time and the concentration is calculated through the peak height. Detection limit of the system is about 1 x 10(-9) (mole fraction, the same as below). The standard deviation of 140 continuous injections with a standard cylinder( concentration is roughly 600 x 10(-9)) is better than 0.3 x 10(-9). Between 409.30 x 10(-9) and 867.74 x 10(-9) molecular hydrogen mole fractions and peak height have good linear response. By using two standards to quantify the air sample, the precision meets the background molecular hydrogen compatibility goal within the World Meteorological Organization/Global Atmosphere Watch (WMO/GAW) program. Atmospheric molecular hydrogen concentration at Guangzhou urban area was preliminarily measured by this method from January to November 2013. The results show that the atmospheric molecular hydrogen mole fraction varies from 450 x 10(-9) to 700 x 10(-9) during the observation period, with the lowest value at 14:00 (Beijing time, the same as below) and the peak value at 20:00. The seasonal variation of atmospheric hydrogen at Guangzhou area was similar with that of the same latitude stations in northern hemisphere.
Llana-Ruíz-Cabello, María; Pichardo, Silvia; Jiménez-Morillo, Nicasio T; Bermúdez, José M; Aucejo, Susana; González-Vila, Francisco J; Cameán, Ana M; González-Pérez, José A
2016-07-01
Environmental, economic and safety challenges motivate shift towards safer materials for food packaging. New bioactive packaging techniques, i.e. addition of essential plant oils (EOs), are gaining attention by creating barriers to protect products from spoilage. Analytical pyrolysis gas chromatography-mass spectrometry (Py-GC-MS) was used to fingerprint a bioactive polylactic acid (PLA) with polybutylene succinate (PBS) (950 g kg(-1) :50 g kg(-1) ) film extruded with variable quantities (0, 20, 50 and 100 g kg(-1) ) of Origanum vulgare EO. Main PLA:PBS pyrolysis products were lactide enantiomers and monomer units from the major PLA fraction and succinic acid anhydride from the PBS fraction. Oregano EO pyrolysis released cymene, terpinene and thymol/carvacrol peaks as diagnostic peaks for EO. In fact, linear correlation coefficients better than 0.950R(2) value (P < 0.001) were found between the chromatographic area of the diagnostic peaks and the amount of oregano EO in the bioplastic. The pyrolytic behaviour of a bio-based active package polymer including EO is studied in detail. Identified diagnostic compounds provide a tool to monitor the quantity of EO incorporated into the PLA:PBS polymeric matrix. Analytical pyrolysis is proposed as a rapid technique for the identification and quantification of additives within bio-based plastic matrices. © 2015 Society of Chemical Industry. © 2015 Society of Chemical Industry.
Qin, Xiaopeng; Liu, Fei; Wang, Guangcai; Weng, Liping
2012-12-01
An accurate and fast method for simultaneous determination of small organic acids and much larger humic acids was developed using high performance size exclusion chromatography. Two small organic acids, i.e. salicylic acid and 2,3-dihydroxybenzoic acid, and one purified humic acid material were used in this study. Under the experimental conditions, the UV peaks of salicylic acid and 2,3-dihydroxybenzoic acid were well separated from the peaks of humic acid in the chromatogram. Concentrations of the two small organic acids could be accurately determined from their peak areas. The concentration of humic acid in the mixture could then be derived from mass balance calculations. The measured results agreed well with the nominal concentrations. The detection limits are 0.05 mg/L and 0.01 mg/L for salicylic acid and 2,3-dihydroxybenzoic acid, respectively. Applicability of the method to natural samples was tested using groundwater, glacier, and river water samples (both original and spiked with salicylic acid and 2,3-dihydroxybenzoic acid) with a total organic carbon concentration ranging from 2.1 to 179.5 mg C/L. The results obtained are promising, especially for groundwater samples and river water samples with a total organic carbon concentration below 9 mg C/L. © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
An elevated incidence of childhood cancer was observed near a contaminated site. Trace amounts of several isomeric compounds were detected by gas chromatography/mass spectrometry (GC/MS) in a concentrated extract of municipal well water. No matching library mass spectra wer...
Capillary gas chromatography with mass spectrometric detection is the most commonly used technique for analyzing samples from Superfund sites. While the U.S. EPA has developed target lists of compounds for which library mass spectra are available on most mass spectrometer data s...
USDA-ARS?s Scientific Manuscript database
Ten sulphur volatiles were observed in two Florida tomato cultivars (‘Tasti-Lee’ and ‘FL 47’) harvested at three maturity stages (breaker, turning, and pink) using gas chromatography with a pulsed flame photometric detector (GC-PFPD). Eight PFPD peaks were identified using retention values from auth...
Li, Kun-Yan; Zhou, Yan-Gang; Ren, Hua-Yi; Wang, Feng; Zhang, Bi-Kui; Li, Huan-De
2007-05-01
The ultra-performance liquid chromatography-electrospray tandem mass spectrometry (UPLC-ESI-MS/MS) method has been developed to perform the determination of quetiapine, perospirone, aripiprazole and quetiapine sulfoxide in in vitro samples in less than 3 min. The UPLC separation was carried out using an Acquity UPLC BEH C18 column (100 mm x 2.1mm i.d., 1.7 microm particle size) that provided high efficiency and resolution in combination with high linear velocities. The UPLC system was coupled to a Waters Micromass Quattro Premier XE tandem quadrupole mass spectrometer. This system permits high-speed data acquisition without peak intensity degradation, and produces sharp and narrow chromatographic peaks (w(h) about 2.5s) of compounds. The determination was performed in multiple reaction monitoring (MRM) mode. The quantification parameters of the developed method were established, obtaining instrumental LODs lower than 0.005 microg/l and a repeatability at a low concentration level lower than 10% CV (n=10). Finally, the method was successfully applied to the analysis of atypical antipsychotics and some metabolites in in vitro samples.
Lynen, Frederic; Saavedra, Luis; Saveedra, Luis; Nickerson, Beverly; Sandra, Pat
2011-05-15
A multiplexed capillary electrophoresis (CE) system equipped with 96 channels was evaluated for high-throughput screening in drug discovery by microemulsion electrokinetic chromatography (MEEKC). Method transfer from a single channel to a multichannel CE system is described. Loss of efficiency and reduced migration times could be elucidated to the poor efficacy in Joule heat dissipation by forced air cooling in the multiarray system compared to liquid cooling in the single channel instrument. On the other hand, only 48 channels could actually be used because of the maximum total current of 3 mA. Precision data remained below 8% and 9% for migration times and peak areas, respectively. Some UV-detector cross-talk interference between neighboring capillary channels was noted. Impurities at 0.5% compared to the main peak (100%) could be detected with the multiplexed system which is 10 times lower compared to the single capillary system. Higher efficiency and improved figures of merit (absolute sensitivity and no cross-talk interferences) were obtained by using an array of only 24 capillaries. Copyright © 2011 Elsevier B.V. All rights reserved.
Methylammonium formate as a mobile phase modifier for reversed-phase liquid chromatography
Grossman, Shau; Danielson, Neil D.
2009-01-01
Although alkylammonium ionic liquids such as ethylammonium nitrate and ethylammonium formate have been used as mobile phase “solvents” for liquid chromatography (LC), we have shown that methylammonium formate (MAF), in part because of its lower viscosity, can be an effective replacement for methanol (MeOH) in reversed-phase LC. Plots of log retention factor versus the fraction of MeOH and MAF in the mobile phase indicate quite comparable solvent strength slope values of 2.50 and 2.05, respectively. Using a polar endcapped C18 column, furazolidone and nitrofurantoin using 20% MAF-80% water could be separated in 22 min but no baseline separation was possible using MeOH as the modifier, even down to 10%. Suppression of silanol peak broadening effects by MAF is important permitting a baseline separation of pyridoxine, thiamine, and nicotinamide using 5% MAF-95% water at 0.7 mL/min. Using 5% MeOH-95% water, severe peak broadening for thiamine is evident. The compatibility of MAF as a mobile phase modifer for LC with mass spectrometry detection of water soluble vitamins is also shown. PMID:18849044
Phan, T N; Lan, N T; Nga, N T
2004-05-01
Natural rubber from hevea brasiliensis trees (Thailand, RRIM 600 clone) of different age (8, 20, and 35 years) were characterized by size exclusion chromatography coupled with online viscometry according to their distribution of molar mass and branching index at a temperature of 70 degrees C using cyclohexane as solvent. Washing with an aqueous solution of sodium dodecylsulfate and subsequent saponification purified the natural rubber samples. With this procedure physical branching points caused by phospholipids, proteins and hydrophobic terminal units, mainly fatty acids, of the natural rubber (cis-1,4-polyisoprene) molecule, could be removed leading to completely soluble polymer samples. All samples investigated possess a very broad (10 to 50,000 kg/mol) and distinct bimodal molar mass distribution. With increasing age the peak area in the low molar mass region decreases favoring the peak area in the high molar mass region. By plotting the branching index as a function of the both, the molar mass and the age of the trees.
Ichimura, O.; Suzuki, S.; Sugawara, Y.; Osawa, T.
1984-01-01
The bacterial immunopotentiator OK-432 induced natural killer cell activating factor (NKAF) from mouse spleen cells. OK-432-induced NKAF showed a single peak with an apparent mol. wt of 70 Kd by Sephadex G-100 chromatography and OK-432-induced interleukin 2 (IL-2) had the same mol. wt as NKAF. However, OK-432-induced interferon (IFN) showed molecular heterogeneity with two peaks at 90 Kd and 45 Kd. Further purification was achieved by Blue Sepharose affinity chromatography which copurified NKAF and IFN. The affinity-purified NKAF, however, was stable to heat (56 degrees C) and acid (pH 2) treatments. Moreover, anti-IFN failed to abolish NKAF activity and this activity was not absorbed by IL-2 dependent T cells. From isoelectric focusing analysis, a dissociation of NKAF and IFN was observed over the range of pI 6.5 to 8.0. Based on these results, KNAF appears to be a new kind of cytokine distinguishable from IFN and IL-2. PMID:6204667
Sharma, Prashant; Das, Reena
2016-03-26
Cation-exchange high-performance liquid chromatography (CE-HPLC) is a widely used laboratory test to detect variant hemoglobins as well as quantify hemoglobins F and A2 for the diagnosis of thalassemia syndromes. It's versatility, speed, reproducibility and convenience have made CE-HPLC the method of choice to initially screen for hemoglobin disorders. Despite its popularity, several methodological aspects of the technology remain obscure to pathologists and this may have consequences in specific situations. This paper discusses the basic principles of the technique, the initial quality control steps and the interpretation of various controls and variables that are available on the instrument output. Subsequent sections are devoted to methodological considerations that arise during reporting of cases. For instance, common problems of misidentified peaks, totals crossing 100%, causes of total area being above or below acceptable limits and the importance of pre-integration region peaks are dealt with. Ultimately, CE-HPLC remains an investigation, the reporting of which combines in-depth knowledge of the biological basics with more than a working knowledge of the technological aspects of the technique.
Kotani, Akira; Miyaguchi, Yuji; Tomita, Eiji; Takamura, Kiyoko; Kusu, Fumiyo
2004-03-24
Voltammetric determination of acids by means of the electrochemical reduction of quinone was applied to high-performance liquid chromatography (HPLC) with electrochemical detection (ED) for determining organic acids in fruit wines. A two-channel HPLC-ED system was fabricated by use of an ion-exclusion column and an electrochemical detector with a glassy carbon working electrode. Aqueous solution of 0.1 mM HClO(4) and ethanol containing 2-methyl-1,4-naphthoquinone served as a mobile phase and reagent solution, respectively. Determination of acetic, citric, lactic, malic, succinic, and tartaric acids was made by measuring the peak areas of the flow signals due to the reduction current of quinone caused by the eluted acids. The peak area was found to be linearly related to the acid amount ranging from 0.1 to 40 nmol per 20 microL injection. The present method was characterized by reproducibility with the simple and rapid procedure without derivatization of analytes. The method was shown as an effective means for following acid contents in fruit juices during fermentation with wine yeast.
Zhang, Yan-zhen; Zhou, Yan-chun; Liu, Li; Zhu, Yan
2007-01-01
Simple, reliable and sensitive analytical methods to determine anticariogenic agents, preservatives, and artificial sweeteners contained in commercial gargles are necessary for evaluating their effectiveness, safety, and quality. An ion chromatography (IC) method has been described to analyze simultaneously eight anions including fluoride, chloride, sulfate, phosphate, monofluorophosphate, glycerophosphate (anticariogenic agents), sorbate (a preservative), and saccharin (an artificial sweetener) in gargles. In this IC system, we applied a mobile phased gradient elution with KOH, separation by IonPac AS18 columns, and suppressed conductivity detection. Optimized analytical conditions were further evaluated for accuracy. The relative standard deviations (RSDs) of the inter-day’s retention time and peak area of all species were less than 0.938% and 8.731%, respectively, while RSDs of 5-day retention time and peak area were less than 1.265% and 8.934%, respectively. The correlation coefficients for targeted analytes ranged from 0.999 7 to 1.000 0. The spiked recoveries for the anions were 90%~102.5%. We concluded that the method can be applied for comprehensive evaluation of commercial gargles. PMID:17610331
Zhang, Yan-zhen; Zhou, Yan-chun; Liu, Li; Zhu, Yan
2007-07-01
Simple, reliable and sensitive analytical methods to determine anticariogenic agents, preservatives, and artificial sweeteners contained in commercial gargles are necessary for evaluating their effectiveness, safety, and quality. An ion chromatography (IC) method has been described to analyze simultaneously eight anions including fluoride, chloride, sulfate, phosphate, monofluorophosphate, glycerophosphate (anticariogenic agents), sorbate (a preservative), and saccharin (an artificial sweetener) in gargles. In this IC system, we applied a mobile phased gradient elution with KOH, separation by IonPac AS18 columns, and suppressed conductivity detection. Optimized analytical conditions were further evaluated for accuracy. The relative standard deviations (RSDs) of the inter-day's retention time and peak area of all species were less than 0.938% and 8.731%, respectively, while RSDs of 5-day retention time and peak area were less than 1.265% and 8.934%, respectively. The correlation coefficients for targeted analytes ranged from 0.999 7 to 1.000 0. The spiked recoveries for the anions were 90% approximately 102.5%. We concluded that the method can be applied for comprehensive evaluation of commercial gargles.
Myers, Owen D; Sumner, Susan J; Li, Shuzhao; Barnes, Stephen; Du, Xiuxia
2017-09-05
XCMS and MZmine 2 are two widely used software packages for preprocessing untargeted LC/MS metabolomics data. Both construct extracted ion chromatograms (EICs) and detect peaks from the EICs, the first two steps in the data preprocessing workflow. While both packages have performed admirably in peak picking, they also detect a problematic number of false positive EIC peaks and can also fail to detect real EIC peaks. The former and latter translate downstream into spurious and missing compounds and present significant limitations with most existing software packages that preprocess untargeted mass spectrometry metabolomics data. We seek to understand the specific reasons why XCMS and MZmine 2 find the false positive EIC peaks that they do and in what ways they fail to detect real compounds. We investigate differences of EIC construction methods in XCMS and MZmine 2 and find several problems in the XCMS centWave peak detection algorithm which we show are partly responsible for the false positive and false negative compound identifications. In addition, we find a problem with MZmine 2's use of centWave. We hope that a detailed understanding of the XCMS and MZmine 2 algorithms will allow users to work with them more effectively and will also help with future algorithmic development.
Stevenson, Paul G; Mnatsakanyan, Mariam; Guiochon, Georges; Shalliker, R Andrew
2010-07-01
An algorithm was developed for 2DHPLC that automated the process of peak recognition, measuring their retention times, and then subsequently plotting the information in a two-dimensional retention plane. Following the recognition of peaks, the software then performed a series of statistical assessments of the separation performance, measuring for example, correlation between dimensions, peak capacity and the percentage of usage of the separation space. Peak recognition was achieved by interpreting the first and second derivatives of each respective one-dimensional chromatogram to determine the 1D retention times of each solute and then compiling these retention times for each respective fraction 'cut'. Due to the nature of comprehensive 2DHPLC adjacent cut fractions may contain peaks common to more than one cut fraction. The algorithm determined which components were common in adjacent cuts and subsequently calculated the peak maximum profile by interpolating the space between adjacent peaks. This algorithm was applied to the analysis of a two-dimensional separation of an apple flesh extract separated in a first dimension comprising a cyano stationary phase and an aqueous/THF mobile phase as the first dimension and a second dimension comprising C18-Hydro with an aqueous/MeOH mobile phase. A total of 187 peaks were detected.
2003-11-01
klick on File TL-03- uGC -Model.xls Model 2. Determination of Peak Capacity for 0.1 < k’ < 5. This tool was intended to help with the determination of peak...dependent on the agreed k’ range, i.e. the associated boiling point range. Double-klick on File TL-03- uGC -Model.xls Model 3. Estimation of the Fraction...available today on the market .6 Figure 6 is a 2 second GC chromatogram of 7 test compounds using the 100 micron square capillary column (see Figure 4
Zheng, Shirui; Ma, Zhiyuan; Han, Haixia; Ye, Jianfeng; Wang, Ruwei; Cai, Sheng; Zhou, Hui; Yu, Lushan; Zeng, Su; Jiang, Huidi
2014-07-01
Flavonoids are a group of important naturally occurring polyphenolic compounds with a wide range of biological effects. In this study, a sensitive liquid chromatography tandem mass spectrometry method was developed to simultaneously determine multiple active flavonoids, including quercetin (Que), kaempferol (Kae), apigenin (Api), isorhamnetin (Iso), luteolin (Lut), and naringenin (Nar), in rat plasma. To achieve a satisfied peak shape and LC separation, formic acid with the concentration between 0.05 and 0.2%, or in some case 5%, was generally used to acidify the LC mobile phase in reported studies. Here we found that even 0.05% formic acid could lead to strong mass signal suppression, and the absence of formic acid could reverse the signal suppression but cause serious peak tailing. There is an irreconcilable contradiction between liquid chromatography (LC) and mass spectrometry (MS). In order to simultaneously satisfy LC and MS, LC mobile phase with 0.00075% formic acid and post column mobile phase adjustment with 0.0677% ammonium solution in isopropanol were applied. Compared with the conventional method with mobile phase containing 0.05% formic acid, the mass signal response of Que, Kae, Api, Iso, Lut, Nar, and Oka increased 26.2, 18.6, 13.6, 23.5, 17.5, 15.6 and 15.4 fold, respectively. In addition, the post column mobile phase addition exhibited the better peak shape for the reduction of analytes longitudinal diffusion. The method has been fully validated according to FDA guidelines within the linear range between 0.328 ng mL⁻¹ and 168 ng mL⁻¹, and successfully applied to a pilot pharmacokinetic study of rats after administering 5.43 g kg⁻¹ Pollen of Brassica campestris. Copyright © 2014 Elsevier B.V. All rights reserved.
Kormány, Róbert; Molnár, Imre; Fekete, Jenő
2017-02-20
An older method for terazosin was reworked in order to reduce the analysis time from 90min (2×45min) to below 5min. The method in European Pharmacopoeia (Ph.Eur.) investigates the specified impurities separately. The reason of the different methods is that the retention of two impurities is not adequate in reversed phase, not even with 100% water. Therefore ion-pair-chromatography has to be applied and since that two impurities absorb at low UV-wavelength they had to be analyzed by different method than the other specified impurities. In our new method we could improve the retention with pH elevation using a new type of stationary phases available for high pH applications. Also a detection wavelength could be selected that is appropriate for the detection and quantification of all impurities. The method development is the bottleneck of liquid chromatography even today, when more and more fast chromatographic systems are used. Expert knowledge with intelligent programs is available to reduce the time of method development and offer extra information about the robustness of the separation. Design of Experiments (DoE) for simultaneous optimization of gradient time (t G ), temperature (T) and ternary eluent composition (t C ) requires 12 experiments. A good alternative way to identify a certain peak in different chromatograms is the molecular mass of the compound, due to its high specificity. Liquid Chromatography-Mass Spectrometry (LC-MS) is now a routine technique and increasingly available in laboratories. In our experiment for the resolution- and retention modeling the DryLab4 method development software (Version 4.2) was used. In recent versions of the software the use of (m/z)-MS-data is possible along the UV-peak-area-tracking technology. The modelled and measured chromatograms showed excellent correlations. The average retention time deviations were ca. 0.5s and there was no difference between the predicted and measured R s,crit -values. Copyright © 2016. Published by Elsevier B.V.
Gradient design for liquid chromatography using multi-scale optimization.
López-Ureña, S; Torres-Lapasió, J R; Donat, R; García-Alvarez-Coque, M C
2018-01-26
In reversed phase-liquid chromatography, the usual solution to the "general elution problem" is the application of gradient elution with programmed changes of organic solvent (or other properties). A correct quantification of chromatographic peaks in liquid chromatography requires well resolved signals in a proper analysis time. When the complexity of the sample is high, the gradient program should be accommodated to the local resolution needs of each analyte. This makes the optimization of such situations rather troublesome, since enhancing the resolution for a given analyte may imply a collateral worsening of the resolution of other analytes. The aim of this work is to design multi-linear gradients that maximize the resolution, while fulfilling some restrictions: all peaks should be eluted before a given maximal time, the gradient should be flat or increasing, and sudden changes close to eluting peaks are penalized. Consequently, an equilibrated baseline resolution for all compounds is sought. This goal is achieved by splitting the optimization problem in a multi-scale framework. In each scale κ, an optimization problem is solved with N κ ≈ 2 κ variables that are used to build the gradients. The N κ variables define cubic splines written in terms of a B-spline basis. This allows expressing gradients as polygonals of M points approximating the splines. The cubic splines are built using subdivision schemes, a technique of fast generation of smooth curves, compatible with the multi-scale framework. Owing to the nature of the problem and the presence of multiple local maxima, the algorithm used in the optimization problem of each scale κ should be "global", such as the pattern-search algorithm. The multi-scale optimization approach is successfully applied to find the best multi-linear gradient for resolving a mixture of amino acid derivatives. Copyright © 2017 Elsevier B.V. All rights reserved.
Long, Zhen; Zhang, Yanhai; Gamache, Paul; Guo, Zhimou; Steiner, Frank; Du, Nana; Liu, Xiaoda; Jin, Yan; Liu, Xingguo; Liu, Lvye
2018-01-01
Current Chinese Pharmacopoeia (ChP) standards apply liquid extraction combined with one dimensional liquid chromatography (1DLC) method for determining alkaloids in herbal medicines. The complex pretreatments lead to a low analytical efficiency and possible component loss. In this study, a heart cutting reversed phase - strong cation exchange two dimensional liquid chromatography (RP - SCX 2DLC) approach was optimized for simultaneously quantifying tropane alkaloids (anisodine, scopolamine and hyoscyamine) in herbal medicines and herbal medicine tablets without further treatment of the filtered extract. The chromatographic conditions were systematically optimized in terms of column type, mobile phase composition and flow rate. To improve peak capacity and obtain symmetric peak shape of alkaloids, a polar group embedded C18 column combined with chaotropic salts was used in the first dimension. To remove the disturbance of non-alkaloids, achieve unique selectivity and acquire symmetric peak shape of alkaloids, an SCX column combined with phosphate buffer was used in the second dimension. Method validation was performed in terms of linearity, precision (0.54-0.82%), recovery (94.1-105.2%), limit of detection (LOD) and limit of quantification (LOQ) of the three analytes varied between 0.067-0.115mgL -1 and 0.195-0.268mgL -1 , respectively. The method demonstrated superiority over 1DLC method in respect of resolution (less alkaloid co-eluted), sample preparation (no pretreatment procedure) and transfer rate (minimum component loss). The optimized RP - SCX 2DLC approach was subsequently applied to quantify target alkaloids in five herbal medicines and herbal medicine tablets from three different manufactures. The results demonstrated that the developed heart cutting RP - SCX 2DLC approach represented a new, strategically significant methodology for the quality evaluation of tropane alkaloid in related herbal medicines that involve complex chemical matrix. Copyright © 2017. Published by Elsevier B.V.
Kulsing, Chadin; Nolvachai, Yada; Wong, Yong Foo; Glouzman, Melissa I; Marriott, Philip J
2018-04-20
Real-time interconversion processes produce unconventional peak broadening in gas chromatography (GC), and can be used to generate kinetic and thermodynamic data. In this study, an unusual separation situation in comprehensive two dimensional GC where two dimensional interconversion (i.e. a raised plateau in both first and second dimension, 1 D and 2 D) was observed in analysis of oxime isomers. This resulted in a characteristic and unusual rectangular peak shape in the two dimensional result. A related theoretical approach was introduced to explain the peak shape supported by simulation results which can be varied depending on concentration profiles and kinetics of the process. The simulated results were supported by experimental results obtained by a comprehensive heart-cut multidimensional GC (H/C MDGC) approach which was developed to clearly investigate isomerisation of E/Z oxime molecules in both 1 D and 2 D separations under different isothermal conditions. The carrier gas flow and oven temperature were selected according to initial results for 1D interconversion on a poly(ethyleneglycol) stationary phase, which was further used in both 1 D and 2 D separations to result in broad zones of oxime interconversion in both dimensions. The method involved repetitive injections of oxime sample, then sampling contiguous fractions of sample into a long 2 D column which is intended to promote considerable interconversion. Comprehensiveness arises from the fact that the whole sample is sampled from the 1 D to the 2 D column, with the long 2 D column replacing the short 2 D column used in classical comprehensive two-dimensional gas chromatography, where the latter will not promote sufficient interconversion. Data processing and presentation permits a 'rectangular' distribution corresponding to the separated compounds, characteristic of this experiment. Copyright © 2018 Elsevier B.V. All rights reserved.
Hanneman, Andrew J S; Strand, James; Huang, Chi-Ting
2014-02-01
Glycosylation is a critical parameter used to evaluate protein quality and consistency. N-linked glycan profiling is fundamental to the support of biotherapeutic protein manufacturing from early stage process development through drug product commercialization. Sialylated glycans impact the serum half-life of receptor-Fc fusion proteins (RFPs), making their quality and consistency a concern during the production of fusion proteins. Here, we describe an analytical approach providing both quantitative profiling and in-depth mass spectrometry (MS)-based structural characterization of sialylated RFP N-glycans. Aiming to efficiently link routine comparability studies with detailed structural characterization, an integrated workflow was implemented employing fluorescence detection, online positive and negative ion tandem mass spectrometry (MS/MS), and offline static nanospray ionization-sequential mass spectrometry (NSI-MS(n)). For routine use, high-performance liquid chromatography profiling employs established fluorescence detection of 2-aminobenzoic acid derivatives (2AA) and hydrophilic interaction anion-exchange chromatography (HIAX) charge class separation. Further characterization of HIAX peak fractions is achieved by online (-) ion orbitrap MS/MS, offering the advantages of high mass accuracy and data-dependent MS/MS. As required, additional characterization uses porous graphitized carbon in the second chromatographic dimension to provide orthogonal (+) ion MS/MS spectra and buffer-free liquid chromatography peak eluants that are optimum for offline (+)/(-) NSI-MS(n) investigations to characterize low-abundance species and specific moieties including O-acetylation and sulfation. © 2013 Wiley Periodicals, Inc. and the American Pharmacists Association.
Quantification of flavonol glycosides in Camellia sinensis by MRM mode of UPLC-QQQ-MS/MS.
Wu, Yahui; Jiang, Xiaolan; Zhang, Shuxiang; Dai, Xinlong; Liu, Yajun; Tan, Huarong; Gao, Liping; Xia, Tao
2016-04-01
Phenolic compounds are major components of tea flavour, in which catechins and flavonol glycosides play important roles in the astringent taste of tea infusion. However, the flavonol glycosides are difficult to quantify because of the large variety, as well as the inefficient seperation on chromatography. In this paper, a total of 15 flavonol glycosides in the tea plant (Camellia sinensis) were identified by the high performance liquid chromatography (HPLC) coupled to a time-of-flight mass spectrometer (TOF-MS), and a quantitative method was established based on multiple reaction monitoring (MRM) mode of ultra-high performance liquid chromatography (UPLC) coupled to a triple quadrupole mass spectrometer (QQQ-MS/MS). It provided the limit of detection and quantification to the order of picogram, which was more sensitive than the HPLC detection of the order of nanogram. The relative standard deviations of the intra- and inter-day variations in retention time and signal intensity (peak area) of six analytes were less than 0.26% and 4%, respectively. The flavonol glycosides of four tea cultivars were relatively quantified using the signal intensity (peak area) of product ion, in which six flavonol glycosides were quantified by the authentic standards. The results showed that the flavonol mono-, di- and tri-glycoside mostly accumulated in young leaves of the four tea cultivars. Notably, the myricetin 3-O-galactoside was the major component among the six flavonol glycosides detected. Copyright © 2016 Elsevier B.V. All rights reserved.
Ion-Exclusion Chromatography for Analyzing Organics in Water
NASA Technical Reports Server (NTRS)
Sauer, Richard; Rutz, Jeffrey A.; Schultz, John R.
2006-01-01
A liquid-chromatography technique has been developed for use in the quantitative analysis of urea (and of other nonvolatile organic compounds typically found with urea) dissolved in water. The technique involves the use of a column that contains an ion-exclusion resin; heretofore, this column has been sold for use in analyzing monosaccharides and food softeners, but not for analyzing water supplies. The prior technique commonly used to analyze water for urea content has been one of high-performance liquid chromatography (HPLC), with reliance on hydrophobic interactions between analytes in a water sample and long-chain alkyl groups bonded to an HPLC column. The prior technique has proven inadequate because of a strong tendency toward co-elution of urea with other compounds. Co-elution often causes the urea and other compounds to be crowded into a narrow region of the chromatogram (see left part of figure), thereby giving rise to low chromatographic resolution and misidentification of compounds. It is possible to quantitate urea or another analyte via ultraviolet- and visible-light absorbance measurements, but in order to perform such measurements, it is necessary to dilute the sample, causing a significant loss of sensitivity. The ion-exclusion resin used in the improved technique is sulfonated polystyrene in the calcium form. Whereas the alkyl-chain column used in the prior technique separates compounds on the basis of polarity only, the ion-exclusion-resin column used in the improved technique separates compounds on the basis of both molecular size and electric charge. As a result, the degree of separation is increased: instead of being crowded together into a single chromatographic peak only about 1 to 2 minutes wide as in the prior technique, the chromatographic peaks of different compounds are now separated from each other and spread out over a range about 33 minutes wide (see right part of figure), and the urea peak can readily be distinguished from the other peaks. Although the analysis takes more time in the improved technique, this disadvantage is offset by two important advantages: Sensitivity is increased. The minimum concentration of urea that can be measured is reduced (to between 1/5 and 1/3 of that of the prior technique) because it is not necessary to dilute the sample. The separation of peaks facilitates the identification and quantitation of the various compounds. The resolution of the compounds other than urea makes it possible to identify those compounds by use of mass spectrometry.
NASA Astrophysics Data System (ADS)
Taguchi, Masakazu
2017-09-01
This study compares large-scale dynamical variability in the extratropical stratosphere, such as major stratospheric sudden warmings (MSSWs), among the Japanese 55-year Reanalysis (JRA-55) family data sets. The JRA-55 family consists of three products: a standard product (STDD) of the JRA-55 reanalysis data and two sub-products of JRA-55C (CONV) and JRA-55AMIP (AMIP). CONV assimilates only conventional surface and upper-air observations without assimilation of satellite observations, whereas AMIP runs the same numerical weather prediction model without assimilation of observational data. A comparison of the occurrence of MSSWs in Northern Hemisphere (NH) winter shows that, compared to STDD, CONV delays several MSSWs by 1 to 4 days and also misses a few MSSWs. CONV also misses the Southern Hemisphere (SH) MSSW in September 2002. AMIP shows significantly fewer MSSWs in Northern Hemisphere winter and especially lacks MSSWs of the high aspect ratio of the polar vortex in which the vortex is highly stretched or split. A further examination of daily geopotential height differences between STDD and CONV reveals occasional peaks in both hemispheres that are separated from MSSWs. The delayed and missed MSSW cases have smaller height differences in magnitude than such peaks. The height differences for those MSSWs include large contributions from the zonal component, which reflects underestimations in the weakening of the zonal mean polar night jet in CONV. We also explore strong planetary wave forcings and associated polar vortex weakenings for STDD and AMIP. We find a lower frequency of strong wave forcings and weaker vortex responses to such wave forcings in AMIP, consistent with the lower MSSW frequency.
MRMPROBS suite for metabolomics using large-scale MRM assays.
Tsugawa, Hiroshi; Kanazawa, Mitsuhiro; Ogiwara, Atsushi; Arita, Masanori
2014-08-15
We developed new software environment for the metabolome analysis of large-scale multiple reaction monitoring (MRM) assays. It supports the data format of four major mass spectrometer vendors and mzML common data format. This program provides a process pipeline from the raw-format import to high-dimensional statistical analyses. The novel aspect is graphical user interface-based visualization to perform peak quantification, to interpolate missing values and to normalize peaks interactively based on quality control samples. Together with the software platform, the MRM standard library of 301 metabolites with 775 transitions is also available, which contributes to the reliable peak identification by using retention time and ion abundances. MRMPROBS is available for Windows OS under the creative-commons by-attribution license at http://prime.psc.riken.jp. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.
Baeza-Baeza, J J; Pous-Torres, S; Torres-Lapasió, J R; García-Alvarez-Coque, M C
2010-04-02
Peak broadening and skewness are fundamental parameters in chromatography, since they affect the resolution capability of a chromatographic column. A common practice to characterise chromatographic columns is to estimate the efficiency and asymmetry factor for the peaks of one or more solutes eluted at selected experimental conditions. This has the drawback that the extra-column contributions to the peak variance and skewness make the peak shape parameters depend on the retention time. We propose and discuss here the use of several approaches that allow the estimation of global parameters (non-dependent on the retention time) to describe the column performance. The global parameters arise from different linear relationships that can be established between the peak variance, standard deviation, or half-widths with the retention time. Some of them describe exclusively the column contribution to the peak broadening, whereas others consider the extra-column effects also. The estimation of peak skewness was also possible for the approaches based on the half-widths. The proposed approaches were applied to the characterisation of different columns (Spherisorb, Zorbax SB, Zorbax Eclipse, Kromasil, Chromolith, X-Terra and Inertsil), using the chromatographic data obtained for several diuretics and basic drugs (beta-blockers). Copyright (c) 2010 Elsevier B.V. All rights reserved.
[Quality control of Guci tablets using UPLC-ELSD fingerprint analysis coupled with chemometrics].
Wang, Ya-Dan; Dai, Zhong; Sun, Cai-Lin; Wu, Xian-Fu; Ma, Shuang-Cheng
2018-03-01
Ultra-performance liquid chromatography-evaporative light scattering detection (UPLC-ELSD) fingerprint analysis method was established for quality control of Guci tablets. Chromatographic separation was performed on Waters Acquity UPLC BEH C₁₈ column (2.1 mm×100 mm, 1.7 μm) at 30 °C of column temperature. Acetonitrile-0.1% formic acid solution was adopted as mobile phase for gradient elution. The flow rate was set at 0.3 mL·min⁻¹, and the injection volume was 3 μL. Detection was carried out on an ELSD with a nitrogen pressure of 0.28 MPa, drift tube temperature of 60 °C, and gain of 400. A total of 39 batches of samples produced by six manufacturers were measured by using the above method and the data were analyzed by ChemPattern software. The peak present in more than 75% of the samples was defined as a common peak, and 30 common peaks were determined. Among them, 19 peaks were identified by rapid resolution liquid chromatography/tandem mass spectrometry (RRLC-MS/MS) method, 16 of which were confirmed by reference substances. The similarity of the tested samples was 0.47-0.98, suggesting that the quality of the samples from different manufacturers varied greatly. Furthermore, principal component analysis (PCA) and hierarchical analysis (HCA) were performed to clarify the main different components in samples. The results indicated that there might be some feeding problems about Paeoniae Radix Alba, Notoginseng Radix et Rhizoma, and Clematidis Radix et Rhizoma in a few manufacturers. This study provided some evidences for the overall quality control of Guci tablets, as well as its quality standard improvements. Copyright© by the Chinese Pharmaceutical Association.
Dragun, Zrinka; Krasnići, Nesrete; Kolar, Nicol; Filipović Marijić, Vlatka; Ivanković, Dušica; Erk, Marijana
2018-05-15
Cytosolic distributions of nonessential metals Cd and Tl and seven essential elements among compounds of different molecular masses were studied in the liver of brown trout (Salmo trutta) from the karstic Krka River in Croatia. Analyses were done by size exclusion high performance liquid chromatography and high resolution inductively coupled plasma mass spectrometry. Common feature of Cd and Tl, as highly toxic elements, was their distribution within only two narrow peaks. The increase of cytosolic Cd concentrations was reflected in marked increase of Cd elution within low molecular mass peak (maximum at ∼15 kDa), presumably containing metallothioneins (MTs), which indicated successful Cd detoxification in brown trout liver under studied exposure conditions. Contrary, the increase of cytosolic Tl concentrations was reflected in marked increase of Tl elution within high molecular mass peak (maximum at 140 kDa), which probably indicated incomplete Tl detoxification. Common feature of the majority of studied essential elements was their distribution within more peaks, often broad and not well resolved, which is consistent with their numerous physiological functions. Among observed associations of essential metals/nonmetal to proteins, the following could be singled out: Cu and Zn association to MTs, Fe association to storage protein ferritin, and Se association to compounds of very low molecular masses (<5 kDa). The obtained results present the first step towards identification of metal-binding compounds in hepatic cytosol of brown trout, and thus a significant contribution to better understanding of metal fate in the liver of that important bioindicator species. Copyright © 2018 Elsevier Ltd. All rights reserved.
Jones, Drew R; Wu, Zhiping; Chauhan, Dharminder; Anderson, Kenneth C; Peng, Junmin
2014-04-01
Global metabolomics relies on highly reproducible and sensitive detection of a wide range of metabolites in biological samples. Here we report the optimization of metabolome analysis by nanoflow ultraperformance liquid chromatography coupled to high-resolution orbitrap mass spectrometry. Reliable peak features were extracted from the LC-MS runs based on mandatory detection in duplicates and additional noise filtering according to blank injections. The run-to-run variation in peak area showed a median of 14%, and the false discovery rate during a mock comparison was evaluated. To maximize the number of peak features identified, we systematically characterized the effect of sample loading amount, gradient length, and MS resolution. The number of features initially rose and later reached a plateau as a function of sample amount, fitting a hyperbolic curve. Longer gradients improved unique feature detection in part by time-resolving isobaric species. Increasing the MS resolution up to 120000 also aided in the differentiation of near isobaric metabolites, but higher MS resolution reduced the data acquisition rate and conferred no benefits, as predicted from a theoretical simulation of possible metabolites. Moreover, a biphasic LC gradient allowed even distribution of peak features across the elution, yielding markedly more peak features than the linear gradient. Using this robust nUPLC-HRMS platform, we were able to consistently analyze ~6500 metabolite features in a single 60 min gradient from 2 mg of yeast, equivalent to ~50 million cells. We applied this optimized method in a case study of drug (bortezomib) resistant and drug-sensitive multiple myeloma cells. Overall, 18% of metabolite features were matched to KEGG identifiers, enabling pathway enrichment analysis. Principal component analysis and heat map data correctly clustered isogenic phenotypes, highlighting the potential for hundreds of small molecule biomarkers of cancer drug resistance.
Kamil, Atif; Falk, Knut; Sharma, Animesh; Raae, Arnt; Berven, Frode; Koppang, Erling Olaf; Hordvik, Ivar
2011-09-01
Atlantic salmon (Salmo salar) and brown trout (Salmo trutta) possess two distinct subpopulations of IgM which can be separated by anion exchange chromatography. Accordingly, there are two isotypic μ genes in these species, related to ancestral tetraploidy. In the present work it was verified by mass spectrometry that IgM of peak 1 (subpopulation 1) have heavy chains previously designated as μB type whereas IgM of peak 2 (subpopulation 2) have heavy chains of μA type. Two adjacent cysteine residues are present near the C-terminal part of μB, in contrast to one cysteine residue in μA. Salmon IgM of both peak 1 and peak 2 contain light chains of the two most common isotypes: IgL1 and IgL3. In contrast to salmon and brown trout, IgM of rainbow trout (Oncorhynchus mykiss) is eluted in a single peak when subjected to anion exchange chromatography. Surprisingly, a monoclonal antibody MAb4C10 against rainbow trout IgM, reacted with μA in salmon, whereas in brown trout it reacted with μB. It is plausible to assume that DNA has been exchanged between the paralogous A and B loci during evolution while maintaining the two sub-variants, with and without the extra cysteine. MAb4C10 was conjugated to magnetic beads and used to separate cells, demonstrating that μ transcripts residing from captured cells were primarily of A type in salmon and B type in brown trout. An analysis of amino acid substitutions in μA and μB of salmon and brown trout indicated that the third constant domain is essential for MAb4C10 binding. This was supported by 3D modeling and was finally verified by studies of MAb4C10 reactivity with a series of recombinant μ3 constructs. Copyright © 2011 Elsevier Ltd. All rights reserved.
Tsai, I-Lin; Sun, Hsin-Yun; Chen, Guan-Yuan; Lin, Shu-Wen; Kuo, Ching-Hua
2013-11-15
Antibiotic-resistant bacterial infection is one of the most serious clinical problems worldwide. Vancomycin, teicoplanin, daptomycin, and colistin are glycopeptide and lipopeptide antibiotics that are frequently used to treat multidrug-resistant bacterial infections. Therapeutic drug monitoring is recommended to ensure both safety and efficacy and to improve clinical outcomes. This study developed a fast, simple, and sensitive ultra-high-pressure liquid chromatography-tandem mass spectrometry (UHPLC-MS/MS) method for the simultaneous determination of the concentrations of these four drugs in human plasma. The sample preparation process includes a simple protein denaturation step using acetonitrile, followed by an 11-fold dilution with 0.1% formic acid. Eight target peaks for the four drugs can be analyzed within 3 min using a Kinetex™ 2.6 μm C18 column. The mass spectrometry parameters were optimized, and two transitions for each target peak were used for multiple reaction monitoring, which provided high sensitivity and specificity. The UHPLC-MS/MS method was validated over clinical concentration ranges. The intra-day and inter-day precisions for the ratio of the peak area of each analyte to the peak area of the internal standard were all below 12.7 and 14.7% relative standard deviations, respectively. The accuracy at low, medium, and high concentrations of the eight target peaks was between 89.3 and 110.7%. The standard curves for the analytes were linear and had coefficients of determination higher than 0.997. The limits of detection were all below 70 ng mL(-1). The use of this method to analyze patient plasma samples confirmed that it is effective for the therapeutic drug monitoring of these four drugs and can be used to improve the therapeutic efficacy and safety of treatment with antibiotics. Copyright © 2013 Elsevier B.V. All rights reserved.
Englert, Michael; Vetter, Walter
2015-07-16
Countercurrent chromatography (CCC) is a separation technique in which two immiscible liquid phases are used for the preparative purification of synthetic and natural products. In CCC the number of repetitive mixing and de-mixing processes, the retention of the stationary phase and the mass transfer between the liquid phases are significant parameters that influence the resolution and separation efficiency. Limited mass transfer is the main reason for peak broadening and a low number of theoretical plates along with impaired peak resolution in CCC. Hence, technical improvements with regard to column design and tubing modifications is an important aspect to enhance mixing and mass transfer. In this study we constructed a crimping tool which allowed us to make reproducible, semi-automated modifications of conventional round-shaped tubing. Six crimped tubing modifications were prepared, mounted onto multilayer coils which were subsequently installed in the CCC system. The stationary phase retention of the tubing modifications were compared to the conventional system with unmodified tubing in a hydrophobic, an intermediate and a hydrophilic two-phase solvent system. Generally, the tubing modifications provided higher capabilities to retain the stationary phase depending on the solvent system and flow rates. In the intermediate solvent system the separation efficiency was evaluated with a mixture of six alkyl p-hydroxybenzoates. The peak resolution could be increased up to 50% with one of the tubing modifications compared to the unmodified tubing. Using the most convincing tubing modification at fixed values for the stationary phase retention, a reasonable comparison to the unmodified tubing was achieved. The peak width could be reduced up to 49% and a strong positive impact at increased flow rates regarding peak resolution and theoretical plate number was observed compared to unmodified tubing. It could be concluded that the tubing modification enhanced the interphase mixing and mass transfer of the two phases by additional and more vigorous agitation. Copyright © 2015 Elsevier B.V. All rights reserved.
Thera, Jennifer C; Kidd, Karen A; Dodge-Lynch, M Elaine; Bertolo, Robert F
2017-12-15
We examined the performance of an ultra-high performance liquid chromatography method to quantify protein-bound sulphur amino acids in zooplankton. Both cysteic acid and methionine sulfone were linear from 5 to 250 pmol (r 2 = 0.99), with a method detection limit of 13 pmol and 9 pmol, respectively. Although there was no matrix effect on linearity, adjacent peaks and co-eluting noise from the invertebrate proteins increased the detection limits when compared to common standards. Overall, performance characteristics were reproducible and accurate, and provide a means for quantifying sulphur amino acids in aquatic invertebrates, an understudied group. Copyright © 2017 Elsevier Inc. All rights reserved.
Rapid, direct determination of polyphenols in tea by reversed-phase column liquid chromatography.
Ding, M; Yang, H; Xiao, S
1999-07-23
Column liquid chromatography on a C18-bonded silica column with water-methanol-acetic acid as eluent was used to determine polyphenols and caffeine in tea. Without any pretreatment, catechin, epicatechin gallate, epigallocatechin gallate, epigallocatechin, epicatechin and caffeine were separated successfully within 15 min. The detection limits (S/N = 3) of polyphenols studied were 1.8-24 mg/l at a detection wavelength 270 nm. The linear range of the peak area calibration curves for the analytes were over two orders of magnitude with a correlation coefficient of 0.996-0.999. Using this method, some Chinese tea samples were analyzed with a good reproducibility (RSD are below 5%).
USDA-ARS?s Scientific Manuscript database
Although a total of 150 volatiles were detected by GC-MS, only 49 aroma active peaks were found in a consensus by the three panelists. Aldehydes were the most important group with odor activity, as well as monoterpenes, esters, alcohols and ketones. 1,8-Cineole, ·-myrcene, (E,E)-2,4-nonadienal, hexa...
The quantum interference effects in the SC II 4247 Å line of the second solar spectrum
DOE Office of Scientific and Technical Information (OSTI.GOV)
Smitha, H. N.; Nagendra, K. N.; Stenflo, J. O.
2014-10-10
The Sc II 4247 Å line formed in the chromosphere is one of the lines well known, like the Na I D{sub 2} and Ba II D{sub 2}, for its prominent triple-peak structure in Q/I and the underlying quantum interference effects governing it. In this paper, we try to study the nature of this triple-peak structure using the theory of F-state interference including the effects of partial frequency redistribution (PRD) and radiative transfer (RT). We compare our results with the observations taken in a quiet region near the solar limb. In spite of accounting for PRD and RT effects, itmore » has not been possible to reproduce the observed triple-peak structure in Q/I. While the two wing PRD peaks (on either side of central peak) and the near wing continuum can be reproduced, the central peak is completely suppressed by the enhanced depolarization resulting from the hyperfine structure splitting. This suppression remains for all the tested widely different one-dimensional model atmospheres or for any multi-component combinations of them. While multidimensional RT effects may improve the fit to the intensity profiles, they do not appear capable of explaining the enigmatic central Q/I peak. This leads us to suspect that some aspect of quantum physics is missing.« less
Diluted thrombin time reliably measures low to intermediate plasma dabigatran concentrations.
Božič-Mijovski, Mojca; Malmström, Rickard E; Malovrh, Petra; Antovic, Jovan P; Vene, Nina; Šinigoj, Petra; Mavri, Alenka
2016-07-01
Direct oral anticoagulant dabigatran was first introduced as a fixed-dose drug without routine coagulation monitoring, but current recommendations suggest that diluted thrombin time can be used to estimate plasma drug level. The aim of this study was to assess a diluted thrombin time assay based on the same thrombin reagent already used for traditional thrombin time measurements that reliably measure low to intermediate plasma dabigatran levels. We included 44 patients with atrial fibrillation who started treatment with dabigatran 150 mg (23 patients) or 110 mg (21 patients) twice a day. Blood samples were collected at baseline (no dabigatran) and 2-4 weeks after the beginning of dabigatran therapy at trough and at peak. Plasma dabigatran levels were measured with diluted thrombin time and compared to liquid chromatography with tandem mass spectrometry as the reference method. The performance of the diluted thrombin time was compared to Hemoclot® Thrombin Inhibitor and Ecarin Chromogenic Assay. In ex vivo plasma samples, diluted thrombin time highly correlated with the liquid chromatography with tandem mass spectrometry (Pearson's R = 0.9799). In the low to intermediate range (dabigatran concentration ≤ 100 µg/L) diluted thrombin time correlated significantly more closely to the liquid chromatography with tandem mass spectrometry (R = 0.964) than Hemoclot® Thrombin Inhibitor (R = 0.935, p = 0.05) or Ecarin Chromogenic Assay (R = 0.915, p < 0.01). It was also the only functional assay without any significant bias in the low to intermediate range. Both trough and peak diluted thrombin time values were similar to liquid chromatography with tandem mass spectrometry. We conclude that the diluted thrombin time assay presented in this study reliably detects dabigatran and that it is superior to the Hemoclot® Thrombin Inhibitor assay in the low to intermediate range. © The Author(s) 2015.
NASA Astrophysics Data System (ADS)
Preciado, C., Jr.
2016-12-01
Compound-specific stable isotope analysis (CSIA) has become a powerful tool for reconstructing consumer-resource relationships in modern and ancient systems. Stable nitrogen isotope analysis (δ15N) of "trophic" and "source" amino acids provides independent proxies of trophic position and the δ15N value at the base of the food web, respectively. When applied to avian egg tissues (e.g., shell protein, membrane), which can be preserved in the archaeological record, this approach can be used to address complex questions in food web architecture and biogeochemical cycling. In this study, we examined how sample-processing protocols affected the chromatography and reliability of δ15N values of individual amino acids in avian (chicken and penguin) egg components (shell protein, membrane, yolk, and albumen) via gas chromatography-combustion-isotope ratio mass spectrometry. "Unprocessed" egg tissues underwent standard acid hydrolysis protocols prior to derivatization, and resulted in poor chromatography with highly variable δ15N values across replicates. "Processed" samples were eluted through cation exchange columns (Dowex 50WX*400) prior to derivatization, followed by a P-buffer (KH2PO4 + Na2HPO4)-chloroform centrifugation extraction to remove confounding peaks and matrix impurities. These additional procedures greatly improved the chromatography of the "processed" samples, revealing better peak separation and baseline integration as well as lower δ15N variability. Additionally, a standard lipid extraction was necessary for yolk but not membrane, albumen, and shell. While the additional procedures applied to the "columned" samples did result in a significant reduction in sample yield ( 20%), it was non-fractionating and thus only affected the total sample sizes necessary for δ15N CSIA (shell protein 50mg and membrane, yolk, and albumen 0.5mg). The protocols developed here will streamline CSIA of egg tissues for future work in avian ecology.
Column-to-column packing variation of disposable pre-packed columns for protein chromatography.
Schweiger, Susanne; Hinterberger, Stephan; Jungbauer, Alois
2017-12-08
In the biopharmaceutical industry, pre-packed columns are the standard for process development, but they must be qualified before use in experimental studies to confirm the required performance of the packed bed. Column qualification is commonly done by pulse response experiments and depends highly on the experimental testing conditions. Additionally, the peak analysis method, the variation in the 3D packing structure of the bed, and the measurement precision of the workstation influence the outcome of qualification runs. While a full body of literature on these factors is available for HPLC columns, no comparable studies exist for preparative columns for protein chromatography. We quantified the influence of these parameters for commercially available pre-packed and self-packed columns of disposable and non-disposable design. Pulse response experiments were performed on 105 preparative chromatography columns with volumes of 0.2-20ml. The analyte acetone was studied at six different superficial velocities (30, 60, 100, 150, 250 and 500cm/h). The column-to-column packing variation between disposable pre-packed columns of different diameter-length combinations varied by 10-15%, which was acceptable for the intended use. The column-to-column variation cannot be explained by the packing density, but is interpreted as a difference in particle arrangement in the column. Since it was possible to determine differences in the column-to-column performance, we concluded that the columns were well-packed. The measurement precision of the chromatography workstation was independent of the column volume and was in a range of±0.01ml for the first peak moment and±0.007 ml 2 for the second moment. The measurement precision must be considered for small columns in the range of 2ml or less. The efficiency of disposable pre-packed columns was equal or better than that of self-packed columns. Copyright © 2017 The Author(s). Published by Elsevier B.V. All rights reserved.
Identification of a dehydrogenase acting on D-2-hydroxyglutarate
2004-01-01
Extracts of frozen rat liver were found to catalyse the formation of 3H2O from DL-2-hydroxy[2-3H]glutarate. Three peaks of enzyme activities were observed on separation by chromatography on DEAE-Sepharose. The first and second peaks corresponded to an enzyme acting on L-2-hydroxyglutarate and the third peak corresponded to an enzyme acting on D-2-hydroxyglutarate, as indicated by competitive inhibition of the detritiation of the racemic radioactive compound by the unlabelled L- and D-isomers respectively. The enzyme acting on the D-form was further characterized. It was independent of NAD or NADP and it converted D-2-hydroxyglutarate into α-ketoglutarate, transferring electrons to artificial electron acceptors. It also oxidized D-lactate, D-malate and meso-tartrate and was stimulated by Zn2+, Co2+ and Mn2+, but not by Mg2+ or Ca2+. Subcellular fractionation indicated that it was present in the mitochondrial fraction. The enzyme was further purified by chromatography on Blue Trisacryl and phenyl-Sepharose, up to a stage where only a few bands were still visible by SDS/ PAGE. Among the four candidate polypeptides that were identified by MS, one corresponded to a predicted mitochondrial protein homologous with FAD-dependent D-lactate dehydrogenase. The corresponding human protein was expressed in HEK-293 cells and it was shown to catalyse the detritiation of DL-2-hydroxy[2-3H]glutarate with similar properties as the purified rat enzyme. PMID:15070399
Identification of a dehydrogenase acting on D-2-hydroxyglutarate.
Achouri, Younes; Noël, Gaëtane; Vertommen, Didier; Rider, Mark H; Veiga-Da-Cunha, Maria; Van Schaftingen, Emile
2004-07-01
Extracts of frozen rat liver were found to catalyse the formation of 3H2O from DL-2-hydroxy[2-3H]glutarate. Three peaks of enzyme activities were observed on separation by chromatography on DEAE-Sepharose. The first and second peaks corresponded to an enzyme acting on L-2-hydroxyglutarate and the third peak corresponded to an enzyme acting on D-2-hydroxyglutarate, as indicated by competitive inhibition of the detritiation of the racemic radioactive compound by the unlabelled L- and D-isomers respectively. The enzyme acting on the D-form was further characterized. It was independent of NAD or NADP and it converted D-2-hydroxyglutarate into a-ketoglutarate, transferring electrons to artificial electron acceptors. It also oxidized D-lactate, D-malate and meso-tartrate and was stimulated by Zn2+, Co2+ and Mn2+, but not by Mg2+ or Ca2+. Subcellular fractionation indicated that it was present in the mitochondrial fraction. The enzyme was further purified by chromatography on Blue Trisacryl and phenyl-Sepharose, up to a stage where only a few bands were still visible by SDS/PAGE. Among the four candidate polypeptides that were identified by MS, one corresponded to a predicted mitochondrial protein homologous with FAD-dependent D-lactate dehydrogenase. The corresponding human protein was expressed in HEK-293 cells and it was shown to catalyse the detritiation of DL-2-hydroxy[2-3H]glutarate with similar properties as the purified rat enzyme.
[Pharmacokinetics of domestic actoprotector drug Metaprot in healthy volunteers].
Kibal'chich, D A; Belolipetskaia, V G; Blagodatskikh, S V; Martsevich, S Iu; Rudenko, L I; Iatsuk, V R
2011-01-01
Pharmacokinetics of the actoprotector Metaprot, an original Russian drug, has been studied in a group of healthy adult volunteers. Metaprot in capsules was administrated orally as a single dose of 250 mg. The concentration of the active substance (ethylthiobenzimidazole) in the blood serum was determined by high-performance liquid chromatography (HPLC) with UV detection. The pharmacokinetic parameters were calculated by the model-independent method. The peak concentration of ethylthiobenzimidazole in plasma was Cmax = 0.91 +/- 1.05 microg/ml and the average time to peak concentration was t(max) = 1.06 +/- 0.16 h. A polymodal character of the distribution of pharmacokinetic parameters in the test group was revealed.
Human and porcine immunoreactive gastric inhibitory polypeptides (IR-GIP) are not identical.
Bacarese-Hamilton, A J; Adrian, T E; Bloom, S R
1984-03-12
Immunoreactive gastric inhibitory polypeptide (IR-GIP) from human and porcine intestine was quantified by radioimmunoassay and the molecular forms characterised by gel permeation and reverse-phase high pressure liquid chromatography (HPLC). Gel filtration revealed two major immunoreactive peaks corresponding to the previously described 5-kDa and 8-kDa molecular forms, which appeared similar in both species. Isocratic reverse-phase HPLC revealed that the major immunoreactive GIP peak (5-kDa) in the human tissue eluted earlier than the corresponding porcine molecular form, indicating the latter to be less hydrophobic. These findings suggest significant species differences between human and porcine GIP.
Miniaturized protein separation using a liquid chromatography column on a flexible substrate
NASA Astrophysics Data System (ADS)
Yang, Yongmo; Chae, Junseok
2008-12-01
We report a prototype protein separator that successfully miniaturizes existing technology for potential use in biocompatible health monitoring implants. The prototype is a liquid chromatography (LC) column (LC mini-column) fabricated on an inexpensive, flexible, biocompatible polydimethylsiloxane (PDMS) enclosure. The LC mini-column separates a mixture of proteins using size exclusion chromatography (SEC) with polydivinylbenzene beads (5-20 µm in diameter with 10 nm pore size). The LC mini-column is smaller than any commercially available LC column by a factor of ~11 000 and successfully separates denatured and native protein mixtures at ~71 psi of the applied fluidic pressure. Separated proteins are analyzed using NuPAGE-gel electrophoresis, high-performance liquid chromatography (HPLC) and an automated electrophoresis system. Quantitative HPLC results demonstrate successful separation based on intensity change: within 12 min, the intensity between large and small protein peaks changed by a factor of ~20. In further evaluation using the automated electrophoresis system, the plate height of the LC mini-column is between 36 µm and 100 µm. The prototype LC mini-column shows the potential for real-time health monitoring in applications that require inexpensive, flexible implant technology that can function effectively under non-laboratory conditions.
Gevaert, Bert; D'Hondt, Matthias; Bracke, Nathalie; Yao, Han; Wynendaele, Evelien; Vissers, Johannes Petrus Cornelis; De Cecco, Martin; Claereboudt, Jan; De Spiegeleer, Bart
2015-09-01
Cerebrolysin, a parenteral peptide preparation produced by controlled digestion of porcine brain proteins, is an approved nootropic medicine in some countries. However, it is also easily and globally available on the Internet. Nevertheless, until now, its exact chemical composition was unknown. Using high performance liquid chromatography (HPLC) coupled to ion trap and ultra high performance liquid chromatography (UHPLC) coupled to quadrupole-ion mobility-time-of-flight mass spectrometry (Q-IM-TOF MS), combined with UniProt pig protein database search and PEAKS de novo sequencing, we identified 638 unique peptides in an Internet-obtained Cerebrolysin sample. The main components in this sample originate from tubulin alpha- and beta-chain, actin, and myelin basic protein. No fragments of known neurotrophic factors like glial cell-derived neurotrophic factor (GDNF), neurotrophin nerve growth factor (NGF), brain-derived neurotrophic factor (BDNF), and ciliary neurotrophic factor (CNTF) were found, suggesting that the activities reported in the literature are likely the result of new, hitherto unknown cryptic peptides with nootropic properties. Copyright © 2015 John Wiley & Sons, Ltd.
Pedroso, Marcio P; Ferreira, Ernesto C; Hantao, Leandro W; Bogusz, Stanislau; Augusto, Fabio
2011-07-01
Combining qualitative data from the chromatographic structure of 2-D gas chromatography with flame ionization detection (GC×GC-FID) and that from gas chromatography-mass spectrometry (GC/MS) should result in a more accurate assignment of the peak identities than the simple analysis by GC/MS, where coelution of analytes is unavoidable in highly complex samples (rendering spectra unsuitable for qualitative purposes) or for compounds in very low concentrations. Using data from GC×GC-FID combined with GC/MS can reveal coelutions that were not detected by mass spectra deconvolution software. In addition, some compounds can be identified according to the structure of the GC×GC-FID chromatogram. In this article, the volatile fractions of fresh and dehydrated pineapple pulp were evaluated. The extraction of the volatiles was performed by dynamic headspace extraction coupled to solid-phase microextraction (DHS-SPME), a technique appropriate for slurries or solid matrices. Extracted analytes were then analyzed by GC×GC-FID and GC/MS. The results obtained using both techniques were combined to improve compound identifications. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Jin, Hongli; Liu, Yanfang; Guo, Zhimou; Wang, Jixia; Zhang, Xiuli; Wang, Chaoran; Liang, Xinmiao
2016-10-25
Traditional Chinese Medicine (TCM) is an ancient medical practice which has been used to prevent and cure diseases for thousands of years. TCMs are frequently multi-component systems with mainly unidentified constituents. The study of the chemical compositions of TCMs remains a hotspot of research. Different strategies have been developed to manage the significant complexity of TCMs, in an attempt to determine their constituents. Reversed-phase liquid chromatography (RPLC) is still the method of choice for the separation of TCMs, but has many problems related to limited selectivity. Recently, enormous efforts have been concentrated on the development of efficient liquid chromatography (LC) methods for TCMs, based on selective stationary phases. This can improve the resolution and peak capacity considerably. In addition, high-efficiency stationary phases have been applied in the analysis of TCMs since the invention of ultra high-performance liquid chromatography (UHPLC). This review describes the advances in LC methods in TCM research from 2010 to date, and focuses on novel stationary phases. Their potential in the separation of TCMs using relevant applications is also demonstrated. Copyright © 2016 Elsevier B.V. All rights reserved.
Turak, Fatma; Güzel, Remziye; Dinç, Erdal
2017-04-01
A new reversed-phase ultraperformance liquid chromatography method with a photodiode array detector was developed for the quantification of ascorbic acid (AA) and caffeine (CAF) in 11 different commercial drinks consisting of one energy drink and 10 ice tea drinks. Separation of the analyzed AA and CAF with an internal standard, caffeic acid, was performed on a Waters BEH C 18 column (100 mm × 2.1 mm, 1.7 μm i.d.), using a mobile phase consisting of acetonitrile and 0.2M H 3 PO 4 (11:89, v/v) with a flow rate of 0.25 mL/min and an injection volume of 1.0 μL. Calibration graphs for AA and CAF were computed from the peak area ratio of AA/internal standard and CAF/internal standard detected at 244.0 nm and 273.6 nm, respectively. The developed reversed-phase ultraperformance liquid chromatography method was validated by analyzing standard addition samples. The proposed reversed-phase ultraperformance liquid chromatography method gave us successful results for the quantitative analysis of commercial drinks containing AA and CAF substances. Copyright © 2016. Published by Elsevier B.V.
ICPD-a new peak detection algorithm for LC/MS.
Zhang, Jianqiu; Haskins, William
2010-12-01
The identification and quantification of proteins using label-free Liquid Chromatography/Mass Spectrometry (LC/MS) play crucial roles in biological and biomedical research. Increasing evidence has shown that biomarkers are often low abundance proteins. However, LC/MS systems are subject to considerable noise and sample variability, whose statistical characteristics are still elusive, making computational identification of low abundance proteins extremely challenging. As a result, the inability of identifying low abundance proteins in a proteomic study is the main bottleneck in protein biomarker discovery. In this paper, we propose a new peak detection method called Information Combining Peak Detection (ICPD ) for high resolution LC/MS. In LC/MS, peptides elute during a certain time period and as a result, peptide isotope patterns are registered in multiple MS scans. The key feature of the new algorithm is that the observed isotope patterns registered in multiple scans are combined together for estimating the likelihood of the peptide existence. An isotope pattern matching score based on the likelihood probability is provided and utilized for peak detection. The performance of the new algorithm is evaluated based on protein standards with 48 known proteins. The evaluation shows better peak detection accuracy for low abundance proteins than other LC/MS peak detection methods.
Huis in 't Veld, J; Fischer, M
1984-01-01
Crude ribosomal preparations of Streptococcus mutans C67-1 (serotype c) and 50B4 (serotype d) contain protein RNA and carbohydrate. Sepharose CL-2B column chromatography of preparations yielded two distinct peaks. Cell-wall carbohydrates were predominantly present in peak I; the serological activity resided mainly in peak II. The preparations contained antigens which cross-reacted with several streptococcal Lancefield antisera. Antisera prepared against the preparations cross-reacted with cell-wall proteins (NaCl extracts) and Ag I/II, but not with cell-wall carbohydrate antigens (Rantz-Randall extracts). Thus, cell-envelope protein antigens in the preparations appear to be responsible for the serological activity. The unique properties of ribosomal preparations may, apart from serological cross-reactivity, be useful in the immunological protection against dental caries.
Li, Qin; Lynen, Frédéric; Wang, Jian; Li, Hanlin; Xu, Guowang; Sandra, Pat
2012-09-14
A comprehensive two-dimensional HPLC approach with a high degree of orthogonality was developed for analysis of di- to deca-oligonucleotides (ONs). Hydrophilic interaction liquid chromatography (HILIC) was used in the first dimension, and ion-pair reversed-phase liquid chromatography (IP-RPLC) was employed in the second dimension. The two dimensions were connected via a ten-port valve interface equipped with octadecyl silica (ODS) traps to immobilize and focus the ONs eluting from the first dimension prior to IP-RPLC separation. An aqueous make-up flow was used for effective trapping. The comprehensive two-dimensional HPLC system was optimized with a mixture consisting of 27 oligonucleotide standards. An overall chromatographic peak capacity of 500 was obtained. The use of the volatile buffer triethylamine acetate in the second dimension allowed straightforward coupling to electrospray ionization mass spectrometry (ESI-MS) and detection of each ON in the negative ionization mode. Copyright © 2011 Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zheng, Xueyun; Wojcik, Roza; Zhang, Xing
Ion mobility spectrometry (IMS) is a widely used analytical technique for rapid molecular separations in the gas phase. IMS alone is useful, but its coupling with mass spectrometry (MS) and front-end separations has been extremely beneficial for increasing measurement sensitivity, peak capacity of complex mixtures, and the scope of molecular information in biological and environmental sample analyses. Multiple studies in disease screening and environmental evaluations have even shown these IMS-based multidimensional separations extract information not possible with each technique individually. This review highlights 3-dimensional separations using IMS-MS in conjunction with a range of front-end techniques, such as gas chromatography (GC),more » supercritical fluid chromatography (SFC), liquid chromatography (LC), solid phase extractions (SPE), capillary electrophoresis (CE), field asymmetric ion mobility spectrometry (FAIMS), and microfluidic devices. The origination, current state, various applications, and future capabilities for these multidimensional approaches are described to provide insight into the utility and potential of each technique.« less
Ito, Yoichiro; Ma, Xiaofeng; Clary, Robert
2016-01-01
A simple tool is introduced which can modify the shape of tubing to enhance the partition efficiency in high-speed countercurrent chromatography. It consists of a pair of interlocking identical gears, each coaxially holding a pressing wheel to intermittently compress plastic tubing in 0 – 10 mm length at every 1 cm interval. The performance of the processed tubing is examined in protein separation with 1.6 mm ID PTFE tubing intermittently pressed in 3 mm and 10 mm width both at 10 mm intervals at various flow rates and revolution speeds. A series of experiments was performed with a polymer phase system composed of polyethylene glycol and dibasic potassium phosphate each at 12.5% (w/w) in deionized water using three protein samples. Overall results clearly demonstrate that the compressed tubing can yield substantially higher peak resolution than the non-processed tubing. The simple tubing modifier is very useful for separation of proteins with high-speed countercurrent chromatography. PMID:27818942
Determination of patulin in commercial apple juice by micellar electrokinetic chromatography.
Murillo, M; González-Peñas, E; Amézqueta, S
2008-01-01
A novel and validated micellar electrokinetic capillary chromatography (MEKC) method using ultraviolet detection (UV) has been applied to the quantitative analysis of patulin (PAT) in commercial apple juice. Patulin was extracted from samples with an ethylacetate solution. The micellar electrokinetic capillary chromatography (MECK) parameters studied for method optimization were buffer composition, voltage, temperature, and a separation between PAT and 5-hydroxymethylfurfural (HMF) (main interference in apple juice PAT analysis) peaks until reaching baseline. The method passes a series of validation tests including selectivity, linearity, limit of detection and quantification (0.7 and 2.5 microgL(-1), respectively), precision (within and between-day variability) and recovery (80.2% RSD=4%), accuracy, and robustness. This method was successfully applied to the measurement of 20 apple juice samples obtained from different supermarkets. One hundred percent of the samples were contaminated with a level greater than the limit of detection, with mean and median values of 41.3 and 35.7 microgL(-1), respectively.
Ito, Yoichiro; Ma, Xiaofeng; Clary, Robert
2016-01-01
A simple tool is introduced which can modify the shape of tubing to enhance the partition efficiency in high-speed countercurrent chromatography. It consists of a pair of interlocking identical gears, each coaxially holding a pressing wheel to intermittently compress plastic tubing in 0 - 10 mm length at every 1 cm interval. The performance of the processed tubing is examined in protein separation with 1.6 mm ID PTFE tubing intermittently pressed in 3 mm and 10 mm width both at 10 mm intervals at various flow rates and revolution speeds. A series of experiments was performed with a polymer phase system composed of polyethylene glycol and dibasic potassium phosphate each at 12.5% (w/w) in deionized water using three protein samples. Overall results clearly demonstrate that the compressed tubing can yield substantially higher peak resolution than the non-processed tubing. The simple tubing modifier is very useful for separation of proteins with high-speed countercurrent chromatography.
Zheng, Xueyun; Wojcik, Roza; Zhang, Xing; Ibrahim, Yehia M.; Burnum-Johnson, Kristin E.; Orton, Daniel J.; Monroe, Matthew E.; Moore, Ronald J.; Smith, Richard D.; Baker, Erin S.
2017-01-01
Ion mobility spectrometry (IMS) is a widely used analytical technique for rapid molecular separations in the gas phase. Though IMS alone is useful, its coupling with mass spectrometry (MS) and front-end separations is extremely beneficial for increasing measurement sensitivity, peak capacity of complex mixtures, and the scope of molecular information available from biological and environmental sample analyses. In fact, multiple disease screening and environmental evaluations have illustrated that the IMS-based multidimensional separations extract information that cannot be acquired with each technique individually. This review highlights three-dimensional separations using IMS-MS in conjunction with a range of front-end techniques, such as gas chromatography, supercritical fluid chromatography, liquid chromatography, solid-phase extractions, capillary electrophoresis, field asymmetric ion mobility spectrometry, and microfluidic devices. The origination, current state, various applications, and future capabilities of these multidimensional approaches are described in detail to provide insight into their uses and benefits. PMID:28301728
High-pressure liquid chromatography with direct injection of gas sample.
Astanin, Anton I; Baram, Grigory I
2017-06-09
The conventional method of using liquid chromatography to determine the composition of a gaseous mixture entails dissolving vapors in a suitable solvent, then obtaining a chromatograph of the resulting solution. We studied the direct introduction of a gaseous sample into a C18 reversed-phase column, followed by separation of the components by HPLC with UV detection. Since the chromatography was performed at high pressure, vapors readily dissolved in the eluent and the substances separated in the column as effectively as in liquid samples. Samples were injected into the column in two ways: a) through the valve without a flow stop; b) after stopping the flow and relieving all pressure. We showed that an injectable gas volume could reach 70% of column dead volume. When an injected gaseous sample volume was less than 10% of the column dead volume, the resulting peaks were symmetrical and the column efficiency was high. Copyright © 2017 Elsevier B.V. All rights reserved.
Multi-Site N-glycan mapping study 1: Capillary electrophoresis – laser induced fluorescence
Szekrényes, Ákos; Park, SungAe Suhr; Santos, Marcia; Lew, Clarence; Jones, Aled; Haxo, Ted; Kimzey, Michael; Pourkaveh, Shiva; Szabó, Zoltán; Sosic, Zoran; Feng, Peng; Váradi, Csaba; de l'Escaille, François; Falmagne, Jean-Bernard; Sejwal, Preeti; Niedringhaus, Thomas; Michels, David; Freckleton, Gordon; Hamm, Melissa; Manuilov, Anastasiya; Schwartz, Melissa; Luo, Jiann-Kae; van Dyck, Jonathan; Leung, Pui-King; Olajos, Marcell; Gu, Yingmei; Gao, Kai; Wang, Wenbo; Wegstein, Jo; Tep, Samnang; Guttman, András
2016-01-01
An international team that included 20 independent laboratories from biopharmaceutical companies, universities, analytical contract laboratories and national authorities in the United States, Europe and Asia was formed to evaluate the reproducibility of sample preparation and analysis of N-glycans using capillary electrophoresis of 8-aminopyrene-1,3,6-trisulfonic acid (APTS)-labeled glycans with laser induced fluorescence (CE-LIF) detection (16 sites) and ultra high-performance liquid chromatography (UHPLC, 12 sites; results to be reported in a subsequent publication). All participants used the same lot of chemicals, samples, reagents, and columns/capillaries to run their assays. Migration time, peak area and peak area percent values were determined for all peaks with >0.1% peak area. Our results demonstrated low variability and high reproducibility, both, within any given site as well across all sites, which indicates that a standard N-glycan analysis platform appropriate for general use (clone selection, process development, lot release, etc.) within the industry can be established. PMID:26466659
C-Window Peaks on CE-HPLC are Extremely Rare in Northern India, and Only Infrequently Represent HbC.
Dass, Jasmita; Mittal, Suchi; Saraf, Amrita; Kotwal, Jyoti
2018-01-01
Hemoglobin C (HbC, HBB:c.19G > A) is a structural variant that has been reported rarely from India. This was a retrospective review of all high performance liquid chromatography (HPLCs) submitted over a 14 year period to a tertiary care center in North India with an aim of finding hemoglobins that elute in the C-window. Of the 32,364 HPLCs screened, 6 cases showed peaks in the C-window. Of these 6 cases, only two cases contained hemoglobin C. These was one case each of HbC/β thalassemia and compound heterozygosity for HbC and HbD. There were 4 cases which showed very similar red cell indices and chromatograms with multiple peaks eluting in D-window, C-window and an additional peak with a retention time of 4.74 min. These four cases were compound heterozygous for an α chain variant HbQ-India and a β-chain variant HbD.
Huang, Peng; Yang, Zhifang; Bao, Jianying; Zhang, Ning; Li, Wenshu
2017-03-01
Objective To purify human goose-type lysozyme 2 (HLysG2) from human seminal plasma by chromatography and analyze its enzymatic properties. Methods The distribution of HLysG2 in semen was analyzed by Western blot analysis. Seminal plasma was subjected to the separation of target protein using cation-exchange chromatography, chitin affinity chromatography and size-exclusion chromatography. The purified product was identified by Western blot analysis and mass spectrometry (MS).The purity was analyzed by high performance liquid chromatography (HPLC). Then, the optimum pH, ion concentration and temperature of HLysG2 and its standard activity were determined by the turbidimetric assay. The bactericidal activity of HLysG2 was assessed by the colony-forming assay. Results The existence of HLysG2 in seminal plasma was confirmed by Western blot analysis. A protein of about 21.5 kDa was purified from seminal plasma by the three kinds of chromatography and identified as HLysG2 by Western blot analysis and MS. The final purity of the purified product was above 99.0% and the peak enzymatic activity reached 13 800 U/mg under the condition of pH 6.4, 0.09 mol/L Na + , 30DegreesCelsius. In vitro assay indicated that HLysG2 had a significant killing effect on Micrococcus lysodeikticus, Bacillus subtilis and Staphylococcus aureus, but not on Pseudomonas aeruginosa and Escherichia coli. Conclusion Native HLysG2 can be obtained from seminal plasma by chromatography. It has in vitro bactericidal activity against Gram-positive bacteria, suggesting that it might play a role in innate immunity of the male reproductive system.
Gradient Scouting in Reversed-Phase HPLC Revisited
ERIC Educational Resources Information Center
Alcazar, A.; Jurado, J. M.; Gonzalez, A. G.
2011-01-01
Gradient scouting is the best way to decide the most suitable elution mode in reversed-phase high-performance liquid chromatography (RP-HPLC). A simple rule for this decision involves the evaluation of the ratio [delta]t/t[subscript G] (where [delta]t is the difference in the retention time between the last and the first peak and t[subscript G] is…
Gruendling, Till; Guilhaus, Michael; Barner-Kowollik, Christopher
2008-09-15
We report on the successful application of size exclusion chromatography (SEC) combined with electrospray ionization mass spectrometry (ESI-MS) and refractive index (RI) detection for the determination of accurate molecular weight distributions of synthetic polymers, corrected for chromatographic band broadening. The presented method makes use of the ability of ESI-MS to accurately depict the peak profiles and retention volumes of individual oligomers eluting from the SEC column, whereas quantitative information on the absolute concentration of oligomers is obtained from the RI-detector only. A sophisticated computational algorithm based on the maximum entropy principle is used to process the data gained by both detectors, yielding an accurate molecular weight distribution, corrected for chromatographic band broadening. Poly(methyl methacrylate) standards with molecular weights up to 10 kDa serve as model compounds. Molecular weight distributions (MWDs) obtained by the maximum entropy procedure are compared to MWDs, which were calculated by a conventional calibration of the SEC-retention time axis with peak retention data obtained from the mass spectrometer. Comparison showed that for the employed chromatographic system, distributions below 7 kDa were only weakly influenced by chromatographic band broadening. However, the maximum entropy algorithm could successfully correct the MWD of a 10 kDa standard for band broadening effects. Molecular weight averages were between 5 and 14% lower than the manufacturer stated data obtained by classical means of calibration. The presented method demonstrates a consistent approach for analyzing data obtained by coupling mass spectrometric detectors and concentration sensitive detectors to polymer liquid chromatography.
Cordis, G A; Maulik, N; Das, D K
1995-08-01
Accurate estimation of the oxidative stress in heart is necessary because the pathogenesis of many heart diseases are believed to be mediated at least in part from the development of oxidative stress resulting from the generation of oxygen free radicals and reduced antioxidant defense system. The most widely used method for this purpose has been the estimation of malonaldehyde (MDA), a lipid peroxidation product, by the thiobarbituric acid (TBA) reaction method. However, because of the nonspecificity of this method, the results are often erroneous. The present report describes a method using high-performance liquid chromatography (HPLC) to estimate MDA. To develop the oxidative stress, two different models were used: ischaemic-reperfused heart and perfusing the heart with a hydroxyl radical (OH+) generating system. The coronary effluents obtained from the isolated rat heart before ischaemia and during the reperfusion of ischaemic heart, as well as during the perfusion of the heart with the OH+ generating system were collected, derivatized with 2,4-dinitrophenylhydrazine (DNPH) and extracted with pentane. Aliquots of 25 microliters in acetonitrile were injected onto a Beckman Ultrasphere C18 (3 microns) column. The products were eluted isocratically with a mobile phase containing acetonitrile-water-acetic acid (40:60:0.1, v/v/v), measured at 307 nm using a Waters M-490 multichannel UV detector and collected for gas chromatography-mass spectrometry (GC-MS). The peaks were identified by co-chromatography with DNPH derivatives of authentic standards, peak addition, and by GC-MS. The retention time for MDA-DNPH was 5.3 min.(ABSTRACT TRUNCATED AT 250 WORDS)
Yongmei, Tan; Xiaojun, Yang; Juan, Du; Wanghong, Zhao; Xiaodan, Chen; Jin, Hou
2016-06-01
To test whether Porphyromonas gingivalis (P. gingivalis) could produce bacterial signal molecule, bis-(3'-5')-cyclic dimeric adenosine monophosphate (c-di-AMP) and lay the foundation for explorations of its roles in life metabolism and periodontitis immunity of P. gingivalis. P. gingivalis standard strain ATCC33277 was used as the experimental strain to extract nucleic acids from the bacteria. Then, c-di-AMP was detected using high performance liquid chromatography coupled with mass spectrometry (HPLC-MS/MS). Subsequently, HPLC was used to validate the sample further. Based on the signal/noise (S/N) for 3 : 1, the limit of determination of HPLC-MS/MS for peak time of c-di-AMP standard substances was 7.49 min and nucleic acid extractions from P. gingivalis was 8.82 min (S/N > 3). Further confirmation of HPLC showed that nucleic acid extractions from both P. gingivalis and c-di-AMP standard substances pre- sented goal absorbent peaks at 15.7 min, with the same ultraviolet absorbent spectrum. The nucleic acid extrac- tions from P. gingivalis contained c-di-AMP, which shows that P. gingivalis could produce c-di-AMP.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kaczmarski, Krzysztof; Guiochon, Georges A
2011-01-01
In supercritical fluid chromatography (SFC), the significant expansion of the mobile phase along the column causes the formation of axial and radial gradients of temperature. Due to these gradients, the mobile phase density, its viscosity, its velocity, its diffusion coefficients, etc. are not constant throughout the column. This results in a nonuniform flow velocity distribution, itself causing a loss of column efficiency in certain cases, even at low flow rates, as they do in HPLC. At high flow rates, an important deformation of the elution profiles of the sample components may occur. The model previously used to account satisfactorily formore » the retention of an unsorbed solute in SFC is applied to the modeling of the elution peak profiles of retained compounds. The numerical solution of the combined heat and mass balance equations provides the temperature and the pressure profiles inside the column and values of the retention time and the band profiles of retained compounds that are in excellent agreement with independent experimental data for large value of mobile phase reduced density. At low reduced densities, the band profiles can strongly depend on the column axial distribution of porosity.« less
Paleologos, E K; Kontominas, M G
2005-06-10
A method using normal phase high performance liquid chromatography (NP-HPLC) with UV detection was developed for the analysis of acrylamide and methacrylamide. The method relies on the chromatographic separation of these analytes on a polar HPLC column designed for the separation of organic acids. Identification of acrylamide and methacrylamide is approached dually, that is directly in their protonated forms and as their hydrolysis products acrylic and methacrylic acid respectively, for confirmation. Detection and quantification is performed at 200 nm. The method is simple allowing for clear resolution of the target peaks from any interfering substances. Detection limits of 10 microg L(-1) were obtained for both analytes with the inter- and intra-day RSD for standard analysis lying below 1.0%. Use of acetonitrile in the elution solvent lowers detection limits and retention times, without impairing resolution of peaks. The method was applied for the determination of acrylamide and methacrylamide in spiked food samples without native acrylamide yielding recoveries between 95 and 103%. Finally, commercial samples of french and roasted fries, cookies, cocoa and coffee were analyzed to assess applicability of the method towards acrylamide, giving results similar with those reported in the literature.
Lokajová, Jana; Railila, Annika; King, Alistair W T; Wiedmer, Susanne K
2013-09-20
The distribution constants of some analytes, closely connected to the petrochemical industry, between an aqueous phase and a phosphonium ionic liquid phase, were determined by ionic liquid micellar electrokinetic chromatography (MEKC). The phosphonium ionic liquids studied were the water-soluble tributyl(tetradecyl)phosphonium with chloride or acetate as the counter ion. The retention factors were calculated and used for determination of the distribution constants. For calculating the retention factors the electrophoretic mobilities of the ionic liquids were required, thus, we adopted the iterative process, based on a homologous series of alkyl benzoates. Calculation of the distribution constants required information on the phase-ratio of the systems. For this the critical micelle concentrations (CMC) of the ionic liquids were needed. The CMCs were calculated using a method based on PeakMaster simulations, using the electrophoretic mobilities of system peaks. The resulting distribution constants for the neutral analytes between the ionic liquid and the aqueous (buffer) phase were compared with octanol-water partitioning coefficients. The results indicate that there are other factors affecting the distribution of analytes between phases, than just simple hydrophobic interactions. Copyright © 2013 Elsevier B.V. All rights reserved.
Tie, Cai; Hu, Ting; Jia, Zhi-Xin; Zhang, Jin-Lan
2015-08-18
Fatty acids (FAs) are a group of lipid molecules that are essential to organisms. As potential biomarkers for different diseases, FAs have attracted increasing attention from both biological researchers and the pharmaceutical industry. A sensitive and accurate method for globally profiling and identifying FAs is required for biomarker discovery. The high selectivity and sensitivity of high-performance liquid chromatography-multiple reaction monitoring (HPLC-MRM) gives it great potential to fulfill the need to identify FAs from complicated matrices. This paper developed a new approach for global FA profiling and identification for HPLC-MRM FA data mining. Mathematical models for identifying FAs were simulated using the isotope-induced retention time (RT) shift (IRS) and peak area ratios between parallel isotope peaks for a series of FA standards. The FA structures were predicated using another model based on the RT and molecular weight. Fully automated FA identification software was coded using the Qt platform based on these mathematical models. Different samples were used to verify the software. A high identification efficiency (greater than 75%) was observed when 96 FA species were identified in plasma. This FAs identification strategy promises to accelerate FA research and applications.
Cífková, Eva; Hájek, Roman; Lísa, Miroslav; HolĿapek, Michal
2016-03-25
The goal of this work is a systematic optimization of hydrophilic interaction liquid chromatography (HILIC) separation of acidic lipid classes (namely phosphatidic acids-PA, lysophosphatidic acids-LPA, phosphatidylserines-PS and lysophosphatidylserines-LPS) and other lipid classes under mass spectrometry (MS) compatible conditions. The main parameters included in this optimization are the type of stationary phases used in HILIC, pH of the mobile phase, the type and concentration of mobile phase additives. Nine HILIC columns with different chemistries (unmodified silica, modified silica using diol, 2-picolylamine, diethylamine and 1-aminoanthracene and hydride silica) are compared with the emphasis on peak shapes of acidic lipid classes. The optimization of pH is correlated with the theoretical calculation of acidobasic equilibria of studied lipid classes. The final method using the hydride column, pH 4 adjusted by formic acid and the gradient of acetonitrile and 40 mmol/L of aqueous ammonium formate provides good peak shapes for all analyzed lipid classes including acidic lipids. This method is applied for the identification of lipids in real samples of porcine brain and kidney extracts. Copyright © 2016 Elsevier B.V. All rights reserved.
Gu, Haiwei; Huang, Yuan; Filgueira, Marcelo; Carr, Peter W.
2012-01-01
In this study, we examined the effect of first dimension column selectivity in reversed phase (RP) online comprehensive two dimensional liquid chromatography (LC × LC). The second dimension was always a carbon clad metal oxide reversed phase material. The hydrophobic subtraction model (HSM) and the related phase selective triangles were used to guide the selection of six different RP first dimension columns. Various kinds of samples were investigated and thus two different elution conditions were needed to cause full elution from the first dimension columns. We compared LC × LC chromatograms, contours plots, and fcoverage plots by measuring peak capacities, peak numbers, relative spatial coverage, correlation values, etc. The major finding of this study is that the carbon phase due to its rather different selectivity from other reversed phases is reasonably orthogonal to a variety of common types of bonded reversed phases. Thus quite surprisingly the six different first dimension stationary phases all showed generally similar separation patterns when paired to the second dimension carbon phase. This result greatly simplifies the task of choosing the correct pair of phases for RP × RP. PMID:21840009
Gao, Xiaoli; Zhang, Qibin; Meng, Da; Issac, Giorgis; Zhao, Rui; Fillmore, Thomas L.; Chu, Rosey K.; Zhou, Jianying; Tang, Keqi; Hu, Zeping; Moore, Ronald J.; Smith, Richard D.; Katze, Michael G.; Metz, Thomas O.
2012-01-01
Lipidomics is a critical part of metabolomics and aims to study all the lipids within a living system. We present here the development and evaluation of a sensitive capillary UPLC-MS method for comprehensive top-down/bottom-up lipid profiling. Three different stationary phases were evaluated in terms of peak capacity, linearity, reproducibility, and limit of quantification (LOQ) using a mixture of lipid standards representative of the lipidome. The relative standard deviations of the retention times and peak abundances of the lipid standards were 0.29% and 7.7%, respectively, when using the optimized method. The linearity was acceptable at >0.99 over 3 orders of magnitude, and the LOQs were sub-fmol. To demonstrate the performance of the method in the analysis of complex samples, we analyzed lipids extracted from a human cell line, rat plasma, and a model human skin tissue, identifying 446, 444, and 370 unique lipids, respectively. Overall, the method provided either higher coverage of the lipidome, greater measurement sensitivity, or both, when compared to other approaches of global, untargeted lipid profiling based on chromatography coupled with MS. PMID:22354571
Kendrick, B S; Kerwin, B A; Chang, B S; Philo, J S
2001-12-15
Characterizing the solution structure of protein-polymer conjugates and protein-ligand interactions is important in fields such as biotechnology and biochemistry. Size-exclusion high-performance liquid chromatography with online classical light scattering (LS), refractive index (RI), and UV detection offers a powerful tool in such characterization. Novel methods are presented utilizing LS, RI, and UV signals to rapidly determine the degree of conjugation and the molecular mass of the protein conjugate. Baseline resolution of the chromatographic peaks is not required; peaks need only be sufficiently separated to represent relatively pure fractions. An improved technique for determining the polypeptide-only mass of protein conjugates is also described. These techniques are applied to determining the degree of erythropoietin glycosylation, the degree of polyethylene glycol conjugation to RNase A and brain-derived neurotrophic factor, and the solution association states of these molecules. Calibration methods for the RI, UV, and LS detectors will also be addressed, as well as online methods to determine protein extinction coefficients and dn/dc values both unconjugated and conjugated protein molecules. (c)2001 Elsevier Science.
Reichenbach, Stephen E; Kottapalli, Visweswara; Ni, Mingtian; Visvanathan, Arvind
2005-04-15
This paper describes a language for expressing criteria for chemical identification with comprehensive two-dimensional gas chromatography paired with mass spectrometry (GC x GC-MS) and presents computer-based tools implementing the language. The Computer Language for Indentifying Chemicals (CLIC) allows expressions that describe rules (or constraints) for selecting chemical peaks or data points based on multi-dimensional chromatographic properties and mass spectral characteristics. CLIC offers chromatographic functions of retention times, functions of mass spectra, numbers for quantitative and relational evaluation, and logical and arithmetic operators. The language is demonstrated with the compound-class selection rules described by Welthagen et al. [W. Welthagen, J. Schnelle-Kreis, R. Zimmermann, J. Chromatogr. A 1019 (2003) 233-249]. A software implementation of CLIC provides a calculator-like graphical user-interface (GUI) for building and applying selection expressions. From the selection calculator, expressions can be used to select chromatographic peaks that meet the criteria or create selection chromatograms that mask data points inconsistent with the criteria. Selection expressions can be combined with graphical, geometric constraints in the retention-time plane as a powerful component for chemical identification with template matching or used to speed and improve mass spectrum library searches.
Hou, Shengjie; Ding, Mingyu
2010-01-01
A simple and rapid high-performance liquid chromatography method was developed for the determination of eleven nucleosides and bases in beer, herring sperm DNA and RNA soft capsules. The separation was carried out on an Agilent extend-C(18) column with a simple gradient elution of acetonitrile and water as the mobile phase. Good linear relationships between the peak areas and the concentrations of the analytes were obtained. The detection limits for eleven analytes were in the range of 0.007-0.037 mg/L by UV detection at 260 nm. The relative standard deviations (RSDs) of the retention times were in the range of 0.78-1.85% for intra-day and 0.87-1.94% for inter-day, respectively. The RSDs of the peak areas were in the range of 2.71-3.22% for intra-day and 3.03-3.39% for inter-day, respectively. This method has been successfully applied to simultaneous determination of eleven nucleosides and bases in beer, herring sperm DNA and RNA soft capsules with the recoveries in the range of 93.7-108.3%.
Novitsky, Vlad; Bussmann, Hermann; Okui, Lillian; Logan, Andrew; Moyo, Sikhulile; van Widenfelt, Erik; Mmalane, Mompati; Lei, Quanhong; Holme, Molly P; Makhema, Joseph; Lockman, Shahin; Degruttola, Victor; Essex, M
2015-01-01
It would be useful to understand which populations are not reached by home-based HIV-1 testing and counselling (HTC) to improve strategies aimed at linking these individuals to care and reducing rates of onward HIV transmission. We present the results of a baseline home-based HTC (HBHTC) campaign aimed at counselling and testing residents aged 16 to 64 for HIV in the north-eastern sector of Mochudi, a community in Botswana with about 44,000 inhabitants. Collected data were compared with population references for Botswana, the United Nations (UN) estimates based on the National Census data and the Botswana AIDS Impact Survey IV (BAIS-IV). Analyzed data and references were stratified by age and gender. A total of 6238 age-eligible residents were tested for HIV-1; 1247 (20.0%; 95% CI 19.0 to 21.0%) were found to be HIV positive (23.7% of women vs. 13.4% of men). HIV-1 prevalence peaked at 44% in 35- to 39-year-old women and 32% in 40- to 44-year-old men. A lower HIV prevalence rate, 10.9% (95% CI 9.5 to 12.5%), was found among individuals tested for the first time. A significant gender gap was evident in all analyzed subsets. The existing HIV transmission network was analyzed by combining phylogenetic mapping and household structure. Between 62.4 and 71.8% of all HIV-positive individuals had detectable virus. When compared with the UN and BAIS-IV estimates, the proportion of men missed by the testing campaign (48.5%; 95% CI 47.0 to 50.0%) was significantly higher than the proportion of missed women (14.2%; 95% CI 13.2 to 15.3%; p<0.0001). The estimated proportion of missed men peaked at about 60% in the age group 30 to 39 years old. The proportions of missed women were substantially smaller, at approximately 28% within the age groups 30 to 34 and 45 to 49 years old. The HBHTC campaign seems to be an efficient tool for reaching individuals who have never been tested previously in southern African communities. However, about half of men from 16 to 64 years old were not reached by the HBHTC, including about 60% of men between 30 and 40 years old. Alternative HTC strategies should be developed to bring these men to care, which will contribute to reduction of HIV incidence in communities.
Hellmuth, Christian; Weber, Martina; Koletzko, Berthold; Peissner, Wolfgang
2012-02-07
Despite their central importance for lipid metabolism, straightforward quantitative methods for determination of nonesterified fatty acid (NEFA) species are still missing. The protocol presented here provides unbiased quantitation of plasma NEFA species by liquid chromatography-tandem mass spectrometry (LC-MS/MS). Simple deproteination of plasma in organic solvent solution yields high accuracy, including both the unbound and initially protein-bound fractions, while avoiding interferences from hydrolysis of esterified fatty acids from other lipid classes. Sample preparation is fast and nonexpensive, hence well suited for automation and high-throughput applications. Separation of isotopologic NEFA is achieved using ultrahigh-performance liquid chromatography (UPLC) coupled to triple quadrupole LC-MS/MS detection. In combination with automated liquid handling, total assay time per sample is less than 15 min. The analytical spectrum extends beyond readily available NEFA standard compounds by a regression model predicting all the relevant analytical parameters (retention time, ion path settings, and response factor) of NEFA species based on chain length and number of double bonds. Detection of 50 NEFA species and accurate quantification of 36 NEFA species in human plasma is described, the highest numbers ever reported for a LC-MS application. Accuracy and precision are within widely accepted limits. The use of qualifier ions supports unequivocal analyte verification. © 2012 American Chemical Society
Lue, Bena-Marie; Guo, Zheng; Xu, Xuebing
2008-07-11
Methods using reversed-phase high-performance liquid chromatography (RP-HPLC) with ELSD were investigated to quantify enzymatic reactions of flavonoids with fatty acids in the presence of diverse room temperature ionic liquids (RTILs). A buffered salt (preferably triethylamine-acetate) was found essential for separation of flavonoids from strongly polar RTILs, whereby RTILs were generally visible as two major peaks identified based on an ion-pairing/exchanging hypothesis. C8 and C12 stationary phases were optimal while mobile phase pH (3-7) had only a minor influence on separation. The method developed was successfully applied for primary screening of RTILs (>20), with in depth evaluation of substrates in 10 RTILs, for their evaluation as reaction media.
Flow-switching device for comprehensive two-dimensional gas chromatography.
Bueno, Pedro A; Seeley, John V
2004-02-20
A simple flow-switching device has been developed as a differential flow modulator for comprehensive two-dimensional gas chromatography (GC x GC). The device is assembled from tubing, four tee unions, and a solenoid valve. The solenoid valve is located outside the oven of the gas chromatograph and is not in the sample path. The modulation technique has no inherent temperature restrictions and passes 100% of the primary column effluent to the secondary column(s). Secondary peaks are produced with widths at half maximum less than 100 ms when operating in GC x 2GC mode with a 2.0 s modulation period. The efficacy of this approach is demonstrated through the analysis of a standard mixture of volatile organic compounds (VOCs) and diesel fuel.
Automatic peak selection by a Benjamini-Hochberg-based algorithm.
Abbas, Ahmed; Kong, Xin-Bing; Liu, Zhi; Jing, Bing-Yi; Gao, Xin
2013-01-01
A common issue in bioinformatics is that computational methods often generate a large number of predictions sorted according to certain confidence scores. A key problem is then determining how many predictions must be selected to include most of the true predictions while maintaining reasonably high precision. In nuclear magnetic resonance (NMR)-based protein structure determination, for instance, computational peak picking methods are becoming more and more common, although expert-knowledge remains the method of choice to determine how many peaks among thousands of candidate peaks should be taken into consideration to capture the true peaks. Here, we propose a Benjamini-Hochberg (B-H)-based approach that automatically selects the number of peaks. We formulate the peak selection problem as a multiple testing problem. Given a candidate peak list sorted by either volumes or intensities, we first convert the peaks into [Formula: see text]-values and then apply the B-H-based algorithm to automatically select the number of peaks. The proposed approach is tested on the state-of-the-art peak picking methods, including WaVPeak [1] and PICKY [2]. Compared with the traditional fixed number-based approach, our approach returns significantly more true peaks. For instance, by combining WaVPeak or PICKY with the proposed method, the missing peak rates are on average reduced by 20% and 26%, respectively, in a benchmark set of 32 spectra extracted from eight proteins. The consensus of the B-H-selected peaks from both WaVPeak and PICKY achieves 88% recall and 83% precision, which significantly outperforms each individual method and the consensus method without using the B-H algorithm. The proposed method can be used as a standard procedure for any peak picking method and straightforwardly applied to some other prediction selection problems in bioinformatics. The source code, documentation and example data of the proposed method is available at http://sfb.kaust.edu.sa/pages/software.aspx.
Automatic Peak Selection by a Benjamini-Hochberg-Based Algorithm
Abbas, Ahmed; Kong, Xin-Bing; Liu, Zhi; Jing, Bing-Yi; Gao, Xin
2013-01-01
A common issue in bioinformatics is that computational methods often generate a large number of predictions sorted according to certain confidence scores. A key problem is then determining how many predictions must be selected to include most of the true predictions while maintaining reasonably high precision. In nuclear magnetic resonance (NMR)-based protein structure determination, for instance, computational peak picking methods are becoming more and more common, although expert-knowledge remains the method of choice to determine how many peaks among thousands of candidate peaks should be taken into consideration to capture the true peaks. Here, we propose a Benjamini-Hochberg (B-H)-based approach that automatically selects the number of peaks. We formulate the peak selection problem as a multiple testing problem. Given a candidate peak list sorted by either volumes or intensities, we first convert the peaks into -values and then apply the B-H-based algorithm to automatically select the number of peaks. The proposed approach is tested on the state-of-the-art peak picking methods, including WaVPeak [1] and PICKY [2]. Compared with the traditional fixed number-based approach, our approach returns significantly more true peaks. For instance, by combining WaVPeak or PICKY with the proposed method, the missing peak rates are on average reduced by 20% and 26%, respectively, in a benchmark set of 32 spectra extracted from eight proteins. The consensus of the B-H-selected peaks from both WaVPeak and PICKY achieves 88% recall and 83% precision, which significantly outperforms each individual method and the consensus method without using the B-H algorithm. The proposed method can be used as a standard procedure for any peak picking method and straightforwardly applied to some other prediction selection problems in bioinformatics. The source code, documentation and example data of the proposed method is available at http://sfb.kaust.edu.sa/pages/software.aspx. PMID:23308147
Dubbelman, Anne-Charlotte; Cuyckens, Filip; Dillen, Lieve; Gross, Gerhard; Hankemeier, Thomas; Vreeken, Rob J
2014-12-29
The present study investigated the practical use of modern ultra-high performance liquid chromatography (UHPLC) separation techniques for drug metabolite profiling, aiming to develop a widely applicable, high-throughput, easy-to-use chromatographic method, with a high chromatographic resolution to accommodate simultaneous qualitative and quantitative analysis of small-molecule drugs and metabolites in biological matrices. To this end, first the UHPLC system volume and variance were evaluated. Then, a mixture of 17 drugs and various metabolites (molecular mass of 151-749Da, logP of -1.04 to 6.7), was injected on six sub-2μm particle columns. Five newest generation core shell technology columns were compared and tested against one column packed with porous particles. Two aqueous (pH 2.7 and 6.8) and two organic mobile phases were evaluated, first with the same flow and temperature and subsequently at each column's individual limit of temperature and pressure. The results demonstrated that pre-column dead volume had negligible influence on the peak capacity and shape. In contrast, a decrease in post-column volume of 57% resulted in a substantial (47%) increase in median peak capacity and significantly improved peak shape. When the various combinations of stationary and mobile phases were used at the same flow rate (0.5mL/min) and temperature (45°C), limited differences were observed between the median peak capacities, with a maximum of 26%. At higher flow though (up to 0.9mL/min), a maximum difference of almost 40% in median peak capacity was found between columns. The finally selected combination of solid-core particle column and mobile phase composition was chosen for its selectivity, peak capacity, wide applicability and peak shape. The developed method was applied to rat hepatocyte samples incubated with the drug buspirone and demonstrated to provide a similar chromatographic resolution, but a 6 times higher signal-to-noise ratio than a more traditional UHPLC metabolite profiling method using a fully porous particle packed column, within one third of the analysis time. In conclusion, a widely applicable, selective and fast chromatographic method was developed that can be applied to perform drug metabolite profiling in the timeframe of a quantitative analysis. It is envisioned that this method will in future be used for simultaneous qualitative and quantitative analysis and can therefore be considered a first important step in the Quan/Qual workflow. Copyright © 2014 Elsevier B.V. All rights reserved.
Missing Peroxy Radical Sources within a Summertime Ponderosa Pine Forest
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wolfe, G. M.; Cantrell, Chris; Kim, S.
2014-05-13
Organic peroxy (RO2) and hydroperoxy (HO2) radicals are key intermediates in the photochemical processes that generate ozone, secondary organic aerosol and reactive nitrogen reservoirs throughout the troposphere. In regions with ample biogenic hydrocarbons, the richness and complexity of peroxy radical chemistry presents a significant challenge to current-generation models, especially given the scarcity of measurements in such environments. We present peroxy radical observations acquired within a Ponderosa pine forest during the summer 2010 Bio-hydro-atmosphere interactions of Energy, Aerosols, Carbon, H2O, Organics and Nitrogen – Rocky Mountain Organic Carbon Study (BEACHON-ROCS). Total peroxy radical mixing ratios reach as high as 180 pptvmore » and are among the highest yet recorded. Using the comprehensive measurement suite to constrain a near-explicit 0-D box model, we investigate the sources, sinks and distribution of peroxy radicals below the forest canopy. The base chemical mechanism underestimates total peroxy radicals by as much as a factor of 3. Peroxy radical sinks are unlikely to be overestimated, suggesting missing sources. A close comparison of model results with observations reveals at least two distinct source signatures. The first missing source, characterized by a sharp midday maximum and a strong dependence on solar radiation, is consistent with photolytic production of HO2. The diel profile of the second missing source peaks in the afternoon and suggests a process that generates RO2 independently of sun-driven photochemistry, such as ozonolysis of reactive hydrocarbons. The maximum magnitudes of these missing sources (~120 and 50 pptv min-1, respectively) are consistent with previous observations alluding to unexpectedly intense oxidation within the forest, and we conclude that a similar mechanism may underlie many such anomalous findings.« less
Missing Peroxy Radical Sources Within a Rural Forest Canopy
NASA Technical Reports Server (NTRS)
Wolfe, G. M.; Cantrell, C.; Kim, S.; Mauldin, R. L., III; Karl, T.; Harley, P.; Turnipseed, A.; Zheng, W.; Flocke, F.; Apel, E. C.;
2013-01-01
Organic peroxy (RO2) and hydroperoxy (HO2) radicals are key intermediates in the photochemical processes that generate ozone, secondary organic aerosol and reactive nitrogen reservoirs throughout the troposphere. In regions with ample biogenic hydrocarbons, the richness and complexity of peroxy radical chemistry presents a significant challenge to current-generation models, especially given the scarcity of measurements in such environments. We present peroxy radical observations acquired within a Ponderosa pine forest during the summer 2010 Bio-hydro-atmosphere interactions of Energy, Aerosols, Carbon, H2O, Organics and Nitrogen - Rocky Mountain Organic Carbon Study (BEACHON-ROCS). Total peroxy radical mixing ratios reach as high as 180 pptv and are among the highest yet recorded. Using the comprehensive measurement suite to constrain a near-explicit 0-D box model, we investigate the sources, sinks and distribution of peroxy radicals below the forest canopy. The base chemical mechanism underestimates total peroxy radicals by as much as a factor of 3. Since primary reaction partners for peroxy radicals are either measured (NO) or under-predicted (HO2 and RO2, i.e. self-reaction), missing sources are the most likely explanation for this result. A close comparison of model output with observations reveals at least two distinct source signatures. The first missing source, characterized by a sharp midday maximum and a strong dependence on solar radiation, is consistent with photolytic production of HO2. The diel profile of the second missing source peaks in the afternoon and suggests a process that generates RO2 independently of sun-driven photochemistry, such as ozonolysis of reactive hydrocarbons. The maximum magnitudes of these missing sources (approximately 120 and 50 pptv min-1, respectively) are consistent with previous observations alluding to unexpectedly intense oxidation within forests. We conclude that a similar mechanism may underlie many such observations.
Metabolism of 14C-labeled doxylamine succinate (Bendectin) in the rhesus monkey (Macaca mulatta).
Slikker, W; Holder, C L; Lipe, G W; Korfmacher, W A; Thompson, H C; Bailey, J R
1986-01-01
The time-course of the metabolic fate of [14C]doxylamine was determined after the p.o. administration of 13 mg/kg doxylamine succinate as Bendectin plus [14C]doxylamine succinate to the rhesus monkey. Urine and plasma samples were analyzed by reversed-phase high performance liquid chromatography (HPLC), chemical derivatization, and mass spectrometry. The cumulative 48-hr urinary metabolic profile contained 81% of the administered radiolabeled dose and consisted of at least six radiolabeled peaks. They were peak 1: unknown polar metabolites (8% of dose); peak 2: 2-[1-phenyl-1-(2-pyridinyl)ethoxy] acetic acid, 1-[1-phenyl-1(2-pyridinyl)ethoxy] methanol, and another minor metabolite(s) (31%); peak 3: doxylamine-N-oxide (1%); peak 4a: N,N-didesmethyldoxylamine (17%); peak 4b: doxylamine (4%); and peak 5: N-desmethyldoxylamine (20%). The plasma metabolic profile was the same as the urinary profile except for the absence of doxylamine-N-oxide. The maximum plasma concentrations and elapsed time to attain these concentrations were as follows. Peak 1: 540 ng/mL, 4 hr; peak 2: 1700 ng/mL, 1 hr; peak 4a: 430 ng/mL, 4 hr; peak 4b: 930 ng/mL, 2 hr; and peak 5: 790 ng/mL, 2 hr. These data suggest that in the monkey, doxylamine metabolism follows at least four pathways: a minor pathway to the N-oxide; a minor pathway to unknown polar metabolites; a major pathway to mono- and didesmethyldoxylamine via successive N-demethylation; and a major pathway to side-chain cleavage products (peak 2) via direct side-chain oxidation and/or deamination.
Lopez-Duran, Nestor L; Mayer, Stefanie E; Abelson, James L
2014-07-01
In this report, we present growth curve modeling (GCM) with landmark registration as an alternative statistical approach for the analysis of time series cortisol data. This approach addresses an often-ignored but critical source of variability in salivary cortisol analyses: individual and group differences in the time latency of post-stress peak concentrations. It allows for the simultaneous examination of cortisol changes before and after the peak while controlling for timing differences, and thus provides additional information that can help elucidate group differences in the underlying biological processes (e.g., intensity of response, regulatory capacity). We tested whether GCM with landmark registration is more sensitive than traditional statistical approaches (e.g., repeated measures ANOVA--rANOVA) in identifying sex differences in salivary cortisol responses to a psychosocial stressor (Trier Social Stress Test--TSST) in healthy adults (mean age 23). We used plasma ACTH measures as our "standard" and show that the new approach confirms in salivary cortisol the ACTH finding that males had longer peak latencies, higher post-stress peaks but a more intense post-peak decline. This finding would have been missed if only saliva cortisol was available and only more traditional analytic methods were used. This new approach may provide neuroendocrine researchers with a highly sensitive complementary tool to examine the dynamics of the cortisol response in a way that reduces risk of false negative findings when blood samples are not feasible.
Gyrokinetic modeling of impurity peaking in JET H-mode plasmas
NASA Astrophysics Data System (ADS)
Manas, P.; Camenen, Y.; Benkadda, S.; Weisen, H.; Angioni, C.; Casson, F. J.; Giroud, C.; Gelfusa, M.; Maslov, M.
2017-06-01
Quantitative comparisons are presented between gyrokinetic simulations and experimental values of the carbon impurity peaking factor in a database of JET H-modes during the carbon wall era. These plasmas feature strong NBI heating and hence high values of toroidal rotation and corresponding gradient. Furthermore, the carbon profiles present particularly interesting shapes for fusion devices, i.e., hollow in the core and peaked near the edge. Dependencies of the experimental carbon peaking factor ( R / L nC ) on plasma parameters are investigated via multilinear regressions. A marked correlation between R / L nC and the normalised toroidal rotation gradient is observed in the core, which suggests an important role of the rotation in establishing hollow carbon profiles. The carbon peaking factor is then computed with the gyrokinetic code GKW, using a quasi-linear approach, supported by a few non-linear simulations. The comparison of the quasi-linear predictions to the experimental values at mid-radius reveals two main regimes. At low normalised collisionality, ν * , and T e / T i < 1 , the gyrokinetic simulations quantitatively recover experimental carbon density profiles, provided that rotodiffusion is taken into account. In contrast, at higher ν * and T e / T i > 1 , the very hollow experimental carbon density profiles are never predicted by the simulations and the carbon density peaking is systematically over estimated. This points to a possible missing ingredient in this regime.
Seasonal variations in the major chemical species of snow at the South East Dome in Greenland
NASA Astrophysics Data System (ADS)
Oyabu, Ikumi; Matoba, Sumito; Yamasaki, Tetsuhide; Kadota, Moe; Iizuka, Yoshinori
2016-03-01
We analyze snow-pit samples collected in May 2015 at the South East Dome (SE Dome) on the Greenland ice sheet. The analysis includes high-resolution records of δD and δ18O, as well as the major ions, CH3SO3-, Cl-, NO3-, SO42-, Na+, NH4+, K+, Ma2+, and Ca2+. We find that the 3.55-m snow pit recorded temperature and aerosol proxies back to summer or autumn of 2014. This indicates a higher accumulation rate than those at other major drilling sites in Greenland. Due to this high accumulation rate, ion concentrations except Na+ are lower than those typical of the central Greenland ice sheet. Concerning seasonal variability, the Na+, Cl-, Ca2+, Mg2+, and NO3- vary similarly to other sites in Greenland, with the Na+ and Cl- peaking in winter to early spring, Ca2+ peaking in spring, Mg2+ peaking in winter to spring, and NO3- towards a peak in summer while showing smaller peaks in winter to spring. The NH4+ increased in spring, and SO42- increased in autumn to winter at SE Dome. On the other hand, the seasonal trend in the Cl-/Na+ ratio differs from those in the inland region. As we did not fully recover one seasonal cycle, some seasonal peaks may have been missed.
Task 2 Report: Algorithm Development and Performance Analysis
1993-07-01
separated peaks ............................................. 39 7-16 Example ILGC data for schedule 3 phosphites showing an analysis method which integrates...more closely follows the baseline ................. 40 7-18 Example R.GC data for schedule 3 phosphites showing an analysis method resulting in unwanted...much of the ambiguity that can arise in GC/MS with trace environmental samples, for example. Correlated chromatography, on the other hand, separates the
1992-06-01
characterized with infrared and ultraviolet/visible spectroscopy , nuclear magnetic resonance analysis and gas and thin-layer chromatography. These...comparison gas chromatographic major peak profile of diisopropyl methylphosphonate. In brief, infrared and ultraviolet/visible spectroscopy and nuclear...An aliquot of this batch was analyzed by MRI, Kansas City, MO. The characterization consisted of determination of physical properties, spectroscopy
An asymmetric energetic type Ic supernova viewed off-axis, and a link to gamma ray bursts.
Mazzali, Paolo A; Kawabata, Koji S; Maeda, Keiichi; Nomoto, Ken'ichi; Filippenko, Alexei V; Ramirez-Ruiz, Enrico; Benetti, Stefano; Pian, Elena; Deng, Jinsong; Tominaga, Nozomu; Ohyama, Youichi; Iye, Masanori; Foley, Ryan J; Matheson, Thomas; Wang, Lifan; Gal-Yam, Avishay
2005-05-27
Type Ic supernovae, the explosions after the core collapse of massive stars that have previously lost their hydrogen and helium envelopes, are particularly interesting because of their link with long-duration gamma ray bursts. Although indications exist that these explosions are aspherical, direct evidence has been missing. Late-time observations of supernova SN 2003jd, a luminous type Ic supernova, provide such evidence. Recent Subaru and Keck spectra reveal double-peaked profiles in the nebular lines of neutral oxygen and magnesium. These profiles are different from those of known type Ic supernovae, with or without a gamma ray burst, and they can be understood if SN 2003jd was an aspherical axisymmetric explosion viewed from near the equatorial plane. If SN 2003jd was associated with a gamma ray burst, we missed the burst because it was pointing away from us.
Stratigraphic correlation of well logs using relational tree
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fang, J.H.; Tsay, F.; Lai, P.F.
A heuristic waveform correlation scheme of well logs is based on a relational tree matching. Waveforms (well logs) are represented in a data structure known as a relational tree. A relational tree provides a complete description of the contextural relationships, as defined by peaks and valleys of the waveforms. The correlational scheme consists of a distance-measuring process using all possible peak attributes. First, a distance function is defined for any two nodes in terms of peak attributes. To find the best match for a given node of a given waveform, the authors measure the distance between the given node andmore » each node from a predefined subset of the second waveform. The closest one is considered to be the matched node. The process is repeated for every node in the waveform. This quantitative correlation method has been implemented and tested with well logs from the Black Warrior basin, north Alabama. Results showed that the procedure has the capability of handling the thickening and thinning strata, as well as missing intervals.« less
NASA Astrophysics Data System (ADS)
Aoki, Toshichika; Wakayama, Hisashi; Kaneda, Naoki; Mishima, Tomoyoshi; Nomoto, Kazuki; Shiojima, Kenji
2013-11-01
The effects of the inductively coupled plasma (ICP) etching damage on the electrical characteristics of low-Mg-doped p-GaN Schottky contacts were evaluated by high-temperature isothermal capacitance transient spectroscopy. A large single peak for an acceptor-type surface state was dominantly detected for as-grown samples. The energy level and state density were obtained to be 1.18 eV above the valence band, which is close to a Ga vacancy (VGa), and 1.5×1013 cm-2, respectively. It was speculated that a small portion of Ga atoms were missing from the surface, and a high VGa density was observed in a few surface layers. The peak intensity decreased by 60% upon annealing at 800 °C, and further decrease was found by ICP etching. This decrease is consistent with the suppression of the memory effect in current-voltage characteristics. Upon annealing and ICP etching, since the VGa structure might be disordered, the peak intensity decreased.
Zhao, Jun; Zhang, Yu; Wu, Kangbing; Chen, Jianwei; Zhou, Yikai
2011-09-15
A novel electrochemical method using multi-wall carbon nanotube (MWNT) film-modified electrode was developed for the detection of quinoline yellow. In pH 8 phosphate buffer, an irreversible oxidation peak at 0.71V was observed for quinoline yellow. Compared with the unmodified electrode, the MWNT film-modified electrode greatly increases the oxidation peak current of quinoline yellow, showing notable enhancement effect. The effects of pH value, amount of MWNT, accumulation potential and time were studied on the oxidation peak current of quinoline yellow. The linear range is from 0.75 to 20mgL(-1), and the limit of detection is 0.5mgL(-1). It was applied to the detection of quinoline yellow in commercial soft drinks, and the results consisted with the value that obtained by high-performance liquid chromatography. Copyright © 2011 Elsevier Ltd. All rights reserved.
Classification of microbial α-amylases for food manufacturing using proteinase digestion.
Akiyama, Takumi; Yamazaki, Takeshi; Tada, Atsuko; Ito, Yusai; Otsuki, Noriko; Akiyama, Hiroshi
2014-09-01
Enzymes produced by microorganisms and plants are used as food additives to aid the processing of foods. Identification of the origin of these enzyme products is important for their proper use. Proteinase digestion of α-amylase products, followed by high performance liquid chromatography (HPLC) analysis, was applied to α-amylase from the mold Aspergillus species, the bacteria Bacillus species, and the actinomycetes Saccharomonospora species. Eighteen commercial products of α-amylase were digested with trypsin and endoproteinase Lys-C and HPLC analyzed. For some proteinase/sample combinations, the area of the intact α-amylase peak decreased and new peaks were detected after digestion. The presence and retention times of the novel peaks were used to group the products. The results from this method, called the proteinase digestion-HPLC method, allowed the classification of the α-amylase products into 10 groups, whereas the results from sodium dodecyl sulfate polyacrylamide gel electrophoresis allowed their classification into seven groups.
Mirzazadeh, Roghieh; Khatami, Shohreh; Bayat, Parastoo; Zamani, Zahra; Sadeghi, Sedigheh; Roohi, Soghra; Saidi, Parinaz
2005-01-01
The diagnosis of the different forms of thalassemia is one of the important applications of analysis of globin chains. These analyses are done by high performance liquid chromatography (HPLC) using a MONO-S cation exchange column and ether is used for washing the globin powder in the final step. The presence of peroxide impurities in ether could change the structure of the globin chains. In the chromatograms, these modified globins appear as separated peaks next to the unmodified globin peaks. In these cases, the alpha/beta ratio exceed by artifact the correct value. Our study demonstrates that diagnostic centers should ensure that the ether they use is pure.
NASA Astrophysics Data System (ADS)
Wu, Sheng; Deev, Andrei
2013-01-01
A field deployable Compound Specific Isotope Analyzer (CSIA) coupled with capillary chromatogrpahy based on Quantum Cascade (QC) lasers and Hollow Waveguide (HWG) with precision and chemical resolution matching mature Mass Spectroscopy has been achieved in our laboratory. The system could realize 0.3 per mil accuracy for 12C/13C for a Gas Chromatography (GC) peak lasting as short as 5 seconds with carbon molar concentration in the GC peak less than 0.5%. Spectroscopic advantages of HWG when working with QC lasers, i.e. single mode transmission, noiseless measurement and small sample volume, are compared with traditional free space and multipass spectroscopy methods.
Mind the gap: The impact of missing data on the calculation of phytoplankton phenology metrics
NASA Astrophysics Data System (ADS)
Cole, Harriet; Henson, Stephanie; Martin, Adrian; Yool, Andrew
2012-08-01
Annual phytoplankton blooms are key events in marine ecosystems and interannual variability in bloom timing has important implications for carbon export and the marine food web. The degree of match or mismatch between the timing of phytoplankton and zooplankton annual cycles may impact larval survival with knock-on effects at higher trophic levels. Interannual variability in phytoplankton bloom timing may also be used to monitor changes in the pelagic ecosystem that are either naturally or anthropogenically forced. Seasonality metrics that use satellite ocean color data have been developed to quantify the timing of phenological events which allow for objective comparisons between different regions and over long periods of time. However, satellite data sets are subject to frequent gaps due to clouds and atmospheric aerosols, or persistent data gaps in winter due to low sun angle. Here we quantify the impact of these gaps on determining the start and peak timing of phytoplankton blooms. We use the NASA Ocean Biogeochemical Model that assimilates SeaWiFS data as a gap-free time series and derive an empirical relationship between the percentage of missing data and error in the phenology metric. Applied globally, we find that the majority of subpolar regions have typical errors of 30 days for the bloom initiation date and 15 days for the peak date. The errors introduced by intermittent data must be taken into account in phenological studies.
McClure, Leslie A; Harrington, Kathy F; Graham, Holli; Gerald, Lynn B
2009-01-01
Background Asthma is the most common chronic childhood disease and has significant impact on morbidity and mortality in children. Proper adherence to asthma medication has been shown to reduce morbidity among those with asthma; however, adherence to medications is known to be low, especially among low-income urban populations. We conducted a randomized clinical trial to examine the effectiveness of an intervention designed to increase adherence to asthma medication among children with asthma that required daily collection of data. Purpose and Methods A specifically designed web-based data collection system, the Asthma Agents System, was used to collect daily data from participant children at school. These data were utilized to examine the intervention’s effectiveness in reducing the frequency of asthma exacerbations. This study examines the Asthma Agents System’s effect on the frequency of missing data. Data collection methods are discussed in detail, as well as the processes for retrieving missing data. Results For the 290 children randomized, 97% of the daily data expected were available. Of the outcome data retrieved via the Asthma Agents System, 5% of those expected were missing during the period examined. Limitations Challenges encountered in this study include issues regarding the use of technology in urban school settings, transfer of data between study sites, and availability of data during school breaks. Conclusions Use of the Asthma Agents System resulted in lower rates of missing data than rates reported elsewhere in the literature. PMID:18283077
A new algorithm for reliable and general NMR resonance assignment.
Schmidt, Elena; Güntert, Peter
2012-08-01
The new FLYA automated resonance assignment algorithm determines NMR chemical shift assignments on the basis of peak lists from any combination of multidimensional through-bond or through-space NMR experiments for proteins. Backbone and side-chain assignments can be determined. All experimental data are used simultaneously, thereby exploiting optimally the redundancy present in the input peak lists and circumventing potential pitfalls of assignment strategies in which results obtained in a given step remain fixed input data for subsequent steps. Instead of prescribing a specific assignment strategy, the FLYA resonance assignment algorithm requires only experimental peak lists and the primary structure of the protein, from which the peaks expected in a given spectrum can be generated by applying a set of rules, defined in a straightforward way by specifying through-bond or through-space magnetization transfer pathways. The algorithm determines the resonance assignment by finding an optimal mapping between the set of expected peaks that are assigned by definition but have unknown positions and the set of measured peaks in the input peak lists that are initially unassigned but have a known position in the spectrum. Using peak lists obtained by purely automated peak picking from the experimental spectra of three proteins, FLYA assigned correctly 96-99% of the backbone and 90-91% of all resonances that could be assigned manually. Systematic studies quantified the impact of various factors on the assignment accuracy, namely the extent of missing real peaks and the amount of additional artifact peaks in the input peak lists, as well as the accuracy of the peak positions. Comparing the resonance assignments from FLYA with those obtained from two other existing algorithms showed that using identical experimental input data these other algorithms yielded significantly (40-142%) more erroneous assignments than FLYA. The FLYA resonance assignment algorithm thus has the reliability and flexibility to replace most manual and semi-automatic assignment procedures for NMR studies of proteins.
Wei, Jie; Shen, Aijin; Yan, Jingyu; Jin, Gaowa; Yang, Bingcheng; Guo, Zhimou; Zhang, Feifang; Liang, Xinmiao
2016-03-01
The separation of basic macrolide antibiotics suffers from peak tailing and poor efficiency on traditional silica-based reversed-phase liquid chromatography columns. In this work, a C18HCE column with positively charged surface was applied to the separation of macrolides. Compared with an Acquity BEH C18 column, the C18HCE column exhibited superior performance in the aspect of peak shape and separation efficiency. The screening of mobile phase additives including formic acid, acetic acid and ammonium formate indicated that formic acid was preferable for providing symmetrical peak shapes. Moreover, the influence of formic acid content was investigated. Analysis speed and mass spectrometry compatibility were also taken into account when optimizing the separation conditions for liquid chromatography coupled with tandem mass spectrometry. The developed method was successfully utilized for the determination of macrolide residues in a honey sample. Azithromycin was chosen as the internal standard for the quantitation of spiramycin and tilmicosin, while roxithromycin was used for erythromycin, tylosin, clarithromycin, josamycin and acetylisovaleryltylosin. Good correlation coefficients (r(2) > 0.9938) for all macrolides were obtained. The intra-day and inter-day recoveries were 73.7-134.7% and 80.7-119.7% with relative standard deviations of 2.5-8.0% and 3.9-16.1%, respectively. Outstanding sensitivity with limits of quantitation (S/N ≥ 10) of 0.02-1 μg/kg and limits of detection (S/N ≥ 3) of 0.01-0.5 μg/kg were achieved. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Skartland, Liv Kjersti; Mjøs, Svein A; Grung, Bjørn
2011-09-23
The retention behavior of components analyzed by chromatography varies with instrumental settings. Being able to predict how changes in these settings alter the elution pattern is useful, both with regards to component identification, as well as with regards to optimization of the chromatographic system. In this work, it is shown how experimental designs can be used for this purpose. Different experimental designs for response surface modeling of the separation of fatty acid methyl esters (FAME) as function of chromatographic conditions in GC have been evaluated. Full factorial, central composite, Doehlert and Box-Behnken designs were applied. A mixture of 38 FAMEs was separated on a polar cyanopropyl substituted polysilphenylene-siloxane phase capillary column. The temperature gradient, the start temperature of the gradient, and the carrier gas velocity were varied in the experiments. The modeled responses, as functions of chromatographic conditions, were retention time, retention indices, peak widths, separation efficiency and resolution between selected peak pairs. The designs that allowed inclusion of quadratic terms among the predictors performed significantly better than factorial design. Box-Behnken design provided the best results for prediction of retention, but the differences between the central composite, Doehlert and Box-Behnken designs were small. Retention indices could be modeled with much better accuracy than retention times. However, because the errors of predicted tR of closely eluting peaks were highly correlated, models of resolution (Rs) that were based on retention time had errors in the same range as corresponding models based on ECL. Copyright © 2011 Elsevier B.V. All rights reserved.
Ubeda-Torres, M T; Ortiz-Bolsico, C; García-Alvarez-Coque, M C; Ruiz-Angel, M J
2015-02-06
In reversed-phase liquid chromatography in the absence of additives, cationic basic compounds give rise to broad and asymmetrical peaks as a result of ionic interactions with residual free silanols on silica-based stationary phases. Ionic liquids (ILs), added to the mobile phase, have been suggested as alternatives to amines to block the activity of silanols. However, the dual character of ILs should be considered: both cation and anion may be adsorbed on the stationary phase, thereby creating a double asymmetrical layer positively or negatively charged, depending on the relative adsorption of both ions. In this work, a study of the performance of six imidazolium-based ILs (the chlorides and tetrafluoroborates of 1-ethyl-, 1-butyl- and 1-hexyl-3-methylimidazolium) as modifiers of the chromatographic behaviour of a group of 10 β-blockers is performed, and compared with triethylamine and dimethyloctylamine. In order to gain more insight in the behaviour of ILs in RPLC, the changes in the nature of the chromatographic system, at increasing concentration of the additives, were followed based on retention and peak shape modelling. The multiple interactions that amines and ILs experience inside the chromatographic system suggest that the suppressing potency should be measured based on the shape of chromatographic peaks and not on the changes in retention. The ILs 1-hexyl-3-methyl-imidazolium chloride and tetrafluoroborate offered the most interesting features for the separation of the basic drugs. Copyright © 2014 Elsevier B.V. All rights reserved.
Investigation of modulation parameters in multiplexing gas chromatography.
Trapp, Oliver
2010-10-22
Combination of information technology and separation sciences opens a new avenue to achieve high sample throughputs and therefore is of great interest to bypass bottlenecks in catalyst screening of parallelized reactors or using multitier well plates in reaction optimization. Multiplexing gas chromatography utilizes pseudo-random injection sequences derived from Hadamard matrices to perform rapid sample injections which gives a convoluted chromatogram containing the information of a single sample or of several samples with similar analyte composition. The conventional chromatogram is obtained by application of the Hadamard transform using the known injection sequence or in case of several samples an averaged transformed chromatogram is obtained which can be used in a Gauss-Jordan deconvolution procedure to obtain all single chromatograms of the individual samples. The performance of such a system depends on the modulation precision and on the parameters, e.g. the sequence length and modulation interval. Here we demonstrate the effects of the sequence length and modulation interval on the deconvoluted chromatogram, peak shapes and peak integration for sequences between 9-bit (511 elements) and 13-bit (8191 elements) and modulation intervals Δt between 5 s and 500 ms using a mixture of five components. It could be demonstrated that even for high-speed modulation at time intervals of 500 ms the chromatographic information is very well preserved and that the separation efficiency can be improved by very narrow sample injections. Furthermore this study shows that the relative peak areas in multiplexed chromatograms do not deviate from conventionally recorded chromatograms. Copyright © 2010 Elsevier B.V. All rights reserved.
Ortín, A; Torres-Lapasió, J R; García-Álvarez-Coque, M C
2011-08-26
Situations of minimal resolution are often found in liquid chromatography, when samples that contain a large number of compounds, or highly similar in terms of structure and/or polarity, are analysed. This makes full resolution with a single separation condition (e.g., mobile phase, gradient or column) unfeasible. In this work, the optimisation of the resolution of such samples in reversed-phase liquid chromatography is approached using two or more isocratic mobile phases with a complementary resolution behaviour (complementary mobile phases, CMPs). Each mobile phase is dedicated to the separation of a group of compounds. The CMPs are selected in such a way that, when the separation is considered globally, all the compounds in the sample are satisfactorily resolved. The search of optimal CMPs can be carried out through a comprehensive examination of the mobile phases in a selected domain. The computation time of this search has been reported to be substantially reduced by application of a genetic algorithm with local search (LOGA). A much simpler approach is here described, which is accessible to non-experts in programming, and offers solutions of the same quality as LOGA, with a similar computation time. The approach makes a sequential search of CMPs based on the peak count concept, which is the number of peaks exceeding a pre-established resolution threshold. The new approach is described using as test sample a mixture of 30 probe compounds, 23 of them with an ionisable character, and the pH and organic solvent contents as experimental factors. Copyright © 2011 Elsevier B.V. All rights reserved.
Guan, Yong-mei; Jin, Chen; Zhu, Wei-feng; Yang, Ming
2018-01-01
Fermented Cordyceps sinensis, the succedaneum of Cordyceps sinensis which is extracted and separated from Cordyceps sinensis by artificial fermentation, is commonly used in eastern Asia in clinical treatments due to its health benefit. In this paper, a new strategy for differentiating and comprehensively evaluating the quality of products of fermented Cordyceps sinensis has been established, based on high-performance liquid chromatography (HPLC) fingerprint analysis combined with similar analysis (SA), hierarchical cluster analysis (HCA), and the quantitative analysis of multicomponents by single marker (QAMS). Ten common peaks were collected and analysed using SA, HCA, and QAMS. These methods indicated that 30 fermented Cordyceps sinensis samples could be categorized into two groups by HCA. Five peaks were identified as uracil, uridine, adenine, guanosine, and adenosine, and according to the results from the diode array detector, which can be used to confirm peak purity, the purities of these compounds were greater than 990. Adenosine was chosen as the internal reference substance. The relative correction factors (RCF) between adenosine and the other four nucleosides were calculated and investigated using the QAMS method. Meanwhile, the accuracy of the QAMS method was confirmed by comparing the results of that method with those of an external standard method with cosines of the angles between the groups. No significant difference between the two methods was observed. In conclusion, the method established herein was efficient, successful in identifying the products of fermented Cordyceps sinensis, and scientifically valid to be applicable in the systematic quality control of fermented Cordyceps sinensis products. PMID:29850373
Chen, Li-Hua; Wu, Yao; Guan, Yong-Mei; Jin, Chen; Zhu, Wei-Feng; Yang, Ming
2018-01-01
Fermented Cordyceps sinensis , the succedaneum of Cordyceps sinensis which is extracted and separated from Cordyceps sinensis by artificial fermentation, is commonly used in eastern Asia in clinical treatments due to its health benefit. In this paper, a new strategy for differentiating and comprehensively evaluating the quality of products of fermented Cordyceps sinensis has been established, based on high-performance liquid chromatography (HPLC) fingerprint analysis combined with similar analysis (SA), hierarchical cluster analysis (HCA), and the quantitative analysis of multicomponents by single marker (QAMS). Ten common peaks were collected and analysed using SA, HCA, and QAMS. These methods indicated that 30 fermented Cordyceps sinensis samples could be categorized into two groups by HCA. Five peaks were identified as uracil, uridine, adenine, guanosine, and adenosine, and according to the results from the diode array detector, which can be used to confirm peak purity, the purities of these compounds were greater than 990. Adenosine was chosen as the internal reference substance. The relative correction factors (RCF) between adenosine and the other four nucleosides were calculated and investigated using the QAMS method. Meanwhile, the accuracy of the QAMS method was confirmed by comparing the results of that method with those of an external standard method with cosines of the angles between the groups. No significant difference between the two methods was observed. In conclusion, the method established herein was efficient, successful in identifying the products of fermented Cordyceps sinensis , and scientifically valid to be applicable in the systematic quality control of fermented Cordyceps sinensis products.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Slikker, W. Jr.; Holder, C.L.; Lipe, G.W.
The time-course of the metabolic fate of (/sup 14/C)doxylamine was determined after the p.o. administration of 13 mg/kg doxylamine succinate as Bendectin plus (/sup 14/C)doxylamine succinate to the rhesus monkey. Urine and plasma samples were analyzed by reversed-phase high performance liquid chromatography (HPLC), chemical derivatization, and mass spectrometry. The cumulative 48-hr urinary metabolic profile contained 81% of the administered radiolabeled dose and consisted of at least six radiolabeled peaks. They were peak 1: unknown polar metabolites (8% of dose); peak 2: 2-(1-phenyl-1-(2-pyridinyl)ethoxy) acetic acid, 1-(1-phenyl-1(2-pyridinyl)ethoxy) methanol, and another minor metabolite(s) (31%); peak 3: doxylamine-N-oxide (1%); peak 4a: N,N-didesmethyldoxylamine (17%); peakmore » 4b: doxylamine (4%); and peak 5: N-desmethyldoxylamine (20%). The plasma metabolic profile was the same as the urinary profile except for the absence of doxylamine-N-oxide. The maximum plasma concentrations and elapsed time to attain these concentrations were as follows. Peak 1: 540 ng/mL, 4 hr; peak 2: 1700 ng/mL, 1 hr; peak 4a: 430 ng/mL, 4 hr; peak 4b: 930 ng/mL, 2 hr; and peak 5: 790 ng/mL, 2 hr. These data suggest that in the monkey, doxylamine metabolism follows at least four pathways: a minor pathway to the N-oxide; a minor pathway to unknown polar metabolites; a major pathway to mono- and didesmethyldoxylamine via successive N-demethylation; and a major pathway to side-chain cleavage products (peak 2) via direct side-chain oxidation and/or deamination.« less
ICPD-A New Peak Detection Algorithm for LC/MS
2010-01-01
Background The identification and quantification of proteins using label-free Liquid Chromatography/Mass Spectrometry (LC/MS) play crucial roles in biological and biomedical research. Increasing evidence has shown that biomarkers are often low abundance proteins. However, LC/MS systems are subject to considerable noise and sample variability, whose statistical characteristics are still elusive, making computational identification of low abundance proteins extremely challenging. As a result, the inability of identifying low abundance proteins in a proteomic study is the main bottleneck in protein biomarker discovery. Results In this paper, we propose a new peak detection method called Information Combining Peak Detection (ICPD ) for high resolution LC/MS. In LC/MS, peptides elute during a certain time period and as a result, peptide isotope patterns are registered in multiple MS scans. The key feature of the new algorithm is that the observed isotope patterns registered in multiple scans are combined together for estimating the likelihood of the peptide existence. An isotope pattern matching score based on the likelihood probability is provided and utilized for peak detection. Conclusions The performance of the new algorithm is evaluated based on protein standards with 48 known proteins. The evaluation shows better peak detection accuracy for low abundance proteins than other LC/MS peak detection methods. PMID:21143790
Fox, A
1999-05-28
Bacterial cellular polysaccharides are composed of a variety of sugar monomers. These sugars serve as chemical markers to identify specific species or genera or to determine their physiological status. Some of these markers can also be used for trace detection of bacteria or their constituents in complex clinical or environmental matrices. Analyses are performed, in our hands, employing hydrolysis followed by the alditol acetate derivatization procedure. Substantial improvements have been made to sample preparation including simplification and computer-controlled automation. For characterization of whole cell bacterial hydrolysates, sugars are analyzed by gas chromatography-mass spectrometry (GC-MS). Simple chromatograms are generated using selected ion monitoring (SIM). Using total ion GC-MS, sugars can be readily identified. In more complex clinical and environmental samples, markers for bacteria are present at sufficiently low concentrations that more advanced instrumentation, gas chromatography-tandem mass spectrometry (GC-MS-MS), is preferred for optimal analysis. Using multiple reaction monitoring, MS-MS is used (replacing more conventional SIM) to ignore extraneous chromatographic peaks. Triple quadrupole and ion trap GC-MS-MS instruments have both been used successfully. Absolute chemical identification of sugar markers at trace levels is achieved, using MS-MS, by the product spectrum.
Sun, Mingzhe; Lidén, Gunnar; Sandahl, Margareta
2016-01-01
Traditional chromatographic methods for the analysis of lignin‐derived phenolic compounds in environmental samples are generally time consuming. In this work, an ultra‐high performance supercritical fluid chromatography method with a diode array detector for the analysis of major lignin‐derived phenolic compounds produced by alkaline cupric oxide oxidation was developed. In an analysis of a collection of 11 representative monomeric lignin phenolic compounds, all compounds were clearly separated within 6 min with excellent peak shapes, with a limit of detection of 0.5–2.5 μM, a limit of quantification of 2.5–5.0 μM, and a dynamic range of 5.0–2.0 mM (R 2 > 0.997). The new ultra‐high performance supercritical fluid chromatography method was also applied for the qualitative and quantitative analysis of lignin‐derived phenolic compounds obtained upon alkaline cupric oxide oxidation of a commercial humic acid. Ten out of the previous eleven model compounds could be quantified in the oxidized humic acid sample. The high separation power and short analysis time obtained demonstrate for the first time that supercritical fluid chromatography is a fast and reliable technique for the analysis of lignin‐derived phenols in complex environmental samples. PMID:27452148
Alvarez-Segura, T; Gómez-Díaz, A; Ortiz-Bolsico, C; Torres-Lapasió, J R; García-Alvarez-Coque, M C
2015-08-28
Getting useful chemical information from samples containing many compounds is still a challenge to analysts in liquid chromatography. The highest complexity corresponds to samples for which there is no prior knowledge about their chemical composition. Computer-based methodologies are currently considered as the most efficient tools to optimise the chromatographic resolution, and further finding the optimal separation conditions. However, most chromatographic objective functions (COFs) described in the literature to measure the resolution are based on mathematical models fitted with the information obtained from standards, and cannot be applied to samples with unknown compounds. In this work, a new COF based on the automatic measurement of the protruding part of the chromatographic peaks (or peak prominences) that indicates the number of perceptible peaks and global resolution, without the need of standards, is developed. The proposed COF was found satisfactory with regard to the peak purity criterion when applied to artificial peaks and simulated chromatograms of mixtures built using the information of standards. The approach was applied to mixtures of drugs containing unknown impurities and degradation products and to extracts of medicinal herbs, eluted with acetonitrile-water mixtures using isocratic and gradient elution. Copyright © 2015 Elsevier B.V. All rights reserved.
Ma, Wen; Waffo-Téguo, Pierre; Alessandra Paissoni, Maria; Jourdes, Michäel; Teissedre, Pierre-Louis
2018-05-30
Polymeric tannins from grapes have always been reported as an unresolved broad peak in HPLC chromatograms, and this has severely limited their identification to date. This study aimed to disassemble this broad peak and explore the polymeric tannin molecules inside. By applying centrifugal partition chromatography (CPC), an efficient separation approach was developed to split the broad peak of grape seed tannins into fractions. Then, the fractions were analyzed by Q-ToF (quadrupole time-of-flight mass spectrometry) to determine the corresponding structures of the tannins. The results suggest that grape seed polymeric tannins were eluted consecutively according to their degree of polymerization (DP). Condensed tannins identified in wine grape seed have a range of DP and degree of galloylation (DG) up to 20 and 11, respectively. The molecular mass of the largest molecule detected was 6067. To our knowledge, this is the first report to offer an insight into the broad peak of polymeric tannins found with HPLC and to characterize the tannins with a DP up to 20 as shown by HRMS and MS/MS data. Copyright © 2018 Elsevier Ltd. All rights reserved.
Taylor, Wesley G; Fields, Paul G; Elder, James L
2004-12-15
Chromatographic fractionation of crude extracts (C8 extracts) from the protein-enriched flour of commercial field peas (Pisum sativum L.) has been shown here to yield peptide mixtures related to the pea albumin 1b (PA1b) family of cysteine-rich plant peptides. The mixtures were obtained initially by flash chromatography with silica gel. Following elution of soyasaponins and lysolecithins, the end fractions obtained with the use of two flash chromatographic solvent systems displayed activity in a flour disk antifeedant bioassay with the rice weevil [Sitophilus oryzae (L.)]. Chemical properties of these mixtures were compared by thin-layer chromatography, high-performance liquid chromatography (HPLC), IR, MS, and amino acid analyses. The major peptides of C8 extracts, with average masses of 3752, 3757, and 3805 Da, were isolated by anion exchange chromatography. Samples enriched in the peptide of mass 3752 were isolated by cation exchange chromatography. Reduction plus alkylation experiments in combination with electrospray ionization mass spectrometry showed that C8 extracts contained about 10 peptides and, like PA1b, each peptide possessed six cysteine residues (three disulfide bonds). Disulfide bond reduction with 2-mercaptoethanol destroyed the antifeedant activity. The native peptides of C8 extracts were found to be resolved into nine peaks with XTerra HPLC columns operating at alkaline pH. These columns were employed to assess the distribution of pea peptides in the isolated fractions, with photodiode array and electrospray detection.
Wu, Ze-ying; Rühle, Christian P G; Marriott, Philip J
2011-07-01
Commercial nonylphenol polyethoxylates, designated as NPnEOs, where n is the number of ethoxy groups, comprise a range of ethoxylate groups. According to the starting material nonylphenol, they may also be composed of a complex mix of isomeric nonyl substituents. In order to study more fully the heterogeneity arising from both the ethoxylate and nonyl groups, a mixture of NPnEOs is first fractionated by normal phase liquid chromatography (NPLC) into separate fractions comprising individual ethoxymers, n. Preparative collection of each early elution ethoxymer fraction allows further separation of different isomeric nonyl group components by using analytical gas chromatography/mass spectrometry (GC/MS). The nonyl isomers are not resolved in the NPLC method. The distribution of the isomeric nonyl side chain of different ethoxymers bears close resemblance with each other, and also with the original nonylphenol starting material, although separation efficiency of the nonyl isomers for each ethoxymer decreases with increasing ethoxymer number. Mass spectrometry of the separated isomers display close similarity for presumed equivalent isomers in each fraction, based on elution order of the nonyl isomers. This suggests that each corresponding peak has the same isomer structure. Mass spectra are interpreted based on branching within the nonyl side chain. Preparative GC coupled with MS and nuclear magnetic resonance spectroscopy elucidated the molecular structure of one of the resolved isomers as 4-(1,3-dimethyl-1-propyl-butyl)-phenol diethoxylate. Copyright © 2011 Elsevier B.V. All rights reserved.
Dinç, Erdal; Ertekin, Zehra Ceren; Büker, Eda
2016-09-01
Two-way and three-way calibration models were applied to ultra high performance liquid chromatography with photodiode array data with coeluted peaks in the same wavelength and time regions for the simultaneous quantitation of ciprofloxacin and ornidazole in tablets. The chromatographic data cube (tensor) was obtained by recording chromatographic spectra of the standard and sample solutions containing ciprofloxacin and ornidazole with sulfadiazine as an internal standard as a function of time and wavelength. Parallel factor analysis and trilinear partial least squares were used as three-way calibrations for the decomposition of the tensor, whereas three-way unfolded partial least squares was applied as a two-way calibration to the unfolded dataset obtained from the data array of ultra high performance liquid chromatography with photodiode array detection. The validity and ability of two-way and three-way analysis methods were tested by analyzing validation samples: synthetic mixture, interday and intraday samples, and standard addition samples. Results obtained from two-way and three-way calibrations were compared to those provided by traditional ultra high performance liquid chromatography. The proposed methods, parallel factor analysis, trilinear partial least squares, unfolded partial least squares, and traditional ultra high performance liquid chromatography were successfully applied to the quantitative estimation of the solid dosage form containing ciprofloxacin and ornidazole. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Kazarian, Artaches A; Nesterenko, Pavel N; Soisungnoen, Phimpha; Burakham, Rodjana; Srijaranai, Supalax; Paull, Brett
2014-08-01
Liquid chromatographic assays were developed using a mixed-mode column coupled in sequence with a hydrophilic interaction liquid chromatography column to allow the simultaneous comprehensive analysis of inorganic/organic anions and cations, active pharmaceutical ingredients, and excipients (carbohydrates). The approach utilized dual sample injection and valve-mediated column switching and was based upon a single high-performance liquid chromatography gradient pump. The separation consisted of three distinct sequential separation mechanisms, namely, (i) ion-exchange, (ii) mixed-mode interactions under an applied dual gradient (reversed-phase/ion-exchange), and (iii) hydrophilic interaction chromatography. Upon first injection, the Scherzo SS C18 column (Imtakt) provided resolution of inorganic anions and cations under isocratic conditions, followed by a dual organic/salt gradient to elute active pharmaceutical ingredients and their respective organic counterions and potential degradants. At the top of the mixed-mode gradient (high acetonitrile content), the mobile phase flow was switched to a preconditioned hydrophilic interaction liquid chromatography column, and the standard/sample was reinjected for the separation of hydrophilic carbohydrates, some of which are commonly known excipients in drug formulations. The approach afforded reproducible separation and resolution of up to 23 chemically diverse solutes in a single run. The method was applied to investigate the composition of commercial cough syrups (Robitussin®), allowing resolution and determination of inorganic ions, active pharmaceutical ingredients, excipients, and numerous well-resolved unknown peaks. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Zhang, Xinxin; Liang, Jinru; Liu, Jianli; Zhao, Ye; Gao, Juan; Sun, Wenji; Ito, Yoichiro
2014-01-01
In this study, a fingerprint of steroid saponins, the major bioactive constituents in the crude extracts from Dioscorea zingiberensis C. H. Wright (DZW), has been established for the first time by high-performance liquid chromatography coupled with evaporative light scattering detector (HPLC-ELSD) and the simultaneous characterization of the steroid saponins by high-performance liquid chromatography coupled with electrospray ionization-mass spectrometry and quadrupole tandem time-of-fight mass analyzers detection (HPLC-ESI-Q/TOF). These HPLC analyses were both carried out on a Welchrom C18 column (250 mm × 4.6 mm I.D., 5 μm) with a mobile phase composed of water and acetonitrile under gradient elution. There were 68 common characteristic peaks in the fingerprints, in which 12 of them were confirmed by comparing their mass spectra and retention times with those of the reference compounds. In order to identify the other unknown peaks, their fragmentation behaviors characteristic for the major groups of steroid saponins from DZW with six types of aglycone skeletons were discussed in detail, and possible MS/MS fragmentation pathways were proposed for aiding the structural identification of these components. According to the summarized fragmentation patterns, these peaks were tentatively assigned by matching their empirical molecular formula with those of the published compounds, or by elucidating their quasi-molecular ions and fragment ions referring to available literature information when the reference standards were unavailable. As a result, 22 steroid saponins were found in DZW for the first time. In addition, the quantitative analysis of the 12 known peaks was accomplished at the same time which indicated that there was a great variability in the amount of these active compounds in different batches in the crude extracts. This approach could demonstrate that the fingerprint could be considered to be a suitable tool to comprehensively improve the quality control of DZW, and the identification and structural elucidation of the peaks in the fingerprint may provide important experimental data for further pharmacological and clinical researches. PMID:24418811
Abbatiello, Susan E; Mani, D R; Schilling, Birgit; Maclean, Brendan; Zimmerman, Lisa J; Feng, Xingdong; Cusack, Michael P; Sedransk, Nell; Hall, Steven C; Addona, Terri; Allen, Simon; Dodder, Nathan G; Ghosh, Mousumi; Held, Jason M; Hedrick, Victoria; Inerowicz, H Dorota; Jackson, Angela; Keshishian, Hasmik; Kim, Jong Won; Lyssand, John S; Riley, C Paige; Rudnick, Paul; Sadowski, Pawel; Shaddox, Kent; Smith, Derek; Tomazela, Daniela; Wahlander, Asa; Waldemarson, Sofia; Whitwell, Corbin A; You, Jinsam; Zhang, Shucha; Kinsinger, Christopher R; Mesri, Mehdi; Rodriguez, Henry; Borchers, Christoph H; Buck, Charles; Fisher, Susan J; Gibson, Bradford W; Liebler, Daniel; Maccoss, Michael; Neubert, Thomas A; Paulovich, Amanda; Regnier, Fred; Skates, Steven J; Tempst, Paul; Wang, Mu; Carr, Steven A
2013-09-01
Multiple reaction monitoring (MRM) mass spectrometry coupled with stable isotope dilution (SID) and liquid chromatography (LC) is increasingly used in biological and clinical studies for precise and reproducible quantification of peptides and proteins in complex sample matrices. Robust LC-SID-MRM-MS-based assays that can be replicated across laboratories and ultimately in clinical laboratory settings require standardized protocols to demonstrate that the analysis platforms are performing adequately. We developed a system suitability protocol (SSP), which employs a predigested mixture of six proteins, to facilitate performance evaluation of LC-SID-MRM-MS instrument platforms, configured with nanoflow-LC systems interfaced to triple quadrupole mass spectrometers. The SSP was designed for use with low multiplex analyses as well as high multiplex approaches when software-driven scheduling of data acquisition is required. Performance was assessed by monitoring of a range of chromatographic and mass spectrometric metrics including peak width, chromatographic resolution, peak capacity, and the variability in peak area and analyte retention time (RT) stability. The SSP, which was evaluated in 11 laboratories on a total of 15 different instruments, enabled early diagnoses of LC and MS anomalies that indicated suboptimal LC-MRM-MS performance. The observed range in variation of each of the metrics scrutinized serves to define the criteria for optimized LC-SID-MRM-MS platforms for routine use, with pass/fail criteria for system suitability performance measures defined as peak area coefficient of variation <0.15, peak width coefficient of variation <0.15, standard deviation of RT <0.15 min (9 s), and the RT drift <0.5min (30 s). The deleterious effect of a marginally performing LC-SID-MRM-MS system on the limit of quantification (LOQ) in targeted quantitative assays illustrates the use and need for a SSP to establish robust and reliable system performance. Use of a SSP helps to ensure that analyte quantification measurements can be replicated with good precision within and across multiple laboratories and should facilitate more widespread use of MRM-MS technology by the basic biomedical and clinical laboratory research communities.
Abbatiello, Susan E.; Mani, D. R.; Schilling, Birgit; MacLean, Brendan; Zimmerman, Lisa J.; Feng, Xingdong; Cusack, Michael P.; Sedransk, Nell; Hall, Steven C.; Addona, Terri; Allen, Simon; Dodder, Nathan G.; Ghosh, Mousumi; Held, Jason M.; Hedrick, Victoria; Inerowicz, H. Dorota; Jackson, Angela; Keshishian, Hasmik; Kim, Jong Won; Lyssand, John S.; Riley, C. Paige; Rudnick, Paul; Sadowski, Pawel; Shaddox, Kent; Smith, Derek; Tomazela, Daniela; Wahlander, Asa; Waldemarson, Sofia; Whitwell, Corbin A.; You, Jinsam; Zhang, Shucha; Kinsinger, Christopher R.; Mesri, Mehdi; Rodriguez, Henry; Borchers, Christoph H.; Buck, Charles; Fisher, Susan J.; Gibson, Bradford W.; Liebler, Daniel; MacCoss, Michael; Neubert, Thomas A.; Paulovich, Amanda; Regnier, Fred; Skates, Steven J.; Tempst, Paul; Wang, Mu; Carr, Steven A.
2013-01-01
Multiple reaction monitoring (MRM) mass spectrometry coupled with stable isotope dilution (SID) and liquid chromatography (LC) is increasingly used in biological and clinical studies for precise and reproducible quantification of peptides and proteins in complex sample matrices. Robust LC-SID-MRM-MS-based assays that can be replicated across laboratories and ultimately in clinical laboratory settings require standardized protocols to demonstrate that the analysis platforms are performing adequately. We developed a system suitability protocol (SSP), which employs a predigested mixture of six proteins, to facilitate performance evaluation of LC-SID-MRM-MS instrument platforms, configured with nanoflow-LC systems interfaced to triple quadrupole mass spectrometers. The SSP was designed for use with low multiplex analyses as well as high multiplex approaches when software-driven scheduling of data acquisition is required. Performance was assessed by monitoring of a range of chromatographic and mass spectrometric metrics including peak width, chromatographic resolution, peak capacity, and the variability in peak area and analyte retention time (RT) stability. The SSP, which was evaluated in 11 laboratories on a total of 15 different instruments, enabled early diagnoses of LC and MS anomalies that indicated suboptimal LC-MRM-MS performance. The observed range in variation of each of the metrics scrutinized serves to define the criteria for optimized LC-SID-MRM-MS platforms for routine use, with pass/fail criteria for system suitability performance measures defined as peak area coefficient of variation <0.15, peak width coefficient of variation <0.15, standard deviation of RT <0.15 min (9 s), and the RT drift <0.5min (30 s). The deleterious effect of a marginally performing LC-SID-MRM-MS system on the limit of quantification (LOQ) in targeted quantitative assays illustrates the use and need for a SSP to establish robust and reliable system performance. Use of a SSP helps to ensure that analyte quantification measurements can be replicated with good precision within and across multiple laboratories and should facilitate more widespread use of MRM-MS technology by the basic biomedical and clinical laboratory research communities. PMID:23689285
Campbell, N R; Van Loon, J A; Sundaram, R S; Ames, M M; Hansch, C; Weinshilboum, R
1987-12-01
Phenol sulfotransferase (PST) catalyzes the sulfate conjugation of many phenolic drugs. Human liver contains thermostable (TS) and thermolabile forms of PST. Ion exchange chromatography shows that two isozymes of TS PST (peaks I and II) are present in human liver preparations. Rat liver contains four forms of PST that can be separated by ion exchange chromatography. Quantitative structure-activity relationship (QSAR) analysis was used to study phenolic substrates for both human and rat liver PST. Thirty-six substituted phenols were tested as substrates for partially purified human liver TS PST peak I. QSAR analysis resulted in derivation of the following equation: log 1/Km = 0.92 (+/- 0.18)log P - 1.48 (+/- 0.38)MR'4 - 0.64 (+/- 0.41)MR3 + 1.04 (+/- 0.63)MR2 + 0.67(+/- 0.44) sigma- + 4.03 (+/- 0.42). In this equation Km is the Michaelis constant, P is the octanol-water partition coefficient, MR is the molar refractivity of substituents at the 2-, 3-, and 4-positions, and sigma- is the Hammett constant. Values of log 1/Km calculated with this equation were highly correlated with log 1/Km values (r = 0.950) that were observed experimentally. Nine phenols were also tested as substrates for partially purified human liver TS PST peak II. Log 1/Km values for these compounds were significantly correlated for the two isozymes of TS PST (r = 0.992, p less than 0.001). QSAR analysis was also used to derive equations that described the behavior of phenolic substrates for rat liver PST forms I and II. These equations differed substantially from the equation derived for compounds tested with human liver TS PST peak I. Therefore, the characteristics of the active sites of human liver TS PST peak I and rat liver PST forms I and II appear to differ. Application of these equations may make it possible to predict Km values of phenolic substrates for human liver TS PST and for rat liver PST forms I and II.
Wahab, M Farooq; Patel, Darshan C; Armstrong, Daniel W
2017-08-04
Most peak shapes obtained in separation science depart from linearity for various reasons such as thermodynamic, kinetic, or flow based effects. An indication of the nature of asymmetry often helps in problem solving e.g. in column overloading, slurry packing, buffer mismatch, and extra-column band broadening. However, existing tests for symmetry/asymmetry only indicate the skewness in excess (tail or front) and not the presence of both. Two simple graphical approaches are presented to analyze peak shapes typically observed in gas, liquid, and supercritical fluid chromatography as well as capillary electrophoresis. The derivative test relies on the symmetry of the inflection points and the maximum and minimum values of the derivative. The Gaussian test is a constrained curve fitting approach and determines the residuals. The residual pattern graphically allows the user to assess the problematic regions in a given peak, e.g., concurrent tailing or fronting, something which cannot be easily done with other current methods. The template provided in MS Excel automates this process. The total peak shape analysis extracts the peak parameters from the upper sections (>80% height) of the peak rather than the half height as is done conventionally. A number of situations are presented and the utility of this approach in solving practical problems is demonstrated. Copyright © 2017 Elsevier B.V. All rights reserved.
Yu, Tianwei; Jones, Dean P
2014-10-15
Peak detection is a key step in the preprocessing of untargeted metabolomics data generated from high-resolution liquid chromatography-mass spectrometry (LC/MS). The common practice is to use filters with predetermined parameters to select peaks in the LC/MS profile. This rigid approach can cause suboptimal performance when the choice of peak model and parameters do not suit the data characteristics. Here we present a method that learns directly from various data features of the extracted ion chromatograms (EICs) to differentiate between true peak regions from noise regions in the LC/MS profile. It utilizes the knowledge of known metabolites, as well as robust machine learning approaches. Unlike currently available methods, this new approach does not assume a parametric peak shape model and allows maximum flexibility. We demonstrate the superiority of the new approach using real data. Because matching to known metabolites entails uncertainties and cannot be considered a gold standard, we also developed a probabilistic receiver-operating characteristic (pROC) approach that can incorporate uncertainties. The new peak detection approach is implemented as part of the apLCMS package available at http://web1.sph.emory.edu/apLCMS/ CONTACT: tyu8@emory.edu Supplementary data are available at Bioinformatics online. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.
Kaczmarski, Krzysztof; Poe, Donald P; Guiochon, Georges
2010-10-15
When chromatography is carried out with high-density carbon dioxide as the main component of the mobile phase (a method generally known as "supercritical fluid chromatography" or SFC), the required pressure gradient along the column is moderate. However, this mobile phase is highly compressible and, under certain experimental conditions, its density may decrease significantly along the column. Such an expansion absorbs heat, cooling the column, which absorbs heat from the outside. The resulting heat transfer causes the formation of axial and radial gradients of temperature that may become large under certain conditions. Due to these gradients, the mobile phase velocity and most physico-chemical parameters of the system (viscosity, diffusion coefficients, etc.) are no longer constant throughout the column, resulting in a loss of column efficiency, even at low flow rates. At high flow rates and in serious cases, systematic variations of the retention factors and the separation factors with increasing flow rates and important deformations of the elution profiles of all sample components may occur. The model previously used to account satisfactorily for the effects of the viscous friction heating of the mobile phase in HPLC is adapted here to account for the expansion cooling of the mobile phase in SFC and is applied to the modeling of the elution peak profiles of an unretained compound in SFC. The numerical solution of the combined heat and mass balance equations provides temperature and pressure profiles inside the column, and values of the retention time and efficiency for elution of this unretained compound that are in excellent agreement with independent experimental data. Copyright © 2010 Elsevier B.V. All rights reserved.
Zheng, Songyan; Qiu, Difei; Adams, Monica; Li, Jinjiang; Mantri, Rao V; Gandhi, Rajesh
2017-01-01
This study aimed in understanding the degradation behaviors of an IgG 1 subtype therapeutic monoclonal antibody A (mAb-A) associated with pH and buffer species. The information obtained in this study can augment conventional, stability-based screening paradigms by providing the direction necessary for efficient experimental design. Differential scanning calorimetry (DSC) was used for studying conformational stability. Dynamic light scattering (DLS) was utilized to generate B 22 *, a modified second virial coefficient for the character of protein-protein interaction. Size-exclusion chromatography (SEC) and hydrophobic interaction chromatography (HIC) were employed to separate degradation products. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) was used for determining the molecular size and liquid chromatography mass spectrometry (LC-MS) were used for identifying the sequence of the separated fragments. The results showed that both pH and buffer species played the roles in controlling the degradation behaviors of mAb-A, but the pH was more significant. In particular, pH 4.5 induced additional thermal transition peaks occurring at a low temperature compared with pH 6.5. A continual temperature-stress study illustrated that the additional thermal transition peaks related to the least stable structure and a greater fragmentation. Although mAb-A showed the comparable conformational structures and an identical amount of aggregates at time zero between the different types of buffer species at pH 6.5, the aggregation formation rate showed a buffer species-dependent discrepancy over a temperature-stress period. It was found that the levels of aggregations associated with the magnitudes of protein-protein interaction forces.
Yokoyama, H; Matsumoto, M; Shiraishi, H; Ishii, H
2000-04-01
We established a high performance liquid chromatography system that allowed simultaneous quantification of various retinoids. We applied the retinoids to a high performance liquid chromatography system with a silica gel absorption column. Samples were separated by the system with a binary multistep gradient with two kinds of solvent that contained n-Hexan, 2-propanol, and glacial acetic acid in different ratios. Each retinoid was detected at a wavelength of 350 nm. This condition allowed separation of 13-cis-retinoic acid, 9-cis-retinoic acid, all-trans-retinoic acid, 13-cis-retinol, all-trans-retinol, all-trans-4-oxo-retinoic acid, and 13-cis-4-oxo-retinoic acid as distinct single peaks. Each retinoid was also analyzed separately and its retention time determined. To ascertain the reliability of this system for retinoid quantification, retinoids at various concentrations were applied to the system. We observed the linearities between the concentration and area under the curve of the peak for each retinoid by linear least-squares regression analysis up to 2.5 ng/ml for all retinoic acids and up to 5 ng/ml for all retinols. There was no significant scattering in tests of within-day reproducibility or day-to-day reproducibility. Using this system, we examined effects of light exposure on isomerization of retinoids. When retinoids were exposed to room light for 2 hr, the amounts of all but 13-cis-retinol changed significantly. In particular, the amounts of all-trans-retinoic acid and 9-cis-retinoic acid were reduced by 40% and 60%, respectively. The HPLC system established in this study should be useful for studying the oxidation pathway of retinol to retinoic acid. A light-shielded condition is required when particular retinoic acids are analyzed.
Akutsu, Kazuhiko; Kitagawa, Yoko; Yoshimitsu, Masato; Takatori, Satoshi; Fukui, Naoki; Osakada, Masakazu; Uchida, Kotaro; Azuma, Emiko; Kajimura, Keiji
2018-05-01
Polyethylene glycol 300 is commonly used as a base material for "analyte protection" in multiresidue pesticide analysis via gas chromatography-mass spectrometry. However, the disadvantage of the co-injection method using polyethylene glycol 300 is that it causes peak instability in α-cyano pyrethroids (type II pyrethroids) such as fluvalinate. In this study, we confirmed the instability phenomenon in type II pyrethroids and developed novel analyte protectants for acetone/n-hexane mixture solution to suppress the phenomenon. Our findings revealed that among the examined additive compounds, three lipophilic ascorbic acid derivatives, 3-O-ethyl-L-ascorbic acid, 6-O-palmitoyl-L-ascorbic acid, and 6-O-stearoyl-L-ascorbic acid, could effectively stabilize the type II pyrethroids in the presence of polyethylene glycol 300. A mixture of the three ascorbic acid derivatives and polyethylene glycol 300 proved to be an effective analyte protectant for multiresidue pesticide analysis. Further, we designed and evaluated a new combination of analyte protectant compounds without using polyethylene glycol or the troublesome hydrophilic compounds. Consequently, we obtained a set of 10 medium- and long-chain saturated fatty acids as an effective analyte protectant suitable for acetone/n-hexane solution that did not cause peak instability in type II pyrethroids. These analyte protectants will be useful in multiresidue pesticide analysis by gas chromatography-mass spectrometry in terms of ruggedness and reliable quantitativeness. Graphical abstract Comparison of effectiveness of the addition of lipophilic derivatives of ascorbic acid in controlling the instability phenomenon of fluvalinate with polyethylene glycol 300.
Stoll, Dwight R; Sajulga, Ray W; Voigt, Bryan N; Larson, Eli J; Jeong, Lena N; Rutan, Sarah C
2017-11-10
An important research direction in the continued development of two-dimensional liquid chromatography (2D-LC) is to improve the detection sensitivity of the method. This is especially important in applications where injection of large volumes of effluent from the first dimension ( 1 D) column into the second dimension ( 2 D) column leads to severe 2 D peak broadening and peak shape distortion. For example, this is common when coupling two reversed-phase columns and the organic solvent content of the 1 D mobile phase overwhelms the 2 D column with each injection of 1 D effluent, leading to low resolution in the second dimension. In a previous study we validated a simulation approach based on the Craig distribution model and adapted from the work of Czok and Guiochon [1] that enabled accurate simulation of simple isocratic and gradient separations with very small injection volumes, and isocratic separations with mismatched injection and mobile phase solvents [2]. In the present study we have extended this simulation approach to simulate separations relevant to 2D-LC. Specifically, we have focused on simulating 2 D separations where gradient elution conditions are used, there is mismatch between the sample solvent and the starting point in the gradient elution program, injection volumes approach or even exceed the dead volume of the 2 D column, and the extent of sample loop filling is varied. To validate this simulation we have compared results from simulations and experiments for 101 different conditions, including variation in injection volume (0.4-80μL), loop filling level (25-100%), and degree of mismatch between sample organic solvent and the starting point in the gradient elution program (-20 to +20% ACN). We find that that the simulation is accurate enough (median errors in retention time and peak width of -1.0 and -4.9%, without corrections for extra-column dispersion) to be useful in guiding optimization of 2D-LC separations. However, this requires that real injection profiles obtained from 2D-LC interface valves are used to simulate the introduction of samples into the 2 D column. These profiles are highly asymmetric - simulation using simple rectangular pulses leads to peak widths that are far too narrow under many conditions. We believe the simulation approach developed here will be useful for addressing practical questions in the development of 2D-LC methods. Copyright © 2017 Elsevier B.V. All rights reserved.
Wu, Qi; Yuan, Huiming; Zhang, Lihua; Zhang, Yukui
2012-06-20
With the acceleration of proteome research, increasing attention has been paid to multidimensional liquid chromatography-mass spectrometry (MDLC-MS) due to its high peak capacity and separation efficiency. Recently, many efforts have been put to improve MDLC-based strategies including "top-down" and "bottom-up" to enable highly sensitive qualitative and quantitative analysis of proteins, as well as accelerate the whole analytical procedure. Integrated platforms with combination of sample pretreatment, multidimensional separations and identification were also developed to achieve high throughput and sensitive detection of proteomes, facilitating highly accurate and reproducible quantification. This review summarized the recent advances of such techniques and their applications in qualitative and quantitative analysis of proteomes. Copyright © 2012 Elsevier B.V. All rights reserved.
Faraco, Marianna; Fico, Daniela; Pennetta, Antonio; De Benedetto, Giuseppe E
2016-10-01
This work presents an analytical procedure based on gas chromatography-mass spectrometry which allows the determination of aldoses (glucose, mannose, galactose, arabinose, xylose, fucose, rhamnose) and chetoses (fructose) in plant material. One peak for each target carbohydrate was obtained by using an efficient derivatization employing methylboronic acid and acetic anhydride sequentially, whereas the baseline separation of the analytes was accomplished using an ionic liquid capillary column. First, the proposed method was optimized and validated. Successively, it was applied to identify the carbohydrates present in plant material. Finally, the procedure was successfully applied to samples from a XVII century painting, thus highlighting the occurrence of starch glue and fruit tree gum as polysaccharide materials. Copyright © 2016 Elsevier B.V. All rights reserved.
Zhang, Tong; Watson, David G
2015-05-07
The applications of metabolomics as a methodology for providing better treatment and understanding human disease continue to expand rapidly. In this review, covering the last two years, the focus is on liquid chromatography-mass spectrometry (LC-MS) profiling of metabolites in urine. In LC-MS based metabolomics there are still problems with regard to: chromatographic separation, peak picking and alignment, metabolite identification, metabolite coverage, instrument sensitivity and data interpretation and in the case of urine sample normalisation. Progress has been made with regard to all of these issues during the period of the review. Of particular interest are the increasing use of orthogonal chromatographic methods for optimal metabolite coverage and the increasing adoption of receiver operator characteristic (ROC) curves for biomarker validation.
Worton, David R.; Decker, Monika; Isaacman-VanWertz, Gabriel; ...
2017-05-22
A new analytical methodology combining comprehensive two-dimensional gas chromatography (GC×GC), dual ionization energies and high resolution time of flight mass spectrometry has been developed that improves molecular level identification of organic compounds in complex environmental samples. GC×GC maximizes compound separation providing cleaner mass spectra by minimizing erroneous fragments from interferences and co-eluting peaks. Traditional electron ionization (EI, 70 eV) provides MS fragmentation patterns that can be matched to published EI MS libraries while vacuum ultraviolet photoionization (VUV, 10.5 eV) yields MS with reduced fragmentation enhancing the abundance of the molecular ion providing molecular formulas when combined with high resolution massmore » spectrometry. We demonstrate this new approach by applying it to a sample of organic aerosol. In this sample, 238 peaks were matched to EI MS library data with FM ≥ 800 but a fifth (42 compounds) were determined to be incorrectly identified because the molecular formula was not confirmed by the VUV MS data. This highlights the importance of using a complementary technique to confirm compound identifications even for peaks with very good matching statistics. In total, 171 compounds were identified by EI MS matching to library spectra with confirmation of the molecular formula from the high resolution VUV MS data and were not dependent on the matching statistics being above a threshold value. A large number of unidentified peaks were still observed with FM < 800, which in routine analysis would typically be neglected. Where possible, these peaks were assigned molecular formulas from the VUV MS data (211 in total). In total, the combination of EI and VUV MS data provides more than twice as much molecular level peak information than traditional approaches and improves confidence in the identification of individual organic compounds. The molecular formula data from the VUV MS data was used, in conjunction with GC×GC retention times and the observed EI MS, to generate a new, searchable EI MS library compatible with the standard NIST MS search program. This library is deliberately dynamic and editable so that other end users can add new entries and update existing entries as new information becomes available.A new analytical methodology has been developed to improve molecular level identification of organic compounds in complex samples.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Worton, David R.; Decker, Monika; Isaacman-VanWertz, Gabriel
A new analytical methodology combining comprehensive two-dimensional gas chromatography (GC×GC), dual ionization energies and high resolution time of flight mass spectrometry has been developed that improves molecular level identification of organic compounds in complex environmental samples. GC×GC maximizes compound separation providing cleaner mass spectra by minimizing erroneous fragments from interferences and co-eluting peaks. Traditional electron ionization (EI, 70 eV) provides MS fragmentation patterns that can be matched to published EI MS libraries while vacuum ultraviolet photoionization (VUV, 10.5 eV) yields MS with reduced fragmentation enhancing the abundance of the molecular ion providing molecular formulas when combined with high resolution massmore » spectrometry. We demonstrate this new approach by applying it to a sample of organic aerosol. In this sample, 238 peaks were matched to EI MS library data with FM ≥ 800 but a fifth (42 compounds) were determined to be incorrectly identified because the molecular formula was not confirmed by the VUV MS data. This highlights the importance of using a complementary technique to confirm compound identifications even for peaks with very good matching statistics. In total, 171 compounds were identified by EI MS matching to library spectra with confirmation of the molecular formula from the high resolution VUV MS data and were not dependent on the matching statistics being above a threshold value. A large number of unidentified peaks were still observed with FM < 800, which in routine analysis would typically be neglected. Where possible, these peaks were assigned molecular formulas from the VUV MS data (211 in total). In total, the combination of EI and VUV MS data provides more than twice as much molecular level peak information than traditional approaches and improves confidence in the identification of individual organic compounds. The molecular formula data from the VUV MS data was used, in conjunction with GC×GC retention times and the observed EI MS, to generate a new, searchable EI MS library compatible with the standard NIST MS search program. This library is deliberately dynamic and editable so that other end users can add new entries and update existing entries as new information becomes available.A new analytical methodology has been developed to improve molecular level identification of organic compounds in complex samples.« less
Wang, Shau-Chun; Lin, Chiao-Juan; Chiang, Shu-Min; Yu, Sung-Nien
2008-03-15
This paper reports a simple chemometric technique to alter the noise spectrum of a liquid chromatography-mass spectrometry (LC-MS) chromatogram between two consecutive second-derivative filter procedures to improve the peak signal-to-noise (S/N) ratio enhancement. This technique is to multiply one second-derivative filtered LC-MS chromatogram with another artificial chromatogram added with thermal noises prior to the other second-derivative filter. Because the second-derivative filter cannot eliminate frequency components within its own filter bandwidth, more efficient peak S/N ratio improvement cannot be accomplished using consecutive second-derivative filter procedures to process LC-MS chromatograms. In contrast, when the second-derivative filtered LC-MS chromatogram is conditioned with the multiplication alteration prior to the other second-derivative filter, much better ratio improvement is achieved. The noise frequency spectrum of the second-derivative filtered chromatogram, which originally contains frequency components within the filter bandwidth, is altered to span a broader range with multiplication operation. When the frequency range of this modified noise spectrum shifts toward the other regimes, the other second-derivative filter, working as a band-pass filter, is able to provide better filtering efficiency to obtain higher peak S/N ratios. Real LC-MS chromatograms, of which 5-fold peak S/N ratio improvement achieved with two consecutive second-derivative filters remains the same S/N ratio improvement using a one-step second-derivative filter, are improved to accomplish much better ratio enhancement, approximately 25-fold or higher when the noise frequency spectrum is modified between two matched filters. The linear standard curve using the filtered LC-MS signals is validated. The filtered LC-MS signals are also more reproducible. The more accurate determinations of very low-concentration samples (S/N ratio about 5-7) are obtained via standard addition procedures using the filtered signals rather than the determinations using the original signals.
Kok, Miranda G M; Somsen, Govert W; de Jong, Gerhardus J
2015-01-01
In order to assess the utility of a recently developed capillary electrophoresis-mass spectrometry (CE-MS) method for the study of anionic metabolites in urine, a comparison was made with hydrophilic interaction chromatography-MS (HILIC-MS) using negative electrospray ionization. After optimization of the HILIC conditions, a gradient employing 10mM ammonium acetate (pH 6.8) in acetonitrile-water (5 min 90% acetonitrile followed by 90%-50% acetonitrile in 10 min) was selected, providing baseline separation of five representative anionic test metabolites. Relative standard deviations (RSDs) for HILIC retention times and peak areas were below 0.2% and 7.7%, respectively, and detection limits were in the range 0.04-2.21 μM. Metabolites in rat urine could also be analysed in a reproducible way with retention time and peak area RSDs below 0.6% and 13.6%, respectively. The CE-MS and HILIC-MS methods were compared in terms of reproducibility, sensitivity, selectivity and coverage of the anionic urinary metabolome. In general, peak area RSDs were similar whereas HILIC-MS yielded better retention-time repeatability and up to 80 times lower detection limits (expressed in injected concentration) for test metabolites as compared to CE-MS. Rat urine analysis by HILIC-MS provided detection of 1360 molecular features compared to 347 molecular features revealed with CE-MS. Of these, a number of 144 molecular features were found with both HILIC-MS and CE-MS, which showed on average 10 times higher peak areas in HILIC-MS. The HILIC retention and CE migration times of the common features were clearly not correlated. The HILIC and CE behavior of the test metabolites and 16 putatively identified common features were evaluated involving their physicochemical properties, indicating a markedly different separation selectivity, and thus significant degree of orthogonality of HILIC and CE. Copyright © 2014 Elsevier B.V. All rights reserved.
The statistical overlap theory of chromatography using power law (fractal) statistics.
Schure, Mark R; Davis, Joe M
2011-12-30
The chromatographic dimensionality was recently proposed as a measure of retention time spacing based on a power law (fractal) distribution. Using this model, a statistical overlap theory (SOT) for chromatographic peaks is developed that estimates the number of peak maxima as a function of the chromatographic dimension, saturation and scale. Power law models exhibit a threshold region whereby below a critical saturation value no loss of peak maxima due to peak fusion occurs as saturation increases. At moderate saturation, behavior is similar to the random (Poisson) peak model. At still higher saturation, the power law model shows loss of peaks nearly independent of the scale and dimension of the model. The physicochemical meaning of the power law scale parameter is discussed and shown to be equal to the Boltzmann-weighted free energy of transfer over the scale limits. The scale is discussed. Small scale range (small β) is shown to generate more uniform chromatograms. Large scale range chromatograms (large β) are shown to give occasional large excursions of retention times; this is a property of power laws where "wild" behavior is noted to occasionally occur. Both cases are shown to be useful depending on the chromatographic saturation. A scale-invariant model of the SOT shows very simple relationships between the fraction of peak maxima and the saturation, peak width and number of theoretical plates. These equations provide much insight into separations which follow power law statistics. Copyright © 2011 Elsevier B.V. All rights reserved.
Domingo-Almenara, Xavier; Brezmes, Jesus; Vinaixa, Maria; Samino, Sara; Ramirez, Noelia; Ramon-Krauel, Marta; Lerin, Carles; Díaz, Marta; Ibáñez, Lourdes; Correig, Xavier; Perera-Lluna, Alexandre; Yanes, Oscar
2016-10-04
Gas chromatography coupled to mass spectrometry (GC/MS) has been a long-standing approach used for identifying small molecules due to the highly reproducible ionization process of electron impact ionization (EI). However, the use of GC-EI MS in untargeted metabolomics produces large and complex data sets characterized by coeluting compounds and extensive fragmentation of molecular ions caused by the hard electron ionization. In order to identify and extract quantitative information on metabolites across multiple biological samples, integrated computational workflows for data processing are needed. Here we introduce eRah, a free computational tool written in the open language R composed of five core functions: (i) noise filtering and baseline removal of GC/MS chromatograms, (ii) an innovative compound deconvolution process using multivariate analysis techniques based on compound match by local covariance (CMLC) and orthogonal signal deconvolution (OSD), (iii) alignment of mass spectra across samples, (iv) missing compound recovery, and (v) identification of metabolites by spectral library matching using publicly available mass spectra. eRah outputs a table with compound names, matching scores and the integrated area of compounds for each sample. The automated capabilities of eRah are demonstrated by the analysis of GC-time-of-flight (TOF) MS data from plasma samples of adolescents with hyperinsulinaemic androgen excess and healthy controls. The quantitative results of eRah are compared to centWave, the peak-picking algorithm implemented in the widely used XCMS package, MetAlign, and ChromaTOF software. Significantly dysregulated metabolites are further validated using pure standards and targeted analysis by GC-triple quadrupole (QqQ) MS, LC-QqQ, and NMR. eRah is freely available at http://CRAN.R-project.org/package=erah .
Analytical FcRn affinity chromatography for functional characterization of monoclonal antibodies
Schlothauer, Tilman; Rueger, Petra; Stracke, Jan Olaf; Hertenberger, Hubert; Fingas, Felix; Kling, Lothar; Emrich, Thomas; Drabner, Georg; Seeber, Stefan; Auer, Johannes; Koch, Stefan; Papadimitriou, Apollon
2013-01-01
The neonatal Fc receptor (FcRn) is important for the metabolic fate of IgG antibodies in vivo. Analysis of the interaction between FcRn and IgG in vitro might provide insight into the structural and functional integrity of therapeutic IgG that may affect pharmacokinetics (PK) in vivo. We developed a standardized pH gradient FcRn affinity liquid chromatography method with conditions closely resembling the physiological mechanism of interaction between IgG and FcRn. This method allows the separation of molecular IgG isoforms, degradation products and engineered molecules based on their affinity to FcRn. Human FcRn was immobilized on the column and a linear pH gradient from pH 5.5 to 8.8 was applied. FcRn chromatography was used in comparison to surface plasmon resonance to characterize different monoclonal IgG preparations, e.g., oxidized or aggregated species. Wild-type and engineered IgGs were compared in vitro by FcRn chromatography and in vivo by PK studies in huFcRn transgenic mice. Analytical FcRn chromatography allows differentiation of IgG samples and variants by peak pattern and retention time profile. The method can distinguish: 1) IgGs with different Fabs, 2) oxidized from native IgG, 3) aggregates from monomer and 4) antibodies with mutations in the Fc part from wild-type IgGs. Changes in the FcRn chromatographic behavior of mutant IgGs relative to the wild-type IgG correlate to changes in the PK profile in the FcRn transgenic mice. These results demonstrate that FcRn affinity chromatography is a useful new method for the assessment of IgG integrity. PMID:23765230
Method for factor analysis of GC/MS data
Van Benthem, Mark H; Kotula, Paul G; Keenan, Michael R
2012-09-11
The method of the present invention provides a fast, robust, and automated multivariate statistical analysis of gas chromatography/mass spectroscopy (GC/MS) data sets. The method can involve systematic elimination of undesired, saturated peak masses to yield data that follow a linear, additive model. The cleaned data can then be subjected to a combination of PCA and orthogonal factor rotation followed by refinement with MCR-ALS to yield highly interpretable results.
Crowell, Kevin L; Slysz, Gordon W; Baker, Erin S; LaMarche, Brian L; Monroe, Matthew E; Ibrahim, Yehia M; Payne, Samuel H; Anderson, Gordon A; Smith, Richard D
2013-11-01
The addition of ion mobility spectrometry to liquid chromatography-mass spectrometry experiments requires new, or updated, software tools to facilitate data processing. We introduce a command line software application LC-IMS-MS Feature Finder that searches for molecular ion signatures in multidimensional liquid chromatography-ion mobility spectrometry-mass spectrometry (LC-IMS-MS) data by clustering deisotoped peaks with similar monoisotopic mass, charge state, LC elution time and ion mobility drift time values. The software application includes an algorithm for detecting and quantifying co-eluting chemical species, including species that exist in multiple conformations that may have been separated in the IMS dimension. LC-IMS-MS Feature Finder is available as a command-line tool for download at http://omics.pnl.gov/software/LC-IMS-MS_Feature_Finder.php. The Microsoft.NET Framework 4.0 is required to run the software. All other dependencies are included with the software package. Usage of this software is limited to non-profit research to use (see README). rds@pnnl.gov. Supplementary data are available at Bioinformatics online.
Sandra, Koen; Verleysen, Katleen; Labeur, Christine; Vanneste, Lies; D'Hondt, Filip; Thomas, Grégoire; Kas, Koen; Gevaert, Kris; Vandekerckhove, Joël; Sandra, Pat
2007-03-01
The previously reported COmbined FRActional DIagonal Chromatography (COFRA-DIC) methodology, in which a subset of peptides representative for their parent proteins are sorted, is particularly powerful for whole proteome analysis. This peptide-centric technology is built around diagonal chromatography, where peptide separations are crucial. This paper presents high efficiency peptide separations, in which four 250 x 2.1 mm, 5 microm Zorbax 300SB-C18 columns (total length 1 m) were coupled at operating temperatures of 60'C using a dedicated LC oven and conventional LC equipment. The high efficiency separations were combined with the COFRADIC procedure. This extremely powerful combination resulted, for the analysis of serum, in an increase in the uniquely identified peptide sequences by a factor of 2.6, compared to the COFRADIC procedure on a 25 cm column. This is a reflection of the increased peak capacity obtained on the 1 m column, which was calculated to be a factor 2.7 higher than on the 25 cm column. Besides more efficient sorting, less ion suppression was noticed.
Ishihara, Takashi; Kadoya, Toshihiko; Endo, Naomi; Yamamoto, Shuichi
2006-05-05
Our simple method for optimization of the elution salt concentration in stepwise elution was applied to the actual protein separation system, which involves several difficulties such as detection of the target. As a model separation system, reducing residual protein A by cation-exchange chromatography in human monoclonal antibody (hMab) purification was chosen. We carried out linear gradient elution experiments and obtained the data for the peak salt concentration of hMab and residual protein A, respectively. An enzyme-linked immunosorbent assay was applied to the measurement of the residual protein A. From these data, we calculated the distribution coefficient of the hMab and the residual protein A as a function of salt concentration. The optimal salt concentration of stepwise elution to reduce the residual protein A from the hMab was determined based on the relationship between the distribution coefficient and the salt concentration. Using the optimized condition, we successfully performed the separation, resulting in high recovery of hMab and the elimination of residual protein A.
Comprehensive sample analysis using high performance liquid chromatography with multi-detection.
Pravadali, Sercan; Bassanese, Danielle N; Conlan, Xavier A; Francis, Paul S; Smith, Zoe M; Terry, Jessica M; Shalliker, R Andrew
2013-11-25
Herein we assess the separation space offered by a liquid chromatography system with an optimised uni-dimensional separation for the determination of the key chemical entities in the highly complex matrix of a tobacco leaf extract. Multiple modes of detection, including UV-visible absorbance, chemiluminescence (acidic potassium permanganate, manganese(IV), and tris(2,2'-bipyridine)ruthenium(III)), mass spectrometry and DPPH radical scavenging were used in an attempt to systematically reduce the data complexity of the sample whilst obtaining a greater degree of molecule-specific information. A large amount of chemical data was obtained, but several limitations in the ability to assign detector responses to particular compounds, even with the aid of complementary detection systems, were observed. Thirty-three compounds were detected via MS on the tobacco extract and 12 out of 32 compounds gave a peak height ratio (PHR) greater than 0.33 on one or more detectors. This paper serves as a case study of these limitations, illustrating why multidimensional chromatography is an important consideration when developing a comprehensive chemical detection system. Copyright © 2013 Elsevier B.V. All rights reserved.
Protein separations using enhanced-fluidity liquid chromatography.
Bennett, Raffeal; Olesik, Susan V
2017-11-10
Enhanced-fluidity liquid chromatography (EFLC) methods using methanol/H 2 O/CO 2 and hydrophilic interaction liquid chromatography (HILIC) were explored for the separation of proteins and peptides. EFLC is a separation mode that uses a mobile phase made of conventional solvents combined with liquid carbon dioxide (CO 2 ) in subcritical conditions. The addition of liquid CO 2 enhances diffusivity and decreases viscosity while maintaining mixture polarity, which typically results in reduced time of analysis. TFA additive and elevated temperature were leveraged as key factors in the separation of a 13-analyte intact protein mixture in under 5min. Under these conditions EFLC showed modest improvement in terms of peak asymmetry and analysis time over the competing ACN/H 2 O separation. Protein analytes detected by electrospray ionization - quadrupole time of flight, were shown to be unaffected by the addition of CO 2 in the mobile phase. Herein, the feasibility of separating hydrophilic proteins up to 80kDa (with transferrin) is demonstrated for CO 2 -containing mobile phases. Copyright © 2017 Elsevier B.V. All rights reserved.
Guan, Y-G; Yu, P; Yu, S-J; Xu, X-B; Wu, X-L
2012-11-01
A simultaneous analysis of reducing sugars and 5-hydroxymethyl-2-furaldehyde of the Maillard reaction products was detailed. It was based on a high performance anion exchange chromatography with electrochemical detector system and an HPLC with refractive index detector. Results showed that high performance anion exchange chromatography with electrochemical detector using a CarboPac PA-1 column (Dionex Corp., Sunnyvale, CA) was more suitable for reducing sugars and 5-hydroxymethyl-2-furaldehyde determination, especially for trace analysis. The lowest detectable limit of reducing sugars and 5-hydroxymethyl-2-furaldehyde was 0.00005 mol/L in this experiment. However, HPLC with a refractive index detector always produces a tailing peak for 5-hydroxymethyl-2-furaldehyde, and mannose and fructose cannot be absolutely separated. The results of the present study could provide a more sensitive means for 5-hydroxymethyl-2-furaldehyde and reducing sugar detection. Copyright © 2012 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.
A gas chromatography-mass spectrometry assay to quantify camphor extracted from goat serum.
Lee, Kyung-Min; Dai, Susie Y; Herrman, Timothy J; Musser, Jeffrey M B
2012-09-15
A sensitive gas chromatography-mass spectrometry (GC-MS) method was developed and validated for quantification and pharmacokinetics of camphor, a major monoterpene of juniper plant, in goat serum. Camphor and internal standard (terpinolene) eluates from solid phase extraction (SPE) with ethyl acetate yielded well resolved peaks and were clearly identified in total and selected ion chromatograms. The elution and injection volumes were optimized for improved detection and quantification of camphor based on peak shape, signal to noise ratio, recoveries, and repeatability. The matrix calibration curve with the good linearity (R(2)=0.998) and response in the range of 0.005-10.0 μg/mL was used to determine camphor concentration in goat serum. The GC-MS method offered sufficiently low limits of detection (1 ng/mL) and quantitation (3 ng/mL) for camphor concentration in goat serum for the pharmacokinetic study. The proposed method showed good intra- and inter-day variation with relative standard deviation (RSD) of 0.2-7.7% and produced good recovery (96.0-111.6%) and reproducibility (1.6-6.1%) at all spiked levels. Using this method on serum samples obtained from two goats orally dosed with camphor confirmed that the method is suitable for camphor studies in animals. Copyright © 2012 Elsevier B.V. All rights reserved.
Yang, Xing-Jian; Dang, Zhi; Zhang, Fang-Li; Lin, Zhao-Ying; Zou, Meng-Yao; Tao, Xue-Qin; Lu, Gui-Ning
2013-01-01
This study described the development of a method based on soxhlet extraction combining high performance liquid chromatography (soxhlet-HPLC) for the accurate detection of BDE-209 in soils. The solvent effect of working standard solutions in HPLC was discussed. Results showed that 1 : 1 of methanol and acetone was the optimal condition which could totally dissolve the BDE-209 in environmental samples and avoid the decrease of the peak area and the peak deformation difference of BDE-209 in HPLC. The preliminary experiment was conducted on the configured grassland (1 μg/g) to validate the method feasibility. The method produced reliable reproducibility, simulated soils (n = 4) RSD 1.0%, and was further verified by the analysis e-waste contaminated soils, RSD range 5.9–11.4%. The contamination level of BDE-209 in burning site was consistent with the previous study of Longtang town but lower than Guiyu town, and higher concentration of BDE-209 in paddy field mainly resulted from the long-standing disassembling area nearby. This accurate and fast method was successfully developed to extract and analyze BDE-209 in soil samples, showing its potential use for replacing GC to determinate BDE-209 in soil samples. PMID:24302876
Liang, Xianrui; Ma, Meiling; Su, Weike
2013-01-01
Background: A method for chemical fingerprint analysis of Hibiscus mutabilis L. leaves was developed based on ultra performance liquid chromatography with photodiode array detector (UPLC-PAD) combined with similarity analysis (SA) and hierarchical clustering analysis (HCA). Materials and Methods: 10 batches of Hibiscus mutabilis L. leaves samples were collected from different regions of China. UPLC-PAD was employed to collect chemical fingerprints of Hibiscus mutabilis L. leaves. Results: The relative standard deviations (RSDs) of the relative retention times (RRT) and relative peak areas (RPA) of 10 characteristic peaks (one of them was identified as rutin) in precision, repeatability and stability test were less than 3%, and the method of fingerprint analysis was validated to be suitable for the Hibiscus mutabilis L. leaves. Conclusions: The chromatographic fingerprints showed abundant diversity of chemical constituents qualitatively in the 10 batches of Hibiscus mutabilis L. leaves samples from different locations by similarity analysis on basis of calculating the correlation coefficients between each two fingerprints. Moreover, the HCA method clustered the samples into four classes, and the HCA dendrogram showed the close or distant relations among the 10 samples, which was consistent to the SA result to some extent. PMID:23930008
Lipok, Christian; Hippler, Jörg; Schmitz, Oliver J
2018-02-09
A two-dimensional GC (2D-GC) method was developed and coupled to an ion mobility-high resolution mass spectrometer, which enables the separation of complex samples in four dimensions (2D-GC, ion mobilility spectrometry and mass spectrometry). This approach works as a continuous multiheart-cutting GC-system (GC+GC), using a long modulation time of 20s, which allows the complete transfer of most of the first dimension peaks to the second dimension column without fractionation, in comparison to comprehensive two-dimensional gas chromatography (GCxGC). Hence, each compound delivers only one peak in the second dimension, which simplifies the data handling even when ion mobility spectrometry as a third and mass spectrometry as a fourth dimension are introduced. The analysis of a plant extract from Calendula officinales shows the separation power of this four dimensional separation method. The introduction of ion mobility spectrometry provides an additional separation dimension and allows to determine collision cross sections (CCS) of the analytes as a further physicochemical constant supporting the identification. A CCS database with more than 800 standard substances including drug-like compounds and pesticides was used for CCS data base search in this work. Copyright © 2017 Elsevier B.V. All rights reserved.
Further identification of endogenous gibberellins in the shoots of pea, line G2
DOE Office of Scientific and Technical Information (OSTI.GOV)
Halinska, A.; Davies, P.J.; Lee, J.W.
1989-12-01
To interpret the metabolism of radiolabeled gibberellins A{sub 12}-aldehyde and A{sub 12} in shoots of pea (Pisum sativum L.), the identity of the radiolabeled peaks has to be determined and the endogenous presence of the gibberellins demonstrated. High specific activity ({sup 14}C)GA{sub 12} and ({sup 14}C)GA{sub 12}-aldehyde were synthesized using a pumpkin endosperm enzyme preparation, and purified by high performance liquid chromatography (HPLC). ({sup 14}C)GA{sub 12} was supplied to upper shoots of pea, line G2, to produce radiolabeled metabolites on the 13-OH pathway. Endogenous compounds copurifying with the ({sup 14}C)GAs on HPLC were analyzed by gas chromatography-mass spectrometry. The endogenousmore » presence of GA{sub 53}, GA{sub 44}, GA{sub 19} and GA{sub 20} was demonstrated and their HPLC peak identity ascertained. The {sup 14}C was progressively diluted in GAs further down the pathway, proportional to the levels found in the tissue and inversely proportional to the speed of metabolism, ranging from 63% in GA{sub 53} to 4% in GA{sub 20}. Calculated levels of GA{sub 20}, GA{sub 19}, GA{sub 44}, and GA{sub 53} were 42, 8, 10, and 0.5 nanograms/gram, respectively.« less
Hua, Wan; Hu, Huiling; Chen, Fang; Tang, Lin; Peng, Tong; Wang, Zhanguo
2015-03-18
In this work, a high-speed countercurrent chromatography (HSCCC) method was established for the preparation of phorbol esters (PEs) from Jatropha curcas. n-Hexane-ethyl acetate-methanol-water (1.5:1.5:1.2:0.5, v/v) was selected as the optimum two-phase solvent system to separate and purify jatropha factor C1 (JC1) with a purity of 85.2%, as determined by HPLC, and to obtain a mixture containing four or five PEs. Subsequently, continuous semipreparative HPLC was applied to further purify JC1 (99.8% as determined by HPLC). In addition, UPLC-PDA and UPLC-MS were established and successfully used to evaluate the isolated JC1 and PE-rich crude extract. The purity of JC1 was only 87.8% by UPLC-UV. A peak (a compound highly similar to JC1) was indentified as the isomer of JC1 by comparing the characteristic UV absorption and MS spectra. Meanwhile, this strategy was also applied to analyze the PE-rich crude extract from J. curcas. It is interesting that there may be more than 15 PEs according to the same quasi-molecular ion peaks, highly similar sequence-specific fragment ions, and similar UV absorption spectrum.
Krishnan, Shaji; Verheij, Elwin E R; Bas, Richard C; Hendriks, Margriet W B; Hankemeier, Thomas; Thissen, Uwe; Coulier, Leon
2013-05-15
Mass spectra obtained by deconvolution of liquid chromatography/high-resolution mass spectrometry (LC/HRMS) data can be impaired by non-informative mass-over-charge (m/z) channels. This impairment of mass spectra can have significant negative influence on further post-processing, like quantification and identification. A metric derived from the knowledge of errors in isotopic distribution patterns, and quality of the signal within a pre-defined mass chromatogram block, has been developed to pre-select all informative m/z channels. This procedure results in the clean-up of deconvoluted mass spectra by maintaining the intensity counts from m/z channels that originate from a specific compound/molecular ion, for example, molecular ion, adducts, (13) C-isotopes, multiply charged ions and removing all m/z channels that are not related to the specific peak. The methodology has been successfully demonstrated for two sets of high-resolution LC/MS data. The approach described is therefore thought to be a useful tool in the automatic processing of LC/HRMS data. It clearly shows the advantages compared to other approaches like peak picking and de-isotoping in the sense that all information is retained while non-informative data is removed automatically. Copyright © 2013 John Wiley & Sons, Ltd.
Size exclusion chromatography with superficially porous particles.
Schure, Mark R; Moran, Robert E
2017-01-13
A comparison is made using size-exclusion chromatography (SEC) of synthetic polymers between fully porous particles (FPPs) and superficially porous particles (SPPs) with similar particle diameters, pore sizes and equal flow rates. Polystyrene molecular weight standards with a mobile phase of tetrahydrofuran are utilized for all measurements conducted with standard HPLC equipment. Although it is traditionally thought that larger pore volume is thermodynamically advantageous in SEC for better separations, SPPs have kinetic advantages and these will be shown to compensate for the loss in pore volume compared to FPPs. The comparison metrics include the elution range (smaller with SPPs), the plate count (larger for SPPs), the rate production of theoretical plates (larger for SPPs) and the specific resolution (larger with FPPs). Advantages to using SPPs for SEC are discussed such that similar separations can be conducted faster using SPPs. SEC using SPPs offers similar peak capacities to that using FPPs but with faster operation. This also suggests that SEC conducted in the second dimension of a two-dimensional liquid chromatograph may benefit with reduced run time and with equivalently reduced peak width making SPPs advantageous for sampling the first dimension by the second dimension separator. Additional advantages are discussed for biomolecules along with a discussion of optimization criteria for size-based separations. Copyright © 2016 Elsevier B.V. All rights reserved.
Franciosa, Giovanna; Pourshaban, Manoocheher; De Luca, Alessandro; Buccino, Anna; Dallapiccola, Bruno; Aureli, Paolo
2004-01-01
Denaturing high-performance liquid chromatography (DHPLC) is a recently developed technique for rapid screening of nucleotide polymorphisms in PCR products. We used this technique for the identification of type A, B, E, and F botulinum neurotoxin genes. PCR products amplified from a conserved region of the type A, B, E, and F botulinum toxin genes from Clostridium botulinum, neurotoxigenic C. butyricum type E, and C. baratii type F strains were subjected to both DHPLC analysis and sequencing. Unique DHPLC peak profiles were obtained with each different type of botulinum toxin gene fragment, consistent with nucleotide differences observed in the related sequences. We then evaluated the ability of this technique to identify botulinal neurotoxigenic organisms at the genus and species level. A specific short region of the 16S rRNA gene which contains genus-specific and in some cases species-specific heterogeneity was amplified from botulinum neurotoxigenic clostridia and from different food-borne pathogens and subjected to DHPLC analysis. Different peak profiles were obtained for each genus and species, demonstrating that the technique could be a reliable alternative to sequencing for the rapid identification of food-borne pathogens, specifically of botulinal neurotoxigenic clostridia most frequently implicated in human botulism. PMID:15240298
Li, Hao; Zhu, Qing xia; Chwee, Tsz sian; Wu, Lin; Chai, Yi feng; Lu, Feng; Yuan, Yong fang
2015-07-09
Thin-layer chromatography (TLC) coupled with surface enhanced Raman spectroscopy (SERS) has been widely used for the study of various complex systems, especially for the detection of adulterants in botanical dietary supplements (BDS). However, this method is not sufficient to distinguish structurally similar adulterants in BDS since the analogs have highly similar chromatographic and/or spectroscopic behaviors. Taking into account the fact that higher cost and more time will be required for comprehensive chromatographic separation, more efforts with respect to spectroscopy are now focused on analyzing the overlapped SERS peaks. In this paper, the combination of a TLC-SERS method with two-dimensional correlation spectroscopy (2DCOS), with duration of exposure to laser as the perturbation, is applied to solve this problem. Besides the usual advantages of the TLC-SERS method, such as its simplicity, rapidness, and sensitivity, more advantages are presented here, such as enhanced selectivity and good reproducibility, which are obtained by 2DCOS. Two chemicals with similar structures are successfully differentiated from the complex BDS matrices. The study provides a more accurate qualitative screening method for detection of BDS with adulterants, and offers a new universal approach for the analysis of highly overlapped SERS peaks. Copyright © 2015 Elsevier B.V. All rights reserved.
Gosetti, Fabio; Chiuminatto, Ugo; Mazzucco, Eleonora; Mastroianni, Rita; Bolfi, Bianca; Marengo, Emilio
2015-06-01
This paper reports the study of the photodegradation reactions that tricyclazole can naturally undergo, under the action of sunlight, in aqueous solutions of standard tricyclazole and of the commercial BEAM(TM) formulation. The analyses are carried out by ultra-high performance liquid chromatography technique coupled with high-resolution tandem mass spectrometry. Analysis of both tricyclazole and BEAM(TM) water solutions undergone to hydrolysis does not evidence new chromatographic peaks with respect to the not treated solutions. On the contrary, analysis of the same samples subjected to sunlight irradiation shows a decreased intensity of tricyclazole signal and the presence of new chromatographic peaks. Two photodegradation products of tricyclazole have been identified, one of which has been also quantified, being the commercial standard available. The pattern is similar for the solutions of the standard fungicide and of the BEAM(TM) formulation. The results obtained from eco-toxicological tests show that toxicity of tricyclazole standard solutions is greater than that of the irradiated ones, whereas toxicity levels of all the BEAM(TM) solutions investigated (non-irradiated, irradiated, and hydrolyzed) are comparable and lower than those shown by tricyclazole standard solutions. Experiments performed in paddy water solution show that there is no difference in the degradation products formed.
Hanko, Valoran P.; Heckenberg, Andrea; Rohrer, Jeffrey S.
2004-01-01
Anion-exchange chromatography with integrated pulsed amperometric detection (AE-IPAD) separates and directly detects amino acids, carbohydrates, alditols, and glycols in the same injection without pre- or post-column derivatization. These separations use a combination of NaOH and NaOH/sodium acetate eluents. We previously published the successful use of this technique, also known as AAA-Direct, to determine free amino acids in cell culture and fermentation broth media. We showed that retention of carbohydrates varies with eluent NaOH concentration differently than amino acids, and thus separations can be optimized by varying the initial NaOH concentration and its duration. Unfortunately, some amino acids eluting in the acetate gradient portion of the method were not completely resolved from system-related peaks and from unknown peaks in complex cell culture and fermentation media. In this article, we present changes in method that improve amino acid resolution and system ruggedness. The success of these changes and their compatibility with the separations previously designed for fermentation and cell culture are demonstrated with yeast extract-peptone-dextrose broth, M199, Dulbecco’s modified Eagle’s (with F-12), L-15 (Leibovitz), and McCoy’s 5A cell culture media. PMID:15585828
Enzymic cross-linkage of monomeric extensin precursors in vitro. [Lycopersicon esculentum
DOE Office of Scientific and Technical Information (OSTI.GOV)
Everdeen, D.S.; Kiefer, S.; Willard, J.J.
Rapidly growing tomato (Lycopersicon esculentum) cell suspension cultures contain transiently high levels of cell surface, salt-elutable, monomeric precursors to the covalently cross-linked extensin network of the primary cell wall. Thus, the authors purified a highly soluble monomeric extensin substrate from rapidly growing cells, and devised a soluble in vitro cross-linking assay based on Superose-6 fast protein liquid chromatography separation, which resolved extensin monomers from the newly formed oligomers within 25 minutes. Salt elution of slowly growing (early stationary phase) cells yielded little or no extensin monomers but did give a highly active enzymic preparation that specifically cross-linked extensin monomers inmore » the presence of hydrogen peroxide, judging from: (a) a decrease in the extensin monomer peak on fast protein liquid chromatography gel filtration, (b) appearance of oligomeric peaks, and (c) direct electron microscopical observation of the cross-linked oligomers. The cross-linking reaction had a broad pH optimum between 5.5 and 6.5. An approach to substrate saturation of the enzyme required extensin monomer concentrations of 20 to 40 milligrams per milliliter. Preincubation with catalase completely inhibited the cross-linking reaction, which was highly dependent on hydrogen peroxide and optimal at 15 to 50 micromolar. They therefore identified the cross-linking activity as extensin peroxidase.« less
Brogard, J M; Jehl, F; Monteil, H; Adloff, M; Blickle, J F; Levy, P
1985-01-01
Serum kinetics and biliary, urinary, and fecal elimination of ciprofloxacin, a new quinolone derivative, were studied in 12 recently cholecystectomized patients provided with T-tube drainage during 24 h after oral administration of a single 500-mg dose of this substance. Drug concentrations were measured by both high-pressure liquid chromatography (HPLC) and microbiological assay. The results were comparable for the concentrations in serum (average of peaks, 2.0 +/- 0.2 micrograms/ml by HPLC and 2.3 +/- 0.3 micrograms/ml by the microbiological method) and urine (0 to 6 h, 267 +/- 74 and 241 +/- 58 micrograms/ml, respectively). This was not the case for biliary values, for which the microbiological assay yielded significantly higher concentrations than did HPLC (average of peak concentrations, 21.2 +/- 2.6 and 16.0 +/- 2.5 micrograms/ml, respectively [P less than 0.02]), nor for total 24-h biliary output (2,167 +/- 288 and 1,587 +/- 222 micrograms, respectively [P less than 0.01]). This suggests hepatic biotransformation of ciprofloxacin into microbiologically active metabolites. The apparent broad antibacterial spectrum of ciprofloxacin and its higher biliary levels than simultaneously determined serum concentrations suggest that this derivative is suitable for the treatment of biliary tract infections. PMID:2939796
NASA Astrophysics Data System (ADS)
Chen, Xi; Walker, John T.; Geron, Chris
2017-10-01
Evaluation of the semi-continuous Monitor for AeRosols and GAses in ambient air (MARGA, Metrohm Applikon B.V.) was conducted with an emphasis on examination of accuracy and precision associated with processing of chromatograms. Using laboratory standards and atmospheric measurements, analytical accuracy, precision and method detection limits derived using the commercial MARGA software were compared to an alternative chromatography procedure consisting of a custom Java script to reformat raw MARGA conductivity data and Chromeleon (Thermo Scientific Dionex) software for peak integration. Our analysis revealed issues with accuracy and precision resulting from misidentification and misintegration of chromatograph peaks by the MARGA automated software as well as a systematic bias at low concentrations for anions. Reprocessing and calibration of raw MARGA data using the alternative chromatography method lowered method detection limits and reduced variability (precision) between parallel sampler boxes. Instrument performance was further evaluated during a 1-month intensive field campaign in the fall of 2014, including analysis of diurnal patterns of gaseous and particulate water-soluble species (NH3, SO2, HNO3, NH4+, SO42- and NO3-), gas-to-particle partitioning and particle neutralization state. At ambient concentrations below ˜ 1 µg m-3, concentrations determined using the MARGA software are biased +30 and +10 % for NO3- and SO42-, respectively, compared to concentrations determined using the alternative chromatography procedure. Differences between the two methods increase at lower concentrations. We demonstrate that positively biased NO3- and SO42- measurements result in overestimation of aerosol acidity and introduce nontrivial errors to ion balances of inorganic aerosol. Though the source of the bias is uncertain, it is not corrected by the MARGA online single-point internal LiBr standard. Our results show that calibration and verification of instrument accuracy by multilevel external standards is required to adequately control analytical accuracy. During the field intensive, the MARGA was able to capture rapid compositional changes in PM2.5 due to changes in meteorology and air mass history relative to known source regions of PM precursors, including a fine NO3- aerosol event associated with intrusion of Arctic air into the southeastern US.
High temperature diaphragm valve-based comprehensive two-dimensional gas chromatography.
Freye, Chris E; Mu, Lan; Synovec, Robert E
2015-12-11
A high-temperature diaphragm valve-based comprehensive two-dimensional gas chromatography (GC×GC) instrument is demonstrated which readily allows separations up to 325°C. Previously, diaphragm valve-based GC×GC was limited to 175°C if the valve was mounted in the oven, or limited to 265°C if the valve was faced mounted on the outside of the oven. A new diaphragm valve has been commercially developed, in which the temperature sensitive O-rings that previously limited the separation temperatures have been replaced with Kalrez O-rings, a perfluoroelastomer, allowing for significantly higher temperatures permitting a greater range of volatile and semi-volatile compounds to be readily separated. In the current investigation, a separation temperature up to 325°C is demonstrated with the valve mounted directly in the oven. Since the temperature limit for most commonly used GC columns is at or below 325°C, the scope of diaphragm valve-based GC×GC is now dramatically broadened to encompass a majority of all column stationary phase chemistries. A 44-component mixture of alkanes, alcohols, and polyaromatic hydrocarbons is used to study this new configuration whose boiling points range from 98°C (n-heptane) to 450°C (n-triacontane). For the test mixture using a modulation period PM of 1.0s, peak shapes on second dimension separations, (2)D, are symmetric with average widths at base of 79.4ms, producing a (2)D peak capacity of (2)nc∼12. Based on the average peak width of 2.4s for the first dimension separation with a run time of 32.5min, the (1)D peak capacity is (1)nc∼800. Thus, the ideal two-dimensional peak capacity [Formula: see text] is 9600. Little variation in within-analyte (2)D peak width was observed with an average %RSD of less than 3.0%. Furthermore, retention time on (2)D was very reproducible with an average %RSD less than 0.5%. Measured peak areas (sum of all (2)D peaks for given analyte) had an average %RSD of 4.4%. The transfer fraction from (1)D to (2)D was experimentally determined to be ∼30%, while the detection sensitivity for valve-based GC×GC was ∼8 times higher than one dimensional GC due to zone compression. After a year of use with temperatures consistently up to 325°C, there has been no deterioration of the valve or its performance for GC×GC. Separations of vacuum pump oil and orange oil are also reported to demonstrate practical utility. Copyright © 2015 Elsevier B.V. All rights reserved.
High precision mass measurements for wine metabolomics
Roullier-Gall, Chloé; Witting, Michael; Gougeon, Régis D.; Schmitt-Kopplin, Philippe
2014-01-01
An overview of the critical steps for the non-targeted Ultra-High Performance Liquid Chromatography coupled with Quadrupole Time-of-Flight Mass Spectrometry (UPLC-Q-ToF-MS) analysis of wine chemistry is given, ranging from the study design, data preprocessing and statistical analyses, to markers identification. UPLC-Q-ToF-MS data was enhanced by the alignment of exact mass data from FTICR-MS, and marker peaks were identified using UPLC-Q-ToF-MS2. In combination with multivariate statistical tools and the annotation of peaks with metabolites from relevant databases, this analytical process provides a fine description of the chemical complexity of wines, as exemplified in the case of red (Pinot noir) and white (Chardonnay) wines from various geographic origins in Burgundy. PMID:25431760
High precision mass measurements for wine metabolomics
NASA Astrophysics Data System (ADS)
Roullier-Gall, Chloé; Witting, Michael; Gougeon, Régis; Schmitt-Kopplin, Philippe
2014-11-01
An overview of the critical steps for the non-targeted Ultra-High Performance Liquid Chromatography coupled with Quadrupole Time-of-Flight Mass Spectrometry (UPLC-Q-ToF-MS) analysis of wine chemistry is given, ranging from the study design, data preprocessing and statistical analyses, to markers identification. UPLC-Q-ToF-MS data was enhanced by the alignment of exact mass data from FTICR-MS, and marker peaks were identified using UPLC-Q-ToF-MS². In combination with multivariate statistical tools and the annotation of peaks with metabolites from relevant databases, this analytical process provides a fine description of the chemical complexity of wines, as exemplified in the case of red (Pinot noir) and white (Chardonnay) wines from various geographic origins in Burgundy.
Minarik, Marek; Franc, Martin; Minarik, Milan
2018-06-15
A new instrumental approach to recycling HPLC is described. The concept is based on fast reintroduction of incremental peak sections back onto the separation column. The re-circulation is performed within a closed loop containing only the column and two synchronized switching valves. By having HPLC pump out of the cycle, the method minimizes peak broadening due to dead volume. As a result the efficiency is dramatically increased allowing for the most demanding analytical applications. In addition, a parking loop is employed for temporary storage of analytes from the middle section of the separated mixture prior to their recycling. Copyright © 2018 Elsevier B.V. All rights reserved.
NASA Technical Reports Server (NTRS)
Chen, Y.; Pietrzyk, R. A.; Whitson, P. A.
1997-01-01
A high-performance liquid chromatographic method was developed as an alternative to automated enzymatic analysis of uric acid in human urine preserved with thymol and/or thimerosal. Uric acid (tR = 10 min) and creatinine (tR = 5 min) were separated and quantified during isocratic elution (0.025 M acetate buffer, pH 4.5) from a mu Bondapak C18 column. The uric-acid peak was identified chemically by incubating urine samples with uricase. The thymol/thimerosal peak appeared at 31 min during the washing step and did not interfere with the analysis. We validated the high-performance liquid chromatographic method for linearity, precision and accuracy, and the results were found to be excellent.
Liu, Tong; Abrahams, Isaac; Dennis, T John S
2018-04-26
The molecular structures of 19 purified isomers of bis-phenyl-C 62 -butyric acid methyl ester were identified by a combination of 13 C NMR and UV-vis absorption spectroscopies and high-performance liquid chromatography (HPLC) retention time analysis. All 19 isomers are dicyclopropafullerenes (none are homofullerenes). There were seven isomers with C 1 molecular point-group symmetry, four with C s , six with C 2 , one with C 2 v , and one with C 2 h symmetry. The C 2 h , C 2 v , and all five nonequatorial C 1 isomers were unambiguously assigned to their respective HPLC fractions. For the other 12 isomers, the 13 C NMR and UV-vis spectra placed them in six groups of two same-symmetry isomers. On the basis of the widely spaced HPLC retention times of the two isomers within each of these six groups, and the empirical inverse correlation between retention time and addend spacing, each isomer was assigned to its corresponding HPLC fraction. In addition, the missing trans-1 isomer was found, purified, and characterized.
Kumar, Sanjeev; Gautam, Satyendra; Sharma, Arun
2013-06-01
Petals from different rose (Rosa centifolia) cultivars ("passion," "pink noblesse," and "sphinx") were assessed for antimutagenicity using Escherichia coli RNA polymerase B (rpoB)-based Rif (S) →Rif (R) (rifampicin sensitive to resistant) forward mutation assay against ethyl methanesulfonate (EMS)-induced mutagenesis. The aqueous extracts of rose petals from different cultivars exhibited a wide variation in their antimutagenicity. Among these, cv. "passion" was found to display maximum antimutagenicity. Upon further fractionation, the anthocyanin extract of cv. "passion" displayed significantly higher antimutagenicity than its phenolic extract. During thin-layer chromatography (TLC) analysis, the anthocyanin extract got resolved into 3 spots: yellow (Rf : 0.14), blue (Rf : 0.30), and pink (Rf : 0.49). Among these spots, the blue one displayed significantly higher antimutagenicity than the other 2. Upon high-performance liquid chromatography analysis, this blue spot further got resolved into 2 peaks (Rt : 2.7 and 3.8 min). The 2nd peak (Rt : 3.8 min) displaying high antimutagenicity was identified by ESI-IT-MS/MS analysis as peonidin 3-glucoside, whereas less antimutagenic peak 1 (Rt : 2.7) was identified as cyanidin 3, 5-diglucoside. The other TLC bands were also characterized by ESI-IT-MS/MS analysis. The least antimutagenic pink band (Rf : 0.49) was identified as malvidin 3-acetylglucoside-4-vinylcatechol, whereas non-antimutagenic yellow band (Rf : 0.14) was identified as luteolinidin anthocyanin derivative. Interestingly, the anthocyanin extracted from rose tea of cv. "passion" exhibited a similar antimutagenicity as that of the raw rose petal indicating the thermal stability of the contributing bioactive(s). The findings thus indicated the health protective property of differently colored rose cultivars and the nature of their active bioingredients. © 2013 Institute of Food Technologists®
Ellefsen, Kayla N; Concheiro, Marta; Pirard, Sandrine; Gorelick, David A; Huestis, Marilyn A
2016-06-01
No controlled cocaine administration data describe cocaine and metabolite disposition in oral fluid (OF) collected with commercially-available collection devices, OF-plasma ratios, and pharmacodynamic relationships with plasma and OF cocaine and metabolite concentrations. Eleven healthy, cocaine-using adults received 25mg intravenous cocaine. Physiological and subjective effects (visual analogue scales), and plasma were collected one hour prior, and up to 21h post-dose. OF was collected with the Quantisal™ device up to 69h post-dose. Cocaine, benzoylecgonine (BE) and ecgonine methyl ester were quantified in plasma by liquid chromatography-tandem mass spectrometry; cocaine and BE were quantified in OF by two dimensional-gas chromatography-mass spectrometry. Increases in heart rate, blood pressure and positive subjective effects occurred within the first 15min, persisting up to 1h ("Rush"), with clockwise hysteresis observed for plasma and OF concentrations and some subjective measures. Peak subjective effects ("Rush," "Good drug effect" and "Bad drug effect") occurred prior to peak OF cocaine concentration, whereas observed peak plasma concentrations and subjective measures occurred simultaneously, most likely due to significantly earlier plasma Tmax compared to OF Tmax.Tlast was generally longer in OF (12.5h cocaine; 33.0h BE) than plasma (9.5h cocaine; >21h BE, cutoffs 1μg/L); 8 and 10μg/L OF cocaine confirmatory cutoffs yielded detection times similar to cocaine's impairing effects, suggesting usefulness for DUID testing. OF offers advantages as an alternative matrix to blood and plasma for identifying cocaine intake, defining pharmacokinetic parameters at different confirmation cutoffs, and aiding different drug testing programs to best achieve their monitoring goals. Copyright © 2016. Published by Elsevier Ireland Ltd.
Yu, Kate; Di, Li; Kerns, Edward; Li, Susan Q; Alden, Peter; Plumb, Robert S
2007-01-01
We report in this paper an ultra-performance liquid chromatography/tandem mass spectrometric (UPLC(R)/MS/MS) method utilizing an ESI-APCI multimode ionization source to quantify structurally diverse analytes. Eight commercial drugs were used as test compounds. Each LC injection was completed in 1 min using a UPLC system coupled with MS/MS multiple reaction monitoring (MRM) detection. Results from three separate sets of experiments are reported. In the first set of experiments, the eight test compounds were analyzed as a single mixture. The mass spectrometer was switching rapidly among four ionization modes (ESI+, ESI-, APCI-, and APCI+) during an LC run. Approximately 8-10 data points were collected across each LC peak. This was insufficient for a quantitative analysis. In the second set of experiments, four compounds were analyzed as a single mixture. The mass spectrometer was switching rapidly among four ionization modes during an LC run. Approximately 15 data points were obtained for each LC peak. Quantification results were obtained with a limit of detection (LOD) as low as 0.01 ng/mL. For the third set of experiments, the eight test compounds were analyzed as a batch. During each LC injection, a single compound was analyzed. The mass spectrometer was detecting at a particular ionization mode during each LC injection. More than 20 data points were obtained for each LC peak. Quantification results were also obtained. This single-compound analytical method was applied to a microsomal stability test. Compared with a typical HPLC method currently used for the microsomal stability test, the injection-to-injection cycle time was reduced to 1.5 min (UPLC method) from 3.5 min (HPLC method). The microsome stability results were comparable with those obtained by traditional HPLC/MS/MS.
Tian, Tze-Feng; Wang, San-Yuan; Kuo, Tien-Chueh; Tan, Cheng-En; Chen, Guan-Yuan; Kuo, Ching-Hua; Chen, Chi-Hsin Sally; Chan, Chang-Chuan; Lin, Olivia A; Tseng, Y Jane
2016-11-01
Two-dimensional gas chromatography time-of-flight mass spectrometry (GC×GC/TOF-MS) is superior for chromatographic separation and provides great sensitivity for complex biological fluid analysis in metabolomics. However, GC×GC/TOF-MS data processing is currently limited to vendor software and typically requires several preprocessing steps. In this work, we implement a web-based platform, which we call GC 2 MS, to facilitate the application of recent advances in GC×GC/TOF-MS, especially for metabolomics studies. The core processing workflow of GC 2 MS consists of blob/peak detection, baseline correction, and blob alignment. GC 2 MS treats GC×GC/TOF-MS data as pictures and clusters the pixels as blobs according to the brightness of each pixel to generate a blob table. GC 2 MS then aligns the blobs of two GC×GC/TOF-MS data sets according to their distance and similarity. The blob distance and similarity are the Euclidean distance of the first and second retention times of two blobs and the Pearson's correlation coefficient of the two mass spectra, respectively. GC 2 MS also directly corrects the raw data baseline. The analytical performance of GC 2 MS was evaluated using GC×GC/TOF-MS data sets of Angelica sinensis compounds acquired under different experimental conditions and of human plasma samples. The results show that GC 2 MS is an easy-to-use tool for detecting peaks and correcting baselines, and GC 2 MS is able to align GC×GC/TOF-MS data sets acquired under different experimental conditions. GC 2 MS is freely accessible at http://gc2ms.web.cmdm.tw .
Xu, Wenhai; Que Hee, Shane S
2006-01-06
The aim of this study was to identify and quantify an unknown peak in the chromatogram of a very complex mixture, a straight oil metalworking fluid (MWF). The fraction that permeated through a thin nitrile polymer membrane had less mineral oil background than the original MWF did at the retention time of the unknown peak, thus facilitating identification by total ion current (TIC) gas chromatography-mass spectrometry (GC-MS). The peak proved to be di-n-octyl disulfide (DOD) through retention time and mass spectral comparisons. Quantitation of DOD was by extracted ion chromatogram analysis of the DOD molecular ion (mass-to-charge ratio (m/z) 290), and of the m/z 71 ion for the internal standard, n-triacontane. Linear models of the area ratio (y) of these two ions versus DOD concentration showed a systematic negative bias at low concentrations, a common occurrence in analysis. The linear model of y(0.8) (from Box-Cox power transformation) versus DOD concentration showed negligible bias from the lowest measured standard of 1.51 mg/L to the highest concentration tested at 75.5 mg/L. The intercept did not differ statistically from zero. The concentration of DOD in the MWF was then calculated to be 0.398+/-0.034% (w/w) by the internal standard method, and 0.387+/-0.036% (w/w) by the method of standard additions. These two results were not significantly different at p < or = 0.05. The Box-Cox transformation is therefore recommended when the data for standards are non-linear.
Snyder, A Peter; Dworzanski, Jacek P; Tripathi, Ashish; Maswadeh, Waleed M; Wick, Charles H
2004-11-01
A pyrolysis-gas chromatography-ion mobility spectrometry (Py-GC-IMS) briefcase system has been shown to detect and classify deliberately released bioaerosols in outdoor field scenarios. The bioaerosols included Gram-positive and Gram-negative bacteria, MS-2 coliphage virus, and ovalbumin protein species. However, the origin and structural identities of the pyrolysate peaks in the GC-IMS data space, their microbiological information content, and taxonomic importance with respect to biodetection have not been determined. The present work interrogates the identities of the peaks by inserting a time-of-flight mass spectrometry system in parallel with the IMS detector through a Tee connection in the GC module. Biological substances producing ion mobility peaks from the pyrolysis of microorganisms were identified by their GC retention time, matching of their electron ionization mass spectra with authentic standards, and the National Institutes for Standards and Technology mass spectral database. Strong signals from 2-pyridinecarboxamide were identified in Bacillus samples including Bacillus anthracis, and its origin was traced to the cell wall peptidoglycan macromolecule. 3-Hydroxymyristic acid is a component of lipopolysaccharides in the cell walls of Gram-negative organisms. The Gram-negative Escherichia coli organism showed significant amounts of 3-hydroxymyristic acid derivatives and degradation products in Py-GC-MS analyses. Some of the fatty acid derivatives were observed in very low abundance in the ion mobility spectra, and the higher boiling lipid species were absent. Evidence is presented that the Py-GC-ambient temperature and pressure-IMS system generates and detects bacterial biochemical information that can serve as components of a biological classification scheme directly correlated to the Gram stain reaction in microorganism taxonomy.
Savareear, Benjamin; Lizak, Radoslaw; Brokl, Michał; Wright, Chris; Liu, Chuan; Focant, Jean-Francois
2017-10-20
A method involving headspace solid-phase microextraction (HS-SPME) and comprehensive two-dimensional gas chromatography coupled to time-of-flight mass spectrometry (GC×GC-TOFMS) was developed and optimised to elucidate the volatile composition of the particulate phase fraction of aerosol produced by tobacco heating products (THPs). Three SPME fiber types were studied in terms of extraction capacity and precision measurements. Divinylbenzene polydimethylsiloxane appeared as the most efficient coating for these measurements. A central composite design of experiment was utilised for the optimization of the extraction conditions. Qualitative and semi-quantitative analysis of the headspace above THP aerosol condensate was carried out using optimised extraction conditions. Semi-quantitative analyses of detected constituents were performed by assuming that their relative response factors to the closest internal standard ( i t R ) were equal to 1. Using deconvoluted mass spectral data (library similarity and reverse match >750) and linear retention indices (match window of ±15 index units), 205 peaks were assigned to individual compounds, 82 of which (including 43 substances previously reported to be present in tobacco) have not been reported previously in tobacco aerosol. The major volatile fraction of the headspace contained ketones, alcohols, aldehydes, alicyclic hydrocarbons alkenes, and alkanes. The method was further applied to compare the volatiles from the particulate phase of aerosol composition of THP with that of reference cigarette smoke and showed that the THP produced a less complex chemical mixture. This new method showed good efficiency and precision for the peak areas and peak numbers from the volatile fraction of aerosol particulate phase for both THP and reference cigarettes. Copyright © 2017 Elsevier B.V. All rights reserved.
Brandan, E; González, M; Inestrosa, N C; Tremblay, C; Urrea, R
1992-12-15
Incorporation of radioactive sulfate to hatched veliger larvae of the gastropod muricid Concholepas concholepas indicated that over 87% of the sulfated macromolecules were found in the detergent insoluble fraction, rich in extracellular matrix (ECM) components. The sulfated material was solubilized with guanidine salt followed by urea dialysis and fractionated by DEAE-Sephacel chromatography. Three sulfated compounds eluting at 0.7, 1.1, and 3.0 M NaCl, called peaks I, II, and III, respectively, were obtained. The sulfated compound present in peak I was degraded by pronase or sodium alkaline treatment to a small sulfated resistant material, suggesting the presence of a proteoglycan (PG). Filtration analysis on Sephacryl S-500 and SDS-PAGE of the intact PG indicates that it has a high molecular weight (360,000 to over 1 x 10(6)). Monoclonal antibodies (mAb) against this PG were produced. The specificity of one mAb, the 6H2, was demonstrated by size chromatography and ELISA analysis. The epitope recognized by this mAb seems to be present in the core protein of the PG. Both the extent of sulfation and the presence of different sulfated species of PGs were evaluated during the development of this mollusc. A twelvefold increase in the incorporation of sulfate to PGs per milligram of protein was found in veliger larvae compared to blastula-glastula stages. This change correlated well with the differential expression of the sulfated PG present in peak I. Biochemical and immunological analysis indicate that high levels of this PG are found in veliger and trocophore larvae in comparison with blastula-gastrula and early juveniles.(ABSTRACT TRUNCATED AT 250 WORDS)
Verma, Ashutosh Kumar; Dhawan, Sunita Singh; Singh, Seema; Bharati, Kumar Avinash; Jyotsana
2016-01-01
Background: Gymnema sylvestre, a vulnerable plant species, is mentioned in Indian Pharmacopeia as an antidiabetic drug Objective: Study of genetic and chemical diversity and its implications in accessions of G. sylvestre Materials and Methods: Fourteen accessions of G. sylvestre collected from Central India and assessment of their genetic and chemical diversity were carried out using ISSR (inter simple sequence repeat) and HPLC (high performance liquid chromatography) fingerprinting methods Results: Among the screened 40 ISSR primers, 15 were found polymorphic and collectively produced nine unique accession-specific bands. The maximum and minimum numbers of amplicones were noted for ISSR-15 and ISSR-11, respectively. The ISSR -11 and ISSR-13 revealed 100% polymorphism. HPLC chromatograms showed that accessions possess the secondary metabolites of mid-polarity with considerable variability. Unknown peaks with retention time 2.63, 3.41, 23.83, 24.50, and 44.67 were found universal type. Comparative hierarchical clustering analysis based on foresaid fingerprints indicates that both techniques have equal potential to discriminate accessions according to percentage gymnemic acid in their leaf tissue. Second approach was noted more efficiently for separation of accessions according to their agro-climatic/collection site Conclusion: Highly polymorphic ISSRs could be utilized as molecular probes for further selection of high gymnemic acid yielding accessions. Observed accession specific bands may be used as a descriptor for plant accessions protection and converted into sequence tagged sites markers. Identified five universal type peaks could be helpful in identification of G. sylvestre-based various herbal preparations. SUMMARY Nine accession specific unique bandsFive marker peaks for G. sylvestre.Suitability of genetic and chemical fingerprinting Abbreviations used: HPLC: High Performance Liquid Chromatography, ISSR: Inter Simple Sequence Repeats, CTAB: Cetyl Trimethylammonium Bromide, DNTP: Deoxynucleotide Triphosphates PMID:27761067
Verma, Ashutosh Kumar; Dhawan, Sunita Singh; Singh, Seema; Bharati, Kumar Avinash; Jyotsana
2016-07-01
Gymnema sylvestre , a vulnerable plant species, is mentioned in Indian Pharmacopeia as an antidiabetic drug. Study of genetic and chemical diversity and its implications in accessions of G. sylvestre . Fourteen accessions of G. sylvestre collected from Central India and assessment of their genetic and chemical diversity were carried out using ISSR (inter simple sequence repeat) and HPLC (high performance liquid chromatography) fingerprinting methods. Among the screened 40 ISSR primers, 15 were found polymorphic and collectively produced nine unique accession-specific bands. The maximum and minimum numbers of amplicones were noted for ISSR-15 and ISSR-11, respectively. The ISSR -11 and ISSR-13 revealed 100% polymorphism. HPLC chromatograms showed that accessions possess the secondary metabolites of mid-polarity with considerable variability. Unknown peaks with retention time 2.63, 3.41, 23.83, 24.50, and 44.67 were found universal type. Comparative hierarchical clustering analysis based on foresaid fingerprints indicates that both techniques have equal potential to discriminate accessions according to percentage gymnemic acid in their leaf tissue. Second approach was noted more efficiently for separation of accessions according to their agro-climatic/collection site. Highly polymorphic ISSRs could be utilized as molecular probes for further selection of high gymnemic acid yielding accessions. Observed accession specific bands may be used as a descriptor for plant accessions protection and converted into sequence tagged sites markers. Identified five universal type peaks could be helpful in identification of G. sylvestre -based various herbal preparations. Nine accession specific unique bandsFive marker peaks for G. sylvestre .Suitability of genetic and chemical fingerprinting Abbreviations used: HPLC: High Performance Liquid Chromatography, ISSR: Inter Simple Sequence Repeats, CTAB: Cetyl Trimethylammonium Bromide, DNTP: Deoxynucleotide Triphosphates.
Wang, Xiaogang; Qi, Meiling; Fu, Ruonong
2014-12-05
Here we report the separation performance of a new stationary phase of cucurbit[7]uril (CB7) incorporated into an ionic liquid-based sol-gel coating (CB7-SG) for capillary gas chromatography (GC). The CB7-SG stationary phase showed an average polarity of 455, suggesting its polar nature. Abraham system constants revealed that its major interactions with analytes include H-bond basicity (a), dipole-dipole (s) and dispersive (l) interactions. The CB7-SG stationary phase achieved baseline separation for a wide range of analytes with symmetrical peak shapes and showed advantages over the conventional polar stationary phase that failed to resolve some critical analytes. Also, it exhibited different retention behaviors from the conventional stationary phase in terms of retention times and elution order. Most interestingly, in contrast to the conventional polar phase, the CB7-SG stationary phase exhibited longer retentions for analytes of lower polarity but relatively comparable retentions for polar analytes such as alcohols and phenols. The high resolving ability and unique retention behaviors of the CB7-SG stationary phase may stem from the comprehensive interactions of the aforementioned interactions and shape selectivity. Moreover, the CB7-SG column showed good peak shapes for analytes prone to peak tailing, good thermal stability up to 280°C and separation repeatability with RSD values in the range of 0.01-0.11% for intra-day, 0.04-0.41% for inter-day and 2.5-6.0% for column-to-column, respectively. As demonstrated, the proposed coating method can simultaneously address the solubility problem with CBs for the intended purpose and achieve outstanding GC separation performance. Copyright © 2014 Elsevier B.V. All rights reserved.
Beigi, Farideh; Bertucci, Carlo; Zhu, Weizhong; Chakir, Khalid; Wainer, Irving W; Xiao, Rui-Ping; Abernethy, Darrell R
2006-11-01
rac-Fenoterol is a beta2-adrenoceptor agonist (beta2-AR) used in the treatment of asthma. It has two chiral centers and is marketed as a racemic mixture of R,R'- and S,S'-fenoterol (R-F and S-F). Here we report the separation of the R-F and S-F enantiomers and the evaluation of their binding to and activation of the beta2-AR. R-F and S-F were separated from the enantiomeric mixture by chiral chromatography and absolute configuration determined by circular dichroism. Beta2-AR binding was evaluated using frontal affinity chromatography with a stationary phase containing immobilized membranes from HEK-293 cells that express human beta2-AR and standard membrane binding studies using the same membranes. The effect of R-F and S-F on cardiomyocyte contractility was also investigated using freshly isolated adult rat cardiomyocytes. Chiral chromatography of rac-fenoterol yielded separated peaks with an enantioselectivity factor of 1.21. The less retained peak was assigned the absolute configuration of S-F and the more retained peak R-F. Frontal chromatography using membrane-bound beta2-AR as the stationary phase and rac-3H-fenoterol as a marker ligand showed that addition of increasing concentrations of R-F to the mobile phase produced concentration-dependent decreases in rac-3H-fenoterol retention, while similar addition of S-F produced no change in rac-3H-fenoterol retention. The calculated dissociation constant of R-F was 472 nM and the number of available binding sites 176 pmol/column, which was consistent with the results from the membrane binding study 460 +/- 55 nM (R-F) and 109,000 +/- 10,400 nM (S-F). In the cardiomyocytes, R-F increased maximum contractile response from (265 +/- 11.6)% to (306 +/- 11.8)% of resting cell length (P < 0.05) and reduced EC50 from -7.0 +/- 0.270 to -7.1 +/- 0.2 log[M] (P < 0.05), while S-F had no significant effect. Previous studies have shown that rac-fenoterol acts as an apparent beta2-AR/G(s) selective agonist and fully restores diminished beta2-AR contractile response in cardiomyocytes from failing hearts of spontaneously hypertensive rats (SHR). Here we report the separation of the enantiomers of rac-fenoterol and that R-F is the active component of rac-fenoterol. Further evaluation of R-F will determine if it has enhanced selectivity and specificity for beta2-AR/G(s) activation and if it can be used in the treatment of congestive heart failure. Published 2006 Wiley-Liss, Inc.
Huang, Z H; Gage, D A; Bieber, L L; Sweeley, C C
1991-11-15
A novel approach to the analysis of acylcarnitines has been developed. It involves a direct esterification using propyl chloroformate in aqueous propanol followed by ion-pair extraction with potassium iodide into chloroform and subsequent on-column N-demethylation of the resulting acylcarnitine propyl ester iodides. The products, acyl N-demethylcarnitine propyl esters, are volatile and are easily analyzed by gas chromatography-chemical ionization mass spectrometry. For medium-chain-length (C4-C12) acylcarnitine standards, detection limits are demonstrated to be well below 1 ng starting material using selected ion monitoring. Well-separated gas chromatographic peaks and structure-specific mass spectra are obtained with samples of synthetic and biological origin. Seven acylcarnitines have been characterized in the urine of a patient suffering from medium-chain acyl-CoA dehydrogenase deficiency.
[Investigation on the chromatogram of diterpenoids in Pteris semipinnata by HPLC-APCI-MS].
Deng, Yifeng; Liang, Nianci
2005-04-01
To identify and compare the main peaks of HPLC-APCI-MS FP of the diterpenoids in Pteris semipinnata collected from different region and time, a quadrupole mass spectrometer coupled with atmospheric pressure chemical ionization interface was employed as a detector for HPLC to establish total ion chromatography. HPLC retention time and MS spectrum were used to identify comprehensively. 4F, 5F and 6F were identified from the chromatography comparing with their standards. The saturated state of 6F and glycoside of 4F and 5F were inferred. The content of 5F in samples collected from region of Guangzhou or in Nov. and Dec. were comparatively higher. This method is highly effective and fast,which can be applied to research and develop for diterpenoids in Pteris semipinnata L as new antitumor drug resource.
Characterization of heavy oil by capillary supercritical fluid chromatography
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fuhr, B.J.; Holloway, L.R.; Reichert, C.
1989-01-01
Using supercritical CO/sub 2/ as the mobile phase with a 30m x 100{mu} ID SPB-5 capillary column and temperature of 90{sup 0}C, high boiling fractions of heavy oils could be characterized. A linear restrictor placed as close as possible to the flame ionization detector jet prevented the characteristic spiking often observed in these systems, and also allowed the study of high molecular weight material without plugging of the restrictor. The boiling points of model saturate and aromatic compounds correlate with retention time providing the capability to study heavy oils without exposing them to the high temperature necessary in gas chromatography.more » Individual peaks can be resolved for the n-paraffins in waxes up to C/sub 90/. Primary production, fireflood and steamflood heavy oils and bitumens were compared by this technique.« less
Chun, R; Glabe, C G; Fan, H
1990-01-01
Full-length (86-residue) polypeptide corresponding to the human immunodeficiency virus type 1 tat trans-activating protein was chemically synthesized on a semiautomated apparatus, using an Fmoc amino acid continuous-flow strategy. The bulk material was relatively homogeneous, as judged by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and isoelectric focusing, and it showed trans-activating activity when scrape loaded into cells containing a human immunodeficiency virus long terminal repeat-chloramphenicol acetyl-transferase reporter plasmid. Reverse-phase high-pressure liquid chromatography yielded a rather broad elution profile, and assays across the column for biological activity indicated a sharper peak. Thus, high-pressure liquid chromatography provided for enrichment of biological activity. Fast atom bombardment-mass spectrometry of tryptic digests of synthetic tat identified several of the predicted tryptic peptides, consistent with accurate chemical synthesis. Images PMID:2186178
Petruczynik, Anna; Wroblewski, Karol; Szultka-Mlynska, Malgorzata; Buszewsk, Boguslaw; Karakula-Juchnowicz, Hanna; Gajewski, Jacek; Morylowska-Topolska, Justyna; Waksmundzka-Hajnosi, Monika
2017-05-01
A high performance liquid chromatography (HPLC) method for simultaneous analysis of venlafaxine and its major metabolite 0-desmethylvenlafaxine and vilazodone and its methabolite M10 have been devel- oped and validated. Chromatography was performed on the Phenyl-Hexyl column with mobile phase containing methanol, acetate buffer at pH 3.5 and diethylamine. The application of stationary phase with 7r-7c moieties and mobile phase containing diethylamine as silanol blocker lets to obtain double protection against silanols and thus very high theoretical plate numbers were obtained. The good separation selectivity, good peaks' symmetry and very high systems efficiency for all investigated compounds were obtained in applied chromatographic system. The method is very efficient and suitable for the analysis of investigated drugs and their metabolites in human serum for patients' pharmacotherapy control.
Synthesis of Energetic Polymers.
1981-10-15
demonstrated by a single peak in the gc analysis (injector temperature 2500 C). The reaction will be repeated in a different solvent to avoid the formation of...glass column packed with 10% OV-101 on chrom Q, with n-decane as an internal standard. Rates of polymerization were calculated using the assumption...the Kelen-Tudos method. The disappearance of monomer was monitored by gas chromatography, using a glass column packed with 10% OV-101 on Chrom Q
Correlation of Chemical Characteristics with Fuel Properties by Gas Chromatography.
1981-12-01
Ai2i 788 CORRELATION OF CHEMICAL CHARACTERISTICS WITH FUEL / PROPERTIES BY GAS CHROM ..(U) SOUTHWEST RESEARCH INST SAN ANTONIO TX ARMY FUELS AND...to provide peak resolution comparable to, but somewhat improved over those currently in use at the Aero Propulsion Labora- * tory where similar fuels...Chromatographic Science, Vol. 13, February 1975. 18. Stavinoha, L.L., "Boiling Point Distribution of Gasoline by Gas Chrom - atography," U.S. Army Fuels
Electrosorptive Detection of Simple Organic Compounds in Liquid Chromatography.
1987-09-30
that there is some "noise" in the azelaic acid peak. Similar noise was also noted for other highly hydrophobic/surface-active compounds. .- Amines...3 97 ’For 20-jtL injections of 10 wm( concentration, E -- 0.525 V. 2Relative to glutaric acid . 3Higher (succinic) and lower ( azelaic , sebacic...dicarboxylic - acids , aminies, and -~anolamines. The difffeirential capacitance measurements were condte le zeo h gwhere adsorption of such species is most
Song, Huiying; Vanderheyden, Yoachim; Adams, Erwin; Desmet, Gert; Cabooter, Deirdre
2016-07-15
Diffusion plays an important role in all aspects of band broadening in chromatography. An accurate knowledge of molecular diffusion coefficients in different mobile phases is therefore crucial in fundamental column performance studies. Correlations available in literature, such as the Wilke-Chang equation, can provide good approximations of molecular diffusion under reversed-phase conditions. However, these correlations have been demonstrated to be less accurate for mobile phases containing a large percentage of acetonitrile, as is the case in hydrophilic interaction liquid chromatography. A database of experimentally measured molecular diffusion coefficients of some 45 polar and apolar compounds that are frequently used as test molecules under hydrophilic interaction liquid chromatography and reversed-phase conditions is therefore presented. Special attention is given to diffusion coefficients of polar compounds obtained in large percentages of acetonitrile (>90%). The effect of the buffer concentration (5-10mM ammonium acetate) on the obtained diffusion coefficients is investigated and is demonstrated to mainly influence the molecular diffusion of charged molecules. Diffusion coefficients are measured using the Taylor-Aris method and hence deduced from the peak broadening of a solute when flowing through a long open tube. The validity of the set-up employed for the measurement of the diffusion coefficients is demonstrated by ruling out the occurrence of longitudinal diffusion, secondary flow interactions and extra-column effects, while it is also shown that radial equilibration in the 15m long capillary is effective. Copyright © 2016 Elsevier B.V. All rights reserved.
Bromate peak distortion in ion chromatography in samples containing high chloride concentrations.
Pappoe, Michael K; Naeeni, Mohammad Hosein; Lucy, Charles A
2016-04-29
In this study, the effect of column overload of the matrix ion, chloride, on the elution peak profiles of trace bromate is investigated. The resultant peak profiles of chloride and bromate are explained on the basis of competitive Langmuir isotherms. The Thermo IonPac AS9-HC, AS19 and AS23 columns are recommended by the manufacturer for bromate (a carcinogen) analysis. Under trace conditions, these columns provide baseline resolution of bromate from matrix ions such as chloride (Rs=2.9, 3.3 and 3.2, respectively for the three columns). Injection of 10-300 mM chloride with both hydroxide and carbonate eluents resulted in overload on these columns. On the basis of competitive Langmuir isotherms, a deficiency in the local concentration of the more retained eluent in addition to analyte overload leads to fronting of the overloaded analyte peak. The peak asymmetries (B/A10%) for chloride changed from 1.0 (Gaussian) under trace conditions to 0.7 (fronting) at 300 mM Cl(-) for IonPac AS9-HC, 0.9-0.6 for AS19 and 0.8-0.5, for AS23, respectively. The 10mM bromate peak is initially near Gaussian (B/A10%=0.9) but becomes increasingly distorted and pulled back into the chloride peak as the concentration of chloride increased. Increasing the eluent strength reduced the pull-back effect on bromate and fronting in chloride in all cases. Copyright © 2016 Elsevier B.V. All rights reserved.
Schollenberger, Martin; Radke, Wolfgang
2011-10-28
A gradient ranging from methanol to tetrahydrofuran (THF) was applied to a series of poly(methyl methacrylate) (PMMA) standards, using the recently developed concept of SEC-gradients. Contrasting to conventional gradients the samples eluted before the solvent, i.e. within the elution range typical for separations by SEC, however, the high molar mass PMMAs were retarded as compared to experiments on the same column using pure THF as the eluent. The molar mass dependence on retention volume showed a complex behaviour with a nearly molar mass independent elution for high molar masses. This molar mass dependence was explained in terms of solubility and size exclusion effects. The solubility based SEC-gradient was proven to be useful to separate PMMA and poly(n-butyl crylate) (PnBuA) from a poly(t-butyl crylate) (PtBuA) sample. These samples could be separated neither by SEC in THF, due to their very similar hydrodynamic volumes, nor by an SEC-gradient at adsorbing conditions, due to a too low selectivity. The example shows that SEC-gradients can be applied not only in adsorption/desorption mode, but also in precipitation/dissolution mode without risking blocking capillaries or breakthrough peaks. Thus, the new approach is a valuable alternative to conventional gradient chromatography. Copyright © 2011 Elsevier B.V. All rights reserved.
Sun, Mingzhe; Lidén, Gunnar; Sandahl, Margareta; Turner, Charlotta
2016-08-01
Traditional chromatographic methods for the analysis of lignin-derived phenolic compounds in environmental samples are generally time consuming. In this work, an ultra-high performance supercritical fluid chromatography method with a diode array detector for the analysis of major lignin-derived phenolic compounds produced by alkaline cupric oxide oxidation was developed. In an analysis of a collection of 11 representative monomeric lignin phenolic compounds, all compounds were clearly separated within 6 min with excellent peak shapes, with a limit of detection of 0.5-2.5 μM, a limit of quantification of 2.5-5.0 μM, and a dynamic range of 5.0-2.0 mM (R(2) > 0.997). The new ultra-high performance supercritical fluid chromatography method was also applied for the qualitative and quantitative analysis of lignin-derived phenolic compounds obtained upon alkaline cupric oxide oxidation of a commercial humic acid. Ten out of the previous eleven model compounds could be quantified in the oxidized humic acid sample. The high separation power and short analysis time obtained demonstrate for the first time that supercritical fluid chromatography is a fast and reliable technique for the analysis of lignin-derived phenols in complex environmental samples. © 2016 The Authors, Journal of Separation Science Published by WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
A high pressure liquid chromatography method for separation of prolactin forms.
Bell, Damon A; Hoad, Kirsten; Leong, Lillian; Bakar, Juwaini Abu; Sheehan, Paul; Vasikaran, Samuel D
2012-05-01
Prolactin has multiple forms and macroprolactin, which is thought not to be bioavailable, can cause a raised serum prolactin concentration. Gel filtration chromatography (GFC) is currently the gold standard method for separating macroprolactin, but is labour-intensive. Polyethylene glycol (PEG) precipitation is suitable for routine use but may not always be accurate. We developed a high pressure liquid chromatography (HPLC) assay for macroprolactin measurement. Chromatography was carried out using an Agilent Zorbax GF-250 (9.4 × 250 mm, 4 μm) size exclusion column and 50 mmol/L Tris buffer with 0.15 mmol/L NaCl at pH 7.2 as mobile phase, with a flow rate of 1 mL/min. Serum or plasma was diluted 1:1 with mobile phase and filtered and 100 μL injected. Fractions of 155 μL were collected for prolactin measurement and elution profile plotted. The area under the curve of each prolactin peak was calculated to quantify each prolactin form, and compared with GFC. Clear separation of monomeric-, big- and macroprolactin forms was achieved. Quantification was comparable to GFC and precision was acceptable. Total time from injection to collection of the final fraction was 16 min. We have developed an HPLC method for quantification of macroprolactin, which is rapid and easy to perform and therefore can be used for routine measurement.
He, Min; Yan, Pan; Yang, Zhi-Yu; Zhang, Zhi-Min; Yang, Tian-Biao; Hong, Liang
2018-03-15
Head Space/Solid Phase Micro-Extraction (HS-SPME) coupled with Gas Chromatography/Mass Spectrometer (GC/MS) was used to determine the volatile/heat-labile components in Ligusticum chuanxiong Hort - Cyperus rotundus rhizomes. Facing co-eluting peaks in k samples, a trilinear structure was reconstructed to obtain the second-order advantage. The retention time (RT) shift with multi-channel detection signals for different samples has been vital in maintaining the trilinear structure, thus a modified multiscale peak alignment (mMSPA) method was proposed in this paper. The peak position and peak width of representative ion profile were firstly detected by mMSPA using Continuous Wavelet Transform with Haar wavelet as the mother wavelet (Haar CWT). Then, the raw shift was confirmed by Fast Fourier Transform (FFT) cross correlation calculation. To obtain the optimal shift, Haar CWT was again used to detect the subtle deviations and be amalgamated in calculation. Here, to ensure there is no peaks shape alternation, the alignment was performed in local domains of data matrices, and all data points in the peak zone were moved via linear interpolation in non-peak parts. Finally, chemical components of interest in Ligusticum chuanxiong Hort - Cyperus rotundus rhizomes were analyzed by HS-SPME-GCMS and mMSPA-alternating trilinear decomposition (ATLD) resolution. As a result, the concentration variation between herbs and their pharmaceutical products can provide a scientific basic for the quality standard establishment of traditional Chinese medicines. Copyright © 2018 Elsevier B.V. All rights reserved.
Identification of Active Compounds in the Root of Merung (Coptosapelta tomentosa Valeton K. Heyne)
NASA Astrophysics Data System (ADS)
Fitriyana
2018-04-01
The roots of Merung (Coptosapelta tomentosa Valeton K. Heyne) are a group of shrubs usually found on the margins of secondary dryland forest. Empirically, local people have been using the roots of Merung for medical treatment. However, some researches show that the plant extract is used as a poisonous material applied on the tip of the arrow (dart). Based on the online literature study, there are less than 5 articles that provide information about the active compound of this root extract. This study aimed to give additional information more deeply about the content of active compound of Merung root extract in three fractions, n-hexane (nonpolar), ethyl acetate (semi polar) and methanol (polar). The extract was then analysed using Gas Chromatography-Mass Spectrometry (GC-MS). GC-MS analysis of root extract in n-hexane showed there were 56 compounds, with the main compound being decanoic acid, methyl ester (peak 5, 10.13%), 11-Octadecenoic acid, methyl ester (peak 15, 10.43%) and 1H-Pyrazole, 3- (4-chlorophenyl) -4, 5-dihydro-1-phenyl (peak 43, 11.25%). Extracts in ethyl acetate fraction obtained 81 compounds. The largest component is Benzoic acid (peak 19, 22.40%), whereas in methanol there are 38 compounds, of which the main component is 2-Furancarboxaldehyde, 5-(hydroxyl methyl) (peak 29, 30.46%).
NASA Astrophysics Data System (ADS)
Miller, Tristan L.; Zhang, Wentao; Ma, Jonathan; Eisaki, Hiroshi; Moore, Joel E.; Lanzara, Alessandra
2018-04-01
Because of the important role of electron-boson interactions in conventional superconductivity, it has long been asked whether any similar mechanism is at play in high-temperature cuprate superconductors. Evidence for strong electron-boson coupling is observed in cuprates with angle-resolved photoemission spectroscopy (ARPES), in the form of a dispersion kink and peak-dip-hump structure. What is missing is evidence of a causal relation to superconductivity. Here we revisit the problem using the technique of time-resolved ARPES on Bi2Sr2CaCu2O8 +δ . We focus on the peak-dip-hump structure, and show that laser pulses shift spectral weight into the dip as superconductivity is destroyed on picosecond time scales. We compare our results to simulations of Eliashberg theory in a superconductor with an Einstein boson, and find that the magnitude of the shift in spectral weight depends on the degree to which the bosonic mode contributes to superconductivity. Further study could address one of the longstanding mysteries of high-temperature superconductivity.
Evaluation of Muscle Damage Marker after Mixed Martial Arts Matches
Wiechmann, Gerald Julius; Saygili, Erol; Zilkens, Christoph; Krauspe, Rüdiger; Behringer, Michael
2016-01-01
The aim of this paper is to identify predictors of serum muscle damage marker (MDM) response following mixed martial arts (MMA) matches. Creatine kinase activity (CK) and myoglobin concentration (Mb) were measured in ten male elite MMA fighters (aged 28±5.7 years) prior to, 2 h, 24 h, and 96 h following 9 different MMA matches. The number of performed upright punches and kicks (UKF) that failed the opponent, the number of obtained hits to the upper and lower body (LBH), as well as the total fight duration (TFD) were evaluated as potential predictors from video recordings. CK peaked 24 h (829±753 U/L-1) and Mb peaked 2 h (210±122 µg/L-1) post matches. Almost 80% of the peak CK variance could be explained by LBH and UKF, whereas 87% of the Mb variation was explained by TFD and LBH. MMA result in a significant skeletal muscle damage, which largely depends on LBH. Furthermore, eccentric contractions to decelerate kicks that missed the opponent and the TFD seem to contribute to the MDM response. PMID:27114809
Evaluation of Muscle Damage Marker after Mixed Martial Arts Matches.
Wiechmann, Gerald Julius; Saygili, Erol; Zilkens, Christoph; Krauspe, Rüdiger; Behringer, Michael
2016-03-21
The aim of this paper is to identify predictors of serum muscle damage marker (MDM) response following mixed martial arts (MMA) matches. Creatine kinase activity (CK) and myoglobin concentration (Mb) were measured in ten male elite MMA fighters (aged 28±5.7 years) prior to, 2 h, 24 h, and 96 h following 9 different MMA matches. The number of performed upright punches and kicks (UKF) that failed the opponent, the number of obtained hits to the upper and lower body (LBH), as well as the total fight duration (TFD) were evaluated as potential predictors from video recordings. CK peaked 24 h (829±753 U/L(-1)) and Mb peaked 2 h (210±122 µg/L(-1)) post matches. Almost 80% of the peak CK variance could be explained by LBH and UKF, whereas 87% of the Mb variation was explained by TFD and LBH. MMA result in a significant skeletal muscle damage, which largely depends on LBH. Furthermore, eccentric contractions to decelerate kicks that missed the opponent and the TFD seem to contribute to the MDM response.
NASA Astrophysics Data System (ADS)
Whalley, L.; Ye, C.; Slater, E.; Woodward-Massey, R.; Lee, J. D.; Squires, F. A.; Hopkins, J. R.; Dunmore, R.; Shaw, M.; Hamilton, J.; Lewis, A. C.; Crilley, L.; Kramer, L. J.; Bloss, W.; Heard, D. E.
2017-12-01
Despite substantial reductions in primary emissions of pollutants in China over the past decade, concentrations of the secondary pollutant, ozone, still frequently exceed air quality threshold limits in urban areas during the summertime. We will present measurements of OH, HO2 and RO2 radicals and OH reactivity made in central Beijing at the Institute of Atmospheric Physics of the Chinese Academy of Sciences, close to the North 4th ring road in May and June 2017 which formed the summer phase of `An Integrated Study of AIR Pollution PROcesses'. Elevated levels of O3 (>100 ppbv) were regularly observed. NO concentrations were elevated during the morning but often decreased to below the instrument limit of detection during the afternoon hours when the ozone concentrations peaked. Biogenic emissions influenced the chemistry at the site, with several ppbv of isoprene measured during the afternoons. The OH measurements were made using the FAGE technique, equipped with an inlet pre injector (IPI) which provides an alternative method to determine the instrument background signal by injecting a scavenger to remove ambient OH and ensures an artefact-free OH measurement. Elevated levels of OH were observed, with a mean peak OH concentration of 1.2×107 molecule cm-3 at noon; but with OH concentrations reaching up to 2.5×107 molecule cm-3 on some days. Mean peak HO2 concentrations of 3×108 molecule cm-3 and total RO2 of 1.2×109 molecule cm-3 were recorded, with maximum concentrations of 1.0×109 molecule cm-3 and 4×109 molecule cm-3 observed for HO2 and RO2 respectively, suggesting significant in situ ozone production. A comparison of the artefact-free OH observations with steady state calculations, constrained to the total OH reactivity measurement and known OH precursors that were measured alongside OH, highlights a significant missing daytime OH source under low [NO], with the steady state OH concentrations approximately a factor of two lower than the OH concentrations observed at noon. The magnitude of this missing OH source is similar to the unexplained OH concentrations reported from other studies in China under low NO conditions as well as studies made in rainforests, implying that the uncertainty in the oxidation chemistry determined from observations in forested regions is relevant to the chemistry in urban regions also.
Data reduction of isotope-resolved LC-MS spectra.
Du, Peicheng; Sudha, Rajagopalan; Prystowsky, Michael B; Angeletti, Ruth Hogue
2007-06-01
Data reduction of liquid chromatography-mass spectrometry (LC-MS) spectra can be a challenge due to the inherent complexity of biological samples, noise and non-flat baseline. We present a new algorithm, LCMS-2D, for reliable data reduction of LC-MS proteomics data. LCMS-2D can reliably reduce LC-MS spectra with multiple scans to a list of elution peaks, and subsequently to a list of peptide masses. It is capable of noise removal, and deconvoluting peaks that overlap in m/z, in retention time, or both, by using a novel iterative peak-picking step, a 'rescue' step, and a modified variable selection method. LCMS-2D performs well with three sets of annotated LC-MS spectra, yielding results that are better than those from PepList, msInspect and the vendor software BioAnalyst. The software LCMS-2D is available under the GNU general public license from http://www.bioc.aecom.yu.edu/labs/angellab/as a standalone C program running on LINUX.
Xu, Fa-Xiang; Yuan, Cen; Wan, Jian-Bo; Yan, Ru; Hu, Hao; Li, Shao-Ping; Zhang, Qing-Wen
2015-01-01
A novel strategy for the qualitative and quantitative determination of 20(S)-protopanaxatriol saponins (PTS) and 20(S)-protopanaxadiol saponins (PDS) in Panax notoginseng, Panax ginseng and Panax quinquefolium, based on the overlapping peaks of main components of PTS (calibrated by ginsenoside Rg1) and PDS (calibrated by ginsenoside Rb1), was proposed. The analysis was performed by using high-performance liquid chromatography coupled with evaporative light scattering detection (HPLC-ELSD). Under specific chromatographic conditions, all samples showed two overlapping peaks containing several main ginsenosides belonging to PTS and PDS, respectively. The overlapping peaks were also identified by using HPLC-MS. Based on the sum and ratio of PTS and PDS, 60 tested Panax samples were divided into three main clusters according to their species. The findings suggested that this strategy provides a simple and rapid approach to quantify PTS and PDS in Panax herbs.
Flood of May 27-28, 1954, in Panola and Lafayette Counties, Mississippi
Goines, W.H.
1955-01-01
As a result of heavy rains during the late afternoon and night of May 27, 1954, record-breaking floods occurred on small streams in Panola and Lafayette Counties. All flooding was in rural areas, and no loss of life was reported. The Agriculture Stabilization Committees at Sardis and at Oxford estimated the crop and soil losses in Panola county as $400,000, and in Lafayette County as $25,000. The total damage to county roads and State highways was estimated to be in excess of $25,000. The purpose of this report is to present rainfall information and more detailed runoff data than are found in the regular Water Supply Papers. The report contains a summary of peak discharges at 10 miscellaneous sites and a detailed record of discharge at the gaging station Clear Creek near Oxford, Miss. Field investigation incident to this report were conducted by members of the District Office, U.S. Geological Survey, Jackson, Miss., I. E. Anderson, District Engineer.
Grall; Leonard; Sacks
2000-02-01
Recent advances in column heating technology have made possible very fast linear temperature programming for high-speed gas chromatography. A fused-silica capillary column is contained in a tubular metal jacket, which is resistively heated by a precision power supply. With very rapid column heating, the rate of peak-capacity production is significantly enhanced, but the total peak capacity and the boiling-point resolution (minimum boiling-point difference required for the separation of two nonpolar compounds on a nonpolar column) are reduced relative to more conventional heating rates used with convection-oven instruments. As temperature-programming rates increase, elution temperatures also increase with the result that retention may become insignificant prior to elution. This results in inefficient utilization of the down-stream end of the column and causes a loss in the rate of peak-capacity production. The rate of peak-capacity production is increased by the use of shorter columns and higher carrier gas velocities. With high programming rates (100-600 degrees C/min), column lengths of 6-12 m and average linear carrier gas velocities in the 100-150 cm/s range are satisfactory. In this study, the rate of peak-capacity production, the total peak capacity, and the boiling point resolution are determined for C10-C28 n-alkanes using 6-18 m long columns, 50-200 cm/s average carrier gas velocities, and 60-600 degrees C/min programming rates. It was found that with a 6-meter-long, 0.25-mm i.d. column programmed at a rate of 600 degrees C/min, a maximum peak-capacity production rate of 6.1 peaks/s was obtained. A total peak capacity of about 75 peaks was produced in a 37-s long separation spanning a boiling-point range from n-C10 (174 degrees C) to n-C28 (432 degrees C).
Reproducibility of the water drinking test.
Muñoz, C R; Macias, J H; Hartleben, C
2015-11-01
To investigate the reproducibility of the water drinking test in determining intraocular pressure peaks and fluctuation. It has been suggested that there is limited agreement between the water drinking test and diurnal tension curve. This may be because it has only been compared with a 10-hour modified diurnal tension curve, missing 70% of IOP peaks that occurred during night. This was a prospective, analytical and comparative study that assesses the correlation, agreement, sensitivity and specificity of the water drinking test. The correlation between the water drinking test and diurnal tension curve was significant and strong (r=0.93, Confidence interval 95% between 0.79 and 0.96, p<01). A moderate agreement was observed between these measurements (pc=0.93, Confidence interval 95% between 0.87 and 0.95, p<.01). The agreement was within±2mmHg in 89% of the tests. Our study found a moderate agreement between the water drinking test and diurnal tension curve, in contrast with the poor agreement found in other studies, possibly due to the absence of nocturnal IOP peaks. These findings suggest that the water drinking test could be used to determine IOP peaks, as well as for determining baseline IOP. Copyright © 2014 Sociedad Española de Oftalmología. Published by Elsevier España, S.L.U. All rights reserved.
NASA Technical Reports Server (NTRS)
Sheverev, V. A.; Khromov, N. A.; Kojiro, D. R.; Fonda, Mark (Technical Monitor)
2002-01-01
Admixtures to helium of 100 ppm and 5 ppm of nitrogen, and 100 ppm and 10 ppm of carbon monoxide were identified and measured in the helium discharge afterglow using an electrical probe placed into the plasma. For nitrogen and carbon monoxide gases, the measured electron energy spectra display distinct characteristic peaks (fingerprints). Location of the peaks on the energy scale is determined by the ionization energies of the analyte molecules. Nitrogen and carbon monoxide fingerprints were also observed in a binary mixture of these gases in helium, and the relative concentration analytes has been predicted. The technically simple and durable method is considered a good candidate for a number of analytical applications, and in particular, in GC and for analytical flight instrumentation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
DeMark, B.R.; Klein, P.D.
1981-01-01
The ammonia chemical ionization mass spectra of 28 methyl ester acetate derivatives of bile acids and related compounds have been determined by gas-liquid chromatography-mass spectrometry. Advantages of ammonia ionization over the previously studied isobutane ionization include a 130 to 270% enhancement in the sensitivity of base peak monitoring, and direct determination of molecular weight from the base peak (M + NH/sub 4//sup +/) in the mass spectrum of any of the derivatives. Minor ions in the ammonia spectra also allow selective detection of 3-keto compounds and can indicate unsaturation or double bond conjugation in the molecule. The significance of thesemore » studies for the detection and quantitation of bile acids is discussed. 2 tables.« less
Pentaerythritol Tetranitrate (PETN) Surveillance by HPLC-MS: Instrumental Parameters Development
DOE Office of Scientific and Technical Information (OSTI.GOV)
Harvey, C A; Meissner, R
Surveillance of PETN Homologs in the stockpile here at LLNL is currently carried out by high performance liquid chromatography (HPLC) with ultra violet (UV) detection. Identification of unknown chromatographic peaks with this detection scheme is severely limited. The design agency is aware of the limitations of this methodology and ordered this study to develop instrumental parameters for the use of a currently owned mass spectrometer (MS) as the detection system. The resulting procedure would be a ''drop-in'' replacement for the current surveillance method (ERD04-524). The addition of quadrupole mass spectrometry provides qualitative identification of PETN and its homologs (Petrin, DiPEHN,more » TriPEON, and TetraPEDN) using a LLNL generated database, while providing mass clues to the identity of unknown chromatographic peaks.« less
Heal, Katherine R; Carlson, Laura Truxal; Devol, Allan H; Armbrust, E Virginia; Moffett, James W; Stahl, David A; Ingalls, Anitra E
2014-11-30
Vitamin B(12) is an essential nutrient for more than half of surveyed marine algae species, but methods for directly measuring this important cofactor in seawater are limited. Current mass spectrometry methods do not quantify all forms of B(12), potentially missing a significant portion of the B(12) pool. We present a method to measure vitamins B(1), B(2), B(6), B(7) and four forms of B(12) dissolved in seawater. The method entails solid-phase extraction, separation by ultra-performance liquid chromatography, and detection by triple-quadrupole tandem mass spectrometry using stable-isotope-labeled internal standards. We demonstrated the use of this method in the environment by analyzing B(12) concentrations at different depths in the Hood Canal, part of the Puget Sound estuarine system in Washington State. Recovery of vitamin B(12) forms during the preconcentration steps was >71% and the limits of detection were <0.275 pM in seawater. Standard addition calibration curves in three different seawater matrices were used to determine analytical response and to quantify samples from the environment. Hydroxocobalamin was the main form of B(12) in seawater at our field site. We developed a method for quantifying four forms of B(12) in seawater by liquid chromatography/mass spectrometry with the option of simultaneous analysis of vitamins B(1), B(2), B(6), and B(7). We validated the method and demonstrated its application in the field. Copyright © 2014 John Wiley & Sons, Ltd.
Dynamic analysis of Apollo-Salyut/Soyuz docking
NASA Technical Reports Server (NTRS)
Schliesing, J. A.
1972-01-01
The use of a docking-system computer program in analyzing the dynamic environment produced by two impacting spacecraft and the attitude control systems is discussed. Performance studies were conducted to determine the mechanism load and capture sensitivity to parametric changes in the initial impact conditions. As indicated by the studies, capture latching is most sensitive to vehicle angular-alinement errors and is least sensitive to lateral-miss error. As proved by load-sensitivity studies, peak loads acting on the Apollo spacecraft are considerably lower than the Apollo design-limit loads.
2014-01-01
UNCLASSIFIED b . ABSTRACT UNCLASSIFIED c. THIS PAGE UNCLASSIFIED UNLIMITED 8 19b. TELEPHONE NUMBER (include area code) 410-436-4412 Standard Form 298...plates (N), retention fac- tor ( k ), separation factor (α), and resolution (RS). 16 Parameters were used to verify both the enantioselectivity and the...time, tR, was determined by averaging the time to peak max- ima from subsequent injections. Calculation of k was carried out using the following
Investigation of Soman Adducts of Human Hemoglobin by Liquid Chromatography
2004-04-01
acid standard, with fifteen primary amino acids , was used to evaluate and refine the chromatographic methods . An LC/MS/MS was used to analyze the non...several chromatographic conditions and stationary phases were used to create an LC/MS/MS method to directly analyze the amino acids , these studies...terminated because of a lack of resolution of the amino acid peaks. Also, initial attempts to develop an HPLC method to separate individual amino acids
2013-09-30
ion modes. The resulting chromatograms were then processed using XCMS (alignment and peak picking ). The data were processed with in-house...UHPLC liquid chromatography Fourier transform ion cyclotron resonance (FT-ICR) mass spectrometry ( MS ). A standard method was developed for rapid analysis...extraction protocols and then implemented LC- MS / MS analyses on our Thermo Fisher Scientific TSQ Vantage triple quadrupole mass spectrometer. This
Huang, Zhongping; Ni, Chengzhu; Zhu, Zhuyi; Pan, Zaifa; Wang, Lili; Zhu, Yan
2015-05-01
The application of ion chromatography with the single pump cycling-column-switching technique was described for the analysis of trace inorganic anions in weak acid salts within a single run. Due to the hydrogen ions provided by an anion suppressor electrolyzing water, weak acid anions could be transformed into weak acids, existing as molecules, after passing through the suppressor. Therefore, an anion suppressor and ion-exclusion column were adopted to achieve on-line matrix elimination of weak acid anions with high concentration for the analysis of trace inorganic anions in weak acid salts. A series of standard solutions consisting of target anions of various concentrations from 0.005 to 10 mg/L were analyzed, with correlation coefficients r ≥ 0.9990. The limits of detection were in the range of 0.67 to 1.51 μg/L, based on the signal-to-noise ratio of 3 and a 25 μL injection volume. Relative standard deviations for retention time, peak area, and peak height were all less than 2.01%. A spiking study was performed with satisfactory recoveries between 90.3 and 104.4% for all anions. The chromatographic system was successfully applied to the analysis of trace inorganic anions in five weak acid salts. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Rodríguez-Sánchez, S; García-Sarrió, M J; Quintanilla-López, J E; Soria, A C; Sanz, M L
2015-12-04
A method by hydrophilic interaction liquid chromatography coupled to tandem mass spectrometry (HILIC-MS(2)) has been successfully developed for the simultaneous analysis of bioactive iminosugars and other low molecular weight carbohydrates in Aglaonema leaf extracts. Among other experimental chromatographic conditions, mobile phase eluents, additives and column temperature were evaluated in terms of retention time, resolution, peak width and symmetry provided for target carbohydrates. In general, narrow peaks (wh: 0.2-0.6min) with good symmetry (As: 0.9-1.3) and excellent resolution (Rs>1.8) were obtained for iminosugars using an acetonitrile:water gradient with 5mM ammonium acetate in both eluents at 55°C. Tandem mass spectra were used to confirm the presence of previously detected iminosugars in Aglaonema extracts and to tentatively identify for the first time others such as miglitol isomer, glycosyl-miglitol isomers and glycosyl-DMDP isomers. Concentration of total iminosugars varied from 1.35 to 2.84mgg(-1) in the extracts of the different Aglaonema samples analyzed. To the best of our knowledge, this is the first time that a HILIC-MS(2) method has been proposed for the simultaneous analysis of iminosugars and other low molecular weight carbohydrates of Aglaonema sp. extracts. Copyright © 2015 Elsevier B.V. All rights reserved.
[Separation and identification of red pigments in natural red yolk of duck's eggs by HPLC-MS-MS].
Liu, Liangzhong; Zhang, Min; Peng, Guanghua; Wang, Haibin; Zhang, Shenghua
2004-05-01
The natural red yolk of duck's eggs is produced by the laying duck in the lake areas in southward of China. In the laying duck breeding areas such as Honghu, Jianli, Xiantao, Tianmen and Hanchuan citys in Hubei Province, the culturists are used to feeding fresh pondweeds to the laying ducks. The yolk of duck's eggs is natural red with the chrominance reaching up to and/or above RCF (Roche Yolk Color Fan) 15. The red pigment components of natural red yolk of duck's eggs were separated and identified by thin layer chromatography (TLC), high performance liquid chromatography-mass spectrometry-mass spectrometry (HPLC-MS-MS) and high resolution electron impact-mass spectrometry (EI-MS). Four isomers of red pigments were separated by HPLC on a RP-C18 column with methanol-water (99.5:0.5, v/v) as mobile phase. The lambda(max) of the four components were 482, 488, 496, 501 nm, respectively, and all of them were single peak on chromatogram. They had the same molecular mass (Mr = 562), and had the same fragment peaks of MS2 with rhodoxanthin. The molecular formula of red pigments was determined as C40H50O2 by high resolution EI-MS. The results indicate that the red pigment is rhodoxanthin, and they are all cis-isomers of rhodoxanthin.
Boysen, Angela K; Heal, Katherine R; Carlson, Laura T; Ingalls, Anitra E
2018-01-16
The goal of metabolomics is to measure the entire range of small organic molecules in biological samples. In liquid chromatography-mass spectrometry-based metabolomics, formidable analytical challenges remain in removing the nonbiological factors that affect chromatographic peak areas. These factors include sample matrix-induced ion suppression, chromatographic quality, and analytical drift. The combination of these factors is referred to as obscuring variation. Some metabolomics samples can exhibit intense obscuring variation due to matrix-induced ion suppression, rendering large amounts of data unreliable and difficult to interpret. Existing normalization techniques have limited applicability to these sample types. Here we present a data normalization method to minimize the effects of obscuring variation. We normalize peak areas using a batch-specific normalization process, which matches measured metabolites with isotope-labeled internal standards that behave similarly during the analysis. This method, called best-matched internal standard (B-MIS) normalization, can be applied to targeted or untargeted metabolomics data sets and yields relative concentrations. We evaluate and demonstrate the utility of B-MIS normalization using marine environmental samples and laboratory grown cultures of phytoplankton. In untargeted analyses, B-MIS normalization allowed for inclusion of mass features in downstream analyses that would have been considered unreliable without normalization due to obscuring variation. B-MIS normalization for targeted or untargeted metabolomics is freely available at https://github.com/IngallsLabUW/B-MIS-normalization .
Tan, H S; Sih, R; Moseley, S E; Lichtin, J L
1984-05-18
A simple assay method for the quality control of some sunscreen products containing padimate-O and oxybenzone has been developed. A methanolic extract of the product containing sulfathiazole internal standard was subjected to reversed-phase high-performance liquid chromatography on a 10-micron Partisil ODS-2 column with methanol-acetonitrile (90:10, v/v) mobile phase. The drug-sulfathiazole peak height ratio was linear between 0.04-2.68 micrograms of padimate-O (r = 1.0003) and 0.02-1.05 micrograms of oxybenzone (r = 0.9997) injected. All peaks were well-resolved. Approximate retention times for sulfathiazole, oxybenzone and padimate-O were 3.9, 5.7 and 7.4 min., respectively. The height equivalent to a theoretical plate (+/- S.D.) were (n = 10) 0.79 +/- 0.07, 0.53 +/- 0.06 and 0.26 +/- 0.04 mm, for sulfathiazole, oxybenzone and padimate-O, respectively. Average percent recoveries (+/- S.D.) (n = 3) from simulated lotions containing 7% padimate-O and 3% oxybenzone were: padimate-O, 101.4 +/- 1.5%; oxybenzone 99.9 +/- 1.9%; from simulated lipsticks containing (a) 7% padimate-O and 3% oxybenzone: 103.8 +/- 1.2% and 100.1 +/- 0.9%, respectively; and (b) 7% padimate-O and 0.5% oxybenzone: 99.4 +/- 0.6% and 99.3 +/- 2.4%, respectively. The method was successfully applied to marketed products.
Establishment and application of milk fingerprint by gel filtration chromatography.
Gao, P; Li, J; Li, Z; Hao, J; Zan, L
2016-12-01
Raw milk adulteration frequently occurs in undeveloped countries. It not only reduces the nutritional value of milk, but it is also harmful to consumers. In this paper, we focused on investigating an efficient method for the quality control of raw milk protein. A gel filtration chromatography (GFC) fingerprint method combined with chemometrics was developed for fingerprint analysis of raw milk. To optimize the GFC conditions, milk fat was removed by centrifugation, and GFC analysis was performed on a Superdex 75 10/300GL column (Just Scientific, Shanghai, China) with 0.2 M NaH 2 PO 4 -Na 2 HPO 4 buffer (pH 7.0) as the mobile phase. The flow rate was 0.5mL/min, and the detection wavelength was set at 280 nm. Ten batches of 120 raw milk samples were analyzed to establish the GFC fingerprint under optimal conditions. Six major peaks common to the chromatogram of each raw milk sample were selected for fingerprint analysis, and the characteristic peaks were used to establish a standard chromatographic fingerprint. Principal component analysis was then applied to classify GFC information of adulterated milk and raw milk, allowing adulterated samples to be effectively screened out from the raw milk in principal component analysis scores plot. The fingerprint method demonstrates promising features in detecting milk protein adulteration. Copyright © 2016 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.
Zhang, Han; Dong, Bing-Zhi
2012-09-01
An on-line high pressure size exclusion chromatography (HPSEC) with UV and TOC detectors was adapted to examine the distribution of relative molecular mass of natural organic matter (NOM). Through synchronous determination of UV254 and TOC responses in a wide range of relative molecular mass, it was possible to accurately characterize the structure of NOM, especially for some non-aromatic and non-conjugated double bond organics which have low response to UV. It was found that, TOC detector was capable of detecting all kinds of organic matters, including sucrose, sodium alginate and other hydrophilic organic compounds. The sample volume had a positively linear correlation with the TOC response, indicating that the larger volume would produce stronger responses. The effect of ion strength was relatively low, shown by the small decrease of peak area (1.2% ) from none to 0.2 mol x L(-1) NaCl. The pH value of tested samples should be adjusted to neutral or acidic because when the samples were alkaline, the results might be inaccurate. Compared to the sample solvents adopted as ultrapure water, the samples prepared by mobile phase solvents had less interference to salt boundary peak. The on-line HPSEC-UV-TOC can be used accurately to characterize the distribution of relative molecular mass and its four fractions in River Xiang.
Darwin; WipaCharles; Cord-Ruwisch, Ralf
2018-01-01
Organic acid analysis of fermentation samples can be readily achieved by gas chromatography (GC), which detects volatile organic acids. However, lactic acid, a key fermentation acid is non-volatile and can hence not be quantified by regular GC analysis. However the addition of periodic acid to organic acid samples has been shown to enable lactic acid analysis by GC, as periodic acid oxidizes lactic acid to the volatile acetaldehyde. Direct GC injection of lactic acid standards and periodic acid generated inconsistent and irreproducible peaks, possibly due to incomplete lactic acid oxidation to acetaldehyde. The described method is developed to improve lactic acid analysis by GC by using a heat treated derivatization pre-treatment, such that it becomes independent of the retention time and temperature selection of the GC injector. Samples containing lactic acid were amended by periodic acid and heated in a sealed test tube at 100°C for at least 45 min before injecting it to the GC. Reproducible and consistent peaks of acetaldehyde were obtained. Simultaneous determination of lactic acid, acetone, ethanol, butanol, volatile fatty acids could also be accomplished by applying this GC method, enabling precise and convenient organic acid analysis of biological samples such as anaerobic digestion and fermentation processes. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Park, Choon-Sang; Kim, Dong Ha; Shin, Bhum Jae; Tae, Heung-Sik
2016-01-01
This work presents a study on the preparation of plasma-polymerized aniline (pPANI) nanofibers and nanoparticles by an intense plasma cloud type atmospheric pressure plasma jets (iPC-APPJ) device with a single bundle of three glass tubes. The nano size polymer was obtained at a sinusoidal wave with a peak value of 8 kV and a frequency of 26 kHz under ambient air. Discharge currents, photo-sensor amplifier, and optical emission spectrometer (OES) techniques were used to analyze the plasma produced from the iPC-APPJ device. Field emission scanning electron microscopy (FE-SEM), transmission electron microscopy (TEM), Fourier transform infrared spectroscopy (FT-IR), gas chromatography-mass spectrometry (GC-MS), and gel permeation chromatography (GPC) techniques were used to analyze the pPANI. FE-SEM and TEM results show that pPANI has nanofibers, nanoparticles morphology, and polycrystalline characteristics. The FT-IR and GC-MS analysis show the characteristic polyaniline peaks with evidence that some quinone and benzene rings are broken by the discharge energy. GPC results show that pPANI has high molecular weight (Mw), about 533 kDa with 1.9 polydispersity index (PDI). This study contributes to a better understanding on the novel growth process and synthesis of uniform polyaniline nanofibers and nanoparticles with high molecular weights using the simple atmospheric pressure plasma polymerization technique. PMID:28787838
Grinias, James P; Wong, Jenny-Marie T; Kennedy, Robert T
2016-08-26
The impact of viscous friction on eluent temperature and column efficiency in liquid chromatography is of renewed interest as the need for pressures exceeding 1000bar to use with columns packed with sub-2μm particles has grown. One way the development of axial and radial temperature gradients that arise due to viscous friction can be affected is by the thermal environment the column is placed in. In this study, a new column oven integrated into an ultrahigh pressure liquid chromatograph that enables both still-air and forced-air operating modes is investigated to find the magnitude of the effect of the axial thermal gradient that forms in 2.1×100mm columns packed with sub-2μm particles in these modes. Temperature increases of nearly 30K were observed when the generated power of the column exceeded 25W/m. The impact of the heating due to viscous friction on the repeatability of peak capacity, elution time, and peak area ratio to an internal standard for a gradient UHPLC-MS/MS method to analyze neurotransmitters was found to be limited. This result indicates that high speed UHPLC-MS/MS gradient methods under conditions of high viscous friction may be possible without the negative effects typically observed with isocratic separations under similar conditions. Copyright © 2016 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Langenberg, Stefan; Schurath, Ulrich
2018-05-01
The well established technique of gas chromatography is used to investigate interactions of sulfur dioxide with a crystalline ice film in a fused silica wide bore column. Peak shape analysis of SO2 chromatograms measured in the temperature range 205-265 K is applied to extract parameters describing a combination of three processes: (i) physisorption of SO2 at the surface, (ii) dissociative reaction with water and (iii) slow uptake into bulk ice. Process (ii) is described by a dissociative Langmuir isotherm. The pertinent monolayer saturation capacity is found to increase with temperature. The impact of process (iii) on SO2 peak retention time is found to be negligible under our experimental conditions. By analyzing binary chromatograms of hydrophobic n-hexane and hydrophilic acetone, the premelt surface layer is investigated in the temperature range 221-263 K, possibly giving rise to irregular adsorption. Both temperature dependencies fit simple van't Hoff equations as expected for process (i), implying that irregular adsorption of acetone is negligible in the investigated temperature range. Adsorption enthalpies of -45 ± 5 and -23±2 kJ mol-1 are obtained for acetone and n-hexane. The motivation of our study was to assess the vertical displacement of SO2 and acetone in the wake of aircraft by adsorption on ice particles and their subsequent sedimentation. Our results suggest that this transport mechanism is negligible.
Park, Choon-Sang; Kim, Dong Ha; Shin, Bhum Jae; Tae, Heung-Sik
2016-01-11
This work presents a study on the preparation of plasma-polymerized aniline (pPANI) nanofibers and nanoparticles by an intense plasma cloud type atmospheric pressure plasma jets (iPC-APPJ) device with a single bundle of three glass tubes. The nano size polymer was obtained at a sinusoidal wave with a peak value of 8 kV and a frequency of 26 kHz under ambient air. Discharge currents, photo-sensor amplifier, and optical emission spectrometer (OES) techniques were used to analyze the plasma produced from the iPC-APPJ device. Field emission scanning electron microscopy (FE-SEM), transmission electron microscopy (TEM), Fourier transform infrared spectroscopy (FT-IR), gas chromatography-mass spectrometry (GC-MS), and gel permeation chromatography (GPC) techniques were used to analyze the pPANI. FE-SEM and TEM results show that pPANI has nanofibers, nanoparticles morphology, and polycrystalline characteristics. The FT-IR and GC-MS analysis show the characteristic polyaniline peaks with evidence that some quinone and benzene rings are broken by the discharge energy. GPC results show that pPANI has high molecular weight ( M w ), about 533 kDa with 1.9 polydispersity index (PDI). This study contributes to a better understanding on the novel growth process and synthesis of uniform polyaniline nanofibers and nanoparticles with high molecular weights using the simple atmospheric pressure plasma polymerization technique.