NASA Technical Reports Server (NTRS)
Diedrich, Benjamin; Heaton, Andrew
2017-01-01
NASA's Near Earth Asteroid Scout (NEA Scout) solar sail mission will fly by and image an asteroid. The team has experience characterizing the sail forces and torques used in guidance, navigation, and control to meet the scientific objectives. Interstellar and precursor sail missions similarly require understanding of beam riding dynamics to follow sufficiently accurate trajectories to perform their missions. Objective: Identify the driving factors required to implement a guidance and control system that meets mission requirements for a solar sail mission; Compare experience of an asteroid flyby mission to interstellar missions to flyby and observe other stars or precursor missions to study the extrasolar medium.
NASA Technical Reports Server (NTRS)
Hopkins, Randy
2008-01-01
This slide presentation reviews the mission concept for the proposed Xenia mission. The mission's ground rules and assumptions for the mission analysis, attitude and orbit control, propulsion, avionics, power, and the thermal controls are reviewed, partially to determine the appropriate launch vehicle that will be used. A current design plan for the mission is shown assuming 6 GRB detectors and estimates for structures are reviewed.
Dual-spin attitude control for outer planet missions
NASA Technical Reports Server (NTRS)
Ward, R. S.; Tauke, G. J.
1977-01-01
The applicability of dual-spin technology to a Jupiter orbiter with probe mission was investigated. Basic mission and system level attitude control requirements were established and preliminary mechanization and control concepts developed. A comprehensive 18-degree-of-freedom digital simulation was utilized extensively to establish control laws, study dynamic interactions, and determined key sensitivities. Fundamental system/subsystem constraints were identified, and the applicability of dual-spin technology to a Jupiter orbiter with probe mission was validated.
Crewmember and mission control personnel interactions during International Space Station missions.
Kanas, Nick A; Salnitskiy, Vyacheslav P; Boyd, Jennifer E; Gushin, Vadim I; Weiss, Daniel S; Saylor, Stephanie A; Kozerenko, Olga P; Marmar, Charles R
2007-06-01
Reports from astronauts and cosmonauts, studies from space analogue environments on Earth, and our previous research on the Mir Space Station have identified a number of psychosocial issues that can lead to problems during long-duration space missions. Three of these issues (time effects, displacement, leader role) were studied during a series of long-duration missions to the International Space Station (ISS). As in our previous Mir study, mood and group climate questions from the Profile of Mood States or POMS, the Group Environment Scale or GES, and the Work Environment Scale or WES were completed weekly by 17 ISS crewmembers (15 men, 2 women) in space and 128 American and Russian personnel in mission control. The results did not support the presence of decrements in mood and group cohesion during the 2nd half of the missions or in any specific quarter. The results did support the predicted displacement of negative feelings to outside supervisors in both crew and mission control subjects on all six questionnaire subscales tested. Crewmembers related cohesion in their group to the support role of their commander. For mission control personnel, greater cohesion was linked to the support role as well as to the task role of their leader. The findings from our previous study on the Mir Space Station were essentially replicated on board the ISS. The findings suggest a number of countermeasures for future on-orbit missions, some of which may not be relevant for expeditionary missions (e.g., to Mars).
Solar Sail Roadmap Mission GN and C Challenges
NASA Technical Reports Server (NTRS)
Heaton, Andrew F.
2005-01-01
The NASA In-Space Propulsion program is funding development work for solar sails to enhance future scientific opportunities. Key to this effort are scientific solar sail roadmap missions identified by peer review. The two near-term missions of interest are L1 Diamond and Solar Polar Imager. Additionally, the New Millennium Program is sponsoring the Space Technology 9 (ST9) demonstration mission. Solar sails are one of five technologies competing for the ST9 flight demonstration. Two candidate solar sail missions have been identified for a potential ST9 flight. All the roadmap missions and candidate flight demonstration missions face various GN&C challenges. A variety of efforts are underway to address these challenges. These include control actuator design and testing, low thrust optimization studies, attitude control system design and modeling, control-structure interaction studies, trajectory control design, and solar radiation pressure model development. Here we survey the various efforts underway and identify a few of specific recent interest and focus.
Control-Structure-Interaction (CSI) technologies and trends to future NASA missions
NASA Technical Reports Server (NTRS)
1990-01-01
Control-structure-interaction (CSI) issues which are relevant for future NASA missions are reviewed. This goal was achieved by: (1) reviewing large space structures (LSS) technologies to provide a background and survey of the current state of the art (SOA); (2) analytically studying a focus mission to identify opportunities where CSI technology may be applied to enhance or enable future NASA spacecraft; and (3) expanding a portion of the focus mission, the large antenna, to provide in-depth trade studies, scaling laws, and methodologies which may be applied to other NASA missions. Several sections are presented. Section 1 defines CSI issues and presents an overview of the relevant modeling and control issues for LLS. Section 2 presents the results of the three phases of the CSI study. Section 2.1 gives the results of a CSI study conducted with the Geostationary Platform (Geoplat) as the focus mission. Section 2.2 contains an overview of the CSI control design methodology available in the technical community. Included is a survey of the CSI ground-based experiments which were conducted to verify theoretical performance predictions. Section 2.3 presents and demonstrates a new CSI scaling law methodology for assessing potential CSI with large antenna systems.
Spacecraft attitude control for a solar electric geosynchronous transfer mission
NASA Technical Reports Server (NTRS)
Leroy, B. E.; Regetz, J. D., Jr.
1975-01-01
A study of the Attitude Control System (ACS) is made for a solar electric propulsion geosynchronous transfer mission. The basic mission considered is spacecraft injection into a low altitude, inclined orbit followed by low thrust orbit changing to achieve geosynchronous orbit. Because of the extended thrusting time, the mission performance is a strong function of the attitude control system. Two attitude control system design options for an example mission evolve from consideration of the spacecraft configuration, the environmental disturbances, and the probable ACS modes of operation. The impact of these design options on other spacecraft subsystems is discussed. The factors which must be considered in determining the ACS actuation and sensing subsystems are discussed. The effects of the actuation and sensing subsystems on the mission performance are also considered.
Wide Field X-Ray Telescope Mission Concept Study Results
NASA Technical Reports Server (NTRS)
Hopkins, R. C.; Thomas, H. D.; Fabisinski, L. L.; Baysinger, M.; Hornsby, L. S.; Maples, C. D.; Purlee, T. E.; Capizzo, P. D.; Percy, T. K.
2014-01-01
The Wide Field X-Ray Telescope (WFXT) is an astrophysics mission concept for detecting and studying extra-galactic x-ray sources, including active galactic nuclei and clusters of galaxies, in an effort to further understand cosmic evolution and structure. This Technical Memorandum details the results of a mission concept study completed by the Advanced Concepts Office at NASA Marshall Space Flight Center in 2012. The design team analyzed the mission and instrument requirements, and designed a spacecraft that enables the WFXT mission while using high heritage components. Design work included selecting components and sizing subsystems for power, avionics, guidance, navigation and control, propulsion, structures, command and data handling, communications, and thermal control.
Social and Cultural Issues During Shuttle/Mir Space Missions
NASA Astrophysics Data System (ADS)
Kanas, Nick; Salnitskiy, Vyacheslav; Grund, Ellen M.; Gushin, Vadim; Weiss, Daniel S.; Kozerenko, Olga; Sled, Alexander; Marmar, Charles R.
2000-07-01
A number of interpersonal issues relevant to manned space missions have been identified from the literature. These include crew tension, cohesion, leadership, language and cultural factors, and displacement. Ground-based studies by others and us have clarified some of the parameters of these issues and have indicated ways in which they could be studied during actual space missions. In this paper, we summarize some of our findings related to social and cultural issues from a NASA-funded study conducted during several Shuttle/Mir space missions. We used standardized mood and group climate measures that were completed on a weekly basis by American and Russian crew and mission control subjects who participated in these missions. Our results indicated that American subjects reported more dissatisfaction with their interpersonal environment than their Russian counterparts, especially American astronauts. Mission control personnel were more dysphoric than crewmembers, but both groups were signficantly less dysphoric than other work groups on Earth. Countermeasures based on our findings are discussed which can be applied to future multicultural space missions.
Kanas, N; Salnitskiy, V; Grund, E M; Gushin, V; Weiss, D S; Kozerenko, O; Sled, A; Marmar, C R
2000-09-01
Anecdotal reports from space and results from simulation studies on Earth suggest that interpersonal and cultural issues will have an impact on the interactions of crewmembers and mission control personnel during future long-duration space missions. To evaluate this impact we studied 5 astronauts, 8 cosmonauts, and 42 American and 16 Russian mission control personnel who participated in the Shuttle/Mir space program. Subjects completed questions from the Profile of Mood States, the Group Environment Scale, and the Work Environment Scale on a weekly basis during the missions. Subscale scores from these measures were analyzed using a two-way ANOVA to examine mean differences as a function of country (American vs. Russian), group (crewmember vs. ground personnel), and their interaction. Americans scored higher on measures of vigor and work pressure, and Russians scored higher on measures of managerial control, task orientation, physical comfort, self discovery, and leader support (which also showed a significant interaction effect). Mission control subjects scored higher than crewmembers on four measures of dysphoric emotions, but both groups scored significantly lower than published norms from other studies. There were significant interaction effects for subscales measuring leader support, expressiveness, and independence, with the American astronauts scoring the lowest of all comparison groups on all three subscales. In future long-duration space missions, countermeasures should focus on providing support for crewmembers from a culture in the minority, and crews should include more than one representative from this culture. Positive aspects of the interpersonal environment should be enhanced. The needs of mission control personnel should be addressed as well as those of crewmembers.
A Simulation Base Investigation of High Latency Space Systems Operations
NASA Technical Reports Server (NTRS)
Li, Zu Qun; Crues, Edwin Z.; Bielski, Paul; Moore, Michael
2017-01-01
NASA's human space program has developed considerable experience with near Earth space operations. Although NASA has experience with deep space robotic missions, NASA has little substantive experience with human deep space operations. Even in the Apollo program, the missions lasted only a few weeks and the communication latencies were on the order of seconds. Human missions beyond the relatively close confines of the Earth-Moon system will involve missions with durations measured in months and communications latencies measured in minutes. To minimize crew risk and to maximize mission success, NASA needs to develop a better understanding of the implications of these types of mission durations and communication latencies on vehicle design, mission design and flight controller interaction with the crew. To begin to address these needs, NASA performed a study using a physics-based subsystem simulation to investigate the interactions between spacecraft crew and a ground-based mission control center for vehicle subsystem operations across long communication delays. The simulation, built with a subsystem modeling tool developed at NASA's Johnson Space Center, models the life support system of a Mars transit vehicle. The simulation contains models of the cabin atmosphere and pressure control system, electrical power system, drinking and waste water systems, internal and external thermal control systems, and crew metabolic functions. The simulation has three interfaces: 1) a real-time crew interface that can be use to monitor and control the vehicle subsystems; 2) a mission control center interface with data transport delays up to 15 minutes each way; 3) a real-time simulation test conductor interface that can be use to insert subsystem malfunctions and observe the interactions between the crew, ground, and simulated vehicle. The study was conducted at the 21st NASA Extreme Environment Mission Operations (NEEMO) mission between July 18th and Aug 3rd of year 2016. The NEEMO mission provides ideal conditions for this study with crew in the loop, an active control center, and real-time flow of high latency communications and data. NEEMO crew and ground support will work through procedures including activation of the transit vehicle power system, opening the hatch between the transit vehicle and a Mars ascent vehicle, transferring simulated crewmembers between vehicles, overcoming subsystem malfunctions, sending simulated crewmember on extra-vehicular activities, and other housekeeping activities. This study is enhancing the understanding of high latency operations and the advantages and disadvantages of different communication methods. It is also providing results that will help improve the design of simulation interfaces and inform the design of Mars transit vehicles.
Human interactions in space: ISS vs. Shuttle/Mir
NASA Astrophysics Data System (ADS)
Kanas, N. A.; Salnitskiy, V. P.; Ritsher, J. B.; Gushin, V. I.; Weiss, D. S.; Saylor, S. A.; Kozerenko, O. P.; Marmar, C. R.
2006-07-01
This paper compares findings from two NASA-funded studies of international long-duration missions to the Mir space station (Shuttle/Mir) and to the International Space Station (ISS). American and Russian crewmembers and mission control personnel participated. Issues examined included changes in mood and group social climate over time, displacement of group tension to outside monitoring personnel, cultural differences, and leadership roles. Findings were based on the completion of a weekly questionnaire that included items from the Profile of Mood States, the Group Environment Scale, and the Work Environment Scale. An examination of issues investigated in both studies revealed much similarity in findings. There was little support for the presence of changes in levels of mood and group climate over time, and no evidence for a "3rd quarter phenomenon". Both studies also provided evidence for the displacement of negative emotions to outside personnel in both crewmembers and mission control personnel. There were similar patterns of differences between Americans and Russians and between crewmembers and mission control personnel. Finally, in both studies, the support role of the leader was related to group cohesion among crewmembers, and both the task and support roles of the leader were related to cohesion among mission control personnel. Thus, in these four areas, the ISS study substantially replicated the findings from the earlier Shuttle/Mir study, suggesting that common psychosocial issues affect people engaged in on-orbit space missions.
NASA Technical Reports Server (NTRS)
Ward, T. L.
1975-01-01
The future development of full capability Space Tug will impose strict requirements upon the thermal design. While requiring a reliable and reusable design, Space Tug must be capable of steady-state and transient thermal operation during any given mission for mission durations of up to seven days and potentially longer periods of time. Maximum flexibility and adaptability of Space Tug to the mission model requires that the vehicle operate within attitude constraints throughout any specific mission. These requirements were translated into a preliminary design study for a geostationary deploy and retrieve mission definition for Space Tug to determine the thermal control design requirements. Results of the study are discussed with emphasis given to some of the unique avenues pursued during the study, as well as the recommended thermal design configuration.
Spacelab Mission Implementation Cost Assessment (SMICA)
NASA Technical Reports Server (NTRS)
Guynes, B. V.
1984-01-01
A total savings of approximately 20 percent is attainable if: (1) mission management and ground processing schedules are compressed; (2) the equipping, staffing, and operating of the Payload Operations Control Center is revised, and (3) methods of working with experiment developers are changed. The development of a new mission implementation technique, which includes mission definition, experiment development, and mission integration/operations, is examined. The Payload Operations Control Center is to relocate and utilize new computer equipment to produce cost savings. Methods of reducing costs by minimizing the Spacelab and payload processing time during pre- and post-mission operation at KSC are analyzed. The changes required to reduce costs in the analytical integration process are studied. The influence of time, requirements accountability, and risk on costs is discussed. Recommendation for cost reductions developed by the Spacelab Mission Implementation Cost Assessment study are listed.
2001-08-16
JSC2001-E-25466 (16 August 2001) --- Flight director Bryan Austin studies data at his console in the shuttle flight control room (WFCR) in Houston's Mission Control Center (MCC) during the STS-105 mission.
INFLIGHT (MISSION CONTROL CENTER [MCC]) - STS-1 - ELLINGTON AFB (EAFB), TX
1981-04-13
S81-32876 (13 April 1981) --- Brig. Gen. William T. Twinting studies the monitor at the Department of Defense (DOD) console in the mission operations control room (MOCR) at the Johnson Space Center?s Mission Control Center (MCC). He is deputy DOD manager for Space Shuttle Support Operations. Gen. Twinting and the other flight controllers seen in the background listen as astronaut John W. Young, STS-1 commander, describes the scenery of a downlink TV transmission. Photo credit: NASA
Controlled ecological life support system: Transportation analysis
NASA Technical Reports Server (NTRS)
Gustan, E.; Vinopal, T.
1982-01-01
This report discusses a study utilizing a systems analysis approach to determine which NASA missions would benefit from controlled ecological life support system (CELSS) technology. The study focuses on manned missions selected from NASA planning forecasts covering the next half century. Comparison of various life support scenarios for the selected missions and characteristics of projected transportation systems provided data for cost evaluations. This approach identified missions that derived benefits from a CELSS, showed the magnitude of the potential cost savings, and indicated which system or combination of systems would apply. This report outlines the analytical approach used in the evaluation, describes the missions and systems considered, and sets forth the benefits derived from CELSS when applicable.
Psychosocial interactions during ISS missions
NASA Astrophysics Data System (ADS)
Kanas, N. A.; Salnitskiy, V. P.; Ritsher, J. B.; Gushin, V. I.; Weiss, D. S.; Saylor, S. A.; Kozerenko, O. P.; Marmar, C. R.
2007-02-01
Based on anecdotal reports from astronauts and cosmonauts, studies of space analog environments on Earth, and our previous research on the Mir Space Station, a number of psychosocial issues have been identified that can lead to problems during long-duration space expeditions. Several of these issues were studied during a series of missions to the International Space Station. Using a mood and group climate questionnaire that was completed weekly by crewmembers in space and personnel in mission control, we found no evidence to support the presence of predicted decrements in well-being during the second half or in any specific quarter of the missions. The results did support the predicted displacement of negative feelings to outside supervisors among both crew and ground subjects. There were several significant differences in mood and group perceptions between Americans and Russians and between crewmembers and mission control personnel. Crewmembers related cohesion to the support role of their leader, and mission control personnel related cohesion to both the task and support roles of their leader. These findings are discussed with reference to future space missions.
Advanced Active Thermal Control Systems Architecture Study
NASA Technical Reports Server (NTRS)
Hanford, Anthony J.; Ewert, Michael K.
1996-01-01
The Johnson Space Center (JSC) initiated a dynamic study to determine possible improvements available through advanced technologies (not used on previous or current human vehicles), identify promising development initiatives for advanced active thermal control systems (ATCS's), and help prioritize funding and personnel distribution among many research projects by providing a common basis to compare several diverse technologies. Some technologies included were two-phase thermal control systems, light-weight radiators, phase-change thermal storage, rotary fluid coupler, and heat pumps. JSC designed the study to estimate potential benefits from these various proposed and under-development thermal control technologies for five possible human missions early in the next century. The study compared all the technologies to a baseline mission using mass as a basis. Each baseline mission assumed an internal thermal control system; an external thermal control system; and aluminum, flow-through radiators. Solar vapor compression heat pumps and light-weight radiators showed the greatest promise as general advanced thermal technologies which can be applied across a range of missions. This initial study identified several other promising ATCS technologies which offer mass savings and other savings compared to traditional thermal control systems. Because the study format compares various architectures with a commonly defined baseline, it is versatile and expandable, and is expected to be updated as needed.
Manned Mars mission accommodation: Sprint mission
NASA Technical Reports Server (NTRS)
Cirillo, William M.; Kaszubowski, Martin J.; Ayers, J. Kirk; Llewellyn, Charles P.; Weidman, Deene J.; Meredith, Barry D.
1988-01-01
The results of a study conducted at the NASA-LaRC to assess the impacts on the Phase 2 Space Station of Accommodating a Manned Mission to Mars are documented. In addition, several candidate transportation node configurations are presented to accommodate the assembly and verification of the Mars Mission vehicles. This study includes an identification of a life science research program that would need to be completed, on-orbit, prior to mission departure and an assessment of the necessary orbital technology development and demonstration program needed to accomplish the mission. Also included is an analysis of the configuration mass properties and a preliminary analysis of the Space Station control system sizing that would be required to control the station. Results of the study indicate the Phase 2 Space Station can support a manned mission to Mars with the addition of a supporting infrastructure that includes a propellant depot, assembly hangar, and a heavy lift launch vehicle to support the large launch requirements.
Boyd, K
2001-06-01
Weekly surveys gathered from crewmembers and mission control personnel during NASA missions to the Mir space station were used to rate mood, work environment, and interactions with the rest of the crew. Analysis of the surveys indicated that Americans were less satisfied with their group interactions and work environments than Russians. Also, mission control workers reported higher levels of tension, fatigue, confusion, and overall negative feelings than the astronauts and cosmonauts.
NASA Astrophysics Data System (ADS)
Bell, Ernest R.; Badillo, Victor; Coan, David; Johnson, Kieth; Ney, Zane; Rosenbaum, Megan; Smart, Tifanie; Stone, Jeffry; Stueber, Ronald; Welsh, Daren; Guirgis, Peggy; Looper, Chris; McDaniel, Randall
2013-10-01
The NASA Desert Research and Technology Studies (Desert RATS) is an annual field test of advanced concepts, prototype hardware, and potential modes of operation to be used on human planetary surface space exploration missions. For the 2009 and 2010 NASA Desert RATS field tests, various engineering concepts and operational exercises were incorporated into mission timelines with the focus of the majority of daily operations being on simulated lunar geological field operations and executed in a manner similar to current Space Shuttle and International Space Station missions. The field test for 2009 involved a two week lunar exploration simulation utilizing a two-man rover. The 2010 Desert RATS field test took this two week simulation further by incorporating a second two-man rover working in tandem with the 2009 rover, as well as including docked operations with a Pressurized Excursion Module (PEM). Personnel for the field test included the crew, a mission management team, engineering teams, a science team, and the mission operations team. The mission operations team served as the core of the Desert RATS mission control team and included certified NASA Mission Operations Directorate (MOD) flight controllers, former flight controllers, and astronaut personnel. The backgrounds of the flight controllers were in the areas of Extravehicular Activity (EVA), onboard mechanical systems and maintenance, robotics, timeline planning (OpsPlan), and spacecraft communicator (Capcom). With the simulated EVA operations, mechanized operations (the rover), and expectations of replanning, these flight control disciplines were especially well suited for the execution of the 2009 and 2010 Desert RATS field tests. The inclusion of an operations team has provided the added benefit of giving NASA mission operations flight control personnel the opportunity to begin examining operational mission control techniques, team compositions, and mission scenarios. This also gave the mission operations team the opportunity to gain insight into functional hardware requirements via lessons learned from executing the Desert RATS field test missions. This paper will detail the mission control team structure that was used during the 2009 and 2010 Desert RATS Lunar analog missions. It will also present a number of the lessons learned by the operations team during these field tests. Major lessons learned involved Mission Control Center (MCC) operations, pre-mission planning and training processes, procedure requirements, communication requirements, and logistic support for analogs. This knowledge will be applied to future Desert RATS field tests, and other Earth based analog testing for space exploration, to continue the evolution of manned space operations in preparation for human planetary exploration. It is important that operational knowledge for human space exploration missions be obtained during Earth-bound field tests to the greatest extent possible. This allows operations personnel the ability to examine various flight control and crew operations scenarios in preparation for actual space missions.
Social and cultural issues during Shuttle/Mir space missions.
Kanas, N; Salnitskiy, V; Grund, E M; Gushin, V; Weiss, D S; Kozerenko, O; Sled, A; Marmar, C R
2000-01-01
A number of interpersonal issues relevant to manned space missions have been identified from the literature. These include crew tension, cohesion, leadership, language and cultural factors, and displacement. Ground-based studies by others and us have clarified some of the parameters of these issues and have indicated ways in which they could be studied during actual space missions. In this paper, we summarize some of our findings related to social and cultural issues from a NASA-funded study conducted during several Shuttle/Mir space missions. We used standardized mood and group climate measures that were completed on a weekly basis by American and Russian crew and mission control subjects who participated in these missions. Our results indicated that American subjects reported more dissatisfaction with their interpersonal environment than their Russian counterparts, especially American astronauts. Mission control personnel were more dysphoric than crewmembers, but both groups were significantly less dysphoric than other work groups on Earth. Countermeasures based on our findings are discussed which can be applied to future multicultural space missions. Published by Elsevier Science Ltd.
Social and cultural issues during Shuttle/Mir space missions
NASA Technical Reports Server (NTRS)
Kanas, N.; Salnitskiy, V.; Grund, E. M.; Gushin, V.; Weiss, D. S.; Kozerenko, O.; Sled, A.; Marmar, C. R.
2000-01-01
A number of interpersonal issues relevant to manned space missions have been identified from the literature. These include crew tension, cohesion, leadership, language and cultural factors, and displacement. Ground-based studies by others and us have clarified some of the parameters of these issues and have indicated ways in which they could be studied during actual space missions. In this paper, we summarize some of our findings related to social and cultural issues from a NASA-funded study conducted during several Shuttle/Mir space missions. We used standardized mood and group climate measures that were completed on a weekly basis by American and Russian crew and mission control subjects who participated in these missions. Our results indicated that American subjects reported more dissatisfaction with their interpersonal environment than their Russian counterparts, especially American astronauts. Mission control personnel were more dysphoric than crewmembers, but both groups were significantly less dysphoric than other work groups on Earth. Countermeasures based on our findings are discussed which can be applied to future multicultural space missions. Published by Elsevier Science Ltd.
Advanced controls for airbreathing engines, volume 3: Allison gas turbine
NASA Technical Reports Server (NTRS)
Bough, R. M.
1993-01-01
The application of advanced control concepts to airbreathing engines may yield significant improvements in aircraft/engine performance and operability. Screening studies of advanced control concepts for airbreathing engines were conducted by three major domestic aircraft engine manufacturers to determine the potential impact of concepts on turbine engine performance and operability. The purpose of the studies was to identify concepts which offered high potential yet may incur high research and development risk. A target suite of proposed advanced control concepts was formulated and evaluated in a two-phase study to quantify each concept's impact on desired engine characteristics. To aid in the evaluation specific aircraft/engine combinations were considered: a Military High Performance Fighter mission, a High Speed Civil Transport mission, and a Civil Tiltrotor mission. Each of the advanced control concepts considered in the study are defined and described. The concept potential impact on engine performance was determined. Relevant figures of merit on which to evaluate the concepts are determined. Finally, the concepts are ranked with respect to the target aircraft/engine missions. A final report describing the screening studies was prepared by each engine manufacturer. Volume 3 of these reports describes the studies performed by the Allison Gas Turbine Division.
Advanced control for airbreathing engines, volume 1: Pratt and Whitney
NASA Technical Reports Server (NTRS)
Ralph, J. A.
1993-01-01
The application of advanced control concepts to air breathing engines may yield significant improvements in aircraft/engine performance and operability. Screening studies of advanced control concepts for air breathing engines were conducted by three major domestic aircraft engine manufacturers to determine the potential impact of concepts on turbine engine performance and operability. The purpose of the studies was to identify concepts which offered high potential yet may incur high research and development risk. A target suite of proposed advanced control concepts was formulated and evaluated in a two phase study to quantify each concept's impact on desired engine characteristics. To aid in the evaluation specific aircraft/engine combinations were considered: a Military High Performance Fighter mission, a High Speed Civil Transport mission, and a Civil Tiltrotor mission. Each of the advanced control concepts considered in the study are defined and described. The concept potential impact on engine performance was determined. Relevant figures of merit on which to evaluate the concepts are determined. Finally, the concepts are ranked with respect to the target aircraft/engine missions. A final report describing the screening studies was prepared by each engine manufacturer. Volume 1 of these reports describes the studies performed by Pratt & Whitney.
Advanced control for airbreathing engines, volume 2: General Electric aircraft engines
NASA Technical Reports Server (NTRS)
Bansal, Indar
1993-01-01
The application of advanced control concepts to air breathing engines may yield significant improvements in aircraft/engine performance and operability. Screening studies of advanced control concepts for air breathing engines were conducted by three major domestic aircraft engine manufacturers to determine the potential impact of concepts on turbine engine performance and operability. The purpose of the studies was to identify concepts which offered high potential yet may incur high research and development risk. A target suite of proposed advanced control concepts was formulated and evaluated in a two phase study to quantify each concept's impact on desired engine characteristics. To aid in the evaluation specific aircraft/engine combinations were considered: a Military High Performance Fighter mission, a High Speed Civil Transport mission, and a Civil Tiltrotor mission. Each of the advanced control concepts considered in the study are defined and described. The concept potential impact on engine performance was determined. Relevant figures of merit on which to evaluate the concepts are determined. Finally, the concepts are ranked with respect to the target aircraft/engine missions. A final report describing the screening studies was prepared by each engine manufacturer. Volume 2 of these reports describes the studies performed by GE Aircraft Engines.
NASA Astrophysics Data System (ADS)
Roma, Peter G.; Hursh, Steven R.; Hienz, Robert D.; Emurian, Henry H.; Gasior, Eric D.; Brinson, Zabecca S.; Brady, Joseph V.
2011-05-01
Logistical constraints during long-duration space expeditions will limit the ability of Earth-based mission control personnel to manage their astronaut crews and will thus increase the prevalence of autonomous operations. Despite this inevitability, little research exists regarding crew performance and psychosocial adaptation under such autonomous conditions. To this end, a newly-initiated study on crew management systems was conducted to assess crew performance effectiveness under rigid schedule-based management of crew activities by Mission Control versus more flexible, autonomous management of activities by the crews themselves. Nine volunteers formed three long-term crews and were extensively trained in a simulated planetary geological exploration task over the course of several months. Each crew then embarked on two separate 3-4 h missions in a counterbalanced sequence: Scheduled, in which the crews were directed by Mission Control according to a strict topographic and temporal region-searching sequence, and Autonomous, in which the well-trained crews received equivalent baseline support from Mission Control but were free to explore the planetary surface as they saw fit. Under the autonomous missions, performance in all three crews improved (more high-valued geologic samples were retrieved), subjective self-reports of negative emotional states decreased, unstructured debriefing logs contained fewer references to negative emotions and greater use of socially-referent language, and salivary cortisol output across the missions was attenuated. The present study provides evidence that crew autonomy may improve performance and help sustain if not enhance psychosocial adaptation and biobehavioral health. These controlled experimental data contribute to an emerging empirical database on crew autonomy which the international astronautics community may build upon for future research and ultimately draw upon when designing and managing missions.
NASA Technical Reports Server (NTRS)
Clement, James L.; Ritsher, Jennifer Boyd; Saylor, Stephanie A.; Kanas, Nick
2006-01-01
The International Space Station (ISS) is operated by a multi-national, multi-organizational team that is dispersed across multiple locations, time zones, and work schedules. At NASA, both junior and senior mission control personnel have had to find ways to address the leadership challenges inherent in such work, but neither have had systematic training in how to do so. The goals of this study were to examine the major leadership challenges faced by ISS mission control personnel and to highlight the approaches that they have found most effective to surmount them. We pay particular attention to the approaches successfully employed by the senior personnel and to the training needs identified by the junior personnel. We also evaluate the extent to which responses are consistent across the junior and senior samples. Further, we compare the issues identified by our interview survey to those identified by a standardized questionnaire survey of mission control personnel and a contrasting group of space station crewmembers. We studied a sample of 14 senior ISS flight controllers and a contrasting sample of 12 more junior ISS controllers. Data were collected using a semi-structured qualitative interview and content analyzed using an iterative process with multiple coders and consensus meetings to resolve discrepancies. To further explore the meaning of the interview findings, we also conducted new analyses of data from a previous questionnaire study of 13 American astronauts, 17 Russian cosmonauts, and 150 U.S. and 36 Russian mission control personnel supporting the ISS or Mir space stations. The interview data showed that the survey respondents had substantial consensus on several leadership challenges and on key strategies for dealing with them, and they offered a wide range of specific tactics for implementing these strategies. Interview data from the junior respondents will be presented for the first time at the meeting. The questionnaire data showed that the US mission control sample reported a level of support from their management that compared favorably to national norms. American mission control personnel and Russian crewmembers reported higher supervisor support than American crewmembers and Russian mission control personnel. We will present the specific issues underlying these findings and compare and contrast the results from the two datasets. Although specific to space station personnel, our results are consistent with recent management, cultural, and aerospace research. We aim to use our results to improve training for current and future mission control personnel.
Screening studies of advanced control concepts for airbreathing engines
NASA Technical Reports Server (NTRS)
Ouzts, Peter J.; Lorenzo, Carl F.; Merrill, Walter C.
1993-01-01
The application of advanced control concepts to airbreathing engines may yield significant improvements in aircraft/engine performance and operability. Accordingly, the NASA Lewis Research Center has conducted screening studies of advanced control concepts for airbreathing engines to determine their potential impact on turbine engine performance and operability. The purpose of the studies was to identify concepts which offered high potential yet may incur high research and development risk. A target suite of proposed concepts was formulated by NASA and industry. These concepts were evaluated in a two phase study to quantify each concept's impact on desired engine characteristics. To aid in the evaluation, three target aircraft/engine combinations were considered: a military high performance fighter mission, a high speed civil transport mission, and a civil tiltrotor mission. Each of the advanced control concepts considered in the study were defined and described. The concept's potential impact on engine performance was determined. Relevant figures of merit on which to evaluate the concepts were also determined. Finally, the concepts were ranked with respect to the target aircraft/engine missions.
PFERD Mission: Pluto Flyby Exploration/Research Design
NASA Technical Reports Server (NTRS)
Lemke, Gary; Zayed, Husni; Herring, Jason; Fuehne, Doug; Sutton, Kevin; Sharkey, Mike
1990-01-01
The Pluto Flyby Exploration/Research Design (PFERD) mission will consist of a flyby spacecraft to Pluto and its satellite, Charon. The mission lifetime is expected to be 18 years. The Titan 4 with a Centaur upper stage will be utilized to launch the craft into the transfer orbit. The proposal was divided into six main subsystems: (1) scientific instrumentation; (2) command, communications, and control: (3) altitude and articulation control; (4) power and propulsion; (5) structures and thermal control; and (6) mission management and costing. Tradeoff studies were performed to optimize all factors of design, including survivability, performance, cost, and weight. Problems encountered in the design are also presented.
NASA Technical Reports Server (NTRS)
Trimble, Jay
2017-01-01
For NASA's Resource Prospector (RP) Lunar Rover Mission, we are moving away from a control center concept, to a fully distributed operation utilizing control nodes, with decision support from anywhere via mobile devices. This operations concept will utilize distributed information systems, notifications, mobile data access, and optimized mobile data display for off-console decision support. We see this concept of operations as a step in the evolution of mission operations from a central control center concept to a mission operations anywhere concept. The RP example is part of a trend, in which mission expertise for design, development and operations is distributed across countries and across the globe. Future spacecraft operations will be most cost efficient and flexible by following this distributed expertise, enabling operations from anywhere. For the RP mission we arrived at the decision to utilize a fully distributed operations team, where everyone operates from their home institution, based on evaluating the following factors: the requirement for physical proximity for near-real time command and control decisions; the cost of distributed control nodes vs. a centralized control center; the impact on training and mission preparation of flying the team to a central location. Physical proximity for operational decisions is seldom required, though certain categories of decisions, such as launch abort, or close coordination for mission or safety-critical near-real-time command and control decisions may benefit from co-location. The cost of facilities and operational infrastructure has not been found to be a driving factor for location in our studies. Mission training and preparation benefit from having all operators train and operate from home institutions.
Interpersonal issues in space: Shuttle/Mir and beyond.
Kanas, Nick
2005-06-01
Anecdotal reports from space and results from space analogue experiments on Earth have suggested a number of interpersonal issues that may negatively affect crewmember performance and well-being. We examined some of these issues in a questionnaire survey of 54 astronauts and cosmonauts who had flown in space and in a 135-d Mir Space Station simulation study in Moscow. We also conducted a NASA-funded study involving missions to the Mir Space Station, where 5 U.S. astronauts, 8 Russian cosmonauts, and 42 U.S. and 16 Russian mission control subjects completed weekly mood and group climate questionnaires. There were few findings that supported hypothesized changes in tension and group behavior in terms of time on-orbit. Crewmembers reported decreasing leader support in the second half of their mission, and U.S. astronauts gave evidence for a novelty effect in the first few weeks. There was strong support for our hypothesized displacement of tension and negative emotions from crewmembers to mission control personnel and from mission control personnel to management. There were several significant differences in response between Americans vs. Russians and crewmembers vs. mission control personnel. These findings have training countermeasure implications for future on-orbit space missions. During expeditionary type space missions, such as a trip to Mars, additional interpersonal stressors will need to be dealt with. These include increased crew autonomy, more dependence on onboard technical resources, communication delays with the Earth, increased isolation and monotony, and the Earth-out-of-view phenomenon.
Architectures for mission control at the Jet Propulsion Laboratory
NASA Technical Reports Server (NTRS)
Davidson, Reger A.; Murphy, Susan C.
1992-01-01
JPL is currently converting to an innovative control center data system which is a distributed, open architecture for telemetry delivery and which is enabling advancement towards improved automation and operability, as well as new technology, in mission operations at JPL. The scope of mission control within mission operations is examined. The concepts of a mission control center and how operability can affect the design of a control center data system are discussed. Examples of JPL's mission control architecture, data system development, and prototype efforts at the JPL Operations Engineering Laboratory are provided. Strategies for the future of mission control architectures are outlined.
MISSION CONTROL CENTER (MCC) - CELEBRATION - CONCLUSION - APOLLO 11 MISSION - MSC
1969-07-25
S69-40023 (24 July 1969) --- Overall view of the Mission Operations Control Room (MOCR) in the Mission Control Center (MCC), Building 30, Manned Spacecraft Center (MSC), showing the flight controllers celebrating the successful conclusion of the Apollo 11 lunar landing mission.
View of Mission Control Center celebrating conclusion of Apollo 11 mission
1969-07-25
S69-40022 (24 July 1969) --- Overall view of the Mission Operations Control Room (MOCR) in the Mission Control Center (MCC), Building 30, Manned Spacecraft Center (MSC), showing the flight controllers celebrating the successful conclusion of the Apollo 11 lunar landing mission.
NASA Technical Reports Server (NTRS)
Bareiss, L. E.; Hooper, V. W.; Ress, E. B.
1976-01-01
Progress is reported on the mission support plan and those support activities envisioned to be applicable and necessary during premission and postmission phases of the Spacelab program. The purpose, role, and requirements of the contamination control operations for the first two missions of the Spacelab equipped Space Transportation System are discussed. The organization of the contamination control operation and its relationship to and interfaces with other mission support functions is also discussed. Some specific areas of contamination to be investigated are treated. They are: (1) windows and viewports, (2) experiment equipment, (3) thermal control surfaces, (4) the contaminant induced atmosphere (as differentiated from the normal ambient atmosphere at the orbit altitude), and (5) optical navigation instruments.
A Simulation Based Investigation of High Latency Space Systems Operations
NASA Technical Reports Server (NTRS)
Li, Zu Qun; Moore, Michael; Bielski, Paul; Crues, Edwin Z.
2017-01-01
This study was the first in a series of planned tests to use physics-based subsystem simulations to investigate the interactions between a spacecraft's crew and a ground-based mission control center for vehicle subsystem operations across long communication delays. The simulation models the life support system of a deep space habitat. It contains models of an environmental control and life support system, an electrical power system, an active thermal control systems, and crew metabolic functions. The simulation has three interfaces: 1) a real-time crew interface that can be use to monitor and control the subsystems; 2) a mission control center interface with data transport delays up to 15 minute each way; and 3) a real-time simulation test conductor interface used to insert subsystem malfunctions and observe the interactions between the crew, ground, and simulated vehicle. The study was conducted at the 21st NASA Extreme Environment Mission Operations (NEEMO) mission. The NEEMO crew and ground support team performed a number of relevant deep space mission scenarios that included both nominal activities and activities with system malfunctions. While this initial test sequence was focused on test infrastructure and procedures development, the data collected in the study already indicate that long communication delays have notable impacts on the operation of deep space systems. For future human missions beyond cis-lunar, NASA will need to design systems and support tools to meet these challenges. These will be used to train the crew to handle critical malfunctions on their own, to predict malfunctions and assist with vehicle operations. Subsequent more detailed and involved studies will be conducted to continue advancing NASA's understanding of space systems operations across long communications delays.
A Simulation Based Investigation of High Latency Space Systems Operations
NASA Technical Reports Server (NTRS)
Li, Zu Qun; Crues, Edwin Z.; Bielski, Paul; Moore, Michael
2017-01-01
This study was the first in a series of planned tests to use physics-based subsystem simulations to investigate the interactions between a spacecraft's crew and a ground-based mission control center for vehicle subsystem operations across long communication delays. The simulation models the life support system of a deep space habitat. It contains models of an environmental control and life support system, an electrical power system, an active thermal control system, and crew metabolic functions. The simulation has three interfaces: 1) a real-time crew interface that can be use to monitor and control the subsystems; 2) a mission control center interface with data transport delays up to 15 minute each way; and 3) a real-time simulation test conductor interface used to insert subsystem malfunctions and observe the interactions between the crew, ground, and simulated vehicle. The study was conducted at the 21st NASA Extreme Environment Mission Operations (NEEMO) mission. The NEEMO crew and ground support team performed a number of relevant deep space mission scenarios that included both nominal activities and activities with system malfunctions. While this initial test sequence was focused on test infrastructure and procedures development, the data collected in the study already indicate that long communication delays have notable impacts on the operation of deep space systems. For future human missions beyond cis-lunar, NASA will need to design systems and support tools to meet these challenges. These will be used to train the crew to handle critical malfunctions on their own, to predict malfunctions, and to assist with vehicle operations. Subsequent more detailed and involved studies will be conducted to continue advancing NASA's understanding of space systems operations across long communications delays.
Mission definition study for Stanford relativity satellite. Volume 3: Appendices
NASA Technical Reports Server (NTRS)
1971-01-01
An analysis is presented for the cost of the mission as a function of the following variables: amount of redundancy in the spacecraft, amount of care taken in building the spacecraft (functional and environmental tests, screening of components, quality control, etc), and the number of flights necessary to accomplish the mission. Thermal analysis and mathematical models for the experimental components are presented. The results of computer structural and stress analyses for support and cylinders are discussed. Reliability, quality control, and control system simulation by computer are also considered.
Psychosocial issues in space: results from Shuttle/Mir
NASA Technical Reports Server (NTRS)
Kanas, N.; Salnitskiy, V.; Grund, E. M.; Weiss, D. S.; Gushin, V.; Bostrom, A.; Kozerenko, O.; Sled, A.; Marmar, C. R.
2001-01-01
Important psychosocial issues involving tension, cohesion, leader support, and displacement of negative emotions were evaluated in a 4 1/2-year study involving five U.S. and four Russian Shuttle/Mir space missions. Weekly mood and group climate questionnaires were completed by five U.S. astronauts, eight Russian cosmonauts, and 42 U.S. and 16 Russian mission control subjects. There were few findings that supported our hypothesized changes in tension, cohesion, and leader support in crew and ground subjects using various time models, although crewmembers reported decreasing leader support in the 2nd half of the missions, and astronauts showed some evidence of a novelty effect in the first few weeks. There was no evidence suggesting a 3rd quarter effect among crewmembers on any of the 21 subscales evaluated. In contrast, there was strong evidence to support the hypothesized displacement of tension and negative emotions from crewmembers to mission control personnel and from mission control personnel to management. There were several significant differences in response between Americans vs. Russians, crewmembers vs. mission control personnel, and subjects in this study vs. people in comparable groups on Earth. Subject responses before, during, and after the missions were similar, and we did not find evidence for asthenia in space. Critical incidents that were reported generally dealt with events on-board the Mir and interpersonal conflicts, although most of the responses were from a relatively small number of subjects. Our findings have implications for future training and lead to a number of countermeasures.
Environmental control and life support system selection for the first Lunar outpost habitat
NASA Technical Reports Server (NTRS)
Adams, Alan
1993-01-01
The planning for and feasibility study of an early human return mission to the lunar surface has been undertaken. The First Lunar Outpost (FLO) Mission philosophy is to use existing or near-term technology to achieve a human landing on the lunar surface in the year 2000. To support the crew the lunar habitat for the FLO mission incorporates an environmental control/life support system (ECLSS) design which meets the mission requirements and balances fixed mass and consumable mass. This tradeoff becomes one of regenerable life support systems versus open-loop systems.
NASA Technical Reports Server (NTRS)
Hopkins, Randy
2009-01-01
This slide presentation reviews the proposed design for the Xenia mission spacecraft. The goal of this study is to perform a mission concept study for the mission. Included in this study are: the overall ground rules and assumptions (GR&A), a mission analysis, the configuration, the mass properties, the guidance, Navigation and control, the proposed avionics, the power system, the thermal protection system, the propulsion system, and the proposed structures. Conclusions from the study indicate that the observatory fits within the Falcon 9 mass and volume envelope for launching from Omelek, the pointing, slow slewing, and fast slewing requirements and the thermal requirements are met.
Aeronautics and Space Report of the President: Fiscal Year 1996 Activities
NASA Technical Reports Server (NTRS)
1996-01-01
Topics considered include: (1) Space launch activities: space shuttle missions; expendable launch vehicles. (2) Space science: astronomy and space physics; solar system exploration. (3) Space flight and technology: life and microgravity sciences; space shuttle technology; reuseable launch vehicles; international space station; energy; safety and mission assurance; commercial development and regulation of space; surveillance. (4) Space communications: communications satellites; space network; ground networks; mission control and data systems. (5) Aeronautical activities: technology developments; air traffic control and navigation; weather-related aeronautical activities; flight safety and security; aviation medicine and human factors. (6) Studies of the planet earth: terrestrial studies and applications: atmospheric studies: oceanographic studies; international aeronautical and space activities; and appendices.
View of Mission Control during Apollo 9 earth orbital mission
1969-03-03
S69-26301 (March 1969) --- Overall view of the Mission Operations Control Room in the Mission Control Center, Building 30, during the Apollo 9 Earth-orbital mission. When this photograph was taken a live television transmission was being received from Apollo 9 as it orbited Earth.
NASA Technical Reports Server (NTRS)
Mclees, Robert E.; Cohen, Gerald C.
1991-01-01
The requirements are presented for an Advanced Subsonic Civil Transport (ASCT) flight control system generated using structured techniques. The requirements definition starts from initially performing a mission analysis to identify the high level control system requirements and functions necessary to satisfy the mission flight. The result of the study is an example set of control system requirements partially represented using a derivative of Yourdon's structured techniques. Also provided is a research focus for studying structured design methodologies and in particular design-for-validation philosophies.
Study of solar array switching power management technology for space power system
NASA Technical Reports Server (NTRS)
Cassinelli, J. E.
1982-01-01
This report documents work performed on the Solar Array Switching Power Management Study. Mission characteristics for three missions were defined to the depth necessary to determine their power management requirements. Solar array switching concepts were identified that could safisfy the mission requirements. These switching concepts were compared with a conventional buck regulator system on the basis of cost, weight and volume, reliability, efficiency and thermal control. For the missions reviewed, solar array switching provided significant advantages in all areas of comparison.
Study of solar array switching power management technology for space power system
NASA Technical Reports Server (NTRS)
Cassinelli, J. E.
1982-01-01
This report documents work performed on the Solar Array Switching Power Management Study. Mission characteristics for three missions were defined to the depth necessary to determine their power management requirements. Solar array switching concepts which could satisfy the mission requirements were identified. The switching concepts were compared with a conventional buck regulator system for cost, weight and volume, reliability, efficiency and thermal control. Solar array switching provided significant advantages in all areas of comparison for the reviewed missions.
VIew of Mission Control on first day of ASTP docking in Earth orbit
NASA Technical Reports Server (NTRS)
1975-01-01
An overall view of the Mission Operations Control Room in the Mission Control Center on the first day of the Apollo Soyuz Test Project (ASTP) docking in Earth orbit mission. The American ASTP flight controllers at JSC were monitoring the progress of the Soviet ASTP launch when this photograph was taken. The television monitor shows Cosmonaut Yuri V. Romanenko at his spacecraft communicator's console in the ASTP mission control center in the Soviet Union.
NASA Technical Reports Server (NTRS)
Holloway, G. F.
1975-01-01
An unmanned test flight program required to evaluate the command module heat shield and the structural integrity of the command and service module/Saturn launch vehicle is described. The mission control programer was developed to provide the unmanned interface between the guidance and navigation computer and the other spacecraft systems for mission event sequencing and real-time ground control during missions AS-202, Apollo 4, and Apollo 6. The development of this unmanned programer is traced from the initial concept through the flight test phase. Detailed discussions of hardware development problems are given with the resulting solutions. The mission control programer functioned correctly without any flight anomalies for all missions. The Apollo 4 mission control programer was reused for the Apollo 6 flight, thus being one of the first subsystems to be reflown on an Apollo space flight.
Human interactions during Shuttle/Mir space missions
NASA Technical Reports Server (NTRS)
Kanas, N.; Salnitskiy, V.; Grund, E. M.; Weiss, D. S.; Gushin, V.; Kozerenko, O.; Sled, A.; Marmar, C. R.
2001-01-01
To improve the interpersonal climate of crewmembers involved with long-duration space missions, it is important to understand the factors affecting their interactions with each other and with members of mission control. This paper will present findings from a recently completed NASA-funded study during the Shuttle/Mir program which evaluated in-group/out-group displacement of negative emotions; changes in tension, cohesion, and leader support over time; and cultural differences. In-flight data were collected from 5 astronauts, 8 cosmonauts, and 42 American and 16 Russian mission control personnel who signed informed consent. Subjects completed a weekly questionnaire that assessed their mood and perception of their work group's interpersonal climate using questions from well-known, standardized measures (Profile of Mood States, Group and Work Environment Scales) and a critical incident log. There was strong evidence for the displacement of tension and dysphoric emotions from crewmembers to mission control personnel and from mission control personnel to management. There was a perceived decrease in commander support during the 2nd half of the missions, and for American crewmembers a novelty effect was found on several subscales during the first few months on-orbit. There were a number of differences between American and Russian responses which suggested that the former were less happy with their interpersonal environment than the latter. Mission control personnel reported more tension and dysphoria than crewmembers, although both groups scored better than other work groups on Earth. Nearly all reported critical incidents came from ground subjects, with Americans and Russians showing important differences in response frequencies.
Human interactions during Shuttle/Mir space missions
NASA Astrophysics Data System (ADS)
Kanas, Nick; Salnitskiy, Vyacheslav; Grund, Ellen M.; Weiss, Daniel S.; Gushin, Vadim; Kozerenko, Olga; Sled, Alexander; Marmar, Charles R.
2001-03-01
To improve the interpersonal climate of crewmembers involved with long-duration space missions, it is important to understand the factors affecting their interactions with each other and with members of mission control. This paper will present findings from a recently completed NASA-funded study during the Shuttle/Mir program which evaluated in-group/out-group displacement of negative emotions; changes in tension, cohesion, and leader support over time; and cultural differences. In-flight data were collected from 5 astronauts, 8 cosmonauts, and 42 American and 16 Russian mission control personnel who signed informed consent. Subjects completed a weekly questionnaire that assessed their mood and perception of their work group's interpersonal climate using questions from well-known, standardized measures (Profile of Mood States, Group and Work Environment Scales) and a critical incident log. There was strong evidence for the displacement of tension and dysphoric emotions from crewmembers to mission control personnel and from mission control personnel to management. There was a perceived decrease in commander support during the 2 nd half of the missions, and for American crewmembers a novelty effect was found on several subscales during the first few months on-orbit. There were a number of differences between American and Russian responses which suggested that the former were less happy with their interpersonal environment than the latter. Mission control personnel reported more tension and dysphoria than crewmembers, although both groups scored better than other work groups on Earth. Nearly all reported critical incidents came from ground subjects, with Americans and Russians showing important differences in response frequencies.
Mission Control Center at conclusion of Apollo 15 lunar landing mission
1971-08-07
An overall view of activity in the Mission Operations Control Room in the Mission Control Center at the conclusion of the Apollo 15 lunar landing mission. The television monitor in the right background shows the welcome ceremonies aboard the prime recovery ship, U.S.S. Okinawa, in the mid-Pacific Ocean.
Ongoing Progress in Spacecraft Controls
NASA Technical Reports Server (NTRS)
Ghosh, Dave (Editor)
1992-01-01
This publication is a collection of papers presented at the Mars Mission Research Center workshop on Ongoing Progress in Spacecraft Controls. The technical program addressed additional Mars mission control problems that currently exist in robotic missions in addition to human missions. Topics include control systems design in the presence of large time delays, fuel-optimal propulsive control, and adaptive control to handle a variety of unknown conditions.
The role of automatic control in future interplanetary spaceflight
NASA Technical Reports Server (NTRS)
Scull, J. R.; Moore, J. W.
1976-01-01
The paper reviews the guidance and automatic control techniques used in previous U.S. and Soviet lunar and planetary exploration spacecraft, and examines the objectives and requirements of potential future interplanetary missions from the viewpoint of their further demands on automatic control technology. These missions include the Venus orbital imaging radar mission, the Pioneer Mars penetrator mission, the Mars surface sample return mission, Pioneer Saturn/Uranus/Titan probe missions, the Mariner Jupiter orbiter with daughter satellite, and comet and asteroid missions.
Hardware Simulations of Spacecraft Attitude Synchronization Using Lyapunov-Based Controllers
NASA Astrophysics Data System (ADS)
Jung, Juno; Park, Sang-Young; Eun, Youngho; Kim, Sung-Woo; Park, Chandeok
2018-04-01
In the near future, space missions with multiple spacecraft are expected to replace traditional missions with a single large spacecraft. These spacecraft formation flying missions generally require precise knowledge of relative position and attitude between neighboring agents. In this study, among the several challenging issues, we focus on the technique to control spacecraft attitude synchronization in formation. We develop a number of nonlinear control schemes based on the Lyapunov stability theorem and considering special situations: full-state feedback control, full-state feedback control with unknown inertia parameters, and output feedback control without angular velocity measurements. All the proposed controllers offer absolute and relative control using reaction wheel assembly for both regulator and tracking problems. In addition to the numerical simulations, an air-bearing-based hardware-in-the-loop (HIL) system is used to verify the proposed control laws in real-time hardware environments. The pointing errors converge to 0.5{°} with numerical simulations and to 2{°} using the HIL system. Consequently, both numerical and hardware simulations confirm the performance of the spacecraft attitude synchronization algorithms developed in this study.
Solar thermal propulsion for planetary spacecraft
NASA Technical Reports Server (NTRS)
Sercel, J. C.
1985-01-01
Previous studies have shown that many desirable planetary exploration missions require large injection delta-V. Solar Thermal Rocket (STR) propulsion, under study for orbit-raising applications may enhance or enable such high-energy missions. The required technology of thermal control for liquid hydrogen propellant is available for the required storage duration. Self-deploying, inflatable solar concentrators are under study. The mass penalty for passive cryogenic thermal control, liquid hydrogen tanks and solar concentrators does not compromise the specific impulse advantage afforded by the STR as compared to chemical propulsion systems. An STR injection module is characterized and performance is evaluated by comparison to electric propulsion options for the Saturn Orbiter Titan Probe (SOTP) and Uranus Flyby Uranus Probe (UFUP) missions.
NASA Astrophysics Data System (ADS)
Gou, Xing-wang; Li, Ai-jun; Tian, Hao-chang; Wang, Chang-qing; Lu, Hong-shi
2018-06-01
As the major part of space life supporting systems, artificial gravity requires further study before it becomes mature. Spinning tether system is a good alternative solution to provide artificial gravity for the whole spacecraft other than additional devices, and its longer tether length could significantly reduce spinning velocity and thus enhance comfortability. An approximated overload-based feedback method is proposed to provide estimated spinning velocity signals for controller, so that gravity level could be accurately controlled without complicated GPS modules. System behavior in high eccentricity transfer orbits is also studied to give a complete knowledge of the spinning stabilities. The application range of the proposed method is studied in various orbit cases and spinning velocities, indicating that it is accurate and reliable for most of the mission phases especially for the final constant gravity level phase. In order to provide stable gravity level for transfer orbit missions, a sliding mode controller based on estimated angular signals is designed for closed-loop control. Numerical results indicate that the combination of overload-based feedback and sliding mode controller could satisfy most of the long-term artificial gravity missions. It is capable of forming flexible gravity environment in relatively good accuracy even in the lowest possible orbital radiuses and high eccentricity orbits of crewed space missions. The proposed scheme provides an effective tether solution for the artificial gravity construction in interstellar travel.
Development of ADOCS controllers and control laws. Volume 1: Executive summary
NASA Technical Reports Server (NTRS)
Landis, Kenneth H.; Glusman, Steven I.
1985-01-01
The Advanced Cockpit Controls/Advanced Flight Control System (ACC/AFCS) study was conducted by the Boeing Vertol Company as part of the Army's Advanced Digital/Optical Control System (ADOCS) program. Specifically, the ACC/AFCS investigation was aimed at developing the flight control laws for the ADOCS demonstrator aircraft that will provide satisfactory handling qualities for an attack helicopter mission. The three major elements of design considered during the study are as follows: Pilot's integrated Side-Stick Controller (SSC) -- Number of axes controlled; force/displacement characteristics; ergonomic design. Stability and Control Augmentation System (SCAS)--Digital flight control laws for the various mission phases; SCAS mode switching logic. Pilot's Displays--For night/adverse weather conditions, the dynamics of the superimposed symbology presented to the pilot in a format similar to the Advanced Attack Helicopter (AAH) Pilot Night Vision System (PNVS) for each mission phase as a function of SCAS characteristics; display mode switching logic. Volume 1 is an Executive Summary of the study. Conclusions drawn from analysis of pilot rating data and commentary were used to formulate recommendations for the ADOCS demonstrator flight control system design. The ACC/AFCS simulation data also provide an extensive data base to aid the development of advanced flight control system design for future V/STOL aircraft.
Discrete event command and control for networked teams with multiple missions
NASA Astrophysics Data System (ADS)
Lewis, Frank L.; Hudas, Greg R.; Pang, Chee Khiang; Middleton, Matthew B.; McMurrough, Christopher
2009-05-01
During mission execution in military applications, the TRADOC Pamphlet 525-66 Battle Command and Battle Space Awareness capabilities prescribe expectations that networked teams will perform in a reliable manner under changing mission requirements, varying resource availability and reliability, and resource faults. In this paper, a Command and Control (C2) structure is presented that allows for computer-aided execution of the networked team decision-making process, control of force resources, shared resource dispatching, and adaptability to change based on battlefield conditions. A mathematically justified networked computing environment is provided called the Discrete Event Control (DEC) Framework. DEC has the ability to provide the logical connectivity among all team participants including mission planners, field commanders, war-fighters, and robotic platforms. The proposed data management tools are developed and demonstrated on a simulation study and an implementation on a distributed wireless sensor network. The results show that the tasks of multiple missions are correctly sequenced in real-time, and that shared resources are suitably assigned to competing tasks under dynamically changing conditions without conflicts and bottlenecks.
Mission control of multiple unmanned aerial vehicles: a workload analysis.
Dixon, Stephen R; Wickens, Christopher D; Chang, Dervon
2005-01-01
With unmanned aerial vehicles (UAVs), 36 licensed pilots flew both single-UAV and dual-UAV simulated military missions. Pilots were required to navigate each UAV through a series of mission legs in one of the following three conditions: a baseline condition, an auditory autoalert condition, and an autopilot condition. Pilots were responsible for (a) mission completion, (b) target search, and (c) systems monitoring. Results revealed that both the autoalert and the autopilot automation improved overall performance by reducing task interference and alleviating workload. The autoalert system benefited performance both in the automated task and mission completion task, whereas the autopilot system benefited performance in the automated task, the mission completion task, and the target search task. Practical implications for the study include the suggestion that reliable automation can help alleviate task interference and reduce workload, thereby allowing pilots to better handle concurrent tasks during single- and multiple-UAV flight control.
NASA Technical Reports Server (NTRS)
1992-01-01
The objective of this conceptual design study is to verify that the Cosmic Background Explorer (COBE) Hydrazine Propulsion Subsystem (HPS) Rocket Engine Assembly (REA) will satisfy the Tropical Rainfall Measuring Mission (TRMM) requirements and to develop a preliminary thruster module design using the existing REAs. The performance of the COBE HPS 5 lbf thrusters meet the TRMM mission requirements. The preliminary design consists of a single 5 lbf REA REM which is isolation mounted to a spacecraft interface angle bracket (5 or 10 deg angle). The REM incorporates a catalyst bed heater and sensor assembly, and propellant thermal control is achieved by thermostatically controlled heaters on the thruster valves. A ROM cost of approx. $950 K has been estimated for the phase 2 program to finalize the design, fabricate, and test the hardware using mechanical thermostats for thermal control. In the event that solid state thermostats are used, the cost is estimated to be $160 K higher. A ROM cost is approx. $145 K is estimated to study the effects of using Japanese manufactured hydrazine for the TRMM mission.
Revalidation of the Huygens Descent Control Sub-System
NASA Technical Reports Server (NTRS)
2005-01-01
The Huygens probe, part of the Cassini mission to Saturn, is designed to investigate the atmosphere of Titan, Saturn's largest moon. The passage of the probe through the atmosphere is controlled by the Descent Control Sub-System (DCSS), which consists of three parachutes and associated mechanisms. The Cassini / Huygens mission was launched in October 1997 and was designed during the early 1990's. During the time since the design and launch, analysis capabilities have improved significantly, knowledge of the Titan environment has improved and the baseline mission has been modified. Consequently, a study was performed to revalidate the DCSS design against the current predictions.
Lessons learned from Shuttle/Mir: psychosocial countermeasures
NASA Technical Reports Server (NTRS)
Kanas, Nick; Salnitskiy, Vyacheslav; Grund, Ellen M.; Gushin, Vadim; Weiss, Daniel S.; Kozerenko, Olga; Sled, Alexander; Marmar, Charles R.
2002-01-01
BACKGROUND: During future long-duration space missions, countermeasures need to be developed to deal with psychosocial issues that might impact negatively on crewmember performance and well-being. METHODS: In our recently completed NASA-funded study of 5 U.S. astronauts, 8 Russian cosmonauts, and 42 U.S. and 16 Russian mission control personnel who participated in the Shuttle/Mir program, we evaluated a number of important psychosocial issues such as group tension, cohesion, leadership role, and the displacement of negative emotions from crewmembers to people in mission control and from mission control personnel to management. RESULTS: Based on our findings, which are reviewed, a number of psychosocial countermeasures are suggested to help ameliorate the negative impact of potential psychosocial problems during future manned space missions. CONCLUSIONS: Crewmembers should be selected not only to rule out psychopathology but also to select-in for group compatibility and facility in a common language. Training should include briefings and team building related to a number of psychosocial issues and should involve both crewmembers and mission control personnel. During the mission, both experts on the ground and the crewmembers themselves should be alert to potential interpersonal problems, including the displacement of negative emotions from the crew to the ground. Supportive activities should consist of both individual and interpersonal strategies, including an awareness of changing leisure time needs. Finally, attention should be given to postmission readjustment and to supporting the families on Earth.
Flight Controllers in Mission Control Center during splashdown of Apollo 14
1971-02-09
S71-18400 (9 Feb. 1971) --- Flight controllers in the Mission Operations Control Room (MOCR) of the Mission Control Center (MCC) view a colorful display which signals the successful splashdown and recovery of the crew of the Apollo 14 lunar landing mission. The MOCR's large screen at right shows a television shot aboard the USS New Orleans, Apollo 14 prime recovery ship.
Optimizing Flight Control Software With an Application Platform
NASA Technical Reports Server (NTRS)
Smith, Irene Skupniewicz; Shi, Nija; Webster, Christopher
2012-01-01
Flight controllers in NASA s mission control centers work day and night to ensure that missions succeed and crews are safe. The IT goals of NASA mission control centers are similar to those of most businesses: to evolve IT infrastructure from basic to dynamic. This paper describes Mission Control Technologies (MCT), an application platform that is powering mission control today and is designed to meet the needs of future NASA control centers. MCT is an extensible platform that provides GUI components and a runtime environment. The platform enables NASA s IT goals through its use of lightweight interfaces and configurable components, which promote standardization and incorporate useful solution patterns. The MCT architecture positions mission control centers to reach the goal of dynamic IT, leading to lower cost of ownership, and treating software as a strategic investment.
Grand Challenge Problems in Real-Time Mission Control Systems for NASA's 21st Century Missions
NASA Technical Reports Server (NTRS)
Pfarr, Barbara B.; Donohue, John T.; Hughes, Peter M.
1999-01-01
Space missions of the 21st Century will be characterized by constellations of distributed spacecraft, miniaturized sensors and satellites, increased levels of automation, intelligent onboard processing, and mission autonomy. Programmatically, these missions will be noted for dramatically decreased budgets and mission development lifecycles. Current progress towards flexible, scaleable, low-cost, reusable mission control systems must accelerate given the current mission deployment schedule, and new technology will need to be infused to achieve desired levels of autonomy and processing capability. This paper will discuss current and future missions being managed at NASA's Goddard Space Flight Center in Greenbelt, MD. It will describe the current state of mission control systems and the problems they need to overcome to support the missions of the 21st Century.
STS-26 simulation activities in JSC Mission Control Center (MCC)
NASA Technical Reports Server (NTRS)
1987-01-01
Overall view of JSC Mission Control Center (MCC) Bldg 30 Flight Control Room (FCR) during Flight Day 1 of STS-26 integrated simulations in progress between MCC and JSC Mission Simulation and Training Facility Bldg 5 fixed-base (FB) shuttle mission simulator (SMS).
SCOSII: ESA's new generation of mission control systems: The user's perspective
NASA Technical Reports Server (NTRS)
Kaufeler, P.; Pecchioli, M.; Shurmer, I.
1994-01-01
In 1974 ESOC decided to develop a reusable Mission Control System infrastructure for ESA's missions operated under its responsibility. This triggered a long and successful product development line, which started with the Multi Mission Support System (MSSS) which entered in service in 1977 and is still being used today by the MARECS and ECS missions; it was followed in 1989 by a second generation of systems known as SCOS-I, which was/is used by the Hipparcos, ERS-1 and EURECA missions and will continue to support all future ESCO controlled missions until approximately 1995. In the meantime the increasing complexity of future missions together with the emergence of new hardware and software technologies have led ESOC to go for the development of a third generation of control systems, SCOSII, which will support their future missions up to at least the middle of the next decade. The objective of the paper is to present the characteristics of the SCOSII system from the perspective of the mission control team; i.e. it will concentrate on the improvements and advances in the performance, functionality and work efficiency of the system.
View of Mission Control Center during the Apollo 13 liftoff
NASA Technical Reports Server (NTRS)
1970-01-01
Sigurd A. Sjoberg, Director of Flight Operations at Manned Spacecraft Center (MSC), views the Apollo 13 liftoff from a console in the MSC Mission Control Center, bldg 30. Apollo 13 lifted off at 1:13 p.m., April 11, 1970 (34627); Astronaut Thomas F. Mattingly II, who was scheduled as a prime crewman for the Apollo 13 mission but was replaced in the final hours when it was discovered he had been exposed to measles, watches the liftoff phase of the mission. He is seated at a console in the Mission Control Center's Mission Operations Control Room. Scientist-Astronaut Joseph P. Kerwin, a spacecraft communicator for the mission, looks on at right (34628).
Open Source and Design Thinking at NASA: A Vision for Future Software
NASA Technical Reports Server (NTRS)
Trimble, Jay
2017-01-01
NASA Mission Control Software for the Visualization of data has historically been closed, accessible only to small groups of flight controllers, often bound to a specific mission discipline such as flight dynamics, health and status or mission planning. Open Mission Control Technologies (MCT) provides new capability for NASA mission controllers and, by being fully open source, opens up NASA software for the visualization of mission data to broader communities inside and outside of NASA. Open MCT is the product of a design thinking process within NASA, using participatory design and design sprints to build a product that serves users.
Control Room Training for the Hyper-X Project Utilizing Aircraft Simulation
NASA Technical Reports Server (NTRS)
Lux-Baumann, Jesica; Dees, Ray; Fratello, David
2006-01-01
The NASA Dryden Flight Research Center flew two Hyper-X research vehicles and achieved hypersonic speeds over the Pacific Ocean in March and November 2004. To train the flight and mission control room crew, the NASA Dryden simulation capability was utilized to generate telemetry and radar data, which was used in nominal and emergency mission scenarios. During these control room training sessions personnel were able to evaluate and refine data displays, flight cards, mission parameter allowable limits, and emergency procedure checklists. Practice in the mission control room ensured that all primary and backup Hyper-X staff were familiar with the nominal mission and knew how to respond to anomalous conditions quickly and successfully. This report describes the technology in the simulation environment and the Mission Control Center, the need for and benefit of control room training, and the rationale and results of specific scenarios unique to the Hyper-X research missions.
Control Room Training for the Hyper-X Program Utilizing Aircraft Simulation
NASA Technical Reports Server (NTRS)
Lux-Baumann, Jessica R.; Dees, Ray A.; Fratello, David J.
2006-01-01
The NASA Dryden Flight Research Center flew two Hyper-X Research Vehicles and achieved hypersonic speeds over the Pacific Ocean in March and November 2004. To train the flight and mission control room crew, the NASA Dryden simulation capability was utilized to generate telemetry and radar data, which was used in nominal and emergency mission scenarios. During these control room training sessions, personnel were able to evaluate and refine data displays, flight cards, mission parameter allowable limits, and emergency procedure checklists. Practice in the mission control room ensured that all primary and backup Hyper-X staff were familiar with the nominal mission and knew how to respond to anomalous conditions quickly and successfully. This paper describes the technology in the simulation environment and the mission control center, the need for and benefit of control room training, and the rationale and results of specific scenarios unique to the Hyper-X research missions.
Overall view of Mission Operations Control in Mission Control Center
1969-05-18
S69-34316 (18 May 1969) --- Overall view of the Mission Operations Control Room in the Mission Control Center, Building 30, on the first day of the Apollo 10 lunar orbit mission. A color television transmission was being received from Apollo 10. This picture was made following Command and Service Module/Lunar Module/Saturn IVB (CSM/LM-S-IVB) separation and prior to LM extraction from the S-IVB. The CSM were making the docking approach to the LM/S-IVB.
Mission Operations Control Room (MOCR) activities during STS-6 mission
1983-04-05
Astronauts Roy D. Bridges (left) and RIchard O. Covey serve as spacecraft communicators (CAPCOM) for STS-6. They are seated at the CAPCOM console in the mission operations control room (MOCR) of JSC's mission control center (30119); Flight Director Jay H. Greene communicates with a nearby flight controller in the MOCR just after launch of the Challenger (30120).
View of Mission Control Center during the Apollo 13 liftoff
1970-04-11
S70-34628 (11 April 1970) --- Astronaut Thomas K. (Ken) Mattingly II, who was scheduled as a prime crew member for the Apollo 13 lunar landing mission but was replaced in the final hours when it was discovered he had been exposed to measles, watches the liftoff phase of the mission. He is seated at a console in the Mission Control Center’s (MCC) Mission Operations Control Room (MOCR). Scientist-astronaut Joseph P. Kerwin, a spacecraft communicator for the mission, looks on at right.
Clifford Charlesworth seated at his console in Mission Control Room
1968-12-21
S68-55742 (21 Dec. 1968) --- Clifford E. Charlesworth, Apollo 8 "Green Team" flight director, is seated at his console in the Mission Operations Control Room in the Mission Control Center, Building 30, during the launch of the Apollo 8 (Spacecraft 103/Saturn 503) manned lunar orbit space mission.
Mission Control Center (MCC) - Apollo 15 Launch - MSC
1971-07-26
S71-41357 (26 July 1971) --- An overall, wide-angle lens view of activity in the Mission Operations Control Room in the Mission Control Center minutes after the launch of the Apollo 15 lunar landing mission. Ground elapsed time was 45 minutes and 42 seconds when this photograph was taken.
Cultural Challenges Faced by American Mission Control Personnel Working with International Partners
NASA Technical Reports Server (NTRS)
Clement, J. L.; Ritsher, J. B.
2006-01-01
Operating the International Space Station (ISS) involves an indefinite, continuous series of long-duration international missions, and this requires an unprecedented degree of cooperation across multiple sites, organizations, and nations. Both junior and senior mission control personnel have had to find ways to address the cultural challenges inherent in such work, but neither have had systematic training in how to do so. The goals of this study were to identify and evaluate the major cultural challenges faced by ISS mission control personnel and to highlight the approaches that they have found most effective to surmount these challenges. We pay particular attention to the approaches successfully employed by the senior personnel and the training needs identified by the junior personnel. We also evaluate the extent to which the identified approaches and needs are consistent across the two samples. METHODS: Participants included a sample of 14 senior ISS flight controllers and a contrasting sample of 12 more junior controllers. All participants were mission operations specialists chosen on the basis of having worked extensively with international partners. Data were collected using a semi-structured qualitative interview and content analyzed using an iterative process with multiple coders and consensus meetings to resolve discrepancies. RESULTS: The senior respondents had substantial consensus on several cultural challenges and on key strategies for dealing with them, and they offered a wide range of specific tactics for implementing these strategies. Data from the junior respondents will be presented for the first time at the meeting. DISCUSSION: Although specific to American ISS personnel, our results are consistent with recent management, cultural, and aerospace research on other populations. We aim to use our results to improve training for current and future mission control personnel working in international or multicultural mission operations teams.
Advanced extravehicular protective systems study, volume 1
NASA Technical Reports Server (NTRS)
Sutton, J. G.; Heimlich, P. F.; Tepper, E. H.
1972-01-01
An appraisal was made of advanced portable and emergency life support systems concepts for space station, space shuttle, lunar base, and Mars EVA missions. Specifications are given, and the methodology is described. Subsystem studies and systems integration efforts are summarized. Among the conclusions are the following: (1) For long duration missions, a configuration incorporating a regenerable CO2 control subsystem and a thermal control subsystem utilizing a minimum of expendables decreases the vehicle penalty of present configurations. (2) For shorter duration missions, a configuration incorporating an expendable water thermal control subsystem is the most competitive subsystem; regenerable CO2 control subsystems if properly developed are competitive with nonregenerable counterparts. (3) The CO2 reduction and oxygen reclamation withing the parent vehicle is only competitive when there are three or more parent vehicle resupply periods. (4) For long duration emergency systems of one hour or more, inherent redundancy within the primary configuration to provide emergency thermal control is the most competitive approach.
Eugene F. Kranz wears special vest to celebrate 41-C mission landing
NASA Technical Reports Server (NTRS)
1984-01-01
Eugene F. Kranz, Director of Mission Operations, wears special red, white and blue striped vest to celebrate 41-C mission landing. He stands at the rear row of consoles in the Mission Operations Control Room (MOCR) of JSC's Mission Control Center.
Expedition 13 flight controller on console during mission - Orbit 1, BFCR
2006-08-31
JSC2006-E-38926 (31 Aug. 2006) --- Flight director Rick LaBrode discusses Expedition 13 mission activities with another flight controller (out of frame) in the Station (Blue) Flight Control Room in Houston's Mission Control Center.
VIew of Mission Control on first day of ASTP docking in Earth orbit
1975-07-15
S75-28483 (15 July 1975) --- An overall view of the Mission Operations Control Room in the Mission Control Center on the first day of the Apollo-Soyuz Test Project docking mission in Earth orbit. The American ASTP flight controllers at NASA's Johnson Space Center were monitoring the progress of the Soviet ASTP launch when this photograph was taken. The television monitor shows cosmonaut Yuri V. Romanenko at his spacecraft communicator?s console in the ASTP mission control center in the Soviet Union. The American ASTP liftoff followed the Soviet ASTP launch by seven and one-half hours.
Artificial intelligence in a mission operations and satellite test environment
NASA Technical Reports Server (NTRS)
Busse, Carl
1988-01-01
A Generic Mission Operations System using Expert System technology to demonstrate the potential of Artificial Intelligence (AI) automated monitor and control functions in a Mission Operations and Satellite Test environment will be developed at the National Aeronautics and Space Administration (NASA) Jet Propulsion Laboratory (JPL). Expert system techniques in a real time operation environment are being studied and applied to science and engineering data processing. Advanced decommutation schemes and intelligent display technology will be examined to develop imaginative improvements in rapid interpretation and distribution of information. The Generic Payload Operations Control Center (GPOCC) will demonstrate improved data handling accuracy, flexibility, and responsiveness in a complex mission environment. The ultimate goal is to automate repetitious mission operations, instrument, and satellite test functions by the applications of expert system technology and artificial intelligence resources and to enhance the level of man-machine sophistication.
Current Level of Mission Control Automation at NASA/Goddard Space Flight Center
NASA Technical Reports Server (NTRS)
Maks, Lori; Breed, Julie; Rackley, Michael; Powers, Edward I. (Technical Monitor)
2001-01-01
NASA is particularly concerned with reducing mission operations costs through increased automation. This paper examines the operations procedures within NASA Mission Control Centers in order to uncover the level of automation that currently exists within them. Based on an assessment of mission operations procedures within three representative control centers, this paper recommends specific areas where there is potential for mission cost reduction through increased automation.
NASA Technical Reports Server (NTRS)
Teles, Jerome (Editor); Samii, Mina V. (Editor)
1993-01-01
A conference on spaceflight dynamics produced papers in the areas of orbit determination, spacecraft tracking, autonomous navigation, the Deep Space Program Science Experiment Mission (DSPSE), the Global Positioning System, attitude control, geostationary satellites, interplanetary missions and trajectories, applications of estimation theory, flight dynamics systems, low-Earth orbit missions, orbital mechanics, mission experience in attitude dynamics, mission experience in sensor studies, attitude dynamics theory and simulations, and orbit-related experience. These papaers covered NASA, European, Russian, Japanese, Chinese, and Brazilian space programs and hardware.
Preliminary Design and Analysis of the ARES Atmospheric Flight Vehicle Thermal Control System
NASA Technical Reports Server (NTRS)
Gasbarre, J. F.; Dillman, R. A.
2003-01-01
The Aerial Regional-scale Environmental Survey (ARES) is a proposed 2007 Mars Scout Mission that will be the first mission to deploy an atmospheric flight vehicle (AFV) on another planet. This paper will describe the preliminary design and analysis of the AFV thermal control system for its flight through the Martian atmosphere and also present other analyses broadening the scope of that design to include other phases of the ARES mission. Initial analyses are discussed and results of trade studies are presented which detail the design process for AFV thermal control. Finally, results of the most recent AFV thermal analysis are shown and the plans for future work are discussed.
Mission Control Center (MCC) - Apollo 8
1968-12-25
S68-56007 (23 Dec. 1968) --- Overall view of the Mission Operations Control Room in the Mission Control Center, Building 30, on the third day of the Apollo 8 lunar orbit mission. Seen on the television monitor is a picture of Earth which was telecast from the Apollo 8 spacecraft 176,000 miles away.
NASA Technical Reports Server (NTRS)
Brody, Adam R.; Ellis, Stephen R.
1992-01-01
Nine commercial airline pilots served as test subjects in a study to compare acceleration control with pulse control in simulated spacecraft maneuvers. Simulated remote dockings of an orbital maneuvering vehicle (OMV) to a space station were initiated from 50, 100, and 150 meters along the station's -V-bar (minus velocity vector). All unsuccessful missions were reflown. Five way mixed analysis of variance (ANOVA) with one between factor, first mode, and four within factors (mode, bloch, range, and trial) were performed on the data. Recorded performance measures included mission duration and fuel consumption along each of the three coordinate axes. Mission duration was lower with pulse mode, while delta V (fuel consumption) was lower with acceleration mode. Subjects used more fuel to travel faster with pulse mode than with acceleration mode. Mission duration, delta V, X delta V, Y delta V., and Z delta V all increased with range. Subjects commanded the OMV to 'fly' at faster rates from further distances. These higher average velocities were paid for with increased fuel consumption. Asymmetrical transfer was found in that the mode transitions could not be predicted solely from the mission duration main effect. More testing is advised to understand the manual control aspects of spaceflight maneuvers better.
STS-26 long duration simulation in JSC Mission Control Center (MCC) Bldg 30
NASA Technical Reports Server (NTRS)
1988-01-01
STS-26 long duration simulation is conducted in JSC Mission Control Center (MCC) Bldg 30 Flight Control Room (FCR). Director of Mission Operations Directorate (MOD) Eugene F. Kranz (left) and Chief of the Flight Directors Office Tommy W. Holloway monitor activity during the simulation. The two are at their normal stations on the rear row of consoles. The integrated simulation involves MCC flight controllers communicating with crewmembers stationed in the fixed based (FB) shuttle mission simulator (SMS) located in JSC Mission Simulation and Training Facility Bldg 5.
General human health issues for Moon and Mars missions: Results from the HUMEX study
NASA Astrophysics Data System (ADS)
Horneck, Gerda; Comet, Bernard
The general health issues considered in two scenarios of human long-term exploratory missions, which include a mission to a lunar base and a mission to Mars, have been analysed. Based on statistical data from occupational and normal population groups of Western countries, the following safety objectives have been chosen: individual risk of death by illness (=natural death) during the mission shall be <2 × 10-3/year, that by injury (=accidental death) <4 × 10-4/year, and that from all causes, including spacecraft failure (taken from most exposed professions) <3 × 10-2/year. Using the classical reliability requirements for human space missions, reliability objectives have been set for each mission scenario, resulting in values compatible with the mission safety objectives. The main results are as follows: (i) based of the probability of occurrence of diseases and injuries and on the constraints imposed by exploratory mission scenarios, the crew shall have a full autonomy in terms of medical and surgical diagnostics and care means and competency; (ii) the control of the toxic and biological risks in a confined environment for a so long exposure shall be carefully analyzed and the technical solutions shall master these risks; (iii) the state of the art shows that bone loss during the long stay in weightlessness, especially during missions to Mars, remains an unacceptable risk. Solutions to control and to prevent this risk shall be developed; (iv) the control of human physical capacity impairment under weightlessness shall be optimised. A roadmap in the field of health care has been elaborated for a future European participation strategy towards human exploratory missions taking into account preparatory activities, such as analogue situations and ISS opportunities, and potential terrestrial applications and benefits.
Pointing and control system enabling technology for future automated space missions
NASA Technical Reports Server (NTRS)
Dahlgren, J. B.
1978-01-01
Future automated space missions present challenging opportunities in the pointing-and-control technology disciplines. The enabling pointing-and-control system technologies for missions from 1985 to the year 2000 were identified and assessed. A generic mission set including Earth orbiter, planetary, and other missions which predominantly drive the pointing-and-control requirements was selected for detailed evaluation. Technology candidates identified were prioritized as planning options for future NASA-OAST advanced development programs. The primary technology thrusts in each candidate program were cited, and advanced development programs in pointing-and-control were recommended for the FY 80 to FY 87 period, based on these technology thrusts.
STS-26 simulation activities in JSC Mission Control Center (MCC)
NASA Technical Reports Server (NTRS)
1987-01-01
In JSC Mission Control Center (MCC) Bldg 30 Flight Control Room (FCR), astronauts John O. Creighton (right) and L. Blaine Hammond review their notes while serving as spacecraft communicators (CAPCOMs) for STS-26 simulations in progress between MCC and JSC Mission Simulation and Training Facility Bldg 5 fixed-base (FB) shuttle mission simulator (SMS).
STS-26 simulation activities in JSC Mission Control Center (MCC)
NASA Technical Reports Server (NTRS)
1987-01-01
In JSC Mission Control Center (MCC) Bldg 30 Flight Control Room (FCR), flight directors (FDs) Lee Briscoe (left) and Charles W. Shaw, seated at FD console, view front visual display monitors during STS-26 simulations in progress between MCC and JSC Mission Simulation and Training Facility Bldg 5 fixed-base (FB) shuttle mission simulator (SMS).
An Architecture to Promote the Commercialization of Space Mission Command and Control
NASA Technical Reports Server (NTRS)
Jones, Michael K.
1996-01-01
This paper describes a command and control architecture that encompasses space mission operations centers, ground terminals, and spacecraft. This architecture is intended to promote the growth of a lucrative space mission operations command and control market through a set of open standards used by both gevernment and profit-making space mission operators.
Near Earth Asteroid Scout Solar Sail Thrust and Torque Model
NASA Technical Reports Server (NTRS)
Heaton, Andy; Ahmad, Naeem; Miller, Kyle
2017-01-01
The Near Earth Asteroid (NEA) Scout is a solar sail mission whose objective is to scout at least one Near Earth Asteroid to help prepare for human missions to Near Earth Asteroids. NEA Scout will launch as a secondary payload on the first SLS-Orion mission. NEA Scout will perform a small trim maneuver shortly after deploy from the spent SLS upper stage using a cold gas propulsion system, but from that point on will depend entirely on the solar sail for thrust. As such, it is important to accurately characterize the thrust of the sail in order to achieve mission success. Additionally, the solar sail creates a relatively large solar disturbance torque that must be mitigated. For early mission design studies a flat plate model of the solar sail with a fixed center of pressure was adequate, but as mission concepts and the sail design matured, greater fidelity was required. Here we discuss the progress to a three-dimensional sail model that includes the effects of tension and thermal deformation that has been derived from a large structural Finite Element Model (FEM) developed by the Langley Research Center. We have found that the deformed sail membrane affects torque relatively much more than thrust; a flat plate model could potentially model thrust well enough to close mission design studies, but a three-dimensional solar sail is essential to control system design. The three-dimensional solar sail model revealed that thermal deformations of unshielded booms would create unacceptably large solar disturbance torques. The original large FEM model was used in control and mission simulations, but was resulted in simulations with prohibitive run times. This led us to adapt the Generalized Sail Model (GSM) of Rios-Reyes. A design reference sail model has been baselined for NEA Scout and has been used to design the mission and control system for the sailcraft. Additionally, since NEA Scout uses reaction wheels for attitude pointing and control, the solar torque model is essentially to successfully design the NEA Scout momentum management control system. We have also updated the estimate of diffusivity used for the aluminized sail material based on optical testing of wrinkled sail material. The model presented here represents the current state of the art of NASA's ability to model solar sail thrust and torque.
NASA Technical Reports Server (NTRS)
Nelms, W. P., Jr.; Axelson, J. A.
1974-01-01
A computerized synthesis program has been used to assess the effects of various vehicle and mission parameters on the performance of a highly maneuverable remotely piloted vehicle (RPV) for the air-to-air combat role. The configuration used in the study is a trapezoidal-wing and body concept, with forward-mounted stabilizing and control surfaces. The study mission consists of an outbound cruise, an acceleration phase, a series of subsonic and supersonic turns, and a return cruise. Performance is evaluated in terms of both the required vehicle weight to accomplish this mission and combat effectiveness as measured by turning and acceleration capability. The report describes the synthesis program, the mission, the vehicle, and the results of sensitivity and trade studies.
Mission Control Center (MCC) - Celebration - Conclusion - Apollo XI Mission - MSC
1969-07-24
S69-40301 (24 July 1969) --- Overall view of the Mission Operations Control Room (MOCR) in the Mission Control Center (MCC), Building 30, Manned Spacecraft Center (MSC), at the conclusion of the Apollo 11 lunar landing mission. The television monitor shows President Richard M. Nixon greeting the Apollo 11 astronauts aboard the USS Hornet in the Pacific recovery area. Astronauts Neil A. Armstrong, Michael Collins, and Edwin E. Aldrin Jr. are inside the Mobile Quarantine Facility (MQF).
NASA HRP Plans for Collaboration at the IBMP Ground-Based Experimental Facility (NEK)
NASA Technical Reports Server (NTRS)
Cromwell, Ronita L.
2016-01-01
NASA and IBMP are planning research collaborations using the IBMP Ground-based Experimental Facility (NEK). The NEK offers unique capabilities to study the effects of isolation on behavioral health and performance as it relates to spaceflight. The NEK is comprised of multiple interconnected modules that range in size from 50-250m(sup3). Modules can be included or excluded in a given mission allowing for flexibility of platform design. The NEK complex includes a Mission Control Center for communications and monitoring of crew members. In an effort to begin these collaborations, a 2-week mission is planned for 2017. In this mission, scientific studies will be conducted to assess facility capabilities in preparation for longer duration missions. A second follow-on 2-week mission may be planned for early in 2018. In future years, long duration missions of 4, 8 and 12 months are being considered. Missions will include scenarios that simulate for example, transit to and from asteroids, the moon, or other interplanetary travel. Mission operations will be structured to include stressors such as, high workloads, communication delays, and sleep deprivation. Studies completed at the NEK will support International Space Station expeditions, and future exploration missions. Topics studied will include communication, crew autonomy, cultural diversity, human factors, and medical capabilities.
Assess 2: Spacelab simulation. Executive summary
NASA Technical Reports Server (NTRS)
1977-01-01
An Airborne Science/Spacelab Experiments System Simulation (ASSESS II) mission, was conducted with the CV-990 airborne laboratory in May 1977. The project studied the full range of Spacelab-type activities including management interactions, experiment selection and funding, hardware development, payload integration and checkout, mission specialist and payload specialist selection and training, mission control center payload operations control center arrangements and interactions, real time interaction during flight between principal investigators and the flight crew, and retrieval of scientific flight data. ESA established an integration and coordination center for the ESA portion of the payload as planned for Spacelab. A strongly realistic Spacelab mission was conducted on the CV-990 aircraft. U.S. and ESA scientific experiments were integrated into a payload and flown over a 10 day period, with the payload flight crew fully-confined to represent a Spacelab mission. Specific conclusions for Spacelab planning are presented along with a brief explanation of each.
NASA Astrophysics Data System (ADS)
Delpech, Michel; Berges, Jean-Claude; Karlsson, Thomas; Malbet, Fabien
2013-07-01
CNES performed several experiments during the extended PRISMA mission which started in August 2011. A first session in October 2011 addressed two objectives: 1) demonstrate angles-only navigation to rendezvous with a non-cooperative object; 2) exercise transitions between RF-based and vision-based control during final formation acquisition. A complementary experiment in September 2012 mimicked some future astrometry mission and implemented the manoeuvres required to point the two satellite axis to a celestial target and maintain it fixed during some observation period. In the first sections, the paper presents the experiment motivations, describes its main design features including the guidance and control algorithms evolutions and provides a synthesis of the most significant results along with a discussion of the lessons learned. In the last part, the paper evokes the applicability of these experiment results to some active debris removal mission concept that is currently being studied.
Expedition 13 flight controller on console during mission - Orbit 1, BFCR
2006-08-31
JSC2006-E-38928 (31 Aug. 2006) --- Flight director Rick LaBrode monitors data at his console in the Station (Blue) Flight Control Room in Houston's Mission Control Center during Expedition 13 mission activities.
View of Mission Control during lunar surface Apollo 11 EVA
1969-07-20
Overall view of the Mission Operations Control Room in the Mission Control Center, bldg 30, during the lunar surface extravehicular activity (EVA) of Apollo 11 Astronauts Neil A. Armstrong and Edwin E. Aldrin Jr.
Front view of bldg 30 which houses mission control
NASA Technical Reports Server (NTRS)
1984-01-01
Front view of bldg 30 which houses mission control. A shift change for the 41-D mission is underway. The windowless wing at left houses three floors, including rooms supporting flight control room 1 and 2.
Cultural differences in crewmembers and mission control personnel during two space station programs.
Boyd, Jennifer E; Kanas, Nick A; Salnitskiy, Vyacheslav P; Gushin, Vadim I; Saylor, Stephanie A; Weiss, Daniel S; Marmar, Charles R
2009-06-01
Cultural differences among crewmembers and mission control personnel can affect long-duration space missions. We examine three cultural contrasts: national (American vs. Russian); occupational (crewmembers vs. mission control personnel); and organizational [Mir space station vs. International Space Station (ISS)]. The Mir sample included 5 American astronauts, 8 Russian cosmonauts, and 42 American and 16 Russian mission control personnel. The ISS sample included 8 astronauts, 9 cosmonauts, and 108 American and 20 Russian mission control personnel. Subjects responded to mood and group climate questions on a weekly basis. The ISS sample also completed a culture and language questionnaire. Crewmembers had higher scores on cultural sophistication than mission control personnel, especially American mission control. Cultural sophistication was not related to mood or social climate. Russian subjects reported greater language flexibility than Americans. Crewmembers reported better mood states than mission control, but both were in the healthy range. There were several Russian-American differences in social climate, with the most robust being higher work pressure among Americans. Russian-American social climate differences were also found in analyses of crew only. Analyses showed Mir-ISS differences in social climate among crew but not in the full sample. We found evidence for national, occupational, and organizational cultural differences. The findings from the Mir space station were essentially replicated on the ISS. Alterations to the ISS to make it a more user-friendly environment have still not resolved the issue of high levels of work pressure among the American crew.
1969-11-21
S69-59525 (19 Nov. 1969) --- Overall view of activity in the Mission Operations Control Room (MOCR) in the Mission Control Center (MCC), Building 30, during the Apollo 12 lunar landing mission. When this picture was made the first Apollo 12 extravehicular activity (EVA) was being televised from the surface of the moon. Photo credit: NASA
Shift changes, updates, and the on-call architecture in space shuttle mission control.
Patterson, E S; Woods, D D
2001-01-01
In domains such as nuclear power, industrial process control, and space shuttle mission control, there is increased interest in reducing personnel during nominal operations. An essential element in maintaining safe operations in high risk environments with this 'on-call' organizational architecture is to understand how to bring called-in practitioners up to speed quickly during escalating situations. Targeted field observations were conducted to investigate what it means to update a supervisory controller on the status of a continuous, anomaly-driven process in a complex, distributed environment. Sixteen shift changes, or handovers, at the NASA Johnson Space Center were observed during the STS-76 Space Shuttle mission. The findings from this observational study highlight the importance of prior knowledge in the updates and demonstrate how missing updates can leave flight controllers vulnerable to being unprepared. Implications for mitigating risk in the transition to 'on-call' architectures are discussed.
Shift changes, updates, and the on-call architecture in space shuttle mission control
NASA Technical Reports Server (NTRS)
Patterson, E. S.; Woods, D. D.
2001-01-01
In domains such as nuclear power, industrial process control, and space shuttle mission control, there is increased interest in reducing personnel during nominal operations. An essential element in maintaining safe operations in high risk environments with this 'on-call' organizational architecture is to understand how to bring called-in practitioners up to speed quickly during escalating situations. Targeted field observations were conducted to investigate what it means to update a supervisory controller on the status of a continuous, anomaly-driven process in a complex, distributed environment. Sixteen shift changes, or handovers, at the NASA Johnson Space Center were observed during the STS-76 Space Shuttle mission. The findings from this observational study highlight the importance of prior knowledge in the updates and demonstrate how missing updates can leave flight controllers vulnerable to being unprepared. Implications for mitigating risk in the transition to 'on-call' architectures are discussed.
Pointing control for the International Comet Mission
NASA Technical Reports Server (NTRS)
Leblanc, D. R.; Schumacher, L. L.
1980-01-01
The design of the pointing control system for the proposed International Comet Mission, intended to fly by Comet Halley and rendezvous with Comet Tempel-2 is presented. Following a review of mission objectives and the spacecraft configuration, design constraints on the pointing control system controlling the two-axis gimballed scan platform supporting the science instruments are discussed in relation to the scientific requirements of the mission. The primary design options considered for the pointing control system design for the baseline spacecraft are summarized, and the design selected, which employs a target-referenced, inertially stabilized control system, is described in detail. The four basic modes of operation of the pointing control subsystem (target acquisition, inertial hold, target track and slew) are discussed as they relate to operations at Halley and Tempel-2. It is pointed that the pointing control system design represents a significant advance in the state of the art of pointing controls for planetary missions.
Autonomous Agents on Expedition: Humans and Progenitor Ants and Planetary Exploration
NASA Astrophysics Data System (ADS)
Rilee, M. L.; Clark, P. E.; Curtis, S. A.; Truszkowski, W. F.
2002-01-01
The Autonomous Nano-Technology Swarm (ANTS) is an advanced mission architecture based on a social insect analog of many specialized spacecraft working together to achieve mission goals. The principal mission concept driving the ANTS architecture is a Main Belt Asteroid Survey in the 2020s that will involve a thousand or more nano-technology enabled, artificially intelligent, autonomous pico-spacecraft (< 1 kg). The objective of this survey is to construct a compendium of composition, shape, and other physical parameter observations of a significant fraction of asteroid belt objects. Such an atlas will be of primary scientific importance for the understanding of Solar System origins and evolution and will lay the foundation for future exploration and capitalization of space. As the capabilities enabling ANTS are developed over the next two decades, these capabilities will need to be proven. Natural milestones for this process include the deployment of progenitors to ANTS on human expeditions to space and remote missions with interfaces for human interaction and control. These progenitors can show up in a variety of forms ranging from spacecraft subsystems and advanced handheld sensors, through complete prototypical ANTS spacecraft. A critical capability to be demonstrated is reliable, long-term autonomous operations across the ANTS architecture. High level, mission-oriented behaviors are to be managed by a control / communications layer of the swarm, whereas common low level functions required of all spacecraft, e.g. attitude control and guidance and navigation, are handled autonomically on each spacecraft. At the higher levels of mission planning and social interaction deliberative techniques are to be used. For the asteroid survey, ANTS acts as a large community of cooperative agents while for precursor missions there arises the intriguing possibility of Progenitor ANTS and humans acting together as agents. For optimal efficiency and responsiveness for individual spacecraft at the lowest levels of control we have been studying control methods based on nonlinear dynamical systems. We describe the critically important autonomous control architecture of the ANTS mission concept and a sequence of partial implementations that feature increasingly autonomous behaviors. The scientific and engineering roles that these Progenitor ANTS could play in human missions or remote missions with near real time human interactions, particularly to the Moon and Mars, will be discussed.
NASA Technical Reports Server (NTRS)
Lucord, Steve A.; Gully, Sylvain
2009-01-01
The purpose of the PROTOTYPE INTEROPERABILITY DOCUMENT is to document the design and interfaces for the service providers and consumers of a Mission Operations prototype between JSC-OTF and DLR-GSOC. The primary goal is to test the interoperability sections of the CCSDS Spacecraft Monitor & Control (SM&C) Mission Operations (MO) specifications between both control centers. An additional goal is to provide feedback to the Spacecraft Monitor and Control (SM&C) working group through the Review Item Disposition (RID) process. This Prototype is considered a proof of concept and should increase the knowledge base of the CCSDS SM&C Mission Operations standards. No operational capabilities will be provided. The CCSDS Mission Operations (MO) initiative was previously called Spacecraft Monitor and Control (SM&C). The specifications have been renamed to better reflect the scope and overall objectives. The working group retains the name Spacecraft Monitor and Control working group and is under the Mission Operations and Information Services Area (MOIMS) of CCSDS. This document will refer to the specifications as SM&C Mission Operations, Mission Operations or just MO.
The Generation-X Vision Mission Study and Advanced Mission Concept
NASA Astrophysics Data System (ADS)
Brissenden, Roger J. V.; Generation-X Team
2008-03-01
The Generation-X (Gen-X) mission was selected as one of NASA's Vision Missions as a concept for a next generation X-ray telescope designed to study the very early universe with 1000-times greater sensitivity than current X-ray telescopes. The mission has also been proposed as an Advanced Mission Concept Study (AMCS) to further define the technology development plan and mission design. The scientific goals for Gen-X include studying the first generations of stars and black holes in the epoch z=10-20, the evolution of black holes and galaxies from high z to the present, the chemical evolution of the universe and the properties of matter under extreme conditions. The key parameters required to meet these goals define a challenging mission and include an effective area of 50 m2 at 1 keV, and an angular resolution (HPD) of 0.1 arcsec over an energy band of 0.1-10 keV. The required effective area implies that extremely lightweight grazing incidence X-ray optics must be developed. To achieve the required areal density of at least 100 times lower than in Chandra, thin ( 0.1 mm) mirrors that have active on-orbit figure control are required. We present the major findings from the Gen-X Vision Mission Study and a streamlined mission concept enabled by the Ares V launch capability, as proposed in response to the AMSC call.
NASA Technical Reports Server (NTRS)
Craft, H.
1984-01-01
The role of the mission manager in coordinating the payload with the space transportation system is studied. The establishment of the investigators working group to assist in achieving the mission objectives is examined. Analysis of the scientific requirements to assure compatibility with available resources, and analysis of the payload in order to define orbital flight requirements are described. The training of payload specialists, launch site integration, and defining the requirements for the operation of the integrated payload and the payload operations control center are functions of the mission manager. The experiences gained from the management of the Spacelab One Mission, which can be implemented in future missions, are discussed. Examples of material processing, earth observations, and life sciences advances from the First Spacelab Mission are presented.
NASA Technical Reports Server (NTRS)
Spector, V. A.
1977-01-01
Related aspect of the Earth Viewing Applications Laboratory (EVAL) shuttle missions were investigated. The applicability of the gimballed Instrument Pointing System (IPS) to EVAL missions by comparing the IPS capabilities with the EVAL requirements was evaluated, and a means of stabilizing the shuttle orbiter attitude in earth viewing orientations for prolonged periods without use of the orbiter gas reaction control system was assessed.
Preliminary analysis of long-range aircraft designs for future heavy airlift missions
NASA Technical Reports Server (NTRS)
Nelms, W. P., Jr.; Murphy, R.; Barlow, A.
1976-01-01
A computerized design study of very large cargo aircraft for the future heavy airlift mission was conducted using the Aircraft Synthesis program (ACSYNT). The study was requested by the Air Force under an agreement whereby Ames provides computerized design support to the Air Force Flight Dynamics Laboratory. This effort is part of an overall Air Force program to study advanced technology large aircraft systems. Included in the Air Force large aircraft program are investigations of missions such as heavy airlift, airborne missile launch, battle platform, command and control, and aerial tanker. The Ames studies concentrated on large cargo aircraft of conventional design with payloads from 250,000 to 350,000 lb. Range missions up to 6500 n.mi. and radius missions up to 3600 n.mi. have been considered. Takeoff and landing distances between 7,000 and 10,000 ft are important constraints on the configuration concepts. The results indicate that a configuration employing conventional technology in all disciplinary areas weighs approximately 2 million pounds to accomplish either a 6500-n.mi. range mission or a 3600-n.mi. radius mission with a 350,000-lb payload.
NASA Astrophysics Data System (ADS)
Barger, Laura K.; Wright, Kenneth P.; Burke, Tina M.; Chinoy, Evan D.; Ronda, Joseph M.; Lockley, Steven W.; Czeisler, Charles A.
2014-01-01
The success of long-duration space missions depends on the ability of crewmembers and mission support specialists to be alert and maintain high levels of cognitive function while operating complex, technical equipment. We examined sleep, nocturnal melatonin levels and cognitive function of crewmembers and the sleep and cognitive function of mission controllers who participated in a high-fidelity 105-day simulated spaceflight mission at the Institute of Biomedical Problems (Moscow). Crewmembers were required to perform daily mission duties and work one 24-h extended duration work shift every sixth day. Mission controllers nominally worked 24-h extended duration shifts. Supplemental lighting was provided to crewmembers and mission controllers. Participants' sleep was estimated by wrist-actigraphy recordings. Overall, results show that crewmembers and mission controllers obtained inadequate sleep and exhibited impaired cognitive function, despite countermeasure use, while working extended duration shifts. Crewmembers averaged 7.04±0.92 h (mean±SD) and 6.94±1.08 h (mean±SD) in the two workdays prior to the extended duration shifts, 1.88±0.40 h (mean±SD) during the 24-h work shift, and then slept 10.18±0.96 h (mean±SD) the day after the night shift. Although supplemental light was provided, crewmembers' average nocturnal melatonin levels remained elevated during extended 24-h work shifts. Naps and caffeine use were reported by crewmembers during ˜86% and 45% of extended night work shifts, respectively. Even with reported use of wake-promoting countermeasures, significant impairments in cognitive function were observed. Mission controllers slept 5.63±0.95 h (mean±SD) the night prior to their extended duration work shift. On an average, 89% of night shifts included naps with mission controllers sleeping an average of 3.4±1.0 h (mean±SD) during the 24-h extended duration work shift. Mission controllers also showed impaired cognitive function during extended duration work shifts. These findings indicate that extended duration work shifts present a significant challenge to crewmembers and mission support specialists during long-duration space mission operations. Future research is needed to evaluate the efficacy of alternative work schedules and the development and implementation of more effective countermeasures will be required to maintain high levels of performance.
The performance of thermal control coatings on LDEF and implications to future spacecraft
NASA Technical Reports Server (NTRS)
Wilkes, Donald R.; Miller, Edgar R.; Mell, Richard J.; Lemaster, Paul S.; Zwiener, James M.
1993-01-01
The stability of thermal control coatings over the lifetime of a satellite or space platform is crucial to the success of the mission. With the increasing size, complexity, and duration of future missions, the stability of these materials becomes even more important. The Long Duration Exposure Facility (LDEF) offered an excellent testbed to study the stability and interaction of thermal control coatings in the low-Earth orbit (LEO) space environment. Several experiments on LDEF exposed thermal control coatings to the space environment. This paper provides an overview of the different materials flown and their stability during the extended LDEF mission. The exposure conditions, exposure environment, and measurements of materials properties (both in-space and postflight) are described. The relevance of the results and the implications to the design and operation of future space vehicles are also discussed.
Reusablility in ESOC mission control systems developments - the SMART-1 mission case
NASA Astrophysics Data System (ADS)
Pignède, Max; Davies, Kevin
2002-07-01
The European Space Operations Centre (ESOC) have a long experience in spacecraft mission control systems developments and use a large number of existing elements for the build up of control systems for new missions. The integration of such elements in a new system covers not only the direct re-use of infrastructure software but also the re-use of concepts and work methodology. Applying reusability is a major asset in ESOC's strategy, especially for low cost space missions. This paper describes re-use of existing elements in the ESOC production of the SMART-1 mission control system (S1MCS) and explores the following areas: The most significant (and major cost-saving contributors) re-used elements are the Spacecraft Control and Operations System (SCOS-2000) and the Network Control and TM/TC Router System (NCTRS) infrastructure systems. These systems are designed precisely for allowing all general mission parameters to be configured easily without any change in the software (in particular the NCTRS configuration for SMART-1 was time and cost effective). Further, large parts of the ESOC ROSETTA and INTEGRAL software systems (also SCOS-2000 based) were directly re-used, such as the on-board command schedule maintenance and modelling subsystem (OBQ), the time correlator (TCO) and the external file transfer subsystem (FTS). The INTEGRAL spacecraft database maintenance system (both the editors and configuration control mechanism) and its export facilities into the S1MCS runtime system are directly reused. A special kind of re-use concerns the ENVISAT approach to both the telemetry (TM) and telecommanding (TC) context saving in the redundant server system in order to enable smooth support of operations in case of prime server failure. In this case no software or tools can be re-used because the S1MCS is based on a much more modern technology than the ENVISAT mission control system as well as on largely differing workstations architectures but the ENVISAT validated capabilities to support hot-standby system reconfiguration and machines and data resynchronisation following failures for all mission phases make them a good candidate for re-use by newer missions. Common methods and tools for requirements production, test plan production and problem tracking which are used by most of the other ESOC missions development teams in their daily work are also re-used without any changes. Finally conclusions are drawn about reusability in perspective with the latest state of the S1MCS and about benefits to other SCOS-2000 based "client" missions. Lessons learned for ESOC space missions (whether for mission control systems currently under development or up-and-coming space missions) and also related considerations for the wider space community are made, reflecting ESOC skills and expertise in mission operations and control.
Study of fuel cell thermal control systems for advanced missions.
NASA Technical Reports Server (NTRS)
Caputo, R. S.
1972-01-01
This study evaluated many heat rejection and thermal control concepts which could be applied to fuel cells for long term (600 hours) orbital and lunar surface missions. The concepts considered several types of radiators which utilized pumped gas, liquid and two phase working fluids and incorporated solid conduction fins as well as heat pipe (vapor chamber) fins. The comparison of the concepts was based on weight, area and other factors such as standby power, ability to accommodate heat load variation, control complexity, and meteoroid survival capability. A design selection matrix was established and an optimum (primary) and an alternate (secondary) heat rejection concept was chosen. Heat rejection techniques utilizing self-controlled heat pipe radiators dominate the results.
NASA Astrophysics Data System (ADS)
1995-09-01
The highlights of the STS-70 mission are presented in this video. The flight crew consisted of Cmdr. John Hendricks, Pilot Kevin Kregel, Flight Engineer Nancy Curie, and Mission Specialists Dr. Don Thomas and Dr. Mary Ellen Weber. The mission's primary objective was the deployment of the 7th Tracking Data and Relay Satellite (TDRS), which will provide a communication, tracking, telemetry, data acquisition, and command services space-based network system essential to low Earth orbital spacecraft. Secondary mission objectives included activating and studying the Physiological and Anatomical Rodent Experiment/National Institutes of Health-Rodents (PARE/NIH-R), The Bioreactor Demonstration System (BDS), the Commercial Protein Crystal Growth (CPCG) studies, the Space Tissue Loss/National Institutes of Health-Cells (STL/NIH-C) experiment, the Biological Research in Canisters (BRIC) experiment, Shuttle Amateur Radio Experiment-2 (SAREX-2), the Visual Function Tester-4 (VFT-4), the Hand-Held, Earth Oriented, Real-Time, Cooperative, User-Friendly, Location-Targeting and Environmental System (HERCULES), the Microcapsules in Space-B (MIS-B) experiment, the Windows Experiment (WINDEX), the Radiation Monitoring Equipment-3 (RME-3), and the Military Applications of Ship Tracks (MAST) experiment. There was an in-orbit dedication ceremony by the spacecrew and the newly Integrated Mission Control Center to commemorate the Center's integration. The STS-70 mission was the first mission monitored by this new control center. Earth views included the Earth's atmosphere, a sunrise over the Earth's horizon, several views of various land masses, some B/W lightning shots, some cloud cover, and a tropical storm.
STS-26 simulation activities in JSC Mission Control Center (MCC)
NASA Technical Reports Server (NTRS)
1987-01-01
In JSC Mission Control Center (MCC) Bldg 30 Flight Control Room (FCR), flight controller Granvil A. Pennington, leaning on console, listens to communications during the STS-26 integrated simulations in progress between MCC and JSC Mission Simulation and Training Facility Bldg 5 fixed-base (FB) shuttle mission simulator (SMS). MCC FCR visual displays are seen in background. Five veteran astronauts were in the FB-SMS rehearsing their roles for the scheduled June 1988 flight aboard Discovery, Orbiter Vehicle (OV) 103.
MOCR activity during Day 4 of STS-3 mission
NASA Technical Reports Server (NTRS)
1982-01-01
Major General J.A. Abrahamson, right, talks to JSC Director Christopher C. Kraft, Jr., (seated left) and Space Shuttle Program Manager Glynn S. Lunney on the back row of consoles in the mission operations control room (MOCR) in the Johnson Space Center mission control center. The reflection behind the men is a window for the MOCR viewing room (28772,28775); Abrahamson, second right, talks to JSC's Aaron Cohen, right, as Kraft (seated left) and Lunney listen in mission control (28773); Flight controller J.E. Connor monitors a television transmission from the Space Shuttle Columbia during day 4 of the STS-3 mission. Conner is seated at his INCO console (28774).
The Propulsive Small Expendable Deployer System (ProSEDS)
NASA Technical Reports Server (NTRS)
Lorenzini, Enrico C.; Cosmo, Mario L.; Estes, Robert D.; Sanmartin, Juan; Pelaez, Jesus; Ruiz, Manuel
2003-01-01
This Final Report covers the following main topics: 1) Brief Description of ProSEDS; 2) Mission Analysis; 3) Dynamics Reference Mission; 4) Dynamics Stability; 5) Deployment Control; 6) Updated System Performance; 7) Updated Mission Analysis; 8) Updated Dynamics Reference Mission; 9) Updated Deployment Control Profiles and Simulations; 10) Updated Reference Mission; 11) Evaluation of Power Delivered by the Tether; 12) Deployment Control Profile Ref. #78 and Simulations; 13) Kalman Filters for Mission Estimation; 14) Analysis/Estimation of Deployment Flight Data; 15) Comparison of ED Tethers and Electrical Thrusters; 16) Dynamics Analysis for Mission Starting at a Lower Altitude; 17) Deployment Performance at a Lower Altitude; 18) Satellite Orbit after a Tether Cut; 19) Deployment with Shorter Dyneema Tether Length; 20) Interactive Software for ED Tethers.
Design Reference Missions (DRM): Integrated ODM 'Air-Taxi' Mission Features
NASA Technical Reports Server (NTRS)
Kloesel, Kurt; Starr, Ginn; Saltzman, John A.
2017-01-01
Design Reference Missions (DRM): Integrated ODM Air-Taxi Mission Features, Hybrid Electric Integrated System Testbed (HEIST) flight control. Structural Health, Energy Storage, Electric Components, Loss of Control, Degraded Systems, System Health, Real-Time IO Operator Geo-Fencing, Regional Noise Abatement and Trusted Autonomy Inter-operability.
NASA Technical Reports Server (NTRS)
Smith, Dan; Horan, Stephen; Royer, Don; Sullivan, Don; Moe, Karen
2015-01-01
This paper reports on the results of the study to identify technologies that could have a significant impact on Earth Science mission operations when looking out at the 5-15 year horizon (through 2025). The potential benefits of the new technologies will be discussed, as well as recommendations for early research and development, prototyping, or analysis for these technologies.
Coupled attitude-orbit dynamics and control for an electric sail in a heliocentric transfer mission.
Huo, Mingying; Zhao, Jun; Xie, Shaobiao; Qi, Naiming
2015-01-01
The paper discusses the coupled attitude-orbit dynamics and control of an electric-sail-based spacecraft in a heliocentric transfer mission. The mathematical model characterizing the propulsive thrust is first described as a function of the orbital radius and the sail angle. Since the solar wind dynamic pressure acceleration is induced by the sail attitude, the orbital and attitude dynamics of electric sails are coupled, and are discussed together. Based on the coupled equations, the flight control is investigated, wherein the orbital control is studied in an optimal framework via a hybrid optimization method and the attitude controller is designed based on feedback linearization control. To verify the effectiveness of the proposed control strategy, a transfer problem from Earth to Mars is considered. The numerical results show that the proposed strategy can control the coupled system very well, and a small control torque can control both the attitude and orbit. The study in this paper will contribute to the theory study and application of electric sail.
Coupled Attitude-Orbit Dynamics and Control for an Electric Sail in a Heliocentric Transfer Mission
Huo, Mingying; Zhao, Jun; Xie, Shaobiao; Qi, Naiming
2015-01-01
The paper discusses the coupled attitude-orbit dynamics and control of an electric-sail-based spacecraft in a heliocentric transfer mission. The mathematical model characterizing the propulsive thrust is first described as a function of the orbital radius and the sail angle. Since the solar wind dynamic pressure acceleration is induced by the sail attitude, the orbital and attitude dynamics of electric sails are coupled, and are discussed together. Based on the coupled equations, the flight control is investigated, wherein the orbital control is studied in an optimal framework via a hybrid optimization method and the attitude controller is designed based on feedback linearization control. To verify the effectiveness of the proposed control strategy, a transfer problem from Earth to Mars is considered. The numerical results show that the proposed strategy can control the coupled system very well, and a small control torque can control both the attitude and orbit. The study in this paper will contribute to the theory study and application of electric sail. PMID:25950179
Maneuvering control and configuration adaptation of a biologically inspired morphing aircraft
NASA Astrophysics Data System (ADS)
Abdulrahim, Mujahid
Natural flight as a source of inspiration for aircraft design was prominent with early aircraft but became marginalized as aircraft became larger and faster. With recent interest in small unmanned air vehicles, biological inspiration is a possible technology to enhance mission performance of aircraft that are dimensionally similar to gliding birds. Serial wing joints, loosely modeling the avian skeletal structure, are used in the current study to allow significant reconfiguration of the wing shape. The wings are reconfigured to optimize aerodynamic performance and maneuvering metrics related to specific mission tasks. Wing shapes for each mission are determined and related to the seagulls, falcons, albatrosses, and non-migratory African swallows on which the aircraft are based. Variable wing geometry changes the vehicle dynamics, affording versatility in flight behavior but also requiring appropriate compensation to maintain stability and controllability. Time-varying compensation is in the form of a baseline controller which adapts to both the variable vehicle dynamics and to the changing mission requirements. Wing shape is adapted in flight to minimize a cost function which represents energy, temporal, and spatial efficiency. An optimal control architecture unifies the control and adaptation tasks.
Mission Control Center (MCC) - Apollo 13 - Fourth (4th) Television Signal - MSC
1970-04-13
S70-35139 (13 April 1970) --- Overall view of the Mission Operations Control Room (MOCR) in the Mission Control Center (MCC) at Manned Spacecraft Center (MSC), during the fourth television transmission from the Apollo 13 mission in space. Eugene F. Kranz (foreground, back to camera), one of four Apollo 13 flight directors, views the large screen at front of MOCR, astronaut Fred W. Haise Jr., lunar module pilot, is seen on the screen. The fourth TV transmission from the Apollo 13 mission was on the evening of April 13, 1970.
NASA Technical Reports Server (NTRS)
Langston, L. J.
1976-01-01
The formulation of Level C requirements for guidance software was reported. Requirements for a PEG supervisor which controls all input/output interfaces with other processors and determines which PEG mode is to be utilized were studied in detail. A description of the two guidance modes for which Level C requirements have been formulated was presented. Functions required for proper execution of the guidance software were defined. The requirements for a navigation function that is used in the prediction logic of PEG mode 4 were discussed. It is concluded that this function is extracted from the current navigation FSSR.
Space tug thermal control. [design criteria and specifications
NASA Technical Reports Server (NTRS)
1974-01-01
It was determined that space tug will require the capability to perform its mission within a broad range of thermal environments with currently planned mission durations of up to seven days, so an investigation was conducted to define a thermal design for the forward and intertank compartments and fuel cell heat rejection system that satisfies tug requirements for low inclination geosynchronous deploy and retrieve missions. Passive concepts were demonstrated analytically for both the forward and intertank compartments, and a worst case external heating environment was determined for use during the study. The thermal control system specifications and designs which resulted from the research are shown.
NASA Technical Reports Server (NTRS)
1975-01-01
Information used in identifying representative Manned Maneuvering Unit (MMU) from the many Automated and Sortie Payloads and orbiter subsystems is presented. Representative missions were selected to represent typical MMU applications across all payloads and orbiter subsystems. Data analysis sheets are provided with other applicable information. Calculations used in defining MMU general performance and control requirements to satisfy eleven space missions are included.
Views of the mission control center during STS-9
NASA Technical Reports Server (NTRS)
1983-01-01
The two backup payload specialists for Drs. Byron K. Lichtenberg and Ulf Merbold huddle in the mission control center during day three activity aboard Spacelab. Seated at the Console is Dr. Michael Lampton. Leaning over Lampton's shoulder is Dutch scientist Wubbo Ockels. The two are surrounded by a few of the flight controllers in the payload operations control center (POCC) portion of JSC's mission control center.
Advanced thermal control technologies for space science missions at JPL
NASA Technical Reports Server (NTRS)
Birur, G. C.; O'Donnell, T.
2000-01-01
A wide range of deep space science missions are planned by NASA for the future. Many of these missions are being planned under strict cost caps and advanced technologies are needed in order to enable these challenging mssions. Because of the wide range of thermal environments the spacecraft experience during the mission, advanced thermal control technologies are the key to enabling many of these missions.
Advanced extravehicular protective systems for shuttle, space station, lunar base and Mars missions.
NASA Technical Reports Server (NTRS)
Heimlich, P. F.; Sutton, J. G.; Tepper, E. H.
1972-01-01
Advances in extravehicular life support system technology will directly influence future space mission reliability and maintainability considerations. To identify required new technology areas, an appraisal of advanced portable life support system and subsystem concepts was conducted. Emphasis was placed on thermal control and combined CO2 control/O2 supply subsystems for both primary and emergency systems. A description of study methodology, concept evaluation techniques, specification requirements, and selected subsystems and systems are presented. New technology recommendations encompassing thermal control, CO2 control and O2 supply subsystems are also contained herein.
Expedition 13 flight controller on console during mission - Orbit 1, BFCR
2006-08-31
JSC2006-E-38929 (31 Aug. 2006) --- Astronaut Andrew J. Feustel (background), spacecraft communicator (CAPCOM), and flight director Rick LaBrode monitor data at their consoles in the Station (Blue) Flight Control Room in Houston's Mission Control Center during Expedition 13 mission activities.
Activities in the Mission Control Center during STS 41-C
1984-04-13
41C-03229 (13 April 1984) --- An overall view of activity in the Mission Operations Control Room (MOCR) of the Johnson Space Center (JSC) Mission Control Center (MCC) during post-landing activity at the Challenger's landing site at Edwards Air Force Base in California.
Optimum Guidance Law and Information Management for a Large Number of Formation Flying Spacecrafts
NASA Astrophysics Data System (ADS)
Tsuda, Yuichi; Nakasuka, Shinichi
In recent years, formation flying technique is recognized as one of the most important technologies for deep space and orbital missions that involve multiple spacecraft operations. Formation flying mission improves simultaneous observability over a wide area, redundancy and reconfigurability of the system with relatively small and low cost spacecrafts compared with the conventional single spacecraft mission. From the viewpoint of guidance and control, realizing formation flying mission usually requires tight maintenance and control of the relative distances, speeds and orientations between the member satellites. This paper studies a practical architecture for formation flight missions focusing mainly on guidance and control, and describes a new guidance algorithm for changing and keeping the relative positions and speeds of the satellites in formation. The resulting algorithm is suitable for onboard processing and gives the optimum impulsive trajectory for satellites flying closely around a certain reference orbit, that can be elliptic, parabolic or hyperbolic. Based on this guidance algorithm, this study introduces an information management methodology between the member spacecrafts which is suitable for a large formation flight architecture. Routing and multicast communication based on the wireless local area network technology are introduced. Some mathematical analyses and computer simulations will be shown in the presentation to reveal the feasibility of the proposed formation flight architecture, especially when a very large number of satellites join the formation.
Centralized mission planning and scheduling system for the Landsat Data Continuity Mission
Kavelaars, Alicia; Barnoy, Assaf M.; Gregory, Shawna; Garcia, Gonzalo; Talon, Cesar; Greer, Gregory; Williams, Jason; Dulski, Vicki
2014-01-01
Satellites in Low Earth Orbit provide missions with closer range for studying aspects such as geography and topography, but often require efficient utilization of space and ground assets. Optimizing schedules for these satellites amounts to a complex planning puzzle since it requires operators to face issues such as discontinuous ground contacts, limited onboard memory storage, constrained downlink margin, and shared ground antenna resources. To solve this issue for the Landsat Data Continuity Mission (LDCM, Landsat 8), all the scheduling exchanges for science data request, ground/space station contact, and spacecraft maintenance and control will be coordinated through a centralized Mission Planning and Scheduling (MPS) engine, based upon GMV’s scheduling system flexplan9 . The synchronization between all operational functions must be strictly maintained to ensure efficient mission utilization of ground and spacecraft activities while working within the bounds of the space and ground resources, such as Solid State Recorder (SSR) and available antennas. This paper outlines the functionalities that the centralized planning and scheduling system has in its operational control and management of the Landsat 8 spacecraft.
NASA Technical Reports Server (NTRS)
Olson, R. L.; Gustan, E. A.; Vinopal, T. J.
1985-01-01
Regenerative life support systems based on the use of biological material was considered for inclusion in manned spacecraft. Biological life support systems are developed in the controlled ecological life support system (CELSS) program. Because of the progress achieved in the CELSS program, it is determined which space missions may profit from use of the developing technology. Potential transportation cost savings by using CELSS technology for selected future manned space missions was evaluated. Six representative missions were selected which ranged from a low Earth orbit mission to those associated with asteroids and a Mars sortie. The crew sizes considered varied from four persons to five thousand. Other study parameters included mission duration and life support closure percentages, with the latter ranging from complete resupply of consumable life support materials to 97% closure of the life support system. The analytical study approach and the missions and systems considered, together with the benefits derived from CELSS when applicable are described.
NASA Technical Reports Server (NTRS)
Takamura, Eduardo; Mangum, Kevin
2016-01-01
The National Aeronautics and Space Administration (NASA) invests millions of dollars in spacecraft and ground system development, and in mission operations in the pursuit of scientific knowledge of the universe. In recent years, NASA sent a probe to Mars to study the Red Planet's upper atmosphere, obtained high resolution images of Pluto, and it is currently preparing to find new exoplanets, rendezvous with an asteroid, and bring a sample of the asteroid back to Earth for analysis. The success of these missions is enabled by mission assurance. In turn, mission assurance is backed by information assurance. The information systems supporting NASA missions must be reliable as well as secure. NASA - like every other U.S. Federal Government agency - is required to manage the security of its information systems according to federal mandates, the most prominent being the Federal Information Security Management Act (FISMA) of 2002 and the legislative updates that followed it. Like the management of enterprise information technology (IT), federal information security management takes a "one-size fits all" approach for protecting IT systems. While this approach works for most organizations, it does not effectively translate into security of highly specialized systems such as those supporting NASA missions. These systems include command and control (C&C) systems, spacecraft and instrument simulators, and other elements comprising the ground segment. They must be carefully configured, monitored and maintained, sometimes for several years past the missions' initially planned life expectancy, to ensure the ground system is protected and remains operational without any compromise of its confidentiality, integrity and availability. Enterprise policies, processes, procedures and products, if not effectively tailored to meet mission requirements, may not offer the needed security for protecting the information system, and they may even become disruptive to mission operations. Certain protective measures for the general enterprise may not be as efficient within the ground segment. This is what the authors have concluded through observations and analysis of patterns identified from the various security assessments performed on NASA missions such as MAVEN, OSIRIS-REx, New Horizons and TESS, to name a few. The security audits confirmed that the framework for managing information system security developed by the National Institute of Standards and Technology (NIST) for the federal government, and adopted by NASA, is indeed effective. However, the selection of the technical, operational and management security controls offered by the NIST model - and how they are implemented - does not always fit the nature and the environment where the ground system operates in even though there is no apparent impact on mission success. The authors observed that unfit controls, that is, controls that are not necessarily applicable or sufficiently effective in protecting the mission systems, are often selected to facilitate compliance with security requirements and organizational expectations even if the selected controls offer minimum or non-existent protection. This paper identifies some of the standard security controls that can in fact protect the ground system, and which of them offer little or no benefit at all. It offers multiple scenarios from real security audits in which the controls are not effective without, of course, disclosing any sensitive information about the missions assessed. In addition to selection and implementation of controls, the paper also discusses potential impact of recent legislation such as the Federal Information Security Modernization Act (FISMA) of 2014 - aimed at the enterprise - on the ground system, and offers other recommendations to Information System Owners (ISOs).
Survey of current and emerging technologies for biological contamination control
NASA Astrophysics Data System (ADS)
Frick, Andreas; Mogul, Rakesh
2012-07-01
This study will survey current and emerging technologies for biological contamination control within the context of planetary protection. Using a systems analysis approach, our objective is to compare various implementation variables across tasks ranging from surface cleaning to full-system sterilization for spacecraft and spacecraft components. Methods reviewed include vapor-phase hydrogen peroxide, plasma-phase sterilants such as oxygen and hydrogen peroxide, dry heat, laser-based techniques, supercritical carbon dioxide-based methods, and advanced bio-barriers. These methods will be evaluated in relation to relevant mission architectures and will address aspects of sample return missions. Results from this study, therefore, will offer new insights into the present-day engineering capabilities and future developmental concerns for missions targeting icy satellites, Mars, and other locations of astrochemical and astrobiological significance.
Innovative Contamination Certification of Multi-Mission Flight Hardware
NASA Technical Reports Server (NTRS)
Hansen, Patricia A.; Hughes, David W.; Montt, Kristina M.; Triolo, Jack J.
1998-01-01
Maintaining contamination certification of multi-mission flight hardware is an innovative approach to controlling mission costs. Methods for assessing ground induced degradation between missions have been employed by the Hubble Space Telescope (HST) Project for the multi-mission (servicing) hardware. By maintaining the cleanliness of the hardware between missions, and by controlling the materials added to the hardware during modification and refurbishment both project funding for contamination recertification and schedule have been significantly reduced. These methods will be discussed and HST hardware data will be presented.
Innovative Contamination Certification of Multi-Mission Flight Hardware
NASA Technical Reports Server (NTRS)
Hansen, Patricia A.; Hughes, David W.; Montt, Kristina M.; Triolo, Jack J.
1999-01-01
Maintaining contamination certification of multi-mission flight hardware is an innovative approach to controlling mission costs. Methods for assessing ground induced degradation between missions have been employed by the Hubble Space Telescope (HST) Project for the multi-mission (servicing) hardware. By maintaining the cleanliness of the hardware between missions, and by controlling the materials added to the hardware during modification and refurbishment both project funding for contamination recertification and schedule have been significantly reduced. These methods will be discussed and HST hardware data will be presented.
Shuttle remote manipulator system mission preparation and operations
NASA Technical Reports Server (NTRS)
Smith, Ernest E., Jr.
1989-01-01
The preflight planning, analysis, procedures development, and operations support for the Space Transportation System payload deployment and retrieval missions utilizing the Shuttle Remote Manipulator System are summarized. Analysis of the normal operational loads and failure induced loads and motion are factored into all procedures. Both the astronaut flight crews and the Mission Control Center flight control teams receive considerable training for standard and mission specific operations. The real time flight control team activities are described.
Seismometer readings studied in Mission Control Center
NASA Technical Reports Server (NTRS)
1971-01-01
The seismometer reading from the impact made by the Apollo 15 Saturn S-IVB stage when it struck the lunar surface is studied by scientists in the Mission Control Center. Dr. Gary Latham (dark suit, wearing lapel button) of Columbia University is responsible for the design and experiment data analysis of the Passive Seismic Experiment of the Apollo Lunar Surface Experiment Package (ALSEP). The man on the left, writing, is Nafi Toksos of the Massachusetts Institute of Technology. Looking on at upper left is Dave Lammlein, also with Columbia.
High Energy Astronomy Observatory, Mission C, Phase A. Volume 3: Appendices
NASA Technical Reports Server (NTRS)
1972-01-01
Technical data, and experiment and spacecraft alternatives are presented in support of the HEAO-C, whose primary objective is a detailed study of the more interesting high energy sources, using grazing incidence X-ray telescopes and a spacecraft pointing accuracy of + or - 1 arc minute. The analyses presented cover the mission analysis and launch vehicle; thermal control trade studies and supporting analyses; attitude sensing and control analyses; electrical systems; and reliability analysis. The alternate experiments which were considered are listed, and the advantages and disadvantages of several alternate observatory configurations are assessed.
Seismometer readings studied in Mission Control Center
1971-07-29
The seismometer reading from the impact made by the Apollo 15 Saturn S-IVB stage when it struck the lunar surface is studied by scientists in the Mission Control Center. Dr. Gary Latham (dark suit, wearing lapel button) of Columbia University is responsible for the design and experiment data analysis of the Passive Seismic Experiment of the Apollo Lunar Surface Experiment Package (ALSEP). The man on the left, writing, is Nafi Toksos of the Massachusetts Institute of Technology. Looking on at upper left is Dave Lamneline, also with Columbia.
Apollo 13 - Mission Control Console
1970-04-15
S70-35096 (16 April 1970) --- As the problem-plagued Apollo 13 crewmen entered their final 24 hours in space, several persons important to the mission remained attentive at consoles in the Mission Operations Control Room of the Mission Control Center at Manned Spacecraft Center. Among those monitoring communications and serving in supervisory capacities were these four officials from National Aeronautics and Space Administration Headquarters, Washington, D.C.: (from left) Thomas H. McMullen, Office of Manned Space Flight, who served as Shift 1 mission director; Dale Myers, associate administrator, Manned Space Flight; Chester M. Lee of the Apollo Program Directorate, OMSF, Apollo 13 mission director; and Dr. Rocco A. Petrone, Apollo program director, OMSF.
An Assessment of Aerocapture and Applications to Future Missions to Uranus and Neptune
NASA Astrophysics Data System (ADS)
Beauchamp, P. M.; Spilker, T. R.
2017-12-01
Our investigation examined the current state of readiness of aerocapture at several destinations of interest, including Uranus and Neptune, to identify what technologies are needed, and to determine if a technology demonstration mission is required, prior to the first use of aerocapture for a science mission. The study team concluded that the current state of readiness is destination dependent, with aerocaptured missions feasible at Venus, Mars, and Titan with current technologies. The use of aerocapture for orbit insertion at the ice giant planets Uranus and Neptune requires at least additional study to assess the expected performance of new guidance, navigation, and control algorithms, and possible development of new hardware, such as a mid-L/D entry vehicle shape or new thermal protection system materials. A variety of near-term activities could contribute to risk reduction for missions proposing use of aerocapture, but a system-level technology demonstration mission is not deemed necessary before the use of aerocapture for a NASA science mission.
Mission control activity during STS-61 EVA
1993-12-07
Flight controller Susan P. Rainwater observes as two astronauts work through a lengthy period of extravehicular activity (EVA) in the cargo bay of the Earth-looking Space Shuttle Endeavour. Rainwater's EVA console was one of Mission Control's busiest during this eleven-day Hubble Space Telescope (HST) servicing mission in Earth orbit.
View of Mission Control Center during the Apollo 13 emergency return
1970-04-16
S70-35368 (16 April 1970) --- Overall view showing some of the feverish activity in the Mission Operations Control Room (MOCR) of the Mission Control Center (MCC) during the final 24 hours of the problem-plagued Apollo 13 mission. Here, flight controllers and several NASA/MSC officials confer at the flight director's console. When this picture was made, the Apollo 13 lunar landing had already been canceled, and the Apollo 13 crewmembers were in trans-Earth trajectory attempting to bring their crippled spacecraft back home.
STS-26 long duration simulation in JSC Mission Control Center (MCC) Bldg 30
NASA Technical Reports Server (NTRS)
1988-01-01
STS-26 long duration simulation is conducted in JSC Mission Control Center (MCC) Bldg 30 Flight Control Room (FCR). Front row of consoles with Propulsion Engineer (PROP) and Guidance, Navigation, and Control Systems Engineer (GNC) are visible in the foreground. CBS television camera personnel record front visual displays (orbital chart and data) for '48 Hours' program to be broadcast at a later date. The integrated simulation involved communicating with crewmembers stationed in the fixed based (FB) shuttle mission simulator (SMS) located in JSC Mission Simulation and Training Facility Bldg 5.
Automatic control in planetary exploration in the 1980s. [onboard spacecraft
NASA Technical Reports Server (NTRS)
Moore, J. W.
1973-01-01
Based on an examination of the planetary missions in the 1980s and their related objectives, a broad assessment of the automatic control capabilities required for these missions is presented. The ten outer-planet, terrestrial-planet, and small-body missions considered involve various operations encompassing a complex series of modes including cruise, maneuver, and powered flight control. In addition to routine navigation and attitude control, onboard control is required to point scientific instruments and antennas with respect to the vehicle and to maneuver the spacecraft in time-constrained or hazardous environments. These 1980 missions aimed at exploring new areas of the solar system will be more demanding. New design philosophies and increased performance capabilities will be required to meet the constraints imposed by science requirements and mission-cost effectiveness.
Crew interface definition study, phase 1
NASA Technical Reports Server (NTRS)
Callihan, J. C.; Kraemer, J. W.; Alles, J. A.
1971-01-01
The timeline analysis of the Shuttle orbiter missions which was conducted in the Phase I Crew Interface Definition Study and the requirements for the man-in-the-loop simulation study are presented. Mission definitions and objectives are presented as they relate to various Shuttle Orbiter missions. The requirements for crew participation and the information required by the crew are discussed, and finally the rationale behind the display concept and calling procedures is given. The simulation objectives, the simulation mechanization, including a detailed presentation of the display and control concept, the simulator test plan and the results are discussed.
Standardization and economics of nuclear spacecraft: Executive summary
NASA Technical Reports Server (NTRS)
1973-01-01
Feasibility and cost benefits of nuclear-powered standardized spacecraft were investigated. The study indicates that two shuttle-launched nuclear-powered spacecraft should be able to serve the majority of unmanned NASA missions anticipated for the 1980's. The standard spacecraft include structure, thermal control, power, attitude control, some propulsion capability and tracking, telemetry, and command subsystems. One spacecraft design, powered by the radioisotope thermoelectric generator, can serve missions requiring up to 450 watts. The other spacecraft design, powered by similar nuclear heat sources in a Brayton-cycle generator, can serve missions requiring up to 2200 watts. Design concepts and trade-offs are discussed. The conceptual designs selected are presented and successfully tested against a variety of missions. The thermal design is such that both spacecraft are capable of operating in any earth orbit and any orientation without modification.
The Penguin: a Low Reynolds Number Powered Glider for Station Keeping Missions
NASA Technical Reports Server (NTRS)
Costello, J. K.; Greene, D. W.; Lee, T. T.; Matier, P. T.; Mccarthy, T. R.; Mcguire, R. J.; Schuette, M. J.
1990-01-01
The Penguin is a low Reynolds number (approx. 100,000) remotely piloted vehicle (RPV). It was designed to fly three laps indoors around two pylons in a figure-eight course while maximizing loiter time. The Penguin's low Reynolds number mission is an important one currently being studied for possible future flights in the atmospheres of other planets and for specialized military missions. Although the Penguin's mission seemed quite simple at first, the challenges of such low Reynolds number flight have proven to be quite unique. In addition to the constraint of low Reynolds number flight, the aircraft had to be robust in its control, highly durable, and it had to carry a small instrument package. The Penguin's flight plan, concept, performance, aerodynamic design, weight estimation, structural design, propulsion, stability and control, and cost estimate is detailed.
Planning: Management of predictability and uncertainty and keeping abreast of developments
NASA Technical Reports Server (NTRS)
Bastien-Thiry, Christophe; Verfaillie, Gerard
1993-01-01
The purpose of this study is to propose method to set up and control of a space mission plan such as that of the HERMES spaceplane. The interest of this subject, other than its complexity, is due to the need to manage imprecision and uncertainty during a mission, as well as changes in between missions. Under these conditions, the set up and control of a flight plan require certain special attention and this has led us to define a certain number of qualities: mastery of complexity in order to resolve conflicts between activities: configuration, resource and time management; consideration of various criteria such as risk minimization or the attainment of mission objectives; robustness and flexibility to allow for hazards and deviations from the norm during operation without having to draw up new plans; aptness for replanning by making changes to the plan without having to set up the whole plan again; and memorization and explanation facility in order to manage developments between missions.
Effects of Space Flight on Neutrophil Functions in Astronauts
NASA Technical Reports Server (NTRS)
Kaur, Indreshpal; Valadez, Victoria A.; Simons, Elizabeth R.; Pierson, Duane L.
2000-01-01
Neutrophil phagocytosis, oxidative burst, degranulation, and the expression of selected surface markers were studied in 25 astronauts following 4 space shuttle missions. Space flight duration ranged from 5 to 11 days. Blood specimens were obtained 10 days before launch, immediately after landing, and again at 3 days after landing. The number of neutrophils increased at landing by 85%. Phagocytosis of Escherichia coli (E. coli) and oxidative burst following the medium length (9 to 11 days) missions were lower than the control mean values. Whereas, following the short-duration (5 days) mission, these functions were unchanged from control values. No consistent changes in degranulation were observed following either short or medium length space missions. The expression of CD16, CD32, CD11a, CD11b, CD11c, L-selectin and CD36 were measured and found to be variable. Specifically, CD16 and CD32 did not correlate with the changes in oxidative burst. Mission duration appears to be a factor in phagocytic and oxidative functions.
Integrated control-structure design
NASA Technical Reports Server (NTRS)
Hunziker, K. Scott; Kraft, Raymond H.; Bossi, Joseph A.
1991-01-01
A new approach for the design and control of flexible space structures is described. The approach integrates the structure and controller design processes thereby providing extra opportunities for avoiding some of the disastrous effects of control-structures interaction and for discovering new, unexpected avenues of future structural design. A control formulation based on Boyd's implementation of Youla parameterization is employed. Control design parameters are coupled with structural design variables to produce a set of integrated-design variables which are selected through optimization-based methodology. A performance index reflecting spacecraft mission goals and constraints is formulated and optimized with respect to the integrated design variables. Initial studies have been concerned with achieving mission requirements with a lighter, more flexible space structure. Details of the formulation of the integrated-design approach are presented and results are given from a study involving the integrated redesign of a flexible geostationary platform.
A Robust Design Methodology for Optimal Microscale Secondary Flow Control in Compact Inlet Diffusers
NASA Technical Reports Server (NTRS)
Anderson, Bernhard H.; Keller, Dennis J.
2001-01-01
It is the purpose of this study to develop an economical Robust design methodology for microscale secondary flow control in compact inlet diffusers. To illustrate the potential of economical Robust Design methodology, two different mission strategies were considered for the subject inlet, namely Maximum Performance and Maximum HCF Life Expectancy. The Maximum Performance mission maximized total pressure recovery while the Maximum HCF Life Expectancy mission minimized the mean of the first five Fourier harmonic amplitudes, i.e., 'collectively' reduced all the harmonic 1/2 amplitudes of engine face distortion. Each of the mission strategies was subject to a low engine face distortion constraint, i.e., DC60<0.10, which is a level acceptable for commercial engines. For each of these missions strategies, an 'Optimal Robust' (open loop control) and an 'Optimal Adaptive' (closed loop control) installation was designed over a twenty degree angle-of-incidence range. The Optimal Robust installation used economical Robust Design methodology to arrive at a single design which operated over the entire angle-of-incident range (open loop control). The Optimal Adaptive installation optimized all the design parameters at each angle-of-incidence. Thus, the Optimal Adaptive installation would require a closed loop control system to sense a proper signal for each effector and modify that effector device, whether mechanical or fluidic, for optimal inlet performance. In general, the performance differences between the Optimal Adaptive and Optimal Robust installation designs were found to be marginal. This suggests, however, that Optimal Robust open loop installation designs can be very competitive with Optimal Adaptive close loop designs. Secondary flow control in inlets is inherently robust, provided it is optimally designed. Therefore, the new methodology presented in this paper, combined array 'Lower Order' approach to Robust DOE, offers the aerodynamicist a very viable and economical way of exploring the concept of Robust inlet design, where the mission variables are brought directly into the inlet design process and insensitivity or robustness to the mission variables becomes a design objective.
Promoting Crew Autonomy: Current Advances and Novel Techniques
NASA Technical Reports Server (NTRS)
Harris, Samantha
2017-01-01
Since the dawn of the era of human space flight, mission control centers around the world have played an integral role in guiding space travelers toward mission success. In the International Space Station (ISS) program, astronauts and cosmonauts have the benefit of near constant access to the expertise and resources within mission control, as well as lifeboat capability to quickly return to Earth if something were to go wrong. As we move into an era of longer duration missions to more remote locations, rapid and ready access to mission control on earth will no longer be feasible. To prepare for such missions, long duration crews must be prepared to operate more autonomously, and the mission control paradigm that has been successfully employed for decades must be re-examined. The team at NASA's Payload Operations and Integration Center (POIC) in Huntsville, Alabama is playing an integral role in the development of concepts for a more autonomous long duration crew of the future via research on the ISS.
Internet-Protocol-Based Satellite Bus Architecture Designed
NASA Technical Reports Server (NTRS)
Slywczak, Richard A.
2004-01-01
NASA is designing future complex satellite missions ranging from single satellites and constellations to space networks and sensor webs. These missions require more interoperability, autonomy, and coordination than previous missions; in addition, a desire exists to have scientists retrieve data directly from the satellite rather than a central distribution source. To meet these goals, NASA has been studying the possibility of extending the Transmission Control Protocol/Internet Protocol (TCP/IP) suite for spacebased applications.
Space transfer concepts and analysis for exploration missions
NASA Technical Reports Server (NTRS)
1990-01-01
The progress and results are summarized for mission/system requirements database; mission analysis; GN and C (Guidance, Navigation, and Control), aeroheating, Mars landing; radiation protection; aerobrake mass analysis; Shuttle-Z, TMIS (Trans-Mars Injection Stage); Long Duration Habitat Trade Study; evolutionary lunar and Mars options; NTR (Nuclear Thermal Rocket); NEP (Nuclear Electric Propulsion) update; SEP (Solar Electric Propulsion) update; orbital and space-based requirements; technology; piloted rover; programmatic task; and evolutionary and innovative architecture.
Operational efficiency subpanel advanced mission control
NASA Technical Reports Server (NTRS)
Friedland, Peter
1990-01-01
Herein, the term mission control will be taken quite broadly to include both ground and space based operations as well as the information infrastructure necessary to support such operations. Three major technology areas related to advanced mission control are examined: (1) Intelligent Assistance for Ground-Based Mission Controllers and Space-Based Crews; (2) Autonomous Onboard Monitoring, Control and Fault Detection Isolation and Reconfiguration; and (3) Dynamic Corporate Memory Acquired, Maintained, and Utilized During the Entire Vehicle Life Cycle. The current state of the art space operations are surveyed both within NASA and externally for each of the three technology areas and major objectives are discussed from a user point of view for technology development. Ongoing NASA and other governmental programs are described. An analysis of major research issues and current holes in the program are provided. Several recommendations are presented for enhancing the technology development and insertion process to create advanced mission control environments.
NASA Technical Reports Server (NTRS)
Moore, J. V.
1976-01-01
The Attitude Control System for the IUE spacecraft is described. The basic mission objectives are stated and a sequential discussion of the mission is presented. Desired accuracy for each mission phase is noted and where applicable the onboard control mechanization is shown. Sensors and actuator systems utilized by the control algorithms are described. Finally, onboard software is discussed to a level necessary to understand the prime mission mode operation.
Outer planet entry probe system study. Volume 2: Supporting technical studies
NASA Technical Reports Server (NTRS)
1972-01-01
The environment, science investigations, and general mission analysis considerations are given first. These data are followed by discussions of the studies pertaining to the planets Jupiter, Saturn, Uranus, and Neptune. Except for Neptune, each planet discussion is divided into two parts: (1) parametric activities and (2) probe definition for that planet, or the application of a given probe for that planet. The Neptune discussion is limited to parametrics in the area of science and mission analysis. Each of the probe system definitions consists of system and subsystem details including telecommunications, data handling, power pyrotechnics, attitude control, structures, propulsion, thermal control, and probe to spacecraft integration. The first configuration is discussed in detail and the subsequent configuration discussions are limited to the differences. Finally, the hardware availability to support a probe system and commonality of science, missions, and subsystems for use at the various planets are considered.
New Mission Control Center Briefing
NASA Technical Reports Server (NTRS)
1995-01-01
Live footage shows panelists, Chief Center Systems Division John Muratore, and Acting Chief, Control Center Systems Division, Linda Uljon, giving an overview of the new Mission Control Center. Muratore and Uljon talk about the changes and modernization of the new Center. The panelists mention all the new capabilities of the new Center. They emphasize the Distributed real time command and control environment, the reduction in operation costs, and even the change from coaxial cables to fiber optic cables. Uljon also tells us that the new Control Center will experience its first mission after the launch of STS-70 and its first complete mission (both launching and landing) during STS-71.
View - Mission Control Center (MCC) - Lunar Surface - Apollo XI Extravehicular Activity (EVA) - MSC
1969-07-20
S69-39815 (20 July 1969) --- Interior view of the Mission Operations Control Room (MOCR) in the Mission Control Center (MCC) during the Apollo 11 lunar extravehicular activity (EVA). The television monitor shows astronauts Neil A. Armstrong and Edwin E. Aldrin Jr. on the surface of the moon.
IMP-J attitude control prelaunch analysis and operations plan
NASA Technical Reports Server (NTRS)
Hooper, H. L.; Mckendrew, J. B.; Repass, G. D.
1973-01-01
A description of the attitude control support being supplied for the Explorer 50 mission is given. Included in the document are descriptions of the computer programs being used to support attitude determination, prediction, and control for the mission and descriptions of the operating procedures that will be used to accomplish mission objectives.
NASA Astrophysics Data System (ADS)
Race, Margaret; Conley, Catharine
Planetary protection (PP) policies established by the Committee on Space Research (COSPAR) of the International Council for Science have been in force effectively for five decades, ensuring responsible exploration and the integrity of science activities, for both human and robotic missions in the Solar System beyond low Earth orbit (LEO). At present, operations on most bodies in the solar system are not constrained by planetary protection considerations because they cannot be contaminated by Earth life in ways that impact future space exploration. However, operations on Mars, Europa, and Enceladus, which represent locations with biological potential, are subject to strict planetary protection constraints for missions of all types because they can potentially be contaminated by organisms brought from Earth. Forward contamination control for robotic missions is generally accomplished through a combination of activities that reduce the bioload of microbial hitchhikers on outbound spacecraft prior to launch. Back contamination control for recent robotic missions has chiefly been accomplished by selecting sample-return targets that have little or no potential for extant life (e.g., cometary particles returned by Stardust mission). In the post-Apollo era, no human missions have had to deal with planetary protection constraints because they have never left Earth orbit. Future human missions to Mars, for example, will experience many of the challenges faced by the Apollo lunar missions, with the added possibility that astronauts on Mars may encounter habitable environments in their exploration or activities. Current COSPAR PP Principles indicate that safeguarding the Earth from potential back contamination is the highest planetary protection priority in Mars exploration. While guidelines for planetary protection controls on human missions to Mars have been established by COSPAR, detailed engineering constraints and processes for implementation of these guidelines have not yet been developed. Looking ahead, it is recognized that these planetary protection policies will apply to both governmental and non-governmental entities for the more than 100 countries that are signatories to the Outer SpaceTreaty. Fortunately, planetary protection controls for human missions are supportive of many other important mission needs, such as maximizing closed-loop and recycling capabilities to minimize mass required, minimizing exposure of humans to planetary materials for multiple health reasons, and minimizing contamination of planetary samples and environments during exploration and science activities. Currently, there is progress on a number of fronts in translating the basic COSPAR PP Principles and Implementation Guidelines into information that links with early engineering and process considerations. For example, an IAA Study Group on Planetary Protection and Human Missions is engaging robotic and human mission developers and scientists in exploring detailed technical, engineering and operational approaches by which planetary protection objectives can be accomplished for human missions in synergism with robotic exploration and in view of other constraints. This on-going study aims to highlight important information for the early stages of planning, and identify key research and technology development (R&TD) areas for further consideration and work. Such R&TD challenges provide opportunities for individuals, institutions and agencies of emerging countries to be involved in international exploration efforts. In January 2014, the study group presented an Interim Report to the IAA Heads of Agencies Summit in Washington DC. Subsequently, the group has continued to work on expanding the initial technical recommendations and findings, focusing especially on information useful to mission architects and designers as they integrate PP considerations in their varied plans-- scientific, commercial and otherwise. Already the findings and recommendations discussed by the study participants to date have set the agenda for additional work that will continue for at least another year, culminating in a final report that should be useful to current and new nations and partnerships in planning human missions beyond LEO. In addition, over the past two years, NASA has made progress in integrating planetary protection considerations into mission designs along with other important human, environmental and science needs. Details about planetary protection have also been incorporated into the latest Addendum of the Design Reference Architecture (DRA) for human missions to Mars. Other ongoing studies of Mars human mission architecture, technologies and operations have likewise been integrating PP requirements and guidelines into cross-cutting measures of various types. An important objective of all these studies is to proactively gather and communicate PP information to the broad community of planners, engineers and assorted partners who are facing the challenges of future human exploration missions. By analyzing ways to integrate PP provisions effectively into early mission phases in synergism with other needs, these projects and studies will help ensure that all institutions and organizations avoid releasing harmful contamination on bodies with biological potential, thereby ensuring protection of the Earth and astronauts throughout their missions and safeguarding the integrity of science exploration—all in compliance with the 1967 Outer Space Treaty.
Deep Space Control Challenges of the New Millennium
NASA Technical Reports Server (NTRS)
Bayard, David S.; Burdick, Garry M.
1999-01-01
The exploration of deep space presents a variety of significant control challenges. Long communication delays coupled with challenging new science objectives require high levels of system autonomy and increasingly demanding pointing and control capabilities. Historically, missions based on the use of a large single spacecraft have been successful and popular since the early days of NASA. However, these large spacecraft missions are currently being displaced by more frequent and more focused missions based on the use of smaller and less expensive spacecraft designs. This trend drives the need to design smart software and good algorithms which together with the miniaturization of control components will improve performance while replacing the heavier and more expensive hardware used in the past. NASA's future space exploration will also include mission types that have never been attempted before, posing significant challenges to the underlying control system. This includes controlled landing on small bodies (e.g., asteroids and comets), sample return missions (where samples are brought back from other planets), robotic exploration of planetary surfaces (e.g., intelligent rovers), high precision formation flying, and deep space optical interferometry, While the control of planetary spacecraft for traditional flyby and orbiter missions are based on well-understood methodologies, control approaches for many future missions will be fundamentally different. This paradigm shift will require completely new control system development approaches, system architectures, and much greater levels of system autonomy to meet expected performance in the presence of significant environmental disturbances, and plant uncertainties. This paper will trace the motivation for these changes and will layout the approach taken to meet the new challenges. Emerging missions will be used to explain and illustrate the need for these changes.
STS-98 Flight Control Team Photo in the WFCR
2001-01-08
JSC2001-00001 (January 2001) --- The STS-98 astronaut crew poses with about five dozen flight controllers making up its ascent/entry team in the shuttle flight control room of the Johnson Space Center's Mission Control Center (MCC). Standing with the STS-98 insignia is flight director LeRoy Cain. He is flanked by astronauts Marsha S. Ivins, mission specialist, and Kenneth D. Cockrell, mission commander. Behind Cockrell is astronaut Robert L. Curbeam, Jr., mission specialist; and behind Ivins and Cain is astronaut Mark L. Polansky, pilot. Astronaut Thomas D. Jones, mission specialist (blue shirt) stands near the flight director sign. Astronaut Scott D. Altman, CAPCOM or Spacecraft Communicator, is immediately behind Cain. Launch is currently scheduled for February 6, 2001.
Front view of bldg 30 which houses mission control
1984-08-30
41D-3072 (30 Aug 1984) --- A 41-D shift change is taking place in the Johnson Space Center's Building 30. In its twenty years of operation, the mission control center has been the scene of many such changes. The windowless wing at left houses three floors, including rooms supporting flight control rooms 1 & 2 (formerly called mission operations control rooms 1 & 2).
View of Mission Control Center celebrating conclusion of Apollo 11 mission
NASA Technical Reports Server (NTRS)
1969-01-01
Overall view of the Mission Operations Control Room in the Mission Control Center, bldg 30, Manned Spacecraft Center (MSC), at the conclusion of the Apollo 11 lunar landing mission. The television monitor shows President Richard M. Nixon greeting the Apollo 11 astronauts aboard the U.S.S. Hornet in the Pacific recovery area (40301); NASA and MSC Officials join the flight controllers in celebrating the conclusion of the Apollo 11 mission. From left foreground Dr. Maxime A. Faget, MSC Director of Engineering and Development; George S. Trimble, MSC Deputy Director; Dr. Christopher C. Kraft Jr., MSC Director fo Flight Operations; Julian Scheer (in back), Assistant Adminstrator, Offic of Public Affairs, NASA HQ.; George M. Low, Manager, Apollo Spacecraft Program, MSC; Dr. Robert R. Gilruth, MSC Director; and Charles W. Mathews, Deputy Associate Administrator, Office of Manned Space Flight, NASA HQ (40302).
Orbital Gravity Gradiometry Beyond GOCE: Mission Concepts
NASA Technical Reports Server (NTRS)
Shirron, Peter J.; DiPirro, Michael J.; Canavan, Edgar R.; Paik, Ho Jung; Moody, M. Vol; Venkateswara, Krishna Y.; Han, Shin-Chan; Ditmar, Pavel; Klees, Roland; Jekeli, Christopher;
2010-01-01
Significant advances in the technologies needed for space-based cryogenic instruments have been made in the last decade, including cryocoolers, spacecraft architectures and cryogenic amplifiers. These enable considerably more complex instruments to be put into orbit for long-duration missions. One such instrument is the Superconducting Gravity Gradiometer (SGG) developed by Paik, et al. A magnetically levitated version is under consideration for a follow-on mission to GRACE (Gravity Recovery and Climate Experiment) and GOCE (Gravity field and steady-state Ocean Circulation Explorer). With its inherently greater rejection of common mode accelerations and ability to cancel the coupling of angular accelerations into the gradient signal, the SGG can achieve [an accuracy of] 0.01 milli-Eotvos (gravitational gradient of the Earth) divided by the square root of frequency in hertz, with requirements for attitude control that can be met with existing spacecraft. In addition, the use of a cryocooler for cooling the instrument will alleviate the previously severe constraint on mission lifetime imposed by the use of superfluid helium,. enabling mission durations in the 5-10 year range. Studies are underway to determine requirements for orbit (polar versus sun-synchronous), altitude (which affects spacecraft drag), instrument temperature and stability, cryocooler vibration control, and control and readout electronics. These will be used to determine the SGG's sensitivity and ultimate resolution for gravity recovery. This paper will discuss preliminary instrument and spacecraft design, and toplevel mission requirements.
NASA Technical Reports Server (NTRS)
1976-01-01
Payload mission control concepts are developed for real time flight operations of STS. Flight planning, training, simulations, and other flight preparations are included. Payload activities for the preflight phase, activity sequences and organizational allocations, and traffic and experience factors to establish composite man-loading for joint STS payload activities are identified for flight operations from 1980 to 1985.
Attitude control analysis of tethered de-orbiting
NASA Astrophysics Data System (ADS)
Peters, T. V.; Briz Valero, José Francisco; Escorial Olmos, Diego; Lappas, V.; Jakowski, P.; Gray, I.; Tsourdos, A.; Schaub, H.; Biesbroek, R.
2018-05-01
The increase of satellites and rocket upper stages in low earth orbit (LEO) has also increased substantially the danger of collisions in space. Studies have shown that the problem will continue to grow unless a number of debris are removed every year. A typical active debris removal (ADR) mission scenario includes launching an active spacecraft (chaser) which will rendezvous with the inactive target (debris), capture the debris and eventually deorbit both satellites. Many concepts for the capture of the debris while keeping a connection via a tether, between the target and chaser have been investigated, including harpoons, nets, grapples and robotic arms. The paper provides an analysis on the attitude control behaviour for a tethered de-orbiting mission based on the ESA e.Deorbit reference mission, where Envisat is the debris target to be captured by a chaser using a net which is connected to the chaser with a tether. The paper provides novel insight on the feasibility of tethered de-orbiting for the various mission phases such as stabilization after capture, de-orbit burn (plus stabilization), stabilization during atmospheric pass, highlighting the importance of various critical mission parameters such as the tether material. It is shown that the selection of the appropriate tether material while using simple controllers can reduce the effort needed for tethered deorbiting and can safely control the attitude of the debris/chaser connected with a tether, without the danger of a collision.
MISSION CONTROL CENTER (MCC) - APOLLO-SOYUZ TEST PROJECT (ASTP) - JSC
1975-07-17
S75-28683 (17 July 1975) --- An overall view of the Mission Operations Control Room in the Mission Control Center during the joint U.S.-USSR Apollo-Soyuz Test Project docking mission in Earth orbit. M.P. Frank, the American senior ASTP flight director, is seated at his console in the right foreground. He is watching the large television monitor which shows a view of the Soyuz spacecraft as seen from the Apollo spacecraft during rendezvous and docking maneuvers.
STS-105 Flight Control Team Photo
2001-07-31
JSC2001-02115 (31 July 2001) --- The flight controllers for the Ascent/Entry shift for the upcoming STS-105 mission pose with the assigned astronaut crew for a team portrait in the Shuttle Flight Control Room (WFCR) of Houston's Mission Control Center (MCC). Flight director John Shannon (left center) and STS-105 commander Scott J. Horowitz hold the mission logo. Also pictured on the front row are spacecraft communicator Kenneth D. Cockrell and STS-105 crew members Daniel T. Barry, Frederick W. (Rick) Sturckow and Patrick G. Forrester. The team had been participating in an integrated simulation for the scheduled August mission.
Operator procedure verification with a rapidly reconfigurable simulator
NASA Technical Reports Server (NTRS)
Iwasaki, Yumi; Engelmore, Robert; Fehr, Gary; Fikes, Richard
1994-01-01
Generating and testing procedures for controlling spacecraft subsystems composed of electro-mechanical and computationally realized elements has become a very difficult task. Before a spacecraft can be flown, mission controllers must envision a great variety of situations the flight crew may encounter during a mission and carefully construct procedures for operating the spacecraft in each possible situation. If, despite extensive pre-compilation of control procedures, an unforeseen situation arises during a mission, the mission controller must generate a new procedure for the flight crew in a limited amount of time. In such situations, the mission controller cannot systematically consider and test alternative procedures against models of the system being controlled, because the available simulator is too large and complex to reconfigure, run, and analyze quickly. A rapidly reconfigurable simulation environment that can execute a control procedure and show its effects on system behavior would greatly facilitate generation and testing of control procedures both before and during a mission. The How Things Work project at Stanford University has developed a system called DME (Device Modeling Environment) for modeling and simulating the behavior of electromechanical devices. DME was designed to facilitate model formulation and behavior simulation of device behavior including both continuous and discrete phenomena. We are currently extending DME for use in testing operator procedures, and we have built a knowledge base for modeling the Reaction Control System (RCS) of the space shuttle as a testbed. We believe that DME can facilitate design of operator procedures by providing mission controllers with a simulation environment that meets all these requirements.
NASA Technical Reports Server (NTRS)
1979-01-01
An array deployment assembly, power regulation and control assembly, the necessary interface, and display and control equipment comprise the power extension package (PEP) which is designed to provide increased power and duration, as well as reduce fuel cell cryogen consumption during Spacelab missions. Compatible with all currently defined missions and payloads, PEP imposes minimal weight and volume penalties on sortie missions, and can be installed and removed as needed at the launch site within the normal Orbiter turnaround cycle. The technology on which it is based consists of a modified solar electric propulsion array, standard design regulator and control equipment, and a minimally modified Orbiter design. The requirements from which PEP was derived, and the system and its performance capabilities are described. Features of the recommended project are presented.
The Earth Science Afternoon Constellation: Preparing for Autonomous but Coordinated Operations
NASA Technical Reports Server (NTRS)
Case, Warren; Kelly, Angelita C.; Work, Kevin; Guit, William
2005-01-01
This paper describes how the challenges of coordinating the autonomous operations of geographically dispersed mission control centers for several small and large satellites are being overcome. The Earth Science Afternoon Constellation, also referred to as the "A-Train", is an international grouping of five NASA satellites (two major NASA EOS missions and three NASA/Earth System Science Pathfinder missions) and one French satellite orbiting in close proximity. This grouping of satellites provides scientists with the opportunity to perform coincident observations using data from two or more instruments on various satellites with measurements taken at approximately the same time. Three of the six missions are currently on-orbit, with the two missions expected to join the constellation later this year and one mission in 2007. The operational challenges are daunting for several reasons. There are several Mission Control Centers (widely separated on two continents), operating autonomously under tight budget constraints. All of the Mission Control Centers have reasons to be concerned about safety while flying in close proximity to other satellites, but most Centers did not have the resources or the desire to address this concern alone - the interfaces are too numerous and anticipated operations too costly. Clearly, an efficient approach was needed. This paper describes the steps taken to make this Earth science constellation a reality. Agreements were forged to allow the Mission Control Centers to maintain their autonomy, while ensuring their satellite's safety. Each member mission in the constellation operates independently in accordance with its own mission requirements, but the member missions have agreed to coordinate their operations, i.e., orbital positions and control to ensure the safety of the entire constellation. A centralized system was developed at NASA Goddard Space Flight Center to collect, analyze, and distribute ephemeris data used by each of the mission teams to determine the positions of the satellites in the constellation. The system issues warnings regarding possible dangerous configurations, eliminating the need for redundant capabilities at each Mission Control Center. On-orbit contingency situations were identified and analyzed; agreements were reached in advance of contingency operations to ensure that coordination between the Mission Control Centers can be handled expeditiously and fairly. In this manner, recovery from anomalous situations can be more quickly realized, thereby increasing the science return and reducing costs. The process used to develop these contingency procedures and the systems used to facilitate the contingency resolution are described as well.
EMC Aspects of Turbulence Heating ObserveR (THOR) Spacecraft
NASA Astrophysics Data System (ADS)
Soucek, J.; Ahlen, L.; Bale, S.; Bonnell, J.; Boudin, N.; Brienza, D.; Carr, C.; Cipriani, F.; Escoubet, C. P.; Fazakerley, A.; Gehler, M.; Genot, V.; Hilgers, A.; Hanock, B.; Jannet, G.; Junge, A.; Khotyaintsev, Y.; De Keyser, J.; Kucharek, H.; Lan, R.; Lavraud, B.; Leblanc, F.; Magnes, W.; Mansour, M.; Marcucci, M. F.; Nakamura, R.; Nemecek, Z.; Owen, C.; Phal, Y.; Retino, A.; Rodgers, D.; Safrankova, J.; Sahraoui, F.; Vainio, R.; Wimmer-Schweingruber, R.; Steinhagen, J.; Vaivads, A.; Wielders, A.; Zaslavsky, A.
2016-05-01
Turbulence Heating ObserveR (THOR) is a spacecraft mission dedicated to the study of plasma turbulence in near-Earth space. The mission is currently under study for implementation as a part of ESA Cosmic Vision program. THOR will involve a single spinning spacecraft equipped with state of the art instruments capable of sensitive measurements of electromagnetic fields and plasma particles. The sensitive electric and magnetic field measurements require that the spacecraft- generated emissions are restricted and strictly controlled; therefore a comprehensive EMC program has been put in place already during the study phase. The THOR study team and a dedicated EMC working group are formulating the mission EMC requirements already in the earliest phase of the project to avoid later delays and cost increases related to EMC. This article introduces the THOR mission and reviews the current state of its EMC requirements.
Evaluation of Laminar Flow Control System Concepts for Subsonic Commercial Transport Aircraft
NASA Technical Reports Server (NTRS)
Sturgeon, R. F.
1980-01-01
Alternatives in the design of laminar flow control (LFC) subsonic commerical transport aircraft for opeation in the 1980's period were studied. Analyses were conducted to select mission parameters and define optimum aircraft configurational parameters for the selected mission, defined by a passenger payload of 400 and a design range of 12, 038 km (6500 n mi). The baseline aircraft developed for this mission was used as a vehicle for the evaluation and development of alternative LFC system concepts. Alternatices in the areas of aerodynamics, structures and materials, LFC systems, leading-edge region cleaning, and integration of auxiliary systems were studied. Relative to a similarly-optimized advanced technology turbulent transport, the final LFC configuration is approximately equal in DOC but provides descreases of 8.2% in gross weight and 21.7% in fuel consumption.
Personnel in Mission Control examine replica of spider habitat from Skylab 3
NASA Technical Reports Server (NTRS)
1973-01-01
Flight Director Neil B. Hutchinson, left, and Astronaut Bruce McCandless II hold up a glass enclosure - home for the spider Arachne, which is the same species as the two spiders carried on the Skylab 3 mission. The real spider is the one barely visible at the upper right corner of the square; the larger one is a projected image on the rear-screen-projected map in the front of the Mission Operations Control Room (MOCR) of the Mission Control Center (MCC). McCandless served as backup pilot for the first manned Skylab mission and was a spacecraft-communicater (CAPCOM) for the second crew.
NASA Technical Reports Server (NTRS)
Landis, Kenneth H.; Glusman, Steven I.
1985-01-01
The Advanced Cockpit Controls/Advanced Flight Control System (ACC/AFCS) study was conducted by the Boeing Vertol Company as part of the Army's Advanced Digital/Optical Control System (ADOCS) program. Specifically, the ACC/AFCS investigation was aimed at developing the flight control laws for the ADOCS demonstrator aircraft which will provide satisfactory handling qualities for an attack helicopter mission. The three major elements of design considered are as follows: Pilot's integrated Side-Stick Controller (SSC) -- Number of axes controlled; force/displacement characteristics; ergonomic design. Stability and Control Augmentation System (SCAS)--Digital flight control laws for the various mission phases; SCAS mode switching logic. Pilot's Displays--For night/adverse weather conditions, the dynamics of the superimposed symbology presented to the pilot in a format similar to the Advanced Attack Helicopter (AAH) Pilot Night Vision System (PNVS) for each mission phase as a function of ACAS characteristics; display mode switching logic. Findings from the literature review and the analysis and synthesis of desired control laws are reported in Volume 2. Conclusions drawn from pilot rating data and commentary were used to formulate recommendations for the ADOCS demonstrator flight control system design. The ACC/AFCS simulation data also provide an extensive data base to aid the development of advanced flight control system design for future V/STOL aircraft.
Controlling the autonomy of a reconnaissance robot
NASA Astrophysics Data System (ADS)
Dalgalarrondo, Andre; Dufourd, Delphine; Filliat, David
2004-09-01
In this paper, we present our research on the control of a mobile robot for indoor reconnaissance missions. Based on previous work concerning our robot control architecture HARPIC, we have developed a man machine interface and software components that allow a human operator to control a robot at different levels of autonomy. This work aims at studying how a robot could be helpful in indoor reconnaissance and surveillance missions in hostile environment. In such missions, since a soldier faces many threats and must protect himself while looking around and holding his weapon, he cannot devote his attention to the teleoperation of the robot. Moreover, robots are not yet able to conduct complex missions in a fully autonomous mode. Thus, in a pragmatic way, we have built a software that allows dynamic swapping between control modes (manual, safeguarded and behavior-based) while automatically performing map building and localization of the robot. It also includes surveillance functions like movement detection and is designed for multirobot extensions. We first describe the design of our agent-based robot control architecture and discuss the various ways to control and interact with a robot. The main modules and functionalities implementing those ideas in our architecture are detailed. More precisely, we show how we combine manual controls, obstacle avoidance, wall and corridor following, way point and planned travelling. Some experiments on a Pioneer robot equipped with various sensors are presented. Finally, we suggest some promising directions for the development of robots and user interfaces for hostile environment and discuss our planned future improvements.
The NASA Mission Operations and Control Architecture Program
NASA Technical Reports Server (NTRS)
Ondrus, Paul J.; Carper, Richard D.; Jeffries, Alan J.
1994-01-01
The conflict between increases in space mission complexity and rapidly declining space mission budgets has created strong pressures to radically reduce the costs of designing and operating spacecraft. A key approach to achieving such reductions is through reducing the development and operations costs of the supporting mission operations systems. One of the efforts which the Communications and Data Systems Division at NASA Headquarters is using to meet this challenge is the Mission Operations Control Architecture (MOCA) project. Technical direction of this effort has been delegated to the Mission Operations Division (MOD) of the Goddard Space Flight Center (GSFC). MOCA is to develop a mission control and data acquisition architecture, and supporting standards, to guide the development of future spacecraft and mission control facilities at GSFC. The architecture will reduce the need for around-the-clock operations staffing, obtain a high level of reuse of flight and ground software elements from mission to mission, and increase overall system flexibility by enabling the migration of appropriate functions from the ground to the spacecraft. The end results are to be an established way of designing the spacecraft-ground system interface for GSFC's in-house developed spacecraft, and a specification of the end to end spacecraft control process, including data structures, interfaces, and protocols, suitable for inclusion in solicitation documents for future flight spacecraft. A flight software kernel may be developed and maintained in a condition that it can be offered as Government Furnished Equipment in solicitations. This paper describes the MOCA project, its current status, and the results to date.
1969-07-20
S69-39817 (20 July 1969) --- Interior view of the Mission Operations Control Room (MOCR) in the Mission Control Center (MCC), Building 30, during the Apollo 11 lunar extravehicular activity (EVA). The television monitor shows astronauts Neil A. Armstrong and Edwin E. Aldrin Jr. on the surface of the moon.
SSS-A attitude control prelaunch analysis and operations plan
NASA Technical Reports Server (NTRS)
Werking, R. D.; Beck, J.; Gardner, D.; Moyer, P.; Plett, M.
1971-01-01
A description of the attitude control support being supplied by the Mission and Data Operations Directorate is presented. Descriptions of the computer programs being used to support the mission for attitude determination, prediction, control, and definitive attitude processing are included. In addition, descriptions of the operating procedures which will be used to accomplish mission objectives are provided.
AE-C attitude determination and control prelaunch analysis and operations plan
NASA Technical Reports Server (NTRS)
Werking, R. D.; Headrick, R. D.; Manders, C. F.; Woolley, R. D.
1973-01-01
A description of attitude control support being supplied by the Mission and Data Operations Directorate is presented. Included are descriptions of the computer programs being used to support the missions for attitude determination, prediction, and control. In addition, descriptions of the operating procedures which will be used to accomplish mission objectives are provided.
Integrating Automation into a Multi-Mission Operations Center
NASA Technical Reports Server (NTRS)
Surka, Derek M.; Jones, Lori; Crouse, Patrick; Cary, Everett A, Jr.; Esposito, Timothy C.
2007-01-01
NASA Goddard Space Flight Center's Space Science Mission Operations (SSMO) Project is currently tackling the challenge of minimizing ground operations costs for multiple satellites that have surpassed their prime mission phase and are well into extended mission. These missions are being reengineered into a multi-mission operations center built around modern information technologies and a common ground system infrastructure. The effort began with the integration of four SMEX missions into a similar architecture that provides command and control capabilities and demonstrates fleet automation and control concepts as a pathfinder for additional mission integrations. The reengineered ground system, called the Multi-Mission Operations Center (MMOC), is now undergoing a transformation to support other SSMO missions, which include SOHO, Wind, and ACE. This paper presents the automation principles and lessons learned to date for integrating automation into an existing operations environment for multiple satellites.
Flight Operations reunion for the Apollo 11 20th anniversary of the first manned lunar landing
NASA Technical Reports Server (NTRS)
1989-01-01
The following major areas are presented: (1) the Apollo years; (2) official flight control manning list for Apollo 11; (3) original mission control emblem; (4) foundations of flight control; (5) Apollo-11 20th anniversary program and events; (6) Apollo 11 mission operations team certificate; (7) Apollo 11 mission summary (timeline); and (8) Apollo flight control team photographs and biographies.
NASA Technical Reports Server (NTRS)
1972-01-01
Digital autopilots for the manned command module earth orbital and lunar missions using program COLOSSUS 3 are discussed. Subjects presented are: (1) reaction control system digital autopilot, (2) thrust vector control autopilot, (3) entry autopilot and mission control programs, (4) takeover of Saturn steering, and (5) coasting flight attitude maneuver routine.
View of USSR flight controllers in Mission Control during touchdown
1975-07-21
S75-28659 (21 July 1975) --- An overall view of the group of Soviet Union flight controllers who served at the Mission Control Center during the joint U.S.-USSR Apollo-Soyuz Test Project docking mission in Earth orbit. They are applauding the successful touchdown of the Soyuz spacecraft in Central Asia. The television monitor had just shown the land landing of the Soyuz descent vehicle.
Research and Development of Electrostatic Accelerometers for Space Science Missions at HUST.
Bai, Yanzheng; Li, Zhuxi; Hu, Ming; Liu, Li; Qu, Shaobo; Tan, Dingyin; Tu, Haibo; Wu, Shuchao; Yin, Hang; Li, Hongyin; Zhou, Zebing
2017-08-23
High-precision electrostatic accelerometers have achieved remarkable success in satellite Earth gravity field recovery missions. Ultralow-noise inertial sensors play important roles in space gravitational wave detection missions such as the Laser Interferometer Space Antenna (LISA) mission, and key technologies have been verified in the LISA Pathfinder mission. Meanwhile, at Huazhong University of Science and Technology (HUST, China), a space accelerometer and inertial sensor based on capacitive sensors and the electrostatic control technique have also been studied and developed independently for more than 16 years. In this paper, we review the operational principle, application, and requirements of the electrostatic accelerometer and inertial sensor in different space missions. The development and progress of a space electrostatic accelerometer at HUST, including ground investigation and space verification are presented.
Research and Development of Electrostatic Accelerometers for Space Science Missions at HUST
Bai, Yanzheng; Li, Zhuxi; Hu, Ming; Liu, Li; Qu, Shaobo; Tan, Dingyin; Tu, Haibo; Wu, Shuchao; Yin, Hang; Li, Hongyin; Zhou, Zebing
2017-01-01
High-precision electrostatic accelerometers have achieved remarkable success in satellite Earth gravity field recovery missions. Ultralow-noise inertial sensors play important roles in space gravitational wave detection missions such as the Laser Interferometer Space Antenna (LISA) mission, and key technologies have been verified in the LISA Pathfinder mission. Meanwhile, at Huazhong University of Science and Technology (HUST, China), a space accelerometer and inertial sensor based on capacitive sensors and the electrostatic control technique have also been studied and developed independently for more than 16 years. In this paper, we review the operational principle, application, and requirements of the electrostatic accelerometer and inertial sensor in different space missions. The development and progress of a space electrostatic accelerometer at HUST, including ground investigation and space verification are presented. PMID:28832538
Modeling the Multi-Body System Dynamics of a Flexible Solar Sail Spacecraft
NASA Technical Reports Server (NTRS)
Kim, Young; Stough, Robert; Whorton, Mark
2005-01-01
Solar sail propulsion systems enable a wide range of space missions that are not feasible with current propulsion technology. Hardware concepts and analytical methods have matured through ground development to the point that a flight validation mission is now realizable. Much attention has been given to modeling the structural dynamics of the constituent elements, but to date an integrated system level dynamics analysis has been lacking. Using a multi-body dynamics and control analysis tool called TREETOPS, the coupled dynamics of the sailcraft bus, sail membranes, flexible booms, and control system sensors and actuators of a representative solar sail spacecraft are investigated to assess system level dynamics and control issues. With this tool, scaling issues and parametric trade studies can be performed to study achievable performance, control authority requirements, and control/structure interaction assessments.
2011-04-25
51G-S-219 (June 1985) --- Public Affairs Office (PAO) commentator Janet K. Ross is pictured at her console in the Mission Operations Control Room (MOCR) in the Mission Control Center at NASA's Johnson Space Center during the STS-51G mission. Photo credit: NASA
2011-04-25
51G-S-213 (June 1985) --- Public Affairs Office (PAO) commentator Janet K. Ross is pictured at her console in the Mission Operations Control Room (MOCR) in the Mission Control Center at NASA's Johnson Space Center during the STS-51G mission. Photo credit: NASA
Voice loops as coordination aids in space shuttle mission control.
Patterson, E S; Watts-Perotti, J; Woods, D D
1999-01-01
Voice loops, an auditory groupware technology, are essential coordination support tools for experienced practitioners in domains such as air traffic management, aircraft carrier operations and space shuttle mission control. They support synchronous communication on multiple channels among groups of people who are spatially distributed. In this paper, we suggest reasons for why the voice loop system is a successful medium for supporting coordination in space shuttle mission control based on over 130 hours of direct observation. Voice loops allow practitioners to listen in on relevant communications without disrupting their own activities or the activities of others. In addition, the voice loop system is structured around the mission control organization, and therefore directly supports the demands of the domain. By understanding how voice loops meet the particular demands of the mission control environment, insight can be gained for the design of groupware tools to support cooperative activity in other event-driven domains.
Voice loops as coordination aids in space shuttle mission control
NASA Technical Reports Server (NTRS)
Patterson, E. S.; Watts-Perotti, J.; Woods, D. D.
1999-01-01
Voice loops, an auditory groupware technology, are essential coordination support tools for experienced practitioners in domains such as air traffic management, aircraft carrier operations and space shuttle mission control. They support synchronous communication on multiple channels among groups of people who are spatially distributed. In this paper, we suggest reasons for why the voice loop system is a successful medium for supporting coordination in space shuttle mission control based on over 130 hours of direct observation. Voice loops allow practitioners to listen in on relevant communications without disrupting their own activities or the activities of others. In addition, the voice loop system is structured around the mission control organization, and therefore directly supports the demands of the domain. By understanding how voice loops meet the particular demands of the mission control environment, insight can be gained for the design of groupware tools to support cooperative activity in other event-driven domains.
Operator Informational Needs for Multiple Autonomous Small Vehicles
NASA Technical Reports Server (NTRS)
Trujillo, Anna C.; Fan, Henry; Cross, Charles D.; Hempley, Lucas E.; Cichella, Venanzio; Puig-Navarro, Javier; Mehdi, Syed Bilal
2015-01-01
With the anticipated explosion of small unmanned aerial vehicles, it is highly likely that operators will be controlling fleets of autonomous vehicles. To fulfill the promise of autonomy, vehicle operators will not be concerned with manual control of the vehicle; instead, they will deal with the overall mission. Furthermore, the one operator to many vehicles is becoming a constant meme with various industries including package delivery, search and rescue, and utility companies. In order for an operator to concurrently control several vehicles, his station must look and behave very differently than the current ground control station instantiations. Furthermore, the vehicle will have to be much more autonomous, especially during non-normal operations, in order to accommodate the knowledge deficit or the information overload of the operator in charge of several vehicles. The expected usage increase of small drones requires presenting the operational information generated by a fleet of heterogeneous autonomous agents to an operator. NASA Langley Research Center's Autonomy Incubator has brought together researchers in various disciplines including controls, trajectory planning, systems engineering, and human factors to develop an integrated system to study autonomy issues. The initial human factors effort is focusing on mission displays that would give an operator the overall status of all autonomous agents involved in the current mission. This paper will discuss the specifics of the mission displays for operators controlling several vehicles.
NASA Technical Reports Server (NTRS)
Gisser, D. G.; Frederick, D. K.; Lashmet, P. K.; Sandor, G. N.; Shen, C. N.; Yerazunis, S. Y.
1975-01-01
Problems related to an unmanned exploration of the planet Mars by means of an autonomous roving planetary vehicle are investigated. These problems include: design, construction and evaluation of the vehicle itself and its control and operating systems. More specifically, vehicle configuration, dynamics, control, propulsion, hazard detection systems, terrain sensing and modelling, obstacle detection concepts, path selection, decision-making systems, and chemical analyses of samples are studied. Emphasis is placed on development of a vehicle capable of gathering specimens and data for an Augmented Viking Mission or to provide the basis for a Sample Return Mission.
STS-26 Mission Control Center (MCC) activity at JSC
NASA Technical Reports Server (NTRS)
1988-01-01
Flight controllers in JSC's Mission Control Center (MCC) Bldg 30 flight control room (FCR) listen to a presentation by STS-26 crewmembers on the fourth day of Discovery's, Orbiter Vehicle (OV) 103's, orbital mission. Instrumentation and Communications Officers (INCOs) Harold Black (left foreground) and John F. Muratore and other controllers view a television (TV) transmission of the crew on a screen in front of the FCR as each member relates some inner feelings while paying tribute to the 51L Challenger crew.
STS-26 Mission Control Center (MCC) activity at JSC
1988-10-02
Flight controllers in JSC's Mission Control Center (MCC) Bldg 30 flight control room (FCR) listen to a presentation by STS-26 crewmembers on the fourth day of Discovery's, Orbiter Vehicle (OV) 103's, orbital mission. Instrumentation and Communications Officers (INCOs) Harold Black (left foreground) and John F. Muratore and other controllers view a television (TV) transmission of the crew on a screen in front of the FCR as each member relates some inner feelings while paying tribute to the 51L Challenger crew.
Unmanned surface traverses of Mars and Moon: Science objectives, payloads, operations
NASA Technical Reports Server (NTRS)
Jaffe, L. D.; Choate, R.
1973-01-01
Science objectives and properties to be measured are outlined for long surface traverse missions on Mars and the Moon, with remotely-controlled roving vehicles. A series of candidate rover payloads is proposed for each planet, varying in weight, cost, purpose, and development needed. The smallest weighs 35 kg; the largest almost 300 kg. A high degree of internal control will be needed on the Mars rover, including the ability to carry out complex science sequences. Decision-making by humans in the Mars mission includes supervisory control of rover operations and selection of features and samples of geological and biological interest. For the lunar mission, less control on the rover and more on earth is appropriate. Science portions of the rover mission profile are outlined, with timelines and mileage breakdowns. Operational problem areas for Mars include control, communications, data storage, night operations, and the mission operations system. For the moon, science data storage on the rover would be unnecessary and control much simpler.
NASA Astrophysics Data System (ADS)
Park, Sangwook; Lee, Young-Ran; Hwang, Yoola; Javier Santiago Noguero Galilea
2009-12-01
This paper describes the Flight Dynamics Automation (FDA) system for COMS Flight Dynamics System (FDS) and its test result in terms of the performance of the automation jobs. FDA controls the flight dynamics functions such as orbit determination, orbit prediction, event prediction, and fuel accounting. The designed FDA is independent from the specific characteristics which are defined by spacecraft manufacturer or specific satellite missions. Therefore, FDA could easily links its autonomous job control functions to any satellite mission control system with some interface modification. By adding autonomous system along with flight dynamics system, it decreases the operator’s tedious and repeated jobs but increase the usability and reliability of the system. Therefore, FDA is used to improve the completeness of whole mission control system’s quality. The FDA is applied to the real flight dynamics system of a geostationary satellite, COMS and the experimental test is performed. The experimental result shows the stability and reliability of the mission control operations through the automatic job control.
Thrust Vector Control for Nuclear Thermal Rockets
NASA Technical Reports Server (NTRS)
Ensworth, Clinton B. F.
2013-01-01
Future space missions may use Nuclear Thermal Rocket (NTR) stages for human and cargo missions to Mars and other destinations. The vehicles are likely to require engine thrust vector control (TVC) to maintain desired flight trajectories. This paper explores requirements and concepts for TVC systems for representative NTR missions. Requirements for TVC systems were derived using 6 degree-of-freedom models of NTR vehicles. Various flight scenarios were evaluated to determine vehicle attitude control needs and to determine the applicability of TVC. Outputs from the models yielded key characteristics including engine gimbal angles, gimbal rates and gimbal actuator power. Additional factors such as engine thrust variability and engine thrust alignment errors were examined for impacts to gimbal requirements. Various technologies are surveyed for TVC systems for the NTR applications. A key factor in technology selection is the unique radiation environment present in NTR stages. Other considerations including mission duration and thermal environments influence the selection of optimal TVC technologies. Candidate technologies are compared to see which technologies, or combinations of technologies best fit the requirements for selected NTR missions. Representative TVC systems are proposed and key properties such as mass and power requirements are defined. The outputs from this effort can be used to refine NTR system sizing models, providing higher fidelity definition for TVC systems for future studies.
Earth Observatory Satellite system definition study. Report 7: EOS system definition report
NASA Technical Reports Server (NTRS)
1974-01-01
The Earth Observatory Satellite (EOS) study is summarized to show the modular design of a general purpose spacecraft, a mission peculiar segment which performs the EOS-A mission, an Operations Control Center, a Data Processing Facility, and a design for Low Cost Readout Stations. The study verified the practicality and feasibility of the modularized spacecraft with the capability of supporting many missions in the Earth Observation spectrum. The various subjects considered in the summary are: (1) orbit/launch vehicle tradeoff studies and recommendations, (2) instrument constraints and interfaces, (3) design/cost tradeoff and recommendations, (4) low cost management approach and recommendations, (5) baseline system description and specifications, and (6) space shuttle utilization and interfaces.
Federal Register 2010, 2011, 2012, 2013, 2014
2012-02-09
... Missions Many vessels and aircraft that are under DoD's control and used to support DoD's missions do not... passengers supporting its missions under DoD's control through its own transportation system, the Defense... vessels and aircraft owned by, or under the complete control and management of DoD, or chartered by DoD...
NASA 14 Day Undersea Missions: A Short-Duration Spaceflight Analog for Immune System Dysregulation
NASA Technical Reports Server (NTRS)
Crucian, B. E.; Stowe, R. P.; Mehta, S. K.; Quiriarte, H.; Pierson, D. L.; Sams, C. F.
2010-01-01
BACKGROUND Spaceflight-associated immune dysregulation (SAID) occurs during spaceflight and may represent specific clinical risks for exploration-class missions. An appropriate ground analog for spaceflight-associated immune dysregulation would offer a platform for ground-evaluation of various potential countermeasures. This study evaluated the NASA Undersea Mission Operations ( NEEMO ), consisting of 14 day undersea deployment at the Aquarius station, as an analog for SAID. Sixteen Aquanauts from missions NEEMO-12, 13 and 14 participated in the study. RESULTS Mid-mission alterations leukocyte distribution occurred, including granulocytosis and elevations in central-memory CD8+ T-cells. General T cell function was reduced during NEEMO missions in roughly 50% of subjects. Secreted cytokines profiles were evaluated following whole blood stimulation with CD3/CD28 (T cells) or LPS (monocytes). T cell production of IFNg, IL-5, IL-10, IL-2, TNFa and IL-6 were all reduced before and during the mission. Conversely, monocyte production of TNFa, IL-10, IL-6, IL-1b and IL-8 were elevated during mission, moreso at the MD-14 timepoint. Antibodies to Epstein-Barr virus (EBV) viral capsid antigen and early antigen were increased in approximately 40% of the subjects. Changes in EBV tetramer-positive CD8+ T-cells exhibited a variable pattern. Antibodies against Cytomegalovirus (CMV) were marginally increased during the mission. Herpesvirus reactivation was determined by PCR. EBV viral load was generally elevated at L-6. Higher levels of salivary EBV were found during the NEEMO mission than before and after as well as than the healthy controls. No VZV or CMV was found in any pre, during and after NEEMO mission or control samples. Plasma cortisol was elevated at L-6. CONCLUSION Unfortunately, L-6 may be too near to mission start to be an appropriate baseline measurement. The general immune changes in leukocyte distribution, T cell function, cytokine production, virus specific immunity and viral reactivation are similar to those observed during or following spaceflight. The NEEMO platform may thus have utility for short-duration, ground-based spaceflight-immune research, such as investigations of mechanism or countermeasures validation.
1963-06-04
CAPE CANAVERAL, Fla. - Between 1962 and 1963, the Mission Control Center was modified to handle the additional complexities of the Gemini Program. In 1962, Pan American World Airways Inc. was contracted to design an addition to the facility, which wrapped around the east, north, and most of the west and south sides. The Mercury Mission Control Center in Florida played a key role in the United States' early spaceflight program. Located at Cape Canaveral Air Force Station, the original part of the building was constructed between 1956 and 1958, with additions in 1959 and 1963. The facility officially was transferred to NASA on Dec. 26, 1963, and served as mission control during all the Project Mercury missions, as well as the first three flights of the Gemini Program, when it was renamed Mission Control Center. With its operational days behind, on June 1, 1967, the Mission Control Center became a stop on the public tour of NASA facilities until the mid-90s. In 1999, much of the equipment and furnishings from the Flight Control Area were moved to the Kennedy Space Center Visitor Complex where they became part of the exhibit there. The building was demolished in spring 2010. Photo credit: NASA
1963-02-13
CAPE CANAVERAL, Fla. - Between 1962 and 1963, the Mission Control Center was modified to handle the additional complexities of the Gemini Program. In 1962, Pan American World Airways Inc. was contracted to design an addition to the facility, which wrapped around the east, north, and most of the west and south sides. The Mercury Mission Control Center in Florida played a key role in the United States' early spaceflight program. Located at Cape Canaveral Air Force Station, the original part of the building was constructed between 1956 and 1958, with additions in 1959 and 1963. The facility officially was transferred to NASA on Dec. 26, 1963, and served as mission control during all the Project Mercury missions, as well as the first three flights of the Gemini Program, when it was renamed Mission Control Center. With its operational days behind, on June 1, 1967, the Mission Control Center became a stop on the public tour of NASA facilities until the mid-90s. In 1999, much of the equipment and furnishings from the Flight Control Area were moved to the Kennedy Space Center Visitor Complex where they became part of the exhibit there. The building was demolished in spring 2010. Photo credit: NASA
1963-02-13
CAPE CANAVERAL, Fla. - Between 1962 and 1963, the Mission Control Center was modified to handle the additional complexities of the Gemini Program. In 1962, Pan American World Airways Inc. was contracted to design an addition to the facility, which wrapped around the east, north, and most of the west and south sides. The Mercury Mission Control Center in Florida played a key role in the United States' early spaceflight program. Located at Cape Canaveral Air Force Station, the original part of the building was constructed between 1956 and 1958, with additions in 1959 and 1963. The facility officially was transferred to NASA on Dec. 26, 1963, and served as mission control during all the Project Mercury missions, as well as the first three flights of the Gemini Program, when it was renamed Mission Control Center. With its operational days behind, on June 1, 1967, the Mission Control Center became a stop on the public tour of NASA facilities until the mid-90s. In 1999, much of the equipment and furnishings from the Flight Control Area were moved to the Kennedy Space Center Visitor Complex where they became part of the exhibit there. The building was demolished in spring 2010. Photo credit: NASA
1963-03-01
CAPE CANAVERAL, Fla. - Between 1962 and 1963, the Mission Control Center was modified to handle the additional complexities of the Gemini Program. In 1962, Pan American World Airways Inc. was contracted to design an addition to the facility, which wrapped around the east, north, and most of the west and south sides. The Mercury Mission Control Center in Florida played a key role in the United States' early spaceflight program. Located at Cape Canaveral Air Force Station, the original part of the building was constructed between 1956 and 1958, with additions in 1959 and 1963. The facility officially was transferred to NASA on Dec. 26, 1963, and served as mission control during all the Project Mercury missions, as well as the first three flights of the Gemini Program, when it was renamed Mission Control Center. With its operational days behind, on June 1, 1967, the Mission Control Center became a stop on the public tour of NASA facilities until the mid-90s. In 1999, much of the equipment and furnishings from the Flight Control Area were moved to the Kennedy Space Center Visitor Complex where they became part of the exhibit there. The building was demolished in spring 2010. Photo credit: NASA
Remote mission specialist - A study in real-time, adaptive planning
NASA Technical Reports Server (NTRS)
Rokey, Mark J.
1990-01-01
A high-level planning architecture for robotic operations is presented. The remote mission specialist integrates high-level directives with low-level primitives executable by a run-time controller for command of autonomous servicing activities. The planner has been designed to address such issues as adaptive plan generation, real-time performance, and operator intervention.
The deep space network, volume 13
NASA Technical Reports Server (NTRS)
1973-01-01
The objectives, functions, and organization of the Deep Space Network are summarized. The deep space instrumentation facility, the ground communications facility, and the network control system are described. Other areas reported include: Helios Mission support, DSN support of the Mariner Mars 1971 extended mission, Mariner Venus/Mercury 1973 mission support, Viking mission support, radio science, tracking and ground-based navigation, network control and data processing, and deep space stations.
MISSION CONTROL CENTER (MCC) - APOLLO-SOYUZ TEST PROJECT (ASTP) - JSC
1975-07-17
S75-28682 (17 July 1975) --- An overall view of the Mission Operations Control Room in the Mission Control Center during the joint U.S.-USSR Apollo-Soyuz Test Project docking mission in Earth orbit. The large television monitor shows a view of the Soyuz spacecraft as seen from the Apollo spacecraft during rendezvous and docking maneuvers. Eugene F. Kranz, JSC Deputy Director of Flight Operations, is standing in the foreground. M.P. Frank, the American senior ASTP flight director, is partially obscured on the right.
STS-26 long duration simulation in JSC Mission Control Center (MCC) Bldg 30
NASA Technical Reports Server (NTRS)
1988-01-01
STS-26 long duration simulation is conducted in JSC Mission Control Center (MCC) Bldg 30 Flight Control Room (FCR). CBS television camera personnel record MCC activities at Spacecraft Communicator (CAPCOM) and Flight Activities Officer (FAO) (foreground) consoles for '48 Hours' program to be broadcast at a later date. The integrated simulation involved communicating with crewmembers stationed in the fixed based (FB) shuttle mission simulator (SMS) located in JSC Mission Simulation and Training Facility Bldg 5. MCC FCR visual displays are seen in front of the rows of consoles.
INFLIGHT (MISSION CONTROL CENTER) - STS-2 - JSC
1981-11-13
S81-39494 (12 Nov. 1981) --- An overall view of activity in the mission operations control room (MOCR) in Houston?s Mission Control Center (MCC) as viewed from the second front row of consoles during the STS-2 mission. The remote manipulator system (RMS) console is in the immediate foreground. Note TV transmission on the Eidophor screen at front of MOCR and shuttle orbiter marker on tracking map at left indicating the vehicle?s location over the Hawaiian Islands. The downlink was through the Hawaii tracking station. Photo credit: NASA
Open Source Next Generation Visualization Software for Interplanetary Missions
NASA Technical Reports Server (NTRS)
Trimble, Jay; Rinker, George
2016-01-01
Mission control is evolving quickly, driven by the requirements of new missions, and enabled by modern computing capabilities. Distributed operations, access to data anywhere, data visualization for spacecraft analysis that spans multiple data sources, flexible reconfiguration to support multiple missions, and operator use cases, are driving the need for new capabilities. NASA's Advanced Multi-Mission Operations System (AMMOS), Ames Research Center (ARC) and the Jet Propulsion Laboratory (JPL) are collaborating to build a new generation of mission operations software for visualization, to enable mission control anywhere, on the desktop, tablet and phone. The software is built on an open source platform that is open for contributions (http://nasa.github.io/openmct).
Solar Orbiter: Exploring the Sun-Heliosphere Connection
NASA Technical Reports Server (NTRS)
Mueller, D.; Marsden, R. G.; St.Cyr, O. C.; Gilbert, H. R.
2013-01-01
The heliosphere represents a uniquely accessible domain of space, where fundamental physical processes common to solar, astrophysical and laboratory plasmas can be studied under conditions impossible to reproduce on Earth and unfeasible to observe from astronomical distances. Solar Orbiter, the first mission of ESA's Cosmic Vision 2015 - 2025 programme, will address the central question of heliophysics: How does the Sun create and control the heliosphere? In this paper, we present the scientific goals of the mission and provide an overview of the mission implementation.
IUS/TUG orbital operations and mission support study. Volume 4: Project planning data
NASA Technical Reports Server (NTRS)
1975-01-01
Planning data are presented for the development phases of interim upper stage (IUS) and tug systems. Major project planning requirements, major event schedules, milestones, system development and operations process networks, and relevant support research and technology requirements are included. Topics discussed include: IUS flight software; tug flight software; IUS/tug ground control center facilities, personnel, data systems, software, and equipment; IUS mission events; tug mission events; tug/spacecraft rendezvous and docking; tug/orbiter operations interface, and IUS/orbiter operations interface.
Solar Orbiter Exploring the Sun-Heliosphere Connection
NASA Technical Reports Server (NTRS)
Mueller, Daniel; Marsden, Richard George; Cyr, O. C. St.; Gilbert, Holly Robin
2012-01-01
The heliosphere represents a uniquely accessible domain of space, where fundamental physical processes common to solar, astrophysical and laboratory plasmas can be studied under conditions impossible to reproduce on Earth and unfeasible to observe from astronomical distances. Solar Orbiter, the first mission of ESA's Cosmic Vision 2015 - 2025 programme, will address the central question of heliophysics: How does the Sun create and control the heliosphere? In this paper, we present the scientific goals of the mission and provide an overview of the mission implementation.
Exo-C: A Space Mission for Direct Imaging and Spectroscopy of Extrasolar Planetary Systems
NASA Technical Reports Server (NTRS)
Stapelfeldt, Karl; Belikov, Ruslan; Marley, Mark; Bryden, Geoff; Serabyn, Eugene; Trauger, John; Cahoy, Kerri; Chakrabarti, Supriya; McElwain, Michael; Meadows, Victoria;
2015-01-01
Exo-C is NASAs first community study of a modest aperture space telescope designed for high contrast observations of exoplanetary systems. The mission will be capable of taking optical spectra of nearby exoplanets in reflected light, discovering previously undetected planets, and imaging structure in a large sample of circumstellar disks. It will obtain unique science results on planets down to super-Earth sizes and serve as a technology pathfinder toward an eventual flagship-class mission to find and characterize habitable Earth-like exoplanets. We present the mission/payload design and highlight steps to reduce mission cost/risk relative to previous mission concepts. Key elements are an unobscured telescope aperture, an internal coronagraph with deformable mirrors for precise wavefront control, and an orbit and observatory design chosen for high thermal stability. Exo-C has a similar telescope aperture, orbit, lifetime, and spacecraft bus requirements to the highly successful Kepler mission (which is our cost reference). The needed technology development is on-course for a possible mission start in 2017. This paper summarizes the study final report completed in January 2015. During 2015 NASA will make a decision on its potential development.
General Human Health Issues For Moon And Mars Missions: Results From The HUMEX Study
NASA Astrophysics Data System (ADS)
Horneck, G.; Comet, B.
Human exploratory missions, such as the establishment of a permanently inhabited lunar base and/or human visits to Mars will add a new dimension to human space flight, concerning the distance of travel, the radiation environment, the gravity lev-els, the duration of the mission, and the level of confinement and isolation the crew will be exposed to. This will raise the significance of several health issues. Besides spaceflight specific risks, such as radiation health, gravity related effects and psy-chological issues, general health issues need to be considered. These individual risks of illness, injury or death are based on general human health statistics. The duration of the mission is the main factor in these considerations. These risk estimations are the base which have to supplemented by the risks related specifically to the nature of the expedition under consideration. Crew health and performance have to be secured during transfer flights, during lunar or Mars surface exploration, including EVAs, and upon return to Earth, as defined within the constraints of safety objectives and mass restrictions of the mission. Within the ESA Study on the Survivability and Adaptation of Humans to Long-Duration Interplanetary and Planetary Environments (so called HUMEX study), we have critically assessed the human responses, limits and needs with regard to the environments of interplanetary and planetary missions. Based on various scenarios, the crew health risks have been evaluated. The main results are as follows: (i) The state of the art shows that bone loss during the long stay in weightlessness, especially during missions to Mars, remains an unacceptable risk. Solutions to control and to prevent this risk shall be developed. (ii) The control of human physical capacity impairment under weightlessness shall be optimized. (iii) Based of the probability of occurrence of diseases and injuries and on the con-straints imposed by exploratory mission scenarios, the crew shall have a full auton-omy in terms of medical and surgical diagnostics and care means and competency. (iv) The control of the toxic and biological risks in a confined environment for a so long exposure shall be carefully analyzed and the technical solutions shall master these risks. A roadmap in the field of health care has been elaborated for a future European participation strategy towards human exploratory missions taking into account preparatory activities, such as analogue situations and ISS opportunities, European positioning and potential terrestrial applications and benefits. References: Horneck G. , R. Facius, M. Reichert, P. Rettberg, W. Seboldt, D. Man-zey, B. Comet, A. Maillet, H. Preiss, L. Schauer, C.G. Dussap, L. Poughon, A. Belyavin, G. Reitz, C. Baumstark-Khan, R. Gerzer (2003) HUMEX, a Study on the Survivability and Adaptation of Humans to Long-Duration Exploratory Missions, ESA SP-1264
NASA Technical Reports Server (NTRS)
Phenneger, M. C.; Singhal, S. P.; Lee, T. H.; Stengle, T. H.
1985-01-01
The work performed by the Attitude Determination and Control Section at the National Aeronautics and Space Administration/Goddard Space Flight Center in analyzing and evaluating the performance of infrared horizon sensors is presented. The results of studies performed during the 1960s are reviewed; several models for generating the Earth's infrared radiance profiles are presented; and the Horizon Radiance Modeling Utility, the software used to model the horizon sensor optics and electronics processing to computer radiance-dependent attitude errors, is briefly discussed. Also provided is mission experience from 12 spaceflight missions spanning the period from 1973 to 1984 and using a variety of horizon sensing hardware. Recommendations are presented for future directions for the infrared horizon sensing technology.
Apollo Lesson Sampler: Apollo 13 Lessons Learned
NASA Technical Reports Server (NTRS)
Interbartolo, Michael A.
2008-01-01
This CD-ROM contains a two-part case study of the Apollo 13 accident. The first lesson contains an overview of the electrical system hardware on the Apollo spacecraft, providing a context for the details of the oxygen tank explosion, and the failure chain reconstruction that led to the conditions present at the time of the accident. Given this background, the lesson then covers the tank explosion and immediate damage to the spacecraft, and the immediate response of Mission Control to what they saw. Part 2 of the lesson picks up shortly after the explosion of the oxygen tank on Apollo 13, and discusses how Mission Control gained insight to and understanding of the damage in the aftermath. Impacts to various spacecraft systems are presented, along with Mission Control's reactions and plans for in-flight recovery leading to a successful entry. Finally, post-flight vehicle changes are presented along with the lessons learned.
NASA Technical Reports Server (NTRS)
Neil, A. L.
1973-01-01
The Pioneer Venus mission study was conducted for a probe spacecraft and an orbiter spacecraft to be launched by either a Thor/Delta or an Atlas/Centaur launch vehicle. Both spacecraft are spin stabilized. The spin speed is controlled by ground commands to as low as 5 rpm for science instrument scanning on the orbiter and as high as 71 rpm for small probes released from the probe bus. A major objective in the design of the attitude control and mechanism subsystem (ACMS) was to provide, in the interest of costs, maximum commonality of the elements between the probe bus and orbiter spacecraft configurations. This design study was made considering the use of either launch vehicle. The basic functional requirements of the ACMS are derived from spin axis pointing and spin speed control requirements implicit in the acquisition, cruise, encounter and orbital phases of the Pioneer Venus missions.
Formation Control for the Maxim Mission.
NASA Technical Reports Server (NTRS)
Luquette, Richard J.; Leitner, Jesse; Gendreau, Keith; Sanner, Robert M.
2004-01-01
Over the next twenty years, a wave of change is occurring in the spacebased scientific remote sensing community. While the fundamental limits in the spatial and angular resolution achievable in spacecraft have been reached, based on today's technology, an expansive new technology base has appeared over the past decade in the area of Distributed Space Systems (DSS). A key subset of the DSS technology area is that which covers precision formation flying of space vehicles. Through precision formation flying, the baselines, previously defined by the largest monolithic structure which could fit in the largest launch vehicle fairing, are now virtually unlimited. Several missions including the Micro-Arcsecond X-ray Imaging Mission (MAXIM), and the Stellar Imager will drive the formation flying challenges to achieve unprecedented baselines for high resolution, extended-scene, interferometry in the ultraviolet and X-ray regimes. This paper focuses on establishing the feasibility for the formation control of the MAXIM mission. The Stellar Imager mission requirements are on the same order of those for MAXIM. This paper specifically addresses: (1) high-level science requirements for these missions and how they evolve into engineering requirements; (2) the formation control architecture devised for such missions; (3) the design of the formation control laws to maintain very high precision relative positions; and (4) the levels of fuel usage required in the duration of these missions. Specific preliminary results are presented for two spacecraft within the MAXIM mission.
NASA Technical Reports Server (NTRS)
Scarffe, V. A.
2002-01-01
NASA is focusing on small, low-cost spacecraft for both planetary and earth science missions. Deep Space 1 (DS1) was the first mission to be launched by the NMP. The New Millennium Project (NMP) is designed to develop and test new technology that can be used on future science missions with lower cost and risk. The NMP is finding ways to reduce cost not only in development, but also in operations. DS 1 was approved for an extended mission, but the budget was not large, so the project began looking into part time team members shared with other projects. DS1 launched on October 24, 1998, in it's primary mission it successfully tested twelve new technologies. The extended mission started September 18, 1999 and ran through the encounter with Comet Borrelly on September 22,2001. The Flight Control Team (FCT) was one team that needed to use part time or multi mission people. Circumstances led to a situation where for the few months before the Borrelly encounter in September of 2001 DSl had no certified full time Flight Control Engineers also known as Aces. This paper examines how DS 1 utilized cross-project support including the communication between different projects, and the how the tools used by the Flight Control Engineer fit into cross-project support.
Changes in Neutrophil Functions in Astronauts
NASA Technical Reports Server (NTRS)
Kaur, Indreshpal; Simons, Elizabeth R.; Castro, Victoria; Pierson, Duane L.
2002-01-01
Neutrophil functions (phagocytosis, oxidative burst, degranulation) and expression of surface markers involved in these functions were studied in 25 astronauts before and after 4 space shuttle missions. Space flight duration ranged from 5 to 11 days. Blood specimens were obtained 10 days before launch (preflight or L-10), immediately after landing (landing or R+0), and again at 3 days after landing (postflight or R+3). Blood samples were also collected from 9 healthy low-stressed subjects at 3 time points simulating a 10-day shuttle mission. The number of neutrophils increased at landing by 85 percent when compared to the preflight numbers. Neutrophil functions were studied in whole blood using flow cytometric methods. Phagocytosis of E.coli-FITC and oxidative burst capacity of the neutrophils following the 9 to 11 day missions were lower at all three sampling points than the mean values for control subjects. Phagocytosis and oxidative burst capacity of the astronauts was decreased even 10-days before space flight. Mission duration appears to be a factor in phagocytic and oxidative functions. In contrast, following the short-duration (5-days) mission, these functions were unchanged from control values. No consistent changes in degranulation were observed following either short or medium length space missions. The expression of CD16, CD32, CD11a, CD11b, CD11c, L-selectin and CD36 was measured and found to be variable. Specifically, CD16 and CD32 did not correlate with the changes in oxidative burst and phagocytosis. We can conclude from this study that the stresses associated with space flight can alter the important functions of neutrophils.
Payload/orbiter contamination control requirement study: Spacelab configuration contamination study
NASA Technical Reports Server (NTRS)
Bareiss, L. E.; Hetrick, M. A.; Ress, E. B.; Strange, D. A.
1976-01-01
The assessment of the Spacelab carrier induced contaminant environment was continued, and the ability of Spacelab to meet established contamination control criteria for the space transportation system program was determined. The primary areas considered included: (1) updating, refining, and improving the Spacelab contamination computer model and contamination analysis methodology, (2) establishing the resulting adjusted induced environment predictions for comparison with the applicable criteria, (3) determining the Spacelab design and operational requirements necessary to meet the criteria, (4) conducting mission feasibility analyses of the combined Spacelab/Orbiter contaminant environment for specific proposed mission and payload mixes, and (5) establishing a preliminary Spacelab mission support plan as well as model interface requirements; A summary of those activities conducted to date with respect to the modelling, analysis, and predictions of the induced environment, including any modifications in approach or methodology utilized in the contamination assessment of the Spacelab carrier, was presented.
NASA Technical Reports Server (NTRS)
Schiff, Conrad; Dove, Edwin
2011-01-01
The MMS mission is an ambitious space physics mission that will fly 4 spacecraft in a tetrahedron formation in a series of highly elliptical orbits in order to study magnetic reconnection in the Earth's magnetosphere. The mission design is comprised of a combination of deterministic orbit adjust and random maintenance maneuvers distributed over the 2.5 year mission life. Formal verification of the requirements is achieved by analysis through the use of the End-to-End (ETE) code, which is a modular simulation of the maneuver operations over the entire mission duration. Error models for navigation accuracy (knowledge) and maneuver execution (control) are incorporated to realistically simulate the possible maneuver scenarios that might be realized These error models, coupled with the complex formation flying physics, lead to non-trivial effects that must be taken into account by the ETE automation. Using the ETE code, the MMS Flight Dynamics team was able to demonstrate that the current mission design satisfies the mission requirements.
Reusable experiment controllers, case studies
NASA Astrophysics Data System (ADS)
Buckley, Brian A.; Gaasbeck, Jim Van
1996-03-01
Congress has given NASA and the science community a reality check. The tight and ever shrinking budgets are trimming the fat from many space science programs. No longer can a Principal Investigator (PI) afford to waste development dollars on re-inventing spacecraft controllers, experiment/payload controllers, ground control systems, or test sets. Inheritance of the Ground Support Equipment (GSE) from one program to another is not a significant re-use of technology to develop a science mission in these times. Reduction of operational staff and highly autonomous experiments are needed to reduce the sustaining cost of a mission. The re-use of an infrastructure from one program to another is needed to truly attain the cost and time savings required. Interface and Control Systems, Inc. (ICS) has a long history of re-usable software. Navy, Air Force, and NASA programs have benefited from the re-use of a common control system from program to program. Several standardization efforts in the AIAA have adopted the Spacecraft Command Language (SCL) architecture as a point solution to satisfy requirements for re-use and autonomy. The Environmental Research Institute of Michigan (ERIM) has been a long-standing customer of ICS and are working on their 4th generation system using SCL. Much of the hardware and software infrastructure has been re-used from mission to mission with little cost for re-hosting a new experiment. The same software infrastructure has successfully been used on Clementine, and an end-to-end system is being deployed for the Far Ultraviolet Spectroscopic Explorer (FUSE) for Johns Hopkins University. A case study of the ERIM programs, Clementine and FUSE will be detailed in this paper.
78 FR 65239 - Proposed Establishment of Class E Airspace; Brevig Mission, AK
Federal Register 2010, 2011, 2012, 2013, 2014
2013-10-31
...-0078; Airspace Docket No. 12-AAL-1] Proposed Establishment of Class E Airspace; Brevig Mission, AK...: This action proposes to establish Class E airspace at Brevig Mission Airport, Brevig Mission, AK... at Brevig Mission Airport, Brevig Mission, AK. Controlled airspace extending 2 miles north, 6 miles...
Space Vehicle Powerdown Philosophies Derived from the Space Shuttle Program
NASA Technical Reports Server (NTRS)
Willsey, Mark; Bailey, Brad
2011-01-01
In spaceflight, electrical power is a vital but limited resource. Almost every spacecraft system, from avionics to life support systems, relies on electrical power. Since power can be limited by the generation system s performance, available consumables, solar array shading, or heat rejection capability, vehicle power management is a critical consideration in spacecraft design, mission planning, and real-time operations. The purpose of this paper is to capture the powerdown philosophies used during the Space Shuttle Program. This paper will discuss how electrical equipment is managed real-time to adjust the overall vehicle power level to ensure that systems and consumables will support changing mission objectives, as well as how electrical equipment is managed following system anomalies. We will focus on the power related impacts of anomalies in the generation systems, air and liquid cooling systems, and significant environmental events such as a fire, decrease in cabin pressure, or micrometeoroid debris strike. Additionally, considerations for executing powerdowns by crew action or by ground commands from Mission Control will be presented. General lessons learned from nearly 30 years of Space Shuttle powerdowns will be discussed, including an in depth case-study of STS-117. During this International Space Station (ISS) assembly mission, a failure of computers controlling the ISS guidance, navigation, and control system required that the Space Shuttle s maneuvering system be used to maintain attitude control. A powerdown was performed to save power generation consumables, thus extending the docked mission duration and allowing more time to resolve the issue.
NASA Technical Reports Server (NTRS)
Andriopoulou, M.; Nakamura, R.; Torkar, K.; Baumjohann, W.; Torbert, R. B.; Lindqvist, P.-A.; Khotyaintsev, Y. V.; Dorelli, John Charles; Burch, J. L.; Russell, C. T.
2016-01-01
Each spacecraft of the recently launched magnetospheric multiscale MMS mission is equipped with Active Spacecraft Potential Control (ASPOC) Instruments, which control the spacecraft potential in order to reduce spacecraft charging effects. ASPOC typically reduces the spacecraft potential to a few volts. On several occasions during the commissioning phase of the mission, the ASPOC instruments were operating only on one spacecraft at a time. Taking advantage of such intervals, we derive photoelectron curves and also perform reconstructions of the uncontrolled spacecraft potential for the spacecraft with active control and estimate the electron plasma density during those periods. We also establish the criteria under which our methods can be applied.
MFE/Magnolia - A joint CNES/NASA mission for the earth magnetic field investigation
NASA Technical Reports Server (NTRS)
Runavot, Josette; Ousley, Gilbert W.
1988-01-01
The joint phase B study in the CNES/NASA MFE/Magnolia mission to study the earth's magnetic field are reported. The scientific objectives are summarized and the respective responsibilities of NASA and CNES are outlined. The MFE/Magnolia structure and power systems, mass and power budgets, attitude control system, instrument platform and boom, tape recorders, rf system, propellant system, and scientific instruments are described.
Orbit Determination Issues for Libration Point Orbits
NASA Technical Reports Server (NTRS)
Beckman, Mark; Bauer, Frank (Technical Monitor)
2002-01-01
Libration point mission designers require knowledge of orbital accuracy for a variety of analyses including station keeping control strategies, transfer trajectory design, and formation and constellation control. Past publications have detailed orbit determination (OD) results from individual libration point missions. This paper collects both published and unpublished results from four previous libration point missions (ISEE (International Sun-Earth Explorer) -3, SOHO (Solar and Heliospheric Observatory), ACE (Advanced Composition Explorer) and MAP (Microwave Anisotropy Probe)) supported by Goddard Space Flight Center's Guidance, Navigation & Control Center. The results of those missions are presented along with OD issues specific to each mission. All past missions have been limited to ground based tracking through NASA ground sites using standard range and Doppler measurement types. Advanced technology is enabling other OD options including onboard navigation using seaboard attitude sensors and the use of the Very Long Baseline Interferometry (VLBI) measurement Delta Differenced One-Way Range (DDOR). Both options potentially enable missions to reduce coherent dedicated tracking passes while maintaining orbital accuracy. With the increased projected loading of the DSN (Deep Space Network), missions must find alternatives to the standard OD scenario.
Integrated controls-structures design methodology development for a class of flexible spacecraft
NASA Technical Reports Server (NTRS)
Maghami, P. G.; Joshi, S. M.; Walz, J. E.; Armstrong, E. S.
1990-01-01
Future utilization of space will require large space structures in low-Earth and geostationary orbits. Example missions include: Earth observation systems, personal communication systems, space science missions, space processing facilities, etc., requiring large antennas, platforms, and solar arrays. The dimensions of such structures will range from a few meters to possibly hundreds of meters. For reducing the cost of construction, launching, and operating (e.g., energy required for reboosting and control), it will be necessary to make the structure as light as possible. However, reducing structural mass tends to increase the flexibility which would make it more difficult to control with the specified precision in attitude and shape. Therefore, there is a need to develop a methodology for designing space structures which are optimal with respect to both structural design and control design. In the current spacecraft design practice, it is customary to first perform the structural design and then the controller design. However, the structural design and the control design problems are substantially coupled and must be considered concurrently in order to obtain a truly optimal spacecraft design. For example, let C denote the set of the 'control' design variables (e.g., controller gains), and L the set of the 'structural' design variables (e.g., member sizes). If a structural member thickness is changed, the dynamics would change which would then change the control law and the actuator mass. That would, in turn, change the structural model. Thus, the sets C and L depend on each other. Future space structures can be roughly divided into four mission classes. Class 1 missions include flexible spacecraft with no articulated appendages which require fine attitude pointing and vibration suppression (e.g., large space antennas). Class 2 missions consist of flexible spacecraft with articulated multiple payloads, where the requirement is to fine-point the spacecraft and each individual payload while suppressing the elastic motion. Class 3 missions include rapid slewing of spacecraft without appendages, while Class 4 missions include general nonlinear motion of a flexible spacecraft with articulated appendages and robot arms. Class 1 and 2 missions represent linear mathematical modeling and control system design problems (except for actuator and sensor nonlinearities), while Class 3 and 4 missions represent nonlinear problems. The development of an integrated controls/structures design approach for Class 1 missions is addressed. The performance for these missions is usually specified in terms of (1) root mean square (RMS) pointing errors at different locations on the structure, and (2) the rate of decay of the transient response. Both of these performance measures include the contributions of rigid as well as elastic motion.
STS-26 Mission Control Center (MCC) activity at JSC
1988-10-02
STS026-S-101 (2 Oct 1988) --- Flight controllers in the Johnson Space Center?s mission control center listen to a presentation by the five members of the STS 26 crew on the fourth day of Discovery?s orbital mission. Flight Directors Charles W. Shaw and James M. (Milt) Heflin (in the foreground) and other controllers view a television image of Earth on a screen in the front of the flight control room while each member relates some inner feelings while paying tribute to the Challenger crew.
NASA Technical Reports Server (NTRS)
Clement, James L., Jr.; Ritsher, Jennifer Boyd
2006-01-01
As part of its preparation for missions to the Moon and Mars, NASA has identified high priority critical path roadmap (CPR) questions, two of which focus on the performance of mission control personnel. NASA flight controllers have always worked in an incredibly demanding setting, but the International Space Station poses even more challenges than prior missions. We surveyed 14 senior ISS flight controllers and a contrasting sample of 12 more junior controllers about the management and cultural challenges they face and the most effective strategies for addressing them. There was substantial consensus among participants on some issues, such as the importance of building a personal relationship with Russian colleagues. Responses from junior and senior controllers differed in some areas, such as training. We frame the results in terms of two CPR questions. We aim to use our results to improve flight controller training.
MSFC Skylab contamination control systems mission evaluation
NASA Technical Reports Server (NTRS)
1974-01-01
Cluster external contamination control evaluation was made throughout the Skylab Mission. This evaluation indicated that contamination control measures instigated during the design, development, and operational phases of this program were adequate to reduce the general contamination environment external to the Cluster below the threshold senstivity levels for experiments and affected subsystems. Launch and orbit contamination control features included eliminating certain vents, rerouting vents for minimum contamination impact, establishing filters, incorporating materials with minimum outgassing characteristics and developing operational constraints and mission rules to minimize contamination effects. Prior to the launch of Skylab, contamination control math models were developed which were used to predict Cluster surface deposition and background brightness levels throughout the mission. The report summarizes the Skylab system and experiment contamination control evaluation. The Cluster systems and experiments evaluated include Induced Atmosphere, Corollary and ATM Experiments, Thermal Control Surfaces, Solar Array Systems, Windows and Star Tracker.
NASA Technical Reports Server (NTRS)
Bhandari, Pradeep; Birur, Gajanana; Prina, Mauro; Ramirez, Brenda; Paris, Anthony; Novak, Keith; Pauken, Michael
2006-01-01
This viewgraph presentation reviews the heat rejection and heat recovery system for thermal control of the Mars Science Laboratory (MSL). The MSL mission will use mechanically pumped fluid loop based architecture for thermal control of the spacecraft and rover. The architecture is designed to harness waste heat from an Multi Mission Radioisotope Thermo-electric Generator (MMRTG) during Mars surface operations for thermal control during cold conditions and also reject heat during the cruise aspect of the mission. There are several test that are being conducted that will insure the safety of this concept. This architecture can be used during any future interplanetary missions utilizing radioisotope power systems for power generation.
Inflight - Apollo XI (Mission Control Center [MCC]) - MSC
1969-07-24
S69-40302 (24 July 1969) --- A group of NASA and Manned Spacecraft Center (MSC) officials join in with the flight controllers in the Mission Operations Control Room (MOCR) in the Mission Control Center (MCC), Building 30, in celebrating the successful conclusion of the Apollo 11 lunar landing mission. From left foreground are Dr. Maxime A. Faget, MSC Director of Engineering and Development; George S. Trimble, MSC Deputy Director; Dr. Christopher C. Kraft Jr., MSC Director of Flight Operations; Julian Scheer (in back), Assistant Administrator, Office of Public Affairs, NASA Headquarters; George M. Low, Manager, Apollo Spacecraft Program, MSC; Dr. Robert R. Gilruth, MSC Director; and Charles W. Mathews, Deputy Associate Administrator, Office of Manned Space Flight, NASA Headquarters.
A platform for real-time online health analytics during spaceflight
NASA Astrophysics Data System (ADS)
McGregor, Carolyn
Monitoring the health and wellbeing of astronauts during spaceflight is an important aspect of any manned mission. To date the monitoring has been based on a sequential set of discontinuous samplings of physiological data to support initial studies on aspects such as weightlessness, and its impact on the cardiovascular system and to perform proactive monitoring for health status. The research performed and the real-time monitoring has been hampered by the lack of a platform to enable a more continuous approach to real-time monitoring. While any spaceflight is monitored heavily by Mission Control, an important requirement within the context of any spaceflight setting and in particular where there are extended periods with a lack of communication with Mission Control, is the ability for the mission to operate in an autonomous manner. This paper presents a platform to enable real-time astronaut monitoring for prognostics and health management within space medicine using online health analytics. The platform is based on extending previous online health analytics research known as the Artemis and Artemis Cloud platforms which have demonstrated their relevance for multi-patient, multi-diagnosis and multi-stream temporal analysis in real-time for clinical management and research within Neonatal Intensive Care. Artemis and Artemis Cloud source data from a range of medical devices capable of transmission of the signal via wired or wireless connectivity and hence are well suited to process real-time data acquired from astronauts. A key benefit of this platform is its ability to monitor their health and wellbeing onboard the mission as well as enabling the astronaut's physiological data, and other clinical data, to be sent to the platform components at Mission Control at each stage when that communication is available. As a result, researchers at Mission Control would be able to simulate, deploy and tailor predictive analytics and diagnostics during the same spaceflight for - reater medical support.
NASA Astrophysics Data System (ADS)
Steininger, H.
2018-04-01
ExoMars as one of the few life detection missions can be an example of how planetary protection and contamination control influence of the development of flight hardware. A few lessons learned can be drawn from the mission even before launch.
View of Mission Control Center during the Apollo 13 oxygen cell failure
NASA Technical Reports Server (NTRS)
1970-01-01
Several persons important to the Apollo 13 mission, at consoles in the Mission Operations Control Room of the Mission Control Center (MCC). Seated at consoles, from left to right, are Astronaut Donald K. Slayton, Director of Flight Crew Operations; Astronaut Jack R. Lousma, Shift 3 spacecraft communicator; and Astronaut John W. Young, commander of the Apollo 13 back-up crew. Standing, left to right, are Astronaut Tom K. Mattingly, who was replaced as Apollo 13 command module pilot after it was learned he may come down with measles, and Astronaut Vance D. Brand, Shift 2 spacecraft communicator. Several hours earlier crew members of the Apollo 13 mission reported to MCC that trouble had developed with an oxygen cell in their spacecraft.
Fault tolerant and lifetime control architecture for autonomous vehicles
NASA Astrophysics Data System (ADS)
Bogdanov, Alexander; Chen, Yi-Liang; Sundareswaran, Venkataraman; Altshuler, Thomas
2008-04-01
Increased vehicle autonomy, survivability and utility can provide an unprecedented impact on mission success and are one of the most desirable improvements for modern autonomous vehicles. We propose a general architecture of intelligent resource allocation, reconfigurable control and system restructuring for autonomous vehicles. The architecture is based on fault-tolerant control and lifetime prediction principles, and it provides improved vehicle survivability, extended service intervals, greater operational autonomy through lower rate of time-critical mission failures and lesser dependence on supplies and maintenance. The architecture enables mission distribution, adaptation and execution constrained on vehicle and payload faults and desirable lifetime. The proposed architecture will allow managing missions more efficiently by weighing vehicle capabilities versus mission objectives and replacing the vehicle only when it is necessary.
Generic aerocapture atmospheric entry study, volume 1
NASA Technical Reports Server (NTRS)
1980-01-01
An atmospheric entry study to fine a generic aerocapture vehicle capable of missions to Mars, Saturn, and Uranus is reported. A single external geometry was developed through atmospheric entry simulations. Aerocapture is a system design concept which uses an aerodynamically controlled atmospheric entry to provide the necessary velocity depletion to capture payloads into planetary orbit. Design concepts are presented which provide the control accuracy required while giving thermal protection for the mission payload. The system design concepts consist of the following elements: (1) an extendable biconic aerodynamic configuration with lift to drag ratio between 1.0 and 2.0; (2) roll control system concepts to control aerodynamic lift and disturbance torques; (3) aeroshell design concepts capable of meeting dynamic pressure loads during aerocapture; and (4) entry thermal protection system design concepts to meet thermodynamic loads during aerocapture.
NASA Technical Reports Server (NTRS)
Butler, Madeline J.; Sonneborn, George; Perkins, Dorothy C.
1994-01-01
The Mission Operations and Data Systems Directorate (MO&DSD, Code 500), the Space Sciences Directorate (Code 600), and the Flight Projects Directorate (Code 400) have developed a new approach to combine the science and mission operations for the FUSE mission. FUSE, the last of the Delta-class Explorer missions, will obtain high resolution far ultraviolet spectra (910 - 1220 A) of stellar and extragalactic sources to study the evolution of galaxies and conditions in the early universe. FUSE will be launched in 2000 into a 24-hour highly eccentric orbit. Science operations will be conducted in real time for 16-18 hours per day, in a manner similar to the operations performed today for the International Ultraviolet Explorer. In a radical departure from previous missions, the operations concept combines spacecraft and science operations and data processing functions in a single facility to be housed in the Laboratory for Astronomy and Solar Physics (Code 680). A small missions operations team will provide the spacecraft control, telescope operations and data handling functions in a facility designated as the Science and Mission Operations Center (SMOC). This approach will utilize the Transportable Payload Operations Control Center (TPOCC) architecture for both spacecraft and instrument commanding. Other concepts of integrated operations being developed by the Code 500 Renaissance Project will also be employed for the FUSE SMOC. The primary objective of this approach is to reduce development and mission operations costs. The operations concept, integration of mission and science operations, and extensive use of existing hardware and software tools will decrease both development and operations costs extensively. This paper describes the FUSE operations concept, discusses the systems engineering approach used for its development, and the software, hardware and management tools that will make its implementation feasible.
The microwave radiometer spacecraft: A design study
NASA Technical Reports Server (NTRS)
Wright, R. L. (Editor)
1981-01-01
A large passive microwave radiometer spacecraft with near all weather capability of monitoring soil moisture for global crop forecasting was designed. The design, emphasizing large space structures technology, characterized the mission hardware at the conceptual level in sufficient detail to identify enabling and pacing technologies. Mission and spacecraft requirements, design and structural concepts, electromagnetic concepts, and control concepts are addressed.
Inflight - STS-11/41B (MISSION CONTROL CENTER [MCC]) - JSC
1984-02-08
S84-26503 (7 Feb 1984) --- This wide angle, overall view of activity in the mission operations control room in the Johnson Space Center?s mission control center, was photographed during the first even non-tethered extravehicular activity (EVA) in space. The large MOCR monitor and those at individual consoles feed to ground controllers the spectacular scene of Astronaut Bruce McCandless II ?suspended? I space above the blue and white Earth. The scene was photographed at 7:30 a.m. (CST), February 7, 1984.
NASA Technical Reports Server (NTRS)
Jones, Michael K.
1998-01-01
Various issues associated with interoperability for space mission monitor and control are presented in viewgraph form. Specific topics include: 1) Space Project Mission Operations Control Architecture (SuperMOCA) goals and methods for achieving them; 2) Specifics on the architecture: open standards ad layering, enhancing interoperability, and promoting commercialization; 3) An advertisement; 4) Status of the task - government/industry cooperation and architecture and technology demonstrations; and 5) Key features of messaging services and virtual devices.
STS-118 Ascent/Entry Flight Control Team in WFCR
2007-09-17
JSC2007-E-46429 (17 Sept. 2007) --- The members of the STS-118 Ascent/Entry flight control team and crewmembers pose for a group portrait in the space shuttle flight control room of Houston's Mission Control Center (MCC). Flight director Steve Stich holds the STS-118 mission logo. Astronauts Scott Kelly, commander, is at left foreground and astronaut Chris Ferguson, spacecraft communicator (CAPCOM), is at right foreground. Additional crewmembers pictured are Charlie Hobaugh, pilot; Barbara R. Morgan, Tracy Caldwell and Rick Mastracchio, all mission specialists.
View of Mission Control Center during the Apollo 13 oxygen cell failure
1970-04-14
S70-34904 (14 April 1970) --- Astronaut Alan B. Shepard Jr., prime crew commander of the Apollo 14 mission, monitors communications between the Apollo 13 spacecraft and Mission Control Center. He is seated at a console in the Mission Operations Control Room of the MCC, Manned Spacecraft Center. The main concern of the moment was action taken by the three Apollo 13 crewmen - astronauts James A. Lovell Jr., John L. Swigert Jr. and Fred W. Haise Jr. - to make corrections inside the spacecraft following discovery of an oxygen cell failure several hours earlier.
Object-oriented technologies in a multi-mission data system
NASA Technical Reports Server (NTRS)
Murphy, Susan C.; Miller, Kevin J.; Louie, John J.
1993-01-01
The Operations Engineering Laboratory (OEL) at JPL is developing new technologies that can provide more efficient and productive ways of doing business in flight operations. Over the past three years, we have worked closely with the Multi-Mission Control Team to develop automation tools, providing technology transfer into operations and resulting in substantial cost savings and error reduction. The OEL development philosophy is characterized by object-oriented design, extensive reusability of code, and an iterative development model with active participation of the end users. Through our work, the benefits of object-oriented design became apparent for use in mission control data systems. Object-oriented technologies and how they can be used in a mission control center to improve efficiency and productivity are explained. The current research and development efforts in the JPL Operations Engineering Laboratory are also discussed to architect and prototype a new paradigm for mission control operations based on object-oriented concepts.
Mission Manager Area of the Spacelab Payload Operations Control Center (SL POCC)
NASA Technical Reports Server (NTRS)
1990-01-01
The primary objective of the STS-35 mission was round the clock observation of the celestial sphere in ultraviolet and X-Ray astronomy with the Astro-1 observatory which consisted of four telescopes: the Hopkins Ultraviolet Telescope (HUT); the Wisconsin Ultraviolet Photo-Polarimeter Experiment (WUPPE); the Ultraviolet Imaging Telescope (UIT); and the Broad Band X-Ray Telescope (BBXRT). The Huntsville Operations Support Center (HOSC) Spacelab Payload Operations Control Center (SL POCC) at the Marshall Space Flight Center (MSFC) was the air/ground communication channel used between the astronauts and ground control teams during the Spacelab missions. Teams of controllers and researchers directed on-orbit science operations, sent commands to the spacecraft, received data from experiments aboard the Space Shuttle, adjusted mission schedules to take advantage of unexpected science opportunities or unexpected results, and worked with crew members to resolve problems with their experiments. Pictured is Jack Jones in the Mission Manager Area.
STS-105 coverage of Mission Control Center employees in the WFCR & BFCR
2003-03-25
JSC2001-E-25114 (16 August 2001) --- Flight director John Shannon monitors data at his console in the shuttle flight control room (WFCR) in Houstons Mission Control Center (MCC). At the time this photo was taken, STS-105 mission specialists Daniel T. Barry and Patrick G. Forrester were performing the first of two scheduled space walks to perform work on the International Space Station (ISS).
NASA Astrophysics Data System (ADS)
Lam, Quang M.; Barkana, Itzhak
2014-12-01
Satellite mission life, maintained and prolonged beyond its typical norm of their expectancy, are primarily dictated by the state of health of its Reaction Wheel Assembly (RWA), especially for commercial GEO satellites since torquer bars are no longer applicable while thruster assistant is unacceptable due to pointing accuracy impact during jet firing. The RWA is the primary set of actuators (as compared to thrusters for orbit maintenance and maneuvering) mainly responsible for the satellite mission for accurately and precisely pointing its payloads to the right targets to conduct its mission operations. The RWA consisting of either a set of four in pyramid or three in orthogonal is the primary set of actuators to allow the satellite to achieve accurate and precise pointing of the satellite payloads towards the desired targets. Future space missions will be required to achieve much longer lives and are currently perceived by the GEO satellite community as an "expected norm" of 20 years or longer. Driven by customers' demands/goals and competitive market have challenged Attitude Control Subsystems (ACS) engineers to develop better ACS algorithms to address such an emerging need. There are two main directions to design satellite's under-actuated control subsystem: (1) Attitude Feedback with Zero Momentum Principle and (2) Attitude Control by Angular Velocity Tracking via Small Time Local Controllability concept. Successful applications of these control laws have been largely demonstrated via simulation for the rest to rest case. Limited accuracy and oscillatory behaviors are observed in three axes for non-zero wheel momentum while realistic loss of a wheel scenario (i.e., fully actuated to under-actuated) has not been closely examined! This study revisits the under-actuated control design with detailed set ups of multiple scenarios reflecting real life operating conditions which have put current under-actuated control laws mentioned earlier into a re-evaluation mode since rest to rest case is not adequate to truly represent an on orbit failure of a single wheel. The study is intended to facilitate the ACS community to further develop a more practical under-actuated control law and present a path to extend these current thinking to address a more realistic reconfigurable ACS subject to a dynamic transition from a 3 RWs mode to 2 RWs mode.
Formal Methods for Automated Diagnosis of Autosub 6000
NASA Technical Reports Server (NTRS)
Ernits, Juhan; Dearden, Richard; Pebody, Miles
2009-01-01
This is a progress report on applying formal methods in the context of building an automated diagnosis and recovery system for Autosub 6000, an Autonomous Underwater Vehicle (AUV). The diagnosis task involves building abstract models of the control system of the AUV. The diagnosis engine is based on Livingstone 2, a model-based diagnoser originally built for aerospace applications. Large parts of the diagnosis model can be built without concrete knowledge about each mission, but actual mission scripts and configuration parameters that carry important information for diagnosis are changed for every mission. Thus we use formal methods for generating the mission control part of the diagnosis model automatically from the mission script and perform a number of invariant checks to validate the configuration. After the diagnosis model is augmented with the generated mission control component model, it needs to be validated using verification techniques.
NASA Technical Reports Server (NTRS)
1972-01-01
The results are reported of additional studies which were conducted to supplement conclusions drawn in the MSC Mission Report and analyses which were not completed in time to meet the Mission Report dealine. A detailed evaluation of the Abort Guidance System sensor assembly and results from the investigation of the X gyro loop anomaly are included. Further evidence is presented substantiating the excellent LM IMU performance obtained from preliminary indications. A detailed study is presented of the procedural changes implemented on Apollo 16 to diminish the number and duration of interruptions to the CSM DAP attitude maneuver during P20 Option 5 operations.
Development of ADOCS controllers and control laws. Volume 3: Simulation results and recommendations
NASA Technical Reports Server (NTRS)
Landis, Kenneth H.; Glusman, Steven I.
1985-01-01
The Advanced Cockpit Controls/Advanced Flight Control System (ACC/AFCS) study was conducted by the Boeing Vertol Company as part of the Army's Advanced Digital/Optical Control System (ADOCS) program. Specifically, the ACC/AFCS investigation was aimed at developing the flight control laws for the ADOCS demonstator aircraft which will provide satisfactory handling qualities for an attack helicopter mission. The three major elements of design considered are as follows: Pilot's integrated Side-Stick Controller (SSC) -- Number of axes controlled; force/displacement characteristics; ergonomic design. Stability and Control Augmentation System (SCAS)--Digital flight control laws for the various mission phases; SCAS mode switching logic. Pilot's Displays--For night/adverse weather conditions, the dynamics of the superimposed symbology presented to the pilot in a format similar to the Advanced Attack Helicopter (AAH) Pilot Night Vision System (PNVS) for each mission phase is a function of SCAS characteristics; display mode switching logic. Results of the five piloted simulations conducted at the Boeing Vertol and NASA-Ames simulation facilities are presented in Volume 3. Conclusions drawn from analysis of pilot rating data and commentary were used to formulate recommendations for the ADOCS demonstrator flight control system design. The ACC/AFCS simulation data also provide an extensive data base to aid the development of advanced flight control system design for future V/STOL aircraft.
NASA Technical Reports Server (NTRS)
1973-01-01
The traffic analyses and system requirements data generated in the study resulted in the development of two traffic models; the baseline traffic model and the new traffic model. The baseline traffic model provides traceability between the numbers and types of geosynchronous missions considered in the study and the entire spectrum of missions foreseen in the total national space program. The information presented pertaining to the baseline traffic model includes: (1) definition of the baseline traffic model, including identification of specific geosynchronous missions and their payload delivery schedules through 1990; (2) Satellite location criteria, including the resulting distribution of the satellite population; (3) Geosynchronous orbit saturation analyses, including the effects of satellite physical proximity and potential electromagnetic interference; and (4) Platform system requirements analyses, including satellite and mission equipment descriptions, the options and limitations in grouping satellites, and on-orbit servicing criteria (both remotely controlled and man-attended).
Aerodynamically-Actuated Radical Shape-Change Concept
NASA Technical Reports Server (NTRS)
Ivanco, Thomas G.; Ivanco, Marie L.; Ancel, Ersin; Grubb, Amanda L.; Prasad, Supranamaaya
2017-01-01
Aerodynamically-actuated radical shape change (AARSC) is a novel concept that enables flight vehicles to conduct a mission profile containing radically different flight regimes while possibly mitigating the typical penalties incurred by radical geometric change. Weight penalties are mitigated by utilizing a primary flight control to generate aerodynamic loads that then drive a shape-change actuation. The flight mission profile used to analyze the AARSC concept is that of a transport aircraft that cruises at a lower altitude than typical transports. Based upon a preliminary analysis, substantial fuel savings are realized for mission ranges below 2000 NM by comparison to a state-of-the-art baseline, with an increasing impact as mission range is reduced. The predicted savings are so significant at short-haul ranges that the shape-change concept rivals the fuel-burn performance of turboprop aircraft while completing missions in less time than typical jet aircraft. Lower-altitude cruise has also been sought after in recent years for environmental benefits, however, the performance penalty to conventional aircraft was prohibitive. AARSC may enable the opportunity to realize the environmental benefits of lower-altitude emissions coupled with mission fuel savings. The findings of this study also reveal that the AARSC concept appears to be controllable, turbulence susceptibility is likely not an issue, and the shape change concept appears to be mechanically and aerodynamically feasible.
Industrial waste water in Bangkok, Thailand: Definitional mission report. Export trade information
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pfrang, W.
A definitional mission visited Thailand between February 1 and 7, 1992 to study the market opportunities for US manufacturers in providing pollution control equipment. Thailand presently lacks industrial machinery required for pollution control equipment. Consequently, this equipment must be imported for both industrial and municipal waste treatment facilities. The US has both the applicable technology and manufactured goods to serve the market. There is, however, stiff competition from Europe and especially Japan, who offer financial assistance at preferential rates for these types of projects.
Multi-team dynamics and distributed expertise in imission operations.
Caldwell, Barrett S
2005-06-01
The evolution of space exploration has brought an increased awareness of the social and socio-technical issues associated with team performance and task coordination, both for the onboard astronauts and in mission control. Spaceflight operations create a unique environment in which to address classic group dynamics topics including communication, group process, knowledge development and sharing, and time-critical task performance. Mission operations in the early years of the 21st century have developed into a set of complex, multi-team task settings incorporating multiple mission control teams and flight crews interacting in novel ways. These more complex operational settings help highlight the emergence of a new paradigm of distributed supervisory coordination, and the need to consider multiple dimensions of expertise being supported and exchanged among team members. The creation of new mission profiles with very long-duration time scales (months, rather than days) for the International Space Station, as well as planned exploration missions to the Moon and Mars, emphasize fundamental distinctions from the 40 yr from Mercury to the Space Shuttle. Issues in distributed expertise and information flow in mission control settings from two related perspectives are described. A general conceptual view of knowledge sharing and task synchronization is presented within the context of the mission control environment. This conceptual presentation is supplemented by analysis of quasi-experimental data collected from actual flight controllers at NASA-Johnson Space Center, Houston, TX.
Impact of flying qualities on mission effectiveness for helicopter air combat
NASA Technical Reports Server (NTRS)
Harris, T. M.; Beerman, D. A.; Bivens, C. C.
1984-01-01
Battlefield nap-of-the-earth (NOE) helicopter operations are vital for a use of the helicopter in a high-threat environment. As the pilot's workload in this flight regime is very high, the helicopter's handling qualities become an important factor. The present investigation is concerned with overall mission effectiveness, flying qualities, and their interaction with other parameters. A description is presented of a study which generated a significant amount of date relating the importance of flying qualities to the ability to perform several specific mission tasks. It was found that flying qualities do have a major impact on the ability to perform a specific mission. The impact of flying qualities on Scout helicopter mission effectiveness is mainly related to the probability of being detected. The flying qualities effect most critical to the Scout mission was found to be precision of hover control.
On-Orbit Performance of the TRMM Mission Mode
NASA Technical Reports Server (NTRS)
Robertson, Brent; Placanica, Sam; Morgenstern, Wendy; Hashmall, Joseph A.; Glickman, Jonathan; Natanson, Gregory
1999-01-01
This paper presents an overview of the Tropical Rainfall Measuring Mission (TRMM) Attitude Control System along with detailed in-flight performance results of the TRMM Mission mode. The TRMM spacecraft is an Earth-pointed, zero momentum bias satellite launched on November 27, 1997 from Tanegashima Space Center, Japan. TRMM is a joint mission between NASA and the National Space Development Agency of Japan designed to monitor and study tropical rainfall and the associated release of energy. Prior to calibration, the spacecraft attitude showed larger Sun sensor yaw updates than expected. This was traced to not just sensor misalignment but also to a misalignment between the two heads within each Sun sensor. In order to avoid alteration of the flight software, Sun sensor transfer function coefficients were determined to minimize the error due to head misalignment. This paper describes the design, on-orbit checkout, calibration and performance of the TRMM Mission Mode with respect to the mission level requirements.
NASA Technical Reports Server (NTRS)
Dittermore, Gary; Bertels, Christie
2011-01-01
Operations of human spaceflight systems is extremely complex; therefore, the training and certification of operations personnel is a critical piece of ensuring mission success. Mission Control Center (MCC-H), at the Lyndon B. Johnson Space Center in Houston, Texas, manages mission operations for the Space Shuttle Program, including the training and certification of the astronauts and flight control teams. An overview of a flight control team s makeup and responsibilities during a flight, and details on how those teams are trained and certified, reveals that while the training methodology for developing flight controllers has evolved significantly over the last thirty years the core goals and competencies have remained the same. In addition, the facilities and tools used in the control center have evolved. Changes in methodology and tools have been driven by many factors, including lessons learned, technology, shuttle accidents, shifts in risk posture, and generational differences. Flight controllers share their experiences in training and operating the space shuttle. The primary training method throughout the program has been mission simulations of the orbit, ascent, and entry phases, to truly train like you fly. A review of lessons learned from flight controller training suggests how they could be applied to future human spaceflight endeavors, including missions to the moon or to Mars. The lessons learned from operating the space shuttle for over thirty years will help the space industry build the next human transport space vehicle.
APOLLO X - DUKE, MICHAEL B., DR. - MSC
1969-05-19
S69-34040 (18 May 1969) --- Partial view of activity in the Mission Operations Control Room in the Mission Control Center, Building 30, on the first day of the Apollo 10 lunar orbit mission. The television monitor shows a picture of Earth made during the second telecast from the Apollo 10's color TV camera.
Dr. Gilruth and Dr. Kraft - Mission Control Center (MCC) - Apollo V Launch - MSC
1968-01-22
S68-18733 (22 Jan. 1968) --- Dr. Robert R. Gilruth (right), MSC Director, sits with Dr. Christopher C. Kraft Jr., MSC director of flight operations, at his flight operations director console in the Mission Control Center, Building 30, during the Apollo 5 (LM-1/Saturn 204) unmanned space mission.
POST-LAUNCH - APOLLO XVI - MSC
1972-04-19
S72-35460 (18 April 1972) --- Dr. J.F. Zieglschmid, M.D., Missions Operations Control Room (MOCR) White Team Surgeon, is seated in the Medical Support Room (MSR) in the Mission Control Center (MCC). He monitors crew biomedical data being received from the Apollo 16 spacecraft on the third day of the lunar landing mission.
NASA Astrophysics Data System (ADS)
Kanas, Nick; Ritsher, Jennifer
2005-05-01
In isolated and confined environments, two important leadership roles have been identified: the task/instrumental role (which focuses on work goals and operational needs), and the supportive/expressive role (which focuses on morale goals and emotional needs). On the International Space Station, the mission commander should be familiar with both of these aspects of leadership. In previous research involving a 135-day Mir space station simulation in Moscow and a series of on-orbit Mir space station missions during the Shuttle/Mir program, both these leadership roles were studied. In new analyses of the Shuttle/Mir data, we found that for crewmembers, the supportive role of the commander (but not the task role) related positively with crew cohesion. For mission control personnel on the ground, both the task and supportive roles of their leader were related positively to mission control cohesion. The implications of these findings are discussed in terms of leadership on board the International Space Station.
Kanas, Nick; Ritsher, Jennifer
2005-01-01
In isolated and confined environments, two important leadership roles have been identified: the task/instrumental role (which focuses on work goals and operational needs), and the supportive/expressive role (which focuses on morale goals and emotional needs). On the International Space Station, the mission commander should be familiar with both of these aspects of leadership. In previous research involving a 135-day Mir space station simulation in Moscow and a series of on-orbit Mir space station missions during the Shuttle/Mir program, both these leadership roles were studied. In new analyses of the Shuttle/Mir data, we found that for crewmembers, the supportive role of the commander (but not the task role) related positively with crew cohesion. For mission control personnel on the ground, both the task and supportive roles of their leader were related positively to mission control cohesion. The implications of these findings are discussed in terms of leadership on board the International Space Station. c2005 Elsevier Ltd. All rights reserved.
2007 Ikhana Western States and Southern California Emergency UAS Fire Missions
NASA Technical Reports Server (NTRS)
Cobleigh, Brent
2008-01-01
Four demonstration and four emergency fire imaging missions completed: a) Thermal infrared imagery delivered in near real-time (5 to 15 minutes) to: 1) SoCal Emergency: FEMA, NIFC, NorthCom, California EOC; 2) Demo Flights: NIFC, Individual Fire Incident Commands. Imagery used for tactical and strategic decision making. Air Traffic Control gave excellent support. Mission plans flown in reverse. Real time requests for revisits of active fires. Added new fire during mission. Moved fire loiter points as fires moved. Real-time reroute around thunderstorm activity. Pre & Post flight telecons with FAA were held to review mission and discuss operational improvements. No issues with air traffic control during the 8 fire missions flown.
Documentation of new mission control center White Flight Control Room (FLCR)
1995-06-06
Documentation of the new mission control center White Flight Control Room (FLCR). Excellent overall view of White FLCR with personnel manning console workstations (11221). Fisheye lens perspective from Flight Director station with Brian Austin (11222). Environmental (EECOM) workstation and personnel (11223).
STS-114 Mission Support - Flight Controllers on Launch Day
2005-07-26
Documentation of flight controllers in the White Flight Control Room (WFCR) on STS-114 Launch Day, July 26, 2005. View of Phil Engelauf and Flight Director Paul Hill standing at the Mission Operations Directorate (MOD) console.
COMS normal operation for Earth Observation mission
NASA Astrophysics Data System (ADS)
Cho, Young-Min
2012-09-01
Communication Ocean Meteorological Satellite (COMS) for the hybrid mission of meteorological observation, ocean monitoring, and telecommunication service was launched onto Geostationary Earth Orbit on June 27, 2010 and it is currently under normal operation service since April 2011. The COMS is located on 128.2° East of the geostationary orbit. In order to perform the three missions, the COMS has 3 separate payloads, the meteorological imager (MI), the Geostationary Ocean Color Imager (GOCI), and the Ka-band antenna. Each payload is dedicated to one of the three missions, respectively. The MI and GOCI perform the Earth observation mission of meteorological observation and ocean monitoring, respectively. For this Earth observation mission the COMS requires daily mission commands from the satellite control ground station and daily mission is affected by the satellite control activities. For this reason daily mission planning is required. The Earth observation mission operation of COMS is described in aspects of mission operation characteristics and mission planning for the normal operation services of meteorological observation and ocean monitoring. And the first year normal operation results after the In-Orbit-Test (IOT) are investigated through statistical approach to provide the achieved COMS normal operation status for the Earth observation mission.
Mission management - Lessons learned from early Spacelab missions
NASA Technical Reports Server (NTRS)
Craft, H. G., Jr.
1980-01-01
The concept and the responsibilities of a mission manager approach are reviewed, and some of the associated problems in implementing Spacelab mission are discussed. Consideration is given to program control, science management, integrated payload mission planning, and integration requirements. Payload specialist training, payload and launch site integration, payload flight/mission operations, and postmission activities are outlined.
Mission planning for autonomous systems
NASA Technical Reports Server (NTRS)
Pearson, G.
1987-01-01
Planning is a necessary task for intelligent, adaptive systems operating independently of human controllers. A mission planning system that performs task planning by decomposing a high-level mission objective into subtasks and synthesizing a plan for those tasks at varying levels of abstraction is discussed. Researchers use a blackboard architecture to partition the search space and direct the focus of attention of the planner. Using advanced planning techniques, they can control plan synthesis for the complex planning tasks involved in mission planning.
2014-08-04
Resident Space Object Proximity Analysis and IMAging) mission is carried out by a 6U Cube Sat class satellite equipped with a warm gas propulsion system... mission . The ARAPAIMA (Application for Resident Space Object Proximity Analysis and IMAging) mission is carried out by a 6 U CubeSat class satellite...attitude determination and control subsystem (ADCS) (or a proximity operation and imaging satellite mission . The ARAP AI MA (Application for
Space Internet-Embedded Web Technologies Demonstration
NASA Technical Reports Server (NTRS)
Foltz, David A.
2001-01-01
The NASA Glenn Research Center recently demonstrated the ability to securely command and control space-based assets by using the Internet and standard Internet Protocols (IP). This is a significant accomplishment because future NASA missions will benefit by using Internet standards-based protocols. The benefits include reduced mission costs and increased mission efficiency. The Internet-Based Space Command and Control System Architecture demonstrated at the NASA Inspection 2000 event proved that this communications architecture is viable for future NASA missions.
NASA Technical Reports Server (NTRS)
Barnstable, Bob; Polte, Hans; Kepes, Paul; Walker, Kevin; Jacobs, Jeff; Williams, Stephen
1990-01-01
The Copernicus spacecraft, to be launched on May 4, 2009, is designed for scientific exploration of the planet Pluto. The main objectives of this exploration is to accurately determine the mass, density, and composition of the two bodies in the Pluto-Charon system. A further goal of the exploration is to obtain precise images of the system. The spacecraft will be designed for three axis stability control. It will use the latest technological advances to optimize the performance, reliability, and cost of the spacecraft. Due to the long duration of the mission, nominally 12.6 years, the spacecraft will be powered by a long lasting radioactive power source. Although this type of power may have some environmental drawbacks, currently it is the only available source that is suitable for this mission. The planned trajectory provides flybys of Jupiter and Saturn. These flybys provide an opportunity for scientific study of these planets in addition to Pluto. The information obtained on these flybys will supplement the data obtained by the Voyager and Galileo missions. The topics covered include: (1) scientific instrumentation; (2) mission management, planning, and costing; (3) power and propulsion system; (4) structural subsystem; (5) command, control, and communication; and (6) attitude and articulation control.
Mission Performance of the GLAS Thermal Control System - 7 Years In Orbit
NASA Technical Reports Server (NTRS)
Grob, Eric W.
2010-01-01
ICESat (Ice, Cloud and land Elevation Satellite) was launched in 2003 carrying a single science instrument - the Geoscience Laser Altimeter System (GLAS). Its primary mission was to measure polar ice thickness. The GLAS thermal control architecture utilized propylene Loop Heat Pipe (LHP) technology to provide selectable and stable temperature control for the lasers and other electronics over a widely varying mission thermal environment. To minimize expected degradation of the radiators, Optical Solar Reflectors (OSRs) were used for both LHP radiators to minimize degradation caused by UV exposure in the various spacecraft attitudes necessary throughout the mission. Developed as a Class C mission, with selective redundancy, the thermal architecture was single st ring, except for temperature sensors used for heater control during normal operations. Although originally planned for continuous laser operations over the nominal three year science mission, laser anomalies limited operations to discrete measurement campaigns repeated throughout the year. For trending of the science data, these periods were selected to occur at approximately the same time each year, which resulted in operations during similar attitudes and beta angles. Despite the laser life issues, the LHPs have operated nearly continuously over this time, being non-operational for only brief periods. Using mission telemetry, this paper looks at the performance of the thermal subsystem during these periods and provides an assessment of radiator degradation over the mission lifetime.
NASA Technical Reports Server (NTRS)
1975-01-01
User technology requirements are identified in relation to needed technology advancement for future space missions in the areas of navigation, guidance, and control. Emphasis is placed on: reduction of mission support cost by 50% through autonomous operation, a ten-fold increase in mission output through improved pointing and control, and a hundred-fold increase in human productivity in space through large-scale teleoperator applications.
STS-105 coverage of Mission Control Center employees in the WFCR & BFCR
2003-03-25
JSC2001-E-25113 (16 August 2001) --- Flight director Kelly Beck monitors data at her console in the shuttle flight control room (WFCR) in Houstons Mission Control Center (MCC). At the time this photo was taken, STS-105 mission specialists Daniel T. Barry and Patrick G. Forrester were performing the first of the two scheduled space walks to perform work on the International Space Station (ISS).
Mission Control Center (MCC) View - Apollo 13 Oxygen Cell Failure - MSC
1970-04-15
S70-35014 (15 April 1970) --- A group of flight controllers gathers around the console of Glenn S. Lunney (seated, nearest camera), Shift 4 flight director, in the Mission Operations Control Room (MOCR) of Mission Control Center (MCC), located in Building 30 at the Manned Spacecraft Center (MSC). Their attention is drawn to a weather map of the proposed landing site in the South Pacific Ocean. Among those looking on is Dr. Christopher C. Kraft, deputy director, MSC, standing in black suit, on right. When this photograph was taken, the Apollo 13 lunar landing mission had been canceled, and the problem-plagued Apollo 13 crew members were in trans-Earth trajectory attempting to bring their crippled spacecraft back home.
Project Cerberus: Flyby Mission to Pluto
NASA Technical Reports Server (NTRS)
Sivier, K.; Koepke, A.; Humphrey, Theodore W.; Elbel, Jeffrey P.; Hackett, Bruce E.; Kennedy, Ralph G.; Leo, Donald J.; Zimmerman, Shery A.
1990-01-01
The goal of the Cerberus Project was to design a feasible and cost-effective unmanned flyby mission to Pluto. The requirements in the request for proposal for an unmanned probe to Pluto are presented and were met. The design stresses proven technology that will avoid show stoppers which could halt mission progress. Cerberus also utilizes the latest advances in the spacecraft industry to meet the stringent demands of the mission. The topics covered include: (1) mission management, planning, and costing; (2) structures; (3) power and propulsion; (4) attitude, articulation, and control; (5) command, control, and communication; and (6) scientific instrumentation.
Autonomous and Autonomic Systems: A Paradigm for Future Space Exploration Missions
NASA Technical Reports Server (NTRS)
Truszkowski, Walter F.; Hinchey, Michael G.; Rash, James L.; Rouff, Christopher A.
2004-01-01
NASA increasingly will rely on autonomous systems concepts, not only in the mission control centers on the ground, but also on spacecraft and on rovers and other assets on extraterrestrial bodies. Automomy enables not only reduced operations costs, But also adaptable goal-driven functionality of mission systems. Space missions lacking autonomy will be unable to achieve the full range of advanced mission objectives, given that human control under dynamic environmental conditions will not be feasible due, in part, to the unavoidably high signal propagation latency and constrained data rates of mission communications links. While autonomy cost-effectively supports accomplishment of mission goals, autonomicity supports survivability of remote mission assets, especially when human tending is not feasible. Autonomic system properties (which ensure self-configuring, self-optimizing self-healing, and self-protecting behavior) conceptually may enable space missions of a higher order into any previously flown. Analysis of two NASA agent-based systems previously prototyped, and of a proposed future mission involving numerous cooperating spacecraft, illustrates how autonomous and autonomic system concepts may be brought to bear on future space missions.
Relevance of mission statements in Flemish not-for-profit healthcare organizations.
Vandijck, Dominique; Desmidt, Sebastian; Buelens, Marc
2007-03-01
The aims of the study were to determine: (1) which components managers of Flemish not-for-profit healthcare organizations chose to incorporate in their mission statement, (2) how satisfied managers of Flemish not-for-profit healthcare organizations are with the formulation of various mission statement components and (3) if the managers of Flemish not-for-profit healthcare organizations subscribe the presumed positive relationship between mission statements and organizational performance. To address these research questions, a questionnaire was send to a convenience sample of Flemish not-for-profit healthcare managers and to a control group. The results indicate that Flemish not-for-profit healthcare managers do discriminate and differentiate between mission statement components and that they are not equally satisfied with the articulation of every component. Furthermore, Flemish not-for-profit healthcare managers do support the assumption that a well-written mission statement can produce a host of benefits. The mission statement is considered as an energy source, a guide in decision-making and to influence the managers' behaviour.
STS-26 Mission Control Center (MCC) activity at JSC
1988-10-02
STS26-S-103 (2 October 1988) --- A wide-angle view of flight controllers in the Johnson Space Center's mission control center as they listen to a presentation by the five members of the STS-26 crew on the fourth day of Discovery's orbital mission. Flight Director James M. (Milt) Heflin (standing at center), astronaut G. David Low (standing at right), a spacecraft communicator, and other controllers view a television image of the crew on a screen in the front of the flight control room as each member relates some inner feelings while paying tribute to the Challenger crew.
NASA Technical Reports Server (NTRS)
Dittemore, Gary D.; Bertels, Christie
2010-01-01
This paper will summarize the thirty-year history of Space Shuttle operations from the perspective of training in NASA Johnson Space Center's Mission Control Center. It will focus on training and development of flight controllers and instructors, and how training practices have evolved over the years as flight experience was gained, new technologies developed, and programmatic needs changed. Operations of human spaceflight systems is extremely complex, therefore the training and certification of operations personnel is a critical piece of ensuring mission success. Mission Control Center (MCC-H), at the Lyndon B. Johnson Space Center, in Houston, Texas manages mission operations for the Space Shuttle Program, including the training and certification of the astronauts and flight control teams. This paper will give an overview of a flight control team s makeup and responsibilities during a flight, and details on how those teams are trained and certified. The training methodology for developing flight controllers has evolved significantly over the last thirty years, while the core goals and competencies have remained the same. In addition, the facilities and tools used in the control center have evolved. These changes have been driven by many factors including lessons learned, technology, shuttle accidents, shifts in risk posture, and generational differences. Flight controllers will share their experiences in training and operating the Space Shuttle throughout the Program s history. A primary method used for training Space Shuttle flight control teams is by running mission simulations of the orbit, ascent, and entry phases, to truly "train like you fly." The audience will learn what it is like to perform a simulation as a shuttle flight controller. Finally, we will reflect on the lessons learned in training for the shuttle program, and how those could be applied to future human spaceflight endeavors.
Spacecraft/Rover Hybrids for the Exploration of Small Solar System Bodies. [NASA NIAC Phase I Study
NASA Technical Reports Server (NTRS)
Pavone, Marco; Castillo-Rogez, Julie C.; Hoffman, Jeffrey A.; Nesnas, Issa A. D.
2012-01-01
This study investigated a novel mission architecture for the systematic and affordable in-situ exploration of small Solar System bodies. Specifically, a mother spacecraft would deploy over the surface of a small body one, or several, spacecraft/rover hybrids, which are small, multi-faceted enclosed robots with internal actuation and external spikes. They would be capable of 1) long excursions (by hopping), 2) short traverses to specific locations (through a sequence of controlled tumbles), and 3) high-altitude, attitude-controlled ballistic flight (akin to spacecraft flight). Their control would rely on synergistic operations with the mother spacecraft (where most of hybrids' perception and localization functionalities would be hosted), which would make the platforms minimalistic and, in turn, the entire mission architecture affordable.
JPL Contamination Control Engineering
NASA Technical Reports Server (NTRS)
Blakkolb, Brian
2013-01-01
JPL has extensive expertise fielding contamination sensitive missions-in house and with our NASA/industry/academic partners.t Development and implementation of performance-driven cleanliness requirements for a wide range missions and payloads - UV-Vis-IR: GALEX, Dawn, Juno, WFPC-II, AIRS, TES, et al - Propulsion, thermal control, robotic sample acquisition systems. Contamination control engineering across the mission life cycle: - System and payload requirements derivation, analysis, and contamination control implementation plans - Hardware Design, Risk trades, Requirements V-V - Assembly, Integration & Test planning and implementation - Launch site operations and launch vehicle/payload integration - Flight ops center dot Personnel on staff have expertise with space materials development and flight experiments. JPL has capabilities and expertise to successfully address contamination issues presented by space and habitable environments. JPL has extensive experience fielding and managing contamination sensitive missions. Excellent working relationship with the aerospace contamination control engineering community/.
MISSION CONTROL CENTER (MCC) - APOLLO-SOYUZ TEST PROJECT (ASTP)
1975-07-15
S75-28519 (15 July 1975) --- An overall view of the Mission Operations Control Room in the Mission Control Center, Building 30, Johnson Space Center, on the first day of the Apollo-Soyuz Test Project docking mission in Earth orbit. This photograph was taken shortly before the American ASTP launch from the Kennedy Space Center. The television monitor in the center background shows the ASTP Apollo-Saturn 1B space vehicle on Pad B at KSC?s Launch Complex 39. The American ASTP liftoff followed the Soviet ASTP launch of the Soyuz space vehicle from Baikonur, Kazakhstan by seven and one-half hours.
STS-120 Orbit 2 Flight Control Team Photo
2007-10-31
JSC2007-E-095908 (31 Oct. 2007) --- The members of the STS-120 Orbit 2 flight control team pose for a group portrait in the space shuttle flight control room of Houston's Mission Control Center (MCC). Flight director Mike Moses holds the STS-120 mission logo.
Passive cryogenic cooling of electrooptics with a heat pipe/radiator.
Nelson, B E; Goldstein, G A
1974-09-01
The current status of the heat pipe is discussed with particular emphasis on applications to cryogenic thermal control. The competitive nature of the passive heat pipe/radiator system is demonstrated through a comparative study with other candidate systems for a 1-yr mission. The mission involves cooling a spaceborne experiment to 100 K while it dissipates 10 W.
View of the mission control center during STS 51-I
1985-08-27
51I-S-189 (27 Aug 1985) --- View of the mission control center (MCC) during STS 51-I as flight controllers watch monitors at consoles to follow the extravehicular activity of two of the Discovery's astronauts.
NASA Technical Reports Server (NTRS)
Rosenstein, B. J.
1973-01-01
The Pioneer Venus orbiter and multiprobe missions require spacecraft maneuvers for successful accomplishment. This report presents the results of studies performed to define the propulsion subsystems required to perform those maneuvers. Primary goals were to define low mass subsystems capable of performing the required missions with a high degree of reliability for low cost. A review was performed of all applicable propellants and thruster types, as well as propellant management techniques. Based on this review, a liquid monopropellant hydrazine propulsion subsystem was selected for all multiprobe mission maneuvers, and for all orbiter mission maneuvers except orbit insertion. A pressure blowdown operating mode was selected using helium as the pressurizing gas. The forces associated with spacecraft rotations were used to control the liquid-gas interface and resulting propellant orientation within the tank.
ATV Engineering Support Team Safety Console Preparation for the Johannes Kepler Mission
NASA Astrophysics Data System (ADS)
Chase, R.; Oliefka, L.
2010-09-01
This paper describes the improvements to be implemented in the Safety console position of the Engineering Support Team(EST) at the Automated Transfer Vehicle(ATV) Control Centre(ATV-CC) for the upcoming ATV Johannes Kepler mission. The ATV missions to the International Space Station are monitored and controlled from the ATV-CC in Toulouse, France. The commanding of ATV is performed by the Vehicle Engineering Team(VET) in the main control room under authority of the Flight Director. The EST performs a monitoring function in a room beside the main control room. One of the EST positions is the Safety console, which is staffed by safety engineers from ESA and the industrial prime contractor, Astrium. The function of the Safety console is to check whether the hazard controls are available throughout the mission as required by the Hazard Reports approved by the ISS Safety Review Panel. Safety console preparation activities were limited prior to the first ATV mission due to schedule constraints, and the safety engineers involved have been working to improve the readiness for ATV 2. The following steps have been taken or are in process, and will be described in this paper: • review of the implementation of Operations Control Agreement Documents(OCADs) that record the way operational hazard controls are performed to meet the needs of the Hazard Reports(typically in Flight Rules and Crew Procedures), • crosscheck of operational control needs and implementations with respect to ATV's first flight observations and post flight evaluations, with a view to identifying additional, obsolete or revised operational hazard controls, • participation in the Flight Rule review and update process carried out between missions, • participation in the assessment of anomalies observed during the first ATV mission, to ensure that any impacts are addressed in the ATV 2 safety documentation, • preparation of a Safety console handbook to provide lists of important safety aspects to be monitored at various stages of the mission, including links to relevant Hazard Reports, Flight Rules, and supporting documentation, • participation to training courses conducted in the frame of the ATV Training Academy(ATAC), and provision of courses related to safety for the other members of the VET and EST, • participation to simulations conducted at ATV-CC, including off-nominal cases. The result of these activities will be an improved level of readiness for the ATV 2 mission.
STS-107 Flight Day 13 Highlights
NASA Technical Reports Server (NTRS)
2003-01-01
This video shows the activities of the STS-107 crew on flight day 13 of the Columbia orbiter's final mission. The crew members include: Rick Husband, Commander; William McCool, Pilot; Kalpana Chawla, David Brown, Michael Anderson, Laurel Clark, Mission Specialists; Ilan Ramon, Payload Specialist. The primary activities of flight day 13 are spaceborne experiments, including troubleshooting undertaken by Mission Specialist Chawla on the Water Mist Fire Suppression (MIST) experiment. Chawla performs troubleshooting tasks relayed to her by Mission Control. She shows Mission Control the location of air and water in a transparent hose that is part of the atomizer on the exterior of the combustion module. She also changes the atomizer head. All six Space Technology and Research Students (STARS) experiments are profiled in the video. These experiments are on ants, crystal growth in a chemical garden, fish embryos, carpenter bees, spiders, and silkworms. The video also includes a view of the southeast Texas coast near Houston, and a view of Portugal, Spain, Gibraltar, Morocco, and the Sahara Desert. The video ends with an explanation of roses at Mission Control which commemorate astronauts who have died on missions.
Trusted Autonomy for Space Flight Systems
NASA Technical Reports Server (NTRS)
Freed, Michael; Bonasso, Pete; Ingham, Mitch; Kortenkamp, David; Perix, John
2005-01-01
NASA has long supported research on intelligent control technologies that could allow space systems to operate autonomously or with reduced human supervision. Proposed uses range from automated control of entire space vehicles to mobile robots that assist or substitute for astronauts to vehicle systems such as life support that interact with other systems in complex ways and require constant vigilance. The potential for pervasive use of such technology to extend the kinds of missions that are possible in practice is well understood, as is its potential to radically improve the robustness, safety and productivity of diverse mission systems. Despite its acknowledged potential, intelligent control capabilities are rarely used in space flight systems. Perhaps the most famous example of intelligent control on a spacecraft is the Remote Agent system flown on the Deep Space One mission (1998 - 2001). However, even in this case, the role of the intelligent control element, originally intended to have full control of the spacecraft for the duration of the mission, was reduced to having partial control for a two-week non-critical period. Even this level of mission acceptance was exceptional. In most cases, mission managers consider intelligent control systems an unacceptable source of risk and elect not to fly them. Overall, the technology is not trusted. From the standpoint of those who need to decide whether to incorporate this technology, lack of trust is easy to understand. Intelligent high-level control means allowing software io make decisions that are too complex for conventional software. The decision-making behavior of these systems is often hard to understand and inspect, and thus hard to evaluate. Moreover, such software is typically designed and implemented either as a research product or custom-built for a particular mission. In the former case, software quality is unlikely to be adequate for flight qualification and the functionality provided by the system is likely driven largely by the need to publish innovative work. In the latter case, the mission represents the first use of the system, a risky proposition even for relatively simple software.
Combined release and radiation effects satellite (CRRES) - Spacecraft and mission
NASA Astrophysics Data System (ADS)
Johnson, M. H.; Kierein, John
1992-08-01
The CRRES mission is a joint NASA and U.S. Department of Defense undertaking to study the near-Earth space environment and the effects of the Earth's radiation environment on state-of-the-art microelectronic components. To perform these studies, CRRES was launched with a complex array of scientific payloads. These included 24 chemical canisters which were released during the first 13 months of the mission at various altitudes over ground observation sites and diagnostic facilities. The CRRES system was launched on July 25, 1990, from Cape Canaveral Air Force Station on an Atlas I expendable launch vehicle into a low-inclination geosynchronous transfer orbit. The specified mission duration was 1 year with a goal of 3 years. The satellite subsystems support the instrument payloads by providing them with electrical power, command and data handling, and thermal control. This review briefly describes the CRRES observatory and mission, and provides an introduction to the CRRES instrumentation technical notes contained within this issue.
Project WISH: The Emerald City, phase 2
NASA Technical Reports Server (NTRS)
1991-01-01
The purpose of the Permanently Manned Autonomous Space Oasis, designated Project WISH: The Emerald City, is to serve as permanent living quarters for space colonists. In addition, it will serve as a stopover for space missions and will be capable of restationing itself practically anywhere within the solar system to provide support for these missions. The station should be self-sufficient, with no specific dependence on any resources from Earth. The 1990 to 1991 design team continued work started by last year's class. Further studies were conducted in the areas of orbital mechanics, propulsion, attitude control, and human factors. Critical elements were identified in each of these areas, and guidelines were established for the design of the Emerald City. Using the knowledge gained from these studies, two particular missions of interest, a Saturn Envelope mission and an Earth to Mars mission, were examined. The size and mass estimates, along with the methodologies used in their determination, are considered to be the main accomplishments of phase 2.
Radiation Effects and Protection for Moon and Mars Missions
NASA Technical Reports Server (NTRS)
Parnell, Thomas A.; Watts, John W., Jr.; Armstrong, Tony W.
1998-01-01
Manned and robotic missions to the Earth's moon and Mars are exposed to a continuous flux of Galactic Cosmic Rays (GCR) and occasional, but intense, fluxes of Solar Energetic Particles (SEP). These natural radiations impose hazards to manned exploration, but also present some constraints to the design of robotic missions. The hazards to interplanetary flight crews and their uncertainties have been studied recently by a National Research Council Committee (Space Studies Board 1996). Considering the present uncertainty estimates, thick spacecraft shielding would be needed for manned missions, some of which could be accomplished with onboard equipment and expendables. For manned and robotic missions, the effects of radiation on electronics, sensors, and controls require special consideration in spacecraft design. This paper describes the GCR and SEP particle fluxes, secondary particles behind shielding, uncertainties in radiobiological effects and their impact on manned spacecraft design, as well as the major effects on spacecraft equipment. The principal calculational tools and considerations to mitigate the radiation effects are discussed, and work in progress to reduce uncertainties is included.
Personnel - Gemini-Titan (GT)-10 - Mission Control Center (MCC) - MSC
1966-07-18
S66-43377 (18 July 1966) --- Standing at the flight director's console, viewing the Gemini-10 flight display in the Mission Control Center, are (left to right) William C. Schneider, Mission Director; Glynn Lunney, Prime Flight Director; Christopher C. Kraft Jr., MSC Director of Flight Operations; and Charles W. Mathews, Manager, Gemini Program Office. Photo credit: NASA
MISSION CONTROL CENTER (MCC) - GEMINI-TITAN (GT)-6 - SCRUBBED - MSC
1965-10-25
S65-44401 (1965) --- A group of National Aeronautics and Space Administration (NASA) and Manned Spacecraft Center (MSC) officials and personnel watch a Cape Kennedy press conference being telecast in the Mission Control Center (MCC) after the Gemini-6 mission was scrubbed due to the apparent failure of the Agena Target Vehicle to attain orbit.
ISS 7A.1 Flight Control Team Photo in BFCR
2001-08-17
JSC2001-02225 (17 August 2001) --- The members of the STS-105/ISS 7A.1 Orbit 2 team pose for a group portrait in the International Space Station (ISS) flight control room (BFCR) in Houstons Mission Control Center (MCC). Orbit 2 flight director Rick LaBrode (front right) holds the STS-105 mission logo, and Astronaut Joan E. Higginbotham, ISS spacecraft communicator (CAPCOM), holds the ISS 7A.1 mission logo.
View of Mission Control on first day of ASTP docking in Earth orbit
NASA Technical Reports Server (NTRS)
1975-01-01
An overall view of the Mission Operations Control Room in the Mission Control Center, bldg 30, JSC, on the first day of the Apollo Soyuz Test Project (ASTP) docking in Earth orbit. This photograph was taken shortly before the American ASTP launch from the Kennedy Space Center. The television monitor in the center background shows the ASTP Apollo-Saturn 1B space vehicle on Pad B at KSC's Launch Complex 39.
STS-105 coverage of Mission Control Center employees in the WFCR & BFCR
2003-03-25
JSC2001-E-25121 (16 August 2001) --- Astronaut Joseph R. Tanner, STS-105 spacecraft communicator (CAPCOM), monitors the progress of the extravehicular activity at his console in the shuttle flight control room (WFCR) in Houstons Mission Control Center (MCC). At the time this photo was taken, mission specialists Daniel T. Barry and Patrick G. Forrester were performing the first of two scheduled space walks to perform work on the International Space Station (ISS).
2011-09-01
artificially creating enough baseline to enable triangulation. This motion comes at the expense of the primary mission, unless the entire purpose...control of a sUAS for surveillance and other mis-sions. Completely autonomous UAS control for surveillance missions is still an on-the-horizon...work, xapp, was correspondingly set to 2-m. Since the test platform for the algorithm was a helicopter vice a fixed-wing UAS , an aggressive flare segment
Formation Control of the MAXIM L2 Libration Orbit Mission
NASA Technical Reports Server (NTRS)
Folta, David; Hartman, Kate; Howell, Kathleen; Marchand, Belinda
2004-01-01
The Micro-Arcsecond X-ray Imaging Mission (MAXIM), a proposed concept for the Structure and Evolution of the Universe (SEU) Black Hole Imager mission, is designed to make a ten million-fold improvement in X-ray image clarity of celestial objects by providing better than 0.1 micro-arcsecond imaging. Currently the mission architecture comprises 25 spacecraft, 24 as optics modules and one as the detector, which will form sparse sub-apertures of a grazing incidence X-ray interferometer covering the 0.3-10 keV bandpass. This formation must allow for long duration continuous science observations and also for reconfiguration that permits re-pointing of the formation. To achieve these mission goals, the formation is required to cooperatively point at desired targets. Once pointed, the individual elements of the MAXIM formation must remain stable, maintaining their relative positions and attitudes below a critical threshold. These pointing and formation stability requirements impact the control and design of the formation. In this paper, we provide analysis of control efforts that are dependent upon the stability and the configuration and dimensions of the MAXIM formation. We emphasize the utilization of natural motions in the Lagrangian regions to minimize the control efforts and we address continuous control via input feedback linearization (IFL). Results provide control cost, configuration options, and capabilities as guidelines for the development of this complex mission.
Conceptual design of the X-IFU Instrument Control Unit on board the ESA Athena mission
NASA Astrophysics Data System (ADS)
Corcione, L.; Ligori, S.; Capobianco, V.; Bonino, D.; Valenziano, L.; Guizzo, G. P.
2016-07-01
Athena is one of L-class missions selected in the ESA Cosmic Vision 2015-2025 program for the science theme of the Hot and Energetic Universe. The Athena model payload includes the X-ray Integral Field Unit (X-IFU), an advanced actively shielded X-ray microcalorimeter spectrometer for high spectral resolution imaging, utilizing cooled Transition Edge Sensors. This paper describes the preliminary architecture of Instrument Control Unit (ICU), which is aimed at operating all XIFU's subsystems, as well as at implementing the main functional interfaces of the instrument with the S/C control unit. The ICU functions include the TC/TM management with S/C, science data formatting and transmission to S/C Mass Memory, housekeeping data handling, time distribution for synchronous operations and the management of the X-IFU components (i.e. CryoCoolers, Filter Wheel, Detector Readout Electronics Event Processor, Power Distribution Unit). ICU functions baseline implementation for the phase-A study foresees the usage of standard and Space-qualified components from the heritage of past and current space missions (e.g. Gaia, Euclid), which currently encompasses Leon2/Leon3 based CPU board and standard Space-qualified interfaces for the exchange commands and data between ICU and X-IFU subsystems. Alternative architecture, arranged around a powerful PowerPC-based CPU, is also briefly presented, with the aim of endowing the system with enhanced hardware resources and processing power capability, for the handling of control and science data processing tasks not defined yet at this stage of the mission study.
STS-97 flight control team in WFCR - JSC - MCC
2000-11-24
JSC2000-07303 (24 November 2000) --- The 30-odd flight controllers supporting the STS-97 entry shift pose for a pre-flight group portrait in the shuttle flight control room in Houston's Mission Control Center (JSC). Entry flight director LeRoy Cain (front center) holds a mission logo.
Wide angle view of the Flight control room of Mission control center
1984-10-06
Wide angle view of the flight control room (FCR) of the Mission Control Center (MCC). Some of the STS 41-G crew can be seen on a large screen at the front of the MCC along with a map tracking the progress of the orbiter.
Complex collaborative problem-solving processes in mission control.
Fiore, Stephen M; Wiltshire, Travis J; Oglesby, James M; O'Keefe, William S; Salas, Eduardo
2014-04-01
NASA's Mission Control Center (MCC) is responsible for control of the International Space Station (ISS), which includes responding to problems that obstruct the functioning of the ISS and that may pose a threat to the health and well-being of the flight crew. These problems are often complex, requiring individuals, teams, and multiteam systems, to work collaboratively. Research is warranted to examine individual and collaborative problem-solving processes in this context. Specifically, focus is placed on how Mission Control personnel-each with their own skills and responsibilities-exchange information to gain a shared understanding of the problem. The Macrocognition in Teams Model describes the processes that individuals and teams undertake in order to solve problems and may be applicable to Mission Control teams. Semistructured interviews centering on a recent complex problem were conducted with seven MCC professionals. In order to assess collaborative problem-solving processes in MCC with those predicted by the Macrocognition in Teams Model, a coding scheme was developed to analyze the interview transcriptions. Findings are supported with excerpts from participant transcriptions and suggest that team knowledge-building processes accounted for approximately 50% of all coded data and are essential for successful collaborative problem solving in mission control. Support for the internalized and externalized team knowledge was also found (19% and 20%, respectively). The Macrocognition in Teams Model was shown to be a useful depiction of collaborative problem solving in mission control and further research with this as a guiding framework is warranted.
Immune changes during short-duration missions
NASA Technical Reports Server (NTRS)
Taylor, G. R.
1993-01-01
Spaceflight materially influences the immune mechanism of humans and animals. Effects resulting from missions of less than 1 month are examined. Effects from longer missions are discussed in the companion paper by Konstantinova et al. Most immunology studies have involved analyses of subjects and samples from subjects obtained after flight, with the data being compared with similar data obtained before flight. These studies have demonstrated that short-duration missions can result in a postflight depression in blast cell transformation, major changes in cytokine function, and alterations in the relative numbers of immune cell populations. In addition to these post- vs. preflight studies, some data have been produced in flight. However, these in vitro analyses have been less than satisfactory because of differences between in-flight and ground-control conditions. Recently, both the U.S. and Russian space programs have started collecting in-flight, in vivo, cell-mediated immunity data. These studies have confirmed that the human cell-mediated immune system is blunted during spaceflight.
Immune changes during short-duration missions.
Taylor, G R
1993-09-01
Spaceflight materially influences the immune mechanism of humans and animals. Effects resulting from missions of less than 1 month are examined. Effects from longer missions are discussed in the companion paper by Konstantinova et al. Most immunology studies have involved analyses of subjects and samples from subjects obtained after flight, with the data being compared with similar data obtained before flight. These studies have demonstrated that short-duration missions can result in a postflight depression in blast cell transformation, major changes in cytokine function, and alterations in the relative numbers of immune cell populations. In addition to these post- vs. preflight studies, some data have been produced in flight. However, these in vitro analyses have been less than satisfactory because of differences between in-flight and ground-control conditions. Recently, both the U.S. and Russian space programs have started collecting in-flight, in vivo, cell-mediated immunity data. These studies have confirmed that the human cell-mediated immune system is blunted during spaceflight.
Disruption of postural readaptation by inertial stimuli following space flight
NASA Technical Reports Server (NTRS)
Black, F. O.; Paloski, W. H.; Reschke, M. F.; Igarashi, M.; Guedry, F.; Anderson, D. J.
1999-01-01
Postural instability (relative to pre-flight) has been observed in all shuttle astronauts studied upon return from orbital missions. Postural stability was more closely examined in four shuttle astronaut subjects before and after an 8 day orbital mission. Results of the pre- and post-flight postural stability studies were compared with a larger (n = 34) study of astronauts returning from shuttle missions of similar duration. Results from both studies indicated that inadequate vestibular feedback was the most significant sensory deficit contributing to the postural instability observed post flight. For two of the four IML-1 astronauts, post-flight postural instability and rate of recovery toward their earth-normal performance matched the performance of the larger sample. However, post-flight postural control in one returning astronaut was substantially below mean performance. This individual, who was within normal limits with respect to postural control before the mission, indicated that recovery to pre-flight postural stability was also interrupted by a post-flight pitch plane rotation test. A similar, though less extreme departure from the mean recovery trajectory was present in another astronaut following the same post-flight rotation test. The pitch plane rotation stimuli included otolith stimuli in the form of both transient tangential and constant centripetal linear acceleration components. We inferred from these findings that adaptation on orbit and re-adaptation on earth involved a change in sensorimotor integration of vestibular signals most likely from the otolith organs.
Propellantless Attitude Control of Solar Sail Technology Utilizing Reflective Control Devices
NASA Technical Reports Server (NTRS)
Munday, Jeremy
2016-01-01
Solar sails offer an opportunity for a CubeSatscale, propellant-free spacecraft technology that enables long-term and long-distance missions not possible with traditional methods. Solar sails operate using the transfer of linear momentum from photons of sunlight reflected from the surface of the sail. To propel the spacecraft, no mechanically moving parts, thrusters, or propellant are needed. However, attitude control, or orientation, is still performed using traditional methods involving reaction wheels and propellant ejection, which severely limit mission lifetime. For example, the current state of the art solutions employed by upcoming missions couple solar sails with a state of the art propellant ejection gas system. Here, the use of the gas thruster has limited the lifetime of the mission. To solve the limited mission lifetime problem, the Propellantless Attitude Control of Solar Sail Technology Utilizing Reflective Control Devices project team is working on propellantless attitude control using thin layers of material, an optical film, electrically switchable from transparent to reflective. The technology is based on a polymer-dispersed liquid crystal (PDLC), which allows this switch upon application of a voltage. This technology removes the need for propellant, which reduces weight and cost while improving performance and lifetime.
MISSION CONTROL CENTER (MCC) VIEW - CONCLUSION APOLLO 11 CELEBRATION - MSC
1969-07-24
S69-40024 (24 July 1969) --- NASA and Manned Spacecraft Center (MSC) officials join in with the flight controllers, in the Mission Operations Control Room (MOCR) in the Mission Control Center (MCC), in celebrating the successful conclusion of the Apollo 11 lunar landing mission. Identifiable in the picture, starting in foreground, are Dr. Robert R. Gilruth, MSC Director; George M. Low, Manager, Apollo Spacecraft Program, MSC; Dr. Christopher C. Kraft Jr., MSC Director of Flight Operation; U.S. Air Force Lt. Gen. Samuel C. Phillips (with glasses, looking downward), Apollo Program Director, Office of Manned Space Flight, NASA Headquarters; and Dr. George E. Mueller (with glasses, looking toward left), Associate Administrator, Office of Manned Space Flight, NASA Headquarters. Former astronaut John H. Glenn Jr. is standing behind Mr. Low.
Mission Control Center (MCC): Apollo XV - MSC
1971-08-02
S71-41759 (2 Aug. 1971) --- A partial view of activity in the Mission Operations Control Room in the Mission Control Center during the liftoff of the Apollo 15 Lunar Module "Falcon" ascent stage from the lunar surface. An RCA color television camera mounted on the Lunar Roving Vehicle made it possible for people on Earth to watch the LM's spectacular launch from the moon. The LM liftoff was at 171:37 ground elapsed time. The LRV was parked about 300 feet east of the LM. The TV camera was remotely controlled from a console in the MOCR. Seated in the right foreground is astronaut Edgar D. Mitchell, a spacecraft communicator. Mitchell was lunar module pilot of the Apollo 14 lunar landing mission. Note liftoff on the television monitor in the center background.
View of Mission Control Center during the Apollo 13 oxygen cell failure
1970-04-14
S70-34902 (14 April 1970) --- Several persons important to the Apollo 13 mission, at consoles in the Mission Operations Control Room (MOCR) of the Mission Control Center (MCC). Seated at consoles, from left to right, are astronauts Donald K. Slayton, director of flight crew operations; astronaut Jack R. Lousma, Shift 3 spacecraft communicator; and astronaut John W. Young, commander of the Apollo 13 backup crew. Standing, left to right, are astronaut Tom K. Mattingly II, who was replaced as Apollo 13 command module pilot after it was learned he may come down with measles, and astronaut Vance D. Brand, Shift 2 spacecraft communicator. Several hours earlier, in the late evening hours of April 13, crew members of the Apollo 13 mission reported to MCC that trouble had developed with an oxygen cell on their spacecraft.
NASA Astrophysics Data System (ADS)
Matsuo, Tomoaki; Ohkawara, Kazunori; Seino, Satoshi; Shimojo, Nobutake; Yamada, Shin; Ohshima, Hiroshi; Tanaka, Kiyoji; Mukai, Chiaki
2013-02-01
Maximal oxygen consumption decreases during spaceflight, and astronauts also experience controversial weight loss. Future space missions require a more efficient exercise program to maintain work efficiency and to control increased energy expenditure (EE). We have been developing two types of original exercise training protocols which are better suited to astronauts’ daily routine exercise during long-term spaceflight: sprint interval training (SIT) and high-intensity interval aerobic training (HIAT). In this study, we compared the total EE, including excess post-exercise energy expenditure (EPEE), induced by our interval cycling protocols with the total EE of a traditional, continuous aerobic training (CAT). In the results, while the EPEEs after the SIT and HIAT were greater than after the CAT, the total EE for an entire exercise/rest session with the CAT was the greatest of our three exercise protocols. The SIT and HIAT would be potential protocols to control energy expenditure for long space missions.
1969-06-24
The Apollo 11 mission, the first manned lunar mission, launched from the Kennedy Space Center, Florida via the Marshall Space Flight Center (MSFC) developed Saturn V launch vehicle on July 16, 1969 and safely returned to Earth on July 24, 1969. Aboard he space craft were astronauts Neil A. Armstrong, commander; Michael Collins, Command Module (CM) pilot; and Edwin E. Aldrin Jr., Lunar Module (LM) pilot. The CM, piloted by Michael Collins remained in a parking orbit around the Moon while the LM, named “Eagle’’, carrying astronauts Neil Armstrong and Edwin Aldrin, landed on the Moon. During 2½ hours of surface exploration, the crew collected 47 pounds of lunar surface material for analysis back on Earth. Splashdown occurred in the Pacific Ocean on July 24, 1969. This overall view of the Mission Operations Control Room in the Mission Control Center at the NASA Manned Spacecraft Center (MSC) in Houston Texas shows the jubilation of the celebration of mission success. Mission controllers wave their American flags just after Apollo 11 had been recovered from the Pacific Ocean.
NASA Technical Reports Server (NTRS)
Urnes, James, Sr.; Nguyen, Nhan; Ippolito, Corey; Totah, Joseph; Trinh, Khanh; Ting, Eric
2013-01-01
Boeing and NASA are conducting a joint study program to design a wing flap system that will provide mission-adaptive lift and drag performance for future transport aircraft having light-weight, flexible wings. This Variable Camber Continuous Trailing Edge Flap (VCCTEF) system offers a lighter-weight lift control system having two performance objectives: (1) an efficient high lift capability for take-off and landing, and (2) reduction in cruise drag through control of the twist shape of the flexible wing. This control system during cruise will command varying flap settings along the span of the wing in order to establish an optimum wing twist for the current gross weight and cruise flight condition, and continue to change the wing twist as the aircraft changes gross weight and cruise conditions for each mission segment. Design weight of the flap control system is being minimized through use of light-weight shape memory alloy (SMA) actuation augmented with electric actuators. The VCCTEF program is developing better lift and drag performance of flexible wing transports with the further benefits of lighter-weight actuation and less drag using the variable camber shape of the flap.
EURECA mission control experience and messages for the future
NASA Technical Reports Server (NTRS)
Huebner, H.; Ferri, P.; Wimmer, W.
1994-01-01
EURECA is a retrievable space platform which can perform multi-disciplinary scientific and technological experiments in a Low Earth Orbit for a typical mission duration of six to twelve months. It is deployed and retrieved by the NASA Space Shuttle and is designed to support up to five flights. The first mission started at the end of July 1992 and was successfully completed with the retrieval in June 1993. The operations concept and the ground segment for the first EURECA mission are briefly introduced. The experiences in the preparation and the conduction of the mission from the flight control team point of view are described.
Temperature control of the Mariner class spacecraft - A seven mission summary.
NASA Technical Reports Server (NTRS)
Dumas, L. N.
1973-01-01
Mariner spacecraft have completed five missions of scientific investigation of the planets. Two additional missions are planned. A description of the thermal design of these seven spacecraft is given herein. The factors which have influenced the thermal design include the mission requirements and constraints, the flight environment, certain programmatic considerations and the experience gained as each mission is completed. These factors are reviewed and the impact of each on thermal design and developmental techniques is assessed. It is concluded that the flight success of these spacecraft indicates that adequate temperature control has been obtained, but that improvements in design data, hardware performance and analytical techniques are needed.
Mission Management Computer Software for RLV-TD
NASA Astrophysics Data System (ADS)
Manju, C. R.; Joy, Josna Susan; Vidya, L.; Sheenarani, I.; Sruthy, C. N.; Viswanathan, P. C.; Dinesh, Sudin; Jayalekshmy, L.; Karuturi, Kesavabrahmaji; Sheema, E.; Syamala, S.; Unnikrishnan, S. Manju; Ali, S. Akbar; Paramasivam, R.; Sheela, D. S.; Shukkoor, A. Abdul; Lalithambika, V. R.; Mookiah, T.
2017-12-01
The Mission Management Computer (MMC) software is responsible for the autonomous navigation, sequencing, guidance and control of the Re-usable Launch Vehicle (RLV), through lift-off, ascent, coasting, re-entry, controlled descent and splashdown. A hard real-time system has been designed for handling the mission requirements in an integrated manner and for meeting the stringent timing constraints. Redundancy management and fault-tolerance techniques are also built into the system, in order to achieve a successful mission even in presence of component failures. This paper describes the functions and features of the components of the MMC software which has accomplished the successful RLV-Technology Demonstrator mission.
Attracting Students to Space Science Fields: Mission to Mars
NASA Astrophysics Data System (ADS)
Congdon, Donald R.; Lovegrove, William P.; Samec, Ronald G.
Attracting high school students to space science is one of the main goals of Bob Jones University's annual Mission to Mars (MTM). MTM develops interest in space exploration through a highly realistic simulated trip to Mars. Students study and learn to appreciate the challenges of space travel including propulsion life support medicine planetary astronomy psychology robotics and communication. Broken into teams (Management Spacecraft Design Communications Life Support Navigation Robotics and Science) they address the problems specific to each aspect of the mission. Teams also learn to interact and recognize that a successful mission requires cooperation. Coordinated by the Management Team the students build a spacecraft and associated apparatus connect computers and communications equipment train astronauts on the mission simulator and program a Pathfinder-type robot. On the big day the astronauts enter the spacecraft as Mission Control gets ready to support them through the expected and unexpected of their mission. Aided by teamwork the astronauts must land on Mars perform their scientific mission on a simulated surface of mars and return home. We see the success of MTM not only in successful missions but in the students who come back year after year for another MTM.
NASA Technical Reports Server (NTRS)
Taube, L. J.
1972-01-01
This volume contains cost, schedule, and technical information on the following B-70 aircraft subsystems: air induction system, flight control, personnel accommodation and escape, alighting and arresting, mission and traffic control, flight indication, test instrumentation, and installation, checkout, and pre-flight.
Evaluation of laminar flow control system concepts for subsonic commercial transport aircraft
NASA Technical Reports Server (NTRS)
1980-01-01
A study was conducted to evaluate alternatives in the design of laminar flow control (LFC) subsonic commercial transport aircraft for operation in the 1980's period. Analyses were conducted to select mission parameters and define optimum aircraft configurational parameters for the selected mission, defined by a passenger payload of 400 and a design range of 12,038 km (6500 n mi). The baseline aircraft developed for this mission was used as a vehicle for the evaluation and development of alternative LFC system concepts. Alternatives were evaluated in the areas of aerodynamics structures, materials, LFC systems, leading-edge region cleaning and integration of auxiliary systems. Based on these evaluations, concept in each area were selected for further development and testing and ultimate incorporation in the final study aircraft. Relative to a similarly-optimized advanced technology turbulent transport, the final LFC configuration is approximately equal in direct operating cost but provides decreases of 8.2% in gross weight and 21.7% in fuel consumption.
1985-06-01
Spacelab-3 launched aboard STS-51B, with the major science objective being to perform engineering tests on two new facilities: the rodent animal holding facility and the primate animal holding facility. In addition, scientists observed the animals to obtain first hand knowledge of the effects of launch and reentry stresses and behavior. The need for suitable animal housing to support research in space led to the development of the Research Animal Holding Facility at the Ames Research Center. Scientists often study animals to find clues to human physiology and behavior. Rats, insects, and microorganisms had already been studied aboard the Shuttle on previous missions. On Spacelab-3, scientists had a chance to observe a large number of animals living in space in a specially designed and independently controlled housing facility. Marshall Space Flight Center (MSFC) had management responsibility for the Spacelab-3 mission. This photograph depicts activities during the mission at the Huntsville Operations Support Center (HOSC) Spacelab Payload Operations Control Center (SL POCC) at MSFC.
1985-05-01
Spacelab-3 launched aboard STS-51B, with the major science objective being to perform engineering tests on two new facilities: the rodent animal holding facility and the primate animal holding facility. In addition, scientists observed the animals to obtain first hand knowledge of the effects of launch and reentry stresses and behavior. The need for suitable animal housing to support research in space led to the development of the Research Animal Holding Facility at the Ames Research Center. Scientists often study animals to find clues to human physiology and behavior. Rats, insects, and microorganisms had already been studied aboard the Shuttle on previous missions. On Spacelab-3, scientists had a chance to observe a large number of animals living in space in a specially designed and independently controlled housing facility. Marshall Space Flight Center (MSFC) had management responsibility for the Spacelab 3 mission. This photograph depicts activities during the mission at the Huntsville Operations Support Center (HOSC) Spacelab Payload Operations Control Center (SL POCC) at MSFC.
1985-05-01
Spacelab-3 launched aboard STS-51B, with the major science objective being to perform engineering tests on two new facilities: the rodent animal holding facility and the primate animal holding facility. In addition, scientists observed the animals to obtain first hand knowledge of the effects of launch and reentry stresses and behavior. The need for suitable animal housing to support research in space led to the development of the Research Animal Holding Facility at the Ames Research Center. Scientists often study animals to find clues to human physiology and behavior. Rats, insects, and microorganisms had already been studied aboard the Shuttle on previous missions. On Spacelab-3, scientists had a chance to observe a large number of animals living in space in a specially designed and independently controlled housing facility. Marshall Space Flight Center (MSFC) had management responsibility for the Spacelab-3 mission. This photograph depicts activities during the mission at the Huntsville Operations Support Center (HOSC) Spacelab Payload Operations Control Center (SL POCC) at MSFC.
1985-06-01
Spacelab-3 launched aboard STS-51B, with the major science objective being to perform engineering tests on two new facilities: the rodent animal holding facility and the primate animal holding facility. In addition, scientists observed the animals to obtain first hand knowledge of the effects of launch and reentry stresses and behavior. The need for suitable animal housing to support research in space led to the development of the Research Animal Holding Facility at the Ames Research Center. Scientists often study animals to find clues to human physiology and behavior. Rats, insects, and microorganisms had already been studied aboard the Shuttle on previous missions. On Spacelab-3, scientists had a chance to observe a large number of animals living in space in a specially designed and independently controlled housing facility. Marshall Space Flight Center (MSFC) had management responsibility for the Spacelab-3 mission. This photograph depicts activities during the mission at the Huntsville Operations Support Center (HOSC) Spacelab Payload Operations Control Center (SL POCC) at MSFC.
United States planetary rover status: 1989
NASA Technical Reports Server (NTRS)
Pivirotto, Donna L. S.; Dias, William C.
1990-01-01
A spectrum of concepts for planetary rovers and rover missions, is covered. Rovers studied range from tiny micro rovers to large and highly automated vehicles capable of traveling hundreds of kilometers and performing complex tasks. Rover concepts are addressed both for the Moon and Mars, including a Lunar/Mars common rover capable of supporting either program with relatively small modifications. Mission requirements considered include both Science and Human Exploration. Studies include a range of autonomy in rovers, from interactive teleoperated systems to those requiring and onboard System Executive making very high level decisions. Both high and low technology rover options are addressed. Subsystems are described for a representative selection of these rovers, including: Mobility, Sample Acquisition, Science, Vehicle Control, Thermal Control, Local Navigation, Computation and Communications. System descriptions of rover concepts include diagrams, technology levels, system characteristics, and performance measurement in terms of distance covered, samples collected, and area surveyed for specific representative missions. Rover development schedules and costs are addressed for Lunar and Mars exploration initiatives.
STS-26 Mission Control Center (MCC) activity at JSC
NASA Technical Reports Server (NTRS)
1988-01-01
A wide angle view shows flight controllers in JSC's Mission Control Center (MCC) Bldg 30 flight control room (FCR) as they listen to a presentation by STS-26 crewmembers on the fourth day of Discovery's, Orbiter Vehicle (OV) 103's, orbital mission. Flight Director James M. (Milt) Heflin (standing at center) and astronaut and spacecraft communicator (CAPCOM) G. David Low (standing at right) briefly look away from a television image of the crew on a screen in the front of the FCR. Heflin, Low, and other flight controllers listen as each member relates some inner feelings while paying tribute to the 51L Challenger crew.
Planning and Estimation of Operations Support Requirements
NASA Technical Reports Server (NTRS)
Newhouse, Marilyn E.; Barley, Bryan; Bacskay, Allen; Clardy, Dennon
2010-01-01
Life Cycle Cost (LCC) estimates during the proposal and early design phases, as well as project replans during the development phase, are heavily focused on hardware development schedules and costs. Operations (phase E) costs are typically small compared to the spacecraft development and test costs. This, combined with the long lead time for realizing operations costs, can lead to de-emphasizing estimation of operations support requirements during proposal, early design, and replan cost exercises. The Discovery and New Frontiers (D&NF) programs comprise small, cost-capped missions supporting scientific exploration of the solar system. Any LCC growth can directly impact the programs' ability to fund new missions, and even moderate yearly underestimates of the operations costs can present significant LCC impacts for deep space missions with long operational durations. The National Aeronautics and Space Administration (NASA) D&NF Program Office at Marshall Space Flight Center (MSFC) recently studied cost overruns and schedule delays for 5 missions. The goal was to identify the underlying causes for the overruns and delays, and to develop practical mitigations to assist the D&NF projects in identifying potential risks and controlling the associated impacts to proposed mission costs and schedules. The study found that 4 out of the 5 missions studied had significant overruns at or after launch due to underestimation of the complexity and supporting requirements for operations activities; the fifth mission had not launched at the time of the mission. The drivers behind these overruns include overly optimistic assumptions regarding the savings resulting from the use of heritage technology, late development of operations requirements, inadequate planning for sustaining engineering and the special requirements of long duration missions (e.g., knowledge retention and hardware/software refresh), and delayed completion of ground system development work. This paper updates the D&NF LCC study, looking at the operations (phase E) cost drivers in more detail and extending the study to include 2 additional missions and identifies areas for increased emphasis by project management in order to improve the fidelity of operations estimates.
AES Water Architecture Study Interim Results
NASA Technical Reports Server (NTRS)
Sarguisingh, Miriam J.
2012-01-01
The mission of the Advanced Exploration System (AES) Water Recovery Project (WRP) is to develop advanced water recovery systems in order to enable NASA human exploration missions beyond low earth orbit (LEO). The primary objective of the AES WRP is to develop water recovery technologies critical to near term missions beyond LEO. The secondary objective is to continue to advance mid-readiness level technologies to support future NASA missions. An effort is being undertaken to establish the architecture for the AES Water Recovery System (WRS) that meets both near and long term objectives. The resultant architecture will be used to guide future technical planning, establish a baseline development roadmap for technology infusion, and establish baseline assumptions for integrated ground and on-orbit environmental control and life support systems (ECLSS) definition. This study is being performed in three phases. Phase I of this study established the scope of the study through definition of the mission requirements and constraints, as well as indentifying all possible WRS configurations that meet the mission requirements. Phase II of this study focused on the near term space exploration objectives by establishing an ISS-derived reference schematic for long-duration (>180 day) in-space habitation. Phase III will focus on the long term space exploration objectives, trading the viable WRS configurations identified in Phase I to identify the ideal exploration WRS. The results of Phases I and II are discussed in this paper.
NASA Technical Reports Server (NTRS)
Chobotov, V. A.
1974-01-01
Control elements such as sensors, momentum exchange devices, and thrusters are described which can be used to define space replaceable units (SRU), in accordance with attitude control, guidance, and navigation performance requirements selected for NASA space serviceable mission spacecraft. A number of SRU's are developed, and their reliability block diagrams are presented. An SRU assignment is given in order to define a set of feasible space serviceable spacecraft for the missions of interest.
STS-105 coverage of Mission Control Center employees in the WFCR & BFCR
2003-03-25
JSC2001-E-25111 (16 August 2001) --- Flight directors John Shannon (left foreground), Kelly Beck, and Steve Stich monitor the data displayed at their consoles in the shuttle flight control room (WFCR) in Houstons Mission Control Center (MCC). At the time this photo was taken, STS-105 mission specialists Daniel T. Barry and Patrick G. Forrester were performing the first of the two scheduled space walks to perform work on the International Space Station (ISS).
The Hubble Space Telescope Servicing Mission 3A Contamination Control Program
NASA Technical Reports Server (NTRS)
Hansen, Patricia A.
2000-01-01
After nearly 10 years on-orbit, the Hubble Space Telescope (HST) external thermal control materials and paint have degraded due to exposure to the low Earth orbit environment. This presented a potentially large on-orbit contamination source (particles and/or debris). Contamination mitigation techniques were developed to augment existing on-orbit servicing contamination controls. They encompassed mission management, crew training, and crew aids and tools. These techniques were successfully employed during the HST Servicing Mission 3A, December 1999.
Fuzzy attitude control for a nanosatellite in leo orbit
NASA Astrophysics Data System (ADS)
Calvo, Daniel; Laverón-Simavilla, Ana; Lapuerta, Victoria; Aviles, Taisir
Fuzzy logic controllers are flexible and simple, suitable for small satellites Attitude Determination and Control Subsystems (ADCS). In this work, a tailored fuzzy controller is designed for a nanosatellite and is compared with a traditional Proportional Integrative Derivative (PID) controller. Both control methodologies are compared within the same specific mission. The orbit height varies along the mission from injection at around 380 km down to a 200 km height orbit, and the mission requires pointing accuracy over the whole time. Due to both the requirements imposed by such a low orbit, and the limitations in the power available for the attitude control, a robust and efficient ADCS is required. For these reasons a fuzzy logic controller is implemented as the brain of the ADCS and its performance and efficiency are compared to a traditional PID. The fuzzy controller is designed in three separated controllers, each one acting on one of the Euler angles of the satellite in an orbital frame. The fuzzy memberships are constructed taking into account the mission requirements, the physical properties of the satellite and the expected performances. Both methodologies, fuzzy and PID, are fine-tuned using an automated procedure to grant maximum efficiency with fixed performances. Finally both methods are probed in different environments to test their characteristics. The simulations show that the fuzzy controller is much more efficient (up to 65% less power required) in single maneuvers, achieving similar, or even better, precision than the PID. The accuracy and efficiency improvement of the fuzzy controller increase with orbit height because the environmental disturbances decrease, approaching the ideal scenario. A brief mission description is depicted as well as the design process of both ADCS controllers. Finally the validation process and the results obtained during the simulations are described. Those results show that the fuzzy logic methodology is valid for small satellites' missions benefiting from a well-developed artificial intelligence theory.
Reducing the Burden of Cancer in East Africa
The mission of CGH is to advance global cancer research, build expertise, and leverage resources across nations to reduce cancer deaths worldwide. To carry out that mission, we facilitate the sharing of knowledge and expertise. CGH's latest effort, the East Africa Cancer Control Leadership Forum, carried out this mission by helping African partners develop their own individual cancer control programs.
NASA Technical Reports Server (NTRS)
1972-01-01
An analysis and conceptual design of a baseline mission and spacecraft are presented. Aspects of the HEAO-C discussed include: baseline experiments with X-ray observations of space, analysis of mission requirements, observatory design, structural analysis, thermal control, attitude sensing and control system, communication and data handling, and space shuttle launch and retrieval of HEAO-C.
Casualty Risk Assessment Controlled Re-Entry of EPS - Ariane 5ES - ATV Mission
NASA Astrophysics Data System (ADS)
Arnal, M.-H.; Laine, N.; Aussilhou, C.
2012-01-01
To fulfil its mission of compliance check to the French Space Operations Act, CNES has developed ELECTRA© tool in order to estimate casualty risk induced by a space activity (like rocket launch, controlled or un-controlled re-entry on Earth of a space object). This article describes the application of such a tool for the EPS controlled re-entry during the second Ariane 5E/S flight (Johannes Kepler mission has been launched in February 2011). EPS is the Ariane 5E/S upper composite which is de-orbited from a 260 km circular orbit after its main mission (release of the Automated Transfer Vehicle - ATV). After a brief description of the launcher, the ATV-mission and a description of all the failure cases taken into account in the mission design (which leads to "back-up scenarios" into the flight software program), the article will describe the steps which lead to the casualty risk assessment (in case of failure) with ELECTRA©. In particular, the presence on board of two propulsive means of de-orbiting (main engine of EPS, and 4 ACS longitudinal nozzles in case of main engine failure or exhaustion) leads to a low remaining casualty risk.
Mission Control Center (MCC) View - Apollo 13 Oxygen Cell Failure - MSC
1970-04-15
S70-35012 (15 April 1970) --- Two phases of busy activity during critical moments of the Apollo 13 mission are reflected in this view in the Mission Control Center, Building 30, Manned Spacecraft Center. In the foreground, Henry Simmons (left) of Newsweek magazine and John E. Riley, public information specialist, Public Affairs Office, MSC, man their positions in the Press Room. At extreme left of photo, Gerald D. Griffin, Shift 2 flight director, talks on telephone in Mission Operations Control Room. When this photograph was taken, the Apollo 13 lunar landing had been canceled, and the problem-plagued Apollo 13 crewmen were in trans-Earth trajectory attempting to bring their crippled spacecraft back home.
NASA Technical Reports Server (NTRS)
Clark, K.; Flacco, A.; Kaskiewicz, P.; Lebsock, K.
1983-01-01
The excess science accommodation and excess performance capabilities of a candidate spacecraft bus for the Mars Geoscience and Climatology Orbiter MGCO mission are assessed. The appendices are included to support the conclusions obtained during this contract extension. The appendices address the mission analysis, the attitude determination and control, the propulsion subsystem, and the spacecraft configuration.
NASA Technical Reports Server (NTRS)
1968-01-01
Contents include the following: General release. Mission objectives. Mission description. Flight plan. Alternate missions. Experiments. Abort model. Spacecraft structure system. The Saturn 1B launch vehicle. Flight sequence. Launch preparations. Mission control center-Houston. Manned space flight network. Photographic equipment. Apollo 7 crew. Apollo 7 test program.
STS-132/ULF-4 Flight Control Team in FCR-1
2010-05-20
JSC2010-E-085365 (20 May 2010) --- The members of the STS-132/ULF-4 ISS Orbit 2 flight control team pose for a group portrait in the space station flight control room in the Mission Control Center at NASA's Johnson Space Center. Flight director Emily Nelson holds the Expedition 23 mission logo.
STS-125 Flight Control Team in WFCR - Orbit 1 - Flight Director Tony Ceccacci
2009-05-20
JSC2009-E-120813 (20 May 2009) --- The members of the STS-125 Orbit 1 flight control team pose for a group portrait in the space shuttle flight control room in the Mission Control Center at NASA's Johnson Space Center. Flight director Tony Ceccacci holds the STS-125 mission logo.
STS-132/ULF-4 Flight Control Team in FCR-1
2010-05-19
JSC2010-E-086277 (19 May 2010) --- The members of the STS-132/ULF-4 ISS Orbit 1 flight control team pose for a group portrait in the space station flight control room in the Mission Control Center at NASA's Johnson Space Center. Flight director Holly Ridings holds the STS-132 mission logo.
STS-131 Flight Control Team in WFCR - Orbit 2 - Flight Director Mike Sarafin
2010-04-14
JSC2010-E-051978 (14 April 2010) --- The members of the STS-131 Orbit 2 flight control team pose for a group portrait in the space shuttle flight control room in the Mission Control Center at NASA's Johnson Space Center. Flight director Mike Sarafin holds the STS-131 mission logo.
STS-132/ULF-4 Flight Control Team in FCR-1
2010-05-20
JSC2010-E-086504 (20 May 2010) --- The members of the STS-132/ULF-4 ISS Orbit 3 flight control team pose for a group portrait in the space station flight control room in the Mission Control Center at NASA's Johnson Space Center. Flight director Scott Stover holds the Expedition 23 mission logo.
An Open Specification for Space Project Mission Operations Control Architectures
NASA Technical Reports Server (NTRS)
Hooke, A.; Heuser, W. R.
1995-01-01
An 'open specification' for Space Project Mission Operations Control Architectures is under development in the Spacecraft Control Working Group of the American Institute for Aeronautics and Astro- nautics. This architecture identifies 5 basic elements incorporated in the design of similar operations systems: Data, System Management, Control Interface, Decision Support Engine, & Space Messaging Service.
STS-132 ascent flight control team photo with Flight Director Richard Jones and the STS-132 crew
2010-06-08
JSC2010-E-090665 (8 June 2010) --- The members of the STS-132 Ascent flight control team and crew members pose for a group portrait in the space shuttle flight control room in the Mission Control Center at NASA's Johnson Space Center. Flight director Richard Jones (right) and NASA astronaut Ken Ham, STS-132 commander, hold the STS-132 mission logo. Additional crew members pictured are NASA astronauts Tony Antonelli, pilot; along with Garrett Reisman, Piers Sellers, Michael Good and Steve Bowen, all mission specialists. Photo credit: NASA or National Aeronautics and Space Administration
View of Mission Control Center during Apollo 13 splashdown
1970-04-17
S70-35471 (17 April 1970) --- Two flight controllers man consoles in the Missions Operations Control Room (MOCR) of the Mission Control Center (MCC) at the Manned Spacecraft Center (MSC), Houston, Texas, just before splashdown occurred in the south Pacific Ocean. Though the MOCR does not appear to be crowded in this photo, there was a very large crowd of persons on hand for the splashdown and recovery operations coverage. Most of the group crowded around in the rear of the room. Apollo 13 splashdown occurred at 12:07:44 p.m. (CST), April 17, 1970.
Cassini Attitude Control Flight Software: from Development to In-Flight Operation
NASA Technical Reports Server (NTRS)
Brown, Jay
2008-01-01
The Cassini Attitude and Articulation Control Subsystem (AACS) Flight Software (FSW) has achieved its intended design goals by successfully guiding and controlling the Cassini-Huygens planetary mission to Saturn and its moons. This paper describes an overview of AACS FSW details from early design, development, implementation, and test to its fruition of operating and maintaining spacecraft control over an eleven year prime mission. Starting from phases of FSW development, topics expand to FSW development methodology, achievements utilizing in-flight autonomy, and summarize lessons learned during flight operations which can be useful to FSW in current and future spacecraft missions.
Advanced automation in space shuttle mission control
NASA Technical Reports Server (NTRS)
Heindel, Troy A.; Rasmussen, Arthur N.; Mcfarland, Robert Z.
1991-01-01
The Real Time Data System (RTDS) Project was undertaken in 1987 to introduce new concepts and technologies for advanced automation into the Mission Control Center environment at NASA's Johnson Space Center. The project's emphasis is on producing advanced near-operational prototype systems that are developed using a rapid, interactive method and are used by flight controllers during actual Shuttle missions. In most cases the prototype applications have been of such quality and utility that they have been converted to production status. A key ingredient has been an integrated team of software engineers and flight controllers working together to quickly evolve the demonstration systems.
STS-132/ULF4 Flight Controllers on Console
2010-05-18
JSC2010-E-081929 (18 May 2010) --- Kyle Herring, Public Affairs Office (PAO) commentator, monitors data at his console in the space shuttle flight control room in the Mission Control Center at NASA's Johnson Space Center during STS-132 mission flight day five activities.
STS-132/ULF4 Flight Controllers on Console
2010-05-18
JSC2010-E-081946 (18 May 2010) --- ISS flight director Emily Nelson monitors data at her console in the space station flight control room in the Mission Control Center at NASA's Johnson Space Center during STS-132/ULF-4 mission flight day five activities.
STS-132/ULF4 Flight Controllers on Console - Bldg. 30 south
2010-05-20
JSC2010-E-086375 (20 May 2010) --- Flight director Mike Sarafin monitors data at his console in the space shuttle flight control room in the Mission Control Center at NASA's Johnson Space Center during STS-132 mission flight day seven activities.
STS-132/ULF4 Flight Controllers on Console - Bldg. 30 south
2010-05-20
JSC2010-E-086399 (20 May 2010) --- Flight director Mike Sarafin monitors data at his console in the space shuttle flight control room in the Mission Control Center at NASA's Johnson Space Center during STS-132 mission flight day seven activities.
STS-132/ULF4 Flight Controllers on Console
2010-05-18
JSC2010-E-081914 (18 May 2010) --- ISS flight director Holly Ridings reviews data at her console in the space station flight control room in the Mission Control Center at NASA's Johnson Space Center during STS-132/ULF-4 mission flight day five activities.
NASA Astrophysics Data System (ADS)
Zouganelis, Y.; Mueller, D.; St Cyr, O. C.; Gilbert, H. R.
2016-12-01
Solar Orbiter, the first mission of ESA's Cosmic Vision 2015-2025 programme, promises to deliver groundbreaking science with previously unavailable observational capabilities provided by a suite of in-situ and remote-sensing instruments in a unique orbit. The mission will address the central question of heliophysics: How does the Sun create and control the heliosphere? The heliosphere represents a uniquely accessible domain of space, where fundamental physical processes common to solar, astrophysical and laboratory plasmas can be studied under conditions impossible to reproduce on Earth and unfeasible to observe from astronomical distances. In this talk, we highlight the scientific goals of Solar Orbiter, address the synergy between this joint ESA/NASA mission and other new space and ground-based observatories, and present the mission's development status.
NASA Astrophysics Data System (ADS)
Wolf, Aron A.
1996-10-01
The Cassini mission to Saturn employs a Saturn orbiter and a Titan probe to conduct an intensive investigation of the Saturnian system. The Cassini orbiter flies a series of obits, incorporating flybys of the Saturnian satellites, called the 'satellite tour'. During the tour, the gravitational fields of the satellites are used to modify and control the orbit, targeting from one satellite flyby to the next. The tour trajectory must also be designed to maximize opportunities for science observations, subject to mission-imposed constraints. Tour design studies have been conducted for Cassini to identify trades and strategies for achieving these sometimes conflicting goals. Concepts, strategies, and techniques previously developed for the Galileo mission to Jupiter have been modified, and new ones have been developed, to meet the requirements of the Cassini mission.
NASA Technical Reports Server (NTRS)
Rust, David M.
1987-01-01
The Solar Maximum Mission (SMM), designed to study the solar activity, was launched on February 14, 1980, just before the 1980 peak of sunspot and flare activity. The seven instruments aboard the SMM, information received by each of the instruments, and the performance of these instruments are described, together with the repair mission carried out to replace the attitude control module and the defective electronics in the satellite's observatory. The highlights of the scientific results obtained by the SMM mission and the new discoveries made are discussed, with special attention given to the flare loops, flare loop interactions, and the mass ejection events recorded.
NASA Astrophysics Data System (ADS)
Lee, Sam; Lucas, Nathan P.; Ellis, R. Darin; Pandya, Abhilash
2012-06-01
This paper presents a seamlessly controlled human multi-robot system comprised of ground and aerial robots of semiautonomous nature for source localization tasks. The system combines augmented reality interfaces capabilities with human supervisor's ability to control multiple robots. The role of this human multi-robot interface is to allow an operator to control groups of heterogeneous robots in real time in a collaborative manner. It used advanced path planning algorithms to ensure obstacles are avoided and that the operators are free for higher-level tasks. Each robot knows the environment and obstacles and can automatically generate a collision-free path to any user-selected target. It displayed sensor information from each individual robot directly on the robot in the video view. In addition, a sensor data fused AR view is displayed which helped the users pin point source information or help the operator with the goals of the mission. The paper studies a preliminary Human Factors evaluation of this system in which several interface conditions are tested for source detection tasks. Results show that the novel Augmented Reality multi-robot control (Point-and-Go and Path Planning) reduced mission completion times compared to the traditional joystick control for target detection missions. Usability tests and operator workload analysis are also investigated.
2007-07-20
JSC2007-E-41011 (20 July 2007) --- STS-118 Ascent/Entry flight control team pose for a group portrait in the space shuttle flight control room of Houston's Mission Control Center (MCC). Flight director Steve Stich (center right) and astronaut Tony Antonelli, spacecraft communicator (CAPCOM), hold the STS-118 mission logo.
Operation Eclipse; Appreciation and Outline Plan
1945-04-25
the boundaries of GERMANY . " . • g« Engineering tools, equipment, plant and stores0 specially, adapted for military purposes. Bridging material of...Control Council ( Germany ) Control Commission for Germany ’ (British Element) Supreme Hq AEF Mission (Denmark) Supreme Headquarters, Allied...Mission (Norway) U.S. Group Control Council (Austria) Control Commission for Germany (Air Division) War Office, MO 1 (SP) • ’ Control Commission for
Guidance, Navigation, and Control Technology Assessment for Future Planetary Science Missions
NASA Technical Reports Server (NTRS)
Beauchamp, Pat; Cutts, James; Quadrelli, Marco B.; Wood, Lincoln J.; Riedel, Joseph E.; McHenry, Mike; Aung, MiMi; Cangahuala, Laureano A.; Volpe, Rich
2013-01-01
Future planetary explorations envisioned by the National Research Council's (NRC's) report titled Vision and Voyages for Planetary Science in the Decade 2013-2022, developed for NASA Science Mission Directorate (SMD) Planetary Science Division (PSD), seek to reach targets of broad scientific interest across the solar system. This goal requires new capabilities such as innovative interplanetary trajectories, precision landing, operation in close proximity to targets, precision pointing, multiple collaborating spacecraft, multiple target tours, and advanced robotic surface exploration. Advancements in Guidance, Navigation, and Control (GN&C) and Mission Design in the areas of software, algorithm development and sensors will be necessary to accomplish these future missions. This paper summarizes the key GN&C and mission design capabilities and technologies needed for future missions pursuing SMD PSD's scientific goals.
Skylab thruster attitude control system
NASA Technical Reports Server (NTRS)
Wilmer, G. E., Jr.
1974-01-01
Preflight activities and the Skylab mission support effort for the thruster attitude control system (TACS) are documented. The preflight activities include a description of problems and their solutions encountered in the development, qualification, and flight checkout test programs. Mission support effort is presented as it relates to system performance assessment, real-time problem solving, flight anomalies, and the daily system evaluation. Finally, the detailed flight evaluation is presented for each phase of the mission using system telemetry data. Data assert that the TACS met or exceeded design requirements and fulfilled its assigned mission objectives.
Development of a Space Station Operations Management System
NASA Technical Reports Server (NTRS)
Brandli, A. E.; Mccandless, W. T.
1988-01-01
To enhance the productivity of operations aboard the Space Station, a means must be provided to augment, and frequently to supplant, human effort in support of mission operations and management, both on the ground and onboard. The Operations Management System (OMS), under development at the Johnson Space Center, is one such means. OMS comprises the tools and procedures to facilitate automation of station monitoring, control, and mission planning tasks. OMS mechanizes, and hence rationalizes, execution of tasks traditionally performed by mission planners, the mission control center team, onboard System Management software, and the flight crew.
Development of a Space Station Operations Management System
NASA Astrophysics Data System (ADS)
Brandli, A. E.; McCandless, W. T.
To enhance the productivity of operations aboard the Space Station, a means must be provided to augment, and frequently to supplant, human effort in support of mission operations and management, both on the ground and onboard. The Operations Management System (OMS), under development at the Johnson Space Center, is one such means. OMS comprises the tools and procedures to facilitate automation of station monitoring, control, and mission planning tasks. OMS mechanizes, and hence rationalizes, execution of tasks traditionally performed by mission planners, the mission control center team, onboard System Management software, and the flight crew.
Revision to Planetary Protection Policy for Mars Missions
NASA Technical Reports Server (NTRS)
DeVincenzi, D. L.; Stabekis, P.; Barengoltz, J.; Morrison, David (Technical Monitor)
1994-01-01
Under existing COSPAR policy adopted in 1984, missions to Mars (landers, probes, and some orbiters) are designated as Category IV missions. As such, the procedures for implementing planetary protection requirements could include trajectory biasing, cleanrooms, bioload reduction, sterilization of hardware, and bioshields, i. e. requirements could be similar to Viking. However, in 1992, a U. S. National Academy of Sciences study recommended that controls on forward contamination of Mars be tied to specific mission objectives. The report recommended that Mars landers with life detection instruments be subject to at least Viking-level sterilization procedures for bioload reduction, while spacecraft (including orbiters) without life detection instruments be subject to at least Viking-level pre sterilization procedures for bioload reduction but need not be sterilized. In light of this, it is proposed that the current policy's Category IV missions and their planetary protection requirements be divided into two subcategories as follows: Category IV A, for missions comprising landers and probes without life detection experiments and some orbiters, which will meet a specified bioburden limit for exposed surfaces; Category IV B, for landers and probes with life detection experiments, which will require complete system sterilization. For Category IV A missions, bioburden specifications will be proposed and implementing procedures discussed. A resolution will be proposed to modify the existing COSPAR policy to reflect these changes. Similar specifications, procedures, and resolution for Category IV B missions will be the subject of a later study.
Runtime Assurance Framework Development for Highly Adaptive Flight Control Systems
2015-12-01
performing a surveillance mission. The demonstration platform consisted of RTA systems for the inner- loop control, outer- loop guidance, ownship flight...For the inner- loop , the concept of employing multiple transition controllers in the reversionary control system was studied. For all feedback levels...5 RTA Protection Applied to Inner- Loop Control Systems .................................................61 5.1 General Description of Morphing Wing
Verification and Implementation of Operations Safety Controls for Flight Missions
NASA Technical Reports Server (NTRS)
Smalls, James R.; Jones, Cheryl L.; Carrier, Alicia S.
2010-01-01
There are several engineering disciplines, such as reliability, supportability, quality assurance, human factors, risk management, safety, etc. Safety is an extremely important engineering specialty within NASA, and the consequence involving a loss of crew is considered a catastrophic event. Safety is not difficult to achieve when properly integrated at the beginning of each space systems project/start of mission planning. The key is to ensure proper handling of safety verification throughout each flight/mission phase. Today, Safety and Mission Assurance (S&MA) operations engineers continue to conduct these flight product reviews across all open flight products. As such, these reviews help ensure that each mission is accomplished with safety requirements along with controls heavily embedded in applicable flight products. Most importantly, the S&MA operations engineers are required to look for important design and operations controls so that safety is strictly adhered to as well as reflected in the final flight product.
Multi-Objective Hybrid Optimal Control for Interplanetary Mission Planning
NASA Technical Reports Server (NTRS)
Englander, Jacob; Vavrina, Matthew; Ghosh, Alexander
2015-01-01
Preliminary design of low-thrust interplanetary missions is a highly complex process. The mission designer must choose discrete parameters such as the number of flybys, the bodies at which those flybys are performed and in some cases the final destination. In addition, a time-history of control variables must be chosen which defines the trajectory. There are often many thousands, if not millions, of possible trajectories to be evaluated. The customer who commissions a trajectory design is not usually interested in a point solution, but rather the exploration of the trade space of trajectories between several different objective functions. This can be a very expensive process in terms of the number of human analyst hours required. An automated approach is therefore very diserable. This work presents such as an approach by posing the mission design problem as a multi-objective hybrid optimal control problem. The method is demonstrated on a hypothetical mission to the main asteroid belt.
NASA Technical Reports Server (NTRS)
Englander, Jacob
2016-01-01
Preliminary design of interplanetary missions is a highly complex process. The mission designer must choose discrete parameters such as the number of flybys, the bodies at which those flybys are performed, and in some cases the final destination. In addition, a time-history of control variables must be chosen that defines the trajectory. There are often many thousands, if not millions, of possible trajectories to be evaluated. This can be a very expensive process in terms of the number of human analyst hours required. An automated approach is therefore very desirable. This work presents such an approach by posing the mission design problem as a hybrid optimal control problem. The method is demonstrated on notional high-thrust chemical and low-thrust electric propulsion missions. In the low-thrust case, the hybrid optimal control problem is augmented to include systems design optimization.
Research study: Space vehicle control systems
NASA Technical Reports Server (NTRS)
Likins, P. W.; Longman, R. W.
1979-01-01
From the control point of view, spacecraft are classified into two main groups: those for which the spacecraft is fully defined before the control system is designed; and those for which the control system must be specified before certain interchangeable parts of a multi-purpose spacecraft are selected for future missions. Consideration is given to both classes of problems.
STS-132/ULF4 Flight Controllers on Console - Bldg. 30 south
2010-05-20
JSC2010-E-086341 (20 May 2010) --- ISS flight director Holly Ridings monitors data at her console in the space station flight control room in the Mission Control Center at NASA's Johnson Space Center during STS-132/ULF-4 mission flight day seven activities.
STS-134 Orbit 2 flight controllers on consoles
2011-05-17
JSC2011-E-045468 (17 May 2011) --- Public Affairs Office (PAO) mission commentator Brandi Dean monitors data at her console in the space shuttle flight control room in the Mission Control Center at NASA's Johnson Space Center during STS-134 flight day two activities. Photo credit: NASA
STS-134 Orbit 2 flight controllers on consoles
2011-05-17
JSC2011-E-045467 (17 May 2011) --- Public Affairs Office (PAO) mission commentator Brandi Dean is pictured at her console in the space shuttle flight control room in the Mission Control Center at NASA's Johnson Space Center during STS-134 flight day two activities. Photo credit: NASA
In-flight testing of the space shuttle orbiter thermal control system
NASA Technical Reports Server (NTRS)
Taylor, J. T.
1985-01-01
In-flight thermal control system testing of a complex manned spacecraft such as the space shuttle orbiter and the considerations attendant to the definition of the tests are described. Design concerns, design mission requirements, flight test objectives, crew vehicle and mission risk considerations, instrumentation, data requirements, and real-time mission monitoring are discussed. An overview of the tests results is presented.
2014-08-14
S95-16439 (13-22 July 1995) --- An overall view from the rear shows activity in the new Mission Control Center (MCC), opened for operation and dedicated during the STS-70 mission. The new MCC, developed at a cost of about 50 million, replaces the main-frame based, NASA-unique design of the old Mission Control with a standard workstation-based, local area network system commonly in use today.
STS-56 CAPCOMs Chilton and Brown monitor mission from a console at JSC MCC
1993-04-17
STS056-S-080 (13 April 1993) --- Astronauts Kevin P. Chilton (left) and Curtis L. Brown Jr. are seen at the spacecraft communicator (CAPCOM) console in the flight control room of Houston's Mission Control Center (MCC). The two are part of the CAPCOM team who communicated with the five crewmembers aboard Discovery for the STS-56 mission in Earth orbit.
Proceedings of the 20th International Symposium on Space Flight Dynamics
NASA Technical Reports Server (NTRS)
Woodard, Mark (Editor); Stengle, Tom (Editor)
2007-01-01
Topics include: Measuring Image Navigation and Registration Performance at the 3-Sigma Level Using Platinum Quality Landmarks; Flight Dynamics Performances of the MetOp A Satellite during the First Months of Operations; Visual Navigation - SARE Mission; Determining a Method of Enabling and Disabling the Integral Torque in the SDO Science and Inertial Mode Controllers; Guaranteeing Pointing Performance of the SDO Sun-Pointing Controllers in Light of Nonlinear Effects; SDO Delta H Mode Design and Analysis; Observing Mode Attitude Controller for the Lunar Reconnaissance Orbiter; Broken-Plane Maneuver Applications for Earth to Mars Trajectories; ExoMars Mission Analysis and Design - Launch, Cruise and Arrival Analyses; Mars Reconnaissance Orbiter Aerobraking Daily Operations and Collision Avoidance; Mars Reconnaissance Orbiter Interplanetary Cruise Navigation; Motion Parameters Determination of the SC and Phobos in the Project Phobos-Grunt; GRAS NRT Precise Orbit Determination: Operational Experience; Orbit Determination of LEO Satellites for a Single Pass through a Radar: Comparison of Methods; Orbit Determination System for Low Earth Orbit Satellites; Precise Orbit Determination for ALOS; Anti-Collision Function Design and Performances of the CNES Formation Flying Experiment on the PRISMA Mission; CNES Approaching Guidance Experiment within FFIORD; Maneuver Recovery Analysis for the Magnetospheric Multiscale Mission; SIMBOL-X: A Formation Flying Mission on HEO for Exploring the Universe; Spaceborne Autonomous and Ground Based Relative Orbit Control for the TerraSAR-X/TanDEM-X Formation; First In-Orbit Experience of TerraSAR-X Flight Dynamics Operations; Automated Target Planning for FUSE Using the SOVA Algorithm; Space Technology 5 Post-Launch Ground Attitude Estimation Experience; Standardizing Navigation Data: A Status Update; and A Study into the Method of Precise Orbit Determination of a HEO Orbiter by GPS and Accelerometer.
NASA Technical Reports Server (NTRS)
Powell, Ferolyn T.; Sedej, Melaine; Lin, Chin
1987-01-01
NASA has completed an environmental control and life support system (ECLSS) technology R&D plan for advanced missions which gave attention to the drivers (crew size, mission duration, etc.) of a range of manned missions under consideration. Key planning guidelines encompassed a time horizon greater than 50 years, funding resource requirements, an evolutionary approach to goal definition, and the funding of more than one approach to satisfy a given perceived requirement. Attention was given to the ECLSS requirements of transportation and service vehicles, platforms, bases and settlements, ECLSS functions and average load requirements, unique drivers for various missions, and potentially exploitable commonalities among vehicles and habitats.
Autonomous Mission Operations Roadmap
NASA Technical Reports Server (NTRS)
Frank, Jeremy David
2014-01-01
As light time delays increase, the number of such situations in which crew autonomy is the best way to conduct the mission is expected to increase. However, there are significant open questions regarding which functions to allocate to ground and crew as the time delays increase. In situations where the ideal solution is to allocate responsibility to the crew and the vehicle, a second question arises: should the activity be the responsibility of the crew or an automated vehicle function? More specifically, we must answer the following questions: What aspects of mission operation responsibilities (Plan, Train, Fly) should be allocated to ground based or vehicle based planning, monitoring, and control in the presence of significant light-time delay between the vehicle and the Earth?How should the allocated ground based planning, monitoring, and control be distributed across the flight control team and ground system automation? How should the allocated vehicle based planning, monitoring, and control be distributed between the flight crew and onboard system automation?When during the mission should responsibility shift from flight control team to crew or from crew to vehicle, and what should the process of shifting responsibility be as the mission progresses? NASA is developing a roadmap of capabilities for Autonomous Mission Operations for human spaceflight. This presentation will describe the current state of development of this roadmap, with specific attention to in-space inspection tasks that crews might perform with minimum assistance from the ground.
Smarter Software For Enhanced Vehicle Health Monitoring and Inter-Planetary Exploration
NASA Technical Reports Server (NTRS)
Larson, William E.; Goodrich, Charles H.; Steinrock, Todd (Technical Monitor)
2001-01-01
The existing philosophy for space mission control was born in the early days of the space program when technology did not exist to put significant control responsibility onboard the spacecraft. NASA relied on a team of ground control experts to troubleshoot systems when problems occurred. As computing capability improved, more responsibility was handed over to the systems software. However, there is still a large contingent of both launch and flight controllers supporting each mission. New technology can update this philosophy to increase mission assurance and reduce the cost of inter-planetary exploration. The advent of model-based diagnosis and intelligent planning software enables spacecraft to handle most routine problems automatically and allocate resources in a flexible way to realize mission objectives. The manifests for recent missions include multiple subsystems and complex experiments. Spacecraft must operate at longer distances from earth where communications delays make earthbound command and control impractical. NASA's Ames Research Center (ARC) has demonstrated the utility of onboard diagnosis and planning with the Remote Agent experiment in 1999. KSC has pioneered model-based diagnosis and demonstrated its utility for ground support operations. KSC and ARC are cooperating in research to improve the state of the art of this technology. This paper highlights model-based reasoning applications for Moon and Mars missions including in-situ resource utilization and enhanced vehicle health monitoring.
NASA Astrophysics Data System (ADS)
Onken, Jeffrey
This dissertation introduces a multidisciplinary framework for the enabling of future research and analysis of alternatives for control centers for real-time operations of safety-critical systems. The multidisciplinary framework integrates functional and computational models that describe the dynamics in fundamental concepts of previously disparate engineering and psychology research disciplines, such as group performance and processes, supervisory control, situation awareness, events and delays, and expertise. The application in this dissertation is the real-time operations within the NASA Mission Control Center in Houston, TX. This dissertation operationalizes the framework into a model and simulation, which simulates the functional and computational models in the framework according to user-configured scenarios for a NASA human-spaceflight mission. The model and simulation generates data according to the effectiveness of the mission-control team in supporting the completion of mission objectives and detecting, isolating, and recovering from anomalies. Accompanying the multidisciplinary framework is a proof of concept, which demonstrates the feasibility of such a framework. The proof of concept demonstrates that variability occurs where expected based on the models. The proof of concept also demonstrates that the data generated from the model and simulation is useful for analyzing and comparing MCC configuration alternatives because an investigator can give a diverse set of scenarios to the simulation and the output compared in detail to inform decisions about the effect of MCC configurations on mission operations performance.
STS-132 Flight Control Team in WFCR
2010-05-25
JSC2010-E-087358 (25 May 2010) --- The members of the STS-132 Entry flight control team pose for a group portrait in the space shuttle flight control room in the Mission Control Center at NASA's Johnson Space Center. Flight director Tony Ceccacci holds the STS-132 mission logo. Photo credit: NASA or National Aeronautics and Space Administration
New Worlds Observer Formation Control Design Based on the Dynamics of Relative Motion
NASA Technical Reports Server (NTRS)
Luquette, Richard J.
2008-01-01
The New Worlds Observer (NWO) mission is designed for the direct detection and characterization of extrasolar planets. The NWO mission concept employs a two spacecraft leader-follower formation on a trajectory around the Earth/Moon-Sun L(sub 2) Libration Point. The leader spacecraft is baselined as a 4 meter optical telescope. The follower, Starshade spacecraft, is designed to suppress light from a central body star permitting direct detection of a surrounding exoplanetary system. The current design requires a nominal leader-follower separation range of 72 Megameters. NWO poses many challenges including formation control. NWO cycles between three principal control modes during the nominal mission timeline: science (fine pointing), realignment and transition. This paper examines formation control strategies in the context of dynamics of relative motion for two spacecraft operating in the vicinity of the Earth/Moon-Sun L(sub 2)libration point. The paper presents an overview of the equations of relative motion followed by a discussion of each of the control modes. Discussion and analysis characterize control strategies for each of the mission control modes, including requirements, implementation challenges and project fuel budgets.
OPTIC: Orbiting Plutonian Topographic Image Craft Proposal for an Unmanned Mission to Pluto
NASA Technical Reports Server (NTRS)
Kelly, Jonathan E.; Hein, Randall John; Meyer, David Lee; Robinson, David Mark; Endre, Mark James; Summers, Eric W.
1990-01-01
The proposal for an unmanned probe to Pluto is presented and described. The Orbiting Plutonian Topographic Image Craft's (OPTIC's) trip will take twenty years and after its arrival, will begin its data collection which includes image and radar mapping, surface spectral analysis, and magnetospheric studies. This probe's design was developed based on the request for proposal of an unmanned probe to Pluto requirements. The distinct problems which an orbiter causes for each subsystem of the craft are discussed. The final design revolved around two important factors: (1) the ability to collect and return the maximum quantity of information on the Plutonian system; and (2) the weight limitations which the choice of an orbiting craft implied. The velocity requirements of this type of mission severely limited the weight available for mission execution-owing to the large portion of overall weight required as fuel to fly the craft with present technology. The topics covered include: (1) scientific instrumentation; (2) mission management; (3) power and propulsion; (4) attitude and articulation control; (5) structural subsystems; and (6) command, control, and communication.
Improved Shaping Approach to the Preliminary Design of Low-Thrust Trajectories
NASA Astrophysics Data System (ADS)
Novak, D. M.; Vasile, M.
2011-01-01
This paper presents a general framework for the development of shape-based approaches to low-thrust trajectory design. A novel shaping method, based on a three-dimensional description of the trajectory in spherical coordinates, is developed within this general framework. Both the exponential sinusoid and the inverse polynomial shaping are demonstrated to be particular two-dimensional cases of the spherical one. The pseudoequinoctial shaping is revisited within the new framework, and the nonosculating nature of the pseudoequinoctial elements is analyzed. A two-step approach is introduced to solve the time of flight constraint, related to the design of low-thrust arcs with boundary constraints for both spherical and pseudoequinoctial shaping. The solution derived from the shaping approach is improved with a feedback linear-quadratic controller and compared against a direct collocation method based on finite elements in time. The new shaping approach and the combination of shaping and linear-quadratic controller are tested on three case studies: a mission to Mars, a mission to asteroid 1989ML, a mission to comet Tempel-1, and a mission to Neptune.
Robotic Mission to Mars: Hands-on, minds-on, web-based learning
NASA Astrophysics Data System (ADS)
Mathers, Naomi; Goktogen, Ali; Rankin, John; Anderson, Marion
2012-11-01
Problem-based learning has been demonstrated as an effective methodology for developing analytical skills and critical thinking. The use of scenario-based learning incorporates problem-based learning whilst encouraging students to collaborate with their colleagues and dynamically adapt to their environment. This increased interaction stimulates a deeper understanding and the generation of new knowledge. The Victorian Space Science Education Centre (VSSEC) uses scenario-based learning in its Mission to Mars, Mission to the Orbiting Space Laboratory and Primary Expedition to the M.A.R.S. Base programs. These programs utilize methodologies such as hands-on applications, immersive-learning, integrated technologies, critical thinking and mentoring to engage students in Science, Technology, Engineering and Mathematics (STEM) and highlight potential career paths in science and engineering. The immersive nature of the programs demands specialist environments such as a simulated Mars environment, Mission Control and Space Laboratory, thus restricting these programs to a physical location and limiting student access to the programs. To move beyond these limitations, VSSEC worked with its university partners to develop a web-based mission that delivered the benefits of scenario-based learning within a school environment. The Robotic Mission to Mars allows students to remotely control a real rover, developed by the Australian Centre for Field Robotics (ACFR), on the VSSEC Mars surface. After completing a pre-mission training program and site selection activity, students take on the roles of scientists and engineers in Mission Control to complete a mission and collect data for further analysis. Mission Control is established using software developed by the ACRI Games Technology Lab at La Trobe University using the principles of serious gaming. The software allows students to control the rover, monitor its systems and collect scientific data for analysis. This program encourages students to work scientifically and explores the interaction between scientists and engineers. This paper presents the development of the program, including the involvement of university students in the development of the rover, the software, and the collation of the scientific data. It also presents the results of the trial phase of this program including the impact on student engagement and learning outcomes.
Formation Control of the MAXIM L2 Libration Orbit Mission
NASA Technical Reports Server (NTRS)
Folta, David; Hartman, Kate; Howell, Kathleen; Marchand, Belinda
2004-01-01
The Micro-Arcsecond Imaging Mission (MAXIM), a proposed concept for the Structure and Evolution of the Universe (SEU) Black Hole Imaging mission, is designed to make a ten million-fold improvement in X-ray image clarity of celestial objects by providing better than 0.1 microarcsecond imaging. To achieve mission requirements, MAXIM will have to improve on pointing by orders of magnitude. This pointing requirement impacts the control and design of the formation. Currently the architecture is comprised of 25 spacecraft, which will form the sparse apertures of a grazing incidence X-ray interferometer covering the 0.3-10 keV bandpass. This configuration will deploy 24 spacecraft as optics modules and one as the detector. The formation must allow for long duration continuous science observations and also for reconfiguration that permits re-pointing of the formation. In this paper, we provide analysis and trades of several control efforts that are dependent upon the pointing requirements and the configuration and dimensions of the MAXIM formation. We emphasize the utilization of natural motions in the Lagrangian regions that minimize the control efforts and we address both continuous and discrete control via LQR and feedback linearization. Results provide control cost, configuration options, and capabilities as guidelines for the development of this complex mission.
Heritage Systems Engineering Lessons from NASA Deep Space Missions
NASA Technical Reports Server (NTRS)
Barley, Bryan; Newhouse, Marilyn; Clardy, Dennon
2010-01-01
In the design and development of complex spacecraft missions, project teams frequently assume the use of advanced technology systems or heritage systems to enable a mission or reduce the overall mission risk and cost. As projects proceed through the development life cycle, increasingly detailed knowledge of the advanced and heritage systems within the spacecraft and mission environment identifies unanticipated technical issues. Resolving these issues often results in cost overruns and schedule impacts. The National Aeronautics and Space Administration (NASA) Discovery & New Frontiers (D&NF) Program Office at Marshall Space Flight Center (MSFC) recently studied cost overruns and schedule delays for 5 missions. The goal was to identify the underlying causes for the overruns and delays, and to develop practical mitigations to assist the D&NF projects in identifying potential risks and controlling the associated impacts to proposed mission costs and schedules. The study found that optimistic hardware/software inheritance and technology readiness assumptions caused cost and schedule growth for all five missions studied. The cost and schedule growth was not found to be the result of technical hurdles requiring significant technology development. The projects institutional inheritance and technology readiness processes appear to adequately assess technology viability and prevent technical issues from impacting the final mission success. However, the processes do not appear to identify critical issues early enough in the design cycle to ensure project schedules and estimated costs address the inherent risks. In general, the overruns were traceable to: an inadequate understanding of the heritage system s behavior within the proposed spacecraft design and mission environment; an insufficient level of development experience with the heritage system; or an inadequate scoping of the systemwide impacts necessary to implement an advanced technology for space flight applications. The paper summarizes the study s lessons learned in more detail and offers suggestions for improving the project s ability to identify and manage the technology and heritage risks inherent in the design solution.
Heritage and Advanced Technology Systems Engineering Lessons Learned from NASA Deep Space Missions
NASA Technical Reports Server (NTRS)
Barley, Bryan; Newhouse, Marilyn; Clardy, Dennon
2010-01-01
In the design and development of complex spacecraft missions, project teams frequently assume the use of advanced technology systems or heritage systems to enable a mission or reduce the overall mission risk and cost. As projects proceed through the development life cycle, increasingly detailed knowledge of the advanced and heritage systems within the spacecraft and mission environment identifies unanticipated technical issues. Resolving these issues often results in cost overruns and schedule impacts. The National Aeronautics and Space Administration (NASA) Discovery & New Frontiers (D&NF) Program Office at Marshall Space Flight Center (MSFC) recently studied cost overruns and schedule delays for 5 missions. The goal was to identify the underlying causes for the overruns and delays, and to develop practical mitigations to assist the D&NF projects in identifying potential risks and controlling the associated impacts to proposed mission costs and schedules. The study found that optimistic hardware/software inheritance and technology readiness assumptions caused cost and schedule growth for four of the five missions studied. The cost and schedule growth was not found to result from technical hurdles requiring significant technology development. The projects institutional inheritance and technology readiness processes appear to adequately assess technology viability and prevent technical issues from impacting the final mission success. However, the processes do not appear to identify critical issues early enough in the design cycle to ensure project schedules and estimated costs address the inherent risks. In general, the overruns were traceable to: an inadequate understanding of the heritage system s behavior within the proposed spacecraft design and mission environment; an insufficient level of development experience with the heritage system; or an inadequate scoping of the system-wide impacts necessary to implement an advanced technology for space flight applications. The paper summarizes the study's lessons learned in more detail and offers suggestions for improving the project's ability to identify and manage the technology and heritage risks inherent in the design solution.
Swarm satellite mission scheduling & planning using Hybrid Dynamic Mutation Genetic Algorithm
NASA Astrophysics Data System (ADS)
Zheng, Zixuan; Guo, Jian; Gill, Eberhard
2017-08-01
Space missions have traditionally been controlled by operators from a mission control center. Given the increasing number of satellites for some space missions, generating a command list for multiple satellites can be time-consuming and inefficient. Developing multi-satellite, onboard mission scheduling & planning techniques is, therefore, a key research field for future space mission operations. In this paper, an improved Genetic Algorithm (GA) using a new mutation strategy is proposed as a mission scheduling algorithm. This new mutation strategy, called Hybrid Dynamic Mutation (HDM), combines the advantages of both dynamic mutation strategy and adaptive mutation strategy, overcoming weaknesses such as early convergence and long computing time, which helps standard GA to be more efficient and accurate in dealing with complex missions. HDM-GA shows excellent performance in solving both unconstrained and constrained test functions. The experiments of using HDM-GA to simulate a multi-satellite, mission scheduling problem demonstrates that both the computation time and success rate mission requirements can be met. The results of a comparative test between HDM-GA and three other mutation strategies also show that HDM has outstanding performance in terms of speed and reliability.
2001-07-16
JSC2001-E-21584 (16 July 2001) --- STS-104 Orbit 1 flight director Paul Hill discusses mission related matters over the phone at his console in the shuttle flight control room (WFCR) in Houston's Mission Control Center (MCC).
2001-07-16
JSC2001-E-21576 (16 July 2001) --- ISS Orbit 1 flight director Sally Davis discusses STS-104 matters with other mission support staff at her console in the ISS flight control room (BFCR) in Houston's Mission Control Center (MCC).
View of Mission Control Center during the Apollo 13 oxygen cell failure
NASA Technical Reports Server (NTRS)
1970-01-01
Mrs. Mary Haise receives an explanation of the revised flight plan of the Apollo 13 mission from Astronaut Gerald P. Carr in the Viewing Room of Mission Control Center, bldg 30, Manned Spacecraft Center (MSC). Her husband, Astronaut Fred W. Haise Jr., was joining the fellow crew members in making corrections in their spacecraft following discovery of an oxygen cell failure several hours earlier (34900); Dr. Charles A. Berry, Director of Medical Research and Operations Directorate at MSC, converses with Mrs. Marilyn Lovell in the Viewing Room of Mission Control Center. Mrs. Lovell's husband, Astronaut James A. Lovell Jr., was busily making corrections inside the spacecraft following discovery of an oxygen cell failure several hours earlier (34901).
Momentum Management for the NASA Near Earth Asteroid Scout Solar Sail Mission
NASA Technical Reports Server (NTRS)
Heaton, Andrew; Diedrich, Benjamin L.; Orphee, Juan; Stiltner, Brandon; Becker, Christopher
2017-01-01
The Momentum Management (MM) system is described for the NASA Near Earth Asteroid Scout (NEA Scout) cubesat solar sail mission. Unlike many solar sail mission proposals that used solar torque as the primary or only attitude control system, NEA Scout uses small reaction wheels (RW) and a reaction control system (RCS) with cold gas thrusters, as described in the abstract "Solar Sail Attitude Control System for Near Earth Asteroid Scout Cubesat Mission." The reaction wheels allow fine pointing and higher rates with low mass actuators to meet the science, communication, and trajectory guidance requirements. The MM system keeps the speed of the wheels within their operating margins using a combination of solar torque and the RCS.
View of activity in Mission Control Center during Apollo 15 EVA
1971-07-30
S71-41836 (2 Aug. 1971) --- Scientist-astronaut Joseph P. Allen, left, directs the attention of astronaut Richard F. Gordon Jr., to an occurrence out of view at right in the Mission Control Center's (MCC) Mission Operations Control Room (MOCR), while Dr. Donald K. (Deke) Slayton, on right with back to camera, views activity of Apollo 15 on a large screen at the front of the MOCR. Astronauts David R. Scott and James B. Irwin are seen on the screen performing tasks of the mission's third extravehicular activity (EVA), on Aug. 2, 1971. Dr. Slayton is director of Flight Crew Operations, NASA-MSC; Gordon is Apollo 15 backup commander; and Dr. Allen is an Apollo 15 spacecraft communicator.
A spaceborne optical interferometer: The JPL CSI mission focus
NASA Astrophysics Data System (ADS)
Laskin, R. A.
1989-08-01
The JPL Control Structure Interaction (CSI) program is part of the larger NASA-wide CSI program. Within this larger context, the JPL CSI program will emphasize technology for systems that demand micron or sub-micron level control, so-called Micro-Precision Controlled Structures (u-PCS). The development of such technology will make it practical to fly missions with large optical or large precision antenna systems. In keeping with the focused nature of the desired technology, the JPL approach is to identify a focus mission, develop the focus mission CSI system design to a preliminary level, and then use this design to drive out requirements for CSI technology development in the design and analysis, ground test bed, and flight experiment areas.
STS-132/ULF4 Flight Controllers on Console
2010-05-18
JSC2010-E-081916 (18 May 2010) --- ISS flight directors Holly Ridings (seated) and Emily Nelson monitor data at their console in the space station flight control room in the Mission Control Center at NASA's Johnson Space Center during STS-132/ULF-4 mission flight day five activities.
STS-132/ULF4 Flight Controllers on Console - Orbit 2
2010-05-17
JSC2010-E-084362 (17 May 2010) --- NASA astronaut Stanley Love, spacecraft communicator (CAPCOM) for the STS-132 mission, monitors data at his console in the space shuttle flight control room in the Mission Control Center at NASA's Johnson Space Center during flight day four activities.
STS-132/ULF4 Flight Controllers on Console - Orbit 2
2010-05-17
JSC2010-E-084364 (17 May 2010) --- NASA astronaut Stanley Love, spacecraft communicator (CAPCOM) for the STS-132 mission, monitors data at his console in the space shuttle flight control room in the Mission Control Center at NASA's Johnson Space Center during flight day four activities.
STS-109 Flight Control Team Photo in WFCR - Orbit 2 with Flight Director Tony Ceccaci.
2002-03-05
JSC2002-00574 (5 March 2002) --- The members of the STS-109 Orbit 2 Team pose for a group portrait in the shuttle flight control room (WFCR) in Houston's Mission Control Center (MCC). Flight director Tony Ceccacci holds the STS-109 mission logo.
Wide angle view of Mission Control Center during Apollo 14 transmission
1971-01-31
S71-17122 (31 Jan. 1971) --- A wide angle overall view of the Mission Operations Control Room (MOCR) in the Mission Control Center at the Manned spacecraft Center. This view was photographed during the first color television transmission from the Apollo 14 Command Module. Projected on the large screen at the right front of the MOCR is a view of the Apollo 14 Lunar Module, still attached to the Saturn IVB stage. The Command and Service Modules were approaching the LM/S-IVB during transposition and docking maneuvers.
Overall view of Mission Control Center during Apollo 14
1971-01-31
S71-16879 (31 Jan. 1971) --- Overall view of activity in the Mission Operations Control Room in the Mission Control Center during the Apollo 14 transposition and docking maneuvers. The Apollo 14 Lunar Module, still attached to the Saturn IVB stage, can be seen on the large television monitor. Due to difficulty with the docking mechanism six attempts were made before a successful "hard dock" of the Command Module with the Lunar Module was accomplished. Aboard the Command Module were astronauts Alan B. Shepard Jr., Stuart A. Roosa, and Edgar D. Mitchell.
Flight Operations . [Zero Knowledge to Mission Complete
NASA Technical Reports Server (NTRS)
Forest, Greg; Apyan, Alex; Hillin, Andrew
2016-01-01
Outline the process that takes new hires with zero knowledge all the way to the point of completing missions in Flight Operations. Audience members should be able to outline the attributes of a flight controller and instructor, outline the training flow for flight controllers and instructors, and identify how the flight controller and instructor attributes are necessary to ensure operational excellence in mission prep and execution. Identify how the simulation environment is used to develop crisis management, communication, teamwork, and leadership skills for SGT employees beyond what can be provided by classroom training.
NASA Technical Reports Server (NTRS)
Rozenfeld, Pawel
1993-01-01
This paper describes the selection and training process of satellite controllers and data network operators performed at INPE's Satellite Tracking and Control Center in order to prepare them for the mission operations of the INPE's first (SCD1) satellite. An overview of the ground control system and SCD1 architecture and mission is given. Different training phases are described, taking into account that the applicants had no previous knowledge of space operations requiring, therefore, a training which started from the basics.
STS-105 coverage of Mission Control Center employees in the WFCR & BFCR
2003-03-25
JSC2001-E-25123 (16 August 2001) --- Astronauts Joseph R. Tanner (left) and Steve MacLean, both STS-105 spacecraft communicators (CAPCOM), discuss the progress of the extravehicular activity at their consoles in the shuttle flight control room (WFCR) in Houstons Mission Control Center (MCC). At the time this photo was taken, mission specialists Daniel T. Barry and Patrick G. Forrester were performing the first of two scheduled space walks during Discoverys voyage to the International Space Station (ISS). MacLean represents the Canadian Space Agency.
CELSS experiment model and design concept of gas recycle system
NASA Technical Reports Server (NTRS)
Nitta, K.; Oguchi, M.; Kanda, S.
1986-01-01
In order to prolong the duration of manned missions around the Earth and to expand the human existing region from the Earth to other planets such as a Lunar Base or a manned Mars flight mission, the controlled ecological life support system (CELSS) becomes an essential factor of the future technology to be developed through utilization of space station. The preliminary system engineering and integration efforts regarding CELSS have been carried out by the Japanese CELSS concept study group for clarifying the feasibility of hardware development for Space station experiments and for getting the time phased mission sets after FY 1992. The results of these studies are briefly summarized and the design and utilization methods of a Gas Recycle System for CELSS experiments are discussed.
Crew-Centered Operations: What HAL 9000 Should Have Been
NASA Technical Reports Server (NTRS)
Korsmeyer, David J.; Clancy, Daniel J.; Crawford, James M.; Drummond, Mark E.
2005-01-01
To date, manned space flight has maintained the locus of control for the mission on the ground. Mission control performs tasks such as activity planning, system health management, resource allocation, and astronaut health monitoring. Future exploration missions require the locus of control to shift to on-board due light speed constraints and potential loss of communication. The lunar campaign must begin to utilize a shared control approach to validate and understand the limitations of the technology allowing astronauts to oversee and direct aspects of operation that require timely decision making. Crew-centered Operations require a system-level approach that integrates multiple technologies together to allow a crew-prime concept of operations. This paper will provide an overview of the driving mission requirements, highlighting the limitations of existing approaches to mission operations and identifying the critical technologies necessary to enable a crew-centered mode of operations. The paper will focus on the requirements, trade spaces, and concepts for fulfillment of this capability. The paper will provide a broad overview of relevant technologies including: Activity Planning and Scheduling; System Monitoring; Repair and Recovery; Crew Work Practices.
1992-01-29
This photograph shows activities during the International Microgravity Laboratory-1 (IML-1) mission (STS-42) in the Payload Operations Control Center (POCC) at the Marshall Space Flight Center. The IML-1 mission was the first in a series of Shuttle flights dedicated to fundamental materials and life sciences research. The mission was to explore, in depth, the complex effects of weightlessness on living organisms and materials processing. The crew conducted experiments on the human nervous system's adaptation to low gravity and the effects on other life forms such as shrimp eggs, lentil seedlings, fruit fly eggs, and bacteria. Low gravity materials processing experiments included crystal growth from a variety of substances such as enzymes, mercury, iodine, and virus. The International space science research organizations that participated in this mission were: The U.S. National Aeronautics and Space Administration, the European Space Agency, the Canadian Space Agency, the French National Center for Space Studies, the German Space Agency, and the National Space Development Agency of Japan. The POCC was the air/ground communication charnel used between the astronauts aboard the Spacelab and scientists, researchers, and ground control teams during the Spacelab missions. The facility made instantaneous video and audio communications possible for scientists on the ground to follow the progress and to send direct commands of their research almost as if they were in space with the crew.
The Traverse Planning Process for the Drats 2010 Analog Field Simulations
NASA Technical Reports Server (NTRS)
Horz, Friedrich; Gruener, John; Lofgren, Gary; Skinner, James A., Jr.; Graf, Jodi; Seibert, Marc
2011-01-01
Traverse planning concentrates on optimizing the science return within the overall objectives of planetary surface missions or their analog field simulations. Such simulations were conducted in the San Francisco Volcanic Field, northern Arizona, from Aug. 26 to Sept 17, 2010 and involved some 200 individuals in the field, with some 40 geoscientists composing the science team. The purpose of these Desert Research and Technology Studies (DRATS) is to exercise and evaluate developmental hardware, software and operational concepts in a mission-like, fully-integrated, setting under the direction of an onsite Mobile Mission Control Center(MMCC). DRATS 2010 focused on the simultaneous operation of 2 rovers, a historic first. Each vehicle was manned by an astronaut-commander and an experienced field geologist. Having 2 rovers and crews in the field mandated substantially more complex science and mission control operations compared to the single rover DRATS tests of 2008 and 2009, or the Apollo lunar missions. For instance, the science support function was distributed over 2 "back rooms", one for each rover, with both "tactical" teams operating independently and simultaneously during the actual traverses. Synthesis and integration of the daily findings and forward planning for the next day(s) was accomplished overnight by yet another "strategic" science team.
NASA Technical Reports Server (NTRS)
Glass, B.; Briggs, G.
2003-01-01
Exploration mission designers and planners have costing models used to assess the affordability of given missions - but very little data exists on the relative science return produced by different ways of exploring a given region. Doing cost-benefit analyses for future missions requires a way to compare the relative field science productivity of spacesuited humans vs. virtual presence/teleoperation from a nearby habitat or orbital station, vs. traditional terrestrial-controlled rover operations. The goal of this study was to define science-return metrics for comparing human and robotic fieldwork, and then obtain quantifiable science-return performance comparisons between teleoperated rovers and spacesuited humans. Test runs with a simulated 2015-class rover and with spacesuited geologists were conducted at Haughton Crater in the Canadian Arctic in July 2002. Early results imply that humans will be 1-2 orders of magnitude more productive per unit time in exploration than future terrestrially-controlled robots.
Temperature corrected-calibration of GRACE's accelerometer
NASA Astrophysics Data System (ADS)
Encarnacao, J.; Save, H.; Siemes, C.; Doornbos, E.; Tapley, B. D.
2017-12-01
Since April 2011, the thermal control of the accelerometers on board the GRACE satellites has been turned off. The time series of along-track bias clearly show a drastic change in the behaviour of this parameter, while the calibration model has remained unchanged throughout the entire mission lifetime. In an effort to improve the quality of the gravity field models produced at CSR in future mission-long re-processing of GRACE data, we quantify the added value of different calibration strategies. In one approach, the temperature effects that distort the raw accelerometer measurements collected without thermal control are corrected considering the housekeeping temperature readings. In this way, one single calibration strategy can be consistently applied during the whole mission lifetime, since it is valid to thermal the conditions before and after April 2011. Finally, we illustrate that the resulting calibrated accelerations are suitable for neutral thermospheric density studies.
Developing closed life support systems for large space habitats
NASA Technical Reports Server (NTRS)
Phillips, J. M.; Harlan, A. D.; Krumhar, K. C.
1978-01-01
In anticipation of possible large-scale, long-duration space missions which may be conducted in the future, NASA has begun to investigate the research and technology development requirements to create life support systems for large space habitats. An analysis suggests the feasibility of a regeneration of food in missions which exceed four years duration. Regeneration of food in space may be justified for missions of shorter duration when large crews must be supported at remote sites such as lunar bases and space manufacturing facilities. It is thought that biological components consisting principally of traditional crop and livestock species will prove to be the most acceptable means of closing the food cycle. A description is presented of the preliminary results of a study of potential biological components for large space habitats. Attention is given to controlled ecosystems, Russian life support system research, controlled-environment agriculture, and the social aspects of the life-support system.
CRRES combined radiation and release effects satellite program
NASA Technical Reports Server (NTRS)
Giles, B. L. (Compiler); Mccook, M. A. (Compiler); Mccook, M. W. (Compiler); Miller, G. P. (Compiler)
1995-01-01
The various regions of the magnetosphere-ionosphere system are coupled by flows of charged particle beams and electromagnetic waves. This coupling gives rise to processes that affect both technical and non-technical aspects of life on Earth. The CRRES Program sponsored experiments which were designed to produce controlled and known input to the space environment and the effects were measured with arrays of diagnostic instruments. Large amounts of material were used to modify and perturb the environment in a controlled manner, and response to this was studied. The CRRES and PEGSAT satellites were dual-mission spacecraft with a NASA mission to perform active chemical-release experiments, grouped into categories of tracer, modification, and simulation experiments. Two sounding rocket chemical release campaigns completed the study.
Impact modeling and prediction of attacks on cyber targets
NASA Astrophysics Data System (ADS)
Khalili, Aram; Michalk, Brian; Alford, Lee; Henney, Chris; Gilbert, Logan
2010-04-01
In most organizations, IT (information technology) infrastructure exists to support the organization's mission. The threat of cyber attacks poses risks to this mission. Current network security research focuses on the threat of cyber attacks to the organization's IT infrastructure; however, the risks to the overall mission are rarely analyzed or formalized. This connection of IT infrastructure to the organization's mission is often neglected or carried out ad-hoc. Our work bridges this gap and introduces analyses and formalisms to help organizations understand the mission risks they face from cyber attacks. Modeling an organization's mission vulnerability to cyber attacks requires a description of the IT infrastructure (network model), the organization mission (business model), and how the mission relies on IT resources (correlation model). With this information, proper analysis can show which cyber resources are of tactical importance in a cyber attack, i.e., controlling them enables a large range of cyber attacks. Such analysis also reveals which IT resources contribute most to the organization's mission, i.e., lack of control over them gravely affects the mission. These results can then be used to formulate IT security strategies and explore their trade-offs, which leads to better incident response. This paper presents our methodology for encoding IT infrastructure, organization mission and correlations, our analysis framework, as well as initial experimental results and conclusions.
STS-66 Mission Highlights Resource Tape
NASA Technical Reports Server (NTRS)
1995-01-01
This video contains the mission highlights of the STS-66 Space Shuttle Atlantis Mission in November 1994. Astronauts included: Don McMonagle (Mission Commander), Kurt Brown, Ellen Ochoa (Payload Commander), Joe Tanner, Scott Parazynski, and Jean-Francois Clervoy (collaborating French astronaut). Footage includes: pre-launch suitup, entering Space Shuttle, countdown and launching of Shuttle, EVA activities (ATLAS-3, CRISTA/SPAS, SSBUV/A, ESCAPE-2), on-board experiments dealing with microgravity and its effects, protein crystal growth experiments, daily living and sleeping compartment footage, earthviews of various meteorological processes (dust storms, cloud cover, ocean storms), pre-landing and land footage (both from inside the Shuttle and from outside with long range cameras), and tracking and landing shots from inside Mission Control Center. Included is air-to-ground communication between Mission Control and the Shuttle. This Shuttle was the last launch of 1994.
STS-66 mission highlights resource tape
NASA Astrophysics Data System (ADS)
1995-04-01
This video contains the mission highlights of the STS-66 Space Shuttle Atlantis Mission in November 1994. Astronauts included: Don McMonagle (Mission Commander), Kurt Brown, Ellen Ochoa (Payload Commander), Joe Tanner, Scott Parazynski, and Jean-Francois Clervoy (collaborating French astronaut). Footage includes: pre-launch suitup, entering Space Shuttle, countdown and launching of Shuttle, EVA activities (ATLAS-3, CRISTA/SPAS, SSBUV/A, ESCAPE-2), on-board experiments dealing with microgravity and its effects, protein crystal growth experiments, daily living and sleeping compartment footage, earthviews of various meteorological processes (dust storms, cloud cover, ocean storms), pre-landing and land footage (both from inside the Shuttle and from outside with long range cameras), and tracking and landing shots from inside Mission Control Center. Included is air-to-ground communication between Mission Control and the Shuttle. This Shuttle was the last launch of 1994.
NASA Technical Reports Server (NTRS)
Barta, Daniel J.; Anderson, Molly S.; Lange, Kevin
2015-01-01
Planetary protection represents an additional set of requirements that generally have not been considered by developers of technologies for Environmental Control and Life Support Systems (ECLSS). Planetary protection guidelines will affect the kind of operations, processes, and functions that can take place during future human planetary exploration missions. Ultimately, there will be an effect on mission costs, including the mission trade space when planetary protection requirements begin to drive vehicle deisgn in a concrete way. Planetary protection requirements need to be considered early in technology development and mission programs in order to estimate these impacts and push back on requirements or find efficient ways to perform necessary functions. It is expected that planetary protection will be a significant factor during technology selection and system architecture design for future missions.
[Style of communication between mission control centers and space crews].
Iusupova, A K; Gushchin, V I; Shved, D M; Cheveleva, L M
2011-01-01
The article deals with a pilot investigation into the audio communication of cosmonauts with ground controllers. The purpose was to verify in space flight the patterns and trends revealed in model tests of intergroup communication, and to pinpoint the signature of multinational crew communication with 2 national mission control centers (MCCs). The investigation employed authors' content-analysis adapted to the scenario of long-duration mission. The investigation resulted in a phenomenon of double-loop ground-orbit communication, divergence, difference in opinion predictable from the concept formulated by G.T.Beregovoi. Also, there was a notable difference of expressions used by controllers of 2 MCCs.
SKYLAB III - POSTLAUNCH (MISSION CONTROL CENTER [MCC]) - JSC
1973-08-06
S73-31964 (5 August 1973) --- This group of flight controllers discuss today's approaching extravehicular activity (EVA) to be performed by the Skylab 3 crewmen. They are, left to right, scientist-astronaut Story Musgrave, a Skylab 3 spacecraft communicator; Robert Kain and Scott Millican, both of the Crew Procedures Division, EVA Procedures Section; William C. Schneider, Skylab Program Director, NASA Headquarters; and Milton Windler, flight director. Windler points to the model of the Skylab space station cluster to indicate the location of the ATM's film magazines. The group stands near consoles in the Mission Operations Control Room (MOCR) of the JSC Mission Control Center (MCC). Photo credit: NASA
Proceedings from the 2nd International Symposium on Formation Flying Missions and Technologies
NASA Technical Reports Server (NTRS)
2004-01-01
Topics discussed include: The Stellar Imager (SI) "Vision Mission"; First Formation Flying Demonstration Mission Including on Flight Nulling; Formation Flying X-ray Telescope in L2 Orbit; SPECS: The Kilometer-baseline Far-IR Interferometer in NASA's Space Science Roadmap Presentation; A Tight Formation for Along-track SAR Interferometry; Realization of the Solar Power Satellite using the Formation Flying Solar Reflector; SIMBOL-X : Formation Flying for High-Energy Astrophysics; High Precision Optical Metrology for DARWIN; Close Formation Flight of Micro-Satellites for SAR Interferometry; Station-Keeping Requirements for Astronomical Imaging with Constellations of Free-Flying Collectors; Closed-Loop Control of Formation Flying Satellites; Formation Control for the MAXIM Mission; Precision Formation Keeping at L2 Using the Autonomous Formation Flying Sensor; Robust Control of Multiple Spacecraft Formation Flying; Virtual Rigid Body (VRB) Satellite Formation Control: Stable Mode-Switching and Cross-Coupling; Electromagnetic Formation Flight (EMFF) System Design, Mission Capabilities, and Testbed Development; Navigation Algorithms for Formation Flying Missions; Use of Formation Flying Small Satellites Incorporating OISL's in a Tandem Cluster Mission; Semimajor Axis Estimation Strategies; Relative Attitude Determination of Earth Orbiting Formations Using GPS Receivers; Analysis of Formation Flying in Eccentric Orbits Using Linearized Equations of Relative Motion; Conservative Analytical Collision Probabilities for Orbital Formation Flying; Equations of Motion and Stability of Two Spacecraft in Formation at the Earth/Moon Triangular Libration Points; Formations Near the Libration Points: Design Strategies Using Natural and Non-Natural Ares; An Overview of the Formation and Attitude Control System for the Terrestrial Planet Finder Formation Flying Interferometer; GVE-Based Dynamics and Control for Formation Flying Spacecraft; GNC System Design for a New Concept of X-Ray Distributed Telescope; GNC System for the Deployment and Fine Control of the DARWIN Free-Flying Interferometer; Formation Algorithm and Simulation Testbed; and PLATFORM: A Formation Flying, RvD and Robotic Validation Test-bench.
JSC MCC Bldg 30 personnel monitor STS-26 post landing activities
1988-10-03
JSC Mission Control Center (MCC) Bldg 30 flight control room (FCR) personnel monitor STS-26 post landing activities and ceremonies at Edwards Air Force Base (EAFB) via their monitors. Displayed on front screens are approach and landing diagrams, data, the space shuttle program insignia, the STS-26 mission insignia, the Mission Operations Directorate insignia, and the STS-26 crew standing in front of Discovery, Orbiter Vehicle (OV) 103.
Mission control activity during STS-61 EVA-2
1993-12-05
Harry Black, at the Integrated Communications Officer's console in the Mission Control Center (MCC), monitors the second extravehicular activity (EVA-2) of the STS-61 Hubble Space Telescope (HST) servicing mission. Others pictured, left to right, are Judy Alexander, Kathy Morrison and Linda Thomas. Note monitor scene of one of HST's original solar array panels floating in space moments after being tossed away by Astronaut Kathryn C. Thornton.
NASA Technical Reports Server (NTRS)
Sanders, Felicia A.; Jones, Grailing, Jr.; Levesque, Michael
2006-01-01
The CCSDS File Delivery Protocol (CFDP) Standard could reshape ground support architectures by enabling applications to communicate over the space link using reliable-symmetric transport services. JPL utilized the CFDP standard to support the Deep Impact Mission. The architecture was based on layering the CFDP applications on top of the CCSDS Space Link Extension Services for data transport from the mission control centers to the ground stations. On July 4, 2005 at 1:52 A.M. EDT, the Deep Impact impactor successfully collided with comet Tempel 1. During the final 48 hours prior to impact, over 300 files were uplinked to the spacecraft, while over 6 thousand files were downlinked from the spacecraft using the CFDP. This paper uses the Deep Impact Mission as a case study in a discussion of the CFDP architecture, Deep Impact Mission requirements, and design for integrating the CFDP into the JPL deep space support services. Issues and recommendations for future missions using CFDP are also provided.
The level and determinants of mission statement use: a questionnaire survey.
Desmidt, Sebastian; Prinzie, Anita; Heene, Aimé
2008-10-01
Although mission statements are one of the most popular management instruments, little is known about the nature and direction of the presumed relationship between mission statements and organizational performance. In particular, empirical insights into the degree of mission statement use by individual organizational members are insufficient. We address the observed knowledge gap by (a) measuring the level of mission statement use (e.g., explaining the mission statement, making linkages to extant programs or practices, communicating enthusiasm, and adapting the mission statement to the personal work situation) by individual organizational members, and (b) identifying the antecedents that influence mission statement use. Questionnaires were used to collect data from a sample of 510 nurses from three Flemish hospitals. Mission statement use was measured by means of Fairhurst's Management of Meaning Scale. Antecedents of mission statement use were derived from the Theory of Planned Behavior and the mission statement literature. The findings indicate that mission statement use is low on average. Attitude, subjective norm, perceived behavioral control, and formal involvement in mission statement communication proved to be significant determinants of mission statement use and accounted for 43% of the variance. The results of the conducted regression analyses indicate that nurses (a) who have a positive attitude towards the mission statement, (b) who perceive pressure from superiors and colleagues to use the mission statement, (c) who feel they are in control of performing such behavior, and (d) who are formally involved in the mission statement communication processes are more likely to use the mission statement. Furthermore, the results indicated that demographic characteristics are not associated with mission statement use. To effectively increase mission statement use, investments should focus on redesigning a work environment that stresses the importance of the organizational mission statement and provides detailed information on the ways that individual organizational members can contribute in realizing the mission statement.
STS-131/19A Flight Control Team in FCR-1 - Orbit 1- Flight Director Ron Spencer
2010-04-14
JSC2010-E-052008 (14 April 2010) --- The members of the STS-131/19A ISS Orbit 2 flight control team pose for a group portrait in the space station flight control room in the Mission Control Center at NASA's Johnson Space Center. Flight director Ron Spencer (right) holds the STS-131 mission logo.
STS-131/19A Flight Control Team in FCR-1 - Orbit 3- Flight Director Ed Van Cise
2010-04-14
JSC2010-E-052556 (14 April 2010) --- The members of the STS-131/19A ISS Orbit 3 flight control team pose for a group portrait in the space station flight control room in the Mission Control Center at NASA's Johnson Space Center. Flight director Ed Van Cise holds the STS-131 mission logo.
An Overview of the StarLight Mission
NASA Technical Reports Server (NTRS)
Lay, Oliver; Blackwood, Gary; Dubovitsky, Serge; Duren, Riley
2004-01-01
An overview of the Starlight Mission is presented. Mission summary: June 2006 launch to heliocentric orbit; Nominal 6 month mission with option of additional 6 month extension; Validate autonomous formation flying system: range control to 10 cm bearing, control to 4 arcmin; Demonstrate formation flying optical interferometry.The original 3 spacecraft design did not fit the budget. 2 spacecraft concept demonstrates all key areas of formation flying interferometry. Collector flown on the surface of a virtual paraboloid, with combiner at the focus. It Gives a baseline of 125 m with a fixed delay of only 14 m.
STS-103 crew perform virtual reality training in building 9N
1999-05-24
S99-05678 (24 May 1999)--- Astronaut Jean-Francois Clervoy (right), STS-103 mission specialist representing the European Space Agency (ESA), "controls" the shuttle's remote manipulator system (RMS) during a simulation using virtual reality type hardware at the Johnson Space Center (JSC). Looking on is astronaut John M. Grunsfeld, mission specialist. Both astronauts are assigned to separate duties supporting NASA's third Hubble Space Telescope (HST) servicing mission. Clervoy will be controlling Discovery's RMS and Grunsfeld is one of four astronauts that will be paired off for a total of three spacewalks on the mission.
Integrated payload and mission planning, phase 3. Volume 3: Ground real-time mission operations
NASA Technical Reports Server (NTRS)
White, W. J.
1977-01-01
The payloads tentatively planned to fly on the first two Spacelab missions were analyzed to examine the cost relationships of providing mission operations support from onboard vs the ground-based Payload Operations Control Center (POCC). The quantitative results indicate that use of a POCC, with data processing capability, to support real-time mission operations is the most cost effective case.
Control solutions for robots using Android and iOS devices
NASA Astrophysics Data System (ADS)
Evans, A. William, III; Gray, Jeremy P.; Rudnick, Dave; Karlsen, Robert E.
2012-06-01
As more Soldiers seek to utilize robots to enhance their mission capabilities, controls are needed which are intuitive, portable, and adaptable to a wide range of mission tasks. Android™ and iOS™ devices have the potential to meet each of these requirements as well as being based on readily available hardware. This paper will focus on some of the ways in which an Android™ or iOS™ device could be used to control specific and varied robot mobility functions and payload tools. Several small unmanned ground vehicle (SUGV) payload tools will have been investigated at Camp Pendleton during a user assessment and mission feasibility study for automatic remote tool changing. This group of payload tools will provide a basis, to researchers, concerning what types of control functions are needed to fully utilize SUGV robotic capabilities. Additional, mobility functions using tablet devices have been used as part of the Safe Operation of Unmanned systems for Reconnaissance in Complex Environments Army Technology Objective (SOURCE ATO) which is investigating the safe operation of robotics. Using Android™ and iOS™ hand-held devices is not a new concept in robot manipulation. However, the authors of this paper hope to introduce some novel concepts that may serve to make the interaction between Soldier and machine more fluid and intuitive. By creating a better user experience, Android™ and iOS™ devices could help to reduce training time, enhance performance, and increase acceptance of robotics as valuable mission tools for Soldiers.
Caldwell, B S
2000-09-01
AO-lU. Expedition-class missions are distinct from historical human presence in space in ways that significantly affect information flow and information technology designs for such missions. The centrality of Mission Control in these missions is challenged by the distances, associated communication delays, and durations of expeditions, all of which require crews to have more local resources available to manage on-board situations. The author's current research investigates how ground controllers effectively allocate communications bandwidth, cognitive resources, and knowledge sharing skills during time critical routine and non-routine situations. The research focus is on team-based information and communication technology (ICT) use to provide recommendations for improvements to support adaptive bandwidth allocations and improved sharing of data and knowledge in Mission Control contexts. In order to further improve communication and coordination between controllers and crew, additional ICT support resources will be needed to provide shared context knowledge and dynamic assessment of costs and benefits for accessing local information vs. remote expertise. Crew members will have critical needs to understand the goals, intentions, and situational constraints associated with mission information resources in order to use them most effectively in conditions where ground-based expertise is insufficient or requires more time to access and coordinate than local task demands permit. Results of this research will serve to improve the design and implementation of ICT systems to improve human performance capabilities and system operating tolerances for exploration missions. (Specific research data were not available at the time of publication.)
A review of Spacelab mission management approach
NASA Technical Reports Server (NTRS)
Craft, H. G., Jr.
1979-01-01
The Spacelab development program is a joint undertaking of the NASA and ESA. The paper addresses the initial concept of Spacelab payload mission management, the lessons learned, and modifications made as a result of the actual implementation of Spacelab Mission 1. The discussion covers mission management responsibilities, program control, science management, payload definition and interfaces, integrated payload mission planning, integration requirements, payload specialist training, payload and launch site integration, payload flight/mission operations, and postmission activities. After 3.5 years the outlined overall mission manager approach has proven to be most successful. The approach does allow the mission manager to maintain the lowest overall mission cost.
STS-98 crew members take part in CEIT
NASA Technical Reports Server (NTRS)
2000-01-01
STS-98 Mission Specialist Robert Curbeam (right) raises his arms as he checks out equipment inside the U.S. Lab, Destiny. At left of center is Mission Specialist Marsha Ivins. Curbeam and Ivins, along with other crew members, are taking part in Crew Equipment Interface Test activities becoming familiar with equipment they will be handling during the mission. Others in the crew are Commander Ken Cockrell, Pilot Mark Polansky and Mission Specialist Thomas Jones. The mission will be transporting the Lab to the International Space Station with five system racks already installed inside of the module. With delivery of electronics in the lab, electrically powered attitude control for Control Moment Gyroscopes will be activated. The STS-98 launch is scheduled for Jan. 18, 2001.
Stellar Imager - Observing the Universe in High Definition
NASA Technical Reports Server (NTRS)
Carpenter, Kenneth
2009-01-01
Stellar Imager (SI) is a space-based, UV Optical Interferometer (UVOI) with over 200x the resolution of HST. It will enable 0.1 milli-arcsec spectral imaging of stellar surfaces and the Universe in general and open an enormous new 'discovery space' for Astrophysics with its combination of high angular resolution, dynamic imaging, and spectral energy resolution. SI's goal is to study the role of magnetism in the Universe and revolutionize our understanding of: 1) Solar/Stellar Magnetic Activity and their impact on Space Weather, Planetary Climates. and Life, 2) Magnetic and Accretion Processes and their roles in the Origin and Evolution of Structure and in the Transport of Matter throughout the Universe, 3) the close-in structure of Active Galactic Nuclei and their winds, and 4) Exo-Solar Planet Transits and Disks. The SI mission is targeted for the mid 2020's - thus significant technology development in the upcoming decade is critical to enabling it and future spacebased sparse aperture telescope and distributed spacecraft missions. The key technology needs include: 1) precision formation flying of many spacecraft, 2) precision metrology over km-scales, 3) closed-loop control of many-element, sparse optical arrays, 4) staged-control systems with very high dynamic ranges (nm to km-scale). It is critical that the importance of timely development of these capabilities is called out in the upcoming Astrophysics and Heliophysics Decadal Surveys, to enable the flight of such missions in the following decade. S1 is a 'Landmark/Discovery Mission' in 2005 Heliophysics Roadmap and a candidate UVOI in the 2006 Astrophysics Strategic Plan. It is a NASA Vision Mission ('NASA Space Science Vision Missions' (2008), ed. M. Allen) and has also been recommended for further study in the 2008 NRC interim report on missions potentially enabled enhanced by an Ares V' launch, although a incrementally-deployed version could be launched using smaller rockets.
NASA Technical Reports Server (NTRS)
Hepler, A. K.; Zeck, H.; Walker, W. H.; Polack, A.
1982-01-01
Control requirements of Controlled Configured Design Approach vehicles with far-aft center of gravity locations are studied. The baseline system investigated is a fully reusable vertical takeoff/horizontal landing single stage-to-orbit vehicle with mission requirements similar to that of the space shuttle vehicle. Evaluations were made to determine dynamic stability boundaries, time responses, trim control, operational center-of-gravity limits, and flight control subsystem design requirements. Study tasks included a baseline vehicle analysis, an aft center of gravity study, a payload size study, and a technology assessment.
Time-optimal control of the spacecraft trajectories in the Earth-Moon system
NASA Astrophysics Data System (ADS)
Starinova, O. L.; Fain, M. K.; Materova, I. L.
2017-01-01
This paper outlines the multiparametric optimization of the L1-L2 and L2-L1 missions in the Earth-Moon system using electric propulsion. The optimal control laws are obtained using the Fedorenko successful linearization method to estimate the derivatives and the gradient method to optimize the control laws. The study of the transfers is based on the restricted circular three-body problem. The mathematical model of the missions is described within the barycentric system of coordinates. The optimization criterion is the total flight time. The perturbation from the Earth, the Moon and the Sun are taking into account. The impact of the shaded areas, induced by the Earth and the Moon, is also accounted. As the results of the optimization we obtained optimal control laws, corresponding trajectories and minimal total flight times.
NASA Technical Reports Server (NTRS)
1976-01-01
The engineering design for the Shuttle Missions Simulator is presented in sections, with each section representing a subsystem development activity. Subsystems covered include: electrical power system; mechanical power system; main propellant and external tank; solid rocket booster; reaction control system; orbital maneuvering system; guidance, navigation, and control; data processing system; mission control center interface; and image display system.
WILLIAMS, CLIFTON C. ASTRONAUT - MISSION CONTROL CENTER (MCC) - GEMINI-TITAN (GT)-3 - MSC
1965-03-23
S65-18063 (23 March 1965) --- Astronaut Clifton C. Williams is shown at console in the Mission Control Center (MCC) in Houston, Texas during the Gemini-Titan 3 flight. The GT-3 flight was monitored by the MCC in Houston, but was controlled by the MCC at Cape Kennedy.
STS-132/ULF4 Flight Controllers on Console
2010-05-18
JSC2010-E-081909 (18 May 2010) --- Flight director Mike Sarafin (left) and NASA astronaut Chris Cassidy, spacecraft communicator (CAPCOM) for the STS-132 mission, are pictured at their consoles in the space shuttle flight control room in the Mission Control Center at NASA's Johnson Space Center during flight day five activities.
STS-132/ULF4 Flight Controllers on Console - Orbit 2
2010-05-17
JSC2010-E-084271 (17 May 2010) --- Flight director Chris Edelen (right) and NASA astronaut Stanley Love, spacecraft communicator (CAPCOM) for the STS-132 mission, are pictured at their consoles in the space shuttle flight control room in the Mission Control Center at NASA's Johnson Space Center during flight day four activities.
Documentation of White Flight Control Room (WFCR), Building 30 during STS-109.
2002-03-07
JSC2002-E-08460 (7 March 2002) --- Flight directors Jeff Hanley (standing) and Bryan P. Austin watch the large screens from their consoles in the shuttle flight control room (WFCR) in Houston;s Mission Control Center (MCC) during the STS-109 Hubble Space Telescope (HST) servicing mission.
2005-02-28
JSC2001-E-25411 (17 August 2001) --- Astronaut Joan E. Higginbotham, ISS spacecraft communicator (CAPCOM), inputs data into her computer at her console in the station flight control room (BFCR) in Houston's Mission Control Center (MCC) during the STS-105 mission.
Advanced Technologies for Future Spacecraft Cockpits and Space-based Control Centers
NASA Technical Reports Server (NTRS)
Garcia-Galan, Carlos; Uckun, Serdar; Gregory, William; Williams, Kerry
2006-01-01
The National Aeronautics and Space Administration (NASA) is embarking on a new era of Space Exploration, aimed at sending crewed spacecraft beyond Low Earth Orbit (LEO), in medium and long duration missions to the Lunar surface, Mars and beyond. The challenges of such missions are significant and will require new technologies and paradigms in vehicle design and mission operations. Current roles and responsibilities of spacecraft systems, crew and the flight control team, for example, may not be sustainable when real-time support is not assured due to distance-induced communication lags, radio blackouts, equipment failures, or other unexpected factors. Therefore, technologies and applications that enable greater Systems and Mission Management capabilities on-board the space-based system will be necessary to reduce the dependency on real-time critical Earth-based support. The focus of this paper is in such technologies that will be required to bring advance Systems and Mission Management capabilities to space-based environments where the crew will be required to manage both the systems performance and mission execution without dependence on the ground. We refer to this concept as autonomy. Environments that require high levels of autonomy include the cockpits of future spacecraft such as the Mars Exploration Vehicle, and space-based control centers such as a Lunar Base Command and Control Center. Furthermore, this paper will evaluate the requirements, available technology, and roadmap to enable full operational implementation of onboard System Health Management, Mission Planning/re-planning, Autonomous Task/Command Execution, and Human Computer Interface applications. The technology topics covered by the paper include enabling technology to perform Intelligent Caution and Warning, where the systems provides directly actionable data for human understanding and response to failures, task automation applications that automate nominal and Off-nominal task execution based on human input or integrated health state-derived conditions. Shifting from Systems to Mission Management functions, we discuss the role of automated planning applications (tactical planning) on-board, which receive data from the other cockpit automation systems and evaluate the mission plan against the dynamic systems and mission states and events, to provide the crew with capabilities that enable them to understand, change, and manage the timeline of their mission. Lastly, we discuss the role of advanced human interface technologies that organize and provide the system md mission information to the crew in ways that maximize their situational awareness and ability to provide oversight and control of aLl the automated data and functions.
Space Station crew workload - Station operations and customer accommodations
NASA Technical Reports Server (NTRS)
Shinkle, G. L.
1985-01-01
The features of the Space Station which permit crew members to utilize work time for payload operations are discussed. The user orientation, modular design, nonstressful flight regime, in space construction, on board control, automation and robotics, and maintenance and servicing of the Space Station are examined. The proposed crew size, skills, and functions as station operator and mission specialists are described. Mission objectives and crew functions, which include performing material processing, life science and astronomy experiments, satellite and payload equipment servicing, systems monitoring and control, maintenance and repair, Orbital Maneuvering Vehicle and Mobile Remote Manipulator System operations, on board planning, housekeeping, and health maintenance and recreation, are studied.
NASA Global Hawk: A New Tool for Earth Science Research
NASA Technical Reports Server (NTRS)
Hall, Phill
2009-01-01
This slide presentation reviews the Global Hawk, a unmanned aerial vehicle (UAV) that NASA plans to use for Earth Sciences research. The Global Hawk is the world's first fully autonomous high-altitude, long-endurance aircraft, and is capable of conducting long duration missions. Plans are being made for the use of the aircraft on missions in the Arctic, Pacific and Western Atlantic Oceans. There are slides showing the Global Hawk Operations Center (GHOC), Flight Control and Air Traffic Control Communications Architecture, and Payload Integration and Accommodations on the Global Hawk. The first science campaign, planned for a study of the Pacific Ocean, is reviewed.
NASA Extreme Environment Mission Operations: Science Operations Development for Human Exploration
NASA Technical Reports Server (NTRS)
Bell, Mary S.
2014-01-01
The purpose of NASA Extreme Environment Mission Operations (NEEMO) mission 16 in 2012 was to evaluate and compare the performance of a defined series of representative near-Earth asteroid (NEA) extravehicular activity (EVA) tasks under different conditions and combinations of work systems, constraints, and assumptions considered for future human NEA exploration missions. NEEMO 16 followed NASA's 2011 Desert Research and Technology Studies (D-RATS), the primary focus of which was understanding the implications of communication latency, crew size, and work system combinations with respect to scientific data quality, data management, crew workload, and crew/mission control interactions. The 1-g environment precluded meaningful evaluation of NEA EVA translation, worksite stabilization, sampling, or instrument deployment techniques. Thus, NEEMO missions were designed to provide an opportunity to perform a preliminary evaluation of these important factors for each of the conditions being considered. NEEMO 15 also took place in 2011 and provided a first look at many of the factors, but the mission was cut short due to a hurricane threat before all objectives were completed. ARES Directorate (KX) personnel consulted with JSC engineers to ensure that high-fidelity planetary science protocols were incorporated into NEEMO mission architectures. ARES has been collaborating with NEEMO mission planners since NEEMO 9 in 2006, successively building upon previous developments to refine science operations concepts within engineering constraints; it is expected to continue the collaboration as NASA's human exploration mission plans evolve.
NASA Technical Reports Server (NTRS)
Williams, G. M.; Fraser, J. C.
1991-01-01
The objective was to examine state-of-the-art optical sensing and processing technology applied to control the motion of flexible spacecraft. Proposed large flexible space systems, such an optical telescopes and antennas, will require control over vast surfaces. Most likely distributed control will be necessary involving many sensors to accurately measure the surface. A similarly large number of actuators must act upon the system. The used technical approach included reviewing proposed NASA missions to assess system needs and requirements. A candidate mission was chosen as a baseline study spacecraft for comparison of conventional and optical control components. Control system requirements of the baseline system were used for designing both a control system containing current off-the-shelf components and a system utilizing electro-optical devices for sensing and processing. State-of-the-art surveys of conventional sensor, actuator, and processor technologies were performed. A technology development plan is presented that presents a logical, effective way to develop and integrate advancing technologies.
Systems Engineering Challenges for GSFC Space Science Mission Operations
NASA Technical Reports Server (NTRS)
Thienel, Julie; Harman, Richard R.
2017-01-01
The NASA Goddard Space Flight Center Space Science Mission Operations (SSMO) project currently manages19 missions for the NASA Science Mission Directorate, within the Planetary, Astrophysics, and Heliophysics Divisions. The mission lifespans range from just a few months to more than20 years. The WIND spacecraft, the oldest SSMO mission, was launched in 1994. SSMO spacecraft reside in low earth, geosynchronous,highly elliptical, libration point, lunar, heliocentric,and Martian orbits. SSMO spacecraft range in size from 125kg (Aeronomy of Ice in the Mesosphere (AIM)) to over 4000kg (Fermi Gamma-Ray Space Telescope (Fermi)). The attitude modes include both spin and three-axis stabilized, with varying requirements on pointing accuracy. The spacecraft are operated from control centers at Goddard and off-site control centers;the Lunar Reconnaissance Orbiter (LRO), the Solar Dynamics Observatory (SDO) and Magnetospheric MultiScale (MMS)mission were built at Goddard. The Advanced Composition Explorer (ACE) and Wind are operated out of a multi-mission operations center, which will also host several SSMO-managed cubesats in 2017. This paper focuses on the systems engineeringchallenges for such a large and varied fleet of spacecraft.
Near Earth asteroid rendezvous
NASA Technical Reports Server (NTRS)
1992-01-01
The Spacecraft Design Course is the capstone design class for the M.S. in astronautics at the Naval Postgraduate School. The Fall 92 class designed a spacecraft for the Near Earth Asteroid Rendezvous Mission (NEAR). The NEAR mission uses a robotic spacecraft to conduct up-close reconnaissance of a near-earth asteroid. Such a mission will provide information on Solar System formation and possible space resources. The spacecraft is intended to complete a NEAR mission as a relatively low-budget program while striving to gather as much information about the target asteroid as possible. A complete mission analysis and detailed spacecraft design were completed. Mission analysis includes orbit comparison and selection, payload and telemetry requirements, spacecraft configuration, and launch vehicle selection. Spacecraft design includes all major subsystems: structure, electrical power, attitude control, propulsion, payload integration, and thermal control. The resulting spacecraft demonstrates the possibility to meet the NEAR mission requirements using existing technology, 'off-the-shelf' components, and a relatively low-cost launch vehicle.
NASA Astrophysics Data System (ADS)
Diehl, Roger E.; Schinnerer, Ralph G.; Williamson, Walton E.; Boden, Daryl G.
The present conference discusses topics in orbit determination, tethered satellite systems, celestial mechanics, guidance optimization, flexible body dynamics and control, attitude dynamics and control, Mars mission analyses, earth-orbiting mission analysis/debris, space probe mission analyses, and orbital computation numerical analyses. Attention is given to electrodynamic forces for control of tethered satellite systems, orbiting debris threats to asteroid flyby missions, launch velocity requirements for interceptors of short range ballistic missiles, transfers between libration-point orbits in the elliptic restricted problem, minimum fuel spacecraft reorientation, orbital guidance for hitting a fixed point at maximum speed, efficient computation of satellite visibility periods, orbit decay and reentry prediction for space debris, and the determination of satellite close approaches.
View of Mission Control Center during Apollo 13 splashdown
NASA Technical Reports Server (NTRS)
1970-01-01
Overall view of Mission Operations Control Room in Mission Control Center at the Manned Spacecraft Center (MSC) during the ceremonies aboard the U.S.S. Iwo Jima, prime recovery ship for the Apollo 13 mission. Dr. Donald K. Slayton (in black shirt, left of center), Director of Flight Crew Operations at MSC, and Chester M. Lee of the Apollo Program Directorate, Office of Manned Space Flight, NASA Headquarters, shake hands, while Dr. Rocco A. Petrone, Apollo Program Director, Office of Manned Space Flight, NASA Headquarters (standing, near Lee), watches the large screen showing Astronaut James A. Lovell Jr., Apollo 13 commander, during the on-board ceremonies. In the foreground, Glynn S. Lunney (extreme left) and Eugene F. Kranz (smoking a cigar), two Apollo 13 Flight Directors, view the activity from their consoles.
MOCR activity during Day 6 of STS-3 mission
NASA Technical Reports Server (NTRS)
1982-01-01
Andrew A. Fullerton, the six-year-old son of STS-3 pilot C. Gordon Fullerton, watches a television monitor in the mission control center's viewing room (28802); Mrs. Marie J. Fullerton in the mission control center's viewing room. Other members of the STS-3 pilot's family are seated on each side of Mrs. Fullerton. His sister, Jeanne Dockham, is at left foreground; son Andrew A., at right foreground. Mr. and Mrs. E. G. Buettner, Mrs. Fullerton's parents, are seated at center, and beyond them is Mrs. Charles R. Fullerton, the astronaut's mother (28803); Mary Ann Austin seated at the remote manipulator sytem (RMS) console in the mission operations control room (MOCR) shares the scene with a representation of a 1/15-scale model of the Canadian-built remote manipulator system arm (28804).
NASA Technical Reports Server (NTRS)
Diehl, Roger E. (Editor); Schinnerer, Ralph G. (Editor); Williamson, Walton E. (Editor); Boden, Daryl G. (Editor)
1992-01-01
The present conference discusses topics in orbit determination, tethered satellite systems, celestial mechanics, guidance optimization, flexible body dynamics and control, attitude dynamics and control, Mars mission analyses, earth-orbiting mission analysis/debris, space probe mission analyses, and orbital computation numerical analyses. Attention is given to electrodynamic forces for control of tethered satellite systems, orbiting debris threats to asteroid flyby missions, launch velocity requirements for interceptors of short range ballistic missiles, transfers between libration-point orbits in the elliptic restricted problem, minimum fuel spacecraft reorientation, orbital guidance for hitting a fixed point at maximum speed, efficient computation of satellite visibility periods, orbit decay and reentry prediction for space debris, and the determination of satellite close approaches.
Modular Stirling Radioisotope Generator
NASA Technical Reports Server (NTRS)
Schmitz, Paul C.; Mason, Lee S.; Schifer, Nicholas A.
2016-01-01
High-efficiency radioisotope power generators will play an important role in future NASA space exploration missions. Stirling Radioisotope Generators (SRGs) have been identified as a candidate generator technology capable of providing mission designers with an efficient, high-specific-power electrical generator. SRGs high conversion efficiency has the potential to extend the limited Pu-238 supply when compared with current Radioisotope Thermoelectric Generators (RTGs). Due to budgetary constraints, the Advanced Stirling Radioisotope Generator (ASRG) was canceled in the fall of 2013. Over the past year a joint study by NASA and the Department of Energy (DOE) called the Nuclear Power Assessment Study (NPAS) recommended that Stirling technologies continue to be explored. During the mission studies of the NPAS, spare SRGs were sometimes required to meet mission power system reliability requirements. This led to an additional mass penalty and increased isotope consumption levied on certain SRG-based missions. In an attempt to remove the spare power system, a new generator architecture is considered, which could increase the reliability of a Stirling generator and provide a more fault-tolerant power system. This new generator called the Modular Stirling Radioisotope Generator (MSRG) employs multiple parallel Stirling convertor/controller strings, all of which share the heat from the General Purpose Heat Source (GPHS) modules. For this design, generators utilizing one to eight GPHS modules were analyzed, which provided about 50 to 450 W of direct current (DC) to the spacecraft, respectively. Four Stirling convertors are arranged around each GPHS module resulting in from 4 to 32 Stirling/controller strings. The convertors are balanced either individually or in pairs, and are radiatively coupled to the GPHS modules. Heat is rejected through the housing/radiator, which is similar in construction to the ASRG. Mass and power analysis for these systems indicate that specific power may be slightly lower than the ASRG and similar to the Multi-Mission Radioisotope Thermoelectric Generator (MMRTG). However, the reliability should be significantly increased compared to ASRG.
BioSentinel: Biosensors for Deep-Space Radiation Study
NASA Technical Reports Server (NTRS)
Lokugamage, Melissa P.; Santa Maria, Sergio R.; Marina, Diana B.; Bhattacharya, Sharmila
2016-01-01
The BioSentinel mission will be deployed on NASA's Exploration Mission 1 (EM-1) in 2018. We will use the budding yeast, Saccharomyces cerevisiae, as a biosensor to study the effect of deep-space radiation on living cells. The BioSentinel mission will be the first investigation of a biological response to space radiation outside Low Earth Orbit (LEO) in over 40 years. Radiation can cause damage such as double stand breaks (DSBs) on DNA. The yeast cell was chosen for this mission because it is genetically controllable, shares homology with human cells in its DNA repair pathways, and can be stored in a desiccated state for long durations. Three yeast strains will be stored dry in multiple microfluidic cards: a wild type control strain, a mutant defective strain that cannot repair DSBs, and a biosensor strain that can only grow if it gets DSB-and-repair events occurring near a specific gene. Growth and metabolic activity of each strain will be measured by a 3-color LED optical detection system. Parallel experiments will be done on the International Space Station and on Earth so that we can compare the results to that of deep space. One of our main objectives is to characterize the microfluidic card activation sequence before the mission. To increase the sensitivity of yeast cells as biosensors, desiccated yeast in each card will be resuspended in a rehydration buffer. After several weeks, the rehydration buffer will be exchanged with a growth medium in order to measure yeast growth and metabolic activity. We are currently working on a time-course experiment to better understand the effects of the rehydration buffer on the response to ionizing radiation. We will resuspend the dried yeast in our rehydration medium over a period of time; then each week, we will measure the viability and ionizing radiation sensitivity of different yeast strains taken from this rehydration buffer. The data obtained in this study will be useful in finalizing the card activation sequence for this mission.
STS-29 Commander Coats in JSC fixed base (FB) shuttle mission simulator (SMS)
NASA Technical Reports Server (NTRS)
1986-01-01
STS-29 Discovery, Orbiter Vehicle (OV) 103, Commander Michael L. Coats sits at commanders station forward flight deck controls in JSC fixed base (FB) shuttle mission simulator (SMS). Coats, wearing communications kit assembly headset and flight coveralls, looks away from forward control panels to aft flight deck. Pilots station seat back appears in foreground. FB-SMS is located in JSC Mission Simulation and Training Facility Bldg 5.
BFCR during Expedition 6 space walk on ISS
2003-01-15
JSC2003-E-02167 (15 January 2003) --- Astronaut Stanley G. Love, spacecraft communicator (CAPCOM), monitors data at his console in the station flight control room (BFCR) in Houstons Mission Control Center (MCC). At the time this photo was taken, astronauts Kenneth D. Bowersox and Donald R. Pettit, Expedition Six mission commander and NASA ISS science officer, respectively, were participating in the missions only scheduled session of extravehicular activity (EVA).
Mission, physical, and war stressors' impact on aircrew psychological strain.
Stetz, Thomas A; Stetz, Melba C; Turner, David D
2014-05-01
Little is known about the relative impact of the organization of missions on aircrew well-being. Using an occupational stress model we investigate a previously little studied concept of mission stressors and determine its relative impact in comparison to physical and war stressors in the prediction of four strains in deployed aircrews. Questionnaires were completed by 272 deployed in-aircraft crewmembers. Three new stressors were developed for this study: mission stressors, physical stressors, and war stressors. In addition, four strains were measured: PTSD, depression, sleepiness, and nervousness. Regression analyses were used to examine the relative impact of each stressor on the four strain measures while controlling for age and occupation. All three stressors played a significant role in the prediction strains with the total explained variance in the analyses ranging from 15% and 39%. Interestingly, mission stressors played the most important role in the prediction of strains possessing the largest partial eta squared in each analysis. The second most important stressor was physical stressors followed by war stressors. The importance of mission stressors may be because current training is designed to inoculate crewmembers to stressors such as the physical/environmental conditions and violent war actions, but there is no training or acknowledgment of the importance of dealing with mission stressors. Our findings suggest it might be beneficial for commanders to address these stressors, as it may improve short-term psychological well-being, which may ultimately impact mission success and safety.
Army Roles, Missions, and Doctrine in Low Intensity Conflict (ARMLIC). Preconflict Period
1971-02-01
conflict. 196F r . Bruce Russett, Hayward Alker, Jr., Karl Deutsch, and Harold D. Lasswell, World Handbook of Political and Social Indicators New Haven...Strategic Studies Institute r + e=u idJj Ich I =’ P 1 -4II.NI9*L COMBAT DEVELOPMENTS C0OMWAD Fort Belvoir, Virginla 22060 I AINY ROLES, MISSIONS, AND DOCTRINE...179 IX - REFERENCES ...... ................... .... 201 X - DISTRIBUTION ...... .................. ... 211 DOCUMENT CONTROL DATA - R &D
NASA Astrophysics Data System (ADS)
Meftah, M.; Irbah, A.; Hauchecorne, A.; Hochedez, J.-F.
2013-05-01
PICARD is a spacecraft dedicated to the simultaneous measurement of the absolute total and spectral solar irradiance, the diameter, the solar shape, and to probing the Sun's interior by the helioseismology method. The mission has two scientific objectives, which are the study of the origin of the solar variability, and the study of the relations between the Sun and the Earth's climate. The spacecraft was successfully launched, on June 15, 2010 on a DNEPR-1 launcher. PICARD spacecraft uses the MYRIADE family platform, developed by CNES to use as much as possible common equipment units. This platform was designed for a total mass of about 130 kg at launch. This paper focuses on the design and testing of the TCS (Thermal Control System) and in-orbit performance of the payload, which mainly consists in two absolute radiometers measuring the total solar irradiance, a photometer measuring the spectral solar irradiance, a bolometer, and an imaging telescope to determine the solar diameter and asphericity. Thermal control of the payload is fundamental. The telescope of the PICARD mission is the most critical instrument. To provide a stable measurement of the solar diameter over three years duration of mission, telescope mechanical stability has to be excellent intrinsically, and thermally controlled. Current and future space telescope missions require ever-more dimensionally stable structures. The main scientific performance related difficulty was to ensure the thermal stability of the instruments. Space is a harsh environment for optics with many physical interactions leading to potentially severe degradation of optical performance. Thermal control surfaces, and payload optics are exposed to space environmental effects including contamination, atomic oxygen, ultraviolet radiation, and vacuum temperature cycling. Environmental effects on the performance of the payload will be discussed. Telescopes are placed on spacecraft to avoid the effects of the Earth atmosphere on astronomical observations (turbulence, extinction, ...). Atmospheric effects, however, may subsist when spacecraft are launched into low orbits, with mean altitudes of the order of 735 km.
Using Natural Language to Enable Mission Managers to Control Multiple Heterogeneous UAVs
NASA Technical Reports Server (NTRS)
Trujillo, Anna C.; Puig-Navarro, Javier; Mehdi, S. Bilal; Mcquarry, A. Kyle
2016-01-01
The availability of highly capable, yet relatively cheap, unmanned aerial vehicles (UAVs) is opening up new areas of use for hobbyists and for commercial activities. This research is developing methods beyond classical control-stick pilot inputs, to allow operators to manage complex missions without in-depth vehicle expertise. These missions may entail several heterogeneous UAVs flying coordinated patterns or flying multiple trajectories deconflicted in time or space to predefined locations. This paper describes the functionality and preliminary usability measures of an interface that allows an operator to define a mission using speech inputs. With a defined and simple vocabulary, operators can input the vast majority of mission parameters using simple, intuitive voice commands. Although the operator interface is simple, it is based upon autonomous algorithms that allow the mission to proceed with minimal input from the operator. This paper also describes these underlying algorithms that allow an operator to manage several UAVs.
The LISA Pathfinder Mission: Sub-picometer Interferometry in Space
NASA Astrophysics Data System (ADS)
Slutsky, Jacob; LISA Pathfinder Collaboration
2018-01-01
The European Space Agency’s LISA Pathfinder was a mission built to demonstrate the technologies essential to implement a space-based gravitational wave observatory sensitive in the milli-Hertz frequency band. ESA recently selected the LISA mission as such a future observatory, scheduled to launch in the early 2030s. LISA Pathfinder launched in late 2015 and concluded its final extended mission in July 2017, during which time it placed the two test masses into free fall and successfully measured the relative acceleration between them to a sensitivity that validates a number of critical technologies for LISA. These include drag-free control of the test masses, low noise microNewton thrusters to control the spacecraft, and sub-picometer-level laser metrology in space. The mission also served as a sensitive probe of the environmenal conditions in which LISA will operate. This poster summarizes the recent analysis results, with an eye towards the implications for the LISA mission.
Space Students Visit MSFC During STS-35 Astro-1 Mission
NASA Technical Reports Server (NTRS)
1990-01-01
The primary objective of the STS-35 mission was round the clock observation of the celestial sphere in ultraviolet and X-Ray astronomy with the Astro-1 observatory which consisted of four telescopes: the Hopkins Ultraviolet Telescope (HUT); the Wisconsin Ultraviolet Photo-Polarimeter Experiment (WUPPE); the Ultraviolet Imaging Telescope (UIT); and the Broad Band X-Ray Telescope (BBXRT). The Huntsville Operations Support Center (HOSC) Spacelab Payload Operations Control Center (SL POCC) at the Marshall Space Flight Center (MSFC) was the air/ground communication channel used between the astronauts and ground control teams during the Spacelab missions. Teams of controllers and researchers directed on-orbit science operations, sent commands to the spacecraft, received data from experiments aboard the Space Shuttle, adjusted mission schedules to take advantage of unexpected science opportunities or unexpected results, and worked with crew members to resolve problems with their experiments. This photo is of Space classroom students in the Discovery Optics Lab at MSFC during STS-35, ASTRO-1 mission payload operations.
Multi-Objective Hybrid Optimal Control for Multiple-Flyby Low-Thrust Mission Design
NASA Technical Reports Server (NTRS)
Englander, Jacob A.; Vavrina, Matthew A.; Ghosh, Alexander R.
2015-01-01
Preliminary design of low-thrust interplanetary missions is a highly complex process. The mission designer must choose discrete parameters such as the number of flybys, the bodies at which those flybys are performed, and in some cases the final destination. In addition, a time-history of control variables must be chosen that defines the trajectory. There are often many thousands, if not millions, of possible trajectories to be evaluated. The customer who commissions a trajectory design is not usually interested in a point solution, but rather the exploration of the trade space of trajectories between several different objective functions. This can be a very expensive process in terms of the number of human analyst hours required. An automated approach is therefore very desirable. This work presents such an approach by posing the mission design problem as a multi-objective hybrid optimal control problem. The method is demonstrated on a hypothetical mission to the main asteroid belt.
Mission Command and the United States Navy: Overcoming Doctrinal Hurdles to Enable Mission Command
2017-05-12
Press, 2000), 40-44. 13 Carl H. Builder. The Masks of War: American Military Styles in Strategy and Analysis. (Baltimore: Johns Hopkins University...mission command’ clearly represents a ‘mission-specific’ style of command and control, while ‘command by negation’ more clearly represents an...objective-specific’ style . Differing Approaches Create Differing Outcomes Each of the three comparisons above demonstrate that ‘mission command’ and
NASA Technical Reports Server (NTRS)
Truszkowski, Walt; Obenschain, Arthur F. (Technical Monitor)
2002-01-01
Currently, spacecraft ground systems have a well defined and somewhat standard architecture and operations concept. Based on domain analysis studies of various control centers conducted over the years it is clear that ground systems have core capabilities and functionality that are common across all ground systems. This observation alone supports the realization of reuse. Additionally, spacecraft ground systems are increasing in their ability to do things autonomously. They are being engineered using advanced expert systems technology to provide automated support for operators. A clearer understanding of the possible roles of agent technology is advancing the prospects of greater autonomy for these systems. Many of their functional and management tasks are or could be supported by applied agent technology, the dynamics of the ground system's infrastructure could be monitored by agents, there are intelligent agent-based approaches to user-interfaces, etc. The premise of this paper is that the concepts associated with software reuse, applicable in consideration of classically-engineered ground systems, can be updated to address their application in highly agent-based realizations of future ground systems. As a somewhat simplified example consider the following situation, involving human agents in a ground system context. Let Group A of controllers be working on Mission X. They are responsible for the command, control and health and safety of the Mission X spacecraft. Let us suppose that mission X successfully completes it mission and is turned off. Group A could be dispersed or perhaps move to another Mission Y. In this case there would be reuse of the human agents from Mission X to Mission Y. The Group A agents perform their well-understood functions in a somewhat but related context. There will be a learning or familiarization process that the group A agents go through to make the new context, determined by the new Mission Y, understood. This simplified scenario highlights some of the major issues that need to be addressed when considering the situation where Group A is composed of software-based agents (not their human counterparts) and they migrate from one mission support system to another. This paper will address: - definition of an agent architecture appropriate to support reuse; - identification of non-mission-specific agent capabilities required; - appropriate knowledge representation schemes for mission-specific knowledge; - agent interface with mission-specific knowledge (a type of Learning); development of a fully-operational group of cooperative software agents for ground system support; architecture and operation of a repository of reusable agents that could be the source of intelligent components for realizing an autonomous (or nearly autonomous) agent-based ground system, and an agent-based approach to repository management and operation (an intelligent interface for human use of the repository in a ground-system development activity).
2003-08-13
KENNEDY SPACE CENTER, FLA. - While touring the SRB Retrieval Ship Freedom Star, STS-114 Commander Eileen Collins and Mission Specialist Soichi Noguchi point at something on the Banana River. Noguchi is with the Japanese space agency NASDA. The ships routinely are docked at Hangar AF on the river. On their mission, the crew - which also includes Pilot James Kelly and Mission Specialist Stephen Robinson - will carry the MultiPurpose Logistics Module (MPLM) Raffaello and External Stowage Platform 2 to the International Space Station. The MPLM will contain supplies and equipment. Another goal of the mission is to remove and replace a Control Moment Gyro. Launch date for mission STS-114 is under review.
2003-08-13
KENNEDY SPACE CENTER, FLA. - The STS-114 crew poses on deck with the captain of the Liberty Star, one of the SRB Retrieval Ships docked at Hangar AF on the Banana River. From left are Pilot James Kelly, Mission Specialist Soichi Noguchi, Capt. Bren Wade, Commander Eileen Collins and Mission Specialist Stephen Robinson. Noguchi is with the Japanese space agency NASDA. Mission STS-114 will carry the MultiPurpose Logistics Module (MPLM) Raffaello and External Stowage Platform 2 to the International Space Station. The MPLM will contain supplies and equipment. Another goal of the mission is to remove and replace a Control Moment Gyro. Launch date for mission STS-114 is under review.
2003-08-13
KENNEDY SPACE CENTER, FLA. - STS-114 Mission Specialist Soichi Noguchi, who is with the Japanese space agency NASDA, poses on the deck of one of the SRB Retrieval Ships docked at Hangar AF on the Banana River. He and other crew members Commander Eileen Collins, Pilot James Kelly and Mission Specialist Stephen Robinson toured the ships. Mission STS-114 will carry the MultiPurpose Logistics Module (MPLM) Raffaello and External Stowage Platform 2 to the International Space Station. The MPLM will contain supplies and equipment. Another goal of the mission is to remove and replace a Control Moment Gyro. Launch date for mission STS-114 is under review.
NASA Technical Reports Server (NTRS)
Alexander, Leslie, Jr.
2006-01-01
Advanced Chemical Propulsion (ACP) provides near-term incremental improvements in propulsion system performance and/or cost. It is an evolutionary approach to technology development that produces useful products along the way to meet increasingly more demanding mission requirements while focusing on improving payload mass fraction to yield greater science capability. Current activities are focused on two areas: chemical propulsion component, subsystem, and manufacturing technologies that offer measurable system level benefits; and the evaluation of high-energy storable propellants with enhanced performance for in-space application. To prioritize candidate propulsion technology alternatives, a variety of propulsion/mission analyses and trades have been conducted for SMD missions to yield sufficient data for investment planning. They include: the Advanced Chemical Propulsion Assessment; an Advanced Chemical Propulsion System Model; a LOx-LH2 small pumps conceptual design; a space storables propellant study; a spacecraft cryogenic propulsion study; an advanced pressurization and mixture ratio control study; and a pump-fed vs. pressure-fed study.
Pointing and Tracking Concepts for Deep Space Missions
NASA Technical Reports Server (NTRS)
Alexander, J. W.; Lee, S.; Chen, C.
2000-01-01
This paper summarizes part of a FY1998 effort on the design and development of an optical communications (Opcomm) subsystem for the Advanced Deep Space System Development (ADSSD) Project. This study was funded by the JPL X2000 program to develop an optical communications (Opcomm) subsystem for use in future planetary missions. The goal of this development effort was aimed at providing prototype hardware with the capability of performing uplink, downlink, and ranging functions from deep space distances. Such a system was envisioned to support future deep space missions in the Outer Planets/Solar Probe (OPSP) mission set such as the Pluto express and Europa orbiter by providing a significant enhancement of data return capability. A study effort was initiated to develop a flyable engineering model optical terminal to support the proposed Europa Orbiter mission - as either the prime telecom subsystem or for mission augmentation. The design concept was to extend the prototype lasercom terminal development effort currently conducted by JPL's Optical Communications Group. The subsystem would track the sun illuminated Earth at Europa and farther distances for pointing reference. During the course of the study, a number of challenging issues were found. These included thermo-mechanical distortion, straylight control, and pointing. This paper focuses on the pointing aspects required to locate and direct a laser beam from a spacecraft (S/C) near Jupiter to a receiving station on Earth.
Advanced Exploration Systems Water Architecture Study Interim Results
NASA Technical Reports Server (NTRS)
Sargusingh, Miriam J.
2013-01-01
The mission of the Advanced Exploration System (AES) Water Recovery Project (WRP) is to develop advanced water recovery systems that enable NASA human exploration missions beyond low Earth orbit (LEO). The primary objective of the AES WRP is to develop water recovery technologies critical to near-term missions beyond LEO. The secondary objective is to continue to advance mid-readiness-level technologies to support future NASA missions. An effort is being undertaken to establish the architecture for the AES Water Recovery System (WRS) that meets both near- and long-term objectives. The resultant architecture will be used to guide future technical planning, establish a baseline development roadmap for technology infusion, and establish baseline assumptions for integrated ground and on-orbit Environmental Control and Life Support Systems definition. This study is being performed in three phases. Phase I established the scope of the study through definition of the mission requirements and constraints, as well as identifying all possible WRS configurations that meet the mission requirements. Phase II focused on the near-term space exploration objectives by establishing an International Space Station-derived reference schematic for long-duration (>180 day) in-space habitation. Phase III will focus on the long-term space exploration objectives, trading the viable WRS configurations identified in Phase I to identify the ideal exploration WRS. The results of Phases I and II are discussed in this paper.
STS-125 Flight Control Team in WFCR - Ascent/Entry with Flight Director Norman Knight
2009-05-21
JSC2009-E-121353 (21 May 2009) --- The members of the STS-125 Ascent and Entry flight control team pose for a group portrait in the space shuttle flight control room in the Mission Control Center at NASA's Johnson Space Center. Flight director Norm Knight (left) and astronaut Gregory H. Johnson, spacecraft communicator (CAPCOM), hold the STS-125 mission logo.
Documentary views of Flight Director and Controller activity during STS-2
1981-11-12
S81-39431 (12 Nov. 1981) --- Eugene F. Kranz, left, and Dr. Christopher C. Kraft Jr. monitor data displayed on the FOD console in the mission operations control room (MOCR) in the Johnson Space Center?s mission control center following the successful launch of the Columbia, and the beginning of NASA?s second space shuttle mission. Dr. Kraft is director of the Johnson Space Center and Kranz is deputy director of the flight operations directorate (FOD) at JSC. Houston time for the launch was approximately 9:10 a.m., Nov 12, 1981. Photo credit: NASA
View of Mission Control Center during Apollo 13 splashdown
NASA Technical Reports Server (NTRS)
1970-01-01
Dr. Thomas O. Paine (center), NASA Administrator, and other NASA Officials joined others in applauding the successful splashdown of the Apollo 13 crewmen. Others among the large crowd in the Mission Operations Control Room of the Mission Control Center, Manned Spacecraft Center (MSC) at the time of recovery were U.S. Air Force Lt. Gen. Samuel C. Phillips (extreme left), who formerly served as Apollo program Director, Office of Manned Space Flight, NASA Headquarters; Dr. Charles A. Berry (third from left), Director, Medical Research and Operations Directorate, MSC; and Dr. George M. Low, Associate NASA Administrator.
Flight performance of Skylab attitude and pointing control system
NASA Technical Reports Server (NTRS)
Chubb, W. B.; Kennel, H. F.; Rupp, C. C.; Seltzer, S. M.
1975-01-01
The Skylab attitude and pointing control system (APCS) requirements are briefly reviewed and the way in which they became altered during the prelaunch phase of development is noted. The actual flight mission (including mission alterations during flight) is described. The serious hardware failures that occurred, beginning during ascent through the atmosphere, also are described. The APCS's ability to overcome these failures and meet mission changes are presented. The large around-the-clock support effort on the ground is discussed. Salient design points and software flexibility that should afford pertinent experience for future spacecraft attitude and pointing control system designs are included.
STS-105 coverage of Mission Control Center employees in the WFCR & BFCR
2003-03-25
JSC2001-E-25125 (16 August 2001) --- Flight directors John Shannon (left foreground) and Kelly Beck watch the large screens from their consoles in the shuttle flight control room (WFCR) in Houstons Mission Control Center (MCC) along with astronauts Joseph R. Tanner (left background) and Steve MacLean, STS-105 spacecraft communicators (CAPCOM). At the time this photo was taken, mission specialists Daniel T. Barry and Patrick G. Forrester were performing the first of two scheduled space walks during Discoverys visit to the International Space Station (ISS). MacLean represents the Canadian Space Agency.
Technology for return of planetary samples
NASA Technical Reports Server (NTRS)
1975-01-01
Technological requirements of a planetary return sample mission were studied. The state-of-the-art for problems unique to this class of missions was assessed and technological gaps were identified. The problem areas where significant advancement of the state-of-the-art is required are: life support for the exobiota during the return trip and within the Planetary Receiving Laboratory (PRL); biohazard assessment and control technology; and quarantine qualified handling and experimentation methods and equipment for studying the returned sample in the PRL. Concepts for solving these problems are discussed.
NASA Technical Reports Server (NTRS)
2008-01-01
When we began our study we sought to answer five fundamental implementation questions: 1) can foregrounds be measured and subtracted to a sufficiently low level?; 2) can systematic errors be controlled?; 3) can we develop optics with sufficiently large throughput, low polarization, and frequency coverage from 30 to 300 GHz?; 4) is there a technical path to realizing the sensitivity and systematic error requirements?; and 5) what are the specific mission architecture parameters, including cost? Detailed answers to these questions are contained in this report.
Controlling Infrastructure Costs: Right-Sizing the Mission Control Facility
NASA Technical Reports Server (NTRS)
Martin, Keith; Sen-Roy, Michael; Heiman, Jennifer
2009-01-01
Johnson Space Center's Mission Control Center is a space vehicle, space program agnostic facility. The current operational design is essentially identical to the original facility architecture that was developed and deployed in the mid-90's. In an effort to streamline the support costs of the mission critical facility, the Mission Operations Division (MOD) of Johnson Space Center (JSC) has sponsored an exploratory project to evaluate and inject current state-of-the-practice Information Technology (IT) tools, processes and technology into legacy operations. The general push in the IT industry has been trending towards a data-centric computer infrastructure for the past several years. Organizations facing challenges with facility operations costs are turning to creative solutions combining hardware consolidation, virtualization and remote access to meet and exceed performance, security, and availability requirements. The Operations Technology Facility (OTF) organization at the Johnson Space Center has been chartered to build and evaluate a parallel Mission Control infrastructure, replacing the existing, thick-client distributed computing model and network architecture with a data center model utilizing virtualization to provide the MCC Infrastructure as a Service. The OTF will design a replacement architecture for the Mission Control Facility, leveraging hardware consolidation through the use of blade servers, increasing utilization rates for compute platforms through virtualization while expanding connectivity options through the deployment of secure remote access. The architecture demonstrates the maturity of the technologies generally available in industry today and the ability to successfully abstract the tightly coupled relationship between thick-client software and legacy hardware into a hardware agnostic "Infrastructure as a Service" capability that can scale to meet future requirements of new space programs and spacecraft. This paper discusses the benefits and difficulties that a migration to cloud-based computing philosophies has uncovered when compared to the legacy Mission Control Center architecture. The team consists of system and software engineers with extensive experience with the MCC infrastructure and software currently used to support the International Space Station (ISS) and Space Shuttle program (SSP).
NASA Technical Reports Server (NTRS)
Squibb, G. F.; Heftman, K.
1996-01-01
This paper discusses the transition between traditional planetary missions (requiring constant operational control and limited in size only by booster capability) and the cheaper missions of the New Millennium spacecraft, which will be smaller and will have a great deal of autonomy.
SMART-1 technology, scientific results and heritage for future space missions
NASA Astrophysics Data System (ADS)
Foing, B. H.; Racca, G.; Marini, A.; Koschny, D.; Frew, D.; Grieger, B.; Camino-Ramos, O.; Josset, J. L.; Grande, M.; Smart-1 Science; Technology Working Team
2018-02-01
ESA's SMART-1 mission to the Moon achieved record firsts such as: 1) first Small Mission for Advanced Research and Technology; with spacecraft built and integrated in 2.5 years and launched 3.5 years after mission approval; 2) first mission leaving the Earth orbit using solar power alone; 3) most fuel effective mission (60 L of Xenon) and longest travel (13 months) to the Moon!; 4) first ESA mission reaching the Moon and first European views of lunar poles; 5) first European demonstration of a wide range of new technologies: Li-Ion modular battery, deep-space communications in X- and Ka-bands, and autonomous positioning for navigation; 6) first lunar demonstration of an infrared spectrometer and of a Swept Charge Detector Lunar X-ray fluorescence spectrometer; 7) first ESA mission with opportunity for lunar science, elemental geochemistry, surface mineralogy mapping, surface geology and precursor studies for exploration; 8) first controlled impact landing on the Moon with real time observations campaign; 9) first mission supporting goals of the International Lunar Exploration Working Group (ILEWG) in technical and scientific exchange, international collaboration, public and youth engagement; 10) first mission preparing the ground for ESA collaboration in Chandrayaan-1, Chang' E1 and future international lunar exploration. We review SMART-1 highlights and new results that are relevant to the preparation for future lunar exploration. The technology and methods had impact on space research and applications. Recent SMART-1 results are relevant to topics on: 1) the study of properties of the lunar dust, 2) impact craters and ejecta, 3) the study of illumination, 4) radio observations and science from the Moon, 5) support to future missions, 6) identifying and characterising sites for exploration and exploitation. On these respective topics, we discuss recent SMART-1 results and challenges. We also discuss the use of SMART-1 publications library. The SMART-1 archive observations have been used to support the goals of ILEWG. SMART-1 has been useful to prepare for Kaguya, Chandrayaan-1, Chang'E 1, the US Lunar Reconnaissance Orbiter, the LCROSS impact, future lunar landers and upcoming missions, and to contribute towards objectives of the Moon Village and future exploration.
2010-05-19
JSC2010-E-085363 (19 May 2010) --- The members of the STS-132 Orbit 3 flight control team pose for a group portrait in the space shuttle flight control room in the Mission Control Center at NASA's Johnson Space Center. Flight director Ginger Kerrick (right) holds the STS-132 mission logo. Photo credit: NASA or National Aeronautics and Space Administration
JPL Advanced Thermal Control Technology Roadmap - 2012
NASA Technical Reports Server (NTRS)
Birur, Gaj; Rodriguez, Jose I.
2012-01-01
NASA's new emphasis on human exploration program for missions beyond LEO requires development of innovative and revolutionary technologies. Thermal control requirements of future NASA science instruments and missions are very challenging and require advanced thermal control technologies. Limited resources requires organizations to cooperate and collaborate; government, industry, universities all need to work together for the successful development of these technologies.
Apollo Soyuz mission planning and operations
NASA Technical Reports Server (NTRS)
Frank, M. P., III
1976-01-01
The paper describes the Apollo Soyuz project from the points of view of working group organization, mission plan definition, joint operations concept, and mission preparation. The concept for joint operations considered contingency situations as well as nominal operations. Preparations for the joint flight included cooperative tracking tests and combined training of the flight crews and mission control personnel.