Science.gov

Sample records for mission measurement synergy

  1. Mars 2001 Lander Mission: Measurement Synergy Through Coordinated Operations Planning And Implementation

    NASA Technical Reports Server (NTRS)

    Arvidson, R.; Bell, J. F., III; Kaplan, D.; Marshall, J.; Mishkin, A.; Saunders, S.; Smith, P.; Squyres, S.

    1999-01-01

    , together with quantitative information on material mineralogy, chemistry, and physical properties (rock textures; soil grain size and shape distributions; degree and nature of soil induration; soil magnetic properties). The calibration targets provide radiometric and mineralogical control surfaces. The magnets allow observations of magnetic phases. Patch plates are imaged to determine adhesive and abrasive properties of soils. Coordinated mission planning is crucial for optimizing the measurement synergy among the packages included on the lander. This planning has already begun through generation of multi-sol detailed operations activities. One focus has been to develop a scenario to use the arm to dig a soil trench to a depth of tens of centimeters. The activity will be monitored through use of Pancam and RAC to ensure nominal operations and to acquire data to determine subsurface physical properties (e.g., angle of repose of trench walls). Pancam and Mini-TES observations would also provide constraints on mineralogy and texture for the walls and bottom of the trench during excavation. If desired, soils excavated at depth could be deposited on the surface and Mossbauer and APXS measurements could be acquired for these materials. Soil samples from various depths would be delivered to MECA for characterization of aqueous geochemistry and physical properties of soil grains, particularly size, shape, and hardness. These physical properties would be determined by optical and atomic force microscopy. When completed, detailed information of soil properties as a function of depth would be obtained. These various data sets would constrain our understanding of whether or not there are systematic variations in soil characteristics as a function of depth. These variations might be related, for example, to evaporative moisture losses and formation of salt deposits, thereby indicating water transport processes occurred fairly recently. Many other value-added measurement scenarios are

  2. Mars 2001 Lander Mission: Measurement Synergy Through Coordinated Operations Planning And Implementation

    NASA Technical Reports Server (NTRS)

    Arvidson, R.; Bell, J. F., III; Kaplan, D.; Marshall, J.; Mishkin, A.; Saunders, S.; Smith, P.; Squyres, S.

    1999-01-01

    , together with quantitative information on material mineralogy, chemistry, and physical properties (rock textures; soil grain size and shape distributions; degree and nature of soil induration; soil magnetic properties). The calibration targets provide radiometric and mineralogical control surfaces. The magnets allow observations of magnetic phases. Patch plates are imaged to determine adhesive and abrasive properties of soils. Coordinated mission planning is crucial for optimizing the measurement synergy among the packages included on the lander. This planning has already begun through generation of multi-sol detailed operations activities. One focus has been to develop a scenario to use the arm to dig a soil trench to a depth of tens of centimeters. The activity will be monitored through use of Pancam and RAC to ensure nominal operations and to acquire data to determine subsurface physical properties (e.g., angle of repose of trench walls). Pancam and Mini-TES observations would also provide constraints on mineralogy and texture for the walls and bottom of the trench during excavation. If desired, soils excavated at depth could be deposited on the surface and Mossbauer and APXS measurements could be acquired for these materials. Soil samples from various depths would be delivered to MECA for characterization of aqueous geochemistry and physical properties of soil grains, particularly size, shape, and hardness. These physical properties would be determined by optical and atomic force microscopy. When completed, detailed information of soil properties as a function of depth would be obtained. These various data sets would constrain our understanding of whether or not there are systematic variations in soil characteristics as a function of depth. These variations might be related, for example, to evaporative moisture losses and formation of salt deposits, thereby indicating water transport processes occurred fairly recently. Many other value-added measurement scenarios are

  3. Team Synergies in Sport: Theory and Measures.

    PubMed

    Araújo, Duarte; Davids, Keith

    2016-01-01

    Individual players act as a coherent unit during team sports performance, forming a team synergy. A synergy is a collective property of a task-specific organization of individuals, such that the degrees of freedom of each individual in the system are coupled, enabling the degrees of freedom of different individuals to co-regulate each other. Here, we present an explanation for the emergence of such collective behaviors, indicating how these can be assessed and understood through the measurement of key system properties that exist, considering the contribution of each individual and beyond These include: to (i) dimensional compression, a process resulting in independent degree of freedom being coupled so that the synergy has fewer degrees of freedom than the set of components from which it arises; (ii) reciprocal compensation, if one element do not produce its function, other elements should display changes in their contributions so that task goals are still attained; (iii) interpersonal linkages, the specific contribution of each element to a group task; and (iv), degeneracy, structurally different components performing a similar, but not necessarily identical, function with respect to context. A primary goal of our analysis is to highlight the principles and tools required to understand coherent and dynamic team behaviors, as well as the performance conditions that make such team synergies possible, through perceptual attunement to shared affordances in individual performers. A key conclusion is that teams can be trained to perceive how to use and share specific affordances, explaining how individual's behaviors self-organize into a group synergy. Ecological dynamics explanations of team behaviors can transit beyond mere ratification of sport performance, providing a comprehensive conceptual framework to guide the implementation of diagnostic measures by sport scientists, sport psychologists and performance analysts. Complex adaptive systems, synergies, group

  4. Team Synergies in Sport: Theory and Measures

    PubMed Central

    Araújo, Duarte; Davids, Keith

    2016-01-01

    Individual players act as a coherent unit during team sports performance, forming a team synergy. A synergy is a collective property of a task-specific organization of individuals, such that the degrees of freedom of each individual in the system are coupled, enabling the degrees of freedom of different individuals to co-regulate each other. Here, we present an explanation for the emergence of such collective behaviors, indicating how these can be assessed and understood through the measurement of key system properties that exist, considering the contribution of each individual and beyond These include: to (i) dimensional compression, a process resulting in independent degree of freedom being coupled so that the synergy has fewer degrees of freedom than the set of components from which it arises; (ii) reciprocal compensation, if one element do not produce its function, other elements should display changes in their contributions so that task goals are still attained; (iii) interpersonal linkages, the specific contribution of each element to a group task; and (iv), degeneracy, structurally different components performing a similar, but not necessarily identical, function with respect to context. A primary goal of our analysis is to highlight the principles and tools required to understand coherent and dynamic team behaviors, as well as the performance conditions that make such team synergies possible, through perceptual attunement to shared affordances in individual performers. A key conclusion is that teams can be trained to perceive how to use and share specific affordances, explaining how individual’s behaviors self-organize into a group synergy. Ecological dynamics explanations of team behaviors can transit beyond mere ratification of sport performance, providing a comprehensive conceptual framework to guide the implementation of diagnostic measures by sport scientists, sport psychologists and performance analysts. Complex adaptive systems, synergies, group

  5. Developing a scale to measure synergy in health promotion partnerships.

    PubMed

    Jones, Jacky; Barry, Margaret M

    2011-06-01

    Synergy is the degree to which a partnership combines the assets of all the partners in the search for better solutions and is generally regarded as the product of a partnership including vertical integration, shared know-how and shared resources. There has been very little research on the determinants and measurement of synergy in health promotion partnerships. This study was designed to describe how synergy is conceptualized in health promotion partnerships and to develop a synergy measurement tool. Five focus groups were organized with 36 health promotion partners in order to explore how synergy is conceptualized in their partnerships. Participants represented health, community, education, arts, sports and youth sectors. Focus groups were recorded and transcribed verbatim. A content analysis was carried out on the transcripts using counting and data reduction techniques. An item pool was generated from these findings and an eight-item five-point scale was developed called the Jones synergy scale. This scale was incorporated into an overall questionnaire on partnership functioning which was posted to 469 partners in 40 health promotion partnerships. A response rate of 72% was achieved for the postal survey (n = 337). The Jones synergy scale was subjected to reliability and validity tests. Cronbach's alpha was 0.91. Corrected item-total correlations ranged from 0.6 to 0.7 with a Cronbach's alpha if item deleted of 0.9 for all items. Principal components analysis (PCA) was the chosen factor analysis method. One component was extracted explaining 62% of the variance. Coefficients ranged from 0.83 to 0.70 with an initial eigenvalue of 4.94. The scale was subjected to item-convergent, item-discriminant and concurrent validity tests. All items correlated more strongly with their own scale than with any other scales used in the questionnaire. The Jones synergy scale was highly correlated (0.73, P < 0.01) with an existing synergy scale.

  6. Tropical Rainfall Measuring Mission

    NASA Technical Reports Server (NTRS)

    1999-01-01

    Tropical rainfall affects the lives and economics of a majority of the Earth's population. Tropical rain systems, such as hurricanes, typhoons, and monsoons, are crucial to sustaining the livelihoods of those living in the tropics. Excess rainfall can cause floods and great property and crop damage, whereas too little rainfall can cause drought and crop failure. The latent heat release during the process of precipitation is a major source of energy that drives the atmospheric circulation. This latent heat can intensify weather systems, affecting weather thousands of kilometers away, thus making tropical rainfall an important indicator of atmospheric circulation and short-term climate change. Tropical forests and the underlying soils are major sources of many of the atmosphere's trace constituents. Together, the forests and the atmosphere act as a water-energy regulating system. Most of the rainfall is returned to the atmosphere through evaporation and transpiration, and the atmospheric trace constituents take part in the recycling process. Hence, the hydrological cycle provides a direct link between tropical rainfall and the global cycles of carbon, nitrogen, and sulfur, all important trace materials for the Earth's system. Because rainfall is such an important component in the interactions between the ocean, atmosphere, land, and the biosphere, accurate measurements of rainfall are crucial to understanding the workings of the Earth-atmosphere system. The large spatial and temporal variability of rainfall systems, however, poses a major challenge to estimating global rainfall. So far, there has been a lack of rain gauge networks, especially over the oceans, which points to satellite measurement as the only means by which global observation of rainfall can be made. The Tropical Rainfall Measuring Mission (TRMM), jointly sponsored by the National Aeronautics and Space Administration (NASA) of the United States and the National Space Development Agency (NASDA) of

  7. Synergy, redundancy, and multivariate information measures: an experimentalist's perspective.

    PubMed

    Timme, Nicholas; Alford, Wesley; Flecker, Benjamin; Beggs, John M

    2014-04-01

    Information theory has long been used to quantify interactions between two variables. With the rise of complex systems research, multivariate information measures have been increasingly used to investigate interactions between groups of three or more variables, often with an emphasis on so called synergistic and redundant interactions. While bivariate information measures are commonly agreed upon, the multivariate information measures in use today have been developed by many different groups, and differ in subtle, yet significant ways. Here, we will review these multivariate information measures with special emphasis paid to their relationship to synergy and redundancy, as well as examine the differences between these measures by applying them to several simple model systems. In addition to these systems, we will illustrate the usefulness of the information measures by analyzing neural spiking data from a dissociated culture through early stages of its development. Our aim is that this work will aid other researchers as they seek the best multivariate information measure for their specific research goals and system. Finally, we have made software available online which allows the user to calculate all of the information measures discussed within this paper.

  8. Lasercom for interplanetary missions: recent European activities, future possibilities, and synergy aspects

    NASA Astrophysics Data System (ADS)

    Dreischer, T.; Arnold, F.; Kudielka, K.; Tissot, Y.; Weigel, T.

    2010-02-01

    Science return and high bandwidth communications are key issues to support the foreseen endeavors on spaceflights to the Moon and beyond. For a given mass, power consumption and volume, laser communications can offer an increase in telemetry bandwidth over classical RF technology allowing for a variety of new options, like more raw scientific data being sent back to Earth where data processing can be performed on ground. Recent European activities in the field of laser communications investigated mission scenarios for deep space and within the Earth's sphere of influence. Various link topologies have been investigated, involving Lissajous orbits at Libration points of the Earth-Sun and the Moon- Earth system, and also Martian orbiters. Different types of lasercom terminal concepts have been investigated, either operating fully autonomously or being attached to dedicated telecom orbiter spacecraft. Enhanced pulse position modulation formats were tested together with tailored FEC and interleaver technology in inter-island test campaigns using ESA's optical ground station on Tenerife. The paper summarizes the findings from all activities, highlights the potential and describes synergy aspects of involved technologies, all in view using lasercom as part of an integrated RF-optical TT&C subsystem to support enhanced science return.

  9. Ground-based and spacecraft-based data sets: examples of synergy from recent missions

    NASA Astrophysics Data System (ADS)

    Buratti, Bonnie; Hicks, Michael; Bauer, James

    2015-08-01

    Missions to small bodies have returned a wealth of observations at high spatial resolution and new wavelengths. Nevertheless, spacecraft data is often deficient in many ways, lacking in temporal coverage, specific viewing geometries, context, spectral range, and calibrations. Several recent examples illustrate how modest ground-based “support” measurements for missions to small bodies have substantially enhanced the results from these missions. Triton, Neptune’s giant moon, was observed by Voyager 2 in 1989: high resolution images showed a sublimating polar cap and explosive plumes of volatiles. This instant in time was placed into context by subsequent ground-based and HST observations of the moon that showed continued volatile transport. Similarly, decades of ground-based observations leading up to the New Horizons fast flyby of Pluto monitored long-term changes in frosts on the dwarf planet’s surface. Another example of synergistic measurements for small-body missions is that of complementary solar phase angle coverage. Space-based missions seldom have small phase angle measurements; similarly, ground-based measurements are often lacking at large solar phase angles (except of course for NEOs). This complementary phase angle coverage enables accurate photometric modeling, including determination of the bolometric Bond albedo, which is a key parameter for thermal modeling. Another key use of ground-based observations is to check and refine spacecraft calibrations, at least at wavelengths that are visible from Earth. In some cases, complete calibration sets are provided by Earth-based observing programs, such as that of ROLO (RObotic Lunar Observatory) for the Moon. Finally, context and the “big picture” in both time and space are provided by telescopic views of spacecraft targets before, during, and after mission durations or critical events.The astronomical community should continue to support, and participate in, teams that make synergistic

  10. The Global Precipitation Measurement Mission

    NASA Astrophysics Data System (ADS)

    Jackson, Gail

    2014-05-01

    The Global Precipitation Measurement (GPM) mission's Core satellite, scheduled for launch at the end of February 2014, is well designed estimate precipitation from 0.2 to 110 mm/hr and to detect falling snow. Knowing where and how much rain and snow falls globally is vital to understanding how weather and climate impact both our environment and Earth's water and energy cycles, including effects on agriculture, fresh water availability, and responses to natural disasters. The design of the GPM Core Observatory is an advancement of the Tropical Rainfall Measuring Mission (TRMM)'s highly successful rain-sensing package [3]. The cornerstone of the GPM mission is the deployment of a Core Observatory in a unique 65o non-Sun-synchronous orbit to serve as a physics observatory and a calibration reference to improve precipitation measurements by a constellation of 8 or more dedicated and operational, U.S. and international passive microwave sensors. The Core Observatory will carry a Ku/Ka-band Dual-frequency Precipitation Radar (DPR) and a multi-channel (10-183 GHz) GPM Microwave Radiometer (GMI). The DPR will provide measurements of 3-D precipitation structures and microphysical properties, which are key to achieving a better understanding of precipitation processes and improving retrieval algorithms for passive microwave radiometers. The combined use of DPR and GMI measurements will place greater constraints on possible solutions to radiometer retrievals to improve the accuracy and consistency of precipitation retrievals from all constellation radiometers. Furthermore, since light rain and falling snow account for a significant fraction of precipitation occurrence in middle and high latitudes, the GPM instruments extend the capabilities of the TRMM sensors to detect falling snow, measure light rain, and provide, for the first time, quantitative estimates of microphysical properties of precipitation particles. The GPM Core Observatory was developed and tested at NASA

  11. Study of atmospheric parameters measurements using MM-wave radar in synergy with LITE-2

    NASA Technical Reports Server (NTRS)

    Andrawis, Madeleine Y.

    1994-01-01

    The Lidar In-Space Technology Experiment, (LITE), has been developed, designed, and built by NASA Langley Research Center, to be flown on the space shuttle 'Discovery' on September 9, 1994. Lidar, which stands for light detecting and ranging, is a radar system that uses short pulses of laser light instead of radio waves in the case of the common radar. This space-based lidar offers atmospheric measurements of stratospheric and tropospheric aerosols, the planetary boundary layer, cloud top heights, and atmospheric temperature and density in the 10-40 km altitude range. A study is being done on the use, advantages, and limitations of a millimeterwave radar to be utilized in synergy with the Lidar system, for the LITE-2 experiment to be flown on a future space shuttle mission. The lower atmospheric attenuation, compared to infrared and optical frequencies, permits the millimeter-wave signals to penetrate through the clouds and measure multi-layered clouds, cloud thickness, and cloud-base height. These measurements would provide a useful input to radiation computations used in the operational numerical weather prediction models, and for forecasting. High power levels, optimum modulation, data processing, and high antenna gain are used to increase the operating range, while space environment, radar tradeoffs, and power availability are considered. Preliminary, numerical calculations are made, using the specifications of an experimental system constructed at Georgia Tech. The noncoherent 94 GHz millimeter-wave radar system has a pulsed output with peak value of 1 kW. The backscatter cross section of the particles to be measured, that are present in the volume covered by the beam footprint, is also studied.

  12. Study of atmospheric parameters measurements using MM-wave radar in synergy with LITE-2

    NASA Astrophysics Data System (ADS)

    Andrawis, Madeleine Y.

    1994-12-01

    The Lidar In-Space Technology Experiment, (LITE), has been developed, designed, and built by NASA Langley Research Center, to be flown on the space shuttle 'Discovery' on September 9, 1994. Lidar, which stands for light detecting and ranging, is a radar system that uses short pulses of laser light instead of radio waves in the case of the common radar. This space-based lidar offers atmospheric measurements of stratospheric and tropospheric aerosols, the planetary boundary layer, cloud top heights, and atmospheric temperature and density in the 10-40 km altitude range. A study is being done on the use, advantages, and limitations of a millimeterwave radar to be utilized in synergy with the Lidar system, for the LITE-2 experiment to be flown on a future space shuttle mission. The lower atmospheric attenuation, compared to infrared and optical frequencies, permits the millimeter-wave signals to penetrate through the clouds and measure multi-layered clouds, cloud thickness, and cloud-base height. These measurements would provide a useful input to radiation computations used in the operational numerical weather prediction models, and for forecasting. High power levels, optimum modulation, data processing, and high antenna gain are used to increase the operating range, while space environment, radar tradeoffs, and power availability are considered. Preliminary, numerical calculations are made, using the specifications of an experimental system constructed at Georgia Tech. The noncoherent 94 GHz millimeter-wave radar system has a pulsed output with peak value of 1 kW. The backscatter cross section of the particles to be measured, that are present in the volume covered by the beam footprint, is also studied.

  13. Global Precipitation Measurement Mission: Architecture and Mission Concept

    NASA Technical Reports Server (NTRS)

    Bundas, David

    2005-01-01

    The Global Precipitation Measurement (GPM) Mission is a collaboration between the National Aeronautics and Space Administration (NASA) and the Japanese Aerospace Exploration Agency (JAXA), and other partners, with the goal of monitoring the diurnal and seasonal variations in precipitation over the surface of the earth. These measurements will be used to improve current climate models and weather forecasting, and enable improved storm and flood warnings. This paper gives an overview of the mission architecture and addresses some of the key trades that have been completed, including the selection of the Core Observatory s orbit, orbit maintenance trades, and design issues related to meeting orbital debris requirements.

  14. Space Interferometry Mission: Measuring the Universe

    NASA Technical Reports Server (NTRS)

    Marr, James; Dallas, Saterios; Laskin, Robert; Unwin, Stephen; Yu, Jeffrey

    1991-01-01

    The Space Interferometry Mission (SIM) will be the NASA Origins Program's first space based long baseline interferometric observatory. SIM will use a 10 m Michelson stellar interferometer to provide 4 microarcsecond precision absolute position measurements of stars down to 20th magnitude over its 5 yr. mission lifetime. SIM will also provide technology demonstrations of synthesis imaging and interferometric nulling. This paper describes the what, why and how of the SIM mission, including an overall mission and system description, science objectives, general description of how SIM makes its measurements, description of the design concepts now under consideration, operations concept, and supporting technology program.

  15. Precursor Asteroid Missions and Synergies to Human Exploration of Phobos and Deimos

    NASA Technical Reports Server (NTRS)

    Abell, Paul

    2013-01-01

    U.S. President Obama stated on April 15, 2010 that the next goal for human spaceflight will be to send human beings to a near-Earth asteroid by 2025 and then on to the Martian system in the 2030s. Given this direction from the White House, NASA has been involved in studying various strategies for near-Earth object (NEO) exploration in order to follow U.S. space exploration policy. These missions would be the first human expeditions to interplanetary bodies beyond the Earth-Moon system and would prove useful for testing technologies required for human missions to Mars and its moons, as well as other Solar System destinations. Robotic precursor missions to NEOs would undoubtedly provide a great deal of technical and engineering data on spacecraft operations for future human space exploration while conducting in-depth scientific investigations of these primitive objects. In addition, the resulting scientific investigations would refine designs for future extraterrestrial resource extraction and utilization, which may play a vital role in leveraging potential resources from the Martian moons that in turn could enable robotic and human exploration of Mars.

  16. Mars X: A Mars Mission Architecture with Lunar-Mars Synergy

    NASA Astrophysics Data System (ADS)

    Brandenburg, J. E.

    2006-01-01

    A human mission to Mars, if it is to be cost effective, should take maximum advantage of previous efforts at the Moon, in terms of habitats, heavy lift boosters, and vehicles. It must also make use of nuclear site power for bases. However, to make such an effort sustainable over many administrations, it should not make use of nuclear propulsion. It is proposed in this architecture that high power Solar Electric Propulsion based around the MET (Microwave Electro-Thermal) thruster with water propellant, as an upper stage for a heavy lift booster, will allow a 46MT basic payload package to be sent to Mars. ISRU is utilized on Mars for production of RP1 and LOX to achieve Mars ascent and Mars Orbit rendezvous with an interplanetary stage. Two full tests of ISRU and Mars ascent are assumed for a human-rating of the system and to preposition water and RP1 in Mars orbit for abort to Earth from Mars orbit.

  17. Tropical Rainfall Measurement Mission (TRMM) Operation Summary

    NASA Technical Reports Server (NTRS)

    Nio, Tomomi; Saito, Susumu; Stocker, Erich; Pawloski, James H.; Murayama, Yoshifumi; Ohata, Takeshi

    2015-01-01

    The Tropical Rainfall Measurement Mission (TRMM) is a joint U.S. and Japan mission to observe tropical rainfall, which was launched by H-II No. 6 from Tanegashima in Japan at 6:27 JST on November 28, 1997. After the two-month commissioning of TRMM satellite and instruments, the original nominal mission lifetime was three years. In fact, the operations has continued for approximately 17.5 years. This paper provides a summary of the long term operations of TRMM.

  18. Global Precipitation Measurement (GPM) Mission Development Status

    NASA Technical Reports Server (NTRS)

    Azarbarzin, Ardeshir Art

    2011-01-01

    Mission Objective: (1) Improve scientific understanding of the global water cycle and fresh water availability (2) Improve the accuracy of precipitation forecasts (3) Provide frequent and complete sampling of the Earth s precipitation Mission Description (Class B, Category I): (1) Constellation of spacecraft provide global precipitation measurement coverage (2) NASA/JAXA Core spacecraft: Provides a microwave radiometer (GMI) and dual-frequency precipitation radar (DPR) to cross-calibrate entire constellation (3) 65 deg inclination, 400 km altitude (4) Launch July 2013 on HII-A (5) 3 year mission (5 year propellant) (6) Partner constellation spacecraft.

  19. Wide-Field InfraRed Survey Telescope (WFIRST) Mission and Synergies with LISA and LIGO-Virgo

    NASA Technical Reports Server (NTRS)

    Gehrels, N.; Spergel, D.

    2015-01-01

    The Wide-Field InfraRed Survey Telescope (WFIRST) is a NASA space mission in study for launch in 2024. It has a 2.4 m telescope, wide-field IR instrument operating in the 0.7 - 2.0 micron range and an exoplanet imaging coronagraph instrument operating in the 400 - 1000 nm range. The observatory will perform galaxy surveys over thousands of square degrees to J=27 AB for dark energy weak lensing and baryon acoustic oscillation measurements and will monitor a few square degrees for dark energy SN Ia studies. It will perform microlensing observations of the galactic bulge for an exoplanet census and direct imaging observations of nearby exoplanets with a pathfinder coronagraph. The mission will have a robust and wellfunded guest observer program for 25% of the observing time. WFIRST will be a powerful tool for time domain astronomy and for coordinated observations with gravitational wave experiments. Gravitational wave events produced by mergers of nearby binary neutron stars (LIGO-Virgo) or extragalactic supermassive black hole binaries (LISA) will produce electromagnetic radiation that WFIRST can observe.

  20. Wide-Field InfraRed Survey Telescope (WFIRST) Mission and Synergies with LISA and LIGO-Virgo

    NASA Astrophysics Data System (ADS)

    Gehrels, N.; Spergel, D.; WFIRST SDT Project

    2015-05-01

    The Wide-Field InfraRed Survey Telescope (WFIRST) is a NASA space mission in study for launch in 2024. It has a 2.4 m telescope, wide-field IR instrument operating in the 0.7 - 2.0 micron range and an exoplanet imaging coronagraph instrument operating in the 400 - 1000 nm range. The observatory will perform galaxy surveys over thousands of square degrees to J=27 AB for dark energy weak lensing and baryon acoustic oscillation measurements and will monitor a few square degrees for dark energy SN Ia studies. It will perform microlensing observations of the galactic bulge for an exoplanet census and direct imaging observations of nearby exoplanets with a pathfinder coronagraph. The mission will have a robust and well- funded guest observer program for 25% of the observing time. WFIRST will be a powerful tool for time domain astronomy and for coordinated observations with gravitational wave experiments. Gravitational wave events produced by mergers of nearby binary neutron stars (LIGO-Virgo) or extragalactic supermassive black hole binaries (LISA) will produce electromagnetic radiation that WFIRST can observe.

  1. Global Precipitation Measurement Mission Launch and Commissioning

    NASA Technical Reports Server (NTRS)

    Davis, Nikesha; Deweese, Keith; Vess, Missie; Welter, Gary; O'Donnell, James R., Jr.

    2015-01-01

    During launch and early operation of the Global Precipitation Measurement (GPM) Mission, the Guidance, Navigation and Control (GNC) analysis team encountered four main on orbit anomalies. These include: (1) unexpected shock from Solar Array deployment, (2) momentum buildup from the Magnetic Torquer Bars (MTBs) phasing errors, (3) transition into Safehold due to albedo-induced Course Sun Sensor (CSS) anomaly, and (4) a flight software error that could cause a Safehold transition due to a Star Tracker occultation. This paper will discuss ways GNC engineers identified and tracked down the root causes. Flight data and GNC on board models will be shown to illustrate how each of these anomalies were investigated and mitigated before causing any harm to the spacecraft. On May 29, 2014, GPM was handed over to the Mission Flight Operations Team after a successful commissioning period. Currently, GPM is operating nominally on orbit, collecting meaningful scientific data that will significantly improve our understanding of the Earth's climate and water cycle.

  2. The NASA Soil Moisture Active Passive (SMAP) Mission - Algorithm and Cal/Val Activities and Synergies with SMOS and Other L-Band Missions

    NASA Technical Reports Server (NTRS)

    Njoku, Eni; Entekhabi, Dara; O'Neill, Peggy; Jackson, Tom; Kellogg, Kent; Entin, Jared

    2011-01-01

    NASA's Soil Moisture Active Passive (SMAP) mission, planned for launch in late 2014, has as its key measurement objective the frequent, global mapping of near-surface soil moisture and its freeze-thaw state. SMAP soil moisture and freeze/thaw measurements at 10 km and 3 km resolutions respectively, would enable significantly improved estimates of water, energy and carbon transfers between the land and atmosphere. Soil moisture control of these fluxes is a key factor in the performance of atmospheric models used for weather forecasts and climate projections Soil moisture measurements are also of great importance in assessing floods and for monitoring drought. In addition, observations of soil moisture and freeze/thaw timing over the boreal latitudes can help reduce uncertainties in quantifying the global carbon balance. The SMAP measurement concept utilizes an L-band radar and radiometer sharing a rotating 6-meter mesh reflector antenna. The SMAP radiometer and radar flight hardware and ground processing designs are incorporating approaches to identify and mitigate potential terrestrial radio frequency interference (RFI). The radar and radiometer instruments are planned to operate in a 680 km polar orbit, viewing the surface at a constant 40-degree incidence angle with a 1000-km swath width, providing 3-day global coverage. Data from the instruments would yield global maps of soil moisture and freeze/thaw state to be provided at 10 km and 3 km resolutions respectively, every two to three days. Plans are to provide also a radiometer-only soil moisture product at 40-km spatial resolution. This product and the underlying brightness temperatures have characteristics similar to those provided by the Soil Moisture and Ocean Salinity (SMOS) mission. As a result, there are unique opportunities for common data product development and continuity between the two missions. SMAP also has commonalities with other satellite missions having L-band radiometer and/or radar sensors

  3. The Tropical Rainfall Measuring Mission (TRMM)

    NASA Technical Reports Server (NTRS)

    Simpson, Joanne; Kummerow, Christian D.; Meneghini, Robert; Hou, Arthur; Adler, Robert F.; Huffman, George; Barkstrom, Bruce; Wielicki, Bruce; Goodman, Steven J.; Christian, Hugh; Einaudi, Franco (Technical Monitor)

    1999-01-01

    Recognizing the importance of rain in the tropics and the accompanying latent heat release, NASA for the U.S. and NASDA for Japan have partnered in the design, construction and flight of an Earth Probe satellite to measure tropical rainfall and calculate the associated heating. Primary mission goals are: 1) the understanding of crucial links in climate variability by the hydrological cycle, 2) improvement in the large-scale models of weather and climate, and 3) improvement in understanding cloud ensembles and their impacts on larger scale circulations. The linkage with the tropical oceans and landmasses are also emphasized. The Tropical Rainfall Measuring Mission (TRMM) satellite was launched in November 1997 with fuel enough to obtain a four to five year data set of rainfall over the global tropics from 37 deg N to 37 deg S. This paper reports progress from launch date through the spring of 1999. The data system and its products and their access is described, as are the algorithms used to obtain the data. Some exciting early results from TRMM are described. Some important algorithm improvements are shown. These will be used in the first total data reprocessing, scheduled to be complete in early 2000. The reader is given information on how to access and use the data.

  4. Land Measurement from Future Landsat Missions

    NASA Astrophysics Data System (ADS)

    Irons, J. R.; Masek, J. G.; Ochs, W. R.; Gao, F.

    2005-12-01

    The current strategy for implementing a successor mission to Landsat 7 involves the integration of Landsat sensors onto satellites under development for the National Polar-orbiting Operational Environmental Satellite System (NPOESS). Unlike the data from other sensors planned for NPOESS satellites, Landsat data are not yet incorporated into algorithms for the generation of environmental data records. Placing the Landsat program into the NPOESS system creates the opportunity for defining and implementing environmental data records which fuse high resolution Landsat data with coarser resolution observations from the other sensors to create a suite of useful land measurement products. For example, a prototype product has been developed merging Landsat 7 Enhanced Thematic Mapper-Plus (ETM+) data with Moderate-Resolution Imaging Spectroradiometer (MODIS) data to create synthetic "daily" high resolution land reflectance images. This product is regarded as a preliminary step in creating annual, global land cover and land cover change maps meeting the needs of the Climate Change Science Program (CCSP) and other national and international environmental monitoring programs. The strategy for continuing the Landsat mission, the prototype land reflectance product, and the potential for using Landsat data to operationally produce a suite of land cover / land use change data records will be discussed.

  5. Global Precipitation Measurement Mission Launch and Commissioning

    NASA Technical Reports Server (NTRS)

    Davis, Nikesha; DeWeese, Keith; Vess, Melissa; O'Donnell, James R., Jr.; Welter, Gary

    2015-01-01

    During launch and early operation of the Global Precipitation Measurement (GPM) Mission, the Guidance, Navigation, and Control (GN&C) analysis team encountered four main on-orbit anomalies. These include: (1) unexpected shock from Solar Array deployment, (2) momentum buildup from the Magnetic Torquer Bars (MTBs) phasing errors, (3) transition into Safehold due to albedo induced Course Sun Sensor (CSS) anomaly, and (4) a flight software error that could cause a Safehold transition due to a Star Tracker occultation. This paper will discuss ways GN&C engineers identified the anomalies and tracked down the root causes. Flight data and GN&C on-board models will be shown to illustrate how each of these anomalies were investigated and mitigated before causing any harm to the spacecraft. On May 29, 2014, GPM was handed over to the Mission Flight Operations Team after a successful commissioning period. Currently, GPM is operating nominally on orbit, collecting meaningful scientific data that will significantly improve our understanding of the Earth's climate and water cycle.

  6. Synergies between Visible/Near-Infrared imaging spectrometry and the Thermal Infrared in an urban environment: An evaluation of the Hyperspectral Infrared Imager (HyspIRI) mission

    NASA Astrophysics Data System (ADS)

    Roberts, D. A.; Quattrochi, D. A.; Hulley, G. C.; Hook, S.; Green, R. O.

    2011-12-01

    More than half of humanity lives in urban areas, projected to exceed 80% by 2015. Urban areas are major sources of environmental contaminants and sinks of energy and materials. Globally, remote sensing contributes to improved understanding of urban impacts through mapping urban extent, vegetation and impervious cover fractions and urban energy balance including albedo, emissivity and land surface temperature (LST). HyspIRI is a NRC "Decadal Survey" mission combining a visible, near-infrared and shortwave infrared (VSWIR) imaging spectrometer with a multispectral thermal infrared (TIR) instrument . Potential synergies between VSWIR and TIR data were explored using analogous airborne data acquired over Santa Barbara in June, 2008. These data were analyzed at their native spatial resolutions (7.5m VSWIR and 15m TIR), and aggregated 60 m spatial resolution similar to HyspIRI. A spectral library of common urban materials (e.g., grass, trees, soil, roofs, roads) was built from field and airborne-measured spectra . LST and emissivity were also retrieved from the airborne data. Co-located pixels from airborne data were used to generate reflectance/emissivity spectra for a subset of urban materials. Multiple Endmember Spectral Mixture Analysis (MESMA) was used to map fractions of impervious, soil, green vegetation (GV) and non-photosynthetic vegetation (NPV) at the different spatial resolutions and to compare the fractional estimates across spatial scales. Surface energy parameters, including albedo, vegetation cover fraction, broadband emissivity and LST were also determined for urban and natural land-cover classes in the region. Fractions were validated using 1m digital photography. GV and NPV Fractions were highly correlated with validation data at all spatial scales, producing a near 1:1 relationship but with a <10% overestimate of GV from MESMA. Similar, high correlations were observed for impervious surfaces, although impervious was underestimated in most urban areas

  7. TRMM (Tropical Rainfall Measuring Mission): A satellite mission to measure tropical rainfall

    NASA Technical Reports Server (NTRS)

    Simpson, Joanne (Editor)

    1988-01-01

    The Tropical Rainfall Measuring Mission (TRMM) is presented. TRMM is a satellite program being studied jointly by the United States and Japan which would carry out the systematic study of tropical rainfall required for major strides in weather and climate research. The scientific justification for TRMM is discussed. The implementation process for the scientific community, NASA management, and the other decision-makers and advisory personnel who are expected to evaluate the priority of the project is outlined.

  8. Measuring galaxy environment with the synergy of future photometric and spectroscopic surveys

    NASA Astrophysics Data System (ADS)

    Cucciati, O.; Marulli, F.; Cimatti, A.; Merson, A. I.; Norberg, P.; Pozzetti, L.; Baugh, C. M.; Branchini, E.

    2016-10-01

    We exploit the synergy between low-resolution spectroscopy and photometric redshifts to study environmental effects on galaxy evolution in slitless spectroscopic surveys from space. As a test case, we consider the future Euclid Deep survey (˜40 deg2), which combines a slitless spectroscopic survey limited at Hα flux ≥5 × 10-17 erg cm-2 s-1 and a photometric survey limited in H band (H ≤ 26). We use Euclid-like galaxy mock catalogues, in which we anchor the photometric redshifts to the 3D galaxy distribution of the available spectroscopic redshifts. We then estimate the local density contrast by counting objects in cylindrical cells with radius from 1 to 10 h-1Mpc, over the redshift range 0.9 < z < 1.8. We compare this density field with the one computed in a mock catalogue with the same depth as the Euclid Deep survey (H = 26) but without redshift measurement errors. We find that our method successfully separates high- from low-density environments (the last from the first quintile of the density distribution), with higher efficiency at low redshift and large cells: the fraction of low-density regions mistaken by high-density peaks is <1 per cent for all scales and redshifts explored, but for scales of 1 h-1Mpc for which is a few per cent. These results show that we can efficiently study environment in photometric samples if spectroscopic information is available for a smaller sample of objects that sparsely samples the same volume. We demonstrate that these studies are possible in the Euclid Deep survey, i.e. in a redshift range in which environmental effects are different from those observed in the local Universe, hence providing new constraints for galaxy evolution models.

  9. The development of motor synergies in children: ultrasound and acoustic measurements.

    PubMed

    Noiray, Aude; Ménard, Lucie; Iskarous, Khalil

    2013-01-01

    The present study focuses on differences in lingual coarticulation between French children and adults. The specific question pursued is whether 4-5 year old children have already acquired a synergy observed in adults in which the tongue back helps the tip in the formation of alveolar consonants. Locus equations, estimated from acoustic and ultrasound imaging data were used to compare coarticulation degree between adults and children and further investigate differences in motor synergy between the front and back parts of the tongue. Results show similar slope and intercept patterns for adults and children in both the acoustic and articulatory domains, with an effect of place of articulation in both groups between alveolar and non-alveolar consonants. These results suggest that 4-5 year old children (1) have learned the motor synergy investigated and (2) have developed a pattern of coarticulatory resistance depending on a consonant place of articulation. Also, results show that acoustic locus equations can be used to gauge the presence of motor synergies in children.

  10. Utilizing The Synergy of Airborne Backscatter Lidar and In-Situ Measurements for Evaluating CALIPSO

    NASA Astrophysics Data System (ADS)

    Tsekeri, Alexandra; Amiridis, Vassilis; Marenco, Franco; Marinou, Eleni; Rosenberg, Phil; Solomos, Stavros; Trembath, Jamie; Allan, James; Bacak, Asan; Nenes, Athanasios

    2016-06-01

    Airborne campaigns dedicated to satellite validation are crucial for the effective global aerosol monitoring. CALIPSO is currently the only active remote sensing satellite mission, acquiring the vertical profiles of the aerosol backscatter and extinction coefficients. Here we present a method for CALIPSO evaluation from combining lidar and in-situ airborne measurements. The limitations of the method have to do mainly with the in-situ instrumentation capabilities and the hydration modelling. We also discuss the future implementation of our method in the ICE-D campaign (Cape Verde, August 2015).

  11. Precipitation Measurements from Space: The Global Precipitation Measurement Mission

    NASA Technical Reports Server (NTRS)

    Hou, Arthur Y.

    2007-01-01

    Water is fundamental to the life on Earth and its phase transition between the gaseous, liquid, and solid states dominates the behavior of the weather/climate/ecological system. Precipitation, which converts atmospheric water vapor into rain and snow, is central to the global water cycle. It regulates the global energy balance through interactions with clouds and water vapor (the primary greenhouse gas), and also shapes global winds and dynamic transport through latent heat release. Surface precipitation affects soil moisture, ocean salinity, and land hydrology, thus linking fast atmospheric processes to the slower components of the climate system. Precipitation is also the primary source of freshwater in the world, which is facing an emerging freshwater crisis in many regions. Accurate and timely knowledge of global precipitation is essential for understanding the behavior of the global water cycle, improving freshwater management, and advancing predictive capabilities of high-impact weather events such as hurricanes, floods, droughts, and landslides. With limited rainfall networks on land and the impracticality of making extensive rainfall measurements over oceans, a comprehensive description of the space and time variability of global precipitation can only be achieved from the vantage point of space. This presentation will examine current capabilities in space-borne rainfall measurements, highlight scientific and practical benefits derived from these observations to date, and provide an overview of the multi-national Global Precipitation Measurement (GPM) Mission scheduled to bc launched in the early next decade.

  12. Mars Atmosphere Argon Density Measurement on MER Mission

    NASA Astrophysics Data System (ADS)

    Economou, T. E.

    2008-11-01

    Using the Alpha Particle X-ray Spectrometer (APXS) on board Spirit and Opportunity rovers on MER mission, we were able to measure the argon density variation in the martian atmosphere as a function of seasonal changes.

  13. The development of Tropical Rainfall Measuring Mission (TRMM)

    NASA Technical Reports Server (NTRS)

    Kozu, Toshiaki; Kojima, Masahiro; Oikawa, Koki; Okamoto, Ken'ichi; Keating, Thomas; Cline, Helmut P.

    1992-01-01

    The Tropical Rainfall Measuring Mission (TRMM) is a joint-program between the U.S. and Japan. The objective of this international cooperative program is to carry out the systematic study of tropical rainfall required for major strides in weather and climate research. In this paper, launch operation, mission operation and data processing as well as the system design and development status of the TRMM satellite are presented.

  14. Synergy between cellulolytic enzymes during the biodegradation of cellulose microfibrils measured using angle-scanning surface plasmon resonance (SPR) imaging

    NASA Astrophysics Data System (ADS)

    Raegen, Adam; Dion, Alexander; Reiter, Kyle; Clarke, Anthony; Lipkowski, Jacek; Dutcher, John

    2014-03-01

    The use of cellulosic ethanol, a promising emerging energy source, is limited by the energy intensive and costly step of first converting the cellulose fibers into their constituent glucose monomers. Industrial processes mimic those that occur in nature, using mixtures or ``cocktails'' of different classes of cellulolytic enzymes derived from fungi. Despite several decades of investigation, the molecular mechanisms for enzyme synergy remain poorly understood. To gain additional insight, we have used a custom angle-scanning surface plasmon resonance (SPR) imaging apparatus to obtain a sensitive measure of enzymatic degradation. By implementing a novel SPR data analysis procedure, we have been able to track the thickness and roughness of laterally heterogeneous cellulose microfibril-coated substrates as enzymatic degradation proceeds. This has allowed us to measure the synergistic actions of the different enzymes, providing data that are directly relevant to the cellulosic ethanol industry.

  15. Prehension Synergies

    PubMed Central

    Zatsiorsky, Vladimir M.; Latash, Mark L.

    2010-01-01

    The precision grip requires the control of the normal and tangential forces exerted by the fingers as well as the control of the rotational equilibrium of the grasped object. Prehension synergies involve the conjoint changes in finger forces and moments during multifinger gripping tasks. Some of these adjustments are dictated by mechanics, whereas others are the result of a choice by the performer. PMID:15064652

  16. The Global Precipitation Measurement (GPM) Mission: An Overview

    NASA Technical Reports Server (NTRS)

    Hou, Arthur Y.

    2006-01-01

    The Global Precipitation Measurement (GPM) Mission is an international satellite mission that uses advanced precipitation radar with a constellation of passive microwave radiometers to improve the accuracy, sampling, and coverage of global precipitation measurements. It is a science mission with integrated applications goals focusing on (1) advancing the knowledge of the global watedenergy cycle variability and freshwater availability and (2) improving weather, climate, and hydrological prediction capabilities through more accurate and frequent measurements of global precipitation. The GPM Mission is currently a partnership between NASA and the Japanese Aerospace Exploration Agency (JAXA), with opportunities for additional domestic and international partners in satellite constellation buildup and ground validation activities. The GPM Core satellite, which carries a JAXA-provided dual-frequency precipitation radar and a NASAprovided microwave radiometers with high-frequency capabilities for light rain and frozen precipitation measurements, is expected to be launched in the 2010 timeframe. The GPM Core will serve as a precipitation physics laboratory and a calibration system for improved precipitation measurements by a heterogeneous constellation of dedicated and operational microwave radiometers. NASA also plans to provide a "wild card" constellation member with a copy of the radiometer carried on the GPM Core to be placed in an orbit that maximizes the coverage and sampling of the constellation. An overview of the GPM mission concept, instrument capabilities, ground validation plans, and the expected scientific and societal benefits will be presented.

  17. Summary Report of Mission Acceleration Measurements for STS-95

    NASA Technical Reports Server (NTRS)

    McPherson, Kevin; Hrovat, Kenneth

    2000-01-01

    John H. Glenn's historic return to space was a primary focus of the STS-95 mission. The Hubble Space Telescope (HST) Orbital Systems Test (HOST). an STS-95 payload, was an in-flight demonstration of HST components to be installed during the next HST servicing mission. One of the components under evaluation was the cryocooler for the Near Infrared Camera and Multi-Object Spectrometer (NICMOS). Based on concerns about vibrations from the operation of the NICMOS cryocooler affecting the overall HST line-of-sight requirements, the Space Acceleration Measurement System for Free-Flyers (SAMS-FF) was employed to measure the vibratory environment of the STS-95 mission, including any effects introduced by the NICMOS cryocooler. The STS-95 mission represents the first STS mission supported by SAMS-FF. Utilizing a Control and Data Acquisition Unit (CDU) and two triaxial sensor heads (TSH) mounted on the HOST support structure in Discovery's cargo bay, the SAMS-FF and the HOST project were able to make vibratory measurements both on-board the vibration-isolated NICMOS cryocooler and off-board the cryocooler mounting plate. By comparing the SAMS-FF measured vibrations on-board and off-board the NICMOS cryocooler, HST engineers could assess the cryocooler g-jitter effects on the HST line-of-sight requirements. The acceleration records from both SAMS-FF accelerometers were analyzed and significant features of the microgravity environment are detailed in this report.

  18. Global precipitation measurement (GPM) mission core spacecraft systems engineering challenges

    NASA Astrophysics Data System (ADS)

    Bundas, David J.; O'Neill, Deborah; Rhee, Michael; Feild, Thomas; Meadows, Gary; Patterson, Peter

    2006-09-01

    The Global Precipitation Measurement (GPM) Mission is a collaboration between the National Aeronautics and Space Administration (NASA) and the Japanese Aerospace Exploration Agency (JAXA), and other US and international partners, with the goal of monitoring the diurnal and seasonal variations in precipitation over the surface of the earth. These measurements will be used to improve current climate models and weather forecasting, and enable improved storm and flood warnings. This paper gives an overview of the mission architecture and addresses the status of some key trade studies, including the geolocation budgeting, design considerations for spacecraft charging, and design issues related to the mitigation of orbital debris.

  19. Aerobot measurements successfully obtained during Solo Spirit Balloon Mission

    NASA Astrophysics Data System (ADS)

    Avidson, Raymond E.; Bowman, Judd D.; Guinness, Edward A.; Johnson, Sarah S.; Slavney, S. H.; Stein, Thomas C.; Bachelder, Aaron D.; Cameron, Jonathan M.; Cutts, James A.; Ivlev, Robert V.; Kahn, Ralph A.

    Robotic balloons, also known as aerobots, have become candidates for collecting atmospheric data and detailed surface observations of Venus, Mars, and Titan. A mission to Venus over a decade ago used two of them. Their inclusion last year in attempts by a balloonist to circumnavigate the Earth aptly demonstrated their utility for remote sensing and in situ observations of planetary atmospheres.To simulate aspects of an aerobot mission, a small payload to measure local atmospheric conditions and balloon position and velocity was included on Solo Spirit “Round the World” flights during January and August of last year. These missions, flown in Roziere balloons, were attempts by Steve Fossett to become the first person to circumnavigate the globe in a balloon without stopping. Neither attempt was successful, but the aerobot came through with flying colors.

  20. Neutral Gas and Ion Measurements by the CONTOUR Mission

    NASA Technical Reports Server (NTRS)

    Mahaffy, Paul R.; Niemann, Hasso B. (Technical Monitor)

    2002-01-01

    The Neutral Gas and Ion Mass Spectrometer (NGIMS) on the Comet Nucleus Tour (CONTOUR) Mission will measure the chemical and isotopic composition of neutral and ion species in the coma of comet Encke and the subsequent targets of this mission. Currently the second target of this mission is comet Schwassmann-Wachmann 3. This neutral gas and ion data together with complementary data from the dust analyzer and the imaging spectrometer is designed to allow a broad characterization of the molecular and elemental composition of each cometary nucleus. These experiments enable the study of the of the likely variations in chemical conditions present in different regions of the early solar nebula where the comets formed. With these experiments we will also test ideas about cometary contributions of organics, water, and other volatiles to the inner planets. The CONTOUR NGIMS data set from multiple comets is expected to provide an important extension of to the only other detailed in situ data set from a close flyby of a nucleus, that from Halley. CONTOUR will extend this measurement of an Oort cloud comet to the class of short period comets thought to originate in the Kuiper belt. This data will complement the detailed measurements to be carried out at a single nucleus by the Rosetta Mission.

  1. ARIM-1: The Atmospheric Refractive Index Measurements Sounding Rocket Mission

    NASA Technical Reports Server (NTRS)

    Ruiz, B. Ian (Editor)

    1995-01-01

    A conceptual design study of the ARIM-1 sounding rocket mission, whose goal is to study atmospheric turbulence in the tropopause region of the atmosphere, is presented. The study was conducted by an interdisciplinary team of students at the University of Alaska Fairbanks who were enrolled in a Space Systems Engineering course. The implementation of the ARIM-1 mission will be carried out by students participating in the Alaska Student Rocket Program (ASRP), with a projected launch date of August 1997. The ARIM-1 vehicle is a single stage sounding rocket with a 3:1 ogive nose cone, a payload diameter of 8 in., a motor diameter of 7.6 in., and an overall height of 17.0 ft including the four fins. Emphasis is placed on standardization of payload support systems. The thermosonde payload will measure the atmospheric turbulence by direct measurement of the temperature difference over a distance of one meter using two 3.45-micron 'hot-wire' probes. The recovery system consists of a 6 ft. diameter ribless guide surface drogue chute and a 33 ft. diameter main cross parachute designed to recover a payload of 31 pounds and slow its descent rate to 5 m/s through an altitude of 15 km. This document discusses the science objectives, mission analysis, payload mechanical configuration and structural design, recovery system, payload electronics, ground station, testing plans, and mission implementation.

  2. Program control on the Tropical Rainfall Measuring Mission

    NASA Technical Reports Server (NTRS)

    Pennington, Dorothy J.; Majerowicw, Walter

    1994-01-01

    The Tropical Rainfall Measuring Mission (TRMM), an integral part of NASA's Mission to Planet Earth, is the first satellite dedicated to measuring tropical rainfall. TRMM will contribute to an understanding of the mechanisms through which tropical rainfall influences global circulation and climate. Goddard Space Flight Center's (GSFC) Flight Projects Directorate is responsible for establishing a Project Office for the TRMM to manage, coordinate, and integrate the various organizations involved in the development and operation of this complex satellite. The TRMM observatory, the largest ever developed and built inhouse at GSFC, includes state-of-the-art hardware. It will carry five scientific instruments designed to determine the rate of rainfall and the total rainfall occurring between the north and south latitudes of 35 deg. As a secondary science objective, TRMM will also measure the Earth's radiant energy budget and lightning.

  3. ATMOS: Long term atmospheric measurements for mission to planet Earth

    NASA Technical Reports Server (NTRS)

    1992-01-01

    A long-term, space-based measurement program, together with continued balloon and aircraft-borne investigations, is essential to monitor the predicted effects in the atmosphere, to determine to what extent the concentration measurements agree with current models of stratospheric chemistry, and to determine the condition of the ozone layer. The Atmospheric Trace Molecule Spectroscopy (ATMOS) Experiment is currently making comprehensive, global measurements of Earth's atmosphere as part of the Atmospheric Laboratory for Applications and Science (ATLAS) program on the Space Shuttle. Part of NASA's Mission to Planet Earth, ATLAS is a continuing series of missions to study Earth and the Sun and provide a more fundamental understanding of the solar influences on Earth's atmosphere. The ATMOS program, instruments, and science results are presented.

  4. The Global Precipitation Measurement Mission: NASA Status and Early Results

    NASA Astrophysics Data System (ADS)

    Skofronick-Jackson, Gail; Huffman, G.; Petersen, W.; Kidd, Chris

    The Global Precipitation Measurement (GPM) mission’s Core satellite, launched 27 February 2014, is well-designed to estimate precipitation from 0.2 to 110 mm/hr and to detect falling snow. Knowing where and how much rain and snow falls globally is vital to understanding how weather and climate impact both our environment and Earth’s water and energy cycles, including effects on agriculture, fresh water availability, and responses to natural disasters. GPM is a joint NASA-JAXA mission. The design of the GPM Core Observatory is an advancement of the Tropical Rainfall Measuring Mission (TRMM)’s highly successful rain-sensing package. The cornerstone of the GPM mission is the deployment of a Core Observatory in a unique 65 (°) non-Sun-synchronous orbit serving as a physics observatory and a calibration reference to improve precipitation measurements by a constellation of 8 or more dedicated and operational, U.S. and international passive microwave sensors. The Core Observatory carries a Ku/Ka-band Dual-frequency Precipitation Radar (DPR) and a multi-channel (10-183 GHz) GPM Microwave Radiometer (GMI). The DPR provides measurements of 3-D precipitation structures and microphysical properties, which are key to achieving a better understanding of precipitation processes and improving retrieval algorithms for passive microwave radiometers. The combined use of DPR and GMI measurements places greater constraints on possible solutions to radiometer retrievals to improve the accuracy and consistency of precipitation retrievals from all constellation radiometers. Furthermore, since light rain and falling snow account for a significant fraction of precipitation occurrence in middle and high latitudes, the GPM instruments extend the capabilities of the TRMM sensors to detect falling snow, measure light rain, and provide, for the first time, quantitative estimates of microphysical properties of precipitation particles. The GPM mission science objectives and instrument

  5. NASA's Global Precipitation Measurement (GPM) Mission for Science and Society

    NASA Astrophysics Data System (ADS)

    Jackson, Gail

    2016-04-01

    Water is fundamental to life on Earth. Knowing where and how much rain and snow falls globally is vital to understanding how weather and climate impact both our environment and Earth's water and energy cycles, including effects on agriculture, fresh water availability, and responses to natural disasters. The Global Precipitation Measurement (GPM) Mission, launched February 27, 2014, is an international satellite mission to unify and advance precipitation measurements from a constellation of research and operational sensors to provide "next-generation" precipitation products. The joint NASA-JAXA GPM Core Observatory serves as the cornerstone and anchor to unite the constellation radiometers. The GPM Core Observatory carries a Ku/Ka-band Dual-frequency Precipitation Radar (DPR) and a multi-channel (10-183 GHz) GPM Microwave Radiometer (GMI). Furthermore, since light rain and falling snow account for a significant fraction of precipitation occurrence in middle and high latitudes, the GPM instruments extend the capabilities of the TRMM sensors to detect falling snow, measure light rain, and provide, for the first time, quantitative estimates of microphysical properties of precipitation particles. As a science mission with integrated application goals, GPM is designed to (1) advance precipitation measurement capability from space through combined use of active and passive microwave sensors, (2) advance the knowledge of the global water/energy cycle and freshwater availability through better description of the space-time variability of global precipitation, and (3) improve weather, climate, and hydrological prediction capabilities through more accurate and frequent measurements of instantaneous precipitation rates and time-integrated rainfall accumulation. Since launch, the instruments have been collecting outstanding precipitation data. New scientific insights resulting from GPM data, an overview of the GPM mission concept and science activities in the United States

  6. Global Precipitation Measurement (GPM) Mission Applications: Activities, Challenges, and Vision

    NASA Technical Reports Server (NTRS)

    Kirschbaum, Dalia; Hou, Arthur

    2012-01-01

    Global Precipitation Measurement (GPM) is an international satellite mission to provide nextgeneration observations of rain and snow worldwide every three hours. NASA and the Japan Aerospace Exploration Agency (JAXA) will launch a "Core" satellite carrying advanced instruments that will set a new standard for precipitation measurements from space. The data they provide will be used to unify precipitation measurements made by an international network of partner satellites to quantify when, where, and how much it rains or snows around the world. The GPM mission will help advance our understanding of Earth's water and energy cycles, improve the forecasting of extreme events that cause natural disasters, and extend current capabilities of using satellite precipitation information to directly benefit society. Building upon the successful legacy of the Tropical Rainfall Measuring Mission (TRMM), GPM's next-generation global precipitation data will lead to scientific advances and societal benefits within a range of hydrologic fields including natural hazards, ecology, public health and water resources. This talk will highlight some examples from TRMM's IS-year history within these applications areas as well as discuss some existing challenges and present a look forward for GPM's contribution to applications in hydrology.

  7. Case study of extreme aerosol pollution events in the Paris area by synergy between optical measurements from multiple platforms

    NASA Astrophysics Data System (ADS)

    Totems, Julien; Chazette, Patrick; Royer, Philippe

    2013-04-01

    Major pollution events encountered in the Paris area are mainly due to anticyclonic conditions where air masses are blocked and recycled (horizontal wind speed less than 1 m.s-1) or advected from northestern Europe. Such events with aerosol optical thickness larger than 0.4 at 355 nm have been documented by in situ sensors (AirParif network), ground-based sunphotometers (Aeronet network) and fixed and mobile ground-based Rayleigh-Mie lidars. The first studied event occurred during the MEGAPOLI (Megacities: Emissions, urban, regional and Global Atmospheric POLlution and climate effects, and Integrated tools for assessment and mitigation) summer experiment, on July 1st, 2009. Another favorable period for major pollution events is the spring season and we have highlighted two of them using the opportunity given by lidar experimental tests at LSCE in march 2011. Ground-based observations have been complemented by spaceborne measurements from MODIS and CALIPSO/CALIOP that give information on the spatial extent of the pollution plume in 3 dimensions. From this instrumental synergy we determine the aerosol optical properties (extinction coefficients in the atmospheric column, optical thickness, lidar ratio, ...). The probable aerosol sources have also been investigated using back-trajectories analyses computed by the HYSPLIT model (http://ready.arl.noaa.gov/HYSPLIT.php) ; they lie in the French Lorraine, Benelux, and German Saarland and Ruhr industrialized regions.

  8. Global Precipitation Measurement (GPM) Mission: Overview and Status

    NASA Technical Reports Server (NTRS)

    Hou, Arthur Y.

    2012-01-01

    The Global Precipitation Measurement (GPM) Mission is an international satellite mission specifically designed to unify and advance precipitation measurements from a constellation of research and operational microwave sensors. NASA and JAXA will deploy a Core Observatory in 2014 to serve as a reference satellite to unify precipitation measurements from the constellation of sensors. The GPM Core Observatory will carry a Ku/Ka-band Dual-frequency Precipitation Radar (DPR) and a conical-scanning multi-channel (10-183 GHz) GPM Microwave Radiometer (GMI). The DPR will be the first dual-frequency radar in space to provide not only measurements of 3-D precipitation structures but also quantitative information on microphysical properties of precipitating particles. The DPR and GMI measurements will together provide a database that relates vertical hydrometeor profiles to multi-frequency microwave radiances over a variety of environmental conditions across the globe. This combined database will be used as a common transfer standard for improving the accuracy and consistency of precipitation retrievals from all constellation radiometers. For global coverage, GPM relies on existing satellite programs and new mission opportunities from a consortium of partners through bilateral agreements with either NASA or JAXA. Each constellation member may have its unique scientific or operational objectives but contributes microwave observations to GPM for the generation and dissemination of unified global precipitation data products. In addition to the DPR and GMI on the Core Observatory, the baseline GPM constellation consists of the following sensors: (1) Special Sensor Microwave Imager/Sounder (SSMIS) instruments on the U.S. Defense Meteorological Satellite Program (DMSP) satellites, (2) the Advanced Microwave Scanning Radiometer-2 (AMSR-2) on the GCOM-W1 satellite of JAXA, (3) the Multi-Frequency Microwave Scanning Radiometer (MADRAS) and the multi-channel microwave humidity sounder

  9. An overview of NASA's ASCENDS Mission's Lidar Measurement Requirements

    NASA Astrophysics Data System (ADS)

    Abshire, J. B.; Browell, E. V.; Menzies, R. T.; Lin, B.; Spiers, G. D.; Ismail, S.

    2014-12-01

    The objectives of NASA's ASCENDS mission are to improve the knowledge of global CO2 sources and sinks by precisely measuring the tropospheric column abundance of atmospheric CO2 and O2. The mission will use a continuously operating nadir-pointed integrated path differential absorption (IPDA) lidar in a polar orbit. The lidar offers a number of important new capabilities and will measure atmospheric CO2 globally over a wide range of challenging conditions, including at night, at high latitudes, through hazy and thin cloud conditions, and to cloud tops. The laser source enables a measurement of range, so that the absorption path length to the scattering surface will be always accurately known. The lidar approach also measures consistently in a nadir-zenith path and the narrow laser linewidth allows weighting the measurement to the lower troposphere. Using these measurements with atmospheric and flux models will allow improved estimates of CO2 fluxes and hence better understanding of the processes that exchange CO2 between the surface and atmosphere. The ASCENDS formulation team has developed a preliminary set of requirements for the lidar measurements. These were developed based on experience gained from the numerous ASCENDS airborne campaigns that have used different candidate lidar measurement techniques. They also take into account the complexity of making precise measurement of atmospheric gas columns when viewing the Earth from space. Some of the complicating factors are the widely varying reflectance and topographic heights of the Earth's land and ocean surfaces, the variety of cloud types, and the degree of cloud and aerosol absorption and scattering in the atmosphere. The requirements address the precision and bias in the measured column mixing ratio, the dynamic range of the expected surface reflected signal, the along-track sampling resolution, measurements made through thin clouds, measurements to forested and slope surfaces, range precision, measurements

  10. Ground truth observations for TRMM. [Tropical Rainfall Measuring Mission

    NASA Technical Reports Server (NTRS)

    Thiele, Otto W.

    1989-01-01

    Plans to obtain ground truth data for the validation of the Tropical Rainfall Measuring Mission (TRMM) are examined. The experimental rainfall measuring techniques considered for the program are discussed, including optical and Doppler rain gages, satellite beacon attenuation, underwater hydrophones, profilers, microwave attenuation, multiple frequency/polarization radar, and scanning and airborne Doppler radar. The TRMM validation program is considered, noting observations to compare averaged TRMM rainfall data with similar ground truth data and to compare the rainfall and height distribution data from TRMM with instantaneous ground truth data.

  11. Reconstruction of ocean velocities from the synergy between SSH and SST measurements

    NASA Astrophysics Data System (ADS)

    Isern-Fontanet, Jordi; Turiel, Antonio

    2013-04-01

    Recent advances in our understanding of the dynamics in the upper layers of the ocean have allowed us to develop methodologies to recover high resolution velocities from surface measurements such as Sea Surface Heights (SSH) and Sea Surface Temperatures (SST). These methods are based on the combined use of advanced signal processing techniques, such as wavelet analysis and singularity analysis, with dynamical approaches such as the Surface Quasi-Geostrophic (SQG) equations. Within the SQG framework, SSH and SST are closely related, which can be exploited to develop a synergetic approach that combines existing satellite measurements of these fields that can be used to recover subsurface buoyancy anomaly, surface and subsurface horizontal velocities and vertical velocities in the upper 300-500 m. Sentinel-3 satellite will follow its predecessors, ERS-1/2 and Envisat, and will provide simultaneous measurements of SST (SLSTR instrument) and SSH (SRAL and auxiliary instruments) that can be combined to produce high resolution surface currents. To test the feasibility of this approach for Sentinel-3 satellites we have reconstructed surface currents from AATSR and RA data provided by Envisat and compared results against independent SSH measurements provided Jason-1/2 platforms.

  12. Synergy benefit in temperature, humiditiy and cloud property profiling by integrating ground based and satellite measurements

    NASA Astrophysics Data System (ADS)

    Ebell, K.; Orlandi, E.; Hünerbein, A.; Crewell, S.; Löhnert, U.

    2012-12-01

    Accurate, highly vertically resolved temperature, humidity and cloud property profiles are needed for many applications. They are essential for climate monitoring, a better process understanding and the subsequent improvement of parameterizations in numerical weather prediction and climate models. In order to provide such profiles with a high temporal resolution, multiple wavelength active and passive remote sensing techniques available at ground based observatories, e.g. the Atmospheric Radiation Measruement (ARM) Program and Cloudnet facilities, need to be exploited. In particular, the Integrated Profiling Technique (IPT, Löhnert et al., 2008) has been successfully applied to simultaneously derive profiles of temperature, humidity and liquid water by a Bayesian based retrieval using a combination of ground based microwave radiometer, cloud radar and a priori information. Within the project ICOS (Integrating Cloud Observations from Ground and Space - a Way to Combine Time and Space Information), we develop a flexible IPT, which allows for the combination of a variety of ground based measurements from cloud radar, microwave radiometer (MWR) and IR spectrometer as well as satellite based information from the Spinning Enhanced Visible and InfraRed Imager (SEVIRI) onboard of METEOSAT. As ground based observations are mainly sensitive to the lower parts of the troposphere, the satellite measurements provide complementary information and are thus expected to improve the estimates of the thermodynamic and cloud property profiles, i. e. hydrometeor content and effective radius, considerably. In addition to the SEVIRI IR measurements, which are provided with a high repetition time, information from polar orbiting satellites could be included. In paticular, the potential of the Advanced Microwave Sounding Unit-A (AMSU-A) and Microwave Sounding Unit (MHS) in the retrieval is investigated. In order to understand the improvement by integrating the measurements of the above

  13. Global Precipitation Measurement (GPM) Mission: NASA Precipitation Processing System (PPS)

    NASA Technical Reports Server (NTRS)

    Stocker, Erich Franz

    2008-01-01

    NASA is contributing the precipitation measurement data system PPS to support the GPM mission. PPS will distribute all GPM data products including NASA s GMI data products freely and quickly. PPS is implementing no system mechanisms for restricting access to GPM data. PPS is implementing no system mechanisms for charging for GPM data products. PPS will provide a number of geographical and parameter subsetting features available to its users. The first implementation of PPS (called PPS--) will assume processing of TRMM data effective 1 June 2008. TRMM realtime data will be available via PPS- to all users requesting access

  14. Gas Pressure Measurements on Space Shuttle Mission-39.

    DTIC Science & Technology

    2007-11-02

    AIR FORCE BASE, MA 01731-3010 D2 fC QUPC BP TD 1 GAS PRESSURE MEASUREMENTS ON SPACE SHUTTLE MISSION-39 William F. Denig Rodney A. Viereck 9 April 1996...DOCUMENTATION PAGE OMB No. 0704-0188 Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time...VA 22202-4302. and to the Office of Management and Budget. Paperwork Reduction Project (0704-0188), Washington, DC 20503. 1 . AGENCY USE ONLY (Leave

  15. Analysis of TRMM Microphysical Measurements: Tropical Rainfall Measuring Mission (TRMM)

    NASA Technical Reports Server (NTRS)

    2004-01-01

    SPEC Incorporated participated in three of the four TRMM field campaigns (TEFLUN-A, TEFLUN-B and KWAJEX), installing and operating a cloud particle imager (CPI) and a high volume precipitation spectrometer (HVPS) on the SPEC Learjet in TEFLUN-A, the University of North Dakota Citation in TEFLUN-B and KWAJEX, and a CPI on the NASA DC-8 in KWAJEX. This report presents and discusses new software tools and algorithms that were developed to analyze microphysical data collected during these field campaigns, as well as scientific interpretations of the data themselves. Software algorithms were developed to improve the analysis of microphysical measurements collected by the TRMM aircraft during the field campaigns. Particular attention was paid to developing and/or improving algorithms used to compute particle size distributions and ice water content. Software was also developed in support of production of the TRMM Common Microphysical Product (CMP) data files. CMP data files for TEFLUN-A field campaign were produced and submitted to the DAAC. Typical microphysical properties of convective and stratiform regions from TEFLUN-A and KWAJEX clouds were produced. In general, it was found that in the upper cloud region near -20 to -25 C, stratiform clouds contain very high (greater than 1 per cubic centimeter) concentrations of small ice particles, which are suspected to be a residual from homogeneous freezing and sedimentation of small drops in a convective updraft. In the upper cloud region near -20 to -25 C, convective clouds contain aggregates, which are not found lower in the cloud. Stratiform clouds contain aggregates at all levels, with the majority in the lowest levels. Convective cloud regions contain much higher LWC and drop concentrations than stratiform regions at all levels, and higher LWC in the middle and upper regions. Stratiform clouds contain higher IWC than convective clouds only at the lowest level. Irregular shaped ice particles are found in very high

  16. New Method for Astrometric Measurements in Space Mission, JASMINE.

    NASA Astrophysics Data System (ADS)

    Yano, T.; Gouda, N.; Yamada, Y.

    2006-08-01

    We present a new method for measuring positions of stars in the Milky Way Galaxy by astrometric satellite, JASMINE, which is in progress at the National Astronomical Observatory of Japan. JASMINE is the acronym of the Japan Astrometry Satellite Mission for Infrared (z-band : 0.9 micron) Exploration, and is planned to be launched around 2015 The main objective of JASMINE is to study the fundamental structure and evolution of the bulge components of the Milky Way Galaxy. In order to accomplish these objectives, JASMINE will measure trigonometric parallaxes, positions and proper motions of about a few million stars during the observational program, with the precision of 10 microarcsec at z =14mag. The telescope of JASMINE has just one field of view, which is different from other astrometric satellites like Hipparcos and GAIA, that have two fields of view with large angle. These satellites, Hipparcos and GAIA, scan along the great circle with the spin axis perpendicular to both two fields of view to estimate the relative positions of stars on the great circle. They scan many different great circles to observe all the sky. On the other hand, JASMINE will take overlapping fields of view without any gaps to survey an area of about 20deg*10deg. Accordingly survey area covers the region of about 20deg*10deg in the bulge component. JASMINE will continue the above procedure for observing the area during the mission life. As a consequence, JASMINE will observe the restricted regions around the Galactic bulge and sweep repeatedly. The mission life is planned to be 5 years.

  17. New method for astrometric measurements in Space Mission, JASMINE

    NASA Astrophysics Data System (ADS)

    Yano, T.; Gouda, N.; Yamada, Y.

    We present a new method for measuring positions of stars in the Milky Way Galaxy by astrometric satellite, JASMINE, which is in progress at the National Astronomical Observatory of Japan. JASMINE is the acronym of the Japan Astrometry Satellite Mission for Infrared (z-band : 0.9 micron) Exploration, and is planned to be launched around 2015 The main objective of JASMINE is to study the fundamental structure and evolution of the bulge components of the Milky Way Galaxy. In order to accomplish these objectives, JASMINE will measure trigonometric parallaxes, positions and proper motions of about a few million stars during the observational program, with the precision of 10 microarcsec at z =14mag. The telescope of JASMINE has just one field of view, which is different from other astrometric satellites like Hipparcos and GAIA, that have two fields of view with large angle. These satellites, Hipparcos and GAIA, scan along the great circle with the spin axis perpendicular to both two fields of view to estimate the relative positions of stars on the great circle. They scan many different great circles to observe all the sky. On the other hand, JASMINE will take overlapping fields of view without any gaps to survey an area of about 20deg×10deg. Accordingly survey area covers the region of about 20deg×10deg in the bulge component. JASMINE will continue the above procedure for observing the area during the mission life. As a consequence, JASMINE will observe the restricted regions around the Galactic bulge and sweep repeatedly. The mission life is planned to be 5 years.

  18. SRAG Measurements Performed During the Orion EFT-1 Mission

    NASA Technical Reports Server (NTRS)

    Gaza, Ramona

    2015-01-01

    The Exploration Flight Test 1 (EFT-1) was the first flight of the Orion Multi-Purpose Crew Vehicle (MPCV). The flight was launched on December 5, 2014, by a Delta IV Heavy rocket and lasted 4.5 hours. The EFT-1 trajectory involved one low altitude orbit and one high altitude orbit with an apogee of almost 6000 km. As a result of this particular flight profile, the Orion MPCV passed through intense regions of trapped protons and electron belts. In support of the radiation measurements aboard the EFT-1, the Space Radiation Analysis Group (SRAG) provided a Battery-operated Independent Radiation Detector (BIRD) based on Timepix radiation monitoring technology similar to that employed by the ISS Radiation Environmental Monitors (REM). In addition, SRAG provided a suite of optically and thermally stimulated luminescence detectors, with 2 Radiation Area Monitor (RAM) units collocated with the BIRD instrument for comparison purposes, and 6 RAM units distributed at different shielding configurations within the Orion MPCV. A summary of the EFT-1 Radiation Area Monitors (RAM) mission dose results obtained from measurements performed in the Space Radiation Dosimetry Laboratory at the NASA Johnson Space Center will be presented. Each RAM included LiF:Mg,Ti (TLD-100), (6)LiF:Mg,Ti (TLD-600), (7)LiF:Mg,Ti (TLD-700), Al2O3:C (Luxel trademark), and CaF2:Tm (TLD-300). The RAM mission dose values will be compared with the BIRD instrument total mission dose. In addition, a similar comparison will be shown for the ISS environment by comparing the ISS RAM data with data from the six Timepix-based REM units deployed on ISS as part of the NASA REM Technology Demonstration.

  19. Development of a prototype fluid volume measurement system. [for urine volume measurement on space missions

    NASA Technical Reports Server (NTRS)

    Poppendiek, H. F.; Sabin, C. M.; Meckel, P. T.

    1974-01-01

    The research is reported in applying the axial fluid temperature differential flowmeter to a urine volume measurement system for space missions. The fluid volume measurement system is described along with the prototype equipment package. Flowmeter calibration, electronic signal processing, and typical void volume measurements are also described.

  20. The Tropical Rainfall Measuring Mission (TRMM) Progress Report

    NASA Technical Reports Server (NTRS)

    Simpson, Joanne; Meneghini, Robert; Kummerow, Christian D.; Meneghini, Robert; Hou, Arthur; Adler, Robert F.; Huffman, George; Barkstrom, Bruce; Wielicki, Bruce; Goodman, Steve

    1999-01-01

    Recognizing the importance of rain in the tropics and the accompanying latent heat release, NASA for the U.S. and NASDA for Japan have partnered in the design, construction and flight of an Earth Probe satellite to measure tropical rainfall and calculate the associated heating. Primary mission goals are 1) the understanding of crucial links in climate variability by the hydrological cycle, 2) improvement in the large-scale models of weather and climate 3) Improvement in understanding cloud ensembles and their impacts on larger scale circulations. The linkage with the tropical oceans and landmasses are also emphasized. The Tropical Rainfall Measuring Mission (TRMM) satellite was launched in November 1997 with fuel enough to obtain a four to five year data set of rainfall over the global tropics from 37'N to 37'S. This paper reports progress from launch date through the spring of 1999. The data system and its products and their access is described, as are the algorithms used to obtain the data. Some exciting early results from TRMM are described. Some important algorithm improvements are shown. These will be used in the first total data reprocessing, scheduled to be complete in early 2000. The reader is given information on how to access and use the data.

  1. Successes with the Global Precipitation Measurement (GPM) Mission

    NASA Technical Reports Server (NTRS)

    Skofronick-Jackson, Gail; Huffman, George; Stocker, Erich; Petersen, Walter

    2016-01-01

    Water is essential to our planet Earth. Knowing when, where and how precipitation falls is crucial for understanding the linkages between the Earth's water and energy cycles and is extraordinarily important for sustaining life on our planet during climate change. The Global Precipitation Measurement (GPM) Core Observatory spacecraft launched February 27, 2014, is the anchor to the GPM international satellite mission to unify and advance precipitation measurements from a constellation of research and operational sensors to provide "next-generation" precipitation products. GPM is currently a partnership between NASA and the Japan Aerospace Exploration Agency (JAXA). Status and successes in terms of spacecraft, instruments, retrieval products, validation, and impacts for science and society will be presented. Precipitation, microwave, satellite

  2. Effects of surface clutter on rain measurements from the tropical rainfall measuring mission satellite

    NASA Astrophysics Data System (ADS)

    Manabe, Takeshi; Ihara, Toshio; Okamoto, Ken'ich

    The effects of sea-surface clutter on rain measurements with a satellite-borne rain radar are quantitatively evaluated for clutter interferences through antenna sidelobes and pulse-compression range sidelobes. Calculations are made for a dual-frequency radar operating at 13.8 and 24.15 GHz proposed for the Tropical Rainfall Measuring Mission satellite.

  3. Charge measurements for an asteroid sample return mission

    NASA Astrophysics Data System (ADS)

    Macfaden, A.; Aplin, K. L.; Bowles, N. E.

    2013-09-01

    Photoelectric charging of asteroid regolith material influences particle motion and escape. Differing spacecraft and asteroid charges may also affect sample return on missions such as Marco Polo-R. To study this, bespoke 2D particle-in-cell code simulating the behaviour of photoelectrons trapped near a photoemitting surface (photosheath) has been written and implemented. The spacecraft- photosheath system reaches equilibrium in 1 ms, which is rapid compared to the descent timescale. Equilibria reached in simulations are therefore assumed representative of the dynamic spacecraft environment. Predicted potentials at different heightsand with different solar zenith angle are presented, so that an instrument to measure the potential difference across the spacecraft can be defined. The distorting effect of the spacecraft significantly modifies the potential difference and displacement currents during the terminal descent, by introducing an equipotential body, creating a shadow, and photoemitting itself. By considering the distortion from different parts of the spacecraft, optimal locations for a set of electrodes to measure the potential difference are suggested. Potential differences of about 100 mV are expected to be generated across the electrodes, which should be representative of the electrical environment. The results demonstrate that a simple set of electrodes can measure the asteroid's surface electric field during sample collection.

  4. Space acceleration measurement system description and operations on the First Spacelab Life Sciences Mission

    NASA Technical Reports Server (NTRS)

    Delombard, Richard; Finley, Brian D.

    1991-01-01

    The Space Acceleration Measurement System (SAMS) project and flight units are briefly described. The SAMS operations during the STS-40 mission are summarized, and a preliminary look at some of the acceleration data from that mission are provided. The background and rationale for the SAMS project is described to better illustrate its goals. The functions and capabilities of each SAMS flight unit are first explained, then the STS-40 mission, the SAMS's function for that mission, and the preparation of the SAMS are described. Observations about the SAMS operations during the first SAMS mission are then discussed. Some sample data are presented illustrating several aspects of the mission's microgravity environment.

  5. Measurements of dust on Mars to be obtained from upcoming missions

    NASA Technical Reports Server (NTRS)

    Jakosky, Bruce M.

    1991-01-01

    Measurements of dust on the Mars surface and in its atmosphere will be made from several upcoming missions. The best defined missions are Mars Observer, the Soviet Mars 94 mission, and the Mars Environment Survey (MESUR) mission. A discussion is presented of what measurements pertaining to airborne or surface dust will be made and what properties can be inferred from them. The payloads for the latter two missions are not yet determined. In all cases, only that information which pertains to dust is included; each mission contains additional instruments that provide no information on this topic. Following the discussion of individual instruments is a summary of the types of measurements and observations that will be made from the ensemble collection of instruments and missions, and a brief discussion of the types of measurements of dust which will not be made.

  6. Tropical Rainfall Measuring Mission (TRMM) project. I - Introduction

    NASA Technical Reports Server (NTRS)

    Theon, John S.; Fugono, Nobuyoshi

    1990-01-01

    Results of a 1-year USA-Japan study of the feasibility of the joint TRMM project are briefly reviewed. The TRMM mission will fly four precipitation sensors, a single-frequency radar, two types of microwave radiometers, and a visible and infrared radiometer. The scientific background of the mission and its organizational and engineering aspects are summarized.

  7. Summary Report of Mission Acceleration Measurements for STS-89

    NASA Technical Reports Server (NTRS)

    Hrovat, Kenneth; McPherson, Kevin

    1999-01-01

    Support of microgravity research on the 89th flight of the Space Transportation System (STS-89) and a continued effort to characterize the acceleration environment of the Space Shuttle Orbiter and the Mir Space Station form the basis for this report. For the STS-89 mission, the Space Shuttle Endeavour was equipped with a Space Acceleration Measurement System (SAMS) unit, which collected more than a week's worth of data. During docked operations with Mir, a second SAMS unit collected approximately a day's worth of data yielding the only set of acceleration measurements recorded simultaneously on the two spacecraft. Based on the data acquired by these SAMS units, this report serves to characterize a number of acceleration events and quantify their impact on the local nature of the accelerations experienced at the Mechanics of Granular Materials (MGM) experiment location. Crew activity was shown to nearly double the median root-mean-square (RMS) acceleration level calculated below 10 Hz, while the Enhanced Orbiter Refrigerator/Freezer operating at about 22 Hz was a strong acceleration source in the vicinity of the MGM location. The MGM science requirement that the acceleration not exceed plus or minus 1 mg was violated numerous times during their experiment runs; however, no correlation with sample instability has been found to this point. Synchronization between the SAMS data from Endeavour and from Mir was shown to be close much of the time, but caution with respect to exact timing should be exercised when comparing these data. When orbiting as a separate vehicle prior to docking, Endeavour had prominent structural modes above 3 Hz, while Mir exhibited a cluster of modes around 1 Hz. When mated, a transition to common modes was apparent in the two SAMS data sets. This report is not a comprehensive analysis of the acceleration data, so those interested in further details should contact the Principal Investigator Microgravity Services team at the National Aeronautics

  8. Desperately seeking synergy.

    PubMed

    Goold, M; Campbell, A

    1998-01-01

    Corporate executives have strong biases in favor of synergy, and those biases can lead them into ill-advised attempts to force business units to cooperate--even when the ultimate benefits are unclear. But executives can separate the real opportunities from the mirages, say Michael Goold and Andrew Campbell. They simply need to take a more disciplined approach to synergy. These biases take four forms. First comes the synergy bias, which leads executives to overestimate the benefits and underestimate the costs of synergy. Then comes the parenting bias, a belief that synergy will be captured only by cajoling or compelling business units to cooperate. The parenting bias is usually accompanied by the skills bias--the assumption that whatever know-how is required to achieve synergy will be available within the organization. Finally, executives fall victim to the upside bias, which causes them to concentrate so hard on the potential benefits of synergy that they overlook the possible downside risks. In combination, these four biases make synergy seem more attractive and more easily achievable than it truly is. As a result, corporate executives often launch initiatives that ultimately waste time and money and sometimes even severely damage their businesses. To avoid such failures, executives need to subject all synergy opportunities to a clear-eyed analysis that clarifies the benefits to be gained, examines the potential for corporate involvement, and takes into account the possible downsides. Such a disciplined approach will inevitably mean that fewer initiatives will be launched. But those that are pursued will be far more likely to deliver substantial gains.

  9. Measuring Staff Perceptions of University Identity and Activities: The Mission and Values Inventory

    ERIC Educational Resources Information Center

    Ferrari, Joseph R.; Velcoff, Jessica

    2006-01-01

    Higher education institutions need to ascertain whether their stakeholders understand the school's mission, vision, and values. In the present study, the psychometric properties of a mission identity and activity measure were investigated with two staff samples. Using a principal component factor analysis (varimax rotation), respondents in Sample…

  10. Measurements of Shuttle Glow on Mission STS 41-G

    DTIC Science & Technology

    1988-09-29

    Cogger, I. McDade , E. Murad, and T. Slanger in the preparatioi of this manuscript. REFERENCES Abreu, V. J., W. R. Skinner, P. B. Hays, and J-H. Yee... McDade , S. B. Mende, and G. R. Swenson, Observations of glow from shuttle surfaces during Mission STS 41-G, Planet. Space Sci., 34, 1159-1166, 1986...continuum component, Geophys. Res. Lett., 12, 453-456, 1985. Shepard , G. G., C W. Lake, J. R. Miller, and L. L. Cogger, A spatial spectral scanning

  11. Terrestrial outgoing radiation measurements with small satellite mission

    NASA Astrophysics Data System (ADS)

    Zhu, Ping; Dewitte, Steven; Karatekin, Ozgur; Chevalier, André; Conscience, Christian

    2015-04-01

    The solar force is the main driver of the Earth's climate. For a balanced climate system, the incoming solar radiation is equal to the sum of the reflected visible and reemitted thermal radiation at top of the atmosphere (TOA). Thus the energy imbalance plays an important role to diagnose the health of nowadays climate. However it remains a challenge to directly track the small Energy imbalance in Earth's Radiation Budget (EIERB) from space due to the complicities of the Earth's climate system and the limitation on long term stability of space instrument. The terrestrial outgoing radiation (TOR) has been recoded with a Bolometric Oscillation Sensor onboard PICAD microsatellite. In this presentation, we will report the three years TOR observed with PICARD-BOS and its further comparison with the CERES product. However the data acquired from this mission is still not enough to derive the EIERB. But the heritage gained from this experiment shields a light on the EIERB tracking with the small satellite even a cubesat mission.

  12. On the Tropical Rainfall Measuring Mission (TRMM): Bringing NASA's Earth System Science Program to the Classroom

    NASA Technical Reports Server (NTRS)

    Shepherd, J. Marshall

    1998-01-01

    The Tropical Rainfall Measuring Mission is the first mission dedicated to measuring tropical and subtropical rainfall using a variety of remote sensing instrumentation, including the first spaceborne rain-measuring radar. Since the energy released when tropical rainfall occurs is a primary "fuel" supply for the weather and climate "engine"; improvements in computer models which predict future weather and climate states may depend on better measurements of global tropical rainfall and its energy. In support of the STANYS conference theme of Education and Space, this presentation focuses on one aspect of NASA's Earth Systems Science Program. We seek to present an overview of the TRMM mission. This overview will discuss the scientific motivation for TRMM, the TRMM instrument package, and recent images from tropical rainfall systems and hurricanes. The presentation also targets educational components of the TRMM mission in the areas of weather, mathematics, technology, and geography that can be used by secondary school/high school educators in the classroom.

  13. Nuclear Emulsion Measurements of the Astronauts’ Radiation Exposures on Skylab Missions 2, 3 and 4,

    DTIC Science & Technology

    1975-12-10

    AD-AO19 804 NUCLEAR EMULSION MEASUREMENTS OF THE ASTRONAUTS’ RADIATION EXPOSURES ON SKYLAB MISSIONS 2, 3 AND 4 Hermann J. Schaefer, et al Naval...N/A NUCLEAR EMULSION MEASUREMENTS OF THE ASTRONAUTS’ RADIATION EXPOSURES ON SKYLAB MISSIONS 2, 3, AND 4. N/ ___ _ _ ANZ Hermann J. Schaefer and...corresponding shield distribution of the entire vehicle tesi alirections ofetionable whether the very large effort involved in this eask isd• ~~really

  14. Radiation dosimetry measurements during U.S. Space Shuttle missions with the RME-III

    NASA Technical Reports Server (NTRS)

    Golightly, M. J.; Hardy, K.; Quam, W.

    1994-01-01

    Time-resolved radiation dosimetry measurements inside the crew compartment have been made during recent Shuttle missions with the U.S. Air Force Radiation Monitoring Equipment-III (RME-III), a portable battery-powered four-channel tissue equivalent proportional counter. Results from the first six missions are presented and discussed. Half of the missions had orbital inclinations of 28.5 degrees with the remainder at inclinations of 57 degrees or greater; altitudes ranged from 300 to 600 km. The determined dose equivalent rates ranged from 70 to 5300 microSv/day. The RME-III measurements are in good agreement with other dosimetry measurements made aboard the vehicles. Measurements indicate that medium- and high-LET particles contribute less than 2% of the particle fluence for all missions, but up to 50% of the dose equivalent, depending on the spacecraft's altitude and orbital inclination. Isocontours of fluence, dose and dose equivalent rate have been developed from measurements made during the STS-28 mission. The drift rate of the South Atlantic Anomaly is estimated to be 0.49 degrees W/yr and 0.12 degrees N/yr. The calculated trapped proton and GCR dose for the STS-28 mission was significantly lower than the measured values.

  15. Science, Measurement, and Technology Requirements for Infrared Climate Benchmark Missions

    NASA Technical Reports Server (NTRS)

    Johnson, David G.; Mlynczak, Martin G.

    2011-01-01

    Quantifying climate change in the presence of natural variability requires highly accurate global measurements covering more than a decade. Instrument design considerations for trending terrestrial emitted radiance are described.

  16. Hypervelocity Aeroheating Measurements in Wake of Mars Mission Entry Vehicle

    NASA Technical Reports Server (NTRS)

    Hollis, Brian R.; Perkins, John N.

    1995-01-01

    Detailed measurements of aerodynamic heating rates in the wake of a Mars-Pathfinder configuration model have been made. Heating data were obtained in a conventional wind tunnel, the NASA LaRC 31" Mach 10 Air Tunnel, and in a high-enthalpy impulse facility, the NASA HYPULSE expansion tube, in which air and CO2 were employed as test gases. The enthalpy levels were 0.7 MJ/kg in the Mach 10 Tunnel, 12 MJ/kg at Mach 9.8 for HYPULSE CO2 tests and 14 MJ/kg at Mach 7.9 for HYPULSE air tests. Wake heating rates were also measured on three similar parametric configurations, and forebody heating measurements were made in order to facilitate CFD comparisons. The ratio of peak wake heating to forebody stagnation point heating in the Mach 10 Tunnel varied from 7% to 15% depending on the freestream Reynolds number. In HYPULSE, the ratio was 5% for both air and CO 2. It was observed that an increase in the ratio of forebody corner radius to nose radius resulted in a decrease in peak wake heating, and moved the peak closer to the base of the forebody. The wake flow establishment process in HYPULSE was studied, and a method was developed to determine when the wake has become fully established.

  17. Onboard Processing of Electromagnetic Measurements for the Luna - Glob Mission

    NASA Astrophysics Data System (ADS)

    Hruska, F.; Kolmasova, I.; Santolik, O.; Skalski, A.; Pronenko, V.; Belyayev, S.; Lan, R.; Uhlir, L.

    2013-12-01

    The LEMRA-L instrument (Long-wavelength Electro-Magnetic Radiation Analyzer) will be implemented on the LUNA-GLOB spacecraft. It will analyze the data of the three-axial flux gate (DC - 10Hz) and searchcoil (1Hz - 10kHz) magnetometers LEMI. It will measure intensity, polarization, and coherence properties of waves in plasmas of the solar wind, in the lunar wake and its boundaries, and study the magnetic anomalies. We will use new modern robust onboard analysis methods to estimate the wave coherence, sense of polarization, ellipticity, and wave-vector direction, and thus substantially compress the transmitted data volumes, while conserving the important scientific information. In the burst mode data set intended for studying nonlinear phenomena, we will conserve the continuous flux-gate magnetometer data and discrete snapshots of three axial waveform measurements. In the survey-mode data set, continuous flux-gate magnetometer data will be transmitted together with onboard analyzed and averaged spectral matrices from the higher-frequency wave measurements or with onboard calculated propagation and polarization parameters.

  18. Interpretative synergy of starphotometry and lidar measurements at two high-Arctic stations during the Polar Winter of 2010-11

    NASA Astrophysics Data System (ADS)

    Baibakov, K.; O'Neill, N. T.; Herber, A.; Ritter, C.; Duck, T. J.; Schulz, K.; Schrems, O.

    2011-12-01

    -mode (super-micron) optical depths that are derived from the star extinction measurements. We also show how the starphotometry-lidar synergy can be used in a routine analysis to better detect and characterize aerosol events. Finally, based on the preliminary evidence from satellite data and backward trajectories, we give some examples of potential aerosol transport into the Arctic during the Polar Winter.

  19. Summary Report of Mission Acceleration Measurements for STS-95: Launched October 19, 1998

    NASA Technical Reports Server (NTRS)

    McPherson, Kevin; Hrovat, Kevin

    2000-01-01

    John H. Glenn's historic return to space was a primary focus of the STS-95 mission. The Hubble Space Telescope (HST) orbital Systems Test (HOST), an STS-95 payload, was an in-flight demonstration of HST components to be installed during the next HST servicing mission. One of the components under evaluation was the cryocooler for the Near Infrared Camera and Multi-Object Spectrometer (NICMOS). Based on concerns about vibrations from the operation of the NICMOS cryocooler affecting the overall HST line-of-sight requirements, the Space Acceleration Measurement System for Free-Flyers (SAMS-FF) was employed to measure the vibratory environment of the STS-95 mission, including any effects introduced by the NICMOS cryocooler. The STS-95 mission represents the first STS mission supported by SAMS-FF. Utilizing a Control and Data Acquisition Unit (CDU) and two triaxial sensor heads (TSH) mounted on the HOST support structure in Discovery's cargo bay, the SAMS-FF and the HOST project were able to make vibratory measurements both on-board the vibration-isolated NICMOS cryocooler and off-board the cryocooler mounting plate. By comparing the SAMS-FF measured vibrations on-board and off-board the NICMOS cryocooler, HST engineers could assess the cryocooler g-jitter effects on the HST line-of-sight requirements. The acceleration records from both SAMS-FF accelerometers were analyzed and significant features of the microgravity environment are detailed in this report.

  20. Summary Report of Mission Acceleration Measurement for STS-87, Launched November 19, 1997

    NASA Technical Reports Server (NTRS)

    Rogers, Melissa J. B.; Hrovat, Kenneth; McPherson, Kevin; DeLombard, Richard; Reckart, Timothy

    1999-01-01

    Two accelerometer systems, the Orbital Acceleration Research Experiment and the Space Acceleration Measurement System, were used to measure and record the microgravity environment of the Orbiter Columbia during the STS-87 mission in November-December 1997. Data from two separate Space Acceleration Measurement System units were telemetered to the ground during the mission and data plots were displayed for investigators of the Fourth United States Microgravity Payload experiments in near real-time using the World Wide Web. Plots generated using Orbital Acceleration Research Experiment data (telemetered to the ground using a tape delay) were provided to the investigators using the World Wide Web approximately twelve hours after data recording. Disturbances in the microgravity environment as recorded by these instruments are grouped by source type: Orbiter systems, on-board activities, payload operations, and unknown sources. The environment related to the Ku-band antenna dither, Orbiter structural modes, attitude deadband collapses, water dump operations, crew sleep, and crew exercise was comparable to the effects of these sources on previous Orbiter missions. Disturbances related to operations of the Isothermal Dendritic Growth Experiment and Space Acceleration Measurement Systems that were not observed on previous missions are detailed. The effects of Orbiter cabin and airlock depressurization and extravehicular activities are also reported for the first time. A set of data plots representing the entire mission is included in the CD-ROM version of this report.

  1. Summary Report of Mission Acceleration Measurement for STS-87: Launched November 19, 1997

    NASA Technical Reports Server (NTRS)

    Rogers, Melissa J. B.; Hrovat, Kenneth; McPherson, Kevin; DeLombard, Richard; Reckart, Timothy

    1999-01-01

    Two accelerometer systems, the Orbital Acceleration Research Experiment and the Space Acceleration Measurement System, were used to measure and record the microgravity environment of the Orbiter Columbia during the STS-87 mission in November-December 1997. Data from two separate Space Acceleration Measurement System units were telemetered to the ground during the mission and data plots were displayed for investigators of the Fourth United States Microgravity Payload experiments in near real-time using the World Wide Web. Plots generated using Orbital Acceleration Research Experiment data (telemetered to the ground using a tape delay) were provided to the investigators using the World Wide Web approximately twelve hours after data recording. Disturbances in the microgravity environment as recorded by these instruments are grouped by source type: Orbiter systems, on-board activities, payload operations, and unknown sources. The environment related to the Ku-band antenna dither, Orbiter structural modes, attitude deadband collapses, water dump operations, crew sleep, and crew exercise was comparable to the effects of these sources on previous Orbiter missions. Disturbances related to operations of the Isothermal Dendritic Growth Experiment and Space Acceleration Measurement Systems that were not observed on previous missions are detailed. The effects of Orbiter cabin and airlock depressurization and extravehicular activities are also reported for the first time. A set of data plots representing the entire mission is included in the CD-ROM version of this report.

  2. Turbulent processes in Earth's magnetosheath by Cluster mission measurements

    NASA Astrophysics Data System (ADS)

    Kozak, L. V.; Lui, A. T. Y.; Kronberg, E. A.; Prokhorenkov, A. S.

    2017-02-01

    Methods and approaches which can be used for the analysis of hydrodynamic and magnetohydrodynamic turbulent flows are chosen for this study. It is defined that the best methods for determination of turbulent process types are the methods of statistical physics. Within the statistical approach the fractal analysis (height of the maximum of probability density fluctuations of the studied parameters) and multifractal analysis (study of a power dependence of high order statistical moments and construction of multifractal spectrum) are considered. It is indicated that the statistical analysis of turbulent process properties can be supplemented with spectral studies (wavelet analysis). Physical processes in the transition regions of the magnetosphere: foreshock, shock, post-shock and magnetosheath are investigated using high frequency measurements by Cluster satellites. Extended self-similarity analysis and structure function analysis demonstrate the presence of super-diffusion processes and the highest values of generalized diffusion coefficients observed in post-shock region. It can be noted that different approaches for the analysis of turbulent processes give similar results and indicate the presence of super-diffusion processes in the transition region of the Earth's magnetosphere. This fact must be taken into account when constructing quantitative models of a transfer process. Wavelet analysis shows the presence of cascade and inverse cascade processes in the Earth's magnetosheath. Good agreement with other studies and our new results contribute to improvement of our understanding of turbulence.

  3. DXL: A sounding rocket mission measuring Solar Wind Charge eXchange properties

    NASA Astrophysics Data System (ADS)

    Galeazzi, Massimiliano

    2016-04-01

    Solar Wind interacts with the interstellar neutrals via charge exchange mechanism to produce spatially and temporally varying x-rays making it difficult to separate from other diffuse sources. The Diffuse X-rays from the Local Galaxy (DXL) mission measured the spatial signature of Solar Wind Charge eXchange (SWCX) emission due to the helium focusing cone. The mission used 2 large area proportional counters and was able to separate the SWCX contribution from Local Hot Bubble emission. The data from the mission provide a robust estimate of the SWCX contribution to the ROSAT maps, measuring the compound SWCX cross section with He in all ROSAT bands. The results showed that the total SWCX contribution in the ¼ keV band is, on average, ~27%. A new mission, DXL-2, was launched on December 4, 2015 with two new counters for a better understanding of the energy distribution of heliospheric SWCX photons, by using a multi-band approach. A dedicated scan to accurately measure the cone position and solve the IBEX controversy was also performed. The talk will discuss the DXL mission, the results from the first flight, and the preliminary results from the latest flight.Submitted for the DXL Collaboration

  4. A Plan for Measuring Climatic Scale Global Precipitation Variability: The Global Precipitation Mission

    NASA Technical Reports Server (NTRS)

    Smith, Eric A.; Einaudi, Franco (Technical Monitor)

    2000-01-01

    The outstanding success of the Tropical Rainfall Measuring Mission (TRMM) stemmed from a near flawless launch and deployment, a highly successful measurement campaign, achievement of all original scientific objectives before the mission life had ended, and the accomplishment of a number of unanticipated but important additional scientific advances. This success and the realization that satellite rainfall datasets are now a foremost tool in the understanding of decadal climate variability has helped motivate a comprehensive global rainfall measuring mission, called 'The Global Precipitation Mission' (GPM). The intent of this mission is to address looming scientific questions arising in the context of global climate-water cycle interactions, hydrometeorology, weather prediction, the global carbon budget, and atmosphere-biosphere-cryosphere chemistry. This paper addresses the status of that mission currently planed for launch in the early 2007 time frame. The GPM design involves a nine-member satellite constellation, one of which will be an advanced TRMM-like 'core' satellite carrying a dual-frequency Ku-Ka band radar (df-PR) and a TMI-like radiometer. The other eight members of the constellation can be considered drones to the core satellite, each carrying some type of passive microwave radiometer measuring across the 10.7-85 GHz frequency range, likely based on both real and synthetic aperture antenna technology and to include a combination of new lightweight dedicated GPM drones and both co-existing operational and experimental satellites carrying passive microwave radiometers (i.e., SSM/l, AMSR, etc.). The constellation is designed to provide a minimum of three-hour sampling at any spot on the globe using sun-synchronous orbit architecture, with the core satellite providing relevant measurements on internal cloud precipitation microphysical processes. The core satellite also enables 'training' and 'calibration' of the drone retrieval process. Additional

  5. The Global Precipitation Measurement (GPM) Mission: Overview and U.S. Science Status

    NASA Technical Reports Server (NTRS)

    Hou, Arthur

    2007-01-01

    The Global Precipitation Measurement (GPM) Mission, an international satellite mission to unify and advance space-based precipitation measurements around the globe, is a science mission with integrated application goals. The mission is designed to (1) advance the knowledge of the global water cycle and freshwater availability, and (2) improve weather, climate, and hydrological prediction capabilities through more accurate and frequent measurements of global precipitation. The cornerstone of GPM is the deployment of a Core Spacecraft in a unique 65 deg-inclined orbit to serve as a physics observatory and a calibration reference to improve the accuracy of precipitation measurements by a heterogeneous constellation of dedicated and operational passive microwave sensors. The Core Spacecraft will carry a dual-frequency (Ku-Ka band) radar and a multi-channel microwave radiometer with high-frequency capabilities to provide measurements of 3-D precipitation structures and microphysical properties, which are key to achieving a better understanding of precipitation processes and improved retrieval algorithms for passive microwave radiometers. The GPM constellation is envisioned to comprise 5 or more conical-scanning microwave radiometers provided by partners, augmented by cross-track microwave sounders on operational satellites such as the National Polar-orbiting Operational Environmental Satellite System (NPOESS) Preparatory Project (NPP), POES, NPOESS, and MetOp satellites for improved sampling over land. The GPM Mission is currently a partnership between NASA and the Japan Aerospace Exploration Agency (JAXA), with opportunities for additional international partners in constellation satellites and ground validation. An overview of the GPM mission concept and science activities in the United States will be presented.

  6. Retrieval of aerosol complex refractive index from a synergy between lidar, sunphotometer and in situ measurements during LISAIR experiment

    NASA Astrophysics Data System (ADS)

    Raut, J.-C.; Chazette, P.

    2007-06-01

    Particulate pollutant exchanges between the streets and the Planetary Boundary Layer (PBL), and their daily evolution linked to human activity were studied in the framework of the LIdar pour la Surveillance de l'AIR (LISAIR) experiment. This program lasted from 10 to 30 May 2005. A synergetic approach combining dedicated active (lidar) and passive (sunphotometer) remote sensors as well as ground based in situ instrumentation (nephelometer, aethalometer and particle sizers) was used to investigate urban aerosol optical properties within Paris. Aerosol complex refractive indices were assessed to be 1.56-0.034 i at 355 nm and 1.59-0.040 i at 532 nm, thus leading to single-scattering albedo values between 0.80 and 0.88. These retrievals are consistent with soot components in the aerosol arising from traffic exhausts indicating that these pollutants have a radiative impact on climate. We also discussed the influence of relative humidity on aerosol properties. A good agreement was found between vertical extinction profile derived from lidar backscattering signal and retrieved from the coupling between radiosounding and ground in situ measurements.

  7. Retrieval of aerosol complex refractive index from a synergy between lidar, sunphotometer and in situ measurements during LISAIR experiment

    NASA Astrophysics Data System (ADS)

    Raut, J.-C.; Chazette, P.

    2007-01-01

    Particulate pollutant exchanges between the streets and the Planetary Boundary Layer (PBL), and their daily evolution linked to human activity were studied in the framework of the LIdar pour la Surveillance de l'AIR (LISAIR) experiment. This program lasted from 10 to 30 May 2005. A synergetic approach combining dedicated active (lidar) and passive (sunphotometer) remote sensors as well as ground based in situ instrumentation (nephelometer, aethalometer and particle sizers) was used to investigate urban aerosol optical properties within Paris. Aerosol complex refractive indices were assessed to be 1.56-0.034i at 355 nm and 1.59-0.040i at 532 nm, thus leading to single-scattering albedo values between 0.80 and 0.88. These retrievals are consistent with soot components in the aerosol arising from traffic exhausts indicating that these pollutants have a radiative impact on climate. We also discussed the influence of relative humidity on aerosol properties. A good agreement was found between vertical extinction profile derived from lidar backscattering signal and retrieved from the coupling between radiosounding and ground in situ measurements.

  8. Vertical mass impact and features of Saharan dust intrusions derived from ground-based remote sensing in synergy with airborne in-situ measurements

    NASA Astrophysics Data System (ADS)

    Córdoba-Jabonero, Carmen; Andrey-Andrés, Javier; Gómez, Laura; Adame, José Antonio; Sorribas, Mar; Navarro-Comas, Mónica; Puentedura, Olga; Cuevas, Emilio; Gil-Ojeda, Manuel

    2016-10-01

    A study of the vertical mass impact of Saharan dust intrusions is presented in this work. Simultaneous ground-based remote-sensing and airborne in-situ measurements performed during the AMISOC-TNF campaign over the Tenerife area (Canary Islands) in summertime from 01 July to 11 August 2013 were used for that purpose. A particular dusty (DD) case, associated to a progressively arriving dust intrusion lasting for two days on 31 July (weak incidence) and 01 August (strong incidence), is especially investigated. AERONET AOD and AEx values were ranging, respectively, from 0.2 to 1.4 and 0.35 to 0.05 along these two days. Vertical particle size distributions within fine and coarse modes (0.16-2.8 μm range) were obtained from aircraft aerosol spectrometer measurements. Extinction profiles and Lidar Ratio (LR) values were derived from MPLNET/Micro Pulse Lidar observations. MAXDOAS measurements were also used to retrieve the height-resolved aerosol extinction for evaluation purposes in comparison to Lidar-derived profiles. The synergy between Lidar observations and airborne measurements is established in terms of the Mass Extinction Efficiency (MEE) to calculate the vertical mass concentration of Saharan dust particles. Both the optical and microphysical profilings show dust particles mostly confined in a layer of 4.3 km thickness from 1.7 to 6 km height. LR ranged between 50 and 55 sr, typical values for Saharan dust particles. In addition, this 2-day dust event mostly affected the Free Troposphere (FT), being less intense in the Boundary Layer (BL). In particular, rather high Total Mass Concentrations (TMC) were found on the stronger DD day (01 August 2013): 124, 70 and 21 μg m-3 were estimated, respectively, at FT and BL altitudes and on the near-surface level. This dust impact was enhanced due to the increase of large particles affecting the FT, but also the BL, likely due to their gravitational settling. However, the use of an assumed averaged MEE value can be

  9. Investigating aerosol properties in Peninsular Malaysia via the synergy of satellite remote sensing and ground-based measurements

    NASA Astrophysics Data System (ADS)

    Kanniah, Kasturi Devi; Lim, Hui Qi; Kaskaoutis, Dimitris G.; Cracknell, Arthur P.

    2014-03-01

    Spatio-temporal variation and trends in atmospheric aerosols as well as their impact on solar radiation and clouds are crucial for regional and global climate change assessment. These topics are not so well-documented over Malaysia, the fact that it receives considerable amounts of pollutants from both local and trans-boundary sources. The present study aims to analyse the spatio-temporal evolution and decadal trend of Aerosol Optical Depth (AOD) from Terra and Aqua MODIS sensors, to identify different types and origin of aerosols and explore the link between aerosols and solar radiation. AOD and fine-mode fraction (FMF) products from MODIS, AOD and Ångström Exponent (AE) values from AERONET stations along with ground-based PM10 measurements and solar radiation recordings at selected sites in Peninsular Malaysia are used for this scope. The MODIS AODs exhibit a wide spatio-temporal variation over Peninsular Malaysia, while Aqua AOD is consistently lower than that from Terra. The AOD shows a neutral-to-declining trend during the 2000s (Terra satellite), while that from Aqua exhibits an increasing trend (~ 0.01 per year). AERONET AODs exhibit either insignificant diurnal variation or higher values during the afternoon, while their short-term availability does not allow for a trend analysis. Moreover, the PM10 concentrations exhibit a general increasing trend over the examined locations. The sources and destination of aerosols are identified via the HYSPLIT trajectory model, revealing that aerosols during the dry season (June to September) are mainly originated from the west and southwest (Sumatra, Indonesia), while in the wet season (November to March) they are mostly associated with the northeast monsoon winds from the southern China Sea. Different aerosol types are identified via the relationship of AOD with FMF, revealing that the urban and biomass-burning aerosols are the most abundant over the region contributing to a significant reduction (~- 0.21 MJ m- 2) of

  10. Compliant Synergies in Locomotion

    NASA Astrophysics Data System (ADS)

    Travers, Matthew; Choset, Howie; Goldman @ Georgia Tech. Physics Department Collaboration

    Biological systems appear to have natural mechanisms that allow them to readily compensate for unexpected environmental variations when compared to their mechanical (i.e., robotic) counterparts. We hypothesize that the basis for this discrepancy is almost innate: what biology appears to be born with, built-in mechanisms for coordinating their many degrees of freedom, we struggle to ``program.'' We therefore look toward biology for inspiration. In particular, we are interested in kinematic synergies, low-dimensional representations that explicitly encode the underlying structure of how systems coordinate their internal degrees of freedom to achieve high-level tasks. In this work, we derive parametric representations of kinematic synergies and present a new compliant locomotion control framework that enables the parameters to be directly controlled in response to external disturbances. We present results of this framework implemented on two separate platforms, a snake-like and hexapod robot. Our results show that, using synergies, the locomotion control of these very different systems can be reduced to simple, extremely capable, and common forms, thus offering new insights into both robotic as well as biological locomotion in complex terrains.

  11. Summary report of mission acceleration measurements for Spacehab-01, STS-57 launched 21 June 1993

    NASA Technical Reports Server (NTRS)

    Finley, Brian; Grodsinsky, Carlos; Delombard, Richard

    1994-01-01

    The maiden voyage of the commercial Spacehab laboratory module onboard the STS-57 mission was integrated with several accelerometer packages, one of which was the Space Acceleration Measurement System (SAMS). The June 21st 1993, launch was the seventh successful mission for the Office of Life and Microgravity Sciences and Application's (OLMSA) SAMS unit. This flight was also complemented by a second accelerometer system. The Three Dimensional Microgravity Accelerometer (3-DMA), a Code C funded acceleration measurement system, offering an on-orbit residual calibration as a reference for the unit's four triaxial accelerometers. The SAMS accelerometer unit utilized three remote triaxial sensor heads mounted on the forward Spacehab module bulkhead and on one centrally located experiment locker door. These triaxial heads had filter cut-offs set to 5, 50, and 1000 Hz. The mission also included other experiment specific accelerometer packages in various locations.

  12. Coordinated science with the Solar Orbiter, Solar Probe Plus, Interhelioprobe and SPORT missions

    NASA Astrophysics Data System (ADS)

    Maksimovic, Milan; Vourlidas, Angelos; Zimovets, Ivan; Velli, Marco; Zhukov, Andrei; Kuznetsov, Vladimir; Liu, Ying; Bale, Stuart; Ming, Xiong

    The concurrent science operations of the ESA Solar Orbiter (SO), NASA Solar Probe Plus (SPP), Russian Interhelioprobe (IHP) and Chinese SPORT missions will offer a truly unique epoch in heliospheric science. While each mission will achieve its own important science objectives, taken together the four missions will be capable of doing the multi-point measurements required to address many problems in Heliophysics such as the coronal origin of the solar wind plasma and magnetic field or the way the Solar transients drive the heliospheric variability. In this presentation, we discuss the capabilities of the four missions and the Science synergy that will be realized by concurrent operations

  13. Summary Report of Mission Acceleration Measurements for STS-62, Launched 4 March 1994

    NASA Technical Reports Server (NTRS)

    Rogers, Melissa J. B.; Delombard, Richard

    1994-01-01

    The second mission of the United States Microgravity Payload on-board the STS-62 mission was supported with three accelerometer instruments: the Orbital Acceleration Research Experiment (OARE) and two units of the Space Acceleration Measurements System (SAMS). The March 4, 1994 launch was the fourth successful mission for OARE and the ninth successful mission for SAMS. The OARE instrument utilizes a sensor for very low frequency measurements below one Hertz. The accelerations in this frequency range are typically referred to as quasisteady accelerations. One of the SAMS units had two remote triaxial sensor heads mounted on the forward MPESS structure between two furnance experiments, MEPHISTO and AADSF. These triaxial heads had low-pass filter cut-off frequencies at 10 and 25 Hz. The other SAMS unit utilized three remote triaxial sensor heads. Two of the sensor heads were mounted on the aft MPESS structure between the two experiments IDGE and ZENO. These triaxial heads had low-pass filter cut-off frequencies at 10 and 25 Hz. The third sensor head was mounted on the thermostat housing inside the IDGE experiment container. This triaxial head had a low-pass filter cut-off frequency at 5 Hz. This report is prepared to furnish interested experiment investigators with a guide to evaluating the acceleration environment during STS-62 and as a means of identifying areas which require further study. To achieve this purpose, various pieces of information are included, such as an overview of the STS-62 mission, a description of the accelerometer system flown on STS-62, some specific analysis of the accelerometer data in relation to the various mission activities, and an overview of the low-gravity environment during the entire mission. An evaluation form is included at the end of the report to solicit users' comments about the usefulness of this series of reports.

  14. Summary Report of Mission Acceleration Measurements for STS-75, Launched February 22, 1996

    NASA Technical Reports Server (NTRS)

    Rogers, Melissa J. B.; Hrovat, Kenneth; Moskowitz, Milton E.; McPherson, Kevin M.; DeLombard, Richard

    1996-01-01

    Two accelerometers provided acceleration data during the STS-75 mission in support of the third United States Microgravity Payload (USMP-3) experiments. The Orbital Acceleration Research Experiment (OARE) and the Space Acceleration Measurement System (SAMS) provided a measure of the microgravity environment of the Space Shuttle Columbia. The OARE provided investigators with quasi-steady acceleration measurements after about a six hour time lag dictated by downlink constraints. SAMS data were downlinked in near-real-time and recorded on-board for post-mission analysis. An overview of the mission is provided as are brief discussions of these two accelerometer systems. Data analysis techniques used to process SAMS and OARE data are discussed Using a combination of these techniques, the microgravity environment related to several different Orbiter, crew, and experiment operations is presented and interpreted. The microgravity environment represented by SAMS and OARE data is comparable to the environments measured by the instruments on earlier microgravity science missions. The OARE data compared well with predictions of the quasi-steady environment. The SAMS data show the influence of thruster firings and crew motion (transient events) and of crew exercise, Orbiter systems, and experiment operations (oscillatory events). Thruster activity on this mission appears to be somewhat more frequent than on other microgravity missions with the combined firings of the F5L and F5R jets producing significant acceleration transients. The specific crew activities performed in the middeck and flight deck, the SPREE table rotations, the waste collection system compaction, and the fuel cell purge had negligible effects on the microgravity environment of the USMP-3 carriers. The Ku band antenna repositioning activity resulted in a brief interruption of the ubiquitous 17 Hz signal in the SAMS data. In addition, the auxiliary power unit operations during the Flight Control System checkout

  15. Summary Report of Mission Acceleration Measurements for STS-78. Launched June 20, 1996

    NASA Technical Reports Server (NTRS)

    Hakimzadeh, Roshanak; Hrovat, Kenneth; McPherson, Kevin M.; Moskowitz, Milton E.; Rogers, Melissa J. B.

    1997-01-01

    The microgravity environment of the Space Shuttle Columbia was measured during the STS-78 mission using accelerometers from three different instruments: the Orbital Acceleration Research Experiment, the Space Acceleration Measurement System and the Microgravity Measurement Assembly. The quasi-steady environment was also calculated in near real-time during the mission by the Microgravity Analysis Workstation. The Orbital Acceleration Research Experiment provided investigators with real-time quasi-steady acceleration measurements. The Space Acceleration Measurement System recorded higher frequency data on-board for post-mission analysis. The Microgravity Measurement Assembly provided investigators with real-time quasi-steady and higher frequency acceleration measurements. The Microgravity Analysis Workstation provided calculation of the quasi-steady environment. This calculation was presented to the science teams in real-time during the mission. The microgravity environment related to several different Orbiter, crew and experiment operations is presented and interpreted in this report. A radiator deploy, the Flight Control System checkout, and a vernier reaction control system reboost demonstration had minimal effects on the acceleration environment, with excitation of frequencies in the 0.01 to 10 Hz range. Flash Evaporator System venting had no noticeable effect on the environment while supply and waste water dumps caused excursions of 2 x lO(exp -6) to 4 x 10(exp -6) g in the Y(sub b) and Z(sub b) directions. Crew sleep and ergometer exercise periods can be clearly seen in the acceleration data, as expected. Accelerations related to the two Life Science Laboratory Equipment Refrigerator/Freezers were apparent in the data as are accelerations caused by the Johnson Space Center Projects Centrifuge. As on previous microgravity missions, several signals are present in the acceleration data for which a source has not been identified. The causes of these accelerations

  16. Influence of locomotion speed on biomechanical subtask and muscle synergy.

    PubMed

    Gui, Kai; Zhang, Dingguo

    2016-10-01

    This paper investigates the relationship of biomechanical subtasks, and muscle synergies with various locomotion speeds. Ground reaction force (GRF) of eight healthy subjects is measured synchronously by force plates of treadmill at five different speeds ranging from 0.5m/s to 1.5m/s. Four basic biomechanical subtasks, body support, propulsion, swing, and heel strike preparation, are identified according to GRF. Meanwhile, electromyography (EMG) data, used to extract muscle synergies, are collected from lower limb muscles. EMG signals are segmented periodically based on GRF with the heel strike as the split points. Variability accounted for (VAF) is applied to determine the number of muscle synergies. We find that four muscle synergies can be extracted in all five situations by non-negative matrix factorization (NMF). Furthermore, the four muscle synergies and biomechanical subtasks keep invariant as the walking speed changes.

  17. Global Precipitation Measurement (GPM) Mission: Precipitation Processing System (PPS) GPM Mission Gridded Text Products Provide Surface Precipitation Retrievals

    NASA Technical Reports Server (NTRS)

    Stocker, Erich Franz; Kelley, O.; Kummerow, C.; Huffman, G.; Olson, W.; Kwiatkowski, J.

    2015-01-01

    In February 2015, the Global Precipitation Measurement (GPM) mission core satellite will complete its first year in space. The core satellite carries a conically scanning microwave imager called the GPM Microwave Imager (GMI), which also has 166 GHz and 183 GHz frequency channels. The GPM core satellite also carries a dual frequency radar (DPR) which operates at Ku frequency, similar to the Tropical Rainfall Measuring Mission (TRMM) Precipitation Radar, and a new Ka frequency. The precipitation processing system (PPS) is producing swath-based instantaneous precipitation retrievals from GMI, both radars including a dual-frequency product, and a combined GMIDPR precipitation retrieval. These level 2 products are written in the HDF5 format and have many additional parameters beyond surface precipitation that are organized into appropriate groups. While these retrieval algorithms were developed prior to launch and are not optimal, these algorithms are producing very creditable retrievals. It is appropriate for a wide group of users to have access to the GPM retrievals. However, for researchers requiring only surface precipitation, these L2 swath products can appear to be very intimidating and they certainly do contain many more variables than the average researcher needs. Some researchers desire only surface retrievals stored in a simple easily accessible format. In response, PPS has begun to produce gridded text based products that contain just the most widely used variables for each instrument (surface rainfall rate, fraction liquid, fraction convective) in a single line for each grid box that contains one or more observations.This paper will describe the gridded data products that are being produced and provide an overview of their content. Currently two types of gridded products are being produced: (1) surface precipitation retrievals from the core satellite instruments GMI, DPR, and combined GMIDPR (2) surface precipitation retrievals for the partner constellation

  18. Airborne Measurements in Support of the NASA Atmospheric Carbon and Transport - America (ACT-America) Mission

    NASA Technical Reports Server (NTRS)

    Meadows, Byron; Davis, Ken; Barrick, John; Browell, Edward; Chen, Gao; Dobler, Jeremy; Fried, Alan; Lauvaux, Thomas; Lin, Bing; McGill, Matt; Miles, Natasha; Nehrir, Amin; Obland, Michael; O'Dell, Chris; Sweeney, Colm; Yang, Melissa

    2015-01-01

    NASA announced the research opportunity Earth Venture Suborbital -2 (EVS-2) mission in support of the NASA's science strategic goals and objectives in 2013. Penn State University, NASA Langley Research Center (LaRC), and other academic institutions, government agencies, and industrial companies together formulated and proposed the Atmospheric Carbon and Transport -America (ACT -America) suborbital mission, which was subsequently selected for implementation. The airborne measurements that are part of ACT-America will provide a unique set of remote and in-situ measurements of CO2 over North America at spatial and temporal scales not previously available to the science community and this will greatly enhance our understanding of the carbon cycle. ACT -America will consist of five airborne campaigns, covering all four seasons, to measure regional atmospheric carbon distributions and to evaluate the accuracy of atmospheric transport models used to assess carbon sinks and sources under fair and stormy weather conditions. This coordinated mission will measure atmospheric carbon in the three most important regions of the continental US carbon balance: Northeast, Midwest, and South. Data will be collected using 2 airborne platforms (NASA Wallops' C-130 and NASA Langley's B-200) with both in-situ and lidar instruments, along with instrumented ground towers and under flights of the Orbiting Carbon Observatory (OCO-2) satellite. This presentation provides an overview of the ACT-America instruments, with particular emphasis on the airborne CO2and backscatter lidars, and the, rationale, approach, and anticipated results from this mission.

  19. Development of Generic Aircrew Measures of Performance for Distributed Mission Training

    DTIC Science & Technology

    2003-03-31

    Canadian subject matter experts ( SMEs ) to refine the task selection. The measurement framework stems from a conceptual model of an AF mission...recommended: Objective performance data; Behaviourally Anchored Rating Scales (BARS) scored by SMEs ; and the Pathfinder technique. This recommendation is...57 6.6.7 Subjective techniques: III. SME ratings of behaviour......................................................................59 7. THE

  20. Operating the Dual-Orbiter GRAIL Mission to Measure the Moon's Gravity

    NASA Technical Reports Server (NTRS)

    Beerer, Joseph G.; Havens, Glen G.

    2012-01-01

    NASA's mission to measure the Moon's gravity and determine the interior structure, from crust to core, has almost completed its 3-month science data collection phase. The twin orbiters of the Gravity Recovery and Interior Laboratory (GRAIL) mission were launched from Florida on September 10, 2011, on a Delta-II launch vehicle. After traveling for nearly four months on a low energy trajectory to the Moon, they were inserted into lunar orbit on New Year's Eve and New Year's Day. In January 2012 a series of circularization maneuvers brought the orbiters into co-planar near-circular polar orbits. In February a distant (75- km) rendezvous was achieved and the science instruments were turned on. A dual- frequency (Ka and S-band) inter-orbiter radio link provides a precise orbiter-to-orbiter range measurement that enables the gravity field estimation. NASA's Jet Propulsion Laboratory in Pasadena, CA, manages the GRAIL project. Mission management, mission planning and sequencing, and navigation are conducted at JPL. Lockheed Martin, the flight system manufacturer, operates the orbiters from their control center in Denver, Colorado. The orbiters together have performed 28 propulsive maneuvers to reach and maintain the science phase configuration. Execution of these maneuvers, as well as the payload checkout and calibration activities, has gone smoothly due to extensive pre-launch operations planning and testing. The key to the operations success has been detailed timelines for product interchange between the operations teams and proven procedures from previous JPL/LM planetary missions. Once in science phase, GRAIL benefitted from the payload operational heritage of the GRACE mission that measures the Earth's gravity.

  1. Neural bases of hand synergies

    PubMed Central

    Santello, Marco; Baud-Bovy, Gabriel; Jörntell, Henrik

    2013-01-01

    The human hand has so many degrees of freedom that it may seem impossible to control. A potential solution to this problem is “synergy control” which combines dimensionality reduction with great flexibility. With applicability to a wide range of tasks, this has become a very popular concept. In this review, we describe the evolution of the modern concept using studies of kinematic and force synergies in human hand control, neurophysiology of cortical and spinal neurons, and electromyographic (EMG) activity of hand muscles. We go beyond the often purely descriptive usage of synergy by reviewing the organization of the underlying neuronal circuitry in order to propose mechanistic explanations for various observed synergy phenomena. Finally, we propose a theoretical framework to reconcile important and still debated concepts such as the definitions of “fixed” vs. “flexible” synergies and mechanisms underlying the combination of synergies for hand control. PMID:23579545

  2. Neural bases of hand synergies.

    PubMed

    Santello, Marco; Baud-Bovy, Gabriel; Jörntell, Henrik

    2013-01-01

    The human hand has so many degrees of freedom that it may seem impossible to control. A potential solution to this problem is "synergy control" which combines dimensionality reduction with great flexibility. With applicability to a wide range of tasks, this has become a very popular concept. In this review, we describe the evolution of the modern concept using studies of kinematic and force synergies in human hand control, neurophysiology of cortical and spinal neurons, and electromyographic (EMG) activity of hand muscles. We go beyond the often purely descriptive usage of synergy by reviewing the organization of the underlying neuronal circuitry in order to propose mechanistic explanations for various observed synergy phenomena. Finally, we propose a theoretical framework to reconcile important and still debated concepts such as the definitions of "fixed" vs. "flexible" synergies and mechanisms underlying the combination of synergies for hand control.

  3. Nuclear emulsion measurements of the astronauts' radiation exposures on Skylab missions 2, 3, and 4

    NASA Technical Reports Server (NTRS)

    Schaefer, H. J.; Sullivan, J. J.

    1975-01-01

    On the Skylab missions, Ilford G.5 and K.2 emulsions were flown as part of passive dosimeter packs carried by the astronauts on their wrists. Due to the long mission times, latent image fading and track crowing imposed limitations on a quantitative track and grain count analysis. For Skylab 2, the complete proton energy spectrum was determined within reasonable error limits. A combined mission dose equivalent of 2,490 millirems from protons, tissue stars and neutrons was measured on Skylab 2. A stationary emulsion stack, kept in a film vault drawer on the same mission, displayed a highly structured directional distribution of the fluence of low-energy protons (enders) reflecting the local shield distribution. On the 59 and 84-day mission 3 and 4, G.5 emulsions had to be cut on the microtom to 5-7 microns for microscopic examination. Even so, the short track segments in such thin layers precluded a statistically reliable grain count analysis. However, the K.2 emulsions still allowed accurate proton ender counts without special provisions.

  4. Combined Infrared Stereo and Laser Ranging Cloud Measurements from Shuttle Mission STS-85

    NASA Technical Reports Server (NTRS)

    Lancaster, R. S.; Spinhirne, J. D.; Manizade, K. F.

    2004-01-01

    Multiangle remote sensing provides a wealth of information for earth and climate monitoring, such as the ability to measure the height of cloud tops through stereoscopic imaging. As technology advances so do the options for developing spacecraft instrumentation versatile enough to meet the demands associated with multiangle measurements. One such instrument is the infrared spectral imaging radiometer, which flew as part of mission STS-85 of the space shuttle in 1997 and was the first earth- observing radiometer to incorporate an uncooled microbolometer array detector as its image sensor. Specifically, a method for computing cloud-top height with a precision of +/- 620 m from the multispectral stereo measurements acquired during this flight has been developed, and the results are compared with coincident direct laser ranging measurements from the shuttle laser altimeter. Mission STS-85 was the first space flight to combine laser ranging and thermal IR camera systems for cloud remote sensing.

  5. Greenhouses and their humanizing synergies

    NASA Astrophysics Data System (ADS)

    Haeuplik-Meusburger, Sandra; Paterson, Carrie; Schubert, Daniel; Zabel, Paul

    2014-03-01

    Greenhouses in space will require advanced technical systems of automatic watering, soil-less cultivation, artificial lighting, and computerized observation of plants. Functions discussed for plants in space habitats include physical/health requirements and human psychology, social cohesion, as well as the complex sensorial benefits of plants for humans. The authors consider the role of plants in long-term space missions historically since 1971 (Salyut 1) and propose a set of priorities to be considered within the design requirements for greenhouses and constructed environments given a range of benefits associated with plant-human relationships. They cite recent research into the use of greenhouses in extreme environments to reveal the relative importance of greenhouses for people living in isolated locations. Additionally, they put forward hypotheses about where greenhouses might factor into several strata of human health. In a recent design-in-use study of astronauts' experiences in space habitats discussed in Architecture for Astronauts (Springer Press 2011) it was found that besides the basic advantages for life support there are clearly additional "side benefits" for habitability and physical wellbeing, and thus long-term mission success. The authors have composed several key theses regarding the need to promote plant-human relationships in space, including areas where synergy and symbiosis occur. They cite new comprehensive research into the early US Space Program to reveal where programmatic requirements could be added to space architecture to increase the less quantifiable benefits to astronauts of art, recreation, and poetic engagement with their existential condition of estrangement from the planet. Specifically in terms of the technological requirements, the authors propose the integration of a new greenhouse subsystem component into space greenhouses—the Mobile Plant Cultivation Subsystem—a portable, personal greenhouse that can be integrated

  6. Tropical Rainfall Measuring Mission (TRMM). Phase B: Data capture facility definition study

    NASA Technical Reports Server (NTRS)

    1990-01-01

    The National Aeronautics and Aerospace Administration (NASA) and the National Space Development Agency of Japan (NASDA) initiated the Tropical Rainfall Measuring Mission (TRMM) to obtain more accurate measurements of tropical rainfall then ever before. The measurements are to improve scientific understanding and knowledge of the mechanisms effecting the intra-annual and interannual variability of the Earth's climate. The TRMM is largely dependent upon the handling and processing of the data by the TRMM Ground System supporting the mission. The objective of the TRMM is to obtain three years of climatological determinations of rainfall in the tropics, culminating in data sets of 30-day average rainfall over 5-degree square areas, and associated estimates of vertical distribution of latent heat release. The scope of this study is limited to the functions performed by TRMM Data Capture Facility (TDCF). These functions include capturing the TRMM spacecraft return link data stream; processing the data in the real-time, quick-look, and routine production modes, as appropriate; and distributing real time, quick-look, and production data products to users. The following topics are addressed: (1) TRMM end-to-end system description; (2) TRMM mission operations concept; (3) baseline requirements; (4) assumptions related to mission requirements; (5) external interface; (6) TDCF architecture and design options; (7) critical issues and tradeoffs; and (8) recommendation for the final TDCF selection process.

  7. History of satellite missions and measurements of the Earth Radiation Budget (1957-1984)

    NASA Technical Reports Server (NTRS)

    House, F. B.; Gruber, A.; Hunt, G. E.; Mecherikunnel, A. T.

    1986-01-01

    The history of satellite missions and their measurements of the earth radiation budget from the beginning of the space age until the present time are reviewed. The survey emphasizes the early struggle to develop instrument systems to monitor reflected shortwave and emitted long-wave exitances from the earth, and the problems associated with the interpretation of these observations from space. In some instances, valuable data sets were developed from satellite measurements whose instruments were not specifically designed for earth radiation budget observations.

  8. Relationship of Global Precipitation Measurement (GPM) Mission to Global Change Research

    NASA Technical Reports Server (NTRS)

    Smith, Eric A.; Starr, David OC. (Technical Monitor)

    2002-01-01

    In late 2001, the Global Precipitation Measurement (GPM) mission was approved as a new start by the National Aeronautics and Space Administration (NASA). This new mission is motivated by a number of scientific questions that are posed over a range of space and time scales that generally fall within the discipline of the global water and energy cycle (GWEC). Recognizing that satellite rainfall datasets are now a foremost tool for understanding global climate variability out to decadal scales and beyond, for improving weather forecasting, and for producing better predictions of hydrometeorological processes including short-term hazardous flooding and seasonal fresh water resources assessment, a comprehensive and internationally sanctioned global measuring strategy has led to the GPM mission. The GPM mission plans to expand the scope of rainfall measurement through use of a multi-member satellite constellation that will be contributed by a number of world nations. This talk overviews the GPM scientific research program that has been fostered within NASA, then focuses on scientific progress that is being made in various research areas in the course of the mission formulation phase that are of interest to the global change scientific community. This latter part of the talk addresses research issues that have become central to the GPM science implementation plan concerning: (1) the rate of global water cycling through the atmosphere and surface and the relationship of precipitation variability to the sustained rate of the water cycle; (2) the relationship between climate change and cloud macrophysical- microphysical processes; and (3) the general improvement in measuring precipitation at the fundamental microphysical level that will take place during the GPM era and an explanation of how these improvements are expected to come about.

  9. From silos to synergy.

    PubMed

    Treadwell, Janet; Levermann, Laurie; Soffar, Gail; Giardino, Angelo

    2007-08-01

    Texas Children's Health Plan (TCHP) redesigned its approach to care management in an effort to provide support for member-centric care and the medical home. The changes in process and structure focused on connecting information and programs to promote care for members in a collaborative manner and taking advantage of the synergy between staff, programming, and the physician practices serving health plan membership. The results brought about an improvement in job satisfaction, positive change in the medical-loss ratio, and new innovations to support preventive and chronic care service delivery needs of the TCHP membership.

  10. Science and Measurement Requirements for a Plant Physiology and Functional Types Mission: Measuring the Composition, Function and Health of Global Land and Coastal Ocean Ecosystems

    NASA Technical Reports Server (NTRS)

    Green, Robert O.; Rogez, Francois; Green, Rob; Ungar, Steve; Knox, Robert; Asner, Greg; Muller-Karger, Frank; Bissett, Paul; Chekalyuk, Alex; Dierssen, Heidi; Gamon, John; Hook, Simon; Meister, Gerhard; Middleton, Betsy; Ollinger, Scott; Roberts, Dar; Siegel, Dave; Townsend, Phil; Saatchi, Sassan; Unstin, Susan; Turner, Woody; Wickland, Diane; Bontempi, Paula; Emanuel, Bill

    2007-01-01

    This slide presentation reviews the proposed Plant Physiology and Functional Types (PPFT) Mission. The National Academy of Sciences Decadal Survey, placed a critical priority on a Mission to observe distribution and changes in ecosystem functions. The PPFT satellite mission provides the essential measurements needed to assess drivers of change in biodiversity and ecosystem services that affect human welfare. The presentation reviews the science questions that the mission will be designed to answer, the science rationale, the science measurements, the mission concept, the planned instrumentation, the calibration method, and key signal to noise ratios and uniformity requirements.

  11. Science and Measurement Requirements for a Plant Physiology and Functional Types Mission: Measuring the Composition, Function and Health of Global Land and Coastal Ocean Ecosystems

    NASA Technical Reports Server (NTRS)

    Green, Robert O.; Rogez, Francois; Green, Rob; Ungar, Steve; Knox, Robert; Asner, Greg; Muller-Karger, Frank; Bissett, Paul; Chekalyuk, Alex; Dierssen, Heidi; Gamon, John; Hook, Simon; Meister, Gerhard; Middleton, Betsy; Ollinger, Scott; Roberts, Dar; Siegel, Dave; Townsend, Phil; Saatchi, Sassan; Unstin, Susan; Turner, Woody; Wickland, Diane; Bontempi, Paula; Emanuel, Bill

    2007-01-01

    This slide presentation reviews the proposed Plant Physiology and Functional Types (PPFT) Mission. The National Academy of Sciences Decadal Survey, placed a critical priority on a Mission to observe distribution and changes in ecosystem functions. The PPFT satellite mission provides the essential measurements needed to assess drivers of change in biodiversity and ecosystem services that affect human welfare. The presentation reviews the science questions that the mission will be designed to answer, the science rationale, the science measurements, the mission concept, the planned instrumentation, the calibration method, and key signal to noise ratios and uniformity requirements.

  12. Radioscience and seismic measurements for the INSIGHT mission about interior of Mars.

    NASA Astrophysics Data System (ADS)

    Dehant, Véronique; Asmar, Sami; Folkner, William; Lognonné, Philippe; Banerdt, Bruce; Smrekar, Suzanne; Rivoldini, Attilio; Christensen, Ulrich; Giardini, Domenico; Pike, Tom; Clinton, John; Garcia, Raphael; Johnson, Catherine; Kobayashi, Naoki; Knapmeyer-Endrun, Brigitte; Mimoun, David; Mocquet, Antoine; Panning, Mark; Tromp, Jeroen; Weber, Renee

    2015-04-01

    We shall use the X-band radio link of the future 2016 InSIGHT (Interior exploration using Seismic Investigations, Geodesy, and Heat Transport) lander on the surface of Mars with the objective to better determine the rotation and interior structure of Mars. This X-band radio link consists in two-way Doppler measurements from a direct radio-link between the Martian lander and deep space tracking stations on the Earth. On the basis of these measurements, it will be possible to monitor the lander position relative to the Earth and in turn to improve the determination of the Mars' orientation and rotation parameters (MOP), i.e. the rotation rate variations (or Length of Days LOD), the precession rate and the nutations of the rotation axis. As these MOP parameters are related to the interior of the planet, we further discuss the expected improvement in our knowledge of Mars' interior in synergy with the seismic data, which include the tidal data. We will show in particular how to determine the state, size, and composition of the Martian core. These parameters are very important for understanding the evolution of Mars.

  13. Summary Report of Mission Acceleration Measurements for STS-65, Launched 8 July 1994

    NASA Technical Reports Server (NTRS)

    Rogers, Melissa J. B.; Delombard, Richard

    1995-01-01

    The second flight of the International Microgravity Laboratory (IML-2) payload on board the STS-65 mission was supported by three accelerometer instruments: The Orbital Acceleration Research Experiment (OARE) located close to the orbiter center of mass; the Quasi-Steady Acceleration Measurement experiment, and the Space Acceleration Measurement System (SAMS), both in the Spacelab module. A fourth accelerometer, the Microgravity Measuring Device recorded data in the middeck in support of exercise isolation tests.Data collected by OARE and SAMS during IML-2 are displayed in this report. The OARE data represent the microgravity environment below 1 Hz. The SAMS data represent the environment in the 0.01 Hz to 100 Hz range. Variations in the environment caused by unique activities are presented. Specific events addressed are: crew activity, crew exercise, experiment component mixing activities, experiment centrifuge operations, refrigerator/freezer operations and circulation pump operations. The analyses included in this report complement analyses presented in other mission summary reports.

  14. The Global Precipitation Measurement (GPM) Mission: U.S. Program and Science Status

    NASA Astrophysics Data System (ADS)

    Hou, A.; Azarbarzin, A.; Kakar, R.; Neeck, S.

    2009-04-01

    The Global Precipitation Measurement (GPM) Mission is an international satellite mission designed to unify and advance precipitation measurements from a constellation of research and operational microwave sensors to provide next-generation precipitation data products for scientific research and societal applications. NASA and JAXA will deploy the GPM Core Observatory carrying an advanced radar-radiometer system to serve as a physics observatory and calibration reference for constellation radiometers. NASA will deploy the GPM Low-Inclination Observatory to enhance the near real-time monitoring of hurricanes and mid-latitude storms, and JAXA will contribute data from the Global Change Observation Mission-Water (GCOM-W) satellite. Partnerships are under development to include additional conical-scanning microwave imagers on the French-Indian Megha-Tropiques satellite and U.S. Defense Meteorological Satellite Program (DMSP) satellites, as well as cross-track scanning humidity sounders on operational satellites such as the National Polar-orbiting Operational Environmental Satellite System (NPOESS) Preparatory Project (NPP), POES, NPOESS, and European MetOp satellites, which are used to improve the precipitation sampling over land. In addition, Brazil has in its national space plan for a GPM low-inclination radiometer, and data from Chinese and Russian microwave radiometers could potentially become available through international collaboration under the auspices of the Committee on Earth Observation Satellites (CEOS) and Group on Earth Observations (GEO). As a science mission with integrated application goals, GPM is expected to (1) provide new measurement standards for precipitation estimation from space, (2) improve understanding of precipitation physics, the global water cycle variability, and freshwater availability, and (3) advance weather/climate/hydrological prediction capabilities to directly benefit the society. An overview of the GPM mission concept, program

  15. Towards the Development of a Global Precipitation Measurement (GPM) Mission Concept

    NASA Technical Reports Server (NTRS)

    Shepherd, Marshall; Starr, David OC. (Technical Monitor)

    2001-01-01

    The scientific success of the Tropical Rainfall Measuring Mission (TRMM) and additional satellite-focused precipitation retrieval projects have paved the way for a more advanced global precipitation mission. A comprehensive global measuring strategy is currently under study - Global Precipitation Measurement (GPM). The GPM study could ultimately lead to the development of the Global Precipitation Mission. The intent of GPM is to address looming scientific questions arising in the context of global climate-water cycle interactions, hydrometeorology, weather prediction and prediction of freshwater resources, the global carbon cycle, and biogeochemical cycles. This talk overviews the status and scientific agenda of this proposed mission currently planned for launch in the 2007-2008 time frame. GPM is planning to expand the scope of precipitation measurement through the use of a constellation of 6-10 satellites, one of which will be an advanced TRMM-like "core" satellite carry dual-frequency Ku-Ka band radar and a microwave radiometer (e.g. TMI-like). The other constellation members will likely include new lightweight satellites and co-existing operational/research satellites carrying passive microwave radiometers. The goal behind the constellation is to achieve no worse than 3-hour sampling at any spot on the globe. The constellation's orbit architecture will consist of a mix of sun-synchronous and non-su n -synchronous satellites with the "core" satellite providing measurement of cloud-precipitation microphysical processes plus "training calibrating" information to be used with the retrieval algorithms for the constellation satellite measurements. The GPM is organized internationally, currently involving a partnership between NASA in the US, NASDA in Japan, and ESA in Europe (representing the European community). The program is expected to involve additional international partners, other federal agencies, and a diverse collection of scientists from academia

  16. The Global Precipitation Measurement (GPM) Mission: U.S. Program and Science Status

    NASA Astrophysics Data System (ADS)

    Hou, Arthur; Azarbarzin, Ardeshir; Kakar, Ramesh; Neeck, Steven

    2010-05-01

    The Global Precipitation Measurement (GPM) Mission is an international satellite mission designed to unify and advance precipitation measurements from a constellation of research and operational microwave sensors. NASA and JAXA will deploy the GPM Core Observatory carrying an advanced radar-radiometer system to serve as a physics observatory and a transfer standard for inter-calibration of constellation radiometers. The GPM Core Observatory is scheduled for launch in July 2013. In addition, NASA will provide a second radiometer to be flown on a partner-provided GPM Low-Inclination Observatory to enhance the near real-time monitoring of hurricanes and mid-latitude storms. JAXA will also contribute data from the Global Change Observation Mission-Water (GCOM-W) satellite. Additional partnerships are under development to include conical-scanning microwave imagers on the French-Indian Megha-Tropiques satellite and U.S. Defense Meteorological Satellite Program (DMSP) satellites, as well as cross-track scanning humidity sounders on operational satellites such as the National Polar-orbiting Operational Environmental Satellite System (NPOESS) Preparatory Project (NPP), POES, NPOESS, and European MetOp satellites, which are used to improve the precipitation sampling over land. Currently, Brazil has in its national space plan for a GPM low-inclination radiometer, and data from Chinese and Russian microwave radiometers could potentially become available through international collaboration under the auspices of the Committee on Earth Observation Satellites (CEOS) and Group on Earth Observations (GEO). The current generation of global rainfall products combines observations from a network of uncoordinated satellite missions using a variety of merging techniques. GPM will provide "next-generation" precipitation data products characterized by: (1) more accurate instantaneous precipitation measurement (especially for light rain and cold-season solid precipitation), (2) more

  17. The Global Precipitation Measurement (GPM) Mission: Overview and U.S. Status

    NASA Technical Reports Server (NTRS)

    Hou, Arthur Y.

    2010-01-01

    The Global Precipitation Measurement (GPM) Mission is an international satellite mission designed to unify and advance precipitation measurements from a constellation of research and operational microwave sensors. NASA and JAXA will deploy the GPM Core Observatory carrying an advanced radar-radiometer system to serve as a physics observatory and a transfer standard for inter-calibration of constellation radiometers. The GPM Core Observatory is scheduled for launch in July 2013. NASA will provide a second radiometer to be flown on a partner-provided GPM Low-Inclination Observatory to enhance the near real-time monitoring of hurricanes and mid-latitude storms. JAXA will also contribute data from the Global Change Observation Mission-Water (GCOM-W) satellite. Additional partnerships are under development to include microwave radiometers on the French-Indian Megha-Tropiques satellite and U.S. Defense Meteorological Satellite Program (DMSP) satellites, as well as cross-track scanning humidity sounders on operational satellites such as the NPP, POES, JPSS, and MetOp satellites, which are used to improve the precipitation sampling over land. Brazil has in its national space plan for a GPM low-inclination radiometer, and data from Chinese and Russian microwave radiometers could potentially become available through international collaboration under the auspices of the Committee on Earth Observation Satellites (CEOS) and Group on Earth Observations (GEO). The current generation of global rainfall products combines observations from a network of uncoordinated satellite missions using a variety of merging techniques. GPM will provide "next-generation" precipitation data products characterized by: (1) more accurate instantaneous precipitation measurement (especially for light rain and cold-season solid precipitation), (2) more frequent sampling by an expanded constellation of microwave radiometers including operational humidity sounders over land, (3) intercalibrated microwave

  18. Observing System Simulations for the NASA ASCENDS Lidar CO2 Mission Concept: Substantiating Science Measurement Requirements

    NASA Technical Reports Server (NTRS)

    Kawa, Stephan R.; Baker, David Frank; Schuh, Andrew E.; Abshire, James Brice; Browell, Edward V.; Michalak, Anna M.

    2012-01-01

    The NASA ASCENDS mission (Active Sensing of Carbon Emissions, Nights, Days, and Seasons) is envisioned as the next generation of dedicated, space-based CO2 observing systems, currently planned for launch in about the year 2022. Recommended by the US National Academy of Sciences Decadal Survey, active (lidar) sensing of CO2 from space has several potentially significant advantages, in comparison to current and planned passive CO2 instruments, that promise to advance CO2 measurement capability and carbon cycle understanding into the next decade. Assessment and testing of possible lidar instrument technologies indicates that such sensors are more than feasible, however, the measurement precision and accuracy requirements remain at unprecedented levels of stringency. It is, therefore, important to quantitatively and consistently evaluate the measurement capabilities and requirements for the prospective active system in the context of advancing our knowledge of carbon flux distributions and their dependence on underlying physical processes. This amounts to establishing minimum requirements for precision, relative accuracy, spatial/temporal coverage and resolution, vertical information content, interferences, and possibly the tradeoffs among these parameters, while at the same time framing a mission that can be implemented within a constrained budget. Here, we present results of observing system simulation studies, commissioned by the ASCENDS Science Requirements Definition Team, for a range of possible mission implementation options that are intended to substantiate science measurement requirements for a laser-based CO2 space instrument.

  19. Drop Size Distribution Measurements Supporting the NASA Global Precipitation Measurement Mission: Infrastructure and Preliminary Results

    NASA Technical Reports Server (NTRS)

    Petersen, Walter A.; Carey, Lawerence D.; Gatlin, Patrick N.; Wingo, Matthew; Tokay, Ali; Wolff, David B.; Bringi, V. N.

    2011-01-01

    Global Precipitation Measurement Mission (GPM) retrieval algorithm validation requires datasets that characterize the 4-D structure, variability, and correlation properties of hydrometeor particle size distributions (PSD) and accumulations over satellite fields of view (5 -- 50 km). Key to this process is the combined use of disdrometer and polarimetric radar platforms. Here the disdrometer measurements serve as a reference for up-scaling dual-polarimetric radar observations of the PSD to the much larger volumetric sampling domain of the radar. The PSD observations thus derived provide a much larger data set for assessing DSD variability, and satellite-based precipitation retrieval algorithm assumptions, in all three spatial dimensions for a range of storm types and seasons. As one component of this effort, the GPM Ground Validation program recently acquired five 3rd generation 2D Video disdrometers as part of its Disdrometer and Radar Observations of Precipitation Facility (DROP), currently hosted in northern Alabama by the NASA Marshall Space Flight Center and the University of Alabama in Huntsville. These next-generation 2DVDs were operated and evaluated in different phases of data collection under the scanning domain of the UAH ARMOR C-band dual-polarimetric radar. During this period approximately 7500 minutes of PSD data were collected and processed to create gamma size distribution parameters using a truncated method of moments approach. After creating the gamma parameter datasets the DSDs were then used as input to T-matrix code for computation of polarimetric radar moments at C-band. The combined dataset was then analyzed with two basic objectives in mind: 1) the investigation of seasonal variability in the rain PSD parameters as observed by the 2DVDs; 2) the use of combined polarimetric moments and observed gamma distribution parameters in a functional form to retrieve PSD parameters in 4-D using the ARMOR radar for precipitation occurring in different

  20. Measurement of precipitation induced FUV emission and Geocoronal Lyman Alpha from the IMI mission

    NASA Technical Reports Server (NTRS)

    Mende, Stephen B.; Fuselier, S. A.; Rairden, R. L.

    1995-01-01

    This final report describes the activities of the Lockheed Martin Palo Alto Research Laboratory in studying the measurement of ion and electron precipitation induced Far Ultra-Violet (FUV) emissions and Geocoronal Lyman Alpha for the NASA Inner Magnetospheric Imager (IMI) mission. this study examined promising techniques that may allow combining several FUV instruments that would separately measure proton aurora, electron aurora, and geocoronal Lyman alpha into a single instrument operated on a spinning spacecraft. The study consisted of two parts. First, the geocoronal Lyman alpha, proton aurora, and electron aurora emissions were modeled to determine instrument requirements. Second, several promising techniques were investigated to determine if they were suitable for use in an IMI-type mission. Among the techniques investigated were the Hydrogen gas cell for eliminating cold geocoronal Lyman alpha emissions, and a coded aperture spectrometer with sufficient resolution to separate Doppler shifted Lyman alpha components.

  1. Assimilation of Precipitation Measurement Missions Microwave Radiance Observations With GEOS-5

    NASA Technical Reports Server (NTRS)

    Jin, Jianjun; Kim, Min-Jeong; McCarty, Will; Akella, Santha; Gu, Wei

    2015-01-01

    The Global Precipitation Mission (GPM) Core Observatory satellite was launched in February, 2014. The GPM Microwave Imager (GMI) is a conically scanning radiometer measuring 13 channels ranging from 10 to 183 GHz and sampling between 65 S 65 N. This instrument is a successor to the Tropical Rainfall Measurement Mission (TRMM) Microwave Imager (TMI), which has observed 9 channels at frequencies ranging 10 to 85 GHz between 40 S 40 N since 1997. This presentation outlines the base procedures developed to assimilate GMI and TMI radiances in clear-sky conditions, including quality control methods, thinning decisions, and the estimation of, observation errors. This presentation also shows the impact of these observations when they are incorporated into the GEOS-5 atmospheric data assimilation system.

  2. The Scientific Measurement System of the Gravity Recovery and Interior Laboratory (GRAIL) Mission

    NASA Astrophysics Data System (ADS)

    Asmar, Sami W.; Konopliv, Alexander S.; Watkins, Michael M.; Williams, James G.; Park, Ryan S.; Kruizinga, Gerhard; Paik, Meegyeong; Yuan, Dah-Ning; Fahnestock, Eugene; Strekalov, Dmitry; Harvey, Nate; Lu, Wenwen; Kahan, Daniel; Oudrhiri, Kamal; Smith, David E.; Zuber, Maria T.

    2013-09-01

    The Gravity Recovery and Interior Laboratory (GRAIL) mission to the Moon utilized an integrated scientific measurement system comprised of flight, ground, mission, and data system elements in order to meet the end-to-end performance required to achieve its scientific objectives. Modeling and simulation efforts were carried out early in the mission that influenced and optimized the design, implementation, and testing of these elements. Because the two prime scientific observables, range between the two spacecraft and range rates between each spacecraft and ground stations, can be affected by the performance of any element of the mission, we treated every element as part of an extended science instrument, a science system. All simulations and modeling took into account the design and configuration of each element to compute the expected performance and error budgets. In the process, scientific requirements were converted to engineering specifications that became the primary drivers for development and testing. Extensive simulations demonstrated that the scientific objectives could in most cases be met with significant margin. Errors are grouped into dynamic or kinematic sources and the largest source of non-gravitational error comes from spacecraft thermal radiation. With all error models included, the baseline solution shows that estimation of the lunar gravity field is robust against both dynamic and kinematic errors and a nominal field of degree 300 or better could be achieved according to the scaled Kaula rule for the Moon. The core signature is more sensitive to modeling errors and can be recovered with a small margin.

  3. Tropical Rainfall Measuring Mission (TRMM) project. VI - Spacecraft, scientific instruments, and launching rocket. Part 1 - Spacecraft

    NASA Technical Reports Server (NTRS)

    Keating, Thomas; Ihara, Toshio; Miida, Sumio

    1990-01-01

    A cooperative United States/Japan study was made for one year from 1987 to 1988 regarding the feasibility of the Tropical Rainfall Measuring Mission (TRMM). As part of this study a phase-A-level design of spacecraft for TRMM was developed by NASA/GSFC, and the result was documented in a feasibility study. The phase-A-level design is developed for the TRMM satellite utilizing a multimission spacecraft.

  4. CLAIRE: a Canadian Small Satellite Mission for Measurement of Greenhouse Gases

    NASA Astrophysics Data System (ADS)

    Sloan, James; Grant, Cordell; Germain, Stephane; Durak, Berke; McKeever, Jason; Latendresse, Vincent

    2016-07-01

    CLAIRE, a Canadian mission operated by GHGSat Inc. of Montreal, is the world's first satellite designed to measure greenhouse gas emissions from single targeted industrial facilities. Claire was launched earlier this year into a 500 km polar sun-synchronous orbit selected to provide an acceptable balance between return frequency and spatial resolution. Extensive simulations of oil & gas facilities, power plants, hydro reservoirs and even animal feedlots were used to predict the mission performance. The principal goal is to measure the emission rates of carbon dioxide and methane from selected targets with greater precision and lower cost than ground-based alternatives. CLAIRE will measure sources having surface areas less than 10 x 10 km2 with a spatial resolution better than 50 m, thereby providing industrial site operators and government regulators with the information they need to understand, manage and ultimately to reduce greenhouse gas emissions more economically. The sensor is based on a Fabry-Perot interferometer, coupled with a 2D InGaAs focal plane array operating in the short-wave infrared with a spectral resolution of about 0.1 nm. The patented, high étendue, instrument design provides signal to noise ratios that permit quantification of emission rates with accuracies adequate for most regulatory reporting thresholds. The very high spatial resolution of the density maps produced by the CLAIRE mission resolves plume shapes and emitter locations so that advanced dispersion models can derive accurate emission rates of multiple sources within the field of view. The satellite bus, provided by the University of Toronto's Space Flight Laboratory, is based on the well-characterized NEMO architecture, including hardware that has significant spaceflight heritage. The mission is currently undergoing initial test and validation measurements in preparation for commercial operation later this year.

  5. An Intercomparison of Lidar Ozone and Temperature Measurements From the SOLVE Mission With Predicted Model Values

    NASA Technical Reports Server (NTRS)

    Burris, John; McGee, Thomas J.; Hoegy, Walt; Lait, Leslie; Sumnicht, Grant; Twigg, Larry; Heaps, William

    2000-01-01

    Temperature profiles acquired by Goddard Space Flight Center's AROTEL lidar during the SOLVE mission onboard NASA's DC-8 are compared with predicted values from several atmospheric models (DAO, NCEP and UKMO). The variability in the differences between measured and calculated temperature fields was approximately 5 K. Retrieved temperatures within the polar vortex showed large regions that were significantly colder than predicted by the atmospheric models.

  6. A novel computational framework for deducing muscle synergies from experimental joint moments

    PubMed Central

    Gopalakrishnan, Anantharaman; Modenese, Luca; Phillips, Andrew T. M.

    2014-01-01

    Prior experimental studies have hypothesized the existence of a “muscle synergy” based control scheme for producing limb movements and locomotion in vertebrates. Such synergies have been suggested to consist of fixed muscle grouping schemes with the co-activation of all muscles in a synergy resulting in limb movement. Quantitative representations of these groupings (termed muscle weightings) and their control signals (termed synergy controls) have traditionally been derived by the factorization of experimentally measured EMG. This study presents a novel approach for deducing these weightings and controls from inverse dynamic joint moments that are computed from an alternative set of experimental measurements—movement kinematics and kinetics. This technique was applied to joint moments for healthy human walking at 0.7 and 1.7 m/s, and two sets of “simulated” synergies were computed based on two different criteria (1) synergies were required to minimize errors between experimental and simulated joint moments in a musculoskeletal model (pure-synergy solution) (2) along with minimizing joint moment errors, synergies also minimized muscle activation levels (optimal-synergy solution). On comparing the two solutions, it was observed that the introduction of optimality requirements (optimal-synergy) to a control strategy solely aimed at reproducing the joint moments (pure-synergy) did not necessitate major changes in the muscle grouping within synergies or the temporal profiles of synergy control signals. Synergies from both the simulated solutions exhibited many similarities to EMG derived synergies from a previously published study, thus implying that the analysis of the two different types of experimental data reveals similar, underlying synergy structures. PMID:25520645

  7. Tropical Rainfall Measuring Mission (TRMM) and the Future of Rainfall Estimation from Space

    NASA Technical Reports Server (NTRS)

    Kakar, Ramesh; Adler, Robert; Smith, Eric; Starr, David OC. (Technical Monitor)

    2001-01-01

    Tropical rainfall is important in the hydrological cycle and to the lives and welfare of humans. Three-fourths of the energy that drives the atmospheric wind circulation comes from the latent heat released by tropical precipitation. Recognizing the importance of rain in the tropics, NASA for the U.S.A. and NASDA for Japan have partnered in the design, construction and flight of a satellite mission to measure tropical rainfall and calculate the associated latent heat release. The Tropical Rainfall Measuring Mission (TRMM) satellite was launched on November 27, 1997, and data from all the instruments first became available approximately 30 days after launch. Since then, much progress has been made in the calibration of the sensors, the improvement of the rainfall algorithms and applications of these results to areas such as Data Assimilation and model initialization. TRMM has reduced the uncertainty of climatological rainfall in tropics by over a factor of two, therefore establishing a standard for comparison with previous data sets and climatologies. It has documented the diurnal variation of precipitation over the oceans, showing a distinct early morning peak and this satellite mission has shown the utility of precipitation information for the improvement of numerical weather forecasts and climate modeling. This paper discusses some promising applications using TRMM data and introduces a measurement concept being discussed by NASA/NASDA and ESA for the future of rainfall estimation from space.

  8. Mission Simulation of Space Lidar Measurements for Seasonal and Regional CO2 Variations

    NASA Technical Reports Server (NTRS)

    Kawa, Stephan; Collatz, G. J.; Mao, J.; Abshire, J. B.; Sun, X.; Weaver, C. J.

    2010-01-01

    Results of mission simulation studies are presented for a laser-based atmospheric [82 sounder. The simulations are based on real-time carbon cycle process modeling and data analysis. The mission concept corresponds to the Active Sensing of [82 over Nights, Days, and Seasons (ASCENDS) recommended by the US National Academy of Sciences Decadal Survey of Earth Science and Applications from Space. One prerequisite for meaningful quantitative sensor evaluation is realistic CO2 process modeling across a wide range of scales, i.e., does the model have representative spatial and temporal gradients? Examples of model comparison with data will be shown. Another requirement is a relatively complete description of the atmospheric and surface state, which we have obtained from meteorological data assimilation and satellite measurements from MODIS and [ALIPS0. We use radiative transfer model calculations, an instrument model with representative errors ' and a simple retrieval approach to complete the cycle from "nature" run to "pseudo-data" CO2, Several mission and instrument configuration options are examined/ and the sensitivity to key design variables is shown. We use the simulation framework to demonstrate that within reasonable technological assumptions for the system performance, relatively high measurement precision can be obtained, but errors depend strongly on environmental conditions as well as instrument specifications. Examples are also shown of how the resulting pseudo - measurements might be used to address key carbon cycle science questions.

  9. GlobCurrent: Sentinel-3 Synergy in Action

    NASA Astrophysics Data System (ADS)

    Johannessen, J. A.; Chapron, B.; Collard, F.; Rio, M.-H.; Piolle, J.-F.; Quartly, G.; Shutler, J.; Escola, R.; Donlon, C.; Danielson, R.; Korosov, A.; Raj, R. P.; Kudryavtsev, V.; Roca, M.; Tournadre, J.; Larnicol, G.; Labroue, S.; Miller, P.; Nencioli, F.; Warren, M.; Hansen, M.

    2015-12-01

    The ESA Data User Element (DUE) funded GlobCurrent project (http://www.globcurrent.org) aims to: (i) advance the quantitative estimation of ocean surface currents from satellite sensor synergy; and (ii) demonstrate impact in user-led scientific, operational and commercial applications that, in turn, will improve and strengthen the uptake of satellite measurements. Today, a synergetic approach for quantitative analysis can build on high-resolution imaging radar and spectrometer data, infrared radiometer data and radar altimeter measurements. It will further integrate Sentinel-3 in combination with Sentinel-1 SAR data. From existing and past missions, it is often demonstrated that sharp gradients in the sea surface temperature (SST) field and the ocean surface chlorophyll-a distribution are spatially correlated with the sea surface roughness anomaly fields at small spatial scales, in the sub-mesocale (1-10 km) to the mesoscale (30-80 km). At the larger mesoscale range (>50 km), information derived from radar altimeters often depict the presence of coherent structures and eddies. The variability often appears largest in regions where the intense surface current regimes (>100 - 200 km) are found. These 2-dimensional structures manifested in the satellite observations represent evidence of the upper ocean (~100-200 m) dynamics. Whereas the quasi geostrophic assumption is valid for the upper ocean dynamics at the larger scale (>100 km), possible triggering mechanisms for the expressions at the mesoscale-to-sub-mesoscale may include spiraling tracers of inertial motion and the interaction of the wind-driven Ekman layer with the quasi-geostrophic current field. This latter, in turn, produces bands of downwelling (convergence) and upwelling (divergence) near fronts. A regular utilization of the sensor synergy approach with the combination of Sentinel-3 and Sentinel-1 will provide a highly valuable data set for further research and development to better relate the 2

  10. Synergies with the infrared

    NASA Astrophysics Data System (ADS)

    Alexander, D.

    2016-06-01

    In this solicited talk I will review the synergy between XMM-Newton (and Chandra) and infrared facilities. I will focus on two key advantages from the combination of X-ray and infrared observations. First, infrared observations allow for the identification of the most heavily obscured AGNs that are weak or undetected at X-ray observations, providing a more complete census of AGN activity than from X-ray observations alone. Second, infrared observations provide constraints on the star-formation properties of the AGNs, allowing for insight into the connection between AGN activity and star formation. I will use these key advantages to discuss our progress in identifying a complete census of AGN activity and our understanding of the AGN-star formation connection. I will also review how yet greater gains can be made with future planned and proposed facilities.

  11. The Global Precipitation Measurement (GPM) Mission contributions to terrestrial hydrology and societal applications

    NASA Astrophysics Data System (ADS)

    Kirschbaum, D.; Skofronick Jackson, G.; Huffman, G. J.

    2015-12-01

    Too much or too little rain can serve as a tipping point for triggering catastrophic flooding and landslides or widespread drought. Knowing when, where and how much rain is falling globally is vital to understanding how vulnerable areas may be more or less impacted by these disasters. The Global Precipitation Measurement (GPM) mission is an international constellation of satellites coordinated through a partnership with NASA and the Japan Aerospace Exploration Agency (JAXA) to provide next-generation global observations of rain and snow. The GPM mission centers on the deployment of a Core Observatory satellite that serves as a reference standard to unify precipitation measurements from a constellation of research and operational satellites. This satellite launched from Tanegashima Space Complex in Japan on January 28th, 2014 and carries advanced instruments setting a new standard for precipitation measurements from space. The GPM Core Observatory satellite measures rain and snow using two science instruments: the GPM Microwave Imager (GMI) and the Dual-frequency Precipitation Radar (DPR). The GMI captures precipitation intensities and horizontal patterns, while the DPR provides insights into the three dimensional structure of precipitating particles. Together these two instruments provide a database of measurements against which other partner satellites' microwave observations can be meaningfully compared and combined to make a global precipitation dataset. GPM has already provided unprecedented views of typhoons, extratropical systems, light rain, snow storms and extreme precipitation. Through improved measurements of precipitation globally, the GPM mission provides new insights into measuring the fluxes of Earth's water cycle. This presentation will outline new findings and advancements of GPM in understanding and modeling of Earth's water and energy cycles, improving forecasting of extreme events that cause natural hazards and disasters, and extending current

  12. Synergy of levofloxacin (L-ofloxacin) and oxacillin against quinolone-resistant Staphylococcus aureus, measured by the time-kill method.

    PubMed Central

    Patel, J A; Pachucki, C T; Lentino, J R

    1993-01-01

    The synergistic activity of levofloxacin and oxacillin against levofloxacin-resistant isolates of methicillin-resistant Staphylococcus aureus was tested by the time-kill method. The combination of levofloxacin at 1/4 the MIC for the isolate plus oxacillin at 8 micrograms/ml (< 1/4 the MIC) was synergistic against seven of nine isolates at 8 h, although no significant synergy was demonstrated at 24 h. This combination may prove to be effective against multidrug-resistant methicillin-resistant S. aureus, and further studies are warranted. PMID:8452367

  13. Ocean Surface reconstruction from the synergy of Sentinel-3 sensors

    NASA Astrophysics Data System (ADS)

    Gonzalez-Haro, C.; Autret, E.; Isern-Fontanet, J.; Tandeo, P.; Le Goff, C.; Garello, R.; Fablet, R.

    2015-12-01

    Along-track altimetric measurements of Sea Surface Heights (SSH) are very well suited to quantify across-track currents. However, the spatial resolution of derived 2D velocities is restricted to scales above 100-150 km and the limited number of altimeters can lead to errors in the location of currents. On the contrary, infrared measurements of Sea Surface Temperature (SST) are well suited to locate flow patterns but it is difficult to extract quantitative estimations of ocean currents. During the last years, some works began to exploit the synergy of SST and altimetry measurements in order to retrieve ocean currents. Nevertheless, all this previous works employed measurements which were near in time but not simultaneous. In that sense, Sentinel-3 is a multi-instrument mission that will circumvent this temporal limitation, providing simultaneous measurements of SST and altimetry with high-end accuracy and reliability. Our approach, based on the spectral properties of simultaneous SST and SSH observations, is tested using ENVISAT (RA, AATSR) data, since its geometry is similar to that of Sentinel-3 (SRAL, SLSTR).

  14. Functional muscle synergies constrain force production during postural tasks.

    PubMed

    McKay, J Lucas; Ting, Lena H

    2008-01-01

    We recently demonstrated that a set of five functional muscle synergies were sufficient to characterize both hindlimb muscle activity and active forces during automatic postural responses in cats standing at multiple postural configurations. This characterization depended critically upon the assumption that the endpoint force vector (synergy force vector) produced by the activation of each muscle synergy rotated with the limb axis as the hindlimb posture varied in the sagittal plane. Here, we used a detailed, 3D static model of the hindlimb to confirm that this assumption is biomechanically plausible: as we varied the model posture, simulated synergy force vectors rotated monotonically with the limb axis in the parasagittal plane (r2=0.94+/-0.08). We then tested whether a neural strategy of using these five functional muscle synergies provides the same force-generating capability as controlling each of the 31 muscles individually. We compared feasible force sets (FFSs) from the model with and without a muscle synergy organization. FFS volumes were significantly reduced with the muscle synergy organization (F=1556.01, p<0.01), and as posture varied, the synergy-limited FFSs changed in shape, consistent with changes in experimentally measured active forces. In contrast, nominal FFS shapes were invariant with posture, reinforcing prior findings that postural forces cannot be predicted by hindlimb biomechanics alone. We propose that an internal model for postural force generation may coordinate functional muscle synergies that are invariant in intrinsic limb coordinates, and this reduced-dimension control scheme reduces the set of forces available for postural control.

  15. Atmospheric Airborne Pressure Measurements Using the Oxygen A Band for the ASCENDS Mission

    NASA Technical Reports Server (NTRS)

    Riris, Haris; Rodriguez, Mike; Stephen, Mark; Hasselbrack, William; Allan, Graham; Mao, Jiamping,; Kawa, Stephan R.; Weaver, Clark J.

    2011-01-01

    We report on airborne atmospheric pressure measurements using new fiber-based laser technology and the oxygen A-band at 765 nm. Remote measurements of atmospheric temperature and pressure are required for a number of NASA Earth science missions and specifically for the Active Sensing of CO2 Emissions Over Nights, Days, and Seasons (ASCENDS) mission. Accurate measurements of tropospheric CO2 on a global scale are very important in order to better understand its sources and sinks and to improve predictions on any future climate change. The ultimate goal of a CO2 remote sensing mission, such as ASCENDS, is to derive the CO2 concentration in the atmosphere in terms of mole fraction in unit of parts-per-million (ppmv) with regard to dry air. Therefore, both CO2 and the dry air number of molecules in the atmosphere are needed in deriving this quantity. O2 is a stable molecule and uniformly mixed in the atmosphere. Measuring the O2 absorption in the atmosphere can thus be used to infer the dry air number of molecules and then used to calculate CO2 concentration. With the knowledge of atmospheric water vapor, we can then estimate the total surface pressure needed for CO2 retrievals. Our work, funded by the ESTO IIP program, uses fiber optic technology and non-linear optics to generate 765 nm laser radiation coincident with the Oxygen A-band. Our pulsed, time gated technique uses several on- and off-line wavelengths tuned to the O2 absorption line. The choice of wavelengths allows us to measure the pressure by using two adjacent O2 absorptions in the Oxygen A-band. Our retrieval algorithm fits the O2 lineshapes and derives the pressure. Our measurements compare favorably with a local weather monitor mounted outside our laboratory and a local weather station.

  16. Atmospheric Airborne Pressure Measurements Using the Oxygen A Band for the ASCENDS Mission

    NASA Technical Reports Server (NTRS)

    Riris, Haris; Rodriguez, Mike; Stephen, Mark; Hasselbrack, William; Allan, Graham; Mao, Jianping; Kawa, Stephen R.; Weaver, Clark J.

    2010-01-01

    We report on airborne atmospheric pressure measurements using new fiber-based laser technology and the oxygen A-band at 765 nm. Remote measurements of atmospheric temperature and pressure are required for a number of NASA Earth science missions and specifically for the Active Sensing of CO2 Emissions Over Nights, Days, and Seasons (ASCENDS) mission. Accurate measurements of tropospheric CO2 on a global scale are very important in order to better understand its sources and sinks and to improve predictions on any future climate change. The ultimate goal of a CO2 remote sensing mission, such as ASCENDS, is to derive the CO2 concentration in the atmosphere in terms of mole fraction in unit of parts-per-million (ppmv) with regard to dry air. Therefore, both CO2 and the dry air number of molecules in the atmosphere are needed in deriving this quantity. O2 is a stable molecule and uniformly mixed in the atmosphere. Measuring the O2 absorption in the atmosphere can thus be used to infer the dry air number of molecules and then used to calculate CO2 concentration. With the knowledge of atmospheric water vapor, we can then estimate the total surface pressure needed for CO2 retrievals. Our work, funded by the ESTO IIP program, uses fiber optic technology and non-linear optics to generate 765 nm laser radiation coincident with the Oxygen A-band. Our pulsed, time gated technique uses several on- and off-line wavelengths tuned to the O2 absorption line. The choice of wavelengths allows us to measure the pressure by using two adjacent O2 absorptions in the Oxygen A-band. Our retrieval algorithm fits the O2 lineshapes and derives the pressure. Our measurements compare favorably with a local weather monitor mounted outside our laboratory and a local weather station.

  17. PICARD SOL mission, a ground-based facility for long-term solar radius measurement

    NASA Astrophysics Data System (ADS)

    Meftah, M.; Irbah, A.; Corbard, T.; Morand, F.; Thuillier, G.; Hauchecorne, A.; Ikhlef, R.; Rouze, M.; Renaud, C.; Djafer, D.; Abbaki, S.; Assus, P.; Chauvineau, B.; Cissé, E. M.; Dalaudier, F.; D'Almeida, Eric; Fodil, M.; Laclare, F.; Lesueur, P.; Lin, M.; Marcovici, J. P.; Poiet, G.

    2012-09-01

    For the last thirty years, ground time series of the solar radius have shown different variations according to different instruments. The origin of these variations may be found in the observer, the instrument, the atmosphere and the Sun. These time series show inconsistencies and conflicting results, which likely originate from instrumental effects and/or atmospheric effects. A survey of the solar radius was initiated in 1975 by F. Laclare, at the Calern site of the Observatoire de la Cˆote d'Azur (OCA). PICARD is an investigation dedicated to the simultaneous measurements of the absolute total and spectral solar irradiance, the solar radius and solar shape, and to the Sun's interior probing by the helioseismology method. The PICARD mission aims to the study of the origin of the solar variability and to the study of the relations between the Sun and the Earth's climate by using modeling. These studies will be based on measurements carried out from orbit and from the ground. PICARD SOL is the ground segment of the PICARD mission to allow a comparison of the solar radius measured in space and on ground. PICARD SOL will enable to understand the influence of the atmosphere on the measured solar radius. The PICARD Sol instrumentation consists of: SODISM II, a replica of SODISM (SOlar Diameter Imager and Surface Mapper), a high resolution imaging telescope, and MISOLFA (Moniteur d'Images SOLaires Franco-Alǵerien), a seeing monitor. Additional instrumentation consists in a Sun photometer, which measures atmospheric aerosol properties, a pyranometer to measure the solar irradiance, a visible camera, and a weather station. PICARD SOL is operating since March 2011. First results from the PICARD SOL mission are briefly reported in this paper.

  18. NanoSWARM: A Nano-satellite Mission to Measure Particles and Fields Around the Moon

    NASA Astrophysics Data System (ADS)

    Garrick-Bethell, I.

    2015-12-01

    The NanoSWARM mission concept uses a fleet of cubesats around the Moon to address a number of open problems in planetary science: 1) The mechanisms of space weathering, 2) The origins of planetary magnetism, 3) The origins, distributions, and migration processes of surface water on airless bodies, and 4) The physics of small-scale magnetospheres. To accomplish these goals, NanoSWARM targets scientifically rich features on the Moon known as swirls. Swirls are high-albedo features correlated with strong magnetic fields and low surface-water. NanoSWARM cubesats will make the first near-surface (<1 km altitude) measurements of solar wind flux and magnetic fields at swirls. NanoSWARM cubesats will also perform low-altitude neutron measurements to provide key constraints on the distribution of polar hydrogen concentrations, which are important volatile sinks in the lunar water cycle. To release its cubesats, NanoSWARM uses a high-heritage mother ship in a low altitude, polar, circular orbit. NanoSWARM's results will have direct applications to the geophysics, volatile distribution, and plasma physics of numerous other bodies, in particular asteroids and the terrestrial planets. The technologies and methods used by NanoSWARM will enable many new cubesat missions in the next decade. NanoSWARM was proposed as a NASA Discovery mission in February 2015.

  19. NanoSWARM - A nano-satellite mission to measure particles and fields around the Moon

    NASA Astrophysics Data System (ADS)

    Garrick-Bethell, Ian; Russell, Christopher; Pieters, Carle; Weiss, Benjamin; Halekas, Jasper; Poppe, Andrew; Larson, Davin; Lawrence, David; Elphic, Richard; Hayne, Paul; Blakely, Richard; Kim, Khan-Hyuk; Choi, Young-Jun; Jin, Ho; Hemingway, Doug; Nayak, Michael; Puig-Suari, Jordi; Jaroux, Belgacem; Warwick, Steven

    2015-04-01

    The NanoSWARM mission concept uses a fleet of cubesats around the Moon to address a number of open problems in planetary science: 1) The mechanisms of space weathering, 2) The origins of planetary magnetism, 3) The origins, distributions, and migration processes of surface water on airless bodies, and 4) The physics of small-scale magnetospheres. To accomplish these goals, NanoSWARM targets scientifically rich features on the Moon known as swirls. Swirls are high-albedo features correlated with strong magnetic fields and low surface-water. NanoSWARM cubesats will make the first near-surface (<500 m altitude) measurements of solar wind flux and magnetic fields at swirls. NanoSWARM cubesats will also perform low-altitude neutron measurements to provide key constraints on the distribution of polar hydrogen concentrations, which are important volatile sinks in the lunar water cycle. To release its cubesats, NanoSWARM uses a high-heritage mother ship in a low altitude, polar, circular orbit. NanoSWARM's results will have direct applications to the geophysics, volatile distribution, and plasma physics of numerous other bodies, in particular asteroids and the terrestrial planets. The technologies and methods used by NanoSWARM will enable many new cubesat missions in the next decade, and expand the cubesat paradigm into deep space. NanoSWARM will be proposed as a NASA Discovery mission in early 2015.

  20. Analysis of earth albedo effect on sun sensor measurements based on theoretical model and mission experience

    NASA Technical Reports Server (NTRS)

    Brasoveanu, Dan; Sedlak, Joseph

    1998-01-01

    Analysis of flight data from previous missions indicates that anomalous Sun sensor readings could be caused by Earth albedo interference. A previous Sun sensor study presented a detailed mathematical model of this effect. The model can be used to study the effect of both diffusive and specular reflections and to improve Sun angle determination based on perturbed Sun sensor measurements, satellite position, and an approximate knowledge of attitude. The model predicts that diffuse reflected light can cause errors of up to 10 degrees in Coarse Sun Sensor (CSS) measurements and 5 to 10 arc sec in Fine Sun Sensor (FSS) measurements, depending on spacecraft orbit and attitude. The accuracy of these sensors is affected as long as part of the illuminated Earth surface is present in the sensor field of view. Digital Sun Sensors (DSS) respond in a different manner to the Earth albedo interference. Most of the time DSS measurements are not affected, but for brief periods of time the Earth albedo can cause errors which are a multiple of the sensor least significant bit and may exceed one degree. This paper compares model predictions with Tropical Rainfall Measuring Mission (TRMM) CSS measurements in order to validate and refine the model. Methods of reducing and mitigating the impact of Earth albedo are discussed. ne CSS sensor errors are roughly proportional to the Earth albedo coefficient. Photocells that are sensitive only to ultraviolet emissions would reduce the effective Earth albedo by up to a thousand times, virtually eliminating all errors caused by Earth albedo interference.

  1. The Science of the Global-scale measurements of the Limb and Disk (GOLD) Mission

    NASA Astrophysics Data System (ADS)

    Burns, A. G.; Eastes, R.; McClintock, W. E.; Solomon, S. C.; Anderson, D. N.; Andersson, L.; Codrescu, M.; Daniell, R. E.; Harvey, J.; Krywonos, A.; Lankton, M.; Lumpe, J. D.; Richmond, A. D.; Rusch, D. W.; Siegmund, O.; Strickland, D. J.; Woods, T. N.; Lieberman, R. S.; Martinis, C. R.; Oberheide, J.; Budzien, S. A.; Dymond, K.; Eparvier, F. G.; Foroosh, H.; Aksnes, A.

    2013-12-01

    GOLD is a mission of opportunity that has been funded by NASA to fly on board a commercial communications satellite. GOLD is a far ultraviolet spectrometer that will measure the temperature, composition and electron density in the Earth's upper atmosphere from geostationary orbit. Because GOLD will remain over one location on the Earth's equator, local time and longitude effects can be separated. This geostationary perspective allows GOLD's primary science questions to be addressed in a new way: treating the thermosphere/ionosphere (TI) as a weather system. Four questions frame this mission that pertain to how the thermosphere and ionosphere (TI) respond to external forcing. Specifically the GOLD team will investigate the response of the TI to geomagnetic storms, changes in solar radiation; the effects of upwardly propagating tides on the system; and the presence and evolution of ionospheric bubbles. We will describe these scientific goals in more detail in this poster.

  2. Design and Performance of Tropical Rainfall Measuring Mission (TRMM) Super NiCd Batteries

    NASA Technical Reports Server (NTRS)

    Ahmad, Anisa J.; Rao, Gopalakrishna M.; Jallice, Doris E.; Moran Vickie E.

    1999-01-01

    The Tropical Rainfall Measuring Mission (TRMM) is a joint mission between NASA and the National Space Development Agency (NASDA) of Japan. The observatory is designed to monitor and study tropical rainfall and the associated release of energy that helps to power the global atmospheric circulation shaping both weather and climate around the globe. The spacecraft was launched from Japan on November 27,1997 via the NASDA H-2 launch vehicle. The TRMM Power Subsystem is a Peak Power Tracking system that can support the maximum TRMM load of 815 watts at the end of its three year life. The Power Subsystem consists of two 50 Ampere Hour Super NiCd batteries, Gallium Arsenide Solar Array and the Power System Electronics. This paper describes the TRMM Power Subsystem, battery design, cell and battery ground test performance, and in-orbit battery operations and performance.

  3. Summary Report of mission acceleration measurements for STS-66. Launched November 3, 1994

    NASA Technical Reports Server (NTRS)

    Rogers, Melissa J. B.; Delombard, Richard

    1995-01-01

    Experiments flown in the middeck of Atlantis during the STS-66 mission were supported by the Space Acceleration Measurement System (SAMS). In particular, the three triaxial SAMS sensor heads collected data in support of protein crystal growth experiments. Data collected during STS-66 are reviewed in this report. The STS-66 SAMS data represent the microgravity environment in the 0.01 Hz to 10 Hz range. Variations in the environment related to differing levels of crew activity are discussed in the report. A comparison is made among times when the crew was quiet during a public affairs conference, working quietly, and exercising. These levels of activity are also compared to levels recorded by a SAMS unit in the Spacelab on Columbia during the STS-65 mission.

  4. Water vapor and cloud water measurements over Darwin during the STEP 1987 tropical mission

    SciTech Connect

    Kelly, K.K.; Proffitt, M.H. ); Chan, K.R.; Loewenstein, M.; Podolske, J.R. ); Strahan, S.E. ); Wilson, J.C. ); Kley, D. )

    1993-05-20

    The authors report results of total water, and water vapor measurements made in the upper troposphere and stratosphere during the Stratosphere-Troposphere Exchange Project (STEP) Tropical mission over Darwin, Australia. Measurements were made from an ER-2 aircraft by lyman-[alpha] hygrometers. The average lower stratosphere water vapor was 2.4 parts per million by volume (ppmv), at a potential temperature of 375 K. This level is lower than the 3 to 4 ppmv water vapor level typical of the stratosphere.

  5. Combined Infrared Stereo and Laser Ranging Cloud Measurements from Shuttle Mission STS-85

    NASA Technical Reports Server (NTRS)

    Lancaster, Redgie S.; Spinhirne, James D.; OCStarr, David (Technical Monitor)

    2001-01-01

    Multi-angle remote sensing provides a wealth of information for earth and climate monitoring. And, as technology advances so do the options for developing instrumentation versatile enough to meet the demands associated with these types of measurements. In the current work, the multiangle measurement capability of the Infrared Spectral Imaging Radiometer is demonstrated. This instrument flew as part of mission STS-85 of the space shuttle Columbia in 1997 and was the first earth-observing radiometer to incorporate an uncooled microbolometer array detector as its image sensor. Specifically, a method for computing cloud-top height from the multi-spectral stereo measurements acquired during this flight has been developed and the results demonstrate that a vertical precision of 10.6 km was achieved. Further, the accuracy of these measurements is confirmed by comparison with coincident direct laser ranging measurements from the Shuttle Laser Altimeter. Mission STS-85 was the first space flight to combine laser ranging and thermal IR camera systems for cloud remote sensing.

  6. GlobCurrent- Multisensor Synergy for Surface Current Estimation

    NASA Astrophysics Data System (ADS)

    Johannessen, J. A.; Chapron, B.; Collard, F.; Rio, M.-H.; Piolle, J.-F.; Gaultier, L.; Quartly, G.; Shutler, J.; Escola, R.; Raj, R. P.; Donlon, C.; Danielson, R.; Korosov, A.; Nencioli, F.; Kudryavtsev, V.; Roca, M.; Tournadre, J.; Larnicol, G.; Guitton, G.; Miller, P.; Warren, M.; Hansen, M.

    2016-08-01

    The GlobCurrent project (http://www.globcurrent.org) aims to: (i) advance the quantitative estimation of ocean surface currents from satellite sensor synergy; and (ii) demonstrate impact in user-led scientific, operational and commercial applications that, in turn, will improve and strengthen the uptake of satellite measurements. It is often demonstrated that sharp gradients in the sea surface temperature (SST) and current fields and the ocean surface chlorophyll-a distribution are spatially correlated with the sea surface roughness anomaly fields at small spatial scales, in the sub-mesocale (1-10 km) to the mesoscale (30-80 km). At the larger mesoscale range (>50 km), information derived from radar altimeters often depict the presence of coherent structures and eddies. The variability often appears largest in regions where the intense surface current regimes (>100 - 200 km) are found. These 2- dimensional structures manifested in the satellite observations represent evidence of the upper ocean ( 100-200 m) dynamics. Whereas the quasi geostrophic assumption is valid for the upper ocean dynamics at the larger scale (>100 km), possible triggering mechanisms for the expressions at the mesoscale-to-submesoscale may include spiraling tracers of inertial motion and the interaction of the wind-driven Ekman layer with the quasi-geostrophic current field. This latter, in turn, produces bands of downwelling (convergence) and upwelling (divergence) near fronts. A regular utilization of the sensor synergy approach with the combination of Sentinel-3, Sentinel-2 and Sentinel-1 together with other satellite missions will provide a highly valuable data set for further research and development to better relate the 2-dimensional surface expressions and the upper ocean dynamics.

  7. New Mission to Measure Global Lightning from the International Space Station (ISS)

    NASA Astrophysics Data System (ADS)

    Blakeslee, R. J.; Christian, H. J., Jr.; Mach, D. M.; Buechler, D. E.; Koshak, W. J.; Walker, T. D.; Bateman, M. G.; Stewart, M. F.; O'Brien, S.; Wilson, T. O.; Pavelitz, S. D.; Coker, C.

    2015-12-01

    Over the past 20 years, the NASA Marshall Space Flight Center, the University of Alabama in Huntsville, and their partners developed and demonstrated the effectiveness and value of space-based lightning observations as a remote sensing tool for Earth science research and applications, and, in the process, established a robust global lightning climatology. The observations included measurements from the Lightning Imaging Sensor (LIS) on the Tropical Rainfall Measuring Mission (TRMM) that acquired global observations of total lightning (i.e., intracloud and cloud-to-ground discharges) from November 1997 to April 2015 between 38° N/S latitudes, and its Optical Transient Detector predecessor that acquired observation from May 1995 to April 2000 over 75° N/S latitudes. In February 2016, as an exciting follow-on to these prior missions, a space-qualified LIS built as a flight-spare for TRMM will be delivered to the International Space Station (ISS) for a 2 year or longer mission, flown as a hosted payload on the Department of Defense Space Test Program-Houston 5 (STP-H5) mission. The LIS on ISS will continue observations of the amount, rate, and radiant energy of total lightning over the Earth. More specifically, LIS measures lightning during both day and night, with storm scale resolution (~4 km), millisecond timing, and high, uniform detection efficiency, without any land-ocean bias. Lightning is a direct and most impressive response to intense atmospheric convection. ISS LIS lightning observations will continue to provide important gap-filling inputs to pressing Earth system science issues across a broad range of disciplines. This mission will also extend TRMM time series observations, expand the latitudinal coverage to 54° latitude, provide real-time lightning data to operational users, espically over data sparse oceanic regions, and enable cross-sensor observations and calibrations that includes the new GOES-R Geostationary Lightning Mapper (GLM) and the Meteosat

  8. Global Precipitation Measurement. Report 2; Benefits of Partnering with GPM Mission

    NASA Technical Reports Server (NTRS)

    Stocker, Erich F.; Smith, Eric A. (Editor); Adams, W. James (Editor); Starr, David OC. (Technical Monitor)

    2002-01-01

    An important goal of the Global Precipitation Measurement (GPM) mission is to maximize participation by non-NASA partners both domestic and international. A consequence of this objective is the provision for NASA to provide sufficient incentives to achieve partner buy-in and commitment to the program. NASA has identified seven specific areas in which substantive incentives will be offered: (1) partners will be offered participation in governance of GPM mission science affairs including definition of data products; (2) partners will be offered use of NASA's TDRSS capability for uplink and downlink of commands and data in regards to partner provided spacecraft; (3) partners will be offered launch support for placing partner provided spacecraft in orbit conditional upon mutually agreeable co-manifest arrangements; (4) partners will be offered direct data access at the NASA-GPM server level rather than through standard data distribution channels; (5) partners will be offered the opportunity to serve as regional data archive and distribution centers for standard GPM data products; and (6) partners will be offered the option to insert their own specialized filtering and extraction software into the GPM data processing stream or to obtain specialized subsets and products over specific areas of interest (7) partners will be offered GPM developed software tools that can be run on their platforms. Each of these incentives, either individually or in combination, represents a significant advantage to partners who may wish to participate in the GPM mission.

  9. Conceptual design study for the use of COBE rocket engines on the Tropical Rainfall Measuring Mission

    NASA Technical Reports Server (NTRS)

    1992-01-01

    The objective of this conceptual design study is to verify that the Cosmic Background Explorer (COBE) Hydrazine Propulsion Subsystem (HPS) Rocket Engine Assembly (REA) will satisfy the Tropical Rainfall Measuring Mission (TRMM) requirements and to develop a preliminary thruster module design using the existing REAs. The performance of the COBE HPS 5 lbf thrusters meet the TRMM mission requirements. The preliminary design consists of a single 5 lbf REA REM which is isolation mounted to a spacecraft interface angle bracket (5 or 10 deg angle). The REM incorporates a catalyst bed heater and sensor assembly, and propellant thermal control is achieved by thermostatically controlled heaters on the thruster valves. A ROM cost of approx. $950 K has been estimated for the phase 2 program to finalize the design, fabricate, and test the hardware using mechanical thermostats for thermal control. In the event that solid state thermostats are used, the cost is estimated to be $160 K higher. A ROM cost is approx. $145 K is estimated to study the effects of using Japanese manufactured hydrazine for the TRMM mission.

  10. Summary report of mission acceleration measurements for STS-60, SPACEHAB2, launched 11 February 1994

    NASA Technical Reports Server (NTRS)

    Rogers, Melissa J. B.; Delombard, Richard

    1994-01-01

    The STS-60 mission, which launched on 11 February 1994, carried seven accelerometer systems. This report describes the configuration of each of these systems, where they were located on the Orbiter and the name of a contact person for each system. The Space Acceleration Measurement System (SAMS) was one of the accelerometer systems on-board and this mission marked its eighth successful flight. Acceleration data are provided here for SAMS which flew under an agreement between the NASA Microgravity Science and Applications division and the NASA office of Advanced Concepts and Technology. Acceleration data for the other accelerometer systems are not presented here. SAMS was located in the commercial SPACEHAB laboratory, on its second flight. The SAMS system was configured with three triaxial sensor heads with filter cut-offs of 5, 10, and 50 Hz. The acceleration environment related to an experiment centrifuge, an experiment refrigerator freezer unit, a SAMS sensor head rotation, an Orbiter shudder, and payload deploy activities are discussed. In the Appendices, all of the data from SAMS Head B (10 Hz) are plotted to provide an overview of the environment during the majority of the STS-60 mission. An evaluation form is included at the end of the report to solicit users' comments about the usefulness of this series of reports.

  11. Forest Biomass Mapping From Lidar and Radar Synergies

    NASA Technical Reports Server (NTRS)

    Sun, Guoqing; Ranson, K. Jon; Guo, Z.; Zhang, Z.; Montesano, P.; Kimes, D.

    2011-01-01

    The use of lidar and radar instruments to measure forest structure attributes such as height and biomass at global scales is being considered for a future Earth Observation satellite mission, DESDynI (Deformation, Ecosystem Structure, and Dynamics of Ice). Large footprint lidar makes a direct measurement of the heights of scatterers in the illuminated footprint and can yield accurate information about the vertical profile of the canopy within lidar footprint samples. Synthetic Aperture Radar (SAR) is known to sense the canopy volume, especially at longer wavelengths and provides image data. Methods for biomass mapping by a combination of lidar sampling and radar mapping need to be developed. In this study, several issues in this respect were investigated using aircraft borne lidar and SAR data in Howland, Maine, USA. The stepwise regression selected the height indices rh50 and rh75 of the Laser Vegetation Imaging Sensor (LVIS) data for predicting field measured biomass with a R(exp 2) of 0.71 and RMSE of 31.33 Mg/ha. The above-ground biomass map generated from this regression model was considered to represent the true biomass of the area and used as a reference map since no better biomass map exists for the area. Random samples were taken from the biomass map and the correlation between the sampled biomass and co-located SAR signature was studied. The best models were used to extend the biomass from lidar samples into all forested areas in the study area, which mimics a procedure that could be used for the future DESDYnI Mission. It was found that depending on the data types used (quad-pol or dual-pol) the SAR data can predict the lidar biomass samples with R2 of 0.63-0.71, RMSE of 32.0-28.2 Mg/ha up to biomass levels of 200-250 Mg/ha. The mean biomass of the study area calculated from the biomass maps generated by lidar- SAR synergy 63 was within 10% of the reference biomass map derived from LVIS data. The results from this study are preliminary, but do show the

  12. Measurement requirements for a Near-Earth Asteroid impact mitigation demonstration mission

    NASA Astrophysics Data System (ADS)

    Wolters, Stephen D.; Ball, Andrew J.; Wells, Nigel; Saunders, Christopher; McBride, Neil

    2011-10-01

    A concept for an Impact Mitigation Preparation Mission, called Don Quijote, is to send two spacecrafts to a Near-Earth Asteroid (NEA): an Orbiter and an Impactor. The Impactor collides with the asteroid while the Orbiter measures the resulting change in the asteroid's orbit, by means of a Radio Science Experiment (RSE) carried out before and after the impact. Three parallel Phase A studies on Don Quijote were carried out for the European Space Agency: the research presented here reflects the outcomes of the study by QinetiQ. We discuss the mission objectives with regard to the prioritisation of payload instruments, with emphasis on the interpretation of the impact. The Radio Science Experiment is described and it is examined how solar radiation pressure may increase the uncertainty in measuring the orbit of the target asteroid. It is determined that to measure the change in orbit accurately a thermal IR spectrometer is mandatory, to measure the Yarkovsky effect. The advantages of having a laser altimeter are discussed. The advantages of a dedicated wide-angle impact camera are discussed and the field-of-view is initially sized through a simple model of the impact.

  13. The Global Precipitation Measurement (GPM) Mission: Overview and U.S. Status

    NASA Technical Reports Server (NTRS)

    Hou, Arthur Y.; Azarbarzin, Ardeshir A.; Kakar, Ramesh K.; Neeck, Steven

    2011-01-01

    The Global Precipitation Measurement (GPM) Mission is an international satellite mission specifically designed to unify and advance precipitation measurements from a constellation of research and operational microwave sensors. Building upon the success of the U.S.-Japan Tropical Rainfall Measuring Mission (TRMM), the National Aeronautics and Space Administration (NASA) of the United States and the Japan Aerospace and Exploration Agency (JAXA) will deploy in 2013 a GPM "Core" satellite carrying a KulKa-band Dual-frequency Precipitation Radar (DPR) and a conical-scanning multi-channel (10-183 GHz) GPM Microwave Imager (GMI) to establish a new reference standard for precipitation measurements from space. The combined active/passive sensor measurements will also be used to provide common database for precipitation retrievals from constellation sensors. For global coverage, GPM relies on existing satellite programs and new mission opportunities from a consortium of partners through bilateral agreements with either NASA or JAXA. Each constellation member may have its unique scientific or operational objectives but contributes microwave observations to GPM for the generation and dissemination of unified global precipitation data products. In addition to the DPR and GMI on the Core Observatory, the baseline GPM constellation consists of the following sensors: (1) Special Sensor Microwave Imager/Sounder (SSMIS) instruments on the U.S. Defense Meteorological Satellite Program (DMSP) satellites, (2) the Advanced Microwave Scanning Radiometer- 2 (AMSR-2) on the GCOM-Wl satellite of JAXA, (3) the Multi-Frequency Microwave Scanning Radiometer (MADRAS) and the multi-channel microwave humidity sounder (SAPHIR) on the French-Indian Megha-Tropiques satellite, (4) the Microwave Humidity Sounder (MHS) on the National Oceanic and Atmospheric Administration (NOAA)-19, (5) MHS instruments on MetOp satellites launched by the European Organisation for the Exploitation of Meteorological

  14. The Global Precipitation Measurement (GPM) Mission: Overview and U.S. Science Status

    NASA Astrophysics Data System (ADS)

    Hou, Arthur Y.; Skofronick-Jackson, Gail; Stocker, Erich F.

    2013-04-01

    The Global Precipitation Measurement (GPM) Mission is a satellite mission specifically designed to unify and advance precipitation measurements from a constellation of research and operational microwave sensors provided by a consortium of international partners. NASA and JAXA will deploy a Core Observatory in 2014 to serve as a reference satellite for precipitation measurements by the constellation sensors. The GPM Core Observatory will carry a Ku/Ka-band Dual-frequency Precipitation Radar (DPR) and a conical-scanning multi-channel (10-183 GHz) GPM Microwave Radiometer (GMI). The DPR, the first dual-frequency radar in space, will provide not only measurements of 3-D precipitation structures but also quantitative information on microphysical properties of precipitating particles. The DPR and GMI measurements will together provide a database that relates vertical hydrometeor profiles to multi-frequency microwave radiances over a variety of environmental conditions across the globe. This combined database will serve as a common transfer standard for improving the accuracy and consistency of precipitation retrievals from all constellation radiometers. In addition to the Core Observatory, the GPM constellation consists of (1) Special Sensor Microwave Imager/Sounder (SSMIS) instruments on the U.S. Defense Meteorological Satellite Program (DMSP) satellites, (2) the Advanced Microwave Scanning Radiometer-2 (AMSR-2) on the GCOM-W1 satellite of JAXA, (3) the Multi-Frequency Microwave Scanning Radiometer (MADRAS) and the multi-channel microwave humidity sounder (SAPHIR) on the French-Indian Megha-Tropiques satellite, (4) the Microwave Humidity Sounder (MHS) on the National Oceanic and Atmospheric Administration (NOAA) Polar Orbiting Environmental Satellites (POES), (5) MHS instruments on MetOp satellites launched by the European Organisation for the Exploitation of Meteorological Satellites (EUMETSAT), (6) the Advanced Technology Microwave Sounder (ATMS) on the National Polar

  15. Pulsed Lidar for Measurement of C02 Concentrations for the ASCENDS Mission - Update

    NASA Technical Reports Server (NTRS)

    Abshire, James; Riris, Haris; Allan, Graham; Sun, Xiaoli; Mao, Jianping; Weaver, Clark; Yu, Anthony; Chen, Jeffrey; Rodriquez, Michael; Kawa, S. Randy

    2011-01-01

    We have been developing a laser-based sounding technique for the remote measurement of the tropospheric CO2 concentrations from orbit for NASA is ASCENDS mission. The mission's goals are to provide measurements of tropospheric CO2 abundance with global-coverage, a few hundred km spatial and monthly temporal resolution. These are needed to better understand CO2 fluxes and the processes that regulate CO2 storage by the land and oceans. For the lIP, we are developing and demonstrating the lidar techniques and key lidar technology that will permit measurements of the CO2 column abundance in the lower troposphere from aircraft. Our final goal is to demonstrate the key capabilities needed for a space lidar and mission approach for the ASCENDS mission. We use a pulsed lidar technique, which is much less sensitive to errors from cloud and atmospheric scattering and to noise from solar background. It allows continuous measurements of CO2 mixing ratio in the lower troposphere during day and night. Our approach uses the 1570nm CO2 band and a two-wavelength laser absorption spectrometer, which continuously measures at nadir from a circular polar orbit. It directs the narrow co-aligned laser beams from the instrument's lasers toward nadir, and measures the energy of the laser echoes reflected from land and water surfaces. It uses a pair of tunable laser transmitters, which allowing measurement of the extinction from a single selected CO2 absorption line in the 1570 nm band and from a line pair in the Oxygen A-band near 765 nm. These regions have temperature insensitive absorption lines are free from interference from other gases. The lasers pulse at 10KHz, use tunable diode seed lasers followed by laser amplifiers, and have MHz spectral widths. During the measurement the lasers are stepped across the selected lines at a kHz rate. The receiver uses a 1-m class telescope and photon sensitive detectors and measures the background light and energies of the laser echoes from the

  16. TRMM ground truth in a monsoon environment - Darwin, Australia. [Tropical Rainfall Measuring Mission

    NASA Technical Reports Server (NTRS)

    Keenan, T. D.; Holland, G. J.; Manton, M. J.; Simpson, J.

    1988-01-01

    A ground truth station for the Tropical Rainfall Measuring Mission (TRMM) is described. The station is situated in Darwin, Australia in a monsoon environment typical for Southeast Asia. The climatological features of the site, and the Darwin observational program are examined. The instruments and operations at the station are discussed, including a Doppler radar making full upper tropospheric soundings every 12 hrs and wind soundings every 6 hrs, and a mesoscale raingauge and surface observing network operating continuously through the summer monsoon seasons. The spatial and temporal characteristics of rainfall in the area and an outline of the research objectives of the program are presented.

  17. Oceanographic measurement capabilities of the NASA P-3 aircraft. [ERS-1 mission

    NASA Technical Reports Server (NTRS)

    Mollo-Christensen, Erik; Jackson, F. C.; Walsh, E. J.; Hoge, F.

    1986-01-01

    Instrumentation on NASA P3 aircraft available to provide ground truth for ERS-1 is described. The wave sensors include the 36 GHz Surface Contour Radar (SCR), the Ku-band Radar Ocean Wave Spectrometer (ROWS), and the Airborne Oceanographic Lidar. The other sensors include a C-band scatterometer, video camera, radiation thermometer, and AXRTs. The SCR and ROWS directional spectrum measurements are discussed. When planning for an underflight mission, the limited endurance of the aircraft (6 hr) and flight cost (2.7 K$/hr) must be considered. The advantage of the redundancy afforded by the several wave instruments is another important consideration.

  18. Continuous metabolic and cardiovascular measurements on a monkey subject during a simulated 6-day Spacelab mission

    NASA Technical Reports Server (NTRS)

    Pace, N.; Rahlmann, D. F.; Mains, R. C.; Kodama, A. M.; Mccutcheon, E. P.

    1978-01-01

    An adult male pig-tailed monkey (Macaca nemestrina) with surgically implanted biotelemetry unit was inserted into a fiberglass pod system which was installed in a Spacelab mock-up to simulate a 6-day mission during which extensive physiological measurements were obtained. The purpose of the pod was to make possible the study of respiratory gas exchange. Body temperature and selected cardiovascular parameters were recorded continuously for 2.6 days prior to 'launch', 6.3 days during 'flight', and 1.8 days after 'landing'. The results are surveyed, and it is concluded that it is feasible to perform sound physiological experiments on nonhuman primates in the Spacelab environment

  19. High resolution Microwave Spectrometer Sounder (HIMSS) instrument program. Appendix: TRMM study (an instrument for NASA's tropical rainfall measuring mission)

    NASA Technical Reports Server (NTRS)

    Lobl, E. (Editor)

    1991-01-01

    The TRMM (Tropical Rain Measuring Mission) Study shows the feasibility of a conically scanned, total power radiometer. The heritage of the TRMM radiometer is the Special Sensor Microwave/Imager (SSM/I) flying for the Air Force DMSP.

  20. From mission to measures: performance measure development for a Teen Pregnancy Prevention Program.

    PubMed

    Farb, Amy Feldman; Burrus, Barri; Wallace, Ina F; Wilson, Ellen K; Peele, John E

    2014-03-01

    The Office of Adolescent Health (OAH) sought to create a comprehensive set of performance measures to capture the performance of the Teen Pregnancy Prevention (TPP) program. This performance measurement system needed to provide measures that could be used internally (by both OAH and the TPP grantees) for management and program improvement as well as externally to communicate the program's progress to other interested stakeholders and Congress. This article describes the selected measures and outlines the considerations behind the TPP measurement development process. Issues faced, challenges encountered, and lessons learned have broad applicability for other federal agencies and, specifically, for TPP programs interested in assessing their own performance and progress.

  1. Japanese Global Precipitation Measurement (GPM) mission status and application of satellite-based global rainfall map

    NASA Astrophysics Data System (ADS)

    Kachi, Misako; Shimizu, Shuji; Kubota, Takuji; Yoshida, Naofumi; Oki, Riko; Kojima, Masahiro; Iguchi, Toshio; Nakamura, Kenji

    2010-05-01

    As accuracy of satellite precipitation estimates improves and observation frequency increases, application of those data to societal benefit areas, such as weather forecasts and flood predictions, is expected, in addition to research of precipitation climatology to analyze precipitation systems. There is, however, limitation on single satellite observation in coverage and frequency. Currently, the Global Precipitation Measurement (GPM) mission is scheduled under international collaboration to fulfill various user requirements that cannot be achieved by the single satellite, like the Tropical Rainfall Measurement Mission (TRMM). The GPM mission is an international mission to achieve high-accurate and high-frequent rainfall observation over a global area. GPM is composed of a TRMM-like non-sun-synchronous orbit satellite (GPM core satellite) and constellation of satellites carrying microwave radiometer instruments. The GPM core satellite carries the Dual-frequency Precipitation Radar (DPR), which is being developed by the Japan Aerospace Exploration Agency (JAXA) and the National Institute of Information and Communications Technology (NICT), and microwave radiometer provided by the National Aeronautics and Space Administration (NASA). Development of DPR instrument is in good progress for scheduled launch in 2013, and DPR Critical Design Review has completed in July - September 2009. Constellation satellites, which carry a microwave imager and/or sounder, are planned to be launched around 2013 by each partner agency for its own purpose, and will contribute to extending coverage and increasing frequency. JAXA's future mission, the Global Change Observation Mission (GCOM) - Water (GCOM-W) satellite will be one of constellation satellites. The first generation of GCOM-W satellite is scheduled to be launched in 2011, and it carries the Advanced Microwave Scanning Radiometer 2 (AMSR2), which is being developed based on the experience of the AMSR-E on EOS Aqua satellite

  2. [Analysis of Multiplatform CO (Carbon Monoxide) Measurements During Trace-P Mission

    NASA Technical Reports Server (NTRS)

    Pougatchev, Nikita S.

    2004-01-01

    Carbon monoxide is considered mission critical (TRACE-P NRA) because it is one of the gases involved in controlling the oxidizing power of the atmosphere and, as a tracer gas, is valuable in interpreting mission data sets. Carbon monoxide exhibits interannual differences, suggesting relatively short-term imbalances in sources and sinks. Sources of CO are dominated by fossil fuel combustion, biomass burning, and the photochemical oxidation of CH4 and nonmethane hydrocarbons while reaction with OH is believed to be the major sink for atmospheric CO, with additional losses due to soil uptake. Uncertainties in the magnitude and distribution of both sources and sinks remain fairly large however, and additional data are required to refine the global budget. Seasonal changes and a northern hemispheric latitudinal gradient have been described for a variety of Pacific basin sites through long-term monitoring of surface background levels. Latitudinal variations have also recently been described at upper tropospheric altitudes over a multi-year period by. TRACE-P will provide an aircraft survey of CO over the northern Pacific in the northern spring when CO concentrations are at their seasonal maximum in the northern hemisphere (NH) and at their seasonal minimum in the southern hemisphere (SH). Previous GTE missions, Le., PEM West-B and PEM Tropics-B, ground-based, and satellite observations (MAPS, April 1994) give us a general picture of the distribution of CO over the northern Pacific during this season. Based on these measurements, background CO levels over remote ocean areas are anticipated to be in the range of 110 - 180 ppbv, while those closer to the Asian continent may rise as high as 600 ppbv. These measurements also reveal high spatial variability (both horizontal and vertical) as well as temporal variations in CO over the area planned for the TRACE-P mission. This variability is a result of multiple CO sources, the meteorological complexity of transport processes

  3. Advances in Understanding Global Water Cycle with Advent of Global Precipitation Measurement (GPM) Mission

    NASA Technical Reports Server (NTRS)

    Smith, Eric A.; Starr, David (Technical Monitor)

    2002-01-01

    Within this decade the internationally organized Global Precipitation Measurement (GPM) Mission will take an important step in creating a global precipitation observing system from space. One perspective for understanding the nature of GPM is that it will be a hierarchical system of datastreams beginning with very high caliber combined dual frequency radar/passive microwave (PMW) rain-radiometer retrievals, to high caliber PMW rain-radiometer only retrievals, and then on to blends of the former datastreams with additional lower-caliber PMW-based and IR-based rain retrievals. Within the context of the now emerging global water & energy cycle (GWEC) programs of a number of research agencies throughout the world, GPM serves as a centerpiece space mission for improving our understanding of the global water cycle from a global measurement perspective. One of the salient problems within our current understanding of the global water and energy cycle is determining whether a change in the rate of the water cycle is accompanying changes in climate, e.g., climate warming. As there are a number of ways in which to define a rate-change of the global water cycle, it is not entirely clear as to what constitutes such a determination. This paper presents an overview of the GPM Mission and how its observations can be used within the framework of the oceanic and continental water budget equations to determine whether a given perturbation in precipitation is indicative of an actual rate change in the global water cycle, consistent with required responses in water storage and/or water flux transport processes, or whether it is the natural variability of a fixed rate cycle.

  4. Effective dose measured with a life size human phantom in a low Earth orbit mission.

    PubMed

    Yasuda, Hiroshi

    2009-03-01

    The biggest concern about the health risk to astronauts is how large the stochastic effects (cancers and hereditary effects) of space radiation could be. The practical goal is to determine the "effective dose" precisely, which is difficult for each crew because of the complex transport processes of energetic secondary particles. The author and his colleagues thus attempted to measure an effective dose in space using a life-size human phantom torso in the STS-91 Shuttle-Mir mission, which flew at nearly the same orbit as that of the International Space Station (ISS). The effective dose for about 10-days flight was 4.1 mSv, which is about 90% of the dose equivalent (H) at the skin; the lowest H values were seen in deep, radiation-sensitive organs/tissues such as the bone marrow and colon. Succeeding measurements and model calculations show that the organ dose equivalents and effective dose in the low Earth orbit mission are highly consistent, despite the different dosimetry methodologies used to determine them.

  5. The RAVAN CubeSat mission: Progress toward a new measurement of Earth outgoing radiation

    NASA Astrophysics Data System (ADS)

    Swartz, B. H.; Dyrud, L. P.; Lorentz, S. R.; Wu, D. L.; Wiscombe, W. J.; Papadakis, S.; Huang, P. M.; Smith, A.; Deglau, D.

    2014-12-01

    The Earth radiation imbalance (ERI) is the single most important quantity for predicting the course of climate change over the next century. The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat mission, funded by NASA's Earth Science Technology Office, will demonstrate an affordable, accurate radiometer that directly measures Earth-leaving fluxes of total and solar-reflected radiation. The objective of RAVAN is to demonstrate that a compact spaceborne radiometer that is absolutely accurate to NIST-traceable standards can be built for low cost. The key technologies that enable a radiometer with all these attributes are: a vertically aligned carbon nanotube (VACNT) absorber and a gallium fixed-point blackbody as a built-in calibration source. VACNTs are exceedingly black and spectrally flat, making them ideal radiometer absorbers. We present results from the fabrication and calibration of the RAVAN radiometer and plans for CubeSat hosting and launch. RAVAN will help enable the development of a constellation Earth radiation budget mission that can provide the measurements needed for superior predictions of future climate change.

  6. Early Results from the Global Precipitation Measurement (GPM) Mission in Japan

    NASA Astrophysics Data System (ADS)

    Kachi, Misako; Kubota, Takuji; Masaki, Takeshi; Kaneko, Yuki; Kanemaru, Kaya; Oki, Riko; Iguchi, Toshio; Nakamura, Kenji; Takayabu, Yukari N.

    2015-04-01

    The Global Precipitation Measurement (GPM) mission is an international collaboration to achieve highly accurate and highly frequent global precipitation observations. The GPM mission consists of the GPM Core Observatory jointly developed by U.S. and Japan and Constellation Satellites that carry microwave radiometers and provided by the GPM partner agencies. The Dual-frequency Precipitation Radar (DPR) was developed by the Japan Aerospace Exploration Agency (JAXA) and the National Institute of Information and Communications Technology (NICT), and installed on the GPM Core Observatory. The GPM Core Observatory chooses a non-sun-synchronous orbit to carry on diurnal cycle observations of rainfall from the Tropical Rainfall Measuring Mission (TRMM) satellite and was successfully launched at 3:37 a.m. on February 28, 2014 (JST), while the Constellation Satellites, including JAXA's Global Change Observation Mission (GCOM) - Water (GCOM-W1) or "SHIZUKU," are launched by each partner agency sometime around 2014 and contribute to expand observation coverage and increase observation frequency JAXA develops the DPR Level 1 algorithm, and the NASA-JAXA Joint Algorithm Team develops the DPR Level 2 and DPR-GMI combined Level2 algorithms. JAXA also develops the Global Rainfall Map (GPM-GSMaP) algorithm, which is a latest version of the Global Satellite Mapping of Precipitation (GSMaP), as national product to distribute hourly and 0.1-degree horizontal resolution rainfall map. Major improvements in the GPM-GSMaP algorithm is; 1) improvements in microwave imager algorithm based on AMSR2 precipitation standard algorithm, including new land algorithm, new coast detection scheme; 2) Development of orographic rainfall correction method for warm rainfall in coastal area (Taniguchi et al., 2012); 3) Update of database, including rainfall detection over land and land surface emission database; 4) Development of microwave sounder algorithm over land (Kida et al., 2012); and 5) Development

  7. The PICARD Mission: an investigation based on measurements dedicated to solar and climate modeling

    NASA Astrophysics Data System (ADS)

    Thuillier, Gerard; Schmutz, Werner; Dewitte, Steven

    PICARD mission is dedicated to the study of the solar activity origin using several key solar measurements. The project also includes development of the solar convective zone and climate models to evaluate the consequences for the Earth'climate of the solar activity. The measure-ments are the total and spectral solar irradiance, solar diameter, limb shape, solar asphericity, and helioseismic waves, which are key inputs for solar physics modeling. The measurements will be carried out by two absolute radiometers, sunphotometers, and a metrological imag-ing telescope onboard a microsatellite built by the French Space Agency CNES, with launch scheduled for March 2010. The radiometers are similar to the ones flown on board SOHO. The imaging telescope contains an angular reference allowing a permanent control of the instrument geometric scale, which is referred to angular stars distances. Optical distortion and flatfield of the imaging telescope are foreseen to be regularly measured. The measurements in space will have correlative measurements from ground using an identical imaging telescope, associated to the measurement of the local turbulence and aerosols localization and concentration. The op-portunity of diameter measurements by solar eclipse method will be used and finally the Solar Disk Sextant instrument will be regularly flown as an external measurement validation. An after launch activities is scheduled for three months, which consists in several instrument checks and recording of some scientific data. Given the launch date, these preliminary measurements will be shown. Images in UV, CaII line and solar photospheric continuum will be presented with some analysis of their contains. Furthermore, preliminary information concerning the radiometric and spectrometric measurements will be given.

  8. Summary Report of Mission Acceleration Measurements for STS-73, Launched October 20, 1995

    NASA Technical Reports Server (NTRS)

    Rogers, Melissa J. B.; DeLombard, Richard

    1996-01-01

    The microgravity environment of the Space Shuttle Columbia was measured during the STS-73 mission using accelerometers from five different instruments: the Orbital Acceleration Research Experiment, the Space Acceleration Measurement System, the Three-dimensional Microgravity Accelerometer, the Microgravity Measuring Device, and Suppression of Transient Accelerations by Levitation Evaluation System. The Microgravity Analysis Workstation quasi-steady environment calculation and comparison of this calculation with Orbital Acceleration Research Experiment data was used to assess how appropriate a planned attitude was expected to be for one Crystal Growth Facility experiment sample. The microgravity environment related to several different Orbiter, crew, and experiment operations is presented and interpreted in this report. Data are examined to show the effects of vernier reaction control system jet firings for Orbiter attitude control. This is compared to examples of data when no thrusters were firing, when the primary reaction control system jets were used for attitude control, and when single vernier jets were fired for test purposes. In general, vernier jets, when used for attitude control, cause accelerations in the 3 x 10(exp -4) g to 7 x 10(exp -4) g range. Primary jets used in this manner cause accelerations in the 0.01 to 0.025 g range. Other significant disturbance sources characterized are water dump operations, with Y(sub b) axis acceleration deviations of about 1 x 10(exp -6) g; payload bay door opening motion, with Y(sub o) and Z(sub o) axis accelerations of frequency 0.4 Hz; and probable Glovebox fan operations with notable frequency components at 20, 38, 43, 48, and 53 Hz. The STS-73 microgravity environment is comparable to the environments measured on earlier microgravity science missions.

  9. Polarized Imaging Nephelometer Scattering Measurements from the Winter of 2013 Discover-AQ Field Mission

    NASA Astrophysics Data System (ADS)

    Espinosa, R.; Martins, J.; Dolgos, G.; Dubovik, O.; Ziemba, L. D.; Beyersdorf, A. J.

    2013-12-01

    the Deriving Information on Surface Conditions from Column and Vertically Resolved Observations Relevant to Air Quality (Discover-AQ) mission. This presentation will focus on the results of the PI-Neph's twelve successful science flights during this past winter's Discover-AQ mission. These flights focused primarily on vehicle traffic, agriculture and biomass burning emissions over the San Joaquin Valley in central California. PI-Neph scattering data from this mission will be analyzed with an emphasis on evaluating horizontal, vertical and temporal variation in the sampled aerosol to asses the reliability of column measurements made by remote sensing platforms in determining air quality. Measured PI-Neph phase functions during spirals over AERONET (AErosol RObotic NETwork) stations will also be compared with retrieved phase functions from AERONET. In an effort to further validate AERONET retrievals an inversion method (Dubovik et al., J. Geophys. Res., 111, D11208, doi:10.1029/2005JD006619d, 2006) similar to the AERONET inversion will be applied to PI-NEPH data to obtain size distribution estimates. These results will be compared to measurements of the same sample made by particle counters on board the aircraft.

  10. CHASER: An Innovative Satellite Mission Concept to Measure the Effects of Aerosols on Clouds and Climate

    NASA Astrophysics Data System (ADS)

    Renno, N.; Williams, E.; Rosenfeld, D.; Fischer, D.; Fischer, J.; Kremic, T.; Agrawal, A.; Andreae, M.; Bierbaum, R.; Blakeslee, R.; Boerner, A.; Bowles, N.; Christian, H.; Dunion, J.; Horvath, A.; Huang, X.; Khain, A.; Kinne, S.; Lemos, M.-C.; Penner, J.

    2012-04-01

    The formation of cloud droplets on aerosol particles, technically known as the activation of cloud condensation nuclei (CCN), is the fundamental process driving the interactions of aerosols with clouds and precipitation. Knowledge of these interactions is foundational to our understanding of weather and climate. The Intergovernmental Panel on Climate Change (IPCC) and the Decadal Survey (NRC 2007) indicate that the uncertainty in how clouds adjust to aerosol perturbations dominates the uncertainty in the overall quantification of the radiative forcing attributable to human activities. The Clouds, Hazards, and Aerosols Survey for Earth Researchers (CHASER) mission concept responds to the IPCC and Decadal Survey concerns by studying the activation of CCN and their interactions with clouds and storms. CHASER proposes to revolutionize our understanding of the interactions of aerosols with clouds by making the first global measurements of the fundamental physical entity linking them: activated cloud condensation nuclei. The CHASER mission was conceptualized to measure all quantities necessary for determining the interactions of aerosols with clouds and storms. Measurements by current satellites allow the determination of crude profiles of cloud particle size but not of the activated CCN that seed them. CHASER uses a new technique (Freud et al. 2011; Rosenfeld et al. 2012) and high-heritage instruments to produce the first global maps of activated CCN and the properties of the clouds associated with them. CHASER measures the CCN concentration and cloud thermodynamic forcing simultaneously, allowing their effects to be distinguished. Changes in the behavior of a group of weather systems in which only one of the quantities varies (a partial derivative of the intensity with the desirable quantity) allow the determination of each effect statistically. The high uncertainties of current climate predictions limit their much-needed use in decision-making. CHASER mitigates this

  11. Acquisition and Analysis of NASA Ames Sunphotometer Measurements during SAGE III Validation Campaigns and other Tropospheric and Stratospheric Research Missions

    NASA Technical Reports Server (NTRS)

    Livingston, John M.

    2004-01-01

    NASA Cooperative Agreement NCC2-1251 provided funding from April 2001 through December 2003 for Mr. John Livingston of SRI International to collaborate with NASA Ames Research Center scientists and engineers in the acquisition and analysis of airborne sunphotometer measurements during various atmospheric field studies. Mr. Livingston participated in instrument calibrations at Mauna Loa Observatory, pre-mission hardware and software preparations, acquisition and analysis of sunphotometer measurements during the missions, and post-mission analysis of data and reporting of scientific findings. The atmospheric field missions included the spring 2001 Intensive of the Asian Pacific Regional Aerosol Characterization Experiment (ACE-Asia), the Asian Dust Above Monterey-2003 (ADAM-2003) experiment, and the winter 2003 Second SAGE III Ozone Loss and Validation Experiment (SOLVE II).

  12. Tropical Rainfall Measuring Mission: Monitoring the Global Tropics for 3 Years and Beyond. 1.1

    NASA Technical Reports Server (NTRS)

    Shepherd, Marshall; Starr, David OC. (Technical Monitor)

    2001-01-01

    The Tropical Rainfall Measuring Mission (TRMM) was launched in November 1997 as a joint U.S.-Japanese mission to advance understanding of the global energy and water cycle by providing distributions of rainfall and latent heating over the global tropics. As a part of NASA's Earth System Enterprise, TRMM seeks to understand the mechanisms through which changes in tropical rainfall influence global circulation. Additionally, a goal is to improve the ability to model these processes in order to predict global circulations and rainfall variability at monthly and longer time scales. Such understanding has implications for assessing climate processes related to El Nino/La Nina and Global Warming. TRMM has also provided unexpected and exciting new knowledge and applications in areas related to hurricane monitoring, lightning, pollution, hydrology, and other areas. This CD-ROM includes a self-contained PowerPoint presentation that provides an overview of TRMM and significant science results; a set of data movies or animation; and listings of current TRMM-related publications in the literature.

  13. Advanced Soil Moisture Network Technologies; Developments in Collecting in situ Measurements for Remote Sensing Missions

    NASA Astrophysics Data System (ADS)

    Moghaddam, M.; Silva, A. R. D.; Akbar, R.; Clewley, D.

    2015-12-01

    The Soil moisture Sensing Controller And oPtimal Estimator (SoilSCAPE) wireless sensor network has been developed to support Calibration and Validation activities (Cal/Val) for large scale soil moisture remote sensing missions (SMAP and AirMOSS). The technology developed here also readily supports small scale hydrological studies by providing sub-kilometer widespread soil moisture observations. An extensive collection of semi-sparse sensor clusters deployed throughout north-central California and southern Arizona provide near real time soil moisture measurements. Such a wireless network architecture, compared to conventional single points measurement profiles, allows for significant and expanded soil moisture sampling. The work presented here aims at discussing and highlighting novel and new technology developments which increase in situ soil moisture measurements' accuracy, reliability, and robustness with reduced data delivery latency. High efficiency and low maintenance custom hardware have been developed and in-field performance has been demonstrated for a period of three years. The SoilSCAPE technology incorporates (a) intelligent sensing to prevent erroneous measurement reporting, (b) on-board short term memory for data redundancy, (c) adaptive scheduling and sampling capabilities to enhance energy efficiency. A rapid streamlined data delivery architecture openly provides distribution of in situ measurements to SMAP and AirMOSS cal/val activities and other interested parties.

  14. The HYSPIRI Decadal Survey Mission: Update on the Mission Concept and Science Objectives for Global Imaging Spectroscopy and Multi-Spectral Thermal Measurements

    NASA Technical Reports Server (NTRS)

    Green, Robert O.; Hook, Simon J.; Middleton, Elizabeth; Turner, Woody; Ungar, Stephen; Knox, Robert

    2012-01-01

    The NASA HyspIRI mission is planned to provide global solar reflected energy spectroscopic measurement of the terrestrial and shallow water regions of the Earth every 19 days will all measurements downlinked. In addition, HyspIRI will provide multi-spectral thermal measurements with a single band in the 4 micron region and seven bands in the 8 to 12 micron region with 5 day day/night coverage. A direct broadcast capability for measurement subsets is also planned. This HyspIRI mission is one of those designated in the 2007 National Research Council (NRC) Decadal Survey: Earth Science and Applications from Space. In the Decadal Survey, HyspIRI was recognized as relevant to a range of Earth science and science applications, including climate: "A hyperspectral sensor (e.g., FLORA) combined with a multispectral thermal sensor (e.g., SAVII) in low Earth orbit (LEO) is part of an integrated mission concept [described in Parts I and II] that is relevant to several panels, especially the climate variability panel." The HyspIRI science study group was formed in 2008 to evaluate and refine the mission concept. This group has developed a series of HyspIRI science objectives: (1) Climate: Ecosystem biochemistry, condition & feedback; spectral albedo; carbon/dust on snow/ice; biomass burning; evapotranspiration (2) Ecosystems: Global plant functional types, physiological condition, and biochemistry including agricultural lands (3) Fires: Fuel status, fire frequency, severity, emissions, and patterns of recovery globally (4) Coral reef and coastal habitats: Global composition and status (5) Volcanoes: Eruptions, emissions, regional and global impact (6) Geology and resources: Global distributions of surface mineral resources and improved understanding of geology and related hazards These objectives are achieved with the following measurement capabilities. The HyspIRI imaging spectrometer provides: full spectral coverage from 380 to 2500 at 10 nm sampling; 60 m spatial sampling

  15. Measurements of heavy solar wind and higher energy solar particles during the Apollo 17 mission

    NASA Technical Reports Server (NTRS)

    Walker, R. M.; Zinner, E.; Maurette, M.

    1973-01-01

    The lunar surface cosmic ray experiment, consisting of sets of mica, glass, plastic, and metal foil detectors, was successfully deployed on the Apollo 17 mission. One set of detectors was exposed directly to sunlight and another set was placed in shade. Preliminary scanning of the mica detectors shows the expected registration of heavy solar wind ions in the sample exposed directly to the sun. The initial results indicate a depletion of very-heavy solar wind ions. The effect is probably not real but is caused by scanning inefficiencies. Despite the lack of any pronounced solar activity, energetic heavy particles with energies extending to 1 MeV/nucleon were observed. Equal track densities of approximately 6000 tracks/cm sq 0.5 microns in length were measured in mica samples exposed in both sunlight and shade.

  16. Studies of acceleration processes in the corona using ion measurements on the solar probe mission

    NASA Technical Reports Server (NTRS)

    Gloeckler, G.

    1978-01-01

    The energy spectra and composition of particles escaping from the Sun provide essential information on mechanisms responsible for their acceleration, and may also be used to characterize the regions where they are accelerated and confined and through which they propagate. The suprathermal energy range, which extends from solar wind energies (approximately 1 KeV) to about 1 MeV/nucleon, is of special interest to studies of nonthermal acceleration processes because a large fraction of particles is likely to be accelerated into this energy range. Data obtained from near earth observations of particles in the suprathermal energy range are reviewed. The necessary capabilities of an a ion composition experiment in the solar probe mission and the required ion measurements are discussed. A possible configuration of an instrument consisting of an electrostatic deflection system, modest post acceleration, and a time of flight versus energy system is described as well as its possible location on the spacecraft.

  17. Performance of the Falling Snow Retrieval Algorithms for the Global Precipitation Measurement (GPM) Mission

    NASA Technical Reports Server (NTRS)

    Skofronick-Jackson, Gail; Munchak, Stephen J.; Ringerud, Sarah

    2016-01-01

    Retrievals of falling snow from space represent an important data set for understanding the Earth's atmospheric, hydrological, and energy cycles, especially during climate change. Estimates of falling snow must be captured to obtain the true global precipitation water cycle, snowfall accumulations are required for hydrological studies, and without knowledge of the frozen particles in clouds one cannot adequately understand the energy and radiation budgets. While satellite-based remote sensing provides global coverage of falling snow events, the science is relatively new and retrievals are still undergoing development with challenges remaining). This work reports on the development and testing of retrieval algorithms for the Global Precipitation Measurement (GPM) mission Core Satellite, launched February 2014.

  18. Long Duration Exposure Facility post-flight data as it influences the Tropical Rainfall Measuring Mission

    NASA Technical Reports Server (NTRS)

    Straka, Sharon A.

    1995-01-01

    The Tropical Rainfall Measuring Mission (TRMM) is an earth observing satellite that will be in a low earth orbit (350 kilometers) during the next period of maximum solar activity. The TRMM observatory is expected to experience an atomic oxygen fluence of 8.9 x 10(exp 22) atoms per square centimeter. This fluence is ten times higher than the atomic oxygen impingement incident to the Long Duration Exposure Facility (LDEF). Other environmental concerns on TRMM include: spacecraft glow, silicon oxide contaminant build-up, severe spacecraft material degradation, and contamination deposition resulting from molecular interactions with the dense ambient atmosphere. Because of TRMM's predicted harsh environment, TRMM faces many unique material concerns and subsystem design issues. The LDEF data has influenced the design of TRMM and the TRMM material selection process.

  19. Open Imaging Nephelometer Scattering Measurements from the 2014 Discover-AQ Field Mission

    NASA Astrophysics Data System (ADS)

    Espinosa, R.; Orozco, D.; Dolgos, G.; Martins, J. V.

    2014-12-01

    After greenhouse gases, aerosols are thought to have the largest contribution to total atmospheric radiative forcing, but they are frequently cited as the single largest source of uncertainty among all anthropogenic radiative forcing components. Remote sensing allows for global measurements of aerosol properties, however validation of these measurements and the climatological assumptions used in their retrieval algorithms require high quality in situ sampling. The Laboratory for Aerosols, Clouds and Optics (LACO) at the University of Maryland Baltimore County (UMBC) has developed the Imaging Nephelometer, a novel and highly accurate instrument concept designed to significantly aid in situ optical scattering measurements. Imaging Nephelometers allow for measurements of scattering coefficient, phase function and polarized phase function over a wide angular range of 2 to 178 degrees with an angular resolution of less than half of a degree. The simple layout of these devices also permits the construction of an instrument that is compact enough to be deployed on a variety of airborne platforms. Additionally, a version of this instrument that is capable of in situ sampling in open-air, free from sample biases potentially introduced by an inlet or containment apparatus, has recently been constructed. This instrument, known as the Open Imaging NEPHelometer (OI-NEPH), was flown on the P3 aircraft in the summer of 2014 during the Colorado portion of the Discover-AQ field mission (Deriving Information on Surface Conditions from Column and Vertically Resolved Observations Relevant to Air Quality). This presentation will focus on the results of the OI-NEPH's successful science flights during this field experiment. The P3's flights during this mission focused primarily on vehicle, agriculture, biomass burning and industrial processing emissions over the Colorado Front Range. Emphasis will be placed on any observed differences in scattering properties between the measurements

  20. Validation for the Tropical Rainfall Measuring Mission: Lessons Learned and Future Plans

    NASA Technical Reports Server (NTRS)

    Wolff, David B.; Amitai, E.; Marks, D. A.; Silberstein, D.; Lawrence, R. J.

    2005-01-01

    The Tropical Rainfall Measuring Mission (TRMM) was launched in November 1997 and is a highly regarded and successful mission. A major component of the TRMM program was its Ground Validation (GV) program. Through dedicated research and hard work by many groups, both the GV and satellite-retrieved rain estimates have shown a convergence at key GV sites, lending credibility to the global TRMM estimates. To be sure, there are some regional differences between the various satellite estimates themselves, which still need to be addressed; however, it can be said with some certainty that TRMM has provided a high-quality, long-term climatological data set for researchers that provides errors on the order of 10-20%, rather than pre-TRMM era error estimates on the order of 50-100%. The TRMM GV program's main operational task is to provide rainfall products for four sites: Darwin, Australia (DARW); Houston, Texas (HSTN); Kwajalein, Republic of the Marshall Islands (KWAJ); and, Melbourne, Florida (MELB). A comparison between TRMM Ground Validation (Version 5) and Satellite (Version 6) rain intensity estimates is presented. The gridded satellite product (3668) will be compared to GV Level II rain-intensity and -type maps (2A53 and 2A54, respectively). The 3G68 product represents a 0.5 deg x 0.5 deg data grid providing estimates of rain intensities from the TRMM Precipitation Radar (PR), Microwave Imager (TMI) and Combined (COM) algorithms. The comparisons will be sub-setted according to geographical type (land, coast and ocean). The convergence of the GV and satellite estimates bodes well for expectations for the proposed Global Precipitation Measurement (GPM) program and this study and others are being leveraged towards planning GV goals for GPM. A discussion of lessons learned and future plans for TRMM GV in planning for GPM will also be provided.

  1. Atmospheric Airborne Pressure Measurements using the Oxygen A Band for the ASCENDS Mission

    NASA Astrophysics Data System (ADS)

    Riris, H.; Rodriguez, M.

    2014-12-01

    We report on an airborne demonstration of atmospheric oxygen optical depth measurements with an Integrated Path Differential Absorption (IPDA) lidar using a fiber-based laser system and a photon counting detector. Accurate knowledge of atmospheric temperature and pressure is required for NASA's Active Sensing of CO2 Emissions over Nights, Days and Seasons (ASCENDS) space mission, and climate modeling studies. The lidar uses a doubled Erbium Doped Fiber amplifier and single photon counting detector to measure oxygen absorption at 765 nm. Our approach uses a sequence of laser pulses at increasing wavelengths that sample a pair of absorption lines in the Oxygen A-band at 764.7 nm. The O2 lines were selected after careful spectroscopic analysis to minimize the O2 line temperature dependence and the availability of the transmitter and receiver technology to maximize transmitter power, doubling efficiency, and detector sensitivity. We compare our 2013 and 2014 Oxygen IPDA lidar measurements and evaluate the impact of receiver dynamic range, transmitter stability and signal to noise ratio on the differential optical depth measurements.

  2. Entrepreneurial Creativity through Motivational Synergy.

    ERIC Educational Resources Information Center

    Amabile, Teresa M.

    1997-01-01

    Defines and describes entrepreneurial creativity, which is the generation and implementation of novel, appropriate ideas to establish a new venture. Discusses the need for motivational synergy, which results when strong levels of personal interest and involvement are combined with the promise of rewards that confirm competence. (Author/CR)

  3. Cross-track sensor precipitation retrievals for the Global Precipitation Measurement mission

    NASA Astrophysics Data System (ADS)

    Kidd, Chris; Randel, David; Stocker, Erich; Kummerow, Christian

    2014-05-01

    The utilization of observations from passive microwave cross-track, or sounders, for global precipitation estimation provides a number of distinct advantages including the potential to retrieve precipitation over cold surface backgrounds and improvements in temporal sampling. As part of the Global Precipitation Measurement (GPM) mission, observations from these cross-track instruments are being incorporated into the overall retrieval framework to enable better temporal and spatial sampling, particularly over regions where surface conditions provide a challenging background against which to observe precipitation. GPM is an international satellite mission and brings together a number of different component satellites and sensors, each contributing observations capable of providing information on precipitation. The joint US-Japan core observatory was launched in early 2014 and carries the GPM Microwave Imager (GMI) and the Dual-frequency Precipitation Radar (DPR). The core observatory serves as a standard against which other sensors in the constellation are calibrated, providing a consistent observational dataset to ensure the highest quality precipitation retrievals to be made. The conically-scanning GMI provides observations from 10.65 GHz through to 166 GHz with dual polarization capabilities, and two 183 GHz channels (+-1 and +-3 GHz) with vertical polarization. The highest frequencies provide resolutions in the order of 4.4x7.3 km. 885 km swath width. The DPR operates at 35.5 GHz and 13.6 GHz with swath widths 120 and 245 km respectively, and a vertical resolution of 250 m. The higher frequency radar will provide a sensitivity down to 12 dBZ, or about 0.2 mmh-1 equivalent rainrate, particularly useful for higher latitudes where light precipitation dominates. Integration of the cross-track sensors into the overall retrieval scheme of the GPM mission is achieved through the GPROF retrieval scheme, utilizing databases based upon observational and modelled data sets

  4. Surge Pressure Mitigation in the Global Precipitation Measurement Mission Core Propulsion System

    NASA Technical Reports Server (NTRS)

    Scroggins, Ashley R.; Fiebig, Mark D.

    2014-01-01

    The Global Precipitation Measurement (GPM) mission is an international partnership between NASA and JAXA whose Core spacecraft performs cutting-edge measurements of rainfall and snowfall worldwide and unifies data gathered by a network of precipitation measurement satellites. The Core spacecraft's propulsion system is a blowdown monopropellant system with an initial hydrazine load of 545 kg in a single composite overwrapped propellant tank. At launch, the propulsion system contained propellant in the tank and manifold tubes upstream of the latch valves, with low-pressure helium gas in the manifold tubes downstream of the latch valves. The system had a relatively high beginning-of- life pressure and long downstream manifold lines; these factors created conditions that were conducive to high surge pressures. This paper discusses the GPM project's approach to surge mitigation in the propulsion system design. The paper describes the surge testing program and results, with discussions of specific difficulties encountered. Based on the results of surge testing and pressure drop analyses, a unique configuration of cavitating venturis was chosen to mitigate surge while minimizing pressure losses during thruster maneuvers. This paper concludes with a discussion of overall lessons learned with surge pressure testing for NASA Goddard spacecraft programs.

  5. The Status of NASA's Global Precipitation Measurement (GPM) Mission 26 Months After Launch

    NASA Astrophysics Data System (ADS)

    Jackson, Gail; Huffman, George

    2016-04-01

    Water is essential to our planet Earth. Knowing when, where and how precipitation falls is crucial for understanding the linkages between the Earth's water and energy cycles and is extraordinarily important for sustaining life on our planet during climate change. The Global Precipitation Measurement (GPM) Core Observatory spacecraft launched February 27, 2014, is the anchor to the GPM international satellite mission to unify and advance precipitation measurements from a constellation of research and operational sensors to provide "next-generation" precipitation products [1-2]. GPM is currently a partnership between NASA and the Japan Aerospace Exploration Agency (JAXA). The unique 65o non-Sun-synchronous orbit at an altitude of 407 km for the GPM Core Observatory allows for highly sophisticated observations of precipitation in the mid-latitudes where a majority of the population lives. Indeed, the GOM Core Observatory serves as the cornerstone, as a physics observatory and a calibration reference to improve precipitation measurements by a constellation of 8 or more dedicated and operational, U.S. and international passive microwave sensors. GPM's requirements are to measure rain rates from 0.2 to 110 mm/hr and to detect and estimate falling snow. GPM has several retrieval product levels ranging from raw instrument data to Core and partner swath precipitation estimates to gridded and accumulated products and finally to multi-satellite merged products. The latter merged product, called IMERG, is available with a 5-hour latency with temporal resolution of 30 minutes and spatial resolution of 0.1o x 0.1o (~10km x 10km) grid box. Some products have a 1-hour latency for societal applications such as floods, landslides, hurricanes, blizzards, and typhoons and all have late-latency high-quality science products. The GPM mission is well on its way to providing essential data on precipitation (rain and snow) from micro to local to global scales via providing precipitation

  6. The BepiColombo mission to Mercury and the Italian Spring Accelerometer (ISA) role in the Radio Science Experiments measurements

    NASA Astrophysics Data System (ADS)

    Iafolla, V.; Lucchesi, D. M.; Lucente, M.; Nozzoli, S.; Peron, R.; Santoli, F.; Argada, A.; Fiorenza, E.; Lefevre, C.; Magnafico, C.

    2011-10-01

    The BepiColombo mission to Mercury [1, 10] of the European Space Agency (ESA) aims to perform a set of experiments, the so called Radio Science Experiments (RSE), that will be devoted to the study of the gravity field and rotational state of Mercury [8] as well as to verify the theory of general relativity to an unprecedented level of accuracy [9]. One of the key ingredients in order to reach the very ambitious objectives of this mission, in the context of the RSE, is represented by the measurements of the onboard accelerometer [5, 2]. The Italian Spring Accelerometer (ISA) has been selected by ESA to measure and then allow to remove, a posteriori, the disturbing nongravitational accelerations acting on the Mercury Planetary Orbiter (MPO) surface. This paper is devoted to describe the accelerometer characteristics and performance and to introduce some of the experimental procedures in order to calibrate its measurements on ground and during the nominal phase of the mission.

  7. Inter-comparison of precipitation retrievals from the Global Precipitation Measurement mission constellation.

    NASA Astrophysics Data System (ADS)

    Kidd, Chris; Matsui, Toshihisa; Randel, Dave; Stocker, Erich; Kummerow, Chris

    2015-04-01

    The Global Precipitation Measurement mission (GPM) is an international satellite mission that brings together a number of different component satellites and sensors, each contributing observations capable of providing information on precipitation. The joint US-Japan core observatory, launched on 27 February 2014, carries the GPM Microwave Imager (GMI) and the Dual-frequency Precipitation Radar (DPR). The core observatory serves as a standard against which other sensors in the constellation are calibrated, providing a consistent observational dataset to ensure the highest quality precipitation retrievals to be made. Precipitation retrievals from the constellation of partner satellites are generated through the common framework of the Goddard-PROFiling (GPROF) scheme, and is applied to both the conically-scanning sensors and the cross-track sensors; the provision of precipitation estimates from all the constellation sensors contributing to the better-than 3-hour average temporal sampling. This study focuses upon the inter-comparison of the products from the different sensors during the first year of GPM operations; March 2014-February 2015. The two regions chosen for the inter-comparison, are the United States and Western Europe, and utilize the extensive radar networks of these regions. Statistical results were generated for instantaneous precipitation retrievals for each of the constellation sensors. Results show that overall the retrievals from the cross-track observations produce higher correlations with the surface radar data sets than the retrievals from the conically-scanning observations, although they tend to have higher root-mean squared errors. Some variation in performance between the individual types of sensors is also noted, which may be attributed to assumptions within the retrieval scheme (e.g. resolution, background fields, etc); other differences require further investigation.

  8. Tropical Rainfall Measuring Mission (TRMM) Precipitation Data and Services for Research and Applications

    NASA Technical Reports Server (NTRS)

    Liu, Zhong; Ostrenga, Dana; Teng, William; Kempler, Steven

    2012-01-01

    Precipitation is a critical component of the Earth's hydrological cycle. Launched on 27 November 1997, TRMM is a joint U.S.-Japan satellite mission to provide the first detailed and comprehensive data set of the four-dimensional distribution of rainfall and latent heating over vastly under-sampled tropical and subtropical oceans and continents (40 S - 40 N). Over the past 14 years, TRMM has been a major data source for meteorological, hydrological and other research and application activities around the world. The purpose of this short article is to inform that the NASA Goddard Earth Sciences Data and Information Services Center (GES DISC) provides TRMM archive and near-real-time precipitation data sets and services for research and applications. TRMM data consist of orbital data from TRMM instruments at the sensor s resolution, gridded data at a range of spatial and temporal resolutions, subsets, ground-based instrument data, and ancillary data. Data analysis, display, and delivery are facilitated by the following services: (1) Mirador (data search and access); (2) TOVAS (TRMM Online Visualization and Analysis System); (3) OPeNDAP (Open-source Project for a Network Data Access Protocol); (4) GrADS Data Server (GDS); and (5) Open Geospatial Consortium (OGC) Web Map Service (WMS) for the GIS community. Precipitation data application services are available to support a wide variety of applications around the world. Future plans include enhanced and new services to address data related issues from the user community. Meanwhile, the GES DISC is preparing for the Global Precipitation Measurement (GPM) mission which is scheduled for launch in 2014.

  9. Power, Propulsion, and Communications for Microspacecraft Missions

    NASA Technical Reports Server (NTRS)

    deGroot, W. A.; Maloney, T. M.; Vanderaar, M. J.

    1998-01-01

    The development of small sized, low weight spacecraft should lead to reduced scientific mission costs by lowering fabrication and launch costs. An order of magnitude reduction in spacecraft size can be obtained by miniaturizing components. Additional reductions in spacecraft weight, size, and cost can be obtained by utilizing the synergy that exists between different spacecraft systems. The state-of-the-art of three major systems, spacecraft power, propulsion, and communications is discussed. Potential strategies to exploit the synergy between these systems and/or the payload are identified. Benefits of several of these synergies are discussed.

  10. Evoked potential, cardiac, blink, and respiration measures of pilot workload in air-to-ground missions.

    PubMed

    Wilson, G F; Fullenkamp, P; Davis, I

    1994-02-01

    Brain evoked potentials were successfully recorded from F-4 pilots during air-to-ground training missions. They were recorded during two flight segments. During one the pilot was flying, and during the other, the weapon systems officer was flying the aircraft. The P2 component of the brain-evoked potential evidenced reduced amplitude during the pilot-flying segment, while the N1 component was reduced during both flight tasks compared to ground-based tasks. These data indicate that the P2 amplitude is sensitive to the level of pilot workload. These results were further substantiated using simultaneously recorded physiological data and subjective workload measures. For example, cardiac inter-beat intervals decreased during flight segments relative to those recorded when performing a tracking task, and further reduced for the pilot-flying vs. the weapon systems officer-flying segment. Eye blink measures were sensitive to the visual demands of the various tasks. These data show that evoked potentials can be recorded during flight, and that, together with cardiac and eye blink data, they provide a composite picture of operator state.

  11. First experimental results of very high accuracy centroiding measurements for the neat astrometric mission

    NASA Astrophysics Data System (ADS)

    Crouzier, A.; Malbet, F.; Preis, O.; Henault, F.; Kern, P.; Martin, G.; Feautrier, P.; Stadler, E.; Lafrasse, S.; Delboulbé, A.; Behar, E.; Saint-Pe, M.; Dupont, J.; Potin, S.; Cara, C.; Donati, M.; Doumayrou, E.; Lagage, P. O.; Léger, A.; LeDuigou, J. M.; Shao, M.; Goullioud, R.

    2013-09-01

    NEAT is an astrometric mission proposed to ESA with the objectives of detecting Earth-like exoplanets in the habitable zone of nearby solar-type stars. NEAT requires the capability to measure stellar centroids at the precision of 5e-6 pixel. Current state-of-the-art methods for centroid estimation have reached a precision of about 2e-5 pixel at two times Nyquist sampling, this was shown at the JPL by the VESTA experiment. A metrology system was used to calibrate intra and inter pixel quantum efficiency variations in order to correct pixelation errors. The European part of the NEAT consortium is building a testbed in vacuum in order to achieve 5e-6 pixel precision for the centroid estimation. The goal is to provide a proof of concept for the precision requirement of the NEAT spacecraft. In this paper we present the metrology and the pseudo stellar sources sub-systems, we present a performance model and an error budget of the experiment and we report the present status of the demonstration. Finally we also present our first results: the experiment had its first light in July 2013 and a first set of data was taken in air. The analysis of this first set of data showed that we can already measure the pixel positions with an accuracy of about 1e-4 pixel.

  12. TRMM Data from the Goddard Earth Sciences (GES) DISC DAAC: Tropical Rainfall Measuring Mission (TRMM)

    NASA Technical Reports Server (NTRS)

    2003-01-01

    Tropical rainfall affects the lives and economies of a majority of the Earth's population. Tropical rain systems, such as hurricanes, typhoons, and monsoons, are crucial to sustaining the livelihoods of those living in the tropics. Excess rainfall can cause floods and great property and crop damage, whereas too little rainfall can cause drought and crop failure. The latent heat release during the process of precipitation is a major source of energy that drives the atmospheric circulation. This latent heat can intensify weather systems, affecting weather thousands of kilometers away, thus making tropical rainfall an important indicator of atmospheric circulation and short-term climate change. The Tropical Rainfall Measuring Mission (TRMM), jointly sponsored by the National Aeronautics and Space Administration (NASA) of the United States and the National Space Development Agency (NASDA) of Japan, provides visible, infrared, and microwave observations of tropical and subtropical rain systems. The satellite observations are complemented by ground radar and rain gauge measurements to validate satellite rain estimation techniques. Goddard Space Flight Center's involvement includes the observatory, four instruments, integration and testing of the observatory, data processing and distribution, and satellite operations. TRMM has a design lifetime of three years. It is currently in its fifth year of operation. Data generated from TRMM and archived at the GES DAAC are useful not only for hydrologists, atmospheric scientists, and climatologists, but also for the health community studying infectious diseases, the ocean research community, and the agricultural community.

  13. Properties of hail storms over China and the United States from the Tropical Rainfall Measuring Mission

    NASA Astrophysics Data System (ADS)

    Ni, Xiang; Liu, Chuntao; Zhang, Qinghong; Cecil, Daniel J.

    2016-10-01

    A 16 year record of hail reports over the south U.S. and from weather stations in China are collocated with precipitation features (PFs) derived from the Tropical Rainfall Measuring Mission (TRMM) radar and passive microwave observations. Differences in the way hail is reported in the two nations make it difficult to draw meaningful conclusions about storm frequency. But taking the two together yields a wide spectrum of hail sizes, suitable for comparing with remote sensing measurements. While U.S. hail reports are dominated by cases with hail size greater than 19 mm, hail reports in China mostly include diameters of 1-10 mm and mostly occur over the Tibetan Plateau. The fraction of PFs collocated with hail reports (hail PFs) reaches 3% in the plains of the U.S. In China, the fraction is higher in high elevation regions than low elevation regions. Hail PFs (as reported in the U.S.) show lower brightness temperatures, higher lightning flash rates, stronger maximum reflectivity, and higher echo tops than those with smaller hail, as reported in China. The average near surface maximum reflectivity of hail PFs at high elevations (≥2000 m) in China is about 5 dB smaller than those at low elevations. Larger hail is reported with PFs having stronger maximum reflectivity above 6 km, though the median of maximum reflectivity values at levels below 5 km is similar among the storms with large and small hail sizes.

  14. Global variability of precipitation according to the Tropical Rainfall Measuring Mission

    NASA Technical Reports Server (NTRS)

    Haddad, Ziad S.; Meagher, Jonathan P.; Adler, Robert F.; Smith, Eric A.; Im, Eastwood; Durden, Stephen L.

    2004-01-01

    Numerous studies have documented the effect of El Nino-Southern Oscillation (ENSO) on rainfall in many regions of the globe. The question of whether ENSO is the single most important factor in interannual rainfall variability has received less attention, mostly because the kind of data that would be required to make such an assessment were simply not available. Until 1979 the evidence linking El Nino with changes in rainfall around the world came from rain gauges measuring precipitation over land masses and a handful of islands. From 1980 until the launch of the Tropical Rainfall Measuring Mission (TRMM) in November 1997 the remote sensing evidence was confined to ocean rainfall because of the very poor sensitivity of the instruments over land. In this paper we summarize the results of a principal component analysis of TRMM's 60-month (January 1998 to December 2002) global land and ocean remote-sensing record of monthly rainfall accumulations. Contrary to the first principal component of the rainfall itself, the first three indices of the anomaly are most sensitive to precipitation over the ocean rather than over the land. With the help of archived surface station data the first TRMM rain anomaly index is extended back several decades. Comparison of the extended index with the Southern Oscillation Index confirms that the first principal component of the rainfall anomaly is strongly correlated with the ENSO indices.

  15. Aerosol Spectral Radiative Forcing Efficiency from Airborne Measurements During Multiple Field Missions

    NASA Astrophysics Data System (ADS)

    Schmidt, S.; Leblanc, S. E.; Pilewskie, P.; Redemann, J.; Hostetler, C. A.; Ferrare, R. A.; Hair, J. W.

    2012-12-01

    Measurements of shortwave spectral irradiance in conjunction with measurements of aerosol optical depth are used to determine the direct aerosol radiative forcing for various different regions and missions. To better compare cases with different air masses and solar geometry, we use the concept of top-of-layer and bottom-of-layer relative forcing efficiency. The aerosol layers were sampled from aircraft during several field campaigns, including the Megacity Initiative: Local and Global Research Observations (MILAGRO, Mexico, 2006); the Arctic Research of the Composition of the Troposphere from Aircraft and Satellites (ARCTAS, Alaska and Alberta, 2008), Research at the Nexus of Air Quality and Climate Change (CalNex, California, 2010); and the Deep Convective Clouds and Chemistry Experiment (DC3, central US, 2012). We show that the spectral shape of the relative forcing efficiency is similar for these aerosol layers regardless of the aerosol type. The spectral relative forcing efficiency at any one wavelength for the majority of the cases is constrained within a span of 20% per unit of midvisible aerosol optical depth. Single scattering albedo, asymmetry parameter, and surface albedo are secondary products for the various methods used to determine aerosol radiative forcing. Using these, we determine the diurnally averaged spectral and broadband top-of-atmosphere and surface radiative forcing efficiency for the various different aerosol types and surface conditions.

  16. Synergy between middle infrared and millimeter-wave limb sounding of atmospheric temperature and minor constituents

    NASA Astrophysics Data System (ADS)

    Cortesi, Ugo; Del Bianco, Samuele; Ceccherini, Simone; Gai, Marco; Dinelli, Bianca Maria; Castelli, Elisa; Oelhaf, Hermann; Woiwode, Wolfgang; Höpfner, Michael; Gerber, Daniel

    2016-05-01

    Synergistic exploitation of redundant and complementary information from independent observations of the same target remains a major issue in atmospheric remote sounding and increasing attention is devoted to investigate optimized or innovative methods for the combination of two or more measured data sets. This paper focuses on the synergy between middle infrared and millimeter-wave limb sounding measurements of atmospheric composition and temperature and reports the results of a study conducted as part of the preparatory activities of the PREMIER (Process Exploration through Measurements of Infrared and millimeter-wave Emitted Radiation) mission candidate to the Core Missions of the European Space Agency (ESA) Earth Explorer 7. The activity was based on data acquired by the MIPAS-STR (Michelson Interferometer for Passive Atmospheric Sounding - STRatospheric aircraft) and MARSCHALS (Millimetre-wave Airborne Receivers for Spectroscopic CHaracterisation in Atmospheric Limb Sounding) instruments on-board the high-altitude research aircraft M-55 Geophysica during the flight of the PremierEx (PREMIER Experiment) campaign on 10 March 2010 from Kiruna, Sweden, for observation of the Arctic upper troposphere and lower stratosphere. The cloud coverage observed along the flight provided representative test cases to evaluate the synergy in three different scenarios: low clouds in the first part, no clouds in the central part and high tropospheric clouds at the end. The calculation of synergistic profiles of four atmospheric targets (i.e., O3, HNO3, H2O and temperature) was performed using a posteriori combination of individual retrieved profiles, i.e., Level 2 (L2) data rather than simultaneous inversion of observed radiances, i.e., Level 1 (L1) data. An innovative method of data fusion, based on the Measurement Space Solution (MSS) was applied along with the standard approach of inversion of MARSCHALS spectral radiances using MIPAS-STR retrieval products as a priori

  17. Synergy between middle infrared and millimetre-wave limb sounding of atmospheric temperature and minor constituents

    NASA Astrophysics Data System (ADS)

    Cortesi, U.; Del Bianco, S.; Ceccherini, S.; Gai, M.; Dinelli, B. M.; Castelli, E.; Oelhaf, H.; Woiwode, W.; Höpfner, M.; Gerber, D.

    2015-11-01

    Synergistic exploitation of redundant and complementary information from independent observations of the same target remains a major issue in atmospheric remote-sounding and increasing attention is devoted to investigate optimised or innovative methods for the combination of two or more measured data sets. This paper is focusing on the synergy between middle infrared and millimetre-wave limb sounding measurements of atmospheric composition and temperature and reports the results of a study conducted as part of the preparatory activities of the PREMIER (Process Exploration through Measurements of Infrared and millimetre wave Emitted Radiation) mission candidate to the Core Missions of ESA Earth Explorer 7. The activity was based on data acquired by the MIPAS-STR (Michelson Interferometer for Passive Atmospheric Sounding - STRatospheric aircraft) and MARSCHALS (Millimetre-wave Airborne Receivers for Spectroscopic CHaracterisation in Atmospheric Limb Sounding) instruments onboard the high altitude research aircraft M-55 Geophysica during the flight of the PremierEx (PREMIER Experiment) campaign on 10 March 2010 from Kiruna, Sweden for observation of the Arctic upper troposphere and lower stratosphere. The cloud coverage observed along the flight provided representative test cases to evaluate the synergy in three different scenarios: low clouds in the first part, no clouds in the central part and high tropospheric clouds at the end. The calculation of synergistic profiles of four atmospheric targets (i.e., O2, HNO3, H2O and temperature) was performed using a posteriori combination of individual retrieved profiles, i.e., Level 2 (L2) data rather than simultaneous inverse processing of observed radiances, i.e., Level 1 (L1) data. An innovative method of data fusion, based on the Measurement Space Solution (MSS) was applied along with the standard approach of inverse processing of MARSCHALS spectral radiances using MIPAS-STR retrieval products as a priori information (L1

  18. Lidar and Mission Parameter Trade Study of Space-Based Coherent Wind Measurement Centered on NASA's 2006 GWOS Wind Mission Study Parameters

    NASA Technical Reports Server (NTRS)

    Kavaya, Michael J.; Frehlich, Rod G.

    2007-01-01

    The global measurement of vertical profiles of horizontal vector winds has been highly desired for many years by NASA, NOAA and the Integrated Program Office (IPO) implementing the National Polar-orbiting Operational Environmental Satellite Systems (NPOESS). Recently the global wind mission was one of 15 missions recommended to NASA by the first ever NRC Earth Sciences Decadal Survey. Since before 1978, the most promising method to make this space-based measurement has been pulsed Doppler lidar. The favored technology and technique has evolved over the years from obtaining line-of-sight (LOS) wind profiles from a single laser shot using pulsed CO2 gas laser technology to the current plans to use both a coherent-detection and direct-detection pulsed Doppler wind lidar systems with each lidar employing multiple shot accumulation to produce an LOS wind profile. The idea of using two lidars (hybrid concept) entails coherent detection using the NASA LaRC-developed pulsed 2-micron solid state laser technology, and direct detection using pulsed Nd:YAG laser technology tripled in frequency to 355 nm wavelength.

  19. Leveraging synergy for multiple agent infotaxis

    SciTech Connect

    Gintautas, Vadas; Hagberg, Aric A; Bettencourt, Luis M A

    2008-01-01

    Social computation, whether in the form of a search performed by a swarm of agents or the predictions of markets, often supplies remarkably good solutions to complex problems, which often elude the best experts. There is an intuition, built upon many anecdotal examples, that pervading principles are at play that allow individuals trying to solve a problem locally to aggregate their information to arrive at an outcome superior than any available to isolated parties. Here we show that the general structure of this problem can be cast in terms of information theory and derive general mathematical conditions for information sharing and coordination that lead to optimal multi-agent searches. Specifically we illustrate the problem in terms of the construction of local search algorithms for autonomous agents looking for the spatial location of a stochastic source. We explore the types of search problems -defined in terms of the properties of the source and the nature of measurements at each sensor -for which coordination among multiple searchers yields an advantage beyond that gained by having the same number of independent searchers. We assert that effective coordination corresponds to synergy and that ineffective coordination corresponds to redundancy as defined using information theory. We classify explicit types of sources in terms of their potential for synergy. We show that sources that emit uncorrelated particles based on a Poisson process, provide no opportunity for synergetic coordination while others, particularly sources that emit correlated signals, do allow for strong synergy between searchers. These general considerations are crucial for designing optimal algorithms for particular search problems in real world settings.

  20. Assessment and Mission Planning Capability For Quantitative Aerothermodynamic Flight Measurements Using Remote Imaging

    NASA Technical Reports Server (NTRS)

    Horvath, Thomas; Splinter, Scott; Daryabeigi, Kamran; Wood, William; Schwartz, Richard; Ross, Martin

    2008-01-01

    High resolution calibrated infrared imagery of vehicles during hypervelocity atmospheric entry or sustained hypersonic cruise has the potential to provide flight data on the distribution of surface temperature and the state of the airflow over the vehicle. In the early 1980 s NASA sought to obtain high spatial resolution infrared imagery of the Shuttle during entry. Despite mission execution with a technically rigorous pre-planning capability, the single airborne optical system for this attempt was considered developmental and the scientific return was marginal. In 2005 the Space Shuttle Program again sponsored an effort to obtain imagery of the Orbiter. Imaging requirements were targeted towards Shuttle ascent; companion requirements for entry did not exist. The engineering community was allowed to define observation goals and incrementally demonstrate key elements of a quantitative spatially resolved measurement capability over a series of flights. These imaging opportunities were extremely beneficial and clearly demonstrated capability to capture infrared imagery with mature and operational assets of the US Navy and the Missile Defense Agency. While successful, the usefulness of the imagery was, from an engineering perspective, limited. These limitations were mainly associated with uncertainties regarding operational aspects of data acquisition. These uncertainties, in turn, came about because of limited pre-flight mission planning capability, a poor understanding of several factors including the infrared signature of the Shuttle, optical hardware limitations, atmospheric effects and detector response characteristics. Operational details of sensor configuration such as detector integration time and tracking system algorithms were carried out ad hoc (best practices) which led to low probability of target acquisition and detector saturation. Leveraging from the qualified success during Return-to-Flight, the NASA Engineering and Safety Center sponsored an

  1. Geoscience Laser Altimeter System (GLAS) on the ICESat Mission: Initial Science Measurement Performance

    NASA Technical Reports Server (NTRS)

    Abshire, James B.; Sun, Xiaoli; Riris, Haris; Sirota, Marcos; McGarry, J.; Palm, Steve

    2003-01-01

    The Geoscience Laser Altimeter System is the space lidar on the NASA ICESat mission. Its design combines an altimeter with 5 cm precision with a laser pointing angle determination system and a dual wavelength cloud and aerosol lidar. GLAS measures the range to the Earth s surface with 1064 nm laser pulses. Each laser pulse produces a precision pointing measurement from the stellar reference system (SRS) and an echo pulse waveform, which permits range determination and waveform spreading analysis. The single shot ranging accuracy is < 10 cm for ice surfaces with slopes < 2 degrees. GLAS also measures atmospheric backscatter profiles at both 1064 and 532 nm. The 1064 nm measurements use an analog Si APD detector and measure the height and profile the backscatter signal from thicker clouds. The measurements at 532 nm use photon counting detectors, and will measure the vertical height distributions of optically thin clouds and aerosol layers Before launch, the measurement performance of GLAS was evaluated using a lidar test instrument called the Bench Check Equipment (BCE). The BCE was developed in parallel with GLAS and served as an inverse altimeter, inverse lidar and a stellar source simulator. It was used to simulate the range of expected optical inputs to the GLAS receiver by illuminating its telescope with simulated background light as well as laser echoes with known powers, energy levels, widths and delay times. The BCE also allowed monitoring of the transmitted laser energy, the angle measurements of the SRS, the co-alignment of the transmitted laser beam to the receiver line of sight, and performance of the flight science algorithms. Performance was evaluated during the GLAS development, before and after environmental tests, and after delivery to the spacecraft. The ICESat observatory was launched into a 94 degree inclination, 590 km altitude circular polar orbit on January 12,2003. Beginning in early February, GLAS was powered on tested in stages. Its 1064 nm

  2. Chemogenomic profiling predicts antifungal synergies

    PubMed Central

    Jansen, Gregor; Lee, Anna Y; Epp, Elias; Fredette, Amélie; Surprenant, Jamie; Harcus, Doreen; Scott, Michelle; Tan, Elaine; Nishimura, Tamiko; Whiteway, Malcolm; Hallett, Michael; Thomas, David Y

    2009-01-01

    Chemotherapies, HIV infections, and treatments to block organ transplant rejection are creating a population of immunocompromised individuals at serious risk of systemic fungal infections. Since single-agent therapies are susceptible to failure due to either inherent or acquired resistance, alternative therapeutic approaches such as multi-agent therapies are needed. We have developed a bioinformatics-driven approach that efficiently predicts compound synergy for such combinatorial therapies. The approach uses chemogenomic profiles in order to identify compound profiles that have a statistically significant degree of similarity to a fluconazole profile. The compounds identified were then experimentally verified to be synergistic with fluconazole and with each other, in both Saccharomyces cerevisiae and the fungal pathogen Candida albicans. Our method is therefore capable of accurately predicting compound synergy to aid the development of combinatorial antifungal therapies. PMID:20029371

  3. Aqueous history of Mars as inferred from landed mission measurements of rocks, soils, and water ice

    NASA Astrophysics Data System (ADS)

    Arvidson, Raymond E.

    2016-09-01

    The missions that have operated on the surface of Mars acquired data that complement observations acquired from orbit and provide information that would not have been acquired without surface measurements. Data from the Viking Landers demonstrated that soils have basaltic compositions, containing minor amounts of salts and one or more strong oxidants. Pathfinder with its rover confirmed that the distal portion of Ares Vallis is the site of flood-deposited boulders. Spirit found evidence for hydrothermal deposits surrounding the Home Plate volcanoclastic feature. Opportunity discovered that the hematite signature on Meridiani Planum as seen from orbit is due to hematitic concretions concentrated on the surface as winds eroded sulfate-rich sandstones that dominate the Burns formation. The sandstones originated as playa muds that were subsequently reworked by wind and rising groundwater. Opportunity also found evidence on the rim of the Noachian Endurance Crater for smectites, with extensive leaching along fractures. Curiosity acquired data at the base of Mount Sharp in Gale Crater that allows reconstruction of a sustained fluvial-deltaic-lacustrine system prograding into the crater. Smectites and low concentrations of chlorinated hydrocarbons have been identified in the lacustrine deposits. Phoenix, landing above the Arctic Circle, found icy soils, along with low concentrations of perchlorate salt. Perchlorate is considered to be a strong candidate for the oxidant found by the Viking Landers. It is also a freezing point depressant and may play a role in allowing brines to exist at and beneath the surface in more modern periods of time on Mars.

  4. Coronal abundances in solar active regions measured by the Solar Maximum Mission flat crystal spectrometer

    NASA Technical Reports Server (NTRS)

    Saba, Julia L. R.; Strong, Keith T.

    1992-01-01

    High resolution soft X-ray spectra acquired by the Flat Crystal Spectrometer (FCS) on solar Maximum Mission provide an excellent data base to study the relative abundances of O, Ne, Mg, and Fe in solar active regions. The FCS data show significant variability for all combinations of these elements. The largest variation occurs for Fe:Ne, which shows region to region changes of up to a factor of 7, and frequent factor of 2 variations in day to day samples of a given region. The atomic data and the ionization balance calculations used to interpret the line ratios affect the actual abundance values obtained, but have little effect on the magnitude of the total range of variation inferred. Resonance scattering of Fe XVII could cause a systematic offset in the abundances determined, but cannot be responsbile for the bulk of the observed variability. While abundance variability complicates the derivation of plasma parameters from spectroscopic measurements, it should offer exciting new clues to the processes which form and heat the corona.

  5. Nondestructive examination of the Tropical Rainfall Measuring Mission (TRMM) reaction control subsystem (RCS) propellant tanks

    NASA Technical Reports Server (NTRS)

    Free, James M.

    1993-01-01

    This paper assesses the feasibility of using eddy current nondestructive examination to determine flaw sizes in completely assembled hydrazine propellant tanks. The study was performed by the NASA Goddard Space Flight Center for the Tropical Rainfall Measuring Mission (TRMM) project to help determine whether existing propellant tanks could meet the fracture analysis requirements of the current pressure vessel specification, MIL-STD-1522A and, therefore be used on the TRMM spacecraft. After evaluating several nondestructive test methods, eddy current testing was selected as the most promising method for determining flaw sizes on external and internal surfaces of completely assembled tanks. Tests were conducted to confirm the detection capability of the eddy current NDE, procedures were developed to inspect two candidate tanks, and the test support equipment was designed. The non-spherical tank eddy current NDE test program was terminated when the decision was made to procure new tanks for the TRMM propulsion subsystem. The information on the development phase of this test program is presented in this paper as a reference for future investigation on the subject.

  6. Is interindividual variability of EMG patterns in trained cyclists related to different muscle synergies?

    PubMed

    Hug, François; Turpin, Nicolas A; Guével, Arnaud; Dorel, Sylvain

    2010-06-01

    Our aim was to determine whether muscle synergies are similar across trained cyclists (and thus whether the same locomotor strategies for pedaling are used), despite interindividual variability of individual EMG patterns. Nine trained cyclists were tested during a constant-load pedaling exercise performed at 80% of maximal power. Surface EMG signals were measured in 10 lower limb muscles. A decomposition algorithm (nonnegative matrix factorization) was applied to a set of 40 consecutive pedaling cycles to differentiate muscle synergies. We selected the least number of synergies that provided 90% of the variance accounted for VAF. Using this criterion, three synergies were identified for all of the subjects, accounting for 93.5+/-2.0% of total VAF, with VAF for individual muscles ranging from 89.9+/-8.2% to 96.6+/-1.3%. Each of these synergies was quite similar across all subjects, with a high mean correlation coefficient for synergy activation coefficients (0.927+/-0.070, 0.930+/-0.052, and 0.877+/-0.110 for synergies 1-3, respectively) and muscle synergy vectors (0.873+/-0.120, 0.948+/-0.274, and 0.885+/-0.129 for synergies 1-3, respectively). Despite a large consistency across subjects in the weighting of several monoarticular muscles into muscle synergy vectors, we found larger interindividual variability for another monoarticular muscle (soleus) and for biarticular muscles (rectus femoris, gastrocnemius lateralis, biceps femoris, and semimembranosus). This study demonstrated that pedaling is accomplished by the combination of the similar three muscle synergies among trained cyclists. The interindividual variability of EMG patterns observed during pedaling does not represent differences in the locomotor strategy for pedaling.

  7. Mission specification for three generic mission classes

    NASA Technical Reports Server (NTRS)

    1979-01-01

    Mission specifications for three generic mission classes are generated to provide a baseline for definition and analysis of data acquisition platform system concepts. The mission specifications define compatible groupings of sensors that satisfy specific earth resources and environmental mission objectives. The driving force behind the definition of sensor groupings is mission need; platform and space transportation system constraints are of secondary importance. The three generic mission classes are: (1) low earth orbit sun-synchronous; (2) geosynchronous; and (3) non-sun-synchronous, nongeosynchronous. These missions are chosen to provide a variety of sensor complements and implementation concepts. Each mission specification relates mission categories, mission objectives, measured parameters, and candidate sensors to orbits and coverage, operations compatibility, and platform fleet size.

  8. Space weathering of primitive bodies: From laboratory measurements to space missions

    NASA Astrophysics Data System (ADS)

    Lantz, Cateline; Brunetto, Rosario; Barucci, Maria Antonieta; Fornasier, Sonia; Clark, Beth Ellen; Binzel, Richard; Fulchignoni, Marcello

    2016-10-01

    Space weathering (SpWe) is a combination of micrometeorite bombardment and irradiation by energetic particles leading to surface alterations of airless bodies and affecting their reflectance spectra. Numerous studies have been made on S-type asteroids, including laboratory experiments on silicate materials and a direct confirmation measured on Itokawa grains showing darkening and reddening trends. Few results have been obtained for C-types, no general trend has been found. In order to understand the influence of SpWe on primitive asteroids, we present an experimental study on ion irradiation of carbonaceous chondrites, simulating solar wind. The goal of our work is to better constrain the SpWe processes of low albedo objects and to develop a model that will also support sample return missions (OSIRIS-REx/NASA and Hayabusa-2/JAXA).The irradiations were performed on pressed pellets of several CC types, as well as on some silicate samples. We used 40 keV He+ with fluences up to 6.1016 ions/cm2. Reflectance spectra were acquired ex situ before and after irradiations in the visible to mid-infrared range (0.4 - 16 µm). In the MIR range, we observe a shift of the phyllosilicates (near 3 and 10 µm) and silicates (near 10 µm) bands toward longer wavelength. In the visible-NIR range, we confirm the red/dark trends on silicates, but CCs present a continuum of behaviors after ion irradiation correlated with the initial albedo/composition: from red to blue and from dark to bright.We propose a model for SpWe effects on low albedo objects, showing that those with initial albedo between 5 and 9 % do not suffer SpWe effects in the visible range.These new spectral alterations due to SpWe can be used by future and ongoing space missions to detect pristine/altered materials. To do so, we have started looking at VIR data on Ceres. Craters are ideal for this purpose as they expose both old and young surfaces in the same area. We have been looking at HAMO data on several craters

  9. Summary Report of Mission Acceleration Measurements for STS-89: Launched January 22, 1998

    NASA Technical Reports Server (NTRS)

    Hrovat, Kenneth; McPherson, Kevin

    1999-01-01

    Support of microgravity research on the 89th flight of the Space Transportation System (STS-89) and a continued effort to characterize the acceleration environment of the Space Shuttle Orbiter and the Mir Space Station form the basis for this report. For the STS-89 mission, the Space Shuttle Endeavour was equipped with a Space Acceleration Measurement System (SAMS) unit, which collected more than a week's worth of data. During docked operations with Mir, a second SAMS unit collected approximately a day's worth of data yielding the only set of acceleration measurements recorded simultaneously on the two spacecraft. Based on the data acquired by these SAMS units, this report serves to characterize a number of acceleration events and quantify their impact on the local nature of the accelerations experienced at the Mechanics of Granular Materials (MGM) experiment location. Crew activity was shown to nearly double the median root-mean-square (RMS) acceleration level calculated below 10 Hz, while the Enhanced Orbiter Refrigerator/Freezer operating at about 22 Hz was a strong acceleration source in the vicinity of the MGM location. The MGM science requirement that the acceleration not exceed q I mg was violated numerous times during their experiment runs; however, no correlation with sample instability has been found to this point. Synchronization between the SAMS data from Endeavour and from Mir was shown to be close much of the time, but caution with respect to exact timing should be exercised when comparing these data. When orbiting as a separate vehicle prior to docking, Endeavour had prominent structural modes above 3 Hz, while Mir exhibited a cluster of modes around 1 Hz. When mated, a transition to common modes was apparent in the two SAMS data sets. This report is not a comprehensive analysis of the acceleration data, so those interested in further details should contact the Principal Investigator Microgravity Services team at the National Aeronautics and Space

  10. Measuring Atmospheric Carbon Dioxide from Space: The GOSAT and OCO-2 Missions

    NASA Technical Reports Server (NTRS)

    Crisp, David

    2011-01-01

    The Japanese Greenhouse gases Observing Satellite (GOSAT) is providing new insight into atmospheric carbon dioxide trends. The NASA Orbiting Carbon Observatory-2 (OCO-2)Mission will build on this record with increased sensitivity resolution, and coverage.

  11. Close Air Support Mission: Development of a Unitary Measure of Pilot Performance

    DTIC Science & Technology

    1984-11-01

    training research and development (R&D) using the Advanced Simulator for Pilot Training ( ASPT ). A linear regression analysis was used to describe how...mission-ready, A-10 aircraft pilots rank-ordered hypothetical CAS mission outcomes *typical of those obtained in ASPT . CAS performance ratings predicted by...pilots exposed to ASPT , the data collected in a previous study were reanalyzed using the model. CAS performance as calculated hy the model was found to

  12. Understanding Human Motion Skill with Peak Timing Synergy

    NASA Astrophysics Data System (ADS)

    Ueno, Ken; Furukawa, Koichi

    The careful observation of motion phenomena is important in understanding the skillful human motion. However, this is a difficult task due to the complexities in timing when dealing with the skilful control of anatomical structures. To investigate the dexterity of human motion, we decided to concentrate on timing with respect to motion, and we have proposed a method to extract the peak timing synergy from multivariate motion data. The peak timing synergy is defined as a frequent ordered graph with time stamps, which has nodes consisting of turning points in motion waveforms. A proposed algorithm, PRESTO automatically extracts the peak timing synergy. PRESTO comprises the following 3 processes: (1) detecting peak sequences with polygonal approximation; (2) generating peak-event sequences; and (3) finding frequent peak-event sequences using a sequential pattern mining method, generalized sequential patterns (GSP). Here, we measured right arm motion during the task of cello bowing and prepared a data set of the right shoulder and arm motion. We successfully extracted the peak timing synergy on cello bowing data set using the PRESTO algorithm, which consisted of common skills among cellists and personal skill differences. To evaluate the sequential pattern mining algorithm GSP in PRESTO, we compared the peak timing synergy by using GSP algorithm and the one by using filtering by reciprocal voting (FRV) algorithm as a non time-series method. We found that the support is 95 - 100% in GSP, while 83 - 96% in FRV and that the results by GSP are better than the one by FRV in the reproducibility of human motion. Therefore we show that sequential pattern mining approach is more effective to extract the peak timing synergy than non-time series analysis approach.

  13. Stakeholders' Partnership Synergy and its Impact on Commercialization of New Technologies: Renewable Energy Industry Study

    NASA Astrophysics Data System (ADS)

    Manoukian, Agassy

    This study examines the impact of the partnership synergy and inter-organizational cooperation between government (federal, state, local), public agencies, private companies and local on successful communities commercialization of renewable energy (RE) technologies. The study produced several interesting results: (i) a model was developed that analyzes the role of partnership synergy on technology commercialization, conceptualizing the relationships among partnership drivers, partnership synergy, resources, and commercialization performance; (ii) the major drivers motivating stakeholders of RE projects have been identified and differences between those were recognized; (iii) a novel theoretical and analytical basis of commercialization through partnership and synergy has been established; (iv) interrelated effects of partnership synergy, dynamic capabilities and technology implementation mechanisms on various performance measures of project success have also been identified. Overall, this study and its conceptual model provide a richer understanding of the factors that lead to successful commercialization of RE technologies, possibly applicable to other infrastructural projects, as well.

  14. New discoveries enabled by OMI SO2 measurements and future missions

    NASA Astrophysics Data System (ADS)

    Krotkov, Nickolay

    2010-05-01

    -sulfur coal in its many coal-fired power plants. Recently, China's government has instituted nationwide measures to control SO2 emissions through the adoption of flue-gas desulfurization technology (FGD) on new power plants; and even greater measures were adopted in the Beijing area in anticipation of the Olympic Games. We demonstrate that the OMI can pick up both SO2 and NO2 emissions from large point sources in northern China, where large increases in both gases were observed from 2005 to 2007, over areas with newly established power plants. The OMI SO2/NO2 ratio generally agrees with the estimated emission factors for coal-fired power plants based on a bottom-up approach. Between 2007 and 2008, OMI detected little change in NO2 but dramatic decline in SO2 over the same areas. While the almost constant NO2 levels between the two years imply steady electricity generation from the power plants, the large reduction in SO2 confirms the effectiveness of the FGD units, which likely became operational between 2007 and 2008. Further development of satellite detection and monitoring of point pollution sources requires better than 10km ground resolution. We show how planned Dutch /ESA TROPOMI and NASA GEOCape missions will advance the art of measuring point source emissions in coming decade.

  15. The Status of the Tropical Rainfall Measuring Mission (TRMM) after 2 Years in Orbit

    NASA Technical Reports Server (NTRS)

    Kummerow, C.; Simpson, J.; Thiele, O.; Barnes, W.; Chang, A. T. C.; Stocker, E.; Adler, R. F.; Hou, A.; Kakar, R.; Wentz, F.

    1999-01-01

    The Tropical Rainfall Measuring Mission (TRMM) satellite was launched on November 27, 1997, and data from all the instruments first became available approximately 30 days after launch. Since then, much progress has been made in the calibration of the sensors, the improvement of the rainfall algorithms, in related modeling applications and in new datasets tailored specifically for these applications. This paper reports the latest results regarding the calibration of the TRMM Microwave Imager, (TMI), Precipitation Radar (PR) and Visible and Infrared Sensor (VIRS). For the TMI, a new product is in place that corrects for a still unknown source of radiation leaking in to the TMI receiver. The PR calibration has been adjusted upward slightly (by 0.6 dBZ) to better match ground reference targets, while the VIRS calibration remains largely unchanged. In addition to the instrument calibration, great strides have been made with the rainfall algorithms as well, with the new rainfall products agreeing with each other to within less than 20% over monthly zonally averaged statistics. The TRMM Science Data and Information System (TSDIS) has responded equally well by making a number of new products, including real-time and fine resolution gridded rainfall fields available to the modeling community. The TRMM Ground Validation (GV) program is also responding with improved radar calibration techniques and rainfall algorithms to provide more accurate GV products which will be further enhanced with the new multiparameter 10 cm radar being developed for TRMM validation and precipitation studies. Progress in these various areas has, in turn, led to exciting new developments in the modeling area where Data Assimilation, and Weather Forecast models are showing dramatic improvements after the assimilation of observed rainfall fields.

  16. Summary Report of Mission Acceleration Measurements for STS-79. Launched 16 Sep. 1996

    NASA Technical Reports Server (NTRS)

    Rogers, Melissa J. B.; Moskowitz, Milton E.; Hrovat, Kenneth; Reckart, Timothy A.

    1997-01-01

    The Space Acceleration Measurement System (SAMS) collected acceleration data in support of the Mechanics of Granular Materials experiment during the STS-79 Mir docking mission, September 1996. STS-79 was the first opportunity to record SAMS data on an Orbiter while it was docked to Mir. Crew exercise activities in the Atlantis middeck and the Mir base module are apparent in the data. The acceleration signals related to the Enhanced Orbiter Refrigerator Freezer had different characteristics when comparing the data recorded on Atlantis on STS-79 with the data recorded on Mir during STS-74. This is probably due, at least in part, to different transmission paths and SAMS sensor head mounting mechanisms. Data collected on Atlantis during the STS-79 docking indicate that accelerations due to vehicle and solar array structural modes from Mir transfer to Atlantis and that the structural modes of the Atlantis-Mir complex are different from those of either vehicle independently. A 0.18 Hz component of the SAMS data, present while the two vehicles were docked, was probably caused by the Mir solar arrays. Compared to Atlantis structural modes of about 3.9 and 4.9 Hz, the Atlantis-Mir complex has structural components of about 4.5 and 5.1 Hz. After docking, apparent structural modes appeared in the data at about 0.8 and 1.8 Hz. The appearance, disappearance, and change in the structural modes during the docking and undocking phases of the joint Atlantis-Mir operations indicates that the structural modes of the two spacecraft have an effect on the microgravity environment of each other. The transfer of structural and equipment related accelerations between vehicles is something that should be considered in the International Space Station era.

  17. Airborne Polarimetric, Two-Color Laser Altimeter Measurements of Lake Ice Cover: A Pathfinder for NASA's ICESat-2 Spaceflight Mission

    NASA Technical Reports Server (NTRS)

    Harding, David; Dabney, Philip; Valett, Susan; Yu, Anthony; Vasilyev, Aleksey; Kelly, April

    2011-01-01

    The ICESat-2 mission will continue NASA's spaceflight laser altimeter measurements of ice sheets, sea ice and vegetation using a new measurement approach: micropulse, single photon ranging at 532 nm. Differential penetration of green laser energy into snow, ice and water could introduce errors in sea ice freeboard determination used for estimation of ice thickness. Laser pulse scattering from these surface types, and resulting range biasing due to pulse broadening, is assessed using SIMPL airborne data acquired over icecovered Lake Erie. SIMPL acquires polarimetric lidar measurements at 1064 and 532 nm using the micropulse, single photon ranging measurement approach.

  18. On the sensitivity of Tropical Rainfall Measuring Mission (TRMM) Microwave Imager channels to overland rainfall

    NASA Astrophysics Data System (ADS)

    You, Yalei; Liu, Guosheng; Wang, Yu; Cao, Jie

    2011-06-01

    The response of brightness temperatures at different microwave frequencies to overland precipitation is investigated by using the Tropical Rainfall Measuring Mission (TRMM) Precipitation Radar (PR) and Microwave Imager (TMI) data. The Spearman correlation coefficients between observations at TMI channels or channel combinations and PR-measured near-surface rain are computed using 3 years of TRMM data. The results showed that the brightness temperature combinations from 19 and 37 GHz, that is, V19-V37 (the letter V denotes vertical polarization, and the numbers denote frequency in GHz) or V21-V37, can explain ˜10% more variance of near-surface rainfall rate than can the V85 brightness temperature. Also, the global distribution of the above correlation revealed that over almost all of the tropical land area covered by TRMM satellite, the V19-V37 channel has a closer response to the overland rainfall than does the V85 channel. This result is somewhat counterintuitive, because it has been long believed that the dominant signature of overland rainfall is the brightness temperature depression caused by ice scattering at high microwave frequencies (e.g., 85 GHz). To understand the underlying physics of this better low-frequency response, data analysis and radiative transfer modeling have been conducted to assess the influence on brightness temperatures from clouds with different ice and liquid water partitions. The results showed that under the condition of low frozen water and medium liquid water in the atmospheric column, the signal from the V19-V37 channel responded better to rainfall rate than did the one from the V85 channel. A plausible explanation to this result is that in addition to ice scattering signature, the V19-V37 channel contains liquid water information as well, which is more directly related to surface rain than to ice water aloft. At heavy rainfall conditions, the V19-V37, V37, and V85 channels all are correlated with near-surface rain reasonably well

  19. Verification of Satellite Rainfall Estimates from the Tropical Rainfall Measuring Mission over Ground Validation Sites

    NASA Astrophysics Data System (ADS)

    Fisher, B. L.; Wolff, D. B.; Silberstein, D. S.; Marks, D. M.; Pippitt, J. L.

    2007-12-01

    The Tropical Rainfall Measuring Mission's (TRMM) Ground Validation (GV) Program was originally established with the principal long-term goal of determining the random errors and systematic biases stemming from the application of the TRMM rainfall algorithms. The GV Program has been structured around two validation strategies: 1) determining the quantitative accuracy of the integrated monthly rainfall products at GV regional sites over large areas of about 500 km2 using integrated ground measurements and 2) evaluating the instantaneous satellite and GV rain rate statistics at spatio-temporal scales compatible with the satellite sensor resolution (Simpson et al. 1988, Thiele 1988). The GV Program has continued to evolve since the launch of the TRMM satellite on November 27, 1997. This presentation will discuss current GV methods of validating TRMM operational rain products in conjunction with ongoing research. The challenge facing TRMM GV has been how to best utilize rain information from the GV system to infer the random and systematic error characteristics of the satellite rain estimates. A fundamental problem of validating space-borne rain estimates is that the true mean areal rainfall is an ideal, scale-dependent parameter that cannot be directly measured. Empirical validation uses ground-based rain estimates to determine the error characteristics of the satellite-inferred rain estimates, but ground estimates also incur measurement errors and contribute to the error covariance. Furthermore, sampling errors, associated with the discrete, discontinuous temporal sampling by the rain sensors aboard the TRMM satellite, become statistically entangled in the monthly estimates. Sampling errors complicate the task of linking biases in the rain retrievals to the physics of the satellite algorithms. The TRMM Satellite Validation Office (TSVO) has made key progress towards effective satellite validation. For disentangling the sampling and retrieval errors, TSVO has developed

  20. Effective force control by muscle synergies.

    PubMed

    Berger, Denise J; d'Avella, Andrea

    2014-01-01

    Muscle synergies have been proposed as a way for the central nervous system (CNS) to simplify the generation of motor commands and they have been shown to explain a large fraction of the variation in the muscle patterns across a variety of conditions. However, whether human subjects are able to control forces and movements effectively with a small set of synergies has not been tested directly. Here we show that muscle synergies can be used to generate target forces in multiple directions with the same accuracy achieved using individual muscles. We recorded electromyographic (EMG) activity from 13 arm muscles and isometric hand forces during a force reaching task in a virtual environment. From these data we estimated the force associated to each muscle by linear regression and we identified muscle synergies by non-negative matrix factorization. We compared trajectories of a virtual mass displaced by the force estimated using the entire set of recorded EMGs to trajectories obtained using 4-5 muscle synergies. While trajectories were similar, when feedback was provided according to force estimated from recorded EMGs (EMG-control) on average trajectories generated with the synergies were less accurate. However, when feedback was provided according to recorded force (force-control) we did not find significant differences in initial angle error and endpoint error. We then tested whether synergies could be used as effectively as individual muscles to control cursor movement in the force reaching task by providing feedback according to force estimated from the projection of the recorded EMGs into synergy space (synergy-control). Human subjects were able to perform the task immediately after switching from force-control to EMG-control and synergy-control and we found no differences between initial movement direction errors and endpoint errors in all control modes. These results indicate that muscle synergies provide an effective strategy for motor coordination.

  1. Visualization of Space-Time Ambiguities to be Explored by NASA GEC Mission with a Critique of Synthesized Measurements for Different GEC Mission Scenarios

    NASA Technical Reports Server (NTRS)

    Sojka, Jan J.

    2003-01-01

    The Grant supported research addressing the question of how the NASA Solar Terrestrial Probes (STP) Mission called Geospace electrodynamics Connections (GEC) will resolve space-time structures as well as collect sufficient information to solve the coupled thermosphere-ionosphere- magnetosphere dynamics and electrodynamics. The approach adopted was to develop a high resolution in both space and time model of the ionosphere-thermosphere (I-T) over altitudes relevant to GEC, especially the deep-dipping phase. This I-T model was driven by a high- resolution model of magnetospheric-ionospheric (M-I) coupling electrodynamics. Such a model contains all the key parameters to be measured by GEC instrumentation, which in turn are the required parameters to resolve present-day problems in describing the energy and momentum coupling between the ionosphere-magnetosphere and ionosphere-thermosphere. This model database has been successfully created for one geophysical condition; winter, solar maximum with disturbed geophysical conditions, specifically a substorm. Using this data set, visualizations (movies) were created to contrast dynamics of the different measurable parameters. Specifically, the rapidly varying magnetospheric E and auroral electron precipitation versus the slower varying ionospheric F-region electron density, but rapidly responding E-region density.

  2. NCDs: can healthy synergies replace fatal interactions?

    PubMed

    2013-07-01

    A growing global movement argues for health to take center stage in the post-2015 sustainable human development agenda, building on the Millennium Development Goals and improving measurement of outcomes and equity. Considered key is the urgent need to effectively stem chronic noncommunicable diseases (NCDs). The reasoning is straightforward and yet addresses the interactive complexities of NCD impact and the potential synergies to reduce it: NCDs constitute the most important, if until recently neglected, pandemic of our era. They accounted for over 65% of global deaths and 54% of the global disease burden in 2010.[1,2] Such a negative "contribution" -including the sequelae of disability and alarming costs of treatment for multimorbidities associated with aging populations worldwide-jeopardizes sustainable human development.

  3. A New Approach to Micro-arcsecond Astrometry with SIM Allowing Early Mission Narrow Angle Measurements of Compelling Astronomical Targets

    NASA Technical Reports Server (NTRS)

    Shaklan, Stuart; Pan, Xiaopei

    2004-01-01

    The Space Interferometry Mission (SIM) is capable of detecting and measuring the mass of terrestrial planets around stars other than our own. It can measure the mass of black holes and the visual orbits of radio and x-ray binary sources. SIM makes possible a new level of understanding of complex astrophysical processes. SIM achieves its high precision in the so-called narrow-angle regime. This is defined by a 1 degree diameter field in which the position of a target star is measured with respect to a set of reference stars. The observation is performed in two parts: first, SIM observes a grid of stars that spans the full sky. After a few years, repeated observations of the grid allow one to determine the orientation of the interferometer baseline. Second, throughout the mission, SIM periodically observes in the narrow-angle mode. Every narrow-angle observation is linked to the grid to determine the precise attitude and length of the baseline. The narrow angle process demands patience. It is not until five years after launch that SIM achieves its ultimate accuracy of 1 microarcsecond. The accuracy is degraded by a factor of approx. 2 at mid-mission. Our work proposes a technique for narrow angle astrometry that does not rely on the measurement of grid stars. This technique, called Gridless Narrow Angle Astrometry (GNAA) can obtain microarcsecond accuracy and can detect extra-solar planets and other exciting objects with a few days of observation. It can be applied as early as during the first six months of in-orbit calibration (IOC). The motivations for doing this are strong. First, and obviously, it is an insurance policy against a catastrophic mid-mission failure. Second, at the start of the mission, with several space-based interferometers in the planning or implementation phase, NASA will be eager to capture the public's imagination with interferometric science. Third, early results and a technique that can duplicate those results throughout the mission will

  4. Synergy between NMR measurements and MD simulations of protein/RNA complexes: application to the RRMs, the most common RNA recognition motifs

    PubMed Central

    Krepl, Miroslav; Cléry, Antoine; Blatter, Markus; Allain, Frederic H.T.; Sponer, Jiri

    2016-01-01

    RNA recognition motif (RRM) proteins represent an abundant class of proteins playing key roles in RNA biology. We present a joint atomistic molecular dynamics (MD) and experimental study of two RRM-containing proteins bound with their single-stranded target RNAs, namely the Fox-1 and SRSF1 complexes. The simulations are used in conjunction with NMR spectroscopy to interpret and expand the available structural data. We accumulate more than 50 μs of simulations and show that the MD method is robust enough to reliably describe the structural dynamics of the RRM–RNA complexes. The simulations predict unanticipated specific participation of Arg142 at the protein–RNA interface of the SRFS1 complex, which is subsequently confirmed by NMR and ITC measurements. Several segments of the protein–RNA interface may involve competition between dynamical local substates rather than firmly formed interactions, which is indirectly consistent with the primary NMR data. We demonstrate that the simulations can be used to interpret the NMR atomistic models and can provide qualified predictions. Finally, we propose a protocol for ‘MD-adapted structure ensemble’ as a way to integrate the simulation predictions and expand upon the deposited NMR structures. Unbiased μs-scale atomistic MD could become a technique routinely complementing the NMR measurements of protein–RNA complexes. PMID:27193998

  5. Flux Of Carbon from an Airborne Laboratory (FOCAL): Synergy of airborne and surface measures of carbon emission and isotopologue content from tundra landscape in Alaska

    NASA Astrophysics Data System (ADS)

    Dobosy, R.; Dumas, E.; Sayres, D. S.; Kochendorfer, J.

    2013-12-01

    Arctic tundra, recognized as a potential major source of new atmospheric carbon, is characterized by low topographic relief and small-scale heterogeneity consisting of small lakes and intervening tundra vegetation. This fits well the flux-fragment method (FFM) of analysis of data from low-flying aircraft. The FFM draws on 1)airborne eddy-covariance flux measurements, 2)a classified surface-characteristics map (e.g. open water vs tundra), 3)a footprint model, and 4)companion surface-based eddy-covariance flux measurements. The FOCAL, a collaboration among Harvard University's Anderson Group, NOAA's Atmospheric Turbulence and Diffusion Division (ATDD), and Aurora Flight Sciences, Inc., made coordinated flights in 2013 August with a collaborating surface site. The FOCAL gathers not only flux data for CH4 and CO2 but also the corresponding carbon-isotopologue content of these gases. The surface site provides a continuous sample of carbon flux from interstitial tundra over time throughout the period of the campaign. The FFM draws samples from the aircraft data over many instances of tundra and also open water. From this we will determine how representative the surface site is of the larger area (100 km linear scale), and how much the open water differs from the tundra as a source of carbon.

  6. A Generalized Logical Format for Inter-Calibrated Brightness Temperatures for the Global Precipitation Measurement Mission

    NASA Technical Reports Server (NTRS)

    Stocker, Erich Franz; Stout, John; Kummerow, Christian; Berg, Wesley

    2010-01-01

    An important aspect of the GPM mission is the merging of precipitation data from multiple radiometers on different satellites. This requires that each radiometer be consistently calibrated and that each be intercalibrated with a mission reference standard. For GPM the reference standard is to be the core satellite carrying a dual frequency precipitation radar and a well calibrated conically scanning radiometer. This paper describes a common format for representing these intercalibrated brightness temperatures which will be used for all radiometer products from GPM partner satellites. The use of common formats ensures that users obtain all the required information and also facilitates the rain retrieval algorithm code preparation as it can always except to have the data that it needs for the retrieval.

  7. Sentinel-3 Mission Overview

    NASA Astrophysics Data System (ADS)

    Klein, U.; Berruti, B.; Donlon, C.; Frerick, J.; Mavrocordatos, C.; Nieke, J.; Seitz, B.; Stroede, J.; Rebhan, H.

    2009-04-01

    The series of Sentinel-3 satellites will provide global, frequent and near-realtime ocean, ice and land monitoring. Sentinel-3 will be particularly devoted to the provision of observation data in routine, long term (20 years of operations) and continuous fashion with a consistent quality and a very high level of availability. It will continue the successful observations of similar predecessor instruments onboard Envisat from 2012 onwards. The Ocean and Land Colour Instrument (OLCI) is based on the Envisat MEdium Resolution Imaging Spectrometer Instrument (MERIS) instrument. It fulfils ocean-colour and land-cover objectives with a larger swath and additional spectral bands. The Sea and Land Surface Temperature radiometer (SLSTR) is based on Envisat's Advanced Along Track Scanning Radiometer (AATSR). SLSTR has a double-scanning mechanism, yielding a wider swath and a complete overlap with OLCI. This enables the generation of a synergy product with a total of 30 spectral bands, fully co-registered for new and innovative ocean and land products. The topography mission has the primary objective of providing accurate, closely spaced altimetry measurements from a high-inclination orbit with a long repeat cycle. It will complement the Jason ocean altimeter series monitoring mid-scale circulation and sea levels. The altimeter will be operated in two different modes, a classical low resolution mode and a synthetic aperture mode similar to CryoSat for increased along-track resolution and improved performance. Accompanying the altimeter will be a Precise Orbit Determination system and microwave radiometer (MWR) for removing the errors related to the altimeter signals being delayed by water vapour in the atmosphere. The altimeter will track over a variety of surfaces: Open ocean, coastal zones, sea ice and inland waters. The conceptual designs of the major instruments and their basic performance parameters will be introduced together with the expected accuracies of the main

  8. Estimation of Effective Doses for Radiation Cancer Risks on ISS, Lunar, and Mars Missions with Space Radiation Measurement

    NASA Technical Reports Server (NTRS)

    Kim, M.Y.; Cucinotta, F.A.

    2005-01-01

    Radiation protection practices define the effective dose as a weighted sum of equivalent dose over major sites for radiation cancer risks. Since a crew personnel dosimeter does not make direct measurement of effective dose, it has been estimated with skin-dose measurements and radiation transport codes for ISS and STS missions. The Phantom Torso Experiment (PTE) of NASA s Operational Radiation Protection Program has provided the actual flight measurements of active and passive dosimeters which were placed throughout the phantom on STS-91 mission for 10 days and on ISS Increment 2 mission. For the PTE, the variation in organ doses, which is resulted by the absorption and the changes in radiation quality with tissue shielding, was considered by measuring doses at many tissue sites and at several critical body organs including brain, colon, heart, stomach, thyroid, and skins. These measurements have been compared with the organ dose calculations obtained from the transport models. Active TEPC measurements of lineal energy spectra at the surface of the PTE also provided the direct comparison of galactic cosmic ray (GCR) or trapped proton dose and dose equivalent. It is shown that orienting the phantom body as actual in ISS is needed for the direct comparison of the transport models to the ISS data. One of the most important observations for organ dose equivalent of effective dose estimates on ISS is the fractional contribution from trapped protons and GCR. We show that for most organs over 80% is from GCR. The improved estimation of effective doses for radiation cancer risks will be made with the resultant tissue weighting factors and the modified codes.

  9. The BepiColombo mission to Mercury: Reaction wheels desaturation manoeuvres and the ISA accelerometer Δ V⇒ measurements

    NASA Astrophysics Data System (ADS)

    Iafolla, V.; Lucchesi, D.-M.; Nozzoli, S.; Santoli, F.

    2011-01-01

    The Mercury Planetary Orbiter will be a three-axis stabilized spacecraft and nadir pointing to Mercury center-of-mass. The pointing accuracy, needed for the very ambitious goals of the ESA space mission to Mercury denominated BepiColombo, is reached thanks to the onboard reaction wheels, and it is also required during the unobserved arcs. The unavoidable manoeuvres of desaturation of the reaction wheels, which are necessary to remove the accumulated angular momentum, represent a clear reduction of the accuracy of the objectives of the ESA space mission. Indeed, these manoeuvres are performed through the spacecraft thrusters and directly impact the accuracy of the propagated state-vector of the satellite at the beginning of the subsequent observed arc. Their impact is quantified by their number, position along the orbit and, especially, in the uncertainty in the linear momentum transferred to the spacecraft. The present paper is devoted to prove the feasibility of the speed variation measurements produced by the thruster thanks to the onboard accelerometer, ISA. Therefore, such measurements may be an essential ingredient in order to preserve the accuracy of the BepiColombo Radio Science Experiments and of other onboard instruments pointing accuracy, as is the case of BELA. This additional capability of ISA strengthens once more the key role of the accelerometer in the BepiColombo mission to Mercury.

  10. The BepiColombo Mission to Mercury: reaction wheels desaturation manoeuvres and the ISA accelerometer Δ →V measurements

    NASA Astrophysics Data System (ADS)

    Iafolla, Valerio; Nozzoli, Sergio; Lucchesi, David; Santoli, Francesco; Peron, Roberto; Fiorenza, Emiliano; Lefevre, Carlo; Reale, Andrea

    2010-05-01

    The MPO will be a three-axis stabilized spacecraft and nadir pointing to Mercury center-of-mass. Such a pointing, needed for the very ambitious goals of the ESA space mission to Mercury denominated BepiColombo, is reached thanks to the onboard reaction wheels, and it is also required during the unobserved (from Earth) arcs. The unavoidable manoeuvres of desaturation of the reaction wheels, which are necessary to remove the accumulated angular momentum, represent a clear reduction of the accuracy of the objectives of the ESA space mission. Indeed, during these manoeuvres the spacecraft thrusters are fired -- to guarantee the planet center-of-mass pointing -- and directly impact the accuracy of the propagated state-vector of the satellite at the beginning of the subsequent observed arc. Their impact is quantified by their number, position along the orbit and, especially, in the uncertainty in the linear momentum transferred to the spacecraft. This presentation is devoted to prove the feasibility of the measurements of the transferred momentum by the thruster thanks to the onboard accelerometer ISA. Therefore, such measurements will be an essential ingredient in order to preserve the accuracy of the BepiColombo Radio Science Experiments and of the pointing accuracy of other onboard instruments, as is the case of BELA. This additional capability of ISA strengthen once more the key rôle of the accelerometer in the BepiColombo mission to Mercury.

  11. Tropical Rainfall Measuring Mission (TRMM) project. VI - Spacecraft, scientific instruments, and launching rocket. Part 4 - TRMM rain radar

    NASA Technical Reports Server (NTRS)

    Meneghini, Robert; Atlas, David; Awaka, Jun; Okamoto, Ken'ichi; Ihara, Toshio; Nakamura, Kenji; Kozu, Toshiaki; Manabe, Takeshi

    1990-01-01

    The basic system parameters for the Tropical Rainfall Measuring Mission (TRMM) radar system are frequency, beamwidth, scan angle, resolution, number of independent samples, pulse repetition frequency, data rate, and so on. These parameters were chosen to satisfy NASA's mission requirements. Six candidates for the TRMM rain radar were studied. The study considered three major competitive items: (1) a pulse-compression radar vs. a conventional radar; (2) an active-array radar with a solid state power amplifier vs. a passive-array radar with a traveling-wave-tube amplifier; and (3) antenna types (planar-array antenna vs. cylindrical parabolic antenna). Basic system parameters such as radar sensitivities, power consumption, weight, and size of these six types are described. Trade-off studies of these cases show that the non-pulse-compression active-array radar with a planar array is considered to be the most suitable candidate for the TRMM rain radar at 13.8 GHz.

  12. CONSTRAINING SATURN'S CORE PROPERTIES BY A MEASUREMENT OF ITS MOMENT OF INERTIA-IMPLICATIONS TO THE CASSINI SOLSTICE MISSION

    SciTech Connect

    Helled, R.

    2011-07-01

    Knowledge of Saturn's axial moment of inertia can provide valuable information on its internal structure. We suggest that Saturn's angular momentum may be determined by the Solstice Mission (Cassini XXM) by measuring Saturn's pole precession rate and the Lense-Thirring acceleration on the spacecraft, and therefore put constraints on Saturn's moment of inertia. It is shown that Saturn's moment of inertia can change up to {approx}2% due to different core properties. However, a determination of Saturn's rotation rate is required to constrain its axial moment of inertia. A change of about seven minutes in rotation period leads to a similar uncertainty in the moment of inertia value as different core properties (mass, radius). A determination of Saturn's angular momentum and rotation period by the Solstice Mission could reveal important information on Saturn's internal structure, in particular, its core properties.

  13. Precipitation measurements with GNSS polarimetric Radio Occultations: Status of the ROHP-PAZ mission and anticipated retrievals

    NASA Astrophysics Data System (ADS)

    Padullés, Ramon; Cardellach, Estel; de la Torre Juárez, Manuel; Tomás, Sergio; Turk, F. Joseph; Ao, Chi O.; Rius, Toni; Oliveras, Santi

    2016-04-01

    The upcoming ROHP-PAZ (Radio Occultations and Heavy Precipitation experiment aboard the spanish PAZ satellite) mission aims to detect, for the first time, precipitation using Global Navigation Satellite System Radio Occultations (GNSS-RO). The electromagnetic signals coming from the GNSS satellites travel tangentially through the atmosphere and will be collected in the PAZ Low Earth Orbiter at two polarizations (vertical and horizontal). This sounding-like technique of the atmosphere will measure all the atmospheric phenomena that are inducing depolarization effects, in addition to all the thermodynamic profiles that standard RO are nowadays providing. The main contributors to depolarization in the troposphere are known to be the hydrometeors, both rain drops from heavy precipitation events and horizontally oriented ice particles in the top of clouds. Their effects on the GNSS signals were predicted in Cardellach et. al. 2015 (IEEE Trans. Geosci. Remote Sens.), and measured in the ROHP-PAZ field campaign Padullés et. al. 2016 (Atmos. Chem. Phys.). Prior to the launch, a complete characterization of all the possible effects, including hydrometeors but also taking into account other elements was needed. To do so, actual data from the COSMIC - FORMOSAT 3 mission (Radio Occultation events) have been collocated with the TRMM, GPM and CloudSat missions (precipitation and clouds missions). Thousands of events have been analyzed, in terms of SNR and phase delays. For the same events, the effect of hydrometeors has been simulated as well as the most known ionospheric effects, such as Faraday Rotation and Cotton-Mouton effects. And finally, the predicted noise, actual measurements of the antenna pattern and some tolerance in the purity of the emitted signal have been included. This has resulted in an extensive data base that is key in the understanding of the upcoming actual data, as well as for the characterization of all the unpredicted effects. We will discuss here the

  14. Four-Dimensional Oceanic and Atmosperic Data Assimilation with Tropical Rainfall Measuring Mission Data

    NASA Technical Reports Server (NTRS)

    Takano, Kenji

    1996-01-01

    An oceanic data assimilation system which allows to utilize the forthcoming Tropical Rainfall Measuring Mission (TRMM) data has been developed and applied to the Pacific Ocean to produce the velocity field. The assimilated data will be indispensable to examine the effects of rainfall and its variability on the structure and circulation of the tropical oceans and to assess the impact of global warming due to the increase of carbon dioxide on the ocean circulation system and the marine pollution caused by oil spill and ocean damping of radionuclide. The data will also provide the verification for the oceanic and ocean-atmosphere coupled General Circulation Models (GCM's). The system consists of oceanic GCM, analysis scheme and data. In the system the flow field has been determined to be physically consistent with the observed density field and the sea surface winds derived from the Special Sensor Microwave Imagery (SSM/I) data which drive the ocean current. The time integration has been performed for five years until the flow field near the surface attained the steady state starting from the rest ocean with observed temperature and salinity fields, and the SSM/I surface wind velocity. The resultant flow field showed high producibility of the system. Especially the flow near the ocean surface agreed well with available observed data. The system, for the first time, succeeded to produce the eastward subtropical current which has been discovered in the joint investigation on Kuroshio current (CSK) in the 1960s. To verify the quality of the flow field a trajectory analysis has been carried out and compared with the Algos buoy data. BRIEF DESCRIPTION OF THE DATA ASSIMILATION SYSTEM ## Oceanic GCM and analysis scheme--The basic equations are much the same as used for the GCM's, except for the Newtonian damping terms introduced into the prediction equations for the potential temperature and salinity to maintain these fields as observed. The C grid of 2'lat. by 2'long. in

  15. Miniature GC-Minicell Ion Mobility Spectrometer (IMS) for In Situ Measurements in Astrobiology Planetary Missions

    NASA Technical Reports Server (NTRS)

    Kojiro, Daniel R.; Stimac, Robert M.; Kaye, William J.; Holland, Paul M.; Takeuchi, Norishige

    2006-01-01

    Astrobiology flight experiments require highly sensitive instrumentation for in situ analysis of volatile chemical species and minerals present in the atmospheres and surfaces of planets, moons, and asteroids. The complex mixtures encountered place a heavy burden on the analytical instrumentation to detect and identify all species present. The use of land rovers and balloon aero-rovers place additional emphasis on miniaturization of the analytical instrumentation. In addition, smaller instruments, using tiny amounts of consumables, allow the use of more instrumentation and/or ionger mission life for stationary landers/laboratories. The miniCometary Ice and Dust Experiment (miniCIDEX), which combined Gas Chromatography (GC) with helium Ion Mobility Spectrometry (IMS), was capable of providing the wide range of analytical information required for Astrobiology missions. The IMS used here was based on the PCP model 111 IMS. A similar system, the Titan Ice and Dust Experiment (TIDE), was proposed as part of the Titan Orbiter Aerorover Mission (TOAM). Newer GC systems employing Micro Electro- Mechanical System (MEMS) based technology have greatly reduced both the size and resource requirements for space GCs. These smaller GCs, as well as the continuing miniaturization of Astrobiology analytical instruments in general, has highlighted the need for smaller, dry helium IMS systems. We describe here the development of a miniature, MEMS GC-IMS system (MEMS GC developed by Thorleaf Research Inc.), employing the MiniCell Ion Mobility Spectrometer (IMS), from Ion Applications Inc., developed through NASA's Astrobiology Science and Technology Instrument Development (ASTID) Program and NASA s Small Business Innovative Research (SBIR) Program.

  16. Taking the Measure of the Universe: Cosmology from the WMAP Mission

    NASA Technical Reports Server (NTRS)

    Hinshaw, Gary F.

    2003-01-01

    The data from the first year of operation of the Wilkinson Microwave Anisotropy Probe (WMAP) satellite provide the first detailed full sky map of the cosmic microwave background radiation. The anisotropy in the radiation temperature provides a wealth of cosmological information, including the age of the universe, the epoch when the first stars formed, and the overall composition of baryonic matter, dark matter, and dark energy. The results also provide constraints on the period of inflationary expansion in the very first moments of time. These and other aspects of the mission will be discussed. The WMAP satellite was built in a close partnership between Princeton University and the Goddard Space Flight Center.

  17. Taking the Measure of the Universe: Cosmology from the WMAP Mission

    NASA Technical Reports Server (NTRS)

    Hinshaw, Gary F.

    2007-01-01

    The data from the first three years of operation of the Wilkinson Microwave Anisotropy Probe (WMAP) satellite provide detailed full-sky maps of the cosmic microwave background temperature anisotropy and new full-sky maps of the polarization. Together, the data provide a wealth of cosmological information, including the age of the universe, the epoch when the first stars formed, and the overall composition of baryonic matter, dark matter, and dark energy. The results also provide constraints on the period of inflationary expansion in the very first moments of time. These and other aspects of the mission will be discussed.

  18. Precise methane absorption measurements in the 1.64 μm spectral region for the MERLIN mission.

    PubMed

    Delahaye, T; Maxwell, S E; Reed, Z D; Lin, H; Hodges, J T; Sung, K; Devi, V M; Warneke, T; Spietz, P; Tran, H

    2016-06-27

    In this article we describe a high-precision laboratory measurement targeting the R(6) manifold of the 2ν3 band of (12)CH4. Accurate physical models of this absorption spectrum will be required by the Franco-German, Methane Remote Sensing LIDAR (MERLIN) space mission for retrievals of atmospheric methane. The analysis uses the Hartmann-Tran profile for modeling line shape and also includes line-mixing effects. To this end, six high-resolution and high signal-to-noise absorption spectra of air-broadened methane were recorded using a frequency-stabilized cavity ring-down spectroscopy apparatus. Sample conditions corresponded to room temperature and spanned total sample pressures of 40 hPa - 1013 hPa with methane molar fractions between 1 μmol mol(-1) and 12 μmol mol(-1). All spectroscopic model parameters were simultaneously adjusted in a multispectrum nonlinear least-squares fit to the six measured spectra. Comparison of the fitted model to the measured spectra reveals the ability to calculate the room-temperature, methane absorption coefficient to better than 0.1% at the on-line position of the MERLIN mission. This is the first time that such fidelity has been reached in modeling methane absorption in the investigated spectral region, fulfilling the accuracy requirements of the MERLIN mission. We also found excellent agreement when comparing the present results with measurements obtained over different pressure conditions and using other laboratory techniques. Finally, we also evaluated the impact of these new spectral parameters on atmospheric transmissions spectra calculations.

  19. Precise methane absorption measurements in the 1.64 μm spectral region for the MERLIN mission

    NASA Astrophysics Data System (ADS)

    Delahaye, T.; Maxwell, S. E.; Reed, Z. D.; Lin, H.; Hodges, J. T.; Sung, K.; Devi, V. M.; Warneke, T.; Spietz, P.; Tran, H.

    2016-06-01

    In this article we describe a high-precision laboratory measurement targeting the R(6) manifold of the 2ν3 band of 12CH4. High-fidelity modeling of this absorption spectrum for atmospheric temperature and pressure conditions will be required by the Franco-German, Methane Remote Sensing LIDAR (MERLIN) space mission for retrievals of atmospheric methane. The analysis uses the Hartmann-Tran profile for modeling line shape and also includes line-mixing effects. To this end, six high-resolution and high signal-to-noise ratio absorption spectra of air-broadened methane were recorded using a frequency-stabilized cavity ring-down spectroscopy apparatus. Sample conditions corresponded to room temperature and spanned total sample pressures of 40 hPa-1013 hPa with methane molar fractions between 1 µmol mol-1 and 12 µmol mol-1. All spectroscopic model parameters were simultaneously adjusted in a multispectrum nonlinear least squares fit to the six measured spectra. Comparison of the fitted model to the measured spectra reveals the ability to calculate the room temperature, methane absorption coefficient to better than 0.1% at the online position of the MERLIN mission. This is the first time that such fidelity has been reached in modeling methane absorption in the investigated spectral region, fulfilling the accuracy requirements of the MERLIN mission. We also found excellent agreement when comparing the present results with measurements obtained over different pressure conditions and using other laboratory techniques. Finally, we also evaluated the impact of these new spectral parameters on atmospheric transmissions spectra calculations.

  20. Implementation of a complex of measures to fulfill the planetary protection requirements of the ExoMars-2016 mission

    NASA Astrophysics Data System (ADS)

    Khamidullina, Natalia; Novikova, Nataliya; Deshevaya, Elena; Orlov, Oleg; Guridov, Alexander; Zakharenko, Dmitry; Zaytseva, Olga

    2016-07-01

    The major purpose of the planetary protection program in the ExoMars-2016 mission is to forestall Mars contamination by terrestrial microorganisms. Since Martian descent module is not intended for biological experiments, ExoMars-2016 mission falls under COSPAR category IVa. Within the joint project co-sponsored by ESA and Roscosmos the European side holds full responsibility for ensuring a prescribed level of SC microbiological purity, while the Russian side is charged with compliance of the launch services provided on Baikonur technical complex with the planetary protection requirements that is, specifically, prevention of SC recontamination. To this end, a complex of measures was executed to control microbial contamination of cosmodrome facilities on the prescribed level which included: - regular decontamination of clean rooms using an effective disinfectant and impulse ultraviolet radiation that created favorable conditions for reliable functioning of the ESA clean tent, - replacement of airline filters in the Thermal Conditioning Unit (TCU) air duct for SC conditioning with pure air. The results of microbiological tests performed in the period of 2015 - 2016 lead to the conclusion that the Baikonur clean rooms (ISO class 8), TCU air ducts and Air Thermal Control System (ATCS) at launch site are ready for the launch campaign and that the Russian side fulfilled the planetary protection requirements of the ExoMars-2016 mission.

  1. Visualization of Space-Time Ambiguities to be Explored by the NASA GEC Mission with a Critique of Synthesized Measurements for Different GEC Mission Scenarios

    NASA Technical Reports Server (NTRS)

    Sojka, Jan J.; Zhu, Lie; Fuller-Rowell, Timothy J.

    2005-01-01

    The objective of this grant was to study how a multi-satellite mission configuration can be optimized for maximum exploratory scientific return. NASA's Solar Terrestrial Probe (STP) concept mission Geospace Electrodynamic Connections (GEC) was the target mission for this pilot study. GEC prime mission characteristics were two fold: (i) a series of three satellites in the same orbit plane with differential spacing, and (ii) a deep-dipping phase in which these satellites could dip to altitudes as low as 130 km to explore the lower ionosphere and thermosphere. Each satellite would carry a full suite of plasma and neutral in-situ sensors and have the same dipping capability. This latter aspect would be envisaged as a series, up to 10, of deep-dipping campaigns, each lasting 10 days during which the perigee would be lowered to the desired probing depth. The challenge in optimization is to establish the scientific problems that can best be addressed by varying or selecting satellite spacing during a two-year mission while also interspersing, in this two year time frame, the deep-dipping campaigns. Although this sounds like a straightforward trade-off situation, it is complicated by the orbit precession in local time, the location of perigee, and that even the dipping campaigns will have preferred satellite spacing requirements.

  2. Future space missions and ground observatory for measurements of coronal magnetic fields

    NASA Astrophysics Data System (ADS)

    Fineschi, Silvano; Gibson, Sarah; Bemporad, Alessandro; Zhukov, Andrei; Damé, Luc; Susino, Roberto; Larruquert, Juan

    2016-07-01

    This presentation gives an overview of the near-future perspectives for probing coronal magnetism from space missions (i.e., SCORE and ASPIICS) and ground-based observatory (ESCAPE). Spectro-polarimetric imaging of coronal emission-lines in the visible-light wavelength-band provides an important diagnostics tool of the coronal magnetism. The interpretation in terms of Hanle and Zeeman effect of the line-polarization in forbidden emission-lines yields information on the direction and strength of the coronal magnetic field. As study case, this presentation will describe the Torino Coronal Magnetograph (CorMag) for the spectro-polarimetric observation of the FeXIV, 530.3 nm, forbidden emission-line. CorMag - consisting of a Liquid Crystal (LC) Lyot filter and a LC linear polarimeter. The CorMag filter is part of the ESCAPE experiment to be based at the French-Italian Concordia base in Antarctica. The linear polarization by resonance scattering of coronal permitted line-emission in the ultraviolet (UV)can be modified by magnetic fields through the Hanle effect. Space-based UV spectro-polarimeters would provide an additional tool for the disgnostics of coronal magnetism. As a case study of space-borne UV spectro-polarimeters, this presentation will describe the future upgrade of the Sounding-rocket Coronagraphic Experiment (SCORE) to include new generation, high-efficiency UV polarizer with the capability of imaging polarimetry of the HI Lyman-α, 121.6 nm. SCORE is a multi-wavelength imager for the emission-lines, HeII 30.4 nm and HI 121.6 nm, and visible-light broad-band emission of the polarized K-corona. SCORE has flown successfully in 2009. The second lauch is scheduled in 2016. Proba-3 is the other future solar mission that would provide the opportunity of diagnosing the coronal magnetic field. Proba-3 is the first precision formation-flying mission to launched in 2019). A pair of satellites will fly together maintaining a fixed configuration as a 'large rigid

  3. The Surface Water and Ocean Topography Satellite Mission - An Assessment of Swath Altimetry Measurements of River Hydrodynamics

    NASA Technical Reports Server (NTRS)

    Wilson, Matthew D.; Durand, Michael; Alsdorf, Douglas; Chul-Jung, Hahn; Andreadis, Konstantinos M.; Lee, Hyongki

    2012-01-01

    The Surface Water and Ocean Topography (SWOT) satellite mission, scheduled for launch in 2020 with development commencing in 2015, will provide a step-change improvement in the measurement of terrestrial surface water storage and dynamics. In particular, it will provide the first, routine two-dimensional measurements of water surface elevations, which will allow for the estimation of river and floodplain flows via the water surface slope. In this paper, we characterize the measurements which may be obtained from SWOT and illustrate how they may be used to derive estimates of river discharge. In particular, we show (i) the spatia-temporal sampling scheme of SWOT, (ii) the errors which maybe expected in swath altimetry measurements of the terrestrial surface water, and (iii) the impacts such errors may have on estimates of water surface slope and river discharge, We illustrate this through a "virtual mission" study for a approximately 300 km reach of the central Amazon river, using a hydraulic model to provide water surface elevations according to the SWOT spatia-temporal sampling scheme (orbit with 78 degree inclination, 22 day repeat and 140 km swath width) to which errors were added based on a two-dimension height error spectrum derived from the SWOT design requirements. Water surface elevation measurements for the Amazon mainstem as may be observed by SWOT were thereby obtained. Using these measurements, estimates of river slope and discharge were derived and compared to those which may be obtained without error, and those obtained directly from the hydraulic model. It was found that discharge can be reproduced highly accurately from the water height, without knowledge of the detailed channel bathymetry using a modified Manning's equation, if friction, depth, width and slope are known. Increasing reach length was found to be an effective method to reduce systematic height error in SWOT measurements.

  4. Surface temperature variations as measured by the Heat Capacity Mapping Mission

    NASA Technical Reports Server (NTRS)

    Price, J. C.

    1979-01-01

    The AEM-1 satellite, the Heat Capacity Mapping Mission, has acquired high-quality thermal infrared data at times of day especially suited for studying the earth's surface and the exchange of heat and moisture with the atmosphere. Selected imagery illustrates the considerable variability of surface temperature in and around cities, in the dry southwestern United States, in the Appalachian Mountains, and in agricultural areas. Through simplifying assumptions, an analytic experience is derived that relates day/night temperature differences to the near-surface layer (thermal inertia) and to meteorological factors. Analysis of the result suggests that, in arid regions, estimates of relative thermal inertia may be inferred, whereas, in agricultural areas, a hydrologic interpretation is possible.

  5. Synergy, redundancy and unnormalized Granger causality.

    PubMed

    Stramaglia, S; Angelini, L; Cortes, J M; Marinazzo, D

    2015-08-01

    We analyze by means of Granger causality the effect of synergy and redundancy in the inference (from time series data) of the information flow between subsystems of a complex network. Whilst fully conditioned Granger causality is not affected by synergy, the pairwise analysis fails to put in evidence synergetic effects. We show that maximization of the total Granger causality to a given target, over all the possible partitions of the set of driving variables, puts in evidence redundant multiplets of variables influencing the target, provided that an unnormalized definition of Granger causality is adopted. Along the same lines we also introduce a pairwise index of synergy (w.r.t. to information flow to a third variable) which is zero when two independent sources additively influence a common target; thus, this definition differs from previous definitions of synergy.

  6. A Neptune Orbiter Mission

    NASA Technical Reports Server (NTRS)

    Wallace, R. A.; Spilker, T. R.

    1998-01-01

    This paper describes the results of new analyses and mission/system designs for a low cost Neptune Orbiter mission. Science and measurement objectives, instrumentation, and mission/system design options are described and reflect an aggressive approach to the application of new advanced technologies expected to be available and developed over the next five to ten years.

  7. Measurements from the Daytime Dynamo Sounding Rocket missions: Altitude Profiles of Neutral Temperature, Density, Winds, and Con Composition

    NASA Astrophysics Data System (ADS)

    Clemmons, J. H.; Bishop, R. L.; Pfaff, R. F., Jr.; Rowland, D. E.; Larsen, M. F.

    2015-12-01

    Results from the two Daytime Dynamo sounding rocket missions launched from Wallops Island, Virginia, in July 2011 and July 2013 are presented and discussed. Measurements returned by the rockets' multiple-sensor ionization gauge instrumentation are used to derive profiles vs. altitude of neutral temperature, density, and, using a new technique, winds. The techniques used are described in detail and the resulting profiles discussed in the context of the daytime atmospheric dynamo. The profiles are also compared to those of established models. Also presented are measurements returned by the high-speed ion mass spectrometer on the 2011 flight. The measurements show the dominance of NO+ ions up to apogee at 160 km, but also reveal a significant admixture of O2+ ions below an intense daytime sporadic-E layer observed at 100.5 km.

  8. Task constraints and minimization of muscle effort result in a small number of muscle synergies during gait

    PubMed Central

    De Groote, Friedl; Jonkers, Ilse; Duysens, Jacques

    2014-01-01

    Finding muscle activity generating a given motion is a redundant problem, since there are many more muscles than degrees of freedom. The control strategies determining muscle recruitment from a redundant set are still poorly understood. One theory of motor control suggests that motion is produced through activating a small number of muscle synergies, i.e., muscle groups that are activated in a fixed ratio by a single input signal. Because of the reduced number of input signals, synergy-based control is low dimensional. But a major criticism on the theory of synergy-based control of muscles is that muscle synergies might reflect task constraints rather than a neural control strategy. Another theory of motor control suggests that muscles are recruited by optimizing performance. Optimization of performance has been widely used to calculate muscle recruitment underlying a given motion while assuming independent recruitment of muscles. If synergies indeed determine muscle recruitment underlying a given motion, optimization approaches that do not model synergy-based control could result in muscle activations that do not show the synergistic muscle action observed through electromyography (EMG). If, however, synergistic muscle action results from performance optimization and task constraints (joint kinematics and external forces), such optimization approaches are expected to result in low-dimensional synergistic muscle activations that are similar to EMG-based synergies. We calculated muscle recruitment underlying experimentally measured gait patterns by optimizing performance assuming independent recruitment of muscles. We found that the muscle activations calculated without any reference to synergies can be accurately explained by on average four synergies. These synergies are similar to EMG-based synergies. We therefore conclude that task constraints and performance optimization explain synergistic muscle recruitment from a redundant set of muscles. PMID:25278871

  9. BepiColombo mission to Mercury: ISA accelerometer DeltaV measurements and the reaction wheels desaturation manoeuvres

    NASA Astrophysics Data System (ADS)

    Iafolla, Valerio; Lucchesi, David; Nozzoli, Sergio; Santoli, Francesco; Fiorenza, Emiliano; Peron, Roberto; Lefevre, Carlo; Reale, Andrea

    Mercury exploration is one of the most important challenges of modern planetary sciences. The results are a way to constrain the physics of the terrestrial planet formation and, at the end, of the whole solar system. The level of knowledge we can reach is strongly conditioned by the accuracy of the Radio Science Experiments (RSE) that will be performed using Earth—bound radar tracking stations. Such very ambitious objectives need an onboard accelerometer in or-der to measure and remove the strong, and subtle, nongravitational accelerations of the very severe radiation environment of the innermost planet of our solar system. The Italian Spring Accelerometer (ISA) has been selected to fly onboard the Mercury Planetary Orbiter (MPO) of the ESA space mission to Mercury denominated BepiColombo. The MPO will be a three-axis stabilized spacecraft and nadir pointing to Mercury center-of-mass. Such a pointing, needed for the very ambitious goals the mission, is reached thanks to the onboard reaction wheels, and it is also required during the unobserved (from Earth) arcs. The unavoidable manoeuvres of desaturation of the reaction wheels, which are necessary to remove the accumulated angular momentum, represent a clear reduction of the accuracy of the objectives of the ESA space mission. Indeed, during these manoeuvres the spacecraft thrusters are fired — to still guar-antee the pointing to the planet center-of-mass — and directly impact on the accuracy of the propagated state-vector of the satellite at the beginning of the subsequent observed arc. Their impact is quantified by their number, position along the orbit and, especially, in the uncertainty in the linear momentum transferred to the spacecraft. This presentation is devoted to prove the feasibility of the measurements and knowledge of the transferred momentum by the thruster thanks to the onboard ISA accelerometer. Such measurements will be an essential ingredient in order to preserve the accuracy of the Bepi

  10. Sensory synergy as environmental input integration

    PubMed Central

    Alnajjar, Fady; Itkonen, Matti; Berenz, Vincent; Tournier, Maxime; Nagai, Chikara; Shimoda, Shingo

    2015-01-01

    The development of a method to feed proper environmental inputs back to the central nervous system (CNS) remains one of the challenges in achieving natural movement when part of the body is replaced with an artificial device. Muscle synergies are widely accepted as a biologically plausible interpretation of the neural dynamics between the CNS and the muscular system. Yet the sensorineural dynamics of environmental feedback to the CNS has not been investigated in detail. In this study, we address this issue by exploring the concept of sensory synergy. In contrast to muscle synergy, we hypothesize that sensory synergy plays an essential role in integrating the overall environmental inputs to provide low-dimensional information to the CNS. We assume that sensor synergy and muscle synergy communicate using these low-dimensional signals. To examine our hypothesis, we conducted posture control experiments involving lateral disturbance with nine healthy participants. Proprioceptive information represented by the changes on muscle lengths were estimated by using the musculoskeletal model analysis software SIMM. Changes on muscles lengths were then used to compute sensory synergies. The experimental results indicate that the environmental inputs were translated into the two dimensional signals and used to move the upper limb to the desired position immediately after the lateral disturbance. Participants who showed high skill in posture control were found to be likely to have a strong correlation between sensory and muscle signaling as well as high coordination between the utilized sensory synergies. These results suggest the importance of integrating environmental inputs into suitable low-dimensional signals before providing them to the CNS. This mechanism should be essential when designing the prosthesis' sensory system to make the controller simpler. PMID:25628523

  11. Results of time-resolved radiation exposure measurements made during U.S. shuttle missions with a tissue equivalent proportional counter

    NASA Astrophysics Data System (ADS)

    Golightly, M. J.; Hardy, A. C.; Hardy, K.

    1994-10-01

    Time resolved exposure measurements inside the crew compartment have been made during recent shuttle missions with the USAF Radiation Monitoring Equipment-III (RME-III), a portable four-channel tissue equivalent proportional counter. Results from the first six missions are presented and discussed. The missions had orbital inclinations ranging from 28 degrees to 57 degrees, and altitudes from 200-600km. Dose equivalent rates ranged from 40-5300 micro Sv/dy. The RME-III measurements are in good agreement with other dosimetry measurements made aboard the vehicle. Measurements indicate that medium- and high- Linear Energy Transfer (LET) particles contribute less than 2% of the particle fluence for all missions, but up to 50% of the dose equivalent, depending on the spacecraft's altitude and orbital inclination. Isa-dose rate contours have been developed from measurements made during the ST-28 mission. The drift rate of the South Atlantic Anomaly (SAA) is estimated to be 0.49 degrees W/yr and 0.12 degrees N/yr. The calculated trapped proton and Galactic Cosmic Radiation (GCR) dose for the STS-28 mission were significantly lower than the measured values.

  12. Results of time-resolved radiation exposure measurements made during U.S. shuttle missions with a tissue equivalent proportional counter

    NASA Technical Reports Server (NTRS)

    Golightly, M. J.; Hardy, A. C.; Hardy, K.

    1994-01-01

    Time resolved exposure measurements inside the crew compartment have been made during recent shuttle missions with the USAF Radiation Monitoring Equipment-III (RME-III), a portable four-channel tissue equivalent proportional counter. Results from the first six missions are presented and discussed. The missions had orbital inclinations ranging from 28 degrees to 57 degrees, and altitudes from 200-600km. Dose equivalent rates ranged from 40-5300 micro Sv/dy. The RME-III measurements are in good agreement with other dosimetry measurements made aboard the vehicle. Measurements indicate that medium- and high- Linear Energy Transfer (LET) particles contribute less than 2% of the particle fluence for all missions, but up to 50% of the dose equivalent, depending on the spacecraft's altitude and orbital inclination. Isa-dose rate contours have been developed from measurements made during the ST-28 mission. The drift rate of the South Atlantic Anomaly (SAA) is estimated to be 0.49 degrees W/yr and 0.12 degrees N/yr. The calculated trapped proton and Galactic Cosmic Radiation (GCR) dose for the STS-28 mission were significantly lower than the measured values.

  13. Results of time-resolved radiation exposure measurements made during U.S. Shuttle missions with a tissue equivalent proportional counter.

    PubMed

    Golightly, M J; Hardy, A C; Hardy, K

    1994-10-01

    Time-resolved radiation exposure measurements inside the crew compartment have been made during recent Shuttle missions with the USAF Radiation Monitoring Equipment-III (RME-III), a portable four-channel tissue equivalent proportional counter. Results from the first six missions are presented and discussed. The missions had orbital inclinations ranging from 28.5 degrees to 57 degrees, and altitudes from 200-600 km. Dose equivalent rates ranged from 40-5300 micro Sv/dy. The RME-III measurements are in good agreement with other dosimetry measurements made aboard the vehicle. Measurements indicate that medium- and high-LET particles contribute less than 2% of the particle fluence for all missions, but up to 50% of the dose equivalent, depending on the spacecraft's altitude and orbital inclination. Iso-dose rate contours have been developed from measurements made during the STS-28 mission. The drift rate of the South Atlantic Anomaly (SAA) is estimated to be 0.49 degrees W/yr and 0.12 degrees N/yr. The calculated trapped proton and Galactic Cosmic Radiation (GCR) dose for the STS-28 mission were significantly lower than the measured values.

  14. Examining the Synergy of Practice

    PubMed Central

    2014-01-01

    Public health nurses in Ireland are charged with conducting a home visit to every postnatal mother within 48 hours of hospital discharge. This represents the beginning of a long-term relationship, not only with the mother and newborn child but also with the family. This article fundamentally demonstrates the essential work of the public health nurse in promoting the health of the baby within a family. In this article, the expertise the public health nurse uses in the first visit is examined in the context of 3 competencies: communication, partnerships with the family, and partnerships with individual family members. This expertise provides the foundation for a long-term therapeutic relationship with the family to the essential benefit of the baby’s early childhood growth and developmental milestones. Consequently, the first postnatal visit by public health nursing in Ireland represents a synergy of practice, which provides the foundation for enduring family relationships focused on potentializing both individual family members’ health and the family as a dynamic unit. PMID:27335911

  15. Taking the Measure of the Universe: Cosmology from the WMAP Mission

    NASA Technical Reports Server (NTRS)

    Hinshaw, Gary F.

    2006-01-01

    The data from the first three years of operation of the Wilkinson Microwave Anisotropy Probe (WMAP) satellite provide detailed full-sky maps of the cosmic microwave background temperature anisotropy and new full-sky maps of the polarization. Together, the data provide a wealth of cosmological information, including the age of the universe, the epoch when the first stars formed, and the overall composition of baryonic matter, dark matter, and dark energy. The results also provide constraints on the period of inflationary expansion in the very first moments of time. These and other aspects of the mission will be discussed. WMAP, part of NASA's Explorers program, was launched on June 30,2001. The WMAP satellite was produced in a partnership between the Goddard Space Flight Center and Princeton University. The WMAP team also includes researchers at the Johns Hopkins University; the Canadian Institute of Theoretical Astrophysics; University of Texas; Cornel1 University; University of Chicago; Brown University; University of British Columbia; University of Pennsylvania; and University of California, Los Angeles

  16. Leveraging Improvements in Precipitation Measuring from GPM Mission to Achieve Prediction Improvements in Climate, Weather and Hydrometeorology

    NASA Technical Reports Server (NTRS)

    Smith, Eric A.

    2002-01-01

    The main scientific goal of the GPM mission, currently planned for start in the 2007 time frame, is to investigate important scientific problems arising within the context of global and regional water cycles. These problems cut across a hierarchy of scales and include climate-water cycle interactions, techniques for improving weather and climate predictions, and better methods for combining observed precipitation with hydrometeorological prediction models for applications to hazardous flood-producing storms, seasonal flood/draught conditions, and fresh water resource assessments. The GPM mission will expand the scope of precipitation measurement through the use of a constellation of some 9 satellites, one of which will be an advanced TRMM-like "core" satellite carrying a dual-frequency Ku-Ka band precipitation radar and an advanced, multifrequency passive microwave radiometer with vertical-horizontal polarization discrimination. The other constellation members will include new dedicated satellites and co-existing Operational/research satellites carrying similar (but not identical) passive microwave radiometers. The goal of the constellation is to achieve approximately 3-hour sampling at any spot on the globe. The constellation's orbit architecture will consist of a mix of sun-synchronous and non-sun-synchronous satellites with the core satellite providing measurements of cloud-precipitation microphysical processes plus calibration-quality rainrate retrievals to be used with the other retrieval information to ensure bias-free constellation coverage. GPM is organized internationally, currently involving a partnership between NASA in the US and the National Space Development Agency in Japan. Additionally, the program is actively pursuing agreements with other international partners and domestic scientific agencies and institutions, as well as participation by individual scientists from academia, government, and the private sector to fulfill mission goals and to pave

  17. Measurements at Los Alamos National Laboratory Plutonium Facility in Support of Global Security Mission Space

    SciTech Connect

    Stange, Sy; Mayo, Douglas R.; Herrera, Gary D.; McLaughlin, Anastasia D.; Montoya, Charles M.; Quihuis, Becky A.; Trujillo, Julio B.; Van Pelt, Craig E.; Wenz, Tracy R.

    2012-07-13

    The Los Alamos National Laboratory Plutonium Facility at Technical Area (TA) 55 is one of a few nuclear facilities in the United States where Research & Development measurements can be performed on Safeguards Category-I (CAT-I) quantities of nuclear material. This capability allows us to incorporate measurements of CAT-IV through CAT-I materials as a component of detector characterization campaigns and training courses conducted at Los Alamos. A wider range of measurements can be supported. We will present an overview of recent measurements conducted in support of nuclear emergency response, nuclear counterterrorism, and international and domestic safeguards. This work was supported by the NNSA Office of Counterterrorism.

  18. In Vivo Measurements in Mice in the Bion-M 1 Mission

    NASA Astrophysics Data System (ADS)

    Andreev-Andrievskiy, Alexander; Custaud, Marc-Antoine; Popova, Anfisa; Borovik, Anatoliy; Dolgov, Oleg; Anokhin, Konstantin; Tsvirkun, Daria; Vinogradova, Olga

    The main aim of BION-M 1 mission was to reveal morphological, biochemical and molecular mechanisms of adaptation to prolonged exposure in microgravity. Besides that functional state and behavior were assessed in vivo using test battery, home cage observations and implantable telemetry in space-flown mice (SF), control mice from the ground replica of the flight experiment (GC) and in mice kept in vivarium (SFV and GCV). Blood pressure and heart rate were monitored continuously in a subgroup of mice using implantable telemetry throughout the flight as well as before and after it. After 30-days flight aboard BION-M 1 biosatellite SF mice have gained more weight than GC, SFV or GCV mice (11%). SF mice displayed pronounced motor impairment upon examination shortly after landing. 1 day after the flight mice were less active and more anxious in the open-field test, less coordinated in the Rotarod and aerial drop test and had less grip force compared to both control and pre-flight values. Exercise performance was greatly reduced after 30-days flight and recovered by day 7 post-flight. Before the flight mice were trained to perform a simple task using positively reinforced free operant conditioning approach. After the flight performance in the same task was preserved, however learning ability was impaired. Mice displayed drastic reduction of heart rate during launch and reentry acceleration periods. Heart rate (by 8-10%) and, to a lesser extent blood pressure (by 5%) were elevated during the 30-days flight. After return heart rate in SF mice remained elevated throughout the 7-days observation period with no apparent recovery. In summary, mice display pronounced disadaptation to 1g after 30-days exposure in microgravity with different physiological systems having different recovery dynamics. Of particular interest, hemodynamic reactions in mice closely resemble reactions in larger organisms, implying that factors that govern the cardiovascular system adaptation to

  19. Interpersonal synergies: static prehension tasks performed by two actors.

    PubMed

    Solnik, Stanislaw; Reschechtko, Sasha; Wu, Yen-Hsun; Zatsiorsky, Vladimir M; Latash, Mark L

    2016-08-01

    We investigated multidigit synergies stabilizing components of the resultant force vector during joint performance of a static prehension task by two persons as compared to similar tasks performed by a single person using both hands. Subjects transferred the instrumented handle from the right hand to the left hand (one-person condition) or passed that handle to another person (two-person condition) while keeping the handle's position and orientation stationary. Only three digits were involved per hand, the thumb, the index finger, and the middle finger; the forces and moments produced by the digits were measured by six-component sensors. We estimated the performance-stabilizing synergies within the uncontrolled manifold framework by quantifying the intertrial variance structure of digit forces and moments. The analysis was performed at three levels: between hands, between virtual finger and virtual thumb (imagined digits producing the same mechanical variables as the corresponding actual digits combined) produced by the two hands (in both interpersonal and intrapersonal conditions), and between the thumb and virtual finger for one hand only. Additionally, we performed correlation and phase synchronization analyses of resultant tangential forces and internal normal forces. Overall, the one-person conditions were characterized by higher amount of intertrial variance that did not affect resultant normal force components, higher internal components of normal forces, and stronger synchronization of the normal forces generated by the hands. Our observations suggest that in two-person tasks, when participants try to achieve a common mechanical outcome, the performance-stabilizing synergies depend on non-visual information exchange, possibly via the haptic and proprioceptive systems. Therefore, synergies quantified in tasks using visual feedback only may not be generalizable to more natural tasks.

  20. Airborne lidar measurements of ozone and aerosols during the pacific exploratory mission-tropics A

    NASA Technical Reports Server (NTRS)

    Fenn, Marta A.; Browell, Edward V.; Grant, William B.; Butler, Carolyn F.; Kooi, Susan A.; Clayton, Marian B.; Brackett, Vincent G.; Gregory, Gerald L.

    1998-01-01

    Airborne lidar measurements of aerosol and ozone distributions from the surface to above the tropopause over the South Pacific Ocean are presented. The measurements illustrate large-scale features of the region, and are used to quantify the relative contributions of different ozone sources to the tropospheric ozone budget in this remote region.

  1. Geoscience Laser Altimeter System (GLAS) on the ICESat Mission: Science Measurement Performance since Launch

    NASA Astrophysics Data System (ADS)

    Sun, X.; Abshire, J. B.; Riris, H.; McGarry, J.; Sirota, M.

    2004-12-01

    The Geoscience Laser Altimeter System is a space lidar and the primary instrument on NASA's ICESat mision. Since launch in January 2003 GLAS has produced about 544 million measurements of the Earth's surface and atmosphere. It has made global measurements of the Earth's icesheets, land topography and atmosphere with unprecedented vertical resolution and accuracy. GLAS was first activated for science measurements in February 2003. Since then its operation and performance has confirmed many pre-launch expectations and exceed a few of the most optimistic expectations in vertical resolution and sensitivity. However GLAS also suffered an unexpected failure with its first laser, and the GLAS measurements have yielded some surprises in other areas. This talk will give a post-launch assessment of the science measurement performance of the GLAS instrument, and compare the measurement environment and its science measurements to pre-launch expectations. It also will address some of what has been learned from the GLAS design, operations and measurements which may benefit future space lidar.

  2. Star Formation Studies with SOFIA and its Synergy with TMT

    NASA Astrophysics Data System (ADS)

    De Buizer, James

    2014-07-01

    The Stratospheric Observatory For Infrared Astronomy (SOFIA) is a modified Boeing 747 aircraft equipped with a 2.5m telescope that performs observations at high altitude from the optical to the sub-mm. The observatory just reached full operational capability in April of this year. Given that it is slated for a 20-year mission lifetime, SOFIA will overlap TMT by more than a decade. I will discuss the contrasting and complementary features of SOFIA and TMT in the context of star formation, discuss some of the early results from SOFIA in this field, and finish with a discussion of how TMT data can enhance and extended our understanding of star formation processes.[This talk could also be generalized to discuss more about synergies between SOFIA and TMT in a broader context (not just star formation), should the organizers prefer that.

  3. Air fluorescence efficiency measurements for AIRWATCH based mission: Experimental set-up

    SciTech Connect

    Biondo, B.; Catalano, O.; Celi, F.; Fazio, G.; Giarrusso, S.; La Rosa, G.; Mangano, A.; Bonanno, G.; Cosentino, R.; Di Benedetto, R.; Scuderi, S.; Richiusa, G.; Gregorio, A.

    1998-06-15

    In the framework of the AIRWATCH project we present an experimental set-up to measure the efficiency of the UV fluorescence production of the air using hard X-ray stimulus. The measures will be carried out at different pressure and temperature to emulate the same condition of the upper layers of the atmosphere where X-ray and gamma ray photons of Gamma Ray Bursts are absorbed.

  4. Geoscience Laser Altimeter System (GLAS) on the ICESat Mission: Initial Science Measurement Performance

    NASA Astrophysics Data System (ADS)

    Abshire, J. B.; Sun, X.; Riris, H.; Sirota, M.; McGarry, J.; Palm, S.

    2003-12-01

    The Geoscience Laser Altimeter System is the space lidar on the NASA ICESat mision. Its design combines an altimeter with 5 cm precision with a laser pointing angle determination system and a dual wavelength cloud and aerosol lidar. GLAS measures the range to the Earth's surface with 1064 nm laser pulses. Each laser pulse produces a precision pointing measurement from the stellar reference system (SRS) and an echo pulse waveform, which permits range determination and waveform spreading analysis. The single shot ranging accuracy is < 10 cm for ice surfaces with slopes < 2 degrees. GLAS also measures atmospheric backscatter profiles at both 1064 and 532 nm. The 1064 nm measurements use an analog Si APD detector and measure the height and profile the backscatter signal from thicker clouds. The measurements at 532 nm use photon counting detectors, and will measure the vertical height distributions of optically thin clouds and aerosol layers Before launch, the measurement performance of GLAS was evaluated using a lidar test instrument called the Bench Check Equipment (BCE). The BCE was developed in parallel with GLAS and served as an inverse altimeter, inverse lidar and a stellar source simulator. It was used to simulate the range of expected optical inputs to the GLAS receiver by illuminating its telescope with simulated background light as well as laser echoes with known powers, energy levels, widths and delay times. The BCE also allowed monitoring of the transmitted laser energy, the angle measurements of the SRS, the co-alignment of the transmitted laser beam to the receiver line of sight, and performance of the flight science algorithms. Performance was evaluated during the GLAS development, before and after environmental tests, and after delivery to the spacecraft. The ICESat observatory was launched into a 94 degree inclination, 590 km altitude circular polar orbit on January 12, 2003. Beginning in early February, GLAS was powered on tested in stages. Its 1064 nm

  5. Synergy and Anti-Synergy between Palladium and Gold in Nanoparticles Dispersed on a Reducible Support

    PubMed Central

    2016-01-01

    Highly active and stable bimetallic Au–Pd catalysts have been extensively studied for several liquid-phase oxidation reactions in recent years, but there are far fewer reports on the use of these catalysts for low-temperature gas-phase reactions. Here we initially established the presence of a synergistic effect in a range of bimetallic Au–Pd/CeZrO4 catalysts, by measuring their activity for selective oxidation of benzyl alcohol. The catalysts were then evaluated for low-temperature WGS, CO oxidation, and formic acid decomposition, all of which are believed to be mechanistically related. A strong anti-synergy between Au and Pd was observed for these reactions, whereby the introduction of Pd to a monometallic Au catalyst resulted in a significant decrease in catalytic activity. Furthermore, monometallic Pd was more active than Pd-rich bimetallic catalysts. The nature of the anti-synergy was probed by several ex situ techniques, which all indicated a growth in metal nanoparticle size with Pd addition. However, the most definitive information was provided by in situ CO-DRIFTS, in which CO adsorption associated with interfacial sites was found to vary with the molar ratio of the metals and could be correlated with the catalytic activity of each reaction. As a similar correlation was observed between activity and the presence of Au0* (as detected by XPS), it is proposed that peripheral Au0* species form part of the active centers in the most active catalysts for the three gas-phase reactions. In contrast, the active sites for the selective oxidation of benzyl alcohol are generally thought to be electronically modified gold atoms at the surface of the nanoparticles. PMID:27990317

  6. Applications Spacelab missions

    NASA Technical Reports Server (NTRS)

    Pellerin, C. J., Jr.

    1979-01-01

    The paper presents the plans of the Office of Space and Terrestrial Applications for the Shuttle/Spacelab missions. It is reported that the current program contains dedicated low-gravity mission (Spacelab 3 mission) and several minor missions planned for flight during 1980-1982. It is noted that these missions have either Materials Processing or Earth viewing emphasis. Finally, several representative experiments are used to illustrate the Applications Spacelab Program, such as the Materials Experiment Assembly (MEA), and the Atmospheric Trace Molecule Measured by Spectroscopy (ATMOS) experiment.

  7. Modelling natural and artificial hands with synergies

    PubMed Central

    Bicchi, Antonio; Gabiccini, Marco; Santello, Marco

    2011-01-01

    We report on recent work in modelling the process of grasping and active touch by natural and artificial hands. Starting from observations made in human hands about the correlation of degrees of freedom in patterns of more frequent use (postural synergies), we consider the implications of a geometrical model accounting for such data, which is applicable to the pre-grasping phase occurring when shaping the hand before actual contact with the grasped object. To extend applicability of the synergy model to study force distribution in the actual grasp, we introduce a modified model including the mechanical compliance of the hand's musculotendinous system. Numerical results obtained by this model indicate that the same principal synergies observed from pre-grasp postural data are also fundamental in achieving proper grasp force distribution. To illustrate the concept of synergies in the dual domain of haptic sensing, we provide a review of models of how the complexity and heterogeneity of sensory information from touch can be harnessed in simplified, tractable abstractions. These abstractions are amenable to fast processing to enable quick reflexes as well as elaboration of high-level percepts. Applications of the synergy model to the design and control of artificial hands and tactile sensors are illustrated. PMID:21969697

  8. Modelling natural and artificial hands with synergies.

    PubMed

    Bicchi, Antonio; Gabiccini, Marco; Santello, Marco

    2011-11-12

    We report on recent work in modelling the process of grasping and active touch by natural and artificial hands. Starting from observations made in human hands about the correlation of degrees of freedom in patterns of more frequent use (postural synergies), we consider the implications of a geometrical model accounting for such data, which is applicable to the pre-grasping phase occurring when shaping the hand before actual contact with the grasped object. To extend applicability of the synergy model to study force distribution in the actual grasp, we introduce a modified model including the mechanical compliance of the hand's musculotendinous system. Numerical results obtained by this model indicate that the same principal synergies observed from pre-grasp postural data are also fundamental in achieving proper grasp force distribution. To illustrate the concept of synergies in the dual domain of haptic sensing, we provide a review of models of how the complexity and heterogeneity of sensory information from touch can be harnessed in simplified, tractable abstractions. These abstractions are amenable to fast processing to enable quick reflexes as well as elaboration of high-level percepts. Applications of the synergy model to the design and control of artificial hands and tactile sensors are illustrated.

  9. Exploration Analysis of Carbon Dioxide Levels and Ultrasound Measures of the Eye During ISS Missions

    NASA Technical Reports Server (NTRS)

    Young, M.; Mason, S.; Schaefer, C.; Wear, M. L.; Sargsyan, A.; Garcia, K.; Coble, C.; Gruschkus, S.; Law, J.; Alexander, D.; Meyers, V.; Van Baalen, M.

    2016-01-01

    Enhanced screening for the Visual Impairment/Intracranial Pressure (VIIP) Syndrome, including in-flight ultrasound, was implemented in 2010 to better characterize the changes in vision observed in some long-duration crewmembers. Suggested possible risk factors for VIIP include cardiovascular changes, diet, anatomical and genetic factors, and environmental conditions. As a potent vasodilator, carbon dioxide (CO (sub 2)), which is chronically elevated on the International Space Station (ISS) relative to typical indoor and outdoor ambient levels on Earth, seems a plausible contributor to VIIP. In an effort to understand the possible associations between CO (sub 2) and VIIP, this study analyzes the relationship between ambient CO (sub 2) levels on ISS and ultrasound measures of the eye obtained from ISS fliers. CO (sub 2) measurements will be pulled directly from Operational Data Reduction Complex for the Lab and Node 3 major constituent analyzers (MCAs) on ISS or from sensors located in the European Columbus module, as available. CO (sub 2) measures between ultrasound sessions will be summarized using standard time series class metrics in MATLAB including time-weighted means and variances. Cumulative CO (sub 2) exposure metrics will also be developed. Regression analyses will be used to quantify the relationships between the CO (sub 2) metrics and specific ultrasound measures. Generalized estimating equations will adjust for the repeated measures within individuals. Multiple imputation techniques will be used to adjust for any possible biases in missing data for either CO (sub 2) or ultrasound measures. These analyses will elucidate the possible relationship between CO (sub 2) and changes in vision and also inform future analysis of inflight VIIP data.

  10. Global Lightning Climatology from the Tropical Rainfall Measuring Mission (TRMM), Lightning Imaging Sensor (LIS) and the Optical Transient Detector (OTD)

    NASA Technical Reports Server (NTRS)

    Cecil, Daniel J.; Buechler, Dennis E.; Blakeslee, Richard J.

    2015-01-01

    The Tropical Rainfall Measuring Mission (TRMM) Lightning Imaging Sensor (LIS) has been collecting observations of total lightning in the global tropics and subtropics (roughly 38 deg S - 38 deg N) since December 1997. A similar instrument, the Optical Transient Detector, operated from 1995-2000 on another low earth orbit satellite that also saw high latitudes. Lightning data from these instruments have been used to create gridded climatologies and time series of lightning flash rate. These include a 0.5 deg resolution global annual climatology, and lower resolution products describing the annual cycle and the diurnal cycle. These products are updated annually. Results from the update through 2013 will be shown at the conference. The gridded products are publicly available for download. Descriptions of how each product can be used will be discussed, including strengths, weaknesses, and caveats about the smoothing and sampling used in various products.

  11. Preliminary Results of a New Type of Surface Property Measurement Ideal for a Future Mars Rover Mission

    NASA Technical Reports Server (NTRS)

    Buhler, C. R.; Calle, C. I.; Mantovani, J. G.; Buehler, M. G.; Nowicki, A. W.; Ritz, M.

    2004-01-01

    The success of the recent rover missions to Mars has stressed the importance of acquiring the maximum amount of geological information with the least amount of data possible. We have designed, tested and implemented special sensors mounted on a rover s wheel capable of detecting minute changes in surface topology thus eliminating the need for specially- made science platforms. These sensors, based on the previously designed, flight qualified Mars Environmental Compatibility Assessment (MECA) Electrometer, measure the static electricity (triboelectricity) generated between polymer materials and the Martian regolith during rover transverses. The sensors are capable of detecting physical changes in the soil that may not be detectable by other means, such as texture, size and moisture content. Although triboelectricity is a surface phenomenon, the weight of a rover will undoubtedly protrude the sensors below the dust covered layers, exposing underlying regolith whose properties may not be detectable through other means.

  12. A Japanese New Altimetry Mission, COMPIRA - Towards High Temporal and Spatial Sampling of Sea Surface Height Measurement

    NASA Astrophysics Data System (ADS)

    Ito, N.; Uematsu, A.; Yajima, Y.; Isoguchi, O.

    2014-12-01

    Japan Aerospace Exploration Agency (JAXA) is working on a conceptual study of altimeter mission named Coastal and Ocean measurement Mission with Precise and Innovative Radar Altimeter (COMPIRA), which will carry a wide-swath altimeter named Synthetic aperture radar (SAR) Height Imaging Oceanic Sensor with Advanced Interferometry (SHIOSAI). Capturing meso/submeso-scale phenomena is one of important objectives of the COMPIRA mission, as well as operational oceanography and fishery. For operational oceanography including coastal forecast, swath of SHIOSAI is selected to be 80 km in left and right sides to maximize temporal and spatial sampling of the sea surface height. Orbit specifications are also designed to be better sampling especially for mid-latitude region. That is, a spatial grid sampling is 5 km and an observation times per revisit period (about 10 days) is 2 to 3 times. In order to meet both sampling frequency and spatial coverage requirements as much as possible, orbit inclination was set relatively low, 51 degrees. Although this sampling frequency is, of course, not enough high to capture time evolution of coastal phenomena, an assimilation process would compensate its time evolution if 2D SSH fields was observed at least once within decal time scale of phenomena. JAXA has launched a framework called "Coastal forecast core team" to aim at developing coastal forecast system through pre-launch activities toward COMPIRA. Assimilation segment as well as satellite and in situ data provision will play an important role on these activities. As a first step, we evaluated effects of ocean current forecast improvement with COMPIRA-simulated wide-swath and high sampling sea surface heights (SSH) data. Simulated SSH data are generated from regional ocean numerical models and the COMPIRA orbit and error specifications. Then, identical twin experiments are conducted to investigate the effect of wide-swath SSH measurements on coastal forecast in the Tohoku Pacific coast

  13. The Asteroid Impact Mission (AIM): Studying the geophysics of small binaries, measuring asteroid deflection and studying impact physics

    NASA Astrophysics Data System (ADS)

    Kueppers, Michael; Michel, Patrick; AIM Team

    2016-10-01

    Binary asteroids and their formation mechanisms are of particular interest for understanding the evolution of the small bodies in the solar system. Also, hazards to Earth from impact of near-Earth asteroids and their mitigation have drawn considerable interest over the last decades.Those subjects are both addressed by ESA's Asteroid Impact mission, which is part of the Asteroid Impact & Deflection Assessment (AIDA) currently under study in collaboration between NASA and ESA. NASA's DART mission will impact a projectile into the minor component of the binary near-Earth asteroid (65803) Didymos in 2022. The basic idea is to demonstrate the effect of the impact on the orbital period of the secondary around the primary. ESA's AIM will monitor the Didymos system for several months around the DART impact time.AIM will be launched in aurumn 2020. It is foreseen to arrive at Didymos in April 2022. The mission takes advantage of a close approach of Didymos to Earth. The next opportunity would arise in 2040 only.AIM will stay near Didymos for approximately 6 months. Most of the time it will be placed on the illuminated side of the system, at distances of approximately 35 km and 10 km. AIM is expected to move away from Didymos for some time around the DART impact.The reference payload for AIM includes two visual imagers, a hyperspectral camera, a lidar, a thermal infrared imager, a monostatic high frequency radar, and a bistatic low frequency radar. In addition, AIM will deploy a small lander on the secondary asteroid, and two cubesats that will be used for additional, more risky investigations close to or on the surface of the asteroid.Major contributions from AIM are expected in the study of the geophysics of small asteroids (including for the first time, radar measurements of an interior structure), the formation of binary asteroids, the momentum enhancement factor from the DART impact (through measuring the mass and the change of orbit of the seondary), and impact physics

  14. Evaluating Aircrew and Maintainer Warfighter Performance in Aeronautical Systems using Mission-Oriented Measures of Effectiveness

    DTIC Science & Technology

    2001-02-01

    ECM Electronic Countermeasures EEG Electroencephalograph EKG Electrocardiogram EPA Extended Planning Annex EPF Equipment Performance Factor...related physiological measures Changes in the brain/neural system caused by workload. Rehmann, 1995, p. 12 M 8.2.16 Electroencephalograph ( EEG ...architecture TMD Operational Objectives: Destroy Theater Missiles ( TM ) and their infrastructure as far forward as possible (Attack Operations

  15. Solar X-ray Emission Measured by the Vernov Mission During September - October of 2014

    NASA Astrophysics Data System (ADS)

    Myagkova, I. N.; Bogomolov, A. V.; Kashapova, L. K.; Bogomolov, V. V.; Svertilov, S. I.; Panasyuk, M. I.; Kuznetsova, E. A.; Rozhkov, G. V.

    2016-11-01

    Solar hard X-ray and γ-ray emissions were measured by the Detector of the Roentgen and Gamma-ray Emissions (DRGE) instrument, which is part of the RELEC set of instruments operated onboard the Russian satellite Vernov, from July 8, 2014 until December 10, 2014 (on a solar-synchronous orbit with an apogee of 830 km, perigee of 640 km, and an inclination of 98.4°). RELEC measurements of 18 flares with X-ray energy {>} 30 keV, taken in September - October 2014, were connected with the same active region with the number AR 12172 during the first rotation and AR 12192 during the next one. These measurements were compared to the data obtained with RHESSI, Konus-Wind, Fermi Observatory, Radio Solar Telescope Net (RSTN), and the Nobeyama Radioheliograph (NoRH) operating at the same time. Quasi-periodicities with similar periods of 7±2 s were found in about one third of all flares measured by RELEC ( Vernov) from September 24 until October 30, 2014.

  16. Adapting an existing visualization application for browser-based deployment: A case study from the Tropical Rainfall Measuring Mission

    NASA Astrophysics Data System (ADS)

    Kelley, Owen A.

    2013-02-01

    THOR, the Tool for High-resolution Observation Review, is a data viewer for the Tropical Rainfall Measuring Mission (TRMM) and the upcoming Global Precipitation Measurement (GPM) mission. THOR began as a desktop application, but now it can be accessed with a web browser, making THOR one of the first online tools for visualizing TRMM satellite data (http://pps.gsfc.nasa.gov/thor). In this effort, the reuse of the existing visualization code was maximized and the complexity of new code was minimized by avoiding unnecessary functionality, frameworks, or libraries. The simplicity of this approach makes it potentially attractive to researchers wishing to adapt their visualization applications for online deployment. To enable THOR to run within a web browser, three new pieces of code are written. First, the graphical user interface (GUI) of the desktop application is translated into HTML, JavaScript, and CSS. Second, a simple communication mechanism is developed over HTTP. Third, a virtual GUI is created on the server that interfaces with the image-generating routines of the existing desktop application so that these routines do not need to be modified for online use. While the basic functionality of THOR is now available online, prototyping is ongoing for enhanced 3D imaging and other aspects of both THOR Desktop and THOR Online. Because TRMM data products are complex and periodically reprocessed with improved algorithms, having a tool such as THOR is important to analysts at the Precipitation Processing System where the algorithms are tested and the products generated, stored, and distributed. Researchers also have found THOR useful for taking a first look at individual files before writing their own software to perform specialized calculations and analyses.

  17. Ground Calibrations of the Clouds and the Earth's Radiant Energy System (CERES) Tropical Rainfall Measuring Mission Spacecraft Thermistor Bolometers

    NASA Technical Reports Server (NTRS)

    Lee, Robert B., III; Smith, G. Lou; Barkstrom, Bruce R.; Priestley, Kory J.; Thomas, Susan; Paden, Jack; Pandey, Direndra K.; Thornhill, K. Lee; Bolden, William C.; Wilson, Robert S.

    1997-01-01

    The Clouds and the Earth's Radiant Energy System (CERES) spacecraft scanning thermistor bolometers will measure earth-reflected solar and earth-emmitted,longwave radiances, at the top-of-the-atmosphere. The measurements are performed in the broadband shortwave (0.3-5.0 micron) and longwave (5.0 - >100 micron) spectral regions as well as in the 8 -12 micron water vapor window over geographical footprints as small as 10 kilometers at the nadir. The CERES measurements are designed to improve our knowledge of the earth's natural climate processes, in particular those related to clouds, and man's impact upon climate as indicated by atmospheric temperature. November 1997, the first set of CERES bolometers is scheduled for launch on the Tropical Rainfall Measuring Mission (TRMM) Spacecraft. The CERES bolometers were calibrated radiometrically in a vacuum ground facility using absolute reference sources, tied to the International Temperature Scale of 1990. Accurate bolometer calibrations are dependent upon the derivations of the radiances from the spectral properties [reflectance, transmittance, emittance, etc.] of both the sources and bolometers. In this paper, the overall calibration approaches are discussed for the longwave and shortwave calibrations. The spectral responses for the TRMM bolometer units are presented and applied to the bolometer ground calibrations in order to determine pre-launch calibration gains.

  18. Mission engineering

    NASA Technical Reports Server (NTRS)

    Ondrus, Paul; Fatig, Michael

    1993-01-01

    Goddard Space Flight Center's projects are facing new challenges with respect to the cost effective development and operation of spaceflight missions. Challenges, such as cost limits, compression of schedules, rapidly changing technology, and increasing mission complexity are making the mission development process more dynamic. A concept of 'Mission Engineering' as a means of addressing these challenges is proposed. It is an end-to-end, multimission development methodology that seeks to integrate the development processes between the space, ground, science, and operations segments of a mission. It thereby promotes more mission-oriented system solutions, within and across missions.

  19. Water vapor and cloud water measurements over Darwin during the STEP 1987 tropical mission

    NASA Technical Reports Server (NTRS)

    Kelly, K. K.; Proffitt, M. H.; Chan, K. R.; Loewenstein, M.; Podolske, J. R.; Strahan, E.; Wilson, J. C.; Kley, D.

    1993-01-01

    Measurements of stratospheric and upper tropospheric cloud water plus water vapor (total water) and water vapor were made with two Lyman alpha hygrometers as part of the STEP tropical experiment. The in situ measurements were made in the Darwin, Australia, area in January and February of 1987 on an ER-2 aircraft. Average stratospheric water vapor at a potential temperature of 375 K (the average value of Theta at the tropopause) was 2.4 parts per million by volume (ppmv). This water mixing ratio is below the 3.0 to 4.0 ppmv necessary to be consistent with the observed upper stratospheric dryness. Saturation with respect to ice and the potential for dehydration was observed up to Theta = 402 K.

  20. Exploratory Analysis of Carbon Dioxide Levels and Ultrasound Measures of the Eye During ISS Missions

    NASA Technical Reports Server (NTRS)

    Schaefer, C.; Young, M.; Mason, S.; Coble, C.; Wear, M. L.; Sargsyan, A.; Garcia, K.; Law. J.; Alexander, D.; Ryder, V. Myers; Van Baalen, M.

    2016-01-01

    Carbon dioxide (CO2) levels on ISS have typically averaged 2.3 to 5.3mm Hg, with large fluctuations occurring over periods of hours and days. CO2 has effects on cerebral vascular tone, resulting in vasodilation and alteration of cerebral blood flow(CBF). Increased CBF leads to elevated intracranial pressure(ICP), which is a factor leading to visual disturbance, headaches, and other central nervous system symptoms. Ultrasound of the optic nerve provides a surrogate measurement of ICP. Inflight ultrasounds were implemented as an enhanced screening tool for the Visual Impairment/Intracranial Pressure (VIIP) Syndrome. This analysis examines the relationships between ambient CO2 levels on ISS and ultrasound measures of the eye in an effort to understand how CO2 may be associated with VIIP and to inform future analysis of inflight VIIP data. Results as shown in Figure2, there was a large timeframe where CO2 readings were removed due to sensor fault errors(see Limitations), from June 2011 to January 2012. After extensive cleaning of the CO2 data, metrics for all of the data were calculated (Table2). Preliminary analyses showed possible associations between variability measures of CO2 and AP diameter (Figure3),and average CO2 exposure and ONSD(Figure4). Adjustments for multiple comparisons were not made due to the exploratory nature of the analysis.

  1. SOLAR/SOLSPEC mission on ISS: In-flight performance for SSI measurements in the UV

    NASA Astrophysics Data System (ADS)

    Bolsée, D.; Pereira, N.; Gillotay, D.; Pandey, P.; Cessateur, G.; Foujols, T.; Bekki, S.; Hauchecorne, A.; Meftah, M.; Damé, L.; Hersé, M.; Michel, A.; Jacobs, C.; Sela, A.

    2017-03-01

    Context. The SOLar SPECtrum (SOLSPEC) experiment is part of the Solar Monitoring Observatory (SOLAR) payload, and has been externally mounted on the Columbus module of the International Space Station (ISS) since 2008. SOLAR/SOLSPEC combines three absolutely calibrated double monochromators with concave gratings for measuring the solar spectral irradiance (SSI) from 166 nm to 3088 nm. This physical quantity is a key input for studies of climatology, planetary atmospheres, and solar physics. Aims: A general description of the instrument is given, including in-flight operations and performance of the ultraviolet (UV) channel from 175 nm to 340 nm. Methods: We developed a range of processing and correction methods, which are described in detail. For example, methods for correcting thermal behavior effects, instrument linearity, and especially the accuracy of the wavelength and absolute radiometric scales have been validated by modeling the standard uncertainties. Results: The deliverable is a quiet Sun UV reference solar spectrum as measured by SOLAR/SOLSPEC during the minimum of solar activity prior to cycle 24. Comparisons with other instruments measuring SSI are also presented. The quiet Sun UV spectrum (FITS file) is only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (http://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/600/A21

  2. Instrumentation for the Future Lunar Missions: Multicomponent Electromagnetic Measurements at Long Wavelengths

    NASA Astrophysics Data System (ADS)

    Kolmasova, Ivana; Santolik, Ondrej; Belyayev, Serhiy; Uhlir, Ludek; Skalsky, Alexander; Pronenko, Vira; Lan, Radek

    The LEMRA-L instrument (Long-wavelength Electro-Magnetic Radiation Analyzer) will be implemented on the LUNA-GLOB spacecraft. It will analyze the data of the three-axial flux gate (DC - 10Hz) and searchcoil (1Hz - 10kHz) magnetometers LEMI. It will measure intensity, polarization, and coherence properties of waves in plasmas of the solar wind, in the lunar wake and its boundaries, and study the magnetic anomalies. We will use new modern robust onboard analysis methods to estimate the wave coherence, sense of polarization, ellipticity, and wave-vector direction, and thus substantially compress the transmitted data volumes, while conserving the important scientific information. In the burst mode data set intended for studying nonlinear phenomena, we will conserve the continuous flux-gate magnetometer data and discrete snapshots of three axial waveform measurements. In the survey-mode data set, continuous flux-gate magnetometer data will be transmitted together with onboard analyzed and averaged spectral matrices from the higher-frequency wave measurements or with onboard calculated propagation and polarization parameters.

  3. Assesment of water elevation measurement quality from multi nadir altimetry missions over a 'small' river: the Garonne River case

    NASA Astrophysics Data System (ADS)

    Biancamaria, S.; Leleu, A. S.; Frappart, F.; Blumstein, D.; Marieu, V.; Sottolichio, A.; Valle-Levinson, A.

    2015-12-01

    For two decades, nadir altimetry mission measurements have been used to derive water elevation over rivers. It has been proven to be a powerful tool to estimate water elevation over big rivers (> 500 m), providing useful complementary data to in-situ gage networks. More recently, nadir altimetry data have been used successfully for some smaller rivers. It is therefore needed to assess potential errors from these measurements for these kind of river, using a well gaged basin.That's why we have investigated water elevations estimates from three altimetry missions (ENVISAT, Jason-2 and SARAL) over the Garonne River (South West of France). River width at studied river goes from 160 to 230 m.By comparison to nearby in-situ gages (IG), it has been shown that measurements from ENVISAT and Jason-2 virtual stations (VS) 100 km upstream of the estuary have errors between 20 to 70 cm for water anomaly, whereas most of the bias comes from river slope between IG and VS. 160 km upstream, the few usable ENVISAT VS have errors spanning from 80 to 160 cm. SARAL/AltiKa however, does not provide any water elevation information: there are rather no data in the record or measurements have huge bias with no correlation with water level variations. This is mainly due to high reliefs surrounding the river valley (up to 100 m difference between the valley and the top of the hills over few 10 km). SARAL/AlitKa, compared to previous instruments, has higher pulse bandwidth which results in a smaller range detection window of 30 m. It allows a higher vertical accuracy, but causes loss of data or to be 'locked' on the top of the hill even when it flies over the river valley, when there are important soil elevation variation over 'short' distance. This fact could also be observed for some Jason-2 and ENVISAT VS but to a much lower extent.Besides, water elevations time series has high frequencies due to local and upstream precipitation events. Therefore, it is more difficult to discriminate only

  4. Laboratory measurements of dielectric properties of compact and granular materials, in relation with Rosetta mission.

    NASA Astrophysics Data System (ADS)

    Brouet, Y.; Levasseur-Regourd, A. C.; Encrenaz, P.; Gheudin, M.; Ciarletti, V.; Gulkis, S.; Jambon, A.; Ruffié, G.; Prigent, C.

    2012-04-01

    The European Rosetta spacecraft (s/c), launched in 2004, will be the first s/c to orbit a comet and place a lander module on its surface. In 2014, the s/c will rendezvous with the comet 67P/Churyumov-Gerasimenko and place the lander on its surface thereby allowing in situ and remote sensing of the comet nucleus. Two radio experiments, one passive (MIRO [1]) and one active (CONSERT [2]), are aboard the Rosetta s/c. MIRO, composed of two radiometers, with center band frequencies at 190 GHz and at 563 GHz to determine the brightness temperatures of the target surfaces and sub-surfaces, has already observed asteroids (2867) Steins [3] and (21) Lutetia [4]. CONSERT will investigate the deep interior of the nucleus using 90 MHz radio-waves transmitted from the orbiter through the nucleus and returned to the orbiter from the lander. To support interpretations of MIRO and CONSERT observations, a program of dielectric properties measurements is under development on a large range of frequencies encompassing those of the above-mentioned experiments. Several instruments for dielectric constant determination are available at IMS laboratory (Bordeaux, France): impedance analyzer, coaxial sensor, resonant cavities (measuring respectively at 100 MHz, 0.5-6 GHz, 1.2-13.4 GHz). Millimeter benches are available at both IMS and LERMA laboratories (measuring respectively at 30-110 GHz and 70-230 GHz). Taking into account the possible presence of regolith layers on the surface of asteroids or nuclei and the very low density of cometary nuclei [5], the dependence of the dielectric constant on the structure and porosity of given granular materials needs also to be investigated (while the thermal and hygrometric conditions are carefully monitored). We have already reported measurements obtained on various meteorites, possibly representative of some asteroid surfaces [6, 7]. We will also report systematic measurements obtained on a large sample of pyroclastic deposits from Etna, providing

  5. Climate Change Mitigation and Adaptation in the Land Use Sector: From Complementarity to Synergy

    NASA Astrophysics Data System (ADS)

    Duguma, Lalisa A.; Minang, Peter A.; van Noordwijk, Meine

    2014-09-01

    Currently, mitigation and adaptation measures are handled separately, due to differences in priorities for the measures and segregated planning and implementation policies at international and national levels. There is a growing argument that synergistic approaches to adaptation and mitigation could bring substantial benefits at multiple scales in the land use sector. Nonetheless, efforts to implement synergies between adaptation and mitigation measures are rare due to the weak conceptual framing of the approach and constraining policy issues. In this paper, we explore the attributes of synergy and the necessary enabling conditions and discuss, as an example, experience with the Ngitili system in Tanzania that serves both adaptation and mitigation functions. An in-depth look into the current practices suggests that more emphasis is laid on complementarity—i.e., mitigation projects providing adaptation co-benefits and vice versa rather than on synergy. Unlike complementarity, synergy should emphasize functionally sustainable landscape systems in which adaptation and mitigation are optimized as part of multiple functions. We argue that the current practice of seeking co-benefits (complementarity) is a necessary but insufficient step toward addressing synergy. Moving forward from complementarity will require a paradigm shift from current compartmentalization between mitigation and adaptation to systems thinking at landscape scale. However, enabling policy, institutional, and investment conditions need to be developed at global, national, and local levels to achieve synergistic goals.

  6. Thermal property measurements on lunar material returned by Apollo 11 and 12 missions.

    NASA Technical Reports Server (NTRS)

    Horai, K.-I.; Simmons, G.

    1972-01-01

    Measurement of thermal diffusivity on Apollo 11 type A and type C samples in the temperature range between 150 and 440 K under atmospheric pressure. Thermal diffusivity of type C material is lower and less temperature-dependent than type A material. Both types of samples exhibit lower thermal diffusivities than nonporous terrestrial basalt. The rate of heat generation of Apollo 11 and 12 samples was calculated from the concentrations of radioactive elements: potassium, thorium, and uranium. Apollo 11 crystalline rocks show an average rate of heat generation which is not significantly different from terrestrial basalt. The Th/U ratio does not differ greatly from chondritic and terrestrial averages.

  7. Intercomparison of Remote and Flight Level Measured Aerosol Backscatter Coefficient During GLOBE 2 Pacific Survey Mission

    NASA Technical Reports Server (NTRS)

    Cutten, D. R.; Spinhime, J. D.; Menzies, R. T.; Bowdle, D. A.; Srivastava, V.; Pueschel, R. F.; Clarke, A. D.; Rothermel, J.

    1998-01-01

    Aerosol backscatter coefficient data are examined from two local flights undertaken during NASA's GLObal Backscatter Experiment (GLOBE) in May - June, 1990. During each of these two flights the aircraft traversed different altitudes within a region of the atmosphere defined by the same set of latitude and longitude coordinates. This provides an ideal opportunity to allow flight level measured or modeled aerosol backscafter to be compared with pulsed lidar aerosol backscafter data that were obtained at these same altitudes either earlier or later than the flight level measurements. Aerosol backscafter comparisons were made at 1.06-, 9.11- and 9.25-mm wavelengths, using data from three lidar systems and two aerosol optical counters. The best agreement between all sensor's was found in the altitude region below 7 km where backscafter values were moderately high at all three wavelengths. Above this altitude the pulsed lidar backscafter data at 1.06- and 9.25-mm wavelengths were higher than the flight level data obtained from the CW lidar or derived from the optical counters. Possible reasons are offered to explain this discrepancy. During the Japan local flight, microphysics analysis revealed: (1) evidence of a strong advected seasalt aerosol plume from the marine boundary layer, and (2) where backscatter was low, the large lidar sampling volume included many large particles which were of different chemical composition to the small particle category sampled by the particle counters.

  8. Extra dose due to extravehicular activity during the NASA4 mission measured by an on-board TLD system

    NASA Technical Reports Server (NTRS)

    Deme, S.; Apathy, I.; Hejja, I.; Lang, E.; Feher, I.

    1999-01-01

    A microprocessor-controlled on-board TLD system, 'Pille'96', was used during the NASA4 (1997) mission to monitor the cosmic radiation dose inside the Mir Space Station and to measure the extra dose to two astronauts in the course of their extravehicular activity (EVA). For the EVA dose measurements, CaSO4:Dy bulb dosemeters were located in specially designed pockets of the ORLAN spacesuits. During an EVA lasting 6 h, the dose ratio inside and outside Mir was measured. During the EVA, Mir crossed the South Atlantic Anomaly (SAA) three times. Taking into account the influence of these three crossings the mean EVA/internal dose rate ratio was 3.2. Internal dose mapping using CaSO4:Dy dosemeters gave mean dose rates ranging from 9.3 to 18.3 microGy h-1 at locations where the shielding effect was not the same. Evaluation results of the high temperature region of LiF dosemeters are given to estimate the mean LET.

  9. The Integrated Science Investigation of the Sun (ISIS): Energetic Particle Measurements for the Solar Probe Plus Mission

    NASA Technical Reports Server (NTRS)

    McComas, D. J.; Christian, E. R.; Wiedenbeck, M. E.; McNutt, R. L.; Cummings, A. C.; Desai, M. I.; Giacalone, J.; Hill, M. E.; Mewaldt, R. A.; Krimigis, SA. M.; Livi, S. A.; Mitchell, D. G.; Matthaeus, W. H.; Roelof, E. C.; Stone, E. C.; Schwardron, N. A.; vonRosenvinge, T. T.

    2011-01-01

    One of the major goals of NASA's Solar Probe Plus (SPP) mission is to determine the mechanisms that accelerate and transport high-energy particles from the solar atmosphere out into the heliosphere. Processes such as coronal mass ejections and solar flares, which peak roughly every 11 years around solar maximum, release huge quantities of energized matter, magnetic fields and electromagnetic radiation into space. The high-energy particles, known as solar energetic particles or SEPs, present a serious radiation threat to human explorers living and working outside low-Earth orbit and to technological assets such as communications and scientific satellites in space. This talk describes the Integrated Science Investigation of the Sun (ISIS) - Energetic Particle Instrument suite. ISIS measures key properties such as intensities, energy spectra, composition, and angular distributions of the low-energy suprathermal source populations, as well as the more hazardous, higher energy particles ejected from the Sun. By making the first-ever direct measurements of the near-Sun regions where the acceleration takes place, ISIS will provide the critical measurements that, when integrated with other SPP instruments and with solar and interplanetary observations, will lead to a revolutionary new understanding of the Sun and major drivers of solar system space weather.

  10. The ground truth analysis of rain gauge data for the TRMM project. [Tropical Rainfall Measuring Mission

    NASA Technical Reports Server (NTRS)

    Kowalewsky, Karen J.; Thiele, Otto

    1989-01-01

    As a part of the Tropical Rainfall Measuring Missioin (TRMM) ground truth program to determine the diurnal variability of the area wide rain rates, the rain rate PDFs, and their effect on the area integral algorithm, rain rate data have been collected from a network of gages located in the area near the Cape Canaveral and Kennedy Space Center, in the period beginning in September 1987. In the preliminary statistical analysis, based on the rain rates derived from the eleven gages, the seasonal diurnal rainfall and network averaged rain rates are determined. The analysis was performed in two steps: determination of the hourly and daily rain accumulations and rain rates; and computation of the fraction of hourly and daily rain rates that exceed a particular threshold, and analysis of the hourly and daily rain rate PDFs for the network. The results indicate that there are diurnal and seasonal variations in the components which determine the network rain rate PDFs.

  11. Continuous metabolic and cardiovascular measurements on a monkey subject during a simulated 6-day Spacelab mission

    NASA Technical Reports Server (NTRS)

    Pace, N.; Rahlmann, D. F.; Mains, R. C.; Kodama, A. M.; Mccutcheon, E. P.

    1979-01-01

    A 10-kg male pig-tailed monkey (Macaca nemestrina) was selected as an optimal species for spaceflight studies on weightlessness. Three days before the simulated launch, the animal was placed in a fiberglass pod system to provide continuous measurement of respiratory gas exchange. Attention is given to examining the effects of weightlessness on several basic parameters of metabolic and cardiovascular function in an adult nonhuman primate. The 10.7-day total simulated-experiment period consisted of preflight 2.6 days, inflight 6.3 days, and postflight 1.8 days. Statistically significant diurnal variation was noted in oxygen consumption and CO2 production rates, body temperature and HR, but not in respiratory quotient or blood pressure. The high quality of the continuous data obtained demonstrates the feasibility of performing sound physiological experimentation on nonhuman primates in the Spacelab environment.

  12. Micrometeorological measurements in Amazon forest during GTE/ABLE 2A mission

    SciTech Connect

    Viswanadham, Y.; Molion, L.C.B.; Manzi, A.O.; Sa, L.D.A.; Silva Filho, V.P.; Nogueira, J.L.M.; dos Santos, R.C. ); Andre, R.G.B. )

    1990-08-20

    As part of the Global Tropospheric Experiment/Amazon Boundary Layer Experiment 2A, micrometeorological measurements were made using a 45 m scaffolding tower located in the Ducke Reserve Forest site (2{degree}57{prime}S, 59{degree}57{prime}W) 26 km northeaster of Manaus, Amazonas, Brazil. The authors report the daily variation within and above the forest of several meteorological parameters such as temperature, humidity, winds, radiation exchange, and energy partition into latent and sensible heat fluxes. Estimates of eddy diffusivity coefficients for momentum, heat, and water vapor were made using the observed profiles. These results provide information on the physical processes involved in the exchange of momentum, heat, and water vapor between the forest and the air layer above. To account for the anomalies in eddy diffusivities, a brief discussion is presented based on turbulent transport processes.

  13. ECOSTRESS: NASA'S Next-Generation Mission to Measure Evapotranspiration from the International Space Station

    NASA Astrophysics Data System (ADS)

    Fisher, J. B.; Hook, S. J.; Allen, R. G.; Anderson, M. C.; French, A. N.; Hain, C.; Hulley, G. C.; Wood, E. F.

    2015-12-01

    In 2014, NASA selected the ECOsystem Spaceborne Thermal Radiometer Experiment on Space Station (ECOSTRESS) as part of the call for Earth Venture Instruments. Built and led out of the Jet Propulsion Laboratory (JPL), ECOSTRESS will produce Land Surface Temperature, Evapotranspiration, Water Use Efficiency, and Evaporative Stress Index data products at 38x57 m spatial resolution every few days from the International Space Station. Moreover, because of the shifting orbit of the Space Station, ECOSTRESS will be able to construct a diurnal cycle of measurements enabling detection of, for example, afternoon stomatal closure in water stressed areas; detection is further enhanced in heterogeneous environments (e.g., mixed-species forests, agricultural areas) by the high spatial resolution. ECOSTRESS is scheduled for launch in 2017.

  14. Shared muscle synergies in human walking and cycling.

    PubMed

    Barroso, Filipe O; Torricelli, Diego; Moreno, Juan C; Taylor, Julian; Gomez-Soriano, Julio; Bravo-Esteban, Elisabeth; Piazza, Stefano; Santos, Cristina; Pons, José L

    2014-10-15

    The motor system may rely on a modular organization (muscle synergies activated in time) to execute different tasks. We investigated the common control features of walking and cycling in healthy humans from the perspective of muscle synergies. Three hypotheses were tested: 1) muscle synergies extracted from walking trials are similar to those extracted during cycling; 2) muscle synergies extracted from one of these motor tasks can be used to mathematically reconstruct the electromyographic (EMG) patterns of the other task; 3) muscle synergies of cycling can result from merging synergies of walking. A secondary objective was to identify the speed (and cadence) at which higher similarities emerged. EMG activity from eight muscles of the dominant leg was recorded in eight healthy subjects during walking and cycling at four matched cadences. A factorization technique [nonnegative matrix factorization (NNMF)] was applied to extract individual muscle synergy vectors and the respective activation coefficients behind the global muscular activity of each condition. Results corroborated hypotheses 2 and 3, showing that 1) four synergies from walking and cycling can successfully explain most of the EMG variability of cycling and walking, respectively, and 2) two of four synergies from walking appear to merge together to reconstruct one individual synergy of cycling, with best reconstruction values found for higher speeds. Direct comparison of the muscle synergy vectors of walking and the muscle synergy vectors of cycling (hypothesis 1) produced moderated values of similarity. This study provides supporting evidence for the hypothesis that cycling and walking share common neuromuscular mechanisms.

  15. Cortex Integrity Relevance in Muscle Synergies in Severe Chronic Stroke

    PubMed Central

    García-Cossio, Eliana; Broetz, Doris; Birbaumer, Niels; Ramos-Murguialday, Ander

    2014-01-01

    Background: Recent experimental evidence has indicated that the motor system coordinates muscle activations through a linear combination of muscle synergies that are specified at the spinal or brainstem networks level. After stroke upper limb impairment is characterized by abnormal patterns of muscle activations or synergies. Objective: This study aimed at characterizing the muscle synergies in severely affected chronic stroke patients. Furthermore, the influence of integrity of the sensorimotor cortex on synergy modularity and its relation with motor impairment was evaluated. Methods: Surface electromyography from 33 severely impaired chronic stroke patients was recorded during 6 bilateral movements. Muscle synergies were extracted and synergy patterns were correlated with motor impairment scales. Results: Muscle synergies extracted revealed different physiological patterns dependent on the preservation of the sensorimotor cortex. Patients without intact sensorimotor cortex showed a high preservation of muscle synergies. On the contrary, patients with intact sensorimotor cortex showed poorer muscle synergies preservation and an increase in new generated synergies. Furthermore, the preservation of muscle synergies correlated positively with hand functionality in patients with intact sensorimotor cortex and subcortical lesions only. Conclusion: Our results indicate that severely paralyzed chronic stroke patient with intact sensorimotor cortex might sculpt new synergy patterns as a response to maladaptive compensatory strategies. PMID:25294998

  16. Project SYNERGY: Software Support for Underprepared Students. Year Four Report.

    ERIC Educational Resources Information Center

    Miami-Dade Community Coll., FL. Div. of Educational Technologies.

    With funds from the International Business Machines (IBM) Corporation, Project SYNERGY was launched in January 1990 to address the problem of students deficient in basic skills entering colleges. Project SYNERGY I focused on reviewing and compiling a list of useful instructional software for basic skills remediation; Project SYNERGY II focused on…

  17. Health, supervisory support, and workplace culture in relation to work-family conflict and synergy.

    PubMed

    Beutell, Nicholas J

    2010-08-01

    This research examined health, supervisory support, and workplace culture as predictors of work interfering with family, family interfering with work, and work-family synergy. The analysis of data from 2,796 respondents from the 2002 National Study of the Changing Workforce yielded significant relations among measures of mental health, self-rated health, supervisory support, and work-family culture with a focus on career concerns. Support was found for a measure of work-family synergy. Implications and directions for research are discussed.

  18. Complete positive ion, electron, and ram negative ion measurements near Comet Halley (COPERNIC) plasma experiment for the European Giotto Mission

    NASA Technical Reports Server (NTRS)

    Lin, Robert P.

    1988-01-01

    Participation of U.S. scientists on the COPERNIC (COmplete Positive ions, Electrons and Ram Negative Ion measurements near Comet Halley) plasma experiment on the Giotto mission is described. The experiment consisted of two detectors: the EESA (electron electrostatic analyzer) which provided three-dimensional measurements of the distribution of electrons from 10 eV to 30 keV, and the PICCA (positive ion cluster composition analyzer) which provided mass analysis of positively charged cold cometary ions from mass 10 to 210 amu. In addition, a small 3 deg wide sector of the EESA looking in the ram direction was devoted to the detection of negatively charged cold cometary ions. Both detectors operated perfectly up to near closest approach (approx. 600 km) to Halley, but impacts of dust particles and neutral gas on the spacecraft contaminated parts of the data during the last few minutes. Although no flight hardware was fabricated in the U.S., The U.S. made very significant contributions to the hardware design, ground support equipment (GSE) design and fabrication, and flight and data reduction software required for the experiment, and also participated fully in the data reduction and analysis, and theoretical modeling and interpretation. Cometary data analysis is presented.

  19. IT Portfolio Selection and IT Synergy

    ERIC Educational Resources Information Center

    Cho, Woo Je

    2010-01-01

    This dissertation consists of three chapters. The primary objectives of this dissertation are: (1) to provide a methodological framework of IT (Information Technology) portfolio management, and (2) to identify the effect of IT synergy on IT portfolio selection of a firm. The first chapter presents a methodological framework for IT project…

  20. Measuring Students' Perceptions of Institutional Identity: Validating the DePaul Mission and Values Inventory at a Franciscan University

    ERIC Educational Resources Information Center

    Matteo, Elizabeth K.; Bottom, Todd L.; Ferrari, Joseph R.

    2013-01-01

    The "DePaul Mission and Values Inventory" ("DMV") was validated based on the mission, identity, and values of a large, urban, Catholic, Vincentian institution. We examined the suitability of the "DMV" at a small, suburban, Catholic, Franciscan university. A sample of 275 undergraduates (218 women, 57 men:…

  1. Making the most of collaboration: exploring the relationship between partnership synergy and partnership functioning.

    PubMed

    Weiss, Elisa S; Anderson, Rebecca Miller; Lasker, Roz D

    2002-12-01

    Considering the challenges inherent to collaboration and the time it takes to achieve measurable outcomes, partnerships need a way to determine, at an early stage, whether they are making the most of collaboration. The authors have developed a new measure, partnership synergy, which assesses the degree to which a partnership's collaborative process successfully combines its participants' perspectives, knowledge, and skills. This article reports the results of a national study designed to examine the relationship between partnership synergy and six dimensions of partnership functioning: leadership, administration and management, partnership efficiency, nonfinancial resources, partner involvement challenges, and community-related challenges. Data were collected from 815 informants in 63 partnerships. Results of regression analysis conducted with partnership-level data indicated that partnership synergy was most closely related to leadership effectiveness and partnership efficiency. Implications of these findings for research and practice are discussed.

  2. 10+ more years of Chandra-XMM-Newton Synergy

    NASA Astrophysics Data System (ADS)

    Wilkes, B.

    2016-06-01

    In this current golden age of X-ray astronomy, the frontiers of the X-ray Universe are continually expanding in multiple, often unexpected, directions, due to the extraordinary success and longevity of both ESA's XMM-Newton and NASA's Chandra X-ray Observatory. These two ground-breaking, major observatories are supported by a number of smaller, more focused missions which feed into and expand the discovery space of X-ray astronomy even further. With the prospect of another decade of observing, now is an excellent time to take stock of how far we have come, and to look forward to the future with a view to maximizing the scientific legacy of both XMM-Newton and Chandra. This not only involves optimizing the contents of the archives and the impact of the science results, but also laying the ground-work for the next generation of X-ray telescopes, led by ESA's Athena mission in the late 2020s. I will summarize the synergy between XMM-Newton and Chandra, including complementary capabilities which facilitate coordinated observations and science programs, and overlapping capabilities which often provide the necessary confirmation (or not) of new, marginal and/or controversial results.

  3. Exploring Synergy between Classic Mutagens and Antibiotics To Examine Mechanisms of Synergy and Antibiotic Action.

    PubMed

    Song, Lisa Yun; D'Souza, Sara; Lam, Karen; Kang, Tina Manzhu; Yeh, Pamela; Miller, Jeffrey H

    2015-12-28

    We used classical mutagens in Gram-negative Escherichia coli to study synergies with different classes of antibiotics, test models of antibiotic mechanisms of action, and examine the basis of synergy. We used 4-nitroquinoline 1-oxide (4NQO), zebularine (ZEB), 5-azacytidine (5AZ), 2-aminopurine (2AP), and 5-bromodeoxyuridine (5BrdU) as mutagens (with bactericidal potency of 4NQO > ZEB > 5AZ > 2AP > 5BrdU) and vancomycin (VAN), ciprofloxacin (CPR), trimethoprim (TMP), gentamicin (GEN), tetracycline (TET), erythromycin (ERY), and chloramphenicol (CHL) as antibiotics. We detected the strongest synergies with 4NQO, an agent that oxidizes guanines and ultimately results in double-strand breaks when paired with the bactericidal antibiotics VAN, TMP, CPR, and GEN, but no synergies with the bacteriostatic antibiotics TET, ERY, and CHL. Each of the other mutagens displays synergies with the bactericidal antibiotics to various degrees that reflect their potencies, as well as with some of the other mutagens. The results support recent models showing that bactericidal antibiotics kill bacteria principally by ultimately generating more double-strand breaks than can be repaired. We discuss the synergies seen here and elsewhere as representing dose effects of not the proximal target damage but rather the ultimate resulting double-strand breaks. We also used the results of pairwise tests to place the classic mutagens into functional antibacterial categories within a previously defined drug interaction network.

  4. Exploring Synergy between Classic Mutagens and Antibiotics To Examine Mechanisms of Synergy and Antibiotic Action

    PubMed Central

    Song, Lisa Yun; D'Souza, Sara; Lam, Karen; Kang, Tina Manzhu

    2015-01-01

    We used classical mutagens in Gram-negative Escherichia coli to study synergies with different classes of antibiotics, test models of antibiotic mechanisms of action, and examine the basis of synergy. We used 4-nitroquinoline 1-oxide (4NQO), zebularine (ZEB), 5-azacytidine (5AZ), 2-aminopurine (2AP), and 5-bromodeoxyuridine (5BrdU) as mutagens (with bactericidal potency of 4NQO > ZEB > 5AZ > 2AP > 5BrdU) and vancomycin (VAN), ciprofloxacin (CPR), trimethoprim (TMP), gentamicin (GEN), tetracycline (TET), erythromycin (ERY), and chloramphenicol (CHL) as antibiotics. We detected the strongest synergies with 4NQO, an agent that oxidizes guanines and ultimately results in double-strand breaks when paired with the bactericidal antibiotics VAN, TMP, CPR, and GEN, but no synergies with the bacteriostatic antibiotics TET, ERY, and CHL. Each of the other mutagens displays synergies with the bactericidal antibiotics to various degrees that reflect their potencies, as well as with some of the other mutagens. The results support recent models showing that bactericidal antibiotics kill bacteria principally by ultimately generating more double-strand breaks than can be repaired. We discuss the synergies seen here and elsewhere as representing dose effects of not the proximal target damage but rather the ultimate resulting double-strand breaks. We also used the results of pairwise tests to place the classic mutagens into functional antibacterial categories within a previously defined drug interaction network. PMID:26711761

  5. Consistency of muscle synergies during pedaling across different mechanical constraints.

    PubMed

    Hug, François; Turpin, Nicolas A; Couturier, Antoine; Dorel, Sylvain

    2011-07-01

    The purpose of the present study was to determine whether muscle synergies are constrained by changes in the mechanics of pedaling. The decomposition algorithm used to identify muscle synergies was based on two components: "muscle synergy vectors," which represent the relative weighting of each muscle within each synergy, and "synergy activation coefficients," which represent the relative contribution of muscle synergy to the overall muscle activity pattern. We hypothesized that muscle synergy vectors would remain fixed but that synergy activation coefficients could vary, resulting in observed variations in individual electromyographic (EMG) patterns. Eleven cyclists were tested during a submaximal pedaling exercise and five all-out sprints. The effects of torque, maximal torque-velocity combination, and posture were studied. First, muscle synergies were extracted from each pedaling exercise independently using non-negative matrix factorization. Then, to cross-validate the results, muscle synergies were extracted from the entire data pooled across all conditions, and muscle synergy vectors extracted from the submaximal exercise were used to reconstruct EMG patterns of the five all-out sprints. Whatever the mechanical constraints, three muscle synergies accounted for the majority of variability [mean variance accounted for (VAF) = 93.3 ± 1.6%, VAF (muscle) > 82.5%] in the EMG signals of 11 lower limb muscles. In addition, there was a robust consistency in the muscle synergy vectors. This high similarity in the composition of the three extracted synergies was accompanied by slight adaptations in their activation coefficients in response to extreme changes in torque and posture. Thus, our results support the hypothesis that these muscle synergies reflect a neural control strategy, with only a few timing adjustments in their activation regarding the mechanical constraints.

  6. Signature of biased range in the non-dynamical Chern-Simons modified gravity and its measurements with satellite-satellite tracking missions: theoretical studies

    NASA Astrophysics Data System (ADS)

    Qiang, Li-E.; Xu, Peng

    2015-08-01

    Having great accuracy in the range and range rate measurements, the GRACE mission and the planed GRACE follow on mission can in principle be employed to place strong constraints on certain relativistic gravitational theories. In this paper, we work out the range observable of the non-dynamical Chern-Simons modified gravity for the satellite-to-satellite tracking (SST) measurements. We find out that a characteristic time accumulating range signal appears in non-dynamical Chern-Simons gravity, which has no analogue found in the standard parity-preserving metric theories of gravity. The magnitude of this Chern-Simons range signal will reach a few times of cm for each free flight of these SST missions, here is the dimensionless post-Newtonian parameter of the non-dynamical Chern-Simons theory. Therefore, with the 12 years data of the GRACE mission, one expects that the mass scale of the non-dynamical Chern-Simons gravity could be constrained to be larger than eV. For the GRACE FO mission that scheduled to be launched in 2017, the much stronger bound that eV is expected.

  7. Mariner Missions

    NASA Astrophysics Data System (ADS)

    Snyder, C.; Murdin, P.

    2000-11-01

    Mariner was the name given to the earliest set of American space missions to explore the planets and to the spacecraft developed to carry them out. The missions were planned and executed by the JET PROPULSION LABORATORY (JPL) of the California Institute of Technology, which had been designated by the National Aeronautics and Space Administration (NASA) as its lead center for planetary missions....

  8. Mars 2020 Science Rover: Science Goals and Mission Concept

    NASA Astrophysics Data System (ADS)

    Mustard, John F.; Beaty, D.; Bass, D.

    2013-10-01

    The Mars 2020 Science Definition Team (SDT), chartered in January 2013 by NASA, formulated a spacecraft mission concept for a science-focused, highly mobile rover to explore and investigate in detail a site on Mars that likely was once habitable. The mission, based on the Mars Science Laboratory landing and rover systems, would address, within a cost- and time-constrained framework, four objectives: (A) Explore an astrobiologically relevant ancient environment on Mars to decipher its geological processes and history, including the assessment of past habitability; (B) Assess the biosignature preservation potential within the selected geological environment and search for potential biosignatures; (C) Demonstrate significant technical progress towards the future return of scientifically selected, well-documented samples to Earth; and (D) provide an opportunity for contributed instruments from Human Exploration or Space Technology Programs. The SDT addressed the four mission objectives and six additional charter-specified tasks independently while specifically looking for synergy among them. Objectives A and B are each ends unto themselves, while Objective A is also the means by which samples are selected for objective B, and together they motivate and inform Objective C. The SDT also found that Objective D goals are well aligned with A through C. Critically, Objectives A, B, and C as an ensemble brought the SDT to the conclusion that exploration oriented toward both astrobiology and the preparation of a returnable cache of scientifically selected, well documented surface samples is the only acceptable mission concept. Importantly the SDT concluded that the measurements needed to attain these objectives were essentially identical, consisting of six types of field measurements: 1) context imaging 2) context mineralogy, 3) fine-scale imaging, 4) fine-scale mineralogy, 5) fine-scale elemental chemistry, and 6) organic matter detection. The mission concept fully addresses

  9. Airborne Measurements of NO, NO2, and NO(y) as Related to NASA's Pacific Exploratory Mission

    NASA Technical Reports Server (NTRS)

    Sandholm, Scott

    1997-01-01

    The Tropospheric Trace Gas and Airborne Measurements Group's (TTGAMG) efforts on NASA GTE (Global Tropospheric Experiment) PEM (Pacific Exploratory Mission) West A & B field campaign primarily involved the acquisition of NO, NO2 and NO(y) measurements, as well as the subsequent analysis and interpretation of the data base obtained during the PEM West field campaign. These investigations focused on the distribution of trace gases, sources and sinks of ozone, ozone producing precursors with a heavy emphasize on ozone's photochemical state, and the partitioning of the molecules within the NO(y) family over the north western Pacific Ocean. The two components of PEM West were focused on observing air masses as they reached the Asian Continent (PEM West A) or as the air mass departed the Asian Continent (PEM West B). NO(x) concentrations play a pivotal role in controlling the photochemical lifetime of ozone in these environments, and understanding the NO(x) species partitioning is paramount. The transport of NO(x) into the regions, in the form of longer lived NO(y) family members, was examined in relation to the comparison of natural occurring sources of NO(x) (i.e., lightning and stratosphere/troposphere exchange) to those produced as a result of anthropogenic activity (i.e., biomass burning and aircraft emissions). The TTGAMG's measurements of NOx and NO(y), in conjunction with other investigators' measurements of PAN (H. B. Singh's group) and HNO3 (R. W. Talbot's group), have been used to assess the total reactive odd nitrogen levels over the study regions, the partitioning of the reactive odd nitrogen species in their various forms, and the usefulness of the NO, measurement and its measurement technique. The TTGAMG's primary PEM West objectives were the characterization of the factors controlling the distribution and fate of reactive odd nitrogen compounds over the western Pacific Ocean and an analysis of the concentration of various trace gases in the troposphere as

  10. The Relationship between Student Engagement and the Development of Character in Mission Driven Faith-Based Colleges and Universities as Measured by the National Survey of Student Engagement

    ERIC Educational Resources Information Center

    Turi, David M.

    2012-01-01

    For many institutions devoted to their mission, especially those that state as their goal the promotion of character development, the need for measurement tools becomes a priority. These tools can by used not only to assess the stated outcomes, but also to guide institutional policies, practices, and improvements. The purpose of this study is to…

  11. Motor synergies and the equilibrium-point hypothesis.

    PubMed

    Latash, Mark L

    2010-07-01

    The article offers a way to unite three recent developments in the field of motor control and coordination: (1) The notion of synergies is introduced based on the principle of motor abundance; (2) The uncontrolled manifold hypothesis is described as offering a computational framework to identify and quantify synergies; and (3) The equilibrium-point hypothesis is described for a single muscle, single joint, and multijoint systems. Merging these concepts into a single coherent scheme requires focusing on control variables rather than performance variables. The principle of minimal final action is formulated as the guiding principle within the referent configuration hypothesis. Motor actions are associated with setting two types of variables by a controller, those that ultimately define average performance patterns and those that define associated synergies. Predictions of the suggested scheme are reviewed, such as the phenomenon of anticipatory synergy adjustments, quick actions without changes in synergies, atypical synergies, and changes in synergies with practice. A few models are briefly reviewed.

  12. JPL Mission Bibliometrics

    NASA Technical Reports Server (NTRS)

    Coppin, Ann

    2013-01-01

    For a number of years ongoing bibliographies of various JPL missions (AIRS, ASTER, Cassini, GRACE, Earth Science, Mars Exploration Rovers (Spirit & Opportunity)) have been compiled by the JPL Library. Mission specific bibliographies are compiled by the Library and sent to mission scientists and managers in the form of regular (usually quarterly) updates. Charts showing publications by years are periodically provided to the ASTER, Cassini, and GRACE missions for supporting Senior Review/ongoing funding requests, and upon other occasions as a measure of the impact of the missions. Basically the Web of Science, Compendex, sometimes Inspec, GeoRef and Aerospace databases are searched for the mission name in the title, abstract, and assigned keywords. All get coded for journal publications that are refereed publications.

  13. Analysis of hand synergies in healthy subjects during bimanual manipulation of various objects

    PubMed Central

    2014-01-01

    Background Hand synergies have been extensively studied over the last few decades. Objectives of such research are numerous. In neuroscience, the aim is to improve the understanding of motor control and its ability to reduce the control dimensionality. In applied research fields like robotics the aim is to build biomimetic hand structures, or in prosthetics to design more performant underactuated replacement hands. Nevertheless, most of the synergy schemes identified to this day have been obtained from grasping experiments performed with one single (generally dominant) hand to objects placed in a given position and orientation in space. Aiming at identifying more generic synergies, we conducted similar experiments on postural synergy identification during bimanual manipulation of various objects in order to avoid the factors due to the extrinsic spatial position of the objects. Methods Ten healthy naive subjects were asked to perform a selected “grasp-give-receive” task with both hands using 9 objects. Subjects were wearing Cyberglove Ⓒ on both hands, allowing a measurement of the joint posture (15 degrees of freedom) of each hand. Postural synergies were then evaluated through Principal Component Analysis (PCA). Matches between the identified Principal Components and the human hand joints were analyzed thanks to the correlation matrix. Finally, statistical analysis was performed on the data in order to evaluate the effect of some specific variables on the hand synergies: object shape, hand side (i.e., laterality) and role (giving or receiving hand). Results Results on PCs are consistent with previous literature showing that a few principal components might be sufficient to describe a large variety of different grasps. Nevertheless some simple and strong correlations between PCs and clearly identified sets of hand joints were obtained in this study. In addition, these groupings of DoF corresponds to well-defined anatomo-functional finger joints according to

  14. A synergy-based hand control is encoded in human motor cortical areas.

    PubMed

    Leo, Andrea; Handjaras, Giacomo; Bianchi, Matteo; Marino, Hamal; Gabiccini, Marco; Guidi, Andrea; Scilingo, Enzo Pasquale; Pietrini, Pietro; Bicchi, Antonio; Santello, Marco; Ricciardi, Emiliano

    2016-02-15

    How the human brain controls hand movements to carry out different tasks is still debated. The concept of synergy has been proposed to indicate functional modules that may simplify the control of hand postures by simultaneously recruiting sets of muscles and joints. However, whether and to what extent synergic hand postures are encoded as such at a cortical level remains unknown. Here, we combined kinematic, electromyography, and brain activity measures obtained by functional magnetic resonance imaging while subjects performed a variety of movements towards virtual objects. Hand postural information, encoded through kinematic synergies, were represented in cortical areas devoted to hand motor control and successfully discriminated individual grasping movements, significantly outperforming alternative somatotopic or muscle-based models. Importantly, hand postural synergies were predicted by neural activation patterns within primary motor cortex. These findings support a novel cortical organization for hand movement control and open potential applications for brain-computer interfaces and neuroprostheses.

  15. NASA Earth Remote Sensing Programs: An Overview with Special Emphasis on the NASA/JAXA Led Global Precipitation Measurement Mission

    NASA Technical Reports Server (NTRS)

    Stocker, Erich Franz

    2009-01-01

    This slide presentation gives an overview of NASA's operations monitoring the earth from space. It includes information on NASA's administrative divisions and key operating earth science missions with specific information on the Landsat satellites, Seastar spacecraft, and the TRMM satellite.

  16. Status of ESA's EarthCARE mission, passive instruments payload

    NASA Astrophysics Data System (ADS)

    Wallace, Kotska; Hélière, Arnaud; Lefebvre, Alain; Eisinger, Michael; Wehr, Tobias

    2016-09-01

    EarthCARE is ESA's third Earth Explorer Core Mission, with JAXA providing one instrument. The mission allows unique data product synergies to improve understanding of atmospheric cloud-aerosol interactions and Earth's radiation balance. Retrieved data will be used to improve climate and numerical weather prediction models. EarthCARE accommodates two active instruments: an ATmospheric LIDar (ATLID) and a Cloud Profiling Radar (CPR), and two passive instruments: a Multi Spectral Imager (MSI) and a BroadBand Radiometer (BBR). The instruments will provide simultaneous, collocated imagery, allowing both individual and common data products. The active instruments provide data on microscopic levels, measured through the atmospheric depth. 3-D models of the atmospheric interactions are constructed from the data, which can be used to calculate radiation balance. The large footprint of the MSI provides contextual information for the smaller footprints of the active instruments. Data from the BBR allows the loop to be closed by providing a macroscopic measurement of the radiation balance. This paper will describe the passive instruments development status. MSI is a compact instrument with a 150 km swath providing 500 m pixel data in seven channels, whose retrieved data will give context to the active instrument measurements, as well as providing cloud and aerosol information. BBR measures reflected solar and emitted thermal radiation from the scene. To reduce uncertainty in the radiance to flux conversion, three independent view angles are observed for each scene. The combined data allows more accurate flux calculations, which can be further improved using MSI data.

  17. A feasibility study of rain radar for the Tropical Rainfall Measuring Mission. IV - A discussion of pulse compression and adaptive scanning

    NASA Astrophysics Data System (ADS)

    Ihara, Toshio; Nakamura, Kenji

    1988-07-01

    The possible use of a pulse compression system on the Tropical Rainfall Measuring Mission to meet the requirement on the number of independent samples for the rain radar under the constraint on allowable power consumption. The applicability of a pulse compression system to the mission depends on the technological feasibility of reducing the range sidelobe levels of the strong surface echo down to at least -60 dB. It is found that applying the pulse compression technique to the mission is risky. The concept of adaptive scanning is examined, and its power saving efficiency is numerically evaluated for four kinds of rain searching schemes. It is shown that the power saving efficiency of adaptive scanning is considerably high for all the rain searching schemes evaluated.

  18. Launch and on-orbit checkout of Aquarius/SAC-D Observatory: an international remote sensing satellite mission measuring sea surface salinity

    NASA Astrophysics Data System (ADS)

    Sen, Amit; Caruso, Daniel; Durham, David; Falcon, Carlos

    2011-11-01

    The Aquarius/SAC-D observatory was launch in June 2011 from Vandenberg Air Force Base (VAFB), in California, USA. This mission is the fourth joint earth-observation endeavor between NASA and CONAE. The primary objective of the Aquarius/SAC-D mission is to investigate the links between global water cycle, ocean circulation and climate by measuring Sea Surface Salinity (SSS). Over the last year, the observatory successfully completed system level environmental and functional testing at INPE, Brazil and was transported to VAFB for launch operations. This paper will present the challenges of this mission, the system, the preparation of the spacecraft, instruments, testing, launch, inorbit checkout and commissioning of this Observatory in space.

  19. Power Systems for Human Exploration Missions

    NASA Technical Reports Server (NTRS)

    Cataldo, Robert L.

    1998-01-01

    Power system options were reviewed for their appropriateness to meet mission requirements and guidelines. Contending system technologies include: solar, nuclear, isotopic, electro-chemical and chemical. Mission elements can basically be placed into two categories; in-space transportation systems, both cargo and piloted; and surface systems, both stationary and mobile. All transportation and surface element power system requirements were assessed for application synergies that would suggest common hardware (duplicates of the same or similar design) or multi-use (reuse system in a different application/location), wherever prudent.

  20. Developing a synergy algorithm for land surface temperature: the SEN4LST project

    NASA Astrophysics Data System (ADS)

    Sobrino, Jose A.; Jimenez, Juan C.; Ghent, Darren J.

    2013-04-01

    Land surface Temperature (LST) is one of the key parameters in the physics of land-surface processes on regional and global scales, combining the results of all surface-atmosphere interactions and energy fluxes between the surface and the atmosphere. An adequate characterization of LST distribution and its temporal evolution requires measurements with detailed spatial and temporal frequencies. With the advent of the Sentinel 2 (S2) and 3 (S3) series of satellites a unique opportunity exists to go beyond the current state of the art of single instrument algorithms. The Synergistic Use of The Sentinel Missions For Estimating And Monitoring Land Surface Temperature (SEN4LST) project aims at developing techniques to fully utilize synergy between S2 and S3 instruments in order to improve LST retrievals. In the framework of the SEN4LST project, three LST retrieval algorithms were proposed using the thermal infrared bands of the Sea and Land Surface Temperature Retrieval (SLSTR) instrument on board the S3 platform: split-window (SW), dual-angle (DA) and a combined algorithm using both split-window and dual-angle techniques (SW-DA). One of the objectives of the project is to select the best algorithm to generate LST products from the synergy between S2/S3 instruments. In this sense, validation is a critical step in the selection process for the best performing candidate algorithm. A unique match-up database constructed at University of Leicester (UoL) of in situ observations from over twenty ground stations and corresponding brightness temperature (BT) and LST match-ups from multi-sensor overpasses is utilised for validating the candidate algorithms. Furthermore, their performance is also evaluated against the standard ESA LST product and the enhanced offline UoL LST product. In addition, a simulation dataset is constructed using 17 synthetic images of LST and the radiative transfer model MODTRAN carried under 66 different atmospheric conditions. Each candidate LST

  1. Polymicrobial synergy and dysbiosis in inflammatory disease

    PubMed Central

    Lamont, Richard J.; Hajishengallis, George

    2014-01-01

    Uncontrolled inflammation of the periodontal area may arise when complex microbial communities transition from a commensal to a pathogenic entity. Communication among constituent species leads to polymicrobial synergy among metabolically compatible organisms that acquire functional specialization within the developing community. Keystone pathogens, even at low abundance, elevate community virulence and the resulting dysbiotic community targets specific aspects of host immunity to further disable immune surveillance while promoting an overall inflammatory response. Inflammophilic organisms benefit from proteinaceous substrates derived from inflammatory tissue breakdown. Inflammation and dysbiosis reinforce each other and the escalating environmental changes further select for a pathobiotic community. We have synthesized the polymicrobial synergy and dysbiotic components of the process into a new model for inflammatory diseases. PMID:25498392

  2. Polymicrobial synergy and dysbiosis in inflammatory disease.

    PubMed

    Lamont, Richard J; Hajishengallis, George

    2015-03-01

    Uncontrolled inflammation of the periodontal area may arise when complex microbial communities transition from a commensal to a pathogenic entity. Communication among constituent species leads to polymicrobial synergy between metabolically compatible organisms that acquire functional specialization within the developing community. Keystone pathogens, even at low abundance, elevate community virulence, and the resulting dysbiotic community targets specific aspects of host immunity to further disable immune surveillance while promoting an overall inflammatory response. Inflammophilic organisms benefit from proteinaceous substrates derived from inflammatory tissue breakdown. Inflammation and dysbiosis reinforce each other, and the escalating environmental changes further select for a pathobiotic community. We have synthesized the polymicrobial synergy and dysbiotic components of the process into a new model for inflammatory diseases.

  3. Synergy between penicillin and gentamicin against enterococci.

    PubMed

    Winstanley, T G; Hastings, J G

    1990-04-01

    The role of active uptake in aminoglycoside activity against penicillin-treated enterococci was studied by viable counts and ATP determinations. Penicillin and gentamicin gave synergistic bactericidal and post-antibiotic effects (PAEs) which were partially reduced by sodium azide, an electron transport inhibitor, and totally blocked in the presence of both sodium azide and EDTA, which chelates divalent cations. EDTA and gentamicin showed marked synergy in both 'killing curve' and PAE experiments. This synergy was completely inhibited by sodium azide. The data indicate that the activity of gentamicin against enterococci that have been damaged by penicillin or EDTA is energy-dependent. This is consistent with present theories of gentamicin uptake via transportation drive by a protonmotive force.

  4. Ground-Support Algorithms for Simulation, Processing, and Calibration of Barnes Static Earth Sensor Measurements: Applications to Tropical Rainfall Measuring Mission Observatory

    NASA Technical Reports Server (NTRS)

    Natanson, G. A.

    1997-01-01

    New algorithms are described covering the simulation, processing, and calibration of penetration angles of the Barnes static Earth sensor assembly (SESA) as implemented in the Goddard Space Flight Center Flight Dynamics Division ground support system for the Tropical Rainfall Measuring Mission (TRMM) Observatory. The new treatment involves a detailed analysis of the measurements by individual quadrants. It is shown that, to a good approximation, individual quadrant misalignments can be treated simply as penetration angle biases. Simple formulas suitable for real-time applications are introduced for computing quadrant-dependent effects. The simulator generates penetration angles by solving a quadratic equation with coefficients uniquely determined by the spacecraft's position and the quadrant's orientation in GeoCentric Inertial (GCI) coordinates. Measurement processing for attitude determination is based on linearized equations obtained by expanding the coefficients of the aforementioned quadratic equation as a Taylor series in both the Earth oblateness coefficient (alpha approx. 1/150) and the angle between the pointing axis and the geodetic nadir vector. A simple formula relating a measured value of the penetration angle to the deviation of the Earth-pointed axis from the geodetic nadir vector is derived. It is shown that even near the very edge of the quadrant's Field Of View (FOV), attitude errors resulting from quadratic effects are a few hundredths of a degree, which is small compared to the attitude determination accuracy requirement (0.18 degree, 3 sigma) of TRMM. Calibration of SESA measurements is complicated by a first-order filtering used in the TRMM onboard algorithm to compute penetration angles from raw voltages. A simple calibration scheme is introduced where these complications are avoided by treating penetration angles as the primary raw measurements, which are adjusted using biases and scale factors. In addition to three misalignment parameters

  5. The "Synergies" Research-Practice Partnership Project: A "2020 Vision" Case Study

    ERIC Educational Resources Information Center

    Falk, John H.; Dierking, Lynn D.; Staus, Nancy L.; Wyld, Jennifer N.; Bailey, Deborah L.; Penuel, William R.

    2016-01-01

    This paper, describes "Synergies," an on-going longitudinal study and design effort, being conducted in a diverse, under-resourced community in Portland, Oregon, with the goal of measurably improving STEM learning, interest and participation by early adolescents, both in school and out of school. Authors examine how the work of this…

  6. Next Generation Satellite Gravimetry Mission Study (NGGM-D)

    NASA Astrophysics Data System (ADS)

    Gruber, Thomas

    2014-05-01

    The main goal of this project is to develop an advanced mission concept for long term monitoring of mass variations in the system Earth in order to improve our knowledge about the global and regional water cycle (with the components continental hydrology, ocean, ice, atmosphere) as well as about processes of the solid Earth. In times of global change this is needed to make more realistic predictions of system Earth parameters on the basis of models derived from these observations. While geometric observation concepts like remote sensing by optical and microwave techniques mainly observe changes at the Earth surface, gravimetric methods are the only measurement technique, which is sensitive to mass variations. Because of the complementarity of gravimetric and geometric observation concepts significant synergies and added value for the understanding of global processes can be obtained. Starting from the existing concepts of the GRACE and GRACE-FO (Follow-On) missions, sensitivity and spatial resolution shall be increased, such that also smaller scale time variable signals can be resolved, which cannot be detected with the current techniques. For such a mission new and significantly improved observation techniques are needed. This concerns in particular the measurement of inter-satellite distances, the observation of non-gravitational accelerations and the configuration of the satellite orbits or of a constellation of satellites. These new components and their complex interactions form the basis for a new space based observation concept for mass variations in system Earth. The German Aerospace Center (DLR) currently is funding a preparatory study in order to develop a mission concept for a next generation gravity field mission. The study is coordinated by Technical University Munich and incorporates all major players in the field of satellite gravimetry in Germany. By joining scientific, technological and industrial expertise the resulting mission concept shall form

  7. Next Generation Satellite Gravimetry Mission Study (NGGM-D)

    NASA Astrophysics Data System (ADS)

    Gruber, T.; Brieden, P.; Daras, I.; Danzmann, K.; Doll, B.; Elsaka, B.; Feili, D.; Flechtner, F.; Flury, J.; Heinzel, G.; Iran-Pour, S.; Kusche, J.; Langemann, M.; Löcher, A.; Mueller, J.; Murböck, M.; Naeimi, M.; Pail, R.; Raimondo, J.; Reiche, J.; Reubelt, T.; Sheard, B.; Sneeuw, N. J.; Wang, X.; Weise, D.

    2013-12-01

    The main goal of this project is to develop a mission concept for long term monitoring of mass variations in the system Earth in order to improve our knowledge about the global and regional water cycle (with the components continental hydrology, ocean, ice, atmosphere) as well as about processes of the solid Earth. In times of global change this is needed to make more realistic predictions of system Earth parameters on the basis of models derived from these observations. While geometric observation concepts like remote sensing by optical and microwave techniques mainly observe changes at the Earth surface, gravimetric methods are the only measurement technique, which is sensitive to mass variations. Because of the complementarity of gravimetric and geometric observation concepts significant synergies and added value for the understanding of global processes can be obtained. Starting from the existing concepts of the GRACE and GRACE-FO (Follow-On) missions, sensitivity and spatial resolution shall be increased, such that also smaller scale time variable signals can be resolved, which cannot be detected with the current techniques. For such a mission new and significantly improved observation techniques are needed. This concerns in particular the measurement of inter-satellite distances, the observation of non-gravitational accelerations and the configuration of the satellite orbits or of a constellation of satellites. These new components and their complex interactions form the basis for a new space based observation concept for mass variations in system Earth. The German Aerospace Center (DLR) currently is funding a preparatory study in order to develop a mission concept for a next generation gravity field mission. The study is coordinated by Technical University Munich and incorporates all major players in the field of satellite gravimetry in Germany. By joining scientific, technological and industrial expertise the resulting mission concept shall form the

  8. Cassini Mission

    SciTech Connect

    Mitchell, Robert

    2005-08-10

    The Cassini/Huygens mission is a joint NASA/European Space Agency/Italian Space Agency project which has a spacecraft currently in orbit about Saturn, and has successfully sent an atmospheric probe through the atmosphere of Saturn's largest moon Titan and down to its previously hidden surface. This presentation will describe the overall mission, how it got a rather massive spacecraft to Saturn, and will cover some of the scientific results of the mission to date.

  9. Discovering Pair-wise Synergies in Microarray Data

    PubMed Central

    Chen, Yuan; Cao, Dan; Gao, Jun; Yuan, Zheming

    2016-01-01

    Informative gene selection can have important implications for the improvement of cancer diagnosis and the identification of new drug targets. Individual-gene-ranking methods ignore interactions between genes. Furthermore, popular pair-wise gene evaluation methods, e.g. TSP and TSG, are helpless for discovering pair-wise interactions. Several efforts to discover pair-wise synergy have been made based on the information approach, such as EMBP and FeatKNN. However, the methods which are employed to estimate mutual information, e.g. binarization, histogram-based and KNN estimators, depend on known data or domain characteristics. Recently, Reshef et al. proposed a novel maximal information coefficient (MIC) measure to capture a wide range of associations between two variables that has the property of generality. An extension from MIC(X; Y) to MIC(X1; X2; Y) is therefore desired. We developed an approximation algorithm for estimating MIC(X1; X2; Y) where Y is a discrete variable. MIC(X1; X2; Y) is employed to detect pair-wise synergy in simulation and cancer microarray data. The results indicate that MIC(X1; X2; Y) also has the property of generality. It can discover synergic genes that are undetectable by reference feature selection methods such as MIC(X; Y) and TSG. Synergic genes can distinguish different phenotypes. Finally, the biological relevance of these synergic genes is validated with GO annotation and OUgene database. PMID:27470995

  10. Muscle Synergies May Improve Optimization Prediction of Knee Contact Forces During Walking

    PubMed Central

    Walter, Jonathan P.; Kinney, Allison L.; Banks, Scott A.; D'Lima, Darryl D.; Besier, Thor F.; Lloyd, David G.; Fregly, Benjamin J.

    2014-01-01

    The ability to predict patient-specific joint contact and muscle forces accurately could improve the treatment of walking-related disorders. Muscle synergy analysis, which decomposes a large number of muscle electromyographic (EMG) signals into a small number of synergy control signals, could reduce the dimensionality and thus redundancy of the muscle and contact force prediction process. This study investigated whether use of subject-specific synergy controls can improve optimization prediction of knee contact forces during walking. To generate the predictions, we performed mixed dynamic muscle force optimizations (i.e., inverse skeletal dynamics with forward muscle activation and contraction dynamics) using data collected from a subject implanted with a force-measuring knee replacement. Twelve optimization problems (three cases with four subcases each) that minimized the sum of squares of muscle excitations were formulated to investigate how synergy controls affect knee contact force predictions. The three cases were: (1) Calibrate+Match where muscle model parameter values were calibrated and experimental knee contact forces were simultaneously matched, (2) Precalibrate+Predict where experimental knee contact forces were predicted using precalibrated muscle model parameters values from the first case, and (3) Calibrate+Predict where muscle model parameter values were calibrated and experimental knee contact forces were simultaneously predicted, all while matching inverse dynamic loads at the hip, knee, and ankle. The four subcases used either 44 independent controls or five synergy controls with and without EMG shape tracking. For the Calibrate+Match case, all four subcases closely reproduced the measured medial and lateral knee contact forces (R2 ≥ 0.94, root-mean-square (RMS) error < 66 N), indicating sufficient model fidelity for contact force prediction. For the Precalibrate+Predict and Calibrate+Predict cases, synergy controls yielded better contact force

  11. The LISA Pathfinder mission

    NASA Astrophysics Data System (ADS)

    Antonucci, F.; Armano, M.; Audley, H.; Auger, G.; Benedetti, M.; Binetruy, P.; Bogenstahl, J.; Bortoluzzi, D.; Bosetti, P.; Brandt, N.; Caleno, M.; Cañizares, P.; Cavalleri, A.; Cesa, M.; Chmeissani, M.; Conchillo, A.; Congedo, G.; Cristofolini, I.; Cruise, M.; Danzmann, K.; De Marchi, F.; Diaz-Aguilo, M.; Diepholz, I.; Dixon, G.; Dolesi, R.; Dunbar, N.; Fauste, J.; Ferraioli, L.; Ferrone, V.; Fichter, W.; Fitzsimons, E.; Freschi, M.; García Marin, A.; García Marirrodriga, C.; Gerndt, R.; Gesa, L.; Gilbert, F.; Giardini, D.; Grimani, C.; Grynagier, A.; Guillaume, B.; Guzmán, F.; Harrison, I.; Heinzel, G.; Hernández, V.; Hewitson, M.; Hollington, D.; Hough, J.; Hoyland, D.; Hueller, M.; Huesler, J.; Jennrich, O.; Jetzer, P.; Johlander, B.; Karnesis, N.; Killow, C.; Llamas, X.; Lloro, I.; Lobo, A.; Maarschalkerweerd, R.; Madden, S.; Mance, D.; Mateos, I.; McNamara, P. W.; Mendes, J.; Mitchell, E.; Monsky, A.; Nicolini, D.; Nicolodi, D.; Nofrarias, M.; Pedersen, F.; Perreur-Lloyd, M.; Plagnol, E.; Prat, P.; Racca, G. D.; Ramos-Castro, J.; Reiche, J.; Romera Perez, J. A.; Robertson, D.; Rozemeijer, H.; Sanjuan, J.; Schleicher, A.; Schulte, M.; Shaul, D.; Stagnaro, L.; Strandmoe, S.; Steier, F.; Sumner, T. J.; Taylor, A.; Texier, D.; Trenkel, C.; Tu, H.-B.; Vitale, S.; Wanner, G.; Ward, H.; Waschke, S.; Wass, P.; Weber, W. J.; Ziegler, T.; Zweifel, P.

    2012-06-01

    In this paper, we describe the current status of the LISA Pathfinder mission, a precursor mission aimed at demonstrating key technologies for future space-based gravitational wave detectors, like LISA. Since much of the flight hardware has already been constructed and tested, we will show that performance measurements and analysis of these flight components lead to an expected performance of the LISA Pathfinder which is a significant improvement over the mission requirements, and which actually reaches the LISA requirements over the entire LISA Pathfinder measurement band.

  12. Determinants of compliance with anti-vectorial protective measures among non-immune travellers during missions to tropical Africa

    PubMed Central

    2011-01-01

    Background The effectiveness of anti-vectorial malaria protective measures in travellers and expatriates is hampered by incorrect compliance. The objective of the present study was to identify the determinants of compliance with anti-vectorial protective measures (AVPMs) in this population that is particularly at risk because of their lack of immunity. Methods Compliance with wearing long clothing, sleeping under insecticide-impregnated bed nets (IIBNs) and using insect repellent was estimated and analysed by questionnaires administered to 2,205 French military travellers from 20 groups before and after short-term missions (approximately four months) in six tropical African countries (Senegal, Ivory Coast, Chad, Central African Republic, Gabon and Djibouti). For each AVPM, the association of "correct compliance" with individual and collective variables was investigated using random-effect mixed logistic regression models to take into account the clustered design of the study. Results The correct compliance rates were 48.6%, 50.6% and 18.5% for wearing long clothing, sleeping under bed nets and using repellents, respectively. Depending on the AVPM, correct compliance was significantly associated with the following factors: country, older than 24 years of age, management responsibilities, the perception of a personal malaria risk greater than that of other travellers, the occurrence of life events, early bedtime (i.e., before midnight), the type of stay (field operation compared to training), the absence of medical history of malaria, the absence of previous travel in malaria-endemic areas and the absence of tobacco consumption. There was no competition between compliance with the different AVPMs or between compliance with any AVPM and malaria chemoprophylaxis. Conclusion Interventions aimed at improving compliance with AVPMs should target young people without management responsibilities who are scheduled for non-operational activities in countries with high risk of

  13. Merging and Fractionation of Muscle Synergy Indicate the Recovery Process in Patients with Hemiplegia: The First Study of Patients after Subacute Stroke

    PubMed Central

    Ohata, Koji; Kitatani, Ryosuke; Yamakami, Natsuki; Sakuma, Kaoru; Osako, Sayuri; Aga, Yumi; Watanabe, Aki; Yamada, Shigehito

    2016-01-01

    Loss of motor coordination is one of the main problems for patients after stroke. Muscle synergy is widely accepted as an indicator of motor coordination. Recently, the characteristics of muscle synergy were quantitatively evaluated using nonnegative matrix factorization (NNMF) with surface electromyography. Previous studies have identified that the number and structure of synergies were associated with motor function in patients after stroke. However, most of these studies had a cross-sectional design, and the changes in muscle synergy during recovery process are not clear. In present study, two consecutive measurements were conducted for subacute patients after stroke and the change of number and structure of muscle synergies during gait were determined using NNMF. Results showed that functional change did not rely on number of synergies in patients after subacute stroke. However, the extent of merging of the synergies was negatively associated with an increase in muscle strength and the range of angle at ankle joint. Our results suggest that the neural changes represented by NNMF were related to the longitudinal change of function and gait pattern and that the merging of synergy is an important marker in patients after subacute stroke. PMID:28090358

  14. PERCIVAL mission to Mars

    NASA Technical Reports Server (NTRS)

    Reed, David W.; Lilley, Stewart; Sirman, Melinda; Bolton, Paul; Elliott, Susan; Hamilton, Doug; Nickelson, James; Shelton, Artemus

    1992-01-01

    With the downturn of the world economy, the priority of unmanned exploration of the solar system has been lowered. Instead of foregoing all missions to our neighbors in the solar system, a new philosophy of exploration mission design has evolved to insure the continued exploration of the solar system. The 'Discovery-class' design philosophy uses a low cost, limited mission, available technology spacecraft instead of the previous 'Voyager-class' design philosophy that uses a 'do-everything at any cost' spacecraft. The Percival Mission to Mars was proposed by Ares Industries as one of the new 'Discovery-class' of exploration missions. The spacecraft will be christened Percival in honor of American astronomer Percival Lowell who proposed the existence of life on Mars in the early twentieth century. The main purpose of the Percival mission to Mars is to collect and relay scientific data to Earth suitable for designing future manned and unmanned missions to Mars. The measurements and observations made by Percival will help future mission designers to choose among landing sites based on the feasibility and scientific interest of the sites. The primary measurements conducted by the Percival mission include gravity field determination, surface and atmospheric composition, sub-surface soil composition, sub-surface seismic activity, surface weather patterns, and surface imaging. These measurements will be taken from the orbiting Percival spacecraft and from surface penetrators deployed from Mars orbit. The design work for the Percival Mission to Mars was divided among four technical areas: Orbits and Propulsion System, Surface Penetrators, Gravity and Science Instruments, and Spacecraft Structure and Systems. The results for each of the technical areas is summarized and followed by a design cost analysis and recommendations for future analyses.

  15. The EOS Aura Mission

    NASA Technical Reports Server (NTRS)

    Schoeberl, Mark R.; Douglass, A. R.; Hilsenrath, E.; Luce, M.; Barnett, J.; Beer, R.; Waters, J.; Gille, J.; Levelt, P. F.; DeCola, P.; Einaudi, Franco (Technical Monitor)

    2001-01-01

    The EOS Aura Mission is designed to make comprehensive chemical measurements of the troposphere and stratosphere. In addition the mission will make measurements of important climate variables such as aerosols, and upper tropospheric water vapor and ozone. Aura will launch in late 2003 and will fly 15 minutes behind EOS Aqua in a polar sun synchronous ascending node orbit with a 1:30 pm equator crossing time.

  16. Broadband permittivity measurements on porous planetary regoliths simulants, in relation with the Rosetta mission to 67P/C-G

    NASA Astrophysics Data System (ADS)

    Brouet, Yann; Levasseur-Regourd, Anny-Chantal; Encrenaz, Pierre; Sabouroux, Pierre; Heggy, Essam; Kofman, Wlodek; Thomas, Nick

    2015-04-01

    The Rosetta mission has successfully rendezvous comet 67P/Churyumov-Gerasimenko (hereafter 67P) last year and landed Philae module on its nucleus on 12 November it 2014. Among instruments onboard Rosetta, MIRO [1], composed of two radiometers, with receivers at 190 GHz and 563 GHz (center-band), is dedicated to the measurements of the subsurface and surface brightness temperatures. These values depend on the complex relative permittivity (hereafter permittivity) with ɛ' and ɛ'' the real and imaginary parts. The permittivity of the material depends on frequency, bulk density/porosity, composition and temperature [2]. Considering the very low bulk density of 67P nucleus (about 450 kg.m-3 [3]) and the suspected presence of a dust mantle in many areas of the nucleus [4], investigations on the permittivity of porous granular samples are needed to support the interpretation of MIRO data, as well as of other microwave experiments onboard Rosetta, e.g. CONSERT [5], a bistatic penetrating radar working at 90 MHz. We have developed a programme of permittivity measurements on porous granular samples over a frequency range from 50 MHz to 190 GHz under laboratory conditions (e.g. [6] and [7]). We present new results obtained on JSC-1A lunar soil simulant and ashes from Etna. The samples were split into several sub-samples with different size ranges covering a few to 500 μm. Bulk densities of the sub-samples were carefully measured and found to be in the 800-1400 kg.m-3 range. Sub-samples were also dried and volumetric moisture content was found to be below 0.6%. From 50 MHz to 6 GHz and at 190 GHz, the permittivity has been determined, respectively with a coaxial cell and with a quasi-optical bench mounted in transmission, both connected to a vector network analyzer. The results demonstrate the dispersive behaviours of ɛ' between 50 MHz and 190 GHz. Values of ɛ' remain within the 3.9-2.6 range for all sub-samples. At CONSERT frequency, ɛ'' is within the 0.01-0.09 range

  17. IMP mission

    NASA Technical Reports Server (NTRS)

    1972-01-01

    The program requirements and operations requirements for the IMP mission are presented. The satellite configuration is described and the missions are analyzed. The support equipment, logistics, range facilities, and responsibilities of the launching organizations are defined. The systems for telemetry, communications, satellite tracking, and satellite control are identified.

  18. Summary Report of Mission Acceleration Measurements for MSL-1: STS-83, Launched April 14, 1997; STS-94, Launched July 1, 1997

    NASA Technical Reports Server (NTRS)

    Moskowitz, Milton E.; Hrovat, Kenneth; Tschen, Peter; McPherson, Kevin; Nati, Maurizio; Reckart, Timothy A.

    1998-01-01

    The microgravity environment of the Space Shuttle Columbia was measured during the STS-83 and STS-94 flights of the Microgravity Science Laboratory (MSL-1) mission using four different accelerometer systems: the Orbital Acceleration Research Experiment (OARE), the Space Acceleration Measurement System (SAMS), the Microgravity Measurement Assembly (MMA), and the Quasi-Steady Acceleration Measurement (QSAM) system. All four accelerometer systems provided investigators with acceleration measurements downlinked in near-real-time. Data from each system was recorded for post-mission analysis. The OARE measured the Shuttle's acceleration with high resolution in the quasi-steady frequency regime below about 0.1 Hz. The SAMS provided investigators with higher frequency acceleration measurements up to 25 Hz. The QSAM and MMA systems provided investigators with quasi-steady and higher frequency (up to 100 Hz) acceleration measurements, respectively. The microgravity environment related to various Orbiter maneuvers, crew activities, and experiment operations as measured by the OARE and MMA is presented and interpreted in section 8 of this report.

  19. Measurements of micron-scale meteoroids and orbital debris with the Space Dust (SPADUS) instrument on the upcoming ARGOS P91-1 mission

    NASA Technical Reports Server (NTRS)

    McKibben, R. B.; Simpson, J. A.; Tuzzolino, A. J.

    1997-01-01

    The space dust (SPADUS) experiment, to be launched into a sun-synchronous polar orbit at an altitude of 833 km onboard the USAF ARGOS P91-1 mission, will provide time-resolved measurements of the intensity, size spectrum and geocentric trajectories of dust particles encountered during the nominal three year mission. The experiment uses polyvinylidene fluoride dust sensors with a total detector area of 576 sq cm. The SPADUS will measure particle sizes between 2 and 200 microns, particle velocities between 1 and 10 km/s to better than 4 percent, and the direction of incidence with a mean error of 7 percent. These data will identify the particles as being debris or of natural origin.

  20. Marine parameters from synergy of optical and radar satellite data

    NASA Astrophysics Data System (ADS)

    Lehner, S.; Hoja, D.; Schulz-Stellenfleth, J.

    In 2001 the European Space Agency ESA will launch the earth observation satellite ENVISAT. It will carry several instruments that provide new opportunities to measure oceanographic variables. Together, they represent the main measurement techniques of satellite oceanography, and complement each other in an ideal manner. These instruments are to be used in synergy to: Improve the analysis of measured wind and ocean wave fields, and thereby improve weather forecasting at weather centers; Determine the extent and variables of sea ice and develop a five-day sea ice prediction model, to support maritime shipping and offshore activities; Monitor and map sediment and suspended matter transport in coastal regions, especially in areas with large river estuaries, which greatly affects shipping lanes, harbors, and dredging activities; Monitor hydrobiological and bio-geochemical variables related to water quality in coastal regions and large inland waters, which affects ecology, coastal development, aquaculture, drinking water supplies, and tourism. To prepare the oceanographic community to make best use of the ENVISAT sensors in the pre-launch phase, existing algorithms to derive marine parameters are used and validated using data from the ERS SAR, the ERS RA, SeaWiFS and IRS MOS sensors now in operation. Derived products are used to address problems that can best be tackled using the synergy of radar and optical data, such as the effect of surface slicks on radar wind measurements, of sea state on ocean color, of wind and waves on the resuspension of suspended matter, and of wind and waves on sea ice variables.

  1. The Evolution of Remotely Sensed Precipitation Products for Hydrological Applications with a Focus on the Tropical Rainfall Measurement Mission (TRMM)

    NASA Astrophysics Data System (ADS)

    Tobin, K. J.; Bennett, M.

    2012-12-01

    This study examines the evolution of how remotely sensed precipitation products have impacted hydrologic modeling from six basins across the continental United States. Precipitation products include both ground-based (Multisensor Precipitation Estimator - MPE) and space-based products. Two space-based products are from the Tropical Rainfall Measurement Mission (TRMM) and include the real-time TRMM Multi-Satellite Precipitation Analysis (TMPA-RT) and TRMM 3B42 Research product. Precipitation products are compared between early (2004-2008) and late (2008-2010) periods. Additionally, version 6 and the new version 7 of these TRMM products are examined. Watersheds examined were moderately large (1000 to 1,000 square kilometers) and included the San Pedro (Arizona), Cimarron (Oklahoma); Alapaha (Georgia), mid-Nueces (Texas), San Casimiro (Texas), and the mid-Rio Grande basins, which is a bi-national basin that spans the Texas-Mexico border. Precipitation products are used to drive streamflow simulations using the Soil Water Assessment Tool (SWAT). The main results of this study concludes that MPE is a mature remote sensing product that generally supports superior hydrologic simulations based on standard performance metrics such as mass balance error, Nash-Sutcliffe efficiency coefficient, and coefficient of persistence. TRMM products support acceptable simulations and have improved in performance between early and late periods for TMPA-RT (both versions) and version 6 of TRMM 3B42 Research in five out of the six basins examined. This improvement is related to modification of TRMM in January 2009 with the addition of more satellite data and a climatologic bias correction, which greatly improves the real-time TMPA-RT product. Conversely, version 7 of the TRMM 3B42 Research has a positive bias compared to version 6, which is translated into poorer hydrological simulations of streamflow. Future research is urgently needed to determine if the issues observed in this study are

  2. Influence of intermittency and synergy on grasping.

    PubMed

    Neilson, P D

    1999-07-01

    The commentary firstly supports Smeets and Brenner in their choice of a kinematic trajectory, submitting that the challenge posed by the rival torque-change formulation is resolved by consideration of intermittency in human movement control. Second, it examines the choice of optimization criterion for trajectory planning, arguing in favor of minimum acceleration rather than minimum jerk. Third, using the notion of optimized trajectories in task-dependent coordinate space together with synergy generation, it suggests a formulation that reduces the processing load entailed in Smeets and Brenner's proposal of individual trajectories for each digit.

  3. Toward a new theory of motor synergies.

    PubMed

    Latash, Mark L; Scholz, John P; Schöner, Gregor

    2007-07-01

    Driven by recent empirical studies, we offer a new understanding of the degrees of freedom problem, and propose a refined concept of synergy as a neural organization that ensures a one-to-many mapping of variables providing for both stability of important performance variables and flexibility of motor patterns to deal with possible perturbations and/or secondary tasks. Empirical evidence is reviewed, including a discussion of the operationalization of stability/flexibility through the method of the uncontrolled manifold. We show how this concept establishes links between the various accounts for how movement is organized in redundant effector systems.

  4. The synergy model: the ultimate mentoring model.

    PubMed

    Kerfoot, Karlene M; Cox, Marilyn

    2005-06-01

    Clarian Health Partners is a system that includes Methodist Hospital of Indiana, Indiana University Hospital, and Riley Hospital for Children. The nurses of Clarian Health Partners are the recipients of many national awards for their leadership and innovations in critical care. Nurse leaders at Clarian have developed and implemented a unique framework for professional development based on the synergy model. In this article, the Chief Nurse Executive for the System, Dr. Karlene Kerfoot, and Marilyn Cox, the Senior Vice President for Nursing and Patient Care at Riley Hospital for Children, describe their vision of and strategies for a new approach to mentoring professional nursing staff.

  5. Anomalies and synergy in the caloric effects of magnetoelectrics

    NASA Astrophysics Data System (ADS)

    Anand, Shashwat; Waghmare, Umesh V.

    2014-12-01

    We determine isothermal entropy changes (Δ S) associated with electrocaloric, magnetocaloric, and the corresponding multicaloric effects in a model type-I multiferroic system using Landau-Devonshire thermodynamic analysis. We show that (a) the magnetocaloric effect exhibits an unexpected anomaly at the ferroelectric transition occurring at a high temperature, even in the absence of magnetic ordering, and (b) the synergy between electro- and magnetocaloric effects leads to a significantly enhanced multicaloric effect (\\mid Δ {{S}MultiCE}\\mid \\gt \\mid Δ {{S}ECE}\\mid +\\mid Δ {{S}MCE}\\mid ) over a wide temperature range when the difference in temperatures of magnetic and ferroelectric ordering (\\mid Δ {{T}C}\\mid =\\mid TCE-TCM\\mid ) is small. This result originate from the coupled thermal fluctuations of magnetic and electric order parameters. While the former is useful in detecting multiferroic materials from the measurements covering higher temperature transition alone, the latter augurs well for caloric applications of multiferroics.

  6. The International Union for Health Promotion and Education (IUHPE) Student and Early Career Network (ISECN): a case illustrating three strategies for maximizing synergy in professional collaboration.

    PubMed

    Corbin, J Hope; Fisher, Emily A; Bull, Torill

    2012-09-01

    The International Union for Health Promotion and Education (IUHPE) Student and Early Career Network (ISECN) was constructed upon a foundation of research, using the Bergen Model of Collaborative Functioning (BMCF) as a blueprint to inform its leadership, communication, structure, and culture. The BMCF consists of inputs (partners, mission, and financial resources), throughputs (operational processes), and outputs (synergy and antagony). In this commentary, we use the BMCF to describe the ISECN work, highlighting opportunities, successes, and challenges. We also put forward three strategies derived from the BMCF that have been purposefully employed by ISECN to maximize its production of synergy from the voluntary contributions of its members.

  7. Geospace Missions

    NASA Technical Reports Server (NTRS)

    Spann, James

    2005-01-01

    Geospace Missions - Understanding and being able to predict the behavior of the Earth's near space environment, called Geospace, is important for several reasons. These include the fact that most of the space-based commercial, military, and space research assets are exposed to this environment and that investigating fundamental plasma processes at work through out the solar system can most readily be accomplished in Geospace, the only place we can access the processes. NASA missions that are directed toward understanding, characterizing, and predicting the Geospace environment are described in this presentation. Emphasis is placed on those missions that investigate those phenomena that most affect life and society. The significance of investigating ionospheric irregularities, the radiation belt dynamics with the LWS Geospace Mission will be discussed.

  8. Mission scheduling

    NASA Technical Reports Server (NTRS)

    Gaspin, Christine

    1989-01-01

    How a neural network can work, compared to a hybrid system based on an operations research and artificial intelligence approach, is investigated through a mission scheduling problem. The characteristic features of each system are discussed.

  9. Air surface microdischarge-photon synergy in antibacterial plasma-activated water

    NASA Astrophysics Data System (ADS)

    Graves, David; Pavlovich, Mathew; Chang, Hung-Wen; Sakiyama, Yuki; Clark, Douglas

    2013-09-01

    We show that the antibacterial effects of air plasma on water can be amplified by synergy with ultraviolet (UV) photons. We use the surface microdischarge configuration (SMD) in atmospheric air adjacent to bacteria-laden water coupled with UVA (360 nm) photons from a light emitting diode (LED) to demonstrate this synergy. Air SMD, especially if operated in a confined space, can operate in different modes: low power mode (<0.1 W/cm2) generates primarily O3 whereas higher powers generate mainly nitrogen oxides; we focus here on the latter. The nitrogen oxide mode creates a powerful antibacterial mixture in water, including NO2-, NO3- and H2O2. Although these species alone can be strongly antibacterial, especially at low pH, we show that addition of UVA photons greatly amplifies the antibacterial effect. We first measured log reductions with only photons and then only plasma. Only when UVA exposes water after plasma does the synergy appear. Synergy appears to be due to UVA photolysis of plasma-generated NO2- to form NO and OH. We conclude that combining plasma-generated chemical species with activating photons can amplify and strengthen plasma effectiveness in many biological and other applications. Supported by Department of Energy, Office of Fusion Science Plasma Science Center.

  10. Measurements of LET-distribution, dose equivalent and quality factor with the RRMD-III on the Space Shuttle Missions STS-84, -89 and -91.

    PubMed

    Doke, T; Hayashi, T; Kikuchi, J; Sakaguchi, T; Terasawa, K; Yoshihira, E; Nagaoka, S; Nakano, T; Takahashi, S

    2001-06-01

    Dosimetric measurements on the Space Shuttle Missions STS-84, -89 and -91 have been made by the real-time radiation monitoring device III (RRMD-III). Simultaneously, another dosimetry measurement was made by the Dosimetry Telescope (DOSTEL) on STS-84 and by the tissue-equivalent proportional counter (TEPC) on STS-91. First, the RRMD-III instrument is described in detail and its results summarized. Then, the results of DOSTEL and TEPC are compared with those of the RRMD-III. Also, the absorbed doses obtained by TLD (Mg2SiO4) and by RRMD-III on board STS-84 and -91 are compared.

  11. Hierarchical and multiple hand action representation using temporal postural synergies.

    PubMed

    Tessitore, G; Sinigaglia, C; Prevete, R

    2013-03-01

    The notion of synergy enables one to provide simplified descriptions of hand actions. It has been used in a number of different meanings ranging from kinematic and dynamic synergies to postural and temporal postural synergies. However, relatively little is known about how representing an action by synergies might take into account the possibility to have a hierarchical and multiple action representation. This is a key aspect for action representation as it has been characterized by action theorists and cognitive neuroscientists. Thus, the aim of the present paper is to investigate whether and to what extent a hierarchical and multiple action representation can be obtained by a synergy approach. To this purpose, we took advantage of representing hand action as a linear combination of temporal postural synergies (TPSs), but on the assumption that TPSs have a tree-structured organization. In a tree-structured organization, a hand action representation can involve a TPS only if the ancestors of the synergy in the tree are themselves involved in the action representation. The results showed that this organization is enough to force a multiple representation of hand actions in terms of synergies which are hierarchically organized.

  12. Space-Derived Transparency: Players, Policies, Implications, and Synergies

    DTIC Science & Technology

    2001-06-01

    Dr. Florini�s idealistic definition, transparency today is at best a mix of � legislated � voluntary and involuntary disclosure by states, private...SPACE-DERIVED TRANSPARENCY : PLAYERS, POLICIES, IMPLICATIONS, AND SYNERGIES BY C. J. KINNAN A THESIS PRESENTED TO THE...to) - Title and Subtitle Space-Derived Transparency : Players, Policies, Implicatons, and Synergies Contract Number Grant Number Program Element

  13. Adaptive control for backward quadrupedal walking. II. Hindlimb muscle synergies.

    PubMed

    Buford, J A; Smith, J L

    1990-09-01

    1. To compare the basic hindlimb synergies for backward (BWD) and forward (FWD) walking, electromyograms (EMG) were recorded from selected flexor and extensor muscles of the hip, knee, and ankle joints from four cats trained to perform both forms of walking at a moderate walking speed (0.6 m/s). For each muscle, EMG measurements included burst duration, burst latencies referenced to the time of paw contact or paw off, and integrated burst amplitudes. To relate patterns of muscle activity to various phases of the step cycle, EMG records were synchronized with kinematic data obtained by digitizing high-speed ciné film. 2. Hindlimb EMG data indicate that BWD walking in the cat was characterized by reciprocal flexor and extensor synergies similar to those for FWD walking, with flexors active during swing and extensors active during stance. Although the underlying synergies were similar, temporal parameters (burst latencies and durations) and amplitude levels for specific muscles were different for BWD and FWD walking. 3. For both directions, iliopsoas (IP) and semitendinosus (ST) were active as the hip and knee joints flexed at the onset of swing. For BWD walking, IP activity decreased early, and ST activity continued as the hip extended and the knee flexed. For FWD walking, in contrast, ST activity ceased early, and IP activity continued as the hip flexed and the knee extended. For both directions, tibialis anterior (TA) was active throughout swing as the ankle flexed and then extended. A second ST burst occurred at the end of swing for FWD walking as hip flexion and knee extension slowed for paw contact. 4. For both directions, knee extensor (vastus lateralis, VL) activity began at paw contact. Ankle extensor (lateral gastrocnemius, LG) activity began during midswing for BWD walking but just before paw contact for FWD walking. At the ankle joint, flexion during the E2 phase (yield) of stance was minimal or absent for BWD walking, and ankle extension during BWD

  14. Muscle synergy analysis in children with cerebral palsy

    NASA Astrophysics Data System (ADS)

    Tang, Lu; Li, Fei; Cao, Shuai; Zhang, Xu; Wu, De; Chen, Xiang

    2015-08-01

    Objective. To explore the mechanism of lower extremity dysfunction of cerebral palsy (CP) children through muscle synergy analysis. Approach. Twelve CP children were involved in this study, ten adults (AD) and eight typically developed (TD) children were recruited as a control group. Surface electromyographic (sEMG) signals were collected bilaterally from eight lower limb muscles of the subjects during forward walking at a comfortable speed. A nonnegative matrix factorization algorithm was used to extract muscle synergies. In view of muscle synergy differences in number, structure and symmetry, a model named synergy comprehensive assessment (SCA) was proposed to quantify the abnormality of muscle synergies. Main results. There existed larger variations between the muscle synergies of the CP group and the AD group in contrast with the TD group. Fewer mature synergies were recruited in the CP group, and many abnormal synergies specific to the CP group appeared. Specifically, CP children were found to recruit muscle synergies with a larger difference in structure and symmetry between two legs of one subject and different subjects. The proposed SCA scale demonstrated its great potential to quantitatively assess the lower-limb motor dysfunction of CP children. SCA scores of the CP group (57.00 ± 16.78) were found to be significantly less (p < 0.01) than that of the control group (AD group: 95.74 ± 2.04; TD group: 84.19 ± 11.76). Significance. The innovative quantitative results of this study can help us to better understand muscle synergy abnormality in CP children, which is related to their motor dysfunction and even the physiological change in their nervous system.

  15. Suboptimal Muscle Synergy Activation Patterns Generalize their Motor Function across Postures.

    PubMed

    Sohn, M Hongchul; Ting, Lena H

    2016-01-01

    We used a musculoskeletal model to investigate the possible biomechanical and neural bases of using consistent muscle synergy patterns to produce functional motor outputs across different biomechanical conditions, which we define as generalizability. Experimental studies in cats demonstrate that the same muscle synergies are used during reactive postural responses at widely varying configurations, producing similarly-oriented endpoint force vectors with respect to the limb axis. However, whether generalizability across postures arises due to similar biomechanical properties or to neural selection of a particular muscle activation pattern has not been explicitly tested. Here, we used a detailed cat hindlimb model to explore the set of feasible muscle activation patterns that produce experimental synergy force vectors at a target posture, and tested their generalizability by applying them to different test postures. We used three methods to select candidate muscle activation patterns: (1) randomly-selected feasible muscle activation patterns, (2) optimal muscle activation patterns minimizing muscle effort at a given posture, and (3) generalizable muscle activation patterns that explicitly minimized deviations from experimentally-identified synergy force vectors across all postures. Generalizability was measured by the deviation between the simulated force direction of the candidate muscle activation pattern and the experimental synergy force vectors at the test postures. Force angle deviations were the greatest for the randomly selected feasible muscle activation patterns (e.g., >100°), intermediate for effort-wise optimal muscle activation patterns (e.g., ~20°), and smallest for generalizable muscle activation patterns (e.g., <5°). Generalizable muscle activation patterns were suboptimal in terms of effort, often exceeding 50% of the maximum possible effort (cf. ~5% in minimum-effort muscle activation patterns). The feasible muscle activation ranges of individual

  16. Suboptimal Muscle Synergy Activation Patterns Generalize their Motor Function across Postures

    PubMed Central

    Sohn, M. Hongchul; Ting, Lena H.

    2016-01-01

    We used a musculoskeletal model to investigate the possible biomechanical and neural bases of using consistent muscle synergy patterns to produce functional motor outputs across different biomechanical conditions, which we define as generalizability. Experimental studies in cats demonstrate that the same muscle synergies are used during reactive postural responses at widely varying configurations, producing similarly-oriented endpoint force vectors with respect to the limb axis. However, whether generalizability across postures arises due to similar biomechanical properties or to neural selection of a particular muscle activation pattern has not been explicitly tested. Here, we used a detailed cat hindlimb model to explore the set of feasible muscle activation patterns that produce experimental synergy force vectors at a target posture, and tested their generalizability by applying them to different test postures. We used three methods to select candidate muscle activation patterns: (1) randomly-selected feasible muscle activation patterns, (2) optimal muscle activation patterns minimizing muscle effort at a given posture, and (3) generalizable muscle activation patterns that explicitly minimized deviations from experimentally-identified synergy force vectors across all postures. Generalizability was measured by the deviation between the simulated force direction of the candidate muscle activation pattern and the experimental synergy force vectors at the test postures. Force angle deviations were the greatest for the randomly selected feasible muscle activation patterns (e.g., >100°), intermediate for effort-wise optimal muscle activation patterns (e.g., ~20°), and smallest for generalizable muscle activation patterns (e.g., <5°). Generalizable muscle activation patterns were suboptimal in terms of effort, often exceeding 50% of the maximum possible effort (cf. ~5% in minimum-effort muscle activation patterns). The feasible muscle activation ranges of individual

  17. Synergy of β-Lactams with Vancomycin against Methicillin-Resistant Staphylococcus aureus: Correlation of Disk Diffusion and Checkerboard Methods.

    PubMed

    Sy, Cheng Len; Huang, Tsi-Shu; Chen, Chii Shiang; Chen, Yao-Shen; Tsai, Hung-Chin; Wann, Shue-Renn; Wu, Kuan-Sheng; Chen, Jui-Kuang; Lee, Susan Shin-Jung; Liu, Yung-Ching

    2016-03-01

    Modified disk diffusion (MDD) and checkerboard tests were employed to assess the synergy of combinations of vancomycin and β-lactam antibiotics for 59 clinical isolates of methicillin-resistant Staphylococcus aureus (MRSA) and Mu50 (ATCC 700699). Bacterial inocula equivalent to 0.5 and 2.0 McFarland standard were inoculated on agar plates containing 0, 0.5, 1, and 2 μg/ml of vancomycin. Oxacillin-, cefazolin-, and cefoxitin-impregnated disks were applied to the surface, and the zones of inhibition were measured at 24 h. The CLSI-recommended checkerboard method was used as a reference to detect synergy. The MICs for vancomycin were determined using the Etest method, broth microdilution, and the Vitek 2 automated system. Synergy was observed with the checkerboard method in 51% to 60% of the isolates when vancomycin was combined with any β-lactam. The fractional inhibitory concentration indices were significantly lower in MRSA isolates with higher vancomycin MIC combinations (P < 0.05). The overall agreement between the MDD and checkerboard methods to detect synergy in MRSA isolates with bacterial inocula equivalent to McFarland standard 0.5 were 33.0% and 62.5% for oxacillin, 45.1% and 52.4% for cefazolin, and 43.1% and 52.4% for cefoxitin when combined with 0.5 and 2 μg/ml of vancomycin, respectively. Based on our study, the simple MDD method is not recommended as a replacement for the checkerboard method to detect synergy. However, it may serve as an initial screening method for the detection of potential synergy when it is not feasible to perform other labor-intensive synergy tests.

  18. Microspacecraft missions and systems

    NASA Technical Reports Server (NTRS)

    Jones, Ross M.

    1989-01-01

    The microspacecraft is defined as a fully functional spacecraft whose mass is on the order of 10 kg or less. The results of a recent microspacecraft workshop are reviewed. The workshop concluded that microspacecraft are feasible and can be enabling for missions that require multiple simultaneous measurements displaced in position or very high mission delta-VSDIO-s. The paper includes discussions of science objectives and instruments as well as potential missions. Potential missions include a very close approach to the sun, determining the origin of gamma ray bursters and a search for gravity waves. Technology for microspacecraft is coming from the 'Lightsat' or small satellite community and developments sponsored by the SDIO. Concepts for microspacecraft power and telecommunications subsystems developed at the JPL are presented. Due to their small size, microspacecraft can be launched by traditional chemical rockets and also unconventional launchers such as electromagnetic launchers.

  19. An interstellar precursor mission

    NASA Technical Reports Server (NTRS)

    Jaffe, L. D.; Ivie, C.; Lewis, J. C.; Lipes, R. G.; Norton, H. N.; Stearns, J. W.; Stimpson, L.; Weissman, P.

    1977-01-01

    A mission out of the planetary system, with launch about the year 2000, could provide valuable scientific data as well as test some of the technology for a later mission to another star. Primary scientific objectives for the precursor mission concern characteristics of the heliopause, the interstellar medium, stellar distances (by parallax measurements), low energy cosmic rays, interplanetary gas distribution, and mass of the solar system. Secondary objectives include investigation of Pluto. Candidate science instruments are suggested. Individual spacecraft systems for the mission were considered, technology requirements and problem areas noted, and a number of recommendations made for technology study and advanced development. The most critical technology needs include attainment of 50-yr spacecraft lifetime and development of a long-life NEP system.

  20. The LISA Pathfinder Mission

    NASA Astrophysics Data System (ADS)

    McNamara, Paul

    2013-04-01

    LISA Pathfinder, the second of the European Space Agency's Small Missions for Advanced Research in Technology (SMART), is a dedicated technology validation mission for future interferometric spaceborne gravitational wave observatories, for example the proposed eLISA mission. The technologies required for eLISA are many and extremely challenging. This coupled with the fact that some flight hardware cannot be fully tested on ground due to Earth-induced noise, led to the implementation of the LISA Pathfinder mission to test the critical eLISA technologies in a flight environment. LISA Pathfinder essentially mimics one arm of the eLISA constellation by shrinking the 1 million kilometre armlength down to a few tens of centimetres, giving up the sensitivity to gravitational waves, but keeping the measurement technology: the distance between the two test masses is measured using a laser interferometric technique similar to one aspect of the eLISA interferometry system. The scientific objective of the LISA Pathfinder mission consists then of the first in-flight test of low frequency gravitational wave detection metrology. Here I will present an overview of the mission, focusing on scientific and technical goals, followed by the current status of the project.

  1. The United States' Next Generation of Atmospheric Composition and Coastal Ecosystem Measurements: NASA's Geostationary Coastal and Air Pollution Events (GEO-CAPE) Mission

    NASA Technical Reports Server (NTRS)

    Fishman, J.; Iraci, Laura T.; Al-Saddi, J.; Chance, K.; Chavez, F.; Chin, M.; Coble, P.; Davis, C.; DiGiacomo, P. M.; Edwards, D.; Eldering, A.; Goes, J.; Herman, J.; Hu, C.; Jacob, D. J.; Jordan, C.; Kawa, S. R.; Key, R.; Liu, X.; Lohrenz, S.; Mannino, A.; Natraj, V.; Neil, D.; Neu, J.; Newchurch, M.; Pickering, K.; Salisbury, J.; Sosik, H.; Subramaniam, A.; Tzortziou, M; Wang, J.; Wang, M.

    2012-01-01

    The Geostationary Coastal and Air Pollution Events (GEO-CAPE) mission was recommended by the National Research Council's (NRC's) Earth Science Decadal Survey to measure tropospheric trace gases and aerosols and coastal ocean phytoplankton, water quality, and biogeochemistry from geostationary orbit, providing continuous observations within the field of view. To fulfill the mandate and address the challenge put forth by the NRC, two GEO-CAPE Science Working Groups (SWGs), representing the atmospheric composition and ocean color disciplines, have developed realistic science objectives using input drawn from several community workshops. The GEO-CAPE mission will take advantage of this revolutionary advance in temporal frequency for both of these disciplines. Multiple observations per day are required to explore the physical, chemical, and dynamical processes that determine tropospheric composition and air quality over spatial scales ranging from urban to continental, and over temporal scales ranging from diurnal to seasonal. Likewise, high-frequency satellite observations are critical to studying and quantifying biological, chemical, and physical processes within the coastal ocean. These observations are to be achieved from a vantage point near 95deg-100degW, providing a complete view of North America as well as the adjacent oceans. The SWGs have also endorsed the concept of phased implementation using commercial satellites to reduce mission risk and cost. GEO-CAPE will join the global constellation of geostationary atmospheric chemistry and coastal ocean color sensors planned to be in orbit in the 2020 time frame.

  2. Organ/Tissue absorbed doses measured with a human phantom torso in the 9th Shuttle-Mir Mission (STS-91).

    PubMed

    Yasuda, H; Komiyama, T; Fujitaka, K

    1999-09-01

    Organ/Tissue absorbed doses were measured with a life-size human phantom torso in the 9th Shuttle/Mir Mission (STS-91) from June 2 to 12, 1998. This is the first attempt to measure directly organ/tissue doses over a whole human body in space. The absorbed dose was measured by combination of two integrating detectors: thermo- luminescent dosemeter of Mg2SiO4: Tb (TDMS) and plastic nuclear track detector (PNTD). Both detectors were calibrated on ground using high-energy charged-particle beams. The detectors were packed in 59 cases of tissue-equivalent resin; and put into the positions of radiologically important organs and tissues in the phantom. Efficiency reductions of TDMS for high-LET particles were corrected based on the LET-differential particle fluence of space radiation measured with PNTDs. The accumulated absorbed doses during this 9.8-days mission at low-earth orbit (400 km x 51.6 degrees) ranged from 1.6 mGy at colon to 2.6 mGy at bone surface (shoulder) with a variation factor of 1.6. The absorbed doses at some internal organs were higher than the skin dose. This fact is important from the viewpoint of radiological protection for astronauts.

  3. 3D Ion and Electron Distribution Function Measurements from the Fast Plasma Investigation on the Magnetospheric Multiscale Mission

    NASA Astrophysics Data System (ADS)

    Giles, B. L.; Pollock, C. J.; Avanov, L. A.; Barrie, A. C.; Burch, J. L.; Chandler, M. O.; Clark, G. B.; Coffey, V. N.; Dickson, C.; Dorelli, J.; Ergun, R. E.; Fuselier, S. A.; Gershman, D. J.; Gliese, U.; Holland, M. P.; Jacques, A. D.; Kreisler, S.; Lavraud, B.; MacDonald, E.; Mauk, B.; Moore, T. E.; Mukai, T.; Nakamura, R.; Paterson, W. R.; Rager, A. C.; Saito, Y.; Salo, C.; Sauvaud, J. A.; Torbert, R. B.; Vinas, A. F.; Yokota, S.

    2015-12-01

    The primary focus of the Magnetospheric Multiscale (MMS) mission, launched in March 2015, is magnetic reconnection and associated processes. Understanding hinges critically on the kinetic physics that allows reconnection to take place. The Fast Plasma Investigation (FPI) provides electron and ion distribution functions at 4.5s cadence and, for select periods of time, at cadences of 30ms for electrons and 150ms for ions. These select time periods are chosen after in situ acquisition based on inspection of the low resolution data. Thus the FPI provides, independent of spacecraft spin rate, the time resolution needed to resolve the small, fast-moving reconnection diffusion regions. The first mission phase focuses on the dayside magnetopause and this presentation is intended to demonstrate the capabilities of FPI to resolve the important spatial scales relevant to the reconnection process. Magnetopause and other boundary crossings will be examined and the phase-space trajectories identified at the tetrahedral satellite locations through analysis of the 3D distribution functions.

  4. Measurements of nitric acid, carboxylic acids, and selected aerosol species for the NASA/GTE Pacific Mission - West (PEM-WEST)

    NASA Technical Reports Server (NTRS)

    Talbot, Robert W.; Dibb, Jack E.

    1993-01-01

    The research investigation funded through this grant to the University of New Hampshire was performed during a major field expedition conducted by the NASA Tropospheric Chemistry Program. The NASA Global Tropospheric Experiment (GTE) executed an airborne science mission (PEM-WEST A) aboard the NASA Ames DC-8 over the Pacific Ocean during Sep./Oct. 1981. The atmosphere over the central Pacific Ocean is the only major region in the Northern Hemisphere that is relatively free from direct anthropogenic influence. Thus, this environment is ideally suited to study the natural biogeochemical cycles of carbon, nitrogen, ozone, sulfur, and aerosols without serious confounding problems related to anthropogenic emissions. Asian sources account for about 17 percent of the global budgets of nitrogen oxides (NO(x)) and sulfur dioxide (SO2). The Pacific Rim region therefore provides the opportunity to study the anthropogenic impact on natural atmospheric chemical cycles. The PEM-WEST A flights were focused on contrasting the chemistry of 'clean' air over the central Pacific with anthropogenically impacted air advected off the Asian continent. The principal objectives of PEM-WEST A were to investigate the atmospheric chemistry of ozone (O3) and its precursors, and to study important aspects of the atmospheric sulfur cycle over the western Pacific Ocean. Measurements conducted by the University of New Hampshire contributed directly to both of these objectives. Subsequent PEM-WEST field missions are planned by GTE in the mid-1990's to contrast atmospheric chemistry documented during PEM-WEST A with other time periods. This report presents preliminary findings from the PEM-WEST A field mission. Data interpretation is currently ongoing with the goal of manuscript submission of scientific results to a special issue of the Journal of Geophysical Research-Atmospheres in Feb. 1994. The reader is strongly encouraged to review this suite of profession articles to appreciate the overall

  5. Representation of Muscle Synergies in the Primate Brain

    PubMed Central

    d'Avella, Andrea; Roh, Jinsook; Carmena, Jose M.; Bizzi, Emilio

    2015-01-01

    Evidence suggests that the CNS uses motor primitives to simplify movement control, but whether it actually stores primitives instead of computing solutions on the fly to satisfy task demands is a controversial and still-unanswered possibility. Also in contention is whether these primitives take the form of time-invariant muscle coactivations (“spatial” synergies) or time-varying muscle commands (“spatiotemporal” synergies). Here, we examined forelimb muscle patterns and motor cortical spiking data in rhesus macaques (Macaca mulatta) handling objects of variable shape and size. From these data, we extracted both spatiotemporal and spatial synergies using non-negative decomposition. Each spatiotemporal synergy represents a sequence of muscular or neural activations that appeared to recur frequently during the animals' behavior. Key features of the spatiotemporal synergies (including their dimensionality, timing, and amplitude modulation) were independently observed in the muscular and neural data. In addition, both at the muscular and neural levels, these spatiotemporal synergies could be readily reconstructed as sequential activations of spatial synergies (a subset of those extracted independently from the task data), suggestive of a hierarchical relationship between the two levels of synergies. The possibility that motor cortex may execute even complex skill using spatiotemporal synergies has novel implications for the design of neuroprosthetic devices, which could gain computational efficiency by adopting the discrete and low-dimensional control that these primitives imply. SIGNIFICANCE STATEMENT We studied the motor cortical and forearm muscular activity of rhesus macaques (Macaca mulatta) as they reached, grasped, and carried objects of varied shape and size. We applied non-negative matrix factorization separately to the cortical and muscular data to reduce their dimensionality to a smaller set of time-varying “spatiotemporal” synergies. Each synergy

  6. In-flight verification of avalanche photodiodes: avenue to a low-cost solution to measure suprathermal particles for future missions

    NASA Astrophysics Data System (ADS)

    Ogasawara, K.; Bonnell, J. W.; Christian, E. R.; Desai, M. I.; Grubbs, G. A., II; Jahn, J. M.; Livi, S. A.; Kanekal, S. G.; Llera, K.; McComas, D. J.; Michell, R.; Samara, M.; Vines, S. K.

    2014-12-01

    Flight operation results and plans of Avalanche Photodiodes (APDs) to measure suprathermal particles (a ~few keV up to ~100s of keV) are summarized in this presentation. Ions and electrons in this energy range play crucial roles in many fundamental processes of space plasmas including particle heating and acceleration, providing source material for the energetic particles accelerated near the Sun, the heliosphere, and in geospace. Characterizing these populations poses serious technical challenges because this energy region lies between the two most commonly used particle detection techniques, i.e., that used by thermal or plasma instruments and by Solid-State Detector (SSD)-based energetic particle telescopes, which are limited by typical SSD threshold energies of >10s keV. Our previous work has already demonstrated that a new type of low-noise, low-threshold Avalanche Photo-Diode (APD) has an intrinsic noise level of 0.9 keV, and can therefore enable high-energy resolution measurements of suprathermal electrons and ions. In addition, APDs provide suitable solutions for space plasma detectors in low-cost missions/platform because of their light-weight, small-size, power-saving features. This study presents two low-cost missions (a sounding rocket and a CubeSat) that implement APDs as particle detectors: (1) The Medium-energy Electron SPectrometer (MESP) sensor aboard a sounding rocket was launched from Poker Flat Research Range on 3 March 2014 as a part of Ground-to-Rocket Electrodynamics-Electrons Correlative Experiment (GREECE) mission. MESP successfully measured the precipitating electrons from 2 to 200 keV in 100-ms time resolution by using 2 APDs and 1 SSD. We show the overall results and the comparison with an MCP-based instrument results. (2) The Miniaturized Electron and pRoton Telescope (MERiT) on the Compact Radiation bElt Explorer (CeREs) to study charged particle dynamics in the Earth's radiation belts. CeREs will be flown as part of a 3U CubeSat in a

  7. NASA Tropical Rainfall Measurement Mission (TRMM): Effects of tropical rainfall on upper ocean dynamics, air-sea coupling and hydrologic cycle

    NASA Technical Reports Server (NTRS)

    Lagerloef, Gary; Busalacchi, Antonio J.; Liu, W. Timothy; Lukas, Roger B.; Niiler, Pern P.; Swift, Calvin T.

    1995-01-01

    This was a Tropical Rainfall Measurement Mission (TRMM) modeling, analysis and applications research project. Our broad scientific goals addressed three of the seven TRMM Priority Science Questions, specifically: What is the monthly average rainfall over the tropical ocean areas of about 10(exp 5) sq km, and how does this rain and its variability affect the structure and circulation of the tropical oceans? What is the relationship between precipitation and changes in the boundary conditions at the Earth's surface (e.g., sea surface temperature, soil properties, vegetation)? How can improved documentation of rainfall improve understanding of the hydrological cycle in the tropics?

  8. Synergy as a rationale for phage therapy using phage cocktails

    PubMed Central

    Schmerer, Matthew; Molineux, Ian J.

    2014-01-01

    Where phages are used to treat bacterial contaminations and infections, multiple phages are typically applied at once as a cocktail. When two or more phages in the cocktail attack the same bacterium, the combination may produce better killing than any single phage (synergy) or the combination may be worse than the best single phage (interference). Synergy is of obvious utility, especially if it can be predicted a priori, but it remains poorly documented with few examples known. This study addresses synergy in which one phage improves adsorption by a second phage. It first presents evidence of synergy from an experimental system of two phages and a mucoid E. coli host. The synergy likely stems from a tailspike enzyme produced by one of the phages. We then offer mathematical models and simulations to understand the dynamics of synergy and the enhanced magnitude of bacterial control possible. The models and observations complement each other and suggest that synergy may be of widespread utility and may be predictable from easily observed phenotypes. PMID:25279269

  9. Mars Stratigraphy Mission

    NASA Technical Reports Server (NTRS)

    Budney, C. J.; Miller, S. L.; Cutts, J. A.

    2000-01-01

    The Mars Stratigraphy Mission lands a rover on the surface of Mars which descends down a cliff in Valles Marineris to study the stratigraphy. The rover carries a unique complement of instruments to analyze and age-date materials encountered during descent past 2 km of strata. The science objective for the Mars Stratigraphy Mission is to identify the geologic history of the layered deposits in the Valles Marineris region of Mars. This includes constraining the time interval for formation of these deposits by measuring the ages of various layers and determining the origin of the deposits (volcanic or sedimentary) by measuring their composition and imaging their morphology.

  10. Aerosol Intercomparison Scenarios for the Giovanni Multi-sensor Data Synergy “Advisor”

    NASA Astrophysics Data System (ADS)

    Lloyd, S. A.; Leptoukh, G. G.; Prados, A. I.; Shen, S.; Pan, J.; Rui, H.; Lynnes, C.; Fox, P. A.; West, P.; Zednik, S.

    2009-12-01

    The combination of remotely sensed aerosols datasets can result in synergistic products that are more useful than the sum of the individual datasets. Multi-sensor composite datasets can be constructed by data merging (taking very closely related parameters to create a single merged dataset to increase spatial and/or temporal coverage), cross-calibration (creating long-term climate data records from two very similar parameters), validation (using a parameter from one dataset to validate a closely related parameter in another), cross-comparison (comparing two datasets with different parameters), and data fusion (using two or more parameters to estimate a third parameter). However, care must be taken to note the differences in data provenance and quality when combining heterogeneous datasets. The NASA Goddard Earth Sciences Data and Information Services Center (GES DISC) is currently in its first year of funding for our project Multi-sensor Data Synergy Advisor (MDSA or Giovanni Advisor) under the NASA Earth Science Technology Office (ESTO) Advanced Information Systems and Technology (AIST) program. The Giovanni Advisor will allow researchers to combine and compare aerosol data from multiple sensors using Giovanni, such that scientifically and statistically valid conclusions can be drawn. The Giovanni Advisor will assist the user in determining how to match up two (or more) sets of data that are related, yet significantly different in some way: in the exact phenomenon being measured, the measurement technique, or the location in space-time and/or the quality of the measurements. Failing to account for these differences in merging, validation, cross calibration, comparison or fusion is likely to yield scientifically dubious results. The Giovanni Advisor captures details of each parameter’s attributes, metadata, retrieval heritage, provenance and data quality and flags relevant differences so that the user can make appropriate “apples to apples” comparisons of

  11. NEEMO 7 undersea mission

    NASA Astrophysics Data System (ADS)

    Thirsk, Robert; Williams, David; Anvari, Mehran

    2007-02-01

    The NEEMO 7 mission was the seventh in a series of NASA-coordinated missions utilizing the Aquarius undersea habitat in Florida as a human space mission analog. The primary research focus of this mission was to evaluate telementoring and telerobotic surgery technologies as potential means to deliver medical care to astronauts during spaceflight. The NEEMO 7 crewmembers received minimal pre-mission training to perform selected medical and surgical procedures. These procedures included: (1) use of a portable ultrasound to locate and measure abdominal organs and structures in a crewmember subject; (2) use of a portable ultrasound to insert a small needle and drain into a fluid-filled cystic cavity in a simulated patient; (3) surgical repair of two arteries in a simulated patient; (4) cystoscopy and use of a ureteral basket to remove a renal stone in a simulated patient; and (5) laparoscopic cholecystectomy in a simulated patient. During the actual mission, the crewmembers performed the procedures without or with telementoring and telerobotic assistance from experts located in Hamilton, Ontario. The results of the NEEMO 7 medical experiments demonstrated that telehealth interventions rely heavily on a robust broadband, high data rate telecommunication link; that certain interventional procedures can be performed adequately by minimally trained individuals with telementoring assistance; and that prior clinical experience does not always correlate with better procedural performance. As space missions become longer in duration and take place further from Earth, enhancement of medical care capability and expertise will be required. The kinds of medical technologies demonstrated during the NEEMO 7 mission may play a significant role in enabling the human exploration of space beyond low earth orbit, particularly to destinations such as the Moon and Mars.

  12. [Physiological problems of manned mission to Mars].

    PubMed

    Grigor'ev, A I

    2007-05-01

    Harsh environment and extreme factors related to the supposed exploration missions to Mars are considered as well as concomitant human organism reactions. Further investigations are required to get insight into the effects of gravity ranging from microgravity to hypogravity to hypergravity the crew will be exposed to during this voyage. A special emphasis should be placed on the studies of artificial gravity as an alternative to the existing in-flight countermeasures. Other issues to be attended include transitory states of human organism as a response to changes in gravity, effects of ionizing radiation and synergy of the variety of flight factors, and mechanisms of the hypomagnetic effects.

  13. Measurements of Acidic Gases and Aerosol Species Aboard the NASA DC-8 Aircraft During the Pacific Exploratory Mission in the Tropics (PEM-Tropics A)

    NASA Technical Reports Server (NTRS)

    Talbot, Robert W.; Dibb, Jack E.

    1999-01-01

    We received funding to provide measurements of nitric acid (HNO3), formic acid (HCOOH), acetic acid (CH3COOH), and the chemical composition of aerosols aboard the NASA Ames DC-8 research aircraft during the PEM-Tropics A mission. These measurements were successfully completed and the final data resides in the electronic archive (ftp-gte.larc.nasa.gov) at NASA Langley Research Center. For the PEM-Tropics A mission the University of New Hampshire group was first author of four different manuscripts. Three of these have now appeared in the Journal of Geophysical Research-Atmospheres, included in the two section sections on PEM-Tropics A. The fourth manuscript has just recently been submitted to this same journal as a stand alone paper. All four of these papers are included in this report. The first paper (Influence of biomass combustion emissions on the distribution of acidic trace gases over the Southern Pacific basin during austral springtime) describes the large-scale distributions of HNO3, HCOOH, and CH3COOH. Arguments were presented to show, particularly in the middle tropospheric region, that biomass burning emissions from South America and Africa were a major source of acidic gases over the South Pacific basin. The second paper (Aerosol chemical composition and distribution during the Pacific Exploratory Mission (PEM) Tropics) covers the aerosol aspects of our measurement package. Compared to acidic gases, O3, and selected hydrocarbons, the aerosol chemistry showed little influence from biomass burning emissions. The data collected in the marine boundary layer showed a possible marine source of NH3 to the troposphere in equatorial areas. This source had been speculated on previously, but our data was the first collected from an airborne platform to show its large-scale features. The third paper (Constraints on the age and dilution of Pacific Exploratory Mission-Tropics biomass burning plumes from the natural radionuclide tracer Pb-210) utilized the unexpectedly

  14. Simultaneous Determination of Structure and Event Location Using Body and Surface Wave Measurements at a Single Station: Preparation for Mars Data from the InSight Mission

    NASA Astrophysics Data System (ADS)

    Panning, M. P.; Banerdt, W. B.; Beucler, E.; Blanchette-Guertin, J. F.; Boese, M.; Clinton, J. F.; Drilleau, M.; James, S. R.; Kawamura, T.; Khan, A.; Lognonne, P. H.; Mocquet, A.; van Driel, M.

    2015-12-01

    An important challenge for the upcoming InSight mission to Mars, which will deliver a broadband seismic station to Mars along with other geophysical instruments in 2016, is to accurately determine event locations with the use of a single station. Locations are critical for the primary objective of the mission, determining the internal structure of Mars, as well as a secondary objective of measuring the activity of distribution of seismic events. As part of the mission planning process, a variety of techniques have been explored for location of marsquakes and inversion of structure, and preliminary procedures and software are already under development as part of the InSight Mars Quake and Mars Structure Services. One proposed method, involving the use of recordings of multiple-orbit surface waves, has already been tested with synthetic data and Earth recordings. This method has the strength of not requiring an a priori velocity model of Mars for quake location, but will only be practical for larger events. For smaller events where only first orbit surface waves and body waves are observable, other methods are required. In this study, we implement a transdimensional Bayesian inversion approach to simultaneously invert for basic velocity structure and location parameters (epicentral distance and origin time) using only measurements of body wave arrival times and dispersion of first orbit surface waves. The method is tested with synthetic data with expected Mars noise and Earth data for single events and groups of events and evaluated for errors in both location and structural determination, as well as tradeoffs between resolvable parameters and the effect of 3D crustal variations.

  15. The LISA Pathfinder Mission

    NASA Astrophysics Data System (ADS)

    McNamara, Paul W.

    2013-01-01

    Laser Interferometer Space Antenna (LISA) Pathfinder (formerly known as SMART-2) is a European Space Agency mission designed to pave the way for the joint ESA/NASA LISA mission by testing in flight the critical technologies required for space borne gravitational wave detection; it will put two test masses in a near-perfect gravitational free-fall and control and measure their motion with unprecedented accuracy. This is achieved through technology comprising inertial sensors, high precision laser metrology, drag-free control and an ultra precise micro-Newton propulsion system. LISA Pathfinder (LPF) essentially mimics one arm of space-borne gravitational wave detectors by shrinking the million kilometer scale armlengths down to a few tens of centimeters, giving up the sensitivity to gravitational waves, but keeping the measurement technology. The scientific objective of the LPF mission consists then of the first in-flight test of low frequency gravitational wave detection metrology.

  16. Listening to speech recruits specific tongue motor synergies as revealed by transcranial magnetic stimulation and tissue-Doppler ultrasound imaging.

    PubMed

    D'Ausilio, A; Maffongelli, L; Bartoli, E; Campanella, M; Ferrari, E; Berry, J; Fadiga, L

    2014-01-01

    The activation of listener's motor system during speech processing was first demonstrated by the enhancement of electromyographic tongue potentials as evoked by single-pulse transcranial magnetic stimulation (TMS) over tongue motor cortex. This technique is, however, technically challenging and enables only a rather coarse measurement of this motor mirroring. Here, we applied TMS to listeners' tongue motor area in association with ultrasound tissue Doppler imaging to describe fine-grained tongue kinematic synergies evoked by passive listening to speech. Subjects listened to syllables requiring different patterns of dorso-ventral and antero-posterior movements (/ki/, /ko/, /ti/, /to/). Results show that passive listening to speech sounds evokes a pattern of motor synergies mirroring those occurring during speech production. Moreover, mirror motor synergies were more evident in those subjects showing good performances in discriminating speech in noise demonstrating a role of the speech-related mirror system in feed-forward processing the speaker's ongoing motor plan.

  17. PhyLM: A Mission Design Concept for an Optical/Lidar Instrument to Measure Ocean Productivity and Aerosols from Space

    NASA Technical Reports Server (NTRS)

    Gervin, Janette C.; Behrenfeld, Michael; McClain, Charles R.; Spinhirne, James; Purves, Lloyd; Wood, H. John; Roberto, Michael R.

    2004-01-01

    The Physiology Lidar-Multispectral Mission (PhyLM) is intended to explore the complex ecosystems of our global oceans. New "inversion" methods and improved understanding of marine optics have opened the door to quantifying a range of critical ocean properties. This new information could revolutionize our understanding of global ocean processes, such as phytoplankton growth, harmful algal blooms, carbon fluxes between major pools and the productivity equation. The new science requires new measurements not addressed by currently planned space missions. PhyLM will combine active and advanced passive remote sensing technologies to quantify standing stocks and fluxes of climate-critical components of the Ocean carbon cycle to meet these science providing multispectral bands from the far UV through the near infrared (340 - 1250 nm) at a ground resolution of 250 m. Improved detectors, filters, mirrors, digitization and focal plane design will offer an overall higher-quality data product. The unprecedented accuracy and precision of the absolute water-leaving radiances will support inversion- based quantification of an expanded set of ocean carbon cycle components. The dual- wavelength (532 & 1064 nm) Nd:Yag Lidar will enhance the accuracy and precision of the passive data by providing aerosol profiles for atmospheric correction and coincident active measurements of backscattering. The Lidar will also examine dark-side fluorescence as an additional approach to quantifying phytoplankton biomass in highly productive regions.

  18. Towards an integrated determination of thermodynamic density and gravity parameters using accelerometer measurements on board of low-orbit satellite missions

    NASA Astrophysics Data System (ADS)

    Kusche, Jürgen; Forootan, Ehsan; Löcher, Anno; Henze, Christina; Börger, Klaus; Schall, Judith

    2015-04-01

    The aim of this study is to develop an integrated approach, which allows a) to measure the neutral density of the thermosphere using orbit and accelerometer information from various satellite missions and b) to relate them to operational atmospheric models. The satellite missions to be considered will include low-orbit satellites CHAMP, GRACE, GOCE and SWARM; laser-ranging satellites such as LAGEOS; as well as altimetry satellites such as Topex/Poseidon and Jason 1-2. On the other hand different atmospheric models, including Jacchia-Bowman, MSIS 86, MSISE 90, and NRLMSISE-00 models, will be investigated with respect to their sensitivity to geomagnetic activity and sunspot cycle etc. and they will be used to determine a theoretical acceleration due to air drag. Subsequently, we will compare the "computed" atmospheric density with the total mass density ("observed" atmospheric density) retrieved from accelerometer measurements made on board the satellites during their operational period. Based on these results we finally will develop a method - a so called "integrated approach" - that allows the joint determination of thermospherical, instrumental, and gravitational parameters, as well as their respective errors and correlations.

  19. The capability of satellite borne remote sensors to measure stratospheric trace constituents. Volume 2: Ozone and aerosol related missions

    NASA Technical Reports Server (NTRS)

    Keitz, E. L.

    1978-01-01

    Stratospheric trace constituent measurement requirements are separated into two somewhat overlapping areas. In the first area, it is assumed that the only problem of interest is ozone; its chemistry chain, environmental effects and measurement requirements. In like manner, in the second area it is assumed that the only problem of interest is stratospheric aerosols; their chemistry, effects and measurement requirements.

  20. The LISA Pathfinder mission

    NASA Astrophysics Data System (ADS)

    McNamara, Paul

    2012-07-01

    LISA Pathfinder, the second of the European Space Agency's Small Missions for Advanced Research in Technology (SMART), is a dedicated technology demonstrator for future spaceborne gravitational wave observatories, for example the proposed ESA mission, NGO. The technologies required for NGO are many and extremely challenging. This coupled with the fact that some flight hardware cannot be fully tested on ground due to Earth-induced noise, led to the implementation of the LISA Pathfinder mission to test the critical NGO technologies in a flight environment. LISA Pathfinder essentially mimics one arm of the NGO constellation by shrinking the 1 million kilometre armlength down to a few tens of centimetres, giving up the sensitivity to gravitational waves, but keeping the measurement technology: the distance between the two test masses is measured using a laser interferometric technique similar to one aspect of the NGO interferometry system. The scientific objective of the LISA Pathfinder mission consists then of the first in-flight test of low frequency gravitational wave detection metrology. Here I will present an overview of the mission, focusing on scientific and technical goals, followed by the current status of the project.

  1. Development of Ground-Based Auroral Photometry Techniques Using In-Situ Electron Precipitation Measurements from the GREECE Mission

    NASA Astrophysics Data System (ADS)

    Grubbs, G. A., II; Samara, M.; Michell, R.; Hampton, D.

    2014-12-01

    The Ground-to-Rocket Electrodynamics-Electrons Correlative Experiment (GREECE) mission successfully launched from Poker Flat, Alaska on 03 March 2014 at 11:09:50 UT and reached an apogee of approximately 335 km during a luminous auroral event. Multiple ground-based electron-multiplying charge-coupled device (EMCCD) imagers were positioned at Venetie, Alaska and aimed along magnetic zenith in order to observe the brightness of different auroral emission lines (427.8, 557.7, and 844.6 nm with a 47 degree field of view) at the magnetic footpoint of the payload, near apogee. Emission line brightness data are presented at the footpoint of the rocket flight and correlated with electron characteristics taken by the Acute Precipitating Electron Spectrometer (APES) on-board instrument. Ratios of different auroral emission lines are also compared to previously published methods and models. This research aims to describe the auroral emissions produced from a known precipitating electron distribution, such that we can more accurately use ground-based imaging and photometry to infer the characteristics of the precipitating electrons. These techniques can then be applied over larger scales and longer times, when only multi-spectral imaging data are available with no corresponding in situ data.

  2. SEQUOIA mission

    NASA Astrophysics Data System (ADS)

    Welsh, Barry Y.; Carone, Timothy; Siegmund, Oswald H.; Jelinsky, Patrick N.; Polidan, Ronald S.

    1995-06-01

    We describe a mission concept for the SEQUOIA instrument, which would carry out the first wide-field, far ultraviolet, photometric all-sky survey. SEQUOIA will image the astronomical sky in the 912-1050 angstrom spectral region to a limiting magnitude of 19.5(superscript m) over a one degree field of view with a spatial resolution of less than 30 arc seconds. This mission was proposed to the USRA STEDI program in late 1994, and has been designed as a low cost, fast-track program for launch within 3 years. The spacecraft bus is being provided by Orbital Sciences Corporation (Dulles) and since the entire payload weighs less than 100kg, it can be launched using either a Minuteman or Pegasus rocket.

  3. Generational differences in work-family conflict and synergy.

    PubMed

    Beutell, Nicholas J

    2013-06-19

    This paper examines differences in work-family conflict and synergy among the four generational groups represented in the contemporary workforce: Generation Y Generation X, Baby Boomers, and Matures using data from the 2008 National Study of the Changing Workforce (n = 3,502). Significant generational differences were found for work-family conflict (work interfering with family and family interfering with work) but not for work-family synergy. Mental health and job pressure were the best predictors of work interfering with family conflict for each generational group. Work-family synergy presented a more complex picture. Work-family conflict and synergy were significantly related to job, marital, and life satisfaction. Implications and directions for future research are discussed.

  4. Generational Differences in Work-Family Conflict and Synergy

    PubMed Central

    Beutell, Nicholas J.

    2013-01-01

    This paper examines differences in work-family conflict and synergy among the four generational groups represented in the contemporary workforce: Generation Y Generation X, Baby Boomers, and Matures using data from the 2008 National Study of the Changing Workforce (n = 3,502). Significant generational differences were found for work-family conflict (work interfering with family and family interfering with work) but not for work-family synergy. Mental health and job pressure were the best predictors of work interfering with family conflict for each generational group. Work-family synergy presented a more complex picture. Work-family conflict and synergy were significantly related to job, marital, and life satisfaction. Implications and directions for future research are discussed. PMID:23783221

  5. A Full Mission Simulator Study of Aircrew Performances: the Measurement of Crew Coordination and Decisionmaking Factors and Their Relationships to Flight Task Performances

    NASA Technical Reports Server (NTRS)

    Murphy, M. R.; Randle, R. J.; Tanner, T. A.; Frankel, R. M.; Goguen, J. A.; Linde, C.

    1984-01-01

    Sixteen three man crews flew a full mission scenario in an airline flight simulator. A high level of verbal interaction during instances of critical decision making was located. Each crew flew the scenario only once, without prior knowledge of the scenario problem. Following a simulator run and in accord with formal instructions, each of the three crew members independently viewed and commented on a videotape of their performance. Two check pilot observers rated pilot performance across all crews and, following each run, also commented on the video tape of the crew's performance. A linguistic analysis of voice transcript is made to provide assessment of crew coordination and decision making qualities. Measures of crew coordination and decision making factors are correlated with flight task performance measures.

  6. Brain Connectivity Associated with Muscle Synergies in Humans

    PubMed Central

    Rana, Manku; Yani, Moheb S.; Asavasopon, Skulpan; Fisher, Beth E.

    2015-01-01

    The human brain is believed to simplify the control of the large number of muscles in the body by flexibly combining muscle coordination patterns, termed muscle synergies. However, the neural connectivity allowing the human brain to access and coordinate muscle synergies to accomplish functional tasks remains unknown. Here, we use a surprising pair of synergists in humans, the flexor hallucis longus (FHL, a toe flexor) and the anal sphincter, as a model that we show to be well suited in elucidating the neural connectivity underlying muscle synergy control. First, using electromyographic recordings, we demonstrate that voluntary FHL contraction is associated with synergistic anal sphincter contraction, but voluntary anal sphincter contraction occurs without FHL contraction. Second, using fMRI, we show that two important medial wall motor cortical regions emerge in relation to these tasks: one located more posteriorly that preferentially activates during voluntary FHL contraction and one located more anteriorly that activates during both voluntary FHL contraction as well as voluntary anal sphincter contraction. Third, using transcranial magnetic stimulation, we demonstrate that the anterior region is more likely to generate anal sphincter contraction than FHL contraction. Finally, using a repository resting-state fMRI dataset, we demonstrate that the anterior and posterior motor cortical regions have significantly different functional connectivity with distinct and distant brain regions. We conclude that specific motor cortical regions in humans provide access to different muscle synergies, which may allow distinct brain networks to coordinate muscle synergies during functional tasks. SIGNIFICANCE STATEMENT How the human nervous system coordinates activity in a large number of muscles is a fundamental question. The brain and spinal cord are believed to simplify the control of muscles by grouping them into functional units called muscle synergies. Motor cortex is

  7. Analysis of heliographic missions complementary to ISPM. [International Solar Polar Mission

    NASA Technical Reports Server (NTRS)

    Driver, J. M.

    1984-01-01

    Five concepts were formulated, analyzed, and compared for satisfying heliographic science mission objectives both with and without a concurrent International Solar Polar Mission (ISPM) Spacecraft. Key astrodynamic constraints and performance factors are known from literature for the Lagrange point mission and the sun-synchronous earth orbit mission, but are set forth in this paper for the three solar orbiting missions concepts considered. Any of these five missions should be doable at modest cost since no strong cost drivers were encountered in the analyses. The mission to be flown depends on mission capability to meet science measurement needs more than on strong economic factors. Each mission offers special advantages for particular measurement emphasis. Based on selected qualitative mission discriminators, an overall 'best mission' was selected and described in some detail.

  8. Pioneer Mars surface penetrator mission. Mission analysis and orbiter design

    NASA Technical Reports Server (NTRS)

    1974-01-01

    The Mars Surface Penetrator mission was designed to provide a capability for multiple and diverse subsurface science measurements at a low cost. Equipment required to adapt the Pioneer Venus spacecraft for the Mars mission is described showing minor modifications to hardware. Analysis and design topics which are similar and/or identical to the Pioneer Venus program are briefly discussed.

  9. Do muscle synergies reduce the dimensionality of behavior?

    PubMed

    Kuppuswamy, Naveen; Harris, Christopher M

    2014-01-01

    The muscle synergy hypothesis is an archetype of the notion of Dimensionality Reduction (DR) occurring in the central nervous system due to modular organization. Toward validating this hypothesis, it is important to understand if muscle synergies can reduce the state-space dimensionality while maintaining task control. In this paper we present a scheme for investigating this reduction utilizing the temporal muscle synergy formulation. Our approach is based on the observation that constraining the control input to a weighted combination of temporal muscle synergies also constrains the dynamic behavior of a system in a trajectory-specific manner. We compute this constrained reformulation of system dynamics and then use the method of system balancing for quantifying the DR; we term this approach as Trajectory Specific Dimensionality Analysis (TSDA). We then investigate the consequence of minimization of the dimensionality for a given task. These methods are tested in simulations on a linear (tethered mass) and a non-linear (compliant kinematic chain) system. Dimensionality of various reaching trajectories is compared when using idealized temporal synergies. We show that as a consequence of this Minimum Dimensional Control (MDC) model, smooth straight-line Cartesian trajectories with bell-shaped velocity profiles emerged as the optima for the reaching task. We also investigated the effect on dimensionality due to adding via-points to a trajectory. The results indicate that a trajectory and synergy basis specific DR of behavior results from muscle synergy control. The implications of these results for the synergy hypothesis, optimal motor control, motor development, and robotics are discussed.

  10. Do muscle synergies reduce the dimensionality of behavior?

    PubMed Central

    Kuppuswamy, Naveen; Harris, Christopher M.

    2014-01-01

    The muscle synergy hypothesis is an archetype of the notion of Dimensionality Reduction (DR) occurring in the central nervous system due to modular organization. Toward validating this hypothesis, it is important to understand if muscle synergies can reduce the state-space dimensionality while maintaining task control. In this paper we present a scheme for investigating this reduction utilizing the temporal muscle synergy formulation. Our approach is based on the observation that constraining the control input to a weighted combination of temporal muscle synergies also constrains the dynamic behavior of a system in a trajectory-specific manner. We compute this constrained reformulation of system dynamics and then use the method of system balancing for quantifying the DR; we term this approach as Trajectory Specific Dimensionality Analysis (TSDA). We then investigate the consequence of minimization of the dimensionality for a given task. These methods are tested in simulations on a linear (tethered mass) and a non-linear (compliant kinematic chain) system. Dimensionality of various reaching trajectories is compared when using idealized temporal synergies. We show that as a consequence of this Minimum Dimensional Control (MDC) model, smooth straight-line Cartesian trajectories with bell-shaped velocity profiles emerged as the optima for the reaching task. We also investigated the effect on dimensionality due to adding via-points to a trajectory. The results indicate that a trajectory and synergy basis specific DR of behavior results from muscle synergy control. The implications of these results for the synergy hypothesis, optimal motor control, motor development, and robotics are discussed. PMID:25002844

  11. Synergy optimization and operation management on syndicate complementary knowledge cooperation

    NASA Astrophysics Data System (ADS)

    Tu, Kai-Jan

    2014-10-01

    The number of multi enterprises knowledge cooperation has grown steadily, as a result of global innovation competitions. I have conducted research based on optimization and operation studies in this article, and gained the conclusion that synergy management is effective means to break through various management barriers and solve cooperation's chaotic systems. Enterprises must communicate system vision and access complementary knowledge. These are crucial considerations for enterprises to exert their optimization and operation knowledge cooperation synergy to meet global marketing challenges.

  12. Apollo 16 Mission Report

    NASA Technical Reports Server (NTRS)

    1972-01-01

    Information is provided on the operational and engineering aspects of the Apollo 16 mission. Customary units of measurement are used in those sections of the report pertaining to spacecraft systems and trajectories. The International System of Units is used in sections pertaining to science activities.

  13. The OASIS Mission

    NASA Technical Reports Server (NTRS)

    Adams, James H., Jr.; Barghouty, Abdulnasser F.; Binns, W. robert; Christl, Mark; Cosse, Charles B.; Guzik, T. Gregory; deNolfo, Georgia A.; Hams,Thomas; Isbert, Joachim; Israel, Martin H.; Krizmanic, John F.; Labrador, Allan W.; Link, Jason T.; Mewaldt, Richard A.; Mitchell, Martin H.; Moiseev, Alexander A.; Sasaki, Makoto; Stochaj, Steven J.; Stone, Edward C.; Steitmatter, Robert E.; Waddington, C. Jake; Watts, John W.; Wefel, John P.; Wiedenbeck, Mark E.

    2010-01-01

    The Orbiting Astrophysical Observatory in Space (OASIS) is a mission to investigate Galactic Cosmic Rays (GCRs), a major feature of our galaxy. OASIS will use measurements of GCRs to determine the cosmic ray source, where they are accelerated, to investigate local accelerators and to learn what they can tell us about the interstellar medium and the processes that occur in it. OASIS will determine the astrophysical sources of both the material and acceleration of GCRs by measuring the abundances of the rare actinide nuclei and make direct measurements of the spectrum and anisotropy of electrons at energies up to approx.10 TeV, well beyond the range of the Fermi and AMS missions. OASIS has two instruments. The Energetic Trans-Iron Composition Experiment (ENTICE) instrument measures elemental composition. It resolves individual elements with atomic number (Z) from 10 to 130 and has a collecting power of 60m2.str.yrs, >20 times larger than previous instruments, and with improved resolution. The sample of 10(exp 10) GCRs collected by ENTICE will include .100 well-resolved actinides. The High Energy Particle Calorimeter Telescope (HEPCaT) is an ionization calorimeter that will extend the electron spectrum into the TeV region for the first time. It has 7.5 sq m.str.yrs of collecting power. This talk will describe the scientific objectives of the OASIS mission and its discovery potential. The mission and its two instruments which have been designed to accomplish this investigation will also be described.

  14. Global Precipitation Measurement (GPM) Mission Products and Services at the NASA Goddard Earth Sciences Data and Information Services Center (GES DISC)

    NASA Technical Reports Server (NTRS)

    Ostrenga, D.; Liu, Z.; Vollmer, B.; Teng, W.; Kempler, S.

    2014-01-01

    On February 27, 2014, the NASA Global Precipitation Measurement (GPM) mission was launched to provide the next-generation global observations of rain and snow (http:pmm.nasa.govGPM). The GPM mission consists of an international network of satellites in which a GPM Core Observatory satellite carries both active and passive microwave instruments to measure precipitation and serve as a reference standard, to unify precipitation measurements from a constellation of other research and operational satellites. The NASA Goddard Earth Sciences (GES) Data and Information Services Center (DISC) hosts and distributes GPM data within the NASA Earth Observation System Data Information System (EOSDIS). The GES DISC is home to the data archive for the GPM predecessor, the Tropical Rainfall Measuring Mission (TRMM). Over the past 16 years, the GES DISC has served the scientific as well as other communities with TRMM data and user-friendly services. During the GPM era, the GES DISC will continue to provide user-friendly data services and customer support to users around the world. GPM products currently and to-be available include the following:Level-1 GPM Microwave Imager (GMI) and partner radiometer productsLevel-2 Goddard Profiling Algorithm (GPROF) GMI and partner productsLevel-3 daily and monthly productsIntegrated Multi-satellitE Retrievals for GPM (IMERG) products (early, late, and final) A dedicated Web portal (including user guides, etc.) has been developed for GPM data (http:disc.sci.gsfc.nasa.govgpm). Data services that are currently and to-be available include Google-like Mirador (http:mirador.gsfc.nasa.gov) for data search and access; data access through various Web services (e.g., OPeNDAP, GDS, WMS, WCS); conversion into various formats (e.g., netCDF, HDF, KML (for Google Earth), ASCII); exploration, visualization, and statistical online analysis through Giovanni (http:giovanni.gsfc.nasa.gov); generation of value-added products; parameter and spatial subsetting; time

  15. Global Precipitation Measurement (GPM) Mission Products and Services at the NASA Goddard Earth Sciences (GES) Data and Information Services Center (DISC)

    NASA Technical Reports Server (NTRS)

    Liu, Zhong; Ostrenga, D.; Vollmer, B.; Deshong, B.; Greene, M.; Teng, W.; Kempler, S. J.

    2015-01-01

    On February 27, 2014, the NASA Global Precipitation Measurement (GPM) mission was launched to provide the next-generation global observations of rain and snow (http:pmm.nasa.govGPM). The GPM mission consists of an international network of satellites in which a GPM Core Observatory satellite carries both active and passive microwave instruments to measure precipitation and serve as a reference standard, to unify precipitation measurements from a constellation of other research and operational satellites. The NASA Goddard Earth Sciences (GES) Data and Information Services Center (DISC) hosts and distributes GPM data within the NASA Earth Observation System Data Information System (EOSDIS). The GES DISC is home to the data archive for the GPM predecessor, the Tropical Rainfall Measuring Mission (TRMM). Over the past 16 years, the GES DISC has served the scientific as well as other communities with TRMM data and user-friendly services. During the GPM era, the GES DISC will continue to provide user-friendly data services and customer support to users around the world. GPM products currently and to-be available include the following: 1. Level-1 GPM Microwave Imager (GMI) and partner radiometer products. 2. Goddard Profiling Algorithm (GPROF) GMI and partner products. 3. Integrated Multi-satellitE Retrievals for GPM (IMERG) products. (early, late, and final)A dedicated Web portal (including user guides, etc.) has been developed for GPM data (http:disc.sci.gsfc.nasa.govgpm). Data services that are currently and to-be available include Google-like Mirador (http:mirador.gsfc.nasa.gov) for data search and access; data access through various Web services (e.g., OPeNDAP, GDS, WMS, WCS); conversion into various formats (e.g., netCDF, HDF, KML (for Google Earth), ASCII); exploration, visualization, and statistical online analysis through Giovanni (http:giovanni.gsfc.nasa.gov); generation of value-added products; parameter and spatial subsetting; time aggregation; regridding; data

  16. Global Precipitation Measurement (GPM) Mission Products and Services at the NASA Goddard Earth Sciences (GES) Data and Information Services Center (DISC)

    NASA Astrophysics Data System (ADS)

    Ostrenga, D.; Liu, Z.; Vollmer, B.; Teng, W. L.; Kempler, S. J.

    2014-12-01

    On February 27, 2014, the NASA Global Precipitation Measurement (GPM) mission was launched to provide the next-generation global observations of rain and snow (http://pmm.nasa.gov/GPM). The GPM mission consists of an international network of satellites in which a GPM "Core Observatory" satellite carries both active and passive microwave instruments to measure precipitation and serve as a reference standard, to unify precipitation measurements from a constellation of other research and operational satellites. The NASA Goddard Earth Sciences (GES) Data and Information Services Center (DISC) hosts and distributes GPM data within the NASA Earth Observation System Data Information System (EOSDIS). The GES DISC is home to the data archive for the GPM predecessor, the Tropical Rainfall Measuring Mission (TRMM). Over the past 16 years, the GES DISC has served the scientific as well as other communities with TRMM data and user-friendly services. During the GPM era, the GES DISC will continue to provide user-friendly data services and customer support to users around the world. GPM products currently and to-be available include the following: Level-1 GPM Microwave Imager (GMI) and partner radiometer products Goddard Profiling Algorithm (GPROF) GMI and partner products Integrated Multi-satellitE Retrievals for GPM (IMERG) products (early, late, and final) A dedicated Web portal (including user guides, etc.) has been developed for GPM data (http://disc.sci.gsfc.nasa.gov/gpm). Data services that are currently and to-be available include Google-like Mirador (http://mirador.gsfc.nasa.gov/) for data search and access; data access through various Web services (e.g., OPeNDAP, GDS, WMS, WCS); conversion into various formats (e.g., netCDF, HDF, KML (for Google Earth), ASCII); exploration, visualization, and statistical online analysis through Giovanni (http://giovanni.gsfc.nasa.gov); generation of value-added products; parameter and spatial subsetting; time aggregation; regridding

  17. Similarity of different lifting techniques in trunk muscular synergies.

    PubMed

    Mirakhorlo, Mojtaba; Azghani, Mahmood Reza

    2015-01-01

    Lifting is known to be a major reason for musculoskeletal injuries. In this way, lifting has a crucial effect on human musculoskeletal system and intensity of this impact depends slightly on the selection of techniques. Underlying mechanisms by which trunk muscles are executed during performing lifting are central to biomechanical study of lifting techniques. In the current study, the trunk muscular control mechanisms of lifting are investigated using the synergetic control analysis. Non-negative matrix factorization has been used to extract trunk muscles synergies from their activities - which are computed by a previously validated musculoskeletal model - during different lifting techniques aimed to investigate motor control strategies. Three lifting techniques are considered; stoop, squat and semi-squat. Three synergies account for variety among muscle activation of trunk muscles with related VAF (Variability Account For) of over 95%. Trunk muscle synergy weightings and related time-varying coefficients are calculated for each kind of lifting techniques considering three synergies. Paired correlation coefficients between muscle synergies are all greater than 0.91 (P < 0.05) suggesting that trunk muscle synergies are similar for examined techniques in spite of their kinematic diversity. This similarity can be a result of their common ultimate goal. The acquired results also elucidate the mechanisms of muscle activation patterns that can be exploited in future studies and ergonomic interventions.

  18. STS-52 Mission Insignia

    NASA Technical Reports Server (NTRS)

    1992-01-01

    The STS-52 insignia, designed by the mission's crew members, features a large gold star to symbolize the crew's mission on the frontiers of space. A gold star is often used to symbolize the frontier period of the American West. The red star in the shape of the Greek letter lambda represents both the laser measurements taken from the Laser Geodynamic Satellite (LAGEOS II) and the Lambda Point Experiment, which was part of the United States Microgravity Payload (USMP-l). The remote manipulator and maple leaf are emblematic of the Canadian payload specialist who conducted a series of Canadian flight experiments (CANEX-2), including the Space Vision System test.

  19. Global mental health and neuroscience: potential synergies.

    PubMed

    Stein, Dan J; He, Yanling; Phillips, Anthony; Sahakian, Barbara J; Williams, John; Patel, Vikram

    2015-02-01

    Global mental health has emerged as an important specialty. It has drawn attention to the burden of mental illness and to the relative gap in mental health research and services around the world. Global mental health has raised the question of whether this gap is a developmental issue, a health issue, a human rights issue, or a combination of these issues-and it has raised awareness of the need to develop new approaches for building capacity, mobilising resources, and closing the research and treatment gap. Translational neuroscience has also advanced. It comprises an important conceptual approach to understanding the neurocircuitry and molecular basis of mental disorders, to rethinking how best to undertake research on the aetiology, assessment, and treatment of these disorders, with the ultimate aim to develop entirely new approaches to prevention and intervention. Some apparent contrasts exist between these fields; global mental health emphasises knowledge translation, moving away from the bedside to a focus on health systems, whereas translational neuroscience emphasises molecular neuroscience, focusing on transitions between the bench and bedside. Meanwhile, important opportunities exist for synergy between the two paradigms, to ensure that present opportunities in mental health research and services are maximised. Here, we review the approaches of global mental health and clinical neuroscience to diagnosis, pathogenesis, and intervention, and make recommendations for facilitating an integration of these two perspectives.

  20. Synergies with CTA and VHE Astrophysics

    NASA Astrophysics Data System (ADS)

    Hofmann, W.

    2016-06-01

    The Cherenkov Telescope Array (CTA) is a next-generation observatory for very high energy (VHE) gamma-ray astronomy. With one array of imaging atmospheric Cherenkov telescopes each in the northern and southern hemispheres, CTA will provide full-sky coverage, enhance flux sensitivity by one order of magnitude compared to current instruments, cover gamma-ray energies from 20 GeV to 300 TeV, and provide angular resolution of a few arc-minutes across a multi-degree field of view. In the context of its Key Science Projects (KSPs), CTA will conduct a census of particle acceleration in the universe, with quarter-sky extragalactic, full-plane Galactic and Large Magellanic Cloud surveys planned. Additional KSPs are focused on transients, acceleration up to PeV energies in our own galaxy, active galaxies, star-forming systems on a wide range of scales, and the Perseus cluster of galaxies. A major element of the programme is the search for dark matter, in particular the annihilation signature of WIMPs. Like for current-generation VHE instruments, CTA science will strongly rely upon multiwavelength observations of sources, with the X-ray domain playing a particularly crucial role. The presentation will briefly introduce CTA, summarize its science perspectives, and address the synergies with instruments in other wavebands.

  1. Non-Contact Measurement of the Spectral Emissivity through Active/Passive Synergy of CO2 Laser at 10.6 µm and 102F FTIR (Fourier Transform Infrared) Spectrometer

    PubMed Central

    Zhang, Ren-Hua; Su, Hong-Bo; Tian, Jing; Mi, Su-Juan; Li, Zhao-Liang

    2016-01-01

    In the inversion of land surface temperature (LST) from satellite data, obtaining the information on land surface emissivity is most challenging. How to solve both the emissivity and the LST from the underdetermined equations for thermal infrared radiation is a hot research topic related to quantitative thermal infrared remote sensing. The academic research and practical applications based on the temperature-emissivity retrieval algorithms show that directly measuring the emissivity of objects at a fixed thermal infrared waveband is an important way to close the underdetermined equations for thermal infrared radiation. Based on the prior research results of both the authors and others, this paper proposes a new approach of obtaining the spectral emissivity of the object at 8–14 µm with a single-band CO2 laser at 10.6 µm and a 102F FTIR spectrometer. Through experiments, the spectral emissivity of several key samples, including aluminum plate, iron plate, copper plate, marble plate, rubber sheet, and paper board, at 8–14 µm is obtained, and the measured data are basically consistent with the hemispherical emissivity measurement by a Nicolet iS10 FTIR spectrometer for the same objects. For the rough surface of materials, such as marble and rusty iron, the RMSE of emissivity is below 0.05. The differences in the field of view angle and in the measuring direction between the Nicolet FTIR method and the method proposed in the paper, and the heterogeneity in the degree of oxidation, polishing and composition of the samples, are the main reasons for the differences of the emissivities between the two methods. PMID:27347964

  2. Global phosphorus scarcity: identifying synergies for a sustainable future.

    PubMed

    Neset, Tina-Simone S; Cordell, Dana

    2012-01-15

    Global food production is dependent on constant inputs of phosphorus. In the current system this phosphorus is not predominantly derived from organic recycled waste, but to a large degree from phosphate-rock based mineral fertilisers. However, phosphate rock is a finite resource that cannot be manufactured. Our dependency therefore needs to be addressed from a sustainability perspective in order to ensure global food supplies for a growing global population. The situation is made more urgent by predictions that, for example, the consumption of resource intensive foods and the demand for biomass energy will increase. The scientific and societal debate has so far been focussed on the exact timing of peak phosphorus and on when the total depletion of the global reserves will occur. Even though the timing of these events is important, all dimensions of phosphorus scarcity need to be addressed in a manner which acknowledges linkages to other sustainable development challenges and which takes into consideration the synergies between different sustainability measures. Many sustainable phosphorus measures have positive impacts on other challenges; for example, shifting global diets to more plant-based foods would not only reduce global phosphorus consumption, but also reduce greenhouse gas emissions, reduce nitrogen fertiliser demand and reduce water consumption.

  3. The LISA Pathfinder Mission

    NASA Technical Reports Server (NTRS)

    Stebbins, Robin

    2009-01-01

    LISA Pathfinder (formerly known as SMART-2) is a European Space Agency (ESA) mission designed to pave the way for the joint ESA/NASA Laser Interferometer Space Antenna (LISA) mission by testing in flight the critical technologies required for spaceborne gravitational wave detection: it will put two test masses in a near-perfect gravitational free-fall and control and measure their motion with unprecedented accuracy. LISA Pathfinder is currently in the integration and test phase of the development, and is due to be launched on a dedicated launch vehicle in late 2011, with first results on the performance of the system being available approx 6 months later. This poster will describe the mission in detail, give the current status of the spacecraft development, and highlight the future milestones in the integration and test campaign.

  4. Geospace Magnetospheric Dynamics Mission

    NASA Technical Reports Server (NTRS)

    Russell, C. T.; Kluever, C.; Burch, J. L.; Fennell, J. F.; Hack, K.; Hillard, G. B.; Kurth, W. S.; Lopez, R. E.; Luhmann, J. G.; Martin, J. B.; Hanson, J. E.

    1998-01-01

    The Geospace Magnetospheric Dynamics (GMD) mission is designed to provide very closely spaced, multipoint measurements in the thin current sheets of the magnetosphere to determine the relation between small scale processes and the global dynamics of the magnetosphere. Its trajectory is specifically designed to optimize the time spent in the current layers and to minimize radiation damage to the spacecraft. Observations are concentrated in the region 8 to 40 R(sub E) The mission consists of three phases. After a launch into geostationary transfer orbit the orbits are circularized to probe the region between geostationary orbit and the magnetopause; next the orbit is elongated keeping perigee at the magnetopause while keeping the line of apsides down the tail. Finally, once apogee reaches 40 R(sub E) the inclination is changed so that the orbit will match the profile of the noon-midnight meridian of the magnetosphere. This mission consists of 4 solar electrically propelled vehicles, each with a single NSTAR thruster utilizing 100 kg of Xe to tour the magnetosphere in the course of a 4.4 year mission, the same thrusters that have been successfully tested on the Deep Space-1 mission.

  5. Common muscle synergies for control of center of mass and force in nonstepping and stepping postural behaviors.

    PubMed

    Chvatal, Stacie A; Torres-Oviedo, Gelsy; Safavynia, Seyed A; Ting, Lena H

    2011-08-01

    We investigated muscle activity, ground reaction forces, and center of mass (CoM) acceleration in two different postural behaviors for standing balance control in humans to determine whether common neural mechanisms are used in different postural tasks. We compared nonstepping responses, where the base of support is stationary and balance is recovered by returning CoM back to its initial position, with stepping responses, where the base of support is enlarged and balance is recovered by pushing the CoM away from the initial position. In response to perturbations of the same direction, these two postural behaviors resulted in different muscle activity and ground reaction forces. We hypothesized that a common pool of muscle synergies producing consistent task-level biomechanical functions is used to generate different postural behaviors. Two sets of support-surface translations in 12 horizontal-plane directions were presented, first to evoke stepping responses and then to evoke nonstepping responses. Electromyographs in 16 lower back and leg muscles of the stance leg were measured. Initially (∼100-ms latency), electromyographs, CoM acceleration, and forces were similar in nonstepping and stepping responses, but these diverged in later time periods (∼200 ms), when stepping occurred. We identified muscle synergies using non-negative matrix factorization and functional muscle synergies that quantified correlations between muscle synergy recruitment levels and biomechanical outputs. Functional muscle synergies that produce forces to restore CoM position in nonstepping responses were also used to displace the CoM during stepping responses. These results suggest that muscle synergies represent common neural mechanisms for CoM movement control under different dynamic conditions: stepping and nonstepping postural responses.

  6. Measurements at the Planetary Emissivity Laboratory in Support of MARA and the TIR Imager on the JAXA Hayabusa II Mission

    NASA Astrophysics Data System (ADS)

    Helbert, J.; Maturilli, A.; Grott, M.; Knollenberg, J.; Okada, T.; Kührt, E.

    2012-03-01

    At the Planetary Emissivity Laboratory (PEL) at DLR we perform measurements on analog materials to explore the possibility of mineralogical studies with the thermal infrared imager and the radiometer MARA (MAscot RAdiometer) on MASCOT.

  7. Optical, microphysical, mass and geometrical properties of aged volcanic particles observed over Athens, Greece, during the Eyjafjallajökull eruption in April 2010 through synergy of Raman lidar and sunphotometer measurements

    NASA Astrophysics Data System (ADS)

    Kokkalis, P.; Papayannis, A.; Amiridis, V.; Mamouri, R. E.; Veselovskii, I.; Kolgotin, A.; Tsaknakis, G.; Kristiansen, N. I.; Stohl, A.; Mona, L.

    2013-09-01

    Vertical profiles of the optical (extinction and backscatter coefficients, lidar ratio and Ångström exponent), microphysical (mean effective radius, mean refractive index, mean number concentration) and geometrical properties as well as the mass concentration of volcanic particles from the Eyjafjallajökull eruption were retrieved at selected heights over Athens, Greece, using multi-wavelength Raman lidar measurements performed during the period 21-24 April 2010. Aerosol Robotic Network (AERONET) particulate columnar measurements along with inversion schemes were initialized together with lidar observations to deliver the aforementioned products. The well-known FLEXPART (FLEXible PARTicle dispersion model) model used for volcanic dispersion simulations is initiated as well in order to estimate the horizontal and vertical distribution of volcanic particles. Compared with the lidar measurements within the planetary boundary layer over Athens, FLEXPART proved to be a useful tool for determining the state of mixing of ash with other, locally emitted aerosol types. The major findings presented in our work concern the identification of volcanic particles layers in the form of filaments after 7-day transport from the volcanic source (approximately 4000 km away from our site) from the surface and up to 10 km according to the lidar measurements. Mean hourly averaged lidar signals indicated that the layer thickness of volcanic particles ranged between 1.5 and 2.2 km. The corresponding aerosol optical depth was found to vary from 0.01 to 0.18 at 355 nm and from 0.02 up to 0.17 at 532 nm. Furthermore, the corresponding lidar ratios (S) ranged between 60 and 80 sr at 355 nm and 44 and 88 sr at 532 nm. The mean effective radius of the volcanic particles estimated by applying inversion scheme to the lidar data found to vary within the range 0.13-0.38 μm and the refractive index ranged from 1.39+0.009i to 1.48+0.006i. This high variability is most probably attributed to the

  8. European Crew Personal Active Dosimeter (EuCPAD), a novel dosimetry system utilizing operational and scientific synergies for the benefit of humans in space

    NASA Astrophysics Data System (ADS)

    Straube, Ulrich; Berger, Thomas

    A significant expansion of Human presence in space can be recognized over the last decade. Not only the frequency of human space mission did rise, but also time in space, mission duration with extended flights lasting half a year or more are becoming "standard". Despite the challenges to human health and well-being are still significant, or may even increase with mission length and work density. Also radiation exposure in space remains one of the inevitable and dominating factors relevant to crew- health, -safety and therefore mission success. The radiation environment that the space crews are exposed to differs significantly as compared to earth. Exposure in flight exceed doses that are usually received by terrestrial radiation workers on ground. Expanding "medical" demands are not a solely characteristics of current and current and upcoming mission scenarios. Likewise the margins for what is understood as "efficient utilization" for the fully operational science platform ISS, are immense. Understanding, accepting and approaching these challenges ESA-HSO did choose a particular pass of implementation for one of their current developments. Exploiting synergies of research, science and medical operational aspects, the "European Crew Personal Active Dosimeter for Astronauts (EuCPAD)" development exactly addresses these circumstances. It becomes novel part of ESA Radiation Protection Initiative for astronauts. The EuCPAD project aims at the development and manufacturing of an active (powered) dosimeter system to measure astronaut's exposures, support risk assessment dose management by providing a differentiated data set. Final goal is the verification of the system capabilities for medical monitoring at highest standards. The EuCPAD consists of several small portable Personal Active Dosimeters (MU = Mobile Unitas) and a rack mounted docking station “Personal Storage Device (PSD)” for MU storage, data read out and telemetry. The PSD furthermore contains a Tissue

  9. Using system-of-systems simulation modeling and analysis to measure energy KPP impacts for brigade combat team missions.

    SciTech Connect

    Lawton, Craig R.; Welch, Kimberly M.; Kerper, Jessica

    2010-06-01

    The Department of Defense's (DoD) Energy Posture identified dependence of the US Military on fossil fuel energy as a key issue facing the military. Inefficient energy consumption leads to increased costs, effects operational performance and warfighter protection through large and vulnerable logistics support infrastructures. Military's use of energy is a critical national security problem. DoD's proposed metrics Fully Burdened Cost of Fuel and Energy Efficiency Key Performance Parameter (FBCF and Energy KPP) are a positive step to force energy use accountability onto Military programs. The ability to measure impacts of sustainment are required to fully measure Energy KPP. Sandia's work with Army demonstrates the capability to measure performance which includes energy constraint.

  10. Exploratory Analysis of Carbon Dioxide Levels, Ultrasound and Optical Coherence Tomography Measures of the Eye During ISS Missions

    NASA Technical Reports Server (NTRS)

    Schaefer, C.; Coble, C.; Mason, S.; Young, M.; Wear, M. L.; Sargsyan, A.; Garcia, K.; Patel, N.; Gibson, C.; Alexander, D.; Van Baalen, M.

    2017-01-01

    Carbon dioxide (CO2) levels on board the International Space Station (ISS) have typically averaged 2.3 to 5.3 mmHg, with large fluctuations occurring over periods of hours and days. CO2 has effects on cerebral vascular tone, resulting in vasodilation and alteration of cerebral blood flow (CBF). Increased CBF leads to elevated intracranial pressure (ICP), a factor leading to visual disturbances, headaches, and other central nervous system symptoms. Ultrasound of the optic nerve and optical coherence tomography (OCT) provide surrogate measurements of ICP; in-flight measurements of both were implemented as enhanced screening tools for the Visual Impairment/Intracranial Pressure (VIIP) syndrome. This analysis examines the relationships between ambient CO2 levels on ISS, ultrasound and OCT measures of the eye in an effort to understand how CO2 may possibly be associated with VIIP and to inform future analysis of in-flight VIIP data.

  11. Radiometric Performance of the Clouds and The Earth's Radiant Energy System (CERES) Proto-Flight Model on the Tropical Rainfall Measuring Mission (TRMM) Spacecraft for 1998

    NASA Technical Reports Server (NTRS)

    Priestley, Kory J.; Lee, Robert B., III; Green, Richard N.; Thomas, Susan; Wilson, Robert S.

    1999-01-01

    On November 27, 1997 the CERES Proto-Flight Model (PFM) instrument package was launched on the NASA Tropical Rainfall Measuring Mission (TRMM) spacecraft National Space Development Agency) NASA /Japan launch vehicle placed the TRMM spacecraft into a low-inclination 35-deg, 350-km altitude orbit. Analysis of the first thirteen months of on-orbit internal calibration and calibration validation studies indicate that the ground-based radiometric calibrations, which were tied to ITS'90 have been successfully carried into orbit to within 0.12, 0.08, and 0.29 percent for the Total, Window and Shortwave channels respectively. Additionally, these analyses have indicated that on-orbit radiometric stability has remained at levels of better than 0.13. 0.2 and 0.2-percent for the Total Window and Shortwave channels. In TOA these levels correspond to magnitudes of less than 0.3, 0.2 and 0.15 v /sq m.

  12. A synergy-based hand control is encoded in human motor cortical areas

    PubMed Central

    Leo, Andrea; Handjaras, Giacomo; Bianchi, Matteo; Marino, Hamal; Gabiccini, Marco; Guidi, Andrea; Scilingo, Enzo Pasquale; Pietrini, Pietro; Bicchi, Antonio; Santello, Marco; Ricciardi, Emiliano

    2016-01-01

    How the human brain controls hand movements to carry out different tasks is still debated. The concept of synergy has been proposed to indicate functional modules that may simplify the control of hand postures by simultaneously recruiting sets of muscles and joints. However, whether and to what extent synergic hand postures are encoded as such at a cortical level remains unknown. Here, we combined kinematic, electromyography, and brain activity measures obtained by functional magnetic resonance imaging while subjects performed a variety of movements towards virtual objects. Hand postural information, encoded through kinematic synergies, were represented in cortical areas devoted to hand motor control and successfully discriminated individual grasping movements, significantly outperforming alternative somatotopic or muscle-based models. Importantly, hand postural synergies were predicted by neural activation patterns within primary motor cortex. These findings support a novel cortical organization for hand movement control and open potential applications for brain-computer interfaces and neuroprostheses. DOI: http://dx.doi.org/10.7554/eLife.13420.001 PMID:26880543

  13. Optical, microphysical, mass and geometrical properties of aged volcanic particles observed over Athens, Greece, during the Eyjafjallajökull eruption in April 2010 through synergy of Raman lidar and sunphotometer measurements

    NASA Astrophysics Data System (ADS)

    Kokkalis, P.; Papayannis, A.; Amiridis, V.; Mamouri, R. E.; Veselovskii, I.; Kolgotin, A.; Tsaknakis, G.; Kristiansen, N. I.; Stohl, A.; Mona, L.

    2013-02-01

    Vertical profiles of the optical (extinction and backscatter coefficients, lidar ratio and Ångström exponent), microphysical (mean effective radius, mean refractive index, mean number concentration) and geometrical properties, as well as of the mass concentration of volcanic particles from the Eyjafjallajökull eruption were retrieved at selected heights over Athens, Greece using a multi-wavelength Raman lidar system and inversion models, during 21-24 April 2010. Additionally, Aerosol Robotic Network (AERONET) particulate columnar measurements indicated the presence of volcanic particles over our area. Simulations of the volcanic partilcles dispersion, done by the FLEXPART model, confirmed the presence of these particles over Athens. Our lidar data showed volcanic particles layers, in the form of filaments after 7-day transport from the source (approximately 4000 km away from our site) between from ground levels up to nearly 10 km. Over Athens the volcanic particles layers were found to be mixed with locally produced aerosols, inside the Planetary Boundary Layer (PBL). Mean hourly-averaged lidar signals indicated that the layer thickness of volcanic particles, ranged between 1.5 and 2.2 km. The corresponding aerosol optical depth (AOD) found to vary from 0.014 to 0.184 at 355 nm and from 0.017 up to 0.174 at 532 nm. Furthermore, the corresponding lidar ratios (LR) ranged between 59.7-79.6 sr (at 355 nm) and 43.9-88.3 sr (at 532 nm). Additionally, we calculated that the mean effective radius of the volcanic particles was 0.13-0.38 μm, while their refractive index ranged from 1.39+0.009i to 1.48+0.006i. Finally, our data also allowed us to quantitatively compare, for the first time, the volcanic ash concentrations simulated by FLEXPART with those calculated by the inversion code LIRIC, using data sets derived from coincident lidar-AERONET measurements. In general, good agreement was found between simulations and observations, concerning not only the geometrical

  14. Kepler Mission

    NASA Technical Reports Server (NTRS)

    Borucki, William J.; DeVincenzi, D. (Technical Monitor)

    2002-01-01

    The first step in discovering, the extent of life in our galaxy is to determine the number of terrestrial planets in the habitable zone (HZ). The Kepler Mission is a 0.95 m aperture photometer scheduled to be launched in 2006. It is designed to continuously monitor the brightness of 100,000 solar-like stars to detect the transits of Earth-size and larger planets. The depth and repetition time of transits provide the size of the planet relative to the star and its orbital period. When combined with ground-based spectroscopy of these stars to fix the stellar parameters, the true planet radius and orbit scale, hence the relation to the HZ are determined. These spectra are also used to discover the relationships between the characteristics of planets and the stars they orbit. In particular, the association of planet size and occurrence frequency with stellar mass and metallicity will be investigated. Based on the results of the current Doppler - velocity discoveries, over a thousand giant planets will be found. Information on the albedos and densities of those giants showing transits will be obtained. At the end of the four year mission, hundreds of terrestrial planets should be discovered in and near the HZ of their stars if such planets are common. A null result would imply that terrestrial planets in the HZ occur in less than 1% of the stars and that life might be quite rare.

  15. 3D Online Visualization and Synergy of NASA A-Train Data Using Google Earth

    NASA Technical Reports Server (NTRS)

    Chen, Aijun; Kempler, Steven; Leptoukh, Gregory; Smith, Peter

    2010-01-01

    This poster presentation reviews the use of Google Earth to assist in three dimensional online visualization of NASA Earth science and geospatial data. The NASA A-Train satellite constellation is a succession of seven sun-synchronous orbit satellites: (1) OCO-2 (Orbiting Carbon Observatory) (will launch in Feb. 2013), (2) GCOM-W1 (Global Change Observation Mission), (3) Aqua, (4) CloudSat, (5) CALIPSO (Cloud-Aerosol Lidar & Infrared Pathfinder Satellite Observations), (6) Glory, (7) Aura. The A-Train makes possible synergy of information from multiple resources, so more information about earth condition is obtained from the combined observations than would be possible from the sum of the observations taken independently

  16. Prehension synergies and control with referent hand configurations

    PubMed Central

    Friedman, Jason; Kim, Sun Wook; Feldman, Anatol G.; Zatsiorsky, Vladimir M.

    2010-01-01

    We used the framework of the equilibrium-point hypothesis (in its updated form based on the notion of referent configuration) to investigate the multi-digit synergies at two levels of a hypothetical hierarchy involved in prehensile actions. Synergies were analyzed at the thumb–virtual finger (VF) level (VF is an imaginary digit with the mechanical action equivalent to that of the four actual fingers) and at the individual finger level. The subjects performed very quick vertical movements of a handle into a target. A load could be attached off-center to provide a pronation or supination torque. In a few trials, the handle was unexpectedly fixed to the table and the digits slipped off the sensors. In such trials, the hand stopped at a higher vertical position and rotated into pronation or supination depending on the expected torque. The aperture showed non-monotonic changes with a large, fast decrease and further increase, ending up with a smaller distance between the thumb and the fingers as compared to unperturbed trials. Multi-digit synergies were quantified using indices of co-variation between digit forces and moments of force across unperturbed trials. Prior to the lifting action, high synergy indices were observed at the individual finger level while modest indices were observed at the thumb–VF level. During the lifting action, the synergies at the individual finger level disappeared while the synergy indices became higher at the thumb–VF level. The results support the basic premise that, within a given task, setting a referent configuration may be described with a few referent values of variables that influence the equilibrium state, to which the system is attracted. Moreover, the referent configuration hypothesis can help interpret the data related to the trade-off between synergies at different hierarchical levels. PMID:20033397

  17. PHYTOREMEDIATION OF INORGANICS: REALISM AND SYNERGIES.

    PubMed

    Dickinson, Nicholas M; Baker, Alan J M; Doronila, Augustine; Laidlaw, Scott; Reeves, Roger D

    2009-02-01

    There are very few practical demonstrations of the phytoextraction of metals and metalloids from soils and sediments beyond small-scale and short-term trials. The two approaches used have been based on using 1) hyperaccumulator species, such as Thlaspi caerulescens (Pb, Zn, Cd, Ni), Alyssum spp. (Ni, Co), and Pteris vittata (As) or 2) fast-growing plants, such as Salix and Populus spp. that accumulate above-average concentrations of only a smaller number of the more mobile trace elements (Cd, Zn, B). Until we have advanced much more along the pathway of genetic isolation and transfer of hyperaccumulator traits into productive plants, there is a high risk in marketing either approach as a technology or stand-alone solution to clean up contaminated land. There are particular uncertainties over the longer-term effectiveness of phytoextraction and associated environmental issues. Marginally contaminated agricultural soils provide the most likely land use where phytoextraction can be used as a polishing technology. An alternative and more useful practical approach in many situations currently would be to give more attention to crops selected for phytoexclusion: selecting crops that do not translocate high concentrations of metals to edible parts. Soils of brownfield, urban, and industrial areas provide a large-scale opportunity to use phytoremediation, but the focus here should be on the more realistic possibilities of risk-managed phytostabilization and monitored natural attenuation. We argue that the wider practical applications of phytoremediation are too often overlooked. There is huge scope for cross-cutting other environmental agenda, with synergies that involve the recovery and provision of services from degraded landscapes and contaminated soils. An additional focus on biomass energy, improved biodiversity, watershed management, soil protection, carbon sequestration, and improved soil health is required for the justification and advancement of phytotechnologies.

  18. The Asteroid Impact Mission

    NASA Astrophysics Data System (ADS)

    Carnelli, Ian; Galvez, Andres; Mellab, Karim

    2016-04-01

    The Asteroid Impact Mission (AIM) is a small and innovative mission of opportunity, currently under study at ESA, intending to demonstrate new technologies for future deep-space missions while addressing planetary defense objectives and performing for the first time detailed investigations of a binary asteroid system. It leverages on a unique opportunity provided by asteroid 65803 Didymos, set for an Earth close-encounter in October 2022, to achieve a fast mission return in only two years after launch in October/November 2020. AIM is also ESA's contribution to an international cooperation between ESA and NASA called Asteroid Impact Deflection Assessment (AIDA), consisting of two mission elements: the NASA Double Asteroid Redirection Test (DART) mission and the AIM rendezvous spacecraft. The primary goals of AIDA are to test our ability to perform a spacecraft impact on a near-Earth asteroid and to measure and characterize the deflection caused by the impact. The two mission components of AIDA, DART and AIM, are each independently valuable but when combined they provide a greatly increased scientific return. The DART hypervelocity impact on the secondary asteroid will alter the binary orbit period, which will also be measured by means of lightcurves observations from Earth-based telescopes. AIM instead will perform before and after detailed characterization shedding light on the dependence of the momentum transfer on the asteroid's bulk density, porosity, surface and internal properties. AIM will gather data describing the fragmentation and restructuring processes as well as the ejection of material, and relate them to parameters that can only be available from ground-based observations. Collisional events are of great importance in the formation and evolution of planetary systems, own Solar System and planetary rings. The AIDA scenario will provide a unique opportunity to observe a collision event directly in space, and simultaneously from ground-based optical and

  19. Decline of North Atlantic eels: a fatal synergy?

    PubMed Central

    Wirth, Thierry; Bernatchez, Louis

    2003-01-01

    Panmictic species pose particular problems for conservation because their welfare can be addressed effectively only on a global scale. We recently documented by means of microsatellite analysis that the European eel (Anguilla anguilla) is not panmictic but instead shows genetic isolation by distance. In this study, we extended the analysis to the American eel (A. rostrata) by applying identical analytical procedures and statistical power. Results obtained for the American eel were in sharp contrast with those obtained for the European eel: the null hypothesis of panmixia could not be rejected, and no isolation by distance was detected. This implies that the species must be managed as a single population. Using Bayesian statistics, we also found that the effective population sizes for both species were surprisingly low and that the populations had undergone severe contractions, most probably during the Wisconsinan glaciation. The apparent sensitivity of eels to climatic changes affecting the strength and position of the Gulf Stream 20,000 years ago is particularly worrying, given the effects of the ongoing global warming on the North Atlantic climate. Moreover, additional short-term stresses such as surging glass eel prizes, overfishing and lethal parasitic infections negatively affect eel population size. The fascinating transatlantic migration and life cycle of Atlantic eels is also their Achilles' heel as these negative short- and long-term effects will probably culminate in a fatal synergy if drastic conservation measures are not implemented to protect these international biological resources. PMID:12713741

  20. Decline of North Atlantic eels: a fatal synergy?

    PubMed

    Wirth, Thierry; Bernatchez, Louis

    2003-04-07

    Panmictic species pose particular problems for conservation because their welfare can be addressed effectively only on a global scale. We recently documented by means of microsatellite analysis that the European eel (Anguilla anguilla) is not panmictic but instead shows genetic isolation by distance. In this study, we extended the analysis to the American eel (A. rostrata) by applying identical analytical procedures and statistical power. Results obtained for the American eel were in sharp contrast with those obtained for the European eel: the null hypothesis of panmixia could not be rejected, and no isolation by distance was detected. This implies that the species must be managed as a single population. Using Bayesian statistics, we also found that the effective population sizes for both species were surprisingly low and that the populations had undergone severe contractions, most probably during the Wisconsinan glaciation. The apparent sensitivity of eels to climatic changes affecting the strength and position of the Gulf Stream 20,000 years ago is particularly worrying, given the effects of the ongoing global warming on the North Atlantic climate. Moreover, additional short-term stresses such as surging glass eel prizes, overfishing and lethal parasitic infections negatively affect eel population size. The fascinating transatlantic migration and life cycle of Atlantic eels is also their Achilles' heel as these negative short- and long-term effects will probably culminate in a fatal synergy if drastic conservation measures are not implemented to protect these international biological resources.

  1. Euclid Mission: Mapping the Geometry of the Dark Universe. Mission and Consortium Status

    NASA Technical Reports Server (NTRS)

    Rhodes, Jason

    2011-01-01

    Euclid concept: (1) High-precision survey mission to map the geometry of the Dark Universe (2) Optimized for two complementary cosmological probes: (2a) Weak Gravitational Lensing (2b) Baryonic Acoustic Oscillations (2c) Additional probes: clusters, redshift space distortions, ISW (3) Full extragalactic sky survey with 1.2m telescope at L2: (3a) Imaging: (3a-1) High precision imaging at visible wavelengths (3a-2) Photometry/Imaging in the near-infrared (3b) Near Infrared Spectroscopy (4) Synergy with ground based surveys (5) Legacy science for a wide range of in astronomy

  2. The LISA Pathfinder Mission

    NASA Astrophysics Data System (ADS)

    McNamara, P.; Antonucci, F.; Armano, M.; Audley, H.; Auger, G.; Benedetti, M.; Binetruy, P.; Bogenstahl, J.; Bortoluzzi, D.; Brandt, N.; Caleno, M.; Cavalleri, A.; Congedo, G.; Cruise, M.; Danzmann, K.; De Marchi, F.; Diaz-Aguilo, M.; Diepholz, I.; Dixton, G.; Dolesi, R.; Dumbar, N.; Fauste, J.; Ferraioli, L.; Ferroni, V.; Fichter, W.; Fitzsimons, E.; Freschi, M.; García Marirrodriga, C.; Gerndt, R.; Gesa, L.; Gibert, F.; Giardini, D.; Grimani, C.; Grynagier, A.; Guzmán, F.; Harrison, I.; Heinzel, G.; Hewitson, M.; Hollington, D.; Hoyland, D.; Hueller, M.; Huesler, J.; Jennrich, O.; Jetzer, P.; Johlander, B.; Karnesis, N.; Korsakova, N.; Killow, C.; Llamas, X.; Lloro, I.; Lobo, A.; Maarschalkerweerd, R.; Madden, S.; Mance, D.; Martin, V.; Mateos, I.; Mendes, J.; Mitchell, E.; Nicolodi, D.; Nofrarias, M.; Perreur-Lloyd, M.; Plagnol, E.; Prat, P.; Ramos-Castro, J.; Reiche, J.; Romera Perez, J. A.; Robertson, D.; Rozemeijer, H.; Russano, G.; Schleicher, A.; Shaul, D.; Sopuerta, C. F.; Sumner, T. J.; Taylor, A.; Texier, D.; Trenkel, C.; Tu, H. B.; Vitale, S.; Wanner, G.; Ward, H.; Waschke, S.; Wass, P.; Wealthy, D.; Wen, S.; Weber, W.; Ziegler, T.; Zweifel, P.

    2013-01-01

    LISA Pathfinder (formerly known as SMART-2) is an European Space Agency mission designed to pave the way for the joint ESA/NASA Laser Interferometer Space Antenna (LISA) mission by testing in flight the critical technologies required for space-borne gravitational wave detection; it will put two test masses in a near-perfect gravitational free-fall and control and measure their motion with unprecedented accuracy. This is achieved through technology comprising inertial sensors, high precision laser metrology, drag-free control, and an ultra precise micro-Newton propulsion system. LISA Pathfinder (LPF) essentially mimics one arm of spaceborne gravitational wave detectors by shrinking the million kilometre scale armlengths down to a few tens of centimetres, giving up the sensitivity to gravitational waves, but keeping the measurement technology. The scientific objective of the LISA Pathfinder mission consists then of the first in-flight test of low frequency gravitational wave detection metrology. In this paper I will give a brief overview of the mission, focusing on scientific and technical goals.

  3. The LISA Pathfinder Mission

    NASA Astrophysics Data System (ADS)

    Armano, M.; Audley, H.; Auger, G.; Baird, J.; Binetruy, P.; Born, M.; Bortoluzzi, D.; Brandt, N.; Bursi, A.; Caleno, M.; Cavalleri, A.; Cesarini, A.; Cruise, M.; Danzmann, K.; Diepholz, I.; Dolesi, R.; Dunbar, N.; Ferraioli, L.; Ferroni, V.; Fitzsimons, E.; Freschi, M.; Gallegos, J.; García Marirrodriga, C.; Gerndt, R.; Gesa, L. I.; Gibert, F.; Giardini, D.; Giusteri, R.; Grimani, C.; Harrison, I.; Heinzel, G.; Hewitson, M.; Hollington, D.; Hueller, M.; Huesler, J.; Inchauspé, H.; Jennrich, O.; Jetzer, P.; Johlander, B.; Karnesis, N.; Kaune, B.; Korsakova, N.; Killow, C.; Lloro, I.; Maarschalkerweerd, R.; Madden, S.; Mance, D.; Martín, V.; Martin-Porqueras, F.; Mateos, I.; McNamara, P.; Mendes, J.; Mendes, L.; Moroni, A.; Nofrarias, M.; Paczkowski, S.; Perreur-Lloyd, M.; Petiteau, A.; Pivato, P.; Plagnol, E.; Prat, P.; Ragnit, U.; Ramos-Castro, J.; Reiche, J.; Romera Perez, J. A.; Robertson, D.; Rozemeijer, H.; Russano, G.; Sarra, P.; Schleicher, A.; Slutsky, J.; Sopuerta, C. F.; Sumner, T.; Texier, D.; Thorpe, J.; Trenkel, C.; Tu, H. B.; Vetrugno, D.; Vitale, S.; Wanner, G.; Ward, H.; Waschke, S.; Wass, P.; Wealthy, D.; Wen, S.; Weber, W.; Wittchen, A.; Zanoni, C.; Ziegler, T.; Zweifel, P.

    2015-05-01

    LISA Pathfinder (LPF), the second of the European Space Agency's Small Missions for Advanced Research in Technology (SMART), is a dedicated technology validation mission for future spaceborne gravitational wave detectors, such as the proposed eLISA mission. LISA Pathfinder, and its scientific payload - the LISA Technology Package - will test, in flight, the critical technologies required for low frequency gravitational wave detection: it will put two test masses in a near-perfect gravitational free-fall and control and measure their motion with unprecedented accuracy. This is achieved through technology comprising inertial sensors, high precision laser metrology, drag-free control and an ultra-precise micro-Newton propulsion system. LISA Pathfinder is due to be launched in mid-2015, with first results on the performance of the system being available 6 months thereafter. The paper introduces the LISA Pathfinder mission, followed by an explanation of the physical principles of measurement concept and associated hardware. We then provide a detailed discussion of the LISA Technology Package, including both the inertial sensor and interferometric readout. As we approach the launch of the LISA Pathfinder, the focus of the development is shifting towards the science operations and data analysis - this is described in the final section of the paper

  4. Background to the Eddington mission

    NASA Astrophysics Data System (ADS)

    Roxburgh, I. W.

    2002-01-01

    The Eddington mission to measure stellar oscillations and search for other planets builds on a solid history of earlier proposals and studies for space missions to study stellar seismology and stellar activity and to search for planets. The idea of such a mission for stellar activity and seismology was conceived in France 1981 and underwent a series of developments leading to the EVRIS mission which was a passenger experiment on Mars96 and was lost when Mars96 failed. Subsequent proposals PRISMA and STARS underwent Phase A studies in ESA but were not selected for launch. The small French mission COROT, originally conceived as a successor to EVRIS was selected by CNES and is now scheduled for launch in 2004. The much more ambitious Eddington mission, devoted to stellar seismology and planet searching was selected as a mission (albeit with a "reserve" status) in the 2000 F2/F3 selection round in ESA. The mission is proceeding with detailed industrial and working group studies with the aim of being ready for launch in 2007/8 should the mission be fully approved as part of the ESA programme.

  5. Visual-motor response of crewmen during a simulated 90-day space mission as measured by the critical task battery

    NASA Technical Reports Server (NTRS)

    Allen, R. W.; Jex, H. R.

    1973-01-01

    In order to test various components of a regenerative life support system and to obtain data on the physiological and psychological effects of long duration exposure to confinement in a space station atmosphere, four carefully screened young men were sealed in a space station simulator for 90 days and administered a tracking test battery. The battery included a clinical test (Critical Instability Task) designed to measure a subject's dynamic time delay, and a more conventional steady tracking task, during which dynamic response (describing functions) and performance measures were obtained. Good correlation was noted between the clinical critical instability scores and more detailed tracking parameters such as dynamic time delay and gain-crossover frequency. The levels of each parameter span the range observed with professional pilots and astronaut candidates tested previously. The chamber environment caused no significant decrement on the average crewman's dynamic response behavior, and the subjects continued to improve slightly in their tracking skills during the 90-day confinement period.

  6. A Preliminary Interpretation of the First Results from the REMS Surface Pressure Measurements of the MSL Mission

    NASA Technical Reports Server (NTRS)

    Haberle, Robert M.; Gomez-Elvira, J.; dalaTorreJuarez, M.; Harri, A-M.; Hollingsworth, J. L.; Kahanapaa, H.; Kahre, M. A.; Martin-Torres, F. J.; Mischna, M.; Newman, C.; Ratfkin, S. C. R.; Renno, N.; Richardson, M. I.; Rodriquez-Manfredi, J. A.; Vasavada, A. R.; Zorzano-Mier, M-P

    2013-01-01

    The Rover Environmental Monitoring Station (REMS) on the Mars Science Laboratory (MSL) Curiosity rover consists of a suite of meteorological instruments that measure pressure, temperature (air and ground), wind (speed and direction), relative humidity, and the UV flux. A description of the instruments is described elsewhere.. Here we focus on interpreting the first 90 sols of REMS operations with a particular emphasis on the pressure data.

  7. Solutions Network Formulation Report. The Potential Contributions of the Global Precipitation Measurement Mission to Estuary Management in Acadia National Park

    NASA Technical Reports Server (NTRS)

    Anderson, Daniel; Hilbert, Kent; Lewis, David

    2007-01-01

    This candidate solution suggests the use of GPM precipitation observations to enhance the Acadia National Park NLERDSS. Simulated GPM data should provide measurements that would enable analysis of how precipitation affects runoff and nutrient load in the park?s wetlands. This solution benefits society by aiding park and resource managers in making predictions based on hypothetical changes and in identifying effective mitigation scenarios. This solution supports the Coastal Management, Water Management, and Ecological Forecasting National Applications.

  8. The Hydrosphere State (Hydros) Satellite Mission: An Earth System Pathfinder for Global Mapping of Soil Moisture and Land Freeze/Thaw

    NASA Technical Reports Server (NTRS)

    Entekhabi, D.; Njoku, E. G.; Spencer, M.; Kim, Y.; Smith, J.; McDonald, K. C.; vanZyl, J.; Houser, P.; Dorion, T.; Koster, R.; O'Neill, P. E.; Girard, R.; Belair, S.; Crow, W.; Jackson, T. J.; Kerr, Y. H.; Kimball, J. S.; Running, S. W.; Pultz, T.; Shi, J.; Wood, E.

    2004-01-01

    The Hydrosphere State Mission (Hydros) is a pathfinder mission in the National Aeronautics and Space Administration (NASA) Earth System Science Pathfinder Program (ESSP). The objective of the mission is to provide exploratory global measurements of the earth's soil moisture at 10-km resolution with two- to three-days revisit and land-surface freeze/thaw conditions at 3-km resolution with one- to two-days revisit. The mission builds on the heritage of ground-based and airborne passive and active low-frequency microwave measurements that have demonstrated and validated the effectiveness of the measurements and associated algorithms for estimating the amount and phase (frozen or thawed) of surface soil moisture. The mission data will enable advances in weather and climate prediction and in mapping processes that link the water, energy, and carbon cycles. The Hydros instrument is a combined radar and radiometer system operating at 1.26 GHz (with VV, HH, and HV polarizations) and 1.41 GHz (with H, V, and U polarizations), respectively. The radar and the radiometer share the aperture of a 6-m antenna with a look-angle of 39 with respect to nadir. The lightweight deployable mesh antenna is rotated at 14.6 rpm to provide a constant look-angle scan across a swath width of 1000 km. The wide swath provides global coverage that meet the revisit requirements. The radiometer measurements allow retrieval of soil moisture in diverse (nonforested) landscapes with a resolution of 40 km. The radar measurements allow the retrieval of soil moisture at relatively high resolution (3 km). The mission includes combined radar/radiometer data products that will use the synergy of the two sensors to deliver enhanced-quality 10-km resolution soil moisture estimates. In this paper, the science requirements and their traceability to the instrument design are outlined. A review of the underlying measurement physics and key instrument performance parameters are also presented.

  9. Exploratory Analysis of Carbon Dioxide Levels, Ultrasound and Optical Coherence Tomography Measures of the Eye During ISS Missions

    NASA Technical Reports Server (NTRS)

    Schaefer, C.; Young, M.; Mason, S.; Coble, C.; Wear, M. L.; Sargsyan, A.; Garcia, K.; Patel, N.; Gibson, C.; Alexander, D.; Van Baalen, M.

    2017-01-01

    Enhanced screening for the Visual Impairment/Intracranial Pressure (VIIP) syndrome has been implemented to better characterize the ocular and vision changes observed in some long-duration crewmembers. This includes implementation of in-flight ultrasound in 2010 and optical coherence tomography (OCT) in 2013. Potential risk factors for VIIP include cardiovascular health, diet, anatomical and genetic factors, and environmental conditions. Carbon dioxide (CO2), a potent vasodilator, is chronically elevated on the International Space Station (ISS) relative to ambient levels on Earth, and is a plausible risk factor for VIIP. In an effort to understand the possible associations between CO2 and VIIP, this study explores the relationship of ambient CO2 levels on ISS compared to inflight ultrasound and OCT measures of the eye obtained from ISS crewmembers. CO2 measurements were aggregated from Operational Data Reduction Complex and Node 3 major constituent analyzers (MCAs) on ISS or from sensors located in the European Columbus module, as available. CO2 levels in the periods between each ultrasound and OCT session are summarized using timeseries metrics, including time-weighted means and variances. Partial least squares regression analyses are used to quantify the complex relationship between specific ultrasound and OCT measures and the CO2 metrics simulataneously. These analyses will enhance our understanding of the possible associations between CO2 levels and structural changes to the eye which will in turn inform future analysis of inflight VIIP data.

  10. Evaluating the Global Precipitation Measurement mission with NOAA/NSSL Multi-Radar Multisensor: current status and future directions.

    NASA Astrophysics Data System (ADS)

    Kirstetter, P. E.; Hong, Y.; Gourley, J. J.; Carr, N.; Petersen, W. A.; Schwaller, M.; Anagnostou, E. N.; Kummerow, C. D.; Ferraro, R. R.; Wang, N. Y.; Tanelli, S.; Turk, J.; Huffman, G. J.

    2015-12-01

    Accurate characterization of uncertainties in precipitation estimates derived from space-borne measurements is critical for many applications including water budget studies or prediction of natural hazards caused by extreme rainfall events. The GPM precipitation Level II (active and passive) and Level III (IMERG) estimates are compared to the NEXRAD-based precipitation estimates derived from NOAA/NSSL's Multi-Radar, Multi-Sensor (MRMS) platform. The NEXRAD network has undergone an upgrade in technology with dual-polarization capabilities and the MRMS products, after having been adjusted by rain gauges and passing several quality controls and filtering procedures, are 1) accurate with known uncertainty bounds and 2) measured at a resolution below the pixel sizes any GPM estimates. They are used by a number of NASA investigators to evaluate Level II and Level III satellite precipitation algorithms. A comparison framework was developed to examine the consistency of the ground and space-based sensors in term of precipitation detection, typology (e.g. convective, stratiform) and quantification. At the Level II precipitation features are introduced to analyze satellite estimates under various precipitation processes. Specific factors for passive (e.g. surface conditions for GMI) and active (e.g. attenuation of the radar signal, non uniform beam filling for DPR) sensors are investigated. Prognostic analysis directly provides feedback to algorithm developers on how to improve the satellite estimates. Comparison with TRMM products serves as a benchmark to evaluate GPM precipitation estimates. A the Level III the contribution of Level II is explicitly characterized and a rigorous characterization is performed to migrate across scales fully understanding the propagation of errors. This cross products characterization acts as a bridge to intercalibrate microwave measurements from the GPM constellation satellites and propagate to the combined and global precipitation estimates

  11. Shuttle Radar Topography Mission (SRTM) Digital Elevation Model (DEM): A Year 2000 Global Baseline for Measuring Topographic Change

    NASA Astrophysics Data System (ADS)

    Crippen, R. E.

    2002-12-01

    The SRTM DEM is the first near-global, high-resolution elevation model. The data were acquired in February 2000 aboard the Space Shuttle Endeavour and cover the Earth's land masses between 60N and 56S latitudes at about 30 meters spatial resolution. The data are a virtual global snapshot in that they were acquired in about 10 days by a single sensor. Absolute vertical accuracy was targeted at 16 meters. However, spatially broad temporal changes in topography have been detected and measured down to about one-meter precision by comparing the SRTM DEM to the USGS National Elevation Dataset (NED). NED has similar spatial properties, but was independently derived, commonly years (or decades) earlier. Such changes already noted include those related to volcanic processes, alluvial fan deposition, subsidence related to oil extraction, and direct anthropogenic changes such as landfills and major road cuts and fills. Large tectonic changes in topography are likewise potentially evident in such comparisons. New and forthcoming satellites include capabilities to produce elevation models that can be used to detect and measure ongoing and future topographic change when compared to the SRTM DEM. For example, the ASTER instrument on the Terra satellite (launched in 1999) produces targeted DEMs, and SPOT-5 (launched in 2002) is expected to produce a global DEM over a five-year period. Both of these DEM sources (and the NED and others) use optical wavelength sensors which may "observe a different surface" than the SRTM radar, particularly in heavily vegetated areas, and this must be considered in making the comparisons. However, having a "before" data set is often the roadblock in measuring change, and SRTM has now provided the first detailed "before" DEM for most of Earth's land surface.

  12. Mars mission

    NASA Astrophysics Data System (ADS)

    Katzoff, Judith A.

    To mark the 10th anniversary of the Apollo-Soyuz joint space mission, a recent conference examined the prospects for human exploration of Mars and for international cooperation in space. Most of the participants at the conference, which was jointly sponsored by the American Institute of Aeronautics and Astronautics and The Planetary Society, seemed to agree that some sort of collaboration like that between the United States and Soviet Union a decade ago would be desirable, and probably necessary, if humans are ever to reach Mars. Sen. Spark Matsunaga (D-Hawaii) extended the idea by saying that to gain the support of Congress, plans for future space exploration should be tied to international cooperation.

  13. Evaluating the Global Precipitation Measurement Mission with NOAA/NSSL Multi-Radar Multisensor: Past, Current Status and Future Directions.

    NASA Astrophysics Data System (ADS)

    Kirstetter, P. E.; Hong, Y.; Gourley, J. J.; Carr, N.; Petersen, W. A.; Schwaller, M.; Anagnostou, E. N.; Kummerow, C. D.; Ferraro, R. R.; Wang, N. Y.

    2014-12-01

    Accurate characterization of uncertainties in precipitation estimates derived from space-borne measurements is critical for many applications including water budget studies or prediction of natural hazards caused by extreme rainfall events. GPM precipitation level II estimates are compared to the NEXRAD-based precipitation estimates derived from NOAA/NSSL's Multi-Radar, Multisensor (MRMS) platform. The NEXRAD network has undergone an upgrade in technology with dual-polarization capabilities. These new polarimetric variables are being incorporated in MRMS to improve quality control of reflectivity data and to correct for partial beam blockages. The MRMS products, after having been adjusted by rain gauges and passing several quality controls and filtering procedures, are 1) accurate with known uncertainty bounds and 2) measured at a resolution below the pixel sizes of the GPM radar and radiometer observations. They are used by a number of NASA investigators to evaluate level II and level III satellite rainfall algorithms. The at-launch GPM Radiometer algorithm uses matches of coincident overpasses of various radiometers with surface rainfall from the MRMS database developed for the GPM project. Statistics from TRMM level II products serve as a benchmark to evaluate GPM precipitation estimates. Comparisons have been carried out at fine scale (e.g. instantaneous and 5 km for DPR) within a comparison framework developed to examine the consistency of the ground and space-based sensors in term of precipitation detection, characterization (e.g. convective, stratiform) and quantification. Specific error factors for passive (e.g. surface conditions for GMI) and active (e.g. attenuation of the radar signal, non uniform beam filling for DPR) sensors are investigated. Systematic biases and random errors quantified at the satellite estimation scale are useful for satellite-based Level III precipitation products. An online validation tool was designed to provide, for the first

  14. Laboratory permittivity measurements of icy planetary analogs in the millimeter and submillimeter domains, in relation with JUICE mission.

    NASA Astrophysics Data System (ADS)

    Brouet, Y.; Jacob, K.; Murk, A.; Poch, O.; Pommerol, A.; Thomas, N.; Levasseur-Regourd, A. C.

    2015-12-01

    The European Space Agency's JUpiter ICy moons Explorer (JUICE) spacecraft is planned for launch in 2022 and arrival at Jupiter in 2030. It will observe the planet Jupiter and three of its largest moons, Ganymede, Callisto and Europa. One instrument on the JUICE spacecraft is the Sub-millimeter Wave Instrument (SWI), which will measure brightness temperatures from Jupiter's stratosphere and troposphere, and from subsurfaces of Jupiter's icy moons. In the baseline configuration SWI consists of two tunable sub-millimeter wave receivers operating from 530 to 625 GHz. As an alternative one of the receivers could cover the range of 1080 and 1275 GHz. Inversion models are strongly dependent on the knowledge of the complex relative permittivity (hereafter permittivity) of the target material to retrieve the physical properties of the subsurface (e.g. [1][2]). We set up a laboratory experiment allowing us to perform reproducible measurements of the complex scattering parameters S11 and S21 in the ranges of 70 to 110 GHz, of 100 to 160 GHz, of 140 to 220 GHz, of 140 to 220 GHz and of 510 to 715 GHz. These scattering parameters can be used to retrieve the permittivity of icy analogs of the surfaces and subsurfaces of Jupiter's icy moons in order to prepare the data interpretation of SWI [3]. The measurements are performed under laboratory conditions with a quasi-optical bench (Institute of Applied Physics, University of Bern). The icy analogs that we prepare in the Laboratory for Outflow Studies of Sublimating Materials (LOSSy, Physics Institute, University of Bern), include two different porous water ice samples composed of fine-grained ice particles with a size range of 4 to 6 microns and ice particles with a size range of 50 to 100 microns [4][5]; and possibly CO2 ice. We will present the general experimental set-up and the first results in the context to prepare the data interpretation of SWI. [1] Ulaby, F. T., Long, D. G., 2014. Microwave radar and radiometric remote

  15. Space and Terrestrial Photovoltaics: Synergy and Diversity

    NASA Astrophysics Data System (ADS)

    Bailey, Sheila; Raffaelle, Ryne; Emery, Keith

    2002-10-01

    A historical view of the research and development in photovoltaics from the perspective of both the terrestrial and the space communities is presented from the early days through the '70s and '80s and the '90s and beyond. The synergy of both communities in the beginning and once again in the present and hopefully future are highlighted, with examples of the important features in each program. The space community which was impressed by the light-weight and reliability of photovoltaics drove much of the early development. Even up to today, nearly every satellites and other scientific space probe that has been launched has included some solar power. However, since the cost of these power systems were only a small fraction of the satellite and launch cost, the use of much of this technology for the terrestrial marketplace was not feasible. It was clear that the focus of the terrestrial community would be best served by reducing costs. This would include addressing a variety of manufacturing issues and raising the rate of production. Success in these programs and a resulting globalization of effort resulted in major strides in the reduction of PV module costs and increased production. Although, the space community derived benefit from some of these advancements, its focus was on pushing the envelope with regard to cell efficiency. The gap between theoretical efficiencies and experimental efficiencies for silicon, gallium arsenide and indium phosphide became almost non-existent. Recent work by both communities have focused on the development thin film cells of amorphous silicon, CuInSe2 and CdTe. These cells hold the promise of lower costs for the terrestrial community as well as possible flexible substrates, better radiation resistance, and higher specific power for the space community. It is predicted that future trends in both communities will be directed toward advances through the application of nanotechnology. A picture is emerging in which the space and

  16. Resource synergy in stream periphyton communities

    SciTech Connect

    Hill, Walter; Fanta, S.E.; Roberts, Brian J; Francoeur, Steven N.

    2011-03-01

    1. Light and nutrients play pivotal roles in determining the growth of autotrophs, yet the potential for synergistic interactions between the two resources in algal communities is poorly understood, especially in stream ecosystems. In this study, light and phosphorus were manipulated in large experimental streams to examine resource colimitation and synergy in stream periphyton. 2. Whole-stream metabolism was simultaneously limited by light and phosphorus. Increasing the supply of either light or phosphorus resulted in significant increases in primary production and the transformation of the streams from heterotrophy to autotrophy. 3. Resource-driven changes in periphyton community structure occurred in concert with changes in production. Algal assemblages in highly shaded streams were composed primarily of small diatoms such as Achnanthidium minutissima, whereas larger diatoms such as Melosira varians predominated at higher irradiances. Phosphorus enrichment had relatively little effect on assemblage structure, but it did substantially diminish the abundance of Meridion circulare, a diatom whose mucilaginous colonies were conspicuously abundant in phosphorus-poor, high-light streams. Bacterial biomass declined relative to algal biomass with increases in primary productivity, regardless of whether the increases were caused by light or phosphorus. 4. Synergistic effects on primary production appeared to occur because the availability of one resource facilitated the utilization of the other. Light increased the abundance of large diatoms, which are known to convert high concentrations of nutrients into primary production more effectively than smaller taxa. Phosphorus enrichment led to the replacement of Meridion circulare by non-mucilaginous taxa in phosphorus-enriched streams, and we hypothesize that this change enabled more efficient use of light in photosynthesis. Higher ratios of chlorophyll a : biomass in phosphorus-enriched streams may have also led to more

  17. Space and Terrestrial Photovoltaics: Synergy and Diversity

    NASA Technical Reports Server (NTRS)

    Bailey, Sheila; Raffaelle, Ryne; Emery, Keith

    2002-01-01

    A historical view of the research and development in photovoltaics from the perspective of both the terrestrial and the space communities is presented from the early days through the '70s and '80s and the '90s and beyond. The synergy of both communities in the beginning and once again in the present and hopefully future are highlighted, with examples of the important features in each program. The space community which was impressed by the light-weight and reliability of photovoltaics drove much of the early development. Even up to today, nearly every satellites and other scientific space probe that has been launched has included some solar power. However, since the cost of these power systems were only a small fraction of the satellite and launch cost, the use of much of this technology for the terrestrial marketplace was not feasible. It was clear that the focus of the terrestrial community would be best served by reducing costs. This would include addressing a variety of manufacturing issues and raising the rate of production. Success in these programs and a resulting globalization of effort resulted in major strides in the reduction of PV module costs and increased production. Although, the space community derived benefit from some of these advancements, its focus was on pushing the envelope with regard to cell efficiency. The gap between theoretical efficiencies and experimental efficiencies for silicon, gallium arsenide and indium phosphide became almost non-existent. Recent work by both communities have focused on the development thin film cells of amorphous silicon, CuInSe2 and CdTe. These cells hold the promise of lower costs for the terrestrial community as well as possible flexible substrates, better radiation resistance, and higher specific power for the space community. It is predicted that future trends in both communities will be directed toward advances through the application of nanotechnology. A picture is emerging in which the space and

  18. Nitric oxide measurements at a nonurban eastern United States site - Wallops instrument results from July 1983 GTE/CITE mission

    NASA Technical Reports Server (NTRS)

    Torres, A. L.

    1985-01-01

    The NASA Goddard Space Flight Center/Wallops Flight Facility nitric oxide detector used in the July 1983 GTE/CITE 1 instrument intercomparison is a chemiluminescence system which, at that time, had a detection limit of about 2 pptv (S/N = 1) for 60-s integrations. A substantial amount of NO concentration data was taken with this system at Wallops Island, VA, a site that should be typical of numerous nonurban coastal areas of the eastern United States and for which little other data are available. Midday concentrations under conditions of northwest winds averaged about 200 pptv, a value low enough to imply lower NO(x) amounts than are generally thought to exist in the eastern United States. During a 2-day period when the sampled air had spent 1-2 days over the Atlantic Ocean, average NO concentrations of 70 and 33 ptv were observed. Measurements at night indicated an average NO concentration of 16 pptv under wind conditions making contamination of the sampled air by local anthropogenic sources unlikely.

  19. The relationship between plasma effects and cosmic radiation with TriTel-LMP common measurement in the ESEO mission

    NASA Astrophysics Data System (ADS)

    Zabori, Balazs; Hirn, Attila; Bencze, Pal

    The development of the European Student Earth Orbiter (ESEO) was announced by the Eu-ropean Space Agency for young students interested in the space exploration. The Budapest University of Technology and Economics (BUTE) joined this international cooperation with a technological innovation (Electrical Power System) and two scientific experiments, called TriTel and Langmuir Probe (LMP). The development of the TriTel 3D silicon detector telescope began in the KFKI Atomic Energy Research Institute several years ago in order to determine the av-erage radiation quality factor of the cosmic radiation for dosimetric purposes. The design of the LMP got under way at BUTE some years ago to determine the electron temperature, electron density, and electric potential of plasma. The common use of the TriTel and LMP instruments enables the simultaneous study of effects of interplanetary and magnetospheric phenomena (Tri-Tel), as well as observation of variations in the topside ionosphere (LMP). The paper presents those effects and characteristics of the magnetosphere and ionosphere that might be studied with these two instrument originally developed for different measurement goals. From the results of the experiments we expect to identify the relationship between plasma effects and cosmic radiation especially in polar regions and the South Atlantic Anomaly (SAA).

  20. Series of JASMINE missions

    NASA Astrophysics Data System (ADS)

    Gouda, N.

    2011-02-01

    We are planning three space astrometry missions as a series of JASMINE missions; Nano-JASMINE, Small-JASMINE and (Medium-sized)JASMINE. JASMINE is an abbreviation of Japan Astrometry Satellite Mission of INfrared Exploration. The JASMINE mission will measure in an infrared band annual parallaxes, positions on the celestial sphere, and proper motions of many stars in the bulge of the Milky Way (the Galaxy) with high accuracies. A target launch date is the first half of the 2020s. Before the launch of JASMINE, we are planning Nano-JASMINE and Small-JASMINE. Nano-JASMINE uses a very small nano-satellite and it is determined to be launched in 2011. Small-JASMINE is a downsized version of the JASMINE satellite, which observes toward restricted small regions of the Galactic bulge. A target launch date is around 2016. A completely new "map" of the Galactic bulge given by Small-JASMINE and JASMINE will bring us many exciting scientific results.

  1. Planetary cubesats - mission architectures

    NASA Astrophysics Data System (ADS)

    Bousquet, Pierre W.; Ulamec, Stephan; Jaumann, Ralf; Vane, Gregg; Baker, John; Clark, Pamela; Komarek, Tomas; Lebreton, Jean-Pierre; Yano, Hajime

    2016-07-01

    Miniaturisation of technologies over the last decade has made cubesats a valid solution for deep space missions. For example, a spectacular set 13 cubesats will be delivered in 2018 to a high lunar orbit within the frame of SLS' first flight, referred to as Exploration Mission-1 (EM-1). Each of them will perform autonomously valuable scientific or technological investigations. Other situations are encountered, such as the auxiliary landers / rovers and autonomous camera that will be carried in 2018 to asteroid 1993 JU3 by JAXA's Hayabusas 2 probe, and will provide complementary scientific return to their mothership. In this case, cubesats depend on a larger spacecraft for deployment and other resources, such as telecommunication relay or propulsion. For both situations, we will describe in this paper how cubesats can be used as remote observatories (such as NEO detection missions), as technology demonstrators, and how they can perform or contribute to all steps in the Deep Space exploration sequence: Measurements during Deep Space cruise, Body Fly-bies, Body Orbiters, Atmospheric probes (Jupiter probe, Venus atmospheric probes, ..), Static Landers, Mobile landers (such as balloons, wheeled rovers, small body rovers, drones, penetrators, floating devices, …), Sample Return. We will elaborate on mission architectures for the most promising concepts where cubesat size devices offer an advantage in terms of affordability, feasibility, and increase of scientific return.

  2. Nuclear and Renewable Energy Synergies Workshop: Report of Proceedings

    SciTech Connect

    Ruth, M.; Antkowiak, M.; Gossett, S.

    2011-12-01

    Two of the major challenges the U.S. energy sector faces are greenhouse gas emissions and oil that is both imported and potentially reaching a peak (the point at which maximum extraction is reached). Interest in development of both renewable and nuclear energy has been strong because both have potential for overcoming these challenges. Research in both energy sources is ongoing, but relatively little research has focused on the potential benefits of combining nuclear and renewable energy. In September 2011, the Joint Institute for Strategic Energy Analysis (JISEA) convened the Nuclear and Renewable Energy Synergies Workshop at the U.S. Department of Energy's National Renewable Energy Laboratory (NREL) to identify potential synergies and strategic leveraging opportunities between nuclear energy and renewable energy. Industry, government, and academic thought leaders gathered to identify potential broad categories of synergies and brainstorm topic areas for additional analysis and research and development (R&D). This report records the proceedings and outcomes of the workshop.

  3. A Compact Airborne System for SO2 and DMS Measurements for Use on Future GTE Missions Aboard the P-3 or DC-8

    NASA Technical Reports Server (NTRS)

    Saltzman, Eric S.; DeBruyn, Warren J.

    2000-01-01

    This project involved the design and construction of a new instrument for airborne measurement of DMS and SO2. The instrument is intended for use on field missions to study the global atmospheric sulfur cycle. The ultimate scientific goal is to provide insight into the mechanisms of atmospheric transport and transformations impacting both natural and anthropogenic sulfur emissions. This report summarizes the progress made to date and the goals for future work on the project. The PI's for this project have recently relocated from the University of Miami to the University of California, Irvine, and a request has been made to transfer remaining funds to UCI. All equipment associated with this project has been transferred to UCI. The instrument design goal was to develop an instrument roughly one quarter the size and weight of currently available airborne instrumentation used for DMS and S02 measurements. Another goal was full automation, to allow unattended operation for the duration of a P-3 or DC-8 flight. The original performance design specifications for the instrument are given.

  4. Low Cost Mission Operations Workshop. [Space Missions

    NASA Technical Reports Server (NTRS)

    1994-01-01

    The presentations given at the Low Cost (Space) Mission Operations (LCMO) Workshop are outlined. The LCMO concepts are covered in four introductory sections: Definition of Mission Operations (OPS); Mission Operations (MOS) Elements; The Operations Concept; and Mission Operations for Two Classes of Missions (operationally simple and complex). Individual presentations cover the following topics: Science Data Processing and Analysis; Mis sion Design, Planning, and Sequencing; Data Transport and Delivery, and Mission Coordination and Engineering Analysis. A list of panelists who participated in the conference is included along with a listing of the contact persons for obtaining more information concerning LCMO at JPL. The presentation of this document is in outline and graphic form.

  5. Liquid Effluents Program mission analysis

    SciTech Connect

    Lowe, S.S.

    1994-09-27

    Systems engineering is being used to identify work to cleanup the Hanford Site. The systems engineering process transforms an identified mission need into a set of performance parameters and a preferred system configuration. Mission analysis is the first step in the process. Mission analysis supports early decision-making by clearly defining the program objectives, and evaluating the feasibility and risks associated with achieving those objectives. The results of the mission analysis provide a consistent basis for subsequent systems engineering work. A mission analysis was performed earlier for the overall Hanford Site. This work was continued by a ``capstone`` team which developed a top-level functional analysis. Continuing in a top-down manner, systems engineering is now being applied at the program and project levels. A mission analysis was conducted for the Liquid Effluents Program. The results are described herein. This report identifies the initial conditions and acceptable final conditions, defines the programmatic and physical interfaces and sources of constraints, estimates the resources to carry out the mission, and establishes measures of success. The mission analysis reflects current program planning for the Liquid Effluents Program as described in Liquid Effluents FY 1995 Multi-Year Program Plan.

  6. NEEMO - NASA's Extreme Environment Mission Operations: On to a NEO

    NASA Technical Reports Server (NTRS)

    Bell, M. S.; Baskin, P. J.; Todd, W. L.

    2011-01-01

    During NEEMO missions, a crew of six Aquanauts lives aboard the National Oceanic and Atmospheric Administration (NOAA) Aquarius Underwater Laboratory the world's only undersea laboratory located 5.6 km off shore from Key Largo, Florida. The Aquarius habitat is anchored 62 feet deep on Conch Reef which is a research only zone for coral reef monitoring in the Florida Keys National Marine Sanctuary. The crew lives in saturation for a week to ten days and conducts a variety of undersea EVAs (Extra Vehicular Activities) to test a suite of long-duration spaceflight Engineering, Biomedical, and Geoscience objectives. The crew also tests concepts for future lunar exploration using advanced navigation and communication equipment in support of the Constellation Program planetary exploration analog studies. The Astromaterials Research and Exploration Science (ARES) Directorate and Behavioral Health and Performance (BHP) at NASA/Johnson Space Center (JSC), Houston, Texas support this effort to produce a high-fidelity test-bed for studies of human planetary exploration in extreme environments as well as to develop and test the synergy between human and robotic curation protocols including sample collection, documentation, and sample handling. The geoscience objectives for NEEMO missions reflect the requirements for Lunar Surface Science outlined by the LEAG (Lunar Exploration Analysis Group) and CAPTEM (Curation and Analysis Planning Team for Extraterrestrial Materials) white paper [1]. The BHP objectives are to investigate best meas-ures and tools for assessing decrements in cogni-tive function due to fatigue, test the feasibility study examined how teams perform and interact across two levels, use NEEMO as a testbed for the development, deployment, and evaluation of a scheduling and planning tool. A suite of Space Life Sciences studies are accomplished as well, ranging from behavioral health and performance to immunology, nutrition, and EVA suit design results of which will

  7. To bioethanol through genomics of microbial synergies

    SciTech Connect

    Epstein,

    2013-08-27

    The strategic goal of this project was to advance our understanding of activities and interactions of microorganisms through the advancement of microbial cultivation approaches. In this project we aimed to develop, advance, and use both culture-dependent techniques to address our main hypothesis: “uncultivable” microorganisms and their consortia represent a untapped source of novel species for efficient production of bioethanol. This project has two specific goals: 1. To develop and optimize a high throughput diffusion chamber cultivation approach to isolation of novel environmental bacteria relevant to DOE missions. 2. To use the optimized method to identify and cultivate novel microbial species and their consortia that synergistically hydrolyze various substrates and ferment the sugars to ethanol.

  8. Conductivity and Dielectric Characteristics of Planetary Surfaces Measured with Mutual Impedance Probes: From Huygens and Rosetta Lander to Netlanders and Future Missions

    NASA Astrophysics Data System (ADS)

    Hamelin, M.; Grard, R.; Laakso, H.; Ney, R.; Schmidt, W.; Simoes, F.; Trautner, R.

    2004-04-01

    Both conductivity and dielectric constant measurements can contribute to the identification of sub-surface materials. They are of great interest in the case of water and ice possibly embedded in other materials due to the high variability with frequency of the dielectric constant of water ice, the high contrast between rocks and liquid water and also the high conductivity generally observed in wet terrains. A first instrument, Permittivity, Waves and Altimetry (PWA-HASI), on the HUYGENS probe should measure the complex permittivity of Titan after landing in January 2005. It consists of a particular mode of the Mutual Impedance (MI) probe designed mainly for atmospheric conductivity measurements. The success of the measurement depends strongly on the configuration of the probe after an uncontrolled landing and in any case the data analysis will be complex as the electrodes are very close to the probe body. A second instrument, the Permittivity Probe (PP-SESAME), on the Rosetta Lander is ready to be launched towards the GuerassimoChuryumov comet in February 2004. In this case safe landing is a major requirement of the mission. The electrode array, using the lander feet and two other hosting deployable parts, is less influenced by the lander body than in the HUYGENS case. However the perturbing influence of neighbouring sensors has to be suppressed by active methods and such a system is better but again complex. In the Netlander project to the surface of Mars, actually in pause after its phase B study, the opportunity to use long GPR electric antennas deployed on the ground as permittivity sensors has been studied and will be implemented in the design with minor modifications. Our goal is to design the future generation of permittivity probes not considered as `add on's but fully optimised for their task, making simpler the analysis and providing also the possibility to calibrate the former space pioneer instruments on selected earth targets. In addition, these future

  9. SMOS/SMAP Synergy for SMAP Level 2 Soil Moisture Algorithm Evaluation

    NASA Technical Reports Server (NTRS)

    Bindlish, Rajat; Jackson, Thomas J.; Zhao, Tianjie; Cosh, Michael; Chan, Steven; O'Neill, Peggy; Njoku, Eni; Colliander, Andreas; Kerr, Yann

    2011-01-01

    Soil Moisture Active Passive (SMAP) satellite has been proposed to provide global measurements of soil moisture and land freeze/thaw state at 10 km and 3 km resolutions, respectively. SMAP would also provide a radiometer-only soil moisture product at 40-km spatial resolution. This product and the supporting brightness temperature observations are common to both SMAP and European Space Agency's Soil Moisture and Ocean Salinity (SMOS) mission. As a result, there are opportunities for synergies between the two missions. These include exploiting the data for calibration and validation and establishing longer term L-band brightness temperature and derived soil moisture products. In this investigation we will be using SMOS brightness temperature, ancillary data, and soil moisture products to develop and evaluate a candidate SMAP L2 passive soil moisture retrieval algorithm. This work will begin with evaluations based on the SMOS product grids and ancillary data sets and transition to those that will be used by SMAP. An important step in this analysis is reprocessing the multiple incidence angle observations provided by SMOS to a global brightness temperature product that simulates the constant 40 degree incidence angle observations that SMAP will provide. The reprocessed brightness temperature data provide a basis for evaluating different SMAP algorithm alternatives. Several algorithms are being considered for the SMAP radiometer-only soil moisture retrieval. In this first phase, we utilized only the Single Channel Algorithm (SCA), which is based on the radiative transfer equation and uses the channel that is most sensitive to soil moisture (H-pol). Brightness temperature is corrected sequentially for the effects of temperature, vegetation, roughness (dynamic ancillary data sets) and soil texture (static ancillary data set). European Centre for Medium-Range Weather Forecasts (ECMWF) estimates of soil temperature for the top layer (as provided as part of the SMOS

  10. Winds and Ion Drifts Measured in the Thermospheric Footprint of Earth's Northern Magnetic Cusp During the C-REX Sounding Rocket Mission

    NASA Astrophysics Data System (ADS)

    Conde, M.; Larsen, M. F.; Hampton, D.; Dhadly, M. S.; Ahrns, M. J.; Aruliah, A. L.; Kakinami, Y.; Barker, B.; Kiene, A.; Sigernes, F.; Lorentzen, D. A.

    2015-12-01

    We report here on neutral wind and ion drift measurements recorded during the November 24, 2014, "C-REX" sounding rocket mission into the thermosphere beneath Earth's northern geomagnetic cusp. The rocket released ten tracer clouds, each comprised of a mixture of barium and strontium, at altitudes between 190 and 400 km. The clouds were created by launching rocket-propelled "grenades" at high velocity out from the parent payload, and were dispersed across a 3D volume extending over many tens of km around the main trajectory. Cameras located at Longyearbyen, Ny-Alesund, and aboard an aircraft stationed north of Bear Island were used to image the tracer clouds and to triangulate on their position and 3D motion. Sunlight striking the clouds ionized the barium within a few tens of seconds, whereas the strontium remained neutral. We were thus able to independently measure the flow velocity of both neutrals and ions at the release locations. Here we will present high-resolution maps of the tracer cloud motion, along with the resulting estimates of neutral and ion flow velocities. These results show very substantial ion-neutral velocity differences: the ions' drift direction was roughly perpendicular to that of the neutrals, while the magnitude of their velocity difference was of order 500 meters per second. Combining these data with ground-based measurements of temperature and electron density allows us to estimate that the specific power density for Joule heating at heights above 200 km was very substantial during the time of this experiment. If such Joule heating is typical, it is very likely to play a major role in establishing the (currently poorly understood) permanent enhancements in the neutral mass density of Earth's thermosphere in the geomagnetic cusp regions at altitudes of around 400 km.

  11. Jupiter Icy Moons Explorer: mission status after the Definition Phase

    NASA Astrophysics Data System (ADS)

    Titov, Dmitri; Barabash, Stas; Bruzzone, Lorenzo; Dougherty, Michele; Erd, Christian; Fletcher, Leigh; Gare, Philippe; Gladstone, Randall; Grasset, Olivier; Gurvits, Leonid; Hartogh, Paul; Hussmann, Hauke; Iess, Luciano; Jaumann, Ralf; Langevin, Yves; Palumbo, Pasquale; Piccioni, Giuseppe; Sarri, Giuseppe; Wahlund, Jan-Erik; Witasse, Olivier

    2015-04-01

    ultraviolet to the sub-millimetre wavelengths (MAJIS, UVS, SWI). A geophysical package consists of a laser altimeter (GALA) and a radar sounder (RIME) for exploring the surface and subsurface of the moons, and a radio science experiment (3GM) to probe the atmospheres of Jupiter and its satellites and to perform measurements of the gravity fields. An in situ package comprises a powerful particle environment package (PEP), a magnetometer (J-MAG) and a radio and plasma wave instrument (RPWI), including electric fields sensors and a Langmuir probe. An experiment (PRIDE) using ground-based Very-Long-Baseline Interferometry (VLBI) will provide precise determination of the moons ephemerides. The mission scenario will include a Jovian tour with multiple flybys of Callisto and Ganymede, the phase with more than 20 degrees inclination orbits, and two Europa flybys. The Ganymede tour will include high (5000 km) and low (500 km) almost polar orbits around the moon. The mission scenario has evolved slightly during the definition phase, reassuring that the mission will still be able to fulfil all major science objectives. The talk will give an overview of the mission status at the end of the definition phase, focusing on the evolution of science performance and payload synergies in achieving the mission goals.

  12. The solar stereo mission

    NASA Astrophysics Data System (ADS)

    Rust, D. M.

    The principal scientific objective of the Solar-Terrestrial Relations Observatory (STEREO) is to understand the origin and consequences of coronal mass ejections (CMEs). CMEs are the most energetic eruptions on the Sun. They are responsible for essentially all of the largest solar energetic particle events and are the primary cause of major geomagnetic storms. They may be a critical element in the solar dynamo because they remove the dynamo-generated magnetic flux from the Sun. Two spacecraft at 1 AU from the Sun, one drifting ahead of Earth and one behind, will image CMEs. They will also map the distribution of magnetic fields and plasmas in the heliosphere and accomplish a variety of science goals described in the 1997 report of the NASA Science Definition Team for the STEREO Mission. Current plans call for the two STEREO launches in early 2003. Simultaneous image pairs will be obtained by the STEREO telescopes at gradually increasing spacecraft separations in the course of the mission. Additionally, in-situ measurements will provide accurate information about the state of the ambient solar wind and energetic particle populations ahead of and behind CMEs. These measurements will allow definitive tests of CME and interplanetary shock models. The mission will include a "beacon mode" to warn of either coronal or interplanetary conditions indicative of impending disturbances at Earth.

  13. The Juno Mission

    NASA Astrophysics Data System (ADS)

    Bolton, S. J.

    2015-12-01

    The Juno mission is the second mission in NASA's New Frontiers program. Launched in August 2011, Juno arrives at Jupiter in July 2016. Juno science goals include the study of Jupiter's origin, interior structure, deep atmosphere, aurora and magnetosphere. Jupiter's formation is fundamental to the evolution of our solar system and to the distribution of volatiles early in the solar system's history. Juno's measurements of the abundance of Oxygen and Nitrogen in Jupiter's atmosphere, and the detailed maps of Jupiter's gravity and magnetic field structure will constrain theories of early planetary development. Juno's orbit around Jupiter is a polar elliptical orbit with perijove approximately 5000 km above the visible cloud tops. The payload consists of a set of microwave antennas for deep sounding, magnetometers, gravity radio science, low and high energy charged particle detectors, electric and magnetic field radio and plasma wave experiment, ultraviolet imaging spectrograph, infrared imager and a visible camera. The Juno design enables the first detailed investigation of Jupiter's interior structure, and deep atmosphere as well as the first in depth exploration of Jupiter's polar magnetosphere. The Juno mission design, science goals, and measurements related to the origin of Jupiter will be presented.

  14. The LISA Pathfinder Mission

    NASA Technical Reports Server (NTRS)

    Thorpe, james; McNamara, P. W.

    2011-01-01

    LISA Pathfinder is a dedicated technology demonstration space mission for the Laser Interferometer Space Antenna (LISA), a NASA/ESA collaboration to operate a space-based observatory for gravitational waves in the milli-Hertz band. Although the formal partnership between the agencies was dissolved in the Spring of 2011, both agencies are actively pursuing concepts for LISA-like gravitational wave observatories. These concepts take advantage of the significant technology development efforts that have already been made, especially those of the LISA Pathfinder mission. LISA Pathfinder, which is in the late stages of implementation, will place two test masses in drag-free flight and measure the relative acceleration between them. This measurement will validate a number of technologies that are critical to LISA-like gravitational wave instruments including sensing and control of the test masses, drag-free control laws, microNewton thrusters, and picometer-level laser metrology. We will present the current status of the LISA Pathfinder mission and associated activities.

  15. Mathematical Modeling of Cancer Immunotherapy and Its Synergy with Radiotherapy.

    PubMed

    Serre, Raphael; Benzekry, Sebastien; Padovani, Laetitia; Meille, Christophe; André, Nicolas; Ciccolini, Joseph; Barlesi, Fabrice; Muracciole, Xavier; Barbolosi, Dominique

    2016-09-01

    Combining radiotherapy with immune checkpoint blockade may offer considerable therapeutic impact if the immunosuppressive nature of the tumor microenvironment (TME) can be relieved. In this study, we used mathematical models, which can illustrate the potential synergism between immune checkpoint inhibitors and radiotherapy. A discrete-time pharmacodynamic model of the combination of radiotherapy with inhibitors of the PD1-PDL1 axis and/or the CTLA4 pathway is described. This mathematical framework describes how a growing tumor first elicits and then inhibits an antitumor immune response. This antitumor immune response is described by a primary and a secondary (or memory) response. The primary immune response appears first and is inhibited by the PD1-PDL1 axis, whereas the secondary immune response happens next and is inhibited by the CTLA4 pathway. The effects of irradiation are described by a modified version of the linear-quadratic model. This modeling offers an explanation for the reported biphasic relationship between the size of a tumor and its immunogenicity, as measured by the abscopal effect (an off-target immune response). Furthermore, it explains why discontinuing immunotherapy may result in either tumor recurrence or a durably sustained response. Finally, it describes how synchronizing immunotherapy and radiotherapy can produce synergies. The ability of the model to forecast pharmacodynamic endpoints was validated retrospectively by checking that it could describe data from experimental studies, which investigated the combination of radiotherapy with immune checkpoint inhibitors. In summary, a model such as this could be further used as a simulation tool to facilitate decision making about optimal scheduling of immunotherapy with radiotherapy and perhaps other types of anticancer therapies. Cancer Res; 76(17); 4931-40. ©2016 AACR.

  16. Space-Derived Transparency: Players, Policies, Implications, and Synergies

    NASA Astrophysics Data System (ADS)

    Kinnan, C. J.

    2001-06-01

    Space-derived transparency will become a common means of monitoring, preventing, and mitigating crises, verifying compliance with treaties and law, and enabling confidence and security building measures. Democratization and globalization, the proliferation of information technologies, the availability of commercial space high-resolution imagery, and the growing influence of NGOs invite this question: What is (space-derived) transparency and what effect does it have on US security policy? Three camps have emerged in the debate -Horaeists who seek to build a transnational society through complete transparency; Preservationists, mostly military, who fear the threat to national security, want to deny most space-derived information to non-traditional/non-state actors; and Synergists who seek to capitalize on the best of both camps. There is evidence suggesting that space-derived transparency is an inevitable trend and will resist even the best means of preservationist control. Space-derived transparency may change the dynamic of the security environment by introducing new players into the policy fomentation and implementation process. These players, if not properly schooled in imagery analysis or the potential effects of their use of misinterpreted space-derived imagery, could force policy makers to make fast, ill-considered decisions in order to respond to incidents. In some cases this fast response will defuse potential crises and in other situations these rushed decisions might result in policies without considering the potential consequences, which could turn incidents into crises. Space-derived transparency is a step forward into the future for each camp . . . the challenge for the United States lies in forging synergies in an increasingly transparent world while maintaining the balance between openness and security.

  17. Tank waste remediation system (TWRS) mission analysis

    SciTech Connect

    Rieck, R.H.

    1996-10-03

    The Tank Waste Remediation System Mission Analysis provides program level requirements and identifies system boundaries and interfaces. Measures of success appropriate to program level accomplishments are also identified.

  18. Interplanetary mission planning

    NASA Technical Reports Server (NTRS)

    1971-01-01

    A long range plan for solar system exploration is presented. The subjects discussed are: (1) science payload for first Jupiter orbiters, (2) Mercury orbiter mission study, (3) preliminary analysis of Uranus/Neptune entry probes for Grand Tour Missions, (4) comet rendezvous mission study, (5) a survey of interstellar missions, (6) a survey of candidate missions to explore rings of Saturn, and (7) preliminary analysis of Venus orbit radar missions.

  19. syNErgy: A Case Study in Workforce Curriculum Development

    ERIC Educational Resources Information Center

    Killingsworth, John; Grosskopf, Kevin R.

    2013-01-01

    With high unemployment and structural changes to industry, workforce development in the United States is a growing concern. Many semiskilled workers lack knowledge, skills, and abilities to be competitive for reemployment to green jobs. Nebraska's syNErgy research grant was introduced to address the training needs of unemployed and underemployed…

  20. Practice effects on intra-team synergies in football teams.

    PubMed

    Silva, Pedro; Chung, Dante; Carvalho, Thiago; Cardoso, Tiago; Davids, Keith; Araújo, Duarte; Garganta, Júlio

    2016-04-01

    Developing synchronised player movements for fluent competitive match play is a common goal for coaches of team games. An ecological dynamics approach advocates that intra-team synchronization is governed by locally created information, which specifies shared affordances responsible for synergy formation. To verify this claim we evaluated coordination tendencies in two newly-formed teams of recreational players during association football practice games, weekly, for fifteen weeks (thirteen matches). We investigated practice effects on two central features of synergies in sports teams - dimensional compression and reciprocal compensation here captured through near in-phase modes of coordination and time delays between coupled players during forward and backwards movements on field while attacking and defending. Results verified that synergies were formed and dissolved rapidly as a result of the dynamic creation of informational properties, perceived as shared affordances among performers. Practising once a week led to small improvements in the readjustment delays between co-positioning team members, enabling faster regulation of coordinated team actions. Mean values of the number of player and team synergies displayed only limited improvements, possibly due to the timescales of practice. No relationship between improvements in dimensional compression and reciprocal compensation were found for number of shots, amount of ball possession and number of ball recoveries made. Findings open up new perspectives for monitoring team coordination processes in sport.

  1. Academic Entrepreneurship and Traditional Academic Duties: Synergy or Rivalry?

    ERIC Educational Resources Information Center

    De Silva, Muthu

    2016-01-01

    This study investigates the influence of academic entrepreneurship on traditional academic duties carried out in a resource-constrained environment, particularly focusing on whether there is synergy or rivalry between these two activities. Using qualitative evidence, we discover that there are funding, resource, knowledge and skill and networking…

  2. Building Synergy: The Power of High Performance Work Systems.

    ERIC Educational Resources Information Center

    Gephart, Martha A.; Van Buren, Mark E.

    1996-01-01

    Suggests that high-performance work systems create the synergy that lets companies gain and keep a competitive advantage. Identifies the components of high-performance work systems and critical action steps for implementation. Describes the results companies such as Xerox, Lever Brothers, and Corning Incorporated have achieved by using them. (JOW)

  3. Project SYNERGY: Software Support for Underprepared Students. Software Implementation Report.

    ERIC Educational Resources Information Center

    Anandam, Kamala; And Others

    Miami-Dade Community College's (MDCC's) implementation and assessment of computer software as