Instrument technology for remote-surface exploration, prospecting and assaying, part 2
NASA Technical Reports Server (NTRS)
Brereton, R. G.
1977-01-01
The capability to specify new instrument/mechanism technology needs, for effective remote surface exploration, prospecting and assaying (EPA), requires first, an understanding of the functions or major elements of such a task, and second an understanding of the scientific instruments and support mechanisms that may be involved. An analog or task model was developed from which the various functions, operational procedures, scientific instruments, and support mechanisms for an automated mission could be derived. The task model led to the definition of nine major functions or categories of discrete operational elements that may have to be accomplished on a mission of this type. Each major function may stand alone as an element of an EPA mission, but more probably a major function will require the support of other functions, so they are inter-related.
High-Performance, Radiation-Hardened Electronics for Space and Lunar Environments
NASA Technical Reports Server (NTRS)
Keys, Andrew S.; Adams, James H.; Cressler, John D.; Darty, Ronald C.; Johnson, Michael A.; Patrick, Marshall C.
2008-01-01
The Radiation Hardened Electronics for Space Environments (RHESE) project develops advanced technologies needed for high performance electronic devices that will be capable of operating within the demanding radiation and thermal extremes of the space, lunar, and Martian environment. The technologies developed under this project enhance and enable avionics within multiple mission elements of NASA's Vision for Space Exploration. including the Constellation program's Orion Crew Exploration Vehicle. the Lunar Lander project, Lunar Outpost elements, and Extra Vehicular Activity (EVA) elements. This paper provides an overview of the RHESE project and its multiple task tasks, their technical approaches, and their targeted benefits as applied to NASA missions.
Equipment-Device Task Commonality Analysis and Transfer of Training.
ERIC Educational Resources Information Center
Caro, Paul W.
Procedures were developed to enable training personnel systematically and objectively to determine the potential utility of training devices for teaching how to perform missions in operational rotary wing aircraft. These procedures allow comparison of task stimulus and response elements with corresponding elements in synthetic training equipment.…
Lunar base surface mission operations. Lunar Base Systems Study (LBSS) task 4.1
NASA Technical Reports Server (NTRS)
1987-01-01
The purpose was to perform an analysis of the surface operations associated with a human-tended lunar base. Specifically, the study defined surface elements and developed mission manifests for a selected base scenario, determined the nature of surface operations associated with this scenario, generated a preliminary crew extravehicular and intravehicular activity (EVA/IVA) time resource schedule for conducting the missions, and proposed concepts for utilizing remotely operated equipment to perform repetitious or hazardous surface tasks. The operations analysis was performed on a 6 year period of human-tended lunar base operation prior to permanent occupancy. The baseline scenario was derived from a modified version of the civil needs database (CNDB) scenario. This scenario emphasizes achievement of a limited set of science and exploration objectives while emplacing the minimum habitability elements required for a permanent base.
2011-06-01
CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) 5d. PROJECT NUMBER 5e. TASK NUMBER 5f. WORK UNIT NUMBER 7. PERFORMING ...20319 8. PERFORMING ORGANIZATION REPORT NUMBER 9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S) 11. SPONSOR...its subcomponents execute their mission by performing research and analysis, publication, conferences, policy support, and outreach. The mission of
Assessing Explosives Safety Risks, Deviations, And Consequences
2009-07-31
Technical Paper 23 31 July 2009 DDESB Assessing Explosives Safety Risks, Deviations, And Consequences ...Deviations, And Consequences 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) 5d. PROJECT NUMBER 5e. TASK NUMBER...and approaches to assist warfighters in executing their mission, conserving resources, and maximizing operational effectiveness . When mission risk
Exploration Medical Capability
NASA Technical Reports Server (NTRS)
Watkins, Sharmila; Baumann, David; Wu, Jimmy; Barsten, Kristina
2010-01-01
Exploration Medical Capability (ExMC) is an element of NASA's Human Research Program (HRP). ExMC's goal is to address the risk of the Inability to Adequately Recognize or Treat an Ill or Injured Crewmember. This poster highlights the approach ExMC has taken to address this goal and our current areas of interest. The Space Medicine Exploration Medical Condition List (SMEMCL) was created to identify medical conditions of concern during exploration missions. The list was derived from space flight medical incidents, the shuttle medical checklist, the International Space Station medical checklist, and expert opinion. The conditions on the list were prioritized according to mission type by a panel comprised of flight surgeons, physician astronauts, engineers, and scientists. From the prioritized list, the ExMC element determined the capabilities needed to address the medical conditions of concern. Where such capabilities were not currently available, a gap was identified. The element s research plan outlines these gaps and the tasks identified to achieve the desired capabilities for exploration missions. This poster is being presented to inform the audience of the gaps and tasks being investigated by ExMC and to encourage discussions of shared interests and possible future collaborations.
Human Research Program Human Health Countermeasures Element Nutrition Risk Standing Review Panel
NASA Technical Reports Server (NTRS)
Bistrian, Bruce
2009-01-01
The Nutrition Risk Standing Review Panel (SRP) reviewed and discussed the specific gaps and tasks for the Human Health Countermeasures (HHC) Element related to nutrition identified in the Human Research Program (HRP) Integrated Research Plan. There was general consensus that the described gaps and proposed tasks were critical to future NASA mission success. The SRP acknowledged the high scientific quality of the work currently being undertaken by the Nutritional Biochemistry group under the direction of Dr. Scott Smith. In review of the entire HRP, four new gaps were identified that complement the Element's existing research activities. Given the limitations of ground-based analogs for many of the unique physiological and metabolic alterations in space, future studies are needed to quantify nutritional factors that change during actual space flight. In addition, future tasks should seek to better evaluate the time course of physiological and metabolic alterations during flight to better predict alterations during longer duration missions. Finally, given the recent data suggesting a potential role for increased inflammatory responses during space flight, the role of inflammation needs to be explored in detail, including the development of potential countermeasures and new ground based analogs, if this possibility is confirmed.
Probalistic Models for Solar Particle Events
NASA Technical Reports Server (NTRS)
Adams, James H., Jr.; Xapsos, Michael
2009-01-01
Probabilistic Models of Solar Particle Events (SPEs) are used in space mission design studies to describe the radiation environment that can be expected at a specified confidence level. The task of the designer is then to choose a design that will operate in the model radiation environment. Probabilistic models have already been developed for solar proton events that describe the peak flux, event-integrated fluence and missionintegrated fluence. In addition a probabilistic model has been developed that describes the mission-integrated fluence for the Z>2 elemental spectra. This talk will focus on completing this suite of models by developing models for peak flux and event-integrated fluence elemental spectra for the Z>2 element
Recent Electric Propulsion Development Activities for NASA Science Missions
NASA Technical Reports Server (NTRS)
Pencil, Eric J.
2009-01-01
(The primary source of electric propulsion development throughout NASA is managed by the In-Space Propulsion Technology Project at the NASA Glenn Research Center for the Science Mission Directorate. The objective of the Electric Propulsion project area is to develop near-term electric propulsion technology to enhance or enable science missions while minimizing risk and cost to the end user. Major hardware tasks include developing NASA s Evolutionary Xenon Thruster (NEXT), developing a long-life High Voltage Hall Accelerator (HIVHAC), developing an advanced feed system, and developing cross-platform components. The objective of the NEXT task is to advance next generation ion propulsion technology readiness. The baseline NEXT system consists of a high-performance, 7-kW ion thruster; a high-efficiency, 7-kW power processor unit (PPU); a highly flexible advanced xenon propellant management system (PMS); a lightweight engine gimbal; and key elements of a digital control interface unit (DCIU) including software algorithms. This design approach was selected to provide future NASA science missions with the greatest value in mission performance benefit at a low total development cost. The objective of the HIVHAC task is to advance the Hall thruster technology readiness for science mission applications. The task seeks to increase specific impulse, throttle-ability and lifetime to make Hall propulsion systems applicable to deep space science missions. The primary application focus for the resulting Hall propulsion system would be cost-capped missions, such as competitively selected, Discovery-class missions. The objective of the advanced xenon feed system task is to demonstrate novel manufacturing techniques that will significantly reduce mass, volume, and footprint size of xenon feed systems over conventional feed systems. This task has focused on the development of a flow control module, which consists of a three-channel flow system based on a piezo-electrically actuated valve concept, as well as a pressure control module, which will regulate pressure from the propellant tank. Cross-platform component standardization and simplification are being investigated through the Standard Architecture task to reduce first user costs for implementing electric propulsion systems. Progress on current hardware development, recent test activities and future plans are discussed.
Joint IKI/ROSCOSMOS - NASA Science Definition Team and concept mission to Venus based on Venera-D
NASA Astrophysics Data System (ADS)
Zasova, L.; Senske, D.; Economou, T.; Eismont, N.; Esposito, L.; Gerasimov, M.; Gorinov, D.; Ignatiev, N.; Ivanov, M.; Jessup, K. Lea; Khatuntsev, I.; Korablev, O.; Kremic, T.; Limaye, S.; Lomakin, I.; Martynov, A.; Ocampo, A.; Vaisberg, O.; Burdanov, A.
2017-09-01
NASA and IKI/Roscosmos established in 2015 a Joint Science Definition Team (JSDT), a key task of which was to codify the synergy between the goals of Venera-D with those of NASA. In addition, the JSDT studied potential NASA provided mission augmentations (experiments /elements) that could to fill identified science gaps. The first report to NASA - IKI/Roscosmos was provided in January 2017. The baseline Venera-D concept includes two elements, and orbiter and a lander, with potential contributions consisting of an aerial platform/balloon, small long-lived surface stations or a sub-satellite.
Group Task Force on Satellite Rescue and Repair
NASA Astrophysics Data System (ADS)
1992-09-01
The Group Task Force was chartered by the Administrator of NASA to recommend 'a policy outlining the criteria, the design standards, and the pricing model to guide NASA in assessing the responsibilities for government and nongovernment Satellite Rescue and Repair Missions.' Criteria for accepting such missions, risks, and benefits to all sectors of our economy involved in satellite services, adequacy of planning and training, and the impact on NASA's primary mission were reviewed. The Group began by asking a more fundamental question; is satellite rescue and repair a logical element of NASA's mission? Factors considered were: (1) the probability of rescue or repair opportunities arising; (2) the economic justification for such attempts; (3) the benefits to NASA, both from such ad hoc learning experiences in space operations and the impact on the public perception of NASA; (4) the effect of such unanticipated missions on NASA's scheduled activities; (5) any potential effect on NASA's technical capability to work in space; and (6) any potential effect on U.S. economic competitiveness.
Group Task Force on Satellite Rescue and Repair
NASA Technical Reports Server (NTRS)
1992-01-01
The Group Task Force was chartered by the Administrator of NASA to recommend 'a policy outlining the criteria, the design standards, and the pricing model to guide NASA in assessing the responsibilities for government and nongovernment Satellite Rescue and Repair Missions.' Criteria for accepting such missions, risks, and benefits to all sectors of our economy involved in satellite services, adequacy of planning and training, and the impact on NASA's primary mission were reviewed. The Group began by asking a more fundamental question; is satellite rescue and repair a logical element of NASA's mission? Factors considered were: (1) the probability of rescue or repair opportunities arising; (2) the economic justification for such attempts; (3) the benefits to NASA, both from such ad hoc learning experiences in space operations and the impact on the public perception of NASA; (4) the effect of such unanticipated missions on NASA's scheduled activities; (5) any potential effect on NASA's technical capability to work in space; and (6) any potential effect on U.S. economic competitiveness.
Timeliner: Automating Procedures on the ISS
NASA Technical Reports Server (NTRS)
Brown, Robert; Braunstein, E.; Brunet, Rick; Grace, R.; Vu, T.; Zimpfer, Doug; Dwyer, William K.; Robinson, Emily
2002-01-01
Timeliner has been developed as a tool to automate procedural tasks. These tasks may be sequential tasks that would typically be performed by a human operator, or precisely ordered sequencing tasks that allow autonomous execution of a control process. The Timeliner system includes elements for compiling and executing sequences that are defined in the Timeliner language. The Timeliner language was specifically designed to allow easy definition of scripts that provide sequencing and control of complex systems. The execution environment provides real-time monitoring and control based on the commands and conditions defined in the Timeliner language. The Timeliner sequence control may be preprogrammed, compiled from Timeliner "scripts," or it may consist of real-time, interactive inputs from system operators. In general, the Timeliner system lowers the workload for mission or process control operations. In a mission environment, scripts can be used to automate spacecraft operations including autonomous or interactive vehicle control, performance of preflight and post-flight subsystem checkouts, or handling of failure detection and recovery. Timeliner may also be used for mission payload operations, such as stepping through pre-defined procedures of a scientific experiment.
NASA Technical Reports Server (NTRS)
Sibonga, J. D.; Feiveson, A. H.
2014-01-01
This work was accomplished in support of the Finite Element [FE] Strength Task Group, NASA Johnson Space Center [JSC], Houston, TX. This group was charged with the task of developing rules for using finite-element [FE] bone-strength measures to construct operating bands for bone health that are relevant to astronauts following exposure to spaceflight. FE modeling is a computational tool used by engineers to estimate the failure loads of complex structures. Recently, some engineers have used this tool to characterize the failure loads of the hip in population studies that also monitored fracture outcomes. A Directed Research Task was authorized in July, 2012 to investigate FE data from these population studies to derive these proposed standards of bone health as a function of age and gender. The proposed standards make use of an FE-based index that integrates multiple contributors to bone strength, an expanded evaluation that is critical after an astronaut is exposed to spaceflight. The current index of bone health used by NASA is the measurement of areal BMD. There was a concern voiced by a research and clinical advisory panel that the sole use of areal BMD would be insufficient to fully evaluate the effects of spaceflight on the hip. Hence, NASA may not have a full understanding of fracture risk, both during and after a mission, and may be poorly estimating in-flight countermeasure efficacy. The FE Strength Task Group - composed of principal investigators of the aforementioned population studies and of FE modelers -donated some of its population QCT data to estimate of hip bone strength by FE modeling for this specific purpose. Consequently, Human Health Countermeasures [HHC] has compiled a dataset of FE hip strengths, generated by a single FE modeling approach, from human subjects (approx.1060) with ages covering the age range of the astronauts. The dataset has been analyzed to generate a set of FE strength cutoffs for the following scenarios: a) Qualify an applicant for astronaut candidacy, b) Qualify an astronaut for a long-duration (LD) mission, c) Qualify a veteran LD astronaut for a second LD mission, and d) Establish a non-permissible, minimum hip strength following a given mission architecture. This abstract will present the FE-based standards accepted by the FE Strength Task Group for its recommendation to HHC in January 2015.
NASA Technical Reports Server (NTRS)
1983-01-01
An overview of the basic space station infrastructure is presented. A strong case is made for the evolution of the station using the basic Space Transportation System (STS) to achieve a smooth transition and cost effective implementation. The integrated logistics support (ILS) element of the overall station infrastructure is investigated. The need for an orbital transport system capability that is the key to servicing and spacecraft positioning scenarios and associated mission needs is examined. Communication is also an extremely important element and the basic issue of station autonomy versus ground support effects the system and subsystem architecture.
Multifunctional Battalion Task Force Training: Slovenian Armed Forces Battalion Training Cycle
2016-06-10
MULTIFUNCTIONAL BATTALION TASK FORCE TRAINING: SLOVENIAN ARMED FORCES BATTALION TRAINING CYCLE A thesis presented to...Forces Battalion Training Cycle 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) Major Ales Avsec 5d...Bn TF) training cycle . It focuses on how the SAF is conducting the infantry and multifunctional Bn TF training. In particular, it deals with mission
Advanced Technology Applications for Combat Casualty Care
NASA Technical Reports Server (NTRS)
Watkins, Sharmila; Baumann, David; Wu, Jimmy
2010-01-01
Exploration Medical Capability (ExMC) is an element of NASA s Human Research Program (HRP). ExMC s goal is to address the risk of the "Inability to Adequately Recognize or Treat an Ill or Injured Crewmember." This poster highlights the approach ExMC has taken to address this goal and our current areas of interest. The Space Medicine Exploration Medical Condition List (SMEMCL) was created to identify medical conditions of concern during exploration missions. The list was derived from space flight medical incidents, the shuttle medical checklist, the International Space Station medical checklist, and expert opinion. The conditions on the list were prioritized according to mission type by a panel comprised of flight surgeons, physician astronauts, engineers, and scientists. From the prioritized list, the ExMC element determined the capabilities needed to address the medical conditions of concern. Where such capabilities were not currently available, a gap was identified. The element s research plan outlines these gaps and the tasks identified to achieve the desired capabilities for exploration missions.
Advances in Architectural Elements For Future Missions to Titan
NASA Astrophysics Data System (ADS)
Reh, Kim; Coustenis, Athena; Lunine, Jonathan; Matson, Dennis; Lebreton, Jean-Pierre; Vargas, Andre; Beauchamp, Pat; Spilker, Tom; Strange, Nathan; Elliott, John
2010-05-01
The future exploration of Titan is of high priority for the solar system exploration community as recommended by the 2003 National Research Council (NRC) Decadal Survey [1] and ESA's Cosmic Vision Program themes. Recent Cassini-Huygens discoveries continue to emphasize that Titan is a complex world with very many Earth-like features. Titan has a dense, nitrogen atmosphere, an active climate and meteorological cycles where conditions are such that the working fluid, methane, plays the role that water does on Earth. Titan's surface, with lakes and seas, broad river valleys, sand dunes and mountains was formed by processes like those that have shaped the Earth. Supporting this panoply of Earth-like processes is an ice crust that floats atop what might be a liquid water ocean. Furthermore, Titan is rich in very many different organic compounds—more so than any place in the solar system, except Earth. The Titan Saturn System Mission (TSSM) concept that followed the 2007 TandEM ESA CV proposal [2] and the 2007 Titan Explorer NASA Flagship study [3], was examined [4,5] and prioritized by NASA and ESA in February 2009 as a mission to follow the Europa Jupiter System Mission. The TSSM study, like others before it, again concluded that an orbiter, a montgolfiere hot-air balloon and a surface package (e.g. lake lander, Geosaucer (instrumented heat shield), …) are very high priority elements for any future mission to Titan. Such missions could be conceived as Flagship/Cosmic Vision L-Class or as individual smaller missions that could possibly fit into NASA New Frontiers or ESA Cosmic Vision M-Class budgets. As a result of a multitude of Titan mission studies, a clear blueprint has been laid out for the work needed to reduce the risks inherent in such missions and the areas where advances would be beneficial for elements critical to future Titan missions have been identified. The purpose of this paper is to provide a brief overview of the flagship mission architecture and to describe recent advances and ongoing planning for a Titan balloon and surface elements. References [1] NRC Space Studies Board (2003), New Frontiers in the Solar System: An Integrated Exploration Strategy (first Decadal Survey Report), National Academic Press, Washington, DC. [2] Coustenis et al. (2008). Experimental Astronomy, DOI: 10.1007/s10686-008-9103-z. [3] J. Leary, R. Strain, R. Lorenz, J. H. Waite, 2008. Titan Explorer Flagship Mission Study, http://www.lpi.usra.edu/opag/Titan_Explorer_Public_Report.pdf. [4] TSSM Final Report, 3 November 2008, NASA Task Order NMO710851 [5] TSSM NASA/ESA Joint Summary Report, 15 November 2008, NASA Task Order NMO710851
Magellan spacecraft and memory state tracking: Lessons learned, future thoughts
NASA Technical Reports Server (NTRS)
Bucher, Allen W.
1993-01-01
Numerous studies have been dedicated to improving the two main elements of Spacecraft Mission Operations: Command and Telemetry. As a result, not much attention has been given to other tasks that can become tedious, repetitive, and error prone. One such task is Spacecraft and Memory State Tracking, the process by which the status of critical spacecraft components, parameters, and the contents of on-board memory are managed on the ground to maintain knowledge of spacecraft and memory states for future testing, anomaly investigation, and on-board memory reconstruction. The task of Spacecraft and Memory State Tracking has traditionally been a manual task allocated to Mission Operations Procedures. During nominal Mission Operations this job is tedious and error prone. Because the task is not complex and can be accomplished manually, the worth of a sophisticated software tool is often questioned. However, in the event of an anomaly which alters spacecraft components autonomously or a memory anomaly such as a corrupt memory or flight software error, an accurate ground image that can be reconstructed quickly is a priceless commodity. This study explores the process of Spacecraft and Memory State Tracking used by the Magellan Spacecraft Team highlighting its strengths as well as identifying lessons learned during the primary and extended missions, two memory anomalies, and other hardships encountered due to incomplete knowledge of spacecraft states. Ideas for future state tracking tools that require minimal user interaction and are integrated into the Ground Data System will also be discussed.
Magellan spacecraft and memory state tracking: Lessons learned, future thoughts
NASA Astrophysics Data System (ADS)
Bucher, Allen W.
1993-03-01
Numerous studies have been dedicated to improving the two main elements of Spacecraft Mission Operations: Command and Telemetry. As a result, not much attention has been given to other tasks that can become tedious, repetitive, and error prone. One such task is Spacecraft and Memory State Tracking, the process by which the status of critical spacecraft components, parameters, and the contents of on-board memory are managed on the ground to maintain knowledge of spacecraft and memory states for future testing, anomaly investigation, and on-board memory reconstruction. The task of Spacecraft and Memory State Tracking has traditionally been a manual task allocated to Mission Operations Procedures. During nominal Mission Operations this job is tedious and error prone. Because the task is not complex and can be accomplished manually, the worth of a sophisticated software tool is often questioned. However, in the event of an anomaly which alters spacecraft components autonomously or a memory anomaly such as a corrupt memory or flight software error, an accurate ground image that can be reconstructed quickly is a priceless commodity. This study explores the process of Spacecraft and Memory State Tracking used by the Magellan Spacecraft Team highlighting its strengths as well as identifying lessons learned during the primary and extended missions, two memory anomalies, and other hardships encountered due to incomplete knowledge of spacecraft states. Ideas for future state tracking tools that require minimal user interaction and are integrated into the Ground Data System will also be discussed.
2013-05-29
Design and Concept of Operations of a 6U Cube Sat Mission for NIA Proximity Oper111ions and RSO Imaging 5b. GRANT NUMBER NIA 5c. PROGRAM ELEMENT...NUMBER NIA 6. AUTHOR(S) 5d. PROJECT NUMBER B. Udrea, M. Nayak, M. Ryle, N. Martini, S. Gillespie, T. Grande, S. Caicedo, S. NIA Wilette, A. Baba...K. , Harri s, J. DiGregorio, S. Salzburger, P. Patel , A. Huang 5e. TASK NUMBER NIA 5f. WORK UNIT NUMBER NIA T. PERFORMING ORGANIZATION NAME(S
NASA Technical Reports Server (NTRS)
Nicogossian, Arnauld E.
1992-01-01
Manned space flight can be viewed as an interaction of three general elements: the human crewmember, spacecraft systems, and the environment. While the human crewmember is a crucial element in the system, certain physiological, psychological, environ- mental and spacecraft systems factors can compromise human performance in space. These factors include atmospheric pressure, physiology, uncertainties associated with space radiation, the potential for exposure to toxic materials in the closed environment, and spacecraft habitability. Health protection in space, for current and future missions, relies on a philosophy of risk reduction, which in the space program is achieved in four ways-through health maintenance, health care, design criteria, an selection and training. Emphasis is place upon prevention, through selection criteria and careful screening. Spacecraft health care systems must be absolutely reliable, and they will be automated and computerized to the maximum extent possible, but still designed with the human crewmember's capabilities in mind. The autonomy and technological sophistication of future missions will require a greater emphasis on high-level interaction between the human operator and automated systems, with effective allocation of tasks between humans and machines. Performance in space will include complex tasks during extravehicular activity (EVA) and on planetary surfaces, and knowledge of crewmembers' capability and limitations during such operations will be critical to mission success. Psychological support will become increasingly important on space missions, as crews spend long periods in remote and potentially hazardous environments. The success of future missions will depend on both individual psychological health and group cohesion and productivity, particularly as crew profiles become more heterogeneous. Thus, further human factors are needed in the area of small-group dynamics and performance.
Repair of major system elements on Skylab
NASA Technical Reports Server (NTRS)
Pace, R. E., Jr.
1975-01-01
In-flight maintenance, as conceived and pre-planned for the Skylab Mission, was limited to simple scheduled and unscheduled replacement tasks and minor contingency repairs. Failures during the mission dictated complicated and sophisticated repairs to major systems so that the mission could continue. These repairs include the release of a large structure that failed to deploy, the assembly and deployment of large mechanical devices, the installation and checkout of precision electronic equipment, troubleshooting and repair of precision electromechanical equipment and tapping into and recharging a cooling system. The Skylab experience proves conclusively that crewmen can, with adequate training, make major system repairs in space using standard or special tools.
A Preliminary Study of Peer-to-Peer Human-Robot Interaction
NASA Technical Reports Server (NTRS)
Fong, Terrence; Flueckiger, Lorenzo; Kunz, Clayton; Lees, David; Schreiner, John; Siegel, Michael; Hiatt, Laura M.; Nourbakhsh, Illah; Simmons, Reid; Ambrose, Robert
2006-01-01
The Peer-to-Peer Human-Robot Interaction (P2P-HRI) project is developing techniques to improve task coordination and collaboration between human and robot partners. Our work is motivated by the need to develop effective human-robot teams for space mission operations. A central element of our approach is creating dialogue and interaction tools that enable humans and robots to flexibly support one another. In order to understand how this approach can influence task performance, we recently conducted a series of tests simulating a lunar construction task with a human-robot team. In this paper, we describe the tests performed, discuss our initial results, and analyze the effect of intervention on task performance.
Repair of major system elements on Skylab
NASA Technical Reports Server (NTRS)
Pace, R. E., Jr.
1974-01-01
In-flight maintenance, as conceived and preplanned for the Skylab mission was limited to simple scheduled and unscheduled replacement tasks and minor contingency repairs. Tools and spares were provided accordingly. However, failures during the mission dictated complicated and sophisticated repairs to major systems so that the mission could continue. These repairs included the release of a large structure that failed to deploy, the assembly and deployment of large mechanical devices, the installation and checkout of precision electronic equipment, troubleshooting and repair of precision electromechanical equipment, and tapping into and recharging a cooling system. The repairs were conducted both inside the spacecraft and during extravehicular activities. Some of the repair tasks required team effort on the part of the crewmen including close procedural coordination between internal and extravehicular crewmen. The Skylab experience indicates that crewmen can, with adequate training, make major system repairs in space using standard or special tools. Design of future spacecraft systems should acknowledge this capability and provide for more extensive in-flight repair and maintenance.
EOD and Engineers Close the Gap
2005-03-01
Engineers ’ Close the Gap ’ 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) 5d. PROJECT NUMBER 5e. TASK NUMBER 5f. WORK UNIT...action to accomplish missions effectively in the COE. However, tomorrow’s construct will not only “ close the gap ” between EOD and engineers, it will close
2014-06-13
ELEMENT NUMBER 6. AUTHOR( S ) Bob Stone, MAJ, USA 5d. PROJECT NUMBER 5e. TASK NUMBER 5f. WORK UNIT NUMBER 7. PERFORMING ORGANIZATION NAME( S ......political and economic techniques to the problem.”9 The mission reported a dire outlook toward s the political and military situation. It described
Risk of Adverse Health Outcomes and Decrements in Performance Due to In-flight Medical Conditions
NASA Technical Reports Server (NTRS)
Antonsen,Erik
2017-01-01
The drive to undertake long-duration space exploration missions at greater distances from Earth gives rise to many challenges concerning human performance under extreme conditions. At NASA, the Human Research Program (HRP) has been established to investigate the specific risks to astronaut health and performance presented by space exploration, in addition to developing necessary countermeasures and technology to reduce risk and facilitate safer, more productive missions in space (NASA Human Research Program 2009). The HRP is divided into five subsections, covering behavioral health, space radiation, habitability, and other areas of interest. Within this structure is the ExMC Element, whose research contributes to the overall development of new technologies to overcome the challenges of expanding human exploration and habitation of space. The risk statement provided by the HRP to the ExMC Element states: "Given that medical conditions/events will occur during human spaceflight missions, there is a possibility of adverse health outcomes and decrements in performance in mission and for long term health" (NASA Human Research Program 2016). Within this risk context, the Exploration Medical Capabilities (ExMC) Element is specifically concerned with establishing evidenced-based methods of monitoring and maintaining astronaut health. Essential to completing this task is the advancement in techniques that identify, prevent, and treat any health threats that may occur during space missions. The ultimate goal of the ExMC Element is to develop and demonstrate a pathway for medical system integration into vehicle and mission design to mitigate the risk of medical issues. Integral to this effort is inclusion of an evidence-based medical and data handling system appropriate for long-duration, exploration-class missions. This requires a clear Concept of Operations, quantitative risk metrics or other tools to address changing risk throughout a mission, and system scoping and system engineering. Because of the novel nature of the risks involved in exploration missions, new and complex ethical challenges are likely to be encountered. This document describes the relevant background and evidence that informs the development of an exploration medical system.
NASA Astrophysics Data System (ADS)
Ribeiro, André S.; Almeida, Miguel
2003-11-01
We propose a model of structural organization and intercommunication between all elements of every team involved in the development of a space probe to improve efficiency. Such structure is built to minimize path between any two elements, allowing fast information flow in the structure. Structures are usually very clustered inside each task team but only the heads of departments, or occasional meetings, usually assure the links between team elements. This is responsible for a lack of information exchange between staff members of each team. We propose the establishment of permanent small working groups of staff elements from different teams, in a random but permanent basis. The elements chosen for such connections establishment can be chosen in a temporary basis, but the connections must exist permanently because only with permanent connections can information flow when needed. A few of such random connections between staff members will diminish the average path length, between any two elements of any team, for information exchange. A small world structure will emerge with low internal energy costs, which is the structure used by biological neuronal systems.
NASA Astrophysics Data System (ADS)
Ribeiro, André S.; Almeida, Miguel
2006-10-01
We propose a model of structural organization and intercommunication between all elements of every team involved in the development of a space probe to improve efficiency. Such structure is built to minimize path between any two elements, allowing fast information flow in the structure. Structures are usually very clustered inside each task team but only the heads of departments, or occasional meetings, usually assure the links between team elements. This is responsible for a lack of information exchange between staff members of each team. We propose the establishment of permanent small working groups of staff elements from different teams, in a random but permanent basis. The elements chosen for such connections establishment can be chosen on a temporary basis, but the connections must exist permanently because only with permanent connections can information flow when needed. A few of such random connections between staff members will diminish the average path length, between any two elements of any team, for information exchange. A small world structure will emerge with low internal energy costs, which is the structure used by biological neuronal systems.
Mission Activity Planning for Humans and Robots on the Moon
NASA Technical Reports Server (NTRS)
Weisbin, C.; Shelton, K.; Lincoln, W.; Elfes, A.; Smith, J.H.; Mrozinski, J.; Hua, H.; Adumitroaie, V.; Silberg, R.
2008-01-01
A series of studies is conducted to develop a systematic approach to optimizing, both in terms of the distribution and scheduling of tasks, scenarios in which astronauts and robots accomplish a group of activities on the Moon, given an objective function (OF) and specific resources and constraints. An automated planning tool is developed as a key element of this optimization system.
Physiological Based Simulator Fidelity Design Guidance
NASA Technical Reports Server (NTRS)
Schnell, Thomas; Hamel, Nancy; Postnikov, Alex; Hoke, Jaclyn; McLean, Angus L. M. Thom, III
2012-01-01
The evolution of the role of flight simulation has reinforced assumptions in aviation that the degree of realism in a simulation system directly correlates to the training benefit, i.e., more fidelity is always better. The construct of fidelity has several dimensions, including physical fidelity, functional fidelity, and cognitive fidelity. Interaction of different fidelity dimensions has an impact on trainee immersion, presence, and transfer of training. This paper discusses research results of a recent study that investigated if physiological-based methods could be used to determine the required level of simulator fidelity. Pilots performed a relatively complex flight task consisting of mission task elements of various levels of difficulty in a fixed base flight simulator and a real fighter jet trainer aircraft. Flight runs were performed using one forward visual channel of 40 deg. field of view for the lowest level of fidelity, 120 deg. field of view for the middle level of fidelity, and unrestricted field of view and full dynamic acceleration in the real airplane. Neuro-cognitive and physiological measures were collected under these conditions using the Cognitive Avionics Tool Set (CATS) and nonlinear closed form models for workload prediction were generated based on these data for the various mission task elements. One finding of the work described herein is that simple heart rate is a relatively good predictor of cognitive workload, even for short tasks with dynamic changes in cognitive loading. Additionally, we found that models that used a wide range of physiological and neuro-cognitive measures can further boost the accuracy of the workload prediction.
NASA Technical Reports Server (NTRS)
Murphy, Douglas G.; Qu, Min; Salas, Andrea O.
2006-01-01
The NASA Integrated Modeling and Simulation (IM&S) project aims to develop a collaborative engineering system to include distributed analysis, integrated tools, and web-enabled graphics. Engineers on the IM&S team were tasked with applying IM&S capabilities to an orbital mechanics analysis for a lunar mission study. An interactive lunar globe was created to show 7 landing sites, contour lines depicting the energy required to reach a given site, and the optimal lunar orbit orientation to meet the mission constraints. Activation of the lunar globe rotation shows the change of the angle between the landing site latitude and the orbit plane. A heads-up-display was used to embed straightforward interface elements.
Integrated cockpit design for the Army helicopter improvement program
NASA Technical Reports Server (NTRS)
Drennen, T.; Bowen, B.
1984-01-01
The main Army Helicopter Improvement Program (AHIP) mission is to navigate precisely, locate targets accurately, communicate their position to other battlefield elements, and to designate them for laser guided weapons. The onboard navigation and mast-mounted sight (MMS) avionics enable accurate tracking of current aircraft position and subsequent target location. The AHIP crewstation development was based on extensive mission/task analysis, function allocation, total system design, and test and verification. The avionics requirements to meet the mission was limited by the existing aircraft structural and performance characteristics and resultant space, weight, and power restrictions. These limitations and night operations requirement led to the use of night vision goggles. The combination of these requirements and limitations dictated an integrated control/display approach using multifunction displays and controls.
Using full-mission simulation for human factors research in air transport operations
NASA Technical Reports Server (NTRS)
Orlady, Harry W.; Hennessy, Robert W.; Obermayer, Richard; Vreuls, Donald; Murphy, Miles R.
1988-01-01
This study examined state-of-the-art mission oriented simulation and its use in human factors research. Guidelines were developed for doing full-mission human factors research on crew member behavior during simulated air transport operations. The existing literature was reviewed. However, interviews with experienced investigators provided the most useful information. The fundamental scientific and practical issues of behavioral research in a simulation environment are discussed. Guidelines are presented for planning, scenario development, and the execution of behavioral research using full-mission simulation in the context of air transport flight operations . Research is recommended to enhance the validity and productivity of full-mission research by: (1) validating the need for high-fidelity simulation of all major elements in the operational environment, (2) improving methods for conducting full-mission research, and (3) examining part-task research on specific problems through the use of vehicles which contain higher levels of abstraction (and lower fidelity) of the operational environment.
P-8A Poseidon Multi-Mission Maritime Aircraft (P-8A)
2013-12-01
NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) 5d. PROJECT NUMBER 5e. TASK NUMBER 5f. WORK UNIT NUMBER 7. PERFORMING ORGANIZATION NAME(S) AND...2013 rated the P-8A as operationally effective , operationally suitable, and recommended Fleet introduction. Integrated testing of deficiency...lot through effective negotiations with the prime contractor and through development and implementation of production process improvement
Acceptance of Safety and Mission Success Risks
NASA Technical Reports Server (NTRS)
Groen, Frank
2015-01-01
NASA has developed an objectives based hierarchy for guiding Reliability and Maintainability (RM) activities. This presentation overviews the hierarchy and proposes to the international trilateral partners to formulate a task force to consider the elements of the NASA RM framework, as captured in the hierarchy of RM considerations, to identify commonalities and differences in the way RM is addressed by the flight projects among the partners.
Mission control of multiple unmanned aerial vehicles: a workload analysis.
Dixon, Stephen R; Wickens, Christopher D; Chang, Dervon
2005-01-01
With unmanned aerial vehicles (UAVs), 36 licensed pilots flew both single-UAV and dual-UAV simulated military missions. Pilots were required to navigate each UAV through a series of mission legs in one of the following three conditions: a baseline condition, an auditory autoalert condition, and an autopilot condition. Pilots were responsible for (a) mission completion, (b) target search, and (c) systems monitoring. Results revealed that both the autoalert and the autopilot automation improved overall performance by reducing task interference and alleviating workload. The autoalert system benefited performance both in the automated task and mission completion task, whereas the autopilot system benefited performance in the automated task, the mission completion task, and the target search task. Practical implications for the study include the suggestion that reliable automation can help alleviate task interference and reduce workload, thereby allowing pilots to better handle concurrent tasks during single- and multiple-UAV flight control.
Study of a Tracking and Data Acquisition System (TDAS) in the 1990's
NASA Technical Reports Server (NTRS)
1981-01-01
Progress in concept definition studies, operational assessments, and technology demonstrations for the Tracking and Data Acquisition System (TDAS) is reported. The proposed TDAS will be the follow-on to the Tracking and Data Relay Satellite System and will function as a key element of the NASA End-to-End Data System, providing the tracking and data acquisition interface between user accessible data ports on Earth and the user's spaceborne equipment. Technical activities of the "spacecraft data system architecture' task and the "communication mission model' task are emphasized. The objective of the first task is to provide technology forecasts for sensor data handling, navigation and communication systems, and estimate corresponding costs. The second task is concerned with developing a parametric description of the required communication channels. Other tasks with significant activity include the "frequency plan and radio interference model' and the "Viterbi decoder/simulator study'.
Commerce lab: Mission analysis and payload integration study
NASA Technical Reports Server (NTRS)
1984-01-01
Conceived as one or more arrays of carriers which would fly aboard space shuttle, Commerce Lab can provide a point of focus for implementing a series of shuttle flights, co-sponsored by NASA and U.S. domestic concerns, for performing materials processing in research and pre-commercial investigations. As an orbiting facility for testing, developing, and implementing hardware and procedures, Commerce Lab can enhance space station development and hasten space platform production capability. Tasks considered include: (1) synthesis of user requirements and identification of common element and voids; (2) definition of performance and infrastructure requirement and alternative approaches; and (3) carrier, mission model, and infrastructure development.
Third Report of the Task Force on the Shuttle-Mir Rendezvous and Docking Missions
NASA Technical Reports Server (NTRS)
1994-01-01
In May 1994, the Task Force on the Shuttle-Mir Rendezvous and Docking Missions was established by the NASA Advisory Council. Its purpose is to review Phase 1 (Shuttle-Mir) planning, training, operations, rendezvous and docking, and management and to provide interim reports containing specific recommendations to the Advisory Council. Phase 1 represents the building block to create the experience and technical expertise for an International Space Station. The Phase 1 program brings together the United States and Russia in a major cooperative and contractual program that takes advantage of both countries' capabilities. The content of the Phase 1 program consists of the following elements as defined by the Phase 1 Program Management Plan, dated October 6, 1994: Shuttle-Mir rendezvous and docking missions; astronaut long duration presence on Mir Requirements for Mir support of Phase 1 when astronauts are not on board; outfitting Spektr and Priroda modules with NASA science, research, and risk mitigation equipment Related ground support requirements of NASA and the Russian Space Agency (RSA) to support Phase 1 Integrated NASA and RSA launch schedules and manifests The first meeting of the Task Force was held at the Johnson Space Center (JSC) on May 24 and 25, 1994 with a preliminary report submitted to the NASA Advisory Council on June 6, 1994. The second meeting of the Task Force was held at JSC on July 12 and 13, 1994 and a detailed report containing a series of specific recommendations was submitted on July 29, 1994. This report reflects the results of the third Task Force meeting which was held at JSC on 11 and 12 October, 1994. The briefings presented at that meeting reviewed NASA's response to the Task Force recommendations made to date and provided background data and current status on several critical areas which the Task Force had not addressed in its previous reports.
Oceanographic Analysis of Sun Glint Images Taken on Space Shuttle Mission STS 41-G.
1986-03-01
10. SOURCE OF FUNDING NUMBERS PROGRAM PROJECT TASK WORK UNIT ELEMENT NO. NO. NO. ACCESSION NO. ?I TITLE (Include Security Ciassification) OCEANOGRAPHIC...CONTENTS le INTRJODUCTION --- ---. m.--- --..-- --.-- -- -- -- --- -- ---.-. II. WESTERN MEDITERRANEAN OCEANOGRAPHIC OVERVIEV - --------------- 10. A...By computing the arc tangent of 128 n.m./125 n.m. a tilt angle of 45.7’ was approximated for the camera lens. Two simplifications were made. Earth
NASA Technical Reports Server (NTRS)
Olsen, R.; Schaefer, O.; Hussey, J.
1992-01-01
Potential space missions of the nineties and the next century require that we look at the broad category of remote systems as an important means to achieve cost-effective operations, exploration and colonization objectives. This paper addresses such missions, which can use remote systems technology as the basis for identifying required capabilities which must be provided. The relationship of the space-based tasks to similar tasks required for terrestrial applications is discussed. The development status of the required technology is assessed and major issues which must be addressed to meet future requirements are identified. This includes the proper mix of humans and machines, from pure teleoperation to full autonomy; the degree of worksite compatibility for a robotic system; and the required design parameters, such as degrees-of-freedom. Methods for resolution are discussed including analysis, graphical simulation and the use of laboratory test beds. Grumman experience in the application of these techniques to a variety of design issues are presented utilizing the Telerobotics Development Laboratory which includes a 17-DOF robot system, a variety of sensing elements, Deneb/IRIS graphics workstations and control stations. The use of task/worksite mockups, remote system development test beds and graphical analysis are discussed with examples of typical results such as estimates of task times, task feasibility and resulting recommendations for design changes. The relationship of this experience and lessons-learned to future development of remote systems is also discussed.
Electrical Power Systems for NASA's Space Transportation Program
NASA Technical Reports Server (NTRS)
Lollar, Louis F.; Maus, Louis C.
1998-01-01
Marshall Space Flight Center (MSFC) is the National Aeronautics and Space Administration's (NASA) lead center for space transportation systems development. These systems include earth to orbit launch vehicles, as well as vehicles for orbital transfer and deep space missions. The tasks for these systems include research, technology maturation, design, development, and integration of space transportation and propulsion systems. One of the key elements in any transportation system is the electrical power system (EPS). Every transportation system has to have some form of electrical power and the EPS for each of these systems tends to be as varied and unique as the missions they are supporting. The Preliminary Design Office (PD) at MSFC is tasked to perform feasibility analyses and preliminary design studies for new projects, particularly in the space transportation systems area. All major subsystems, including electrical power, are included in each of these studies. Three example systems being evaluated in PD at this time are the Liquid Fly Back Booster (LFBB) system, the Human Mission to Mars (HMM) study, and a tether based flight experiment called the Propulsive Small Expendable Deployer System (ProSEDS). These three systems are in various stages of definition in the study phase.
Linnehan and Foreman on EVA 2 - during Expedition 16 / STS-123 Joint Operations
2008-03-16
S123-E-006786 (15/16 March 2008) --- Astronaut Rick Linnehan, STS-123 mission specialist, participates in the mission's second scheduled session of extravehicular activity (EVA) as construction and maintenance continue on the International Space Station. During the 7-hour, 8-minute spacewalk, Linnehan and astronaut Mike Foreman (out of frame), mission specialist, assembled the stick-figure-shaped Dextre, also known as the Special Purpose Dextrous Manipulator (SPDM), a task that included attaching its two arms. Designed for station maintenance and service, Dextre is capable of sensing forces and movement of objects it is manipulating. It can automatically compensate for those forces and movements to ensure an object is moved smoothly. Dextre is the final element of the station's Mobile Servicing System. The blackness of space and Earth's horizon provide the backdrop for the scene.
The Department of the Navy Systems Engineering Career Competency Model (SECCM)
2015-05-13
Respond 71% Value 18% Organize 3% Characterize 4% Affective Domain Total KSAs : 869 ENG Career Field Competency Model 10 1.0 Mission Level...The Department of the Navy Systems Engineering Career Competency Model (SECCM) 2015 Acquisition Symposium Naval Postgraduate School Monterey...Career Competency Model (SECCM) 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) 5d. PROJECT NUMBER 5e. TASK NUMBER
A general architecture for intelligent training systems
NASA Technical Reports Server (NTRS)
Loftin, R. Bowen
1987-01-01
A preliminary design of a general architecture for autonomous intelligent training systems was developed. The architecture integrates expert system technology with teaching/training methodologies to permit the production of systems suitable for use by NASA, other government agencies, industry, and academia in the training of personnel for the performance of complex, mission-critical tasks. The proposed architecture consists of five elements: a user interface, a domain expert, a training session manager, a trainee model, and a training scenario generator. The design of this architecture was guided and its efficacy tested through the development of a system for use by Mission Control Center Flight Dynamics Officers in training to perform Payload-Assist Module Deploys from the orbiter.
NDARC NASA Design and Analysis of Rotorcraft - Input, Appendix 4
NASA Technical Reports Server (NTRS)
Johnson, Wayne
2016-01-01
The NDARC code performs design and analysis tasks. The design task involves sizing the rotorcraft to satisfy specified design conditions and missions. The analysis tasks can include off-design mission performance analysis, flight performance calculation for point operating conditions, and generation of subsystem or component performance maps. The principal tasks (sizing, mission analysis, flight performance analysis) are shown in the figure as boxes with heavy borders. Heavy arrows show control of subordinate tasks. The aircraft description consists of all the information, input and derived, that denes the aircraft. The aircraft consists of a set of components, including fuselage, rotors, wings, tails, and propulsion. This information can be the result of the sizing task; can come entirely from input, for a fixed model; or can come from the sizing task in a previous case or previous job. The aircraft description information is available to all tasks and all solutions. The sizing task determines the dimensions, power, and weight of a rotorcraft that can perform a specified set of design conditions and missions. The aircraft size is characterized by parameters such as design gross weight, weight empty, rotor radius, and engine power available. The relations between dimensions, power, and weight generally require an iterative solution. From the design flight conditions and missions, the task can determine the total engine power or the rotor radius (or both power and radius can be fixed), as well as the design gross weight, maximum takeoff weight, drive system torque limit, and fuel tank capacity. For each propulsion group, the engine power or the rotor radius can be sized. Missions are defined for the sizing task, and for the mission performance analysis. A mission consists of a number of mission segments, for which time, distance, and fuel burn are evaluated. For the sizing task, certain missions are designated to be used for design gross weight calculations; for transmission sizing; and for fuel tank sizing. The mission parameters include mission takeoff gross weight and useful load. For specified takeoff fuel weight with adjustable segments, the mission time or distance is adjusted so the fuel required for the mission equals the takeoff fuel weight. The mission iteration is on fuel weight or energy. Flight conditions are specified for the sizing task, and for the flight performance analysis. For the sizing task, certain flight conditions are designated to be used for design gross weight calculations; for transmission sizing; for maximum takeoff weight calculations; and for anti-torque or auxiliary thrust rotor sizing. The flight condition parameters include gross weight and useful load. For flight conditions and mission takeoff, the gross weight can be maximized, such that the power required equals the power available. A flight state is defined for each mission segment and each flight condition. The aircraft performance can be analyzed for the specified state, or a maximum effort performance can be identified. The maximum effort is specified in terms of a quantity such as best endurance or best range, and a variable such as speed, rate of climb, or altitude.
Mission planning for autonomous systems
NASA Technical Reports Server (NTRS)
Pearson, G.
1987-01-01
Planning is a necessary task for intelligent, adaptive systems operating independently of human controllers. A mission planning system that performs task planning by decomposing a high-level mission objective into subtasks and synthesizing a plan for those tasks at varying levels of abstraction is discussed. Researchers use a blackboard architecture to partition the search space and direct the focus of attention of the planner. Using advanced planning techniques, they can control plan synthesis for the complex planning tasks involved in mission planning.
Human Mars Missions: Cost Driven Architecture Assessments
NASA Technical Reports Server (NTRS)
Donahue, Benjamin
1998-01-01
This report investigates various methods of reducing the cost in space transportation systems for human Mars missions. The reference mission for this task is a mission currently under study at NASA. called the Mars Design Reference Mission, characterized by In-Situ propellant production at Mars. This study mainly consists of comparative evaluations to the reference mission with a view to selecting strategies that would reduce the cost of the Mars program as a whole. One of the objectives is to understand the implications of certain Mars architectures, mission modes, vehicle configurations, and potentials for vehicle reusability. The evaluations start with year 2011-2014 conjunction missions which were characterized by their abort-to-the-surface mission abort philosophy. Variations within this mission architecture, as well as outside the set to other architectures (not predicated on an abort to surface philosophy) were evaluated. Specific emphasis has been placed on identifying and assessing overall mission risk. Impacts that Mars mission vehicles might place upon the Space Station, if it were to be used as an assembly or operations base, were also discussed. Because of the short duration of this study only on a few propulsion elements were addressed (nuclear thermal, cryogenic oxygen-hydrogen, cryogenic oxygen-methane, and aerocapture). Primary ground rules and assumptions were taken from NASA material used in Marshall Space Flight Center's own assessment done in 1997.
Exploration Medical System Technical Architecture Overview
NASA Technical Reports Server (NTRS)
Cerro, J.; Rubin, D.; Mindock, J.; Middour, C.; McGuire, K.; Hanson, A.; Reilly, J.; Burba, T.; Urbina, M.
2018-01-01
The Exploration Medical Capability (ExMC) Element Systems Engineering (SE) goals include defining the technical system needed to support medical capabilities for a Mars exploration mission. A draft medical system architecture was developed based on stakeholder needs, system goals, and system behaviors, as captured in an ExMC concept of operations document and a system model. This talk will discuss a high-level view of the medical system, as part of a larger crew health and performance system, both of which will support crew during Deep Space Transport missions. Other mission components, such as the flight system, ground system, caregiver, and patient, will be discussed as aspects of the context because the medical system will have important interactions with each. Additionally, important interactions with other aspects of the crew health and performance system are anticipated, such as health & wellness, mission task performance support, and environmental protection. This talk will highlight areas in which we are working with other disciplines to understand these interactions.
In situ chemical analyses of extraterrestrial bodies
NASA Technical Reports Server (NTRS)
Economou, Thanasis E.; Turkevich, Anthony L.
1988-01-01
One of the most important tasks on any sample return mission will have to be a quick sample characterization in order to guarantee a variety of collected samples. An alpha particle instrument with alpha, proton and X-ray modes can provide a quick and almost complete chemical analysis of Mars samples. This instrument is based on three interactions of the alpha particles from a radioactive source with matter: elastic scattering of the alpha particles by nuclei (alpha mode), (alpha,p) nuclear reaction with some light elements (proton mode), and excitation of the atomic structure of atoms by alpha particles, leading to emission of characteristic X-rays of the lunar surface at three sites during the Surveyor mission of 1967 to 1968. Since then the instrument has been improved and miniaturized substantially. As shown in the past, the alpha particle instrument can operate under Martian conditions without any degradation in the performance. The alpha and proton modes can provide vital information about the light elements, while the X-ray mode with its ambient temperature X-ray detector will be useful for the heavier elements. The excitation of the atomic structure is provided by the same alpha radioactive source that is used by alpha and proton modes or by an auxiliary X-ray source that is selected to enhance the sensitivity to some important geochemical elements.
Analogs and the BHP Risk Reduction Strategy for Future Spaceflight Missions
NASA Technical Reports Server (NTRS)
Whitmire, Sandra; Leveton, Lauren
2011-01-01
In preparation for future exploration missions to distant destinations (e.g., Moon, Near Earth Objects (NEO), and Mars), the NASA Human Research Program s (HRP) Behavioral Health and Performance Element (BHP) conducts and supports research to address four human health risks: Risk of Behavioral Conditions; Risk of Psychiatric Conditions; Risk of Performance Decrements Due to Inadequate Cooperation, Coordination, Communication, and Psychosocial Adaptation within a Team; and Risk of Performance Errors due to Sleep Loss, Fatigue, Circadian Desynchronization, and Work Overload (HRP Science Management Plan, 2008). BHP Research, in collaboration with internal and external research investigators, as well as subject matter experts within NASA operations including flight surgeons, astronauts, and mission planners and others within the Mission Operations Directorate (MOD), identifies knowledge and technology gaps within each Risk. BHP Research subsequently manages and conducts research tasks to address and close the gaps, either through risk assessment and quantification, or the development of countermeasures and monitoring technologies. The resulting deliverables, in many instances, also support current Medical Operations and/or Mission Operations for the International Space Station (ISS).
1983-07-01
8217D-RI31 326 POTENTIAL APPLICATIONS OF CABLE TELEVISION (CATY) TO i2 THE FEMA (FEDERAL EM.. (U) CONTROL ENERGY CORP BOSTON MR D D GILLIGAN ET AL. JUL...9. PERFORMING ORGANIZATION NAME AND ADDRESS 10. PROGRAM ELEMENT. PROJECT, TASK AREA & WORK UNIT NUMBERS Control Energy Corporation 470 Atlantic...Avenue Boston, MA 02210 ______________ 11. CONTROLLING OFFICE NAME AND ADDRESS 12. REPORT DATE Federal Emergency Management Agency July, 1983 OAM
Enhancing Lunar Exploration with a Radioisotope Powered Dual Mode Lunar Rover
NASA Astrophysics Data System (ADS)
Elliott, J. O.; Coste, K.; Schriener, T. M.
2005-12-01
The emerging plans for lunar exploration and establishment of a permanent human presence on the moon will require development of numerous infrastructure elements to facilitate their implementation. One such element, which manifestly demonstrated its worth in the Apollo missions, is the lunar roving vehicle. While the original Apollo lunar rovers were designed for single mission use, the intention of proceeding with a long-term sustained lunar exploration campaign gives new impetus to consideration of a lunar roving vehicle with extended capabilities, including the ability to support multiple sequential human missions as well as teleoperated exploration activities between human visits. This paper presents a preliminary design concept for such a vehicle, powered by radioisotope power systems which would give the rover greatly extended capabilities and the versatility to operate at any latitude over the entire lunar day/night cycle. The rover would be used for human transportation during astronaut sorties, and be reconfigured for teleoperation by earth-based controllers during the times between crewed landings. In teleoperated mode the rover could be equipped with a range of scientific instrument suites for exploration and detailed assessment of the lunar environment on a regional scale. With modular payload attachments, the rover could be modified between missions to carry out a variety of scientific and utilitarian tasks, including regolith reconfiguration in support of establishment of a permanent human base.
Linnehan on EVA 2 - during Expedition 16 / STS-123 Joint Operations
2008-03-16
S123-E-006790 (15/16 March 2008) --- Astronauts Mike Foreman and Rick Linnehan (partially out of frame), both STS-123 mission specialists, participate in the mission's second scheduled session of extravehicular activity (EVA) as construction and maintenance continue on the International Space Station. During the 7-hour, 8-minute spacewalk, Linnehan and Foreman, assembled the stick-figure-shaped Dextre, also known as the Special Purpose Dextrous Manipulator (SPDM), a task that included attaching its two arms. Designed for station maintenance and service, Dextre is capable of sensing forces and movement of objects it is manipulating. It can automatically compensate for those forces and movements to ensure an object is moved smoothly. Dextre is the final element of the station's Mobile Servicing System.
Linnehan and Foreman on EVA 2 - during Expedition 16 / STS-123 Joint Operations
2008-03-16
S123-E-006788 (15/16 March 2008) --- Astronauts Mike Foreman (left) and Rick Linnehan, both STS-123 mission specialists, participate in the mission's second scheduled session of extravehicular activity (EVA) as construction and maintenance continue on the International Space Station. During the 7-hour, 8-minute spacewalk, Linnehan and Foreman, assembled the stick-figure-shaped Dextre, also known as the Special Purpose Dextrous Manipulator (SPDM), a task that included attaching its two arms. Designed for station maintenance and service, Dextre is capable of sensing forces and movement of objects it is manipulating. It can automatically compensate for those forces and movements to ensure an object is moved smoothly. Dextre is the final element of the station's Mobile Servicing System.
Linnehan and Foreman on EVA 2 - during Expedition 16 / STS-123 Joint Operations
2008-03-16
S123-E-006781 (15/16 March 2008) --- Astronauts Rick Linnehan (right) and Mike Foreman, both STS-123 mission specialists, participate in the mission's second scheduled session of extravehicular activity (EVA) as construction and maintenance continue on the International Space Station. During the 7-hour, 8-minute spacewalk, Linnehan and Foreman, assembled the stick-figure-shaped Dextre, also known as the Special Purpose Dextrous Manipulator (SPDM), a task that included attaching its two arms. Designed for station maintenance and service, Dextre is capable of sensing forces and movement of objects it is manipulating. It can automatically compensate for those forces and movements to ensure an object is moved smoothly. Dextre is the final element of the station's Mobile Servicing System.
Affordable Development and Demonstration of a Small NTR Engine and Stage: How Small is Big Enough?
NASA Technical Reports Server (NTRS)
Borowski, S. K.; Sefcik, R. J.; Fittje, J. E.; McCurdy, D. R.; Qualls, A. L.; Schnitzler, B. G.; Werner, J.; Weitzberg, A.; Joyner, C. R.
2015-01-01
In FY11, NASA formulated a plan for Nuclear Thermal Propulsion (NTP) development that included Foundational Technology Development followed by system-level Technology Demonstrations The ongoing NTP project, funded by NASAs Advanced Exploration Systems (AES) program, is focused on Foundational Technology Development and includes 5 key task activities:(1) Fuel element fabrication and non-nuclear validation testing of heritage fuel options;(2) Engine conceptual design;(3) Mission analysis and engine requirements definition;(4) Identification of affordable options for ground testing; and(5) Formulation of an affordable and sustainable NTP development program Performance parameters for Point of Departure designs for a small criticality-limited and full size 25 klbf-class engine were developed during FYs 13-14 using heritage fuel element designs for both RoverNERVA Graphite Composite (GC) and Ceramic Metal (Cermet) fuel forms To focus the fuel development effort and maximize use of its resources, the AES program decided, in FY14, that a leader-follower down selection between GC and cermet fuel was required An Independent Review Panel (IRP) was convened by NASA and tasked with reviewing the available fuel data and making a recommendation to NASA. In February 2015, the IRP recommended and the AES program endorsed GC as the leader fuel In FY14, a preliminary development schedule DDTE plan was produced by GRC, DOE industry for the AES program. Assumptions, considerations and key task activities are presented here Two small (7.5 and 16.5 klbf) engine sizes were considered for ground and flight technology demonstration within a 10-year timeframe; their ability to support future human exploration missions was also examined and a recommendation on a preferred size is provided.
A Review and Annotated Bibliography of Training Performance Measurement and Assessment Literature
1988-10-01
work envirorments and orgoIizational climate questomaires. Identifies empirical eaures of Army unit effectiveness . Key Points: Looks at inspection reparts, mission accompil lsl’nt results, eff iclwy measures etc. A-63 ...PROJECT TASK WORK UNIT TRADE/ARI), 12350 Research Parkway ELEMENT NO. NO. NO. ACCESSION NO. Orlando, FL 32826-3276 (continued) 6.3.7.43 A794 4.3.2 C.1 11... effectiveness . Researchers should investigate means for developing more empirical data, better analytic methods, and standardized measurement. Increased
NASA Technical Reports Server (NTRS)
1976-01-01
The functions of Payload Operations Control Centers (POCC) at JSC, GSFC, JPL, and non-NASA locations are analyzed to establish guidelines for standardization, and facilitate the development of a fully integrated NASA-wide system of ground facilities for all classes of payloads. Operational interfaces between the space transportation system operator and the payload operator elements are defined. The advantages and disadvantages of standardization are discussed.
Navy CG(X) Cruiser Program: Background, Oversight Issues, and Options for Congress
2009-12-22
and Options for Congress 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) 5d. PROJECT NUMBER 5e . TASK NUMBER 5f. WORK...press report (Katherine McIntire Peters, “Navy’s Top Officer Sees Lessons in Shipbuilding Program Failures,” GovernmentExecutive.com, September 24, 2008...changes would have led to a bigger problem—a future surface combatant force that was both unaffordable and poorly aligned with projected mission needs
2013-07-01
ELEMENT NUMBER 6. AUTHOR (S) 5d. PROJECT NUMBER 5e. TASK NUMBER 5f. WORK UNIT NUMBER 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) U.S...persons for whom DOD must account. A committee report accompanying the National Defense Authorization Act for Fiscal Year 2013 mandated GAO to...many organizations and each reports through a different line of authority . Thus, no single entity is responsible for communitywide personnel and
Security in Iraq: A Framework for Analyzing Emerging Threats as U.S. Forces Leave
2010-01-01
5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) 5d. PROJECT NUMBER 5e. TASK NUMBER 5f. WORK UNIT NUMBER 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES...including enhance - ment of the ISF. Economic hardship in Iraq could increase the propen- sity for violence, especially if inequities are severe and...withdrawal of U.S. forces, if mutually agreed, should have three missions: xviii Security in Iraq • capability-building: aiding in the training
Tailored Systems Architecture for Design of Space Science and Technology Missions Using DoDAF V2.0
2009-12-01
GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) 5d. PROJECT NUMBER 5e. TASK NUMBER 5f. WORK UNIT NUMBER 7. PERFORMING ORGANIZATION NAME(S) AND...ADDRESS(ES) Air Force Institute of Technology,2950 Hobson Way,WPAFB,OH,45433-7765 8. PERFORMING ORGANIZATION REPORT NUMBER 9. SPONSORING/MONITORING...the focus on rapid development and transition, if a system architecture framework could be developed and used to increase visibility within the
Tailored Systems Architecture for Design of Space Science and Technology Missions using DoDAF V2.0
2009-12-01
GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) 5d. PROJECT NUMBER 5e. TASK NUMBER 5f. WORK UNIT NUMBER 7. PERFORMING ORGANIZATION NAME(S) AND...ADDRESS(ES) Air Force Institute of Technology,2950 Hobson Way,WPAFB,OH,45433-7765 8. PERFORMING ORGANIZATION REPORT NUMBER 9. SPONSORING/MONITORING...the focus on rapid development and transition, if a system architecture framework could be developed and used to increase visibility within the
Space station thermal control surfaces. Volume 1: Interim report
NASA Technical Reports Server (NTRS)
Maag, C. R.; Millard, J. M.
1978-01-01
The U.S. space program goals for long-duration manned missions place particular demands on thermal-control systems. The objective of this program is to develop plans which are based on the present thermal-control technology, and which will keep pace with the other space program elements. The program tasks are as follows: (1) requirements analysis, with the objectives to define the thermal-control-surface requirements for both space station and 25 kW power module, to analyze the missions, and to determine the thermal-control-surface technology needed to satisfy both sets of requirements; (2) technology assessment, with the objectives to perform a literature/industry survey on thermal-control surfaces, to compare current technology with the requirements developed in the first task, and to determine what technology advancements are required for both the space station and the 25 kW power module; and (3) program planning that defines new initiative and/or program augmentation for development and testing areas required to provide the proper environment control for the space station and the 25 kW power module.
3D vision upgrade kit for the TALON robot system
NASA Astrophysics Data System (ADS)
Bodenhamer, Andrew; Pettijohn, Bradley; Pezzaniti, J. Larry; Edmondson, Richard; Vaden, Justin; Hyatt, Brian; Morris, James; Chenault, David; Tchon, Joe; Barnidge, Tracy; Kaufman, Seth; Kingston, David; Newell, Scott
2010-02-01
In September 2009 the Fort Leonard Wood Field Element of the US Army Research Laboratory - Human Research and Engineering Directorate, in conjunction with Polaris Sensor Technologies and Concurrent Technologies Corporation, evaluated the objective performance benefits of Polaris' 3D vision upgrade kit for the TALON small unmanned ground vehicle (SUGV). This upgrade kit is a field-upgradable set of two stereo-cameras and a flat panel display, using only standard hardware, data and electrical connections existing on the TALON robot. Using both the 3D vision system and a standard 2D camera and display, ten active-duty Army Soldiers completed seven scenarios designed to be representative of missions performed by military SUGV operators. Mission time savings (6.5% to 32%) were found for six of the seven scenarios when using the 3D vision system. Operators were not only able to complete tasks quicker but, for six of seven scenarios, made fewer mistakes in their task execution. Subjective Soldier feedback was overwhelmingly in support of pursuing 3D vision systems, such as the one evaluated, for fielding to combat units.
NASA Astrophysics Data System (ADS)
Rogers, Steven P.; Hamilton, David B.
1994-06-01
To employ the most readily comprehensible presentation methods and symbology with helmet-mounted displays (HMDs), it is critical to identify the information elements needed to perform each pilot function and to analytically determine the attributes of these elements. The extensive analyses of mission requirements currently performed for pilot-vehicle interface design can be aided and improved by the new capabilities of intelligent systems and relational databases. An intelligent system, named ACIDTEST, has been developed specifically for organizing and applying rules to identify the best display modalities, locations, and formats. The primary objectives of the ACIDTEST system are to provide rapid accessibility to pertinent display research data, to integrate guidelines from many disciplines and identify conflicts among these guidelines, to force a consistent display approach among the design team members, and to serve as an 'audit trail' of design decisions and justifications. A powerful relational database called TAWL ORDIR has been developed to document information requirements and attributes for use by ACIDTEST as well as to greatly augment the applicability of mission analysis data. TAWL ORDIR can be used to rapidly reorganize mission analysis data components for study, perform commonality analyses for groups of tasks, determine the information content requirement for tailored display modes, and identify symbology integration opportunities.
A NASA Strategy for Leveraging Emerging Launch Vehicles for Routine, Small Payload Missions
NASA Technical Reports Server (NTRS)
Underwood, Bruce E.
2005-01-01
Orbital flight opportunities for small payloads have always been few and far between, and then on February 1, 2002, the situation got worse. In the wake of the loss of the Columbia during STS- 107, changing NASA missions and priorities led to the termination of the Shuttle Small Payloads Projects, including Get-Away Special, Hitcbker, and Space Experiment Module. In spite of the limited opportunities, long queue, and restrictions associated with flying experiments on a man-rated transportation system; the carriers provided a sustained, high quality experiment services for education, science, and technology payloads, and was one of the few games in town. Attempts to establish routine opportunities aboard existing ELVs have been unsuccessful, as the cost-per-pound on small ELVs and conflicts with primary spacecraft on larger vehicles have proven prohibitive. Ths has led to a backlog of existing NASA-sponsored payloads and no prospects or plans for fbture opportunities within the NASA community. The prospects for breaking out of this paradigm appear promising as a result of NASA s partnership with DARPA in pursuit of low-cost, responsive small ELVs under the Falcon Program. Through this partnership several new small ELVs, providing 1000 lbs. to LEO will be demonstrated in less than two years that promise costs that are reasonable enough that NASA, DoD, and other sponsors can once again invest in small payload opportunities. Within NASA, planning has already begun. NASA will be populating one or more of the Falcon demonstration flights with small payloads that are already under development. To accommodate these experiments, Goddard s Wallops Flight Facility has been tasked to develop a multi-payload ejector (MPE) to accommodate the needs of these payloads. The MPE capabilities and design is described in detail in a separately submitted abstract. Beyond use of the demonstration flights however, Goddard has already begun developing strategies to leverage these new ELVs as elements of a larger system designed to provide routine, low-cost end-to-end services for small science, Exploration, and education payloads. The plan leverages the management approaches of the successful Sounding Rocket Program and Shuttle Small Payloads Projects. The strategy consists of using a systems implementation approach of elements, including 1) Falcon ELVs, 2) advanced launch site technologies and processes, 3) suite of experiment carriers accommodating different mission requirements, 4) streamlined integration and test operations, 5 ) experiment brokering and management, and 6) standardized, distributed payload operations. The envisioned suite of carriers includes the MPE, a standard interface experiment carrier, and potentially a reentry fieeflyer experiment carrier. Key to the success of this strategy is standard experiment interfaces within the carriers to limit mission- unique tasks, establishmg and managing a program of scheduled reoccurring flights rather than discrete missions, and streamlined, centralized implementation of the elements. These individual elements are each under development and Goddard will demonstrate the overall system strategy low-cost small payload missions on the initial Falcon demonstration launches from Wallops. goal is to show that this model should be converted to a sustained NASA program supporting science, technology, and education, with annual flight opportunities. The paper will define in detail the various elements of the overall program, as well as provide status, philosophy, and strategy for the program that will hopefully once-and-for-all provide low-cost, routine access to space for the small payloads community.
Using task analysis to understand the Data System Operations Team
NASA Technical Reports Server (NTRS)
Holder, Barbara E.
1994-01-01
The Data Systems Operations Team (DSOT) currently monitors the Multimission Ground Data System (MGDS) at JPL. The MGDS currently supports five spacecraft and within the next five years, it will support ten spacecraft simultaneously. The ground processing element of the MGDS consists of a distributed UNIX-based system of over 40 nodes and 100 processes. The MGDS system provides operators with little or no information about the system's end-to-end processing status or end-to-end configuration. The lack of system visibility has become a critical issue in the daily operation of the MGDS. A task analysis was conducted to determine what kinds of tools were needed to provide DSOT with useful status information and to prioritize the tool development. The analysis provided the formality and structure needed to get the right information exchange between development and operations. How even a small task analysis can improve developer-operator communications is described, and the challenges associated with conducting a task analysis in a real-time mission operations environment are examined.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Leonard, S.L.; Munjal, P.K.; Rattin, E.J.
1976-06-01
The main emphasis of the activity during the second quarter of this project continued to be on Task 1, Analysis of Near-Term Missions, and on Task 2, Analysis of Major Mid-Term Missions. In addition, considerable progress was also made on Task 6, Comparison of the True Societal Costs of Conventional and Photovoltaic Power Production, and starts were made on Task 3, Review and Updating of the ERDA Technology Implementation Plan, and Task 4, Critical External Issues. As was planned, work on Task 5, Impact of Incentives, was deferred to the second half of the program. Progress is reported. (WHK)
New Directions for NASA's Advanced Life Support Program
NASA Technical Reports Server (NTRS)
Barta, Daniel J.
2006-01-01
Advanced Life Support (ALS), an element of Human Systems Research and Technology s (HSRT) Life Support and Habitation Program (LSH), has been NASA s primary sponsor of life support research and technology development for the agency. Over its history, ALS sponsored tasks across a diverse set of institutions, including field centers, colleges and universities, industry, and governmental laboratories, resulting in numerous publications and scientific articles, patents and new technologies, as well as education and training for primary, secondary and graduate students, including minority serving institutions. Prior to the Vision for Space Exploration (VSE) announced on January 14th, 2004 by the President, ALS had been focused on research and technology development for long duration exploration missions, emphasizing closed-loop regenerative systems, including both biological and physicochemical. Taking a robust and flexible approach, ALS focused on capabilities to enable visits to multiple potential destinations beyond low Earth orbit. ALS developed requirements, reference missions, and assumptions upon which to structure and focus its development program. The VSE gave NASA a plan for steady human and robotic space exploration based on specific, achievable goals. Recently, the Exploration Systems Architecture Study (ESAS) was chartered by NASA s Administrator to determine the best exploration architecture and strategy to implement the Vision. The study identified key technologies required to enable and significantly enhance the reference exploration missions and to prioritize near-term and far-term technology investments. This technology assessment resulted in a revised Exploration Systems Mission Directorate (ESMD) technology investment plan. A set of new technology development projects were initiated as part of the plan s implementation, replacing tasks previously initiated under HSRT and its sister program, Exploration Systems Research and Technology (ESRT). The Exploration Life Support (ELS) Project, under the Exploration Technology Development Program, has recently been initiated to perform directed life support technology development in support of Constellation and the Crew Exploration Vehicle (CEV). ELS) has replaced ALS, with several major differences. Thermal Control Systems have been separated into a new stand alone project (Thermal Systems for Exploration Missions). Tasks in Advanced Food Technology have been relocated to the Human Research Program. Tasks in a new discipline area, Habitation Engineering, have been added. Research and technology development for capabilities required for longer duration stays on the Moon and Mars, including bioregenerative system, have been deferred.
Linnehan and Foreman on EVA 2 - during Expedition 16 / STS-123 Joint Operations
2008-03-16
S123-E-006787 (15/16 March 2008) --- Astronauts Mike Foreman and Rick Linnehan (partially out of frame), both STS-123 mission specialists, participate in the mission's second scheduled session of extravehicular activity (EVA) as construction and maintenance continue on the International Space Station. During the 7-hour, 8-minute spacewalk, Linnehan and Foreman, assembled the stick-figure-shaped Dextre, also known as the Special Purpose Dextrous Manipulator (SPDM), a task that included attaching its two arms. Designed for station maintenance and service, Dextre is capable of sensing forces and movement of objects it is manipulating. It can automatically compensate for those forces and movements to ensure an object is moved smoothly. Dextre is the final element of the station's Mobile Servicing System.
Heart Rate Response During Mission-Critical Tasks After Space Flight
NASA Technical Reports Server (NTRS)
Arzeno, Natalia M.; Lee, S. M. C.; Stenger, M. B.; Lawrence, E. L.; Platts, S. H.; Bloomberg, J. J.
2010-01-01
Adaptation to microgravity could impair crewmembers? ability to perform required tasks upon entry into a gravity environment, such as return to Earth, or during extraterrestrial exploration. Historically, data have been collected in a controlled testing environment, but it is unclear whether these physiologic measures result in changes in functional performance. NASA?s Functional Task Test (FTT) aims to investigate whether adaptation to microgravity increases physiologic stress and impairs performance during mission-critical tasks. PURPOSE: To determine whether the well-accepted postflight tachycardia observed during standard laboratory tests also would be observed during simulations of mission-critical tasks during and after recovery from short-duration spaceflight. METHODS: Five astronauts participated in the FTT 30 days before launch, on landing day, and 1, 6, and 30 days after landing. Mean heart rate (HR) was measured during 5 simulations of mission-critical tasks: rising from (1) a chair or (2) recumbent seated position followed by walking through an obstacle course (egress from a space vehicle), (3) translating graduated masses from one location to another (geological sample collection), (4) walking on a treadmill at 6.4 km/h (ambulation on planetary surface), and (5) climbing 40 steps on a passive treadmill ladder (ingress to lander). For tasks 1, 2, 3, and 5, astronauts were encouraged to complete the task as quickly as possible. Time to complete tasks and mean HR during each task were analyzed using repeated measures ANOVA and ANCOVA respectively, in which task duration was a covariate. RESULTS: Landing day HR was higher (P < 0.05) than preflight during the upright seat egress (7%+/-3), treadmill walk (13%+/-3) and ladder climb (10%+/-4), and HR remained elevated during the treadmill walk 1 day after landing. During tasks in which HR was not elevated on landing day, task duration was significantly greater on landing day (recumbent seat egress: 25%+/-14 and mass translation: 26%+/-12; P < 0.05). CONCLUSION: Elevated HR and increased task duration during postflight simulations of mission-critical tasks is suggestive of spaceflight-induced deconditioning. Following short-duration microgravity missions (< 16 d), work performance may be transiently impaired, but recovery is rapid.
The U.S. Navy Littoral Combat Ship: Current Issues and How to Employ It in the Future
2012-03-07
Ship: NIA Curr-ent Issues and How to Deploy It in the Future 5b. GRANT NUMBER N/A 5c. PROGRAM ELEMENT NUMBER N/A 6. AUTHORCSl 5d. PROJECT NUMBER...Lieutenant Commander Gregory M Zimmerman, United States Navy N/A 5e. TASK NUMBER N/A 5f. WORK UNIT NUMBER NIA 7. PERFORMING ORGANIZATION NAME(S...Launch Module, MH-60R helicopter, UAV (Fire Scout), Mission Package Application Software Module, and the optional Maritime Security Module. 27 LCS can
Spacecraft Design Thermal Control Subsystem
NASA Technical Reports Server (NTRS)
Miyake, Robert N.
2008-01-01
The Thermal Control Subsystem engineers task is to maintain the temperature of all spacecraft components, subsystems, and the total flight system within specified limits for all flight modes from launch to end-of-mission. In some cases, specific stability and gradient temperature limits will be imposed on flight system elements. The Thermal Control Subsystem of "normal" flight systems, the mass, power, control, and sensing systems mass and power requirements are below 10% of the total flight system resources. In general the thermal control subsystem engineer is involved in all other flight subsystem designs.
NASA Technical Reports Server (NTRS)
Watson, Kevin J.; Robbins, William W.
2004-01-01
The International Space Station (ISS) enables the study of supportability issues associated with long-duration human spaceflight. The ISS is a large, complex spacecraft that must be maintained by its crew. In contrast to the Space Shuttle Orbiter vehicle, but similar to spacecraft that will be component elements of future missions beyond low-Earth orbit, ISS does not return to the ground for servicing and provisioning of spares is severely constrained by transportation limits. Although significant technical support is provided by ground personnel, all hands-on maintenance tasks are performed by the crew. It is expected that future missions to distant destinations will be further limited by lack of resupply opportunities and will, eventually, become largely independent of ground support. ISS provides an opportunity to begin learning lessons that will enable future missions to be successful. Data accumulated over the first several years of ISS operations have been analyzed to gain a better understanding of maintenance-related workload. This analysis addresses both preventive and corrective maintenance and includes all U.S segment core systems. Systems and tasks that are major contributors to workload are identified. As further experience accrues, lessons will be learned that will influence future system designs so that they require less maintenance and, when maintenance is required, it can be performed more efficiently. By heeding the lessons of ISS it will be possible to identify system designs that should be more robust and point towards advances in both technology and design that will offer the greatest return on investment.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Osterman, J.L.
1996-06-14
The United States has begun a program of counterproliferation in order to preempt the use of WMD by such elements, however, the ability to respond to the terrorist employment of biological/chemical weapons is absent. Given the structure, capability and technical expertise in the Federal Emergency Management Agency (FEMA) and the Federal Bureau of Investigation (FBI), the Department of Defense (DoD) will be tasked to conduct the response to such an incident. The geographical Commander in Chief (CINC) and the appointed Joint Task Force (JTF) commander will ultimately be assigned the response mission. Planning, training and coordination is required to developmore » a force capable of responding in a timely and coordinated manner.« less
Davis, Bradley; Welch, Katherine; Walsh-Hart, Sharon; Hanseman, Dennis; Petro, Michael; Gerlach, Travis; Dorlac, Warren; Collins, Jocelyn; Pritts, Timothy
2014-08-01
Critical Care Air Transport Teams (CCATTs) are a critical component of the United States Air Force evacuation paradigm. This study was conducted to assess the incidence of task saturation in simulated CCATT missions and to determine if there are predictable performance domains. Sixteen CCATTs were studied over a 6-month period. Performance was scored using a tool assessing eight domains of performance. Teams were also assessed during critical events to determine the presence or absence of task saturation and its impact on patient care. Sixteen simulated missions were reviewed and 45 crisis events identified. Task saturation was present in 22/45 (49%) of crisis events. Scoring demonstrated that task saturation was associated with poor performance in teamwork (odds ratio [OR] = 1.96), communication (OR = 2.08), and mutual performance monitoring (OR = 1.9), but not maintenance of guidelines, task management, procedural skill, and equipment management. We analyzed the effect of task saturation on adverse patient outcomes during crisis events. Adverse outcomes occurred more often when teams were task saturated as compared to non-task-saturated teams (91% vs. 23%; RR 4.1, p < 0.0001). Task saturation is observed in simulated CCATT missions. Nontechnical skills correlate with task saturation. Task saturation is associated with worsening physiologic derangements in simulated patients. Reprint & Copyright © 2014 Association of Military Surgeons of the U.S.
Underwater Robot Task Planning Using Multi-Objective Meta-Heuristics
Landa-Torres, Itziar; Manjarres, Diana; Bilbao, Sonia; Del Ser, Javier
2017-01-01
Robotics deployed in the underwater medium are subject to stringent operational conditions that impose a high degree of criticality on the allocation of resources and the schedule of operations in mission planning. In this context the so-called cost of a mission must be considered as an additional criterion when designing optimal task schedules within the mission at hand. Such a cost can be conceived as the impact of the mission on the robotic resources themselves, which range from the consumption of battery to other negative effects such as mechanic erosion. This manuscript focuses on this issue by devising three heuristic solvers aimed at efficiently scheduling tasks in robotic swarms, which collaborate together to accomplish a mission, and by presenting experimental results obtained over realistic scenarios in the underwater environment. The heuristic techniques resort to a Random-Keys encoding strategy to represent the allocation of robots to tasks and the relative execution order of such tasks within the schedule of certain robots. The obtained results reveal interesting differences in terms of Pareto optimality and spread between the algorithms considered in the benchmark, which are insightful for the selection of a proper task scheduler in real underwater campaigns. PMID:28375160
Underwater Robot Task Planning Using Multi-Objective Meta-Heuristics.
Landa-Torres, Itziar; Manjarres, Diana; Bilbao, Sonia; Del Ser, Javier
2017-04-04
Robotics deployed in the underwater medium are subject to stringent operational conditions that impose a high degree of criticality on the allocation of resources and the schedule of operations in mission planning. In this context the so-called cost of a mission must be considered as an additional criterion when designing optimal task schedules within the mission at hand. Such a cost can be conceived as the impact of the mission on the robotic resources themselves, which range from the consumption of battery to other negative effects such as mechanic erosion. This manuscript focuses on this issue by devising three heuristic solvers aimed at efficiently scheduling tasks in robotic swarms, which collaborate together to accomplish a mission, and by presenting experimental results obtained over realistic scenarios in the underwater environment. The heuristic techniques resort to a Random-Keys encoding strategy to represent the allocation of robots to tasks and the relative execution order of such tasks within the schedule of certain robots. The obtained results reveal interesting differences in terms of Pareto optimality and spread between the algorithms considered in the benchmark, which are insightful for the selection of a proper task scheduler in real underwater campaigns.
NASA Astrophysics Data System (ADS)
Holmes, C. P.; Kinter, J. L.; Beebe, R. F.; Feigelson, E.; Hurlburt, N. E.; Mentzel, C.; Smith, G.; Tino, C.; Walker, R. J.
2017-12-01
Two years ago NASA established the Ad Hoc Big Data Task Force (BDTF - https://science.nasa.gov/science-committee/subcommittees/big-data-task-force), an advisory working group with the NASA Advisory Council system. The scope of the Task Force included all NASA Big Data programs, projects, missions, and activities. The Task Force focused on such topics as exploring the existing and planned evolution of NASA's science data cyber-infrastructure that supports broad access to data repositories for NASA Science Mission Directorate missions; best practices within NASA, other Federal agencies, private industry and research institutions; and Federal initiatives related to big data and data access. The BDTF has completed its two-year term and produced several recommendations plus four white papers for NASA's Science Mission Directorate. This presentation will discuss the activities and results of the TF including summaries of key points from its focused study topics. The paper serves as an introduction to the papers following in this ESSI session.
A Nuclear Powered ISRU Mission to Mars
NASA Astrophysics Data System (ADS)
Finzi, Elvina; Davighi, Andrea; Finzi, Amalia
2006-01-01
Space exploration has always been drastically constrained by the masses that can be launched into orbit; Hence affordable planning and execution of prolonged manned space missions depend upon the utilization of local. Successful in-situ resources utilization (ISRU) is a key element to allow the human presence on Mars or the Moon. In fact a Mars ISRU mission is planned in the Aurora Program, the European program for the exploration of the solar system. Orpheus mission is a technological demonstrator whose purpose is to show the advantages of an In Situ Propellant Production (ISPP). Main task of this work is to demonstrate the feasibility of a nuclear ISPP plant. The mission designed has been sized to launch back form Mars an eventual manned module. The ISPP mission requires two different: the ISPP power plant module and the nuclear reactor module. Both modules reach the escape orbit thanks to the launcher upper stage, after a 200 days cruising phase the Martian atmosphere is reached thanks to small DV propelled manoeuvres, aerobreaking and soft landing. During its operational life the ISPP plant produces. The propellant is produced in one synodic year. 35000 kg of Ethylene are produced at the Martian equator. The resulting systems appear feasible and of a size comparable to other ISRU mission designs. This mission seems challenging not only for the ISPP technology to be demonstrated, but also for the space nuclear reactor considered; Though this seems the only way to allow a permanent human presence on Mars surface.
Linnehan and Foreman on EVA 2 during STS-123 / Expedition 16 Joint Operations
2008-03-16
S123-E-006400 (15/16 March 2008) --- Astronauts Rick Linnehan and Mike Foreman, both STS-123 mission specialists, participate in the mission's second scheduled session of extravehicular activity (EVA) as construction and maintenance continue on the International Space Station. During the 7-hour, 8-minute spacewalk, Linnehan and Foreman, assembled the stick-figure-shaped Dextre, also known as the Special Purpose Dextrous Manipulator (SPDM), a task that included attaching its two arms. Designed for station maintenance and service, Dextre is capable of sensing forces and movement of objects it is manipulating. It can automatically compensate for those forces and movements to ensure an object is moved smoothly. Dextre is the final element of the station's Mobile Servicing System. The blackness of space and Earth's horizon provide the backdrop for the scene.
Linnehan and Foreman on EVA 2 during STS-123 / Expedition 16 Joint Operations
2008-03-16
S123-E-006403 (15/16 March 2008) --- Astronauts Rick Linnehan and Mike Foreman, both STS-123 mission specialists, participate in the mission's second scheduled session of extravehicular activity (EVA) as construction and maintenance continue on the International Space Station. During the 7-hour, 8-minute spacewalk, Linnehan and Foreman, assembled the stick-figure-shaped Dextre, also known as the Special Purpose Dextrous Manipulator (SPDM), a task that included attaching its two arms. Designed for station maintenance and service, Dextre is capable of sensing forces and movement of objects it is manipulating. It can automatically compensate for those forces and movements to ensure an object is moved smoothly. Dextre is the final element of the station's Mobile Servicing System. The blackness of space and Earth's horizon provide the backdrop for the scene.
Bock, Otmar; Weigelt, Cornelia; Bloomberg, Jacob J
2010-09-01
Two previous single-case studies found that the dual-task costs of manual tracking plus memory search increased during a space mission, and concluded that sensorimotor deficits during spaceflight may be related to cognitive overload. Since dual-task costs were insensitive to the difficulty of memory search, the authors argued that the overload may reflect stress-related problems of multitasking, rather than a scarcity of specific cognitive resources. Here we expand the available database and compare different types of concurrent task. Three subjects were repeatedly tested before, during, and after an extended mission on the International Space Station (ISS). They performed an unstable tracking task and four reaction-time tasks, both separately and concurrently. Inflight data could only be obtained during later parts of the mission. The tracking error increased from pre- to in flight by a factor of about 2, both under single- and dual-task conditions. The dual-task costs with a reaction-time task requiring rhythm production was 2.4 times higher than with a reaction-time task requiring visuo-spatial transformations, and 8 times higher than with a regular choice reaction-time task. Long-term sensorimotor deficits during spaceflight may reflect not only stress, but also a scarcity of resources related to complex motor programming; possibly those resources are tied up by sensorimotor adaptation to the space environment.
The Need for Analogue Missions in Scientific Human and Robotic Planetary Exploration
NASA Technical Reports Server (NTRS)
Snook, K. J.; Mendell, W. W.
2004-01-01
With the increasing challenges of planetary missions, and especially with the prospect of human exploration of the moon and Mars, the need for earth-based mission simulations has never been greater. The current focus on science as a major driver for planetary exploration introduces new constraints in mission design, planning, operations, and technology development. Analogue missions can be designed to address critical new integration issues arising from the new science-driven exploration paradigm. This next step builds on existing field studies and technology development at analogue sites, providing engineering, programmatic, and scientific lessons-learned in relatively low-cost and low-risk environments. One of the most important outstanding questions in planetary exploration is how to optimize the human and robotic interaction to achieve maximum science return with minimum cost and risk. To answer this question, researchers are faced with the task of defining scientific return and devising ways of measuring the benefit of scientific planetary exploration to humanity. Earth-based and spacebased analogue missions are uniquely suited to answer this question. Moreover, they represent the only means for integrating science operations, mission operations, crew training, technology development, psychology and human factors, and all other mission elements prior to final mission design and launch. Eventually, success in future planetary exploration will depend on our ability to prepare adequately for missions, requiring improved quality and quantity of analogue activities. This effort demands more than simply developing new technologies needed for future missions and increasing our scientific understanding of our destinations. It requires a systematic approach to the identification and evaluation of the categories of analogue activities. This paper presents one possible approach to the classification and design of analogue missions based on their degree of fidelity in ten key areas. Various case studies are discussed to illustrate the approach.
Smart active pilot-in-the-loop systems
NASA Astrophysics Data System (ADS)
Thomas, Segun
1995-04-01
Representation of on-orbit microgravity environment in a 1-g environment is a continuing problem in space engineering analysis, procedures development and crew training. A way of adequately depicting weightlessness in the performance of on-orbit tasks is by a realistic (or real-time) computer based representation that provides the look, touch, and feel of on-orbit operation. This paper describes how a facility, the Systems Engineering Simulator at the Johnson Space Center, is utilizing recent advances in computer processing power and multi- processing capability to intelligently represent all systems, sub-systems and environmental elements associated with space flight operations. It first describes the computer hardware and interconnection between processors; the computer software responsible for task scheduling, health monitoring, sub-system and environment representation; control room and crew station. It then describes, the mathematical models that represent the dynamics of contact between the Mir and the Space Shuttle during the upcoming US and Russian Shuttle/Mir space mission. Results are presented comparing the response of the smart, active pilot-in-the-loop system to non-time critical CRAY model. A final example of how these systems are utilized is given in the development that supported the highly successful Hubble Space Telescope repair mission.
Venera-D: Technology Implications
NASA Technical Reports Server (NTRS)
Kremic, Tibor
2016-01-01
The Venera-D concept mission being developed by the Joint Russian US Science Definition Team (JSDT) is an exciting concept for exploring Venus and is based largely successful approach of heritage Soviet Veneras and VEGA missions. The desired science of Venera-D seeks to build on the results on these missions and also missions by other nations such as the American Mariners, Pioneer Venus, and Magellan missions, ESAs Venus Express, and the current Japanese Akatsuki mission. A number of elements comprise the potential full mission concept. Core elements of the mission include a long lived orbiter (3 years) and a short duration ( 2 hour) but powerful lander. Several other mission elements are possible depending on mission constraints which include cost limitations. Other possible elements include some form of mobile aerial platform, such as a balloon, long lived dropsonde(s), and sub-satellite. One can image the diverse maturity of technologies that will be needed to support the various elements of the Venera-D mission concept. Given the long heritage and recent orbiting missions, little technology challenges are expected for the orbiter. However it has been several decades since humanity has placed a functioning lander on the Venus surface or spent time floating in the Venus atmosphere so the technology challenges will be of greater concern. This briefing presents some of the results of the Venera-D technology sub-group.
Mission and surface infrastructure concepts
NASA Technical Reports Server (NTRS)
Butler, J.; Mcdaniel, S. G.
1986-01-01
Several types of manned Mars surface missions, including sorties, fixed-base, and hybrid missions, which can be envisioned as potentially desirable approaches to the exploration and utilization of Mars are identified and discussed. Some of the advantages and disadvantages of each type are discussed briefly. Also, some of the implications of the types of missions on the surface elements' design are discussed briefly. Typical sets of surface elements are identified for each type of mission, and weights are provided for each element and set.
Lien, Mei-Ching; Ruthruff, Eric
2004-05-01
This study examined how task switching is affected by hierarchical task organization. Traditional task-switching studies, which use a constant temporal and spatial distance between each task element (defined as a stimulus requiring a response), promote a flat task structure. Using this approach, Experiment 1 revealed a large switch cost of 238 ms. In Experiments 2-5, adjacent task elements were grouped temporally and/or spatially (forming an ensemble) to create a hierarchical task organization. Results indicate that the effect of switching at the ensemble level dominated the effect of switching at the element level. Experiments 6 and 7, using an ensemble of 3 task elements, revealed that the element-level switch cost was virtually absent between ensembles but was large within an ensemble. The authors conclude that the element-level task repetition benefit is fragile and can be eliminated in a hierarchical task organization.
NASA Technical Reports Server (NTRS)
Lien, Mei-Ching; Ruthruff, Eric
2004-01-01
This study examined how task switching is affected by hierarchical task organization. Traditional task-switching studies, which use a constant temporal and spatial distance between each task element (defined as a stimulus requiring a response), promote a flat task structure. Using this approach, Experiment 1 revealed a large switch cost of 238 ms. In Experiments 2-5, adjacent task elements were grouped temporally and/or spatially (forming an ensemble) to create a hierarchical task organization. Results indicate that the effect of switching at the ensemble level dominated the effect of switching at the element level. Experiments 6 and 7, using an ensemble of 3 task elements, revealed that the element-level switch cost was virtually absent between ensembles but was large within an ensemble. The authors conclude that the element-level task repetition benefit is fragile and can be eliminated in a hierarchical task organization.
NASA Advisory Council Task Force on the Shuttle-Mir Rendezvous and Docking Missions
NASA Technical Reports Server (NTRS)
1994-01-01
The NASA Advisory Council Task Force on the Shuttle-Mir rendezvous and docking convened on May 24 and 25, 1994. Based on the meetings, the Task Force made the following recommendations: at a minimum, the mission commander and payload commander for all subsequent Shuttle-Mir missions should be named at least 18 months in advance of the scheduled launch date; in order to derive early operational experience in advance of the first Mir docking mission, the primary objective of STS-63 should be Mir rendezvous and proximity operations; and if at all possible, the launch date for STS-63 should be moved forward.
Innovative Approaches to Remote Sensing in NASA's Earth System Science Pathfinder (ESSP) Program
NASA Technical Reports Server (NTRS)
Peri, Frank; Volz, Stephen
2013-01-01
NASA's Earth Venture class (EV) of mission are competitively selected, Principal Investigator (PI) led, relatively low cost and narrowly focused in scientific scope. Investigations address a full spectrum of earth science objectives, including studies of the atmosphere, oceans, land surface, polar ice regions, and solid Earth. EV has three program elements: EV-Suborbital (EVS) are suborbital/airborne investigations; EV-Mission (EVM) element comprises small complete spaceborne missions; and EV-Instrument (EVI) element develops spaceborne instruments for flight as missions-of-opportunity (MoO). To ensure the success of EV, the management approach of each element is tailored according to the specific needs of the element.
Opportunities for Small Satellites in NASA's Earth System Science Pathfinder (ESSP) Program
NASA Technical Reports Server (NTRS)
Peri, Frank; Law, Richard C.; Wells, James E.
2014-01-01
NASA's Earth Venture class (EV) of missions are competitively selected, Principal Investigator (PI) led, relatively low cost and narrowly focused in scientific scope. Investigations address a full spectrum of earth science objectives, including studies of the atmosphere, oceans, land surface, polar ice regions, and solid Earth. EV has three program elements: EV-Suborbital (EVS) are suborbital/airborne investigations; EV-Mission (EVM) element comprises small complete spaceborne missions; and EV-Instrument (EVI) element develops spaceborne instruments for flight as Missions-of-Opportunity (MoO). To ensure the success of EV, frequent opportunities for selecting missions has been established in NASA's Earth Science budget. This paper will describe those opportunities and how the management approach of each element is tailored according to the specific needs of the element.
Guznov, Svyatoslav; Matthews, Gerald; Funke, Gregory; Dukes, Allen
2011-09-01
Use of unmanned aerial vehicles (UAVs) is an increasingly important element of military missions. However, controlling UAVs may impose high stress and workload on the operator. This study evaluated the use of the RoboFlag simulated environment as a means for profiling multiple dimensions of stress and workload response to a task requiring control of multiple vehicles (robots). It tested the effects of two workload manipulations, environmental uncertainty (i.e., UAV's visual view area) and maneuverability, in 64 participants. The findings confirmed that the task produced substantial workload and elevated distress. Dissociations between the stress and performance effects of the manipulations confirmed the utility of a multivariate approach to assessment. Contrary to expectations, distress and some aspects of workload were highest in the low-uncertainty condition, suggesting that overload of information may be an issue for UAV interface designers. The strengths and limitations of RoboFlag as a methodology for investigating stress and workload responses are discussed.
In-Space Assembly Capability Assessment for Potential Human Exploration and Science Applications
NASA Technical Reports Server (NTRS)
Jefferies, Sharon A.; Jones, Christopher A.; Arney, Dale C.; Stillwagen, Frederic H.; Chai, Patrick R.; Hutchinson, Craig D.; Stafford, Matthew A.; Moses, Robert W.; Dempsey, James A.; Rodgers, Erica M.;
2017-01-01
Human missions to Mars present several major challenges that must be overcome, including delivering multiple large mass and volume elements, keeping the crew safe and productive, meeting cost constraints, and ensuring a sustainable campaign. Traditional methods for executing human Mars missions minimize or eliminate in-space assembly, which provides a narrow range of options for addressing these challenges and limits the types of missions that can be performed. This paper discusses recent work to evaluate how the inclusion of in-space assembly in space mission architectural concepts could provide novel solutions to address these challenges by increasing operational flexibility, robustness, risk reduction, crew health and safety, and sustainability. A hierarchical framework is presented to characterize assembly strategies, assembly tasks, and the required capabilities to assemble mission systems in space. The framework is used to identify general mission system design considerations and assembly system characteristics by assembly strategy. These general approaches are then applied to identify potential in-space assembly applications to address each challenge. Through this process, several focus areas were identified where applications of in-space assembly could affect multiple challenges. Each focus area was developed to identify functions, potential assembly solutions and operations, key architectural trades, and potential considerations and implications of implementation. This paper helps to identify key areas to investigate were potentially significant gains in addressing the challenges with human missions to Mars may be realized, and creates a foundation on which to further develop and analyze in-space assembly concepts and assembly-based architectures.
The need for monitoring metabolic status
NASA Astrophysics Data System (ADS)
Vanderveen, John E.
2005-05-01
Modern military operations utilize complex technologies that require high levels of readiness and sustained cognitive and physical performance of combat military combat personnel. These military operations often depend on weapon systems that use advanced computer technology coupled with an array of sensors that provide continuous information on the battlefield environment and on equipment function. However there is a lack of real-time information on status of the personnel who control these systems and who are vital to mission success. Failure of the human element renders the weapon system useless so it is important to know if an individual is physically and cognitively fit to perform his or her task. Based on the premise that status of metabolic processes provide an early indication of a change in an individuals physiological status, monitoring of selective biomarkers of metabolism and organ function can provide insight on the individual"s ability to perform mission tasks. During combat individuals may not be aware that they have reached a compromised physiological condition due to dehydration, physical exertion, stress, fatigue, sleep deprivation, exposure to toxins or other condition that may affect physical and cognitive performance and health. Systems that can provide the individual or his or her commander with information about significant changes in one or more metabolic functions could permit timely intervention to correct the condition. In the event that serious injury has already occurred to an individual, metabolic monitoring can provide valuable intelligence needed for decisions on achieving mission objectives.
Advanced automation for in-space vehicle processing
NASA Technical Reports Server (NTRS)
Sklar, Michael; Wegerif, D.
1990-01-01
The primary objective of this 3-year planned study is to assure that the fully evolved Space Station Freedom (SSF) can support automated processing of exploratory mission vehicles. Current study assessments show that required extravehicular activity (EVA) and to some extent intravehicular activity (IVA) manpower requirements for required processing tasks far exceeds the available manpower. Furthermore, many processing tasks are either hazardous operations or they exceed EVA capability. Thus, automation is essential for SSF transportation node functionality. Here, advanced automation represents the replacement of human performed tasks beyond the planned baseline automated tasks. Both physical tasks such as manipulation, assembly and actuation, and cognitive tasks such as visual inspection, monitoring and diagnosis, and task planning are considered. During this first year of activity both the Phobos/Gateway Mars Expedition and Lunar Evolution missions proposed by the Office of Exploration have been evaluated. A methodology for choosing optimal tasks to be automated has been developed. Processing tasks for both missions have been ranked on the basis of automation potential. The underlying concept in evaluating and describing processing tasks has been the use of a common set of 'Primitive' task descriptions. Primitive or standard tasks have been developed both for manual or crew processing and automated machine processing.
Mission Applications Support at NASA: The Proposal Surface Water and Ocean Topography Mission
NASA Astrophysics Data System (ADS)
Srinivasan, Margaret; Peterson, Craig; Callahan, Phil
2013-09-01
The NASA Applied Sciences Program is actively supporting an agency-wide effort to formalize a mission-level data applications approach. The program goal is to engage early-phase NASA Earth satellite mission project teams with applied science representation in the flight mission planning process. The end objective is to "to engage applications-oriented users and organizations early in the satellite mission lifecycle to enable them to envision possible applications and integrate end-user needs into satellite mission planning as a way to increase the benefits to the nation."Two mission applications representatives have been selected for each early phase Tier 2 mission, including the Surface Water and Ocean Topography (SWOT) mission concept. These representatives are tasked with identifying and organizing the applications communities and developing and promoting a process for the mission to optimize the reach of existing applications efforts in order to enhance the applications value of the missions. An early project-level awareness of mission planning decisions that may increase or decrease the utility of data products to diverse user and potential user communities (communities of practice and communities of potential, respectively) has high value and potential return to the mission and to the users.Successful strategies to enhance science and practical applications of projected SWOT data streams will require engaging with and facilitating between representatives in the science, societal applications, and mission planning communities.Some of the elements of this program include:• Identify early adopters of data products• Coordinate applications team, including;Project Scientist, Payload Scientist, ProjectManager, data processing lead• Describe mission and products sufficiently inearly stage of development to effectively incorporate all potential usersProducts and activities resulting from this effort will include (but are not limited to); workshops, workshop summaries, web pages, email lists of interested users/scientists, an Applications Plan, printed materials (posters, brochures) and participation in key meetings.
Sensor assignment to mission in AI-TECD
NASA Astrophysics Data System (ADS)
Ganger, Robert; de Mel, Geeth; Pham, Tien; Rudnicki, Ronald; Schreiber, Yonatan
2016-05-01
Sensor-mission assignment involves the allocation of sensors and other information-providing resources to missions in order to cover the information needs of the individual tasks within each mission. The importance of efficient and effective means to find appropriate resources for tasks is exacerbated in the coalition context where the operational environment is dynamic and a multitude of critically important tasks need to achieve their collective goals to meet the objectives of the coalition. The Sensor Assignment to Mission (SAM) framework—a research product of the International Technology Alliance in Network and Information Sciences (NIS-ITA) program—provided the first knowledge intensive resource selection approach for the sensor network domain so that contextual information could be used to effectively select resources for tasks in coalition environments. Recently, CUBRC, Inc. was tasked with operationalizing the SAM framework through the use of the I2WD Common Core Ontologies for the Communications-Electronics Research, Development and Engineering Center (CERDEC) sponsored Actionable Intelligence Technology Enabled Capabilities Demonstration (AI-TECD). The demonstration event took place at Fort Dix, New Jersey during July 2015, and this paper discusses the integration and the successful demonstration of the SAM framework within the AI-TECD, lessons learned, and its potential impact in future operations.
Using Modern Methodologies with Maintenance Software
NASA Technical Reports Server (NTRS)
Streiffert, Barbara A.; Francis, Laurie K.; Smith, Benjamin D.
2014-01-01
Jet Propulsion Laboratory uses multi-mission software produced by the Mission Planning and Sequencing (MPS) team to process, simulate, translate, and package the commands that are sent to a spacecraft. MPS works under the auspices of the Multi-Mission Ground Systems and Services (MGSS). This software consists of nineteen applications that are in maintenance. The MPS software is classified as either class B (mission critical) or class C (mission important). The scheduling of tasks is difficult because mission needs must be addressed prior to performing any other tasks and those needs often spring up unexpectedly. Keeping track of the tasks that everyone is working on is also difficult because each person is working on a different software component. Recently the group adopted the Scrum methodology for planning and scheduling tasks. Scrum is one of the newer methodologies typically used in agile development. In the Scrum development environment, teams pick their tasks that are to be completed within a sprint based on priority. The team specifies the sprint length usually a month or less. Scrum is typically used for new development of one application. In the Scrum methodology there is a scrum master who is a facilitator who tries to make sure that everything moves smoothly, a product owner who represents the user(s) of the software and the team. MPS is not the traditional environment for the Scrum methodology. MPS has many software applications in maintenance, team members who are working on disparate applications, many users, and is interruptible based on mission needs, issues and requirements. In order to use scrum, the methodology needed adaptation to MPS. Scrum was chosen because it is adaptable. This paper is about the development of the process for using scrum, a new development methodology, with a team that works on disparate interruptible tasks on multiple software applications.
Cybersecurity for aerospace autonomous systems
NASA Astrophysics Data System (ADS)
Straub, Jeremy
2015-05-01
High profile breaches have occurred across numerous information systems. One area where attacks are particularly problematic is autonomous control systems. This paper considers the aerospace information system, focusing on elements that interact with autonomous control systems (e.g., onboard UAVs). It discusses the trust placed in the autonomous systems and supporting systems (e.g., navigational aids) and how this trust can be validated. Approaches to remotely detect the UAV compromise, without relying on the onboard software (on a potentially compromised system) as part of the process are discussed. How different levels of autonomy (task-based, goal-based, mission-based) impact this remote characterization is considered.
Flight Control Development for the ARH-70 Armed Reconnaissance Helicopter Program
NASA Technical Reports Server (NTRS)
Christensen, Kevin T.; Campbell, Kip G.; Griffith, Carl D.; Ivler, Christina M.; Tischler, Mark B.; Harding, Jeffrey W.
2008-01-01
In July 2005, Bell Helicopter won the U.S. Army's Armed Reconnaissance Helicopter competition to produce a replacement for the OH-58 Kiowa Warrior capable of performing the armed reconnaissance mission. To meet the U.S. Army requirement that the ARH-70A have Level 1 handling qualities for the scout rotorcraft mission task elements defined by ADS-33E-PRF, Bell equipped the aircraft with their generic automatic flight control system (AFCS). Under the constraints of the tight ARH-70A schedule, the development team used modem parameter identification and control law optimization techniques to optimize the AFCS gains to simultaneously meet multiple handling qualities design criteria. This paper will show how linear modeling, control law optimization, and simulation have been used to produce a Level 1 scout rotorcraft for the U.S. Army, while minimizing the amount of flight testing required for AFCS development and handling qualities evaluation of the ARH-70A.
The Nitty Gritty: How We Make Analogs Work
NASA Technical Reports Server (NTRS)
Self, A. L.; Huppman, S. R.; Spence, L. A.
2017-01-01
NASA's Human Research Program (HRP) is becoming increasingly reliant on Isolated, Confined and Controlled (ICC) analogs to accomplish many of its research objectives. Compared to other research platforms, ICC analogs present a unique set of operational challenges that must be addressed in order to ensure a high fidelity research environment. In particular, the Human Exploration Research Analog (HERA) habitat, which is classified as an ICC environment, has been developed over the past three years to accommodate the operational needs of research investigations from each of the HRP Elements. During the development period, various types of requirements have contributed to the current operational model, which strives to achieve the highest possible level of mission fidelity with limited resources. This presentation will focus on the operational aspects of the HERA habitat, with emphasis on how we develop the analog research environment to meet researchers' needs. Specific discussion topics include mission scenario development, operational tasks, mission timeline integration, stressor implementation, console support, and improvements based on lessons learned. The information is intended to help investigators better understand the details behind HERA operations and the benefits to their research goals.
Autonomous Aerobraking Development Software: Phase 2 Summary
NASA Technical Reports Server (NTRS)
Cianciolo, Alicia D.; Maddock, Robert W.; Prince, Jill L.; Bowes, Angela; Powell, Richard W.; White, Joseph P.; Tolson, Robert; O'Shaughnessy, Daniel; Carrelli, David
2013-01-01
NASA has used aerobraking at Mars and Venus to reduce the fuel required to deliver a spacecraft into a desired orbit compared to an all-propulsive solution. Although aerobraking reduces the propellant, it does so at the expense of mission duration, large staff, and DSN coverage. These factors make aerobraking a significant cost element in the mission design. By moving on-board the current ground-based tasks of ephemeris determination, atmospheric density estimation, and maneuver sizing and execution, a flight project would realize significant cost savings. The NASA Engineering and Safety Center (NESC) sponsored Phase 1 and 2 of the Autonomous Aerobraking Development Software (AADS) study, which demonstrated the initial feasibility of moving these current ground-based functions to the spacecraft. This paper highlights key state-of-the-art advancements made in the Phase 2 effort to verify that the AADS algorithms are accurate, robust and ready to be considered for application on future missions that utilize aerobraking. The advancements discussed herein include both model updates and simulation and benchmark testing. Rigorous testing using observed flight atmospheres, operational environments and statistical analysis characterized the AADS operability in a perturbed environment.
Titan Saturn System Mission Instrumentation
NASA Astrophysics Data System (ADS)
Coustenis, A.; Lunine, J.; Reh, K.; Lebreton, J.-P.; Erd, C.; Beauchamp, P.; Matson, D.
2012-10-01
The Titan Saturn System Mission (TSSM), another future mission proposed for Titan's exploration, includes an orbiter and two in situ elements: a hot-air balloon and a lake lander. The instrumentation of those two elements will be presented.
NASA Technical Reports Server (NTRS)
Thompson, Shelby G.; Howard, Robert L., Jr.; Litaker, Harry L., Jr.
2008-01-01
As future space missions become longer, an important aspect to consider is the habitability of the spacecraft. The amount of habitable volume affects not only astronaut comfort, but safety and mission success as well. However, as the volume is increased to aid in task performance, the weight of the vehicle and cost of the mission escalates in proportion. Pressure to reduce mission cost is constant, but the risk to mission success and crew survival must remain the priorities. The Constellation Program's Altair Lunar Lander is designed for short duration surface operation missions of seven to ten days. For short duration missions, humans will tolerate fairly primitive environmental situations provided the basic physiological arrangements are acceptable. However, for long-duration lunar surface operations, the living and operational spaces within which the crew work must provide both the essentials of life, as well as the support necessary for the crew to be productive in accomplishing their mission. The Altair is still in the preliminary design phase, which is the optimal time for Human Factors data to be provided to designers and engineers. A Human Centered Design (HCD) approach is being taken with our Human Factors evaluations. Human-in-the-loop testing is conducted using low-medium fidelity mock-ups of proposed lunar architecture. Based on current ConOps (Concept of Operations) procedures, a task analysis is performed in which individual tasks are combined into larger operational scenarios. Subjective and objective performance measures are gathered at both the task and scenario level. These scores are used to determine the functionality of the vehicle in terms of task performance. Results from these evaluations will highlight areas for design or operational improvement.
Manned Mars mission communication and data management systems
NASA Technical Reports Server (NTRS)
White, Ronald E.
1986-01-01
A manned Mars mission will involve a small crew and many complex tasks. The productivity of the crew and the entire mission will depend significantly on effective automation of these tasks and the ease with which the crew can interface with them. The technology to support a manned Mars mission is available today; however, evolving software and electronic technology are enabling many interesting possibilities for increasing productivity and safety while reducing life cycle cost. Some of these advanced technologies are identified.
Mars Sample Return Using Commercial Capabilities: Mission Architecture Overview
NASA Technical Reports Server (NTRS)
Gonzales, Andrew A.; Stoker, Carol R.; Lemke, Lawrence G.; Bowles, Jeffery V.; Huynh, Loc C.; Faber, Nicholas T.; Race, Margaret S.
2014-01-01
Mars Sample Return (MSR) is the highest priority science mission for the next decade as recommended by the recent Decadal Survey of Planetary Science. This presentation provides an overview of a feasibility study for a MSR mission in which emerging commercial capabilities are used alongside other sources of mission elements. Goal is to reduce the number of mission systems and launches required to return the samples, with the goal of reducing mission cost.. Major elements required for the MSR mission are described. We report the feasibility of a complete and closed MSR mission design
Multi-level Operational C2 Holonic Reference Architecture Modeling for MHQ with MOC
2009-06-01
x), x(k), uj(k)) is defined as the task success probability, based on the asset allocation and task execution activities at the tactical level...on outcomes of asset- task allocation at the tactical level. We employ semi-Markov decision process (SMDP) approach to decide on missions to be...AGA) graph for addressing the mission monitoring/ planning issues related to task sequencing and asset allocation at the OLC-TLC layer (coordination
Cooperative mission execution and planning
NASA Astrophysics Data System (ADS)
Flann, Nicholas S.; Saunders, Kevin S.; Pells, Larry
1998-08-01
Utilizing multiple cooperating autonomous vehicles to perform tasks enhances robustness and efficiency over the use of a single vehicle. Furthermore, because autonomous vehicles can be controlled precisely and their status known accurately in real time, new types of cooperative behaviors are possible. This paper presents a working system called MEPS that plans and executes missions for multiple autonomous vehicles in large structured environments. Two generic spatial tasks are supported, to sweep an area and to visit a location while activating on-board equipment. Tasks can be entered both initially by the user and dynamically during mission execution by both users and vehicles. Sensor data and task achievement data is shared among the vehicles enabling them to cooperatively adapt to changing environmental, vehicle and tasks conditions. The system has been successfully applied to control ATV and micro-robotic vehicles in precision agriculture and waste-site characterization environments.
Task Analysis of Shuttle Entry and Landing Activities
NASA Technical Reports Server (NTRS)
Holland, Albert W.; Vanderark, Stephen T.
1993-01-01
The Task Analysis of Shuttle Entry and Landing (E/L) Activities documents all tasks required to land the Orbiter following an STS mission. In addition to analysis of tasks performed, task conditions are described, including estimated time for completion, altitude, relative velocity, normal and lateral acceleration, location of controls operated or monitored, and level of g's experienced. This analysis precedes further investigations into potential effects of zero g on piloting capabilities for landing the Orbiter following long-duration missions. This includes, but is not limited to, researching the effects of extended duration missions on piloting capabilities. Four primary constraints of the analysis must be clarified: (1) the analysis depicts E/L in a static manner--the actual process is dynamic; (2) the task analysis was limited to a paper analysis, since it was not feasible to conduct research in the actual setting (i.e., observing or filming duration an actual E/L); (3) the tasks included are those required for E/L during nominal, daylight conditions; and (4) certain E/L tasks will vary according to the flying style of each commander.
Multi-team dynamics and distributed expertise in imission operations.
Caldwell, Barrett S
2005-06-01
The evolution of space exploration has brought an increased awareness of the social and socio-technical issues associated with team performance and task coordination, both for the onboard astronauts and in mission control. Spaceflight operations create a unique environment in which to address classic group dynamics topics including communication, group process, knowledge development and sharing, and time-critical task performance. Mission operations in the early years of the 21st century have developed into a set of complex, multi-team task settings incorporating multiple mission control teams and flight crews interacting in novel ways. These more complex operational settings help highlight the emergence of a new paradigm of distributed supervisory coordination, and the need to consider multiple dimensions of expertise being supported and exchanged among team members. The creation of new mission profiles with very long-duration time scales (months, rather than days) for the International Space Station, as well as planned exploration missions to the Moon and Mars, emphasize fundamental distinctions from the 40 yr from Mercury to the Space Shuttle. Issues in distributed expertise and information flow in mission control settings from two related perspectives are described. A general conceptual view of knowledge sharing and task synchronization is presented within the context of the mission control environment. This conceptual presentation is supplemented by analysis of quasi-experimental data collected from actual flight controllers at NASA-Johnson Space Center, Houston, TX.
Mission Techniques for Exploring Saturn's icy moons Titan and Enceladus
NASA Astrophysics Data System (ADS)
Reh, Kim; Coustenis, Athena; Lunine, Jonathan; Matson, Dennis; Lebreton, Jean-Pierre; Vargas, Andre; Beauchamp, Pat; Spilker, Tom; Strange, Nathan; Elliott, John
2010-05-01
The future exploration of Titan is of high priority for the solar system exploration community as recommended by the 2003 National Research Council (NRC) Decadal Survey [1] and ESA's Cosmic Vision Program themes. Cassini-Huygens discoveries continue to emphasize that Titan is a complex world with very many Earth-like features. Titan has a dense, nitrogen atmosphere, an active climate and meteorological cycles where conditions are such that the working fluid, methane, plays the role that water does on Earth. Titan's surface, with lakes and seas, broad river valleys, sand dunes and mountains was formed by processes like those that have shaped the Earth. Supporting this panoply of Earth-like processes is an ice crust that floats atop what might be a liquid water ocean. Furthermore, Titan is rich in very many different organic compounds—more so than any place in the solar system, except Earth. The Titan Saturn System Mission (TSSM) concept that followed the 2007 TandEM ESA CV proposal [2] and the 2007 Titan Explorer NASA Flagship study [3], was examined [4,5] and prioritized by NASA and ESA in February 2009 as a mission to follow the Europa Jupiter System Mission. The TSSM study, like others before it, again concluded that an orbiter, a montgolfiѐre hot-air balloon and a surface package (e.g. lake lander, Geosaucer (instrumented heat shield), …) are very high priority elements for any future mission to Titan. Such missions could be conceived as Flagship/Cosmic Vision L-Class or as individual smaller missions that could possibly fit within NASA's New Frontiers or ESA's Cosmic Vision M-Class budgets. As a result of a multitude of Titan mission studies, several mission concepts have been developed that potentially fit within various cost classes. Also, a clear blueprint has been laid out for early efforts critical toward reducing the risks inherent in such missions. The purpose of this paper is to provide a brief overview of potential Titan (and Enceladus) mission techniques and to describe risk reduction efforts and recent advances toward enabling such future missions. References [1] NRC Space Studies Board (2003), New Frontiers in the Solar System: An Integrated Exploration Strategy (first Decadal Survey Report), National Academic Press, Washington, DC. [2] Coustenis et al. (2008). Experimental Astronomy, DOI: 10.1007/s10686-008-9103-z. [3] J. Leary, R. Strain, R. Lorenz, J. H. Waite, 2008. Titan Explorer Flagship Mission Study, http://www.lpi.usra.edu/opag/Titan_Explorer_Public_Report.pdf. [4] TSSM Final Report, 3 November 2008, NASA Task Order NMO710851 [5] TSSM NASA/ESA Joint Summary Report, 15 November 2008, NASA Task Order NMO710851
Preentry communication design elements for outer planets atmospheric entry probe
NASA Technical Reports Server (NTRS)
1976-01-01
Four related tasks are discussed for data transmission from a probe prior to entering the atmosphere of Jupiter to an orbiting spacecraft in a trajectory past the planet: (1) link analysis and design; (2) system conceptual design; (3) Doppler measurement analysis; and (4) an electronically despun antenna. For tasks 1, 3, and 4, an analytical approach was developed and combined with computational capability available to produce quantitative results corresponding to requirements and constraints given by NASA, ARC. One constraint having a major impact on the numerical results of the link analysis was the assumption of a nonsteerable antenna on a spinning orbiter. Other constraints included the interplanetary trajectory and the approach trajectory. Because the Jupiter Orbiter Probe (JOP) program is currently in a state of evolution, all requirements and constraints applied during this study are subject to change. However, the relationships of parameters as developed will remain valid and will aid in planning Jupiter missions.
Flexible Multi agent Algorithm for Distributed Decision Making
2015-01-01
How, J. P. Consensus - Based Auction Approaches for Decentralized task Assignment. Proceedings of the AIAA Guidance, Navigation, and Control...G. ; Kim, Y. Market- based Decentralized Task Assignment for Cooperative UA V Mission Including Rendezvous. Proceedings of the AIAA Guidance...scalable and adaptable to a variety of specific mission tasks . Additionally, the algorithm could easily be adapted for use on land or sea- based systems
Antenna Technologies for Future NASA Exploration Missions
NASA Technical Reports Server (NTRS)
Miranda, Felix A.
2006-01-01
NASA s plans for the manned exploration of the moon and Mars will rely heavily on the development of a reliable communications infrastructure on the surface and back to Earth. Future missions will thus focus not only on gathering scientific data, but also on the formation of the communications network. In either case, unique requirements become imposed on the antenna technologies necessary to accomplish these tasks. For example, surface activity applications such as robotic rovers, human extravehicular activities (EVA), and probes will require small size, lightweight, low power, multi-functionality, and robustness for the antenna elements being considered. Trunk-line communications to a centralized habitat on the surface and back to Earth (e.g., surface relays, satellites, landers) will necessitate wide-area coverage, high gain, low mass, deployable antennas. Likewise, the plethora of low to high data rate services desired to guarantee the safety and quality of mission data for robotic and human exploration will place additional demands on the technology. Over the past year, NASA Glenn Research Center has been heavily involved in the development of candidate antenna technologies with the potential for meeting these strict requirements. This technology ranges from electrically small antennas to phased array and large inflatable structures. A summary of this overall effort is provided, with particular attention being paid to small antenna designs and applications. A discussion of the Agency-wide activities of the Exploration Systems Mission Directorate (ESMD) in forthcoming NASA missions, as they pertain to the communications architecture for the lunar and Martian networks is performed, with an emphasis on the desirable qualities of potential antenna element designs for envisioned communications assets. Identified frequency allocations for the lunar and Martian surfaces, as well as asset-specific data services will be described to develop a foundation for viable antenna technologies which might address these requirements and help guide future technology development decisions.
NASA Technical Reports Server (NTRS)
Bryant, Larry W.; Fragoso, Ruth S.
2007-01-01
In 2003 we proposed an effort to develop a core program of standardized training and verification practices and standards against which the implementation of these practices could be measured. The purpose was to provide another means of risk reduction for deep space missions to preclude the likelihood of a repeat of the tragedies of the 1998 Mars missions. We identified six areas where the application of standards and standardization would benefit the overall readiness process for flight projects at JPL. These are Individual Training, Team Training, Interface and Procedure Development, Personnel Certification, Interface and procedure Verification, and Operations Readiness Testing. In this paper we will discuss the progress that has been made in the tasks of developing the proposed infrastructure in each of these areas. Specifically we will address the Position Training and Certification Standards that are now available for each operational position found on our Flight Operations Teams (FOT). We will also discuss the MGSS Baseline Flight Operations Team Training Plan which can be tailored for each new flight project at JPL. As these tasks have been progressing, the climate and emphasis for Training and for V and V at JPL has changed, and we have learned about the expansion, growth, and limitations in the roles of traditional positions at JPL such as the Project's Training Engineer, V and V Engineer, and Operations Engineer. The need to keep a tight rein on budgets has led to a merging and/or reduction in these positions which pose challenges to individual capacities and capabilities. We examine the evolution of these processes and the roles involved while taking a look at the impact or potential impact of our proposed training related infrastructure tasks. As we conclude our examination of the changes taking place for new flight projects, we see that the importance of proceeding with our proposed tasks and adapting them to the changing climate remains an important element in reducing the risk in the challenging business of space exploration.
Allocating Marine Expeditionary Unit Equipment to Minimize Shortfalls. Third Edition
2015-01-01
equipment to accomplish them. A critical component of mission accomplishment is the MEU’s ability to access equipment deemed nec- essary to...other tasks, or simply not onboard or readily accessible , substitu- tions or compromises are then made. The process of developing planning factors is... access equip- ment deemed necessary to accomplish all tasks associated with the mission. In this report, the term mission accomplishment refers strictly
Operator procedure verification with a rapidly reconfigurable simulator
NASA Technical Reports Server (NTRS)
Iwasaki, Yumi; Engelmore, Robert; Fehr, Gary; Fikes, Richard
1994-01-01
Generating and testing procedures for controlling spacecraft subsystems composed of electro-mechanical and computationally realized elements has become a very difficult task. Before a spacecraft can be flown, mission controllers must envision a great variety of situations the flight crew may encounter during a mission and carefully construct procedures for operating the spacecraft in each possible situation. If, despite extensive pre-compilation of control procedures, an unforeseen situation arises during a mission, the mission controller must generate a new procedure for the flight crew in a limited amount of time. In such situations, the mission controller cannot systematically consider and test alternative procedures against models of the system being controlled, because the available simulator is too large and complex to reconfigure, run, and analyze quickly. A rapidly reconfigurable simulation environment that can execute a control procedure and show its effects on system behavior would greatly facilitate generation and testing of control procedures both before and during a mission. The How Things Work project at Stanford University has developed a system called DME (Device Modeling Environment) for modeling and simulating the behavior of electromechanical devices. DME was designed to facilitate model formulation and behavior simulation of device behavior including both continuous and discrete phenomena. We are currently extending DME for use in testing operator procedures, and we have built a knowledge base for modeling the Reaction Control System (RCS) of the space shuttle as a testbed. We believe that DME can facilitate design of operator procedures by providing mission controllers with a simulation environment that meets all these requirements.
Development of a Space Station Operations Management System
NASA Technical Reports Server (NTRS)
Brandli, A. E.; Mccandless, W. T.
1988-01-01
To enhance the productivity of operations aboard the Space Station, a means must be provided to augment, and frequently to supplant, human effort in support of mission operations and management, both on the ground and onboard. The Operations Management System (OMS), under development at the Johnson Space Center, is one such means. OMS comprises the tools and procedures to facilitate automation of station monitoring, control, and mission planning tasks. OMS mechanizes, and hence rationalizes, execution of tasks traditionally performed by mission planners, the mission control center team, onboard System Management software, and the flight crew.
Development of a Space Station Operations Management System
NASA Astrophysics Data System (ADS)
Brandli, A. E.; McCandless, W. T.
To enhance the productivity of operations aboard the Space Station, a means must be provided to augment, and frequently to supplant, human effort in support of mission operations and management, both on the ground and onboard. The Operations Management System (OMS), under development at the Johnson Space Center, is one such means. OMS comprises the tools and procedures to facilitate automation of station monitoring, control, and mission planning tasks. OMS mechanizes, and hence rationalizes, execution of tasks traditionally performed by mission planners, the mission control center team, onboard System Management software, and the flight crew.
A Feasible Approach for an Early Manned Lunar Landing. Part II: Detailed Report of Ad Hoc Task Group
NASA Technical Reports Server (NTRS)
Fleming, William A.
1961-01-01
This report, in two parts, presents a program development plan for attempting a first manned lunar landing in 1967. The two parts consist of a Summary Report and a Detailed Report representing the coordinated output of the Ad Hoc Task Group assigned to the study. The study was started in response to the request for such a study by the Associate Administrator in his memorandum of May 2, 1961 establishing the Ad Hoc Task Group. The purpose of the study was to take a first cut at the tasks associated with the design, development and construction of the equipment and facilities as well as the development of the crews, and to show the time phasing 6f these tasks. Included are the space sciences, life science and advanced technology tasks whose data and results are needed for designing and developing the systems required in carrying out the mission. The plan presented in the two reports does not presume to be a firm plan. Its basic purpose is, by choosing one feasible method, to size up the scope, schedule and cost of the job, discover the main problems, pacing items and major decisions and provide a threshold from which a firm and detailed project development plan can be jointly formulated by the various elements of NASA.
Science operations planning and implementation for Rosetta
NASA Astrophysics Data System (ADS)
Koschny, Detlef; Sweeney, Mark; Montagon, Elsa; Hoofs, Raymond; van der Plas, Peter
2002-07-01
The Rosetta mission is a cornerstone mission of the Horizon 2000 programme of the European Space Agency. It will be launched to comet 46P/Wirtanen in January 2003. This mission is the first of a series of planetary missions, including Mars Express, Smart-I (to the Moon), and BepiColombo (to Mercury). All these missions have similar requirements for their scientific operations. The Experiments H/W and S/W are developed by Principal Investigators, working at scientific institutes. They are also responsible for the operation of their experiments and for the generation of related operational documentation. The Science Operations Centre (SOC) has the task to consolidate the inputs of the different experimenters and the Lander and ensure that the resulting science operations timeline is free of conflicts. It forwards this timeline to the Mission Operations Centre (MOC) which combines the science operations with the operations of the other spacecraft subsystems and the orbit and attitude of the spacecraft. The MOC is also responsible for uplinking the operational command sequences to the spacecraft and for returning the received telemetry to the user. In a collaboration between the team of the Rosetta Project Scientist at the Research and Science Support Department of ESA/ESTEC and the European Space Operations Centre (ESA/ESOC), a concept for the SOC/MOC and their interfaces was developed for the Rosetta mission. This concept is generic enough to allow its implementation also for the other planetary missions. The design phase is now complete, and implementation is on-going. This paper briefly presents the architecture of the complex ground segment, concentrating on the elements required for planning of scientific operations, and then details the software tools EPS (Experiment Planning System) and PTB (Project Test Bed) which are used in the planning process.
ROTEX-TRIIFEX: Proposal for a joint FRG-USA telerobotic flight experiment
NASA Technical Reports Server (NTRS)
Hirzinger, G.; Bejczy, A. K.
1989-01-01
The concepts and main elements of a RObot Technology EXperiment (ROTEX) proposed to fly with the next German spacelab mission, D2, are presented. It provides a 1 meter size, six axis robot inside a spacelab rack, equipped with a multisensory gripper (force-torque sensors, an array of range finders, and mini stereo cameras). The robot will perform assembly and servicing tasks in a generic way, and will grasp a floating object. The man machine and supervisory control concepts for teleoperation from the spacelab and from ground are discussed. The predictive estimation schemes for an extensive use of time-delay compensating 3D computer graphics are explained.
Rotorcraft flying qualities improvement using advanced control
NASA Technical Reports Server (NTRS)
Walker, D.; Postlethwaite, I.; Howitt, J.; Foster, N.
1993-01-01
We report on recent experience gained when a multivariable helicopter flight control law was tested on the Large Motion Simulator (LMS) at DRA Bedford. This was part of a study into the application of multivariable control theory to the design of full-authority flight control systems for high-performance helicopters. In this paper, we present some of the results that were obtained during the piloted simulation trial and from subsequent off-line simulation and analysis. The performance provided by the control law led to level 1 handling quality ratings for almost all of the mission task elements assessed, both during the real-time and off-line analysis.
2001-02-03
An overhead crane lowers the Multi-Purpose Logistics Module Donatello onto a workstand. In the SSPF, Donatello will undergo processing by the payload test team, including integrated electrical tests with other Station elements in the SSPF, leak tests, electrical and software compatibility tests with the Space Shuttle (using the Cargo Integrated Test equipment) and an Interface Verification Test once the module is installed in the Space Shuttle’s payload bay at the launch pad. The most significant mechanical task to be performed on Donatello in the SSPF is the installation and outfitting of the racks for carrying the various experiments and cargo. Donatello will be launched on mission STS-130, currently planned for September 2004
Exploring Operational Test and Evaluation of Unmanned Aircraft Systems: A Qualitative Case Study
NASA Astrophysics Data System (ADS)
Saliceti, Jose A.
The purpose of this qualitative case study was to explore and identify strategies that may potentially remedy operational test and evaluation procedures used to evaluate Unmanned Aircraft Systems (UAS) technology. The sample for analysis consisted of organizations testing and evaluating UASs (e.g., U.S. Air Force, U.S. Navy, U.S. Army, U.S. Marine Corps, U.S. Coast Guard, and Customs Border Protection). A purposeful sampling technique was used to select 15 subject matter experts in the field of operational test and evaluation of UASs. A questionnaire was provided to participants to construct a descriptive and robust research. Analysis of responses revealed themes related to each research question. Findings revealed operational testers utilized requirements documents to extrapolate measures for testing UAS technology and develop critical operational issues. The requirements documents were (a) developed without the contribution of stakeholders and operational testers, (b) developed with vague or unrealistic measures, and (c) developed without a systematic method to derive requirements from mission tasks. Four approaches are recommended to develop testable operational requirements and assist operational testers: (a) use a mission task analysis tool to derive requirements for mission essential tasks for the system, (b) exercise collaboration among stakeholders and testers to ensure testable operational requirements based on mission tasks, (c) ensure testable measures are used in requirements documents, and (d) create a repository list of critical operational issues by mission areas. The preparation of operational test and evaluation processes for UAS technology is not uniform across testers. The processes in place are not standardized, thus test plan preparation and reporting are different among participants. A standard method to prepare and report UAS technology should be used when preparing and reporting on UAS technology. Using a systematic process, such as mission-based test design, resonated among participants as an analytical method to link UAS mission tasks and measures of performance to the capabilities of the system under test when developing operational test plans. Further research should examine system engineering designs for system requirements traceability matrix of mission tasks and subtasks while using an analysis tool that adequately evaluates UASs with an acceptable level of confidence in the results.
Reference H Piloted Assessment (LaRC.1) Pilot Briefing Guide
NASA Technical Reports Server (NTRS)
Jackson, E. Bruce; Raney, David L.; Hahne, David E.; Derry, Stephen D.; Glaab, Louis J.
1999-01-01
This document describes the purpose of and method by which an assessment of the Boeing Reference H High-Speed Civil Transport design was evaluated in the NASA Langley Research Center's Visual/Motion Simulator in January 1997. Six pilots were invited to perform approximately 60 different Mission Task Elements that represent most normal and emergency flight operations of concern to the High Speed Research program. The Reference H design represents a candidate configuration for a High-Speed Civil Transport, a second generation supersonic civilian transport aircraft. The High-Speed Civil Transport is intended to be economically sound and environmentally safe while carrying passengers and cargo at supersonic speeds with a trans-Pacific range. This simulation study was designated "LaRC. 1" for the purposes of planning, scheduling and reporting within the Guidance and Flight Controls super-element of the High-Speed Research program. The study was based upon Cycle 3 release of the Reference H simulation model.
Recovery of Lunar Surface Access Module Residual and Reserve Propellants
NASA Technical Reports Server (NTRS)
Notardonato, William U.
2007-01-01
The Vision for Space Exploration calls for human exploration of the lunar surface in the 2020 timeframe. Sustained human exploration of the lunar surface will require supply, storage, and distribution of consumables for a variety of mission elements. These elements include propulsion systems for ascent and descent stages, life support for habitats and extra-vehicular activity, and reactants for power systems. NASA KSC has been tasked to develop technologies and strategies for consumables transfer for lunar exploration as part of the Exploration Technology Development Program. This paper will investigate details of operational concepts to scavenge residual propellants from the lunar descent propulsion system. Predictions on the mass of residuals and reserves are made. Estimates of heat transfer and boiloff rates are calculated and transient tank thermodynamic issues post-engine cutoff are modeled. Recovery and storage options including cryogenic liquid, vapor and water are discussed, and possible reuse of LSAM assets is presented.
Human Habitation in a Lunar Electric Rover During a 14-Day Field Trial
NASA Technical Reports Server (NTRS)
Litaker, Harry, Jr.; Thompson, Shelby; Howard, Robert, Jr.
2010-01-01
Various military and commercial entities, as well as the National Aeronautics and Space Administration (NASA), have conducted space cabin confinement studies. However, after an extensive literature search, only one study was found using a simulated lunar rover (LUNEX II), under laboratory conditions, with a crew of two for an eighteen day lunar mission. Forty-three years later, NASA human factors engineers conducted a similar study using the Lunar Electric Rover (LER) in a dynamic real-world lunar simulation at the Black Point Lava Flow in Arizona. The objective of the study was to obtain human-in-the-loop performance data on the vehicle s interior volume with respect to human-system interfaces, crew accommodations, and habitation over a 14-day mission. Though part of a larger study including 212 overall operational elements, this paper will discuss only the performance of fifty different daily habitational elements within the confines of the vehicle carried out by two male subjects. Objective timing data and subjective questionnaire data were collected. Results indicate, much like the LUNEX II study, the LER field study suggest that a crew of two was able to maintain a satisfactory performance of tasks throughout the 14-day field trail within a relative small vehicle volume.
Study of roles of remote manipulator systems and EVA for shuttle mission support, volume 1
NASA Technical Reports Server (NTRS)
Malone, T. B.; Micocci, A. J.
1974-01-01
Alternate extravehicular activity (EVA) and remote manipulator system (RMS) configurations were examined for their relative effectiveness in performing an array of representative shuttle and payload support tasks. Initially a comprehensive analysis was performed of payload and shuttle support missions required to be conducted exterior to a pressurized inclosure. A set of task selection criteria was established, and study tasks were identified. The EVA and RMS modes were evaluated according to their applicability for each task and task condition. The results are summarized in tabular form, showing the modes which are chosen as most effective or as feasible for each task/condition. Conclusions concerning the requirements and recommendations for each mode are presented.
Simulating laser interferometers for missions such as (E)Lisa, Lisa pathfinder and Grace follow-on
NASA Astrophysics Data System (ADS)
Wanner, Gudrun; Kochkina, Evgenia; Mahrdt, Christoph; Müller, Vitali; Schuster, Sönke; Heinzel, Gerhard; Danzmann, Karsten
2017-11-01
Sensing tiny distance variations interferometrically will be a key task in several future space missions. Interferometric detectors such as (e)LISA will observe gravitational waves from cosmic events such as for instance super novae and extreme mass ratio inspirals. The detection principle of such detectors is sensing phase variations due to tiny distance variations between two free floating test masses aboard two remote spacecraft originating from passing gravitational waves. This detection principle will be tested for the first time by LISA Pathfinder (launch 2015), where the interferometric readout of two free floating test masses aboard one single spacecraft will be demonstrated. Future geodesy missions will map Earths Gravity field, by interferometrically measuring distance variations between two spacecraft in low Earth orbit. This will be tested for the first time by the Laser Ranging Instrument (LRI) aboard GRACE Follow-On (launch 2017). The low noise laser interferometry of all these missions provides a number of challenging tasks. We will present optical simulations performed for the missions above. The interferometry of LISA Pathfinder is purely local (there do not exist any received beams from remote spacecraft), such that all beams can be approximated by fundamental Gaussian beams. We will present simulations regarding the coupling of residual test mass jitter (longitudinal and lateral as well as angular) to the phase readout, including Monte Carlo simulations to predict how misalignment affects resulting phase noise and estimate in-flight alignment of the test masses. In all of the mentioned missions, the local laser beams are delivered to the optical bench by fibers, resulting in laser beams in fiber modes. Besides local laser beams, the interferometry of missions such as (e)LISA and LRI involves also received beams from remote spacecraft. These beams have diameters in the range of tens of meters (LRI) or kilometers (LISA / eLISA and alike), before being clipped down to centimeter scale by the receiving aperture. The resulting top hat beams show strong diffraction effects and are therefore imaged on the optical benches. Key elements for simulations are therefore the propagation with diffraction of top hat beams and fiber modes in vacuum, as well as imaging optics causing aberration and astigmatism, with the central task to characterize the coupling of test mass or spacecraft jitter to optical readout noise, in presence of realistic alignment errors. A recurring and often limiting noise in the length measurement originates from the cross coupling of angular component jitter. This cross coupling will be briefly introduced with strategies for its mitigation in the various missions. To overcome the limitations of existing and commercial software, we have written and used for the simulations above as well as for general interferometer design purposes a dedicated software package called IfoCAD which is publicly available and will be presented as well.
NASA Astrophysics Data System (ADS)
Yang, Yikang; Li, Xue; Liu, Lei
2009-12-01
Gravity field measurement for the interested planets and their moos in solar system, such as Luna and Mars, is one important task in the next step of deep-space mission. In this paper, Similar to GRACE mission, LLSST and DOWR technology of common-orbit master-slave satellites around task planet is inherited in this scheme. Furthermore, by intersatellite 2-way UQPSK-DSSS link, time synchronization and data processing are implemented autonomously by masterslave satellites instead of GPS and ground facilities supporting system. Conclusion is derived that the ISL DOWR based on 2-way incoherent time synchronization has the same precise level to GRACE DOWR based on GPS time synchronization. Moreover, because of inter-satellite link, the proposed scheme is rather autonomous for gravity field measurement of the task planet in deep-space mission.
ARMY CYBER STRUCTURE ALIGNMENT
2016-02-16
Director of Navy Staff Vice Admiral J. M. Bird , Missions, Functions, and Tasks of Commander, U.S. Fleet Cyber Command and Commander, U.S. Tenth Fleet...www.doncio.navy.mil/ContentView.aspx?ID=649. Director of Navy Staff Vice Admiral J. M. Bird , Missions, Functions, and Tasks of Commander, U.S. Fleet Cyber
Task and work performance on Skylab missions 2, 3, and 4: Time and motion study: Experiment M151
NASA Technical Reports Server (NTRS)
Kubis, J. F.; Mclaughlin, E. J.; Jackson, J. M.; Rusnak, R.; Mcbride, G. H.; Saxon, S. V.
1977-01-01
Human task performance was evaluated under weightlessness conditions during long duration space flight in order to study the characteristics of the adaptation function. Results show that despite pronounced variability in training schedules and in initial reaction to the Skylab environment, in-flight task performance was relatively equivalent among Skylab crews, and behavioral performance continued to improve from beginning to end of all missions.
Integrating Model-Based Transmission Reduction into a multi-tier architecture
NASA Astrophysics Data System (ADS)
Straub, J.
A multi-tier architecture consists of numerous craft as part of the system, orbital, aerial, and surface tiers. Each tier is able to collect progressively greater levels of information. Generally, craft from lower-level tiers are deployed to a target of interest based on its identification by a higher-level craft. While the architecture promotes significant amounts of science being performed in parallel, this may overwhelm the computational and transmission capabilities of higher-tier craft and links (particularly the deep space link back to Earth). Because of this, a new paradigm in in-situ data processing is required. Model-based transmission reduction (MBTR) is such a paradigm. Under MBTR, each node (whether a single spacecraft in orbit of the Earth or another planet or a member of a multi-tier network) is given an a priori model of the phenomenon that it is assigned to study. It performs activities to validate this model. If the model is found to be erroneous, corrective changes are identified, assessed to ensure their significance for being passed on, and prioritized for transmission. A limited amount of verification data is sent with each MBTR assertion message to allow those that might rely on the data to validate the correct operation of the spacecraft and MBTR engine onboard. Integrating MBTR with a multi-tier framework creates an MBTR hierarchy. Higher levels of the MBTR hierarchy task lower levels with data collection and assessment tasks that are required to validate or correct elements of its model. A model of the expected conditions is sent to the lower level craft; which then engages its own MBTR engine to validate or correct the model. This may include tasking a yet lower level of craft to perform activities. When the MBTR engine at a given level receives all of its component data (whether directly collected or from delegation), it randomly chooses some to validate (by reprocessing the validation data), performs analysis and sends its own results (v- lidation and/or changes of model elements and supporting validation data) to its upstream node. This constrains data transmission to only significant (either because it includes a change or is validation data critical for assessing overall performance) information and reduces the processing requirements (by not having to process insignificant data) at higher-level nodes. This paper presents a framework for multi-tier MBTR and two demonstration mission concepts: an Earth sensornet and a mission to Mars. These multi-tier MBTR concepts are compared to a traditional mission approach.
NASA Technical Reports Server (NTRS)
LaPointe, Michael
2006-01-01
The Solar Electric Propulsion (SEP) technology area is tasked to develop near and mid-term SEP technology to improve or enable science mission capture while minimizing risk and cost to the end user. The solar electric propulsion investments are primarily driven by SMD cost-capped mission needs. The technology needs are determined partially through systems analysis tasks including the recent "Re-focus Studies" and "Standard Architecture Study." These systems analysis tasks transitioned the technology development to address the near term propulsion needs suitable for cost-capped open solicited missions such as Discovery and New Frontiers Class missions. Major SEP activities include NASA's Evolutionary Xenon Thruster (NEXT), implementing a Standard Architecture for NSTAR and NEXT EP systems, and developing a long life High Voltage Hall Accelerator (HiVHAC). Lower level investments include advanced feed system development and xenon recovery testing. Future plans include completion of ongoing ISP development activities and evaluating potential use of commercial electric propulsion systems for SMD applications. Examples of enhanced mission capability and technology readiness dates shall be discussed.
Update on the NASA GRC Stirling Technology development project
NASA Astrophysics Data System (ADS)
Thieme, Lanny G.; Schreiber, Jeffrey G.
2001-02-01
The Department of Energy, NASA Glenn Research Center (GRC), and Stirling Technology Company (STC) are developing a free-piston Stirling convertor for a Stirling radioisotope power system (SRPS) to provide spacecraft on-board electric power for NASA deep space missions. The SRPS has recently been identified for potential use on the Europa Orbiter and Solar Probe Space Science missions. Stirling is also now being considered for unmanned Mars rovers. NASA GRC is conducting an in-house project to assist in developing the Stirling convertor for readiness for space qualification and mission implementation. As part of this continuing effort, the Stirling convertor will be further characterized under launch environment random vibration testing, methods to reduce convertor electromagnetic interference (EMI) will be developed, and an independent performance verification will be completed. Convertor life assessment and permanent magnet aging characterization tasks are also underway. Substitute organic materials for the linear alternator and piston bearing coatings for use in a high radiation environment have been identified and have now been incorporated in Stirling convertors built by STC for GRC. Electromagnetic and thermal finite element analyses for the alternator are also being conducted. This paper discusses the recent results and status for this NASA GRC in-house project. .
Update on the NASA GRC Stirling Technology Development Project
NASA Technical Reports Server (NTRS)
Thieme, Lanny G.; Schreiber, Jeffrey G.
2000-01-01
The Department of Energy, NASA Glenn Research Center (GRC), and Stirling Technology Company (STC) are developing a free-piston Stirling convertor for a Stirling radioisotope power system (SRPS) to provide spacecraft on-board electric power for NASA deep space missions. The SRPS has recently been identified for potential use on the Europa Orbiter and Solar Probe Space Science missions. Stirling is also now being considered for unmanned Mars rovers. NASA GRC is conducting an in-house project to assist in developing the Stirling convertor for readiness for space qualification and mission implementation. As part of this continuing effort, the Stirling convertor will be further characterized under launch environment random vibration testing, methods to reduce convertor electromagnetic interference (EMI) will be developed, and an independent performance verification will be completed. Convertor life assessment and permanent magnet aging characterization tasks are also underway. Substitute organic materials for the linear alternator and piston bearing coatings for use in a high radiation environment have been identified and have now been incorporated in Stirling convertors built by STC for GRC. Electromagnetic and thermal finite element analyses for the alternator are also being conducted. This paper discusses the recent results and status for this NASA GRC in-house project.
Assessment of Selected Lighter-Than-Air Vehicles for Mission Tasks of the U.S. Coast Guard
1978-05-01
this analysis assumed that the LTA would be performing a primary mission of, perhaps, IELT or MEP, and evaluated it in a secondary SAR role...Patrol (IIP); the Airborne Radiation Thermometer (ART) surveys; and miscellaneous support on specific tasks for government agencies and academic
Problem Generation in the Mission to Mars Curriculum.
ERIC Educational Resources Information Center
Czarnik, John C., Jr.; Hickey, Daniel T.
This paper will explore a problem finding task the authors developed as one component of the Mission to Mars curriculum, an inquiry-based science unit developed by Petrosino & The Cognition and Technology Group at Vanderbilt (CTGV). The paper also attempts to address evolving conceptions of the problem generation task, primarily from that of…
Protection of Shipping: A Forgotten Mission with Many New Challenges
2006-10-10
changed the name of the mission (and the NTTP manual) from “Naval Control and Protection of Shipping ( NCAPS ),” to “Naval Cooperation and Guidance for...level. For tactical tasks updated for new NCAGS (vice NCAPS ) doctrine, see Naval Warfare Development Command, Naval Tactical Task List (NTTL) 3.0
1987-09-01
Visual Communication . Although this task is performed several times, the task is performed at different points during the mission. In addition, the...Perform visual communication Give thumbs-up signal when ready for takeoff; check lights on pri-fly B. Perform takeoff and Aircraft operating clear ship...FM c. Operate ICS 2. Perform visual communication 3. Operate IFF transponder B. Maintain mission and fuel logs C. Perform checklists 1. Perform AMCM
Advanced planetary analyses. [for planetary mission planning
NASA Technical Reports Server (NTRS)
1974-01-01
The results are summarized of research accomplished during this period concerning planetary mission planning are summarized. The tasks reported include the cost estimations research, planetary missions handbook, and advanced planning activities.
Expert mission planning and replanning scheduling system for NASA KSC payload operations
NASA Technical Reports Server (NTRS)
Pierce, Roger
1987-01-01
EMPRESS (Expert Mission Planning and REplanning Scheduling System) is an expert system created to assist payload mission planners at Kennedy in the long range planning and scheduling of horizontal payloads for space shuttle flights. Using the current flight manifest, these planners develop mission and payload schedules detailing all processing to be performed in the Operations and Checkout building at Kennedy. With the EMPRESS system, schedules are generated quickly using standard flows that represent the tasks and resources required to process a specific horizontal carrier. Resources can be tracked and resource conflicts can be determined and resolved interactively. Constraint relationships between tasks are maintained and can be enforced when a task is moved or rescheduled. The domain, structure, and functionality of the EMPRESS system is briefly designed. The limitations of the EMPRESS system are described as well as improvements expected with the EMPRESS-2 development.
Deep Space Habitat Concept of Operations for Transit Mission Phases
NASA Technical Reports Server (NTRS)
Hoffman, Stephen J.
2011-01-01
The National Aeronautics and Space Administration (NASA) has begun evaluating various mission and system components of possible implementations of what the U.S. Human Spaceflight Plans Committee (also known as the Augustine Committee) has named the flexible path (Anon., 2009). As human spaceflight missions expand further into deep space, the duration of these missions increases to the point where a dedicated crew habitat element appears necessary. There are several destinations included in this flexible path a near Earth asteroid (NEA) mission, a Phobos/Deimos (Ph/D) mission, and a Mars surface exploration mission that all include at least a portion of the total mission in which the crew spends significant periods of time (measured in months) in the deep space environment and are thus candidates for a dedicated habitat element. As one facet of a number of studies being conducted by the Human Spaceflight Architecture Team (HAT) a workshop was conducted to consider how best to define and quantify habitable volume for these future deep space missions. One conclusion reached during this workshop was the need for a description of the scope and scale of these missions and the intended uses of a habitat element. A group was set up to prepare a concept of operations document to address this need. This document describes a concept of operations for a habitat element used for these deep space missions. Although it may eventually be determined that there is significant overlap with this concept of operations and that of a habitat destined for use on planetary surfaces, such as the Moon and Mars, no such presumption is made in this document.
NASA Technical Reports Server (NTRS)
Bloomberg, J. J.; Arzeno, N. H.; Buxton, R. E.; Feiveson, A. H.; Kofman, I. S.; Lee, S. M. C.; Miller, C. A.; Mulavara, A. P.; Platts, S. H.; Peters, B. T.;
2011-01-01
Space flight is known to cause alterations in multiple physiological systems including changes in sensorimotor, cardiovascular, and neuromuscular systems. These changes may affect a crewmember s ability to perform critical mission tasks immediately after landing on a planetary surface. The overall goal of this project is to determine the effects of space flight on functional tests that are representative of high priority exploration mission tasks and to identify the key underlying physiological factors that contribute to decrements in performance. This presentation will focus on the sensorimotor contributions to postflight functional performance.
NASA Technical Reports Server (NTRS)
1995-01-01
The NASA Advisory Council Task Force on the Shuttle-Mir rendezvous and docking missions examine a number of specific issues related to the Shuttle-Mir program. Three teams composed of Task Force members and technical advisors were formed to address the follow issues: preliminary results from STS-71 and the status of preparations for STS-74; NASA's presence in Russia; and NASA's automated data processing and telecommunications (ADP/T) infrastructure in Russia. The three review team reports have been included in the fifth report of the Task Force.
Analytical study of electrical disconnect system for use on manned and unmanned missions
NASA Technical Reports Server (NTRS)
Rosener, A. A.; Lenda, J. A.; Trummer, R. O.
1976-01-01
The objective of this contract is to establish an optimum electrical disconnect system design(s) for use on manned and unmanned missions. The purpose of the disconnect system is to electrically mate and demate the spacecraft to subsystem module interfaces to accomplish orbital operations. The results of Task 1 and Task 2 of the effort are presented. Task 1 involves the definition of the functional, operational, and environmental requirements for the connector system to support the leading prototype candidate concepts. Task 2 involves the documentation review and survey of available existing connector designs.
Epidemiology and location of primary retrieval missions in a Scottish aeromedical service.
Neagle, Gregg; Curatolo, Lisa; Ferris, John; Donald, Mike; Hearns, Stephen; Corfield, Alasdair R
2017-07-25
Prehospital critical care teams comprising an appropriately trained physician and paramedic or nurse have been associated with improved outcomes in selected trauma patients. These teams are a scarce and expensive resource, especially when delivered by rotary air assets. The optimal tasking of prehospital critical care teams is therefore vital and remains a subject of debate. Emergency Medical Retrieval Service (EMRS) provides a prehospital critical care response team to incidents over a large area of Scotland either by air or by road. A convenience sample of consecutive EMRS missions covering a period of 18 months from May 2013 to January 2015 was taken. These missions were matched with the ambulance service information on geographical location of the incident. In order to assess the appropriateness of tasking, interventions undertaken on each mission were analysed and divided into two subcategories: 'critical care interventions' and 'advanced medical interventions'. A tasking was deemed appropriate if it included either category of intervention or if a patient was pronounced life extinct at the scene. A total of 1279 primary missions were undertaken during the study period. Of these, 493 primary missions met the inclusion criteria and generated complete location data. The median distance to scene was calculated as 5.6 miles for land responses and 34.2 miles for air responses. Overall, critical care interventions were performed on 17% (84/493) of patients. A further 21% (102/493) of patients had an advanced medical intervention. Including those patients for whom life was pronounced extinct on scene by the EMRS team, a total of 42% (206/493) taskings were appropriate. Overall, our data show a wide geographical spread of tasking for our service, which is in keeping with other suburban/rural models of prehospital care. Tasking accuracy is also comparable to the accuracy shown by other similar services.
Computer support for cooperative tasks in Mission Operations Centers
NASA Technical Reports Server (NTRS)
Fox, Jeffrey; Moore, Mike
1994-01-01
Traditionally, spacecraft management has been performed by fixed teams of operators in Mission Operations Centers. The team cooperatively: (1) ensures that payload(s) on spacecraft perform their work; and (2) maintains the health and safety of the spacecraft through commanding and monitoring the spacecraft's subsystems. In the future, the task demands will increase and overload the operators. This paper describes the traditional spacecraft management environment and describes a new concept in which groupware will be used to create a Virtual Mission Operations Center. Groupware tools will be used to better utilize available resources through increased automation and dynamic sharing of personnel among missions.
Fourth Report of the Task Force on the Shuttle-Mir Rendezvous and Docking Missions
NASA Technical Reports Server (NTRS)
1995-01-01
On December 6, 1994, the NASA Administrator, Mr. Daniel Goldin, requested that Lt. Gen. Thomas P. Stafford, in his role as the Chairman of the NASA Advisory Council Task Force on the Shuttle-Mir Rendezvous and Docking Missions, lead a team composed of several Task Force members and technical advisors' to Russia with the goal of reviewing preparations and readiness for the upcoming international Space Station Phase 1 missions. In his directions to Gen. Stafford, Mr. Goldin requested that the review team focus its initial efforts on safety of flight issues for the following Phase 1A missions: the Soyuz TM-21 mission which will carry U.S. astronaut Dr. Norman Thagard and cosmonauts Lt. Col. Vladimir Dezhurov and Mr. Gennady Strekalov aboard a Soyuz spacecraft to the Mir Station; the Mir 18 Main Expedition during which Thagard and his fellow cosmonauts, Dezhurov and Strokalov, will spend approximately three months aboard the Mir Station; the STS-71 Space Shuttle mission which will perform the first Shuttle-Mir docking, carry cosmonauts Col. Anatoly SoloViev and Mr. Nikolai Budarin to the Mir Station, and return Thagard, Dezhurov, and Strekalov to Earth.
Analysis of remote operating systems for space-based servicing operations. Volume 2: Study results
NASA Technical Reports Server (NTRS)
1985-01-01
The developments in automation and robotics have increased the importance of applications for space based servicing using remotely operated systems. A study on three basic remote operating systems (teleoperation, telepresence and robotics) was performed in two phases. In phase one, requirements development, which consisted of one three-month task, a group of ten missions were selected. These included the servicing of user equipment on the station and the servicing of the station itself. In phase two, concepts development, which consisted of three tasks, overall system concepts were developed for the selected missions. These concepts, which include worksite servicing equipment, a carrier system, and payload handling equipment, were evaluated relative to the configurations of the overall worksite. It is found that the robotic/teleoperator concepts are appropriate for relatively simple structured tasks, while the telepresence/teleoperator concepts are applicable for missions that are complex, unstructured tasks.
Semeraro, Hannah D; Bevis, Zoë L; Rowan, Daniel; van Besouw, Rachel M; Allsopp, Adrian J
2015-01-01
The ability to listen to commands in noisy environments and understand acoustic signals, while maintaining situational awareness, is an important skill for military personnel and can be critical for mission success. Seventeen auditory tasks carried out by British infantry and combat-support personnel were identified through a series of focus groups conducted by Bevis et al. For military personnel, these auditory tasks are termed mission-critical auditory tasks (MCATs) if they are carried in out in a military-specific environment and have a negative consequence when performed below a specified level. A questionnaire study was conducted to find out which of the auditory tasks identified by Bevis et al. satisfy the characteristics of an MCAT. Seventy-nine British infantry and combat-support personnel from four regiments across the South of England participated. For each auditory task participants indicated: 1) the consequences of poor performance on the task, 2) who performs the task, and 3) how frequently the task is carried out. The data were analysed to determine which tasks are carried out by which personnel, which have the most negative consequences when performed poorly, and which are performed the most frequently. This resulted in a list of 9 MCATs (7 speech communication tasks, 1 sound localization task, and 1 sound detection task) that should be prioritised for representation in a measure of auditory fitness for duty (AFFD) for these personnel. Incorporating MCATs in AFFD measures will help to ensure that personnel have the necessary auditory skills for safe and effective deployment on operational duties.
Semeraro, Hannah D.; Bevis, Zoë L.; Rowan, Daniel; van Besouw, Rachel M.; Allsopp, Adrian J.
2015-01-01
The ability to listen to commands in noisy environments and understand acoustic signals, while maintaining situational awareness, is an important skill for military personnel and can be critical for mission success. Seventeen auditory tasks carried out by British infantry and combat-support personnel were identified through a series of focus groups conducted by Bevis et al. For military personnel, these auditory tasks are termed mission-critical auditory tasks (MCATs) if they are carried in out in a military-specific environment and have a negative consequence when performed below a specified level. A questionnaire study was conducted to find out which of the auditory tasks identified by Bevis et al. satisfy the characteristics of an MCAT. Seventy-nine British infantry and combat-support personnel from four regiments across the South of England participated. For each auditory task participants indicated: 1) the consequences of poor performance on the task, 2) who performs the task, and 3) how frequently the task is carried out. The data were analysed to determine which tasks are carried out by which personnel, which have the most negative consequences when performed poorly, and which are performed the most frequently. This resulted in a list of 9 MCATs (7 speech communication tasks, 1 sound localization task, and 1 sound detection task) that should be prioritised for representation in a measure of auditory fitness for duty (AFFD) for these personnel. Incorporating MCATs in AFFD measures will help to ensure that personnel have the necessary auditory skills for safe and effective deployment on operational duties. PMID:25774613
Medical support to Sri Lanka in the wake of tsunamis: planning considerations and lessons learned.
Lane, David A
2006-10-01
When massive tsunamis affected the coast of Sri Lanka and other Indian Ocean littorals, elements of the Third Force Service Support Group and assigned Navy, Air Force, Army, and Coast Guard units from the U.S. Pacific Command were "task organized" to form Combined Support Group-Sri Lanka (CSG-SL), charged to conduct humanitarian assistance/disaster relief (HA/DR) operations. The specific mission was to provide immediate relief to the affected population of Sri Lanka and the Maldives, to minimize loss of life, and to mitigate human suffering. A 30-person health care team deployed to the northern province of Jaffna and provided medical assistance to that chronically underserved and acutely overstressed region. For a 12-day period, the team served as the principal medical staff of an under-resourced government hospital and conducted mobile primary care clinics at nearby welfare camps housing > 7,000 internally displaced persons made homeless by the tsunamis. By every measurable standard, CSG-SL accomplished its assigned HA/DR task in Sri Lanka, including the medical mission. In doing so, the medical team learned many important lessons, including five of particular value to planners of similar relief operations in the future. This article discusses the context in which CSG-SL planned and executed the medical aspects of its HA/DR operations in Sri Lanka, and it describes the most significant medical lessons learned.
Modular space station, phase B extension. Program operations plan
NASA Technical Reports Server (NTRS)
1971-01-01
An organized approach is defined for establishing the most significant requirements pertaining to mission operations, information management, and computer program design and development for the modular space station program. The operations plan pertains to the space station and experiment module program elements and to the ground elements required for mission management and mission support operations.
High-Performance, Radiation-Hardened Electronics for Space Environments
NASA Technical Reports Server (NTRS)
Keys, Andrew S.; Watson, Michael D.; Frazier, Donald O.; Adams, James H.; Johnson, Michael A.; Kolawa, Elizabeth A.
2007-01-01
The Radiation Hardened Electronics for Space Environments (RHESE) project endeavors to advance the current state-of-the-art in high-performance, radiation-hardened electronics and processors, ensuring successful performance of space systems required to operate within extreme radiation and temperature environments. Because RHESE is a project within the Exploration Technology Development Program (ETDP), RHESE's primary customers will be the human and robotic missions being developed by NASA's Exploration Systems Mission Directorate (ESMD) in partial fulfillment of the Vision for Space Exploration. Benefits are also anticipated for NASA's science missions to planetary and deep-space destinations. As a technology development effort, RHESE provides a broad-scoped, full spectrum of approaches to environmentally harden space electronics, including new materials, advanced design processes, reconfigurable hardware techniques, and software modeling of the radiation environment. The RHESE sub-project tasks are: SelfReconfigurable Electronics for Extreme Environments, Radiation Effects Predictive Modeling, Radiation Hardened Memory, Single Event Effects (SEE) Immune Reconfigurable Field Programmable Gate Array (FPGA) (SIRF), Radiation Hardening by Software, Radiation Hardened High Performance Processors (HPP), Reconfigurable Computing, Low Temperature Tolerant MEMS by Design, and Silicon-Germanium (SiGe) Integrated Electronics for Extreme Environments. These nine sub-project tasks are managed by technical leads as located across five different NASA field centers, including Ames Research Center, Goddard Space Flight Center, the Jet Propulsion Laboratory, Langley Research Center, and Marshall Space Flight Center. The overall RHESE integrated project management responsibility resides with NASA's Marshall Space Flight Center (MSFC). Initial technology development emphasis within RHESE focuses on the hardening of Field Programmable Gate Arrays (FPGA)s and Field Programmable Analog Arrays (FPAA)s for use in reconfigurable architectures. As these component/chip level technologies mature, the RHESE project emphasis shifts to focus on efforts encompassing total processor hardening techniques and board-level electronic reconfiguration techniques featuring spare and interface modularity. This phased approach to distributing emphasis between technology developments provides hardened FPGA/FPAAs for early mission infusion, then migrates to hardened, board-level, high speed processors with associated memory elements and high density storage for the longer duration missions encountered for Lunar Outpost and Mars Exploration occurring later in the Constellation schedule.
NASA Technical Reports Server (NTRS)
1983-01-01
The space station mission requirements data base consists of 149 attached and free-flying missions each of which is documented by a set of three interrelated documents: (1) NASA LaRC Data Sheets - with three sheets comprising a set for each payload element described. These sheets contain user payload element data necessary to drive Space Station architectural options. (2) GDC-derived operations descriptions that supplement the LaRC payload element data in the operations areas such as further descriptions of crew involvement, EVA, etc. (3) Payload elements synthesis sheets used by GDC to provide requirements traceability to data sources and to provide a narrative describing the basis for formulating the payload element requirements.
The Effect of Hierarchical Task Representations on Task Selection in Voluntary Task Switching
ERIC Educational Resources Information Center
Weaver, Starla M.; Arrington, Catherine M.
2013-01-01
The current study explored the potential for hierarchical representations to influence action selection during voluntary task switching. Participants switched between 4 individual task elements. In Experiment 1, participants were encouraged to represent the task elements as grouped within a hierarchy based on experimental manipulations of varying…
2010-10-01
mission, participants were given the NASA Task Load Index ( NASA TLX ) to measure subjective workload. Additional performance measures included mission...16 NASA TLX Workload Analyses...worksheet (See Appendix C), the Hidden Patterns Test (ETS, 1976), and an electronic form of the NASA Task Load Index ( TLX ; Hart & Staveland, 1988). The
Advanced Materials for Exploration Task Research Results
NASA Technical Reports Server (NTRS)
Cook, M. B. (Compiler); Murphy, K. L.; Schneider, T.
2008-01-01
The Advanced Materials for Exploration (AME) Activity in Marshall Space Flight Center s (MSFC s) Exploration Science and Technology Directorate coordinated activities from 2001 to 2006 to support in-space propulsion technologies for future missions. Working together, materials scientists and mission planners identified materials shortfalls that are limiting the performance of long-term missions. The goal of the AME project was to deliver improved materials in targeted areas to meet technology development milestones of NASA s exploration-dedicated activities. Materials research tasks were targeted in five areas: (1) Thermal management materials, (2) propulsion materials, (3) materials characterization, (4) vehicle health monitoring materials, and (5) structural materials. Selected tasks were scheduled for completion such that these new materials could be incorporated into customer development plans.
Automatic mission planning algorithms for aerial collection of imaging-specific tasks
NASA Astrophysics Data System (ADS)
Sponagle, Paul; Salvaggio, Carl
2017-05-01
The rapid advancement and availability of small unmanned aircraft systems (sUAS) has led to many novel exploitation tasks utilizing that utilize this unique aerial imagery data. Collection of this unique data requires novel flight planning to accomplish the task at hand. This work describes novel flight planning to better support structure-from-motion missions to minimize occlusions, autonomous and periodic overflight of reflectance calibration panels to permit more efficient and accurate data collection under varying illumination conditions, and the collection of imagery data to study optical properties such as the bidirectional reflectance distribution function without disturbing the target in sensitive or remote areas of interest. These novel mission planning algorithms will provide scientists with additional tools to meet their future data collection needs.
NASA Technical Reports Server (NTRS)
Bourke, R. D.; Burke, J. D.
1990-01-01
In the course of the exploration and settlement of the moon, robotic missions will precede and accompany humans. These robotic missions are defined respectively as precursors and adjuncts. Their contribution is twofold: to generate information about the lunar environment (and system performance in that environment), and to emplace elements of infrastructure for subsequent use. This paper describes information that may be gathered by robotic missions and infrastructure elements that may be deployed by them during an early lunar program phase.
NASA Technical Reports Server (NTRS)
1983-01-01
Mission scenario analysis and architectural concepts, alternative systems concepts, mission operations and architectural development, architectural analysis trades, evolution, configuration, and technology development are assessed.
"Photographing money" task pricing
NASA Astrophysics Data System (ADS)
Jia, Zhongxiang
2018-05-01
"Photographing money" [1]is a self-service model under the mobile Internet. The task pricing is reasonable, related to the success of the commodity inspection. First of all, we analyzed the position of the mission and the membership, and introduced the factor of membership density, considering the influence of the number of members around the mission on the pricing. Multivariate regression of task location and membership density using MATLAB to establish the mathematical model of task pricing. At the same time, we can see from the life experience that membership reputation and the intensity of the task will also affect the pricing, and the data of the task success point is more reliable. Therefore, the successful point of the task is selected, and its reputation, task density, membership density and Multiple regression of task positions, according to which a nhew task pricing program. Finally, an objective evaluation is given of the advantages and disadvantages of the established model and solution method, and the improved method is pointed out.
In-Space Transportation for NASA's Evolvable Mars Campaign
NASA Technical Reports Server (NTRS)
Percy, Thomas K.; McGuire, Melissa; Polsgrove, Tara
2015-01-01
As the nation embarks on a new and bold journey to Mars, significant work is being done to determine what that mission and those architectural elements will look like. The Evolvable Mars Campaign, or EMC, is being evaluated as a potential approach to getting humans to Mars. Built on the premise of leveraging current technology investments and maximizing element commonality to reduce cost and development schedule, the EMC transportation architecture is focused on developing the elements required to move crew and equipment to Mars as efficiently and effectively as possible both from a performance and a programmatic standpoint. Over the last 18 months the team has been evaluating potential options for those transportation elements. One of the key aspects of the EMC is leveraging investments being made today in missions like the Asteroid Redirect Mission (ARM) mission using derived versions of the Solar Electric Propulsion (SEP) propulsion systems and coupling them with other chemical propulsion elements that maximize commonality across the architecture between both transportation and Mars operations elements. This paper outlines the broad trade space being evaluated including the different technologies being assessed for transportation elements and how those elements are assembled into an architecture. Impacts to potential operational scenarios at Mars are also investigated. Trades are being made on the size and power level of the SEP vehicle for delivering cargo as well as the size of the chemical propulsion systems and various mission aspects including Inspace assembly and sequencing. Maximizing payload delivery to Mars with the SEP vehicle will better support the operational scenarios at Mars by enabling the delivery of landers and habitation elements that are appropriately sized for the mission. The purpose of this investigation is not to find the solution but rather a suite of solutions with potential application to the challenge of sending cargo and crew to Mars. The goal is that, by building an architecture intelligently with all aspects considered, the sustainable Mars program wisely invests limited resources enabling a long-term human Mars exploration program.
Physiological monitoring of team and task stressors
NASA Astrophysics Data System (ADS)
Orasanu, Judith; Tada, Yuri; Kraft, Norbert; Fischer, Ute
2005-05-01
Sending astronauts into space, especially on long-durations missions (e.g. three-year missions to Mars), entails enormous risk. Threats include both physical dangers of radiation, bone loss and other consequences of weightlessness, and also those arising from interpersonal problems associated with extended life in a high-risk isolated and confined environment. Before undertaking long-duration missions, NASA seeks to develop technologies to monitor indicators of potentially debilitating stress at both the individual and team level so that countermeasures can be introduced to prevent further deterioration. Doing so requires a better understanding of indicators of team health and performance. To that end, a study of team problem solving in a simulation environment was undertaken to explore effects of team and task stress. Groups of four males (25-45 yrs) engaged in six dynamic computer-based Antarctic search and rescue missions over four days. Both task and team stressors were manipulated. Physiological responses (ECG, respiration rate and amplitude, SCL, EMG, and PPG); communication (voice and email); individual personality and subjective team dynamics responses were collected and related to task performance. Initial analyses found that physiological measures can be used to identify transient stress, predict performance, and reflect subjective workload. Muscle tension and respiration were the most robust predictors. Not only the level of arousal but its variability during engagement in the task is important to consider. In general, less variability was found to be associated with higher levels of performance. Individuals scoring high on specific personality characteristics responded differently to task stress.
ERIC Educational Resources Information Center
Kosmutzky, Anna
2012-01-01
Higher education institutions on their way to quasi-markets have to identify their distinct characteristics and nowadays, most of the German universities have published a mission statement. But since the tasks and mission of German universities are set for them by state regulation, the paper analyses for what mission statements have been…
Definition of technology development missions for early space station satellite servicing, volume 2
NASA Technical Reports Server (NTRS)
1983-01-01
The results of all aspects of the early space station satellite servicing study tasks are presented. These results include identification of servicing tasks (and locations), identification of servicing mission system and detailed objectives, functional/operational requirements analyses of multiple servicing scenarios, assessment of critical servicing technology capabilities and development of an evolutionary capability plan, design and validation of selected servicing technology development missions (TDMs), identification of space station satellite servicing accommodation needs, and the cost and schedule implications of acquiring both required technology capability development and conducting the selected TDMs.
Space: exploration-exploitation and the role of man.
Loftus, J P
1986-10-01
The early years of space activity have emphasized a crew role similar to that of the test pilot or the crew of a high performance aircraft; even the Apollo lunar exploration missions were dominated by the task of getting to and from the moon. Skylab was a prototype space station and began to indicate the range of other functional roles man will play in space. The operation of the Space Shuttle has the elements of the operation of any other high performance flight vehicle during launch and landing; but in its on-orbit operations, it is often a surrogate space station, developing techniques and demonstrating the role of a future space station in various functions. In future space systems, the role of the crew will encompass all of the activities pursued in research laboratories, manufacturing facilities, maintenance shops, and construction sites. The challenge will be to design the tasks and the tools so that the full benefit of the opportunities offered by performing these functions in space can be attained.
U.S. Navy Task Force Climate Change
NASA Astrophysics Data System (ADS)
Miller, T.; McBride, B.; St. John, C.
2011-12-01
In May 2009, the Chief of Naval Operations established Task Force Climate Change (TFCC) to develop Navy policy, plans, and recommendations regarding future investments to adapt to the world's changing climate. With a near-term focus on the changing Arctic ocean and consequent increase in access to the region, TFCC has adopted a science-based approach in collaboration with other U.S. government agencies, international partners, industry, and academia. TFCC has developed two roadmaps that provide 5-year action plans for the Navy to address the Arctic and global climate change. Critical elements of both roadmaps are assessments of: (1) current and projected climate change, (2) resulting impacts to Naval missions and infrastructure, and (3) associated risks of not taking adaptation actions that are operationally, environmentally, and ecologically sustainable. Through TFCC, the Navy acknowledges the link between climate change and national security, and engages in extensive outreach and strategic communication to remain informed on the best climate science and promote public understanding and support regarding the Navy's climate change efforts.
Shuttle Orbital Applications and Requirements, supplementary tasks (SOAR-IIS)
NASA Technical Reports Server (NTRS)
1973-01-01
Representative shuttle mission applications were studied. The interfaces analyses, and specific payloads are reported for the following types of missions: shuttle delivered automated spacecraft, shuttle/tug delivered spacecraft, man-tended automated spacecraft, and sortie missions.
The Single Crew Module Concept for Exploration
NASA Technical Reports Server (NTRS)
Chambliss, Joe
2012-01-01
Many concepts have been proposed for exploring space. In early 2010 presidential direction called for reconsidering the approach to address changes in exploration destinations, use of new technologies and development of new capabilities to support exploration of space. Considering the proposed new technology and capabilities that NASA was directed to pursue, the single crew module (SCM) concept for a more streamlined approach to the infrastructure and conduct of exploration missions was developed. The SCM concept combines many of the new promising technologies with a central concept of mission architectures that uses a single habitat module for all phases of an exploration mission. Integrating mission elements near Earth and fully fueling them prior to departure of the vicinity of Earth provides the capability of using the single habitat both in transit to an exploration destination and while exploring the destination. The concept employs the capability to return the habitat and interplanetary propulsion system to Earth vicinity so that those elements can be reused on subsequent exploration missions. This paper describes the SCM concept, provides a top level mass estimate for the elements needed and trades the concept against Many concepts have been proposed for exploring space. In early 2010 presidential direction called for reconsidering the approach to address changes in exploration destinations, use of new technologies and development of new capabilities to support exploration of space. Considering the proposed new technology and capabilities that NASA was directed to pursue, the single crew module (SCM) concept for a more streamlined approach to the infrastructure and conduct of exploration missions was developed. The SCM concept combines many of the new promising technologies with a central concept of mission architectures that uses a single habitat module for all phases of an exploration mission. Integrating mission elements near Earth and fully fueling them prior to departure of the vicinity of Earth provides the capability of using the single habitat both in transit to an exploration destination and while exploring the destination. The concept employs the capability to return the habitat and interplanetary propulsion system to Earth vicinity so that those elements can be reused on subsequent exploration missions. This paper describes the SCM concept, provides a top level mass estimate for the elements needed and trades the concept against Constellation approaches for Lunar, Near Earth Asteroid and Mars Surface missions.
Rover imaging system for the Mars rover/sample return mission
NASA Technical Reports Server (NTRS)
1993-01-01
In the past year, the conceptual design of a panoramic imager for the Mars Environmental Survey (MESUR) Pathfinder was finished. A prototype camera was built and its performace in the laboratory was tested. The performance of this camera was excellent. Based on this work, we have recently proposed a small, lightweight, rugged, and highly capable Mars Surface Imager (MSI) instrument for the MESUR Pathfinder mission. A key aspect of our approach to optimization of the MSI design is that we treat image gathering, coding, and restoration as a whole, rather than as separate and independent tasks. Our approach leads to higher image quality, especially in the representation of fine detail with good contrast and clarity, without increasing either the complexity of the camera or the amount of data transmission. We have made significant progress over the past year in both the overall MSI system design and in the detailed design of the MSI optics. We have taken a simple panoramic camera and have upgraded it substantially to become a prototype of the MSI flight instrument. The most recent version of the camera utilizes miniature wide-angle optics that image directly onto a 3-color, 2096-element CCD line array. There are several data-taking modes, providing resolution as high as 0.3 mrad/pixel. Analysis tasks that were performed or that are underway with the test data from the prototype camera include the following: construction of 3-D models of imaged scenes from stereo data, first for controlled scenes and later for field scenes; and checks on geometric fidelity, including alignment errors, mast vibration, and oscillation in the drive system. We have outlined a number of tasks planned for Fiscal Year '93 in order to prepare us for submission of a flight instrument proposal for MESUR Pathfinder.
NASA Technical Reports Server (NTRS)
Maag, W.
1977-01-01
The Flight Design System (FDS) and the Unified System for Orbit Computation (USOC) are compared and described in relation to mission planning for the shuttle transportation system (STS). The FDS is designed to meet the requirements of a standardized production tool and the USOC is designed for rapid generation of particular application programs. The main emphasis in USOC is put on adaptability to new types of missions. It is concluded that a software system having a USOC-like structure, adapted to the specific needs of MPAD, would be appropriate to support planning tasks in the area unique to STS missions.
Report of the Task Force on the Shuttle-Mir Rendezvous and Docking Missions
NASA Technical Reports Server (NTRS)
1994-01-01
In October 1992, Russia and the U.S. agreed to conduct a fundamentally new program of human cooperation in space. This original 'Shuttle-Mir' project encompassed combined astronaut-cosmonaut activities on the Shuttle, Soyuz, and Mir spacecraft. At that time, the project was limited to: the STS-60 Shuttle mission, which was completed in February 1994 and carried the first Russian cosmonaut; the planned March 1995 Soyuz 18 launch which will carry a U.S. astronaut to the Mir space station for a three month mission; and the STS-71 Shuttle mission which is scheduled to rendezvous and dock with the Mir space station in June 1995. The Task Force's specific recommendations are given.
2016-12-05
consist of at least five company -level units: headquarters , two rifle, and two armored units. Reconnaissance squadrons generally consist of at...least four company - level units: headquarters and three reconnaissance units...Brief (U) Army National Guard Companies Have Not Developed Effective Training Programs to Attain or Sustain Mission Essential Task Proficiency
NEEMO 18-20: Analog Testing for Mitigation of Communication Latency During Human Space Exploration
NASA Technical Reports Server (NTRS)
Chappell, Steven P.; Beaton, Kara H.; Miller, Matthew J.; Graff, Trevor G.; Abercromby, Andrew F. J.; Gernhardt, Michael L.; Halcon, Christopher
2016-01-01
NASA Extreme Environment Mission Operations (NEEMO) is an underwater spaceflight analog that allows a true mission-like operational environment and uses buoyancy effects and added weight to simulate different gravity levels. Three missions were undertaken from 2014-2015, NEEMO's 18-20. All missions were performed at the Aquarius undersea research habitat. During each mission, the effects of communication latencies on operations concepts, timelines, and tasks were studied. METHODS: Twelve subjects (4 per mission) were weighed out to simulate near-zero or partial gravity extravehicular activity (EVA) and evaluated different operations concepts for integration and management of a simulated Earth-based science team (ST) to provide input and direction during exploration activities. Exploration traverses were preplanned based on precursor data. Subjects completed science-related tasks including pre-sampling surveys, geologic-based sampling, and marine-based sampling as a portion of their tasks on saturation dives up to 4 hours in duration that were designed to simulate extravehicular activity (EVA) on Mars or the moons of Mars. One-way communication latencies, 5 and 10 minutes between space and mission control, were simulated throughout the missions. Objective data included task completion times, total EVA times, crew idle time, translation time, ST assimilation time (defined as time available for ST to discuss data/imagery after data acquisition). Subjective data included acceptability, simulation quality, capability assessment ratings, and comments. RESULTS: Precursor data can be used effectively to plan and execute exploration traverse EVAs (plans included detailed location of science sites, high-fidelity imagery of the sites, and directions to landmarks of interest within a site). Operations concepts that allow for pre-sampling surveys enable efficient traverse execution and meaningful Mission Control Center (MCC) interaction across communication latencies and can be done with minimal crew idle time. Imagery and contextual information from the EVA crew that is transmitted real-time to the intravehicular (IV) crewmember(s) can be used to verify that exploration traverse plans are being executed correctly. That same data can be effectively used by MCC (across comm latency) to provide meaningful feedback and instruction to the crew regarding sampling priorities, additional tasks, and changes to the EVA timeline. Text / data capabilities are preferred over voice capabilities between MCC and IV when executing exploration traverse plans over communication latency.
Information Management For Tactical Reconnaissance
NASA Astrophysics Data System (ADS)
White, James P.
1984-12-01
The expected battlefield tactics of the 1980's and 1990's will be fluid and dynamic. If tactical reconnaissance is to meet this challenge, it must explore all ways of accelerating the flow of information through the reconnaissance cycle, from the moment a tasking request is received to the time the mission results are delivered to the requestor. In addition to near real-time dissemination of reconnaissance information, the mission planning phase needs to be more responsive to the rapidly changing battlefield scenario. By introducing Artificial Intelligence (AI) via an expert system to the mission planning phase, repetitive and computational tasks can be more readily performed by the ground-based mission planning system, thereby permitting the aircrew to devote more of their time to target study. Transporting the flight plan, plus other mission data, to the aircraft is simple with the Fairchild Data Transfer Equipment (DTE). Aircrews are relieved of the tedious, error-prone, and time-consuming task of manually keying-in avionics initialization data. Post-flight retrieval of mission data via the DTE will permit follow-on aircrews, just starting their mission planning phase, to capitalize on current threat data collected by the returning aircrew. Maintenance data retrieved from the recently flown mission will speed-up the aircraft turn-around by providing near-real time fault detection/isolation. As future avionics systems demand more information, a need for a computer-controlled, smart data base or expert system on-board the aircraft will emerge.
King, Robert; Parker, Simon; Mouzakis, Kon; Fletcher, Winston; Fitzgerald, Patrick
2007-11-01
The Integrated Task Modeling Environment (ITME) is a user-friendly software tool that has been developed to automatically recode low-level data into an empirical record of meaningful task performance. The present research investigated and validated the performance of the ITME software package by conducting complex simulation missions and comparing the task analyses produced by ITME with taskanalyses produced by experienced video analysts. A very high interrater reliability (> or = .94) existed between experienced video analysts and the ITME for the task analyses produced for each mission. The mean session time:analysis time ratio was 1:24 using video analysis techniques and 1:5 using the ITME. It was concluded that the ITME produced task analyses that were as reliable as those produced by experienced video analysts, and significantly reduced the time cost associated with these analyses.
Automating the training development process for mission flight operations
NASA Technical Reports Server (NTRS)
Scott, Carol J.
1994-01-01
Traditional methods of developing training do not effectively support the changing needs of operational users in a multimission environment. The Automated Training Development System (ATDS) provides advantages over conventional methods in quality, quantity, turnaround, database maintenance, and focus on individualized instruction. The Operations System Training Group at the JPL performed a six-month study to assess the potential of ATDS to automate curriculum development and to generate and maintain course materials. To begin the study, the group acquired readily available hardware and participated in a two-week training session to introduce the process. ATDS is a building activity that combines training's traditional information-gathering with a hierarchical method for interleaving the elements. The program can be described fairly simply. A comprehensive list of candidate tasks determines the content of the database; from that database, selected critical tasks dictate which competencies of skill and knowledge to include in course material for the target audience. The training developer adds pertinent planning information about each task to the database, then ATDS generates a tailored set of instructional material, based on the specific set of selection criteria. Course material consistently leads students to a prescribed level of competency.
EVA Development and Verification Testing at NASA's Neutral Buoyancy Laboratory
NASA Technical Reports Server (NTRS)
Jairala, Juniper C.; Durkin, Robert; Marak, Ralph J.; Sipila, Stepahnie A.; Ney, Zane A.; Parazynski, Scott E.; Thomason, Arthur H.
2012-01-01
As an early step in the preparation for future Extravehicular Activities (EVAs), astronauts perform neutral buoyancy testing to develop and verify EVA hardware and operations. Neutral buoyancy demonstrations at NASA Johnson Space Center's Sonny Carter Training Facility to date have primarily evaluated assembly and maintenance tasks associated with several elements of the International Space Station (ISS). With the retirement of the Shuttle, completion of ISS assembly, and introduction of commercial players for human transportation to space, evaluations at the Neutral Buoyancy Laboratory (NBL) will take on a new focus. Test objectives are selected for their criticality, lack of previous testing, or design changes that justify retesting. Assembly tasks investigated are performed using procedures developed by the flight hardware providers and the Mission Operations Directorate (MOD). Orbital Replacement Unit (ORU) maintenance tasks are performed using a more systematic set of procedures, EVA Concept of Operations for the International Space Station (JSC-33408), also developed by the MOD. This paper describes the requirements and process for performing a neutral buoyancy test, including typical hardware and support equipment requirements, personnel and administrative resource requirements, examples of ISS systems and operations that are evaluated, and typical operational objectives that are evaluated.
Re-engineering the mission life cycle with ABC and IDEF
NASA Technical Reports Server (NTRS)
Mandl, Daniel; Rackley, Michael; Karlin, Jay
1994-01-01
The theory behind re-engineering a business process is to remove the non-value added activities thereby lowering the process cost. In order to achieve this, one must be able to identify where the non-value added elements are located which is not a trivial task. This is because the non-value added elements are often hidden in the form of overhead and/or pooled resources. In order to be able to isolate these non-value added processes from among the other processes, one must first decompose the overall top level process into lower layers of sub-processes. In addition, costing data must be assigned to each sub-process along with the value the sub-process adds towards the final product. IDEF0 is a Federal Information Processing Standard (FIPS) process-modeling tool that allows for this functional decomposition through structured analysis. In addition, it illustrates the relationship of the process and the value added to the product or service. The value added portion is further defined in IDEF1X which is an entity relationship diagramming tool. The entity relationship model is the blueprint of the product as it moves along the 'assembly line' and therefore relates all of the parts to each other and the final product. It also relates the parts to the tools that produce the product and all of the paper work that is used in their acquisition. The use of IDEF therefore facilitates the use of Activity Based Costing (ABC). ABC is an essential method in a high variety, product-customizing environment, to facilitate rapid response to externally caused change. This paper describes the work being done in the Mission Operations Division to re-engineer the development and operation life cycle of Mission Operations Centers using these tools.
Touch-screen task-element times for improving SAE recommended practice J2365 : a first proposal.
DOT National Transportation Integrated Search
2015-10-01
This report describes the identification of task elements and the estimation of their times for in-vehicle tasks such as dialing a phone number or finding a song using a touch screen. These : elements were derived from an experiment in which 24 drive...
NASA Technical Reports Server (NTRS)
Patterson, Richard L.; Hammoud, Ahmad
2010-01-01
The NASA Electronic Parts and Packaging (NEPP) Program sponsors a task at the NASA Glenn Research Center titled "Reliability of SiGe, SOI, and Advanced Mixed Signal Devices for Cryogenic Space Missions." In this task COTS parts and flight-like are evaluated by determining their performance under extreme temperatures and thermal cycling. The results from the evaluations are published on the NEPP website and at professional conferences in order to disseminate information to mission planners and system designers. This presentation discusses the task and the 2010 highlights and technical results. Topics include extreme temperature operation of SiGe and SOI devices, all-silicon oscillators, a floating gate voltage reference, a MEMS oscillator, extreme temperature resistors and capacitors, and a high temperature silicon operational amplifier.
Shuttle mission simulator requirements report, volume 1, revision C
NASA Technical Reports Server (NTRS)
Burke, J. F.
1973-01-01
The contractor tasks required to produce a shuttle mission simulator for training crew members and ground personnel are discussed. The tasks will consist of the design, development, production, installation, checkout, and field support of a simulator with two separate crew stations. The tasks include the following: (1) review of spacecraft changes and incorporation of appropriate changes in simulator hardware and software design, and (2) the generation of documentation of design, configuration management, and training used by maintenance and instructor personnel after acceptance for each of the crew stations.
Orbital operations study. Volume 1: Mission analysis
NASA Technical Reports Server (NTRS)
Steinwachs, W. L.
1972-01-01
The final report of the orbital operations study and a summary of the 25 elements in the study inventory are presented. Fourteen interfacing activities are defined. Eleven mission models encompassing all potential interfacing element pairs and interfacing activities are included.
NASA Astrophysics Data System (ADS)
Kanas, Nick; Ritsher, Jennifer
2005-05-01
In isolated and confined environments, two important leadership roles have been identified: the task/instrumental role (which focuses on work goals and operational needs), and the supportive/expressive role (which focuses on morale goals and emotional needs). On the International Space Station, the mission commander should be familiar with both of these aspects of leadership. In previous research involving a 135-day Mir space station simulation in Moscow and a series of on-orbit Mir space station missions during the Shuttle/Mir program, both these leadership roles were studied. In new analyses of the Shuttle/Mir data, we found that for crewmembers, the supportive role of the commander (but not the task role) related positively with crew cohesion. For mission control personnel on the ground, both the task and supportive roles of their leader were related positively to mission control cohesion. The implications of these findings are discussed in terms of leadership on board the International Space Station.
Kanas, Nick; Ritsher, Jennifer
2005-01-01
In isolated and confined environments, two important leadership roles have been identified: the task/instrumental role (which focuses on work goals and operational needs), and the supportive/expressive role (which focuses on morale goals and emotional needs). On the International Space Station, the mission commander should be familiar with both of these aspects of leadership. In previous research involving a 135-day Mir space station simulation in Moscow and a series of on-orbit Mir space station missions during the Shuttle/Mir program, both these leadership roles were studied. In new analyses of the Shuttle/Mir data, we found that for crewmembers, the supportive role of the commander (but not the task role) related positively with crew cohesion. For mission control personnel on the ground, both the task and supportive roles of their leader were related positively to mission control cohesion. The implications of these findings are discussed in terms of leadership on board the International Space Station. c2005 Elsevier Ltd. All rights reserved.
Considerations for Using an Incremental Scheduler for Human Exploration Task Scheduling
NASA Technical Reports Server (NTRS)
Jaap, John; Phillips, Shaun
2005-01-01
As humankind embarks on longer space missions farther from home, the requirements and environments for scheduling the activities performed on these missions are changing. As we begin to prepare for these missions it is appropriate to evaluate the merits and applicability of the different types of scheduling engines. Scheduling engines temporally arrange tasks onto a timeline so that all constraints and objectives are met and resources are not overbooked. Scheduling engines used to schedule space missions fall into three general categories: batch, mixed-initiative, and incremental. This paper presents an assessment of the engine types, a discussion of the impact of human exploration of the moon and Mars on planning and scheduling, and the applicability of the different types of scheduling engines. This paper will pursue the hypothesis that incremental scheduling engines may have a place in the new environment; they have the potential to reduce cost, to improve the satisfaction of those who execute or benefit from a particular timeline (the customers), and to allow astronauts to plan their own tasks.
STS-61 Space Shuttle mission report
NASA Technical Reports Server (NTRS)
Fricke, Robert W., Jr.
1994-01-01
The STS-61 Space Shuttle Program Mission Report summarizes the Hubble Space Telescope (HST) servicing mission as well as the Orbiter, External Tank (ET), Solid Rocket Booster (SRB), Redesigned Solid Rocket Motor (RSRM), and the Space Shuttle main engine (SSME) systems performance during the fifty-ninth flight of the Space Shuttle Program and fifth flight of the Orbiter vehicle Endeavour (OV-105). In addition to the Orbiter, the flight vehicle consisted of an ET designated as ET-60; three SSME's which were designated as serial numbers 2019, 2033, and 2017 in positions 1, 2, and 3, respectively; and two SRB's which were designated BI-063. The RSRM's that were installed in each SRB were designated as 360L023A (lightweight) for the left SRB, and 360L023B (lightweight) for the right SRB. This STS-61 Space Shuttle Program Mission Report fulfills the Space Shuttle Program requirement as documented in NSTS 07700, Volume 8, Appendix E. That document requires that each major organizational element supporting the Program report the results of its hardware evaluation and mission performance plus identify all related in-flight anomalies. The primary objective of the STS-61 mission was to perform the first on-orbit servicing of the Hubble Space Telescope. The servicing tasks included the installation of new solar arrays, replacement of the Wide Field/Planetary Camera I (WF/PC I) with WF/PC II, replacement of the High Speed Photometer (HSP) with the Corrective Optics Space Telescope Axial Replacement (COSTAR), replacement of rate sensing units (RSU's) and electronic control units (ECU's), installation of new magnetic sensing systems and fuse plugs, and the repair of the Goddard High Resolution Spectrometer (GHRS). Secondary objectives were to perform the requirements of the IMAX Cargo Bay Camera (ICBC), the IMAX Camera, and the Air Force Maui Optical Site (AMOS) Calibration Test.
Nuclear Thermal Propulsion Mars Mission Systems Analysis and Requirements Definition
NASA Technical Reports Server (NTRS)
Mulqueen, Jack; Chiroux, Robert C.; Thomas, Dan; Crane, Tracie
2007-01-01
This paper describes the Mars transportation vehicle design concepts developed by the Marshall Space Flight Center (MSFC) Advanced Concepts Office. These vehicle design concepts provide an indication of the most demanding and least demanding potential requirements for nuclear thermal propulsion systems for human Mars exploration missions from years 2025 to 2035. Vehicle concept options vary from large "all-up" vehicle configurations that would transport all of the elements for a Mars mission on one vehicle. to "split" mission vehicle configurations that would consist of separate smaller vehicles that would transport cargo elements and human crew elements to Mars separately. Parametric trades and sensitivity studies show NTP stage and engine design options that provide the best balanced set of metrics based on safety, reliability, performance, cost and mission objectives. Trade studies include the sensitivity of vehicle performance to nuclear engine characteristics such as thrust, specific impulse and nuclear reactor type. Tbe associated system requirements are aligned with the NASA Exploration Systems Mission Directorate (ESMD) Reference Mars mission as described in the Explorations Systems Architecture Study (ESAS) report. The focused trade studies include a detailed analysis of nuclear engine radiation shield requirements for human missions and analysis of nuclear thermal engine design options for the ESAS reference mission.
NASA Technical Reports Server (NTRS)
Chappell, Steven P.; Abercromby, Andrew F.; Miller, Matthew J.; Halcon, Christopher; Gernhardt, Michael L.
2016-01-01
OBJECTIVES: NASA Extreme Environment Mission Operations (NEEMO) is an underwater spaceflight analog that allows a true mission-like operational environment and uses buoyancy effects and added weight to simulate different gravity levels. Three missions were undertaken from 2014-2015, NEEMO's 18-20. All missions were performed at the Aquarius undersea research habitat. During each mission, the effects of varying operations concepts and tasks type and complexity on representative communication latencies associated with Mars missions were studied. METHODS: 12 subjects (4 per mission) were weighed out to simulate near-zero or partial gravity extravehicular activity (EVA) and evaluated different operations concepts for integration and management of a simulated Earth-based science backroom team (SBT) to provide input and direction during exploration activities. Exploration traverses were planned in advance based on precursor data collected. Subjects completed science-related tasks including presampling surveys, geologic-based sampling, and marine-based sampling as a portion of their tasks on saturation dives up to 4 hours in duration that were to simulate extravehicular activity (EVA) on Mars or the moons of Mars. One-way communication latencies, 5 and 10 minutes between space and mission control, were simulated throughout the missions. Objective data included task completion times, total EVA times, crew idle time, translation time, SBT assimilation time (defined as time available for SBT to discuss data/imagery after it has been collected, in addition to the time taken to watch imagery streaming over latency). Subjective data included acceptability, simulation quality, capability assessment ratings, and comments. RESULTS: Precursor data can be used effectively to plan and execute exploration traverse EVAs (plans included detailed location of science sites, high-fidelity imagery of the sites, and directions to landmarks of interest within a site). Operations concepts that allow for presampling surveys enable efficient traverse execution and meaningful Mission Control Center (MCC) interaction across long communication latencies and can be done with minimal crew idle time. Imagery and information from the EVA crew that is transmitted real-time to the intravehicular (IV) crewmember(s) can be used to verify that exploration traverse plans are being executed correctly. That same data can be effectively used by MCC (across comm latency) to provide further instructions to the crew from a SBT on sampling priorities, additional tasks, and changes to the plan. Text / data capabilities are preferred over voice capabilities between MCC and IV when executing exploration traverse plans over communication latency. Autonomous crew planning tools can be effective at modifying existing plans if the objectives and constraints are clearly defined.
Assessing the College Mission: An Excellent Starting Point for Institutional Effectiveness.
ERIC Educational Resources Information Center
Quinley, John W.
A community college's mission statement is a beacon that provides strategic direction for the institution and the conceptual framework for the entire organization. The principal tasks in drafting a new mission statement include matching the current mission to actual institutional functioning, and judging whether the statement is adequate to lead…
2003-10-30
KENNEDY SPACE CENTER, FLA. - Members of the STS-114 crew look over flight equipment in the Orbiter Processing Facility. From left are Mission Commander Eileen Collins; Glenda Laws, EVA Task Leader, with United Space Alliance at Johnson Space Center; and Mission Specialists Soichi Noguchi and Charles Camarda. In the foreground is Mission Specialist Wendy Lawrence. Noguchi is with the Japan Aerospace Exploration Agency, JAXA. Not seen are Pilot James Kelly and Mission Specialists Andy Thomas and Stephen Robinson. The STS-114 crew is at KSC to take part in crew equipment and orbiter familiarization.
Implementation Approach for Plug-in Electric Vehicles at Joint Base Lewis McChord. Task 4
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schey, Stephen; Francfort, Jim
2014-12-01
This study focused on Joint Base Lewis McChord (JBLM), which is located in Washington State. Task 1 consisted of a survey of the non-tactical fleet of vehicles at JBLM to begin the review of vehicle mission assignments and the types of vehicles in service. In Task 2, daily operational characteristics of select vehicles were identified and vehicle movements were recorded in data loggers in order to characterize the vehicles’ missions. In Task 3, the results of the data analysis and observations were provided. Individual observations of the selected vehicles provided the basis for recommendations related to PEV adoption (i.e., whethermore » a battery electric vehicle or plug-in hybrid electric vehicle [collectively referred to as PEVs] can fulfill the mission requirements0, as well as the basis for recommendations related to placement of PEV charging infrastructure. This report focuses on an implementation plan for the near-term adoption of PEVs into the JBLM fleet.« less
Solid Waste Management Requirements Definition for Advanced Life Support Missions: Results
NASA Technical Reports Server (NTRS)
Alazraki, Michael P.; Hogan, John; Levri, Julie; Fisher, John; Drysdale, Alan
2002-01-01
Prior to determining what Solid Waste Management (SWM) technologies should be researched and developed by the Advanced Life Support (ALS) Project for future missions, there is a need to define SWM requirements. Because future waste streams will be highly mission-dependent, missions need to be defined prior to developing SWM requirements. The SWM Working Group has used the mission architecture outlined in the System Integration, Modeling and Analysis (SIMA) Element Reference Missions Document (RMD) as a starting point in the requirement development process. The missions examined include the International Space Station (ISS), a Mars Dual Lander mission, and a Mars Base. The SWM Element has also identified common SWM functionalities needed for future missions. These functionalities include: acceptance, transport, processing, storage, monitoring and control, and disposal. Requirements in each of these six areas are currently being developed for the selected missions. This paper reviews the results of this ongoing effort and identifies mission-dependent resource recovery requirements.
Management Auditing. Evaluation of the Marine Corps Task Analysis Program. Technical Report No. 5.
ERIC Educational Resources Information Center
Hemphill, John M., Jr.; Yoder, Dale
The management audit is described for possible application as an extension of the mission of the Office of Manpower Utilization (OMU) of the U.S. Marine Corps. The present mission of OMU is viewed as a manpower research program to conduct task analysis of Marine Corps occupational fields. Purpose of the analyses is to improve the functional areas…
Comparative Effects of Antihistamines on Aircrew Mission Effectiveness under Sustained Operations
1992-06-01
measures consist mainly of process measures. Process measures are measures of activities used to accomplish the mission and produce the final results...They include task completion times and response variability, and information processing rates as they relate to unique task assignment. Performance...contains process measures that assess the Individual contributions of hardware/software and human components to overall system performance. Measures
NASA Technical Reports Server (NTRS)
1983-01-01
Missions to be performed, station operations and functions to be carried out, and technologies anticipated during the time frame of the space station were examined in order to determine the scope of the overall information management system for the space station. This system comprises: (1) the data management system which includes onboard computer related hardware and software required to assume and exercise control of all activities performed on the station; (2) the communication system for both internal and external communications; and (3) the ground segment. Techniques used to examine the information system from a functional and performance point of view are described as well as the analyses performed to derive the architecture of both the onboard data management system and the system for internal and external communications. These architectures are then used to generate a conceptual design of the onboard elements in order to determine the physical parameters (size/weight/power) of the hardware and software. The ground segment elements are summarized.
NASA Astrophysics Data System (ADS)
1983-04-01
Missions to be performed, station operations and functions to be carried out, and technologies anticipated during the time frame of the space station were examined in order to determine the scope of the overall information management system for the space station. This system comprises: (1) the data management system which includes onboard computer related hardware and software required to assume and exercise control of all activities performed on the station; (2) the communication system for both internal and external communications; and (3) the ground segment. Techniques used to examine the information system from a functional and performance point of view are described as well as the analyses performed to derive the architecture of both the onboard data management system and the system for internal and external communications. These architectures are then used to generate a conceptual design of the onboard elements in order to determine the physical parameters (size/weight/power) of the hardware and software. The ground segment elements are summarized.
One hundred US EVAs: a perspective on spacewalks.
Wilde, Richard C; McBarron, James W; Manatt, Scott A; McMann, Harold J; Fullerton, Richard K
2002-01-01
In the 36 years between June 1965 and February 2001, the US human space flight program has conducted 100 spacewalks, or extravehicular activities (EVAs), as NASA officially calls them. EVA occurs when astronauts wearing spacesuits travel outside their protective spacecraft to perform tasks in the space vacuum environment. US EVA started with pioneering feasibility tests during the Gemini Program. The Apollo Program required sending astronauts to the moon and performing EVA to explore the lunar surface. EVA supported scientific mission objectives of the Skylab program, but may be best remembered for repairing launch damage to the vehicle and thus saving the program. EVA capability on Shuttle was initially planned to be a kit that could be flown at will, and was primarily intended for coping with vehicle return emergencies. The Skylab emergency and the pivotal role of EVA in salvaging that program quickly promoted Shuttle EVA to an essential element for achieving mission objectives, including retrieving satellites and developing techniques to assemble and maintain the International Space Station (ISS). Now, EVA is supporting assembly of ISS. This paper highlights development of US EVA capability within the context of the overarching mission objectives of the US human space flight program. c2002 International Astronautical Federation. Published by Elsevier Science Ltd. All rights reserved.
Flying Cassini with Virtual Operations Teams
NASA Technical Reports Server (NTRS)
Dodd, Suzanne; Gustavson, Robert
1998-01-01
The Cassini Program's challenge is to fly a large, complex mission with a reduced operations budget. A consequence of the reduced budget is elimination of the large, centrally located group traditionally used for uplink operations. Instead, responsibility for completing parts of the uplink function is distributed throughout the Program. A critical strategy employed to handle this challenge is the use of Virtual Uplink Operations Teams. A Virtual Team is comprised of a group of people with the necessary mix of engineering and science expertise who come together for the purpose of building a specific uplink product. These people are drawn from throughout the Cassini Program and participate across a large geographical area (from Germany to the West coast of the USA), covering ten time zones. The participants will often split their time between participating in the Virtual Team and accomplishing their core responsibilities, requiring significant planning and time management. When the particular uplink product task is complete, the Virtual Team disbands and the members turn back to their home organization element for future work assignments. This time-sharing of employees is used on Cassini to build mission planning products, via the Mission Planning Virtual Team, and sequencing products and monitoring of the sequence execution, via the Sequence Virtual Team. This challenging, multitasking approach allows efficient use of personnel in a resource constrained environment.
Fischer, Ute; McDonnell, Lori; Orasanu, Judith
2007-05-01
Approaches to mitigating the likelihood of psychosocial problems during space missions emphasize preflight measures such as team training and team composition. Additionally, it may be necessary to monitor team interactions during missions for signs of interpersonal stress. The present research was conducted to identify features in team members' communications indicative of team functioning. Team interactions were studied in the context of six computer-simulated search and rescue missions. There were 12 teams of 4 U.S. men who participated; however, the present analyses contrast the top two teams with the two least successful teams. Communications between team members were analyzed using linguistic analysis software and a coding scheme developed to characterize task-related and social dimensions of team interactions. Coding reliability was established by having two raters independently code three transcripts. Between-rater agreement ranged from 78.1 to 97.9%. Team performance was significantly associated with team members' task-related communications, specifically with the extent to which task-critical information was shared. Successful and unsuccessful teams also showed different interactive patterns, in particular concerning the frequencies of elaborations and no-responses. Moreover, task success was negatively correlated with variability in team members' word count, and positively correlated with the number of positive emotion words and the frequency of assenting relative to dissenting responses. Analyses isolated certain task-related and social features of team communication related to team functioning. Team success was associated with the extent to which team members shared task-critical information, equally participated and built on each other's contributions, showed agreement, and positive affect.
Communication Delays Impact Behavior and Performance Aboard the International Space Station.
Kintz, Natalie M; Palinkas, Lawrence A
Long-duration space explorations will involve significant communication delays that will likely impact individual and team outcomes. However, the extent of these impacts and the appropriate countermeasures for their mitigation remain largely unknown. This study examined the feasibility and acceptability of utilizing the International Space Station (ISS) as a research platform to assess the impacts of communication delays on individual and team behavior and performance. For this study, 3 ISS crewmembers and 18 mission support personnel performed 10 tasks identified by subject matter experts as meeting study criteria, 6 tasks without a delay in communication and 4 tasks with a 50-s one-way delay. Assessments of individual and team performance and behavior were obtained after each task. The completion rate of posttask assessments and postmission interviews with astronauts were used to assess feasibility and acceptability. Posttask assessments were completed in 100% of the instances where a crewmember was assigned to a task and in 83% where mission support personnel were involved. Qualitative analysis of postmission interviews found the study to be important and acceptable to the three astronauts. However, they also reported the study was limited in the number and type of tasks included, limitations in survey questions, and preference for open-ended to scaled items. Although the ISS is considered a high fidelity analog for long-duration space missions, future studies of communication delays on the ISS must take into considerations the constraints imposed by mission operations and subject preferences and priorities. Kintz KM, Palinkas LA. Communication delays impact behavior and performance aboard the International Space Station. Aerosp Med Hum Perform. 2017; 87(11):940-946.
Overmanned and Undertrained: Preparing UAS Crewmembers for Unmanned Close Air Support
2012-03-22
collection and artillery observation platform to a much more sophisticated mission platform capable of unmanned cargo delivery, laser designation, electronic...VMU Mission Essential Task List ..............................................................................30 iv Table of Contents...Marine Corps ...........................................................................2 VMU Squadrons: Aircraft, Operations, and Missions
Enhancing the Meaningfulness of Work for Astronauts on Long Duration Space Exploration Missions.
Britt, Thomas W; Sytine, Anton; Brady, Ashley; Wilkes, Russ; Pittman, Rebecca; Jennings, Kristen; Goguen, Kandice
2017-08-01
Numerous authors have identified the stressors likely to be encountered on long duration space exploration missions (e.g., to Mars), including the possibility of significant crises, separation from family, boredom/monotony, and interpersonal conflict. Although many authors have noted that meaningful work may be beneficial for astronauts on these missions, none have detailed the sources of meaningful work for astronauts and how these sources may differ between astronauts. The present article identifies how engagement in meaningful work during long duration missions may mitigate the adverse effects of demands and increase the potential for benefits resulting from the missions. Semistructured interviews were conducted with nine NASA personnel, including astronauts, flight directors, and flight surgeons. Questions addressed sources of meaning for astronauts, characteristics of tasks that enhance vs. detract from meaning, and recommendations for enhancing meaning. Personnel mentioned contributing to humanity and the next generation, contributing to the mission, and exploration as the most meaningful aspects of their work. Characteristics of tasks that enhanced meaning included using a variety of skills, feeling personal control over their schedule, autonomy in the execution of tasks, and understanding the importance of the experiments conducted on the mission. Top recommendations to sustain meaning were insuring social needs were met through such activities as the strategic use of social media, giving astronauts autonomy as well as structure, and conducting training during transit. Implications are addressed for tailoring meaning-based interventions for astronauts participating on long duration missions and assessing the effectiveness of these interventions.Britt TW, Sytine A, Brady A, Wilkes R, Pittman R, Jennings K, Goguen K. Enhancing the meaningfulness of work for astronauts on long duration space exploration missions. Aerosp Med Hum Perform. 2017; 88(8):779-783.
NASA Technical Reports Server (NTRS)
Sapp, T. P.; Davin, D. E.
1977-01-01
The integrated payload and mission planning process for STS payloads was defined, and discrete tasks which evaluate performance and support initial implementation of this process were conducted. The scope of activity was limited to NASA and NASA-related payload missions only. The integrated payload and mission planning process was defined in detail, including all related interfaces and scheduling requirements. Related to the payload mission planning process, a methodology for assessing early Spacelab mission manager assignment schedules was defined.
NASA Technical Reports Server (NTRS)
1973-01-01
The mission requirements and conceptual design of manned earth observatory payloads for the 1980 time period are discussed. Projections of 1980 sensor technology and user data requirements were used to formulate typical basic criteria pertaining to experiments, sensor complements, and reference missions. The subjects discussed are: (1) mission selection and prioritization, (2) baseline mission analysis, (3) earth observation data handling and contingency plans, and (4) analysis of low cost mission definition and rationale.
NASA Astrophysics Data System (ADS)
Kintz, Natalie M.; Chou, Chih-Ping; Vessey, William B.; Leveton, Lauren B.; Palinkas, Lawrence A.
2016-12-01
Deep space explorations will involve significant delays in communication to and from Earth that will likely impact individual and team outcomes. However, the extent of these impacts and the appropriate countermeasures for their mitigation remain largely unknown. This study utilized the International Space Station (ISS), a high-fidelity analog for deep space, as a research platform to assess the impact of communication delays on individual and team performance, mood, and behavior. Three astronauts on the ISS and 18 mission support personnel performed tasks with and without communication delays (50-s one-way) during a mission lasting 166 days. Self-reported assessments of individual and team performance and mood were obtained after each task. Secondary outcomes included communication quality and task autonomy. Qualitative data from post-mission interviews with astronauts were used to validate and expand on quantitative data, and to elicit recommendations for countermeasures. Crew well-being and communication quality were significantly reduced in communication delay tasks compared to control. Communication delays were also significantly associated with increased individual stress/frustration. Qualitative data suggest communication delays impacted operational outcomes (i.e. task efficiency), teamwork processes (i.e. team/task coordination) and mood (i.e. stress/frustration), particularly when tasks involved high task-related communication demands, either because of poor communication strategies or low crew autonomy. Training, teamwork, and technology-focused countermeasures were identified to mitigate or prevent adverse impacts.
NASA Technical Reports Server (NTRS)
Chappell, Steven P.; Abercromby, Andrew F.; Gernhardt, Michael L.
2011-01-01
The ultimate success of future human space exploration missions is dependent on the ability to perform extravehicular activity (EVA) tasks effectively, efficiently, and safely, whether those tasks represent a nominal mode of operation or a contingency capability. To optimize EVA systems for the best human performance, it is critical to study the effects of varying key factors such as suit center of gravity (CG), suit mass, and gravity level. During the 2-week NASA Extreme Environment Mission Operations (NEEMO) 14 mission, four crewmembers performed a series of EVA tasks under different simulated EVA suit configurations and used full-scale mockups of a Space Exploration Vehicle (SEV) rover and lander. NEEMO is an underwater spaceflight analog that allows a true mission-like operational environment and uses buoyancy effects and added weight to simulate different gravity levels. Quantitative and qualitative data collected during NEEMO 14, as well as from spacesuit tests in parabolic flight and with overhead suspension, are being used to directly inform ongoing hardware and operations concept development of the SEV, exploration EVA systems, and future EVA suits. OBJECTIVE: To compare human performance across different weight and CG configurations. METHODS: Four subjects were weighed out to simulate reduced gravity and wore either a specially designed rig to allow adjustment of CG or a PLSS mockup. Subjects completed tasks including level ambulation, incline/decline ambulation, standing from the kneeling and prone position, picking up objects, shoveling, ladder climbing, incapacitated crewmember handling, and small and large payload transfer. Subjective compensation, exertion, task acceptability, and duration data as well as photo and video were collected. RESULTS: There appear to be interactions between CG, weight, and task. CGs nearest the subject s natural CG are the most predictable in terms of acceptable performance across tasks. Future research should focus on understanding the interactions between CG, mass, and subject differences.
2001-02-03
The lid is off the shipping container with the Multi-Purpose Logistics Module Donatello inside. It sits on a transporter inside the Space Station Processing Facility. In the SSPF, Donatello will undergo processing by the payload test team, including integrated electrical tests with other Station elements in the SSPF, leak tests, electrical and software compatibility tests with the Space Shuttle (using the Cargo Integrated Test equipment) and an Interface Verification Test once the module is installed in the Space Shuttle’s payload bay at the launch pad. The most significant mechanical task to be performed on Donatello in the SSPF is the installation and outfitting of the racks for carrying the various experiments and cargo. Donatello will be launched on mission STS-130, currently planned for September 2004
2001-02-03
Workers in the Space Station Processing Facility attach an overhead crane to the Multi-Purpose Logistics Module Donatello to lift it out of the shipping container. In the SSPF, Donatello will undergo processing by the payload test team, including integrated electrical tests with other Station elements in the SSPF, leak tests, electrical and software compatibility tests with the Space Shuttle (using the Cargo Integrated Test equipment) and an Interface Verification Test once the module is installed in the Space Shuttle’s payload bay at the launch pad. The most significant mechanical task to be performed on Donatello in the SSPF is the installation and outfitting of the racks for carrying the various experiments and cargo. Donatello will be launched on mission STS-130, currently planned for September 2004
2001-02-03
In the Space Station Processing Facility, workers help guide the overhead crane as it lifts the Multi-Purpose Logistics Module Donatello out of the shipping container. In the SSPF, Donatello will undergo processing by the payload test team, including integrated electrical tests with other Station elements in the SSPF, leak tests, electrical and software compatibility tests with the Space Shuttle (using the Cargo Integrated Test equipment) and an Interface Verification Test once the module is installed in the Space Shuttle’s payload bay at the launch pad. The most significant mechanical task to be performed on Donatello in the SSPF is the installation and outfitting of the racks for carrying the various experiments and cargo. Donatello will be launched on mission STS-130, currently planned for September 2004
NASA Technical Reports Server (NTRS)
Bradley, Roy; Thomson, Douglas G.
1993-01-01
In this paper it is proposed that inverse simulation can make a positive contribution to the study of handling qualities. It is shown that mathematical descriptions of the MTEs (Mission Task Elements) defined in ADS-33C may be used to drive an inverse simulation thereby generating, from an appropriate mathematical model, the controls and states of a subject helicopter flying it. By presenting the results of such simulations it is shown that, in the context of inverse simulation, the attitude quickness parameters given in ADS-33C are independent of vehicle configuration. An alternative quickness parameter, associated with the control displacements required to fly the MTE is proposed, and some preliminary results are presented.
Bringing a Chemical Laboratory Named Sam to Mars on the 2011 Curiosity Rover
NASA Technical Reports Server (NTRS)
Mahaffy, P. R.; Bleacher, L.; Jones, A.; Conrad, P. G.; Cabane, M.; Webster, C. R.; Atreya, S. A.; Manning, H.
2010-01-01
An important goal of upcoming missions to Mars is to understand if life could have developed there. The task of the Sample Analysis at Mars (SAM) suite of instruments [1] and the other Curiosity investigations [2] is to move us steadily toward that goal with an assessment of the habitability of our neighboring planet through a series of chemical and geological measurements. SAM is designed to search for organic compounds and inorganic volatiles and measure isotope ratios. Other instruments on Curiosity will provide elemental analysis and identify minerals. SAM will analyze both atmospheric samples and gases evolved from powdered rocks that may have formed billions of years ago with Curiosity providing access to interesting sites scouted by orbiting cameras and spectrometers.
2001-02-03
In the Space Station Processing Facility, workers help guide the Multi-Purpose Logistics Module Donatello as it moves the length of the SSPF toward a workstand. In the SSPF, Donatello will undergo processing by the payload test team, including integrated electrical tests with other Station elements in the SSPF, leak tests, electrical and software compatibility tests with the Space Shuttle (using the Cargo Integrated Test equipment) and an Interface Verification Test once the module is installed in the Space Shuttle’s payload bay at the launch pad. The most significant mechanical task to be performed on Donatello in the SSPF is the installation and outfitting of the racks for carrying the various experiments and cargo. Donatello will be launched on mission STS-130, currently planned for September 2004
2001-02-03
In the Space Station Processing Facility, workers wait for the Multi-Purpose Logistics Module Donatello, suspended by an overhead crane, to move onto a workstand. In the SSPF, Donatello will undergo processing by the payload test team, including integrated electrical tests with other Station elements in the SSPF, leak tests, electrical and software compatibility tests with the Space Shuttle (using the Cargo Integrated Test equipment) and an Interface Verification Test once the module is installed in the Space Shuttle’s payload bay at the launch pad. The most significant mechanical task to be performed on Donatello in the SSPF is the installation and outfitting of the racks for carrying the various experiments and cargo. Donatello will be launched on mission STS-130, currently planned for September 2004
NASA Technical Reports Server (NTRS)
1983-01-01
Representative space based orbital transfer vehicles (OTV), ground based vehicle turnaround assessment, functional operational requirements and facilities, mission turnaround operations, a comparison of ground based versus space based tasks, activation of servicing facilities prior to IOC, fleet operations requirements, maintenance facilities, OTV servicing facilities, space station support requirements, and packaging for delivery are discussed.
Predicting operator workload during system design
NASA Technical Reports Server (NTRS)
Aldrich, Theodore B.; Szabo, Sandra M.
1988-01-01
A workload prediction methodology was developed in response to the need to measure workloads associated with operation of advanced aircraft. The application of the methodology will involve: (1) conducting mission/task analyses of critical mission segments and assigning estimates of workload for the sensory, cognitive, and psychomotor workload components of each task identified; (2) developing computer-based workload prediction models using the task analysis data; and (3) exercising the computer models to produce predictions of crew workload under varying automation and/or crew configurations. Critical issues include reliability and validity of workload predictors and selection of appropriate criterion measures.
The Dust Management Project: Final Report
NASA Technical Reports Server (NTRS)
Hyatt, Mark J.; Straka, Sharon
2011-01-01
A return to the Moon to extend human presence, pursue scientific activities, use the Moon to prepare for future human missions to Mars, and expand Earth s economic sphere, will require investment in developing new technologies and capabilities to achieve affordable and sustainable human exploration. From the operational experience gained and lessons learned during the Apollo missions, conducting longterm operations in the lunar environment will be a particular challenge, given the difficulties presented by the unique physical properties and other characteristics of lunar regolith, including dust. The Apollo missions and other lunar explorations have identified significant lunar dust-related problems that will challenge future mission success. Comprised of regolith particles ranging in size from tens of nanometers to microns, lunar dust is a manifestation of the complex interaction of the lunar soil with multiple mechanical, electrical, and gravitational effects. The environmental and anthropogenic factors effecting the perturbation, transport, and deposition of lunar dust must be studied in order to mitigate it s potentially harmful effects on exploration systems and human explorers. The Dust Management Project (DMP) is tasked with the evaluation of lunar dust effects, assessment of the resulting risks, and development of mitigation and management strategies and technologies related to Exploration Systems architectures. To this end, the DMP supports the overall goal of the Exploration Technology Development Program (ETDP) of addressing the relevant high priority technology needs of multiple elements within the Constellation Program (CxP) and sister ETDP projects. Project scope, approach, accomplishments, summary of deliverables, and lessons learned are presented.
Potential anesthesia protocols for space exploration missions.
Komorowski, Matthieu; Watkins, Sharmila D; Lebuffe, Gilles; Clark, Jonathan B
2013-03-01
In spaceflight beyond low Earth's orbit, medical conditions requiring surgery are of a high level of concern because of their potential impact on crew health and mission success. Whereas surgical techniques have been thoroughly studied in spaceflight analogues, the research focusing on anesthesia is limited. To provide safe anesthesia during an exploration mission will be a highly challenging task. The research objective is thus to describe specific anesthesia procedures enabling treatment of pre-identified surgical conditions. Among the medical conditions considered by the NASA Human Research Program Exploration Medical Capability element, those potentially necessitating anesthesia techniques have been identified. The most appropriate procedure for each condition is thoroughly discussed. The substantial cost of training time necessary to implement regional anesthesia is pointed out. Within general anesthetics, ketamine combines the unique advantages of preservation of cardiovascular stability, the protective airway reflexes, and spontaneous ventilation. Ketamine side effects have for decades tempered enthusiasm for its use, but recent developments in mitigation means broadened its indications. The extensive experience gathered in remote environments, with minimal equipment and occasionally by insufficiently trained care providers, confirms its high degree of safety. Two ketamine-based anesthesia protocols are described with their corresponding indications. They have been designed taking into account the physiological changes occurring in microgravity and the specific constraints of exploration missions. This investigation could not only improve surgical care during long-duration spaceflights, but may find a number of terrestrial applications in isolated or austere environments.
Robustness of mission plans for unmanned aircraft
NASA Astrophysics Data System (ADS)
Niendorf, Moritz
This thesis studies the robustness of optimal mission plans for unmanned aircraft. Mission planning typically involves tactical planning and path planning. Tactical planning refers to task scheduling and in multi aircraft scenarios also includes establishing a communication topology. Path planning refers to computing a feasible and collision-free trajectory. For a prototypical mission planning problem, the traveling salesman problem on a weighted graph, the robustness of an optimal tour is analyzed with respect to changes to the edge costs. Specifically, the stability region of an optimal tour is obtained, i.e., the set of all edge cost perturbations for which that tour is optimal. The exact stability region of solutions to variants of the traveling salesman problems is obtained from a linear programming relaxation of an auxiliary problem. Edge cost tolerances and edge criticalities are derived from the stability region. For Euclidean traveling salesman problems, robustness with respect to perturbations to vertex locations is considered and safe radii and vertex criticalities are introduced. For weighted-sum multi-objective problems, stability regions with respect to changes in the objectives, weights, and simultaneous changes are given. Most critical weight perturbations are derived. Computing exact stability regions is intractable for large instances. Therefore, tractable approximations are desirable. The stability region of solutions to relaxations of the traveling salesman problem give under approximations and sets of tours give over approximations. The application of these results to the two-neighborhood and the minimum 1-tree relaxation are discussed. Bounds on edge cost tolerances and approximate criticalities are obtainable likewise. A minimum spanning tree is an optimal communication topology for minimizing the cumulative transmission power in multi aircraft missions. The stability region of a minimum spanning tree is given and tolerances, stability balls, and criticalities are derived. This analysis is extended to Euclidean minimum spanning trees. This thesis aims at enabling increased mission performance by providing means of assessing the robustness and optimality of a mission and methods for identifying critical elements. Examples of the application to mission planning in contested environments, cargo aircraft mission planning, multi-objective mission planning, and planning optimal communication topologies for teams of unmanned aircraft are given.
2003-10-30
KENNEDY SPACE CENTER, FLA. - Members of the STS-114 crew look over flight equipment in the Orbiter Processing Facility. From left are Glenda Laws, EVA Task Leader, with United Space Alliance at Johnson Space Center, Mission Specialists Soichi Noguchi, Andy Thomas, Charles Camarda and Wendy Lawrence. Noguchi is with the Japan Aerospace Exploration Agency, JAXA. Not seen are Mission Commander Eileen Collins, Pilot James Kelly and Mission Specialist Stephen Robinson. The STS-114 crew is at KSC to take part in crew equipment and orbiter familiarization.
2003-10-30
KENNEDY SPACE CENTER, FLA. - The STS-114 mission crew walks through the Orbiter Processing Facility looking at the tiles underneath Atlantis. From left are Mission Specialists Andy Thomas, Stephen Robinson, Soichi Noguchi and Charles Camarda (pointing); Commander Eileen Collins; and Mission Specialist Wendy Lawrence. At far right Glenda Laws, EVA Task Leader, with United Space Alliance at Johnson Space Center. Not seen is Pilot James Kelly. Noguchi is with the Japan Aerospace Exploration Agency, JAXA. The STS-114 crew is at KSC to take part in crew equipment and orbiter familiarization.
3D Printed Surgical Instruments Evaluated by a Simulated Crew of a Mars Mission.
Wong, Julielynn Y; Pfahnl, Andreas C
2016-09-01
The first space-based fused deposition modeling (FDM) 3D printer became operational in 2014. This study evaluated whether Mars simulation crewmembers of the Hawai'i Space Exploration Analog and Simulation (HI-SEAS) II mission with no prior surgical experience could utilize acrylonitrile butadiene styrene (ABS) thermoplastic surgical instruments FDM 3D printed on Earth to complete simulated surgical tasks. This study sought to examine the feasibility of using 3D printed surgical tools when the primary crew medical officer is incapacitated and the back-up crew medical officer must conduct a surgical procedure during a simulated extended space mission. During a 4 mo duration ground-based analog mission, five simulation crewmembers with no prior surgical experience completed 16 timed sets of simulated prepping, draping, incising, and suturing tasks to evaluate the relative speed of using four ABS thermoplastic instruments printed on Earth compared to conventional instruments. All four simulated surgical tasks were successfully performed using 3D printed instruments by Mars simulation crewmembers with no prior surgical experience. There was no substantial difference in time to completion of simulated tasks with control vs. 3D printed sponge stick, towel clamp, scalpel handle, and toothed forceps. These limited findings support further investigation into the creation of an onboard digital catalog of validated 3D printable surgical instrument design files to support autonomous, crew-administered healthcare on Mars missions. Future work could include addressing sterility, biocompatibility, and having astronaut crew medical officers test a wider range of surgical instruments printed in microgravity during actual surgical procedures. Wong JY, Pfahnl AC. 3D printed surgical instruments evaluated by a simulated crew of a Mars mission. Aerosp Med Hum Perform. 2016; 87(9):806-810.
Orbit Selection for Earth Observation Missions
NASA Technical Reports Server (NTRS)
King, J. C.
1978-01-01
The orbit selection process is simplified for most earth-oriented satellite missions by a restriction to circular orbits, which reduces the primary orbit characteristics to be determined to only two: altitude and inclination. A number of important mission performance characteristics depend on these choices, however, so a major part of the orbit selection task is concerned with developing the correlating relationships in clear and convenient forms to provide a basis for rational orbit selection procedures. The present approach to that task is organized around two major areas of mission performance, orbit plane precession and coverage pattern development, whose dependence on altitude and inclination is delineated graphically in design chart form. These charts provide a visual grasp of the relationships between the quantities cited above, as well as other important mission performance parameters including viewing time of day (solar), sensor swath width (and fields of view), swath sequencing, and pattern repeat condition and repeat periods.
75 FR 32186 - Task Force on Community Preventive Services
Federal Register 2010, 2011, 2012, 2013, 2014
2010-06-07
... by space available. Purpose: The mission of the Task Force is to develop and publish the Guide to... DEPARTMENT OF HEALTH AND HUMAN SERVICES Centers for Disease Control and Prevention Task Force on Community Preventive Services Name: Task Force on Community Preventive Services meeting. Times and Dates: 8...
Accessing Information on the Mars Exploration Rovers Mission
NASA Astrophysics Data System (ADS)
Walton, J. D.; Schreiner, J. A.
2005-12-01
In January 2004, the Mars Exploration Rovers (MER) mission successfully deployed two robotic geologists - Spirit and Opportunity - to opposite sides of the red planet. Onboard each rover is an array of cameras and scientific instruments that send data back to Earth, where ground-based systems process and store the information. During the height of the mission, a team of about 250 scientists and engineers worked around the clock to analyze the collected data, determine a strategy and activities for the next day and then carefully compose the command sequences that would instruct the rovers in how to perform their tasks. The scientists and engineers had to work closely together to balance the science objectives with the engineering constraints so that the mission achieved its goals safely and quickly. To accomplish this coordinated effort, they adhered to a tightly orchestrated schedule of meetings and processes. To keep on time, it was critical that all team members were aware of what was happening, knew how much time they had to complete their tasks, and could easily access the information they need to do their jobs. Computer scientists and software engineers at NASA Ames Research Center worked closely with the mission managers at the Jet Propulsion Laboratory (JPL) to create applications that support the mission. One such application, the Collaborative Information Portal (CIP), helps mission personnel perform their daily tasks, whether they work inside mission control or the science areas at JPL, or in their homes, schools, or offices. With a three-tiered, service-oriented architecture (SOA) - client, middleware, and data repository - built using Java and commercial software, CIP provides secure access to mission schedules and to data and images transmitted from the Mars rovers. This services-based approach proved highly effective for building distributed, flexible applications, and is forming the basis for the design of future mission software systems. Almost two years after the landings on Mars, the rovers are still going strong, and CIP continues to provide data access to mission personnel.
NASA Technical Reports Server (NTRS)
Eppler, D. B.
2015-01-01
Lunar surface geological exploration should be founded on a number of key elements that are seemingly disparate, but which can form an integrated operational concept when properly conceived and deployed. If lunar surface geological exploration is to be useful, this integration of key elements needs to be undertaken throughout the development of both mission hardware, training and operational concepts. These elements include the concept of mission class, crew makeup and training, surface mobility assets that are matched with mission class, and field tools and IT assets that make data collection, sharing and archiving transparent to the surface crew.
Enhanced intelligence through optimized TCPED concepts for airborne ISR
NASA Astrophysics Data System (ADS)
Spitzer, M.; Kappes, E.; Böker, D.
2012-06-01
Current multinational operations show an increased demand for high quality actionable intelligence for different operational levels and users. In order to achieve sufficient availability, quality and reliability of information, various ISR assets are orchestrated within operational theatres. Especially airborne Intelligence, Surveillance and Reconnaissance (ISR) assets provide - due to their endurance, non-intrusiveness, robustness, wide spectrum of sensors and flexibility to mission changes - significant intelligence coverage of areas of interest. An efficient and balanced utilization of airborne ISR assets calls for advanced concepts for the entire ISR process framework including the Tasking, Collection, Processing, Exploitation and Dissemination (TCPED). Beyond this, the employment of current visualization concepts, shared information bases and information customer profiles, as well as an adequate combination of ISR sensors with different information age and dynamic (online) retasking process elements provides the optimization of interlinked TCPED processes towards higher process robustness, shorter process duration, more flexibility between ISR missions and, finally, adequate "entry points" for information requirements by operational users and commands. In addition, relevant Trade-offs of distributed and dynamic TCPED processes are examined and future trends are depicted.
Institutional plan FY 1999--FY 2004
DOE Office of Scientific and Technical Information (OSTI.GOV)
NONE
1998-10-01
Los Alamos has a well-defined and nationally important mission: to reduce the global nuclear danger. This central national security mission consists of four main elements: stockpile stewardship, nuclear materials management, nonproliferation and arms control, and cleanup of the environmental legacy of nuclear weapons activities. The Laboratory provides support for and ensures confidence in the nation`s nuclear stockpile without nuclear testing. This challenge requires the Laboratory to continually hone its scientific acumen and technological capabilities to perform this task reliably using an interdisciplinary approach and advanced experimental and modeling techniques. In the last two National Defense Authorization Acts, Congress identified themore » need to protect the nation from the proliferation of weapons of mass destruction, which includes nuclear, chemical, and biological weapons, and their potential use by terrorists. Los Alamos is applying multidisciplinary science and engineering skills to address these problems. In addition, the Laboratory`s critical programmatic roles in stockpile stewardship and threat reduction are complemented by its waste management operations and environmental restoration work. Information on specific programs is available in Section 2 of this document.« less
At-sea demonstration of RF sensor tasking using XML over a worldwide network
NASA Astrophysics Data System (ADS)
Kellogg, Robert L.; Lee, Tom; Dumas, Diane; Raggo, Barbara
2003-07-01
As part of an At-Sea Demonstration for Space and Naval Warfare Command (SPAWAR, PMW-189), a prototype RF sensor for signal acquisition and direction finding queried and received tasking via a secure worldwide Automated Data Network System (ADNS). Using extended mark-up language (XML) constructs, both mission and signal tasking were available for push and pull Battlespace management. XML tasking was received by the USS Cape St George (CG-71) during an exercise along the Gulf Coast of the US from a test facility at SPAWAR, San Diego, CA. Although only one ship was used in the demonstration, the intent of the software initiative was to show that a network of different RF sensors on different platforms with different capabilitis could be tasked by a common web agent. A sensor software agent interpreted the XML task to match the sensor's capability. Future improvements will focus on enlarging the domain of mission tasking and incorporate report management.
Cold Flow Testing for Liquid Propellant Rocket Injector Scaling and Throttling
NASA Technical Reports Server (NTRS)
Kenny, Jeremy R.; Moser, Marlow D.; Hulka, James; Jones, Gregg
2006-01-01
Scaling and throttling of combustion devices are important capabilities to demonstrate in development of liquid rocket engines for NASA's Space Exploration Mission. Scaling provides the ability to design new injectors and injection elements with predictable performance on the basis of test experience with existing injectors and elements, and could be a key aspect of future development programs. Throttling is the reduction of thrust with fixed designs and is a critical requirement in lunar and other planetary landing missions. A task in the Constellation University Institutes Program (CUIP) has been designed to evaluate spray characteristics when liquid propellant rocket engine injectors are scaled and throttled. The specific objectives of the present study are to characterize injection and primary atomization using cold flow simulations of the reacting sprays. These simulations can provide relevant information because the injection and primary atomization are believed to be the spray processes least affected by the propellant reaction. Cold flow studies also provide acceptable test conditions for a university environment. Three geometric scales - 1/4- scale, 1/2-scale, and full-scale - of two different injector element types - swirl coaxial and shear coaxial - will be designed, fabricated, and tested. A literature review is currently being conducted to revisit and compile the previous scaling documentation. Because it is simple to perform, throttling will also be examined in the present work by measuring primary atomization characteristics as the mass flow rate and pressure drop of the six injector element concepts are reduced, with corresponding changes in chamber backpressure. Simulants will include water and gaseous nitrogen, and an optically accessible chamber will be used for visual and laser-based diagnostics. The chamber will include curtain flow capability to repress recirculation, and additional gas injection to provide independent control of the backpressure. This paper provides a short review of the appropriate literature, as well as descriptions of plans for experimental hardware, test chamber instrumentation, diagnostics, and testing.
Refueling Strategies for a Team of Cooperating AUVs
2011-01-01
manager, and thus the constraint a centrally managed underwater network imposes on the mission. Task management utilizing Robust Decentralized Task ...the computational complexity. A bid based approach to task management has also been studied as a possible means of decentralization of group task ...currently performing another task . In [18], ground robots perform distributed task allocation using the ASyMTRy-D algorithm, which is based on CNP
Space station automation study. Volume 2: Technical report. Autonomous systems and assembly
NASA Technical Reports Server (NTRS)
1984-01-01
The application of automation to space station functions is discussed. A summary is given of the evolutionary functions associated with long range missions and objectives. Mission tasks and requirements are defined. Space station sub-systems, mission models, assembly, and construction are discussed.
NASA Astrophysics Data System (ADS)
Zadeh, S. M.; Powers, D. M. W.; Sammut, K.; Yazdani, A. M.
2016-12-01
Autonomous Underwater Vehicles (AUVs) are capable of spending long periods of time for carrying out various underwater missions and marine tasks. In this paper, a novel conflict-free motion planning framework is introduced to enhance underwater vehicle's mission performance by completing maximum number of highest priority tasks in a limited time through a large scale waypoint cluttered operating field, and ensuring safe deployment during the mission. The proposed combinatorial route-path planner model takes the advantages of the Biogeography-Based Optimization (BBO) algorithm toward satisfying objectives of both higher-lower level motion planners and guarantees maximization of the mission productivity for a single vehicle operation. The performance of the model is investigated under different scenarios including the particular cost constraints in time-varying operating fields. To show the reliability of the proposed model, performance of each motion planner assessed separately and then statistical analysis is undertaken to evaluate the total performance of the entire model. The simulation results indicate the stability of the contributed model and its feasible application for real experiments.
NASA Astrophysics Data System (ADS)
Herz, A.; Herz, E.; Center, K.; George, P.; Axelrad, P.; Mutschler, S.; Jones, B.
2016-09-01
The Space Surveillance Network (SSN) is tasked with the increasingly difficult mission of detecting, tracking, cataloging and identifying artificial objects orbiting the Earth, including active and inactive satellites, spent rocket bodies, and fragmented debris. Much of the architecture and operations of the SSN are limited and outdated. Efforts are underway to modernize some elements of the systems. Even so, the ability to maintain the best current Space Situational Awareness (SSA) picture and identify emerging events in a timely fashion could be significantly improved by leveraging non-traditional sensor sites. Orbit Logic, the University of Colorado and the University of Texas at Austin are developing an innovative architecture and operations concept to coordinate the tasking and observation information processing of non - traditional assets based on information-theoretic approaches. These confirmed tasking schedules and the resulting data can then be used to "inform" the SSN tasking process. The 'Heimdall Web' system is comprised of core tasking optimization components and accompanying Web interfaces within a secure, split architecture that will for the first time allow non-traditional sensors to support SSA and improve SSN tasking. Heimdall Web application components appropriately score/prioritize space catalog objects based on covariance, priority, observability, expected information gain, and probability of detect - then coordinate an efficient sensor observation schedule for non-SSN sensors contributing to the overall SSA picture maintained by the Joint Space Operations Center (JSpOC). The Heimdall Web Ops concept supports sensor participation levels of "Scheduled", "Tasked" and "Contributing". Scheduled and Tasked sensors are provided optimized observation schedules or object tracking lists from central algorithms, while Contributing sensors review and select from a list of "desired track objects". All sensors are "Web Enabled" for tasking and feedback, supplying observation schedules, confirmed observations and related data back to Heimdall Web to complete the feedback loop for the next scheduling iteration.
Mission operations and command assurance: Flight operations quality improvements
NASA Technical Reports Server (NTRS)
Welz, Linda L.; Bruno, Kristin J.; Kazz, Sheri L.; Potts, Sherrill S.; Witkowski, Mona M.
1994-01-01
Mission Operations and Command Assurance (MO&CA) is a Total Quality Management (TQM) task on JPL projects to instill quality in flight mission operations. From a system engineering view, MO&CA facilitates communication and problem-solving among flight teams and provides continuous solving among flight teams and provides continuous process improvement to reduce risk in mission operations by addressing human factors. The MO&CA task has evolved from participating as a member of the spacecraft team, to an independent team reporting directly to flight project management and providing system level assurance. JPL flight projects have benefited significantly from MO&CA's effort to contain risk and prevent rather than rework errors. MO&CA's ability to provide direct transfer of knowledge allows new projects to benefit from previous and ongoing flight experience.
A Dual Launch Robotic and Human Lunar Mission Architecture
NASA Technical Reports Server (NTRS)
Jones, David L.; Mulqueen, Jack; Percy, Tom; Griffin, Brand; Smitherman, David
2010-01-01
This paper describes a comprehensive lunar exploration architecture developed by Marshall Space Flight Center's Advanced Concepts Office that features a science-based surface exploration strategy and a transportation architecture that uses two launches of a heavy lift launch vehicle to deliver human and robotic mission systems to the moon. The principal advantage of the dual launch lunar mission strategy is the reduced cost and risk resulting from the development of just one launch vehicle system. The dual launch lunar mission architecture may also enhance opportunities for commercial and international partnerships by using expendable launch vehicle services for robotic missions or development of surface exploration elements. Furthermore, this architecture is particularly suited to the integration of robotic and human exploration to maximize science return. For surface operations, an innovative dual-mode rover is presented that is capable of performing robotic science exploration as well as transporting human crew conducting surface exploration. The dual-mode rover can be deployed to the lunar surface to perform precursor science activities, collect samples, scout potential crew landing sites, and meet the crew at a designated landing site. With this approach, the crew is able to evaluate the robotically collected samples to select the best samples for return to Earth to maximize the scientific value. The rovers can continue robotic exploration after the crew leaves the lunar surface. The transportation system for the dual launch mission architecture uses a lunar-orbit-rendezvous strategy. Two heavy lift launch vehicles depart from Earth within a six hour period to transport the lunar lander and crew elements separately to lunar orbit. In lunar orbit, the crew transfer vehicle docks with the lander and the crew boards the lander for descent to the surface. After the surface mission, the crew returns to the orbiting transfer vehicle for the return to the Earth. This paper describes a complete transportation architecture including the analysis of transportation element options and sensitivities including: transportation element mass to surface landed mass; lander propellant options; and mission crew size. Based on this analysis, initial design concepts for the launch vehicle, crew module and lunar lander are presented. The paper also describes how the dual launch lunar mission architecture would fit into a more general overarching human space exploration philosophy that would allow expanded application of mission transportation elements for missions beyond the Earth-moon realm.
Instrumentation for Mars Environments
NASA Technical Reports Server (NTRS)
Landis, Geoffrey A.
1997-01-01
The main portion of the project was to support the "MAE" experiment on the Mars Pathfinder mission and to design instrumentation for future space missions to measure dust deposition on Mars and to characterize the properties of the dust. A second task was to analyze applications for photovoltaics in new space environments, and a final task was analysis of advanced applications for solar power, including planetary probes, photovoltaic system operation on Mars, and satellite solar power systems.
Impacts of Launch Vehicle Fairing Size on Human Exploration Architectures
NASA Technical Reports Server (NTRS)
Jefferies, Sharon; Collins, Tim; Dwyer Cianciolo, Alicia; Polsgrove, Tara
2017-01-01
Human missions to Mars, particularly to the Martian surface, are grand endeavors that place extensive demands on ground infrastructure, launch capabilities, and mission systems. The interplay of capabilities and limitations among these areas can have significant impacts on the costs and ability to conduct Mars missions and campaigns. From a mission and campaign perspective, decisions that affect element designs, including those based on launch vehicle and ground considerations, can create effects that ripple through all phases of the mission and have significant impact on the overall campaign. These effects result in impacts to element designs and performance, launch and surface manifesting, and mission operations. In current Evolvable Mars Campaign concepts, the NASA Space Launch System (SLS) is the primary launch vehicle for delivering crew and payloads to cis-lunar space. SLS is currently developing an 8.4m diameter cargo fairing, with a planned upgrade to a 10m diameter fairing in the future. Fairing diameter is a driving factor that impacts many aspects of system design, vehicle performance, and operational concepts. It creates a ripple effect that influences all aspects of a Mars mission, including: element designs, grounds operations, launch vehicle design, payload packaging on the lander, launch vehicle adapter design to meet structural launch requirements, control and thermal protection during entry and descent at Mars, landing stability, and surface operations. Analyses have been performed in each of these areas to assess and, where possible, quantify the impacts of fairing diameter selection on all aspects of a Mars mission. Several potential impacts of launch fairing diameter selection are identified in each of these areas, along with changes to system designs that result. Solutions for addressing these impacts generally result in increased systems mass and propellant needs, which can further exacerbate packaging and flight challenges. This paper presents the results of the analyses performed, the potential changes to mission architectures and campaigns that result, and the general trends that are more broadly applicable to any element design or mission planning for human exploration.
The Single Habitat Module Concept for Exploration - Mission Planning and Mass Estimates
NASA Technical Reports Server (NTRS)
Chambliss, Joe
2013-01-01
The Single Habitat Module (SHM) concept approach to the infrastructure and conduct of exploration missions combines many of the new promising technologies with a central concept of mission architectures that use a single habitat module for all phases of an exploration mission. Integrating mission elements near Earth and fully fueling them prior to departure of the vicinity of Earth provides the capability of using the single habitat both in transit to an exploration destination and while exploring the destination. The concept employs the capability to return the habitat and interplanetary propulsion system to Earth vicinity so that those elements can be reused on subsequent exploration missions. This paper provides a review of the SHM concept, the advantages it provides, trajectory assessments related to use of a high specific impulse space based propulsion system, advances in mission planning and new mass estimates.
Integrated Human-Robotic Missions to the Moon and Mars: Mission Operations Design Implications
NASA Technical Reports Server (NTRS)
Mishkin, Andrew; Lee, Young; Korth, David; LeBlanc, Troy
2007-01-01
For most of the history of space exploration, human and robotic programs have been independent, and have responded to distinct requirements. The NASA Vision for Space Exploration calls for the return of humans to the Moon, and the eventual human exploration of Mars; the complexity of this range of missions will require an unprecedented use of automation and robotics in support of human crews. The challenges of human Mars missions, including roundtrip communications time delays of 6 to 40 minutes, interplanetary transit times of many months, and the need to manage lifecycle costs, will require the evolution of a new mission operations paradigm far less dependent on real-time monitoring and response by an Earthbound operations team. Robotic systems and automation will augment human capability, increase human safety by providing means to perform many tasks without requiring immediate human presence, and enable the transfer of traditional mission control tasks from the ground to crews. Developing and validating the new paradigm and its associated infrastructure may place requirements on operations design for nearer-term lunar missions. The authors, representing both the human and robotic mission operations communities, assess human lunar and Mars mission challenges, and consider how human-robot operations may be integrated to enable efficient joint operations, with the eventual emergence of a unified exploration operations culture.
Integrated Human-Robotic Missions to the Moon and Mars: Mission Operations Design Implications
NASA Technical Reports Server (NTRS)
Korth, David; LeBlanc, Troy; Mishkin, Andrew; Lee, Young
2006-01-01
For most of the history of space exploration, human and robotic programs have been independent, and have responded to distinct requirements. The NASA Vision for Space Exploration calls for the return of humans to the Moon, and the eventual human exploration of Mars; the complexity of this range of missions will require an unprecedented use of automation and robotics in support of human crews. The challenges of human Mars missions, including roundtrip communications time delays of 6 to 40 minutes, interplanetary transit times of many months, and the need to manage lifecycle costs, will require the evolution of a new mission operations paradigm far less dependent on real-time monitoring and response by an Earthbound operations team. Robotic systems and automation will augment human capability, increase human safety by providing means to perform many tasks without requiring immediate human presence, and enable the transfer of traditional mission control tasks from the ground to crews. Developing and validating the new paradigm and its associated infrastructure may place requirements on operations design for nearer-term lunar missions. The authors, representing both the human and robotic mission operations communities, assess human lunar and Mars mission challenges, and consider how human-robot operations may be integrated to enable efficient joint operations, with the eventual emergence of a unified exploration operations culture.
Space Mission Operations Concept
NASA Technical Reports Server (NTRS)
Squibb, Gael F.
1996-01-01
This paper will discuss the concept of developing a space mission operations concept; the benefits of starting this system engineering task early; the neccessary inputs to the process; and the products that are generated.
NASA Exercise Physiology and Countermeasures Project Overview
NASA Technical Reports Server (NTRS)
Loerch, Linda; Ploutz-Snyder, Lori
2009-01-01
Efficient exercise countermeasures are necessary to offset or minimize spaceflight-induced deconditioning and to maximize crew performance of mission tasks. These countermeasure protocols should use the fewest crew and vehicle resources. NASA s Exercise Physiology and Countermeasures (ExPC) Project works to identify, collect, interpret, and summarize evidence that results in effective exercise countermeasure protocols which protect crew health and performance during International Space Station (ISS) and future exploration-class missions. The ExPC and NASA s Human Research Program are sponsoring multiple studies to evaluate and improve the efficacy of spaceflight exercise countermeasures. First, the Project will measure maximal aerobic capacity (VO2max) during cycle ergometry before, during, and after ISS missions. Second, the Project is sponsoring an evaluation of a new prototype harness that offers improved comfort and increased loading during treadmill operations. Third, the Functional Tasks Test protocol will map performance of anticipated lunar mission tasks with physiologic systems before and after short and long-duration spaceflight, to target system contributions and the tailoring of exercise protocols to maximize performance. In addition to these studies that are actively enrolling crewmember participants, the ExPC is planning new studies that include an evaluation of a higher-intensity/lower-volume exercise countermeasure protocol aboard the ISS using the Advanced Resistive Exercise Device and second-generation treadmill, studies that evaluate bone loading during spaceflight exercise, and ground-based studies that focus on fitness for duty standards required to complete lunar mission tasks and for which exercise protocols need to protect. Summaries of these current and future studies and strategies will be provided to international colleagues for knowledge sharing and possible collaboration.
NASA Technical Reports Server (NTRS)
Ballard, Richard O.
2007-01-01
In 2005-06, the Prometheus program funded a number of tasks at the NASA-Marshall Space Flight Center (MSFC) to support development of a Nuclear Thermal Propulsion (NTP) system for future manned exploration missions. These tasks include the following: 1. NTP Design Develop Test & Evaluate (DDT&E) Planning 2. NTP Mission & Systems Analysis / Stage Concepts & Engine Requirements 3. NTP Engine System Trade Space Analysis and Studies 4. NTP Engine Ground Test Facility Assessment 5. Non-Nuclear Environmental Simulator (NTREES) 6. Non-Nuclear Materials Fabrication & Evaluation 7. Multi-Physics TCA Modeling. This presentation is a overview of these tasks and their accomplishments
Power Systems for Human Exploration Missions
NASA Technical Reports Server (NTRS)
Cataldo, Robert L.
1998-01-01
Power system options were reviewed for their appropriateness to meet mission requirements and guidelines. Contending system technologies include: solar, nuclear, isotopic, electro-chemical and chemical. Mission elements can basically be placed into two categories; in-space transportation systems, both cargo and piloted; and surface systems, both stationary and mobile. All transportation and surface element power system requirements were assessed for application synergies that would suggest common hardware (duplicates of the same or similar design) or multi-use (reuse system in a different application/location), wherever prudent.
Intelligent data reduction for autonomous power systems
NASA Technical Reports Server (NTRS)
Floyd, Stephen A.
1988-01-01
Since 1984 Marshall Space Flight Center was actively engaged in research and development concerning autonomous power systems. Much of the work in this domain has dealt with the development and application of knowledge-based or expert systems to perform tasks previously accomplished only through intensive human involvement. One such task is the health status monitoring of electrical power systems. Such monitoring is a manpower intensive task which is vital to mission success. The Hubble Space Telescope testbed and its associated Nickel Cadmium Battery Expert System (NICBES) were designated as the system on which the initial proof of concept for intelligent power system monitoing will be established. The key function performed by an engineer engaged in system monitoring is to analyze the raw telemetry data and identify from the whole only those elements which can be considered significant. This function requires engineering expertise on the functionality of the system, the mode of operation and the efficient and effective reading of the telemetry data. Application of this expertise to extract the significant components of the data is referred to as data reduction. Such a function possesses characteristics which make it a prime candidate for the application of knowledge-based systems' technologies. Such applications are investigated and recommendations are offered for the development of intelligent data reduction systems.
NASA Technical Reports Server (NTRS)
Leestma, David
2013-01-01
David Leestma was EV-1 for the STS-41G extravehicular activity (EVA) with Kathy Sullivan (first American female spacewalker). They conducted an EVA to fully demonstrate the feasibility of refueling satellites from the Space Shuttle, and performed the first contingency EVA task involving the Ku-band antenna. STS-41G was the fourth Space Shuttle mission to perform an EVA, and Leestma related his experiences with training, the spacesuit, and EVA tasks that were conducted on October 11, 1984 during this mission.
Transformation of OODT CAS to Perform Larger Tasks
NASA Technical Reports Server (NTRS)
Mattmann, Chris; Freeborn, Dana; Crichton, Daniel; Hughes, John; Ramirez, Paul; Hardman, Sean; Woollard, David; Kelly, Sean
2008-01-01
A computer program denoted OODT CAS has been transformed to enable performance of larger tasks that involve greatly increased data volumes and increasingly intensive processing of data on heterogeneous, geographically dispersed computers. Prior to the transformation, OODT CAS (also alternatively denoted, simply, 'CAS') [wherein 'OODT' signifies 'Object-Oriented Data Technology' and 'CAS' signifies 'Catalog and Archive Service'] was a proven software component used to manage scientific data from spaceflight missions. In the transformation, CAS was split into two separate components representing its canonical capabilities: file management and workflow management. In addition, CAS was augmented by addition of a resource-management component. This third component enables CAS to manage heterogeneous computing by use of diverse resources, including high-performance clusters of computers, commodity computing hardware, and grid computing infrastructures. CAS is now more easily maintainable, evolvable, and reusable. These components can be used separately or, taking advantage of synergies, can be used together. Other elements of the transformation included addition of a separate Web presentation layer that supports distribution of data products via Really Simple Syndication (RSS) feeds, and provision for full Resource Description Framework (RDF) exports of metadata.
Independent verification of plutonium decontamination on Johnston Atoll (1992--1996)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wilson-Nichols, M.J.; Wilson, J.E.; McDowell-Boyer, L.M.
1998-05-01
The Field Command, Defense Special Weapons Agency (FCDSWA) (formerly FCDNA) contracted Oak Ridge National Laboratory (ORNL) Environmental Technology Section (ETS) to conduct an independent verification (IV) of the Johnston Atoll (JA) Plutonium Decontamination Project by an interagency agreement with the US Department of Energy in 1992. The main island is contaminated with the transuranic elements plutonium and americium, and soil decontamination activities have been ongoing since 1984. FCDSWA has selected a remedy that employs a system of sorting contaminated particles from the coral/soil matrix, allowing uncontaminated soil to be reused. The objective of IV is to evaluate the effectiveness ofmore » remedial action. The IV contractor`s task is to determine whether the remedial action contractor has effectively reduced contamination to levels within established criteria and whether the supporting documentation describing the remedial action is adequate. ORNL conducted four interrelated tasks from 1992 through 1996 to accomplish the IV mission. This document is a compilation and summary of those activities, in addition to a comprehensive review of the history of the project.« less
Handling Qualities of a Large Civil Tiltrotor in Hover using Translational Rate Command
NASA Technical Reports Server (NTRS)
Malpica, Carlos A.; Theodore, Colin R.; Lawrence, Ben; Lindsey, James; Blanken, Chris
2012-01-01
A Translational Rate Command (TRC) control law has been developed to enable low speed maneuvering of a large civil tiltrotor with minimal pitch changes by means of automatic nacelle angle deflections for longitudinal velocity control. The nacelle actuator bandwidth required to achieve Level 1 handling qualities in hover and the feasibility of additional longitudinal cyclic control to augment low bandwidth nacelle actuation were investigated. A frequency-domain handling qualities criterion characterizing TRC response in terms of bandwidth and phase delay was proposed and validated against a piloted simulation conducted on the NASA-Ames Vertical Motion Simulator. Seven experimental test pilots completed evaluations in the ADS-33E-PRF Hover Mission Task Element (MTE) for a matrix of nacelle actuator bandwidths, equivalent rise times and control response sensitivities, and longitudinal cyclic control allocations. Evaluated against this task, longitudinal phase delay shows the Level 1 boundary is around 0.4 0.5 s. Accordingly, Level 1 handling qualities were achieved either with a nacelle actuator bandwidth greater than 4 rad/s, or by employing longitudinal cyclic control to augment low bandwidth nacelle actuation.
NASA Technical Reports Server (NTRS)
Hastrup, Rolf; Weinberg, Aaron; Mcomber, Robert
1991-01-01
Results of on-going studies to develop navigation/telecommunications network concepts to support future robotic and human missions to Mars are presented. The performance and connectivity improvements provided by the relay network will permit use of simpler, lower performance, and less costly telecom subsystems for the in-situ mission exploration elements. Orbiting relay satellites can serve as effective navigation aids by supporting earth-based tracking as well as providing Mars-centered radiometric data for mission elements approaching, in orbit, or on the surface of Mars. The relay satellite orbits may be selected to optimize navigation aid support and communication coverage for specific mission sets.
NASA Astrophysics Data System (ADS)
Hastrup, Rolf; Weinberg, Aaron; McOmber, Robert
1991-09-01
Results of on-going studies to develop navigation/telecommunications network concepts to support future robotic and human missions to Mars are presented. The performance and connectivity improvements provided by the relay network will permit use of simpler, lower performance, and less costly telecom subsystems for the in-situ mission exploration elements. Orbiting relay satellites can serve as effective navigation aids by supporting earth-based tracking as well as providing Mars-centered radiometric data for mission elements approaching, in orbit, or on the surface of Mars. The relay satellite orbits may be selected to optimize navigation aid support and communication coverage for specific mission sets.
NASA's Functional Task Test: Informing the Design of an Integrated Countermeasure System
NASA Technical Reports Server (NTRS)
Bloomberg, J. J.; Batson, C. D.; Buxton, R. E.; Feiveson, A. H.; Kofman, I. S.; Laurie, S.; Lee, S. M. C.; Miller, C. A.; Mulavara, A. P.; Peters, B. T.;
2015-01-01
The goals of the Functional Task Test (FTT) study were to determine the effects of spaceflight on functional tests that are representative of critical exploration mission tasks and to identify the key physiological factors that contribute to decrements in performance.
Advanced Spacecraft Designs in Support of Human Missions to Earth's Neighborhood
NASA Technical Reports Server (NTRS)
Fletcher, David
2002-01-01
NASA's strategic planning for technology investment draws on engineering studies of potential future missions. A number of hypothetical mission architectures have been studied. A recent study completed by The NASA/JSC Advanced Design Team addresses one such possible architecture strategy for missions to the moon. This conceptual study presents an overview of each of the spacecraft elements that would enable such missions. These elements include an orbiting lunar outpost at lunar L1 called the Gateway, a lunar transfer vehicle (LTV) which ferries a crew of four from the ISS to the Gateway, a lunar lander which ferries the crew from the Gateway to the lunar surface, and a one-way lunar habitat lander capable of supporting the crew for 30 days. Other supporting elements of this architecture discussed below include the LTV kickstage, a solar-electric propulsion (SEP) stage, and a logistics lander capable of re-supplying the 30-day habitat lander and bringing other payloads totaling 10.3 mt in support of surface mission activities. Launch vehicle infrastructure to low-earth orbit includes the Space Shuttle, which brings up the LTV and crew, and the Delta-IV Heavy expendable launch vehicle which launches the landers, kickstage, and SEP.
Autonomous mission management for UAVs using soar intelligent agents
NASA Astrophysics Data System (ADS)
Gunetti, Paolo; Thompson, Haydn; Dodd, Tony
2013-05-01
State-of-the-art unmanned aerial vehicles (UAVs) are typically able to autonomously execute a pre-planned mission. However, UAVs usually fly in a very dynamic environment which requires dynamic changes to the flight plan; this mission management activity is usually tasked to human supervision. Within this article, a software system that autonomously accomplishes the mission management task for a UAV will be proposed. The system is based on a set of theoretical concepts which allow the description of a flight plan and implemented using a combination of Soar intelligent agents and traditional control techniques. The system is capable of automatically generating and then executing an entire flight plan after being assigned a set of objectives. This article thoroughly describes all system components and then presents the results of tests that were executed using a realistic simulation environment.
The Conflicted Realities of Community College Mission Statements
ERIC Educational Resources Information Center
Lake, Rebecca S.; Mrozinski, Mark D.
2011-01-01
Over the last 40 years, the mission statement has been consistently viewed as an indispensable management tool for organizations in both the public and private sectors. In addition, there is a plethora of popular management literature that puts mission identification as the first and most important task of an organization's leadership. Strategic…
"Rosetta" Mission's "7 Hours of Terror" and "Philae's" Descent
ERIC Educational Resources Information Center
Blanco, Philip
2015-01-01
In November 2014 the "Rosetta" mission to Comet 67P/Churyumov-Gerasimenko made the headlines when its "Philae" lander completed a successful unpowered descent onto the surface of the comet nucleus after "7 hours of terror" for the mission scientists. 67P's irregular shape and rotation made this task even more…
Software for Secondary-School Learning About Robotics
NASA Technical Reports Server (NTRS)
Shelton, Robert O.; Smith, Stephanie L.; Truong, Dat; Hodgson, Terry R.
2005-01-01
The ROVer Ranch is an interactive computer program designed to help secondary-school students learn about space-program robotics and related basic scientific concepts by involving the students in simplified design and programming tasks that exercise skills in mathematics and science. The tasks involve building simulated robots and then observing how they behave. The program furnishes (1) programming tools that a student can use to assemble and program a simulated robot and (2) a virtual three-dimensional mission simulator for testing the robot. First, the ROVer Ranch presents fundamental information about robotics, mission goals, and facts about the mission environment. On the basis of this information, and using the aforementioned tools, the student assembles a robot by selecting parts from such subsystems as propulsion, navigation, and scientific tools, the student builds a simulated robot to accomplish its mission. Once the robot is built, it is programmed and then placed in a three-dimensional simulated environment. Success or failure in the simulation depends on the planning and design of the robot. Data and results of the mission are available in a summary log once the mission is concluded.
NASA Technical Reports Server (NTRS)
Baldwin, R. R.
1973-01-01
The accomplishments of the Apollo 17 flight are discussed. The scientific objectives included geological surveying and sampling of materials and surface features in a preselected area of the Taurus-Littrow region, deploying and activating surface experiments, and conducting inflight experiments and photographic tasks during lunar orbit and transearth coast. The individual Apollo 17 experiments and photographic tasks are presented in outline form. Charts are developed to show the major mission events and data collection periods correlated to Greenwich Mean Time and ground elapsed time. Maps of the lunar surface ground track envelope for the Apollo 17 orbiting spacecraft for revolutions one to seventy-five is shown.
NASA Technical Reports Server (NTRS)
1996-01-01
On this eighth day of the STS-78 mission, the flight crew, Cmdr. Terence T. Henricks, Pilot Kevin R. Kregel, Payload Cmdr. Susan J. Helms, Mission Specialists Richard M. Linnehan, Charles E. Brady, Jr., and Payload Specialists Jean-Jacques Favier, Ph.D. and Robert B. Thirsk, M.D., continue to conduct experiments primarily focusing on the effects of weightlessness on human physiology. Results from the studies of muscle activity, task performance, and sleep will help future mission planners organize crew schedules for greater efficiency and productivity. For a second consecutive day, Henricks, Kregel, Thirsk, and Favier continue to enter responses to a battery of problem-solving tasks on the Performance Assessment Work Station, a laptop computer.
Concept of Operations for a Prospective "Proving Ground" in the Lunar Vicinity
NASA Technical Reports Server (NTRS)
Love, Stanley G.; Hill, James J.
2016-01-01
NASA is studying a "Proving Ground" near the Moon to conduct human space exploration missions in preparation for future flights to Mars. This paper describes a concept of operations ("conops") for activities in the Proving Ground, focusing on the construction and use of a mobile Cislunar Transit Habitat capable of months-long excursions within and beyond the Earth-Moon system. Key elements in the conops include the Orion spacecraft (with mission kits for docking and other specialized operations) and the Space Launch System heavy-lift rocket. Potential additions include commercial launch vehicles and logistics carriers, solar electric propulsion stages to move elements between different orbits and eventually take them on excursions to deep space, a node module with multiple docking ports, habitation and life support blocks, and international robotic and piloted lunar landers. The landers might include reusable ascent modules which could remain docked to in-space elements between lunar sorties. The architecture will include infrastructure for launch preparation, communication, mission control, and range safety. The conops describes "case studies" of notional missions chosen to guide the design of the architecture and its elements. One such mission is the delivery of a 10-ton pressurized element, co-manifested with an Orion on a Block 1B Space Launch System rocket, to the Proving Ground. With a large solar electric propulsion stage, the architecture could enable a year-long mission to land humans on a near-Earth asteroid. In the last case, after returning to near-lunar space, two of the asteroid explorers could join two crewmembers freshly arrived from Earth for a Moon landing, helping to safely quantify the risk of landing deconditioned crews on Mars. The conops also discusses aborts and contingency operations. Early return to Earth may be difficult, especially during later Proving Ground missions. While adding risk, limited-abort conditions provide needed practice for Mars, from which early return is likely to be impossible.
Trades Between Opposition and Conjunction Class Trajectories for Early Human Missions to Mars
NASA Technical Reports Server (NTRS)
Mattfeld, Bryan; Stromgren, Chel; Shyface, Hilary; Komar, David R.; Cirillo, William; Goodliff, Kandyce
2014-01-01
Candidate human missions to Mars, including NASA's Design Reference Architecture 5.0, have focused on conjunction-class missions with long crewed durations and minimum energy trajectories to reduce total propellant requirements and total launch mass. However, in order to progressively reduce risk and gain experience in interplanetary mission operations, it may be desirable that initial human missions to Mars, whether to the surface or to Mars orbit, have shorter total crewed durations and minimal stay times at the destination. Opposition-class missions require larger total energy requirements relative to conjunction-class missions but offer the potential for much shorter mission durations, potentially reducing risk and overall systems performance requirements. This paper will present a detailed comparison of conjunction-class and opposition-class human missions to Mars vicinity with a focus on how such missions could be integrated into the initial phases of a Mars exploration campaign. The paper will present the results of a trade study that integrates trajectory/propellant analysis, element design, logistics and sparing analysis, and risk assessment to produce a comprehensive comparison of opposition and conjunction exploration mission constructs. Included in the trade study is an assessment of the risk to the crew and the trade offs between the mission duration and element, logistics, and spares mass. The analysis of the mission trade space was conducted using four simulation and analysis tools developed by NASA. Trajectory analyses for Mars destination missions were conducted using VISITOR (Versatile ImpulSive Interplanetary Trajectory OptimizeR), an in-house tool developed by NASA Langley Research Center. Architecture elements were evaluated using EXploration Architecture Model for IN-space and Earth-to-orbit (EXAMINE), a parametric modeling tool that generates exploration architectures through an integrated systems model. Logistics analysis was conducted using NASA's Human Exploration Logistics Model (HELM), and sparing allocation predictions were generated via the Exploration Maintainability Analysis Tool (EMAT), which is a probabilistic simulation engine that evaluates trades in spacecraft reliability and sparing requirements based on spacecraft system maintainability and reparability.
Psyche Mission: Scientific Models and Instrument Selection
NASA Astrophysics Data System (ADS)
Polanskey, C. A.; Elkins-Tanton, L. T.; Bell, J. F., III; Lawrence, D. J.; Marchi, S.; Park, R. S.; Russell, C. T.; Weiss, B. P.
2017-12-01
NASA has chosen to explore (16) Psyche with their 14th Discovery-class mission. Psyche is a 226-km diameter metallic asteroid hypothesized to be the exposed core of a planetesimal that was stripped of its rocky mantle by multiple hit and run collisions in the early solar system. The spacecraft launch is planned for 2022 with arrival at the asteroid in 2026 for 21 months of operations. The Psyche investigation has five primary scientific objectives: A. Determine whether Psyche is a core, or if it is unmelted material. B. Determine the relative ages of regions of Psyche's surface. C. Determine whether small metal bodies incorporate the same light elements as are expected in the Earth's high-pressure core. D. Determine whether Psyche was formed under conditions more oxidizing or more reducing than Earth's core. E. Characterize Psyche's topography. The mission's task was to select the appropriate instruments to meet these objectives. However, exploring a metal world, rather than one made of ice, rock, or gas, requires development of new scientific models for Psyche to support the selection of the appropriate instruments for the payload. If Psyche is indeed a planetary core, we expect that it should have a detectable magnetic field. However, the strength of the magnetic field can vary by orders of magnitude depending on the formational history of Psyche. The implications of both the extreme low-end and the high-end predictions impact the magnetometer and mission design. For the imaging experiment, what can the team expect for the morphology of a heavily impacted metal body? Efforts are underway to further investigate the differences in crater morphology between high velocity impacts into metal and rock to be prepared to interpret the images of Psyche when they are returned. Finally, elemental composition measurements at Psyche using nuclear spectroscopy encompass a new and unexplored phase space of gamma-ray and neutron measurements. We will present some end-member models for the physical properties of Psyche, and discuss their implications for instrument measurements. These models include internal structure, internal and surface composition, possible magnetic field strength and structure, and surface morphology.
Lunar Surface Architecture Utilization and Logistics Support Assessment
NASA Astrophysics Data System (ADS)
Bienhoff, Dallas; Findiesen, William; Bayer, Martin; Born, Andrew; McCormick, David
2008-01-01
Crew and equipment utilization and logistics support needs for the point of departure lunar outpost as presented by the NASA Lunar Architecture Team (LAT) and alternative surface architectures were assessed for the first ten years of operation. The lunar surface architectures were evaluated and manifests created for each mission. Distances between Lunar Surface Access Module (LSAM) landing sites and emplacement locations were estimated. Physical characteristics were assigned to each surface element and operational characteristics were assigned to each surface mobility element. Stochastic analysis was conducted to assess probable times to deploy surface elements, conduct exploration excursions, and perform defined crew activities. Crew time is divided into Outpost-related, exploration and science, overhead, and personal activities. Outpost-related time includes element deployment, EVA maintenance, IVA maintenance, and logistics resupply. Exploration and science activities include mapping, geological surveys, science experiment deployment, sample analysis and categorizing, and physiological and biological tests in the lunar environment. Personal activities include sleeping, eating, hygiene, exercising, and time off. Overhead activities include precursor or close-out tasks that must be accomplished but don't fit into the other three categories such as: suit donning and doffing, airlock cycle time, suit cleaning, suit maintenance, post-landing safing actions, and pre-departure preparations. Equipment usage time, spares, maintenance actions, and Outpost consumables are also estimated to provide input into logistics support planning. Results are normalized relative to the NASA LAT point of departure lunar surface architecture.
NASA Technical Reports Server (NTRS)
Bloetscher, F.
1975-01-01
The histroy, potential mission application, and designs of lighter-than-air (LTA) vehicles are researched and evaluated. Missions are identified to which airship vehicles are potentially suited. Results of the mission analysis are combined with the findings of a parametric analysis to formulate the mission/vehicle combinations recommended for further study. Current transportation systems are surveyed and potential areas of competition are identified as well as potential missions resulting from limitations of these systems. Potential areas of military usage are included.
NASA Technical Reports Server (NTRS)
Litomisky, Krystof
2012-01-01
Even though NASA's space missions are many and varied, there are some tasks that are common to all of them. For example, all spacecraft need to communicate with other entities, and all spacecraft need to know where they are. These tasks use tools and services that can be inherited and reused between missions, reducing systems engineering effort and therefore reducing cost.The Advanced Multi-Mission Operations System, or AMMOS, is a collection of multimission tools and services, whose development and maintenance are funded by NASA. I created HierarchThis, a plugin designed to provide an interactive interface to help customers identify mission-relevant tools and services. HierarchThis automatically creates diagrams of the AMMOS database, and then allows users to show/hide specific details through a graphical interface. Once customers identify tools and services they want for a specific mission, HierarchThis can automatically generate a contract between the Multimission Ground Systems and Services Office, which manages AMMOS, and the customer. The document contains the selected AMMOS components, along with their capabilities and satisfied requirements. HierarchThis reduces the time needed for the process from service selections to having a mission-specific contract from the order of days to the order of minutes.
Mission Statements--Rhetoric, Reality, or Road Map to Success?
ERIC Educational Resources Information Center
Keeling, Mary
2013-01-01
Mission statements are expected elements of business plans and corporate communications. Yet, practice in creating them and monitoring their impact varies and skeptics wonder about their usefulness. A survey of business literature provides a context for school library mission statements. Mission statements define the nature, purpose, and role of…
Screening, cataloging and indexing of earth resource aircraft missions
NASA Technical Reports Server (NTRS)
1974-01-01
Data obtained from 30 earth resources aircraft missions, flown between September 1, 1973 and September 1, 1974, were screened, cataloged, and indexed using microfilm copy. The manhours required for completing the task are presented, and problems encountered during the project are reported. It is concluded that a cataloging and indexing report of remote sensor data can be prepared on a timely basis for a relatively low cost from microfilm. Recommendations are given in order to further facilitate the task.
View of the STS-88 crew in the Node 1/Unity module
1998-12-10
STS088-322-021 (4-15 DECEMBER 1998) --- Astronaut Robert D. Cabana (left), mission commander, and cosmonaut Sergei K. Krikalev, mission specialist representing the Russian Space Agency (RSA), plan their approach to tasks in the U.S.-built Unity module. All six STS-88 crew members were involved in tasks to ready Unity and the now-connected Russian-built FGB module, also called Zarya, for their International Space Station (ISS) roles. Krikalev has been named as a member of the first ISS crew.
Consumables and wastes estimations for the First Lunar Outpost
NASA Technical Reports Server (NTRS)
Theis, Ronald L. A.; Ballin, Mark G.; Evert, Martha F.
1992-01-01
The First Lunar Outpost mission is a design reference mission for the first human return to the moon. This paper describes a set of consumables and waste material estimations made on the basis of the First Lunar Outpost mission scenario developed by the NASA Exploration Programs Office. The study includes the definition of a functional interface framework and a top-level set of consumables and waste materials to be evaluated, the compilation of mass flow information from mission developers supplemented with information from the literature, and the analysis of the resulting mass flow information to gain insight about the possibility of material flow integration between the moon outpost elements. The results of the study of the details of the piloted mission and the habitat are used to identify areas where integration of consumables and wastes across different mission elements could provide possible launch mass savings.
NASA Technical Reports Server (NTRS)
1983-01-01
Mission areas analyzed for input to the baseline mission model include: (1) commercial materials processing, including representative missions for producing metallurgical, chemical and biological products; (2) commercial Earth observation, represented by a typical carry-on mission amenable to commercialization; (3) solar terrestrial and resource observations including missions in geoscience and scientific land observation; (4) global environment, including representative missions in meteorology, climatology, ocean science, and atmospheric science; (5) materials science, including missions for measuring material properties, studying chemical reactions and utilizing the high vacuum-pumping capacity of space; and (6) life sciences with experiments in biomedicine and animal and plant biology.
Architectural considerations for lunar long duration habitat
NASA Astrophysics Data System (ADS)
Bahrami, Payam
The future of space exploration science and technology is expected to move toward long duration missions. During this long duration missions the most important factor to success will be the habitation system, the place that crew will live and work. The broad range of future space exploration, new advances in technology and increasing demand for space travel and space tourism will create great opportunities for architects to use their special abilities and skills in the realm of space. The lunar habitat is defined as a multidisciplinary task and cannot be considered an independent project from the main module. Therefore, habitability will become the most important aspect of future human exploration. A successful design strategy should integrate architecture, structure and other disciplines and should bring in elements such as psychological and physiological factors, human interfaces, and privacy. The current research provides "Habitat Architectural Design System (HADS)" in order to evaluate lunar habitat concepts based on habitability, functional optimization, and human factors. HADS helps to promote parametric studied and evaluation of habitat concepts. It will provide a guideline dependent upon mission objectives to standardize architectural needs within the engineering applications and scientific demands. The significance of this research is the process of developing lunar habitat concepts using an architectural system to evaluate the quality of each concept via habitability aspects. This process can be employed during the early stage of design development and is flexible enough to be adjusted by different parameters according to the objectives of lunar mission, limitations, and cost. It also emphasizes the importance of architecture involvement in space projects, especially habitats.
NASA Technical Reports Server (NTRS)
Hyatt, Mark J.; Straka, Sharon A.
2010-01-01
A return to the Moon to extend human presence, pursue scientific activities, use the Moon to prepare for future human missions to Mars, and expand Earth?s economic sphere, will require investment in developing new technologies and capabilities to achieve affordable and sustainable human exploration. From the operational experience gained and lessons learned during the Apollo missions, conducting long-term operations in the lunar environment will be a particular challenge, given the difficulties presented by the unique physical properties and other characteristics of lunar regolith, including dust. The Apollo missions and other lunar explorations have identified significant lunar dust-related problems that will challenge future mission success. Comprised of regolith particles ranging in size from tens of nanometers to microns, lunar dust is a manifestation of the complex interaction of the lunar soil with multiple mechanical, electrical, and gravitational effects. The environmental and anthropogenic factors effecting the perturbation, transport, and deposition of lunar dust must be studied in order to mitigate it?s potentially harmful effects on exploration systems and human explorers. The Dust Management Project (DMP) is tasked with the evaluation of lunar dust effects, assessment of the resulting risks, and development of mitigation and management strategies and technologies related to Exploration Systems architectures. To this end, the DMP supports the overall goal of the Exploration Technology Development Program (ETDP) of addressing the relevant high priority technology needs of multiple elements within the Constellation Program (CxP) and sister ETDP projects. Project scope, plans, and accomplishments will be presented.
NASA Technical Reports Server (NTRS)
Rabadi, Ghaith
2005-01-01
A significant portion of lifecycle costs for launch vehicles are generated during the operations phase. Research indicates that operations costs can account for a large percentage of the total life-cycle costs of reusable space transportation systems. These costs are largely determined by decisions made early during conceptual design. Therefore, operational considerations are an important part of vehicle design and concept analysis process that needs to be modeled and studied early in the design phase. However, this is a difficult and challenging task due to uncertainties of operations definitions, the dynamic and combinatorial nature of the processes, and lack of analytical models and the scarcity of historical data during the conceptual design phase. Ultimately, NASA would like to know the best mix of launch vehicle concepts that would meet the missions launch dates at the minimum cost. To answer this question, we first need to develop a model to estimate the total cost, including the operational cost, to accomplish this set of missions. In this project, we have developed and implemented a discrete-event simulation model using ARENA (a simulation modeling environment) to determine this cost assessment. Discrete-event simulation is widely used in modeling complex systems, including transportation systems, due to its flexibility, and ability to capture the dynamics of the system. The simulation model accepts manifest inputs including the set of missions that need to be accomplished over a period of time, the clients (e.g., NASA or DoD) who wish to transport the payload to space, the payload weights, and their destinations (e.g., International Space Station, LEO, or GEO). A user of the simulation model can define an architecture of reusable or expendable launch vehicles to achieve these missions. Launch vehicles may belong to different families where each family may have it own set of resources, processing times, and cost factors. The goal is to capture the required resource levels of the major launch elements and their required facilities. The model s output can show whether or not a certain architecture of vehicles can meet the launch dates, and if not, how much the delay cost would be. It will also produce aggregate figures of missions cost based on element procurement cost, processing cost, cargo integration cost, delay cost, and mission support cost. One of the most useful features of this model is that it is stochastic where it accepts statistical distributions to represent the processing times mimicking the stochastic nature of real systems.
NASA Technical Reports Server (NTRS)
Taylor, L. C.; Batson, C. D.; Buxton, R. E.; Feiveson, A. H.; Kofman, I. S.; Laurie, S.; Lee, S. M. C.; Miller, C. A.; Mulavara, A. P.; Peters, B. T.;
2015-01-01
The goals of the Functional Task Test (FTT) study were to determine the effects of spaceflight on functional tests that are representative of critical exploration mission tasks and to identify the physiological factors that contribute to decrements in performance.
NASA Technical Reports Server (NTRS)
1976-01-01
The following areas related to the final definition and preliminary design study of the initial atmospheric cloud physics laboratory (ACPL) were covered: (1) proposal organization, personnel, schedule, and project management, (2) proposed configurations, (3) study objectives, (4) ACPL experiment program listing and description, (5) mission/flight flexibility and modularity/commonality, (6) study plan, and (7) description of following tasks: requirement analysis and definition task flow, systems analysis and trade studies, subsystem analysis and trade studies, specifications and interface control documents, preliminary design task flow, work breakdown structure, programmatic analysis and planning, and project costs. Finally, an overview of the scientific requirements was presented.
CNES-NASA Studies of the Mars Sample Return Orbiter Aerocapture Phase
NASA Technical Reports Server (NTRS)
Fraysse, H.; Powell, R.; Rousseau, S.; Striepe, S.
2000-01-01
A Mars Sample Return (MSR) mission has been proposed as a joint CNES (Centre National d'Etudes Spatiales) and NASA effort in the ongoing Mars Exploration Program. The MSR mission is designed to return the first samples of Martian soil to Earth. The primary elements of the mission are a lander, rover, ascent vehicle, orbiter, and an Earth entry vehicle. The Orbiter has been allocated only 2700 kg on the launch phase to perform its part of the mission. This mass restriction has led to the decision to use an aerocapture maneuver at Mars for the orbiter. Aerocapture replaces the initial propulsive capture maneuver with a single atmospheric pass. This atmospheric pass will result in the proper apoapsis, but a periapsis raise maneuver is required at the first apoapsis. The use of aerocapture reduces the total mass requirement by approx. 45% for the same payload. This mission will be the first to use the aerocapture technique. Because the spacecraft is flying through the atmosphere, guidance algorithms must be developed that will autonomously provide the proper commands to reach the desired orbit while not violating any of the design parameters (e.g. maximum deceleration, maximum heating rate, etc.). The guidance algorithm must be robust enough to account for uncertainties in delivery states, atmospheric conditions, mass properties, control system performance, and aerodynamics. To study this very critical phase of the mission, a joint CNES-NASA technical working group has been formed. This group is composed of atmospheric trajectory specialists from CNES, NASA Langley Research Center and NASA Johnson Space Center. This working group is tasked with developing and testing guidance algorithms, as well as cross-validating CNES and NASA flight simulators for the Mars atmospheric entry phase of this mission. The final result will be a recommendation to CNES on the algorithm to use, and an evaluation of the flight risks associated with the algorithm. This paper will describe the aerocapture phase of the MSR mission, the main principles of the guidance algorithms that are under development, the atmospheric entry simulators developed for the evaluations, the process for the evaluations, and preliminary results from the evaluations.
Evaluation of scheduling techniques for payload activity planning
NASA Technical Reports Server (NTRS)
Bullington, Stanley F.
1991-01-01
Two tasks related to payload activity planning and scheduling were performed. The first task involved making a comparison of space mission activity scheduling problems with production scheduling problems. The second task consisted of a statistical analysis of the output of runs of the Experiment Scheduling Program (ESP). Details of the work which was performed on these two tasks are presented.
The Nuclear Energy Knowledge and Validation Center – Summary of Activities Conducted in FY15
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gougar, Hans David; Hong, Bonnie Colleen
2016-05-01
The Nuclear Energy Knowledge and Validation Center (NEKVaC) is a new initiative by the Department of Energy and the Idaho National Laboratory to coordinate and focus the resources and expertise that exist with the DOE Complex toward solving issues in modern nuclear code validation. In time, code owners, users, and developers will view the Center as a partner and essential resource for acquiring the best practices and latest techniques for validating codes, for guidance in planning and executing experiments, for facilitating access to, and maximizing the usefulness of, existing data, and for preserving knowledge for continual use by nuclear professionalsmore » and organizations for their own validation needs. The scope of the center covers many inter-related activities which will need to be cultivated carefully in the near-term and managed properly once the Center is fully functional. Three areas comprise the principal mission: 1) identification and prioritization of projects that extend the field of validation science and its application to modern codes, 2) adapt or develop best practices and guidelines for high fidelity multiphysics/multiscale analysis code development and associated experiment design, and 3) define protocols for data acquisition and knowledge preservation and provide a portal for access to databases currently scattered among numerous organizations. These mission areas, while each having a unique focus, are inter-dependent and complementary. Likewise, all activities supported by the NEKVaC, both near-term and long-term), must possess elements supporting all three. This cross-cutting nature is essential to ensuring that activities and supporting personnel do not become ‘stove-piped’, i.e. focused so much on a specific function that the activity itself becomes the objective rather than the achieving the larger vision. Achieving the broader vision will require a healthy and accountable level of activity in each of the areas. This will take time and significant DOE support. Growing too fast (budget-wise) will not allow ideas to mature, lessons to be learned, and taxpayer money to be spent responsibly. The process should be initiated with a small set of tasks, executed over a short but reasonable term, that will exercise most if not all aspects of the Center’s potential operation. The initial activities described in this report have a high potential for near-term success in demonstrating Center objectives but also to work out some of the issues in task execution, communication between functional elements, and the ability to raise awareness of the Center and cement stakeholder buy-in. This report begins with a description of the Mission areas; specifically the role played by each and the types of activities for which they are responsible. It then lists and describes the proposed near-term tasks upon which future efforts can build.« less
Space station needs, attributes and architectural options: Architectural options and selection
NASA Technical Reports Server (NTRS)
Nelson, W. G.
1983-01-01
The approach, study results, and recommendations for defining and selecting space station architectural options are described. Space station system architecture is defined as the arrangement of elements (manned and unmanned on-orbit facilities, shuttle vehicles, orbital transfer vehicles, etc.), the number of these elements, their location (orbital inclination and altitude, and their functional performance capability, power, volume, crew, etc.). Architectural options are evaluated based on the degree of mission capture versus cost and required funding rate. Mission capture refers to the number of missions accommodated by the particular architecture.
NASA Technical Reports Server (NTRS)
Portree, David S. F.
1995-01-01
The heritage of the major Mir complex hardware elements is described. These elements include Soyuz-TM and Progress-M; the Kvant, Kvant 2, and Kristall modules; and the Mir base block. Configuration changes and major mission events of the Salyut 6, Salyut 7, and Mir multiport space stations are described in detail for the period 1977-1994. A comparative chronology of U.S. and Soviet/Russian manned spaceflight is also given for that period. The 68 illustrations include comparative scale drawings of U.S. and Russian spacecraft as well as sequential drawings depicting missions and mission events.
Prioritizing Medical Resources for Exploration Missions
NASA Technical Reports Server (NTRS)
Shah, R. V.; Kerstman, E. L.
2015-01-01
Long duration missions beyond low Earth orbit introduce new constraints to the medical system. Factors such as the inability to evacuate to Earth in a timely manner, communication delay, limitations in available medical equipment, and the clinical background of the crew will all have an impact on the assessment and treatment of medical conditions. The Exploration Medical Capability (ExMC) Element of NASAs Human Research Program seeks to improve the way the element derives its mitigation strategies for the risk of "Unacceptable Health and Mission Outcomes Due to Limitation of In-flight Medical Capabilities."
Structural Design and Analysis of Un-pressurized Cargo Delivery Vehicle
NASA Technical Reports Server (NTRS)
Martinovic, Zoran N.
2007-01-01
As part of the Exploration Systems Architecture Study, NASA has defined a family of vehicles to support lunar exploration and International Space Station (ISS) re-supply missions after the Shuttle s retirement. The Un-pressurized Cargo Delivery Vehicle (UCDV) has been envisioned to be an expendable logistics delivery vehicle that would be used to deliver external cargo to the ISS. It would be launched on the Crew Launch Vehicle and would replace the Crew Exploration Vehicle. The estimated cargo would be the weight of external logistics to the ISS. Determining the minimum weight design of the UCDV during conceptual design is the major issue addressed in this paper. This task was accomplished using a procedure for rapid weight estimation that was based on Finite Element Analysis and sizing of the vehicle by the use of commercially available codes. Three design concepts were analyzed and their respective weights were compared. The analytical structural weight was increased by a factor to account for structural elements that were not modeled. Significant reduction in weight of a composite design over metallic was achieved for similar panel concepts.
Scenario Development Process at the Vertical Motion Simulator
NASA Technical Reports Server (NTRS)
Reardon, Scott E.; Beard, Steven D.; Lewis, Emily
2017-01-01
There has been a significant effort within the simulation community to standardize many aspects of flight simulation. More recently, an effort has begun to develop a formal scenario definition language for aviation. A working group within the AIAA Modeling and Simulation Technical Committee has been created to develop a standard aviation scenario definition language, though much of the initial effort has been tailored to training simulators. Research and development (R&D) simulators, like the Vertical Motion Simulator (VMS), and training simulators have different missions and thus have different scenario requirements. The purpose of this paper is to highlight some of the unique tasks and scenario elements used at the VMS so they may be captured by scenario standardization efforts. The VMS most often performs handling qualities studies and transfer of training studies. Three representative handling qualities simulation studies and two transfer of training simulation studies are described in this paper. Unique scenario elements discussed in this paper included special out-the-window (OTW) targets and environmental conditions, motion system parameters, active inceptor parameters, and configurable vehicle math model parameters.
Developing a Mission Statement for a Faculty Senate
ERIC Educational Resources Information Center
D'Souza, Derrick E.; Clower, Terry L.; Nimon, Kim F.; Oldmixon, Elizabeth A.; van Tassell, Frances S.
2011-01-01
The faculty senate is the agent of the faculty, and its mission statement stakes the faculty's claim in the institutional decision-making process. It is in this context that the chair of the faculty senate at a large southwestern state university tasked an ad hoc committee (comprised of the authors) with writing its inaugural mission statement.…
Space station needs, attributes and architectural options. Volume 3, task 1: Mission requirements
NASA Technical Reports Server (NTRS)
1983-01-01
The mission requirements of the space station program are investigated. Mission parameters are divided into user support from private industry, scientific experimentation, U.S. national security, and space operations away from the space station. These categories define the design and use of the space station. An analysis of cost estimates is included.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schey, Stephen; Francfort, Jim
2014-08-01
Task 2 involved identifying daily operational characteristics of select vehicles and initiating data logging of vehicle movements in order to characterize the vehicle’s mission. Individual observations of these selected vehicles provide the basis for recommendations related to PEV adoption and whether a battery electric vehicle (BEV) or plug-in hybrid electric vehicle (PHEV) (collectively PEVs) can fulfill the mission requirements and provides observations related to placement of PEV charging infrastructure. This report provides the results of the data analysis and observations related to the replacement of current vehicles with PEVs. This fulfills part of the Task 3 requirements. Task 3 alsomore » includes an assessment of charging infrastructure required to support this replacement. That is the subject of a separate report.« less
Evaluations of Three Methods for Remote Training
NASA Technical Reports Server (NTRS)
Woolford, B.; Chmielewski, C.; Pandya, A.; Adolf, J.; Whitmore, M.; Berman, A.; Maida, J.
1999-01-01
Long duration space missions require a change in training methods and technologies. For Shuttle missions, crew members could train for all the planned procedures, and carry documentation of planned procedures for a variety of contingencies. As International Space Station (ISS) missions of three months or longer are carried out, many more tasks will need to be performed for which little or no training was received prior to launch. Eventually, exploration missions will last several years, and communications with Earth will have long time delays or be impossible at times. This series of three studies was performed to identify the advantages and disadvantages of three types of training for self-instruction: video-conferencing; multimedia; and virtual reality. These studies each compared two types of training methods, on two different types of tasks. In two of the studies, the subject's were in an isolated, confined environment analogous to space flight; the third study was performed in a laboratory.
Space Shuttle Mission STS-61: Hubble Space Telescope servicing mission-01
NASA Technical Reports Server (NTRS)
1993-01-01
This press kit for the December 1993 flight of Endeavour on Space Shuttle Mission STS-61 includes a general release, cargo bay payloads and activities, in-cabin payloads, and STS-61 crew biographies. This flight will see the first in a series of planned visits to the orbiting Hubble Space Telescope (HST). The first HST servicing mission has three primary objectives: restoring the planned scientific capabilities, restoring reliability of HST systems and validating the HST on-orbit servicing concept. These objectives will be accomplished in a variety of tasks performed by the astronauts in Endeavour's cargo bay. The primary servicing task list is topped by the replacement of the spacecraft's solar arrays. The spherical aberration of the primary mirror will be compensated by the installation of the Wide Field/Planetary Camera-II and the Corrective Optics Space Telescope Axial Replacement. New gyroscopes will also be installed along with fuse plugs and electronic units.
2003-10-30
KENNEDY SPACE CENTER, FLA. - In the Orbiter Processing Facility, STS-114 crew members look at the tiles underneath Atlantis. From left (in flight suits) are Mission Specialists Stephen Robinson and Andy Thomas, Commander Eileen Collins and, at right, Mission Specialist Soichi Noguchi, who is with the Japan Aerospace Exploration Agency, JAXA. Accompanying them is Glenda Laws, EVA Task Leader, with United Space Alliance at Johnson Space Center. The STS-114 crew is at KSC to take part in crew equipment and orbiter familiarization.
2003-10-30
KENNEDY SPACE CENTER, FLA. - In the Orbiter Processing Facility, STS-114 crew members look at the tiles underneath Atlantis. From center, left to right (in uniform), are Pilot James Kelly, Mission Specialist Soichi Noguchi, Mission Specialists Wendy Lawrence and Stephen Robinson. Accompanying them at left Glenda Laws, EVA Task Leader, with United Space Alliance at Johnson Space Center. Noguchi is with the Japan Aerospace Exploration Agency, JAXA. The STS-114 crew is at KSC to take part in crew equipment and orbiter familiarization.
Mars 2020 Science Rover: Science Goals and Mission Concept
NASA Astrophysics Data System (ADS)
Mustard, John F.; Beaty, D.; Bass, D.
2013-10-01
The Mars 2020 Science Definition Team (SDT), chartered in January 2013 by NASA, formulated a spacecraft mission concept for a science-focused, highly mobile rover to explore and investigate in detail a site on Mars that likely was once habitable. The mission, based on the Mars Science Laboratory landing and rover systems, would address, within a cost- and time-constrained framework, four objectives: (A) Explore an astrobiologically relevant ancient environment on Mars to decipher its geological processes and history, including the assessment of past habitability; (B) Assess the biosignature preservation potential within the selected geological environment and search for potential biosignatures; (C) Demonstrate significant technical progress towards the future return of scientifically selected, well-documented samples to Earth; and (D) provide an opportunity for contributed instruments from Human Exploration or Space Technology Programs. The SDT addressed the four mission objectives and six additional charter-specified tasks independently while specifically looking for synergy among them. Objectives A and B are each ends unto themselves, while Objective A is also the means by which samples are selected for objective B, and together they motivate and inform Objective C. The SDT also found that Objective D goals are well aligned with A through C. Critically, Objectives A, B, and C as an ensemble brought the SDT to the conclusion that exploration oriented toward both astrobiology and the preparation of a returnable cache of scientifically selected, well documented surface samples is the only acceptable mission concept. Importantly the SDT concluded that the measurements needed to attain these objectives were essentially identical, consisting of six types of field measurements: 1) context imaging 2) context mineralogy, 3) fine-scale imaging, 4) fine-scale mineralogy, 5) fine-scale elemental chemistry, and 6) organic matter detection. The mission concept fully addresses the requirements specified by NASA in the SDT charter while also ensuring alignment with the recommendations of the National Academy of Sciences Decadal Survey for Planetary Exploration (Visions and Voyages, 2011).
Autonomous localisation of rovers for future planetary exploration
NASA Astrophysics Data System (ADS)
Bajpai, Abhinav
Future Mars exploration missions will have increasingly ambitious goals compared to current rover and lander missions. There will be a need for extremely long distance traverses over shorter periods of time. This will allow more varied and complex scientific tasks to be performed and increase the overall value of the missions. The missions may also include a sample return component, where items collected on the surface will be returned to a cache in order to be returned to Earth, for further study. In order to make these missions feasible, future rover platforms will require increased levels of autonomy, allowing them to operate without heavy reliance on a terrestrial ground station. Being able to autonomously localise the rover is an important element in increasing the rover's capability to independently explore. This thesis develops a Planetary Monocular Simultaneous Localisation And Mapping (PM-SLAM) system aimed specifically at a planetary exploration context. The system uses a novel modular feature detection and tracking algorithm called hybrid-saliency in order to achieve robust tracking, while maintaining low computational complexity in the SLAM filter. The hybrid saliency technique uses a combination of cognitive inspired saliency features with point-based feature descriptors as input to the SLAM filter. The system was tested on simulated datasets generated using the Planetary, Asteroid and Natural scene Generation Utility (PANGU) as well as two real world datasets which closely approximated images from a planetary environment. The system was shown to provide a higher accuracy of localisation estimate than a state-of-the-art VO system tested on the same data set. In order to be able to localise the rover absolutely, further techniques are investigated which attempt to determine the rover's position in orbital maps. Orbiter Mask Matching uses point-based features detected by the rover to associate descriptors with large features extracted from orbital imagery and stored in the rover memory prior the mission launch. A proof of concept is evaluated using a PANGU simulated boulder field.
Federal Register 2010, 2011, 2012, 2013, 2014
2013-05-06
... proposals submitted by Federal government agencies for the NCPC review required by law. The Foreign Missions... revised Foreign Missions and International Organizations Element will be available online at http://www...
GaiaGrid : Its Implications and Implementation
NASA Astrophysics Data System (ADS)
Ansari, S. G.; Lammers, U.; Ter Linden, M.
2005-12-01
Gaia is an ESA space mission to determine positions of 1 billion objects in the Galaxy at micro-arcsecond precision. The data analysis and processing requirements of the mission involves about 20 institutes across Europe, each providing specific algorithms for specific tasks, which range from relativistic effects on positional determination, classification, astrometric binary star detection, photometric analysis, spectroscopic analysis etc. In an initial phase, a study has been ongoing over the past three years to determine the complexity of Gaia's data processing. Two processing categories have materialised: core and shell. While core deals with routine data processing, shell tasks are algorithms to carry out data analysis, which involves the Gaia Community at large. For this latter category, we are currently experimenting with use of Grid paradigms to allow access to the core data and to augment processing power to simulate and analyse the data in preparation for the actual mission. We present preliminary results and discuss the sociological impact of distributing the tasks amongst the community.
The Challenges of Adopting a Culture of Mission Command in the US Army
2015-05-23
NUMBER 6. AUTHOR(S) LTC(P) James W. Wright 5d. PROJECT NUMBER 5e. TASK NUMBER 5f. WORK UNIT NUMBER 7. PERFORMING ORGANIZATION NAME(S) AND...the development and implementation of high- end information technology creates a paradox for mission command. 15. SUBJECT TERMS Mission command...centralized control and less risk. Likewise, the development and implementation of high- end information technology creates a paradox for mission
Component Verification and Certification in NASA Missions
NASA Technical Reports Server (NTRS)
Giannakopoulou, Dimitra; Penix, John; Norvig, Peter (Technical Monitor)
2001-01-01
Software development for NASA missions is a particularly challenging task. Missions are extremely ambitious scientifically, have very strict time frames, and must be accomplished with a maximum degree of reliability. Verification technologies must therefore be pushed far beyond their current capabilities. Moreover, reuse and adaptation of software architectures and components must be incorporated in software development within and across missions. This paper discusses NASA applications that we are currently investigating from these perspectives.
ERIC Educational Resources Information Center
Cady, Susan
2005-01-01
One of the first tasks students learn in chemistry is to pronounce and spell the names of elements and learn their corresponding chemical symbols. Repetitive oral recitation is commonly used to learn this information, but games and puzzles can make this task creative, variable, and fun. Elemental Food for Thought is a puzzlelike activity that…
Mission Options Scoping Tool for Mars Orbiters: Mass Cost Calculator (MC2)
NASA Technical Reports Server (NTRS)
Sturm, Eric J., II; Deutsch, Marie-Jose; Harmon, Corey; Nakagawa, Roy; Kinsey, Robert; Lopez, Nino; Kudrle, Paul; Evans, Alex
2007-01-01
Prior to developing the details of an advanced mission study, the mission architecture trade space is typically explored to assess the scope of feasible options. This paper describes the main features of an Excel-based tool, called the Mass-Cost-Calculator (MC2 ), which is used to perform rapid, high-level mass and cost options analyses of Mars orbiter missions. MC2 consists of a combination of databases, analytical solutions, and parametric relationships to enable quick evaluation of new mission concepts and comparison of multiple architecture options. The tool's outputs provide program management and planning teams with answers to "what if" queries, as well as an understanding of the driving mission elements, during the pre-project planning phase. These outputs have been validated against the outputs generated by the Advanced Projects Design Team (Team X) at NASA's Jet Propulsion Laboratory (JPL). The architecture of the tool allows for future expansion to other orbiters beyond Mars, and to non-orbiter missions, such as those involving fly-by spacecraft, probes, landers, rovers, or other mission elements.
Human Research Program Requirements Document (Revision C)
NASA Technical Reports Server (NTRS)
Vargas, Paul R.
2009-01-01
The purpose of this document is to define, document, and allocate the Human Research Program (HRP) requirements to the HRP Program Elements. It establishes the flow-down of requirements from Exploration Systems Mission Directorate (ESMD) and Office of the Chief Health and Medical Officer (OCHMO) to the various Program Elements of the HRP to ensure that human research and technology countermeasure investments are made to insure the delivery of countermeasures and technologies that satisfy ESMD's and OCHMO's exploration mission requirements. Requirements driving the HRP work and deliverables are derived from the exploration architecture, as well as Agency standards regarding the maintenance of human health and performance. Agency human health and performance standards will define acceptable risk for each type and duration of exploration mission. It is critical to have the best available scientific and clinical evidence in setting and validating these standards. In addition, it is imperative that the best available evidence on preventing and mitigating human health and performance risks is incorporated into exploration mission and vehicle designs. These elements form the basis of the HRP research and technology development requirements and highlight the importance of HRP investments in enabling NASA's exploration missions. This PRD defines the requirements of the HRP which is comprised of the following major Program Elements: Behavioral Health and Performance (BHP), Exploration Medical Capability (ExMC), Human Health Countermeasures (HHC), ISS Medical Project (ISSMP), Space Human Factors and Habitability (SHFH), and Space Radiation (SR).
NASA Astrophysics Data System (ADS)
Britten, Richard A.; Miller, Vania D.; Hadley, Melissa M.; Jewell, Jessica S.; Macadat, Evangeline
2016-08-01
NASA is currently conducting ground based experiments to determine whether the radiation environment that astronauts will encounter on deep space missions will have an impact on their long-term health and their ability to complete the various tasks during the mission. Emerging data suggest that exposure of rodents to mission-relevant HZE radiation doses does result in the impairment of various neurocognitive processes. An essential part of mission planning is a probabilistic risk assessment process that takes into account the likely incidence and severity of a problem. To date few studies have reported the impact of space radiation in a format that is amenable to PRA, and those that have only reported data for a single cognitive process. This study has established the ability of individual male Wistar rats to conduct a hippocampus-dependent (spatial memory) task and a cortex-dependent (attentional set shifting task) 90 days after exposure to 20 cGy 1 GeV/n 56Fe particles. Radiation-induced impairment of performance in one cognitive domain was not consistently associated with impaired performance in the other domain. Thus sole reliance upon a single measure of cognitive performance may substantially under-estimate the risk of cognitive impairment, and ultimately it may be necessary to establish the likelihood that mission-relevant HZE doses will impair performance in the three or four cognitive domains that NASA considers to be most critical for mission success, and build a PRA using the composite data from such studies.
A Review of Antenna Technologies for Future NASA Exploration Missions
NASA Technical Reports Server (NTRS)
Miranda, Felix A.; Nessel, James A.; Romanofsky, Robert R.; Acostia, Roberto J.
2006-01-01
NASA s plans for the manned exploration of the Moon and Mars will rely heavily on the development of a reliable communications infrastructure from planetary surface-to-surface, surface-to-orbit and back to Earth. Future missions will thus focus not only on gathering scientific data, but also on the formation of the communications network. In either case, unique requirements become imposed on the antenna technologies necessary to accomplish these tasks. For example, proximity (i.e., short distance) surface activity applications such as robotic rovers, human extravehicular activities (EVA), and probes will require small size, lightweight, low power, multi-functionality, and robustness for the antenna elements being considered. In contrast, trunk-line communications to a centralized habitat on the surface and back to Earth (e.g., relays, satellites, and landers) will necessitate high gain, low mass antennas such as novel inflatable/deployable antennas. Likewise, the plethora of low to high data rate services desired to guarantee the safety and quality of mission data for robotic and human exploration will place additional demands on the technology. Over the last few years, NASA Glenn Research Center has been heavily involved in the development and evaluation of candidate antenna technologies with the potential for meeting the aforementioned requirements. These technologies range from electrically small antennas to phased arrays and large inflatable antenna structures. A summary of these efforts will be discussed in this paper. NASA planned activities under the Exploration Vision as they pertain to the communications architecture for the Lunar and Martian scenarios will be discussed, with emphasis on the desirable qualities of potential antenna element designs for envisioned communications assets. Identified frequency allocations for the Lunar and Martian surfaces, as well as asset-specific data services will be described to develop a foundation for viable antenna technologies which might address these requirements and help guide future technology development decisions
A Review of Antenna Technologies for Future NASA Exploration Missions
NASA Technical Reports Server (NTRS)
Miranda, Felix A.; Nessel, James A.; Romanofsky, Robert R.; Acosta, J.
2007-01-01
NASA's plans for the manned exploration of the Moon and Mars will rely heavily on the development of a reliable communications infrastructure from planetary surface-to-surface, surface-to-orbit and back to Earth. Future missions will thus focus not only on gathering scientific data, but also on the formation of the communications network. In either case, unique requirements become imposed on the antenna technologies necessary to accomplish these tasks. For example, proximity (i.e., short distance) surface activity applications such as robotic rovers, human extravehicular activities (EVA), and probes will require small size, lightweight, low power, multi-functionality, and robustness for the antenna elements being considered. In contrast, trunk-line communications to a centralized habitat on the surface and back to Earth (e.g., relays, satellites, and landers) will necessitate high gain, low mass antennas such as novel inflatable/deployable antennas. Likewise, the plethora of low to high data rate services desired to guarantee the safety and quality of mission data for robotic and human exploration will place additional demands on the technology. Over the last few years, NASA Glenn Research Center has been heavily involved in the development and evaluation of candidate antenna technologies with the potential for meeting the aforementioned requirements. These technologies range from electrically small antennas to phased arrays and large inflatable antenna structures. A summary of these efforts will be discussed in this paper. NASA planned activities under the Exploration Vision as they pertain to the communications architecture for the Lunar and Martian scenarios will be discussed, with emphasis on the desirable qualities of potential antenna element designs for envisioned communications assets. Identified frequency allocations for the Lunar and Martian surfaces, as well as asset-specific data services will be described to develop a foundation for viable antenna technologies which might address these requirements and help guide future technology development decisions.
NASA Astrophysics Data System (ADS)
Panfil, Wawrzyniec; Moczulski, Wojciech
2017-10-01
In the paper presented is a control system of a mobile robots group intended for carrying out inspection missions. The main research problem was to define such a control system in order to facilitate a cooperation of the robots resulting in realization of the committed inspection tasks. Many of the well-known control systems use auctions for tasks allocation, where a subject of an auction is a task to be allocated. It seems that in the case of missions characterized by much larger number of tasks than number of robots it will be better if robots (instead of tasks) are subjects of auctions. The second identified problem concerns the one-sided robot-to-task fitness evaluation. Simultaneous assessment of the robot-to-task fitness and task attractiveness for robot should affect positively for the overall effectiveness of the multi-robot system performance. The elaborated system allows to assign tasks to robots using various methods for evaluation of fitness between robots and tasks, and using some tasks allocation methods. There is proposed the method for multi-criteria analysis, which is composed of two assessments, i.e. robot's concurrency position for task among other robots and task's attractiveness for robot among other tasks. Furthermore, there are proposed methods for tasks allocation applying the mentioned multi-criteria analysis method. The verification of both the elaborated system and the proposed tasks' allocation methods was carried out with the help of simulated experiments. The object under test was a group of inspection mobile robots being a virtual counterpart of the real mobile-robot group.
Mission operations and command assurance: Instilling quality into flight operations
NASA Technical Reports Server (NTRS)
Welz, Linda L.; Witkowski, Mona M.; Bruno, Kristin J.; Potts, Sherrill S.
1993-01-01
Mission Operations and Command Assurance (MO&CA) is a Total Quality Management (TQM) task on JPL projects to instill quality in flight mission operations. From a system engineering view, MO&CA facilitates communication and problem-solving among flight teams and provides continuous process improvement to reduce the probability of radiating incorrect commands to a spacecraft. The MO&CA task has evolved from participating as a member of the spacecraft team to an independent team reporting directly to flight project management and providing system level assurance. JPL flight projects have benefited significantly from MO&CA's effort to contain risk and prevent rather than rework errors. MO&CA's ability to provide direct transfer of knowledge allows new projects to benefit from previous and ongoing flight experience.
Practical Application of Model-based Programming and State-based Architecture to Space Missions
NASA Technical Reports Server (NTRS)
Horvath, Gregory A.; Ingham, Michel D.; Chung, Seung; Martin, Oliver; Williams, Brian
2006-01-01
Innovative systems and software engineering solutions are required to meet the increasingly challenging demands of deep-space robotic missions. While recent advances in the development of an integrated systems and software engineering approach have begun to address some of these issues, they are still at the core highly manual and, therefore, error-prone. This paper describes a task aimed at infusing MIT's model-based executive, Titan, into JPL's Mission Data System (MDS), a unified state-based architecture, systems engineering process, and supporting software framework. Results of the task are presented, including a discussion of the benefits and challenges associated with integrating mature model-based programming techniques and technologies into a rigorously-defined domain specific architecture.
GPHS-RTG's in support of the Cassini mission
NASA Astrophysics Data System (ADS)
1993-10-01
The following tasks were reported: Spacecraft integration and liaison; engineering support; safety; qualified unicouple fabrication; ETG fabrication/assembly/test; ground support equipment; RTG shipping and launch support; designs/reviews/mission applications; and project management/quality assurance/contract changes.
NASA Technical Reports Server (NTRS)
Gomez-Rosa, Carlos; Cifuentes, Juan; Wasiak, Francis; Alfonzo, Agustin
2015-01-01
The mission readiness environment is where spacecraft and ground systems converge to form the entire as built flight system for the final phase of operationally-themed testing. For most space missions, this phase starts between nine to twelve months prior to the planned launch. In the mission readiness environment, the goal is to perform sufficient testing to exercise the flight teams and systems through all mission phases in order to demonstrate that all elements are ready to support. As part of the maturation process, a mission rehearsal program is introduced to focus on team processes within the final flight system, in a more realistic operational environment. The overall goal for a mission rehearsal program is to: 1) ensure all flight system elements are able to meet mission objectives as a cohesive team; 2) reduce the risk in space based operations due to deficiencies in people, processes, procedures, or systems; and 3) instill confidence in the teams that will execute these first time flight activities. A good rehearsal program ensures critical events are exercised, discovers team or flight system nuances whose impact were previously unknown, and provides a real-time environment in which to interact with the various teams and systems. For flight team members, the rehearsal program provides experience and training in the event of planned (or unplanned) flight contingencies. To preserve the essence for team based rehearsals, this paper will explore the important elements necessary for a successful rehearsal program, document differences driven by Earth Orbiting (Aqua, Aura, Suomi-National Polar-orbiting Partnership (NPP)) and Deep Space missions (New Horizons, Mars Atmosphere and Volatile EvolutioN (MAVEN)) and discuss common challenges to both mission types. In addition, large scale program considerations and enhancements or additional steps for developing a rehearsal program will also be considered. For NASA missions, the mission rehearsal phase is a key milestone for predicting and ensuring on-orbit success.
NASA Technical Reports Server (NTRS)
Hart, S. G.; Shively, R. J.; Vidulich, M. A.; Miller, R. C.
1986-01-01
The influence of stimulus modality and task difficulty on workload and performance was investigated. The goal was to quantify the cost (in terms of response time and experienced workload) incurred when essentially serial task components shared common elements (e.g., the response to one initiated the other) which could be accomplished in parallel. The experimental tasks were based on the Fittsberg paradigm; the solution to a SternBERG-type memory task determines which of two identical FITTS targets are acquired. Previous research suggested that such functionally integrated dual tasks are performed with substantially less workload and faster response times than would be predicted by suming single-task components when both are presented in the same stimulus modality (visual). The physical integration of task elements was varied (although their functional relationship remained the same) to determine whether dual-task facilitation would persist if task components were presented in different sensory modalities. Again, it was found that the cost of performing the two-stage task was considerably less than the sum of component single-task levels when both were presented visually. Less facilitation was found when task elements were presented in different sensory modalities. These results suggest the importance of distinguishing between concurrent tasks that complete for limited resources from those that beneficially share common resources when selecting the stimulus modalities for information displays.
Nuclear Cryogenic Propulsion Stage Conceptual Design and Mission Analysis
NASA Technical Reports Server (NTRS)
Kos, Larry D.; Russell, Tiffany E.
2014-01-01
The Nuclear Cryogenic Propulsion Stage (NCPS) is an in-space transportation vehicle, comprised of three main elements, designed to support a long-stay human Mars mission architecture beginning in 2035. The stage conceptual design and the mission analysis discussed here support the current nuclear thermal propulsion going on within partnership activity of NASA and the Department of Energy (DOE). The transportation system consists of three elements: 1) the Core Stage, 2) the In-line Tank, and 3) the Drop Tank. The driving mission case is the piloted flight to Mars in 2037 and will be the main point design shown and discussed. The corresponding Space Launch System (SLS) launch vehicle (LV) is also presented due to it being a very critical aspect of the NCPS Human Mars Mission architecture due to the strong relationship between LV lift capability and LV volume capacity.
INTEGRITY - Integrated Human Exploration Mission Simulation Facility
NASA Technical Reports Server (NTRS)
Henninger, Donald L.
2002-01-01
It is proposed to develop a high-fidelity ground facility to carry out long-duration human exploration mission simulations. These would not be merely computer simulations - they would in fact comprise a series of actual missions that just happen to stay on earth. These missions would include all elements of an actual mission, using actual technologies that would be used for the real mission. These missions would also include such elements as extravehicular activities, robotic systems, telepresence and teleoperation, surface drilling technology-all using a simulated planetary landscape. A sequence of missions would be defined that get progressively longer and more robust, perhaps a series of five or six missions over a span of 10 to 15 years ranging in duration from 180 days up to 1000 days. This high-fidelity ground facility would operate hand-in-hand with a host of other terrestrial analog sites such as the Antarctic, Haughton Crater, and the Arizona desert. Of course, all of these analog mission simulations will be conducted here on earth in 1-g, and NASA will still need the Shuttle and ISS to carry out all the microgravity and hypogravity science experiments and technology validations. The proposed missions would have sufficient definition such that definitive requirements could be derived from them to serve as direction for all the program elements of the mission. Additionally, specific milestones would be established for the "launch" date of each mission so that R&D programs would have both good requirements and solid milestones from which to .build their implementation plans. Mission aspects that could not be directly incorporated into the ground facility would be simulated via software. New management techniques would be developed for evaluation in this ground test facility program. These new techniques would have embedded metrics which would allow them to be continuously evaluated and adjusted so that by the time the sequence of missions is completed, the best management techniques will have been developed, implemented, and validated. A trained cadre of managers experienced with a large, complex program would then be available.
Reusablility in ESOC mission control systems developments - the SMART-1 mission case
NASA Astrophysics Data System (ADS)
Pignède, Max; Davies, Kevin
2002-07-01
The European Space Operations Centre (ESOC) have a long experience in spacecraft mission control systems developments and use a large number of existing elements for the build up of control systems for new missions. The integration of such elements in a new system covers not only the direct re-use of infrastructure software but also the re-use of concepts and work methodology. Applying reusability is a major asset in ESOC's strategy, especially for low cost space missions. This paper describes re-use of existing elements in the ESOC production of the SMART-1 mission control system (S1MCS) and explores the following areas: The most significant (and major cost-saving contributors) re-used elements are the Spacecraft Control and Operations System (SCOS-2000) and the Network Control and TM/TC Router System (NCTRS) infrastructure systems. These systems are designed precisely for allowing all general mission parameters to be configured easily without any change in the software (in particular the NCTRS configuration for SMART-1 was time and cost effective). Further, large parts of the ESOC ROSETTA and INTEGRAL software systems (also SCOS-2000 based) were directly re-used, such as the on-board command schedule maintenance and modelling subsystem (OBQ), the time correlator (TCO) and the external file transfer subsystem (FTS). The INTEGRAL spacecraft database maintenance system (both the editors and configuration control mechanism) and its export facilities into the S1MCS runtime system are directly reused. A special kind of re-use concerns the ENVISAT approach to both the telemetry (TM) and telecommanding (TC) context saving in the redundant server system in order to enable smooth support of operations in case of prime server failure. In this case no software or tools can be re-used because the S1MCS is based on a much more modern technology than the ENVISAT mission control system as well as on largely differing workstations architectures but the ENVISAT validated capabilities to support hot-standby system reconfiguration and machines and data resynchronisation following failures for all mission phases make them a good candidate for re-use by newer missions. Common methods and tools for requirements production, test plan production and problem tracking which are used by most of the other ESOC missions development teams in their daily work are also re-used without any changes. Finally conclusions are drawn about reusability in perspective with the latest state of the S1MCS and about benefits to other SCOS-2000 based "client" missions. Lessons learned for ESOC space missions (whether for mission control systems currently under development or up-and-coming space missions) and also related considerations for the wider space community are made, reflecting ESOC skills and expertise in mission operations and control.
Interagency Task Forces: The Right Tools for the Job
2011-01-01
shortcomings. This analysis discusses four organizational reform models and recommends the interagency task force ( IATF ) as the preferred structure...model.64 Still others recommend creating and deploying ad hoc IATFs for crisis operations. These interagency task forces would be task- organized to...forces assigned for planning, exercises, and mission execution.65 A 2005 article in Policy Review recommended developing IATFs as needed for specific
The Heavy Nuclei eXplorer (HNX) Mission
NASA Technical Reports Server (NTRS)
Binns, W. R.; Adams, J. H.; Barbier, L. M.; Craig, N.; Cummings, A. C.; Cummings, J. R.; Doke, T.; Hasebe, N.; Hayashi, T.; Whitaker, Ann F. (Technical Monitor)
2001-01-01
The primary scientific objectives of HNX, which was recently selected by NASA for a Small Explorer (SMEX) Mission Concept Study, are to measure the age of the galactic cosmic rays (GCR) since nucleosynthesis, determine the injection mechanism for the GCR accelerator (Volatility or FIP), and study the mix of nucleosynthetic processes that contribute to the source of GCRs. The experimental goal of HNX is to measure the elemental abundances of all individual stable nuclei from neon through the actinides and possibly beyond. HNX is composed of two instruments: ECCO, which measures elemental abundances of nuclei with Z greater than or equal to 72, and ENTICE. which measures elemental abundances of nuclei with Z between 10 and 82. We describe the mission and the science that can be addressed by HNX.
Applications of artificial intelligence to mission planning
NASA Technical Reports Server (NTRS)
Ford, Donnie R.; Floyd, Stephen A.; Rogers, John S.
1990-01-01
The following subject areas are covered: object-oriented programming task; rule-based programming task; algorithms for resource allocation; connecting a Symbolics to a VAX; FORTRAN from Lisp; trees and forest task; software data structure conversion; software functionality modifications and enhancements; portability of resource allocation to a TI MicroExplorer; frontier of feasibility software system; and conclusions.
Building entity models through observation and learning
NASA Astrophysics Data System (ADS)
Garcia, Richard; Kania, Robert; Fields, MaryAnne; Barnes, Laura
2011-05-01
To support the missions and tasks of mixed robotic/human teams, future robotic systems will need to adapt to the dynamic behavior of both teammates and opponents. One of the basic elements of this adaptation is the ability to exploit both long and short-term temporal data. This adaptation allows robotic systems to predict/anticipate, as well as influence, future behavior for both opponents and teammates and will afford the system the ability to adjust its own behavior in order to optimize its ability to achieve the mission goals. This work is a preliminary step in the effort to develop online entity behavior models through a combination of learning techniques and observations. As knowledge is extracted from the system through sensor and temporal feedback, agents within the multi-agent system attempt to develop and exploit a basic movement model of an opponent. For the purpose of this work, extraction and exploitation is performed through the use of a discretized two-dimensional game. The game consists of a predetermined number of sentries attempting to keep an unknown intruder agent from penetrating their territory. The sentries utilize temporal data coupled with past opponent observations to hypothesize the probable locations of the opponent and thus optimize their guarding locations.
Performance Support Tools for Space Medical Operations
NASA Technical Reports Server (NTRS)
Byrne, Vicky; Schmid, Josef; Barshi, Immanuel
2010-01-01
Early Constellation space missions are expected to have medical capabilities similar to those currently on board the Space Shuttle and International Space Station (ISS). Flight surgeons on the ground in Mission Control will direct the Crew Medical Officer (CMO) during medical situations. If the crew is unable to communicate with the ground, the CMO will carry out medical procedures without the aid of a flight surgeon. In these situations, use of performance support tools can reduce errors and time to perform emergency medical tasks. The research presented here is part of the Human Factors in Training Directed Research Project of the Space Human Factors Engineering Project under the Space Human Factors and Habitability Element of the Human Research Program. This is a joint project consisting of human factors teams from the Johnson Space Center (JSC) and the Ames Research Center (ARC). Work on medical training has been conducted in collaboration with the Medical Training Group at JSC and with Wyle that provides medical training to crew members, biomedical engineers (BMEs), and flight surgeons under the Bioastronautics contract. Human factors personnel at Johnson Space Center have investigated medical performance support tools for CMOs and flight surgeons.
NASA Technical Reports Server (NTRS)
Wolfe, M. G.
1978-01-01
Contents: (1) general study guidelines and assumptions; (2) launch vehicle performance and cost assumptions; (3) satellite programs 1959 to 1979; (4) initiative mission and design characteristics; (5) satellite listing; (6) spacecraft design model; (7) spacecraft cost model; (8) mission cost model; and (9) nominal and optimistic budget program cost summaries.
Cassini Tour Atlas Automated Generation
NASA Technical Reports Server (NTRS)
Grazier, Kevin R.; Roumeliotis, Chris; Lange, Robert D.
2011-01-01
During the Cassini spacecraft s cruise phase and nominal mission, the Cassini Science Planning Team developed and maintained an online database of geometric and timing information called the Cassini Tour Atlas. The Tour Atlas consisted of several hundreds of megabytes of EVENTS mission planning software outputs, tables, plots, and images used by mission scientists for observation planning. Each time the nominal mission trajectory was altered or tweaked, a new Tour Atlas had to be regenerated manually. In the early phases of Cassini s Equinox Mission planning, an a priori estimate suggested that mission tour designers would develop approximately 30 candidate tours within a short period of time. So that Cassini scientists could properly analyze the science opportunities in each candidate tour quickly and thoroughly so that the optimal series of orbits for science return could be selected, a separate Tour Atlas was required for each trajectory. The task of manually generating the number of trajectory analyses in the allotted time would have been impossible, so the entire task was automated using code written in five different programming languages. This software automates the generation of the Cassini Tour Atlas database. It performs with one UNIX command what previously took a day or two of human labor.
Chemical Evidence for Smectites and Zeolites on Mars: Criteria and Limitations
NASA Technical Reports Server (NTRS)
Clark, B. C.; Ming, D.; Vaniman, D.; Wiens, R.; Gellert, R.; Bridges, J. C.; Morris, D.
2014-01-01
Aqueous alteration on Mars can produce a range of tell-tale secondary minerals [1]. Surface missions typically obtain detailed and highly localized element compositional information, but not always mineralogical information, whereas orbital missions deduce mineralogy from relatively high spatial resolution IR spectral mapping (decameters scale, for CRISM), but obtain element data only over much larger areas of martian terrain (200 km). Surface missions have also discovered several occurrences of major geochemical alteration of igneous precursors, for many of which elemental compositional is the only diagnostic information available. Many types of clays and zeolites have quasi-unique element profiles which may be used to implicate their presence. In some cases, one or more candidate minerals are sufficiently close in their component elements and their stoichiometry that ambiguity must remain, unless other constraints can be brought to bear. Geochemical characteristics of alteration products most likely on Mars can be compared to results from MER and MSL rover missions (e.g. Independence [4] and Esperance samples). These considerations are needed for MER Opportunity rover now that Mini-TES is no longer operational. It also has importance for exploration by the MSL Curiosity rover because inferences and deductions available from ChemCam (CCAM) remote LIBS and/or in situ x-ray fluorescence (APXS) can be used as indicators for triage to select materials to sample for limited-resource instruments, SAM and Chemin.
Han, S; Humphreys, G W; Chen, L
1999-10-01
The role of perceptual grouping and the encoding of closure of local elements in the processing of hierarchical patterns was studied. Experiments 1 and 2 showed a global advantage over the local level for 2 tasks involving the discrimination of orientation and closure, but there was a local advantage for the closure discrimination task relative to the orientation discrimination task. Experiment 3 showed a local precedence effect for the closure discrimination task when local element grouping was weakened by embedding the stimuli from Experiment 1 in a background made up of cross patterns. Experiments 4A and 4B found that dissimilarity of closure between the local elements of hierarchical stimuli and the background figures could facilitate the grouping of closed local elements and enhanced the perception of global structure. Experiment 5 showed that the advantage for detecting the closure of local elements in hierarchical analysis also held under divided- and selective-attention conditions. Results are consistent with the idea that grouping between local elements takes place in parallel and competes with the computation of closure of local elements in determining the selection between global and local levels of hierarchical patterns for response.
Strategies for the return of science data from in situ vehicles at Titan
NASA Astrophysics Data System (ADS)
Spilker, T. R.; Reh, K. R.; Erd, C.; Elliott, J. O.; Mohr, D.; Strange, N. J.
2009-04-01
Collaborative studies of the Titan Saturn System Mission (TSSM) in 2008 by ESA and NASA have included examination of strategies for optimizing the science return from that mission concept's proposed in situ elements. The current baselined mission concept calls for an orbiter provided and launched by NASA that would deliver to Titan and support two ESA-provided in situ elements, a lake lander whose science mission duration would be about nine hours, and a montgolfière (hot-air balloon) that would operate at ~10 km altitude in Titan's lower atmosphere for 6-12 months. This architecture has much in common with the highly successful Cassini-Huygens mission. The short-lived lake lander in particular would have a mission profile very similar to that of the Huygens probe, with all science data communications occurring while the NASA orbiter is relatively near Titan. Practical mission profile options for the montgolfière include extended periods when the NASA orbiter is farther from Titan, reducing data rates. Over long periods of time the montgolfière cannot be considered fixed over one location on Titan's surface, and in fact is expected to circumnavigate Titan in less than six months. Thus the schedule of communications windows between the in situ elements and the orbiter cannot be precisely determined far in advance, varying as the balloon literally "rides the wind". Other issues played critical roles in evaluating the many options available early in the studies. Some options for the timing of delivery of the in situ elements yielded more mass capability available for those elements, but their reduced data return due to orbit geometry outweighs the added mass capability. Another delivery option, delivery from Titan orbit, yields reduced delivery mass capability but was thought (before studies) to offer better data relay capability. Studies revealed that this strategy actually decreases the return from the lake lander as compared to options delivering the in situ elements from hyperbolic flybys. This presentation will describe options examined in the TSSM communications strategy studies. Particular attention is given to that chosen for the baseline strategy, with potential returned data volumes that provide generous margins over anticipated data requirements. Many of the results are not unique to Titan alone, but are applicable to in situ missions at any satellite of a giant planet. These collaborative studies were funded by, and performed under the cognizance of, NASA and ESA.
2008-02-15
S122-E-008727 (15 Feb. 2008) --- Astronaut Rex Walheim, mission specialist, closes one eye while focusing on an extravehicular activity task with the other. Astronaut Stanley Love (out of frame), mission specialist, shared this final spacewalk for the STS-122 Atlantis crew with Walheim.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schey, Steve; Francfort, Jim
2015-07-01
Several U.S. Department of Defense base studies have been conducted to identify potential U.S. Department of Defense transportation systems that are strong candidates for introduction or expansion of plug-in electric vehicles (PEVs). Task 1 consisted of a survey of the non-tactical fleet of vehicles at NASWI to begin the review of vehicle mission assignments and types of vehicles in service. Task 2 selected vehicles for further monitoring and involved identifying daily operational characteristics of these select vehicles. Data logging of vehicle movements was initiated in order to characterize the vehicle’s mission. The Task 3 Vehicle Utilization report provided the resultsmore » of the data analysis and observations related to the replacement of current vehicles with PEVs. This report provides an assessment of charging infrastructure required to support the suggested PEV replacements.« less
TASKILLAN II - Pilot strategies for workload management
NASA Technical Reports Server (NTRS)
Segal, Leon D.; Wickens, Christopher D.
1990-01-01
This study focused on the strategies used by pilots in managing their workload level, and their subsequent task performance. Sixteen licensed pilots flew 42 missions on a helicopter simulation, and were evaluated on their performance of the overall mission, as well as individual tasks. Pilots were divided in four groups, defined by the presence or absence of scheduling control over tasks and the availability of intelligence concerning the type and stage of difficulties imposed during the flight. Results suggest that intelligence supported strategies that yielded significant higher performance levels, while scheduling control seemed to have no impact on performance. Both difficulty type and the stage of difficulty impacted performance significantly, with strongest effects for time stresss and difficulties imposed late in the flight.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schey, Stephen; Francfort, Jim
Task 1includes a survey of the inventory of non-tactical fleet vehicles at Naval Air Station Whidbey Island (NASWI) to characterize the fleet. This information and characterization are used to select vehicles for monitoring that takes place during Task 2. This monitoring involves data logging of vehicle operation in order to identify the vehicle’s mission and travel requirements. Individual observations of these selected vehicles provide the basis for recommendations related to PEV adoption. It also identifies whether a battery electric vehicle or plug-in hybrid electric vehicle (collectively referred to as PEVs) can fulfill the mission requirements and provide observations related tomore » placement of PEV charging infrastructure. This report provides the results of the assessments and observations of the current non-tactical fleet, fulfilling the Task 1 requirements.« less
HH-65A Dolphin digital integrated avionics
NASA Technical Reports Server (NTRS)
Huntoon, R. B.
1984-01-01
Communication, navigation, flight control, and search sensor management are avionics functions which constitute every Search and Rescue (SAR) operation. Routine cockpit duties monopolize crew attention during SAR operations and thus impair crew effectiveness. The United States Coast Guard challenged industry to build an avionics system that automates routine tasks and frees the crew to focus on the mission tasks. The HH-64A SAR avionics systems of communication, navigation, search sensors, and flight control have existed independently. On the SRR helicopter, the flight management system (FMS) was introduced. H coordinates or integrates these functions. The pilot interacts with the FMS rather than the individual subsystems, using simple, straightforward procedures to address distinct mission tasks and the flight management system, in turn, orchestrates integrated system response.
2003-10-30
KENNEDY SPACE CENTER, FLA. - STS-114 Mission Commander Eileen Collins looks over flight equipment in the Orbiter Processing Facility, along with Glenda Laws, EVA Task Leader, with United Space Alliance at Johnson Space Center. The STS-114 crew is at KSC to take part in crew equipment and orbiter familiarization.
Feasibility study of modern airships, phase 1. Volume 3: Historical overview (task 1)
NASA Technical Reports Server (NTRS)
Faurote, G. L.
1975-01-01
The history of lighter-than-air vehicles is reviewed in terms of providing a background for the mission analysis and parametric analysis tasks. Data from past airships and airship operations are presented in the following areas: (1) parameterization of design characteristics; (2) markets, missions, costs, and operating procedures, (3) indices of efficiency for comparison; (4) identification of critical design and operational characteristics; and (5) definition of the 1930 state-of-the-art and the 1974 state-of-the-art from a technical and economic standpoint.
1999-12-20
S103-E-5007 (20 December 1999) --- Astronaut Curtis L. Brown, mission commander, retrieves supplies from a mid deck stowage locker onboard the Space Shuttle Discovery. He and six other astronauts will spend a great deal of time later in the week performing a variety of service tasks on the Hubble Space Telescope (HST). As commander of the mission, Brown will remain inside Discovery while several of the other crew members will perform service tasks on HST. The photo was taken with an electronic still camera (ESC) at 16:12:27 GMT, Dec. 20, 1999.
View of the STS-88 crew in the Node 1/Unity module
1998-12-11
STS088-332-010 (4-15 Dec. 1998) --- Cosmonaut Sergei K. Krikalev (left), mission specialist representing the Russian Space Agency (RSA), and astronaut Robert D. Cabana mission commander, plan their approach to tasks as they huddle at an internal hatch in the Russian built FGB, also called Zarya. All six STS-88 crew members were involved in tasks to ready Zarya and the now-connected U.S. Node 1, also called Unity, for their International Space Station (ISS) roles. Krikalev has been named as a member of the first ISS crew.
NASA Technical Reports Server (NTRS)
Johnson, Kathy A.; Shek, Molly
2003-01-01
Astronauts in a space station are to some extent like patients in an intensive care unit (ICU). Medical support of a mission crew will require acquisition, transmission, distribution, integration, and archiving of significant amounts of data. These data are acquired by disparate systems and will require timely, reliable, and secure distribution to different communities for the execution of various tasks of space missions. The goal of the Comprehensive Medical Information System (CMIS) Project at Johnson Space Center Flight Medical Clinic is to integrate data from all Medical Operations sources, including the reference information sources and the electronic medical records of astronauts. A first step toward the full CMIS implementation is to integrate and organize the reference information sources and the electronic medical record with the Flight Surgeons console. In order to investigate this integration, we need to understand the usability problems of the Flight Surgeon's console in particular and medical information systems in general. One way to achieve this understanding is through the use of user and task analyses whose general purpose is to ensure that only the necessary and sufficient task features that match users capacities will be included in system implementations. The goal of this summer project was to conduct user and task analyses employing cognitive engineering techniques to analyze the task of the Flight Surgeons and Biomedical Engineers (BMEs) while they worked on Console. The techniques employed were user interviews, observations and a questionnaire to collect data for which a hierarchical task analysis and an information resource assessment were performed. They are described in more detail below. Finally, based on our analyses, we make recommendations for improvements to the support structure.
NASA Technical Reports Server (NTRS)
Bloomberg, Jacob J.; Mulavara, Ajitkumar; Peters, Brian T.; Rescheke, Millard F.; Wood, Scott; Lawrence, Emily; Koffman, Igor; Ploutz-Snyder, Lori; Spiering, Barry A.; Feeback, Daniel L.;
2009-01-01
This slide presentation reviews the Functional Task Test (FTT), an interdisciplinary testing regimen that has been developed to evaluate astronaut postflight functional performance and related physiological changes. The objectives of the project are: (1) to develop a set of functional tasks that represent critical mission tasks for the Constellation Program, (2) determine the ability to perform these tasks after space flight, (3) Identify the key physiological factors that contribute to functional decrements and (4) Use this information to develop targeted countermeasures.
2001 Mars Odyssey Project report
NASA Technical Reports Server (NTRS)
Spencer, D. A.; Gibbs, R. G.; Mase, R. A.; Plaut, J. J.; Saunders, R. S.
2002-01-01
The Mars Odyssey orbiter was launched on April 7, 2001, and arrived at Mars on October 24, 2001. The orbiter carries scientific instruments that will determine surface elemental composition, mineralogy and morphology, and measure the Mars radiation environment from orbit. In addition, the orbiter will serve as a data relay for future surface missions. This paper will present an overview of the Odyssey project, including the key elements of the spacecraft design, mission design and navigation, mission operations, and the science approach. The project's risk management process will be described. Initial findings of the science team will be summarized.
Training for long duration space missions
NASA Technical Reports Server (NTRS)
Goldberg, Joseph H.
1987-01-01
The successful completion of an extended duration manned mission to Mars will require renewed research effort in the areas of crew training and skill retention techniques. The current estimate of inflight transit time is about nine months each way, with a six month surface visit, an order of magnitude beyond previous U.S. space missions. Concerns arise when considering the level of skill retention required for highly critical, one time operations such as an emergency procedure or a Mars orbit injection. The factors responsible for the level of complex skill retention are reviewed, optimal ways of refreshing degraded skills are suggested, and a conceptual crew training design for a Mars mission is outlined. Currently proposed crew activities during a Mars mission were reviewed to identify the spectrum of skills which must be retained over a long time period. Skill retention literature was reviewed to identify those factors which must be considered in deciding when and which tasks need retraining. Task, training, and retention interval factors were identified. These factors were then interpreted in light of the current state of spaceflight and adaptive training systems.
Discrete event command and control for networked teams with multiple missions
NASA Astrophysics Data System (ADS)
Lewis, Frank L.; Hudas, Greg R.; Pang, Chee Khiang; Middleton, Matthew B.; McMurrough, Christopher
2009-05-01
During mission execution in military applications, the TRADOC Pamphlet 525-66 Battle Command and Battle Space Awareness capabilities prescribe expectations that networked teams will perform in a reliable manner under changing mission requirements, varying resource availability and reliability, and resource faults. In this paper, a Command and Control (C2) structure is presented that allows for computer-aided execution of the networked team decision-making process, control of force resources, shared resource dispatching, and adaptability to change based on battlefield conditions. A mathematically justified networked computing environment is provided called the Discrete Event Control (DEC) Framework. DEC has the ability to provide the logical connectivity among all team participants including mission planners, field commanders, war-fighters, and robotic platforms. The proposed data management tools are developed and demonstrated on a simulation study and an implementation on a distributed wireless sensor network. The results show that the tasks of multiple missions are correctly sequenced in real-time, and that shared resources are suitably assigned to competing tasks under dynamically changing conditions without conflicts and bottlenecks.
Using SFOC to fly the Magellan Venus mapping mission
NASA Technical Reports Server (NTRS)
Bucher, Allen W.; Leonard, Robert E., Jr.; Short, Owen G.
1993-01-01
Traditionally, spacecraft flight operations at the Jet Propulsion Laboratory (JPL) have been performed by teams of spacecraft experts utilizing ground software designed specifically for the current mission. The Jet Propulsion Laboratory set out to reduce the cost of spacecraft mission operations by designing ground data processing software that could be used by multiple spacecraft missions, either sequentially or concurrently. The Space Flight Operations Center (SFOC) System was developed to provide the ground data system capabilities needed to monitor several spacecraft simultaneously and provide enough flexibility to meet the specific needs of individual projects. The Magellan Spacecraft Team utilizes the SFOC hardware and software designed for engineering telemetry analysis, both real-time and non-real-time. The flexibility of the SFOC System has allowed the spacecraft team to integrate their own tools with SFOC tools to perform the tasks required to operate a spacecraft mission. This paper describes how the Magellan Spacecraft Team is utilizing the SFOC System in conjunction with their own software tools to perform the required tasks of spacecraft event monitoring as well as engineering data analysis and trending.
NASA's Gravitational-Wave Mission Concept Study
NASA Technical Reports Server (NTRS)
Stebbins, Robin
2012-01-01
With the conclusion of the NASA/ESA partnership on the Laser interferometer Space Antenna (LISA) Project, NASA initiated a study to explore mission concepts that will accomplish some or all of the LISA science objectives at lower cost. The Gravitational-Wave Mission Concept Study consists of a public Request for Information (RFI), a Core Team of NASA engineers and scientists, a Community Science Team, a Science Task Force, and an open workshop. The RFI yielded 12 mission concepts, 3 instrument concepts and 2 technologies. The responses ranged from concepts that eliminated the drag-free test mass of LISA to concepts that replace the test mass with an atom interferometer. The Core Team reviewed the noise budgets and sensitivity curves, the payload and spacecraft designs and requirements, orbits and trajectories and technical readiness and risk. The Science Task Force assessed the science performance. Three mission concepts have been studied by Team-X, JPL's concurrent design facility, to refine the conceptual design, evaluate key performance parameters, assess risk and estimate cost and schedule. The status of the Study are reported.
Extensibility of Human Asteroid Mission to Mars and Other Destinations
NASA Technical Reports Server (NTRS)
McDonald, Mark A.; Caram, Jose M.; Lopez, Pedro; Hinkel, Heather D.; Bowie, Jonathan T.; Abell, Paul A.; Drake, Bret G.; Martinez, Roland M.; Chodas, Paul W.; Hack, Kurt;
2014-01-01
This paper will describe the benefits of execution of the Asteroid Redirect Mission as an early mission in deep space, demonstrating solar electric propulsion, deep space robotics, ground and on-board navigation, docking, and EVA. The paper will also discuss how staging in trans-lunar space and the elements associated with this mission are excellent building blocks for subsequent deep space missions to Mars or other destinations.
A scientific assessment of a new technology orbital telescope
NASA Technical Reports Server (NTRS)
1995-01-01
As part of a program designed to test the Alpha chemical laser weapons system in space, the Ballistic Missile Defense Organization (BMDO) developed components of an agile, lightweight, 4-meter telescope, equipped with an advanced active-optics system. BMDO had proposed to make space available in the telescope's focal plane for instrumentation optimized for scientific applications in astrophysics and planetary astronomy for a potential flight mission. Such a flight mission could be undertaken if new or additional sponsorship can be found. Despite this uncertainty, BMDO requested assistance in defining the instrumentation and other design aspects necessary to enhance the scientific value of a pointing and tracking mission. In response to this request, the Space Studies Board established the Task Group on BMDO New Technology Orbital Observatory (TGBNTOO) and charged it to: (1) provide instrumentation, data management, and science-operations advice to BMDO to optimize the scientific value of a 4-meter mission; and (2) support a space studies board assessment of the relative scientific merit of the program. This report deals with the first of these tasks, assisting the Advanced Technology Demonstrator's (ATD's) program scientific potential. Given the potential scientific aspects of the 4-meter telescope, this project is referred to as the New Technology Orbital Telescope (NTOT), or as the ATD/NTOT, to emphasize its dual-use character. The task group's basic conclusion is that the ATD/NTOT mission does have the potential for contributing in a major way to astronomical goals.
Mission Operations with an Autonomous Agent
NASA Technical Reports Server (NTRS)
Pell, Barney; Sawyer, Scott R.; Muscettola, Nicola; Smith, Benjamin; Bernard, Douglas E.
1998-01-01
The Remote Agent (RA) is an Artificial Intelligence (AI) system which automates some of the tasks normally reserved for human mission operators and performs these tasks autonomously on-board the spacecraft. These tasks include activity generation, sequencing, spacecraft analysis, and failure recovery. The RA will be demonstrated as a flight experiment on Deep Space One (DSI), the first deep space mission of the NASA's New Millennium Program (NMP). As we moved from prototyping into actual flight code development and teamed with ground operators, we made several major extensions to the RA architecture to address the broader operational context in which PA would be used. These extensions support ground operators and the RA sharing a long-range mission profile with facilities for asynchronous ground updates; support ground operators monitoring and commanding the spacecraft at multiple levels of detail simultaneously; and enable ground operators to provide additional knowledge to the RA, such as parameter updates, model updates, and diagnostic information, without interfering with the activities of the RA or leaving the system in an inconsistent state. The resulting architecture supports incremental autonomy, in which a basic agent can be delivered early and then used in an increasingly autonomous manner over the lifetime of the mission. It also supports variable autonomy, as it enables ground operators to benefit from autonomy when L'@ey want it, but does not inhibit them from obtaining a detailed understanding and exercising tighter control when necessary. These issues are critical to the successful development and operation of autonomous spacecraft.
Guidelines and Capabilities for Designing Human Missions
NASA Technical Reports Server (NTRS)
2002-01-01
The human element is likely the most complex and difficult one of mission design; it significantly influences every aspect of mission planning, from the basic parameters like duration to the more complex tradeoffs between mass, volume, power, risk, and cost. For engineers who rely on precise specifications in data books and other such technical references, dealing with the uncertainty and the variability of designing for human beings can be frustrating. When designing for the human element, questions arise more often than definitive answers. Nonetheless, we do not doubt that the most captivating discoveries in future space missions will necessitate human explorers. These guidelines and capabilities are meant to identify the points of intersection between humans and mission considerations such as architecture, vehicle design, technologies, operations, and science requirements. We seek to provide clear, top-level guidelines for human-related exploration studies and technology research that address common questions and requirements. As a result, we hope that ongoing mission trade studies consider common, standard, and practical criteria for human interfaces.
Guidelines and Capabilities for Designing Human Missions
NASA Astrophysics Data System (ADS)
2002-03-01
The human element is likely the most complex and difficult one of mission design; it significantly influences every aspect of mission planning, from the basic parameters like duration to the more complex tradeoffs between mass, volume, power, risk, and cost. For engineers who rely on precise specifications in data books and other such technical references, dealing with the uncertainty and the variability of designing for human beings can be frustrating. When designing for the human element, questions arise more often than definitive answers. Nonetheless, we do not doubt that the most captivating discoveries in future space missions will necessitate human explorers. These guidelines and capabilities are meant to identify the points of intersection between humans and mission considerations such as architecture, vehicle design, technologies, operations, and science requirements. We seek to provide clear, top-level guidelines for human-related exploration studies and technology research that address common questions and requirements. As a result, we hope that ongoing mission trade studies consider common, standard, and practical criteria for human interfaces.
A Human Factors Analysis of EVA Time Requirements
NASA Technical Reports Server (NTRS)
Pate, Dennis W.
1997-01-01
Human Factors Engineering (HFE) is a discipline whose goal is to engineer a safer, more efficient interface between humans and machines. HFE makes use of a wide range of tools and techniques to fulfill this goal. One of these tools is known as motion and time study, a technique used to develop time standards for given tasks. During the summer of 1995, a human factors motion and time study was initiated with the goals of developing a database of EVA task times and developing a method of utilizing the database to predict how long an EVA should take. Initial development relied on the EVA activities performed during the STS-61 (Hubble) mission. The first step of the study was to become familiar with EVA's, the previous task-time studies, and documents produced on EVA's. After reviewing these documents, an initial set of task primitives and task-time modifiers was developed. Data was collected from videotaped footage of two entire STS-61 EVA missions and portions of several others, each with two EVA astronauts. Feedback from the analysis of the data was used to further refine the primitives and modifiers used. The project was continued during the summer of 1996, during which data on human errors was also collected and analyzed. Additional data from the STS-71 mission was also collected. Analysis of variance techniques for categorical data was used to determine which factors may affect the primitive times and how much of an effect they have. Probability distributions for the various task were also generated. Further analysis of the modifiers and interactions is planned.
Concept of Operations for a Prospective "Proving Ground" in the Lunar Vicinity
NASA Technical Reports Server (NTRS)
Love, Stanley G.; Hill, James J.; Goodliff, Kandyce
2016-01-01
NASA is studying conceptual architectures for a "Proving Ground" near the Moon or in high lunar orbit to conduct human space exploration missions that bridge the gap between today's operations with the International Space Station (ISS) and future human exploration of Mars beginning in the 2030s. This paper describes the framework of a concept of operations ("Conops") for candidate activities in the Proving Ground. The Conops discusses broad goals that the Proving Ground might address, such as participation from commercial entities, support for human landings on the Moon, use of mature technologies, and growth of capability through a steady cadence of increasingly ambitious piloted missions. Additional Proving Ground objectives are outlined in a companion paper. Key elements in the Conops include the Orion spacecraft (with mission kits for docking and other specialized operations) and the Space Launch System (SLS) heavy-lift rocket. Potential additions include a new space suit, commercial launch vehicles and logistics carriers, Solar Electric Propulsion (SEP) stages to move elements between different orbits and eventually take them on excursions to deep space, a core module with multiple docking ports, a habitation block, and robotic and piloted lunar landers. The landers might include reusable ascent modules which could remain docked to in-space elements between lunar sorties. A module providing advanced regenerative life support functions could launch to the ISS, and later move to the Proving Ground. The architecture will include infrastructure for launch preparation, communication, mission control, and range safety. The Conops describes notional missions chosen to guide the design of the architecture and its elements. One such mission might be the delivery of a approximately 10-t Transit Habitat element, comanifested with Orion on a Block 1B SLS launcher, to the Proving Ground. In another mission, the architecture might participate in direct human exploration of an asteroidal boulder brought to high lunar orbit by the Asteroid Redirect Mission. The Proving Ground stack could serve as a staging point and tele-operation center for robotic and piloted Moon landings. With the addition of a SEP stage, the architecture could support months-long excursions within and beyond the Earth's sphere of influence, possibly culminating in a year-long mission to land humans on a near-Earth asteroid. In the last case, after returning to near-lunar space, two of the asteroid explorers could join two crewmembers freshly arrived from Earth for a Moon landing, helping to quantify the risk of landing deconditioned crews on Mars. In a conceptual mission particularly stressing to system design, Proving Ground elements could transit to Mars orbit. Other possible design-driving operations include relocation of the stack with no crew on board, the unpiloted journey of the advanced life support module from ISS to the lunar vicinity, excursions to other destinations in near-Earth space, and additional support for Mars exploration in conjunction with the Evolvable Mars Campaign. The Proving Ground Conops concludes with a discussion of aborts and contingency operations
An Integrated Tool for System Analysis of Sample Return Vehicles
NASA Technical Reports Server (NTRS)
Samareh, Jamshid A.; Maddock, Robert W.; Winski, Richard G.
2012-01-01
The next important step in space exploration is the return of sample materials from extraterrestrial locations to Earth for analysis. Most mission concepts that return sample material to Earth share one common element: an Earth entry vehicle. The analysis and design of entry vehicles is multidisciplinary in nature, requiring the application of mass sizing, flight mechanics, aerodynamics, aerothermodynamics, thermal analysis, structural analysis, and impact analysis tools. Integration of a multidisciplinary problem is a challenging task; the execution process and data transfer among disciplines should be automated and consistent. This paper describes an integrated analysis tool for the design and sizing of an Earth entry vehicle. The current tool includes the following disciplines: mass sizing, flight mechanics, aerodynamics, aerothermodynamics, and impact analysis tools. Python and Java languages are used for integration. Results are presented and compared with the results from previous studies.
Defining the Natural Atmospheric Environment Requirements for the NASA Constellation Program
NASA Technical Reports Server (NTRS)
Roberts, Barry C.; Leahy, Frank
2008-01-01
The National Aeronautics and Space Administration began developing a new vehicle under the Constellation Program to replace the Space Shuttle. The Ares-1 launch vehicle and the Orion capsule will be used to ferry crew and some payloads to the International Space Station and will also be used for new missions to the moon, As development of this new vehicle begins, the Natural Environments Branch at Marshall Space Flight Center has been tasked with defining the natural environments the vehicle will encounter and working with the program to develop natural environmental requirements for the vehicles' elements. An overview of the structure of the program is given, along with a description of the Constellation Design Specification for Natural Environments and the Constellation Natural Environments Definition for Design documents and how they apply to the Ares-I and Orion vehicles.
Power subsystem automation study
NASA Technical Reports Server (NTRS)
Imamura, M. S.; Moser, R. L.; Veatch, M.
1983-01-01
Generic power-system elements and their potential faults are identified. Automation functions and their resulting benefits are defined and automation functions between power subsystem, central spacecraft computer, and ground flight-support personnel are partitioned. All automation activities were categorized as data handling, monitoring, routine control, fault handling, planning and operations, or anomaly handling. Incorporation of all these classes of tasks, except for anomaly handling, in power subsystem hardware and software was concluded to be mandatory to meet the design and operational requirements of the space station. The key drivers are long mission lifetime, modular growth, high-performance flexibility, a need to accommodate different electrical user-load equipment, onorbit assembly/maintenance/servicing, and potentially large number of power subsystem components. A significant effort in algorithm development and validation is essential in meeting the 1987 technology readiness date for the space station.
Candidate Mission from Planet Earth control and data delivery system architecture
NASA Technical Reports Server (NTRS)
Shapiro, Phillip; Weinstein, Frank C.; Hei, Donald J., Jr.; Todd, Jacqueline
1992-01-01
Using a structured, experienced-based approach, Goddard Space Flight Center (GSFC) has assessed the generic functional requirements for a lunar mission control and data delivery (CDD) system. This analysis was based on lunar mission requirements outlined in GSFC-developed user traffic models. The CDD system will facilitate data transportation among user elements, element operations, and user teams by providing functions such as data management, fault isolation, fault correction, and link acquisition. The CDD system for the lunar missions must not only satisfy lunar requirements but also facilitate and provide early development of data system technologies for Mars. Reuse and evolution of existing data systems can help to maximize system reliability and minimize cost. This paper presents a set of existing and currently planned NASA data systems that provide the basic functionality. Reuse of such systems can have an impact on mission design and significantly reduce CDD and other system development costs.
ERIC Educational Resources Information Center
Blayney, Paul; Kalyuga, Slava; Sweller, John
2016-01-01
Element interactivity is a central concept of cognitive load theory that defines the complexity of a learning task. The reduction of task complexity through a temporary segmentation or isolation of interacting elements was investigated with 104 students randomly assigned to an interacting elements group, where participants were required to deal…
Decentralized Planning for Autonomous Agents Cooperating in Complex Missions
2010-09-01
Consensus - based decentralized auctions for robust task allocation ," IEEE Transactions on Robotics...Robotics, vol. 24, pp. 209-222, 2006. [44] H.-L. Choi, L. Brunet, and J. P. How, " Consensus - based decentralized auctions for robust task allocation ...2003. 123 [31] L. Brunet, " Consensus - Based Auctions for Decentralized Task Assignment," Master’s thesis, Dept.
Life science payload definition and integration study, task C and D. Volume 3: Appendices
NASA Technical Reports Server (NTRS)
1973-01-01
Research equipment requirements were based on the Mini-7 and Mini-30 laboratory concepts defined in Tasks A and B of the intial LSPD contract. Modified versions of these laboratories and the research equipment within them were to be used in three missions of Shuttle/Sortie Module. These were designated (1) the shared 7-day laboratory (a mission with the life sciences laboratory sharing the sortie module with another scientific laboratory), (2) the dedicated 7-day laboratory (full use of the sortie module), and (3) the dedicated 30-day laboratory (full sortie module use with a 30-day mission duration). In defining the research equipment requirements of these laboratories, the equipment was grouped according to its function, and equipment unit data packages were prepared.
Bryan, Jeffrey; Miyamoto, Danelle; Holman, Vincent
2008-01-01
Medical civil-military operations are a critical combat multiplier directly supporting the counterinsurgency fight. Army Medical Department Soldiers support medical civil affairs activities at all levels from platoon to the United States Mission-Iraq (Department of State) initiatives enhancing the legitimacy of medical services in the Iraq Ministry of Health, Ministry of Defense, Ministry of the Interior, and Ministry of Justice. The civil-military operations mission of the deployed Task Force 62 Medical Brigade has also evolved into a broad mission encompassing over 120 contractors including Iraqi-American, Bilingual Bicultural Advisors-Subject Matter Experts serving as case management liaison officers and medical trainers, as well as Iraqi Advisor Task Force members providing medical atmospherics, assessments, training, and the overall management of Iraqi linguists supporting all level III medical facilities.
Simulating Mission Command for Planning and Analysis
2015-06-01
mission plan. 14. SUBJECT TERMS Mission Planning, CPM , PERT, Simulation, DES, Simkit, Triangle Distribution, Critical Path 15. NUMBER OF...Battalion Task Force CO Company CPM Critical Path Method DES Discrete Event Simulation FA BAT Field Artillery Battalion FEL Future Event List FIST...management tools that can be utilized to find the critical path in military projects. These are the Critical Path Method ( CPM ) and the Program Evaluation and
Wide Field Infrared Survey Telescope [WFIRST]: Telescope Design and Simulated Performance
NASA Technical Reports Server (NTRS)
Goullioud, R.; Content, D. A.; Kuan, G. M.; Moore, J. D.; Chang, Z.; Sunada, E. T.; Villalvazo, J.; Hawk, J. P.; Armani, N. V.; Johnson, E. L.;
2012-01-01
The ASTRO2010 Decadal Survey proposed multiple missions with NIR focal planes and 3 mirror wide field telescopes in the 1.5m aperture range. None of them would have won as standalone missions WFIRST is a combination of these missions, created by Astro 2010 committee. WFIRST Science Definition Team (SDT) tasked to examine the design. Project team is a GSFC-JPL-Caltech collaboration. This interim mission design is a result of combined work by the project team with the SDT.
Mission activities planning for a Hermes mission by means of AI-technology
NASA Technical Reports Server (NTRS)
Pape, U.; Hajen, G.; Schielow, N.; Mitschdoerfer, P.; Allard, F.
1993-01-01
Mission Activities Planning is a complex task to be performed by mission control centers. AI technology can offer attractive solutions to the planning problem. This paper presents the use of a new AI-based Mission Planning System for crew activity planning. Based on a HERMES servicing mission to the COLUMBUS Man Tended Free Flyer (MTFF) with complex time and resource constraints, approximately 2000 activities with 50 different resources have been generated, processed, and planned with parametric variation of operationally sensitive parameters. The architecture, as well as the performance of the mission planning system, is discussed. An outlook to future planning scenarios, the requirements, and how a system like MARS can fulfill those requirements is given.
Ensuring Payload Safety in Missions with Special Partnerships
NASA Technical Reports Server (NTRS)
Staubus, Calvert A.; Willenbring, Rachel C.; Blankenship, Michael D.
2016-01-01
The National Aeronautics and Space Administration (NASA) Expendable Launch Vehicle (ELV) payload space flight missions involve cooperative work between NASA and partners including spacecraft (or payload) contractors, universities, nonprofit research centers, Agency payload organization, Range Safety organization, Agency launch service organizations, and launch vehicle contractors. The role of NASA's Safety and Mission Assurance (SMA) Directorate is typically fairly straightforward, but when a mission's partnerships become more complex, to realize cost and science benefits (e.g., multi-agency payload(s) or cooperative international missions), the task of ensuring payload safety becomes much more challenging. This paper discusses lessons learned from NASA safety professionals working multiple-agency missions and offers suggestions to help fellow safety professionals working multiple-agency missions.
Britten, Richard A; Miller, Vania D; Hadley, Melissa M; Jewell, Jessica S; Macadat, Evangeline
2016-08-01
NASA is currently conducting ground based experiments to determine whether the radiation environment that astronauts will encounter on deep space missions will have an impact on their long-term health and their ability to complete the various tasks during the mission. Emerging data suggest that exposure of rodents to mission-relevant HZE radiation doses does result in the impairment of various neurocognitive processes. An essential part of mission planning is a probabilistic risk assessment process that takes into account the likely incidence and severity of a problem. To date few studies have reported the impact of space radiation in a format that is amenable to PRA, and those that have only reported data for a single cognitive process. This study has established the ability of individual male Wistar rats to conduct a hippocampus-dependent (spatial memory) task and a cortex-dependent (attentional set shifting task) 90 days after exposure to 20cGy 1GeV/n (56)Fe particles. Radiation-induced impairment of performance in one cognitive domain was not consistently associated with impaired performance in the other domain. Thus sole reliance upon a single measure of cognitive performance may substantially under-estimate the risk of cognitive impairment, and ultimately it may be necessary to establish the likelihood that mission-relevant HZE doses will impair performance in the three or four cognitive domains that NASA considers to be most critical for mission success, and build a PRA using the composite data from such studies. Copyright © 2016 The Committee on Space Research (COSPAR). Published by Elsevier Ltd. All rights reserved.
Integration of an Earth-Based Science Team During Human Exploration of Mars
NASA Technical Reports Server (NTRS)
Chappell, Steven P.; Beaton, Kara H.; Newton, Carolyn; Graff, Trevor G.; Young, Kelsey E.; Coan, David; Abercromby, Andrew F. J.; Gernhardt, Michael L.
2017-01-01
NASA Extreme Environment Mission Operations (NEEMO) is an underwater spaceflight analog that allows a true mission-like operational environment and uses buoyancy effects and added weight to simulate different gravity levels. A mission was undertaken in 2016, NEEMO 21, at the Aquarius undersea research habitat. During the mission, the effects of varied oper-ations concepts with representative communication latencies as-sociated with Mars missions were studied. Six subjects were weighed out to simulate partial gravity and evaluated different operations concepts for integration and management of a simulated Earth-based science team (ST) who provided input and direction during exploration activities. Exploration traverses were planned in advance based on precursor data collected. Subjects completed science-related tasks including presampling surveys and marine-science-based sampling during saturation dives up to 4 hours in duration that simulated extravehicular activity (EVA) on Mars. A communication latency of 15 minutes in each direction between space and ground was simulated throughout the EVAs. Objective data included task completion times, total EVA time, crew idle time, translation time, ST assimilation time (defined as time available for the science team to discuss, to review and act upon data/imagery after they have been collected and transmitted to the ground). Subjective data included acceptability, simulation quality, capability assessment ratings, and comments. In addition, comments from both the crew and the ST were captured during the post-mission debrief. Here, we focus on the acceptability of the operations concepts studied and the capabilities most enhancing or enabling in the operations concept. The importance and challenges of designing EVA time-lines to account for the length of the task, level of interaction with the ground that is required/desired, and communication latency, are discussed.
Conducting Rock Mass Rating for tunnel construction on Mars
NASA Astrophysics Data System (ADS)
Beemer, Heidi D.; Worrells, D. Scott
2017-10-01
Mars analogue missions provide researchers, scientists, and engineers the opportunity to establish protocols prior to sending human explorers to another planet. This paper investigated the complexity of a team of simulation astronauts conducting a Rock Mass Rating task during Analogue Mars missions. This study was conducted at the Mars Desert Research Station in Hanksville, UT, during field season 2015/2016 and with crews 167,168, and 169. During the experiment, three-person teams completed a Rock Mass Rating task during a three hour Extra Vehicular Activity on day six of their two-week simulation mission. This geological test is used during design and construction of excavations in rock on Earth. On Mars, this test could be conducted by astronauts to determine suitable rock layers for tunnel construction which would provide explorers a permanent habitat and radiation shielding while living for long periods of time on the surface. The Rock Mass Rating system derives quantitative data for engineering designs that can easily be communicated between engineers and geologists. Conclusions from this research demonstrated that it is feasible for astronauts to conduct the Rock Mass Rating task in a Mars simulated environment. However, it was also concluded that Rock Mass Rating task orientation and training will be required to ensure that accurate results are obtained.
NASA Technical Reports Server (NTRS)
1977-01-01
An outline is given of the mission objectives and requirements, system elements, system concepts, technology requirements and forecasting, and priority analysis for LANDSAT D. User requirements and mission analysis and technological forecasting are emphasized. Mission areas considered include agriculture, range management, forestry, geology, land use, water resources, environmental quality, and disaster assessment.
The Single Habitat Module Concept for Exploration - Mission Planning and Mass Estimates
NASA Technical Reports Server (NTRS)
Chambliss, Joe; Studak, J. W.
2013-01-01
The Single Habitat Module (SHM) concept approach to the infrastructure and conduct of exploration missions combines many of new promising technologies with a central concept of mission architectures that use a single habitat module for all phases of an exploration mission. Integrating mission elements near Earth and fully fueling them prior to departure of the vicinity of Earth provides the capability of using the single habitat both in transit to/from an exploration destination and while exploring the destination. The concept employs the capability to return the habitat and interplanetary propulsion system to Earth vicinity so that those elements can be reused on subsequent exploration missions. This paper provides an overview of the SHM concept and the advantages it provides. A summary of calculations of the mass of the habitat propulsion system (HPS) needed to get the habitat from Low Mars Orbit (LMO) to the surface and back to LMO and an overview of trajectory and mission mass assessments related to use of a high specific impulse space based propulsion system is provided. Those calculations lead to the conclusion that the SHM concept can significantly reduce the mass required and streamline mission operations to explore Mars (and thus all exploration destinations).
The Single Habitat Module Concept for Exploration - Mission Planning and Mass Estimates
NASA Technical Reports Server (NTRS)
Chambliss, Joe; Studak, J. W.
2013-01-01
The Single Habitat Module (SHM) concept approach to the infrastructure and conduct of exploration missions combines many new promising technologies with a central concept of mission architectures that use a single habitat module for all phases of an exploration mission. Integrating mission elements near Earth and fully fueling them prior to departure of the vicinity of Earth provides the capability of using the single habitat both in transit to/from an exploration destination and while exploring the destination. The concept employs the capability to return the habitat and interplanetary propulsion system to Earth vicinity so that those elements can be reused on subsequent exploration missions. This paper provides an overview of the SHM concept and the advantages it provides. The paper also provides a summary of calculations of the mass of the Habitat Propulsion System (HPS) needed to get the habitat from low-Mars orbit (LMO) to the surface and back to LMO, and an overview of trajectory and mission mass assessments related to use of a high specific impulse space-based propulsion system. Those calculations led to the conclusion that the SHM concept results in low total mass required and streamlines mission operations to explore Mars (or other exploration destinations).
STS-109 Crew Interview: Grunsfeld
NASA Technical Reports Server (NTRS)
2002-01-01
STS-109 Payload Commander John Grunsfeld is seen during a prelaunch interview answering questions about his inspiration to become an astronaut and his career path. He gives details on the mission's goal (which is to service the Hubble Space Telescope (HST)), his role during the mission, the five scheduled spacewalks, the Columbia Orbiter's recent upgrades, and what he sees as the challenges of the mission. Grunsfeld describes how his experience on the STS-103 mission, a previous HST servicing mission, has helped prepare him for the STS-109 mission. The interview ends with Grunsfeld explaining why the servicing of the Reaction Wheel Assembly, a task added late in his training, is so important.
National facilities study. Volume 3: Mission and requirements model report
NASA Technical Reports Server (NTRS)
1994-01-01
The National Facility Study (NFS) was initiated in 1992 by Daniel S. Goldin, Administrator of NASA as an initiative to develop a comprehensive and integrated long-term plan for future facilities. The resulting, multi-agency NFS consisted of three Task Groups: Aeronautics, Space Operations, and Space Research and Development (R&D) Task Groups. A fourth group, the Engineering and Cost Analysis Task Group, was subsequently added to provide cross-cutting functions, such as assuring consistency in developing an inventory of space facilities. Space facilities decisions require an assessment of current and future needs. Therefore, the two task groups dealing with space developed a consistent model of future space mission programs, operations and R&D. The model is a middle ground baseline constructed for NFS analytical purposes with excursions to cover potential space program strategies. The model includes three major sectors: DOD, civilian government, and commercial space. The model spans the next 30 years because of the long lead times associated with facilities development and usage. This document, Volume 3 of the final NFS report, is organized along the following lines: Executive Summary -- provides a summary view of the 30-year mission forecast and requirements baseline, an overview of excursions from that baseline that were studied, and organization of the report; Introduction -- provides discussions of the methodology used in this analysis; Baseline Model -- provides the mission and requirements model baseline developed for Space Operations and Space R&D analyses; Excursions from the baseline -- reviews the details of variations or 'excursions' that were developed to test the future program projections captured in the baseline; and a Glossary of Acronyms.
Wave scheduling - Decentralized scheduling of task forces in multicomputers
NASA Technical Reports Server (NTRS)
Van Tilborg, A. M.; Wittie, L. D.
1984-01-01
Decentralized operating systems that control large multicomputers need techniques to schedule competing parallel programs called task forces. Wave scheduling is a probabilistic technique that uses a hierarchical distributed virtual machine to schedule task forces by recursively subdividing and issuing wavefront-like commands to processing elements capable of executing individual tasks. Wave scheduling is highly resistant to processing element failures because it uses many distributed schedulers that dynamically assign scheduling responsibilities among themselves. The scheduling technique is trivially extensible as more processing elements join the host multicomputer. A simple model of scheduling cost is used by every scheduler node to distribute scheduling activity and minimize wasted processing capacity by using perceived workload to vary decentralized scheduling rules. At low to moderate levels of network activity, wave scheduling is only slightly less efficient than a central scheduler in its ability to direct processing elements to accomplish useful work.
The Transition from Spacecraft Development Ot Flight Operation: Human Factor Considerations
NASA Technical Reports Server (NTRS)
Basilio, Ralph R.
2000-01-01
In the field of aeronautics and astronautics, a paradigm shift has been witnessed by those in academia, research and development, and private industry. Long development life cycles and the budgets to support such programs and projects has given way to aggressive task schedules and leaner resources to draw from all the while challenging assigned individuals to create and produce improved products of processes. however, this "faster, better, cheaper" concept cannot merely be applied to the design, development, and test of complex systems such as earth-orbiting of interplanetary robotic spacecraft. Full advantage is not possible without due consideration and application to mission operations planning and flight operations, Equally as important as the flight system, the mission operations system consisting of qualified personnel, ground hardware and software tools, and verified and validated operational processes, should also be regarded as a complex system requiring personnel to draw upon formal education, training, related experiences, and heuristic reasoning in engineering an effective and efficient system. Unquestionably, qualified personnel are the most important elements of a mission operations system. This paper examines the experiences of the Deep Space I Project, the first in a series of new technology in-flight validation missions sponsored by the United States National Aeronautics and Space Administration (NASA), specifically, in developing a subsystems analysis and technology validation team comprised of former spacecraft development personnel. Human factor considerations are investigated from initial concept/vision formulation; through operational process development; personnel test and training; to initial uplink product development and test support. Emphasis has been placed on challenges and applied or recommended solutions, so as to provide opportunities for future programs and projects to address and disposition potential issues and concerns as early as possible to reap the benefits associated with learning from other's past experiences.
A mission planning concept and mission planning system for future manned space missions
NASA Technical Reports Server (NTRS)
Wickler, Martin
1994-01-01
The international character of future manned space missions will compel the involvement of several international space agencies in mission planning tasks. Additionally, the community of users requires a higher degree of freedom for experiment planning. Both of these problems can be solved by a decentralized mission planning concept using the so-called 'envelope method,' by which resources are allocated to users by distributing resource profiles ('envelopes') which define resource availabilities at specified times. The users are essentially free to plan their activities independently of each other, provided that they stay within their envelopes. The new developments were aimed at refining the existing vague envelope concept into a practical method for decentralized planning. Selected critical functions were exercised by planning an example, founded on experience acquired by the MSCC during the Spacelab missions D-1 and D-2. The main activity regarding future mission planning tasks was to improve the existing MSCC mission planning system, using new techniques. An electronic interface was developed to collect all formalized user inputs more effectively, along with an 'envelope generator' for generation and manipulation of the resource envelopes. The existing scheduler and its data base were successfully replaced by an artificial intelligence scheduler. This scheduler is not only capable of handling resource envelopes, but also uses a new technology based on neuronal networks. Therefore, it is very well suited to solve the future scheduling problems more efficiently. This prototype mission planning system was used to gain new practical experience with decentralized mission planning, using the envelope method. In future steps, software tools will be optimized, and all data management planning activities will be embedded into the scheduler.
1969-02-20
S69-19794 (February 1969) --- Composite of two artist's concepts illustrating key events, tasks and activities on the third day of the Apollo 9 mission, including crew transfer and Lunar Module system evaluation. The Apollo 9 mission will evaluate spacecraft lunar module systems performance during manned Earth-orbital flight.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schey, Stephen; Francfort, Jim
Several U.S. Department of Defense base studies have been conducted to identify potential U.S. Department of Defense transportation systems that are strong candidates for introduction or expansion of plug-in electric vehicles (PEVs). This study is focused on the Naval Air Station Whidbey Island (NASWI) located in Washington State. Task 1 consisted of a survey of the non-tactical fleet of vehicles at NASWI to begin the review of vehicle mission assignments and types of vehicles in service. In Task 2, daily operational characteristics of vehicles were identified to select vehicles for further monitoring and attachment of data loggers. Task 3 recordedmore » vehicle movements in order to characterize the vehicles’ missions. The results of the data analysis and observations were provided. Individual observations of the selected vehicles provided the basis for recommendations related to PEV adoption, i.e., whether a battery electric vehicle (BEV) or plug-in hybrid electric vehicle (PHEV) (collectively PEVs) can fulfill the mission requirements. It also provided the basis for recommendations related to placement of PEV charging infrastructure. This report focuses on an implementation plan for the near-term adoption of PEVs into the NASWI fleet.« less
Sensor image prediction techniques
NASA Astrophysics Data System (ADS)
Stenger, A. J.; Stone, W. R.; Berry, L.; Murray, T. J.
1981-02-01
The preparation of prediction imagery is a complex, costly, and time consuming process. Image prediction systems which produce a detailed replica of the image area require the extensive Defense Mapping Agency data base. The purpose of this study was to analyze the use of image predictions in order to determine whether a reduced set of more compact image features contains enough information to produce acceptable navigator performance. A job analysis of the navigator's mission tasks was performed. It showed that the cognitive and perceptual tasks he performs during navigation are identical to those performed for the targeting mission function. In addition, the results of the analysis of his performance when using a particular sensor can be extended to the analysis of this mission tasks using any sensor. An experimental approach was used to determine the relationship between navigator performance and the type of amount of information in the prediction image. A number of subjects were given image predictions containing varying levels of scene detail and different image features, and then asked to identify the predicted targets in corresponding dynamic flight sequences over scenes of cultural, terrain, and mixed (both cultural and terrain) content.
2003-10-30
KENNEDY SPACE CENTER, FLA. - Members of the STS-114 crew look over Shuttle equipment in the Orbiter Processing Facility. In the foreground is Mission Specialist Wendy Lawrence, who is a new addition to the crew. Behind her are (left to right) Commander Eileen Collins and Mission Specialists Andy Thomas and Stephen Robinson. At the rear is Glenda Laws, EVA Task Leader, with United Space Alliance at Johnson Space Center. The STS-114 crew is at KSC to take part in crew equipment and orbiter familiarization.
Safety and Mission Assurance (SMA) Automated Task Order Management System (ATOMS) Operation Manual
NASA Technical Reports Server (NTRS)
Wallace, Shawn; Fikes, Lou A.
2016-01-01
This document describes operational aspects of the ATOMS system. The information provided is limited to the functionality provided by ATOMS and does not include information provided in the contractor's proprietary financial and task management system.
Werkhausen, Amelie; Albracht, Kirsten; Cronin, Neil J; Meier, Rahel; Bojsen-Møller, Jens; Seynnes, Olivier R
2017-11-15
The compliance of elastic elements allows muscles to dissipate energy safely during eccentric contractions. This buffering function is well documented in animal models but our understanding of its mechanism in humans is confined to non-specific tasks, requiring a subsequent acceleration of the body. The present study aimed to examine the behaviour of the human triceps surae muscle-tendon unit (MTU) during a pure energy dissipation task, under two loading conditions. Thirty-nine subjects performed a single-leg landing task, with and without added mass. Ultrasound measurements were combined with three-dimensional kinematics and kinetics to determine instantaneous length changes of MTUs, muscle fascicles, Achilles tendon and combined elastic elements. Gastrocnemius and soleus MTUs lengthened during landing. After a small concentric action, fascicles contracted eccentrically during most of the task, whereas plantar flexor muscles were activated. Combined elastic elements lengthened until peak ankle moment and recoiled thereafter, whereas no recoil was observed for the Achilles tendon. Adding mass resulted in greater negative work and MTU lengthening, which were accompanied by a greater stretch of tendon and elastic elements and a greater recruitment of the soleus muscle, without any further fascicle strain. Hence, the buffering action of elastic elements delimits the maximal strain and lengthening velocity of active muscle fascicles and is commensurate with loading constraints. In the present task, energy dissipation was modulated via greater MTU excursion and more forceful eccentric contractions. The distinct strain pattern of the Achilles tendon supports the notion that different elastic elements may not systematically fulfil the same function. © 2017. Published by The Company of Biologists Ltd.
Mars Relay Satellite: Key to Enabling Low-Cost Exploration Missions
NASA Technical Reports Server (NTRS)
Hastrup, R.; Cesarone, R.; Miller, A.
1993-01-01
Recently, there has been increasing evidence of a renewed focus on Mars exploration both by NASA and the international community. The thrust of this renewed interest appears to be manifesting itself in numerous low-cost missions employing small, light weight elements, which utilize advanced technologies including integrated microelectronics. A formidable problem facing these low-cost missions is communications with Earth. Providing adequate direct-link performance has very significant impacts on spacecraft power, pointing, mass and overall complexity. Additionally, for elements at or near the surface of Mars, there are serious connectivity constraints, especially at higher latitudes, which lose view of Earth for up to many months at a time. This paper will discuss the role a Mars relay satellite can play in enabling and enhancing low-cost missions to Mars...
A psychophysiological assessment of operator workload during simulated flight missions
NASA Technical Reports Server (NTRS)
Kramer, Arthur F.; Sirevaag, Erik J.; Braune, Rolf
1987-01-01
The applicability of the dual-task event-related (brain) potential (ERP) paradigm to the assessment of an operator's mental workload and residual capacity in a complex situation of a flight mission was demonstrated using ERP measurements and subjective workload ratings of student pilots flying a fixed-based single-engine simulator. Data were collected during two separate 45-min flights differing in difficulty; flight demands were examined by dividing each flight into four segments: takeoff, straight and level flight, holding patterns, and landings. The P300 ERP component in particular was found to discriminate among the levels of task difficulty in a systematic manner, decreasing in amplitude with an increase in task demands. The P300 amplitude is shown to be negatively correlated with deviations from command headings across the four flight segments.
Magellan Project: Evolving enhanced operations efficiency to maximize science value
NASA Technical Reports Server (NTRS)
Cheuvront, Allan R.; Neuman, James C.; Mckinney, J. Franklin
1994-01-01
Magellan has been one of NASA's most successful spacecraft, returning more science data than all planetary spacecraft combined. The Magellan Spacecraft Team (SCT) has maximized the science return with innovative operational techniques to overcome anomalies and to perform activities for which the spacecraft was not designed. Commanding the spacecraft was originally time consuming because the standard development process was envisioned as manual tasks. The Program understood that reducing mission operations costs were essential for an extended mission. Management created an environment which encouraged automation of routine tasks, allowing staff reduction while maximizing the science data returned. Data analysis and trending, command preparation, and command reviews are some of the tasks that were automated. The SCT has accommodated personnel reductions by improving operations efficiency while returning the maximum science data possible.
Conference-EC-US Task Force Joint US-EU Workshop on Metabolomics and Environmental Biotechnology
DOE Office of Scientific and Technical Information (OSTI.GOV)
PI: Lily Y. Young
2009-06-04
Since 1990, the EC-US Task Force on Biotechnology Research has been coordinating transatlantic efforts to guide and exploit the ongoing revolution in biotechnology and the life sciences. The Task Force was established in June 1990 by the European Commission and the White House Office of Science and Technology Policy. The Task Force has acted as an effective forum for discussion, coordination, and development of new ideas for the last 18 years. Task Force members are European Commission and US Government science and technology administrators who meet annually to enhance communication across the Atlantic, and to encourage collaborative research. Through sponsoringmore » workshops, and other activities, the Task Force also brings together scientific leaders and early career researchers from both sides of the Atlantic to forecast research challenges and opportunities and to promote better links between researchers. Over the years, by keeping a focus on the future of science, the Task Force has played a key role in establishing a diverse range of emerging scientific fields, including biodiversity research, neuroinformatics, genomics, nanobiotechnology, neonatal immunology, transkingdom molecular biology, biologically-based fuels, and environmental biotechnology. The EC-US Task Force has sponsored a number of Working Groups on topics of mutual transatlantic interest. The idea to create a Working Group on Environmental Biotechnology research was discussed in the Task Force meeting of October 1993. The EC-US Working Group on Environmental Biotechnology set as its mission 'To train the next generation of leaders in environmental biotechnology in the United States and the European Union to work collaboratively across the Atlantic.' Since 1995, the Working Group supported three kinds of activities, all of which focus one early career scientists: (1) Workshops on the use of molecular methods and genomics in environmental biotechnology; (2) Short courses with theoretical, laboratory and field elements; and (3) Short term exchange fellowships. The short term exchange fellowships were created to enable young scientists to develop collaborations with colleagues across the Atlantic and to learn a new skill or expertise in the area of environmental biotechnology.« less
Deep Space Gateway - Enabling Missions to Mars
NASA Technical Reports Server (NTRS)
Rucker, Michelle; Connolly, John
2017-01-01
There are many opportunities for commonality between Lunar vicinity and Mars mission hardware and operations. Best approach: Identify Mars mission risks that can be bought down with testing in the Lunar vicinity, then explore hardware and operational concepts that work for both missions with minimal compromise. Deep Space Transport will validate the systems and capabilities required to send humans to Mars orbit and return to Earth. Deep Space Gateway provides a convenient assembly, checkout, and refurbishment location to enable Mars missions Current deep space transport concept is to fly missions of increasing complexity: Shakedown cruise, Mars orbital mission, Mars surface mission; Mars surface mission would require additional elements.
Planetary entry, descent, and landing technologies
NASA Astrophysics Data System (ADS)
Pichkhadze, K.; Vorontsov, V.; Polyakov, A.; Ivankov, A.; Taalas, P.; Pellinen, R.; Harri, A.-M.; Linkin, V.
2003-04-01
Martian meteorological lander (MML) is intended for landing on the Martian surface in order to monitor the atmosphere at landing point for one Martian year. MMLs shall become the basic elements of a global network of meteorological mini-landers, observing the dynamics of changes of the atmospheric parameters on the Red Planet. The MML main scientific tasks are as follows: (1) Study of vertical structure of the Martian atmosphere throughout the MML descent; (2) On-surface meteorological observations for one Martian year. One of the essential factors influencing the lander's design is its entry, descent, and landing (EDL) sequence. During Phase A of the MML development, five different options for the lander's design were carefully analyzed. All of these options ensure the accomplishment of the above-mentioned scientific tasks with high effectiveness. CONCEPT A (conventional approach): Two lander options (with a parachute system + airbag and an inflatable airbrake + airbag) were analyzed. They are similar in terms of fulfilling braking phases and completely analogous in landing by means of airbags. CONCEPT B (innovative approach): Three lander options were analyzed. The distinguishing feature is the presence of inflatable braking units (IBU) in their configurations. SELECTED OPTION (innovative approach): Incorporating a unique design approach and modern technologies, the selected option of the lander represents a combination of the options analyzed in the framework of Concept B study. Currently, the selected lander option undergoes systems testing (Phase D1). Several MMLs can be delivered to Mars in frameworks of various missions as primary or piggybacking payload: (1) USA-led "Mars Scout" (2007); (2) France-led "NetLander" (2007/2009); (3) Russia-led "Mars-Deimos-Phobos sample return" (2007); (4) Independent mission (currently under preliminary study); etc.
NASA Technical Reports Server (NTRS)
Smith, Jeffrey D.; Dalton, Bonnie (Technical Monitor)
2002-01-01
The era of the International Space Station (ISS) has finally arrived, providing researchers on Earth a unique opportunity to study long-term effects of weightlessness and the space environment on structures, materials and living systems. Many of the physical, biological and material science experiments planned for ISS will require significant input and expertise from astronauts who must conduct the research, follow complicated assay procedures and collect data and samples in space. Containment is essential for Much of this work, both to protect astronauts from potentially harmful biological, chemical or material elements in the experiments as well as to protect the experiments from contamination by air-born particles In the Space Station environment. When astronauts must open the hardware containing such experiments, glovebox facilities provide the necessary barrier between astronaut and experiment. On Earth, astronauts are laced with the demanding task of preparing for the many glovebox experiments they will perform in space. Only a short time can be devoted to training for each experimental task and gl ovebox research only accounts for a small portion of overall training and mission objectives on any particular ISS mission. The quality of the research also must remain very high, requiring very detailed experience and knowledge of instrumentation, anatomy and specific scientific objectives for those who will conduct the research. This unique set of needs faced by NASA has stemmed the development of a new computer simulation tool, the Virtual Glovebox (VGB), which is designed to provide astronaut crews and support personnel with a means to quickly and accurately prepare and train for glovebox experiments in space.
Sample Return Primer and Handbook
NASA Technical Reports Server (NTRS)
Barrow, Kirk; Cheuvront, Allan; Faris, Grant; Hirst, Edward; Mainland, Nora; McGee, Michael; Szalai, Christine; Vellinga, Joseph; Wahl, Thomas; Williams, Kenneth;
2007-01-01
This three-part Sample Return Primer and Handbook provides a road map for conducting the terminal phase of a sample return mission. The main chapters describe element-by-element analyses and trade studies, as well as required operations plans, procedures, contingencies, interfaces, and corresponding documentation. Based on the experiences of the lead Stardust engineers, the topics include systems engineering (in particular range safety compliance), mission design and navigation, spacecraft hardware and entry, descent, and landing certification, flight and recovery operations, mission assurance and system safety, test and training, and the very important interactions with external support organizations (non-NASA tracking assets, landing site support, and science curation).
On-board Payload Data Processing from Earth to Space Segment
NASA Astrophysics Data System (ADS)
Tragni, M.; Abbattista, C.; Amoruso, L.; Cinquepalmi, L.; Bgongiari, F.; Errico, W.
2013-09-01
Matching the users application requirements with the more and more huge data streaming of the satellite missions is becoming very complex. But we need both of them. To face both the data management (memory availability) and their transmission (band availability) many recent R&D activities are studying the right way to move the data processing from the ground segment to the space segment by the development of the so-called On-board Payload Data Processing (OPDP). The space designer are trying to find new strategies to increase the on board computation capacity and its viability to overcome such limitations, memory and band, focusing the transmission of remote sensing information (not only data) towards their final use. Some typical applications which can benefit of the on board payload data processing include the automatic control of a satellites constellation which can modify its scheduled acquisitions directly on-board and according to the information extracted from the just acquired data, increasing, for example, the capability of monitoring a specific objective (such as oil spills, illegal traffic) with a greater versatility than a traditional ground segment workflow. The authors and their companies can count on a sound experience in design and development of open, modular and compact on-board processing systems. Actually they are involved in a program, the Space Payload Data Processing (SpacePDP) whose main objective is to develop an hardware and a software framework able to perform both the space mission standard tasks (sensors control, mass storage devices management, uplink and downlink) and the specific tasks required by each mission. SpacePDP is an Open and modular Payload Data Processing system, composed of Hardware and Software modules included a SDK. The whole system is characterised by flexible and customizable building blocks that form the system architectures and by a very easy way to be integrated in the missions by the SDK (a development environment with encapsulated low-level drivers, HW support and testing environment). Furthermore Space PDP presents an advanced processing system to be fully adopted both as on-board module for EO spacecrafts and extra-planetary exploration rovers. The main innovative aspects are: • HW and SW modularity - scalability for the Payload Data Processing and AOC S/S • Complex processing capabilities fully available onboard (on spacecrafts or rovers) • Reduced effort in mission SW design, implementation, verification and validation tasks • HW abstraction level comparable to present multitasking Unix-like systems allowing SW and algorithms re-use (also from available GS applications). The development approach addressed by SpacePDP is based both on the re-use and resources sharing with flexible elements adjustable to different missions and to different tasks within the same mission (e.g. shared between AOCS and data management S/S) and on a strong specialization in the system elements that are designed to satisfy specific mission needs and specific technological innovations. The innovative processing system is proven in many possible scenarios of use from standard compression task up to the most complex one as the image classification directly on-board. The first one is just useful for standard benchmark trade-off analysis of HW and SW capabilities respect to the other common processing modules. The classification is the ambitious objective of that system to process directly on board the data from sensor (by down-sampling or in no-full resolution acquisition modality if necessary) to detect at flight time any features on ground or observed phenomenas. For Earth application it could be the cloud coverage (to avoid the acquisition and discard the data), burning areas or vessels detection and similar. On Planetary o Universe exploration mission it could be the path recognition for a rover, or high power energy events in outbound galaxies. Sometimes it could be need to review the GS algorithms to approach the problem in the Space scenario, i.e. for Synthetic Aperture Radar (SAR) application the typical focalization of the raw image needs to be improved to be effectively in this context. Many works are actually available on that, the authors have developed a specific ones for neural network algorithms. By the information directly "acquired" (so computed) on-board and without intervention of typical ground systems facilities, the spacecraft can take autonomously decision regarding a re-planning of acquisition for itself (at high performance modalities) or other platforms in constellation or affiliated reducing the time elapse as in the nowadays approach. For no EO missions it is big advantage to reduce the large round trip flight of transmission. In general the saving of resources is extensible to memory and RF transmission band resources, time reaction (like civil protection applications), etc. enlarging the flexibility of missions and improving the final results. SpacePDP main HW and SW characteristics: • Compactness: size and weight of each module are fitted in a Eurocard 3U 8HP format with «Inter-Board» connection through cPCI peripheral bus. • Modularity: the Payload is usually composed by several sub-systems. • Flexibility: coprocessor FPGA, on-board memory and support avionic protocols are flexible, allowing different modules customization according to mission needs • Completeness: the two core boards (CPU and Companion) are enough to obtain a first complete payload data processing system in a basic configuration. • Integrability: The payload data processing system is open to accept custom modules to be connected on its open peripheral bus. • CPU HW module (one or more) based on a RISC processor (LEON2FT, a SPARC V8 architecture, 80Mips @100MHz on ASIC ATMEL AT697F) • DSP HW module (optional with more instances) based on a FPGA dedicated architecture to ensure an effective multitasking control and to offer high numerical computation with huge memory availability. • Real time OS RTEMS and SW libraries (with C/C++ external interfaces) acting as HW abstraction level • SDK with a development environment, a tool chain and an integrated graphical user interface • "Callbacks" management and support to HW events (interrupts, timer, ...), including external devices (via SpaceWire) and priority definition and management. • Large amount of volatile memory on CPU board (64 Mb Flash Memory, 80 Mb SRAM and 2 Gb SDR-SDRAM) and non-volatile (up to 2 Mb EEPROM) • Remote programmability of the LEON bootable code. • Debug access point: for software debug and tuning with LEON serial port (DSU) or for «in flight» monitoring via SpaceWire-RMAP
Mission Command in the Joint Task Force -- Port Opening
2015-06-12
a significant concern. The appearance of lack of disciplined initiative suggests a laissez - faire attitude on the part of DDOC personnel. A...Chiefs of Staff (CJCS) published the Mission Command White Paper on 03 April 2012, launching Mission Command to the forefront of Army leadership ...trust and leadership - subordinate close proximity; furthermore, research has also shown that the same level of trust was not inherent between leaders
2008-02-13
S122-E-008315 (13 Feb. 2008) --- European Space Agency (ESA) astronaut Hans Schlegel, STS-122 mission specialist, participates in the mission's second scheduled session of extravehicular activity (EVA) as construction and maintenance continue on the International Space Station. During the six-hour, 45-minute spacewalk, among other tasks, Schlegel and NASA astronaut Rex Walheim (out of frame), mission specialist, worked to replace a nitrogen tank used to pressurize the station's ammonia cooling system.
2008-02-13
S122-E-008195 (13 Feb. 2008) --- European Space Agency (ESA) astronaut Hans Schlegel, STS-122 mission specialist, participates in the mission's second scheduled session of extravehicular activity (EVA) as construction and maintenance continue on the International Space Station. During the six-hour, 45-minute spacewalk, among other tasks, Schlegel and NASA astronaut Rex Walheim (out of frame), mission specialist, worked to replace a nitrogen tank used to pressurize the station's ammonia cooling system.
2008-02-13
S122-E-008325 (13 Feb. 2008) --- European Space Agency (ESA) astronaut Hans Schlegel, STS-122 mission specialist, participates in the mission's second scheduled session of extravehicular activity (EVA) as construction and maintenance continue on the International Space Station. During the six-hour, 45-minute spacewalk, among other tasks, Schlegel and NASA astronaut Rex Walheim (out of frame), mission specialist, worked to replace a nitrogen tank used to pressurize the station's ammonia cooling system.
2008-02-13
S122-E-008219 (13 Feb. 2008) --- European Space Agency (ESA) astronaut Hans Schlegel, STS-122 mission specialist, participates in the mission's second scheduled session of extravehicular activity (EVA) as construction and maintenance continue on the International Space Station. During the six-hour, 45-minute spacewalk, among other tasks, Schlegel and NASA astronaut Rex Walheim (out of frame), mission specialist, worked to replace a nitrogen tank used to pressurize the station's ammonia cooling system.
CDR Altman and MS Massimino in airlock prior to EVA 4
2002-03-07
STS109-E-5688 (7 March 2002) --- Astronaut Scott D. Altman, mission commander, assists astronaut Michael J. Massimino, mission specialist, with suit-donning tasks prior to the STS-109 mission's fourth space walk (EVA-4). Astronauts Massimino and James H. Newman went on to install the new Advanced Camera for Surveys (ACS) on the Hubble Space Telescope (HST). The image was recorded with a digital still camera.
Alloy undercooling experiments
NASA Technical Reports Server (NTRS)
Flemings, Merton C.; Matson, Douglas M.
1995-01-01
The research accomplished during 1995 can be organized into three parts. The first task involves analyzing the results of microgravity experiments carried out using TEMPUS hardware during the IML-2 mission on STS-65. The second part was to finalize ground-based experimentation which supported the above flight sample analysis. The final part was to provide technical support for post-flight mission activities specifically aimed at improving TEMPUS performance for potential future missions.
Flight telerobotic servicer legacy
NASA Astrophysics Data System (ADS)
Shattuck, Paul L.; Lowrie, James W.
1992-11-01
The Flight Telerobotic Servicer (FTS) was developed to enhance and provide a safe alternative to human presence in space. The first step for this system was a precursor development test flight (DTF-1) on the Space Shuttle. DTF-1 was to be a pathfinder for manned flight safety of robotic systems. The broad objectives of this mission were three-fold: flight validation of telerobotic manipulator (design, control algorithms, man/machine interfaces, safety); demonstration of dexterous manipulator capabilities on specific building block tasks; and correlation of manipulator performance in space with ground predictions. The DTF-1 system is comprised of a payload bay element (7-DOF manipulator with controllers, end-of-arm gripper and camera, telerobot body with head cameras and electronics module, task panel, and MPESS truss) and an aft flight deck element (force-reflecting hand controller, crew restraint, command and display panel and monitors). The approach used to develop the DTF-1 hardware, software and operations involved flight qualification of components from commercial, military, space, and R controller, end-of-arm tooling, force/torque transducer) and the development of the telerobotic system for space applications. The system is capable of teleoperation and autonomous control (advances state of the art); reliable (two-fault tolerance); and safe (man-rated). Benefits from the development flight included space validation of critical telerobotic technologies and resolution of significant safety issues relating to telerobotic operations in the Shuttle bay or in the vicinity of other space assets. This paper discusses the lessons learned and technology evolution that stemmed from developing and integrating a dexterous robot into a manned system, the Space Shuttle. Particular emphasis is placed on the safety and reliability requirements for a man-rated system as these are the critical factors which drive the overall system architecture. Other topics focused on include: task requirements and operational concepts for servicing and maintenance of space platforms; origins of technology for dexterous robotic systems; issues associated with space qualification of components; and development of the industrial base to support space robotics.
Planning the FUSE Mission Using the SOVA Algorithm
NASA Technical Reports Server (NTRS)
Lanzi, James; Heatwole, Scott; Ward, Philip R.; Civeit, Thomas; Calvani, Humberto; Kruk, Jeffrey W.; Suchkov, Anatoly
2011-01-01
Three documents discuss the Sustainable Objective Valuation and Attainability (SOVA) algorithm and software as used to plan tasks (principally, scientific observations and associated maneuvers) for the Far Ultraviolet Spectroscopic Explorer (FUSE) satellite. SOVA is a means of managing risk in a complex system, based on a concept of computing the expected return value of a candidate ordered set of tasks as a product of pre-assigned task values and assessments of attainability made against qualitatively defined strategic objectives. For the FUSE mission, SOVA autonomously assembles a week-long schedule of target observations and associated maneuvers so as to maximize the expected scientific return value while keeping the satellite stable, managing the angular momentum of spacecraft attitude- control reaction wheels, and striving for other strategic objectives. A six-degree-of-freedom model of the spacecraft is used in simulating the tasks, and the attainability of a task is calculated at each step by use of strategic objectives as defined by use of fuzzy inference systems. SOVA utilizes a variant of a graph-search algorithm known as the A* search algorithm to assemble the tasks into a week-long target schedule, using the expected scientific return value to guide the search.
Astronaut Andrew S. W. Thomas, mission specialist, interrupts a Spacehab task to pose for an
NASA Technical Reports Server (NTRS)
1996-01-01
STS-77 ESC VIEW --- Astronaut Andrew S. W. Thomas, mission specialist, interrupts a Spacehab task to pose for an Electronic Still Camera (ESC) snapshot inside the Spacehab Module onboard the Earth-orbiting Space Shuttle Endeavour. In upper left is the view port which crew members had used for viewing and photographing operations with the Spartan 207/Inflatable Antenna Experiment (IAE). Thomas has his hand on an aft-bulkhead-mounted locker. The Space Experiment Facility (SEF), designed and managed by the University of Alabama, is just behind his left shoulder.
NASA Astrophysics Data System (ADS)
The technical progress achieved during the period 11 January through 31 March 1991 on Contract DE-AC03-91SF18852.000 Radioisotope Thermoelectric Generators and ancillary activities is described. The system contract consists of the following tasks: (1) Spacecraft Integration and Liaison; (2) Engineering Support; (3) Safety; (4) Qualify Unicouple Fabrication; (5) ETG Fabrication, Assembly and Test; (6) GSE; (7) RTG Shipping and Launch Support; (8) Designs, Reviews, and Mission Applications; (9) Project Management, Quality Assurance and Reliability; and (10) CAGO Acquisition (Capital Funds). The progress achieved is broken down into these tasks.
Mission-Centered Network Models: Defending Mission-Critical Tasks From Deception
2015-09-29
celebrities ). In military applications, networked operations offer an effective way to reduce the footprint of a force, but become a center of gravity...from,-used-by-trust-algorithms-to-assess-quality-and- trustworthiness - • Technical&challenge:-Developing-standard-representa3ons-for-provenance-that
NASA Goddard Space Flight Center
NASA Technical Reports Server (NTRS)
Carter, David; Wetzel, Scott
2000-01-01
The NASA SLR Operational Center is responsible for: 1) NASA SLR network control, sustaining engineering, and logistics; 2) ILRS mission operations; and 3) ILRS and NASA SLR data operations. NASA SLR network control and sustaining engineering tasks include technical support, daily system performance monitoring, system scheduling, operator training, station status reporting, system relocation, logistics and support of the ILRS Networks and Engineering Working Group. These activities ensure the NASA SLR systems are meeting ILRS and NASA mission support requirements. ILRS mission operations tasks include mission planning, mission analysis, mission coordination, development of mission support plans, and support of the ILRS Missions Working Group. These activities ensure than new mission and campaign requirements are coordinated with the ILRS. Global Normal Points (NP) data, NASA SLR FullRate (FR) data, and satellite predictions are managed as part of data operations. Part of this operation includes supporting the ILRS Data Formats and Procedures Working Group. Global NP data operations consist of receipt, format and data integrity verification, archiving and merging. This activity culminates in the daily electronic transmission of NP files to the CDDIS. Currently of all these functions are automated. However, to ensure the timely and accurate flow of data, regular monitoring and maintenance of the operational software systems, computer systems and computer networking are performed. Tracking statistics between the stations and the data centers are compared periodically to eliminate lost data. Future activities in this area include sub-daily (i.e., hourly) NP data management, more stringent data integrity tests, and automatic station notification of format and data integrity issues.
Towards an integral computer environment supporting system operations analysis and conceptual design
NASA Technical Reports Server (NTRS)
Barro, E.; Delbufalo, A.; Rossi, F.
1994-01-01
VITROCISET has in house developed a prototype tool named System Dynamic Analysis Environment (SDAE) to support system engineering activities in the initial definition phase of a complex space system. The SDAE goal is to provide powerful means for the definition, analysis, and trade-off of operations and design concepts for the space and ground elements involved in a mission. For this purpose SDAE implements a dedicated modeling methodology based on the integration of different modern (static and dynamic) analysis and simulation techniques. The resulting 'system model' is capable of representing all the operational, functional, and behavioral aspects of the system elements which are part of a mission. The execution of customized model simulations enables: the validation of selected concepts with respect to mission requirements; the in-depth investigation of mission specific operational and/or architectural aspects; and the early assessment of performances required by the system elements to cope with mission constraints and objectives. Due to its characteristics, SDAE is particularly tailored for nonconventional or highly complex systems, which require a great analysis effort in their early definition stages. SDAE runs under PC-Windows and is currently used by VITROCISET system engineering group. This paper describes the SDAE main features, showing some tool output examples.
Report of the Special Task Force to Study Not-for-Profit Hospitals and Unsponsored Charity Care.
Anderson, R J; Milburn, L T
1990-04-01
Texas not-for-profit hospitals recently received intense scrutiny regarding their involvement in charity-related contributions when Texas Attorney General Jim Mattox formed the Task Force to Study Not-for-Profit Hospitals and Unsponsored Charity Care. This article details the task force's recommendations concerning charity care obligations of Texas not-for-profit hospitals. Setting the stage for these recommendations was a broad definition of charitable services that included costs for delivering services to indigents and for providing community services to fulfill the hospital's charitable, religious, educational, research, or eleemosynary purposes. The task force unanimously agreed that a mandated level of charity care was incongruent with the hospitals' individual missions and specific community needs, but they supported the formation of standard accounting procedures for charitable services and the voluntary submission of their mission statements to the attorney general of Texas. While the hospitals' role in providing charitable services is very important, the task force emphasized that the overall need for adequate financing and reimbursement of health care is a societal problem that needs specific state and federal actions.
Advanced Technologies for Future Spacecraft Cockpits and Space-based Control Centers
NASA Technical Reports Server (NTRS)
Garcia-Galan, Carlos; Uckun, Serdar; Gregory, William; Williams, Kerry
2006-01-01
The National Aeronautics and Space Administration (NASA) is embarking on a new era of Space Exploration, aimed at sending crewed spacecraft beyond Low Earth Orbit (LEO), in medium and long duration missions to the Lunar surface, Mars and beyond. The challenges of such missions are significant and will require new technologies and paradigms in vehicle design and mission operations. Current roles and responsibilities of spacecraft systems, crew and the flight control team, for example, may not be sustainable when real-time support is not assured due to distance-induced communication lags, radio blackouts, equipment failures, or other unexpected factors. Therefore, technologies and applications that enable greater Systems and Mission Management capabilities on-board the space-based system will be necessary to reduce the dependency on real-time critical Earth-based support. The focus of this paper is in such technologies that will be required to bring advance Systems and Mission Management capabilities to space-based environments where the crew will be required to manage both the systems performance and mission execution without dependence on the ground. We refer to this concept as autonomy. Environments that require high levels of autonomy include the cockpits of future spacecraft such as the Mars Exploration Vehicle, and space-based control centers such as a Lunar Base Command and Control Center. Furthermore, this paper will evaluate the requirements, available technology, and roadmap to enable full operational implementation of onboard System Health Management, Mission Planning/re-planning, Autonomous Task/Command Execution, and Human Computer Interface applications. The technology topics covered by the paper include enabling technology to perform Intelligent Caution and Warning, where the systems provides directly actionable data for human understanding and response to failures, task automation applications that automate nominal and Off-nominal task execution based on human input or integrated health state-derived conditions. Shifting from Systems to Mission Management functions, we discuss the role of automated planning applications (tactical planning) on-board, which receive data from the other cockpit automation systems and evaluate the mission plan against the dynamic systems and mission states and events, to provide the crew with capabilities that enable them to understand, change, and manage the timeline of their mission. Lastly, we discuss the role of advanced human interface technologies that organize and provide the system md mission information to the crew in ways that maximize their situational awareness and ability to provide oversight and control of aLl the automated data and functions.
Evidence Report: Risk of Hypobaric Hypoxia from the Exploration Atmosphere
NASA Technical Reports Server (NTRS)
Norcross, Jason R.; Conkin, Johnny; Wessel, James H., III; Norsk, Peter; Law, Jennifer; Arias, Diana; Goodwin, Tom; Crucian, Brian; Whitmire, Alexandra; Bloomberg, Jacob;
2015-01-01
Extravehicular activity (EVA) is at the core of a manned space exploration program. Some elements of exploration may be safely and effectively performed by robots, but certain critical elements will require the trained, assertive, and reasoning mind of a human crewmember. To effectively use these skills, NASA needs a safe, effective, and efficient EVA component integrated into the human exploration program. The EVA preparation time should be minimized and the suit pressure should be low to accommodate EVA tasks without causing undue fatigue, physical discomfort, or suit-related trauma. Commissioned in 2005, the Exploration Atmospheres Working Group (EAWG) had the primary goal of recommending to NASA an internal environment that allowed efficient and repetitive EVAs for missions that were to be enabled by the former Constellation Program. At the conclusion of the EAWG meeting, the 8.0 psia and 32% oxygen (O2) environment were recommended for EVA-intensive phases of missions. After re-evaluation in 2012, the 8/32 environment was altered to 8.2 psia and 34% O2 to reduce the hypoxic stress to a crewmember. These two small changes increase alveolar O2 pressure by 11 mmHg, which is expected to significantly benefit crewmembers. The 8.2/34 environment (inspired O2 pressure = 128 mmHg) is also physiologically equivalent to the staged decompression atmosphere of 10.2 psia / 26.5% O2 (inspired O2 pressure = 127 mmHg) used on 34 different shuttle missions for approximately a week each flight. As a result of selecting this internal environment, NASA gains the capability for efficient EVA with low risk of decompression sickness (DCS), but not without incurring the additional negative stimulus of hypobaric hypoxia to the already physiologically challenging spaceflight environment. This report provides a review of the human health and performance risks associated with the use of the 8.2 psia / 34% O2 environment during spaceflight. Of most concern are the potential effects on the central nervous system (CNS), including increased intracranial pressure, visual impairment, sensorimotor dysfunction, and oxidative damage. Other areas of focus include validation of the DCS mitigation strategy, incidence and treatment of transient acute mountain sickness (AMS), development of new exercise countermeasure protocols, effective food preparation at 8.2 psia, assurance of quality sleep, and prevention of suit-induced injury. Although missions proposing to use an 8.2/34 environment are still years away, it is recommended that these studies begin early enough to ensure that the correct decisions pertaining to vehicle design, mission operational concepts, and human health countermeasures are appropriately informed.
Affordable Development and Demonstration of a Small NTR Engine and Stage: How Small is Big Enough?
NASA Technical Reports Server (NTRS)
Borowski, Stanley K.; Sefcik, Robert J.; Fittje, James E.; McCurdy, David R.; Qualls, Arthur L.; Schnitzler, Bruce G.; Werner, James E.; Weitzberg (Abraham); Joyner, Claude R.
2015-01-01
The Nuclear Thermal Rocket (NTR) derives its energy from fission of uranium-235 atoms contained within fuel elements that comprise the engine's reactor core. It generates high thrust and has a specific impulse potential of approximately 900 seconds - a 100% increase over today's best chemical rockets. The Nuclear Thermal Propulsion (NTP) project, funded by NASA's AES program, includes five key task activities: (1) Recapture, demonstration, and validation of heritage graphite composite (GC) fuel (selected as the "Lead Fuel" option); (2) Engine Conceptual Design; (3) Operating Requirements Definition; (4) Identification of Affordable Options for Ground Testing; and (5) Formulation of an Affordable Development Strategy. During FY'14, a preliminary DDT&E plan and schedule for NTP development was outlined by GRC, DOE and industry that involved significant system-level demonstration projects that included GTD tests at the NNSS, followed by a FTD mission. To reduce cost for the GTD tests and FTD mission, small NTR engines, in either the 7.5 or 16.5 klbf thrust class, were considered. Both engine options used GC fuel and a "common" fuel element (FE) design. The small approximately 7.5 klbf "criticality-limited" engine produces approximately 157 megawatts of thermal power (MWt) and its core is configured with parallel rows of hexagonal-shaped FEs and tie tubes (TTs) with a FE to TT ratio of approximately 1:1. The larger approximately 16.5 klbf Small Nuclear Rocket Engine (SNRE), developed by LANL at the end of the Rover program, produces approximately 367 MWt and has a FE to TT ratio of approximately 2:1. Although both engines use a common 35 inch (approximately 89 cm) long FE, the SNRE's larger diameter core contains approximately 300 more FEs needed to produce an additional 210 MWt of power. To reduce the cost of the FTD mission, a simple "1-burn" lunar flyby mission was considered to reduce the LH2 propellant loading, the stage size and complexity. Use of existing and flight proven liquid rocket and stage hardware (e.g., from the RL10B-2 engine and Delta Cryogenic Second Stage) was also maximized to further aid affordability. This paper examines the pros and cons of using these two small engine options, including their potential to support future human exploration missions to the Moon, near Earth asteroids, and Mars, and recommends a preferred size. It also provides a preliminary assessment of the key activities, development options, and schedule required to affordably build, ground test and fly a small NTR engine and stage within a 10-year timeframe.
NASA Astrophysics Data System (ADS)
Cotton, P. D.; Andersen, O.; Stenseng, L.; Boy, F.; Cancet, M.; Cipollini, P.; Gommenginger, C.; Dinardo, S.; Egido, A.; Fernandes, M. J.; Garcia, P. N.; Moreau, T.; Naeije, M.; Scharroo, R.; Lucas, B.; Benveniste, J.
2016-08-01
The ESA CryoSat mission is the first space mission to carry a radar altimeter that can operate in Synthetic Aperture Radar (SAR) mode. Although the prime objective of the CryoSat mission is dedicated to monitoring land and marine ice, the SAR mode capability of the CryoSat SIRAL altimeter also presents significant potential benefits for ocean applications including improved range precision and finer along track spatial resolution.The "Cryosat Plus for Oceans" (CP4O) project, supported by the ESA Support to Science Element (STSE) Programme and by CNES, was dedicated to the exploitation of Cryosat-2 data over the open and coastal ocean. The general objectives of the CP4O project were: To build a sound scientific basis for new oceanographic applications of Cryosat-2 data; to generate and evaluate new methods and products that will enable the full exploitation of the capabilities of the Cryosat-2 SIRAL altimeter, and to ensure that the scientific return of the Cryosat-2 mission is maximised.This task was addressed within four specific themes: Open Ocean Altimetry; High Resolution Coastal Zone Altimetry; High Resolution Polar Ocean Altimetry; High Resolution Sea-Floor Bathymetry, with further work in developing improved geophysical corrections. The Cryosat Plus 4 Oceans (CP4O) consortium brought together a uniquely strong team of key European experts to develop and validate new algorithms and products to enable users to fully exploit the novel capabilities of the Cryosat-2 mission for observations over ocean. The consortium was led by SatOC (UK), and included CLS (France), Delft University of Technology (The Netherlands), DTU Space (Denmark), isardSat (Spain), National Oceanography Centre (UK), Noveltis (France), Starlab (Spain) and the University of Porto (Portugal).This paper presents an overview of the major results and outlines a proposed roadmap for the further development and exploitation of these results in operational and scientific applications.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schey, Stephen; Francfort, Jim
Battelle Energy Alliance, LLC, managing and operating contractor for the U.S. Department of Energy’s Idaho National Laboratory, is the lead laboratory for the U.S. Department of Energy’s advanced vehicle testing. Battelle Energy Alliance, LLC contracted with Intertek Testing Services, North America to conduct several U.S. Department of Defense-based micro-climate studies to identify potential U.S. Department of Defense transportation systems that are strong candidates for introduction or expansion of plug-in electric vehicles (PEVs). The study included Joint Base Lewis McChord, located in Washington State; Naval Air Station Whidbey Island, located in Washington State; and United States Marine Corp Base Camp Lejeune,more » located in North Carolina. The project was divided into four tasks for each of the three bases studied. Task 1 consisted of surveying the non-tactical fleet of vehicles to begin review of vehicle mission assignments and types of vehicles in service. In Task 2, the daily operational characteristics of the vehicles were identified to select vehicles for further monitoring and attachment of data loggers. Task 3 recorded vehicle movements in order to characterize the vehicles’ missions. Results of the data analysis and observations were provided. Individual observations of these selected vehicles provided the basis for recommendations related to PEV adoption (i.e., whether a battery electric vehicle or plug-in hybrid electric vehicle [collectively referred to as PEVs] can fulfill the mission requirements). It also provided the basis for recommendations related to placement of PEV charging infrastructure. In Task 4, an implementation approach was provided for near-term adoption of PEVs into the respective fleets. Each facility was provided detailed reports on each of these tasks. This paper summarizes and provides observations on the project and completes Intertek’s required actions.« less
Human Health and Performance Considerations for Exploration of Near-Earth Asteroids
NASA Technical Reports Server (NTRS)
Kundrot, Craig; Steinberg, Susan; Charles, John
2010-01-01
This presentation will describe the human health and performance issues that are anticipated for the human exploration of near-Earth asteroids (NEA). Humans are considered a system in the design of any such deep-space exploration mission, and exploration of NEA presents unique challenges for the human system. Key factors that define the mission are those that are strongly affected by distance and duration. The most critical of these is deep-space radiation exposure without even the temporary shielding of a nearby large planetary body. The current space radiation permissible exposure limits (PEL) restrict mission duration to 3-10 months depending on age and gender of crewmembers and stage of the solar cycle. Factors that affect mission architecture include medical capability; countermeasures for bone, muscle, and cardiovascular atrophy during continuous weightlessness; restricted food supplies; and limited habitable volume. The design of a habitat that can maintain the physical and psychological health of the crew and support mission operations with limited intervention from Earth will require an integrated research and development effort by NASA s Human Research Program, engineering, and human factors groups. Limited abort and return options for an NEA mission are anticipated to have important effects on crew psychology as well as influence medical supplies and training requirements of the crew. Other important factors are those related to isolation, confinement, communication delays, autonomous operations, task design, small crew size, and even the unchanging view outside the windows for most of the mission. Geological properties of the NEA will influence design of sample handling and containment, and extravehicular activity capabilities including suit ports and tools. A robotic precursor mission that collects basic information on NEA surface properties would reduce uncertainty about these aspects of the mission as well as aid in design of mission architecture and exploration tasks.
Dörrenbächer, Sandra; Müller, Philipp M.; Tröger, Johannes; Kray, Jutta
2014-01-01
Although motivational reinforcers are often used to enhance the attractiveness of trainings of cognitive control in children, little is known about how such motivational manipulations of the setting contribute to separate gains in motivation and cognitive-control performance. Here we provide a framework for systematically investigating the impact of a motivational video-game setting on the training motivation, the task performance, and the transfer success in a task-switching training in middle-aged children (8–11 years of age). We manipulated both the type of training (low-demanding/single-task training vs. high-demanding/task-switching training) as well as the motivational setting (low-motivational/without video-game elements vs. high-motivational/with video-game elements) separately from another. The results indicated that the addition of game elements to a training setting enhanced the intrinsic interest in task practice, independently of the cognitive demands placed by the training type. In the task-switching group, the high-motivational training setting led to an additional enhancement of task and switching performance during the training phase right from the outset. These motivation-induced benefits projected onto the switching performance in a switching situation different from the trained one (near-transfer measurement). However, in structurally dissimilar cognitive tasks (far-transfer measurement), the motivational gains only transferred to the response dynamics (speed of processing). Hence, the motivational setting clearly had a positive impact on the training motivation and on the paradigm-specific task-switching abilities; it did not, however, consistently generalize on broad cognitive processes. These findings shed new light on the conflation of motivation and cognition in childhood and may help to refine guidelines for designing adequate training interventions. PMID:25431564
The Effects of Long-Duration Spaceflight on Training Retention and Transfer
NASA Technical Reports Server (NTRS)
Barshi, Immanuel; Healy, Alice; Dempsey, Donna L.; McGuire, Kerry M.; Landon, Lauren B.
2018-01-01
Training our crew members for long duration, exploration-class missions will have to maximize long-term retention and transfer of the trained skills. The expected duration of the missions, our inability to predict all the possible tasks the crew will be called upon to perform, and the low training-to-mission time ratio require that the training be maximally effective such that the skills acquired during training will be retained and will be transferrable across a wide range of specific tasks that are different from the particular tasks used during training. However, to be able to design training that can achieve these ambitious goals, we must first understand the ways in which long-duration spaceflight affects training retention and transfer. Current theories of training retention and transfer are largely based on experimental studies conducted at university laboratories using undergraduate students as participants. Furthermore, all such studies have been conducted on Earth. We do not know how well the results of these studies predict the performance of crew members. More specifically, we do not know how well the results of these studies predict the performance of crew members in space and especially during long-duration missions. To address this gap in our knowledge, the current on-going study seeks to test the null hypothesis that performance of university undergraduate students on Earth on training retention and transfer tests do in fact predict accurately the performance of crew members during long-duration spaceflights. To test this hypothesis, the study employs a single 16-month long experimental protocol with 3 different participant groups: undergraduate university students, crew members on the ground, and crew members in space. Results from this study will be presented upon its completion. This poster presents results of study trials of the two tasks used in this study: a data entry task and a mapping task. By researching established training principles, by examining future needs, and by using current practices in spaceflight training as test beds, this research project is mitigating program risks and generating templates and requirements to meet future training needs.
The Effects of Long-Duration Spaceflight on Training Retention and Transfer
NASA Technical Reports Server (NTRS)
Barshi, Immanuel; Healy, Alice; Dempsey, Donna L.; Mcguire, Kerry; Landon, Lauren
2017-01-01
Training our crew members for long duration, exploration-class missions will have to maximize long-term retention and transfer of the trained skills. The expected duration of the missions, our inability to predict all the possible tasks the crew will be called upon to perform, and the low training-to-mission time ratio require that the training be maximally effective such that the skills acquired during training will be retained and will be transferrable across a wide range of specific tasks that are different from the particular tasks used during training. However, to be able to design training that can achieve these ambitious goals, we must first understand the ways in which long-duration spaceflight affects training retention and transfer. Current theories of training retention and transfer are largely based on experimental studies conducted at university laboratories using undergraduate students as participants. Furthermore, all such studies have been conducted on Earth. We do not know how well the results of these studies predict the performance of crew members. More specifically, we do not know how well the results of these studies predict the performance of crew members in space and especially during long-duration missions. To address this gap in our knowledge, the current on-going study seeks to test the null hypothesis that performance of university undergraduate students on Earth on training retention and transfer tests do in fact predict accurately the performance of crew members during long-duration spaceflights. To test this hypothesis, the study employs a single 16-month long experimental protocol with 3 different participant groups: undergraduate university students, crew members on the ground, and crew members in space. Results from this study will be presented upon its completion. This poster presents results of study trials of the two tasks used in this study: a data entry task and a mapping task. By researching established training principles, by examining future needs, and by using current practices in spaceflight training as test beds, this research project is mitigating program risks and generating templates and requirements to meet future training needs.
Reference Models for Multi-Layer Tissue Structures
2016-09-01
simulation, finite element analysis 16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF ABSTRACT 18. NUMBER OF PAGES 19a. NAME OF RESPONSIBLE PERSON USAMRMC...Physiologically realistic, fully specimen-specific, nonlinear reference models. Tasks. Finite element analysis of non-linear mechanics of cadaver...models. Tasks. Finite element analysis of non-linear mechanics of multi-layer tissue regions of human subjects. Deliverables. Partially subject- and
High-Power Hall Propulsion Development at NASA Glenn Research Center
NASA Technical Reports Server (NTRS)
Kamhawi, Hani; Manzella, David H.; Smith, Timothy D.; Schmidt, George R.
2014-01-01
The NASA Office of the Chief Technologist Game Changing Division is sponsoring the development and testing of enabling technologies to achieve efficient and reliable human space exploration. High-power solar electric propulsion has been proposed by NASA's Human Exploration Framework Team as an option to achieve these ambitious missions to near Earth objects. NASA Glenn Research Center (NASA Glenn) is leading the development of mission concepts for a solar electric propulsion Technical Demonstration Mission. The mission concepts are highlighted in this paper but are detailed in a companion paper. There are also multiple projects that are developing technologies to support a demonstration mission and are also extensible to NASA's goals of human space exploration. Specifically, the In-Space Propulsion technology development project at NASA Glenn has a number of tasks related to high-power Hall thrusters including performance evaluation of existing Hall thrusters; performing detailed internal discharge chamber, near-field, and far-field plasma measurements; performing detailed physics-based modeling with the NASA Jet Propulsion Laboratory's Hall2De code; performing thermal and structural modeling; and developing high-power efficient discharge modules for power processing. This paper summarizes the various technology development tasks and progress made to date
High-Power Hall Propulsion Development at NASA Glenn Research Center
NASA Technical Reports Server (NTRS)
Kamhawi, Hani; Manzella, David H.; Smith, Timothy D.; Schmidt, George R.
2012-01-01
The NASA Office of the Chief Technologist Game Changing Division is sponsoring the development and testing of enabling technologies to achieve efficient and reliable human space exploration. High-power solar electric propulsion has been proposed by NASA's Human Exploration Framework Team as an option to achieve these ambitious missions to near Earth objects. NASA Glenn Research Center is leading the development of mission concepts for a solar electric propulsion Technical Demonstration Mission. The mission concepts are highlighted in this paper but are detailed in a companion paper. There are also multiple projects that are developing technologies to support a demonstration mission and are also extensible to NASA's goals of human space exploration. Specifically, the In-Space Propulsion technology development project at the NASA Glenn has a number of tasks related to high-power Hall thrusters including performance evaluation of existing Hall thrusters; performing detailed internal discharge chamber, near-field, and far-field plasma measurements; performing detailed physics-based modeling with the NASA Jet Propulsion Laboratory's Hall2De code; performing thermal and structural modeling; and developing high-power efficient discharge modules for power processing. This paper summarizes the various technology development tasks and progress made to date.
1969-02-20
S69-19798 (February 1969) --- Composite of three artist's concepts illustrating key events, tasks and activities on the tenth day of the Apollo 9 mission, including Command Module and Service Modules separation, re-entry, and Atlantic splashdown. The Apollo 9 mission will evaluate spacecraft lunar module systems performance during manned Earth-orbital flight.
Manipulator system man-machine interface evaluation program. [technology assessment
NASA Technical Reports Server (NTRS)
Malone, T. B.; Kirkpatrick, M.; Shields, N. L.
1974-01-01
Application and requirements for remote manipulator systems for future space missions were investigated. A manipulator evaluation program was established to study the effects of various systems parameters on operator performance of tasks necessary for remotely manned missions. The program and laboratory facilities are described. Evaluation criteria and philosophy are discussed.
Lower-Cost, Relocatable Lunar Polar Lander and Lunar Surface Sample Return Probes
NASA Technical Reports Server (NTRS)
Amato, G. Michael; Garvin, James B.; Burt, I. Joseph; Karpati, Gabe
2011-01-01
Key science and exploration objectives of lunar robotic precursor missions can be achieved with the Lunar Explorer (LEx) low-cost, robotic surface mission concept described herein. Selected elements of the LEx concept can also be used to create a lunar surface sample return mission that we have called Boomerang
The Evolving Community College Mission in the Context of State Governance.
ERIC Educational Resources Information Center
Tollefson, Terrence A.
State-level governance of community colleges has become increasingly common in the United States, with governance decisions affecting budget appropriations, rules on how appropriations can be spent, and the missions that colleges must strive to fulfill. The most common elements of state-level community college mission statements over the past 100…
Low Cost Mission Operations Workshop. [Space Missions
NASA Technical Reports Server (NTRS)
1994-01-01
The presentations given at the Low Cost (Space) Mission Operations (LCMO) Workshop are outlined. The LCMO concepts are covered in four introductory sections: Definition of Mission Operations (OPS); Mission Operations (MOS) Elements; The Operations Concept; and Mission Operations for Two Classes of Missions (operationally simple and complex). Individual presentations cover the following topics: Science Data Processing and Analysis; Mis sion Design, Planning, and Sequencing; Data Transport and Delivery, and Mission Coordination and Engineering Analysis. A list of panelists who participated in the conference is included along with a listing of the contact persons for obtaining more information concerning LCMO at JPL. The presentation of this document is in outline and graphic form.
Mars Science Laboratory Entry Guidance Improvements for Mars 2018 (DRAFT)
NASA Technical Reports Server (NTRS)
Garcia-Llama, Eduardo; Winski, Richard G.; Shidner, Jeremy D.; Ivanov, Mark C.; Grover, Myron R.; Prakash, Ravi
2011-01-01
In 2011, the Mars Science Laboratory (MSL) will be launched in a mission to deliver the largest and most capable rover to date to the surface of Mars. A follow on MSL-derived mission, referred to as Mars 2018, is planned for 2018. Mars 2018 goals include performance enhancements of the Entry, Descent and Landing over that of its predecessor MSL mission of 2011. This paper will discuss the main elements of the modified 2018 EDL preliminary design that will increase performance on the entry phase of the mission. In particular, these elements will increase the parachute deploy altitude to allow for more time margin during the subsequent descent and landing phases and reduce the delivery ellipse size at parachute deploy through modifications in the entry reference trajectory design, guidance trigger logic design, and the effect of additional navigation hardware.
Human Research Program: Space Human Factors and Habitability Element
NASA Technical Reports Server (NTRS)
Russo, Dane M.
2007-01-01
The three project areas of the Space Human Factors and Habitability Element work together to achieve a working and living environment that will keep crews healthy, safe, and productive throughout all missions -- from Earth orbit to Mars expeditions. The Advanced Environmental Health (AEH) Project develops and evaluates advanced habitability systems and establishes requirements and health standards for exploration missions. The Space Human Factors Engineering (SHFE) Project s goal is to ensure a safe and productive environment for humans in space. With missions using new technologies at an ever-increasing rate, it is imperative that these advances enhance crew performance without increasing stress or risk. The ultimate goal of Advanced Food Technology (AFT) Project is to develop and deliver technologies for human centered spacecraft that will support crews on missions to the moon, Mars, and beyond.
NASA Technical Reports Server (NTRS)
1974-01-01
The work breakdown structure (WBS) dictionary for the Earth Observatory Satellite (EOS) is defined. The various elements of the EOS program are examined to include the aggregate of hardware, computer software, services, and data required to develop, produce, test, support, and operate the space vehicle and the companion ground data management system. A functional analysis of the EOS mission is developed. The operations for three typical EOS missions, Delta, Titan, and Shuttle launched are considered. The functions were determined for the top program elements, and the mission operations, function 2.0, was expanded to level one functions. Selection of ten level one functions for further analysis to level two and three functions were based on concern for the EOS operations and associated interfaces.
Benefits Of Mission Command: Balance Of Philosophy And System
2016-05-26
The Benefits of Mission Command: Balance of Philosophy and System A Monograph by MAJ Robert R. Rodock United...Sa. CONTRACT NUMBER The Benefits of Mission Command: Balance of Philosophy and System Sb. GRANT NUMBER Sc. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) Sd... philosophy and system of mission command, when exercised in balance, provides US Anny leaders the agility and adaptability to ’see the elephant’ sooner
A study of an orbital radar mapping mission to Venus. Volume 1: Summary
NASA Technical Reports Server (NTRS)
1973-01-01
A preliminary design of a Venus radar mapping orbiter mission and spacecraft was developed. The important technological problems were identified and evaluated. The study was primarily concerned with trading off alternate ways of implementing the mission and examining the most attractive concepts in order to assess technology requirements. Compatible groupings of mission and spacecraft parameters were analyzed by examining the interaction of their functioning elements and assessing their overall cost effectiveness in performing the mission.
NASA Astrophysics Data System (ADS)
Gontier, Camille
2017-11-01
The purpose of this study is to detect mind-wandering in an Extra-Vehicular Activity (EVA) context during a long supervision task. Detection is realized using an electro-cardiogram and measures of heart rate variability. Experienced by everyone, mind-wandering depicts the state of mind where thoughts are not related to the current action. Its deleterious aspect regarding performance suggests a need to take mind-wandering seriously as an impediment to manned space missions' safety. Previous research confirmed the hypothesis according to which several physiological responses can be used to track down mind-wandering. ECG recordings are both easy to obtain and analyze, statistically related to mind-wandering, and easy to record during extra-vehicular activities. Data analyzed in this paper have been recorded during a Mars-analog mission (MDRS 164), from February 20 to March 6, 2016 at the Mars Desert Research Station (Utah). During various cognitive tasks, the subject had his ECG and awareness levels monitored at the same time to see if a correlation between these two measures can be used in a Mars-mission environment. At different time intervals, the subject was interrupted using the thought probe method to inquire about his thoughts. Heart Rate Variability (HRV, which power in high frequencies is related to the parasympathetic system and is expected to vary with mind-wandering) was then computed from recorded data, and its statistical changes during on-task and off-task thoughts were assessed. Although data revealed no significant differences nor coherent trends in HRV-related metrics between the two conditions, results are paving the way towards a better understanding of ECG-recordings and their use during space-analog missions.
Space transfer concepts and analysis for exploration missions
NASA Technical Reports Server (NTRS)
1990-01-01
The progress and results are summarized for mission/system requirements database; mission analysis; GN and C (Guidance, Navigation, and Control), aeroheating, Mars landing; radiation protection; aerobrake mass analysis; Shuttle-Z, TMIS (Trans-Mars Injection Stage); Long Duration Habitat Trade Study; evolutionary lunar and Mars options; NTR (Nuclear Thermal Rocket); NEP (Nuclear Electric Propulsion) update; SEP (Solar Electric Propulsion) update; orbital and space-based requirements; technology; piloted rover; programmatic task; and evolutionary and innovative architecture.
Analysis of selected deep space missions
NASA Technical Reports Server (NTRS)
West, W. S.; Holman, M. L.; Bilsky, H. W.
1971-01-01
Task 1 of the NEW MOONS (NASA Evaluation With Models of Optimized Nuclear Spacecraft) study is discussed. Included is an introduction to considerations of launch vehicles, spacecraft, spacecraft subsystems, and scientific objectives associated with precursory unmanned missions to Jupiter and thence out of the ecliptic plane, as well as other missions to Jupiter and other outer planets. Necessity for nuclear power systems is indicated. Trajectories are developed using patched conic and n-body computer techniques.
Forrester works at the P6 Truss during EVA 2 on STS-117 Mission
2007-06-14
S117-E-07313 (13 June 2007) --- Astronauts Patrick Forrester and Steven Swanson (out of frame), both STS-117 mission specialists, participate in the mission's second planned session of extravehicular activity (EVA), as construction resumes on the International Space Station. Among other tasks, Forrester and Swanson removed all of the launch locks holding the 10-foot-wide solar alpha rotary joint in place and began the solar array retraction.
Forrester works at the P6 Truss during EVA 2 on STS-117 Mission
2007-06-14
S117-E-07315 (13 June 2007) --- Astronauts Patrick Forrester and Steven Swanson (out of frame), both STS-117 mission specialists, participate in the mission's second planned session of extravehicular activity (EVA), as construction resumes on the International Space Station. Among other tasks, Forrester and Swanson removed all of the launch locks holding the 10-foot-wide solar alpha rotary joint in place and began the solar array retraction.
Love, Melvin and Walheim in the A/L prior to EVA 3
2008-02-15
S122-E-008896 (15 Feb. 2008) --- Astronaut Leland Melvin, STS-122 mission specialist, lends his intravehicular support to the two STS-122 mission specialists assigned to the mission's final spacewalk to perform work on the International Space Station. Equipped with their extravehicular mobility units (EMU) and other gear and just about ready to egress the station and begin the day's external tasks are astronauts Stanley Love (left) and Rex Walheim.
Attention theory and training research
NASA Technical Reports Server (NTRS)
Connelly, James G., Jr.; Wickens, Christopher D.; Lintern, Gavan; Harwood, Kelly
1987-01-01
This study used elements of attention theory as a methodological basis to decompose a complex training task in order to improve training efficiency. The complex task was a microcomputer flight simulation where subjects were required to control the stability of their own helicopter while acquiring and engaging enemy helicopers in a threat enviroment. Subjects were divided into whole-task, part-task, and part/open loop adaptive task groups in a transfer of training paradigm. The effect of reducing mental workload at the early stages of learning was examined with respect to the degree that subordinate elements of the complex task could be automated through practice of consistent, learnable stimulus-response relationships. Results revealed trends suggesting the benefit of isolating consistently mapped sub-tasks for part-task training and the presence of a time-sharing skill over and above the skill required for the separate subtasks.
Joint Terminal Attack Controllers Sensors and Lasers Modernization
2012-09-01
and Evaluation Activity MCSC Marine Corps Systems Command MCT Marine Corps Task MCTL Marine Corps Task List MEMS MicroElectroMechanical Systems...functional relationship of the key performance requirements was associated to Marine Corps Tasks ( MCT ), Critical Operational Issues (COIs...to an accomplishment of mission objectives and achievement of desired results [5]. All COIs are linked to a MCT , which are provided within the
ERIC Educational Resources Information Center
Williamson, J. Peter
The Task Force on College and University Endowment Policy examines endowment policy in a broad context. They feel that it is important to preserve private colleges and universities and develop a sense of mission about how best to pursue this objective. The Task Force reviews policy issues faced by managers of endowment funds for institutions of…
NASA Technical Reports Server (NTRS)
1992-01-01
The Earth Orbital Rendezvous (EOR) configuration for the piloted mission is composed of three propulsive elements in addition to the Crew Module (CM): Primary Trans-Lunar Injection (PTLI), Lunar Braking Module (LBM), and Earth Return Module (ERM). The precursor mission is also composed of three propulsive elements in addition to its surface payloads: PTLI, LBM and the Payload Landing Module (PLM). Refer to Volume 1, Section 5.1 and 5.2 for a break-up of the different stages into the four launches. A quick summary is as follows: PTLI is on Launch 1 and 3 while the LBM, PLM, and surface payloads are on Launch 2 and another LBM, ERM, and CM on Launch 4. The precursor mission is designed to be as modular as possible with the piloted mission for developmental cost considerations. The following topics are discussed: launch vehicle description; primary trans-lunar injection stage; lunar braking module; earth return module; crew module; payload landing module; and surface payload description.
Design of a Mars rover and sample return mission
NASA Technical Reports Server (NTRS)
Bourke, Roger D.; Kwok, Johnny H.; Friedlander, Alan
1990-01-01
The design of a Mars Rover Sample Return (MRSR) mission that satisfies scientific and human exploration precursor needs is described. Elements included in the design include an imaging rover that finds and certifies safe landing sites and maps rover traverse routes, a rover that operates the surface with an associated lander for delivery, and a Mars communications orbiter that allows full-time contact with surface elements. A graph of MRSR candidate launch vehice performances is presented.
Human Research Program Requirements Document
NASA Technical Reports Server (NTRS)
Rieger, Gabe
2007-01-01
The purpose of this document is to define, document, and allocate the Human Research Program (HRP) requirements to the HRP Program elements. It establishes the flow-down of requirements from Exploration Systems Mission Directorate (ESMD) and Office of the Chief Health and Medical Officer (OCHMO) to the various Program Elements of the HRP to ensure that human research and technology countermeasure investments are made to insure the delivery of countermeasures and technologies that satisfy ESMD s and OCHMO's exploration mission requirements.
Human Research Program Requirements Document. Human Research Program Revision E
NASA Technical Reports Server (NTRS)
Vargas, Paul
2011-01-01
This document defines, documents, and allocates the Human Research Program (HRP) requirements to the HRP Program Elements. It also establishes the flow of requirements from the Human Exploration and Operations Mission Directorate (HEOMD) and the Office of the Chief Health and Medical Officer (OCHMO) down to the various HRP Program Elements to ensure that human research and technology countermeasure investments support the delivery of countermeasures and technologies that satisfy HEOMD's and OCHMO's exploration mission requirements.
Some problems of selection and evaluation of the Martian suit enclosure concept
NASA Astrophysics Data System (ADS)
Abramov, Isaak; Moiseyev, Nikolay; Stoklitsky, Anatoly
2005-12-01
One of the most important tasks for preparation of a future manned mission to Mars is to create a space suit, which ensures efficient and safe operation of the man on the planet surface. The concept of space suit (SS) utilisation on the Mars surface will be determined mainly by the Mars mission scenario. Currently the preference is given to utilisation of robotics with the crew driving a Mars rover vehicle, whereby the suit will be used solely as an additional safety means. However, one cannot exclude the necessity of a durable self-contained stay of the man outside a pressurised compartment, to pick up, for instance, soil samples or do certain repair work in case of an emergency. The requirements to the Mars suit and especially to the personal self-contained life support system (LSS) will depend in many respects on the Mars environmental conditions, the space vehicle system concept and performance characteristics, the airlock and its interface design, the availability of expendable elements for the LSS, etc. The paper reviews principal problems, which have to be solved during development of the Martian suit. A special attention is paid to the issue of suited man mobility during traversing on the planet surface. The paper also reviews the arguments for application of a suit semi-rigid design concept and evaluates potentialities of using certain elements of the existing "Orlan" type suit. The paper presents results of a number of studies on selection of the planetary SS enclosure concept and on experimental evaluation of mobility of the lower torso and leg enclosures in conjunction with a specially designed prototype model (tentative model) of the SS enclosure.
STS-109 Crew Interviews - Altman
NASA Technical Reports Server (NTRS)
2002-01-01
STS-109 crew Commander Scott D. Altman is seen during a prelaunch interview. He answers questions about his inspiration to become an astronaut and his career path. He gives details on the mission's goals and significance, which are all related to maintenance of the Hubble Space Telescope (HST). After the Columbia Orbiter's rendezvous with the HST, extravehicular activities (EVA) will be focused on several important tasks which include: (1) installing the Advanced Camera for Surveys; (2) installing a cooling system on NICMOS (Near Infrared Camera Multi-Object Spectrometer); (3) repairing the reaction wheel assembly; (4) installing additional solar arrays; (5) augmenting the power control unit; (6) working on the HST's gyros. The reaction wheel assembly task, a late addition to the mission, may necessitate the abandonment of one or more of the other tasks, such as the gyro work.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schey, Stephen; Francfort, Jim
2015-02-01
In Task 1, a survey was completed of the inventory of non-tactical fleet vehicles at the Marine Corps Base Camp Lejeune (MCBCL) to characterize the fleet. This information and characterization was used to select vehicles for further monitoring, which involves data logging of vehicle movements in order to identify the vehicle’s mission and travel requirements. Individual observations of these selected vehicles provide the basis for recommendations related to PEV adoption. It also identifies whether a battery electric vehicle or plug-in hybrid electric vehicle (collectively referred to as PEVs) can fulfill the mission requirements and provides observations related to placement ofmore » PEV charging infrastructure. This report provides the list of vehicles selected by MCBCL and Intertek for further monitoring and fulfills the Task 2 requirements.« less
NASA Technical Reports Server (NTRS)
1980-01-01
A program in the area of air sea interactions is introduced. A space capability is discussed for global observations of climate parameters which will contribute to the understanding of the processes which influence climate and its predictability. The following recommendations are some of the suggestions made for air sea interaction studies: (1) a major effort needs to be devoted to the preparation of space based climatic data sets; (2) NASA should create a group or center for climatic data analysis due to the substantial long term effort that is needed in research and development; (3) funding for the analyses of existing data sets should be augmented and continued beyond the termination of present programs; (4) NASA should fund studies in universities, research institutions and governments' centers; and (5) the planning for an air sea interaction mission should be an early task.
Lunar base mission technology issues and orbital demonstration requirements on space station
NASA Technical Reports Server (NTRS)
Llewellyn, Charles P.; Weidman, Deene J.
1992-01-01
The International Space Station has been the object of considerable design, redesign, and alteration since it was originally proposed in early 1984. In the intervening years the station has slowly evolved to a specific design that was thoroughly reviewed by a large agency-wide Critical Evaluation Task Force (CETF). As space station designs continue to evolve, studies must be conducted to determine the suitability of the current design for some of the primary purposes for which the station will be used. This paper concentrates on the technology requirements and issues, the on-orbit demonstration and verification program, and the space station focused support required prior to the establishment of a permanently manned lunar base as identified in the National Commission on Space report. Technology issues associated with the on-orbit assembly and processing of the lunar vehicle flight elements are also discussed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
This report summarizes significant FY93 programmatic information and accomplishments relevant to the individual activities within the Office of Technology Development Program for Research, Development, Demonstration, Testing, and Evaluation (RDDT&E). A brief discussion of the mission of the Office of Environmental Restoration and Waste Management (EM) and the Office of Technology Development is presented. An overview is presented of the major problem areas confronting DOE. These problem areas include: groundwater and soils cleanup; waste retrieval and processing; and pollution prevention. The organizational elements within EM are highlighted. An EM-50 Funding Summary for FY92 and FY93 is also provided. RDDT&E programs aremore » discussed and their key problem areas are summarized. Three salient program-formulating concepts are explained. They are: Integrated Demonstrations, Integrated Programs, and the technology window of opportunity. Detailed information for each of the programs within RDDT&E is presented and includes a fact sheet, a list of technical task plans and an accomplishments and objectives section.« less
Summary of LSST systems analysis and integration task for SPS flight test articles
NASA Astrophysics Data System (ADS)
Greenberg, H. S.
1981-02-01
The structural and equipment requirements for two solar power satellite (SPS) test articles are defined. The first SPS concept uses a hexagonal frame structure to stabilize the array of primary tension cables configured to support a Mills Cross antenna containing 17,925 subarrays composed of dipole radiating elements and solid state power amplifier modules. The second test article consists of a microwave antenna and its power source, a 20 by 200 m array of solar cell blankets, both of which are supported by the solar blanket array support structure. The test article structure, a ladder, is comprised of two longitudinal beams (215 m long) spaced 10 m apart and interconnected by six lateral beams. The system control module structure and bridge fitting provide bending and torsional stiffness, and supplement the in plane Vierendeel structure behavior. Mission descriptions, construction, and structure interfaces are addressed.
Human health and performance considerations for near earth asteroids (NEA)
NASA Astrophysics Data System (ADS)
Steinberg, Susan; Kundrot, Craig; Charles, John
2013-11-01
Humans are considered as a system in the design of any deep space exploration mission. The addition of many potential near asteroid (NEA) destinations to the existing multiple mission architecture for Lunar and Mars missions increases the complexity of human health and performance issues that are anticipated for exploration of space. We suggest that risks to human health and performance be analyzed in terms of the 4 major parameters related to multiple mission architecture: destination, duration, distance and vehicle design. Geological properties of the NEA will influence design of exploration tasks related to sample handling and containment, and extravehicular activity (EVA) capabilities including suit ports and tools. A robotic precursor mission that collects basic information on NEA surface properties would reduce uncertainty about these aspects of the mission as well as aid in mission architecture and exploration task design. Key mission parameters are strongly impacted by duration and distance. The most critical of these is deep-space radiation exposure without even the temporary shielding of a nearby large planetary body. The current space radiation permissible exposure limits (PEL) limits mission duration to 3-10 months depending on age, gender and stage of the solar cycle. Duration also impacts mission architectures including countermeasures for bone, muscle, and cardiovascular atrophy during continuous weightlessness; and behavioral and psychological issues resulting from isolation and confinement. Distance affects communications and limits abort and return options for a NEA mission. These factors are anticipated to have important effects on crew function and autonomous operations, as well as influence medical capability, supplies and training requirements of the crew. The design of a habitat volume that can maintain the physical and psychological health of the crew and support mission operations with limited intervention from earth will require an integrated research and development effort between NASA's Human Research Program (HRP), engineering and human factors groups. Packaging food to extend shelf life and waste management will be important components of vehicle subsystem design.
Space station accommodations for lunar base elements: A study
NASA Technical Reports Server (NTRS)
Weidman, Deene J.; Cirillo, William; Llewellyn, Charles; Kaszubowski, Martin; Kienlen, E. Michael, Jr.
1987-01-01
The results of a study conducted at NASA-LaRC to assess the impact on the space station of accommodating a Manned Lunar Base are documented. Included in the study are assembly activities for all infrastructure components, resupply and operations support for lunar base elements, crew activity requirements, the effect of lunar activities on Cape Kennedy operations, and the effect on space station science missions. Technology needs to prepare for such missions are also defined. Results of the study indicate that the space station can support the manned lunar base missions with the addition of a Fuel Depot Facility and a heavy lift launch vehicle to support the large launch requirements.
2004-03-05
KENNEDY SPACE CENTER, FLA. - The STS-114 crew pose for a photo in front of a solid rocket booster aft skirt in the SRB Assembly and Refurbishment Facility. In front, from left, are Cynthia Perrons, electrical technician with United Space Alliance; Commander Eileen Collins, Pilot James Kelly, and Mission Specialists Charles Camarda and Andrew Thomas. In back are Paul Gutierrez, associate program manager in SRB Element, USA; John Cleary Jr., electrical engineer with USA; Mike Leppert, project lead, Manufacturing Operations, USA; Don Noah, Materials and Processes engineer, USA; Bob Herman, deputy associate program manager, SRB Element, USA; Mission Specialist Soichi Noguchi; Dale Marlow, thermal protection system engineer with USA; Mission Specialist Stephen Robinson; Greg Henry, director, Manufacturing Operations, USA.
The EXTASE thermal probe: Laboratory investigation and modelling of thermal properties
NASA Astrophysics Data System (ADS)
Kaufmann, E.; Knollenberg, J.; Kargl, G.; Koemle, N. I.
2011-10-01
In recent years space missions including landing devices are getting more important. These missions allow in-situ measurements and lead therefore to information on the structure and behavior of extraterrestrial surface and subsurface layers. Sensors used for this kind of missions have to be adapted to the non-terrestrial environment conditions. The better the properties of the single elements of each sensor are known, the more precise are the results from the data evaluation of in-situ measurements. We present the results of thermal conductivity measurements and simulations done for the fiber compound tube used as structural element for the heating segments of the MUPUS-PEN and EXTASE - a spin-off project of Rosetta/MUPUS.
LANDSAT-D Mission Operations Review (MOR)
NASA Technical Reports Server (NTRS)
1982-01-01
The integrated LANDSAT-D systems operation plan is presented and discussed with respect to functional elements, personnel, and procedures. Specifically, a review of the LANDSAT-D program, mission requirements and management, and flight operations is given.
USGS response to an urban earthquake, Northridge '94
Updike, Randall G.; Brown, William M.; Johnson, Margo L.; Omdahl, Eleanor M.; Powers, Philip S.; Rhea, Susan; Tarr, Arthur C.
1996-01-01
For the past 2 years, the USGS has rigorously pursued over 40 tasks focused on the USGS Northridge Earthquake Mission. This document is a summary report of the USGS findings; additional technical reports on specific USGS tasks are appearing in various scientific journals and USGS publications.
Deep Space Network Revitalization: Operations for the 21st Century
NASA Technical Reports Server (NTRS)
Statman, Joseph I.
1999-01-01
The National Aeronautics and Space Administration (NASA) supports unmanned space missions through a Deep Space Network (DSN) that is developed and operated by the Jet Propulsion Laboratory (JPL and its subcontractors. The DSN capabilities have been incrementally upgraded since its establishment in the late '50s and are delivered from three Deep Space Communications Complexes (DSCC's) near Goldstone, California, Madrid, Spain, and Canberra, Australia. At present each DSCC includes large antennas with diameters from 11 meters to 70 meters, that operate largely in S-band and X-band frequencies. In addition each DSCC includes all the associated electronics to receive and process the low-level telemetry signals, and radiate the necessary command with high-power transmitters. To accommodate support of the rapidly increasing number of missions by NASA and other space agencies, and to facilitate maintaining and increasing the level of service in a shrinking budget environment, JPL has initiated a bold road map with three key components: 1. A Network Simplification Project (NSP) to upgrade aging electronics, replacing them with modem commercially based components. NSP and related replacement tasks are projected to reduce the cost of operating the DSN by 50% relative to the 1997 levels. 2. Upgrade of all 34-m and 70-m antennas to provision of Ka-Band telemetry downlink capability, complemented by an existing X-band uplink capability. This will increase the effective telemetry downlink capacity by a factor of 4, without building any new antennas. 3. Establishment of an optical communications network to support for high data rate unmanned missions that cannot be accommodated with radiofrequency (RF) communications, as well as establish a path toward support of manned missions at Mars. In this paper we present the mission loading projected for 1998-2008 and the elements of the JPL road map that will enable supporting it with a reduced budget. Particular emphasis will be on streamlining the architecture and to reduce the DSN cost for operations, maintenance and sustaining engineering while at the same time also simplifying and reducing the operations cost for the flight missions.
The Waypoint Planning Tool: Real Time Flight Planning for Airborne Science
NASA Astrophysics Data System (ADS)
He, M.; Goodman, H. M.; Blakeslee, R.; Hall, J. M.
2010-12-01
NASA Earth science research utilizes both spaceborne and airborne real time observations in the planning and operations of its field campaigns. The coordination of air and space components is critical to achieve the goals and objectives and ensure the success of an experiment. Spaceborne imagery provides regular and continual coverage of the Earth and it is a significant component in all NASA field experiments. Real time visible and infrared geostationary images from GOES satellites and multi-spectral data from the many elements of the NASA suite of instruments aboard the TRMM, Terra, Aqua, Aura, and other NASA satellites have become norm. Similarly, the NASA Airborne Science Program draws upon a rich pool of instrumented aircraft. The NASA McDonnell Douglas DC-8, Lockheed P3 Orion, DeHavilland Twin Otter, King Air B200, Gulfstream-III are all staples of a NASA’s well-stocked, versatile hangar. A key component in many field campaigns is coordinating the aircraft with satellite overpasses, other airplanes and the constantly evolving, dynamic weather conditions. Given the variables involved, developing a good flight plan that meets the objectives of the field experiment can be a challenging and time consuming task. Planning a research aircraft mission within the context of meeting the science objectives is complex task because it is much more than flying from point A to B. Flight plans typically consist of flying a series of transects or involve dynamic path changes when “chasing” a hurricane or forest fire. These aircraft flight plans are typically designed by the mission scientists then verified and implemented by the navigator or pilot. Flight planning can be an arduous task requiring frequent sanity checks by the flight crew. This requires real time situational awareness of the weather conditions that affect the aircraft track. Scientists at the University of Alabama-Huntsville and the NASA Marshall Space Flight Center developed the Waypoint Planning Tool, an interactive software tool, that enables scientists to develop their own flight plans (also known as waypoints) with point-and-click mouse capabilities on a digital map draped with real time satellite imagery. The Waypoint Planning Tool has further advanced to include satellite orbit predictions and seamlessly interfaces with the Real Time Mission Monitor which tracks the aircraft’s position when the planes are flying. This presentation will describe the capabilities and features of the Waypoint Planning Tool highlighting the real time aspect, interactive nature and the resultant benefits to the airborne science community.
The Waypoint Planning Tool: Real Time Flight Planning for Airborne Science
NASA Technical Reports Server (NTRS)
He, Yubin; Blakeslee, Richard; Goodman, Michael; Hall, John
2010-01-01
NASA Earth science research utilizes both spaceborne and airborne real time observations in the planning and operations of its field campaigns. The coordination of air and space components is critical to achieve the goals and objectives and ensure the success of an experiment. Spaceborne imagery provides regular and continual coverage of the Earth and it is a significant component in all NASA field experiments. Real time visible and infrared geostationary images from GOES satellites and multi-spectral data from the many elements of the NASA suite of instruments aboard the TRMM, Terra, Aqua, Aura, and other NASA satellites have become norm. Similarly, the NASA Airborne Science Program draws upon a rich pool of instrumented aircraft. The NASA McDonnell Douglas DC-8, Lockheed P3 Orion, DeHavilland Twin Otter, King Air B200, Gulfstream-III are all staples of a NASA's well-stocked, versatile hangar. A key component in many field campaigns is coordinating the aircraft with satellite overpasses, other airplanes and the constantly evolving, dynamic weather conditions. Given the variables involved, developing a good flight plan that meets the objectives of the field experiment can be a challenging and time consuming task. Planning a research aircraft mission within the context of meeting the science objectives is complex task because it is much more than flying from point A to B. Flight plans typically consist of flying a series of transects or involve dynamic path changes when "chasing" a hurricane or forest fire. These aircraft flight plans are typically designed by the mission scientists then verified and implemented by the navigator or pilot. Flight planning can be an arduous task requiring frequent sanity checks by the flight crew. This requires real time situational awareness of the weather conditions that affect the aircraft track. Scientists at the University of Alabama-Huntsville and the NASA Marshall Space Flight Center developed the Waypoint Planning Tool, an interactive software tool, that enables scientists to develop their own flight plans (also known as waypoints) with point-and-click mouse capabilities on a digital map draped with real time satellite imagery. The Waypoint Planning Tool has further advanced to include satellite orbit predictions and seamlessly interfaces with the Real Time Mission Monitor which tracks the aircraft s position when the planes are flying. This presentation will describe the capabilities and features of the Waypoint Planning Tool highlighting the real time aspect, interactive nature and the resultant benefits to the airborne science community.
ERIC Educational Resources Information Center
Austin, Bobby William, Ed.
This report of the National Task Force on African-American Men and Boys is the beginning of an approach to repair society's breaches and restore the streets to safety. The Task Force, headed by Andrew J. Young and established in 1994, conceived its mission as one of reclamation. The Task Force made 61 specific recommendations, and three general…
Perl Tools for Automating Satellite Ground Systems
NASA Technical Reports Server (NTRS)
McLean, David; Haar, Therese; McDonald, James
2000-01-01
The freeware scripting language Pert offers many opportunities for automating satellite ground systems for new satellites as well as older, in situ systems. This paper describes a toolkit that has evolved from of the experiences gained by using Pert to automate the ground system for the Compton Gamma Ray Observatory (CGRO) and for automating some of the elements in the Earth Observing System Data and Operations System (EDOS) ground system at Goddard Space Flight Center (GSFC). CGRO is an older ground system that was forced to automate because of fund cuts. Three 8 hour shifts were cut back to one 8 hour shift, 7 days per week. EDOS supports a new mission called Terra, launched December 1999 that requires distribution and tracking of mission-critical reports throughout the world. Both of these ground systems use Pert scripts to process data and display it on the Internet as well as scripts to coordinate many of the other systems that make these ground systems work as a coherent whole. Another task called Automated Multimodal Trend Analysis System (AMTAS) is looking at technology for isolation and recovery of spacecraft problems. This effort has led to prototypes that seek to evaluate various tools and technology that meet at least some of the AMTAS goals. The tools, experiences, and lessons learned by implementing these systems are described here.
NASA Technical Reports Server (NTRS)
Hooker, Stanford B.; McClain, Charles R.; Mannino, Antonio
2007-01-01
The primary objective of this planning document is to establish a long-term capability and validating oceanic biogeochemical satellite data. It is a pragmatic solution to a practical problem based primarily o the lessons learned from prior satellite missions. All of the plan's elements are seen to be interdependent, so a horizontal organizational scheme is anticipated wherein the overall leadership comes from the NASA Ocean Biology and Biogeochemistry (OBB) Program Manager and the entire enterprise is split into two components of equal sature: calibration and validation plus satellite data processing. The detailed elements of the activity are based on the basic tasks of the two main components plus the current objectives of the Carbon Cycle and Ecosystems Roadmap. The former is distinguished by an internal core set of responsibilities and the latter is facilitated through an external connecting-core ring of competed or contracted activities. The core elements for the calibration and validation component include a) publish protocols and performance metrics; b) verify uncertainty budgets; c) manage the development and evaluation of instrumentation; and d) coordinate international partnerships. The core elements for the satellite data processing component are e) process and reprocess multisensor data; f) acquire, distribute, and archive data products; and g) implement new data products. Both components have shared responsibilities for initializing and temporally monitoring satellite calibration. Connecting-core elements include (but are not restricted to) atmospheric correction and characterization, standards and traceability, instrument and analysis round robins, field campaigns and vicarious calibration sites, in situ database, bio-optical algorithm (and product) validation, satellite characterization and vicarious calibration, and image processing software. The plan also includes an accountability process, creating a Calibration and Validation Team (to help manage the activity), and a discussion of issues associated with the plan's scientific focus.
Conceptual Drivers for an Exploration Medical System
NASA Technical Reports Server (NTRS)
Antonsen, Erik; Hanson, Andrea; Shah, Ronak; Reed, Rebekah; Canga, Michael
2016-01-01
Interplanetary spaceflight, such as NASA's proposed three-year mission to Mars, provides unique and novel challenges when compared with human spaceflight to date. Extended distance and multi-year missions introduce new elements of operational complexity and additional risk. These elements include: inability to resupply medications and consumables, inability to evacuate injured or ill crew, uncharted psychosocial conditions, and communication delays that create a requirement for some level of autonomous medical capability. Because of these unique challenges, the approaches used in prior programs have limited application to a Mars mission. On a Mars mission, resource limitations will significantly constrain available medical capabilities, and require a paradigm shift in the approach to medical system design and risk mitigation for crew health. To respond to this need for a new paradigm, the Exploration Medical Capability (ExMC) Element is assessing each Mars mission phase-transit, surface stay, rendezvous, extravehicular activity, and return-to identify and prioritize medical needs for the journey beyond low Earth orbit (LEO). ExMC is addressing both planned medical operations, and unplanned contingency medical operations that meld clinical needs and research needs into a single system. This assessment is being used to derive a gap analysis and studies to support meaningful medical capabilities trades. These trades, in turn, allow the exploration medical system design to proceed from both a mission centric and ethics-based approach, and to manage the risks associated with the medical limitations inherent in an exploration class mission. This paper outlines the conceptual drivers used to derive medical system and vehicle needs from an integrated vision of how medical care will be provided within this paradigm. Keywords: (Max 6 keywords: exploration, medicine, spaceflight, Mars, research, NASA)
Exploration Medical Capability (ExMC) Projects
NASA Technical Reports Server (NTRS)
Wu, Jimmy; Watkins, Sharmila; Baumann, David
2010-01-01
During missions to the Moon or Mars, the crew will need medical capabilities to diagnose and treat disease as well as for maintaining their health. The Exploration Medical Capability Element develops medical technologies, medical informatics, and clinical capabilities for different levels of care during space missions. The work done by team members in this Element is leading edge technology, procedure, and pharmacological development. They develop data systems that protect patient's private medical information, aid in the diagnosis of medical conditions, and act as a repository of relevant NASA life sciences experimental studies. To minimize the medical risks to crew health the physicians and scientists in this Element develop models to quantify the probability of medical events occurring during a mission. They define procedures to treat an ill or injured crew member who does not have access to an emergency room and who must be cared for in a microgravity environment where both liquids and solids behave differently than on Earth. To support the development of these medical capabilities, the Element manages the development of medical technologies that prevent, monitor, diagnose, and treat an ill or injured crewmember. The Exploration Medical Capability Element collaborates with the National Space Biomedical Research Institute (NSBRI), the Department of Defense, other Government-funded agencies, academic institutions, and industry.
Compact Fuel Element Environment Test
NASA Technical Reports Server (NTRS)
Bradley, D. E.; Mireles, O. R.; Hickman, R. R.; Broadway, J. W.
2012-01-01
Deep space missions with large payloads require high specific impulse (I(sub sp)) and relatively high thrust to achieve mission goals in reasonable time frames. Conventional, storable propellants produce average I(sub sp). Nuclear thermal rockets (NTRs) capable of high I(sub sp) thrust have been proposed. NTR employs heat produced by fission reaction to heat and therefore accelerate hydrogen, which is then forced through a rocket nozzle providing thrust. Fuel element temperatures are very high (up to 3,000 K) and hydrogen is highly reactive with most materials at high temperatures. Data covering the effects of high-temperature hydrogen exposure on fuel elements are limited. The primary concern is the mechanical failure of fuel elements that employ high melting point metals, ceramics, or a combination (cermet) as a structural matrix into which the nuclear fuel is distributed. It is not necessary to include fissile material in test samples intended to explore high-temperature hydrogen exposure of the structural support matrices. A small-scale test bed designed to heat fuel element samples via noncontact radio frequency heating and expose samples to hydrogen for typical mission durations has been developed to assist in optimal material and manufacturing process selection without employing fissile material. This Technical Memorandum details the test bed design and results of testing conducted to date.
STS-111 Onboard Photo of the International Space Station
NASA Technical Reports Server (NTRS)
2002-01-01
Backdropped against the blackness of space is the International Space Station (ISS), as viewed from the approching Space Shuttle Orbiter Endeavour, STS-111 mission, in June 2002. Expedition Five replaced Expedition Four crew after remaining a record-setting 196 days in space. Three spacewalks enabled the STS-111 crew to accomplish the delivery and installation of the Mobile Remote Servicer Base System (MBS), an important part of the Station's Mobile Servicing System that allows the robotic arm to travel the length of the Station, which is necessary for future construction tasks; the replacement of a wrist roll joint on the Station's robotic arm, and the task of unloading supplies and science experiments from the Leonardo Multi-Purpose Logistics Module, which made its third trip to the orbital outpost. The STS-111 mission, the 14th Shuttle mission to visit the ISS, was launched on June 5, 2002 and landed June 19, 2002.
Marshall Space Flight Center Ground Systems Development and Integration
NASA Technical Reports Server (NTRS)
Wade, Gina
2016-01-01
Ground Systems Development and Integration performs a variety of tasks in support of the Mission Operations Laboratory (MOL) and other Center and Agency projects. These tasks include various systems engineering processes such as performing system requirements development, system architecture design, integration, verification and validation, software development, and sustaining engineering of mission operations systems that has evolved the Huntsville Operations Support Center (HOSC) into a leader in remote operations for current and future NASA space projects. The group is also responsible for developing and managing telemetry and command configuration and calibration databases. Personnel are responsible for maintaining and enhancing their disciplinary skills in the areas of project management, software engineering, software development, software process improvement, telecommunications, networking, and systems management. Domain expertise in the ground systems area is also maintained and includes detailed proficiency in the areas of real-time telemetry systems, command systems, voice, video, data networks, and mission planning systems.
International Space Station (ISS)
2002-06-07
Backdropped against the blackness of space is the International Space Station (ISS), as viewed from the approching Space Shuttle Orbiter Endeavour, STS-111 mission, in June 2002. Expedition Five replaced Expedition Four crew after remaining a record-setting 196 days in space. Three spacewalks enabled the STS-111 crew to accomplish the delivery and installation of the Mobile Remote Servicer Base System (MBS), an important part of the Station's Mobile Servicing System that allows the robotic arm to travel the length of the Station, which is necessary for future construction tasks; the replacement of a wrist roll joint on the Station's robotic arm, and the task of unloading supplies and science experiments from the Leonardo Multi-Purpose Logistics Module, which made its third trip to the orbital outpost. The STS-111 mission, the 14th Shuttle mission to visit the ISS, was launched on June 5, 2002 and landed June 19, 2002.
NASA Astrophysics Data System (ADS)
Curiac, Daniel-Ioan; Volosencu, Constantin
2014-10-01
The path-planning algorithm represents a crucial issue for every autonomous mobile robot. In normal circumstances a patrol robot will compute an optimal path to ensure its task accomplishment, but in adversarial conditions the problem is getting more complicated. Here, the robot’s trajectory needs to be altered into a misleading and unpredictable path to cope with potential opponents. Chaotic systems provide the needed framework for obtaining unpredictable motion in all of the three basic robot surveillance missions: area, points of interests and boundary monitoring. Proficient approaches have been provided for the first two surveillance tasks, but for boundary patrol missions no method has been reported yet. This paper addresses the mentioned research gap by proposing an efficient method, based on chaotic dynamic of the Hénon system, to ensure unpredictable boundary patrol on any shape of chosen closed contour.
Challenging Technology, and Technology Infusion into 21st Century
NASA Technical Reports Server (NTRS)
Chau, S. N.; Hunter, D. J.
2001-01-01
In preparing for the space exploration challenges of the next century, the National Aeronautics and Space Administration (NASA) Center for Integrated Space Micro-Systems (CISM) is chartered to develop advanced spacecraft systems that can be adapted for a large spectrum of future space missions. Enabling this task are revolutions in the miniaturization of electrical, mechanical, and computational functions. On the other hand, these revolutionary technologies usually have much lower readiness levels than those required by flight projects. The mission of the Advanced Micro Spacecraft (AMS) task in CISM is to bridge the readiness gap between advanced technologies and flight projects. Additional information is contained in the original extended abstract.
Effects of an Advanced Reactor’s Design, Use of Automation, and Mission on Human Operators
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jeffrey C. Joe; Johanna H. Oxstrand
The roles, functions, and tasks of the human operator in existing light water nuclear power plants (NPPs) are based on sound nuclear and human factors engineering (HFE) principles, are well defined by the plant’s conduct of operations, and have been validated by years of operating experience. However, advanced NPPs whose engineering designs differ from existing light-water reactors (LWRs) will impose changes on the roles, functions, and tasks of the human operators. The plans to increase the use of automation, reduce staffing levels, and add to the mission of these advanced NPPs will also affect the operator’s roles, functions, and tasks.more » We assert that these factors, which do not appear to have received a lot of attention by the design engineers of advanced NPPs relative to the attention given to conceptual design of these reactors, can have significant risk implications for the operators and overall plant safety if not mitigated appropriately. This paper presents a high-level analysis of a specific advanced NPP and how its engineered design, its plan to use greater levels of automation, and its expanded mission have risk significant implications on operator performance and overall plant safety.« less
Evidence Report: Risk of Performance Errors Due to Training Deficiencies
NASA Technical Reports Server (NTRS)
Barshi, Immanuel; Dempsey, Donna L.
2016-01-01
Substantial evidence supports the claim that inadequate training leads to performance errors. Barshi and Loukopoulos (2012) demonstrate that even a task as carefully developed and refined over many years as operating an aircraft can be significantly improved by a systematic analysis, followed by improved procedures and improved training (see also Loukopoulos, Dismukes, & Barshi, 2009a). Unfortunately, such a systematic analysis of training needs rarely occurs during the preliminary design phase, when modifications are most feasible. Training is often seen as a way to compensate for deficiencies in task and system design, which in turn increases the training load. As a result, task performance often suffers, and with it, the operators suffer and so does the mission. On the other hand, effective training can indeed compensate for such design deficiencies, and can even go beyond to compensate for failures of our imagination to anticipate all that might be needed when we send our crew members to go where no one else has gone before. Much of the research literature on training is motivated by current training practices aimed at current training needs. Although there is some experience with operations in extreme environments on Earth, there is no experience with long-duration space missions where crews must practice semi-autonomous operations, where ground support must accommodate significant communication delays, and where so little is known about the environment. Thus, we must develop robust methodologies and tools to prepare our crews for the unknown. The research necessary to support such an endeavor does not currently exist, but existing research does reveal general challenges that are relevant to long-duration, high-autonomy missions. The evidence presented here describes issues related to the risk of performance errors due to training deficiencies. Contributing factors regarding training deficiencies may pertain to organizational process and training programs for spaceflight, such as when training programs are inadequate or unavailable. Furthermore, failure to match between tasks on the one hand, and learning and memory abilities on the other hand is a contributing factor, especially when individuals' relative efficiency with which new information is acquired, and adjustments made in behavior or thinking, are inconsistent with mission demands. Thus, if training deficiencies are present, the likelihood of errors or of the inability to successfully complete a task increases. What's more, the overall risk to the crew, the vehicle, and the mission increases.
Understanding the Role of Biology in the Global Environment: NASA'S Mission to Planet Earth
NASA Technical Reports Server (NTRS)
Townsend, William F.
1996-01-01
NASA has long used the unique perspective of space as a means of expanding our understanding of how the Earth's environment functions. In particular, the linkages between land, air, water, and life-the elements of the Earth system-are a focus for NASA's Mission to Planet Earth. This approach, called Earth system science, blends together fields like meteorology, biology, oceanography, and atmospheric science. Mission to Planet Earth uses observations from satellites, aircraft, balloons, and ground researchers as the basis for analysis of the elements of the Earth system, the interactions between those elements, and possible changes over the coming years and decades. This information is helping scientists improve our understanding of how natural processes affect us and how we might be affecting them. Such studies will yield improved weather forecasts, tools for managing agriculture and forests, information for fishermen and local planners, and, eventually, an enhanced ability to predict how the climate will change in the future. NASA has designed Mission to Planet Earth to focus on five primary themes: Land Cover and Land Use Change; Seasonal to Interannual Climate Prediction; Natural Hazards; Long-Term Climate Variability; and Atmosphere Ozone.
Deep Space Habitat Team: HEFT Phase 2 Effects
NASA Technical Reports Server (NTRS)
Toups, Larry D.; Smitherman, David; Shyface, Hilary; Simon, Matt; Bobkill, Marianne; Komar, D. R.; Guirgis, Peggy; Bagdigian, Bob; Spexarth, Gary
2011-01-01
HEFT was a NASA-wide team that performed analyses of architectures for human exploration beyond LEO, evaluating technical, programmatic, and budgetary issues to support decisions at the highest level of the agency in HSF planning. HEFT Phase I (April - September, 2010) and Phase II (September - December, 2010) examined a broad set of Human Exploration of Near Earth Objects (NEOs) Design Reference Missions (DRMs), evaluating such factors as elements, performance, technologies, schedule, and cost. At end of HEFT Phase 1, an architecture concept known as DRM 4a represented the best available option for a full capability NEO mission. Within DRM4a, the habitation system was provided by Deep Space Habitat (DSH), Multi-Mission Space Exploration Vehicle (MMSEV), and Crew Transfer Vehicle (CTV) pressurized elements. HEFT Phase 2 extended DRM4a, resulting in DRM4b. Scrubbed element-level functionality assumptions and mission Concepts of Operations. Habitation Team developed more detailed concepts of the DSH and the DSH/MMSEV/CTV Conops, including functionality and accommodations, mass & volume estimates, technology requirements, and DDT&E costs. DRM 5 represented an effort to reduce cost by scaling back on technologies and eliminating the need for the development of an MMSEV.
Thinking of serving nursing abroad: how technology assists nurses on mission trips.
Brown, Rachel M
2015-06-01
Advances in technology have assisted in the proliferation of short-term, faith-based international medical mission trips. Many of these mission trips include health care not only to local citizens but also building schools and churches and sharing the Gospel of Jesus Christ. Included in this article are my own personal experiences in short-term, faith-based medical missions. A step-by-step guide is offered to help prepare inexperienced mission participants gain insight into short-term mission trips. Advanced planning, fundraising, collaboration, and being open to change are key elements to successful participation in these life-changing missions. Copyright © 2015 Elsevier Inc. All rights reserved.
Space station support of manned Mars missions
NASA Technical Reports Server (NTRS)
Holt, Alan C.
1986-01-01
The assembly of a manned Mars interplanetary spacecraft in low Earth orbit can be best accomplished with the support of the space station. Station payload requirements for microgravity environments of .001 g and pointing stability requirements of less than 1 arc second could mean that the spacecraft may have to be assembled at a station-keeping position about 100 meters or more away from the station. In addition to the assembly of large modules and connective structures, the manned Mars mission assembly tasks may include the connection of power, fluid, and data lines and the handling and activation of components for chemical or nuclear power and propulsion systems. These assembly tasks will require the use of advanced automation and robotics in addition to Orbital Maneuvering Vehicle and Extravehicular Activity (EVA) crew support. Advanced development programs for the space station, including on-orbit demonstrations, could also be used to support manned Mars mission technology objectives. Follow-on studies should be conducted to identify space station activities which could be enhanced or expanded in scope (without significant cost and schedule impact) to help resolve key technical and scientific questions relating to manned Mars missions.
Incremental Scheduling Engines for Human Exploration of the Cosmos
NASA Technical Reports Server (NTRS)
Jaap, John; Phillips, Shaun
2005-01-01
As humankind embarks on longer space missions farther from home, the requirements and environments for scheduling the activities performed on these missions are changing. As we begin to prepare for these missions it is appropriate to evaluate the merits and applicability of the different types of scheduling engines. Scheduling engines temporally arrange tasks onto a timeline so that all constraints and objectives are met and resources are not overbooked. Scheduling engines used to schedule space missions fall into three general categories: batch, mixed-initiative, and incremental. This paper presents an assessment of the engine types, a discussion of the impact of human exploration of the moon and Mars on planning and scheduling, and the applicability of the different types of scheduling engines. This paper will pursue the hypothesis that incremental scheduling engines may have a place in the new environment; they have the potential to reduce cost, to improve the satisfaction of those who execute or benefit from a particular timeline (the customers), and to allow astronauts to plan their own tasks and those of their companion robots.
Incremental Scheduling Engines: Cost Savings through Automation
NASA Technical Reports Server (NTRS)
Jaap, John; Phillips, Shaun
2005-01-01
As humankind embarks on longer space missions farther from home, the requirements and environments for scheduling the activities performed on these missions are changing. As we begin to prepare for these missions it is appropriate to evaluate the merits and applicability of the different types of scheduling engines. Scheduling engines temporally arrange tasks onto a timeline so that all constraints and ob.jectives are met and resources are not over-booked. Scheduling engines used to schedule space missions fall into three general categories: batch, mixed-initiative, and incremental. This paper, presents an assessment of the engine types, a discussion of the impact of human exploration of the moon and Mars on planning and scheduling, and the applicability of the different types of scheduling engines. This paper will pursue the hypothesis that incremental scheduling engines may have a place in the new environment; they have the potential to reduce cost, to improve the satisfaction of those who execute or benefit from a particular timeline (the customers), and to allow astronauts to plan their own tasks and those of their companion robots.
An Introduction to the Mission Risk Diagnostic for Incident Management Capabilities (MRD-IMC)
2014-05-01
objectives. Analysts applying the MRD- IMC evaluate a set of systemic risk factors (called drivers) to aggregate decision-making data and provide decision...function is in position to achieve its mission and objective(s) [Alberts 2012]. To accomplish this goal, analysts applying the MRD- IMC evaluate a...005 | 3 evaluation of IM processes and capabilities. The MRD- IMC comprises the following three core tasks: 1. Identify the mission and objective(s
Application of EVA guidelines and design criteria. Volume 2: EVA workstation conceptual designs
NASA Technical Reports Server (NTRS)
Brown, N. E.
1973-01-01
Several EV workstation concepts were developed and are documented. The workstation concepts were developed following a comprehensive analysis of potential EV missions, functions, and tasks as interpreted from NASA and contractor space shuttle and space station studies, mission models, and related reports. The design of a versatile, portable EVA workstation is aimed at reducing the design and development costs for each mission and aiding in the development of on-orbit serviceable payloads.
Forrester works on the S1/S3 Trusses during EVA 2 on STS-117 Mission
2007-06-14
S117-E-07217 (13 June 2007) --- Astronauts Patrick Forrester and Steven Swanson (out of frame), both STS-117 mission specialists, participate in the mission's second planned session of extravehicular activity (EVA), as construction resumes on the International Space Station. Among other tasks, Forrester and Swanson removed all of the launch locks holding the 10-foot-wide solar alpha rotary joint in place and began the solar array retraction.
Forrester works at the S3/S4 Trusses during EVA 2 on STS-117 Mission
2007-06-13
S117-E-07190 (13 June 2007) --- Astronauts Patrick Forrester and Steven Swanson (out of frame), both STS-117 mission specialists, participate in the mission's second planned session of extravehicular activity (EVA), as construction resumes on the International Space Station. Among other tasks, Forrester and Swanson removed all of the launch locks holding the 10-foot-wide solar alpha rotary joint in place and began the solar array retraction.
Forrester works at the S3/S4 Trusses during EVA 2 on STS-117 Mission
2007-06-13
S117-E-07289 (13 June 2007) --- Astronauts Patrick Forrester and Steven Swanson (out of frame), both STS-117 mission specialists, participate in the mission's second planned session of extravehicular activity (EVA), as construction resumes on the International Space Station. Among other tasks, Forrester and Swanson removed all of the launch locks holding the 10-foot-wide solar alpha rotary joint in place and began the solar array retraction.
Forrester works at the S3/S4 Trusses during EVA 2 on STS-117 Mission
2007-06-13
S117-E-07286 (13 June 2007) --- Astronauts Patrick Forrester and Steven Swanson (out of frame), both STS-117 mission specialists, participate in the mission's second planned session of extravehicular activity (EVA), as construction resumes on the International Space Station. Among other tasks, Forrester and Swanson removed all of the launch locks holding the 10-foot-wide solar alpha rotary joint in place and began the solar array retraction.
ACHIEVING MISSION ASSURANCE AGAINST A CYBER THREAT WITH THE DEFENSE ACQUISITION SYSTEM
2016-02-13
assurance to be “ baked in” to system design. Second, FMAs and vulnerability assessments should be conducted prior to every acquisition milestone...of FMAs enables the long sought after “ baking in” of mission assurance. Conducting an FMA is not a trivial task, nor is it exclusively a cyber...drive mission assurance to be “ baked in” to system design. Secondly, conducting discrete CH events before each milestone is fundamental to achieving
2008-02-13
S122-E-008221 (13 Feb. 2008) --- European Space Agency (ESA) astronaut Hans Schlegel, STS-122 mission specialist, works on the new Columbus laboratory as he participates in the mission's second scheduled session of extravehicular activity (EVA) as construction and maintenance continue on the International Space Station. During the six-hour, 45-minute spacewalk, among other tasks, Schlegel and NASA astronaut Rex Walheim (out of frame), mission specialist, worked to replace a nitrogen tank used to pressurize the station's ammonia cooling system.
United States Air Force Statistical Digest, Fiscal Year 1975. 13th Edition
1976-04-15
USAF Statistical Digest. FUNCTIONS The Forces have the following primary tasks: STRATEGIC STRATEGIC OFFENSIVE DEFENSIVE Long-range weapons delivery... FUNCTIONAL MISSION - AS OF END FY 1975 NON - "l(’lrJIFTEI)- OPERHING OPERA TrNG TOTAL MISsrON-OfSIGN AC TI V~ ACT! VE ACTIVE INACTIVE TOTAL...INVENTORY BY FUNCTIONAL DISTRIBUTION - BY MISSION AND DESIGN - AS OF END OF FY 1975 227 MOOIFIEO- MISSION-OESIGN A-37 AC-BO TOTAL HTACK NON - OPERATING
Space and Earth Sciences, Computer Systems, and Scientific Data Analysis Support, Volume 1
NASA Technical Reports Server (NTRS)
Estes, Ronald H. (Editor)
1993-01-01
This Final Progress Report covers the specific technical activities of Hughes STX Corporation for the last contract triannual period of 1 June through 30 Sep. 1993, in support of assigned task activities at Goddard Space Flight Center (GSFC). It also provides a brief summary of work throughout the contract period of performance on each active task. Technical activity is presented in Volume 1, while financial and level-of-effort data is presented in Volume 2. Technical support was provided to all Division and Laboratories of Goddard's Space Sciences and Earth Sciences Directorates. Types of support include: scientific programming, systems programming, computer management, mission planning, scientific investigation, data analysis, data processing, data base creation and maintenance, instrumentation development, and management services. Mission and instruments supported include: ROSAT, Astro-D, BBXRT, XTE, AXAF, GRO, COBE, WIND, UIT, SMM, STIS, HEIDI, DE, URAP, CRRES, Voyagers, ISEE, San Marco, LAGEOS, TOPEX/Poseidon, Pioneer-Venus, Galileo, Cassini, Nimbus-7/TOMS, Meteor-3/TOMS, FIFE, BOREAS, TRMM, AVHRR, and Landsat. Accomplishments include: development of computing programs for mission science and data analysis, supercomputer applications support, computer network support, computational upgrades for data archival and analysis centers, end-to-end management for mission data flow, scientific modeling and results in the fields of space and Earth physics, planning and design of GSFC VO DAAC and VO IMS, fabrication, assembly, and testing of mission instrumentation, and design of mission operations center.
HSI top-down requirements analysis for ship manpower reduction
NASA Astrophysics Data System (ADS)
Malone, Thomas B.; Bost, J. R.
2000-11-01
U.S. Navy ship acquisition programs such as DD 21 and CVNX are increasingly relying on top down requirements analysis (TDRA) to define and assess design approaches for workload and manpower reduction, and for ensuring required levels of human performance, reliability, safety, and quality of life at sea. The human systems integration (HSI) approach to TDRA begins with a function analysis which identifies the functions derived from the requirements in the Operational Requirements Document (ORD). The function analysis serves as the function baseline for the ship, and also supports the definition of RDT&E and Total Ownership Cost requirements. A mission analysis is then conducted to identify mission scenarios, again based on requirements in the ORD, and the Design Reference Mission (DRM). This is followed by a mission/function analysis which establishes the function requirements to successfully perform the ship's missions. Function requirements of major importance for HSI are information, performance, decision, and support requirements associated with each function. An allocation of functions defines the roles of humans and automation in performing the functions associated with a mission. Alternate design concepts, based on function allocation strategies, are then described, and task networks associated with the concepts are developed. Task network simulations are conducted to assess workloads and human performance capabilities associated with alternate concepts. An assessment of the affordability and risk associated with alternate concepts is performed, and manning estimates are developed for feasible design concepts.
Human Health Countermeasures (HHC) Element Management Plan: Human Research Program. Revision B
NASA Technical Reports Server (NTRS)
Norsk, Peter; Baumann, David
2012-01-01
NASA s Human Research Program (HRP) is an applied research and technology program within the Human Exploration and Operations Mission Directorate (HEOMD) that addresses human health and performance risk mitigation strategies in support of exploration missions. The HRP research and technology development is focused on the highest priority risks to crew health and safety with the goal of ensuring mission success and maintaining long-term crew health. Crew health and performance standards, defined by the NASA Chief Health and Medical Officer (CHMO), set the acceptable risk level for exploration missions. The HRP conducts research to inform these standards as well as provide deliverables, such as countermeasures, that ensure standards can be met to maximize human performance and mission success. The Human Health Countermeasures (HHC) Element was formed as part of the HRP to develop a scientifically-based, integrated approach to understanding and mitigating the health risks associated with human spaceflight. These health risks have been organized into four research portfolios that group similar or related risks. A fifth portfolio exists for managing technology developments and infrastructure projects. The HHC Element portfolios consist of: a) Vision and Cardiovascular; b) Exercise and Performance; c) Multisystem; d) Bone; and e) Technology and Infrastructure. The HHC identifies gaps associated with the health risks and plans human physiology research that will result in knowledge required to more fully understand risks and will result in validated countermeasures to mitigate risks.
The Evolution of Mission Architectures for Human Lunar Exploration
NASA Technical Reports Server (NTRS)
Everett, S. F.
1995-01-01
Defining transportation architectures for the human exploration of the Moon is a complex task due to the multitude of mission scenarios available. The mission transportation architecture recently proposed for the First Lunar Outpost (FLO) was not designed from carefully predetermined mission requirements and goals, but evolved from an initial set of requirements, which were continually modified as studies revealed that some early assumptions were not optimal. This paper focuses on the mission architectures proposed for FLO and investigates how these transportation architectures evolved. A comparison of the strengths and weaknesses of the three distinct mission architectures are discussed, namely (1) Lunar Orbit Rendezvous, (2) staging from the Cislunar Libration Point, and (3) direct to the lunar surface. In addition, several new and revolutionary architectures are discussed.
Auxiliary Propulsion Activities in Support of NASA's Exploration Initiative
NASA Technical Reports Server (NTRS)
Best, Philip J.; Unger, Ronald J.; Waits, David A.
2005-01-01
The Space Launch Initiative (SLI) procurement mechanism NRA8-30 initiated the Auxiliary Propulsion System/Main Propulsion System (APS/MPS) Project in 2001 to address technology gaps and development risks for non-toxic and cryogenic propellants for auxiliary propulsion applications. These applications include reaction control and orbital maneuvering engines, and storage, pressure control, and transfer technologies associated with on-orbit maintenance of cryogens. The project has successfully evolved over several years in response to changing requirements for re-usable launch vehicle technologies, general launch technology improvements, and, most recently, exploration technologies. Lessons learned based on actual hardware performance have also played a part in the project evolution to focus now on those technologies deemed specifically relevant to the Exploration Initiative. Formal relevance reviews held in the spring of 2004 resulted in authority for continuation of the Auxiliary Propulsion Project through Fiscal Year 2005 (FY05), and provided for a direct reporting path to the Exploration Systems Mission Directorate. The tasks determined to be relevant under the project were: continuation of the development, fabrication, and delivery of three 870 lbf thrust prototype LOX/ethanol reaction control engines; the fabrication, assembly, engine integration and testing of the Auxiliary Propulsion Test Bed at White Sands Test Facility; and the completion of FY04 cryogenic fluid management component and subsystem development tasks (mass gauging, pressure control, and liquid acquisition elements). This paper presents an overview of those tasks, their scope, expectations, and results to-date as carried forward into the Exploration Initiative.
Astronaut Walter Cunningham photographed performing flight tasks
NASA Technical Reports Server (NTRS)
1968-01-01
Astronaut Walter Cunningham, Apollo 7 lunar module pilot, writes with space pen as he is photographed performing flight tasks on the ninth day of the Apollo 7 mission. Note the 70mm Hasselblad camera film magazine just above Cunningham's right hand floating in the weightless (zero gravity) environment of the spacecraft.
Excellence and Accountability. Report of the Governor's Task Force on Higher Education Reform.
ERIC Educational Resources Information Center
New Mexico State Commission on Postsecondary Education, Santa Fe.
A task force report recommends ways to promote educational reform in higher education in New Mexico. Forty recommendations address the following areas: institutional missions, academic excellence and accountability, community colleges, student financial aid, affirmative action, economic development, capital outlay, and funding issues. Specific…
Exploring the Use of a Multiplayer Game to Execute Light Infantry Company Missions
2009-10-01
training : (a) are trained sufficiently to implement the tasks (T), (b) need practice with implementing the task (P), and (c) are untrained on the task...approved for distribution: BARBARA A. BLACK, Ph.D. MICHELLE SAMS, Ph.D. Research Program Manager Director Training and...Maneuver Captains Career Course (MCCC) at Fort Benning, Georgia, have had limited success using training games. Early efforts to provide the MCCC with
A Pragmatic Path to Investigating Europa's Habitability
NASA Technical Reports Server (NTRS)
Pappalardo; Bengenal; Bar; Bills; Blankenship; Connerney; Kurth; McGrath; Moore; Prockter;
2011-01-01
Assessment of Europa's habitability, as an overarching science goal, will progress via a comprehensive investigation of Europa's subsurface ocean, chemical composition, and internal dynamical processes, The National Research Council's Planetary Decadal Survey placed an extremely high priority on Europa science but noted that the budget profile for the Jupiter Europa Orbiter (1EO) mission concept is incompatible with NASA's projected planetary science budget Thus, NASA enlisted a small Europa Science Definition Team (ESDT) to consider more pragmatic Europa mission options, In its preliminary findings (May, 2011), the ESDT embraces a science scope and instrument complement comparable to the science "floor" for JEO, but with a radically different mission implementation. The ESDT is studying a two-element mission architecture, in which two relatively low-cost spacecraft would fulfill the Europa science objectives, An envisioned Europa orbital element would carry only a very small geophysics payload, addressing those investigations that are best carried out from Europa orbit An envisioned separate multiple Europa flyby element (in orbit about Jupiter) would emphasize remote sensing, This mission architecture would provide for a subset of radiation-shielded instruments (all relatively low mass, power, and data rate) to be delivered into Europa orbit by a modest spacecraft, saving on propellant and other spacecraft resources, More resource-intensive remote sensing instruments would achieve their science objectives through a conservative multiple-flyby approach, that is better situated to handle larger masses and higher data volumes, and which aims to limit radiation exposure, Separation of the payload into two spacecraft elements, phased in time, would permit costs to be spread more uniformly over mUltiple years, avoiding an excessively high peak in the funding profile, Implementation of each spacecraft would be greatly simplified compared to previous Europa mission concepts, minimizing new development while achieving the key Europa science objectives. We will report on the status of this evolving concept, and will solicit community feedback, as we pursue an innovative and low-cost ways to explore Europa and investigate its habitability.
Geometry and gravity influences on strength capability
NASA Technical Reports Server (NTRS)
Poliner, Jeffrey; Wilmington, Robert P.; Klute, Glenn K.
1994-01-01
Strength, defined as the capability of an individual to produce an external force, is one of the most important determining characteristics of human performance. Knowledge of strength capabilities of a group of individuals can be applied to designing equipment and workplaces, planning procedures and tasks, and training individuals. In the manned space program, with the high risk and cost associated with spaceflight, information pertaining to human performance is important to ensuring mission success and safety. Knowledge of individual's strength capabilities in weightlessness is of interest within many areas of NASA, including workplace design, tool development, and mission planning. The weightless environment of space places the human body in a completely different context. Astronauts perform a variety of manual tasks while in orbit. Their ability to perform these tasks is partly determined by their strength capability as demanded by that particular task. Thus, an important step in task planning, development, and evaluation is to determine the ability of the humans performing it. This can be accomplished by utilizing quantitative techniques to develop a database of human strength capabilities in weightlessness. Furthermore, if strength characteristics are known, equipment and tools can be built to optimize the operators' performance. This study examined strength in performing a simple task, specifically, using a tool to apply a torque to a fixture.
ERIC Educational Resources Information Center
Lien, Mei-Ching; Ruthruff, Eric
2004-01-01
This study examined how task switching is affected by hierarchical task organization. Traditional task-switching studies, which use a constant temporal and spatial distance between each task element (defined as a stimulus requiring a response), promote a flat task structure. Using this approach, Experiment 1 revealed a large switch cost of 238 ms.…
Toward a Cognitive Task Analysis for Biomedical Query Mediation
Hruby, Gregory W.; Cimino, James J.; Patel, Vimla; Weng, Chunhua
2014-01-01
In many institutions, data analysts use a Biomedical Query Mediation (BQM) process to facilitate data access for medical researchers. However, understanding of the BQM process is limited in the literature. To bridge this gap, we performed the initial steps of a cognitive task analysis using 31 BQM instances conducted between one analyst and 22 researchers in one academic department. We identified five top-level tasks, i.e., clarify research statement, explain clinical process, identify related data elements, locate EHR data element, and end BQM with either a database query or unmet, infeasible information needs, and 10 sub-tasks. We evaluated the BQM task model with seven data analysts from different clinical research institutions. Evaluators found all the tasks completely or semi-valid. This study contributes initial knowledge towards the development of a generalizable cognitive task representation for BQM. PMID:25954589
Toward a cognitive task analysis for biomedical query mediation.
Hruby, Gregory W; Cimino, James J; Patel, Vimla; Weng, Chunhua
2014-01-01
In many institutions, data analysts use a Biomedical Query Mediation (BQM) process to facilitate data access for medical researchers. However, understanding of the BQM process is limited in the literature. To bridge this gap, we performed the initial steps of a cognitive task analysis using 31 BQM instances conducted between one analyst and 22 researchers in one academic department. We identified five top-level tasks, i.e., clarify research statement, explain clinical process, identify related data elements, locate EHR data element, and end BQM with either a database query or unmet, infeasible information needs, and 10 sub-tasks. We evaluated the BQM task model with seven data analysts from different clinical research institutions. Evaluators found all the tasks completely or semi-valid. This study contributes initial knowledge towards the development of a generalizable cognitive task representation for BQM.
Killane, Isabelle; Donoghue, Orna A; Savva, George M; Cronin, Hilary; Kenny, Rose Anne; Reilly, Richard B
2014-11-01
For single gait tasks, associations have been reported between gait speed and cognitive domains. However, few studies have evaluated if this association is altered in dual gait tasks given gait speed changes with complexity and nature of task. We evaluated relative contributions of specific elements of cognitive function (including sustained attention and processing speed) to dual task gait speed in a nationally representative population of community-dwelling adults over 50 years. Gait speed was obtained using the GaitRite walkway during three gait tasks: single, cognitive (alternate letters), and motor (carrying a filled glass). Linear regression models, adjusted for covariates, were constructed to predict the relative contributions of seven neuropsychological tests to gait speed differences and to investigate gait task effects. The mean age and gait speed of the population (n = 4,431, 55% women) was 62.4 years (SD = 8.2) and 135.85 cm/s (SD = 20.20, single task), respectively. Poorer processing speed, short-term memory, and sustained attention were major cognitive contributors to slower gait speed for all gait tasks. Both dual gait tasks were robust to covariate adjustment and had a significant additional executive function element not found for the single gait task. For community-dwelling older adults processing speed, short-term memory and sustained attention were independently associated with gait speed for all gait tasks. Dual gait tasks were found to highlight specific executive function elements. This result forms a baseline value for dual task gait speed. © The Author 2014. Published by Oxford University Press on behalf of The Gerontological Society of America. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.