Science.gov

Sample records for mit research reactor

  1. MITR-III: Upgrade and relicensing studies for the MIT Research Reactor. Second annual report

    SciTech Connect

    Trosman, H.G.; Lanning, D.D.; Harling, O.K.

    1994-08-01

    The current operating license of the MIT research reactor will expire on May 7, 1996 or possibly a few years later if the US Nuclear Regulatory Commission agrees that the license period can start with the date of initial reactor operation. Driven by the imminent expiration of the operating license, a team of nuclear engineering staff and students have begun a study of the future options for the MIT Research Reactor. These options have included the range from a major rebuilding of the reactor to its decommissioning. This document reports the results of a two year intensive activity which has been supported by a $148,000 grant from the USDOE contract Number DEFG0293ER75859, approximately $100,000 of internal MIT funds and Nuclear Engineering Department graduate student fellowships as well as assistance from international visiting scientists and engineers.

  2. Measuring Neutron Spectrum at MIT Research Reactor Utilizing He-3 Bonner Cylinder Approach with an Unfolding Analysis

    NASA Astrophysics Data System (ADS)

    Leder, Alexander; Ricochet Collaboration

    2016-03-01

    The Ricochet experiment seeks to measure Coherent (neutral-current) Elastic Neutrino-Nucleus Scattering (CENNS) using dark matter style detectors placed near a neutrino source, possibly the MIT research reactor (MITR), which offers a high continuous neutrino flux at high energies. Currently, Ricochet is characterizing the backgrounds at MITR. The main background is the neutrons emitted simultaneously from the core. To characterize this background, we wrapped a Bonner cylinder around a 3He thermal neutron detector, whose data was then unfolded to produce a neutron energy spectrum across several orders of magnitude. We discuss the resulting spectrum as well its implications for deploying Ricochet in the future.

  3. MIT research in telerobotics

    NASA Technical Reports Server (NTRS)

    Sheridan, T. B.

    1987-01-01

    Ongoing MIT research in telerobotics (vehicles capable of some autonomous sensing and manipulating, having some remote supervisory control by people) and teleoperation (vehicles for sensing and manipulating which are fully controlled remotely by people) is discussed. The current efforts mix human and artificial intelligence/control. The idea of adjustable impedance at either end of pure master-slave teleoperation, and simultaneous coordinated control of teleoperator/telerobotic systems which have more than six degrees of freedom (e.g., a combined vehicle and arm, each with five or six DOF) are discussed. A new cable-controlled parallel link arm which offers many advantages over conventional arms for space is briefly described. Predictor displays to compensate for time delay in teleoperator loops, the use of state estimation to help human control decisions in space, and ongoing research in supervisory command language are covered. Finally, efforts to build a human flyable real-time dynamic computer-graphic telerobot simulator are described. These projects represent most, but not all, of the telerobotics research in our laboratory, supported by JPL, NASA Ames and NOAA.

  4. MIT Space Engineering Research Center

    NASA Technical Reports Server (NTRS)

    Crawley, Edward F.; Miller, David W.

    1990-01-01

    The Space Engineering Research Center (SERC) at MIT, started in Jul. 1988, has completed two years of research. The Center is approaching the operational phase of its first testbed, is midway through the construction of a second testbed, and is in the design phase of a third. We presently have seven participating faculty, four participating staff members, ten graduate students, and numerous undergraduates. This report reviews the testbed programs, individual graduate research, other SERC activities not funded by the Center, interaction with non-MIT organizations, and SERC milestones. Published papers made possible by SERC funding are included at the end of the report.

  5. MIT nuclear reactor laboratory high school teaching program

    SciTech Connect

    Olmez, I. )

    1991-11-01

    For the last 6 years, the Massachusetts Institute of Technology (MIT) Nuclear Reactor Laboratory's academic and scientific staff{sup a} have been conducting evening seminars for precollege science teachers, parents, and high school students from the New England area. These seminars, as outlined in this paper, are intended to give general information on nuclear technologies with specific emphasis on radiation physics, nuclear medicine, nuclear chemistry, and ongoing research activities at the MIT research reactor. The ultimate goal is to create interest or build on the already existing interest in science and technology by, for example, special student projects. Several small projects have already been completed ranging from environmental research to biological reactions with direct student involvement. Another outcome of these seminars was the change in attitudes of science teachers toward nuclear technology. Numerous letters have been received from the teachers and parents stating their previous lack of knowledge on the beneficial aspects of nuclear technologies and the subsequent inclusion of programs in their curriculum for educating students so that they may also develop a more positive attitude toward nuclear power.

  6. Research reactors

    SciTech Connect

    Tonneson, L.C.; Fox, G.J.

    1996-04-01

    There are currently 284 research reactors in operation, and 12 under construction around the world. Of the operating reactors, nearly two-thirds are used exclusively for research, and the rest for a variety of purposes, including training, testing, and critical assembly. For more than 50 years, research reactor programs have contributed greatly to the scientific and educational communities. Today, six of the world`s research reactors are being shut down, three of which are in the USA. With government budget constraints and the growing proliferation concerns surrounding the use of highly enriched uranium in some of these reactors, the future of nuclear research could be impacted.

  7. MIT Space Engineering Research Center testbed programs

    NASA Technical Reports Server (NTRS)

    Crawley, Edward F.; Miller, David W.

    1991-01-01

    The Space Engineering Research Center (SERC) at M.I.T., started in July 1988, has completed two and one-half years of research. This Semi-Annual Report presents annotated viewgraph material presented at the January 1991 Steering Committee and Technical Representative Review. The objective of the Space Engineering Research Center is to develop and disseminate a unified technology of controlled structures. There has been continued evolution of the concept of intelligent structures (including in this past year the first successful embedding of a microelectronic component into a structural element).

  8. Research reactors - an overview

    SciTech Connect

    West, C.D.

    1997-03-01

    A broad overview of different types of research and type reactors is provided in this paper. Reactor designs and operating conditions are briefly described for four reactors. The reactor types described include swimming pool reactors, the High Flux Isotope Reactor, the Mark I TRIGA reactor, and the Advanced Neutron Source reactor. Emphasis in the descriptions is placed on safety-related features of the reactors. 7 refs., 7 figs., 2 tabs.

  9. Final Technical Report for the MIT Annular Fuel Research Project

    SciTech Connect

    Mujid S. Kazimi; Pavel Hejzlar

    2008-01-31

    MIT-NFC-PR-082 (January 2006) Abstract This summary provides an overview of the results of the U.S. DOE funded NERI (Nuclear Research ENergy Initiative) program on development of the internally and externally cooled annular fuel for high power density PWRs. This new fuel was proposed by MIT to allow a substantial increase in poer density (on the order of 30% or higher) while maintaining or improving safety margins. A comprehensive study was performed by a team consisting of MIT (lead organization), Westinghuse Electric Corporation, Gamma Engineering Corporation, Framatome ANP(formerly Duke Engineering) and Atomic Energy of Canada Limited.

  10. Flight research with the MIT Daedalus prototype

    NASA Technical Reports Server (NTRS)

    Bussolari, Steven R.; Youngren, Harold H.; Langford, John S.

    1987-01-01

    The MIT Light Eagle human-powered aircraft underwent long-duration testing over Rogers Dry Lake in California during January, 1987. Designed as a prototype for the MIT Daedalus Project, the Light Eagle's forty-eight flights provided pilot training, established new distance records for human-powered flight, and provided quantitative data through a series of instrumented flight experiments. The experiments focused on: (1) evaluating physiological loads on the pilot, (2) determining airframe power requirements, and (3) developing an electronic flight control system. This paper discusses the flight test program, its results and their implications for the follow-on Daedalus aircraft, and the potential uses of the Light Eagle as a low Reynolds number testbed.

  11. Research in Boron Neutron Capture Therapy at MIT LABA

    SciTech Connect

    Yanch, J.C.; Shefer, R.E.; Klinkowstein, R.E.; Howard, W.B.; Song, H.; Blackburn, B.; Binello, E.

    1997-02-01

    A 4.1 MeV tandem electrostatic accelerator designed for research into Boron Neutron Capture Therapy (BNCT) has recently been installed in the MIT Laboratory for Accelerator Beam Applications (LABA). This accelerator uses a very high current switch mode high voltage power supply in conjunction with a multi-cusp negative ion source to supply the multimilliampere current required for clinical BNCT applications. A number of individual research projects aimed at evaluating the potential of this accelerator design as a hospital-based neutron source for radiation therapy of both tumors and rheumatoid arthritis are described here. {copyright} {ital 1997 American Institute of Physics.}

  12. Reactor Safety Research Programs

    SciTech Connect

    Edler, S. K.

    1981-07-01

    This document summarizes the work performed by Pacific Northwest Laboratory (PNL) from January 1 through March 31, 1981, for the Division of Reactor Safety Research within the U.S. Nuclear Regulatory Commission (NRC). Evaluations of nondestructive examination (NDE) techniques and instrumentation are reported; areas of investigation include demonstrating the feasibility of determining the strength of structural graphite, evaluating the feasibility of detecting and analyzing flaw growth in reactor pressure boundary systems, examining NDE reliability and probabilistic fracture mechanics, and assessing the integrity of pressurized water reactor (PWR) steam generator tubes where service-induced degradation has been indicated. Experimental data and analytical models are being provided to aid in decision-making regarding pipeto- pipe impacts following postulated breaks in high-energy fluid system piping. Core thermal models are being developed to provide better digital codes to compute the behavior of full-scale reactor systems under postulated accident conditions. Fuel assemblies and analytical support are being provided for experimental programs at other facilities. These programs include loss-ofcoolant accident (LOCA) simulation tests at the NRU reactor, Chalk River, Canada; fuel rod deformation, severe fuel damage, and postaccident coolability tests for the ESSOR reactor Super Sara Test Program, Ispra, Italy; the instrumented fuel assembly irradiation program at Halden, Norway; and experimental programs at the Power Burst Facility, Idaho National Engineering Laboratory (INEL). These programs will provide data for computer modeling of reactor system and fuel performance during various abnormal operating conditions.

  13. Reactor Safety Research Programs

    SciTech Connect

    Dotson, CW

    1980-08-01

    This document summarizes the work performed by Pacific Northwest laboratory from October 1 through December 31, 1979, for the Division of Reactor Safety Research within the Nuclear Regulatory Commission. Evaluation of nondestructive examination (NDE) techniques and instrumentation are reported; areas of investigation include demonstrating the feasibilty of determining structural graphite strength, evaluating the feasibilty of detecting and analyzing flaw growth in reactor pressure boundary systems, examining NDE reliability and probabilistic fracture mechanics, and assessing the remaining integrity of pressurized water reactor steam generator tubes where service-induced degradation has been indicated. Test assemblies and analytical support are being provided for experimental programs at other facilities. These programs include the loss-of-coolant accident simulation tests at the NRU reactor, Chalk River, Canada; the fuel rod deformation and post-accident coolability tests for the ESSOR Test Reactor Program, lspra, Italy; the blowdown and reflood tests in the test facility at Cadarache, France; the instrumented fuel assembly irradiation program at Halden, Norway; and the experimental programs at the Power Burst Facility, Idaho National Engineering Laboratory. These programs will provide data for computer modeling of reactor system and fuel performance during various abnormal operating conditions.

  14. [R]MIT Research Centre at Delft University of Technology: A Bridge between Research, Education, Society and Profession

    ERIC Educational Resources Information Center

    Zijlstra, Hielkje

    2009-01-01

    In 2006, we launched the [R]MIT Research Centre (Modification, Intervention Transformation) at the Faculty of Architecture at Delft University of Technology. [R]MIT was founded to respond to the need for an integrated, multi-disciplinary approach to the transformation of the built environment. [R]MIT aims to bring momentum to the renewal of…

  15. Perspectives on research reactor utilization

    NASA Astrophysics Data System (ADS)

    Dodd, Brian; Dolan, Thomas J.; Laraia, Michele; Ritchie, Iain

    2002-01-01

    The current state of research reactors around the world is summarized using information from the Research Reactor Database. Some current trends of research reactors in advanced and developing countries are described. The need for strategic planning is emphasized, and elements of a typical strategic plan are presented. The problems of reactor lifetime extension, nuclear fuel cycle issues, and decommissioning are briefly discussed. It is concluded that research reactors will continue to be vital elements of the nuclear infrastructures in many countries, and that the IAEA can help countries solve their problems of utilization, safety, lifetime extension, fuel cycle, and decommissioning.

  16. Star in Deep Freeze Chills Theory, MIT Researchers Report

    NASA Astrophysics Data System (ADS)

    2001-09-01

    CAMBRIDGE, Mass. -- Like a frozen turkey that just won't thaw, a strange star near the center of the Milky Way is surprising MIT experts and colleagues with its remarkably low temperature. The odd behavior is chilling current theories of stellar physics. A famously battered neutron star named KS 1731-260 appears no hotter than some of its tranquil brethren, despite enduring the heat of constant thermonuclear explosions with the force of billions of hydrogen bombs every second across a region only a few miles wide for the past 12 years. Dr. Rudi Wijnands, an astrophysicist at MIT's Center for Space Research, used the Chandra X-ray Observatory to measure the temperature of the neutron star at a very opportune moment, only months after the nuclear war apparently ended and the smoke cleared. He presented his team's findings September 5 in Washington, D.C. at a scientific conference entitled "Two Years of Science with Chandra." "Twelve years of constant thermonuclear explosions: One would think that would heat things up," said Wijnands. "This leaves us wondering whether some neutron stars are in the freezer for a much longer time than previously thought and consequently take a long time to heat up, or whether they cool down incredibly fast. Either explanation has profound implications for our field." Neutron stars are the dense, core remains of stars once many times more massive than our Sun. They are created in dazzling supernovas, in which the outer shell of the star explodes into space, and the core, containing about as much mass as the Sun, implodes and collapses into a sphere no wider than Cambridge, Massachusetts. Despite their tiny size, neutron stars are visible in several ways. One is through accretion. Neutron stars are a strong source of gravity. When they exist in binary star systems, such as KS 1731-260, they can attract the gas from what is often a "healthy" hydrogen-burning companion star (although the nature of KS 1731-260's companion is not clear.) Gas

  17. International Research Reactor Decommissioning Project

    SciTech Connect

    Leopando, Leonardo; Warnecke, Ernst

    2008-01-15

    Many research reactors have been or will be shut down and are candidates for decommissioning. Most of the respective countries neither have a decommissioning policy nor the required expertise and funds to effectively implement a decommissioning project. The IAEA established the Research Reactor Decommissioning Demonstration Project (R{sup 2}D{sup 2}P) to help answer this need. It was agreed to involve the Philippine Research Reactor (PRR-1) as model reactor to demonstrate 'hands-on' experience as it is just starting the decommissioning process. Other facilities may be included in the project as they fit into the scope of R{sup 2}D{sup 2}P and complement to the PRR-1 decommissioning activities. The key outcome of the R{sup 2}D{sup 2}P will be the decommissioning of the PRR-1 reactor. On the way to this final goal the preparation of safety related documents (i.e., decommissioning plan, environmental impact assessment, safety analysis report, health and safety plan, cost estimate, etc.) and the licensing process as well as the actual dismantling activities could provide a model to other countries involved in the project. It is expected that the R{sup 2}D{sup 2}P would initiate activities related to planning and funding of decommissioning activities in the participating countries if that has not yet been done.

  18. Startup of the Fission Converter Epithermal Neutron Irradiation Facility at the MIT Reactor

    SciTech Connect

    Newton, Thomas H. Jr.; Riley, Kent J.; Binns, Peter J.; Kohse, Gordon E.; Hu Linwen; Harling, Otto K.

    2002-08-15

    A new epithermal neutron irradiation facility, based on a fission converter assembly placed in the thermal column outside the reactor core, has been put into operation at the Massachusetts Institute of Technology Research Reactor (MITR). This facility was constructed to provide a high-intensity, forward-directed beam for use in neutron capture therapy with an epithermal flux of [approximately equal to]10{sup 10} n/cm{sup 2}.s at the medical room entrance with negligible fast neutron and gamma-ray contamination. The fission converter assembly consists of 10 or 11 MITR fuel elements placed in an aluminum tank and cooled with D{sub 2}O. Thermal-hydraulic criteria were established based on heat deposition calculations. Various startup tests were performed to verify expected neutronic and thermal-hydraulic behavior. Flow testing showed an almost flat flow distribution across the fuel elements with <5% bypass flow. The total reactivity change caused by operation of the facility was measured at 0.014 {+-} 0.002% {delta}K/K. Thermal power produced by the facility was measured to be 83.1 {+-} 4.2 kW. All of these test results satisfied the thermal-hydraulic safety criteria. In addition, radiation shielding design measurements were made that verified design calculations for the neutronic performance.

  19. Harvard-MIT research program in short-lived radiopharmaceuticals

    SciTech Connect

    Adelstein, S.J.

    1991-01-01

    This report presents research on radiopharmaceuticals. The following topics are discussed: antibody labeling with positron-emitting radionuclides; antibody modification for radioimmune imaging; labeling antibodies; evaluation of technetium acetlyacetonates as potential cerebral blood flow agents; and studies in technetium chemistry. (CBS)

  20. The neurosciences research program at MIT and the beginning of the modern field of neuroscience.

    PubMed

    Adelman, George

    2010-01-15

    The interdisciplinary field, "neuroscience," began at MIT in 1962 with the founding of the Neurosciences Research Program (NRP) by Francis O. Schmitt and a group of US and international scientists - physical, biological, medical, and behavioral - interested in understanding the brain basis of behavior and mind. They organized and held specialist meetings of basic topics in neuroscience, and the journal and book publications over the next 20 years, based on these meetings, helped establish the new field.

  1. Research Program of a Super Fast Reactor

    SciTech Connect

    Oka, Yoshiaki; Ishiwatari, Yuki; Liu, Jie; Terai, Takayuki; Nagasaki, Shinya; Muroya, Yusa; Abe, Hiroaki; Akiba, Masato; Akimoto, Hajime; Okumura, Keisuke; Akasaka, Naoaki; GOTO, Shoji

    2006-07-01

    Research program of a supercritical-pressure light water cooled fast reactor (Super Fast Reactor) is funded by MEXT (Ministry of Education, Culture, Sports, Science and Technology) in December 2005 as one of the research programs of Japanese NERI (Nuclear Energy Research Initiative). It consists of three programs. (1) development of Super Fast Reactor concept; (2) thermal-hydraulic experiments; (3) material developments. The purpose of the concept development is to pursue the advantage of high power density of fast reactor over thermal reactors to achieve economic competitiveness of fast reactor for its deployment without waiting for exhausting uranium resources. Design goal is not breeding, but maximizing reactor power by using plutonium from spent LWR fuel. MOX will be the fuel of the Super Fast Reactor. Thermal-hydraulic experiments will be conducted with HCFC22 (Hydro chlorofluorocarbons) heat transfer loop of Kyushu University and supercritical water loop at JAEA. Heat transfer data including effect of grid spacers will be taken. The critical flow and condensation of supercritical fluid will be studied. The materials research includes the development and testing of austenitic stainless steel cladding from the experience of PNC1520 for LMFBR. Material for thermal insulation will be tested. SCWR (Supercritical-Water Cooled Reactor) of GIF (Generation-4 International Forum) includes both thermal and fast reactors. The research of the Super Fast Reactor will enhance SCWR research and the data base. The research period will be until March 2010. (authors)

  2. United States Domestic Research Reactor Infrastrucutre TRIGA Reactor Fuel Support

    SciTech Connect

    Douglas Morrell

    2011-03-01

    The United State Domestic Research Reactor Infrastructure Program at the Idaho National Laboratory manages and provides project management, technical, quality engineering, quality inspection and nuclear material support for the United States Department of Energy sponsored University Reactor Fuels Program. This program provides fresh, unirradiated nuclear fuel to Domestic University Research Reactor Facilities and is responsible for the return of the DOE-owned, irradiated nuclear fuel over the life of the program. This presentation will introduce the program management team, the universities supported by the program, the status of the program and focus on the return process of irradiated nuclear fuel for long term storage at DOE managed receipt facilities. It will include lessons learned from research reactor facilities that have successfully shipped spent fuel elements to DOE receipt facilities.

  3. Reactivity Transients in Nuclear Research Reactors

    SciTech Connect

    2015-01-01

    Version 01 AIREMOD-RR is a point kinetics code which can simulate fast transients in nuclear research reactor cores. It can also be used for theoretical reactor dynamics studies. It is used for research reactor kinetic analysis and provides a point neutron kinetic capability. The thermal hydraulic behavior is governed by a one-dimensional heat balance equation. The calculations are restricted to a single equivalent unit cell which consists of fuel, clad and coolant.

  4. Reactor operations Brookhaven medical research reactor, Brookhaven high flux beam reactor informal monthly report

    SciTech Connect

    Hauptman, H.M.; Petro, J.N.; Jacobi, O.

    1995-04-01

    This document is the April 1995 summary report on reactor operations at the Brookhaven Medical Research Reactor and the Brookhaven High Flux Beam Reactor. Ongoing experiments/irradiations in each are listed, and other significant operations functions are also noted. The HFBR surveillance testing schedule is also listed.

  5. Excellence in Research: Creative Organizational Responses at Berkeley, Harvard, MIT, and Stanford. ASHE 1985 Annual Meeting Paper.

    ERIC Educational Resources Information Center

    Gardiner, John J.

    Research environments of four leading universities were studied: University of California at Berkeley (UC-Berkeley), Harvard University, Massachusetts Institute of Technology (MIT), and Stanford University. Attention was directed to organizational responses for encouraging collaboration in research at these leading universities, as well as to…

  6. Gaseous fuel nuclear reactor research

    NASA Technical Reports Server (NTRS)

    Schwenk, F. C.; Thom, K.

    1975-01-01

    Gaseous-fuel nuclear reactors are described; their distinguishing feature is the use of fissile fuels in a gaseous or plasma state, thereby breaking the barrier of temperature imposed by solid-fuel elements. This property creates a reactor heat source that may be able to heat the propellant of a rocket engine to 10,000 or 20,000 K. At this temperature level, gas-core reactors would provide the breakthrough in propulsion needed to open the entire solar system to manned and unmanned spacecraft. The possibility of fuel recycling makes possible efficiencies of up to 65% and nuclear safety at reduced cost, as well as high-thrust propulsion capabilities with specific impulse up to 5000 sec.

  7. Fuel elements of research reactor CM

    SciTech Connect

    Kozlov, A.V.; Morozov, A.V.; Vatulin, A.V.; Ershov, S.A.

    2013-07-01

    In 1961 the CM research reactor was commissioned at the Research Institute of Atomic Reactors (Dimitrovgrad, Russia), it was intended to carry on investigations and the production of transuranium nuclides. The reactor is of a tank type. Original fuel assembly contained plate fuels that were spaced with vanes and corrugated bands. Nickel was used as a cladding material, fuel meat was produced from UO{sub 2} + electrolytic nickel composition. Fuel plates have been replaced by self-spacing cross-shaped dispersion fuels clad in stainless steel. In 2005 the reactor was updated. The purpose of this updating was to increase the quantity of irradiation channels in the reactor core and to improve the neutron balance. The updating was implemented at the expense of 20 % reduction in the quantity of fuel elements in the core which released a space for extra channels and decreased the mass of structural materials in the core. The updated reactor is loaded with modified standard fuel elements with 20 % higher uranium masses. At the same time stainless steel in fuel assembly shrouds was substituted by zirconium alloy. Today in progress are investigations and work to promote the second stage of reactor updating that involve developments of cross-shaped fuel elements having low neutron absorption matrix materials. This article gives an historical account of the design and main technical changes that occurred for the CM reactor since its commissioning.

  8. Supply of enriched uranium for research reactors

    SciTech Connect

    Mueller, H.

    1997-08-01

    Since the RERTR-meeting In Newport/USA in 1990 the author delivered a series of papers in connection with the fuel cycle for research reactors dealing with its front-end. In these papers the author underlined the need for unified specifications for enriched uranium metal suitable for the production of fuel elements and made proposals with regard to the re-use of in Europe reprocessed highly enriched uranium. With regard to the fuel cycle of research reactors the research reactor community was since 1989 more concentrating on the problems of its back-end since the USA stopped the acceptance of spent research reactor fuel on December 31, 1988. Now, since it is apparent that these back-end problem have been solved by AEA`s ability to reprocess and the preparedness of the USA to again accept physically spent research reactor fuel the author is focusing with this paper again on the front-end of the fuel cycle on the question whether there is at all a safe supply of low and high enriched uranium for research reactors in the future.

  9. NASA Education and Public Outreach Initiatives at the MIT Center for Space Research

    NASA Astrophysics Data System (ADS)

    Porro, I. L.

    2003-12-01

    Since its inception in 1999, the EPO office of the MIT Center for Space Research (CSR) has fostered direct participation of local scientists in educational initiatives such as teachers workshops and public tours of the Chandra Operations and Control Center. The role played by the CSR EPO office has grown significantly, thanks to the award of a number of EPO grants associated with the Chandra and HETE missions. In the past year about one-third of the CSR research staff was involved in the office's EPO initiatives: more than 500 K-12 students, about half from underrepresented groups, were included in formal education programs and informal education events attracted an estimated 900 people. Today the mission of the CSR EPO office is focused in two areas: professional development for K-12 science teachers, and educational programs in out-of-school time. To be associated with major NASA research missions is beneficial to our mission in several respects, but provides also specific challenges. We present here some of the strategies and intiatives that we have undertaken to overcome those challenges.

  10. Corrosion Minimization for Research Reactor Fuel

    SciTech Connect

    Eric Shaber; Gerard Hofman

    2005-06-01

    Existing university research reactors are being converted to use low-enriched uranium fue to eliminate the use of highly-enriched uranium. These conversions require increases in fuel loading that will result in the use of elements with more fuel plates, resulting in a net decrease in the water annulus between fuel plates. The proposed decrease in the water annulus raises questions about the requirements and stability of the surface hydroxide on the aluminum fuel cladding and the potential for runaway corrosion resulting in fuel over-temperature incidents. The Nuclear Regulatory Commission (NRC), as regulator for these university reactors, must ensure that proposed fuel modifications will not result in any increased risk or hazard to the reactor operators or the public. This document reviews the characteristics and behavior of aluminum hydroxides, analyzes the drivers for fuel plate corrosion, reviews relevant historical incidents, and provides recommendations on fuel design, surface treatment, and reactor operational practices to avoid corrosion issues.

  11. Probabilistic Safety Assessment of Tehran Research Reactor

    SciTech Connect

    Hosseini, Seyed Mohammad Hadi; Nematollahi, Mohammad Reza; Sepanloo, Kamran

    2004-07-01

    Probabilistic Safety Assessment (PSA) application is found to be a practical tool for research reactor safety due to intense involvement of human interactions in an experimental facility. In this paper the application of the Probabilistic Safety Assessment to the Tehran Research Reactor (TRR) is presented. The level 1 PSA application involved: Familiarization with the plant, selection of accident initiators, mitigating functions and system definitions, event tree constructions and quantification, fault tree constructions and quantification, human reliability, component failure data base development and dependent failure analysis. Each of the steps of the analysis given above is discussed with highlights from the selected results. Quantification of the constructed models is done using SAPHIRE software. This Study shows that the obtained core damage frequency for Tehran Research Reactor (8.368 E-6 per year) well meets the IAEA criterion for existing nuclear power plants (1E-4). But safety improvement suggestions are offered to decrease the most probable accidents. (authors)

  12. Research and Demonstration Program of Day Care Services for M.I.T. Employees. Interim Report.

    ERIC Educational Resources Information Center

    Arterton, Janet Bond

    A survey of day care needs of M.I.T. employees, its resulting information, and a description of the pilot program of day care services undertaken by M.I.T. are included in this report. A survey was administered to all 4,650 Institute employees in April, 1970, and enjoyed a 35% rate of response. The compiled data supports the conclusion that a…

  13. Reactor pulse repeatability studies at the annular core research reactor

    SciTech Connect

    DePriest, K.R.; Trinh, T.Q.; Luker, S. M.

    2011-07-01

    The Annular Core Research Reactor (ACRR) at Sandia National Laboratories is a water-moderated pool-type reactor designed for testing many types of objects in the pulse and steady-state mode of operations. Personnel at Sandia began working to improve the repeatability of pulse operations for experimenters in the facility. The ACRR has a unique UO{sub 2}-BeO fuel that makes the task of producing repeatable pulses difficult with the current operating procedure. The ACRR produces a significant quantity of photoneutrons through the {sup 9}Be({gamma}, n){sup 8}Be reaction in the fuel elements. The photoneutrons are the result of the gammas produced during fission and in fission product decay, so their production is very much dependent on the reactor power history and changes throughout the day/week of experiments in the facility. Because the photoneutrons interfere with the delayed-critical measurements required for accurate pulse reactivity prediction, a new operating procedure was created. The photoneutron effects at delayed critical are minimized when using the modified procedure. In addition, the pulse element removal time is standardized for all pulse operations with the modified procedure, and this produces less variation in reactivity removal times. (authors)

  14. Harvard-MIT research program in short-lived radiopharmaceuticals. Final report

    SciTech Connect

    Adelstein, S.J.

    1995-02-01

    The Harvard-MIT Research Program in Short-lived Radiopharmaceuticals was established in 1977 to foster interaction among groups working in radiopharmaceutical chemistry at Harvard Medical School, the Massachusetts Institute of Technology, and the Massachusetts General Hospital. To this was added a group at The Childrens Hospital. From these collaborations and building upon the special strengths of the participating individuals, laboratories and institutions, it was hoped that original approaches would be found for the design of new, clinically useful, radiolabeled compounds. The original thrust of this proposal included: (a) examination of the coordination chemistry of technetium as a basis for rational radiopharmaceutical design, (b) development of an ultrashort-lived radionuclide generator for the diagnosis of congenital heart disease in newborns, (c) synthesis of receptor-site-directed halopharmaceuticals, (d) improved facile labeling of complex molecules with positron-emitting radionuclides. The authors` 1986 proposal was oriented toward organs and disease, emphasizing radiolabeled agents that delineate specific functions and the distribution of receptors in brain, heart, and tumors. In 1989, they further refined their purposes and focused on two major aims: (a) synthesis and utilization of neutral technetium and rhenium complexes of high specific activity, and (b) development of new approaches to the radiolabeling of proteins, peptides, immunoglobulins, and their fragments. In 1992, the authors amended this proposal to concentrate their efforts on biologically active peptides and proteins for targeted radiodiagnosis and therapy.

  15. Reactor operations: Brookhaven Medical Research Reactor, Brookhaven High Flux Beam Reactor. Informal report, July 1995

    SciTech Connect

    1995-07-01

    Part one of this report gives the operating history for the Brookhaven Medical Research Reactor for the month of July. Also included are the BMRR technical safety surveillance requirements record and the summary of BMRR irradiations for the month. Part two gives the operating histories for the Brookhaven High Flux Beam Reactor and the Cold Neutron Source Facility for the month of July. Also included are the HFBR technical safety surveillance requirements record and the summary of HFBR irradiations for the month.

  16. Reactor operations: Brookhaven Medical Research Reactor, Brookhaven High Flux Beam Reactor. Informal report, June 1995

    SciTech Connect

    1995-06-01

    Part one of this report gives the operating history of the Brookhaven Medical Research Reactor for the month of June. Also included are the BMRR technical safety surveillance requirements record and the summary of BMRR irradiations for the month. Part two gives the operating histories of the Brookhaven High Flux Beam Reactor and the Cold Neutron Facility at HFBR for June. Also included are the HFBR technical safety surveillance requirements record and the summary of HFBR irradiations for the month.

  17. Trends in fusion reactor safety research

    SciTech Connect

    Herring, J.S.; Holland, D.F.; Piet, S.J.

    1991-01-01

    Fusion has the potential to be an attractive energy source. From the safety and environmental perspective, fusion must avoid concerns about catastrophic accidents and unsolvable waste disposal. In addition, fusion must achieve an acceptable level of risk from operational accidents that result in public exposure and economic loss. Finally, fusion reactors must control routine radioactive effluent, particularly tritium. Major progress in achieving this potential rests on development of low-activation materials or alternative fuels. The safety and performance of various material choices and fuels for commercial fusion reactors can be investigated relatively inexpensively through reactor design studies. These studies bring together experts in a wide range of backgrounds and force the group to either agree on a reactor design or identify areas for further study. Fusion reactors will be complex with distributed radioactive inventories. The next generation of experiments will be critical in demonstrating that acceptable levels of safe operation can be achieved. These machines will use materials which are available today and for which a large database exists (e.g. for 316 stainless steel). Researchers have developed a good understanding of the risks associated with operation of these devices. Specifically, consequences from coolant system failures, loss of vacuum events, tritium releases, and liquid metal reactions have been studied. Recent studies go beyond next step designs and investigate commercial reactor concerns including tritium release and liquid metal reactions. 18 refs.

  18. M.I.T. and the Federal Government. An Examination of the Effects of Government Regulation and Research Support on Selected Parts of M.I.T.

    ERIC Educational Resources Information Center

    Garvin, David

    A self-study was undertaken at the Massachusetts Institute of Technology (M.I.T.) to examine the impact of the federal government on it. M.I.T. is a large institution with an enrollment of 8,000, a faculty of 950, and a total teaching staff of 1,700. Of its operating expenses by far the largest source of funds in recent years has been sponsored…

  19. Modular Pebble Bed Reactor Project, University Research Consortium Annual Report

    SciTech Connect

    Petti, David Andrew

    2000-07-01

    numerous repetitive calculations has been developed. Use of the code has focused on scoping studies for MPBR design features and proliferation issues. Publication of an archival journal article covering this work is being prepared. · Detailed gas reactor physics calculations have also been performed with the MCNP and VSOP codes. Furthermore, studies on the proliferation resistance of the MPBR fuel cycle has been initiated using these code · Issues identified during the MPBR research has resulted in a NERI proposal dealing with turbo-machinery design being approved for funding beginning in FY01. Two other NERI proposals, dealing with the development of a burnup “meter” and modularization techniques, were also funded in which the MIT team will be a participant. · A South African MPBR fuel testing proposal is pending ($7.0M over nine years).

  20. University research reactors and Internet communication

    SciTech Connect

    Bobek, L.M.

    1994-12-31

    In July 1993, the U.S. Nuclear Regulatory Commission (NRC) stunned nonprofit U.S. universities by eliminating the historical fee exemption for these entities. The fees would have devastating effects on university reactor operations and university by-product material usage. Faced with the prospect of eliminating their programs, the university research reactor (URR) community made a concerted response to reinstate the exemption. While the effort eventually proved successful, the need for fast and efficient communication became very apparent during the crisis. One outcome was an effort to enhance communications among the university reactors by using electronic mail (E-mail) on the Internet. This paper describes how the fee crisis demonstrated the need for enhanced communications and the results of the effort to provide it.

  1. Neutron scattering at the OPAL research reactor

    NASA Astrophysics Data System (ADS)

    McIntyre, Garry J.; Holden, Peter J.

    2016-09-01

    The current suite of 14 neutron scattering instruments at the multipurpose OPAL research reactor is described. All instruments have been constructed following best practice, using state-of-the-art components and in close consultation with the regional user base. First results from the most recently commissioned instruments match their design performance parameters. Selected recent scientific highlights illustrate some unique combinations of instrumentation and the regional flavour of topical applications.

  2. Reactor Safety Research: Semiannual report, January-June 1986: Reactor Safety Research Program

    SciTech Connect

    Not Available

    1987-05-01

    Sandia National Laboratories is conducting, under USNRC sponsorship, phenomenological research related to the safety of commercial nuclear power reactors. The research includes experiments to simulate the phenomenology of accident conditions and the development of analytical models, verified by experiment, which can be used to predict reactor and safety systems performance behavior under abnormal conditions. The objective of this work is to provide NRC requisite data bases and analytical methods to (1) identify and define safety issues, (2) understand the progression of risk-significant accident sequences, and (3) conduct safety assessments. The collective NRC-sponsored effort at Sandia National Laboratories is directed at enhancing the technology base supporting licensing decisions.

  3. Monte Carlo modelling of TRIGA research reactor

    NASA Astrophysics Data System (ADS)

    El Bakkari, B.; Nacir, B.; El Bardouni, T.; El Younoussi, C.; Merroun, O.; Htet, A.; Boulaich, Y.; Zoubair, M.; Boukhal, H.; Chakir, M.

    2010-10-01

    The Moroccan 2 MW TRIGA MARK II research reactor at Centre des Etudes Nucléaires de la Maâmora (CENM) achieved initial criticality on May 2, 2007. The reactor is designed to effectively implement the various fields of basic nuclear research, manpower training, and production of radioisotopes for their use in agriculture, industry, and medicine. This study deals with the neutronic analysis of the 2-MW TRIGA MARK II research reactor at CENM and validation of the results by comparisons with the experimental, operational, and available final safety analysis report (FSAR) values. The study was prepared in collaboration between the Laboratory of Radiation and Nuclear Systems (ERSN-LMR) from Faculty of Sciences of Tetuan (Morocco) and CENM. The 3-D continuous energy Monte Carlo code MCNP (version 5) was used to develop a versatile and accurate full model of the TRIGA core. The model represents in detailed all components of the core with literally no physical approximation. Continuous energy cross-section data from the more recent nuclear data evaluations (ENDF/B-VI.8, ENDF/B-VII.0, JEFF-3.1, and JENDL-3.3) as well as S( α, β) thermal neutron scattering functions distributed with the MCNP code were used. The cross-section libraries were generated by using the NJOY99 system updated to its more recent patch file "up259". The consistency and accuracy of both the Monte Carlo simulation and neutron transport physics were established by benchmarking the TRIGA experiments. Core excess reactivity, total and integral control rods worth as well as power peaking factors were used in the validation process. Results of calculations are analysed and discussed.

  4. TRIGA research reactor activities around the world

    SciTech Connect

    Chesworth, R.H.; Razvi, J.; Whittemore, W.L. )

    1991-11-01

    Recent activities at several overseas TRIGA installations are discussed in this paper, including reactor performance, research programs under way, and plans for future upgrades. The following installations are included: (1) 14,000-kW TRIGA at the Institute for Nuclear Research, Pitesti, Romania; (2) 2,000-kW TRIGA Mark II at the Institute of Nuclear Technology, Dhaka, Bangladesh; (3) 3,000-kW TRIGA conversion, Philippine Nuclear Research Institute, Quezon City, Philippines; and (4) other ongoing installations, including a 1,500-kW TRIGA Mark II at Rabat, Morocco, and a 1,000-kW conversion/upgrade at the Institute Asunto Nucleares, Bogota, Columbia.

  5. Research reactor de-fueling and fuel shipment

    SciTech Connect

    Ice, R.D.; Jawdeh, E.; Strydom, J.

    1998-08-01

    Planning for the Georgia Institute of Technology Research Reactor operations during the 1996 Summer Olympic Games began in early 1995. Before any details could be outlined, several preliminary administrative decisions had to be agreed upon by state, city, and university officials. The two major administrative decisions involving the reactor were (1) the security level and requirements and (2) the fuel status of the reactor. The Georgia Tech Research Reactor (GTRR) was a heavy-water moderated and cooled reactor, fueled with high-enriched uranium. The reactor was first licensed in 1964 with an engineered lifetime of thirty years. The reactor was intended for use in research applications and as a teaching facility for nuclear engineering students and reactor operators. Approximately one year prior to the olympics, the Georgia Tech administration decided that the GTRR fuel would be removed. In addition, a heightened, beyond regulatory requirements, security system was to be implemented. This report describes the scheduling, operations, and procedures.

  6. An Account of Oak Ridge National Laboratory's Thirteen Research Reactors

    SciTech Connect

    Rosenthal, Murray Wilford

    2009-08-01

    The Oak Ridge National Laboratory has built and operated 13 nuclear reactors in its 66-year history. The first was the graphite reactor, the world's first operational nuclear reactor, which served as a plutonium production pilot plant during World War II. It was followed by two aqueous-homogeneous reactors and two red-hot molten-salt reactors that were parts of power-reactor development programs and by eight others designed for research and radioisotope production. One of the eight was an all-metal fast burst reactor used for health physics studies. All of the others were light-water cooled and moderated, including the famous swimming-pool reactor that was copied dozens of times around the world. Two of the reactors were hoisted 200 feet into the air to study the shielding needs of proposed nuclear-powered aircraft. The final reactor, and the only one still operating today, is the High Flux Isotope Reactor (HFIR) that was built particularly for the production of californium and other heavy elements. With the world's highest flux and recent upgrades that include the addition of a cold neutron source, the 44-year-old HFIR continues to be a valuable tool for research and isotope production, attracting some 500 scientific visitors and guests to Oak Ridge each year. This report describes all of the reactors and their histories.

  7. Diversion assumptions for high-powered research reactors

    SciTech Connect

    Binford, F.T.

    1984-01-01

    This study deals with diversion assumptions for high-powered research reactors -- specifically, MTR fuel; pool- or tank-type research reactors with light-water moderator; and water, beryllium, or graphite reflectors, and which have a power level of 25 MW(t) or more. The objective is to provide assistance to the IAEA in documentation of criteria and inspection observables related to undeclared plutonium production in the reactors described above, including: criteria for undeclared plutonium production, necessary design information for implementation of these criteria, verification guidelines including neutron physics and heat transfer, and safeguards measures to facilitate the detection of undeclared plutonium production at large research reactors.

  8. REACTOR PHYSICS MODELING OF SPENT RESEARCH REACTOR FUEL FOR TECHNICAL NUCLEAR FORENSICS

    SciTech Connect

    Nichols, T.; Beals, D.; Sternat, M.

    2011-07-18

    Technical nuclear forensics (TNF) refers to the collection, analysis and evaluation of pre- and post-detonation radiological or nuclear materials, devices, and/or debris. TNF is an integral component, complementing traditional forensics and investigative work, to help enable the attribution of discovered radiological or nuclear material. Research is needed to improve the capabilities of TNF. One research area of interest is determining the isotopic signatures of research reactors. Research reactors are a potential source of both radiological and nuclear material. Research reactors are often the least safeguarded type of reactor; they vary greatly in size, fuel type, enrichment, power, and burn-up. Many research reactors are fueled with highly-enriched uranium (HEU), up to {approx}93% {sup 235}U, which could potentially be used as weapons material. All of them have significant amounts of radiological material with which a radioactive dispersal device (RDD) could be built. Therefore, the ability to attribute if material originated from or was produced in a specific research reactor is an important tool in providing for the security of the United States. Currently there are approximately 237 operating research reactors worldwide, another 12 are in temporary shutdown and 224 research reactors are reported as shut down. Little is currently known about the isotopic signatures of spent research reactor fuel. An effort is underway at Savannah River National Laboratory (SRNL) to analyze spent research reactor fuel to determine these signatures. Computer models, using reactor physics codes, are being compared to the measured analytes in the spent fuel. This allows for improving the reactor physics codes in modeling research reactors for the purpose of nuclear forensics. Currently the Oak Ridge Research reactor (ORR) is being modeled and fuel samples are being analyzed for comparison. Samples of an ORR spent fuel assembly were taken by SRNL for analytical and radiochemical

  9. REACTOR PHYSICS MODELING OF SPENT NUCLEAR RESEARCH REACTOR FUEL FOR SNM ATTRIBUTION AND NUCLEAR FORENSICS

    SciTech Connect

    Sternat, M.; Beals, D.; Webb, R.; Nichols, T.

    2010-06-09

    Nuclear research reactors are the least safeguarded type of reactor; in some cases this may be attributed to low risk and in most cases it is due to difficulty from dynamic operation. Research reactors vary greatly in size, fuel type, enrichment, power and burnup providing a significant challenge to any standardized safeguard system. If a whole fuel assembly was interdicted, based on geometry and other traditional forensics work, one could identify the material's origin fairly accurately. If the material has been dispersed or reprocessed, in-depth reactor physics models may be used to help with the identification. Should there be a need to attribute research reactor fuel material, the Savannah River National Laboratory would perform radiochemical analysis of samples of the material as well as other non-destructive measurements. In depth reactor physics modeling would then be performed to compare to these measured results in an attempt to associate the measured results with various reactor parameters. Several reactor physics codes are being used and considered for this purpose, including: MONTEBURNS/ORIGEN/MCNP5, CINDER/MCNPX and WIMS. In attempt to identify reactor characteristics, such as time since shutdown, burnup, or power, various isotopes are used. Complexities arise when the inherent assumptions embedded in different reactor physics codes handle the isotopes differently and may quantify them to different levels of accuracy. A technical approach to modeling spent research reactor fuel begins at the assembly level upon acquiring detailed information of the reactor to be modeled. A single assembly is run using periodic boundary conditions to simulate an infinite lattice which may be repeatedly burned to produce input fuel isotopic vectors of various burnups for a core level model. A core level model will then be constructed using the assembly level results as inputs for the specific fuel shuffling pattern in an attempt to establish an equilibrium cycle. The

  10. Korea Research Reactor -1 & 2 Decommissioning Project in Korea

    SciTech Connect

    Park, S. K.; Chung, U. S.; Jung, K. J.; Park, J. H.

    2003-02-24

    Korea Research Reactor 1 (KRR-1), the first research reactor in Korea, has been operated since 1962, and the second one, Korea Research Reactor 2 (KRR-2) since 1972. The operation of both of them was phased out in 1995 due to their lifetime and operation of the new and more powerful research reactor, HANARO (High-flux Advanced Neutron Application Reactor; 30MW). Both are TRIGA Pool type reactors in which the cores are small self-contained units sitting in tanks filled with cooling water. The KRR-1 is a TRIGA Mark II, which could operate at a level of up to 250 kW. The second one, the KRR-2 is a TRIGA Mark III, which could operate at a level of up 2,000 kW. The decontamination and decommissioning (D & D) project of these two research reactors, the first D & D project in Korea, was started in January 1997 and will be completed to stage 3 by 2008. The aim of this decommissioning program is to decommission the KRR-1 & 2 reactors and to decontaminate the residual building structure s and the site to release them as unrestricted areas. KAERI (Korea Atomic Energy Research Institute) submitted the decommissioning plan and the environmental impact assessment reports to the Ministry of Science and Technology (MOST) for the license in December 1998, and was approved in November 2000.

  11. Photoneutron effects on pulse reactor kinetics for the Annular Core Research Reactor (ACRR).

    SciTech Connect

    Parma, Edward J., Jr.

    2009-06-01

    The Annular Core Research Reactor (ACRR) is a swimming-pool type pulsed reactor that maintains an epithermal neutron flux and a nine-inch diameter central dry cavity. One of its uses is neutron and gamma-ray irradiation damage studies on electronic components under transient reactor power conditions. In analyzing the experimental results, careful attention must be paid to the kinetics associated with the reactor to ensure that the transient behavior of the electronic device is understood. Since the ACRR fuel maintains a substantial amount of beryllium, copious quantities of photoneutrons are produced that can significantly alter the expected behavior of the reactor power, especially following a reactor pulse. In order to understand these photoneutron effects on the reactor kinetics, the KIFLE transient reactor-analysis code was modified to include the photoneutron groups associated with the beryllium. The time-dependent behavior of the reactor power was analyzed for small and large pulses, assuming several initial conditions including following several pulses during the day, and following a long steady-state power run. The results indicate that, for these types of initial conditions, the photoneutron contribution to the reactor pulse energy can have a few to tens of percent effect.

  12. Sodium fast reactor safety and licensing research plan. Volume II.

    SciTech Connect

    Ludewig, H.; Powers, D. A.; Hewson, John C.; LaChance, Jeffrey L.; Wright, A.; Phillips, J.; Zeyen, R.; Clement, B.; Garner, Frank; Walters, Leon; Wright, Steve; Ott, Larry J.; Suo-Anttila, Ahti Jorma; Denning, Richard; Ohshima, Hiroyuki; Ohno, S.; Miyhara, S.; Yacout, Abdellatif; Farmer, M.; Wade, D.; Grandy, C.; Schmidt, R.; Cahalen, J.; Olivier, Tara Jean; Budnitz, R.; Tobita, Yoshiharu; Serre, Frederic; Natesan, Ken; Carbajo, Juan J.; Jeong, Hae-Yong; Wigeland, Roald; Corradini, Michael; Thomas, Justin; Wei, Tom; Sofu, Tanju; Flanagan, George F.; Bari, R.; Porter D.; Lambert, J.; Hayes, S.; Sackett, J.; Denman, Matthew R.

    2012-05-01

    Expert panels comprised of subject matter experts identified at the U.S. National Laboratories (SNL, ANL, INL, ORNL, LBL, and BNL), universities (University of Wisconsin and Ohio State University), international agencies (IRSN, CEA, JAEA, KAERI, and JRC-IE) and private consultation companies (Radiation Effects Consulting) were assembled to perform a gap analysis for sodium fast reactor licensing. Expert-opinion elicitation was performed to qualitatively assess the current state of sodium fast reactor technologies. Five independent gap analyses were performed resulting in the following topical reports: (1) Accident Initiators and Sequences (i.e., Initiators/Sequences Technology Gap Analysis), (2) Sodium Technology Phenomena (i.e., Advanced Burner Reactor Sodium Technology Gap Analysis), (3) Fuels and Materials (i.e., Sodium Fast Reactor Fuels and Materials: Research Needs), (4) Source Term Characterization (i.e., Advanced Sodium Fast Reactor Accident Source Terms: Research Needs), and (5) Computer Codes and Models (i.e., Sodium Fast Reactor Gaps Analysis of Computer Codes and Models for Accident Analysis and Reactor Safety). Volume II of the Sodium Research Plan consolidates the five gap analysis reports produced by each expert panel, wherein the importance of the identified phenomena and necessities of further experimental research and code development were addressed. The findings from these five reports comprised the basis for the analysis in Sodium Fast Reactor Research Plan Volume I.

  13. 78 FR 58575 - Review of Experiments for Research Reactors

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-09-24

    ... From the Federal Register Online via the Government Publishing Office NUCLEAR REGULATORY COMMISSION Review of Experiments for Research Reactors AGENCY: Nuclear Regulatory Commission. ACTION..., by email at Alexander.Adams@nrc.gov , Office of Nuclear Reactor Regulation, U.S. Nuclear...

  14. A Potential NASA Research Reactor to Support NTR Development

    NASA Technical Reports Server (NTRS)

    Eades, Michael; Gerrish, Harold; Hardin, Leroy

    2013-01-01

    In support of efforts for research into the design and development of a man rated Nuclear Thermal Rocket (NTR) engine, the National Aeronautics and Space Administration (NASA), Marshall Space Flight Center (MSFC), is evaluating the potential for building a Nuclear Regulatory Commission (NRC) licensed research reactor. The proposed reactor would be licensed by NASA and operated jointly by NASA and university partners. The purpose of this reactor would be to perform further research into the technologies and systems needed for a successful NTR project and promote nuclear training and education.

  15. Dr. Robert S. Harris: nutritionist, oral science researcher, and visionary MIT educator.

    PubMed

    Navia, J M

    1998-03-01

    Efforts in dental research and training have received the contribution of individuals who had no formal training in dentistry, yet they understood the dental field and the educational needs of those who would be engaged in dental research, teaching, and service in industry and academia. Dr. Robert S. Harris (1904-1983) was such a man. What follows is a personal remembrance of his character, his research accomplishments, and his successful educational endeavors in the dental field. PMID:9496916

  16. The effective management of medical isotope production in research reactors

    SciTech Connect

    Drummond, D.T. )

    1993-01-01

    During the 50-yr history of the use of radioisotopes for medical applications, research reactors have played a pivotal role in the production of many if not most of the key products. The marriage between research reactors and production operations is subject to significant challenges on two fronts. The medical applications of the radioisotope products impose some unique constraints and requirements on the production process. In addition, the mandates and priorities of a research reactor are not always congruent with the demands of a production environment. This paper briefly reviews the historical development of medical isotope production, identifies the unique challenges facing this endeavor, and discusses the management of the relationship between the isotope producer and the research reactor operator. Finally, the key elements of a successful relationship are identified.

  17. Research in volcanic geology, petrology and planetary science at MIT, 1969 to 1974

    NASA Technical Reports Server (NTRS)

    Mcgetchin, T. R.

    1974-01-01

    The behavior of volcanoes was studied by geologic mapping, petrologic investigations of lava and xenoliths, physical measurements, and theoretical modelling. Field observations were conducted in Alaska (Nunivak Island), Iceland, Hawaii (Mauna Kea), Italy (Etna, Stromboli), and Arizona. The results are discussed and compared with known data for lunar and planetary gelogy. Field methods used for the volcano research are cited and a list is given of all participating scientists and students. Publications and abstracts resulting from the research are also listed.

  18. Harvard-MIT research program in short-lived radiopharmaceuticals. Technical progress report, 1991

    SciTech Connect

    Adelstein, S.J.

    1991-12-31

    This report presents research on radiopharmaceuticals. The following topics are discussed: antibody labeling with positron-emitting radionuclides; antibody modification for radioimmune imaging; labeling antibodies; evaluation of technetium acetlyacetonates as potential cerebral blood flow agents; and studies in technetium chemistry. (CBS)

  19. Background radiation measurements at high power research reactors

    SciTech Connect

    Ashenfelter, J.; Balantekin, B.; Baldenegro, C. X.; Band, H. R.; Barclay, G.; Bass, C. D.; Berish, D.; Bowden, N. S.; Bryan, C. D.; Cherwinka, J. J.; Chu, R.; Classen, T.; Davee, D.; Dean, D.; Deichert, G.; Dolinski, M. J.; Dolph, J.; Dwyer, D. A.; Fan, S.; Gaison, J. K.; Galindo-Uribarri, A.; Gilje, K.; Glenn, A.; Green, M.; Han, K.; Hans, S.; Heeger, K. M.; Heffroni, B.; Jaffe, D. E.; Kettell, S.; Langford, T. J.; Littlejohn, B. R.; Martinez, D.; McKeown, R. D.; Morrell, S.; Mueller, P. E.; Mumm, H. P.; Napolitano, J.; Norcini, D.; Pushin, D.; Romero, E.; Rosero, R.; Saldana, L.; Seilhan, B. S.; Sharma, R.; Stemen, N. T.; Surukuchi, P. T.; Thompson, S. J.; Varner, R. L.; Wang, W.; Watson, S. M.; White, B.; White, C.; Wilhelmi, J.; Williams, C.; Wise, T.; Yao, H.; Yeh, M.; Yen, Y. -R.; Zhang, C.; Zhang, X.

    2015-10-23

    Research reactors host a wide range of activities that make use of the intense neutron fluxes generated at these facilities. Recent interest in performing measurements with relatively low event rates, e.g. reactor antineutrino detection, at these facilities necessitates a detailed understanding of background radiation fields. Both reactor-correlated and naturally occurring background sources are potentially important, even at levels well below those of importance for typical activities. Here we describe a comprehensive series of background assessments at three high-power research reactors, including -ray, neutron, and muon measurements. For each facility we describe the characteristics and identify the sources of the background fields encountered. Furthermore, the general understanding gained of background production mechanisms and their relationship to facility features will prove valuable for the planning of any sensitive measurement conducted therein.

  20. Background radiation measurements at high power research reactors

    SciTech Connect

    Ashenfelter, J.; Yeh, M.; Balantekin, B.; Baldenegro, C. X.; Band, H. R.; Barclay, G.; Bass, C. D.; Berish, D.; Bowden, N. S.; Bryan, C. D.; Cherwinka, J. J.; Chu, R.; Classen, T.; Davee, D.; Dean, D.; Deichert, G.; Dolinski, M. J.; Dolph, J.; Dwyer, D. A.; Fan, S.; Gaison, J. K.; Galindo-Uribarri, A.; Gilje, K.; Glenn, A.; Green, M.; Han, K.; Hans, S.; Heeger, K. M.; Heffron, B.; Jaffe, D. E.; Kettell, S.; Langford, T. J.; Littlejohn, B. R.; Martinez, D.; McKeown, R. D.; Morrell, S.; Mueller, P. E.; Mumm, H. P.; Napolitano, J.; Norcini, D.; Pushin, D.; Romero, E.; Rosero, R.; Saldana, L.; Seilhan, B. S.; Sharma, R.; Stemen, N. T.; Surukuchi, P. T.; Thompson, S. J.; Varner, R. L.; Wang, W.; Watson, S. M.; White, B.; White, C.; Wilhelmi, J.; Williams, C.; Wise, T.; Yao, H.; Yen, Y. -R.; Zhang, C.; Zhang, X.

    2015-10-23

    Research reactors host a wide range of activities that make use of the intense neutron fluxes generated at these facilities. Recent interest in performing measurements with relatively low event rates, e.g. reactor antineutrino detection, at these facilities necessitates a detailed understanding of background radiation fields. Both reactor-correlated and naturally occurring background sources are potentially important, even at levels well below those of importance for typical activities. Here we describe a comprehensive series of background assessments at three high-power research reactors, including γ-ray, neutron, and muon measurements. For each facility we describe the characteristics and identify the sources of the background fields encountered. Furthermore, the general understanding gained of background production mechanisms and their relationship to facility features will prove valuable for the planning of any sensitive measurement conducted therein.

  1. Background radiation measurements at high power research reactors

    DOE PAGESBeta

    Ashenfelter, J.; Balantekin, B.; Baldenegro, C. X.; Band, H. R.; Barclay, G.; Bass, C. D.; Berish, D.; Bowden, N. S.; Bryan, C. D.; Cherwinka, J. J.; et al

    2015-10-23

    Research reactors host a wide range of activities that make use of the intense neutron fluxes generated at these facilities. Recent interest in performing measurements with relatively low event rates, e.g. reactor antineutrino detection, at these facilities necessitates a detailed understanding of background radiation fields. Both reactor-correlated and naturally occurring background sources are potentially important, even at levels well below those of importance for typical activities. Here we describe a comprehensive series of background assessments at three high-power research reactors, including -ray, neutron, and muon measurements. For each facility we describe the characteristics and identify the sources of the backgroundmore » fields encountered. Furthermore, the general understanding gained of background production mechanisms and their relationship to facility features will prove valuable for the planning of any sensitive measurement conducted therein.« less

  2. Background radiation measurements at high power research reactors

    DOE PAGESBeta

    Ashenfelter, J.; Yeh, M.; Balantekin, B.; Baldenegro, C. X.; Band, H. R.; Barclay, G.; Bass, C. D.; Berish, D.; Bowden, N. S.; Bryan, C. D.; et al

    2015-10-23

    Research reactors host a wide range of activities that make use of the intense neutron fluxes generated at these facilities. Recent interest in performing measurements with relatively low event rates, e.g. reactor antineutrino detection, at these facilities necessitates a detailed understanding of background radiation fields. Both reactor-correlated and naturally occurring background sources are potentially important, even at levels well below those of importance for typical activities. Here we describe a comprehensive series of background assessments at three high-power research reactors, including γ-ray, neutron, and muon measurements. For each facility we describe the characteristics and identify the sources of the backgroundmore » fields encountered. Furthermore, the general understanding gained of background production mechanisms and their relationship to facility features will prove valuable for the planning of any sensitive measurement conducted therein.« less

  3. Reactor Safety Research Programs Quarterly Report April- June 1981

    SciTech Connect

    Edler, S. K.

    1981-09-01

    This document summarizes the work performed by Pacific Northwest laboratory (PNL} from April1 through June 30, 1981, for the Division of Reactor Safety Research within the U.S. Nuclear Regulatory Commission (NRC). Evaluations of nondestructive examination (NDE) techniques and instrumentation are reported; areas of investigation include demonstrating the feasibility of determining the strength of structural graphite, evaluating the feasibility of detecting and analyzing flaw growth in reactor pressure boundary systems, examining NDE reliability and probabilistic fracture mechanics, and assessing the integrity of pressurized water reactor (PWR) steam generator tubes where service-induced degradation has been indicated. Experimental data and analytical models are being provided to aid in decision-making regarding pipe-to-pipe impacts following postulated breaks in high-energy fluid system piping. Core thermal models are being developed to provide better digital codes to compute the behavior of full-scale reactor systems under postulated accident conditions. Fuel assemblies and analytical support are being provided for experimental programs at other facilities. These programs include loss-of-coolant accident (LOCA) simulation tests at the NRU reactor, Chalk River, Canada; fuel rod deformation, severe fuel damage, and postaccident coolability tests for the ESSOR reactor Super Sara Test Program, lspra, Italy; the instrumented fuel assembly irradiation program at Halden, Norway; and experimental programs at the Power Burst Facility, Idaho National Engineering Laboratory {INEL). These programs will provide data for computer modeling of reactor system and fuel performance during various abnormal operating conditions.

  4. Positron beam facility at Kyoto University Research Reactor

    NASA Astrophysics Data System (ADS)

    Xu, Q.; Sato, K.; Yoshiie, T.; Sano, T.; Kawabe, H.; Nagai, Y.; Nagumo, K.; Inoue, K.; Toyama, T.; Oshima, N.; Kinomura, A.; Shirai, Y.

    2014-04-01

    A positron beam facility is presently under construction at the Kyoto University Research Reactor (KUR), which is a light-water moderated tank-type reactor operated at a rated thermal power of 5 MW. A cadmium (Cd) - tungsten (W) source similar to that used in NEPOMUC was chosen in the KUR because Cd is very efficient at producing γ-rays when exposed to thermal neutron flux, and W is a widely used in converter and moderator materials. High-energy positrons are moderated by a W moderator with a mesh structure. Electrical lenses and a solenoid magnetic field are used to extract the moderated positrons and guide them to a platform outside of the reactor, respectively. Since Japan is an earthquake-prone country, a special attention is paid for the design of the in-pile positron source so as not to damage the reactor in the severe earthquake.

  5. A probabilistic safety analysis of incidents in nuclear research reactors.

    PubMed

    Lopes, Valdir Maciel; Agostinho Angelo Sordi, Gian Maria; Moralles, Mauricio; Filho, Tufic Madi

    2012-06-01

    This work aims to evaluate the potential risks of incidents in nuclear research reactors. For its development, two databases of the International Atomic Energy Agency (IAEA) were used: the Research Reactor Data Base (RRDB) and the Incident Report System for Research Reactor (IRSRR). For this study, the probabilistic safety analysis (PSA) was used. To obtain the result of the probability calculations for PSA, the theory and equations in the paper IAEA TECDOC-636 were used. A specific program to analyse the probabilities was developed within the main program, Scilab 5.1.1. for two distributions, Fischer and chi-square, both with the confidence level of 90 %. Using Sordi equations, the maximum admissible doses to compare with the risk limits established by the International Commission on Radiological Protection (ICRP) were obtained. All results achieved with this probability analysis led to the conclusion that the incidents which occurred had radiation doses within the stochastic effects reference interval established by the ICRP-64.

  6. Reduced enrichment for research and test reactors: Proceedings

    SciTech Connect

    Not Available

    1988-05-01

    The international effort to develop new research reactor fuel materials and designs based on the use of low-enriched uranium, instead of highly-enriched uranium, has made much progress during the eight years since its inception. To foster direct communication and exchange of ideas among the specialist in this area, the Reduced Enrichment Research and Test Reactor (RERTR) Program, at the Argonne National Laboratory, sponsored this meeting as the ninth of a series which began in 1978. All previous meetings of this series are listed on the facing page. The focus of this meeting was on the LEU fuel demonstration which was in progress at the Oak Ridge Research (ORR) reactor, not far from where the meeting was held. The visit to the ORR, where a silicide LEU fuel with 4.8 g A/cm/sup 3/ was by then in routine use, illustrated how far work has progressed.

  7. Reactor Safety Research: Semiannual report, July-December 1986

    SciTech Connect

    Not Available

    1987-11-01

    Sandia National Laboratories is conducting, under USNRC sponsorship, phenomenological research related to the safety of commercial nuclear power reactors. The research includes experiments to simulate the phenomenology of the accident conditions and the development of analytical models, verified by experiment, which can be used to predict reactor and safety systems performance and behavior under abnormal conditions. The objective of this work is to provide NRC requisite data bases and analytical methods to (1) identify and define safety issues, (2) understand the progression of risk-significant accident sequences, and (3) conduct safety assessments. The collective NRC-sponsored effort at Sandia National Laboratories is directed at enhancing the tehcnology base supporting licensing decisions.

  8. Conversion Preliminary Safety Analysis Report for the NIST Research Reactor

    SciTech Connect

    Diamond, D. J.; Baek, J. S.; Hanson, A. L.; Cheng, L-Y; Brown, N.; Cuadra, A.

    2015-01-30

    The NIST Center for Neutron Research (NCNR) is a reactor-laboratory complex providing the National Institute of Standards and Technology (NIST) and the nation with a world-class facility for the performance of neutron-based research. The heart of this facility is the NIST research reactor (aka NBSR); a heavy water moderated and cooled reactor operating at 20 MW. It is fueled with high-enriched uranium (HEU) fuel elements. A Global Threat Reduction Initiative (GTRI) program is underway to convert the reactor to low-enriched uranium (LEU) fuel. This program includes the qualification of the proposed fuel, uranium and molybdenum alloy foil clad in an aluminum alloy, and the development of the fabrication techniques. This report is a preliminary version of the Safety Analysis Report (SAR) that would be submitted to the U.S. Nuclear Regulatory Commission (NRC) for approval prior to conversion. The report follows the recommended format and content from the NRC codified in NUREG-1537, “Guidelines for Preparing and Reviewing Applications for the Licensing of Non-power Reactors,” Chapter 18, “Highly Enriched to Low-Enriched Uranium Conversions.” The emphasis in any conversion SAR is to explain the differences between the LEU and HEU cores and to show the acceptability of the new design; there is no need to repeat information regarding the current reactor that will not change upon conversion. Hence, as seen in the report, the bulk of the SAR is devoted to Chapter 4, Reactor Description, and Chapter 13, Safety Analysis.

  9. MIT: Shaping the Future.

    ERIC Educational Resources Information Center

    Manning, Kenneth R., Ed.

    This book provides 16 essays by faculty and staff of the Massachusetts Institute of Technology (MIT) concerning what MIT is like today and offering a guide to its possible future. Emphasis is placed on local, national, and global issues, providing a current sampling of the state of concerns and opinions around MIT. Topics include the question of…

  10. Reactor pressure vessel structural integrity research

    SciTech Connect

    Pennell, W.E.; Corwin, W.R.

    1995-04-01

    Development continues on the technology used to assess the safety of irradiation-embrittled nuclear reactor pressure vessels (RPVs) containing flaws. Fracture mechanics tests on RPV steel, coupled with detailed elastic-plastic finite-element analyses of the crack-tip stress fields, have shown that (1) constraint relaxation at the crack tip of shallows surface flaws results in increased data scatter but no increase in the lower-bound fracture toughness, (2) the nil ductility temperature (NDT) performs better than the reference temperature for nil ductility transition (RT{sub NDT}) as a normalizing parameter for shallow-flaw fracture toughness data, (3) biaxial loading can reduce the shallow-flaw fracture toughness, (4) stress-based dual-parameter fracture toughness correlations cannot predict the effect of biaxial loading on a shallow-flaw fracture toughness because in-plane stresses at the crack tip are not influenced by biaxial loading, and (5) an implicit strain-based dual-parameter fracture toughness correlation can predict the effect of biaxial loading on shallow-flaw fracture toughness. Experimental irradiation investigations have shown that (1) the irradiation-induced shift in Charpy V-notch vs temperature behavior may not be adequate to conservatively assess fracture toughness shifts due to embrittlement, and (2) the wide global variations of initial chemistry and fracture properties of a nominally uniform material within a pressure vessel may confound accurate integrity assessments that require baseline properties.

  11. Reactor pressure vessel structural integrity research

    SciTech Connect

    Pennell, W.E.; Corwin, W.R.

    1994-12-31

    Development continues on the technology used to assess the safety of irradiation-embrittled nuclear reactor pressure vessels (RPVs) containing flaws. Fracture mechanics tests on RPV steel, coupled with detailed elastic-plastic finite-element analyses of the crack-tip stress fields, have shown that (1) constraint relaxation at the crack tip of shallow surface flaws results in increased data scatter but no increase in the lower-bound fracture toughness, (2) the nil ductility temperature (NDT) performs better than the reference temperature for nil ductility transition (RT{sub NDT}) as a normalizing parameter for shallow-flaw fracture toughness data, (3) biaxial loading can reduce the shallow-flaw fracture toughness, (4) stress-based dual-parameter fracture toughness correlations cannot predict the effect of biaxial loading on shallow-flaw fracture toughness because in-plane stresses at the crack tip are not influenced by biaxial loading, and (5) an implicit strain-based dual-parameter fracture toughness correlation can predict the effect of biaxial loading on shallow-flaw fracture toughness. Experimental irradiation investigations have shown that (1) the irradiation-induced shift in Charpy V-notch vs temperature behavior may not be adequate to conservatively assess fracture toughness shifts due to embrittlement, and (2) the wide global variations of initial chemistry and fracture properties of a nominally uniform material within a pressure vessel may confound accurate integrity assessments that require baseline properties.

  12. Reactor Safety Research Programs Quarterly Report January - March 1980

    SciTech Connect

    Hagen, C. M

    1980-10-01

    This document summarizes the work performed by Pacific Northwest Laboratory from January 1 through March 31, 1980, for the Division of Reactor Safety Research within the Nuclear Regulatory Commission. Evaluation of nondestructive examination (NDE) techniques and instrumentation are reported; areas of investigation include demonstrating the feasibilty of determining structural graphite strength, evaluating the feasibilty of detecting and analyzing flaw growth in reactor pressure boundary systems, examining NDE reliability and probabilistic fracture mechanics, and assessing the remaining integrity of pressurized water reactor steam generator tubes where serviceinduced degradation has been indicated. Test assemblies and analytical support are being provided for experimental programs at other facilities. These programs include the loss-of-coolant accident simulation tests at the NRU reactor, Chalk River, Canada; the fuel rod deformation and post-accident coolability tests for the ESSOR Test Reactor Program, Ispra, Italy; the blowdown and reflood tests in the test facility at Cadarache, France; the instrumented fuel assembly irradiation program at Halden, Norway; and the experimental programs at the Power Burst Facility, Idaho National Engineering Laboratory. These programs will provide data for computer modeling of reactor system and fuel performance during various abnormal operating conditions.

  13. Reactor Safety Research Programs Quarterly Report April -June 1980

    SciTech Connect

    Edler, S. K.

    1980-11-01

    This document summarizes the work performed by Pacific Northwest Laboratory (PNL) from April 1 through June 30, 1980, for the Division of Reactor Safety Research within the Nuclear Regulatory Commission {NRC). Evaluations of nondestructive examination (NDE) techniques and instrumentation are reported; areas of investigation include demonstrating the feasibility of determining structural graphite strength, evaluating the feasibility of detecting and analyzing flaw growth in reactor pressure boundary systems, examining NDE reliability and probabilistic fracture mechanics, and assessing the remaining integrity of pressurized water reactor (PWR) steam generator tubes where service-induced degradation has been indicated. Test assemblies and analytical support are being provided for experimental programs at other facilities. These programs include loss-of-coolant accident (LOCA) simulation tests at the NRU reactor, Chalk River, Canada; fuel rod deformation and postaccident coolability tests for the ESSOR Test Reactor Program, Ispra, Italy; blowdown and reflood tests in the test facility at Cadarache, France; the instrumented fuel assembly irradiation program at Halden, Norway; and experimental programs at the Power Burst Facility, Idaho National Engineering Laboratory (INEL). These programs will provide data for computer modeling of reactor system and fuel performance during various abnormal operating conditions.

  14. Reactor Safety Research Programs Quarterly Report July- September 1980

    SciTech Connect

    Edler, S. K.

    1980-12-01

    This document summarizes the work performed by Pacific Northwest Laboratory (PNL) from April 1 through June 30, 1980, for the Division of Reactor Safety Research within the Nuclear Regulatory Commission {NRC). Evaluations of nondestructive examination (NDE) techniques and instrumentation are reported; areas of investigation include demonstrating the feasibility of determining structural graphite strength, evaluating the feasibility of detecting and analyzing flaw growth in reactor pressure boundary systems, examining NDE reliability and probabilistic fracture mechanics, and assessing the remaining integrity of pressurized water reactor (PWR) steam generator tubes where service-induced degradation has been indicated. Test assemblies and analytical support are being provided for experimental programs at other facilities. These programs include loss-of-coolant accident (LOCA) simulation tests at the NRU reactor, Chalk River, Canada; fuel rod deformation and postaccident coolability tests for the ESSOR Test Reactor Program, Ispra, Italy; blowdown and reflood tests in the test facility at Cadarache, France; the instrumented fuel assembly irradiation program at Halden, Norway; and experimental programs at the Power Burst Facility, Idaho National Engineering Laboratory (INEL). These programs will provide data for computer modeling of reactor system and fuel performance during various abnormal operating conditions.

  15. Reactor Safety Research Programs Quarterly Report October - December 1980

    SciTech Connect

    Edler, S K

    1981-04-01

    This document summarizes the work performed by Pacific Northwest Laboratory (PNL) from October 1 through December 31, 1980, for the Division of Reactor Safety Research within the U.S. Nuclear Regulatory Commission (NRC). Evaluations of nondestructive examination (NDE) techniques and instrumentation are reported; areas of investigation include demonstrating the feasibility of determining structural graphite strength, evaluating the feasibility of detecting and analyzing flaw growth in reactor pressure boundary systems, examining NOE reliability and probabilistic fracture mechanics, and assessing the remaining integrity of pressurized water reactor (PWR) steam generator tubes where service-induced degradation has been indicated. Test assemblies and analytical support are being provided for experimental programs at other facilities. These programs include loss-of-coolant accident (LOCA) simulation tests at the NRU reactor, Chalk River, Canada; fuel rod deformation and postaccident coolability tests for the ESSOR Test Reactor Program, Ispra, Italy; the instrumented fuel assembly irradiation program at Halden, Norway; and experimental programs at the Power Burst Facility, Idaho National Engineering Laboratory (INEL). These programs will provide data for computer modeling of reactor system and fuel performance during various abnormal operating conditions.

  16. RADIATION DOSIMETRY AT THE BNL HIGH FLUX BEAM REACTOR AND MEDICAL RESEARCH REACTOR.

    SciTech Connect

    HOLDEN,N.E.

    1999-09-10

    RADIATION DOSIMETRY MEASUREMENTS HAVE BEEN PERFORMED OVER A PERIOD OF MANY YEARS AT THE HIGH FLUX BEAM REACTOR (HFBR) AND THE MEDICAL RESEARCH REACTOR (BMRR) AT BROOKHAVEN NATIONAL LABORATORY TO PROVIDE INFORMATION ON THE ENERGY DISTRIBUTION OF THE NEUTRON FLUX, NEUTRON DOSE RATES, GAMMA-RAY FLUXES AND GAMMA-RAY DOSE RATES. THE MCNP PARTICLE TRANSPORT CODE PROVIDED MONTE CARLO RESULTS TO COMPARE WITH VARIOUS DOSIMETRY MEASUREMENTS PERFORMED AT THE EXPERIMENTAL PORTS, AT THE TREATMENT ROOMS AND IN THE THIMBLES AT BOTH HFBR AND BMRR.

  17. Technological Transfer from Research Nuclear Reactors to New Generation Nuclear Power Reactors

    NASA Astrophysics Data System (ADS)

    Radulescu, Laura; Pavelescu, Margarit

    2010-01-01

    The goal of this paper is the analysis of the technological transfer role in the nuclear field, with particular emphasis on nuclear reactors domain. The presentation is sustained by historical arguments. In this frame, it is very important to start with the achievements of the first nuclear systems, for instant those with natural uranium as fuel and heavy water as moderator, following in time through the history until the New Generation Nuclear Power Reactors. Starting with 1940, the accelerated development of the industry has implied the increase of the global demand for energy. In this respect, the nuclear energy could play an important role, being essentially an unlimited source of energy. However, the nuclear option faces the challenges of increasingly demanding safety requirements, economic competitiveness and public acceptance. Worldwide, a significant amount of experience has been accumulated during development, licensing, construction, and operation of nuclear power reactors. The experience gained is a strong basis for further improvements. Actually, the nuclear programs of many countries are addressing the development of advanced reactors, which are intended to have better economics, higher reliability, improved safety, and proliferation-resistant characteristics in order to overcome the current concerns about nuclear power. Advanced reactors, now under development, may help to meet the demand for energy power of both developed and developing countries as well as for district heating, desalination and for process heat. The paper gives historical examples that illustrate the steps pursued from first research nuclear reactors to present advanced power reactors. Emphasis was laid upon the fact that the progress is due to the great discoveries of the nuclear scientists using the technological transfer.

  18. Technological Transfer from Research Nuclear Reactors to New Generation Nuclear Power Reactors

    SciTech Connect

    Radulescu, Laura; Pavelescu, Margarit

    2010-01-21

    The goal of this paper is the analysis of the technological transfer role in the nuclear field, with particular emphasis on nuclear reactors domain. The presentation is sustained by historical arguments. In this frame, it is very important to start with the achievements of the first nuclear systems, for instant those with natural uranium as fuel and heavy water as moderator, following in time through the history until the New Generation Nuclear Power Reactors.Starting with 1940, the accelerated development of the industry has implied the increase of the global demand for energy. In this respect, the nuclear energy could play an important role, being essentially an unlimited source of energy. However, the nuclear option faces the challenges of increasingly demanding safety requirements, economic competitiveness and public acceptance. Worldwide, a significant amount of experience has been accumulated during development, licensing, construction, and operation of nuclear power reactors. The experience gained is a strong basis for further improvements. Actually, the nuclear programs of many countries are addressing the development of advanced reactors, which are intended to have better economics, higher reliability, improved safety, and proliferation-resistant characteristics in order to overcome the current concerns about nuclear power. Advanced reactors, now under development, may help to meet the demand for energy power of both developed and developing countries as well as for district heating, desalination and for process heat.The paper gives historical examples that illustrate the steps pursued from first research nuclear reactors to present advanced power reactors. Emphasis was laid upon the fact that the progress is due to the great discoveries of the nuclear scientists using the technological transfer.

  19. Locating tritium sources in a research reactor building.

    PubMed

    Fukui, Masami

    2005-10-01

    Despite renovation of the D2O facility, tritium concentrations in the condensates of reactor room air showed tens of Bq mL before venting resumption on July 1997. This suggested the presence of tritium sources in the research reactor-containment building. An investigation was therefore initiated to locate the source and determine the distribution of tritium in the containment building. Air monitoring in the working area using a dish of water placed in the building suggested that the source of tritium was near the reactor core. Monitoring exhaust air from the two facilities (a cold neutron source and a D(2)O tank) showed high specific activity on the order of 10 Bq mL(-1), suggesting the presence of tritium in condensates near the reactor core. The major concern was whether the leakage of liquid deuterium (4 L) and heavy water (2 x 10(3) L) used as a moderator had occurred. The concentration of tritium in condensates has not increased over the past few years in either the exhaust line or working area, and the deuterium itself has not been found in the surrounding environment. The concentration of tritium measured using an ionization chamber after Ar decay was dependent on the thermal output of the research reactor, indicating that the tritium was produced by the irradiation process within shielding/moderator materials or cover gas with neutrons.

  20. Reduced enrichment for research and test reactors: Proceedings

    SciTech Connect

    Not Available

    1993-07-01

    The 15th annual Reduced Enrichment for Research and Test Reactors (RERTR) international meeting was organized by Ris{o} National Laboratory in cooperation with the International Atomic Energy Agency and Argonne National Laboratory. The topics of the meeting were the following: National Programs, Fuel Fabrication, Licensing Aspects, States of Conversion, Fuel Testing, and Fuel Cycle. Individual papers have been cataloged separately.

  1. Iaea Activities Supporting the Applications of Research Reactors in 2013

    NASA Astrophysics Data System (ADS)

    Peld, Nathan D.; Ridikas, Danas

    2014-02-01

    As the underutilization of research reactors around the world persists as a primary topic of concern among facility owners and operators, the IAEA responded in 2013 with a broad range of activities to address the planning, execution and improvement of many experimental techniques. The revision of two critical documents for planning and diversifying a facility's portfolio of applications, TECDOC 1234 “The Applications of Research Reactors” and TECDOC 1212 “Strategic Planning for Research Reactors”, is in progress in order to keep this information relevant, corresponding to the dynamism of experimental techniques and research capabilities. Related to the latter TECDOC, the IAEA convened a meeting in 2013 for the expert review of a number of strategic plans submitted by research reactor operators in developing countries. A number of activities focusing on specific applications are either continuing or beginning as well. In neutron activation analysis, a joint round of inter-comparison proficiency testing sponsored by the IAEA Technical Cooperation Department will be completed, and facility progress in measurement accuracy is described. Also, a training workshop in neutron imaging and Coordinated Research Projects in reactor benchmarks, automation of neutron activation analysis and neutron beam techniques for material testing intend to advance these activities as more beneficial services to researchers and other users.

  2. Yale High Energy Physics Research: Precision Studies of Reactor Antineutrinos

    SciTech Connect

    Heeger, Karsten M.

    2014-09-13

    This report presents experimental research at the intensity frontier of particle physics with particular focus on the study of reactor antineutrinos and the precision measurement of neutrino oscillations. The experimental neutrino physics group of Professor Heeger and Senior Scientist Band at Yale University has had leading responsibilities in the construction and operation of the Daya Bay Reactor Antineutrino Experiment and made critical contributions to the discovery of non-zero$\\theta_{13}$. Heeger and Band led the Daya Bay detector management team and are now overseeing the operations of the antineutrino detectors. Postdoctoral researchers and students in this group have made leading contributions to the Daya Bay analysis including the prediction of the reactor antineutrino flux and spectrum, the analysis of the oscillation signal, and the precision determination of the target mass yielding unprecedented precision in the relative detector uncertainty. Heeger's group is now leading an R\\&D effort towards a short-baseline oscillation experiment, called PROSPECT, at a US research reactor and the development of antineutrino detectors with advanced background discrimination.

  3. Convective cooling in a pool-type research reactor

    NASA Astrophysics Data System (ADS)

    Sipaun, Susan; Usman, Shoaib

    2016-01-01

    A reactor produces heat arising from fission reactions in the nuclear core. In the Missouri University of Science and Technology research reactor (MSTR), this heat is removed by natural convection where the coolant/moderator is demineralised water. Heat energy is transferred from the core into the coolant, and the heated water eventually evaporates from the open pool surface. A secondary cooling system was installed to actively remove excess heat arising from prolonged reactor operations. The nuclear core consists of uranium silicide aluminium dispersion fuel (U3Si2Al) in the form of rectangular plates. Gaps between the plates allow coolant to pass through and carry away heat. A study was carried out to map out heat flow as well as to predict the system's performance via STAR-CCM+ simulation. The core was approximated as porous media with porosity of 0.7027. The reactor is rated 200kW and total heat density is approximately 1.07+E7 Wm-3. An MSTR model consisting of 20% of MSTR's nuclear core in a third of the reactor pool was developed. At 35% pump capacity, the simulation results for the MSTR model showed that water is drawn out of the pool at a rate 1.28 kg s-1 from the 4" pipe, and predicted pool surface temperature not exceeding 30°C.

  4. A Research Reactor Concept to Support NTP Development

    NASA Technical Reports Server (NTRS)

    Eades, Michael J.; Blue, T. E.; Gerrish, Harold P.; Hardin, Leroy A.

    2014-01-01

    In support of efforts for research into the design and development of man rated Nuclear Thermal Propulsion (NTP), the National Aeronautics and Space Administration (NASA), Marshall Space Flight Center (MSFC), is evaluating the potential for building a Nuclear Regulatory Commission (NRC) licensed NTP based research reactor (NTPRR). The proposed NTPRR would be licensed by NASA and operated jointly by NASA and university partners. The purpose of the NTPRR would be used to perform further research into the technologies and systems needed for a successful NTP project and promote nuclear training and education.

  5. 75 FR 79423 - In the Matter of All Power Reactor Licensees and Research Reactor Licensees Who Transport Spent...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-12-20

    ... From the Federal Register Online via the Government Publishing Office NUCLEAR REGULATORY... All Power Reactor Licensees and Research Reactor Licensees Who Transport Spent Nuclear Fuel; Order... issued a specific license by the U.S. Nuclear Regulatory Commission (NRC or Commission) authorizing...

  6. 75 FR 70042 - In the Matter of All Power Reactor Licensees and Research Reactor Licensees Who Transport Spent...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-11-16

    ... From the Federal Register Online via the Government Publishing Office ] NUCLEAR REGULATORY... All Power Reactor Licensees and Research Reactor Licensees Who Transport Spent Nuclear Fuel; Order... been issued a specific license by the U.S. Nuclear Regulatory Commission (NRC or...

  7. Personal neutron dosimetry at a research reactor facility.

    PubMed

    Kamenopoulou, V; Carinou, E; Stamatelatos, I E

    2001-01-01

    Individual neutron monitoring presents several difficulties due to the differences in energy response of the dosemeters. In the present study, an individual dosemeter (TLD) calibration approach is attempted for the personnel of a research reactor facility. The neutron energy response function of the dosemeter was derived using the MCNP code. The results were verified by measurements to three different neutron spectra and were found to be in good agreement. Three different calibration curves were defined for thermal, intermediate and fast neutrons. At the different working positions around the reactor, neutron spectra were defined using the Monte Carlo technique and ambient dose rate measurements were performed. An estimation of the neutrons energy is provided by the ratio of the different TLD pellets of each dosemeter in combination with the information concerning the worker's position; then the dose equivalent is deduced according to the appropriate calibration curve.

  8. The design and performance of the research reactor fuel counter

    SciTech Connect

    Abhold, M.E.; Hsue, S.T.; Menlove, H.O.; Walton, G.; Holt, S.

    1996-09-01

    This paper describes the design features, hardware specifications, and performance characteristics of the Research Reactor Fuel Counter (RRFC) System. The system is an active mode neutron coincidence counter intended to assay material test reactor fuel assemblies under water. The RRFC contains 12 {sup 3}He tubes, each with its own preamplifier, and a single ion chamber. The neutron counting electronics are based on the Los Alamos Portable Shift Register (PSR) and the gamma readout is a manual-range pico-ammeter of Los Alamos design. The RRFC is connected to the surface by a 20-m-long cable bundle. The PSR is controlled by a portable IBM computer running a modified version of the Los Alamos neutron coincidence counting code also called RRFC. There is a manual that describes the RRFC software.

  9. 77 FR 26321 - Reed College, Reed Research Nuclear Reactor, Renewed Facility Operating License No. R-112

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-05-03

    ... COMMISSION Reed College, Reed Research Nuclear Reactor, Renewed Facility Operating License No. R-112 AGENCY..., Office of Nuclear Reactor Regulation, U.S. Nuclear Regulatory Commission, Rockville, MD 20852. Telephone..., Research and Test Reactors Licensing Branch, Division of Policy and Rulemaking, Office of Nuclear...

  10. Advanced Reactor Safety Research Division. Quarterly progress report, April 1-June 30, 1980

    SciTech Connect

    Romano, A.J.

    1980-01-01

    The Advanced Reactor Safety Research Programs Quarterly Progress Report describes current activities and technical progress in the programs at Brookhaven National Laboratory sponsored by the USNRC Division of Reactor Safety Research. The projects reported each quarter are the following: HTGR safety evaluation, SSC Code Development, LMFBR Safety Experiments, and Fast Reactor Safety Code Validation.

  11. Advanced Reactor Safety Research Division. Quarterly progress report, January 1-March 31, 1980

    SciTech Connect

    Agrawal, A.K.; Cerbone, R.J.; Sastre, C.

    1980-06-01

    The Advanced Reactor Safety Research Programs quarterly progress report describes current activities and technical progress in the programs at Brookhaven National Laboratory sponsored by the USNRC Division of Reactor Safety Research. The projects reported each quarter are the following: HTGR Safety Evaluation, SSC Code Development, LMFBR Safety Experiments, and Fast Reactor Safety Code Validation.

  12. Design of a new portable fork detector for research reactor spent fuel

    SciTech Connect

    Hsue, S.T.; Menlove, H.O.; Rinard, P.M.

    1995-02-01

    There are many situations in nonproliferation and international safeguards when one needs to verify spent research-reactor fuel. Special inspections, a reactor coming under safeguards for the first time, and failed surveillance are prime examples. Several years ago, Los Alamos developed the FORK detector for the IAEA and EURATOM. This detector, together with the GRAND electronics package, is used routinely by inspectors to verify light-water-reactor spent fuels. Both the FORK detector and the GRAND electronics technologies have been transferred and are now commercially available. Recent incidents in the world indicate that research-reactor fuel is potentially a greater concern for proliferation than light-water-reactor fuels. A device similar to the FORK/GRAND should be developed to verify research-reactor spent fuels because the signals from light-water-reactor spent fuel are quite different than those from research-reactor fuels.

  13. Eastern Europe Research Reactor Initiative nuclear education and training courses - Current activities and future challenges

    SciTech Connect

    Snoj, L.; Sklenka, L.; Rataj, J.; Boeck, H.

    2012-07-01

    The Eastern Europe Research Reactor Initiative was established in January 2008 to enhance cooperation between the Research Reactors in Eastern Europe. It covers three areas of research reactor utilisation: irradiation of materials and fuel, radioisotope production, neutron beam experiments, education and training. In the field of education and training an EERRI training course was developed. The training programme has been elaborated with the purpose to assist IAEA Member States, which consider building a research reactor (RR) as a first step to develop nuclear competence and infrastructure in the Country. The major strength of the reactor is utilisation of three different research reactors and a lot of practical exercises. Due to high level of adaptability, the course can be tailored to specific needs of institutions with limited or no access to research reactors. (authors)

  14. Present status of liquid metal research for a fusion reactor

    NASA Astrophysics Data System (ADS)

    Tabarés, Francisco L.

    2016-01-01

    Although the use of solid materials as targets of divertor plasmas in magnetic fusion research is accepted as the standard solution for the very challenging issue of power and particle handling in a fusion reactor, a generalized feeling that the present options chosen for ITER will not represent the best choice for a reactor is growing up. The problems found for tungsten, the present selection for the divertor target of ITER, in laboratory tests and in hot plasma fusion devices suggest so. Even in the absence of the strong neutron irradiation expected in a reactor, issues like surface melting, droplet ejection, surface cracking, dust generation, etc., call for alternative solutions in a long pulse, high efficient fusion energy-producing continuous machine. Fortunately enough, decades of research on plasma facing materials based on liquid metals (LMs) have produced a wealth of appealing ideas that could find practical application in the route to the realization of a commercial fusion power plant. The options presently available, although in a different degree of maturity, range from full coverage of the inner wall of the device with liquid metals, so that power and particle exhaust together with neutron shielding could be provided, to more conservative combinations of liquid metal films and conventional solid targets basically representing a sort of high performance, evaporative coating for the alleviation of the surface degradation issues found so far. In this work, an updated review of worldwide activities on LM research is presented, together with some open issues still remaining and some proposals based on simple physical considerations leading to the optimization of the most conservative alternatives.

  15. Oak Ridge National Laboratory Research Reactor Experimenters' Guide

    SciTech Connect

    Cagle, C.D.

    1982-10-01

    The Oak Ridge National Laboratory has three multipurpose research reactors which accommodate testing loops, target irradiations, and beam-type experiments. Since the experiments must share common or similar facilities and utilities, be designed and fabricated by the same groups, and meet the same safety criteria, certain standards for these have been developed. These standards deal only with those properties from which safety and economy of time and money can be maximized and do not relate to the intent of the experiment or quality of the data obtained. The necessity for, and the limitations of, the standards are discussed; and a compilation of general standards is included.

  16. Some Tooling for Manufacturing Research Reactor Fuel Plates

    SciTech Connect

    Knight, R.W.

    1999-10-03

    This paper will discuss some of the tooling necessary to manufacture aluminum-based research reactor fuel plates. Most of this tooling is intended for use in a high-production facility. Some of the tools shown have manufactured more than 150,000 pieces. The only maintenance has been sharpening. With careful design, tools can be made to accommodate the manufacture of several different fuel elements, thus, reducing tooling costs and maintaining tools that the operators are trained to use. An important feature is to design the tools using materials with good lasting quality. Good tools can increase return on investment.

  17. Research in nondestructive evaluation techniques for nuclear reactor concrete structures

    NASA Astrophysics Data System (ADS)

    Clayton, Dwight; Smith, Cyrus

    2014-02-01

    The purpose of the Materials Aging and Degradation (MAaD) Pathway of the Department of Energy's Light Water Reactor Sustainability (LWRS) Program is to develop the scientific basis for understanding and predicting longterm environmental degradation behavior of material in nuclear power plants and to provide data and methods to assess the performance of systems, structures, and components (SSCs) essential to safe and sustained nuclear power plant operations. The understanding of aging-related phenomena and their impacts on SSCs is expected to be a significant issue for any nuclear power plant planning for long-term operations (i.e. service beyond the initial license renewal period). Management of those phenomena and their impacts during long-term operations can be better enable by improved methods and techniques for detection, monitoring, and prediction of SSC degradation. The MAaD Pathway R&D Roadmap for Concrete, "Light Water Reactor Sustainability Nondestructive Evaluation for Concrete Research and Development Roadmap", focused initial research efforts on understanding the recent concrete issues at nuclear power plants and identifying the availability of concrete samples for NDE techniques evaluation and testing. [1] An overview of the research performed by ORNL in these two areas is presented here.

  18. Research in nondestructive evaluation techniques for nuclear reactor concrete structures

    SciTech Connect

    Clayton, Dwight; Smith, Cyrus

    2014-02-18

    The purpose of the Materials Aging and Degradation (MAaD) Pathway of the Department of Energy's Light Water Reactor Sustainability (LWRS) Program is to develop the scientific basis for understanding and predicting longterm environmental degradation behavior of material in nuclear power plants and to provide data and methods to assess the performance of systems, structures, and components (SSCs) essential to safe and sustained nuclear power plant operations. The understanding of aging-related phenomena and their impacts on SSCs is expected to be a significant issue for any nuclear power plant planning for long-term operations (i.e. service beyond the initial license renewal period). Management of those phenomena and their impacts during long-term operations can be better enable by improved methods and techniques for detection, monitoring, and prediction of SSC degradation. The MAaD Pathway R and D Roadmap for Concrete, 'Light Water Reactor Sustainability Nondestructive Evaluation for Concrete Research and Development Roadmap', focused initial research efforts on understanding the recent concrete issues at nuclear power plants and identifying the availability of concrete samples for NDE techniques evaluation and testing. [1] An overview of the research performed by ORNL in these two areas is presented here.

  19. Radioisotope research, production, and processing at the University of Missouri Research Reactor

    SciTech Connect

    Ehrhardt, G.J.; Ketring, A.R.; Ja, Wei; Ma, D.; Zinn, K.; Lanigan, J.

    1995-12-31

    The University of Missouri Research Reactor (MURR) is a 10 MW, light-water-cooled and moderated research reactor which first achieved criticality in 1996 and is currently the highest powered university-owned research reactor in the U.S. For many years a major supplier of reactor-produced isotopes for research and commercial purposes, in the last 15 years MURR has concentrated on development of reactor-produced beta-particle emitters for experimental use in nuclear medicine therapy of cancer and rheumatoid arthritis. MURR has played a major role in the development of bone cancer pain palliation with the agents {sup 153}Sm EDTMP and {sup 186}Re/{sup 188}Re HEDP, as well as in the use of {sup 186}Re, {sup 177}Lu, {sup 166}Ho, and {sup 105}Rh for radioimmunotherapy and receptor-agent-guided radiotherapy. MURR is also responsible for the development of therapeutic, {sup 90}Y-labeled glass microspheres for the treatment of liver tumors, a product ({sup 90}Y Therasphere{trademark}) which is currently an approved drug in Canada. MURR has also pioneered the development of {sup 188}W/{sup 188}Re and {sup 99}Mo/{sup 99m}Tc gel generators, which make the use of low specific activity {sup 188}W and {sup 99}Mo practical for such isotope generators.

  20. Kommunikation mit Mitarbeitern

    NASA Astrophysics Data System (ADS)

    Spychala, Anne; Fleischmann, Jürgen

    Kommunikation ist der Austausch von Nachrichten und Informationen zwischen Mitarbeitern eines Unternehmens (O'Hair et al. 1997). Dieser Austausch kann persönlich, aber z.B. auch per Telefon, E-Mail oder durch Computersysteme erfolgen. In diesem Kapitel betrachten wir die persönliche Kommunikation zwischen Vorgesetzten und Mitarbeitern. Zur persönlichen Kommunikation mit Mitarbeitern zählen sowohl formelle Gespräche mit Mitarbeitern als auch eher informelle Gespräche zwischen Tür und Angel. Die Gespräche können dabei mit einzelnen Mitarbeitern (z.B. jährliches Mitarbeitergespräch) oder mit Gruppen von Mitarbeitern (z.B. regelmäßige Projekt- oder Teambesprechungen) stattfinden.

  1. Reactor physics calculations for {sup 99}Mo production at the annular core research reactor

    SciTech Connect

    Parma, E.J.

    1995-12-31

    The Isotope Production and Distribution Program at the U.S. Department of Energy has designated Sandia National Laboratories (SNL) as the most appropriate facility for the production of {sup 99}Mo, a radioisotope whose daughter, {sup 99m}Tc, is used in more than 36,000 medical procedures per day in the United States and is considered to be a vital medical diagnostic and treatment tool. The isotope would be produced at SNL using the annular core research reactor (ACRR) facility and collocated hot cell facility. The {sup 99}Mo would be produced using the fission process by irradiating {open_quotes}targets{close_quotes} coated with {sup 235}U in the form of highly enriched U{sub 3}O{sub 8}. After {approximately}7 days of continuous irradiation in the ACRR, a target would be re- moved from the reactor core for processing. The isotope would be extracted by chemically precipitating the molybdenum using the {open_quotes}Cintichem{close_quotes} process and would be shipped to the various pharmaceutical companies by commercial or chartered airline.

  2. IGORR-IV -- Proceedings of the fourth meeting of the International Group on Research Reactors

    SciTech Connect

    Rosenbalm, K.F.

    1995-12-31

    The International Group on Research Reactors was formed to facilitate the sharing of knowledge and experience among those institutions and individuals who are actively working to design, build, and promote new research reactors or to make significant upgrades to existing facilities. Twenty-nine papers were presented in five sessions and written versions of the papers or hard copies of the vugraphs used are published in these proceedings. The five sessions were: (1) Operating Research Reactors and Facility Upgrades; (2) Research Reactors in Design and Construction; (3) ANS Closeout Activities; (4) and (5) Research, Development, and Analysis Results.

  3. Nuclear reactor safety research since three mile island.

    PubMed

    Mynatt, F R

    1982-04-01

    The Three Mile Island nuclear power plant accident has resulted in redirection of reactor safety research priorities. The small release to the environment of radioactive iodine-13 to 17 curies in a total radioactivity release of 2.4 million to 13 million curies-has led to a new emphasis on the physical chemistry of fission product behavior in accidents; the fact that the nuclear core was severely damaged but did not melt down has opened a new accident regime-that of the degraded core; the role of the operators in the progression and severity of the accident has shifted emphasis from equipment reliability to human reliability. As research progresses in these areas, the technical base for regulation and risk analysis will change substantially. PMID:17736229

  4. Unique educational opportunities at the Missouri University research reactor

    SciTech Connect

    Ketring, A.R.; Ross, F.K.; Spate, V.

    1997-12-01

    Since the Missouri University Research Reactor (MURR) went critical in 1966, it has been a center where students from many departments conduct their graduate research. In the past three decades, hundreds of graduate students from the MU departments of chemistry, physics, anthropology, nuclear engineering, etc., have received masters and doctoral degrees based on research using neutrons produced at MURR. More recently, the educational opportunities at MURR have been expanded to include undergraduate students and local high school students. Since 1989 MURR has participated in the National Science Foundation-funded Research Experience for Undergraduates (REU) program. As part of this program, undergraduate students from universities and colleges throughout the United States come to MURR and get hands-on research experience during the summer. Another program, started in 1994 by the Nuclear Analysis Program at MURR, allows students from a local high school to conduct a neutron activation analysis (NAA) experiment. We also conduct tours of the center, where we describe the research and educational programs at MURR to groups of elementary school children, high school science teachers, state legislators, professional organizations, and many other groups.

  5. Opportunities for Materials Science and Biological Research at the OPAL Research Reactor

    SciTech Connect

    Kennedy, S. J.

    2008-03-17

    Neutron scattering techniques have evolved over more than 1/2 century into a powerful set of tools for determination of atomic and molecular structures. Modern facilities offer the possibility to determine complex structures over length scales from {approx}0.1 nm to {approx}500 nm. They can also provide information on atomic and molecular dynamics, on magnetic interactions and on the location and behaviour of hydrogen in a variety of materials. The OPAL Research Reactor is a 20 megawatt pool type reactor using low enriched uranium fuel, and cooled by water. OPAL is a multipurpose neutron factory with modern facilities for neutron beam research, radioisotope production and irradiation services. The neutron beam facility has been designed to compete with the best beam facilities in the world. After six years in construction, the reactor and neutron beam facilities are now being commissioned, and we will commence scientific experiments later this year. The presentation will include an outline of the strengths of neutron scattering and a description of the OPAL research reactor, with particular emphasis on it's scientific infrastructure. It will also provide an overview of the opportunities for research in materials science and biology that will be possible at OPAL, and mechanisms for accessing the facilities. The discussion will emphasize how researchers from around the world can utilize these exciting new facilities.

  6. Reprocessing of research reactor fuel the Dounreay option

    SciTech Connect

    Cartwright, P.

    1997-08-01

    Reprocessing is a proven process for the treatment of spent U/Al Research Reactor fuel. At Dounreay 12679 elements have been reprocessed during the past 30 years. For reactors converting to LEU fuel the uranium recovered in reprocessing can be blended down to less than 20% U{sub 235}, enrichment and be fabricated into new elements. For reactors already converted to LEU it is technically possible to reprocess spent silicide fuel to reduce the U{sub 235} burden and present to a repository only stable conditioned waste. The main waste stream from reprocessing which contains the Fission products is collected in underground storage tanks where it is kept for a period of at least five years before being converted to a stable solid form for return to the country of origin for subsequent storage/disposal. Discharges to the environment from reprocessing are low and are limited to the radioactive gases contained in the spent fuel and a low level liquid waste steam. Both of these discharges are independently monitored, and controlled within strict discharge limits set by the UK Government`s Scottish Office. Transportation of spent fuel to Dounreay has been undertaken using many routes from mainland Europe and has utilised over the past few years both chartered and scheduled vessel services. Several different transport containers have been handled and are currently licensed in the UK. This paper provides a short history of MTR reprocessing at Dounreay, and provides information to show reprocessing can satisfy the needs of MTR operators, showing that reprocessing is a valuable asset in non-proliferation terms, offers a complete solution and is environmentally acceptable.

  7. Final report. U.S. Department of Energy University Reactor Sharing Program

    SciTech Connect

    Bernard, John A

    2003-01-21

    Activities supported at the MIT Nuclear Reactor Laboratory under the U.S. DOE University Reactor Sharing Program are reported for Grant DE FG02-95NE38121 (September 16, 1995 through May 31, 2002). These activities fell under four subcategories: support for research at thesis and post-doctoral levels, support for college-level laboratory exercises, support for reactor tours/lectures on nuclear energy, and support for science fair participants.

  8. Predicting Activation of Experiments Inside the Annular Core Research Reactor

    SciTech Connect

    Greenberg, Joseph Isaac

    2015-11-01

    The objective of this thesis is to create a program to quickly estimate the radioactivity and decay of experiments conducted inside of the Annular Core Research Reactor at Sandia National Laboratories and eliminate the need for users to write code. This is achieved by model the neutron fluxes in the reactor’s central cavity where experiments are conducted for 4 different neutron spectra using MCNP. The desired neutron spectrum, experiment material composition, and reactor power level are then input into CINDER2008 burnup code to obtain activation and decay information for every isotope generated. DREAD creates all of the files required for CINDER2008 through user selected inputs in a graphical user interface and executes the program for the user and displays the resulting estimation for dose rate at various distances. The DREAD program was validated by weighing and measuring various experiments in the different spectra and then collecting dose rate information after they were irradiated and comparing it to the dose rates that DREAD predicted. The program provides results with an average of 17% higher estimates than the actual values and takes seconds to execute.

  9. PHYSICS AND SAFETY ANALYSIS FOR THE NIST RESEARCH REACTOR.

    SciTech Connect

    Cheng, L.; Diamond, D.; Xu, J.; Carew, J.; Rorer, D.

    2004-03-31

    Detailed reactor physics and safety analyses have been performed for the 20 MW D{sub 2}O moderated research reactor (NBSR) at the National Institute of Standards and Technology (NIST). The analyses provide an update to the Final Safety Analysis Report (FSAR) and employ state-of-the-art calculational methods. Three-dimensional Monte Carlo neutron and photon transport calculations were performed with the MCNP code to determine the safety parameters for the NBSR. The core depletion and determination of the fuel compositions were performed with MONTEBURNS. MCNP calculations were performed to determine the beginning, middle, and end-of-cycle power distributions, moderator temperature coefficient, and shim safety arm, beam tube and void reactivity worths. The calculational model included a plate-by-plate description of each fuel assembly, axial mid-plane water gap, beam tubes and the tubular geometry of the shim safety arms. The time-dependent analysis of the primary loop was determined with a RELAP5 transient analysis model that includes the pump, heat exchanger, fuel element geometry, and flow channels for both the six inner and twenty-four outer fuel elements. The statistical analysis used to assure protection from critical heat flux (CHF) was performed using a Monte Carlo simulation of the uncertainties contributing to the CHF calculation. The power distributions used to determine the local fuel conditions and margin to CHF were determined with MCNP. Evaluations were performed for the following accidents: (1) the control rod withdrawal startup accident, (2) the maximum reactivity insertion accident, (3) loss-of-flow resulting from loss of electrical power, (4) loss-of-flow resulting from a primary pump seizure, (5) loss-of-flow resulting from inadvertent throttling of a flow control valve, (6) loss-of-flow resulting from failure of both shutdown cooling pumps and (7) misloading of a fuel element. In both the startup and maximum reactivity insertion accidents, the

  10. The neutron texture diffractometer at the China Advanced Research Reactor

    NASA Astrophysics Data System (ADS)

    Li, Mei-Juan; Liu, Xiao-Long; Liu, Yun-Tao; Tian, Geng-Fang; Gao, Jian-Bo; Yu, Zhou-Xiang; Li, Yu-Qing; Wu, Li-Qi; Yang, Lin-Feng; Sun, Kai; Wang, Hong-Li; Santisteban, J. r.; Chen, Dong-Feng

    2016-03-01

    The first neutron texture diffractometer in China has been built at the China Advanced Research Reactor, due to strong demand for texture measurement with neutrons from the domestic user community. This neutron texture diffractometer has high neutron intensity, moderate resolution and is mainly applied to study texture in commonly used industrial materials and engineering components. In this paper, the design and characteristics of this instrument are described. The results for calibration with neutrons and quantitative texture analysis of zirconium alloy plate are presented. The comparison of texture measurements with the results obtained in HIPPO at LANSCE and Kowari at ANSTO illustrates the reliability of the texture diffractometer. Supported by National Nature Science Foundation of China (11105231, 11205248, 51327902) and International Atomic Energy Agency-TC program (CPR0012)

  11. Nuclear plant-aging research on reactor protection systems

    SciTech Connect

    Meyer, L.C.

    1988-01-01

    This report presents the rsults of a review of the Reactor Trip System (RTS) and the Engineered Safety Feature Actuating System (ESFAS) operating experiences reported in Licensee Event Reports (LER)s, the Nuclear Power Experience data base, Nuclear Plant Reliability Data System, and plant maintenance records. Our purpose is to evaluate the potential significance of aging, including cycling, trips, and testing as contributors to degradation of the RTS and ESFAS. Tables are presented that show the percentage of events for RTS and ESFAS classified by cause, components, and subcomponents for each of the Nuclear Steam Supply System vendors. A representative Babcock and Wilcox plant was selected for detailed study. The US Nuclear Regulatory Commission's Nuclear Plant Aging Research guidelines were followed in performing the detailed study that identified materials susceptible to aging, stressors, environmental factors, and failure modes for the RTS and ESFAS as generic instrumentation and control systems. Functional indicators of degradation are listed, testing requirements evaluated, and regulatory issues discussed.

  12. Sodium fast reactor fuels and materials : research needs.

    SciTech Connect

    Denman, Matthew R.; Porter, Douglas; Wright, Art; Lambert, John; Hayes, Steven; Natesan, Ken; Ott, Larry J.; Garner, Frank; Walters, Leon; Yacout, Abdellatif

    2011-09-01

    An expert panel was assembled to identify gaps in fuels and materials research prior to licensing sodium cooled fast reactor (SFR) design. The expert panel considered both metal and oxide fuels, various cladding and duct materials, structural materials, fuel performance codes, fabrication capability and records, and transient behavior of fuel types. A methodology was developed to rate the relative importance of phenomena and properties both as to importance to a regulatory body and the maturity of the technology base. The technology base for fuels and cladding was divided into three regimes: information of high maturity under conservative operating conditions, information of low maturity under more aggressive operating conditions, and future design expectations where meager data exist.

  13. PHYSICS AND SAFETY ANALYSIS FOR THE NIST RESEARCH REACTOR.

    SciTech Connect

    Carew, J.; Hanson, A.; Xu, J.; Rorer, D.; Diamond, D.

    2003-08-26

    Detailed reactor physics and safety analyses have been performed for the 20 MW D{sub 2}O moderated research reactor (NBSR) at the National Institute of Standards and Technology (NIST). The analyses provide an update to the Final Safety Analysis Report (FSAR) and employ state-of-the-art calculational methods. Three-dimensional MCNP Monte Carlo neutron and photon transport calculations were performed to determine the safety parameters for the NBSR. The core depletion and determination of the fuel compositions were performed with MONTEBURNS. MCNP calculations were performed to determine the beginning, middle, and end-of-cycle power distributions, moderator temperature coefficient, and shim arm, beam tube and void reactivity worths. The calculational model included a plate-by-plate description of each fuel assembly, axial mid-plane water gap, beam tubes and the tubular geometry of the shim arms. The time-dependent analysis of the primary loop was determined with a RELAP5 transient analysis model including the pump, heat exchanger, fuel element geometry, and flow channels for both the six inner and twenty-four outer fuel elements. The statistical analysis used to assure protection from critical heat flux (CHF) was performed using a Monte Carlo simulation of the uncertainties contributing to the CHF calculation. The power distributions used to determine the local fuel conditions and margin to CHF were determined with MCNP. Evaluations were performed for the following accidents: (1) the control rod withdrawal startup accident, (2) the maximum reactivity insertion accident, (3) loss-of-flow resulting from loss of electrical power, (4) loss-of-flow resulting from a primary pump seizure, (5) loss-of-flow resulting from inadvertent throttling of a flow control valve, (6) loss-of-flow resulting from failure of both shutdown cooling pumps and (7) misloading of a fuel element. In both the startup and maximum reactivity insertion accidents, the core power transient is terminated

  14. Sodium fast reactor safety and licensing research plan. Volume I.

    SciTech Connect

    Sofu, Tanju; LaChance, Jeffrey L.; Bari, R.; Wigeland, Roald; Denman, Matthew R.; Flanagan, George F.

    2012-05-01

    This report proposes potential research priorities for the Department of Energy (DOE) with the intent of improving the licensability of the Sodium Fast Reactor (SFR). In support of this project, five panels were tasked with identifying potential safety-related gaps in available information, data, and models needed to support the licensing of a SFR. The areas examined were sodium technology, accident sequences and initiators, source term characterization, codes and methods, and fuels and materials. It is the intent of this report to utilize a structured and transparent process that incorporates feedback from all interested stakeholders to suggest future funding priorities for the SFR research and development. While numerous gaps were identified, two cross-cutting gaps related to knowledge preservation were agreed upon by all panels and should be addressed in the near future. The first gap is a need to re-evaluate the current procedures for removing the Applied Technology designation from old documents. The second cross-cutting gap is the need for a robust Knowledge Management and Preservation system in all SFR research areas. Closure of these and the other identified gaps will require both a reprioritization of funding within DOE as well as a re-evaluation of existing bureaucratic procedures within the DOE associated with Applied Technology and Knowledge Management.

  15. Diversion assumptions for high-powered research reactors. ISPO C-50 Phase 1

    SciTech Connect

    Binford, F.T.

    1984-01-01

    This study deals with diversion assumptions for high-powered research reactors -- specifically, MTR fuel; pool- or tank-type research reactors with light-water moderator; and water, beryllium, or graphite reflectors, and which have a power level of 25 MW(t) or more. The objective is to provide assistance to the IAEA in documentation of criteria and inspection observables related to undeclared plutonium production in the reactors described above, including: criteria for undeclared plutonium production, necessary design information for implementation of these criteria, verification guidelines including neutron physics and heat transfer, and safeguards measures to facilitate the detection of undeclared plutonium production at large research reactors.

  16. MIT's interferometer CST testbed

    NASA Technical Reports Server (NTRS)

    Hyde, Tupper; Kim, ED; Anderson, Eric; Blackwood, Gary; Lublin, Leonard

    1990-01-01

    The MIT Space Engineering Research Center (SERC) has developed a controlled structures technology (CST) testbed based on one design for a space-based optical interferometer. The role of the testbed is to provide a versatile platform for experimental investigation and discovery of CST approaches. In particular, it will serve as the focus for experimental verification of CSI methodologies and control strategies at SERC. The testbed program has an emphasis on experimental CST--incorporating a broad suite of actuators and sensors, active struts, system identification, passive damping, active mirror mounts, and precision component characterization. The SERC testbed represents a one-tenth scaled version of an optical interferometer concept based on an inherently rigid tetrahedral configuration with collecting apertures on one face. The testbed consists of six 3.5 meter long truss legs joined at four vertices and is suspended with attachment points at three vertices. Each aluminum leg has a 0.2 m by 0.2 m by 0.25 m triangular cross-section. The structure has a first flexible mode at 31 Hz and has over 50 global modes below 200 Hz. The stiff tetrahedral design differs from similar testbeds (such as the JPL Phase B) in that the structural topology is closed. The tetrahedral design minimizes structural deflections at the vertices (site of optical components for maximum baseline) resulting in reduced stroke requirements for isolation and pointing of optics. Typical total light path length stability goals are on the order of lambda/20, with a wavelength of light, lambda, of roughly 500 nanometers. It is expected that active structural control will be necessary to achieve this goal in the presence of disturbances.

  17. MIT's interferometer CST testbed

    NASA Astrophysics Data System (ADS)

    Hyde, Tupper; Kim, Ed; Anderson, Eric; Blackwood, Gary; Lublin, Leonard

    1990-12-01

    The MIT Space Engineering Research Center (SERC) has developed a controlled structures technology (CST) testbed based on one design for a space-based optical interferometer. The role of the testbed is to provide a versatile platform for experimental investigation and discovery of CST approaches. In particular, it will serve as the focus for experimental verification of CSI methodologies and control strategies at SERC. The testbed program has an emphasis on experimental CST--incorporating a broad suite of actuators and sensors, active struts, system identification, passive damping, active mirror mounts, and precision component characterization. The SERC testbed represents a one-tenth scaled version of an optical interferometer concept based on an inherently rigid tetrahedral configuration with collecting apertures on one face. The testbed consists of six 3.5 meter long truss legs joined at four vertices and is suspended with attachment points at three vertices. Each aluminum leg has a 0.2 m by 0.2 m by 0.25 m triangular cross-section. The structure has a first flexible mode at 31 Hz and has over 50 global modes below 200 Hz. The stiff tetrahedral design differs from similar testbeds (such as the JPL Phase B) in that the structural topology is closed. The tetrahedral design minimizes structural deflections at the vertices (site of optical components for maximum baseline) resulting in reduced stroke requirements for isolation and pointing of optics. Typical total light path length stability goals are on the order of lambda/20, with a wavelength of light, lambda, of roughly 500 nanometers. It is expected that active structural control will be necessary to achieve this goal in the presence of disturbances.

  18. REACTOR

    DOEpatents

    Christy, R.F.

    1961-07-25

    A means is described for co-relating the essential physical requirements of a fission chain reaction in order that practical, compact, and easily controllable reactors can be built. These objects are obtained by employing a composition of fissionsble isotope and moderator in fluid form in which the amount of fissionsble isotcpe present governs the reaction. The size of the reactor is no longer a critical factor, the new criterion being the concentration of the fissionable isotope.

  19. REACTOR

    DOEpatents

    Szilard, L.

    1963-09-10

    A breeder reactor is described, including a mass of fissionable material that is less than critical with respect to unmoderated neutrons and greater than critical with respect to neutrons of average energies substantially greater than thermal, a coolant selected from sodium or sodium--potassium alloys, a control liquid selected from lead or lead--bismuth alloys, and means for varying the quantity of control liquid in the reactor. (AEC)

  20. Water Reactor Safety Research Division. Quarterly progress report, April 1-June 30, 1980

    SciTech Connect

    Abuaf, N.; Levine, M.M.; Saha, P.; van Rooyen, D.

    1980-08-01

    The Water Reactor Safety Research Programs quarterly report describes current activities and technical progress in the programs at Brookhaven National Laboratory sponsored by the USNRC Division of Reactor Safety Research. The projects reported each quarter are the following: LWR Thermal Hydraulic Development, Advanced Code Evlauation, TRAC Code Assessment, and Stress Corrosion Cracking of PWR Steam Generator Tubing.

  1. Water Reactor Safety Research Division quarterly progress report, January 1-March 31, 1980

    SciTech Connect

    Romano, A.J.

    1980-06-01

    The Water Reactor Safety Research Programs Quarterly Report describes current activities and technical progress in the programs at Brookhaven National Laboratory sponsored by the USNRC Division of Reactor Safety Research. The projects reported each quarter are the following: LWR Thermal Hydraulic Development, Advanced Code Evaluation, TRAC Code Assessment, and Stress Corrosion Cracking of PWR Steam Generator Tubing.

  2. Status of reduced enrichment programs for research reactors in Japan

    SciTech Connect

    Kanda, Keiji; Nishihara, Hedeaki; Shirai, Eiji; Oyamada, Rokuro; Sanokawa, Konomo

    1997-08-01

    The reduced enrichment programs for the JRR-2, JRR-3, JRR-4 and JMTR of Japan Atomic Energy Research Institute (JAERI), and the KUR of Kyoto University Research Reactor Institute (KURRI) have been partially completed and are mostly still in progress under the Joint Study Programs with Argonne National Laboratory (ANL). The JMTR and JRR-2 have been already converted to use MEU aluminide fuels in 1986 and 1987, respectively. The operation of the upgraded JRR-3(JRR-3M) has started in March 1990 with the LEU aluminide fuels. Since May 1992, the two elements have been inserted in the KUR. The safety review application for the full core conversion to use LEU silicide in the JMTR was approved in February 1992 and the conversion has been done in January 1994. The Japanese Government approved a cancellation of the KUHFR Project in February 1991, and in April 1994 the U.S. Government gave an approval to utilize HEU in the KUR instead of the KUHFR. Therefore, the KUR will be operated with HEU fuel until 2001. Since March 1994, Kyoto University is continuing negotiation with UKAEA Dounreay on spent fuel reprocessing and blending down of recovered uranium, in addition to that with USDOE.

  3. Modeling of operating history of the research nuclear reactor

    NASA Astrophysics Data System (ADS)

    Naymushin, A.; Chertkov, Yu; Shchurovskaya, M.; Anikin, M.; Lebedev, I.

    2016-06-01

    The results of simulation of the IRT-T reactor operation history from 2012 to 2014 are presented. Calculations are performed using continuous energy Monte Carlo code MCU-PTR. Comparison is made between calculation and experimental data for the critical reactor.

  4. Condensed matter research at the modernized IBR-2 reactor: from functional materials to nanobiotechnologies

    NASA Astrophysics Data System (ADS)

    Aksenov, V. L.; Balagurov, A. M.; Kozlenko, D. P.

    2016-07-01

    An overview of the main scientific areas of condensed matter research, which are extended with the use of the IBR-2 high-flux research reactor, is presented. It is demonstrated that the spectrometer facility of the upgraded reactor has great potential for studying the structural, magnetic, and dynamical properties of novel functional materials and nanobiosystems, which ensures the leading position of the Joint Institute for Nuclear Research in neutron research of condensed matter for the long-term prospect.

  5. U.S. Department of Energy Program of International Technical Cooperation for Research Reactor Utilization

    SciTech Connect

    Chong, D.; Manning, M.; Ellis, R.; Apt, K.; Flaim, S.; Sylvester, K.

    2004-10-03

    The U.S. Department of Energy, National Nuclear Security Administration (DOE/NNSA) has initiated collaborations with the national nuclear authorities of Egypt, Peru, and Romania for the purpose of advancing the commercial potential and utilization of their respective research reactors. Under its Office of International Safeguards ''Sister Laboratory'' program, DOE/NNSA has undertaken numerous technical collaborations over the past decade intended to promote peaceful applications of nuclear technology. Among these has been technical assistance in research reactor applications, such as neutron activation analysis, nuclear analysis, reactor physics, and medical radioisotope production. The current collaborations are intended to provide the subject countries with a methodology for greater commercialization of research reactor products and services. Our primary goal is the transfer of knowledge, both in administrative and technical issues, needed for the establishment of an effective business plan and utilization strategy for the continued operation of the countries' research reactors. Technical consultation, cooperation, and the information transfer provided are related to: identification, evaluation, and assessment of current research reactor capabilities for products and services; identification of opportunities for technical upgrades for new or expanded products and services; advice and consultation on research reactor upgrades and technical modifications; characterization of markets for reactor products and services; identification of competition and estimation of potential for market penetration; integration of technical constraints; estimation of cash flow streams; and case studies.

  6. REACTOR

    DOEpatents

    Roman, W.G.

    1961-06-27

    A pressurized water reactor in which automatic control is achieved by varying the average density of the liquid moderator-cooiant is patented. Density is controlled by the temperature and power level of the reactor ftself. This control can be effected by the use of either plate, pellet, or tubular fuel elements. The fuel elements are disposed between upper and lower coolant plenum chambers and are designed to permit unrestricted coolant flow. The control chamber has an inlet opening communicating with the lower coolant plenum chamber and a restricted vapor vent communicating with the upper coolant plenum chamber. Thus, a variation in temperature of the fuel elements will cause a variation in the average moderator density in the chamber which directly affects the power level of the reactor.

  7. A new safety channel based on ¹⁷N detection in research reactors.

    PubMed

    Seyfi, Somayye; Gharib, Morteza

    2015-10-01

    Tehran research reactor (TRR) is a representative of pool type research reactors using light water, as coolant and moderator. This reactor is chosen as a prototype to demonstrate and prove the feasibility of (17)N detection as a new redundant channel for reactor power measurement. In TRR, similar to other pool type reactors, neutron detectors are immersed in the pool around the core as the main power measuring devices. In the present article, a different approach, using out of water neutron detector, is employed to measure reactor power. This new method is based on (17)O (n,p) (17)N reaction taking place inside the core and subsequent measurement of delayed neutrons emitted due to (17)N disintegration. Count and measurement of neutrons around outlet water pipe provides a reliable redundant safety channel to measure reactor power. Results compared with other established channels indicate a good agreement and shows a linear interdependency with true thermal power. Safety of reactor operation is improved with installation & use of this new power measuring channel. The new approach may equally serve well as a redundant channel in all other types of reactors having coolant comprised of oxygen in its molecular constituents. Contrary to existing channels, this one is totally out of water and thus is an advantage over current instrumentations. It is proposed to employ the same idea on other reactors (nuclear power plants too) to improve safety criteria.

  8. A new safety channel based on ¹⁷N detection in research reactors.

    PubMed

    Seyfi, Somayye; Gharib, Morteza

    2015-10-01

    Tehran research reactor (TRR) is a representative of pool type research reactors using light water, as coolant and moderator. This reactor is chosen as a prototype to demonstrate and prove the feasibility of (17)N detection as a new redundant channel for reactor power measurement. In TRR, similar to other pool type reactors, neutron detectors are immersed in the pool around the core as the main power measuring devices. In the present article, a different approach, using out of water neutron detector, is employed to measure reactor power. This new method is based on (17)O (n,p) (17)N reaction taking place inside the core and subsequent measurement of delayed neutrons emitted due to (17)N disintegration. Count and measurement of neutrons around outlet water pipe provides a reliable redundant safety channel to measure reactor power. Results compared with other established channels indicate a good agreement and shows a linear interdependency with true thermal power. Safety of reactor operation is improved with installation & use of this new power measuring channel. The new approach may equally serve well as a redundant channel in all other types of reactors having coolant comprised of oxygen in its molecular constituents. Contrary to existing channels, this one is totally out of water and thus is an advantage over current instrumentations. It is proposed to employ the same idea on other reactors (nuclear power plants too) to improve safety criteria. PMID:26123105

  9. Core conversion of the Portuguese research reactor to LEU fuel

    SciTech Connect

    Marques, J.G.; Ramos, A.R.; Kocher, A.

    2008-07-15

    Core conversion of the Portuguese Research Reactor (RPI) to LEU fuel is being performed within IAEA's Technical Cooperation project POR/4/016, with financial support from the US and Portugal. CERCA was selected as manufacturer of the LEU assemblies by the IAEA after an international call for bids. CERCA provided a comprehensive package to the RPI which included the mechanical verification of the design of the assemblies, their manufacture and arrangements for a joint inspection of the finished assemblies. The LEU fuel assemblies were manufactured within 8 months upon final approval of the design. The safety analyses for the core conversion to LEU fuel were made with the assistance of the RERTR program and were submitted for review by the IAEA and by Portuguese authorities in January 2007. Revised documents were submitted in June 2007 addressing the issues raised during review. Regulatory approval was received in early August and core conversion was done in early September. All measured safety parameters are within the defined acceptance limits. Operation at full power is expected by the end of October. (author)

  10. Characterization of Novel Calorimeters in the Annular Core Research Reactor

    NASA Astrophysics Data System (ADS)

    Hehr, Brian D.; Parma, Edward J.; Peters, Curtis D.; Naranjo, Gerald E.; Luker, S. Michael

    2016-02-01

    A series of pulsed irradiation experiments have been performed in the central cavity of Sandia National Laboratories' Annular Core Research Reactor (ACRR) to characterize the responses of a set of elemental calorimeter materials including Si, Zr, Sn, Ta, W, and Bi. Of particular interest was the perturbing effect of the calorimeter itself on the ambient radiation field - a potential concern in dosimetry applications. By placing the calorimeter package into a neutron-thermalizing lead/polyethylene (LP) bucket and irradiating both with and without a cadmium wrapper, it was demonstrated that prompt capture gammas generated inside the calorimeters can be a significant contributor to the measured dose in the active disc region. An MCNP model of the experimental setup was shown to replicate measured dose responses to within 10%. The internal (n,γ) contribution was found to constitute as much as 50% of the response inside the LP bucket and up to 20% inside the nominal (unmodified) cavity environment, with Ta and W exhibiting the largest enhancement due to their sizable (n,γ) cross sections. Capture reactions in non-disc components of the calorimeter were estimated to be responsible for up to a few percent of the measured response. This work was supported by the United States Department of Energy under Contract DE-AC04-94AL85000. Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy.

  11. Code System to Calculate Mixed Cores in TRIGA Mark II Research Reactor.

    2001-08-29

    Version 00 TRIGLAV is a computer program for reactor calculations of mixed cores in a TRIGA Mark II research reactor. It can be applied for fuel element burn-up calculations, for power and flux distributions calculations and for reactivity predictions. The TRIGLAV program requires the WIMS-D4 program with the original WIMS cross-section library extended for TRIGA reactor specific nuclides. This package includes the code TRIGAC, which is a new version of TRIGAP.

  12. Integration of improved decontamination and characterization technologies in the decommissioning of the CP-5 research reactor

    SciTech Connect

    Bhattacharyya, S. K.; Boing, L. E.

    2000-02-17

    The aging of research reactors worldwide has resulted in a heightened awareness in the international technical decommissioning community of the timeliness to review and address the needs of these research institutes in planning for and eventually performing the decommissioning of these facilities. By using the reactors already undergoing decommissioning as test beds for evaluating enhanced or new/innovative technologies for decommissioning, it is possible that new techniques could be made available for those future research reactor decommissioning projects. Potentially, the new technologies will result in: reduced radiation doses to the work force, larger safety margins in performing decommissioning and cost and schedule savings to the research institutes in performing the decommissioning of these facilities. Testing of these enhanced technologies for decontamination, dismantling, characterization, remote operations and worker protection are critical to furthering advancements in the technical specialty of decommissioning. Furthermore, regulatory acceptance and routine utilization for future research reactor decommissioning will be assured by testing and developing these technologies in realistically contaminated environments prior to use in the research reactors. The decommissioning of the CP-5 Research Reactor is currently in the final phase of dismantlement. In this paper the authors present results of work performed at Argonne National Laboratory (ANL) in the development, testing and deployment of innovative and/or enhanced technologies for the decommissioning of research reactors.

  13. Roadmap for Nondestructive Evaluation of Reactor Pressure Vessel Research and Development by the Light Water Reactor Sustainability Program

    SciTech Connect

    Smith, Cyrus M; Nanstad, Randy K; Clayton, Dwight A; Matlack, Katie; Ramuhalli, Pradeep; Light, Glenn

    2012-09-01

    The Department of Energy s (DOE) Light Water Reactor Sustainability (LWRS) Program is a five year effort which works to develop the fundamental scientific basis to understand, predict, and measure changes in materials and systems, structure, and components as they age in environments associated with continued long-term operations of existing commercial nuclear power reactors. This year, the Materials Aging and Degradation (MAaD) Pathway of this program has placed emphasis on emerging Non-Destructive Evaluation (NDE) methods which support these objectives. DOE funded Research and Development (R&D) on emerging NDE techniques to support commercial nuclear reactor sustainability is expected to begin next year. This summer, the MAaD Pathway invited subject matter experts to participate in a series of workshops which developed the basis for the research plan of these DOE R&D NDE activities. This document presents the results of one of these workshops which are the DOE LWRS NDE R&D Roadmap for Reactor Pressure Vessels (RPV). These workshops made a substantial effort to coordinate the DOE NDE R&D with that already underway or planned by the Electric Power Research Institute (EPRI) and the Nuclear Regulatory Commission (NRC) through their representation at these workshops.

  14. Graphite stored energy in the UCLA research reactor

    SciTech Connect

    Ashbaugh, C.E.; Ostrander, N.C.; Pearlman, H.

    1986-01-01

    One of several reactors of similar basic design built in the same time period, the UCLA reactor entered the relicensing process in 1980. A US Nuclear Regulatory Commission-sponsored generic safety analysis of such reactors included a brief evaluation of the energy stored in the graphite (Wigner Energy), and concluded that this was negligibly small. Shutdown of the UCLA reactor facility in 1984 provided an opportunity to measure the stored energy. Samples of graphite were taken at the following locations: immediately adjacent to the boxes; at the center of the graphite island (where the thermal flux peaks); and also from a stringer approx. 2 in. from the reactor core center. All samples were from nearly the same horizontal plane, at about mid-height of the core. Stored energy was measured by differential thermal calorimetry, on a Du Pont Thermal Analyzer Model 1090, with scanning temperatures up to 550/sup 0/C. The highest value found was 33.2 cal/g, next to the fuel boxes. At the island center, it was 19.2 cal/g. The stored energy is small, and further is confined to the graphite volume adjacent to the fuel boxes, which is a small fraction of the total volume of graphite in the reactor. The potential hazard from release of graphite stored energy is negligible.

  15. Status of reactor-shielding research in the US

    SciTech Connect

    Maienshein, F.C.

    1980-01-01

    While reactor programs change, shielding analysis methods are improved slowly. Version-V of ENDF/B provides improved data and Version-VI will be cost effective in advanced fission reactors are to be developed in the US. Benchmarks for data and methods validation are collected and distributed in the US in two series, one primarily for FBR-related experiments and one for LWR calculational methods. For LWR design, cavity streaming is now handled adequately, if with varying degrees of elegance. Investigations of improved detector response for LWRs rely upon transport methods. The great potential importance of pressure-vessel damage is dreflected in widespread studies to aid in the prediction of neutron fluences in vessels. For LMFBRS, the FFTF should give attenuation results on an operating reactor. For larger power reactors, the advantages of alternate shield materials appear compelling. A few other shielding studies appear to require experimental confirmation if LMFBRs are to be economically competitive. A coherent shielding program for the GCFR is nearing completion. For the fusion-reactor program, methods verification is under way, practical calculations are well advanced for test devices such as the TFTR and FMIT, and consideration is now given to shielding problems of large reactors, as in the ETF study.

  16. Reactor Safety Research Programs Quarterly Report July - September 1981

    SciTech Connect

    Edler, S. K.

    1982-01-01

    This document summarizes the work performed by Pacific Northwest laboratory (PNL) from July 1 through September 30, 1981, for the Division of Accident Evaluation, U.S. Nuclear Regulatory Commission (NRC). Evaluations of nondestructive examination (NDE) techniques and instrumentation are reported; areas of investigation include demonstrating the feasibility of determining the strength of structural graphite, evaluating the feasibility of detecting and analyzing flaw growth in reactor pressure boundary systems, examining NDE reliability and probabilistic fracture mechanics, and assessing the integrity of pressurized water reactor (PWR} steam generator tubes where service-induced degradation has been indicated. Experimental data and analytical models are being provided to aid in decision-making regarding pipe-to-pipe impacts following postulated breaks in high-energy fluid system piping. Core thermal models are being developed to provide better digital codes to compute the behavior of full-scale reactor systems under postulated accident conditions. Fuel assemblies and analytical support are being provided for experimental programs at other facilities. These programs include loss-of-coolant accident (LOCA) simulation tests at the NRU reactor, Chalk River, Canada; fuel rod deformation, severe fuel damage, and postaccident coolability tests for the ESSOR reactor Super Sara Test Program, lspra, Italy; the instrumented fuel assembly irradiation program at Halden, Norway; and experimental programs at the Power Burst Facility, Idaho National Engineering Laboratory (INEL), Idaho Falls, Idaho. These programs will provide data for computer modeling of reactor system and fuel performance during various abnormal operating conditions.

  17. Reactor Safety Research Programs Quarterly Report October - December 1981

    SciTech Connect

    Edler, S. K.

    1982-03-01

    This document summarizes the work performed by Pacific Northwest laboratory (PNL) from October 1 through December 31, 1981, for the Division of Accident Evaluation, U.S. Nuclear Regulatory Commission (NRC). Evaluations of nondestructive examination (NDE) techniques and instrumentation are reported; areas of investigation include demonstrating the feasibility of determining the strength of structural graphite, evaluating the feasibility of detecting and analyzing flaw growth in reactor pressure boundary systems, examining NDE reliability and probabilistic fracture mechanics, and assessing the integrity of pressurized water reactor (PWR) steam generator tubes where serviceinduced degradation has been indicated. Experimental data and analytical models are being provided to aid in decision-making regarding pipe-to-pipe impacts following postulated breaks in high-energy fluid system piping. Core thermal models are being developed to provide better digital codes to compute the behavior of full-scale reactor systems under postulated accident conditions. Fuel assemblies and analytical support are being provided for experimental programs at other facilities. These programs include loss-of-coolant accident (LOCA) simulation tests at the NRU reactor, Chalk River, Canada; fuel rod deformation, severe fuel damage, and post accident coolability tests for the ESSOR reactor Super Sara Test Program, lspra, Italy; the instrumented fuel assembly irradiation program at Halden, Norway; and experimental programs at the Power Burst Facility, Idaho National Engineering Laboratory (INEL), Idaho Falls, Idaho. These programs will provide data for computer modeling of reactor system and fuel performance during various abnormal operating conditions.

  18. 78 FR 26811 - Dow Chemical Company, Dow TRIGA Research Reactor; License Renewal for the Dow Chemical TRIGA...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-05-08

    ... COMMISSION Dow Chemical Company, Dow TRIGA Research Reactor; License Renewal for the Dow Chemical TRIGA Research Reactor; Supplemental Information and Correction AGENCY: Nuclear Regulatory Commission. ACTION... Chemical TRIGA Research Reactor,'' to inform the public that the NRC is considering issuance of a...

  19. Gas release driven dynamics in research reactors piping

    SciTech Connect

    Kolev, Nikolay Ivanov; Roloff-Bock, Iris; Schlicht, Gerhard

    2006-07-01

    Analysis of the physical and chemical processes of radiolysis gas production, air absorption, diffusion controlled gas release and transport in the coolant cleaning system of the research reactor FRM II, which is now being in routine power operation in Munich, Germany, lead to the following conclusions: 1) The steady state pressure distribution in the siphon pipe allows that the horizontal part of the siphon pipe is filled with air. The air is isolated by about 1 m water column from the main pipe of the coolant cleaning system (CCS). This is a stable steady state. It has two positive impacts on the normal operation of the CCS: (a) there is effectively no bypass flow; (b) The air can not be transported through the pipe and therefore no deterioration of the pump performance is expected from the function of the siphon pipe. 2) Radiolysis gas production for coolant, that initially does not contain dissolved air, does not lead to any problem for the system. The gases are dissolved in the coolant at 2.2 bar and are not released for pressures reduction to about 1 bar, which is the minimum pressure in the CCS. 3) Assuming hypothetically a radiolysis gas production for coolant, which initially does contain dissolved air close to its saturation, leads to gas slug formation and its transport up to the pump. This could reduce the pump head and could lead to distortion of the normal operation. Systematic measurement of the hydrogen in the primary system at 100% power indicated, that this state is not realized in the system. The observed H{sub 2} concentration was between 0.016 e-6 and 0.380 e-6 which is of no concern at all. (authors)

  20. Thermonuclear Fusion Research Progress and the Way to the Reactor

    NASA Astrophysics Data System (ADS)

    Koch, Raymond

    2006-06-01

    The paper reviews the progress of fusion research and its prospects for electricity generation. It starts with a reminder of the principles of thermonuclear fusion and a brief discussion of its potential role in the future of the world energy production. The reactions allowing energy production by fusion of nuclei in stars and on earth and the conditions required to sustain them are reviewed. At the high temperatures required for fusion (hundred millions kelvins), matter is completely ionized and has reached what is called its 4th state: the plasma state. The possible means to achieve these extreme temperatures is discussed. The remainder of the paper focuses on the most promising of these approaches, magnetic confinement. The operating principles of the presently most efficient machine of this type — the tokamak — is described in some detail. On the road to producing energy with fusion, a number of obstacles have to be overcome. The plasma, a fluid that reacts to electromagnetic forces and carries currents and charges, is a complex medium. Fusion plasma is strongly heated and is therefore a good example of a system far from equilibrium. A wide variety of instabilities can grow in this system and lead to self-organized structures and spontaneous cycles. Turbulence is generated that degrades the confinement and hinders easy achievement of long lasting hot plasmas. Physicists have learned how to quench turbulence, thereby creating sort of insulating bottles inside the plasma itself to circumvent this problem. The recent history of fusion performance is outlined and the prospect of achieving power generation by fusion in a near future is discussed in the light of the development of the "International Tokamak Experimental Reactor" project ITER.

  1. A neutron tomography facility at a low power research reactor

    NASA Astrophysics Data System (ADS)

    Koerner, S.; Schillinger, B.; Vontobel, P.; Rauch, H.

    2001-09-01

    Neutron radiography (NR) provides a very efficient tool in the field of non-destructive testing as well as for many applications in fundamental research. A neutron beam penetrating a specimen is attenuated by the sample material and detected by a two-dimensional (2D) imaging device. The image contains information about materials and structure inside the sample because neutrons are attenuated according to the basic law of radiation attenuation. Contrary to X-rays, neutrons can be attenuated by some light materials, as for example, hydrogen and boron, but penetrate many heavy materials. Therefore, NR can yield important information not obtainable by more traditional methods. Nevertheless, there are many aspects of structure, both quantitative and qualitative, that are not accessible from 2D transmission images. Hence, there is an interest in three-dimensional neutron imaging. At the 250 kW TRIGA Mark II reactor of the Atominstitut in Austria a neutron tomography facility has been installed. The neutron flux at this beam position is 1.3×10 5 neutrons/cm 2 s and the beam diameter is 8 cm. For a 3D tomographic reconstruction of the sample interior, transmission images of the object taken from different view angles are required. Therefore, a rotary table driven by a step motor connected to a computerized motion control system has been installed at the sample position. In parallel a suitable electronic imaging device based on a neutron sensitive scintillator screen and a CCD-camera has been designed. It can be controlled by a computer in order to synchronize the software of the detector and of the rotary table with the aim of an automation of measurements. Reasonable exposure times can get as low as 20 s per image. This means that a complete tomography of a sample can be performed within one working day. Calculation of the 3D voxel array is made by using the filtered backprojection algorithm.

  2. Development of Improved Models and Designs for Coated-Particle Gas Reactor Fuels -- Final Report under the International Nuclear Energy Research Initiative (I-NERI)

    SciTech Connect

    Petti, David; Martin, Philippe; Phelip, Mayeul; Ballinger, Ronald

    2004-12-01

    The objective of this INERI project was to develop improved fuel behavior models for gas reactor coated-particle fuels and to explore improved coated-particle fuel designs that could be used reliably at very high burnups and potentially in gas-cooled fast reactors. Project participants included the Idaho National Engineering Laboratory (INEEL), Centre Étude Atomique (CEA), and the Massachusetts Institute of Technology (MIT). To accomplish the project objectives, work was organized into five tasks.

  3. Reactor safety research section probability of heat exchanger leaks

    SciTech Connect

    Cramer, D.S.; Shine, E.P.; Copeland, W.J.

    1992-02-01

    Three heat exchangers (HXs) were changed out after the December 1991 leak of Process Water to the Savannah River. This leaves 6 of the original 304 stainless steel heat exchangers which will remain in K-Reactor for restart. This report discusses SRS site specific data which were used to estimate the probability of a leak within a one-year period as a function of leak rate and root cause in these six heat exchangers in conjunction with six new heat exchangers presently in service in K-Reactor. Based on several assumptions and statistical models, SRS data indicate that the total probability of a leak occurring during a one-year period in K-Reactor with 6 original (304 stainless steel) and 6 new (316-L or SEA-CURE) heat exchangers, with a leak rate greater than 20, 40 or 90 pounds/hr, is 0.013, 0.004 or 0.0005, respectively.

  4. Integrated Decision-Making Tool to Develop Spent Fuel Strategies for Research Reactors

    SciTech Connect

    Beatty, Randy L; Harrison, Thomas J

    2016-01-01

    IAEA Member States operating or having previously operated a Research Reactor are responsible for the safe and sustainable management and disposal of associated radioactive waste, including research reactor spent nuclear fuel (RRSNF). This includes the safe disposal of RRSNF or the corresponding equivalent waste returned after spent fuel reprocessing. One key challenge to developing general recommendations lies in the diversity of spent fuel types, locations and national/regional circumstances rather than mass or volume alone. This is especially true given that RRSNF inventories are relatively small, and research reactors are rarely operated at a high power level or duration typical of commercial power plants. Presently, many countries lack an effective long-term policy for managing RRSNF. This paper presents results of the International Atomic Energy Agency (IAEA) Coordinated Research Project (CRP) #T33001 on Options and Technologies for Managing the Back End of the Research Reactor Nuclear Fuel Cycle which includes an Integrated Decision Making Tool called BRIDE (Back-end Research reactor Integrated Decision Evaluation). This is a multi-attribute decision-making tool that combines the Total Estimated Cost of each life-cycle scenario with Non-economic factors such as public acceptance, technical maturity etc and ranks optional back-end scenarios specific to member states situations in order to develop a specific member state strategic plan with a preferred or recommended option for managing spent fuel from Research Reactors.

  5. Light-water-reactor safety research program. Quarterly progress report, January-March 1980

    SciTech Connect

    Massey, W.E.; Kyger, J.A.

    1980-08-01

    This progress report summarizes the Argonne National Laboratory work performed during January, February, and March 1980 on water-reactor-safety problems. The research and development area covered is Transient Fuel Response and Fission-Product Release.

  6. The development of an on-line ERM system for the research reactors in Korea

    NASA Astrophysics Data System (ADS)

    Kim, Hee Reyoung; Lee, Wanno; Kim, Eun Han; Choi, Geun Sik; Lee, Chang Woo

    2007-08-01

    A real-time on-line environmental radiation monitoring (ERM) system for the research reactor sites of Daejeon and Seoul is established. In the Daejeon site, a radio communication method with a radiofrequency of 468.8 MHz is used between the main computer and the six posts inside the Daejeon research reactor site. A general telephone communication method by a dial modem is applied between the main computer and a comparison point with one post outside the Daejeon research reactor site. In the Seoul site, a null modem communication method is employed between a sub-computer and the three posts inside the Seoul research reactor site, and a high-speed communication network such as ADSL is used between the sub-computer in the Seoul site and the main computer in the Daejeon site. Consequently, the real-time data from a total of 10 places is displayed on-line on a screen and it is statistically treated.

  7. McCARD for Neutronics Design and Analysis of Research Reactor Cores

    NASA Astrophysics Data System (ADS)

    Shim, Hyung Jin; Park, Ho Jin; Kwon, Soonwoo; Seo, Geon Ho; Hyo Kim, Chang

    2014-06-01

    McCARD is a Monte Carlo (MC) neutron-photon transport simulation code developed exclusively for the neutronics design and analysis of nuclear reactor cores. McCARD is equipped with the hierarchical modeling and scripting functions, the CAD-based geometry processing module, the adjoint-weighted kinetics parameter and source multiplication factor estimation modules as well as the burnup analysis capability for the neutronics design and analysis of both research and power reactor cores. This paper highlights applicability of McCARD for the research reactor core neutronics analysis, as demonstrated for Kyoto University Critical Assembly, HANARO, and YALINA.

  8. A Small-Animal Irradiation Facility for Neutron Capture Therapy Research at the RA-3 Research Reactor

    SciTech Connect

    Emiliano Pozzi; David W. Nigg; Marcelo Miller; Silvia I. Thorp; Amanda E. Schwint; Elisa M. Heber; Veronica A. Trivillin; Leandro Zarza; Guillermo Estryk

    2007-11-01

    The National Atomic Energy Commission of Argentina (CNEA) has constructed a thermal neutron source for use in Boron Neutron Capture Therapy (BNCT) applications at the RA-3 research reactor facility located in Buenos Aires. The Idaho National Laboratory (INL) and CNEA have jointly conducted some initial neutronic characterization measurements for one particular configuration of this source. The RA-3 reactor (Figure 1) is an open pool type reactor, with 20% enriched uranium plate-type fuel and light water coolant. A graphite thermal column is situated on one side of the reactor as shown. A tunnel penetrating the graphite structure enables the insertion of samples while the reactor is in normal operation. Samples up to 14 cm height and 15 cm width are accommodated.

  9. Sensitivity and uncertainty analyses for thermo-hydraulic calculation of research reactor

    SciTech Connect

    Hartini, Entin; Andiwijayakusuma, Dinan; Isnaeni, Muh Darwis

    2013-09-09

    The sensitivity and uncertainty analysis of input parameters on thermohydraulic calculations for a research reactor has successfully done in this research. The uncertainty analysis was carried out on input parameters for thermohydraulic calculation of sub-channel analysis using Code COOLOD-N. The input parameters include radial peaking factor, the increase bulk coolant temperature, heat flux factor and the increase temperature cladding and fuel meat at research reactor utilizing plate fuel element. The input uncertainty of 1% - 4% were used in nominal power calculation. The bubble detachment parameters were computed for S ratio (the safety margin against the onset of flow instability ratio) which were used to determine safety level in line with the design of 'Reactor Serba Guna-G. A. Siwabessy' (RSG-GA Siwabessy). It was concluded from the calculation results that using the uncertainty input more than 3% was beyond the safety margin of reactor operation.

  10. Boron neutron capture therapy and radiation synovectomy research at the Massachusetts Institute of Technology Research Reactor

    SciTech Connect

    Zamenhof, R.G.; Nwanguma, C.I.; Wazer, D.E.; Saris, S.; Madoc-Jones, H. ); Sledge, C.B.; Shortkroff, S. )

    1992-04-01

    In this paper, current research in boron neutron capture therapy (BNCT) and radiation synovectomy at the Massachusetts Institute of Technology Research Reactor is reviewed. In the last few years, major emphasis has been placed on the development of BNCT primarily for treatment of brain tumors. This has required a concerted effort in epithermal beam design and construction as well as the development of analytical capabilities for {sup 10}B analysis and patient treatment planning. Prompt gamma analysis and high-resolution track-etch autoradiography have been developed to meet the needs, respectively, for accurate bulk analysis and for quantitative imaging of {sup 10}B in tissue at subcellular resolutions. Monte Carlo-based treatment planning codes have been developed to ensure optimized and individualized patient treatments. In addition, the development of radiation synovectomy as an alternative therapy to surgical intervention is joints that are affected by rheumatoid arthritis is described.

  11. The present situations and perspectives on utilization of research reactors in Thailand

    NASA Astrophysics Data System (ADS)

    Chongkum, Somporn

    2002-01-01

    The Thai Research Reactor 1/Modification 1, a TRIGA Mark III reactor, went critical on November 7, 1977. It has been playing a central role in the development of both Office of Atomic Energy for Peace (OAEP) and nuclear application in Thailand. It has a maximum power of 2 MW (thermal) at steady state and a pulsing capacity of 2000 MW. The highest thermal neutron flux at a central thimber is 1×10 13 n/cm 2/s, which is extensively utilized for radioisotope production, neutron activation analysis and neutron beam experiments, i.e. neutron scattering, prompt gamma analysis and neutron radiography. Following the nuclear technological development, the OAEP is in the process of establishing the Ongkharak Nuclear Research Center (ONRC). The center is being built in Nakhon Nayok province, 60 km northeast of Bangkok. The centerpiece of the ONRC is a multipurpose 10 MW TRIGA research reactor. Facilities are included for the production of radioisotopes for medicine, industry and agriculture, neutron transmutation doping of silicon, and neutron capture therapy. The neutron beam facilities will also be utilized for applied research and technology development as well as training in reactor operations, performance of experiments and reactor physics. This paper describes a recent program of utilization as well as a new research reactor for enlarging the perspectives of its utilization in the future.

  12. Development of a mono-energetic positron beam line at the Kyoto University Research Reactor

    NASA Astrophysics Data System (ADS)

    Sato, K.; Xu, Q.; Yoshiie, T.; Sano, T.; Kawabe, H.; Nagai, Y.; Nagumo, K.; Inoue, K.; Toyama, T.; Oshima, N.; Kinomura, A.; Shirai, Y.

    2015-01-01

    Positron beam facilities are widely used for solid state physics and material science studies. A positron beam facility has been constructed at the Kyoto University Research Reactor (KUR) in order to expand its application range. The KUR is a light-water-moderated tank-type reactor operated at a rated thermal power of 5 MW. A positron beam has been transported successfully from the reactor to the irradiation chamber. The total moderated positron rate was greater than 1.4 × 106/s while the reactor operated at a reduced power of 1 MW. Special attention was paid for the design of the in-pile position source to prevent possible damage of the reactor in case of severe earthquakes.

  13. PROSPECT Background Studies and Operation of Li-Loaded Liquid Scintillator Detectors at a Research Reactor

    NASA Astrophysics Data System (ADS)

    Langford, Thomas; Prospect Collaboration

    2015-04-01

    Segmented antineutrino detectors placed near compact research reactors provide an excellent opportunity to probe short-baseline neutrino oscillations and precisely measure the reactor antineutrino spectrum. PROSPECT is a phased experiment that will explore the favored reactor anomaly parameter space at the High Flux Isotope Reactor (HFIR) at Oak Ridge National Lab. Measurements of the reactor correlated and ambient backgrounds will be presented, as well as a discussion of active and passive mitigation plans. A lithium-loaded liquid scintillator test detector is currently in operation at HFIR within a prototype shielding cave. Results from recent operation will be presented along with a discussion of their impact on PROSPECT. on behalf of the PROSPECT collaboration.

  14. Reactor

    DOEpatents

    Evans, Robert M.

    1976-10-05

    1. A neutronic reactor having a moderator, coolant tubes traversing the moderator from an inlet end to an outlet end, bodies of material fissionable by neutrons of thermal energy disposed within the coolant tubes, and means for circulating water through said coolant tubes characterized by the improved construction wherein the coolant tubes are constructed of aluminum having an outer diameter of 1.729 inches and a wall thickness of 0.059 inch, and the means for circulating a liquid coolant through the tubes includes a source of water at a pressure of approximately 350 pounds per square inch connected to the inlet end of the tubes, and said construction including a pressure reducing orifice disposed at the inlet ends of the tubes reducing the pressure of the water by approximately 150 pounds per square inch.

  15. Modular Pebble-Bed Reactor Project: Laboratory-Directed Research and Development Program FY 2002 Annual Report

    SciTech Connect

    Petti, David Andrew; Dolan, Thomas James; Miller, Gregory Kent; Moore, Richard Leroy; Terry, William Knox; Ougouag, Abderrafi Mohammed-El-Ami; Oh, Chang H; Gougar, Hans D

    2002-11-01

    This report documents the results of our research in FY-02 on pebble-bed reactor technology under our Laboratory Directed Research and Development (LDRD) project entitled the Modular Pebble-Bed Reactor. The MPBR is an advanced reactor concept that can meet the energy and environmental needs of future generations under DOE’s Generation IV initiative. Our work is focused in three areas: neutronics, core design and fuel cycle; reactor safety and thermal hydraulics; and fuel performance.

  16. Reactor safety research programs. Quarterly report, July-September 1983

    SciTech Connect

    Edler, S.K.

    1984-04-01

    Evaluations of nondestructive examination (NDE) techniques and instrumentation include demonstrating the feasibility of determining the strength of structural graphite, evaluating the feasibility of detecting and analyzing flaw growth in reactor pressure boundary systems, and examining NDE reliability and probabilistic fracture mechanics. Accelerated pellet-cladding interaction modeling is being conducted to predict the probability of fuel rod failure under normal operating conditions. Experimental data and analytical models are being provided to aid in decision making regarding pipe-to-pipe impacts following postulated breaks in high-energy fluid system piping. Experimental data and validated models are being used to determine a method for evaluating the acceptance of welded or weld-repaired stainless steel piping. Thermal-hydraulic models are being developed to provide better digital codes to compute the behavior of full-scale reactor systems under postulated accident conditions. High-temperature materials property tests are being conducted to provide data on severe core damage fuel behavior. Severe fuel damage accident tests are being conducted at the NRU reactor, Chalk River, Canada; and an instrumented fuel assembly irradiation program is being performed at Halden, Norway. Fuel assemblies and analytical support are being provided for experimental programs at other facilities, including the Super Sara Test Program, Ispra, Italy, and experimental programs at the Power Burst Facility.

  17. Reactor safety research programs. Quarterly report, April-June 1982

    SciTech Connect

    Edler, S.K.

    1982-11-01

    This document summarizes work performed by Pacific Northwest Laboratory (PNL) from April 1 through June 30, 1982, for the Division of Accident Evaluation and the Division of Engineering Technology, US Nuclear Regulatory Commission (NRC). Evaluations of nondestructive examination (NDE) techniques and instrumentation are reported; areas of investigation include demonstrating the feasibility of determining the strength of structural graphite, evaluating the feasibility of detecting and analyzing flaw growth in reactor pressure boundary systems, examining NDE reliability and probabilistic fracture mechanics, and assessing the integrity of pressurized water reactor (PWR) steam generator tubes where service-induced degradation has been indicated. Experimental data and analytical models are being provided to aid in decision-making regarding pipe-to-pipe impacts following postulated breaks in high-energy fluid system piping. Core thermal models are being developed to provide better digital codes to compute the behavior of full-scale reactor systems under postulated accident conditions. Fuel assemblies and analytical support are being provided for experimental programs at other facilities.

  18. Reactor safety research programs. Quarterly report, January-March 1982

    SciTech Connect

    Edler, S.K.

    1982-07-01

    This document summarizes work performed by Pacific Northwest Laboratory (PNL) from January 1 through March 31, 1982, for the Division of Accident Evaluation and the Division of Engineering Technology, US Nuclear Regulatory Commission (NRC). Evaluations of nondestructive examination (NDE) techniques and instrumentation are reported; areas of investigation include demonstrating the feasibility of determining the strength of structural graphite, evaluating the feasibility of detecting and analyzing flaw growth in reactor pressure boundary systems, examining NDE reliability and probabilistic fracture mechanics, and assessing the integrity of pressurized water reactor (PWR) steam generator tubes where service-induced degradation has been indicated. Experimental data and analytical models are being provided to aid in decision-making regarding pipe-to-pipe impacts following postulated breaks in high-energy fluid system piping. Core thermal models are being developed to provide better digital codes to compute the behavior of full-scale reactor systems under postulated accident conditions. Fuel assemblies and analytical support are being provided for experimental programs at other facilities.

  19. Dry Storage of Research Reactor Spent Nuclear Fuel - 13321

    SciTech Connect

    Adams, T.M.; Dunsmuir, M.D.; Leduc, D.R.; Severynse, T.F.; Sindelar, R.L.; Moore, E.N.

    2013-07-01

    Spent fuel from domestic and foreign research reactors is received and stored at the Savannah River Site's L Area Material Storage (L Basin) Facility. This DOE-owned fuel consists primarily of highly enriched uranium in metal, oxide or silicide form with aluminum cladding. Upon receipt, the fuel is unloaded and transferred to basin storage awaiting final disposition. Disposition alternatives include processing via the site's H Canyon facility for uranium recovery, or packaging and shipment of the spent fuel to a waste repository. A program has been developed to provide a phased approach for dry storage of the L Basin fuel. The initial phase of the dry storage program will demonstrate loading, drying, and storage of fuel in twelve instrumented canisters to assess fuel performance. After closure, the loaded canisters are transferred to pad-mounted concrete overpacks, similar to those used for dry storage of commercial fuel. Unlike commercial spent fuel, however, the DOE fuel has high enrichment, very low to high burnup, and low decay heat. The aluminum cladding presents unique challenges due to the presence of an oxide layer that forms on the cladding surface, and corrosion degradation resulting from prolonged wet storage. The removal of free and bound water is essential to the prevention of fuel corrosion and radiolytic generation of hydrogen. The demonstration will validate models predicting pressure, temperature, gas generation, and corrosion performance, provide an engineering scale demonstration of fuel handling, drying, leak testing, and canister backfill operations, and establish 'road-ready' storage of fuel that is suitable for offsite repository shipment or retrievable for onsite processing. Implementation of the Phase I demonstration can be completed within three years. Phases II and III, leading to the de-inventory of L Basin, would require an additional 750 canisters and 6-12 years to complete. Transfer of the fuel from basin storage to dry storage

  20. DISMANTLING OF THE UPPER RPV COMPONENTS OF THE KARLSRUHE MULTI-PURPOSE RESEARCH REACTOR (MZFR), GERMANY

    SciTech Connect

    Prechtl, E.; Suessdorf, W.

    2003-02-27

    The Multi-purpose Research Reactor was a pressurized-water reactor cooled and moderated with heavy water. It was built from 1961 to 1966 and went critical for the first time on 29 September 1965. After nineteen years of successful operation, the reactor was de-activated on 3 May 1984. The reactor had a thermal output of 200 MW and an electrical output of 50 MW. The MZFR not only served to supply electrical power, but also as a test bed for: - research into various materials for reactor building (e. g. zirkaloy), - the manufacturing and operating industry to gain experience in erection and operation, - training scientific and technical reactor staff, and - power supply (first nuclear combined-heat-and-power system, 1979-1984). The experience gained in operating the MZFR was very helpful for the development and operation of power reactors. At first, safe containment and enclosure of the plant was planned, but then it was decided to dismantle the plant completely, step by step, in view o f the clear advantages of this approach. The decommissioning concept for the complete elimination of the plant down to a green-field site provides for eight steps. A separate decommissioning license is required for each step. As part of the dismantling, about 72,000 Mg [metric tons] of concrete and 7,200 Mg of metal (400 Mg RPV) must be removed. About 700 Mg of concrete (500 Mg biological shield) and 1300 Mg of metal must be classified as radioactive waste.

  1. Decontamination and decommissioning preparation of Oak Ridge National Laboratory research reactors

    SciTech Connect

    Stover, R.L.; Anderson, G.E.; Finger, J.M.; Skipper, D.D.

    1994-12-31

    During the past seven years, four research reactors at Oak Ridge National Laboratory (ORNL) have been shut down by the US Department of Energy (DOE) because of a lack of funding and mission. Before the reactors are eligible to receive DOE funding for decontamination and decommissioning (D and D), certain preparations are required, including resolution of significant environmental concerns. This paper describes the results of the D and D preparations for one of these four reactors, the Oak Ridge Research Reactor (ORR), with the emphasis on the environmental aspects. The three tasks that must be completed before a facility can be transferred to the D and D program are: Completion of environmental compliance, industrial safety, and radiological reviews; Removal of all spent fuel and nuclear material; and Assurance that buildings and support systems are structurally sound so as to permit deferred final decommissioning for up to five years.

  2. Photon spectrum behind biological shielding of the LVR-15 research reactor

    SciTech Connect

    Klupak, V.; Viererbl, L.; Lahodova, Z.; Marek, M.; Vins, M.

    2011-07-01

    The LVR-15 reactor is a light water research reactor situated at the Research Centre Rez, near Prague. It operates as a multipurpose facility with a maximum thermal power of 10 MW. The reactor core usually contains from 28 to 32 fuel assemblies with a total mass of {sup 235}U of about 5 kg. Emitted radiation from the fuel caused by fission is shielded by moderating water, a steel reactor vessel, and heavy concrete. This paper deals with measurement and analysis of the gamma spectrum near the outer surface of the concrete wall, behind biological shielding, mainly in the 3- to 10-MeV energy range. A portable HPGe detector with a portable multichannel analyzer was used to measure gamma spectra. The origin of energy lines in gamma detector spectra was identified. (authors)

  3. Operational performance of the three bean salad control algorithm on the ACRR (Annular Core Research Reactor)

    SciTech Connect

    Ball, R.M.; Madaras, J.J. . Space and Defense Systems); Trowbridge, F.R. Jr.; Talley, D.G.; Parma, E.J. Jr. )

    1991-01-01

    Experimental tests on the Annular Core Research Reactor have confirmed that the Three-Bean-Salad'' control algorithm based on the Pontryagin maximum principle can change the power of a nuclear reactor many decades with a very fast startup rate and minimal overshoot. The paper describes the results of simulations and operations up to 25 MW and 87 decades per minute. 3 refs., 4 figs., 1 tab.

  4. Quality management in BNCT at a nuclear research reactor.

    PubMed

    Sauerwein, Wolfgang; Moss, Raymond; Stecher-Rasmussen, Finn; Rassow, Jürgen; Wittig, Andrea

    2011-12-01

    Each medical intervention must be performed respecting Health Protection directives, with special attention to Quality Assurance (QA) and Quality Control (QC). This is the basis of safe and reliable treatments. BNCT must apply QA programs as required for performance and safety in (conventional) radiotherapy facilities, including regular testing of performance characteristics (QC). Furthermore, the well-established Quality Management (QM) system of the nuclear reactor used has to be followed. Organization of these complex QM procedures is offered by the international standard ISO 9001:2008.

  5. Proceedings of the 1990 International Meeting on Reduced Enrichment for Research and Test Reactors

    SciTech Connect

    Not Available

    1993-07-01

    The global effort to reduce, and possibly, eliminate the international traffic in highly-enriched uranium caused by its use in research reactors requires extensive cooperation and free exchange of information among all participants. To foster this free exchange of information, the Reduced Enrichment Research and Test Reactor (RERTR) Program, at Argonne National Laboratory, sponsored this meeting as the thirteenth of a series which began in 1978. The common effort brought together, past, a large number of specialists from many countries. On hundred twenty-three participants from 26 countries, including scientists, reactor operators, and personnel from commercial fuel suppliers, research centers, and government organizations, convened in Newport, Rhode Island to discuss their results, their activities, and their plans relative to converting research reactors to low-enriched fuels. As more and more reactors convert to the use of low-enriched uranium, the emphasis of our effort has begun to shift from research and development to tasks more directly related to implementation of the new fuels and technologies that have been developed, and to refinements of those fuels and technologies. It is appropriate, for this reason, that the emphasis of this meeting was placed on safety and on conversion experiences. This individual papers in this report have been cataloged separately.

  6. Safety Issues at the DOE Test and Research Reactors. A Report to the U.S. Department of Energy.

    ERIC Educational Resources Information Center

    National Academy of Sciences - National Research Council, Washington, DC. Commission on Physical Sciences, Mathematics, and Resources.

    This report provides an assessment of safety issues at the Department of Energy (DOE) test and research reactors. Part A identifies six safety issues of the reactors. These issues include the safety design philosophy, the conduct of safety reviews, the performance of probabilistic risk assessments, the reliance on reactor operators, the fragmented…

  7. A neutronics feasibility study for the LEU conversion of Poland's Maria research reactor.

    SciTech Connect

    Bretscher, M. M.

    1998-10-14

    The MARIA reactor is a high-flux multipurpose research reactor which is water-cooled and moderated with both beryllium and water. Standard HEU (80% {sup 235}U)fuel assemblies consist of six concentric fuel tubes of a U-Al alloy clad in aluminum. Although the inventory of HEU (80%) fuel is nearly exhausted, a supply of highly-loaded 36%-enriched fuel assemblies is available at the reactor site. Neutronic equilibrium studies have been made to determine the relative performance of fuels with enrichments of 80%, 36% and 19.7%. These studies indicate that LEU (19.7%) densities of about 2.5 gU/cm{sup 3} and 3.8 gU/cm{sup 3} are required to match the performance of the MARIA reactor with 80%-enriched and with 36%-enriched fuels, respectively.

  8. Research and development of an electrochemical biocide reactor

    NASA Technical Reports Server (NTRS)

    See, G. G.; Bodo, C. A.; Glennon, J. P.

    1975-01-01

    An alternate disinfecting process to chemical agents, heat, or radiation in an aqueous media has been studied. The process is called an electrochemical biocide and employs cyclic, low-level voltages at chemically inert electrodes to pass alternating current through water and, in the process, to destroy microorganisms. The paper describes experimental hardware, methodology, and results with a tracer microorganism (Escherichia coli). The results presented show the effects on microorganism kill of operating parameters, including current density (15 to 55 mA/sq cm (14 to 51 ASF)), waveform of applied electrical signal (square, triangular, sine), frequency of applied electrical signal (0.5 to 1.5 Hz), process water flow rate (100 to 600 cc/min (1.6 to 9.5 gph)), and reactor resident time (0 to 4 min). Comparisons are made between the disinfecting property of the electrochemical biocide and chlorine, bromine, and iodine.

  9. Silicon doping system at the research reactor FRM II.

    PubMed

    Li, X; Gerstenberg, H; Neuhaus, I

    2009-01-01

    Silicon doping has being carried out at FRM II since 2 years. During the commissioning of our new reactor, a simple test rig was used to determine the neutron flux profile at the irradiation position and optimise a nickel absorber liner, which is equipped at the irradiation position for vertical smoothing of the neutron flux profile. MCNP-code was used during the design of the liner. The final automatic doping system is designed to allow the irradiation of cylindrical silicon single crystals 500mm high and up to 200mm in diameter. Silicon ingots are additionally rotated continuously about their own cylinder axis during irradiation. The neutron flux density is measured online by using self-powered-neutron (SPN) detectors. The necessary doping homogeneity of +/-5% is achieved. The doping procedure and doping quality of ingots with high target resistivity are also discussed. PMID:19324563

  10. Comprehensive Thermal Hydraulics Research of the Very High Temperature Gas Cooled Reactor

    SciTech Connect

    Chang Oh; Eung Kim; Richard Schultz; Mike Patterson; David Petti; Hyung Kang

    2010-10-01

    The Idaho National Laboratory (INL), under the auspices of the U.S. Department of Energy, is conducting research on the Very High Temperature Reactor (VHTR) design concept for the Next Generation Nuclear Plant (NGNP) Project. The reactor design will be a graphite moderated, thermal neutron spectrum reactor that will produce electricity and hydrogen in a highly efficient manner. The NGNP reactor core will be either a prismatic graphite block type core or a pebble bed core. The NGNP will use very high-burnup, low-enriched uranium, TRISO-coated fuel, and have a projected plant design service life of 60 years. The VHTR concept is considered to be the nearest-term reactor design that has the capability to efficiently produce hydrogen. The plant size, reactor thermal power, and core configuration will ensure passive decay heat removal without fuel damage or radioactive material releases during reactor core-accidents. The objectives of the NGNP Project are to: Demonstrate a full-scale prototype VHTR that is commercially licensed by the U.S. Nuclear Regulatory Commission, and Demonstrate safe and economical nuclear-assisted production of hydrogen and electricity. The DOE laboratories, led by the INL, perform research and development (R&D) that will be critical to the success of the NGNP, primarily in the areas of: • High temperature gas reactor fuels behavior • High temperature materials qualification • Design methods development and validation • Hydrogen production technologies • Energy conversion. This paper presents current R&D work that addresses fundamental thermal hydraulics issues that are relevant to a variety of possible NGNP designs.

  11. Joint Assessment of ETRR-2 Research Reactor Operations Program, Capabilities, and Facilities

    SciTech Connect

    Bissani, M; O'Kelly, D S

    2006-05-08

    A joint assessment meeting was conducted at the Egyptian Atomic Energy Agency (EAEA) followed by a tour of Egyptian Second Research Reactor (ETRR-2) on March 22 and 23, 2006. The purpose of the visit was to evaluate the capabilities of the new research reactor and its operations under Action Sheet 4 between the U.S. DOE and the EAEA, ''Research Reactor Operation'', and Action Sheet 6, ''Technical assistance in The Production of Radioisotopes''. Preliminary Recommendations of the joint assessment are as follows: (1) ETRR-2 utilization should be increased by encouraging frequent and sustained operations. This can be accomplished in part by (a) Improving the supply-chain management for fresh reactor fuel and alleviating the perception that the existing fuel inventory should be conserved due to unreliable fuel supply; and (b) Promulgating a policy for sample irradiation priority that encourages the use of the reactor and does not leave the decision of when to operate entirely at the discretion of reactor operations staff. (2) Each experimental facility in operation or built for a single purpose should be reevaluated to focus on those that most meet the goals of the EAEA strategic business plan. Temporary or long-term elimination of some experimental programs might be necessary to provide more focused utilization. There may be instances of emerging reactor applications for which no experimental facility is yet designed or envisioned. In some cases, an experimental facility may have a more beneficial use than the purpose for which it was originally designed. For example, (a) An effective Boron Neutron Capture Therapy (BNCT) program requires nearby high quality medical facilities. These facilities are not available and are unlikely to be constructed near the Inshas site. Further, the BNCT facility is not correctly designed for advanced research and therapy programs using epithermal neutrons. (b) The ETRR-2 is frequently operated to provide color-enhanced gemstones but is

  12. Utilization of the Philippine Research Reactor as a training facility for nuclear power plant operators

    SciTech Connect

    Palabrica, R.J.

    1981-01-01

    The Philippines has a 1-MW swimming-pool reactor facility operated by the Philippine Atomic Energy Commission (PAEC). The reactor is light-water moderated and cooled, graphite reflected, and fueled with 90% enriched uranium. Since it became critical in 1963 it has been utilized for research, radioisotope production, and training. It was used initially in the training of PAEC personnel and other research institutions and universities. During the last few years, however, it has played a key role in training personnel for the Philippine Nuclear Power Project (PNPP).

  13. Proceedings of the 1988 International Meeting on Reduced Enrichment for Research and Test Reactors

    SciTech Connect

    Not Available

    1993-07-01

    The international effort to develop and implement new research reactor fuels utilizing low-enriched uranium, instead of highly- enriched uranium, continues to make solid progress. This effort is the cornerstone of a widely shared policy aimed at reducing, and possibly eliminating, international traffic in highly-enriched uranium and the nuclear weapon proliferation concerns associated with this traffic. To foster direct communication and exchange of ideas among the specialists in this area, the Reduced Enrichment Research and Test Reactor (RERTR) Program, at Argonne National Laboratory, sponsored this meeting as the eleventh of a series which began 1978. Individual papers presented at the meeting have been cataloged separately.

  14. China Advanced Research Reactor (CARR): A new reactor to be built in China for neutron scattering studies

    NASA Astrophysics Data System (ADS)

    Ye, Chuntang

    This paper outlines the main features of the CARR, a 60 MW tank-in-pool inverse neutron trap-type research reactor, which will soon be built at China Institute of Atomic Energy in Beijing to meet the increasing demands of neutron scattering research as well as isotope production in China. According to the design, slightly pressurized light water will be used both as the moderator and the primary cooling water. The undermoderated core will be surrounded by heavy water reflector, where the maximum unperturbed thermal neutron flux would be expected to be 8 × 10 14n/s cm 2 at 60 MW. Nine tangent horizontal beam tubes and some vertical tubes will be installed in the reflector. A cold source, a hot source and a 30 × 50 m 2 guide tube hall will be equipped. The CARR is due to come critical in the year of 2004.

  15. MIT-CSR XIS Project

    NASA Technical Reports Server (NTRS)

    1998-01-01

    This report outlines the proposers' progress toward MIT's contribution to the X-Ray Imaging Spectrometer (XIS) experiment on the Japanese ASTRO-E mission. The report discusses electrical system design, mechanical system design, and ground support equipment.

  16. Initial verification and validation of RAZORBACK - A research reactor transient analysis code

    SciTech Connect

    Talley, Darren G.

    2015-09-01

    This report describes the work and results of the initial verification and validation (V&V) of the beta release of the Razorback code. Razorback is a computer code designed to simulate the operation of a research reactor (such as the Annular Core Research Reactor (ACRR)) by a coupled numerical solution of the point reactor kinetics equations, the energy conservation equation for fuel element heat transfer, and the mass, momentum, and energy conservation equations for the water cooling of the fuel elements. This initial V&V effort was intended to confirm that the code work to-date shows good agreement between simulation and actual ACRR operations, indicating that the subsequent V&V effort for the official release of the code will be successful.

  17. Development of a Monolithic Research Reactor Fuel Type at Argonne National Laboratory

    SciTech Connect

    Clark, C.R.; Briggs, R.J.

    2004-10-06

    The Reduced Enrichment for Research and Test Reactors (RERTR) program has been tasked with the conversion of research reactors from highly enriched to low-enriched uranium (LEU). To convert several high power reactors, monolithic fuel, a new fuel type, is being developed. This fuel type replaces the standard fuel dispersion with a fuel alloy foil, which allows for fuel densities far in excess of that found in dispersion fuel. The single-piece fuel foil also contains a significantly lower interface area between the fuel and the aluminum in the plate than the standard fuel type, limiting the amount of detrimental fuel-aluminum interaction that can occur. Implementation of monolithic fuel is dependant on the development of a suitable fabrication method as traditional roll-bonding techniques are inadequate.

  18. Characterization of the Annular Core Research Reactor (ACRR) Neutron Radiography System Imaging Plane

    NASA Astrophysics Data System (ADS)

    Kaiser, Krista; Chantel Nowlen, K.; DePriest, K. Russell

    2016-02-01

    The Annular Core Research Reactor (ACRR) at Sandia National Laboratories (SNL) is an epithermal pool-type research reactor licensed up to a thermal power of 2.4 MW. The ACRR facility has a neutron radiography facility that is used for imaging a wide range of items including reactor fuel and neutron generators. The ACRR neutron radiography system has four apertures (65:1, 125:1, 250:1, and 500:1) available to experimenters. The neutron flux and spectrum as well as the gamma dose rate were characterized at the imaging plane for the ACRR's neutron radiography system for the 65:1, 125:1 and 250:1 apertures.

  19. Research Reactor Preparations for the Air Shipment of Highly Enriched Uranium from Romania

    SciTech Connect

    K. J. Allen; I. Bolshinsky; L. L. Biro; M. E. Budu; N. V. Zamfir; M. Dragusin; C. Paunoiu; M. Ciocanescu

    2010-03-01

    In June 2009 two air shipments transported both unirradiated (fresh) and irradiated (spent) Russian-origin highly enriched uranium (HEU) nuclear fuel from two research reactors in Romania to the Russian Federation for conversion to low enriched uranium. The Institute for Nuclear Research at Pitesti (SCN Pitesti) shipped 30.1 kg of HEU fresh fuel pellets to Dimitrovgrad, Russia and the Horia Hulubei National Institute of Physics and Nuclear Engineering (IFIN-HH) shipped 23.7 kilograms of HEU spent fuel assemblies from the VVR S research reactor at Magurele, Romania, to Chelyabinsk, Russia. Both HEU shipments were coordinated by the Russian Research Reactor Fuel Return Program (RRRFR) as part of the U.S. Department of Energy Global Threat Reduction Initiative (GTRI), were managed in Romania by the National Commission for Nuclear Activities Control (CNCAN), and were conducted in cooperation with the Russian Federation State Corporation Rosatom and the International Atomic Energy Agency. Both shipments were transported by truck to and from respective commercial airports in Romania and the Russian Federation and stored at secure nuclear facilities in Russia until the material is converted into low enriched uranium. These shipments resulted in Romania becoming the 3rd country under the RRRFR program and the 14th country under the GTRI program to remove all HEU. This paper describes the research reactor preparations and license approvals that were necessary to safely and securely complete these air shipments of nuclear fuel.

  20. Neutronic performance of the WWR-M research reactor in Ukraine.

    SciTech Connect

    Pond, R. B.; Hanan, N. A.; Matos, J. E.; Mahlers, Y.; Dyakov, A.; Technology Development; Kiev Inst. for Nuclear Research

    2002-01-01

    The 10 MW, WWR-M research reactor of the Kiev Institute for Nuclear Research is jointly studied with the Argonne National Laboratory to examine the feasibility of conversion from HEU (36%) to LEU (19.75%) fuel. A potential core configuration was chosen for comparison of analytical results with HEU fuel and candidate replacement LEU fuels. Core reactivity, fuel assembly power, experiment flux, fuel-cycle length, the number of fuel assemblies consumed per year, and shutdown margins are compared using HEU and LEU fuels. The reactor currently uses HEU (36%) WWR-M2 fuel assemblies (3 tubes, UO2-Al fuel meat with 1.1 gU/cm3 and 37.0 g {sup 235}U). Candidate LEU replacement fuel assemblies, which would result in the same fuel cycle length and the same annual fuel consumption as the HEU (36%) fuel are: LEU WWR-M2 (3 tubes, UO2-Al fuel meat with 2.3 gU/cm3 and 38.3 g 235U) and LEU WWR-MR (37 pins, U9Mo-Al fuel meat with 2.4 gU/cm3 and 38.1 g {sup 235}U). Five LEU WWR-M2 fuel assemblies with 41.7 g {sup 235}U per assembly, UO{sub 2}-Al fuel meat with 2.5 gU/cm3, and a fueled height of 50 cm have completed irradiation testing in the WWR-M reactor at the Petersburg Nuclear Physics Institute in Gatchina to an average 235U burnup of over 70%. This LEU fuel is considered to be qualified for conversion of the WWR-M reactor in Kiev and other research reactors using HEU (36%) WWR-M2 fuel assemblies. For reactors using assemblies with a fueled height of 60 cm, the 235U content per assembly would be 50 g with the same fuel meat composition as the fuel assemblies that were tested in Gatchina. Two 37-pin LEU test assemblies - one with UO{sub 2}-Al fuel meat and about 48 g {sup 235}U and the other with U9Mo-Al fuel meat and about 96 g {sup 235}U are scheduled to begin irradiation testing in the WWR-M reactor in Gatchina before the end of 2002. If these tests (lasting about two years) are successful, LEU pin-type fuel assemblies with up to 96 g 235U would be candidate fuels for LEU

  1. Determination of the optimal positions for installing gamma ray detection systems at Tehran Research Reactor

    NASA Astrophysics Data System (ADS)

    Sayyah, A.; Rahmani, F.; Khalafi, H.

    2015-09-01

    Dosimetric instruments must constantly monitor radiation dose levels in different areas of nuclear reactor. Tehran Research Reactor (TRR) has seven beam tubes for different research purposes. All the beam tubes extend from the reactor core to Beam Port Floor (BPF) of the reactor facility. During the reactor operation, the gamma rays exiting from each beam tube outlet produce a specific gamma dose rate field in the space of the BPF. To effectively monitor the gamma dose rates on the BPF, gamma ray detection systems must be installed in optimal positions. The selection of optimal positions is a compromise between two requirements. First, the installation positions must possess largest gamma dose rates and second, gamma ray detectors must not be saturated in these positions. In this study, calculations and experimental measurements have been carried out to identify the optimal positions of the gamma ray detection systems. Eight three dimensional models of the reactor core and related facilities corresponding to eight scenarios have been simulated using MCNPX Monte Carlo code to calculate the gamma dose equivalent rate field in the space of the BPF. These facilities are beam tubes, thermal column, pool, BPF space filled with air, facilities such as neutron radiography facility, neutron powder diffraction facility embedded in the beam tubes as well as biological shields inserted into the unused beam tubes. According to the analysis results of the combined gamma dose rate field, three positions on the north side and two positions on the south side of the BPF have been recognized as optimal positions for installing the gamma ray detection systems. To ensure the consistency of the simulation data, experimental measurements were conducted using TLDs (600 and 700) pairs during the reactor operation at 4.5 MW.

  2. Light Water Reactor Safety Research Program. Semiannual report, April-September 1982

    SciTech Connect

    Berman, M.

    1983-10-01

    This report documents progress made in Light Water Reactor Safety research conducted by Division 6441 in the period from April 1982 to September 1982. The programs conducted under investigation include Core Concrete Interactions, Core Melt-Coolant Interactions, Containment Emergency Sump Performance, the Hydrogen Program, and Combustible Gas in Containment Program. 50 references.

  3. Characterization of the fast neutron irradiation facility of the Portuguese Research Reactor after core conversion.

    PubMed

    Marques, J G; Sousa, M; Santos, J P; Fernandes, A C

    2011-08-01

    The fast neutron irradiation facility of the Portuguese Research Reactor was characterized after the reduction in uranium enrichment and rearrangement of the core configuration. In this work we report on the determination of the hardness parameter and the 1MeV equivalent neutron flux along the facility, in the new irradiation conditions, following ASTM E722 standard.

  4. Neutron fluence depth profiles in water phantom on epithermal beam of LVR-15 research reactor.

    PubMed

    Viererbl, L; Klupak, V; Lahodova, Z; Marek, M; Burian, J

    2010-01-01

    Horizontal channel with epithermal neutron beam at the LVR-15 research reactor is used mainly for boron neutron capture therapy. Neutron fluence depth profiles in a water phantom characterise beam properties. The neutron fluence (approximated by reaction rates) depth profiles were measured with six different types of activation detectors. The profiles were determined for thermal, epithermal and fast neutrons.

  5. Sample Heat, Activity, Reactivity, and Dose Analysis for Safety Analysis of Irradiations in a Research Reactor.

    1987-12-01

    SHARDA is a program for assessing sample heating rates, activities produced and reactivity load caused while irradiating a small sample in a well thermalized research reactor like CIRUS. It estimates the sample cooling or lead shielding requirements to limit the gamma-ray dose rates due to the irradiated sample within permissible levels.

  6. Status of DOE efforts to renew acceptance of foreign research reactor spent nuclear fuel

    SciTech Connect

    Head, C.R.

    1997-08-01

    This presentation summarizes the efforts being made by the Department of Energy to renew acceptance of spent nuclear fuel shipments from foreign research reactors. The author reviews the actions undertaken in this process in a fairly chronological manner, through the present time, as well as the development of an environmental impact statement to support the proposed actions.

  7. Environmental Assessment of Urgent-Relief Acceptance of Foreign Research Reactor Spent Nuclear Fuel

    SciTech Connect

    Not Available

    1994-04-01

    The Department of Energy has completed the Environmental Assessment (EA) of Urgent-Relief Acceptance of Foreign Research Reactor Spent Nuclear Fuel and issued a Finding of No Significant Impact (FONSI) for the proposed action. The EA and FONSI are enclosed for your information. The Department has decided to accept a limited number of spent nuclear fuel elements (409 elements) containing uranium that was enriched in the United States from eight research reactors in Austria, Denmark, Germany, Greece, the Netherlands, Sweden, and Switzerland. This action is necessary to maintain the viability of a major US nuclear weapons nonproliferation program to limit or eliminate the use of highly enriched uranium in civil programs. The purpose of the EA is to maintain the cooperation of the foreign research reactor operators with the nonproliferation program while a more extensive Environmental Impact Statement (EIS) is prepared on a proposed broader policy involving the acceptance of up to 15,000 foreign research reactor spent fuel elements over a 10 to 15 year period. Based on an evaluation of transport by commercial container liner or chartered vessel, five eastern seaboard ports, and truck and train modes of transporting the spent fuel overland to the Savannah River Sits, the Department has concluded that no significant impact would result from any combination of port and made of transport. In addition, no significant impacts were found from interim storage of spent fuel at the Savannah River Site.

  8. Analyses for conversion of the Georgia Tech Research Reactor from HEU to LEU fuel

    SciTech Connect

    Matos, J.E.; Mo, S.C.; Woodruff, W.L.

    1992-09-01

    This document presents information concerning: analyses for conversion of the Georgia Tech Research Reactor from HEU to LEU; changes to technical specifications mandated by the conversion of the GTRR to low enrichment fuel; changes in the Safety Analysis Report mandated by the conversion of the GTRR to low enrichment fuel; and copies of all changed pages of the SAR and the technical specifications.

  9. MANAGEMENT OF RESEARCH AND TEST REACTOR ALUMINUM SPENT NUCLEAR FUEL - A TECHNOLOGY ASSESSMENT

    SciTech Connect

    Vinson, D.

    2010-07-11

    The Department of Energy's Environmental Management (DOE-EM) Program is responsible for the receipt and storage of aluminum research reactor spent nuclear fuel or used fuel until ultimate disposition. Aluminum research reactor used fuel is currently being stored or is anticipated to be returned to the U.S. and stored at DOE-EM storage facilities at the Savannah River Site and the Idaho Nuclear Technology and Engineering Center. This paper assesses the technologies and the options for safe transportation/receipt and interim storage of aluminum research reactor spent fuel and reviews the comprehensive strategy for its management. The U.S. Department of Energy uses the Appendix A, Spent Nuclear Fuel Acceptance Criteria, to identify the physical, chemical, and isotopic characteristics of spent nuclear fuel to be returned to the United States under the Foreign Research Reactor Spent Nuclear Fuel Acceptance Program. The fuel is further evaluated for acceptance through assessments of the fuel at the foreign sites that include corrosion damage and handleability. Transport involves use of commercial shipping casks with defined leakage rates that can provide containment of the fuel, some of which are breached. Options for safe storage include wet storage and dry storage. Both options must fully address potential degradation of the aluminum during the storage period. This paper focuses on the various options for safe transport and storage with respect to technology maturity and application.

  10. 75 FR 62892 - Massachusetts Institute of Technology Research Reactor Environmental Assessment and Finding of No...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-10-13

    ... From the Federal Register Online via the Government Publishing Office NUCLEAR REGULATORY COMMISSION Massachusetts Institute of Technology Research Reactor Environmental Assessment and Finding of No Significant Impact Correction In notice document 2010-24809 beginning on page 61220 in the issue of...

  11. Transition phase of the whole-core demonstration at the Oak Ridge Research Reactor

    SciTech Connect

    Hobbs, R.W.; Bretscher, M.M.; Cornella, R.J.; Snelgrove, J.L.

    1986-01-01

    The transition from operation of the Oak Ridge Research Reactor with high-enrichment uranium (HEU) fuel to operation with low-enrichment uranium (LEU) fuel is nearing completion. The systematics of the replacement of the HEU fuel with the LEU fuel are discussed. The results of the core physics measurements that have been conducted during the transition phase are described.

  12. Methods and codes for neutronic calculations of the MARIA research reactor.

    SciTech Connect

    Andrzejewski, K.; Kulikowska, T.; Bretscher, M. M.; Hanan, N. A.; Matos, J. E.

    2002-02-18

    The core of the MARIA high flux multipurpose research reactor is highly heterogeneous. It consists of beryllium blocks arranged in 6 x 8 matrix, tubular fuel assemblies, control rods and irradiation channels. The reflector is also heterogeneous and consists of graphite blocks clad with aluminum. Its structure is perturbed by the experimental beam tubes. This paper presents methods and codes used to calculate the MARIA reactor neutronics characteristics and experience gained thus far at IAE and ANL. At ANL the methods of MARIA calculations were developed in connection with the RERTR program. At IAE the package of programs was developed to help its operator in optimization of fuel utilization.

  13. Characterization of a New Continuous Air Monitoring System For the University of Massachusetts Lowell Research Reactor

    NASA Astrophysics Data System (ADS)

    Alqahtani, Mohammad Saad

    A continuous air monitor (CAM) is a critical piece of equipment to support radiation safety in nuclear facilities where the generation of airborne radioactivity is a possibility for either normal operations or accident scenarios. The University of Massachusetts Lowell Research Reactor is planning to install a new CAM system manufactured by Canberra Industries for monitoring airborne radioactive particulates. In this study, the new CAM was evaluated to determine 1) baseline response, 2) response to high exposure rates, 3) appropriate background compensation, 4) detection limits, and 5) alarm settings. The results of this study will help to properly integrate the new CAM into the reactor radiation monitoring system.

  14. ReactorHealth Physics operations at the NIST center for neutron research.

    PubMed

    Johnston, Thomas P

    2015-02-01

    Performing health physics and radiation safety functions under a special nuclear material license and a research and test reactor license at a major government research and development laboratory encompasses many elements not encountered by industrial, general, or broad scope licenses. This article reviews elements of the health physics and radiation safety program at the NIST Center for Neutron Research, including the early history and discovery of the neutron, applications of neutron research, reactor overview, safety and security of radiation sources and radioactive material, and general health physics procedures. These comprise precautions and control of tritium, training program, neutron beam sample processing, laboratory audits, inventory and leak tests, meter calibration, repair and evaluation, radioactive waste management, and emergency response. In addition, the radiation monitoring systems will be reviewed including confinement building monitoring, ventilation filter radiation monitors, secondary coolant monitors, gaseous fission product monitors, gas monitors, ventilation tritium monitor, and the plant effluent monitor systems.

  15. ReactorHealth Physics operations at the NIST center for neutron research.

    PubMed

    Johnston, Thomas P

    2015-02-01

    Performing health physics and radiation safety functions under a special nuclear material license and a research and test reactor license at a major government research and development laboratory encompasses many elements not encountered by industrial, general, or broad scope licenses. This article reviews elements of the health physics and radiation safety program at the NIST Center for Neutron Research, including the early history and discovery of the neutron, applications of neutron research, reactor overview, safety and security of radiation sources and radioactive material, and general health physics procedures. These comprise precautions and control of tritium, training program, neutron beam sample processing, laboratory audits, inventory and leak tests, meter calibration, repair and evaluation, radioactive waste management, and emergency response. In addition, the radiation monitoring systems will be reviewed including confinement building monitoring, ventilation filter radiation monitors, secondary coolant monitors, gaseous fission product monitors, gas monitors, ventilation tritium monitor, and the plant effluent monitor systems. PMID:25551649

  16. Model development experimental programs as part of the NRC reactor safety research

    SciTech Connect

    Young, M.W.; Hsu, Y.Y.

    1982-07-01

    Experimental and model development programs have a key impact on the overall success of code calculational capabilities in addition to supporting regulatory and licensing decisions. The reactor safety research effort undertaken by the Nuclear Regulatory Commission (NRC) has as one of several objectives to obtain experimental data for model and code development and code assessment. This article highlights recent research sponsored under the thermal-hydraulic model-development experimental programs at NRC.

  17. Bright Flash Neutron Radiography at the McClellan Nuclear Research Reactor

    NASA Astrophysics Data System (ADS)

    Lerche, M.; Tremsin, A. S.; Schillinger, B.

    The University of California, Davis McClellan Nuclear Research Center (MNRC) operates a 2 MW TRIGATM reactor, which is currently the highest power TRIGATM reactor in the United States. The Center was originally build by the US Air Force to detect hidden defects in aircraft structures using neutron radiography; the Center can accommodate samples as large as 10.00 m long, 3.65 m high, and weighing up to 2,270 kg. The MNRC reactor can be pulsed to 350 MW for about 30 ms (FWHM). The combination of a short neutron pulse with a fast microchannel plate based neutron detector enables high-resolution flash neutron radiography to complement conventional neutron radiography

  18. The Oak Ridge Research Reactor: safety analysis: Volume 2, supplement 2

    SciTech Connect

    Hurt, S.S.

    1986-11-01

    The Oak Ridge Research Reactor Safety Analysis was last updated via ORNL-4169, Vol. 2, Supplement 1, in May of 1978. Since that date, several changes have been effected through the change-memo system described below. While these changes have involved the cooling system, the electrical system, and the reactor instrumentation and controls, they have not, for the most part, presented new or unreviewed safety questions. However, some of the changes have been based on questions or recommendations stemming from safety reviews or from reactor events at other sites. This paper discusses those changes which were judged to be safety related and which include revisions to the syphon-break system and changes related to seismic considerations which were very recently completed. The maximum hypothetical accident postulated in the original safety analysis requires dynamic containment and filtered flow for compliance with 10CFR100 limits at the site boundary.

  19. Radiological survey support activities for the decommissioning of the Ames Laboratory Research Reactor Facility, Ames, Iowa

    SciTech Connect

    Wynveen, R.A.; Smith, W.H.; Sholeen, C.M.; Justus, A.L.; Flynn, K.F.

    1984-09-01

    At the request of the Engineering Support Division of the US Department of Energy-Chicago Operations Office and in accordance with the programmatic overview/certification responsibilities of the Department of Energy Environmental and Safety Engineering Division, the Argonne National Laboratory Radiological Survey Group conducted a series of radiological measurements and tests at the Ames Laboratory Research Reactor located in Ames, Iowa. These measurements and tests were conducted during 1980 and 1981 while the reactor building was being decontaminated and decommissioned for the purpose of returning the building to general use. The results of these evaluations are included in this report. Although the surface contamination within the reactor building could presumably be reduced to negligible levels, the potential for airborne contamination from tritiated water vapor remains. This vapor emmanates from contamination within the concrete of the building and should be monitored until such time as it is reduced to background levels. 2 references, 8 figures, 6 tables.

  20. Long-lived activation products in TRIGA Mark II research reactor concrete shield: calculation and experiment

    NASA Astrophysics Data System (ADS)

    Žagar, Tomaž; Božič, Matjaž; Ravnik, Matjaž

    2004-12-01

    In this paper, a process of long-lived activity determination in research reactor concrete shielding is presented. The described process is a combination of experiment and calculations. Samples of original heavy reactor concrete containing mineral barite were irradiated inside the reactor shielding to measure its long-lived induced radioactivity. The most active long-lived (γ emitting) radioactive nuclides in the concrete were found to be 133Ba, 60Co and 152Eu. Neutron flux, activation rates and concrete activity were calculated for actual shield geometry for different irradiation and cooling times using TORT and ORIGEN codes. Experimental results of flux and activity measurements showed good agreement with the results of calculations. Volume of activated concrete waste after reactor decommissioning was estimated for particular case of Jožef Stefan Institute TRIGA reactor. It was observed that the clearance levels of some important long-lived isotopes typical for barite concrete (e.g. 133Ba, 41Ca) are not included in the IAEA and EU basic safety standards.

  1. Characterization and quantification of an in-core neutron irradiation facility at a TRIGA II research reactor

    NASA Astrophysics Data System (ADS)

    Aghara, Sukesh; Charlton, William

    2006-07-01

    Experiments have been performed to characterize the neutron environment at an in-core TRIGA type nuclear research reactor. Steady-state thermal and epithermal neutron environment testing is important for many applications including, materials, electronics and biological cells. A well characterized neutron environment at a research reactor, including energy spectrum and spatial distribution, can be useful to many research communities and for educational research. This paper describes the characterization process and an application of exposing electronics to high neutron fluence.

  2. Fresh and Spent Nuclear Fuel Repatriation from the IRT-2000 Research Reactor Facility, Sofia, Bulgaria

    SciTech Connect

    K. J. Allen; T. G. Apostolov; I. S. Dimitrov

    2009-03-01

    The IRT 2000 research reactor, operated by the Bulgarian Institute for Nuclear Research and Nuclear Energy (INRNE), safely shipped all of their Russian-origin nuclear fuel from the Republic of Bulgaria to the Russian Federation beginning in 2003 and completing in 2008. These fresh and spent fuel shipments removed all highly enriched uranium (HEU) from Bulgaria. The fresh fuel was shipped by air in December 2003 using trucks and a commercial cargo aircraft. One combined spent fuel shipment of HEU and low enriched uranium (LEU) was completed in July 2008 using high capacity VPVR/M casks transported by truck, barge, and rail. The HEU shipments were assisted by the Russian Research Reactor Fuel Return Program (RRRFR) and the LEU spent fuel shipment was funded by Bulgaria. This report describes the work, approvals, organizations, equipment, and agreements required to complete these shipments and concludes with several major lessons learned.

  3. Preliminary study on new configuration with LEU fuel assemblies for the Dalat nuclear research reactor

    SciTech Connect

    Van Lam Pham; Vinh Vinh Le; Ton Nghiem Huynh; Ba Vien Luong; Kien Cuong Nguyen

    2008-07-15

    The fuel conversion of the Dalat Nuclear Research Reactor (DNRR) is being realized. The DNRR is a pool type research reactor which was reconstructed from the 250 kW TRIGA- MARK II reactor. The reconstructed reactor attained its nominal power of 500 kW in February 1984. According to the results of design and safety analyses performed by the joint study between RERTR Program at Argonne National Laboratory (ANL) and Vietnam Atomic Energy Commission (VAEC) the mixed core of irradiated HEU and new LEU WWR-M2 fuel assemblies will be created soon. This paper presents the results of preliminary study on new configuration with only LEU fuel assemblies for the DNRR. The codes MCNP, REBUS and VARI3D are used to calculate neutron flux performance in irradiation positions and kinetics parameters. The idea of change of Beryllium rod reloading enables to get working configuration assured shutdown margin, thermal-hydraulic safety and increase in thermal neutron flux in neutron trap at the center of DNRR active core. (author)

  4. Development of Regulatory Technical Requirements for the Advanced Integral Type Research Reactor

    SciTech Connect

    Jo, Jong Chull; Yune, Young Gill; Kim, Woong Sik; Kim, Hho Jung

    2004-07-01

    This paper presents the current status of the study on the development of regulatory technical requirements for the licensing review of an advanced integral type research reactor of which the license application is expected in a few years. According to the Atomic Energy Act of Korea, both research and education reactors are subject to the technical requirements for power reactors in the licensing review. But, some of the requirements may not be applicable or insufficient for the licensing reviews of reactors with unique design features. Thus it is necessary to identify which review topics or areas can not be addressed by the existing requirements and to develop the required ones newly or supplement appropriately. Through the study performed so far, it has been identified that the following requirements need to be developed newly for the licensing review of SMART-P: the use of proven technology, the interfacial facility, the non-safety systems, and the metallic fuels. The approach and basis for the development of each of the requirements are discussed. (authors)

  5. Testing of a Transport Cask for Research Reactor Spent Fuel - 13003

    SciTech Connect

    Mourao, Rogerio P.; Leite da Silva, Luiz; Miranda, Carlos A.; Mattar Neto, Miguel; Quintana, Jose F.A.; Saliba, Roberto O.; Novara, Oscar E.

    2013-07-01

    Since the beginning of the last decade three Latin American countries that operate research reactors - Argentina, Brazil and Chile - have been joining efforts to improve the regional capability in the management of spent fuel elements from the TRIGA and MTR reactors operated in the region. A main drive in this initiative, sponsored by the International Atomic Energy Agency, is the fact that no definite solution regarding the back end of the research reactor fuel cycle has been taken by any of the participating country. However, any long-term solution - either disposition in a repository or storage away from reactor - will involve at some stage the transportation of the spent fuel through public roads. Therefore, a licensed cask that provides adequate shielding, assurance of subcriticality, and conformance to internationally accepted safety, security and safeguards regimes is considered a strategic part of any future solution to be adopted at a regional level. As a step in this direction, a packaging for the transport of irradiated fuel for MTR and TRIGA research reactors was designed by the tri-national team and a half-scale model equipped with the MTR version of the internal basket was constructed in Argentina and Brazil and tested in Brazil. Three test campaigns have been carried out so far, covering both normal conditions of transportation and hypothetical accident conditions. After failing the tests in the first two test series, the specimen successfully underwent the last test sequence. A second specimen, incorporating the structural improvements in view of the previous tests results, will be tested in the near future. Numerical simulations of the free drop and thermal tests are being carried out in parallel, in order to validate the computational modeling that is going to be used as a support for the package certification. (authors)

  6. Strategic Plan for Light Water Reactor Research and Development

    SciTech Connect

    2004-02-01

    The purpose of this strategic plan is to establish a framework that will allow the Department of Energy (DOE) and the nuclear power industry to jointly plan the nuclear energy research and development (R&D) agenda important to achieving the Nation's energy goals. This strategic plan has been developed to focus on only those R&D areas that will benefit from a coordinated government/industry effort. Specifically, this plan focuses on safely sustaining and expanding the electricity output from currently operating nuclear power plants and expanding nuclear capacity through the deployment of new plants. By focusing on R&D that addresses the needs of both current and future nuclear plants, DOE and industry will be able to take advantage of the synergism between these two technology areas, thus improving coordination, enhancing efficiency, and further leveraging public and private sector resources. By working together under the framework of this strategic plan, DOE and the nuclear industry reinforce their joint commitment to the future use of nuclear power and the National Energy Policy's goal of expanding its use in the United States. The undersigned believe that a public-private partnership approach is the most efficient and effective way to develop and transfer new technologies to the marketplace to achieve this goal. This Strategic Plan is intended to be a living document that will be updated annually.

  7. Corrosion Surveillance for Research Reactor Spent Nuclear Fuel in Wet Basin Storage

    SciTech Connect

    Howell, J.P.

    1998-10-16

    Foreign and domestic test and research reactor fuel is currently being shipped from locations over the world for storage in water filled basins at the Savannah River Site (SRS). The fuel was provided to many of the foreign countries as a part of the "Atoms for Peace" program in the early 1950's. In support of the wet storage of this fuel at the research reactor sites and at SRS, corrosion surveillance programs have been initiated. The International Atomic Energy Agency (IAEA) established a Coordinated Research Program (CRP) in 1996 on "Corrosion of Research Reactor Aluminum-Clad Spent Fuel in Water" and scientists from ten countries worldwide were invited to participate. This paper presents a detailed discussion of the IAEA sponsored CRP and provides the updated results from corrosion surveillance activities at SRS. In May 1998, a number of news articles around the world reported stories that microbiologically influenced corrosion (MIC) was active on the aluminum-clad spent fuel stored in the RBOF basin at SRS. This assessment was found to be in error with details presented in this paper. A biofilm was found on aluminum coupons, but resulted in no corrosion. Cracks seen on the surface were not caused by corrosion, but by stresses from the volume expansion of the oxide formed during pre-conditioning autoclaving. There has been no pitting caused by MIC or any other corrosion mechanism seen in the RBOF basin since initiation of the SRS Corrosion Surveillance Program in 1993.

  8. U.S. Department of Energy Instrumentation and Controls Technology Research for Advanced Small Modular Reactors

    SciTech Connect

    Wood, Richard Thomas

    2012-01-01

    Instrumentation, controls, and human-machine interfaces (ICHMI) are essential enabling technologies that strongly influence nuclear power plant performance and operational costs. The U.S. Department of Energy (DOE) has recognized that ICHMI research, development, and demonstration (RD&D) is needed to resolve the technical challenges that may compromise the effective and efficient utilization of modern ICHMI technology and consequently inhibit realization of the benefits offered by expanded utilization of nuclear power. Consequently, key DOE programs have substantial ICHMI RD&D elements to their respective research portfolio. This article describes current ICHMI research to support the development of advanced small modular reactors.

  9. The key-role of instrumentation for the new generation of research reactors

    SciTech Connect

    Bignan, G.; Villard, J. F.; Destouches, C.; Baeten, P.; Vermeeren, L.; Michiels, S.

    2011-07-01

    Experimental reactors have been indispensable since the beginning of the use of nuclear energy to support many important fields of industry and research: safety, lifetime management and operation optimisation of nuclear power plants, development of new types of reactors with improved resources and fuel cycle management, medical applications, material development for fusion... Over the last decade, modifications of the operational needs and the ageing of the nuclear facilities have led to several closures and time is coming for new key European Experimental Reactors (EER) within a European and International Framework. Projects like MYRRHA and JHR are underway to define and implement a new consistent EER policy: - Meeting industry and public needs, keeping a high level of scientific expertise; - With a limited number of EER, specified within a rational compromise between specialisation, complementarities and back-up capacities; - To be put into effective operation in this or the next decade. These new projects will give to the scientific community high performances allowing innovative fields of R and D. A new generation of instrumentation to address new phenomena and that allows better on-line investigation of some key physical parameters is necessary to achieve these challenges. One initiative to progress in this direction is the Joint Instrumentation Laboratory between CEA and SCK.CEN which has already given significant results and patents. Major scientific challenges to achieve in the field of instrumentation for this new generation of European Research Reactors have to be investigated and are described in this paper as well as a short description of the JHR and MYRRHA reactors that will be serving as flexible irradiation facilities for testing them. (authors)

  10. Effective delayed neutron fraction and prompt neutron lifetime of Tehran research reactor mixed-core.

    PubMed

    Lashkari, A; Khalafi, H; Kazeminejad, H

    2013-05-01

    In this work, kinetic parameters of Tehran research reactor (TRR) mixed cores have been calculated. The mixed core configurations are made by replacement of the low enriched uranium control fuel elements with highly enriched uranium control fuel elements in the reference core. The MTR_PC package, a nuclear reactor analysis tool, is used to perform the analysis. Simulations were carried out to compute effective delayed neutron fraction and prompt neutron lifetime. Calculation of kinetic parameters is necessary for reactivity and power excursion transient analysis. The results of this research show that effective delayed neutron fraction decreases and prompt neutron lifetime increases with the fuels burn-up. Also, by increasing the number of highly enriched uranium control fuel elements in the reference core, the prompt neutron lifetime increases, but effective delayed neutron fraction does not show any considerable change. PMID:24976672

  11. A neutronic feasibility study for LEU conversion of the Budapest research reactor.

    SciTech Connect

    Pond, R. B.

    1998-10-16

    A neutronic feasibility study for conversion of the Budapest Research Reactor (BRR) from HEU to LEU fuel was performed at Argonne National Laboratory in cooperation with the KFKI Atomic Energy Research Institute in Hungary. Comparisons were made of the reactor performance with the current HEU (36%) fuel and with a proposed LEU (19.75%) fuel. Cycle lengths, thermal neutron fluxes, and rod worths were calculated in equilibrium-type cores for each type of fuel. Relative to the HEU fuel, the LEU fuel has up to a 50% longer fuel cycle length, but a 7-10% smaller thermal neutron flux in the experiment locations. The rod worths are smaller with the LEU fuel, but are still large enough to easily satisfy the BRR shutdown margin criteria. Irradiation testing of four VVR-M2 LEU fuel assemblies that are nearly the same as the proposed BRR LEU fuel assemblies is currently in progress at the Petersburg Nuclear Physics Institute.

  12. Effective delayed neutron fraction and prompt neutron lifetime of Tehran research reactor mixed-core.

    PubMed

    Lashkari, A; Khalafi, H; Kazeminejad, H

    2013-05-01

    In this work, kinetic parameters of Tehran research reactor (TRR) mixed cores have been calculated. The mixed core configurations are made by replacement of the low enriched uranium control fuel elements with highly enriched uranium control fuel elements in the reference core. The MTR_PC package, a nuclear reactor analysis tool, is used to perform the analysis. Simulations were carried out to compute effective delayed neutron fraction and prompt neutron lifetime. Calculation of kinetic parameters is necessary for reactivity and power excursion transient analysis. The results of this research show that effective delayed neutron fraction decreases and prompt neutron lifetime increases with the fuels burn-up. Also, by increasing the number of highly enriched uranium control fuel elements in the reference core, the prompt neutron lifetime increases, but effective delayed neutron fraction does not show any considerable change.

  13. Effective delayed neutron fraction and prompt neutron lifetime of Tehran research reactor mixed-core

    PubMed Central

    Lashkari, A.; Khalafi, H.; Kazeminejad, H.

    2013-01-01

    In this work, kinetic parameters of Tehran research reactor (TRR) mixed cores have been calculated. The mixed core configurations are made by replacement of the low enriched uranium control fuel elements with highly enriched uranium control fuel elements in the reference core. The MTR_PC package, a nuclear reactor analysis tool, is used to perform the analysis. Simulations were carried out to compute effective delayed neutron fraction and prompt neutron lifetime. Calculation of kinetic parameters is necessary for reactivity and power excursion transient analysis. The results of this research show that effective delayed neutron fraction decreases and prompt neutron lifetime increases with the fuels burn-up. Also, by increasing the number of highly enriched uranium control fuel elements in the reference core, the prompt neutron lifetime increases, but effective delayed neutron fraction does not show any considerable change. PMID:24976672

  14. MIT January Operational Internship Experience

    NASA Technical Reports Server (NTRS)

    Bosanac, Natasha; DeVivero, Charlie; James, Jillian; Perez-Martinez, Carla; Pino, Wendy; Wang, Andrew; Willett, Ezekiel; Williams, Kwami

    2010-01-01

    This viewgraph presentation describes the MIT January Operational Internship Experience (JOIE) program. The topics include: 1) Landing and Recovery; 2) Transportation; 3) Shuttle Processing; 4) Constellation Processing; 5) External Tank; 6) Launch Pad; 7) Ground Operations; 8) Hypergolic Propellants; 9) Environmental; 10) Logistics; 11) Six Sigma; 12) Systems Engineering; and 13) Human Factors.

  15. Technology, safety, and costs of decommissioning reference nuclear research and test reactors. Main report

    SciTech Connect

    Konzek, G.J.; Ludwick, J.D.; Kennedy, W.E. Jr.; Smith, R.I.

    1982-03-01

    Safety and Cost Information is developed for the conceptual decommissioning of two representative licensed nuclear research and test reactors. Three decommissioning alternatives are studied to obtain comparisons between costs (in 1981 dollars), occupational radiation doses, potential radiation dose to the public, and other safety impacts. The alternatives considered are: DECON (immediate decontamination), SAFSTOR (safe storage followed by deferred decontamination), and ENTOMB (entombment). The study results are presented in two volumes. Volume 1 (Main Report) contains the results in summary form.

  16. Neutron Flux Characterization of the Cold Beam PGAA-NIPS Facility at the Budapest Research Reactor

    NASA Astrophysics Data System (ADS)

    Belgya, T.; Kis, Z.; Szentmiklósi, L.

    2014-05-01

    Reliable flux characterization is essential for facilities using neutron beams. Hence, the NIPS station at the Budapest Research Reactor has recently been equipped with neutron-tomographic equipment. The beam can also be characterized by means of a large surface wire chamber and application of the time-of-flight method. The energy distribution was measured at three horizontal positions with the surface wire chamber in pinhole geometry, while the spatial inhomogeneity was determined by means of our new neutron-tomographic equipment.

  17. Decommissioning the Research Nuclear Reactor Vvr-S Magurele - Analyze, Justification and Selection of Decommissioning Strategy

    NASA Astrophysics Data System (ADS)

    Dragusin, M.; Popa, V.; Boicu, A.; Tuca, C.; Iorga, I.; Mustata, C.

    2004-09-01

    The decommissioning of Research Nuclear Reactor VVR-S Magurele - Bucharest involves the removal of the radioactive and hazardous materials to permit the facility to be released without representing a further risk to human health and the environment [1-3]. A very important aspect of decommissioning is the analyze, justification and selection of the decommissioning strategy. Two strategies: DECON (Immediate Dismantling) and SAFSTOR (Safe Enclosure) are in study (see Table 1)... Note from Publisher: This article contains the abstract and references only.

  18. Dosimetry at the Portuguese research reactor using thermoluminescence measurements and Monte Carlo calculations.

    PubMed

    Fernandes, A C; Gonçalves, I C; Santos, J; Cardoso, J; Santos, L; Ferro Carvalho, A; Marques, J G; Kling, A; Ramalho, A J G; Osvay, M

    2006-01-01

    This work presents an extensive study on Monte Carlo radiation transport simulation and thermoluminescent (TL) dosimetry for characterising mixed radiation fields (neutrons and photons) occurring in nuclear reactors. The feasibility of these methods is investigated for radiation fields at various locations of the Portuguese Research Reactor (RPI). The performance of the approaches developed in this work is compared with dosimetric techniques already existing at RPI. The Monte Carlo MCNP-4C code was used for a detailed modelling of the reactor core, the fast neutron beam and the thermal column of RPI. Simulations using these models allow to reproduce the energy and spatial distributions of the neutron field very well (agreement better than 80%). In the case of the photon field, the agreement improves with decreasing intensity of the component related to fission and activation products. (7)LiF:Mg,Ti, (7)LiF:Mg,Cu,P and Al(2)O(3):Mg,Y TL detectors (TLDs) with low neutron sensitivity are able to determine photon dose and dose profiles with high spatial resolution. On the other hand, (nat)LiF:Mg,Ti TLDs with increased neutron sensitivity show a remarkable loss of sensitivity and a high supralinearity in high-intensity fields hampering their application at nuclear reactors.

  19. Advanced Test Reactor National Scientific User Facility: Addressing advanced nuclear materials research

    SciTech Connect

    John Jackson; Todd Allen; Frances Marshall; Jim Cole

    2013-03-01

    The Advanced Test Reactor National Scientific User Facility (ATR NSUF), based at the Idaho National Laboratory in the United States, is supporting Department of Energy and industry research efforts to ensure the properties of materials in light water reactors are well understood. The ATR NSUF is providing this support through three main efforts: establishing unique infrastructure necessary to conduct research on highly radioactive materials, conducting research in conjunction with industry partners on life extension relevant topics, and providing training courses to encourage more U.S. researchers to understand and address LWR materials issues. In 2010 and 2011, several advanced instruments with capability focused on resolving nuclear material performance issues through analysis on the micro (10-6 m) to atomic (10-10 m) scales were installed primarily at the Center for Advanced Energy Studies (CAES) in Idaho Falls, Idaho. These instruments included a local electrode atom probe (LEAP), a field-emission gun scanning transmission electron microscope (FEG-STEM), a focused ion beam (FIB) system, a Raman spectrometer, and an nanoindentor/atomic force microscope. Ongoing capability enhancements intended to support industry efforts include completion of two shielded, irradiation assisted stress corrosion cracking (IASCC) test loops, the first of which will come online in early calendar year 2013, a pressurized and controlled chemistry water loop for the ATR center flux trap, and a dedicated facility intended to house post irradiation examination equipment. In addition to capability enhancements at the main site in Idaho, the ATR NSUF also welcomed two new partner facilities in 2011 and two new partner facilities in 2012; the Oak Ridge National Laboratory, High Flux Isotope Reactor (HFIR) and associated hot cells and the University California Berkeley capabilities in irradiated materials analysis were added in 2011. In 2012, Purdue University’s Interaction of Materials

  20. Assessing International Product Design and Development Graduate Courses: The MIT-Portugal Program

    ERIC Educational Resources Information Center

    Dori, Yehudit Judy; Silva, Arlindo

    2010-01-01

    The Product Design and Development (PDD) course is part of the graduate curriculum in the Engineering Design and Advanced Manufacturing (EDAM) study in the MIT-Portugal Program. The research participants included about 110 students from MIT, EDAM, and two universities in Portugal, Instituto Superior Técnico-Universidade Técnica de Lisboa (IST) and…

  1. Scratch that: MIT's Mitchel Resnick Says Kids Should Do It for Themselves

    ERIC Educational Resources Information Center

    Traylor, Scott

    2008-01-01

    Mitchel Resnick is a researcher, inventor, and professor at MIT's Media Laboratory in Cambridge, MA, and the founder of the Lifelong Kindergarten Group at MIT. He is the lead innovator behind many cutting-edge learning technologies and projects for children, including the Computer Clubhouse, PicoCrickets, and the wildly successful consumer…

  2. The MIT Program, Competition, and Ethics

    NASA Astrophysics Data System (ADS)

    Bradt, Hale V.

    2013-01-01

    The MIT program in x-ray astronomy was, and still is, diverse and productive. Bruno Rossi and later George Clark, as the nominal leaders of the “x-ray astronomy group” created a “hands-off” culture wherein individual researchers could develop their own independent programs. Walter Lewin, Claude Canizares, and I as well as those in the next academic generations, e.g., Saul Rappaport and George Ricker, were able to thrive in this environment. MIT researchers were principal investigators or providers of x-ray instruments on sounding rockets and balloons in the 1960s and then in later years on nine satellite missions, OSO-7, SAS-3, HEAO-1, Einstein, ASCA, RXTE, Chandra, HETE-2, and Suzaku. Such a diverse program involved collaborations with other institutions and of course striving for primacy in discovery and competition for NASA resources. Looking back, I see a high degree of ethical behavior among the observational x-ray community during those years. In competition, we remembered that we might well be collaborating the following year and behaved accordingly. Many of us in the x-ray community had been friends since graduate school days and did not want to lose those relationships. Am I viewing the past through rose colored glasses? I think not. A vignette on this topic: In 1967, I was debating vigorously with Herb Gursky of AS&E about which institution, MIT or AS&E, should be the lead on the fourth paper (Oda et al. 1967, ApJ 148, L5) based on data from the 1966 AS&E rocket flight which had led to Allan Sandage’s (and Japanese) identification of Sco X-1 (Sandage, et al. 1966, ApJ. 146, 316). I and my Italian colleague, Gianfranco Spada, and our Japanese colleague, Minoru Oda, both then visiting MIT, had actively supported that flight. After one rather heated discussion with Herb about this, - I was the heated one; he always remained calm - he left my office saying: “Hale, however this comes out, let’s remain friends.” I treasured that comment and

  3. NUMERICAL SIMULATION FOR MECHANICAL BEHAVIOR OF U10MO MONOLITHIC MINIPLATES FOR RESEARCH AND TEST REACTORS

    SciTech Connect

    Hakan Ozaltun & Herman Shen

    2011-11-01

    This article presents assessment of the mechanical behavior of U-10wt% Mo (U10Mo) alloy based monolithic fuel plates subject to irradiation. Monolithic, plate-type fuel is a new fuel form being developed for research and test reactors to achieve higher uranium densities within the reactor core to allow the use of low-enriched uranium fuel in high-performance reactors. Identification of the stress/strain characteristics is important for understanding the in-reactor performance of these plate-type fuels. For this work, three distinct cases were considered: (1) fabrication induced residual stresses (2) thermal cycling of fabricated plates; and finally (3) transient mechanical behavior under actual operating conditions. Because the temperatures approach the melting temperature of the cladding during the fabrication and thermal cycling, high temperature material properties were incorporated to improve the accuracy. Once residual stress fields due to fabrication process were identified, solution was used as initial state for the subsequent simulations. For thermal cycling simulation, elasto-plastic material model with thermal creep was constructed and residual stresses caused by the fabrication process were included. For in-service simulation, coupled fluid-thermal-structural interaction was considered. First, temperature field on the plates was calculated and this field was used to compute the thermal stresses. For time dependent mechanical behavior, thermal creep of cladding, volumetric swelling and fission induced creep of the fuel foil were considered. The analysis showed that the stresses evolve very rapidly in the reactor. While swelling of the foil increases the stress of the foil, irradiation induced creep causes stress relaxation.

  4. Decommissioning of German Research Reactors Under the Governance of the Federal Ministry of Education and Research - 12154

    SciTech Connect

    Weigl, M.

    2012-07-01

    Since 1956, nuclear research and development (R and D) in Germany has been supported by the Federal Government. The goal was to help German industry to become competitive in all fields of nuclear technology. National research centers were established and demonstration plants were built. In the meantime, all these facilities were shut down and are now in a state of decommissioning and dismantling (D and D). Meanwhile, Germany is one of the leading countries in the world in the field of D and D. Two big demonstration plants, the Niederaichbach Nuclear Power Plant (KKN) a heavy-water cooled pressure tube reactor with carbon-dioxide cooling and the Karlstein Superheated Steam Reactor (HDR) a boiling light water reactor with a thermal power of 100 MW, are totally dismantled and 'green field' is reached. Another big project was finished in 2008. The Forschungs-Reaktor Juelich 1 (FRJ1), a research reactor with a thermal power of 10 MW was completely dismantled and in September 2008 an oak tree was planted on a green field at the site, where the FRJ1 was standing before. This is another example for German success in the field of D and D. Within these projects a lot of new solutions and innovative techniques were tested, which were developed at German universities and in small and medium sized companies mostly funded by the Federal Ministry of Education and Research (BMBF). Some examples are underwater-cutting technologies like plasma arc cutting and contact arc metal cutting. This clearly shows that research on the field of D and D is important for the future. Moreover, these research activities are important to save the know-how in nuclear engineering in Germany and will enable enterprises to compete on the increasing market of D and D services. The author assumes that an efficient decommissioning of nuclear installations will help stabilize the credibility of nuclear energy. Some critics of nuclear energy are insisting that a return to 'green field sites' is not possible

  5. Reactor physics teaching and research in the Swiss nuclear engineering master

    SciTech Connect

    Chawla, R.

    2012-07-01

    Since 2008, a Master of Science program in Nuclear Engineering (NE) has been running in Switzerland, thanks to the combined efforts of the country's key players in nuclear teaching and research, viz. the Swiss Federal Inst.s of Technology at Lausanne (EPFL) and at Zurich (ETHZ), the Paul Scherrer Inst. (PSI) at Villigen and the Swiss Nuclear Utilities (Swissnuclear). The present paper, while outlining the academic program as a whole, lays emphasis on the reactor physics teaching and research training accorded to the students in the framework of the developed curriculum. (authors)

  6. OVERVIEW OF CRITERIA FOR INTERIM WET & DRY STORAGE OF RESEARCH REACTOR SPENT NUCLEAR FUEL

    SciTech Connect

    Sindelar, R.; Vinson, D.; Iyer, N.; Fisher, D.

    2010-11-03

    Following discharge from research reactors, spent nuclear fuel may be stored 'wet' in water pools or basins, or it may be stored 'dry' in various configurations including non-sealed or sealed containers until retrieved for ultimate disposition. Interim safe storage practices are based on avoiding degradation to the fuel that would impact functions related to safety. Recommended practices including environmental controls with technical bases, are outlined for wet storage and dry storage of aluminum-clad, aluminum-based research reactor fuel. For wet storage, water quality must be maintained to minimize corrosion degradation of aluminum fuel. For dry storage, vented canister storage of aluminum fuel readily provides a safe storage configuration. For sealed dry storage, drying must be performed so as to minimize water that would cause additional corrosion and hydrogen generation. Consideration must also be given to the potential for radiolytically-generated hydrogen from the bound water in the attendant oxyhydroxides on aluminum fuel from reactor operation for dry storage systems.

  7. IGORR-1: Proceedings of the first meeting of the international group on research reactors

    SciTech Connect

    West, C.D.

    1990-05-01

    Many organizations, in several countries, are planning or implementing new or upgraded research reactor projects, but there has been no organized forum devoted entirely to discussion and exchange of information in this field. Over the past year or so, informal discussions resulted in widespread agreement that such a forum would serve a useful purpose. Accordingly, a proposal to form a group was submitted to the leading organizations known to be involved in projects to build or upgrade reactor facilities. Essentially all agreed to join in the formation of the International Group on Research Reactors (IGORR) and nominated a senior staff member to serve on its international organizing committee. The first IGORR meeting took place on February 28--March 2, 1990. It was very successful and well attended; some 52 scientists and engineers from 25 organizations in 10 countries participated in 2-1/2 days of open and informative presentations and discussions. Two workshop sessions offered opportunities for more detailed interaction among participants and resulted in identification of common R D needs, sources of data, and planned new facilities. Individual papers have been cataloged separately.

  8. Next Generation Nuclear Plant Reactor Pressure Vessel Materials Research and Development Plan (PLN-2803)

    SciTech Connect

    J. K. Wright; R. N. Wright

    2008-04-01

    The U.S. Department of Energy has selected the High Temperature Gas-cooled Reactor design for the Next Generation Nuclear Plant (NGNP) Project. The NGNP will demonstrate the use of nuclear power for electricity and hydrogen production. It will have an outlet gas temperature in the range of 900°C and a plant design service life of 60 years. The reactor design will be a graphite moderated, helium-cooled, prismatic, or pebble-bed reactor and use low-enriched uranium, Tri-Isotopic-coated fuel. The plant size, reactor thermal power, and core configuration will ensure passive decay heat removal without fuel damage or radioactive material releases during accidents. The NGNP Materials Research and Development Program is responsible for performing research and development on likely NGNP materials in support of the NGNP design, licensing, and construction activities. Selection of the technology and design configuration for the NGNP must consider both the cost and risk profiles to ensure that the demonstration plant establishes a sound foundation for future commercial deployments. The NGNP challenge is to achieve a significant advancement in nuclear technology while setting the stage for an economically viable deployment of the new technology in the commercial sector soon after 2020. Studies of potential Reactor Pressure Vessel (RPV) steels have been carried out as part of the pre-conceptual design studies. These design studies generally focus on American Society of Mechanical Engineers (ASME) Code status of the steels, temperature limits, and allowable stresses. Three realistic candidate materials have been identified by this process: conventional light water reactor RPV steels A508/533, 2¼Cr-1Mo in the annealed condition, and modified 9Cr 1Mo ferritic martenistic steel. Based on superior strength and higher temperature limits, the modified 9Cr-1Mo steel has been identified by the majority of design engineers as the preferred choice for the RPV. All of the vendors have

  9. The Advanced Neutron Source (ANS) project: A world-class research reactor facility

    SciTech Connect

    Thompson, P.B.; Meek, W.E.

    1993-07-01

    This paper provides an overview of the Advanced Neutron Source (ANS), a new research facility being designed at Oak Ridge National Laboratory. The facility is based on a 330 MW, heavy-water cooled and reflected reactor as the neutron source, with a thermal neutron flux of about 7.5{times}10{sup 19}m{sup {minus}2}{center_dot}sec{sup {minus}1}. Within the reflector region will be one hot source which will serve 2 hot neutron beam tubes, two cryogenic cold sources serving fourteen cold neutron beam tubes, two very cold beam tubes, and seven thermal neutron beam tubes. In addition there will be ten positions for materials irradiation experiments, five of them instrumented. The paper touches on the project status, safety concerns, cost estimates and scheduling, a description of the site, the reactor, and the arrangements of the facilities.

  10. Research on pressure control of pressurizer in pressurized water reactor nuclear power plant

    NASA Astrophysics Data System (ADS)

    Dai, Ling; Yang, Xuhong; Liu, Gang; Ye, Jianhua; Qian, Hong; Xue, Yang

    2010-07-01

    Pressurizer is one of the most important components in the nuclear reactor system. Its function is to keep the pressure of the primary circuit. It can prevent shutdown of the system from the reactor accident under the normal transient state while keeping the setting value in the normal run-time. This paper is mainly research on the pressure system which is running in the Daya Bay Nuclear Power Plant. A conventional PID controller and a fuzzy controller are designed through analyzing the dynamic characteristics and calculating the transfer function. Then a fuzzy PID controller is designed by analyzing the results of two controllers. The fuzzy PID controller achieves the optimal control system finally.

  11. Neutronic safety parameters and transient analyses for Poland's MARIA research reactor.

    SciTech Connect

    Bretscher, M. M.; Hanan, N. A.; Matos, J. E.; Andrzejewski, K.; Kulikowska, T.

    1999-09-27

    Reactor kinetic parameters, reactivity feedback coefficients, and control rod reactivity worths have been calculated for the MARIA Research Reactor (Swierk, Poland) for M6-type fuel assemblies with {sup 235}U enrichments of 80% and 19.7%. Kinetic parameters were evaluated for family-dependent effective delayed neutron fractions, decay constants, and prompt neutron lifetimes and neutron generation times. Reactivity feedback coefficients were determined for fuel Doppler coefficients, coolant (H{sub 2}O) void and temperature coefficients, and for in-core and ex-core beryllium temperature coefficients. Total and differential control rod worths and safety rod worths were calculated for each fuel type. These parameters were used to calculate generic transients for fast and slow reactivity insertions with both HEU and LEU fuels. The analyses show that the HEU and LEU cores have very similar responses to these transients.

  12. Shielding calculation and criticality safety analysis of spent fuel transportation cask in research reactors.

    PubMed

    Mohammadi, A; Hassanzadeh, M; Gharib, M

    2016-02-01

    In this study, shielding calculation and criticality safety analysis were carried out for general material testing reactor (MTR) research reactors interim storage and relevant transportation cask. During these processes, three major terms were considered: source term, shielding, and criticality calculations. The Monte Carlo transport code MCNP5 was used for shielding calculation and criticality safety analysis and ORIGEN2.1 code for source term calculation. According to the results obtained, a cylindrical cask with body, top, and bottom thicknesses of 18, 13, and 13 cm, respectively, was accepted as the dual-purpose cask. Furthermore, it is shown that the total dose rates are below the normal transport criteria that meet the standards specified. PMID:26720262

  13. Shielding calculation and criticality safety analysis of spent fuel transportation cask in research reactors.

    PubMed

    Mohammadi, A; Hassanzadeh, M; Gharib, M

    2016-02-01

    In this study, shielding calculation and criticality safety analysis were carried out for general material testing reactor (MTR) research reactors interim storage and relevant transportation cask. During these processes, three major terms were considered: source term, shielding, and criticality calculations. The Monte Carlo transport code MCNP5 was used for shielding calculation and criticality safety analysis and ORIGEN2.1 code for source term calculation. According to the results obtained, a cylindrical cask with body, top, and bottom thicknesses of 18, 13, and 13 cm, respectively, was accepted as the dual-purpose cask. Furthermore, it is shown that the total dose rates are below the normal transport criteria that meet the standards specified.

  14. RELAP5 Application to Accident Analysis of the NIST Research Reactor

    SciTech Connect

    Baek, J.; Cuadra Gascon, A.; Cheng, L.Y.; Diamond, D.

    2012-03-18

    Detailed safety analyses have been performed for the 20 MW D{sub 2}O moderated research reactor (NBSR) at the National Institute of Standards and Technology (NIST). The time-dependent analysis of the primary system is determined with a RELAP5 transient analysis model that includes the reactor vessel, the pump, heat exchanger, fuel element geometry, and flow channels for both the six inner and twenty-four outer fuel elements. A post-processing of the simulation results has been conducted to evaluate minimum critical heat flux ratio (CHFR) using the Sudo-Kaminaga correlation. Evaluations are performed for the following accidents: (1) the control rod withdrawal startup accident and (2) the maximum reactivity insertion accident. In both cases the RELAP5 results indicate that there is adequate margin to CHF and no damage to the fuel will occur because of sufficient coolant flow through the fuel channels and the negative scram reactivity insertion.

  15. Microstructure of 50 year old SCK CEN BR1 research reactor fuel

    SciTech Connect

    Leenaers, A.; Berghe, S. van den

    2008-07-15

    The BR1 research reactor at SCK CEN, Mol (Belgium) has a graphite core matrix loaded with fuel rods consisting of a natural uranium slug in an aluminum cladding. Fabrication reports show the application of a so-called AlSi bonding layer and an U(Al,Si){sub 3} anti-diffusion layer on the natural uranium fuel slug to limit the interaction between the uranium fuel and aluminum cladding. The BR1 reactor is in operation since 1956 and still contains its original fuel rods. After more than 50 years irradiation at low temperature, the integrity of some of the fuel rods is investigated. The microstructure of the fuel, bonding and anti-diffusion layer and cladding is analysed using optical microscopy (OM), scanning electron microscopy (SEM) and electron microprobe analysis (EPMA). (author)

  16. Design of the cold neutron triple-axis spectrometer at the China Advanced Research Reactor

    NASA Astrophysics Data System (ADS)

    Cheng, P.; Zhang, Hongxia; Bao, W.; Schneidewind, A.; Link, P.; Grünwald, A. T. D.; Georgii, R.; Hao, L. J.; Liu, Y. T.

    2016-06-01

    The design of the first cold neutron triple-axis spectrometer at the China Advanced Research Reactor is presented. Based on the Monte Carlo simulations using neutron ray-tracing program McStas, the parameters of major neutron optics in this instrument are optimized. The neutron flux at sample position is estimated to be 5.6 ×107 n/cm2/s at neutron incident energy Ei=5 meV when the reactor operates normally at the designed 60 MW power. The performances of several neutron supermirror polarizing devices are compared and their critical parameters are optimized for this spectrometer. The polarization analysis will be realized with a flexible switch from the unpolarized experimental mode.

  17. MIT Orients Course Materials Online to K-12

    ERIC Educational Resources Information Center

    Cavanagh, Sean

    2008-01-01

    Many science and mathematics educators across the country are taking advantage of a Web site created by the Massachusetts Institute of Technology (MIT), the famed research university located in Cambridge, Massachusetts, which offers free video, audio, and print lectures and course material taken straight from the school's classes. Those resources…

  18. Nuclear Reactors. Revised.

    ERIC Educational Resources Information Center

    Hogerton, John F.

    This publication is one of a series of information booklets for the general public published by the United States Atomic Energy Commission. Among the topics discussed are: How Reactors Work; Reactor Design; Research, Teaching, and Materials Testing; Reactors (Research, Teaching and Materials); Production Reactors; Reactors for Electric Power…

  19. Thermal neutron fluence measurement in a research reactor using thermoluminescence dosimeter TLD-600.

    PubMed

    Torkzadeh, F; Manouchehri, F

    2006-03-01

    A thermal neutron fluence in the range between 10(11) and 10(13) n cm(-2) in the reactor core of the Tehran research reactor has been measured using TLD-600 thermoluminescence dosimeters. After a thermal treatment of 1 h at 400 degrees C followed by 20 h cooling down to room temperature of pre-exposed dosimeters in the reactor, the accumulated TL light was measured after periods of storage of 24, 48 and 72 h. The influence of the irradiation-induced damage effect on the response of TLDs and their subsequent readings has been minimized in this manner. The induced TL light due to self-activity in the TLD-600 dosimeters, which is dependent on the neutron fluence, caused a conveniently measurable TL glow curve. The induced TL in the dosimeter due to the Q-value for the beta-decay of tritium Ebeta-max = 18.6 keV has been reproduced separately by a beta source to check the proportions of radionuclides in the chip. A short theoretical treatment is also presented.

  20. Next Generation Nuclear Plant Reactor Pressure Vessel Materials Research and Development Plan (PLN-2803)

    SciTech Connect

    J. K. Wright; R. N. Wright

    2010-07-01

    The U.S. Department of Energy (DOE) has selected the High-Temperature Gas-cooled Reactor (HTGR) design for the Next Generation Nuclear Plant (NGNP) Project. The NGNP will demonstrate the use of nuclear power for electricity and hydrogen production, with an outlet gas temperature in the range of 750°C, and a design service life of 60 years. The reactor design will be a graphite-moderated, helium-cooled, prismatic, or pebble bed reactor and use low-enriched uranium, Tri-Isotopic (TRISO)-coated fuel. The plant size, reactor thermal power, and core configuration will ensure passive decay heat removal without fuel damage or radioactive material releases during accidents. Selection of the technology and design configuration for the NGNP must consider both the cost and risk profiles to ensure that the demonstration plant establishes a sound foundation for future commercial deployments. The NGNP challenge is to achieve a significant advancement in nuclear technology while setting the stage for an economically viable deployment of the new technology in the commercial sector soon after 2020. This technology development plan details the additional research and development (R&D) required to design and license the NGNP RPV, assuming that A 508/A 533 is the material of construction. The majority of additional information that is required is related to long-term aging behavior at NGNP vessel temperatures, which are somewhat above those commonly encountered in the existing database from LWR experience. Additional data are also required for the anticipated NGNP environment. An assessment of required R&D for a Grade 91 vessel has been retained from the first revision of the R&D plan in Appendix B in somewhat less detail. Considerably more development is required for this steel compared to A 508/A 533 including additional irradiation testing for expected NGNP operating temperatures, high-temperature mechanical properties, and extensive studies of long-term microstructural stability.

  1. Estimation of (41)Ar activity concentration and release rate from the TRIGA Mark-II research reactor.

    PubMed

    Hoq, M Ajijul; Soner, M A Malek; Rahman, A; Salam, M A; Islam, S M A

    2016-03-01

    The BAEC TRIGA research reactor (BTRR) is the only nuclear reactor in Bangladesh. Bangladesh Atomic Energy Regulatory Authority (BAERA) regulations require that nuclear reactor licensees undertake all reasonable precautions to protect the environment and the health and safety of persons, including identifying, controlling and monitoring the release of nuclear substances to the environment. The primary activation product of interest in terms of airborne release from the reactor is (41)Ar. (41)Ar is a noble gas readily released from the reactor stacks and most has not decayed by the time it moves offsite with normal wind speed. Initially (41)Ar is produced from irradiation of dissolved air in the primary water which eventually transfers into the air in the reactor bay. In this study, the airborne radioisotope (41)Ar generation concentration, ground level concentration and release rate from the BTRR bay region are evaluated theoretically during the normal reactor operation condition by several governing equations. This theoretical calculation eventually minimizes the doubt about radiological safety to determine the radiation level for (41)Ar activity whether it is below the permissible limit or not. Results show that the estimated activity for (41)Ar is well below the maximum permissible concentration limit set by the regulatory body, which is an assurance for the reactor operating personnel and general public. Thus the analysis performed within this paper is so much effective in the sense of ensuring radiological safety for working personnel and the environment.

  2. Estimation of (41)Ar activity concentration and release rate from the TRIGA Mark-II research reactor.

    PubMed

    Hoq, M Ajijul; Soner, M A Malek; Rahman, A; Salam, M A; Islam, S M A

    2016-03-01

    The BAEC TRIGA research reactor (BTRR) is the only nuclear reactor in Bangladesh. Bangladesh Atomic Energy Regulatory Authority (BAERA) regulations require that nuclear reactor licensees undertake all reasonable precautions to protect the environment and the health and safety of persons, including identifying, controlling and monitoring the release of nuclear substances to the environment. The primary activation product of interest in terms of airborne release from the reactor is (41)Ar. (41)Ar is a noble gas readily released from the reactor stacks and most has not decayed by the time it moves offsite with normal wind speed. Initially (41)Ar is produced from irradiation of dissolved air in the primary water which eventually transfers into the air in the reactor bay. In this study, the airborne radioisotope (41)Ar generation concentration, ground level concentration and release rate from the BTRR bay region are evaluated theoretically during the normal reactor operation condition by several governing equations. This theoretical calculation eventually minimizes the doubt about radiological safety to determine the radiation level for (41)Ar activity whether it is below the permissible limit or not. Results show that the estimated activity for (41)Ar is well below the maximum permissible concentration limit set by the regulatory body, which is an assurance for the reactor operating personnel and general public. Thus the analysis performed within this paper is so much effective in the sense of ensuring radiological safety for working personnel and the environment. PMID:26736180

  3. Modification of the radial beam port of ITU TRIGA Mark II research reactor for BNCT applications.

    PubMed

    Akan, Zafer; Türkmen, Mehmet; Çakir, Tahir; Reyhancan, İskender A; Çolak, Üner; Okka, Muhittin; Kiziltaş, Sahip

    2015-05-01

    This paper aims to describe the modification of the radial beam port of ITU (İstanbul Technical University) TRIGA Mark II research reactor for BNCT applications. Radial beam port is modified with Polyethylene and Cerrobend collimators. Neutron flux values are measured by neutron activation analysis (Au-Cd foils). Experimental results are verified with Monte Carlo results. The results of neutron/photon spectrum, thermal/epithermal neutron flux, fast group photon fluence and change of the neutron fluxes with the beam port length are presented.

  4. Determination of fast neutron flux distribution in irradiation sites of the Malaysian Nuclear Agency research reactor.

    PubMed

    Yavar, A R; Sarmani, S B; Wood, A K; Fadzil, S M; Radir, M H; Khoo, K S

    2011-05-01

    Determination of thermal to fast neutron flux ratio (f(fast)) and fast neutron flux (ϕ(fast)) is required for fast neutron reactions, fast neutron activation analysis, and for correcting interference reactions. The f(fast) and subsequently ϕ(fast) were determined using the absolute method. The f(fast) ranged from 48 to 155, and the ϕ(fast) was found in the range 1.03×10(10)-4.89×10(10) n cm(-2) s(-1). These values indicate an acceptable conformity and applicable for installation of the fast neutron facility at the MNA research reactor.

  5. Monochromatic Neutron Tomography Using 1-D PSD Detector at Low Flux Research Reactor

    SciTech Connect

    Ashari, N. Abidin; Saleh, J. Mohamad; Abdullah, M. Zaid; Mohamed, A. Aziz; Azman, A.; Jamro, R.

    2008-03-17

    This paper describes the monochromatic neutron tomography experiment using the 1-D Position Sensitive Neutron Detector (PSD) located at Nuclear Malaysia TRIGA MARK II Research reactor. Experimental work was performed using monochromatic neutron source from beryllium filter and HOPG crystal monochromator. The principal main aim of this experiment was to test the detector efficiency, image reconstruction algorithm and the usage of 0.5 nm monochromatic neutrons for the neutron tomography setup. Other objective includes gathering important parameters and features to characterize the system.

  6. Technology, safety, and costs of decommissioning reference nuclear research and test reactors. Appendices

    SciTech Connect

    Konzek, G.J.; Ludwick, J.D.; Kennedy, W.E. Jr.; Smith, R.I.

    1982-03-01

    Safety and Cost Information is developed for the conceptual decommissioning of two representative licensed nuclear research and test reactors. Three decommissioning alternatives are studied to obtain comparisons between costs (in 1981 dollars), occupational radiation doses, potential radiation dose to the public, and other safety impacts. The alternatives considered are: DECON (immediate decontamination), SAFSTOR (safe storage followed by deferred decontamination), and EMTOMB (entombment). The study results are presented in two volumes. Volume 2 (Appendices) contains the detailed data that support the results given in Volume 1, including unit-component data.

  7. Feasibility study for production of I-131 radioisotope using MNSR research reactor.

    PubMed

    Elom Achoribo, A S; Akaho, Edward H K; Nyarko, Benjamin J B; Osae Shiloh, K D; Odame Duodu, Godfred; Gibrilla, Abass

    2012-01-01

    A feasibility study for (131)I production using a Low Power Research Reactor was conducted to predict the yield of (131)I by cyclic activation technique. A maximum activity of 5.1GBq was achieved through simulation using FORTRAN 90, for an irradiation of 6h. But experimentally only 4h irradiation could be done, which resulted in an activity of 4.0×10(5)Bq. The discrepancy in the activities was due to the fact that beta decays released during the process could not be considered. PMID:21900016

  8. Evaluation of differential shim rod worth measurements in the Oak Ridge Research Reactor

    SciTech Connect

    Bretscher, M.M.

    1987-01-01

    Reasonable agreement between calculated and measured differential shim rod worths in the Oak Ridge Research Reactor (ORR) has been achieved by taking into account the combined effects of negative reactivity contributions from changing fuel-moderator temperatures and of delayed photoneutrons. A method has been developed for extracting the asymptotic period from the shape of the initial portion of the measured time-dependent neutron flux profile following a positive reactivity insertion. In this region of the curve temperature-related reactivity feedback effects are negligibly small. Results obtained by applying this technique to differential shim rod worth measurements made in a wide variety of ORR cores are presented.

  9. Monochromatic Neutron Tomography Using 1-D PSD Detector at Low Flux Research Reactor

    NASA Astrophysics Data System (ADS)

    Ashari, N. Abidin; Saleh, J. Mohamad; Abdullah, M. Zaid; Mohamed, A. Aziz; Azman, A.; Jamro, R.

    2008-03-01

    This paper describes the monochromatic neutron tomography experiment using the 1-D Position Sensitive Neutron Detector (PSD) located at Nuclear Malaysia TRIGA MARK II Research reactor. Experimental work was performed using monochromatic neutron source from beryllium filter and HOPG crystal monochromator. The principal main aim of this experiment was to test the detector efficiency, image reconstruction algorithm and the usage of 0.5 nm monochromatic neutrons for the neutron tomography setup. Other objective includes gathering important parameters and features to characterize the system.

  10. Modification of the radial beam port of ITU TRIGA Mark II research reactor for BNCT applications.

    PubMed

    Akan, Zafer; Türkmen, Mehmet; Çakir, Tahir; Reyhancan, İskender A; Çolak, Üner; Okka, Muhittin; Kiziltaş, Sahip

    2015-05-01

    This paper aims to describe the modification of the radial beam port of ITU (İstanbul Technical University) TRIGA Mark II research reactor for BNCT applications. Radial beam port is modified with Polyethylene and Cerrobend collimators. Neutron flux values are measured by neutron activation analysis (Au-Cd foils). Experimental results are verified with Monte Carlo results. The results of neutron/photon spectrum, thermal/epithermal neutron flux, fast group photon fluence and change of the neutron fluxes with the beam port length are presented. PMID:25746919

  11. Supercritical Water Reactor (SCWR) - Survey of Materials Research and Development Needs to Assess Viability

    SciTech Connect

    Philip E. MacDonald

    2003-09-01

    Supercritical water-cooled reactors (SCWRs) are among the most promising advanced nuclear systems because of their high thermal efficiency [i.e., about 45% vs. 33% of current light water reactors (LWRs)] and considerable plant simplification. SCWRs achieve this with superior thermodynamic conditions (i.e., high operating pressure and temperature), and by reducing the containment volume and eliminating the need for recirculation and jet pumps, pressurizer, steam generators, steam separators and dryers. The reference SCWR design in the U.S. is a direct cycle, thermal spectrum, light-water-cooled and moderated reactor with an operating pressure of 25 MPa and inlet/outlet coolant temperature of 280/500 °C. The inlet flow splits, partly to a down-comer and partly to a plenum at the top of the reactor pressure vessel to flow downward through the core in special water rods to the inlet plenum. This strategy is employed to provide good moderation at the top of the core, where the coolant density is only about 15-20% that of liquid water. The SCWR uses a power conversion cycle similar to that used in supercritical fossil-fired plants: high- intermediate- and low-pressure turbines are employed with one moisture-separator re-heater and up to eight feedwater heaters. The reference power is 3575 MWt, the net electric power is 1600 MWe and the thermal efficiency is 44.8%. The fuel is low-enriched uranium oxide fuel and the plant is designed primarily for base load operation. The purpose of this report is to survey existing materials for fossil, fission and fusion applications and identify the materials research and development needed to establish the SCWR viabilitya with regard to possible materials of construction. The two most significant materials related factors in going from the current LWR designs to the SCWR are the increase in outlet coolant temperature from 300 to 500 °C and the possible compatibility issues associated with the supercritical water environment.

  12. The current state of the Russian reduced enrichment research reactors program

    SciTech Connect

    Aden, V.G.; Kartashov, E.F.; Lukichev, V.A.

    1997-08-01

    During the last year after the 16-th International Conference on Reducing Fuel Enrichment in Research Reactors held in October, 1993 in Oarai, Japan, the conclusive stage of the Program on reducing fuel enrichment (to 20% in U-235) in research reactors was finally made up in Russia. The Program was started late in 70th and the first stage of the Program was completed by 1986 which allowed to reduce fuel enrichment from 80-90% to 36%. The completion of the Program current stage, which is counted for 5-6 years, will exclude the use of the fuel enriched by more than 20% from RF to other countries such as: Poland, Czeck Republick, Hungary, Roumania, Bulgaria, Libya, Viet-Nam, North Korea, Egypt, Latvia, Ukraine, Uzbekistan and Kazakhstan. In 1994 the Program, approved by RF Minatom authorities, has received the status of an inter-branch program since it was admitted by the RF Ministry for Science and Technical Policy. The Head of RF Minatom central administrative division N.I.Ermakov was nominated as the Head of the Russian Program, V.G.Aden, RDIPE Deputy Director, was nominated as the scientific leader. The Program was submitted to the Commission for Scientific, Technical and Economical Cooperation between USA and Russia headed by Vice-President A. Gore and Prime Minister V. Chemomyrdin and was given support also.

  13. An Expert System to Analyze Homogeneity in Fuel Element Plates for Research Reactors

    SciTech Connect

    Tolosa, S.C.; Marajofsky, A.

    2004-10-06

    In the manufacturing control of Fuel Element Plates for Research Reactors, one of the problems to be addressed is how to determine the U-density homogeneity in a fuel plate and how to obtain qualitative and quantitative information in order to establish acceptance or rejection criteria for such, as well as carrying out the quality follow-up. This paper is aimed at developing computing software which implements an Unsupervised Competitive Learning Neural Network for the acknowledgment of regions belonging to a digitalized gray scale image. This program is applied to x-ray images. These images are generated when the x-ray beams go through a fuel plate of approximately 60 cm x 8 cm x 0.1 cm thick. A Nuclear Fuel Element for Research Reactors usually consists of 18 to 22 of these plates, positioned in parallel, in an arrangement of 8 x 7 cm. Carrying out the inspection of the digitalized x-ray image, the neural network detects regions with different luminous densities corresponding to U-densities in the fuel plate. This is used in quality control to detect failures and verify acceptance criteria depending on the homogeneity of the plate. This modality of inspection is important as it allows the performance of non-destructive measurements and the automatic generation of the map of U-relative densities of the fuel plate.

  14. Fundamental approaches for analysis thermal hydraulic parameter for Puspati Research Reactor

    NASA Astrophysics Data System (ADS)

    Hashim, Zaredah; Lanyau, Tonny Anak; Farid, Mohamad Fairus Abdul; Kassim, Mohammad Suhaimi; Azhar, Noraishah Syahirah

    2016-01-01

    The 1-MW PUSPATI Research Reactor (RTP) is the one and only nuclear pool type research reactor developed by General Atomic (GA) in Malaysia. It was installed at Malaysian Nuclear Agency and has reached the first criticality on 8 June 1982. Based on the initial core which comprised of 80 standard TRIGA fuel elements, the very fundamental thermal hydraulic model was investigated during steady state operation using the PARET-code. The main objective of this paper is to determine the variation of temperature profiles and Departure of Nucleate Boiling Ratio (DNBR) of RTP at full power operation. The second objective is to confirm that the values obtained from PARET-code are in agreement with Safety Analysis Report (SAR) for RTP. The code was employed for the hot and average channels in the core in order to calculate of fuel's center and surface, cladding, coolant temperatures as well as DNBR's values. In this study, it was found that the results obtained from the PARET-code showed that the thermal hydraulic parameters related to safety for initial core which was cooled by natural convection was in agreement with the designed values and safety limit in SAR.

  15. Subcritical Noise Analysis Measurements with Fresh and Spent Research Reactor Fuels Elements

    SciTech Connect

    Valentine, T.E.; Mihalczo, J.T.; Kryter, R.C.; Miller, V.C.

    1999-02-01

    The verification of the subcriticality is of utmost importance for the safe transportation and storage of nuclear reactor fuels. Transportation containers and storage facilities are designed such that nuclear fuels remain in a subcritical state. Such designs often involve excess conservatism because of the lack of relevant experimental data to verify the accuracy of Monte Carlo codes used in nuclear criticality safety analyses. A joint experimental research program between Oak Ridge National Laboratory, Westinghouse Safety Management Solutions, Inc., and the University of Missouri was initiated to obtain measured quantities that could be directly related to the subcriticality of simple arrays of Missouri University Research Reactor (MURR) fuel elements. A series of measurement were performed to assess the reactivity of materials such as BORAL, stainless steel, aluminum, and lead that are typically used in the construction of shipping casks. These materials were positioned between the fuel elements. In addition, a limited number of measurements were performed with configurations of fresh and spent (irradiated) fuel elements to ascertain the reactivity of the spent fuel elements. In these experiments, fresh fuel elements were replaced by spent fuel elements such that the subcritical reactivity change could be measured. The results of these measurements were used by Westinghouse Safety Management Solutions to determine the subcriticality of MURR fuel elements isolated by absorbing materials. The measurements were interpreted using the MCNP-DSP Monte Carlo code to obtain the subcritical neutron multiplication factor k(sub eff), and the bias in K(sub eff) that are used in criticality safety analyses.

  16. Neutron flux characterisation of the Pavia TRIGA Mark II research reactor for radiobiological and microdosimetric applications.

    PubMed

    Alloni, D; Prata, M; Salvini, A; Ottolenghi, A

    2015-09-01

    Nowadays the Pavia TRIGA reactor is available for national and international collaboration in various research fields. The TRIGA Mark II nuclear research reactor of the Pavia University offers different in- and out-core neutron irradiation channels, each characterised by different neutron spectra. In the last two years a campaign of measurements and simulations has been performed in order to guarantee a better characterisation of these different fluxes and to meet the demands of irradiations that require precise information on these spectra in particular for radiobiological and microdosimetric studies. Experimental data on neutron fluxes have been collected analysing and measuring the gamma activity induced in thin target foils of different materials irradiated in different TRIGA experimental channels. The data on the induced gamma activities have been processed with the SAND II deconvolution code and finally compared with the spectra obtained with Monte Carlo simulations. The comparison between simulated and measured spectra showed a good agreement allowing a more precise characterisation of the neutron spectra and a validation of the adopted method. PMID:25958412

  17. IAEA Coordinated Research Project on HTGR Reactor Physics, Thermal-hydraulics and Depletion Uncertainty Analysis

    SciTech Connect

    Strydom, Gerhard; Bostelmann, F.

    2015-09-01

    The continued development of High Temperature Gas Cooled Reactors (HTGRs) requires verification of HTGR design and safety features with reliable high fidelity physics models and robust, efficient, and accurate codes. The predictive capability of coupled neutronics/thermal-hydraulics and depletion simulations for reactor design and safety analysis can be assessed with sensitivity analysis (SA) and uncertainty analysis (UA) methods. Uncertainty originates from errors in physical data, manufacturing uncertainties, modelling and computational algorithms. (The interested reader is referred to the large body of published SA and UA literature for a more complete overview of the various types of uncertainties, methodologies and results obtained). SA is helpful for ranking the various sources of uncertainty and error in the results of core analyses. SA and UA are required to address cost, safety, and licensing needs and should be applied to all aspects of reactor multi-physics simulation. SA and UA can guide experimental, modelling, and algorithm research and development. Current SA and UA rely either on derivative-based methods such as stochastic sampling methods or on generalized perturbation theory to obtain sensitivity coefficients. Neither approach addresses all needs. In order to benefit from recent advances in modelling and simulation and the availability of new covariance data (nuclear data uncertainties) extensive sensitivity and uncertainty studies are needed for quantification of the impact of different sources of uncertainties on the design and safety parameters of HTGRs. Only a parallel effort in advanced simulation and in nuclear data improvement will be able to provide designers with more robust and well validated calculation tools to meet design target accuracies. In February 2009, the Technical Working Group on Gas-Cooled Reactors (TWG-GCR) of the International Atomic Energy Agency (IAEA) recommended that the proposed Coordinated Research Program (CRP) on

  18. Recommendations concerning research and model evaluation needs to support breeder reactor environmental radiological assessments

    SciTech Connect

    Miller, C. W.; Dunning, Jr., D. E.; Etnier, E. L.; Kocher, D. C.; McDowell-Boyer, L. M.; Meyer, H. R.; Rohwer, P. S.

    1980-12-01

    Purpose of this report is to present recommendations concerning needs for model evaluations, environmental research, and biomedical research to support breeder reactor environmental radiological assessments. More data are needed to specify dry deposition velocities and to validate plume depletion models. More atmospheric dispersion data are required to characterize flow near buildings, in complex terrain, and for travel distances at 100 km or more. Field data are needed for terrestrial food chain transport models, especially those used to assess the impact of acute radionuclide releases. Efforts are needed to develop models for the estimation of dose from external exposure to photons from a finite, elevated plume resulting from an acute radionuclide release to the atmosphere. Estimates of doses to man from internally deposited radionuclides require scrutiny. Further study of tritium is needed to determine its dependence on dose and dose rate and to specify the relative toxicity of various physiochemical forms of tritium in the environment.

  19. NOVEL CRYOGENIC ENGINEERING SOLUTIONS FOR THE NEW AUSTRALIAN RESEARCH REACTOR OPAL

    SciTech Connect

    Olsen, S. R.; Kennedy, S. J.; Kim, S.; Schulz, J. C.; Thiering, R.; Gilbert, E. P.; Lu, W.; James, M.; Robinson, R. A.

    2008-03-16

    In August 2006 the new 20MW low enriched uranium research reactor OPAL went critical. The reactor has 3 main functions, radio pharmaceutical production, silicon irradiation and as a neutron source. Commissioning on 7 neutron scattering instruments began in December 2006. Three of these instruments (Small Angle Neutron Scattering, Reflectometer and Time-of-flight Spectrometer) utilize cold neutrons.The OPAL Cold Neutron Source, located inside the reactor, is a 20L liquid deuterium moderated source operating at 20K, 330kPa with a nominal refrigeration capacity of 5 kW and a peak flux at 4.2meV (equivalent to a wavelength of 0.4nm). The Thermosiphon and Moderator Chamber are cooled by helium gas delivered at 19.8K using the Brayton cycle. The helium is compressed by two 250kW compressors (one with a variable frequency drive to lower power consumption).A 5 Tesla BSCCO (2223) horizontal field HTS magnet will be delivered in the 2{sup nd} half of 2007 for use on all the cold neutron instruments. The magnet is cooled by a pulse tube cryocooler operating at 20K. The magnet design allows for the neutron beam to pass both axially and transverse to the field. Samples will be mounted in a 4K to 800K Gifford-McMahon (GM) cryofurnace, with the ability to apply a variable electric field in-situ. The magnet is mounted onto a tilt stage. The sample can thus be studied under a wide variety of conditions.A cryogen free 7.4 Tesla Nb-Ti vertical field LTS magnet, commissioned in 2005 will be used on neutron diffraction experiments. It is cooled by a standard GM cryocooler operating at 4.2K. The sample is mounted in a 2{sup nd} GM cryocooler (4K-300K) and a variable electric field can be applied.

  20. Novel Cryogenic Engineering Solutions for the New Australian Research Reactor Opal

    NASA Astrophysics Data System (ADS)

    Olsen, S. R.; Kennedy, S. J.; Kim, S.; Schulz, J. C.; Thiering, R.; Gilbert, E. P.; Lu, W.; James, M.; Robinson, R. A.

    2008-03-01

    In August 2006 the new 20MW low enriched uranium research reactor OPAL went critical. The reactor has 3 main functions, radio pharmaceutical production, silicon irradiation and as a neutron source. Commissioning on 7 neutron scattering instruments began in December 2006. Three of these instruments (Small Angle Neutron Scattering, Reflectometer and Time-of-flight Spectrometer) utilize cold neutrons. The OPAL Cold Neutron Source, located inside the reactor, is a 20L liquid deuterium moderated source operating at 20K, 330kPa with a nominal refrigeration capacity of 5 kW and a peak flux at 4.2meV (equivalent to a wavelength of 0.4nm). The Thermosiphon and Moderator Chamber are cooled by helium gas delivered at 19.8K using the Brayton cycle. The helium is compressed by two 250kW compressors (one with a variable frequency drive to lower power consumption). A 5 Tesla BSCCO (2223) horizontal field HTS magnet will be delivered in the 2nd half of 2007 for use on all the cold neutron instruments. The magnet is cooled by a pulse tube cryocooler operating at 20K. The magnet design allows for the neutron beam to pass both axially and transverse to the field. Samples will be mounted in a 4K to 800K Gifford-McMahon (GM) cryofurnace, with the ability to apply a variable electric field in-situ. The magnet is mounted onto a tilt stage. The sample can thus be studied under a wide variety of conditions. A cryogen free 7.4 Tesla Nb-Ti vertical field LTS magnet, commissioned in 2005 will be used on neutron diffraction experiments. It is cooled by a standard GM cryocooler operating at 4.2K. The sample is mounted in a 2nd GM cryocooler (4K-300K) and a variable electric field can be applied.

  1. Status report on the Small Secure Transportable Autonomous Reactor (SSTAR) /Lead-cooled Fast Reactor (LFR) and supporting research and development.

    SciTech Connect

    Sienicki, J. J.; Moisseytsev, A.; Yang, W. S.; Wade, D. C.; Nikiforova, A.; Hanania, P.; Ryu, H. J.; Kulesza, K. P.; Kim, S. J.; Halsey, W. G.; Smith, C. F.; Brown, N. W.; Greenspan, E.; de Caro, M.; Li, N.; Hosemann, P.; Zhang, J.; Yu, H.; Nuclear Engineering Division; LLNL; LANL; Massachusetts Inst. of Tech.; Ecole des Mines de Paris; Oregon State Univ.; Univ.of California at Berkley

    2008-06-23

    This report provides an update on development of a pre-conceptual design for the Small Secure Transportable Autonomous Reactor (SSTAR) Lead-Cooled Fast Reactor (LFR) plant concept and supporting research and development activities. SSTAR is a small, 20 MWe (45 MWt), natural circulation, fast reactor plant for international deployment concept incorporating proliferation resistance for deployment in non-fuel cycle states and developing nations, fissile self-sufficiency for efficient utilization of uranium resources, autonomous load following making it suitable for small or immature grid applications, and a high degree of passive safety further supporting deployment in developing nations. In FY 2006, improvements have been made at ANL to the pre-conceptual design of both the reactor system and the energy converter which incorporates a supercritical carbon dioxide Brayton cycle providing higher plant efficiency (44 %) and improved economic competitiveness. The supercritical CO2 Brayton cycle technology is also applicable to Sodium-Cooled Fast Reactors providing the same benefits. One key accomplishment has been the development of a control strategy for automatic control of the supercritical CO2 Brayton cycle in principle enabling autonomous load following over the full power range between nominal and essentially zero power. Under autonomous load following operation, the reactor core power adjusts itself to equal the heat removal from the reactor system to the power converter through the large reactivity feedback of the fast spectrum core without the need for motion of control rods, while the automatic control of the power converter matches the heat removal from the reactor to the grid load. The report includes early calculations for an international benchmarking problem for a LBE-cooled, nitride-fueled fast reactor core organized by the IAEA as part of a Coordinated Research Project on Small Reactors without Onsite Refueling; the calculations use the same neutronics

  2. Monte Carlo simulation of a research reactor with nominal power of 7 MW to design new control safety rods

    NASA Astrophysics Data System (ADS)

    Shoushtari, M. K.; Kakavand, T.; Sadat Kiai, S. M.; Ghaforian, H.

    2010-03-01

    The Monte Carlo simulation has been established for a research reactor with nominal power of 7 MW. A detailed model of the reactor core was employed including standard and control fuel elements, reflectors, irradiation channels, control rods, reactor pool and thermal column. The following physical parameters of reactor core were calculated for the present LEU core: core reactivity ( ρ), control rod (CR) worth, thermal and epithermal neutron flux distributions, shutdown margin and delayed neutron fraction. Reduction of unfavorable effects of blockage probability of control safety rod (CSR)s in their interiors because of not enough space in their sites, and lack of suitable capabilities to fabricate very thin plates for CSR cladding, is the main aim of the present study. Making the absorber rod thinner and CSR cladding thicker by introducing a better blackness absorbing material and a new stainless steel alloy, respectively, are two studied ways to reduce the effects of mentioned problems.

  3. Membrane biofilm reactors for nitrogen removal: state-of-the-art and research needs.

    PubMed

    Hwang, Jong Hyuk; Cicek, Nazim; Oleszkiewicz, Jan A

    2009-01-01

    Historical developments up-to-date and operational challenges of membrane biofilm reactor (MBfR) were reviewed. A database of international, peer-reviewed journal articles regarding MBfR research from 1984 to 2008 was established and analyzed with a total of 107 papers. MBfR studies began to evolve in the early 1980s, since then the number of published papers increased steadily. After 2000, geographic locations where the research was conducted widened beyond North America and Europe to Asia. Research studies were divided into 4 categories and reviewed according to their main research focuses. In spite of the short history of MBfRs, studies have shown promising potential, possibly extending their application beyond nitrogen removal and organics removal. The MBfR research branched out to new fields including autotrophic denitrification. There are some important aspects of MBfRs that pose significant challenges to the application of this technology on a commercial scale in the near-future. The main challenge revolves around biofilm thickness and activity control. Further laboratory and demonstration scale studies on some of the proposed strategies for biofilm control are needed. Ultimately, more field studies with real wastewater should be performed to evaluate the resilience of the process in the face of flow and strength fluctuations, establishing optimum operational strategies.

  4. Preliminary fracture analysis of the core pressure boundary tube for the Advanced Neutron Source Research Reactor

    SciTech Connect

    Schulz, K.C.; Yahr, G.T.

    1995-08-01

    The outer core pressure boundary tube (CPBT) of the Advanced neutron Source (ANS) reactor being designed at Oak Ridge National Laboratory is currently specified as being composed of 6061-T6 aluminum. ASME Boiler and Pressure Vessel Code fracture analysis rules for nuclear components are based on the use of ferritic steels; the expressions, tables, charts and equations were all developed from tests and analyses conducted for ferritic steels. Because of the nature of the Code, design with thin aluminum requires analytical approaches that do not directly follow the Code. The intent of this report is to present a methodology comparable to the ASME Code for ensuring the prevention of nonductile fracture of the CPBT in the ANS reactor. 6061-T6 aluminum is known to be a relatively brittle material; the linear elastic fracture mechanics (LEFM) approach is utilized to determine allowable flaw sizes for the CPBT. A J-analysis following the procedure developed by the Electric Power Research Institute was conducted as a check; the results matched those for the LEFM analysis for the cases analyzed. Since 6061-T6 is known to embrittle when irradiated, the reduction in K{sub Q} due to irradiation is considered in the analysis. In anticipation of probable requirements regarding maximum allowable flaw size, a survey of nondestructive inspection capabilities is also presented. A discussion of probabilistic fracture mechanics approaches, principally Monte Carlo techniques, is included in this report as an introduction to what quantifying the probability of nonductile failure of the CPBT may entail.

  5. [Research on Cultivation and Stability of Nitritation Granular Sludge in Integrated ABR-CSTR Reactor].

    PubMed

    Wu, Kai-cheng; Wu, Peng; Shen, Yao-liang; Li, Yue-han; Wang, Han-fang; Xu, Yue-zhong

    2015-11-01

    Abstract: The last two compartments of the Anaerobic Baffled Readtor ( ABR) were altered into aeration tank and sedimentation tank respectively to get an integrated anaerobic-aerobic reactor, using anaerobic granular sludge in anaerobic zone and aerobic granular sludge in aerobic zone as seed sludge. The research explored the condition to cultivate nitritation granular sludge, under the condition of continuous flow. The C/N rate was decreased from 1 to 0.4 and the ammonia nitrogen volumetric loading rate was increased from 0.89 kg x ( m3 x d)(-1) to 2.23 kg x (m3 x d)(-1) while the setting time of 1 h was controlled in the aerobic zone. After the system was operated for 45 days, the mature nitritation granular sludge in aerobic zone showed a compact structure and yellow color while the nitrite accumulation rate was about 80% in the effluent. The associated inhibition of free ammonia (FA) and free nitrous acid (FNA) dominated the nitritation. Part of granules lost stability during the initial period of operation and flocs appeared in the aerobic zone. However, the flocs were transformed into newly generated small particles in the following reactor operation, demonstrating that organic carbon was benefit to granulation and the enrichment of slow-growing nitrifying played an important role in the stability of granules. PMID:26911009

  6. A neutronic feasibility study for LEU conversion of the WWR-SM research reactor in Uzbekistan.

    SciTech Connect

    Rakhmanov, A.

    1998-10-19

    The WWR-SM research reactor in Uzbekistan has operated at 10 MW since 1979, using Russian-supplied IRT-3M fuel assemblies containing 90% enriched uranium. Burnup tests of three full-sized IRT-3M FA with 36% enrichment were successfully completed to a burn up of about {approximately}50% in 1987-1989. In August 1998, four IRT-3M FA with 36% enriched uranium were loaded into the core to initiate conversion of the entire core to 36% enriched fuel. This paper presents the results of equilibrium fuel cycle comparisons of the reactor using HEU (90%) and HEU (36%) IRT-3M fuel and compares results with the performance of IRT-4M FA containing LEU (19.75%). The results show that an LEU (19.75%) density of 3.8 g/cm{sup 3} is required to match the cycle length of the HEU (90%) core and an LEU density 3.9 g/cm{sup 3} is needed to match the cycle length of the HEU (36%) core.

  7. Aqueous processing of U-10Mo scrap for high performance research reactor fuel

    NASA Astrophysics Data System (ADS)

    Youker, Amanda J.; Stepinski, Dominique C.; Maggos, Laura E.; Bakel, Allen J.; Vandegrift, George F.

    2012-08-01

    The Global Threat Reduction Initiative (GTRI) Conversion program, which is part of the US government's National Nuclear Security Administration (NNSA), supports the conversion of civilian use of highly enriched uranium (HEU) to low enriched uranium (LEU) for reactor fuel and targets. The reason for conversion is to eliminate the use of any material that may pose a threat to the United States or other foreign countries. High performance research reactors (HPRRs) cannot make the conversion to a standard LEU fuel because they require a more dense fuel to meet their performance requirements. As a result, a more dense fuel consisting of a monolithic uranium-molybdenum alloy containing 10% (w/w) Mo with Al cladding and a Zr bonding-layer is being considered. Significant losses are expected in the fabrication of this fuel, so a means to recycle the scrap pieces is needed. Argonne National Laboratory has developed an aqueous-processing flowsheet for scrap recovery in the fuel fabrication process for high-density LEU-monolithic fuel based on data found in the literature. Experiments have been performed to investigate dissolution conditions for solutions containing approximately 20 g-U/L and 50 g-U/L with and without Fe(NO3)3. HNO3 and HF concentrations have been optimized for timely dissolution of the fuel scrap and prevention of the formation of the U-Zr2 intermetallic, explosive complex, while meeting the requirements needed for further processing.

  8. LOSS-OF-COOLANT ACIDENT SIMULATIONS IN THE NATIONAL RESEARCH UNIVERSAL REACTOR

    SciTech Connect

    Bennett, W D; Goodman, R L; Heaberlin, S W; Hesson, G M; Nealley, C; Kirg, L L; Marshall, R K; McNair, G W; Meitzler, W D; Neally, G W; Parchen, L J; Pilger, J P; Rausch, W N; Russcher, G E; Schreiber, R E; Wildung, N J; Wilson, C L

    1981-02-01

    Pressurized water reactor loss-of-coolant accident (LOCA) phenomena are being simulated with a series of experiments in the U-2 loop of the National Research Universal Reactor at Chalk River, Ontario, Canada. The first of these experiments includes up to 45 parametric thermal-hydraulic tests to establish the relationship among the reflood delay time of emergency coolant, the reflooding rate, and the resultant fuel rod cladding peak temperature. Subsequent experiments establish the fuel rod failure characteristics at selected peak cladding temperatures. Fuel rod cladding pressurization simulates high burnup fission gas pressure levels of modern PWRs. This document contains both an experiment overview of the LOCA simulation program and a review of the safety analyses performed by Pacific Northwest Laboratory (PNL) to define the expected operating conditions as well as to evaluate the worst case operating conditions. The primary intent of this document is to supply safety information required by the Chalk River Nuclear Laboratories (CRNL), to establish readiness to proceed from one test phase to the next and to establish the overall safety of the experiment. A hazards review summarizes safety issues, normal operation and three worst case accidents that have been addressed during the development of the experiment plan.

  9. A neutronic feasibility study for LEU conversion of the IR-8 research reactor.

    SciTech Connect

    Deen, J. R.

    1998-10-22

    Equilibrium fuel cycle comparisons for the IR-8 research reactor were made for HEU(90%), HEU(36%), and LEU (19.75%) fuel assembly (FA) designs using three dimensional multi-group diffusion theory models benchmarked to detailed Monte Carlo models of the reactor. Comparisons were made of changes in reactivity, cycle length, average {sup 235}U discharge burnup, thermal neutron flux, and control rod worths for the 90% and 36% enriched IRT-3M fuel assembly and the 19.75% enriched IRT-4M fuel assembly with the same fuel management strategy. The results of these comparisons showed that a uranium density of 3.5 g/cm{sup 3} in the fuel meat would be required in the LEU IRT-4M fuel assembly to match the cycle length of the HEU(90%) IRT-3M FA and an LEU density of 3.7 g/cm{sup 3} is needed to match the cycle length of the HEU(36%) IRT-3M FA.

  10. [Research on Cultivation and Stability of Nitritation Granular Sludge in Integrated ABR-CSTR Reactor].

    PubMed

    Wu, Kai-cheng; Wu, Peng; Shen, Yao-liang; Li, Yue-han; Wang, Han-fang; Xu, Yue-zhong

    2015-11-01

    Abstract: The last two compartments of the Anaerobic Baffled Readtor ( ABR) were altered into aeration tank and sedimentation tank respectively to get an integrated anaerobic-aerobic reactor, using anaerobic granular sludge in anaerobic zone and aerobic granular sludge in aerobic zone as seed sludge. The research explored the condition to cultivate nitritation granular sludge, under the condition of continuous flow. The C/N rate was decreased from 1 to 0.4 and the ammonia nitrogen volumetric loading rate was increased from 0.89 kg x ( m3 x d)(-1) to 2.23 kg x (m3 x d)(-1) while the setting time of 1 h was controlled in the aerobic zone. After the system was operated for 45 days, the mature nitritation granular sludge in aerobic zone showed a compact structure and yellow color while the nitrite accumulation rate was about 80% in the effluent. The associated inhibition of free ammonia (FA) and free nitrous acid (FNA) dominated the nitritation. Part of granules lost stability during the initial period of operation and flocs appeared in the aerobic zone. However, the flocs were transformed into newly generated small particles in the following reactor operation, demonstrating that organic carbon was benefit to granulation and the enrichment of slow-growing nitrifying played an important role in the stability of granules.

  11. Upgrades of the epithermal neutron beam at the Brookhaven Medical Research Reactor

    SciTech Connect

    Liu, Hungyuan B.; Brugger, R.M.; Rorer, D.C.

    1994-12-31

    The first epithermal neutron beam at the Brookhaven Medical Research Reactor (BMRR) was installed in 1988 and produced a neutron beam that was satisfactory for the development of NCT with epithermal neutrons. This beam was used routinely until 1992 when the beam was upgraded by rearranging fuel elements in the reactor core to achieve a 50% increase in usable flux. Next, after computer modeling studies, it was proposed that the Al and Al{sub 2}O{sub 3} moderator material in the shutter that produced the epithermal neutrons could be rearranged to enhance the beam further. However, this modification was not started because a better option appeared, namely to use fission plates to move the source of fission neutrons closer to the moderator and the patient irradiation position to achieve more efficient moderation and production of epithermal neutrons. A fission plate converter (FPC) source has been designed recently and, to test the concept, implementation of this upgrade has started. The predicted beam parameters will be 12 x 10{sup 9} n{sub epi}/cm{sup 2}sec accompanying with doses from fast neutrons and gamma rays per epithermal neutron of 2.8 x 10{sup -11} and < 1 x 10{sup -11} cGycm{sup 2}/n, respectively, and a current-to-flux ratio of epithermal neutrons of 0.78. This conversion could be completed by late 1996.

  12. Personnel dosimetry intercomparison studies at the Health Physics Research Reactor: a summary (1974-80).

    PubMed

    Sims, C S; Swaja, R E

    1982-01-01

    Six personnel dosimetry intercomparison studies using the Health Physics Research Reactor at the Oak Ridge National Laboratory were conducted between 1974 and 1980. These studies allowed participants to test their neutron and gamma-ray dosimeters under a variety of mixed-field spectral conditions and to compare their results with those of others making measurements under identical conditions. Fifty-eight participant organizations, about half of which participated in more than one study, made approx. 2000 measurements of the neutron and gamma-dose-equivalent. Dose equivalents in the 0.1-12 mSv (i.e. 10-1200 mrem) range were determined for five different shielded reactor spectra using three basic types of dosimeters (thermoluminescent albedo, nuclear emulsion film and track etch) for neutron measurements and two basic types (film and thermoluminescent dosimeters) for the gamma-measurements. The data from the six studies are summarized, analyzed and explained. Intercomparison of the participants' results and consideration of reference dosimetry allows several conclusions to be made relative to the status of and trends in personnel neutron and gamma-ray dosimetry. PMID:7056645

  13. Experimental simulation of personal dosimetry in production of medical radioisotopes by research reactor.

    PubMed

    Mossadegh, N; Karimian, A; Shahhosseini, E; Mohammadzadeh, A; Sheibani, Sh

    2011-09-01

    Due to their work conditions, research reactor personnel are exposed to ionising nuclear radiations. Because the absorbed dose values are different for different tissues due to variations in sensitivity, in this work personal dosimetry has been performed under normal working conditions at anatomical locations relevant to more sensitive tissues as well as for the whole body by employing a Rando phantom and thermoluminescent dosemeters (TLDs). Fifty-two TLDs-100H were positioned at high-risk organ locations such as the thyroid, eyes as well as the left breast, which was used to assess the whole-body dose in order to study the absorbed doses originating from selected locations in the vicinity of the reactor. The results have employed the tissue weighting factors based on International Commission on Radiological Protection ICRP 103 and ICRP 60 and the measured results were below the dose limits recommended by ICRP. The mean effective dose rates calculated from ICRP 103 were the following: whole body, 30.64-6.44 µSv h(-1); thyroid, 1.22-0.23 µSv h(-1); prostate, 0.085-0.045 µSv h(-1); gonads, 1.00-0.51 µSv h(-1); breast, 3.68-0.77 µSv h(-1); and eyes, 33.74-7.01 µSv h(-1). PMID:21862507

  14. Bright flash neutron radiography capability of the research reactor at the McClellan Nuclear Research Center

    NASA Astrophysics Data System (ADS)

    Tremsin, A. S.; Lerche, M.; Schillinger, B.; Feller, W. B.

    2014-06-01

    The capability to produce a bright, short neutron pulse at the McClellan Nuclear Research Center (MNRC) can be very attractive for some neutron imaging applications. Complementary to conventional thermal neutron radiography conducted at the reactor, operating at the average power of 1 MW, a short pulse of ~25 ms FWHM duration can be produced at MNRC with the peak power exceeding 350 MW. Combination of a fast thermal neutron counting detector with a short neutron pulse at MNRC, enables high-resolution stroboscopic imaging to complement conventional neutron radiography. The results presented in this paper demonstrate the MNRC capabilities for conducting conventional thermal neutron radiography, demonstrating imaging spatial resolution below 100 μm, as well as bright flash neutron radiography with multiple nearly simultaneous events detected with microsecond timing resolution.

  15. Characterization of wastes in and around early reactors at the Hanford Site: The use of historical research

    SciTech Connect

    Gerber, M.S.

    1993-10-01

    This paper will present the waste characterization knowledge that has been gained in the first, ``Large-Scale Remediation Study`` to be performed on the reactor areas (100 Areas) of the Hanford Site. Undertaken throughout the past year, this research project has identified thousands of pieces of buried hardware, as well as the volumes of liquid wastes in burial sites in the reactor areas. The author of this landmark study, Dr. Michele Gerber, will discuss historical research as a safe and cost-effective characterization tool.

  16. NRC review of Electric Power Research Institute's Advanced Light Reactor Utility Requirements Document - Program summary, Project No. 669

    SciTech Connect

    Not Available

    1992-08-01

    The staff of the US Nuclear Regulatory Commission has prepared Volume 1 of a safety evaluation report (SER), NRC Review of Electric Power Research Institute's Advanced Light Water Reactor Utility Requirements Document -- Program Summary,'' to document the results of its review of the Electric Power Research Institute's Advanced Light Water Reactor Utility Requirements Document.'' This SER provides a discussion of the overall purpose and scope of the Requirements Document, the background of the staff's review, the review approach used by the staff, and a summary of the policy and technical issues raised by the staff during its review.

  17. Frontier of Fusion Research: Path to the Steady State Fusion Reactor by Large Helical Device

    NASA Astrophysics Data System (ADS)

    Motojima, Osamu

    2006-12-01

    The ITER, the International Thermonuclear Experimental Reactor, which will be built in Cadarache in France, has finally started this year, 2006. Since the thermal energy produced by fusion reactions divided by the external heating power, i.e., the Q value, will be larger than 10, this is a big step of the fusion research for half a century trying to tame the nuclear fusion for the 6.5 Billion people on the Earth. The source of the Sun's power is lasting steadily and safely for 8 Billion years. As a potentially safe environmentally friendly and economically competitive energy source, fusion should provide a sustainable future energy supply for all mankind for ten thousands of years. At the frontier of fusion research important milestones are recently marked on a long road toward a true prototype fusion reactor. In its own merits, research into harnessing turbulent burning plasmas and thereby controlling fusion reaction, is one of the grand challenges of complex systems science. After a brief overview of a status of world fusion projects, a focus is given on fusion research at the National Institute for Fusion Science (NIFS) in Japan, which is playing a role of the Inter University Institute, the coordinating Center of Excellence for academic fusion research and by the Large Helical Device (LHD), the world's largest superconducting heliotron device, as a National Users' facility. The current status of LHD project is presented focusing on the experimental program and the recent achievements in basic parameters and in steady state operations. Since, its start in a year 1998, a remarkable progress has presently resulted in the temperature of 140 Million degree, the highest density of 500 Thousand Billion/cc with the internal density barrier (IDB) and the highest steady average beta of 4.5% in helical plasma devices and the largest total input energy of 1.6 GJ, in all magnetic confinement fusion devices. Finally, a perspective is given of the ITER Broad Approach program

  18. Frontier of Fusion Research: Path to the Steady State Fusion Reactor by Large Helical Device

    SciTech Connect

    Motojima, Osamu

    2006-12-01

    The ITER, the International Thermonuclear Experimental Reactor, which will be built in Cadarache in France, has finally started this year, 2006. Since the thermal energy produced by fusion reactions divided by the external heating power, i.e., the Q value, will be larger than 10, this is a big step of the fusion research for half a century trying to tame the nuclear fusion for the 6.5 Billion people on the Earth. The source of the Sun's power is lasting steadily and safely for 8 Billion years. As a potentially safe environmentally friendly and economically competitive energy source, fusion should provide a sustainable future energy supply for all mankind for ten thousands of years. At the frontier of fusion research important milestones are recently marked on a long road toward a true prototype fusion reactor. In its own merits, research into harnessing turbulent burning plasmas and thereby controlling fusion reaction, is one of the grand challenges of complex systems science.After a brief overview of a status of world fusion projects, a focus is given on fusion research at the National Institute for Fusion Science (NIFS) in Japan, which is playing a role of the Inter University Institute, the coordinating Center of Excellence for academic fusion research and by the Large Helical Device (LHD), the world's largest superconducting heliotron device, as a National Users' facility. The current status of LHD project is presented focusing on the experimental program and the recent achievements in basic parameters and in steady state operations. Since, its start in a year 1998, a remarkable progress has presently resulted in the temperature of 140 Million degree, the highest density of 500 Thousand Billion/cc with the internal density barrier (IDB) and the highest steady average beta of 4.5% in helical plasma devices and the largest total input energy of 1.6 GJ, in all magnetic confinement fusion devices. Finally, a perspective is given of the ITER Broad Approach program

  19. A new small-angle neutron scattering spectrometer at China Mianyang research reactor

    NASA Astrophysics Data System (ADS)

    Peng, Mei; Sun, Liangwei; Chen, Liang; Sun, Guangai; Chen, Bo; Xie, Chaomei; Xia, Qingzhong; Yan, Guanyun; Tian, Qiang; Huang, Chaoqiang; Pang, Beibei; Zhang, Ying; Wang, Yun; Liu, Yaoguang; Kang, Wu; Gong, Jian

    2016-02-01

    A new pinhole small-angle neutron scattering (SANS) spectrometer, installed at the cold neutron source of the 20 MW China Mianyang Research Reactor (CMRR) in the Institute of Nuclear Physics and Chemistry, China Academy of Engineering Physics, has been put into use since 2014. The spectrometer is equipped with a multi-blade mechanical velocity selector, a multi-beam collimation system, and a two-dimensional He-3 position sensitive neutron detector. The q-range of the spectrometer covers from 0.01 nm-1 to 5.0 nm-1. In this paper, the design and characteristics of the SANS spectrometer are described. The q-resolution calculations, together with calibration measurements of silver behenate and a dispersion of nearly monodisperse poly-methyl-methacrylate nanoparticles indicate that our SANS spectrometer has a good performance and is now in routine service.

  20. Fuel development activities of the US RERTR Program. [Reduced Enrichment Research and Test Reactor

    SciTech Connect

    Snelgrove, J.L.; Domagala, R.F.; Wiencek, T.C.; Copeland, G.L.

    1983-01-01

    Progress in the development and irradiation testing of high-density fuels for use with low-enriched uranium in research and test reactors is reported. Swelling and blister-threshold temperature data obtained from the examination of miniature fuel plates containing UAl/sub x/, U/sub 3/O/sub 8/, U/sub 3/Si/sub 2/, or U/sub 3/Si dispersed in an aluminum matrix are presented. Combined with the results of metallurgical examinations, these data show that these four fuel types will perform adequately to full burnup of the /sup 235/U contained in the low-enriched fuel. The exothermic reaction of the uranium-silicide fuels with aluminum has been found to occur at about the same temperature as the melting of the aluminum matrix and cladding and to be essentially quenched by the melting endotherm. A new series of miniature fuel plate irradiations is also discussed.

  1. A computer model for the transient analysis of compact research reactors with plate type fuel

    SciTech Connect

    Sofu, T.; Dodds, H.L.

    1994-03-01

    A coupled neutronics and core thermal-hydraulic performance model has been developed for the analysis of plate type U-Al fueled high-flux research reactor transients. The model includes point neutron kinetics, one-dimensional, non-homogeneous, equilibrium two-phase flow and beat transfer with provision for subcooled boiling, and spatially averaged one-dimensional beat conduction. The feedback from core regions other than the fuel elements is included by employing a lumped parameter approach. Partial differential equations are discretized in space and the combined equation set representing the model is converted to an initial value problem. A variable-order, variable-time-step time advancement scheme is used to solve these ordinary differential equations. The model is verified through comparisons with two other computer code results and partially validated against SPERT-II tests. It is also used to analyze a series of HFIR reactivity transients.

  2. Analysis of safety limits of the Moroccan TRIGA MARK II research reactor

    NASA Astrophysics Data System (ADS)

    Erradi, L.; Essadki, H.

    2001-06-01

    The main objective of this study is to check the ability of the Moroccan TRIGA MARK II research reactor, designed to use natural convection cooling, to operate at its nominal power (2 MW) with sufficient safety margins. The neutronic analysis of the core has been performed using Leopard and Mcrac codes and the parameters of interest were the power distributions, the power peaking factors and the core excess reactivity. The thermal hydraulic analysis of the TRIGA core was performed using the French code FLICA designed for transient and study state situations. The main safety related parameters of the core have been evaluated with special emphasises on the following: maximum fuel temperature, minimum DNBR and maximum void fraction. The obtained results confirm the designer predictions except for the void fraction.

  3. Current Activities of Neutron Imaging Facilities in KUR (Kyoto University Research Reactor)

    NASA Astrophysics Data System (ADS)

    Kawabata, Yuji; Saito, Yasushi

    Kyoto University research Reactor (KUR) restarted in Spring 2010 with low enriched fuel (20%) after 4 years tentative interruption for fuel conversion. There are two facilities for neutron imaging: 1) B4 port at supermirror neutron guide tube (5x107 n/cm2/s at 5 MW, 1 cmx7.5 cm), 2) E2 port (3x105 n/cm2/s at 5 MW, 15 cm dia.). As we have large experimental space at the end of the guide tube and need small shielding because the neutron flux of KUR is not high, we have very large flexibility in the experimental set up. Thus, experiments in B4 should be specialized in the measurements which require large and/or unconventional equipments to accommodate special sample conditions. The E2 port with the low neutron flux is used for experiments which need very long or frequent machine times.

  4. Design of Real-time Neutron Radiography at China Advanced Research Reactor

    NASA Astrophysics Data System (ADS)

    He, Linfeng; Han, Songbai; Wang, Hongli; Hao, Lijie; Wu, Meimei; Wei, Guohai; Wang, Yu; Liu, Yuntao; Sun, Kai; Chen, Dongfeng

    A real-time detector system for neutron radiography based on CMOS camera has been designed for the thermal neutron imaging facility under construction at China Advanced Research Reactor (CARR). This system is equipped with a new scientific CMOS camera with 5.5 million pixels and speed up to 100 fps at full frame. The readout noise is below 2.4 e/pixel. It is capable of providing images with much higher resolution and sensitivity at high frame rate. With optimized optical design and custom-built lens, the capture of quantitative information may be greatly enhanced. The maximum photon received by detector is calculated to be 2.1 × 103/pixel, while the camera resolution is 0.2 mm at 30 fps according to the expected flux (5 × 107 n/cm2/s) at the sample position.

  5. Physics design for the Brookhaven Medical Research Reactor epithermal neutron source.

    PubMed

    Wheeler, F J; Parsons, D K; Nigg, D W; Wessol, D E; Miller, L G; Fairchild, R G

    1990-01-01

    A collaborative effort by researchers at the Idaho National Engineering Laboratory and the Brookhaven National Laboratory has resulted in the design and implementation of an epithermal-neutron source at the Brookhaven Medical Research Reactor (BMRR). Large aluminum containers, filled with aluminum oxide tiles and aluminum spacers, were tailored to pre-existing compartments on the animal side of the reactor facility. A layer of cadmium was used to minimize the thermal-neutron component. Additional bismuth was added to the pre-existing bismuth shield to minimize the gamma component of the beam. Lead was also added to reduce gamma streaming around the bismuth. The physics design methods are outlined in this paper. Information available to date shows close agreement between calculated and measured beam parameters. The neutron spectrum is predominantly in the intermediate energy range (0.5 eV - 10 keV). The peak flux intensity is 6.4E + 12 n/(m2.s.MW) at the center of the beam on the outer surface of the final gamma shield. The corresponding neutron current is 3.8E + 12 n/(m2.s.MW). Presently, the core operates at a maximum of 3 MW. The fast-neutron KERMA is 3.6E-15 cGy/(n/m2) and the gamma KERMA is 5.0E-16 cGY/(n/m2) for the unperturbed beam. The neutron intensity falls off rapidly with distance from the outer shield and the thermal flux realized in phantom or tissue is strongly dependent on the beam-delimiter and target geometry.

  6. Very High Temperature Reactor (VHTR) Survey of Materials Research and Development Needs to Support Early Deployment

    SciTech Connect

    Eric Shaber; G. Baccaglini; S. Ball; T. Burchell; B. Corwin; T. Fewell; M. Labar; P. MacDonald; P. Rittenhouse; Russ Vollam; F. Southworth

    2003-01-01

    The VHTR reference concept is a helium-cooled, graphite moderated, thermal neutron spectrum reactor with an outlet temperature of 1000 C or higher. It is expected that the VHTR will be purchased in the future as either an electricity producing plant with a direct cycle gas turbine or a hydrogen producing (or other process heat application) plant. The process heat version of the VHTR will require that an intermediate heat exchanger (IHX) and primary gas circulator be located in an adjoining power conversion vessel. A third VHTR mission - actinide burning - can be accomplished with either the hydrogen-production or gas turbine designs. The first ''demonstration'' VHTR will produce both electricity and hydrogen using the IHX to transfer the heat to either a hydrogen production plant or the gas turbine. The plant size, reactor thermal power, and core configuration will be designed to assure passive decay heat removal without fuel damage during accidents. The fuel cycle will be a once-through very high burnup low-enriched uranium fuel cycle. The purpose of this report is to identify the materials research and development needs for the VHTR. To do this, we focused on the plant design described in Section 2, which is similar to the GT-MHR plant design (850 C core outlet temperature). For system or component designs that present significant material challenges (or far greater expense) there may be some viable design alternatives or options that can reduce development needs or allow use of available (cheaper) materials. Nevertheless, we were not able to assess those alternatives in the time allotted for this report and, to move forward with this material research and development assessment, the authors of this report felt that it was necessary to use a GT-MHR type design as the baseline design.

  7. The Harvard-MIT PHD Program in Bioastronautics

    NASA Astrophysics Data System (ADS)

    Young, Laurence R.; Natapoff, Alan

    2008-06-01

    The National Space Biomedical Research Institute (NSBRI)1 supports a PhD program in Space Life Sciences with a specialty in Bioastronautics at MIT. (A sibling program operates at TAMU.) It gives broad training in life sciences, emphasizes hands-on field experience, provides access to laboratories in the Harvard-MIT community for thesis research, and prepares students for many options in space biomedicine. The Program trains prospective leaders in the field able to manage the challenges of design for the life-hostile space environment. Beyond subject and thesis work, students participate in a summer internship and a clinical preceptorship at a NASA center--and an introduction to clinical medicine and medical engineering.

  8. The development and application of k0-standardization method of neutron activation analysis at Es-Salam research reactor

    NASA Astrophysics Data System (ADS)

    Alghem, L.; Ramdhane, M.; Khaled, S.; Akhal, T.

    2006-01-01

    In recent years the k0-NAA method has been applied and developed at the 15 MW Es-Salam research reactor, which includes: (1) the detection efficiency calibration of γ-spectrometer used in k0-NAA, (2) the determination of reactor neutron spectrum parameters such as α and f factors in the irradiation channel, and (3) the validation of the developed k0-NAA procedure by analysing SRM, namely AIEA-Soil7 and CRM, namely IGGE-GSV4. The analysis results obtained by k0-NAA with 27 elements of Soil-7 standard and 14 elements of GSV-4 standard were compared with certified values. The analysis results showed that the deviations between experimental and certified values were mostly less than 10%. The k0-NAA procedure established at Es-Salam research reactor has been regarded as a reliable standardization method of NAA and as available for practical applications.

  9. AREVA Back-End Possibilities for the Used Fuel of Research Test Reactors

    SciTech Connect

    Auziere, P.; Emin, J.L.; Louvet, T.; Ohayon, D.; Hunter, I.

    2006-07-01

    One of the major issues faced by the Research and Test Reactor (RTR) operators is the back end management of the used fuel elements. RTR used fuel for both HEU and LEU types are problematic for storing and disposal as their Aluminium cladding degrades leading to activity release, possible loss of containment and criticality concerns. Thus, direct disposal of RTR used fuel, (without prior treatment and conditioning) is in this respect hardly suitable. In the same manner, long term interim storage of RTR used fuel has to take into account the issue of fuel corrosion. Treating RTR used fuel allows separating the content into recyclable materials and residues. It offers many advantages as compared to direct disposal such as the retrieval of valuable fissile material, the reduction of radio-toxicity and a very significant reduction of the volume of the ultimate waste package (reduction factor between 30 and 50). In addition, the vitrification of the residues provides a package that has been specifically designed to ensure long term durability for long term interim storage as well as final disposal (99% of the activity is encapsulated into a stable matrix). RTR fuel treatment process was developed several decades ago by AREVA with now thirty years of experience at an industrial level. The treatment process consists in dissolving the whole assembly (including the Al cladding) in nitric acid and then diluting it with standard Uranium Oxide fuel dissolution liquor prior to treatment with the nominal Tributylphosphate solvent extraction process. A wide range of RTR spent fuel has already been treated in the AREVA facilities. First, at the Marcoule plant over 18 tons of U-Al type RTR fuel from 21 reactors in 11 countries was processed. The treatment activities are now undertaken at the La Hague plant where 17 tons of RTR used fuel from Australia Belgium, and France aligned for treatment. In June 2005, AREVA started to treat at La Hague ANSTO's Australian RTR used fuel from

  10. Substantiation of parameters of the geometric model of the research reactor core for the calculation using the Monte Carlo method

    SciTech Connect

    Radaev, A. I. Schurovskaya, M. V.

    2015-12-15

    The choice of the spatial nodalization for the calculation of the power density and burnup distribution in a research reactor core with fuel assemblies of the IRT-3M and VVR-KN type using the program based on the Monte Carlo code is described. The influence of the spatial nodalization on the results of calculating basic neutronic characteristics and calculation time is investigated.

  11. 77 FR 4807 - Revised Fee Policy for Acceptance of Foreign Research Reactor Spent Nuclear Fuel From High-Income...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-01-31

    ... Atomics (TRIGA) from high-income economy countries. The first phase will take effect immediately and the... Spent Nuclear Fuel From High-Income Economy Countries AGENCY: National Nuclear Security Administration... (SNF) from foreign research reactors (FRR) containing uranium enriched in the U.S. in countries...

  12. Deployment of Smart 3D Subsurface Contaminant Characterization at the Brookhaven Graphite Research Reactor

    SciTech Connect

    Sullivan, T.; Heiser, J.; Kalb, P.; Milian, L.; Newson, C.; Lilimpakas, M.; Daniels, T.

    2002-02-26

    The Brookhaven Graphite Research Reactor (BGRR) Historical Site Assessment (BNL 1999) identified contamination inside the Below Grade Ducts (BGD) resulting from the deposition of fission and activation products from the pile on the inner carbon steel liner during reactor operations. Due to partial flooding of the BGD since shutdown, some of this contamination may have leaked out of the ducts into the surrounding soils. The baseline remediation plan for cleanup of contaminated soils beneath the BGD involves complete removal of the ducts, followed by surveying the underlying and surrounding soils, then removing soil that has been contaminated above cleanup goals. Alternatively, if soil contamination around and beneath the BGD is either non-existent/minimal (below cleanup goals) or is very localized and can be ''surgically removed'' at a reasonable cost, the BGD can be decontaminated and left in place. The focus of this Department of Energy Accelerated Site Technology Deployment (DOE ASTD) project was to determine the extent (location, type, and level) of soil contamination surrounding the BGD and to present this data to the stakeholders as part of the Engineering Evaluation/Cost Analysis (EE/CA) process. A suite of innovative characterization tools was used to complete the characterization of the soil surrounding the BGD in a cost-effective and timely fashion and in a manner acceptable to the stakeholders. The tools consisted of a tracer gas leak detection system that was used to define the gaseous leak paths out of the BGD and guide soil characterization studies, a small-footprint Geoprobe to reach areas surrounding the BGD that were difficult to access, two novel, field-deployed, radiological analysis systems (ISOCS and BetaScint) and a three-dimensional (3D) visualization system to facilitate data analysis/interpretation. All of the technologies performed as well or better than expected and the characterization could not have been completed in the same time or at

  13. Neutron Environment Characterization of the Central Cavity in the Annular Core Research Reactor

    NASA Astrophysics Data System (ADS)

    Parma, Edward J.; Naranjo, Gerald E.; Lippert, Lance L.; Vehar, David W.

    2016-02-01

    Characterization of the neutron environment in the central cavity of the Sandia National Laboratories' Annular Core Research Reactor (ACRR) is important in order to provide experimenters with the most accurate spectral information and maintain a high degree of fidelity in performing reactor experiments. Characterization includes both modeling and experimental efforts. Building accurate neutronic models of the ACRR and the central cavity "bucket" environments that can be used by experimenters is important in planning and designing experiments, as well as assessing the experimental results and quantifying uncertainties. Neutron fluence characterizations of two bucket environments, LB44 and PLG, are presented. These two environments are used frequently and represent two extremes in the neutron spectrum. The LB44 bucket is designed to remove the thermal component of the neutron spectrum and significantly attenuate the gamma-ray fluence. The PLG bucket is designed to enhance the thermal component of the neutron spectrum and attenuate the gamma-ray fluence. The neutron characterization for each bucket was performed by irradiating 20 different activation foil types, some of which were cadmium covered, resulting in 37 different reactions at the peak axial flux location in each bucket. The dosimetry results were used in the LSL-M2 spectrum adjustment code with a 640-energy group MCNP-generated trial spectrum, self-shielding correction factors, the SNLRML or IRDFF dosimetry cross-section library, trial spectrum uncertainty, and trial covariance matrix, to generate a least-squares adjusted neutron spectrum, spectrum uncertainty, and covariance matrix. Both environment character-izations are well documented and the environments are available for use by experimenters. Work supported by the United States Department of Energy at Sandia National Laboratories. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned

  14. Interim status report on lead-cooled fast reactor (LFR) research and development.

    SciTech Connect

    Tzanos, C. P.; Sienicki, J. J.; Moisseytsev, A.; Smith, C. F.; de Caro, M.; Halsey, W. G.; Li, N.; Hosemann, P.; Zhang, J.; Bolind, A.; LLNL; LANL; Univ. of Illinois

    2008-03-31

    This report discusses the status of Lead-Cooled Fast Reactor (LFR) research and development carried out during the first half of FY 2008 under the U.S. Department of Energy Generation IV Nuclear Energy Systems Initiative. Lead-Cooled Fast Reactor research and development has recently been transferred from Generation IV to the Reactor Campaign of the Global Nuclear Energy Partnership (GNEP). Another status report shall be issued at the end of FY 2008 covering all of the LFR activities carried out in FY 2008 for both Generation IV and GNEP. The focus of research and development in FY 2008 is an initial investigation of a concept for a LFR Advanced Recycling Reactor (ARR) Technology Pilot Plant (TPP)/demonstration test reactor (demo) incorporating features and operating conditions of the European Lead-cooled SYstem (ELSY) {approx} 600 MWe lead (Pb)-cooled LFR preconceptual design for the transmutation of waste and central station power generation, and which would enable irradiation testing of advanced fuels and structural materials. Initial scoping core concept development analyses have been carried out for a 100 MWt core composed of sixteen open-lattice 20 by 20 fuel assemblies largely similar to those of the ELSY preconceptual fuel assembly design incorporating fuel pins with mixed oxide (MOX) fuel, central control rods in each fuel assembly, and cooled with Pb coolant. For a cycle length of three years, the core is calculated to have a conversion ratio of 0.79, an average discharge burnup of 108 MWd/kg of heavy metal, and a burnup reactivity swing of about 13 dollars. With a control rod in each fuel assembly, the reactivity worth of an individual rod would need to be significantly greater than one dollar which is undesirable for postulated rod withdrawal reactivity insertion events. A peak neutron fast flux of 2.0 x 10{sup 15} (n/cm{sup 2}-s) is calculated. For comparison, the 400 MWt Fast Flux Test Facility (FFTF) achieved a peak neutron fast flux of 7.2 x 10{sup

  15. Awareness, Preference, Utilization, and Messaging Research for the Spallation Neutron Source and High Flux Isotope Reactor

    SciTech Connect

    Bryant, Rebecca; Kszos, Lynn A

    2011-03-01

    Oak Ridge National Laboratory (ORNL) offers the scientific community unique access to two types of world-class neutron sources at a single site - the Spallation Neutron Source (SNS) and the High Flux Isotope Reactor (HFIR). The 85-MW HFIR provides one of the highest steady-state neutron fluxes of any research reactor in the world, and the SNS is one of the world's most intense pulsed neutron beams. Management of these two resources is the responsibility of the Neutron Sciences Directorate (NScD). NScD commissioned this survey research to develop baseline information regarding awareness of and perceptions about neutron science. Specific areas of investigative interest include the following: (1) awareness levels among those in the scientific community about the two neutron sources that ORNL offers; (2) the level of understanding members of various scientific communities have regarding benefits that neutron scattering techniques offer; and (3) any perceptions that negatively impact utilization of the facilities. NScD leadership identified users of two light sources in North America - the Advanced Photon Source (APS) at Argonne National Laboratory and the National Synchrotron Light Source (NSLS) at Brookhaven National Laboratory - as key publics. Given the type of research in which these scientists engage, they would quite likely benefit from including the neutron techniques available at SNS and HFIR among their scientific investigation tools. The objective of the survey of users of APS, NSLS, SNS, and HFIR was to explore awareness of and perceptions regarding SNS and HFIR among those in selected scientific communities. Perceptions of SNS and FHIR will provide a foundation for strategic communication plan development and for developing key educational messages. The survey was conducted in two phases. The first phase included qualitative methods of (1) key stakeholder meetings; (2) online interviews with user administrators of APS and NSLS; and (3) one-on-one interviews

  16. Oak Ridge Research Reactor quarterly report, April, May, and June 1981

    SciTech Connect

    Hurt, S.S. III; Lance, E.D.

    1982-01-01

    The ORR operated at an average power level of 29.8 MW for 90.7% of the time during April, May, and June 1981. The reactor was shut down on eight occasions, one of which was unscheduled. Reactor downtime needed for refueling, maintenance, and checks was normal, with the reactor remaining available for operation 91.6% of the time. Maintenance activities, both mechanical and instrument, were essentially routine in nature. In-service inspection completed during the quarter is described.

  17. Optimization of irradiation conditions for {sup 177}Lu production at the LVR-15 research reactor

    SciTech Connect

    Lahodova, Z.; Viererbl, L.; Klupak, V.; Srank, J.

    2012-07-01

    The use of lutetium in medicine has been increasing over the last few years. The {sup 177}Lu radionuclide is commercially available for research and test purposes as a diagnostic and radiotherapy agent in the treatment of several malignant tumours. The yield of {sup 177}Lu from the {sup 176}Lu(n,{gamma}){sup 177}Lu nuclear reaction depends significantly on the thermal neutron fluence rate. The capture cross-sections of both reaction {sup 176}Lu(n,{gamma}){sup 177}Lu and reaction {sup 177}Lu(n,{gamma}){sup 178}Lu are very high. Therefore a burn-up of target and product nuclides should be taken into account when calculating {sup 177}Lu activity. The maximum irradiation time, when the activity of the {sup 177}Lu radionuclide begins to decline, was found for different fluence rates. Two vertical irradiation channels at the LVR-15 nuclear research reactor were compared in order to choose the channel with better irradiation conditions, such as a higher thermal neutron fluence rate in the irradiation volume. In this experiment, lutetium was irradiated in a titanium capsule. The influence of the Ti capsule on the neutron spectrum was monitored using activation detectors. The choice of detectors was based on requirements for irradiation time and accurate determination of thermal neutrons. The following activation detectors were selected for measurement of the neutron spectrum: Ti, Fe, Ni, Co, Ag and W. (authors)

  18. Unfälle mit Pkw

    NASA Astrophysics Data System (ADS)

    Burg, Heinz

    Der Verkehrsunfall ereignete sich innerorts auf einer Kreuzung mit rechts vor links Regelung. Es galt dort die allgemeine Geschwindigkeitsbegrenzung auf 50 km/h. Zur Unfallzeit war es hell und trocken. Die Fahrbahn hatte eine Schwarzdecke.

  19. Twenty years of experience in monitoring 41Ar in a research reactor and decrease of its discharge into the environment.

    PubMed

    Fukui, M

    2004-04-01

    The radioactive gas 41Ar has been produced at high concentration by neutron activation near the reactor core in the Kyoto University Research Reactor. A pipe line for an exhaust stream, so-called sweep gas, was fabricated at the construction of the reactor in 1964 in order to exhale 41Ar from the facilities above to the environment. Other exhaust lines with decay tanks were established separately from the sweep line for both the cold neutron source in 1986 and the heavy-water tank in 1996, respectively, because a higher amount of 41Ar was thought to be produced from these facilities due to the improvement. As a result, a slight change in the flow rate of the exhaust was found to have a great deal of influence on both the 41Ar concentration in the reactor room and the rate of emission from the stack. By monitoring the exhaust air from the decay tanks, the mechanism for decreasing the emission was clarified together with identifying an obstacle, i.e., the condensate against the steady state flow, formed in the exhaust pipe. By setting the flow rate suitably in the exhaust line, the rate of 41Ar emission from the biological shielding into both the work place in the reactor room and the environment has been controlled as low as reasonably achievable.

  20. Technical aspects of boron neutron capture therapy at the BNL Medical Research Reactor

    SciTech Connect

    Holden, N.E.; Rorer, D.C.; Patti, F.J.; Liu, H.B.; Reciniello, R.; Chanana, A.D.

    1997-07-01

    The Brookhaven Medical Research Reactor, BMRR, is a 3 MW heterogeneous, tank-type, light water cooled and moderated, graphite reflected reactor, which was designed for biomedical studies. Early BNL work in Boron Neutron Capture Therapy (BNCT) used a beam of thermal neutrons for experimental treatment of brain tumors. Research elsewhere and at BNL indicated that higher energy neutrons would be required to treat deep seated brain tumors. Epithermal neutrons would be thermalized as they penetrated the brain and peak thermal neutron flux densities would occur at the depth of brain tumors. One of the two BMRR thermal port shutters was modified in 1988 to include plates of aluminum and aluminum oxide to provide an epithermal port. Lithium carbonate in polyethylene was added in 1991 around the bismuth port to reduce the neutron flux density coming from outside the port. To enhance the epithermal neutron flux density, the two vertical thimbles A-3 (core edge) and E-3 (in core) were replaced with fuel elements. There are now four fuel elements of 190 grams each and 28 fuel elements of 140 grams each for a total of 4.68 kg of {sup 235}U in the core. The authors have proposed replacing the epithermal shutter with a fission converter plate shutter. It is estimated that the new shutter would increase the epithermal neutron flux density by a factor of seven and the epithermal/fast neutron ratio by a factor of two. The modifications made to the BMRR in the past few years permit BNCT for brain tumors without the need to reflect scalp and bone flaps. Radiation workers are monitored via a TLD badge and a self-reading dosimeter during each experiment. An early concern was raised about whether workers would be subject to a significant dose rate from working with patients who have been irradiated. The gamma ray doses for the representative key personnel involved in the care of the first 12 patients receiving BNCT are listed. These workers did not receive unusually high exposures.

  1. Workstation-assisted education at MIT

    NASA Astrophysics Data System (ADS)

    Champine, George A.

    1992-06-01

    MIT launched a major new initiative called Project Athena in 1983 to improve the quality of education through the introduction of a high-quality computing infrastructure throughout the campus. Implementation of the Project Athena computing environment required eight years, cost about 100 million, and was sponsored by Digital Equipment and IBM in addition to MIT. The Athena computing environment is based almost entirely on workstations from these two vendors using the Unix operating system. Project Athena is now complete. The resulting computer system has been turned over to the campus computing organization for ongoing operation and maintenance. The computing environment available at MIT for education has been significantly improved. Students are graduating today that have never known life at MIT without the ubiquitous availability of high-quality computing. This article provides an overview of the initial objectives and strategies of Project Athena at MIT relative to its educational use. The specific strategies that MIT employed in the use of work-stations in educational are then described. These strategies are contrasted with other available strategies. Specific examples of the use of workstations are presented. An important element in current and future education delivery is multimedia. Athena in conjunction with the MIT Media Lab has one of the largest efforts in multimedia development of any of the universities, and MIT is using multimedia in education on a daily basis. A new laboratory, the Center for Educational Computing Initiatives, has been established with a major focus on multimedia. Finally the lessons learned from Athena relative to its primary objective — that of improving education — are reviewed.

  2. Photovoltaik Hybrid-Solarzellen mit Nanopartikeln

    NASA Astrophysics Data System (ADS)

    Leute, Angelika

    2004-09-01

    Die organische Photovoltaik auf der Basis halbleitender Polymere bietet eine kostengünstige Alternative zu Solarzellen aus Silizium. Allerdings weisen die organischen Materialien relativ schlechte Ladungstransporteigenschaften auf. Hybrid-Solarzellen, in denen Polymere mit geeigneten anorganischen Halbleitern kombiniert sind, besitzen einerseits die praktischen Vorteile der Organik und andererseits die hohe Elektronenbeweglichkeit der anorganischen Materialien. Wissenschaftler der Technischen Universität Eindhoven haben kürzlich Hybrid-Solarzellen vorgestellt, die aus einem halbleitenden Polymer mit Zinkoxid-Nanopartikeln bestehen.

  3. Neutronic and thermal-hydraulic analysis of new irradiation channels inside the Moroccan TRIGA Mark II research reactor core.

    PubMed

    Chham, E; El Bardouni, T; Benaalilou, K; Boukhal, H; El Bakkari, B; Boulaich, Y; El Younoussi, C; Nacir, B

    2016-10-01

    This study was conducted to improve the capacity of radioisotope production in the Moroccan TRIGA Mark II research reactor, which is considered as one of the most important applications of research reactors. The aim of this study is to enhance the utilization of TRIGA core in the field of neutron activation and ensure an economic use of the fuel. The main idea was to create an additional irradiation channel (IC) inside the core. For this purpose, three new core configurations are proposed, which differ according to the IC position in the core. Thermal neutron flux distribution and other neutronic safety parameters such as power peaking factors, excess reactivity, and control rods worth reactivity were calculated using the Monte Carlo N-Particle Transport (MCNP) code and neutron cross-section library based on ENDF/B-VII evaluation. The calculated thermal flux in the central thimble (CT) and in the added IC for the reconfigured core is compared with the thermal flux in the CT of the existing core, which is taken as a reference. The results show that all the obtained fluxes in CTs are very close to the reference value, while a remarkable difference is observed between the fluxes in the new ICs and reference. This difference depends on the position of IC in the reactor core. To demonstrate that the Moroccan TRIGA reactor could safely operate at 2MW, with new configurations based on new ICs, different safety-related thermal-hydraulic parameters were investigated. The PARET model was used in this study to verify whether the safety margins are met despite the new modifications of the core. The results show that it is possible to introduce new ICs safely in the reactor core, because the obtained values of the parameters are largely far from compromising the safety of the reactor. PMID:27552124

  4. Neutronic and thermal-hydraulic analysis of new irradiation channels inside the Moroccan TRIGA Mark II research reactor core.

    PubMed

    Chham, E; El Bardouni, T; Benaalilou, K; Boukhal, H; El Bakkari, B; Boulaich, Y; El Younoussi, C; Nacir, B

    2016-10-01

    This study was conducted to improve the capacity of radioisotope production in the Moroccan TRIGA Mark II research reactor, which is considered as one of the most important applications of research reactors. The aim of this study is to enhance the utilization of TRIGA core in the field of neutron activation and ensure an economic use of the fuel. The main idea was to create an additional irradiation channel (IC) inside the core. For this purpose, three new core configurations are proposed, which differ according to the IC position in the core. Thermal neutron flux distribution and other neutronic safety parameters such as power peaking factors, excess reactivity, and control rods worth reactivity were calculated using the Monte Carlo N-Particle Transport (MCNP) code and neutron cross-section library based on ENDF/B-VII evaluation. The calculated thermal flux in the central thimble (CT) and in the added IC for the reconfigured core is compared with the thermal flux in the CT of the existing core, which is taken as a reference. The results show that all the obtained fluxes in CTs are very close to the reference value, while a remarkable difference is observed between the fluxes in the new ICs and reference. This difference depends on the position of IC in the reactor core. To demonstrate that the Moroccan TRIGA reactor could safely operate at 2MW, with new configurations based on new ICs, different safety-related thermal-hydraulic parameters were investigated. The PARET model was used in this study to verify whether the safety margins are met despite the new modifications of the core. The results show that it is possible to introduce new ICs safely in the reactor core, because the obtained values of the parameters are largely far from compromising the safety of the reactor.

  5. Soil bed reactor work of the Environmental Research Lab. of the University of Arizona in support of the research and development of Biosphere 2

    NASA Technical Reports Server (NTRS)

    Frye, Robert

    1990-01-01

    Research at the Environmental Research Lab in support of Biosphere 2 was both basic and applied in nature. One aspect of the applied research involved the use of biological reactors for the scrubbing of trace atmospheric organic contaminants. The research involved a quantitative study of the efficiency of operation of Soil Bed Reactors (SBR) and the optimal operating conditions for contaminant removal. The basic configuration of a SBR is that air is moved through a living soil that supports a population of plants. Upon exposure to the soil, contaminants are either passively adsorbed onto the surface of soil particles, chemically transformed in the soil to usable compounds that are taken up by the plants or microbes as a metabolic energy source and converted to CO2 and water.

  6. Lewis Research Center's coal-fired, pressurized, fluidized-bed reactor test facility

    NASA Technical Reports Server (NTRS)

    Kobak, J. A.; Rollbuhler, R. J.

    1981-01-01

    A 200-kilowatt-thermal, pressurized, fluidized-bed (PFB) reactor, research test facility was designed, constructed, and operated as part of a NASA-funded project to assess and evaluate the effect of PFB hot-gas effluent on aircraft turbine engine materials that might have applications in stationary-power-plant turbogenerators. Some of the techniques and components developed for this PFB system are described. One of the more important items was the development of a two-in-one, gas-solids separator that removed 95+ percent of the solids in 1600 F to 1900 F gases. Another was a coal and sorbent feed and mixing system for injecting the fuel into the pressurized combustor. Also important were the controls and data-acquisition systems that enabled one person to operate the entire facility. The solid, liquid, and gas sub-systems all had problems that were solved over the 2-year operating time of the facility, which culminated in a 400-hour, hot-gas, turbine test.

  7. Characterization of commercially pure aluminum powder for research reactor fuel plates

    SciTech Connect

    Downs, V.D.; Wiencek, T.C.

    1992-11-01

    Aluminum powder is used as the matrix material in the production of uranium aluminide, oxide, and silicide dispersion fuel plates for research and test reactors. variability in the characteristics of the aluminum powder, such as moisture content and particle-size distribution, influences blending and compacting of the aluminum/fuel powder. A detailed study was performed to characterize the physical properties of three aluminum powder lots. An angle-of-shear test was devised to characterize the cohesiveness of the aluminum powder. Flow-rate measurements, apparent density determination, subsieve analysis, surface area measurements, and scanning electron microscopy were also used in the study. It was found that because of the various types of commercially available powders, proper specification of powder variables will ensure the receipt of consistent raw materials. Improved control of the initial powder will reduce the variability of fuel-plate production and will improve overall plate reproducibility. It is recommended that a standard specification be written for the aluminum powder and silicide fuel.

  8. Characterization of commercially pure aluminum powder for research reactor fuel plates

    SciTech Connect

    Downs, V.D. ); Wiencek, T.C. )

    1992-01-01

    Aluminum powder is used as the matrix material in the production of uranium aluminide, oxide, and silicide dispersion fuel plates for research and test reactors. variability in the characteristics of the aluminum powder, such as moisture content and particle-size distribution, influences blending and compacting of the aluminum/fuel powder. A detailed study was performed to characterize the physical properties of three aluminum powder lots. An angle-of-shear test was devised to characterize the cohesiveness of the aluminum powder. Flow-rate measurements, apparent density determination, subsieve analysis, surface area measurements, and scanning electron microscopy were also used in the study. It was found that because of the various types of commercially available powders, proper specification of powder variables will ensure the receipt of consistent raw materials. Improved control of the initial powder will reduce the variability of fuel-plate production and will improve overall plate reproducibility. It is recommended that a standard specification be written for the aluminum powder and silicide fuel.

  9. Neutron spectrum measurements in the aluminum oxide filtered beam facility at the Brookhaven Medical Research Reactor.

    PubMed

    Becker, G K; Harker, Y D; Miller, L G; Anderl, R A; Wheeler, F J

    1990-01-01

    Neutron spectrum measurements were performed on the aluminum oxide filter installed in the Brookhaven Medical Research Reactor (BMRR). For these measurements, activation foils were irradiated at the exit port of the beam facility. A technique based on dominant resonances in selected activation reactions was used to measure the epithermal neutron spectrum. The fast and intermediate-energy ranges of the neutron spectrum were measured by threshold reactions and 10B-shielded 235U fission reactions. Neutron spectral data were derived from the activation data by two approaches: (1) a short analysis which yields neutron flux values at the energies of the dominant or primary resonances in the epithermal activation reactions and integral flux data for neutrons above corresponding threshold or pseudo-threshold energies, and (2) the longer analysis which utilized all the activation data in a full-spectrum, unfolding process using the FERRET spectrum adjustment code. This paper gives a brief description of the measurement techniques, analysis methods, and the results obtained.

  10. Fricke-gel dosimetry in epithermal or thermal neutron beams of a research reactor

    NASA Astrophysics Data System (ADS)

    Gambarini, G.; Artuso, E.; Giove, D.; Volpe, L.; Agosteo, S.; Barcaglioni, L.; Campi, F.; Garlati, L.; Pola, A.; Durisi, E.; Borroni, M.; Carrara, M.; Klupak, V.; Marek, M.; Viererbl, L.; Vins, M.; d'Errico, F.

    2015-11-01

    Fricke-xylenol-orange gel has shown noticeable potentiality for in-phantom dosimetry in epithermal or thermal neutron fields with very high fluence rate, as those characteristic of nuclear research reactors. Fricke gels in form of layers give the possibility of achieving spatial distribution of gamma dose, fast neutron dose and dose due to charged particles generated by thermal neutron reactions. The thermal neutron fluence has been deduced from the dose coming from the charge particles emitted by neutron reactions with the isotope 10B. Some measurements have been performed for improving the information on the relative sensitivity of Fricke gel dosimeters to the particles produced by 10B reactions, because at present the precision of dose evaluations is limited by the scanty knowledge about the dependence of the dosimeter sensitivity on the radiation LET. For in-air measurements, the dosimeter material can produce an enhancement of thermal neutron fluence. Measurements and Monte Carlo calculations have been developed to investigate the importance of this effect.

  11. Design and construction of a thermal neutron beam for BNCT at Tehran Research Reactor.

    PubMed

    Kasesaz, Yaser; Khalafi, Hossein; Rahmani, Faezeh; Ezzati, Arsalan; Keyvani, Mehdi; Hossnirokh, Ashkan; Shamami, Mehrdad Azizi; Amini, Sepideh

    2014-12-01

    An irradiation facility has been designed and constructed at Tehran Research Reactor (TRR) for the treatment of shallow tumors using Boron Neutron Capture Therapy (BNCT). TRR has a thermal column which is about 3m in length with a wide square cross section of 1.2×1.2m(2). This facility is filled with removable graphite blocks. The aim of this work is to perform the necessary modifications in the thermal column structure to meet thermal BNCT beam criteria recommended by International Atomic Energy Agency. The main modifications consist of rearranging graphite blocks and reducing the gamma dose rate at the beam exit. Activation foils and TLD700 dosimeter have been used to measure in-air characteristics of the neutron beam. According to the measurements, a thermal flux is 5.6×10(8) (ncm(-2)s(-1)), a cadmium ratio is 186 for gold foils and a gamma dose rate is 0.57Gy h(-1).

  12. Utilization of coal fly ash in solidification of liquid radioactive waste from research reactor.

    PubMed

    Osmanlioglu, Ahmet Erdal

    2014-05-01

    In this study, the potential utilization of fly ash was investigated as an additive in solidification process of radioactive waste sludge from research reactor. Coal formations include various percentages of natural radioactive elements; therefore, coal fly ash includes various levels of radioactivity. For this reason, fly ashes have to be evaluated for potential environmental implications in case of further usage in any construction material. But for use in solidification of radioactive sludge, the radiological effects of fly ash are in the range of radioactive waste management limits. The results show that fly ash has a strong fixing capacity for radioactive isotopes. Specimens with addition of 5-15% fly ash to concrete was observed to be sufficient to achieve the target compressive strength of 20 MPa required for near-surface disposal. An optimum mixture comprising 15% fly ash, 35% cement, and 50% radioactive waste sludge could provide the solidification required for long-term storage and disposal. The codisposal of radioactive fly ash with radioactive sludge by solidification decreases the usage of cement in solidification process. By this method, radioactive fly ash can become a valuable additive instead of industrial waste. This study supports the utilization of fly ash in industry and the solidification of radioactive waste in the nuclear industry.

  13. High-density reduced-enrichment fuels for Research and Test Reactors

    SciTech Connect

    Snelgrove, J.L.; Hofman, G.L.; Copeland, G.L.

    1983-01-01

    Development and irradiation testing of high-density fuels have been conducted by the US RERTR Program in order to provide the technical means to reduce the enrichment of fuels for research and test reactors. The traditional aluminum dispersion fuel technology has been extended to include the highest practical loadings of uranium-aluminide (UAl/sub x/, 2.3 MgU/m/sup 3/), uranium-oxide (U/sub 3/O/sub 8/, 3.2 MgU/m/sup 3/), and uranium-silicide (U/sub 3/Si/sub 2/, 5.5 MgU/m/sup 3/; U/sub 3/Si, 7.0 MgU/m/sup 3/) fuels. A third uranium-silicide alloy, U/sub 3/SiAl (U + 3.5 wt % Si + 1.5 wt % Al) has been found to perform poorly at high burnup. Testing of miniature fuel plates and full-sized fuel elements is at an advanced stage for the highest loadings of the aluminide and oxide fuels and intermediate loadings of the silicide fuels, and good results have been obtained for low-enriched uranium. The data obtained to date are discussed. 1 reference, 3 figures, 1 table.

  14. Nickel Mirror And Supermirror Neutron Guide Tubes At The Kyoto University Research Reactor

    NASA Astrophysics Data System (ADS)

    Ebisawa, Toru; Akiyoshi, Tsunekazu; Tasaki, Seiji; Kawai, Takeshi; Achiwa, Norio; Utsuro, Masahiko; Okamoto, Sunao

    1989-01-01

    We installed the first nickel mirror neutron guide tube with a characteristic wavelength of 2.85 Å at Kyoto University research reactor(KUR, 5MW, cooled and moderated by light water) in 1973 and a supermirror guide tube with a characteristic wavelength of 1.17 Å in 1984, in order to get more intense thermal neutron beam. Four guide tubes are under construction at a cold neutron source installed in 1986. Two of them are supermirror type with a characteristic wavelength of 3 Å and the others are supermirror and Ni-mirror type with characteristic wavelengths of 6 Å and 23 Å, respectively. Supermirrors are made by automatically controlled vacuum deposition of nickel and titanium metal with electron gun. Their averaging reflectivity for the first supermirror guide tube are the following: The apparent critical wavelength, λ/θ, of reflection is 240 Å in term of wavelength(λ/θ) corresponding to the component of wave number perpendicular to the mirror surface. The reflectivity is 0.65 at the apparent critical wavelength and becomes higher with increasing neutron wavelength up to nearly unity for wavelength longer than 500 Å. Supermirror guide tubes are featured by more available neutrons with larger divergent angles and shorter length of the guide tubes. These features would bring us significant advantages depending on experimental requirements.

  15. INTERIM STORAGE AND LONG TERM DISPOSAL OF RESEARCH REACTOR SPENT FUEL

    SciTech Connect

    Vinson, D

    2006-08-22

    Aluminum clad research reactor spent nuclear fuel (SNF) is currently being consolidated in wet storage basins (pools). Approximately 20 metric tons (heavy metal) of aluminum-based spent nuclear fuel (Al-SNF) is being consolidated for treatment, packaging, interim storage, and preparation for ultimate disposal in a geologic repository. The storage and disposal of Al-SNF are subject to requirements that provide for safety and acceptable radionuclide release. The options studied for interim storage of SNF include wet storage and dry storage. Two options have also been studied to develop the technical basis for the qualification and repository disposal of aluminum spent fuel. The two options studied include Direct Disposal and Melt-Dilute treatment. The implementation of these options present relative benefits and challenges. Both the Direct Disposal and the Melt-Dilute treatment options have been developed and their technical viability assessed. Adaptation of the melt-dilute technology for the treatment of spent fuel offers the benefits of converting the spent fuel into a proliferation resistant form and/or significantly reducing the volume of the spent fuel. A Mobile Melt-Dilute system concept has emerged to realize these benefits and a prototype system developed. The application of the melt-dilute technology for the treatment of legacy nuclear materials has been evaluated and also offers the promise for the safe disposal of these materials.

  16. Expanding Local Capabilities for the Computational Analysis of the UMass Lowell Research Reactor

    NASA Astrophysics Data System (ADS)

    Pike, Michael

    In 2011 UMass Lowell received possession of fuel assemblies from Worcester Polytechnic Institute (WPI), whom recently suspended their nuclear program. In order to receive a license to use the fuel assemblies from WPI, it became necessary to update some of the computational tools used to support the UMass Lowell Research Reactor (UMLRR). It also became desirable to add some additional computational capabilities that were previously unavailable. This thesis covers the different projects undertaken to expand the computational tools used in support of the UMLRR. The thesis is broken into four major sections. The first section discusses the development of a Matlab-based fuel management system for the UMLRR VENTURE model. The second section addresses the derivation of an appropriate lumped fission product cross section used in UMLRR physics studies. The third section presents the calculation of moderator and fuel reactivity coefficients for the UMLRR. The fourth and final part of this thesis discusses the theory and implementation of the equations needed for the calculation of the effective kinetic parameters for the UMLRR that are needed for transient and safety analysis computations. Combined, these enhancements and new capabilities significantly improve the local computational framework for support of the UMLRR.

  17. Analysis of LOCA Scenarios in the NIST Research Reactor Before and After Fuel Conversion

    SciTech Connect

    Baek, J. S.; Cheng, L. Y.; Diamond, D.

    2015-08-30

    An analysis has been done of hypothetical loss-of-coolant-accidents (LOCAs) in the research reactor (NBSR) at the National Institute of Standards and Technology (NIST). The purpose of the analysis is to determine if the peak clad temperature remains below the Safety Limit, which is the blister temperature for the fuel. The configuration of the NBSR considered in the analysis is that projected for the future when changes will be made so that shutdown pumps do not operate when a LOCA signal is detected. The analysis was done for the present core with high-enriched uranium (HEU) fuel and with the proposed low-enriched uranium (LEU) fuel that would be used when the NBSR is converted from one to the other. The analysis consists of two parts. The first examines how the water would drain from the primary system following a break and the possibility for the loss of coolant from within the fuel element flow channels. This work is performed using the TRACE system thermal-hydraulic code. The second looks at the fuel clad temperature as a function of time given that the water may have drained from many of the flow channels and the water in the vessel is in a quasi-equilibrium state. The temperature behavior is investigated using the three-dimensional heat conduction code HEATING7.3. The results in all scenarios considered for both HEU and LEU fuel show that the peak clad temperature remains below the blister temperature.

  18. A feasibility study of the Tehran research reactor as a neutron source for BNCT.

    PubMed

    Kasesaz, Yaser; Khalafi, Hossein; Rahmani, Faezeh; Ezati, Arsalan; Keyvani, Mehdi; Hossnirokh, Ashkan; Shamami, Mehrdad Azizi; Monshizadeh, Mahdi

    2014-08-01

    Investigation on the use of the Tehran Research Reactor (TRR) as a neutron source for Boron Neutron Capture Therapy (BNCT) has been performed by calculating and measuring energy spectrum and the spatial distribution of neutrons in all external irradiation facilities, including six beam tubes, thermal column, and the medical room. Activation methods with multiple foils and a copper wire have been used for the mentioned measurements. The results show that (1) the small diameter and long length beam tubes cannot provide sufficient neutron flux for BNCT; (2) in order to use the medical room, the TRR core should be placed in the open pool position, in this situation the distance between the core and patient position is about 400 cm, so neutron flux cannot be sufficient for BNCT; and (3) the best facility which can be adapted for BNCT application is the thermal column, if all graphite blocks can be removed. The epithermal and fast neutron flux at the beginning of this empty column are 4.12×10(9) and 1.21×10(9) n/cm(2)/s, respectively, which can provide an appropriate neutron beam for BNCT by designing and constructing a proper Beam Shaping Assembly (BSA) structure.

  19. Utilization of coal fly ash in solidification of liquid radioactive waste from research reactor.

    PubMed

    Osmanlioglu, Ahmet Erdal

    2014-05-01

    In this study, the potential utilization of fly ash was investigated as an additive in solidification process of radioactive waste sludge from research reactor. Coal formations include various percentages of natural radioactive elements; therefore, coal fly ash includes various levels of radioactivity. For this reason, fly ashes have to be evaluated for potential environmental implications in case of further usage in any construction material. But for use in solidification of radioactive sludge, the radiological effects of fly ash are in the range of radioactive waste management limits. The results show that fly ash has a strong fixing capacity for radioactive isotopes. Specimens with addition of 5-15% fly ash to concrete was observed to be sufficient to achieve the target compressive strength of 20 MPa required for near-surface disposal. An optimum mixture comprising 15% fly ash, 35% cement, and 50% radioactive waste sludge could provide the solidification required for long-term storage and disposal. The codisposal of radioactive fly ash with radioactive sludge by solidification decreases the usage of cement in solidification process. By this method, radioactive fly ash can become a valuable additive instead of industrial waste. This study supports the utilization of fly ash in industry and the solidification of radioactive waste in the nuclear industry. PMID:24638274

  20. Technical basis in support of the conversion of the University of Missouri Research Reactor (MURR) core from highly-enriched to low-enriched uranium - core neutron physics

    SciTech Connect

    Stillman, J.; Feldman, E.; Foyto, L; Kutikkad, K; McKibben, J C; Peters, N.; Stevens, J.

    2012-09-01

    This report contains the results of reactor design and performance for conversion of the University of Missouri Research Reactor (MURR) from the use of highly-enriched uranium (HEU) fuel to the use of low-enriched uranium (LEU) fuel. The analyses were performed by staff members of the Global Threat Reduction Initiative (GTRI) Reactor Conversion Program at the Argonne National Laboratory (ANL) and the MURR Facility. The core conversion to LEU is being performed with financial support of the U. S. government.

  1. Light Water Reactor Sustainability Research and Development Program Plan -- Fiscal Year 2009–2013

    SciTech Connect

    Idaho National Laboratory

    2009-12-01

    Nuclear power has reliably and economically contributed almost 20% of electrical generation in the United States over the past two decades. It remains the single largest contributor (more than 70%) of non-greenhouse-gas-emitting electric power generation in the United States. By the year 2030, domestic demand for electrical energy is expected to grow to levels of 16 to 36% higher than 2007 levels. At the same time, most currently operating nuclear power plants will begin reaching the end of their 60-year operating licenses. If current operating nuclear power plants do not operate beyond 60 years, the total fraction of generated electrical energy from nuclear power will begin to decline—even with the expected addition of new nuclear generating capacity. The oldest commercial plants in the United States reached their 40th anniversary this year. U.S. regulators have begun considering extended operations of nuclear power plants and the research needed to support long-term operations. The Light Water Reactor Sustainability (LWRS) Research and Development (R&D) Program, developed and sponsored by the Department of Energy, is performed in close collaboration with industry R&D programs. The purpose of the LWRS R&D Program is to provide technical foundations for licensing and managing long-term, safe and economical operation of the current operating nuclear power plants. The LWRS R&D Program vision is captured in the following statements: Existing operating nuclear power plants will continue to safely provide clean and economic electricity well beyond their first license- extension period, significantly contributing to reduction of United States and global carbon emissions, enhancement of national energy security, and protection of the environment. There is a comprehensive technical basis for licensing and managing the long-term, safe, economical operation of nuclear power plants. Sustaining the existing operating U.S. fleet also will improve its international engagement

  2. Summary engineering description of underwater fuel storage facility for foreign research reactor spent nuclear fuel

    SciTech Connect

    Dahlke, H.J.; Johnson, D.A.; Rawlins, J.K.; Searle, D.K.; Wachs, G.W.

    1994-10-01

    This document is a summary description for an Underwater Fuel Storage Facility (UFSF) for foreign research reactor (FRR) spent nuclear fuel (SNF). A FRR SNF environmental Impact Statement (EIS) is being prepared and will include both wet and dry storage facilities as storage alternatives. For the UFSF presented in this document, a specific site is not chosen. This facility can be sited at any one of the five locations under consideration in the EIS. These locations are the Idaho National Engineering Laboratory, Savannah River Site, Hanford, Oak Ridge National Laboratory, and Nevada Test Site. Generic facility environmental impacts and emissions are provided in this report. A baseline fuel element is defined in Section 2.2, and the results of a fission product analysis are presented. Requirements for a storage facility have been researched and are summarized in Section 3. Section 4 describes three facility options: (1) the Centralized-UFSF, which would store the entire fuel element quantity in a single facility at a single location, (2) the Regionalized Large-UFSF, which would store 75% of the fuel element quantity in some region of the country, and (3) the Regionalized Small-UFSF, which would store 25% of the fuel element quantity, with the possibility of a number of these facilities in various regions throughout the country. The operational philosophy is presented in Section 5, and Section 6 contains a description of the equipment. Section 7 defines the utilities required for the facility. Cost estimates are discussed in Section 8, and detailed cost estimates are included. Impacts to worker safety, public safety, and the environment are discussed in Section 9. Accidental releases are presented in Section 10. Standard Environmental Impact Forms are included in Section 11.

  3. Advanced reactor safety research quarterly report, October-December 1982. Volume 24

    SciTech Connect

    1984-04-01

    This report describes progress in a number of activities dealing with current safety issues relevant to both light water reactors (LWRs) and breeder reactors. The work includes a broad range of experiments to simulate accidental conditions to provide the required data base to understand important accident sequences and to serve as a basis for development and verification of the complex computer simulation models and codes used in accident analysis and licensing reviews. Such a program must include the development of analytical models, verified by experiment, which can be used to predict reactor and safety system performance under a broad variety of abnormal conditions. Current major emphasis is focused on providing information to NRC relevant to (1) its deliberations and decisions dealing with severe LWR accidents and (2) its safety evaluation of the proposed Clinch River Breeder Reactor.

  4. Research on acceleration method of reactor physics based on FPGA platforms

    SciTech Connect

    Li, C.; Yu, G.; Wang, K.

    2013-07-01

    The physical designs of the new concept reactors which have complex structure, various materials and neutronic energy spectrum, have greatly improved the requirements to the calculation methods and the corresponding computing hardware. Along with the widely used parallel algorithm, heterogeneous platforms architecture has been introduced into numerical computations in reactor physics. Because of the natural parallel characteristics, the CPU-FPGA architecture is often used to accelerate numerical computation. This paper studies the application and features of this kind of heterogeneous platforms used in numerical calculation of reactor physics through practical examples. After the designed neutron diffusion module based on CPU-FPGA architecture achieves a 11.2 speed up factor, it is proved to be feasible to apply this kind of heterogeneous platform into reactor physics. (authors)

  5. Formulation and experimental evaluation of closed-form control laws for the rapid maneuvering of reactor neutronic power

    SciTech Connect

    Bernard, J.A. . Nuclear Reactor Lab.)

    1989-09-01

    This report describes both the theoretical development and the experimental evaluation of a novel, robust methodology for the time-optimal adjustment of a reactor's neutronic power under conditions of closed-loop digital control. Central to the approach are the MIT-SNL Period-Generated Minimum Time Control Laws' which determine the rate at which reactivity should be changed in order to cause a reactor's neutronic power to conform to a specified trajectory. Using these laws, reactor power can be safely raised by five to seven orders of magnitude in a few seconds. The MIT-SNL laws were developed to facilitate rapid increases of neutronic power on spacecraft reactors operating in an SDI environment. However, these laws are generic and have other applications including the rapid recovery of research and test reactors subsequent to an unanticipated shutdown, power increases following the achievement of criticality on commercial reactors, power adjustments on commercial reactors so as to minimize thermal stress, and automated startups. The work reported here was performed by the Massachusetts Institute of Technology under contract to the Sandia National Laboratories. Support was also provided by the US Department of Energy's Division of University and Industry Programs. The work described in this report is significant in that a novel solution to the problem of time-optimal control of neutronic power was identified, in that a rigorous description of a reactor's dynamics was derived in that the rate of change of reactivity was recognized as the proper control signal, and in that extensive experimental trials were conducted of these newly developed concepts on actual nuclear reactors. 43 refs., 118 figs., 11 tabs.

  6. [Research on change process of nitrosation granular sludge in continuous stirred-tank reactor].

    PubMed

    Yin, Fang-Fang; Liu, Wen-Ru; Wang, Jian-Fang; Wu, Peng; Shen, Yao-Liang

    2014-11-01

    In order to investigate the effect of different types of reactors on the nitrosation granular sludge, a continuous stirred-tank reactor (CSTR) was studied, using mature nitrosation granular sludge cultivated in sequencing batch reactor (SBR) as seed sludge. Results indicated that the change of reactor type and influent mode could induce part of granules to lose stability with gradual decrease in sludge settling ability during the initial period of operation. However, the flocs in CSTR achieved fast granulation in the following reactor operation. In spite of the changes of particle size distribution, e. g. the decreasing number of granules with diameter larger than 2.5 mm and the increasing number of granules with diameter smaller than 0.3 mm, granular sludge held the absolute predominance of sludge morphology in CSTR during the entire experimental period. Moreover, results showed that the change of reactor type and influent mode didn't affect the nitrite accumulation rate which was still kept at about 85% in effluent. Additionally, the average activity of the sludge in CSTR was stronger than that of the seed sludge, because the newly generated small particles in CSTR had higher specific reactive activity than the larger granules.

  7. The Development of Mobile Melt-Dilute Technology for the Treatment of Former Soviet Union Research Reactor Fuel

    SciTech Connect

    Adams, T.

    2003-10-09

    On-site application of the MMD process offers an economical method for converting weapons usable Former Soviet Union (FSU) High Enriched Uranium (HEU) research reactor fuel to a safe and secure Low Enriched Uranium (LEU) ingot. The objective of the MMD Project is to develop the mobile melt and dilute technology in preparation for active equipment deployment in the Newly Independent States (NIS) of the FSU.

  8. Evaluate the radioactivity along the central thimble hole of a decommissioned heavy water research reactor using TLD approach.

    PubMed

    Lee, Lun-Hui; Sher, Hai-Feng; Lu, I-Hsin; Pan, Lung-Kwang

    2012-04-01

    The radioactivity along the central thimble hole of a decommissioned heavy water research reactor, TRR, was evaluated using TLD approach. The decay radionuclide was verified to be Co-60. The dose along the TRR central thimble hole was detected and revised by performing an unfolding analysis. The revised data reduced to 70-90% of the original data (for example, the maximum dose rate was reduced from 6447 to 4831 mSv/h,) and were more reliable.

  9. Research and development on the application of advanced control technologies to advanced nuclear reactor systems: A US national perspective

    SciTech Connect

    White, J.D.; Monson, L.R.; Carrol, D.G.; Dayal, Y.; Argonne National Lab., IL; General Electric Co., San Jose, CA )

    1989-01-01

    Control system designs for nuclear power plants are becoming more advanced through the use of digital technology and automation. This evolution is taking place because of: (1) the limitations in analog based control system performance and maintenance and availability and (2) the promise of significant improvement in plant operation and availability due to advances in digital and other control technologies. Digital retrofits of control systems in US nuclear plants are occurring now. Designs of control and protection systems for advanced LWRs are based on digital technology. The use of small inexpensive, fast, large-capacity computers in these designs is the first step of an evolutionary process described in this paper. Under the sponsorship of the US Department of Energy (DOE), Oak Ridge National Laboratory, Argonne National Laboratory, GE Nuclear Energy and several universities are performing research and development in the application of advances in control theory, software engineering, advanced computer architectures, artificial intelligence, and man-machine interface analysis to control system design. The target plant concept for the work described in this paper is the Power Reactor Inherently Safe Module reactor (PRISM), an advanced modular liquid metal reactor concept. This and other reactor designs which provide strong passive responses to operational upsets or accidents afford good opportunities to apply these advances in control technology. 18 refs., 5 figs.

  10. Development of a New Transportation/Storage Cask System for Use by the DOE Russian Research Reactor Fuel Return Program

    SciTech Connect

    Michael J. Tyacke; Frantisek Svitak; Jiri Rychecky; Miroslav Picek; Alexey Smirnov; Sergey Komarov; Edward Bradley; Alexander Dudchenko; Konstantin Golubkin

    2007-10-01

    The United States, the Russian Federation, and the International Atomic Energy Agency (IAEA) have been working together on a program called the Russian Research Reactor Fuel Return (RRRFR) Program. The purpose of this program is to return Soviet or Russian-supplied high-enriched uranium (HEU) fuel, currently stored at Russian-designed research reactors throughout the world, to Russia. To accommodate transport of the HEU spent nuclear fuel (SNF), a new large-capacity transport/storage cask system was specially designed for handling and operations under the unique conditions at these research reactor facilities. This new cask system is named the ŠKODA VPVR/M cask. The design, licensing, testing, and delivery of this new cask system result from a significant international cooperative effort by several countries and involved numerous private and governmental organizations. This paper contains the following sections: 1) Introduction; 2) VPVR/M Cask Description; 3) Ancillary Equipment, 4) Cask Licensing; 5) Cask Demonstration and Operations; 6) IAEA Procurement, Quality Assurance Inspections, Fabrication, and Delivery; and, 7) Conclusions.

  11. Research and Development of High Temperature Light Water Cooled Reactor Operating at Supercritical-Pressure in Japan

    SciTech Connect

    Yoshiaki Oka; Katsumi Yamada

    2004-07-01

    This paper summarizes the status and future plans of research and development of the high temperature light water cooled reactor operating at supercritical-pressure in Japan. It includes; the concept development; material for the fuel cladding; water chemistry under supercritical pressure; thermal hydraulics of supercritical fluid; and the conceptual design of core and plant system. Elements of concept development of the once-through coolant cycle reactor are described, which consists of fuel, core, reactor and plant system, stability and safety. Material studies include corrosion tests with supercritical water loops and simulated irradiation tests using a high-energy transmission electron microscope. Possibilities of oxide dispersion strengthening steels for the cladding material are studied. The water chemistry research includes radiolysis and kinetics of supercritical pressure water, influence of radiolysis and radiation damage on corrosion and behavior on the interface between water and material. The thermal hydraulic research includes heat transfer tests of single tube, single rod and three-rod bundles with a supercritical Freon loop and numerical simulations. The conceptual designs include core design with a three-dimensional core simulator and sub-channel analysis, and balance of plant. (authors)

  12. Pressure Loss Predictions of the Reactor Simulator Subsystem at NASA Glenn Research Center

    NASA Technical Reports Server (NTRS)

    Reid, Terry V.

    2016-01-01

    Testing of the Fission Power System (FPS) Technology Demonstration Unit (TDU) is being conducted at NASA Glenn Research Center. The TDU consists of three subsystems: the reactor simulator (RxSim), the Stirling Power Conversion Unit (PCU), and the heat exchanger manifold (HXM). An annular linear induction pump (ALIP) is used to drive the working fluid. A preliminary version of the TDU system (which excludes the PCU for now) is referred to as the "RxSim subsystem" and was used to conduct flow tests in Vacuum Facility 6 (VF 6). In parallel, a computational model of the RxSim subsystem was created based on the computer-aided-design (CAD) model and was used to predict loop pressure losses over a range of mass flows. This was done to assess the ability of the pump to meet the design intent mass flow demand. Measured data indicates that the pump can produce 2.333 kg/sec of flow, which is enough to supply the RxSim subsystem with a nominal flow of 1.75 kg/sec. Computational predictions indicated that the pump could provide 2.157 kg/sec (using the Spalart-Allmaras (S?A) turbulence model) and 2.223 kg/sec (using the k- turbulence model). The computational error of the predictions for the available mass flow is ?0.176 kg/sec (with the S-A turbulence model) and -0.110 kg/sec (with the k- turbulence model) when compared to measured data.

  13. Accident Analysis for the NIST Research Reactor Before and After Fuel Conversion

    SciTech Connect

    Baek J.; Diamond D.; Cuadra, A.; Hanson, A.L.; Cheng, L-Y.; Brown, N.R.

    2012-09-30

    Postulated accidents have been analyzed for the 20 MW D2O-moderated research reactor (NBSR) at the National Institute of Standards and Technology (NIST). The analysis has been carried out for the present core, which contains high enriched uranium (HEU) fuel and for a proposed equilibrium core with low enriched uranium (LEU) fuel. The analyses employ state-of-the-art calculational methods. Three-dimensional Monte Carlo neutron transport calculations were performed with the MCNPX code to determine homogenized fuel compositions in the lower and upper halves of each fuel element and to determine the resulting neutronic properties of the core. The accident analysis employed a model of the primary loop with the RELAP5 code. The model includes the primary pumps, shutdown pumps outlet valves, heat exchanger, fuel elements, and flow channels for both the six inner and twenty-four outer fuel elements. Evaluations were performed for the following accidents: (1) control rod withdrawal startup accident, (2) maximum reactivity insertion accident, (3) loss-of-flow accident resulting from loss of electrical power with an assumption of failure of shutdown cooling pumps, (4) loss-of-flow accident resulting from a primary pump seizure, and (5) loss-of-flow accident resulting from inadvertent throttling of a flow control valve. In addition, natural circulation cooling at low power operation was analyzed. The analysis shows that the conversion will not lead to significant changes in the safety analysis and the calculated minimum critical heat flux ratio and maximum clad temperature assure that there is adequate margin to fuel failure.

  14. Low Level Radioactive Wastes Conditioning during Decommissioning of Salaspils Research Reactor

    SciTech Connect

    Abramenkova, G.; Klavins, M.; Abramenkovs, A.

    2008-01-15

    The decommissioning of Salaspils research reactor is connected with the treatment of 2200 tons different materials. The largest part of all materials ({approx}60 % of all dismantled materials) is connected with low level radioactive wastes conditioning activities. Dismantled radioactive materials were cemented in concrete containers using water-cement mortar. According to elaborated technology, the tritiated water (150 tons of liquid wastes from special canalization tanks) was used for preparation of water-cement mortar. Such approach excludes the emissions of tritiated water into environment and increases the efficiency of radioactive wastes management system for decommissioning of Salaspils research reactor. The Environmental Impact Assessment studies for Salaspils research reactor decommissioning (2004) and for upgrade of repository 'Radons' for decommissioning purposes (2005) induced the investigations of radionuclides release parameters from cemented radioactive waste packages. These data were necessary for implementation of quality assurance demands during conditioning of radioactive wastes and for safety assessment modeling for institutional control period during 300 years. Experimental studies indicated, that during solidification of water- cement samples proceeds the increase of temperature up to 81 deg. C. It is unpleasant phenomena since it can result in damage of concrete container due to expansion differences for mortar and concrete walls. Another unpleasant factor is connected with the formation of bubbles and cavities in the mortar structure which can reduce the mechanical stability of samples and increase the release of radionuclides from solidified cement matrix. The several additives, fly ash and PENETRON were used for decrease of solidification temperature. It was found, that addition of fly ash to the cement-water mortar can reduce the solidification temperature up to 62 deg. C. Addition of PENETRON results in increasing of solidification

  15. DESIGN AND LAYOUT CONCEPTS FOR COMPACT, FACTORY-PRODUCED, TRANSPORTABLE, GENERATION IV REACTOR SYSTEMS

    SciTech Connect

    Mynatt Fred R.; Townsend, L.W.; Williamson, Martin; Williams, Wesley; Miller, Laurence W.; Khan, M. Khurram; McConn, Joe; Kadak, Andrew C.; Berte, Marc V.; Sawhney, Rapinder; Fife, Jacob; Sedler, Todd L.; Conway, Larry E.; Felde, Dave K.

    2003-11-12

    The purpose of this research project is to develop compact (100 to 400 MWe) Generation IV nuclear power plant design and layout concepts that maximize the benefits of factory-based fabrication and optimal packaging, transportation and siting. The reactor concepts selected were compact designs under development in the 2000 to 2001 period. This interdisciplinary project was comprised of three university-led nuclear engineering teams identified by reactor coolant type (water, gas, and liquid metal) and a fourth Industrial Engineering team. The reactors included a Modular Pebble Bed helium-cooled concept being developed at MIT, the IRIS water-cooled concept being developed by a team led by Westinghouse Electric Company, and a Lead-Bismuth-cooled concept developed by UT. In addition to the design and layout concepts this report includes a section on heat exchanger manufacturing simulations and a section on construction and cost impacts of proposed modular designs.

  16. Collaborative Physical and Biological Dosimetry Studies for Neutron Capture Therapy at the RA-1 Research Reactor Facility

    SciTech Connect

    Nigg, D.W.; Schwint, A.E.; Hartwell, J.K.; Heber, E.M.; Trivillin, V.; Castillo, J.; Wentzeis, L.; Sloan, P.; Wemple, C.A.

    2004-10-04

    Initial physical dosimetry measurements have been completed using activation spectrometry and thermoluminiscent dosimeters to characterize the BNCT irradiation facility developed at the RA-1 research reactor operated by the Argentine National Atomic Energy Commission in Buenos Aires. Some biological scoping irradiations have also been completed using a small-animal (hamster) oral mucosa tumor model. Results indicate that the RA-1 neutron source produces useful dose rates but that some improvements in the initial configuration will be needed to optimize the spectrum for thermal-neutron BNCT research applications.

  17. Collaborative Physical and Biological Dosimetry Studies for Neutron Capture Therapy at the RA-1 Research Reactor Facility

    SciTech Connect

    David W. Nigg; Amanda E. Schwint; John K. Hartwell; Elisa M. Heber; Veronica Trivillin; Jorge Castillo; Luis Wentzeis; Patrick Sloan; Charles A. Wemple

    2004-10-01

    Initial physical dosimetry measurements have been completed using activation spectrometry and thermoluminiscent dosimeters to characterize the BNCT irradiation facility developed at the RA-1 research reactor operated by the Argentine National Atomic Energy Commission in Buenos Aires. Some biological scoping irradiations have also been completed using a small-animal (hamster) oral mucosa tumor model. Results indicate that the RA-1 neutron source produces useful dose rates but that some improvements in the initial configuration will be needed to optimize the spectrum for thermal-neutron BNCT research applications.

  18. Thermal Hydraulic Characteristics of Fuel Defects in Plate Type Nuclear Research Reactors

    SciTech Connect

    Bodey, Isaac T

    2014-05-01

    Turbulent flow coupled with heat transfer is investigated for a High Flux Isotope Reactor (HFIR) fuel plate. The Reynolds Averaged Navier-Stokes Models are used for fluid dynamics and the transfer of heat from a thermal nuclear fuel plate using the Multi-physics code COMSOL. Simulation outcomes are compared with experimental data from the Advanced Neutron Source Reactor Thermal Hydraulic Test Loop. The computational results for the High Flux Isotope Reactor core system provide a more physically accurate simulation of this system by modeling the turbulent flow field in conjunction with the diffusion of thermal energy within the solid and fluid phases of the model domain. Recommendations are made regarding Nusselt number correlations and material properties for future thermal hydraulic modeling efforts

  19. Evaluation of integral continuing experimental capability (CEC) concepts for light water reactor research: PWR scaling concepts

    SciTech Connect

    Condie, K G; Larson, T K; Davis, C B; McCreery, G E

    1987-02-01

    In this report reactor transients and thermal-hydraulic phenomena of importance (based on probabilistic risk assessment and the International Code Assessment Program) to reactor safety were examined and identified. Established scaling methodologies were used to develop potential concepts for integral thermal-hydraulic testing facilities. Advantages and disadvantages of each concept are evaluated. Analysis is conducted to examine the scaling of various phenomena in each of the selected concepts. Results generally suggest that a facility capable of operating at typical reactor operating conditions will scale most phenomena reasonably well. Although many phenomena in facilities using Freon or water at nontypical pressure will scale reasonably well, those phenomena that are heavily dependent on quality (heat transfer or critical flow for example) can be distorted. Furthermore, relation of data produced in facilities operating with nontypical fluids or at nontypical pressures to large plants will be a difficult and time consuming process.

  20. Reactor-safety research programs. Quarterly report, July-September 1982

    SciTech Connect

    Edler, S.K.

    1983-03-01

    Evaluations of nondestructive examination (NDE) techniques and instrumentation are reported; areas of investigation include demonstrating the feasibility of determining the strength of structural graphite, evaluating the feasibility of detecting and analyzing flaw growth in reactor pressure boundary systems, examining NDE reliability and probabilistic fracture mechanics, and assessing the integrity of pressurized water reactor steam generator tubes where service-induced degradation has been indicated. Experimental data and analytical models are being provided to aid in decision-making regarding pipe-to-pipe impacts following postulated breaks in high-energy fluid system piping. Core thermal models are being developed to provide better digital codes to compute the behavior of full-scale reactor systems under postulated accident conditions.

  1. Reactor-safety research programs. Quarterly report, October-December 1982. Volume 4

    SciTech Connect

    Edler, S.K.

    1983-04-01

    Evaluations of nondestructive examination (NDE) techniques and instrumentation are reported; areas of investigation include demonstrating the feasibility of determining the strength of structural graphite, evaluating the feasibility of detecting and analyzing flaw growth in reactor pressure boundary systems, examining NDE reliability and probabilistic fracture mechanics, and assessing the integrity of pressurized-water-reactor steam-generator tubes where service-induced degradation has been indicated. Experimental data and analytical models are being provided to aid in decision making regarding pipe-to-pipe impacts following postulated breaks in high-energy fluid system piping. Core thermal models being developed to provide better digital codes to compute the bahavior of full-scale reactor systems under postulated accident conditions. Fuel assemblies and analytical support are being provided for experimental programs at other facilities.

  2. Safety evaluation report related to the renewal of the operating license for the research reactor at North Carolina State University

    SciTech Connect

    1997-04-01

    This safety evaluation report (SER) summarizes the findings of a safety review conducted by the staff of the U.S. Nuclear Regulatory Commission (NRC), Office of Nuclear Reactor Regulation (NRR). The staff conducted this review in response to a timely application filed by North Carolina State University (the licensee or NCSU) for a 20-year renewal of Facility Operating License R-120 to continue to operate the NCSU PULSTAR research reactor. The facility is located in the Burlington Engineering Laboratory complex on the NCSU campus in Raleigh, North Carolina. In its safety review, the staff considered information submitted by the licensee (including past operating history recorded in the licensee`s annual reports to the NRC), as well as inspection reports prepared by NRC Region H personnel and first-hand observations. On the basis of this review, the staff concludes that NCSU can continue to operate the PULSTAR research reactor, in accordance with its application, without endangering the health and safety of the public. 16 refs., 31 figs., 7 tabs.

  3. Research on soybean protein wastewater treatment by the integrated two-phase anaerobic reactor

    PubMed Central

    Yu, Yaqin

    2015-01-01

    The start-up tests of treating soybean protein wastewater by the integrated two-phase anaerobic reactor were studied. The results showed that the soybean protein wastewater could be successfully processed around 30 days when running under the situation of dosing seed sludge with the influent of approximately 2000 mg/L and an HRT of 40 h. When the start-up was finished, the removal rate of COD by the reactor was about 80%. In the zone I, biogas mainly revealed carbon dioxide (CO2) and hydrogen (H2). Methane was the main component in the zone 2 which ranged from 53% to 59% with an average of 55%. The methane content in biogas increased from the zone I to II. It indicated that the methane-producing capacity of the anaerobic sludge increased. It was found that the uniquely designed two-phase integrated anaerobic reactor played a key role in treating soybean protein wastewater. The acidogenic fermentation bacteria dominated in the zone I, while methanogen became dominant in the zone II. It realized the relatively effective separation of hydrolysis acidification and methanogenesis process in the reactor, which was benefit to promote a more reasonable space distribution of the microbial communities in the reactor. There were some differences between the activities of the sludge in the two reaction zones of the integrated two-phase anaerobic reactor. The activity of protease was higher in the reaction zone I. And the coenzyme F420 in the reaction zone II was twice than that in the reaction zone I, which indicated that the activity of the methanogens was stronger in the reaction zone II. PMID:26288554

  4. Lessons Learned from Sandia National Laboratories' Operational Readiness Review of the Annular Core Research Reactor (ACRR)

    SciTech Connect

    Bendure, Albert O.; Bryson, James W.

    1999-05-17

    The Sandia ACRR (a Hazard Category 2 Nuclear Reactor Facility) was defueled in June 1997 to modify the reactor core and control system to produce medical radioisotopes for the Department of Energy (DOE) Isotope Production Program. The DOE determined that an Operational Readiness Review (ORR) was required to confirm readiness to begin operations within the revised safety basis. This paper addresses the ORR Process, lessons learned from the Sandia and DOE ORRS of the ACRR, and the use of the ORR to confirm authorization basis implementation.

  5. Characteristics of the MIT microwiggler for free electron laser applications

    SciTech Connect

    Catravas, P.; Stoner, R.; Bekefi, G.

    1995-12-31

    We report work on the development of microwiggler technology for free electron laser research. The MIT microwiggler is a pulsed electromagnet with 70 periods of 8.8 mm each which generates a peak on-axis field of 4.2 kG. The wiggler is characterized by extensive tunability. We developed a novel tuning regimen to control 140 degrees of freedom afforded by the individually tunable half periods and achieved an rms spread in the peak amplitudes of 0.08%. This is the lowest attained to date in any sub-cm period wiggler. The microwiggler design and comprehensive measurements of its characteristics will be described.

  6. Fluoride-Salt-Cooled High-Temperature Reactor (FHR) for Power and Process Heat

    SciTech Connect

    Forsberg, Charles; Hu, Lin-wen; Peterson, Per; Sridharan, Kumar

    2015-01-21

    In 2011 the U.S. Department of Energy through its Nuclear Energy University Program (NEUP) awarded a 3- year integrated research project (IRP) to the Massachusetts Institute of Technology (MIT) and its partners at the University of California at Berkeley (UCB) and the University of Wisconsin at Madison (UW). The IRP included Westinghouse Electric Company and an advisory panel chaired by Regis Matzie that provided advice as the project progressed. The first sentence of the proposal stated the goals: The objective of this Integrated Research Project (IRP) is to develop a path forward to a commercially viable salt-cooled solid-fuel high-temperature reactor with superior economic, safety, waste, nonproliferation, and physical security characteristics compared to light-water reactors. This report summarizes major results of this research.

  7. Neutron spectrum measurements at a radial beam port of the NUR research reactor using a Bonner spheres spectrometer.

    PubMed

    Mazrou, H; Nedjar, A; Seguini, T

    2016-08-01

    This paper describes the measurement campaign held around the neutron radiography (NR) facility of the Algerian 1MW NUR research reactor. The main objective of this work is to characterize accurately the neutron beam provided at one of the radial channels of the NUR research reactor taking benefit of the acquired CRNA Bonner spheres spectrometer (BSS). The specific objective was to improve the image quality of the NR facility. The spectrometric system in use is based on a central spherical (3)He thermal neutron proportional counter combined with high density polyethylene spheres of different diameters ranging from 3 to 12in. This counting system has good gamma ray discrimination and is able to cover an energy range from thermal to 20MeV. The measurements were performed at the sample distance of 0.6m from the beam port and at a height of 1.2m from the facility floor. During the BSS measurements, the reactor was operating at low power (100W) to avoid large dead times, pulse pileup and high level radiation exposures, in particular, during spheres handling. Thereafter, the neutron spectrum at the sample position was unfolded by means of GRAVEL and MAXED computer codes. The thermal, epithermal and fast neutron fluxes, the total neutron flux, the mean energy and the Cadmium ratio (RCd) were provided. A sensitivity analysis was performed taking into account various defaults spectra and ultimately a different response functions in the unfolding procedure. Overall, from the obtained results it reveals, unexpectedly, that the measured neutron spectrum at the sample position of the neutron radiography of the NUR reactor is being harder with a predominance of fast neutrons (>100keV) by about 60%. Finally, those results were compared to previous and more recent measurements obtained by activation foils detectors. The agreement was fairly good highlighting thereby the consistency of our findings. PMID:27203706

  8. Neutron spectrum measurements at a radial beam port of the NUR research reactor using a Bonner spheres spectrometer.

    PubMed

    Mazrou, H; Nedjar, A; Seguini, T

    2016-08-01

    This paper describes the measurement campaign held around the neutron radiography (NR) facility of the Algerian 1MW NUR research reactor. The main objective of this work is to characterize accurately the neutron beam provided at one of the radial channels of the NUR research reactor taking benefit of the acquired CRNA Bonner spheres spectrometer (BSS). The specific objective was to improve the image quality of the NR facility. The spectrometric system in use is based on a central spherical (3)He thermal neutron proportional counter combined with high density polyethylene spheres of different diameters ranging from 3 to 12in. This counting system has good gamma ray discrimination and is able to cover an energy range from thermal to 20MeV. The measurements were performed at the sample distance of 0.6m from the beam port and at a height of 1.2m from the facility floor. During the BSS measurements, the reactor was operating at low power (100W) to avoid large dead times, pulse pileup and high level radiation exposures, in particular, during spheres handling. Thereafter, the neutron spectrum at the sample position was unfolded by means of GRAVEL and MAXED computer codes. The thermal, epithermal and fast neutron fluxes, the total neutron flux, the mean energy and the Cadmium ratio (RCd) were provided. A sensitivity analysis was performed taking into account various defaults spectra and ultimately a different response functions in the unfolding procedure. Overall, from the obtained results it reveals, unexpectedly, that the measured neutron spectrum at the sample position of the neutron radiography of the NUR reactor is being harder with a predominance of fast neutrons (>100keV) by about 60%. Finally, those results were compared to previous and more recent measurements obtained by activation foils detectors. The agreement was fairly good highlighting thereby the consistency of our findings.

  9. Radiation Dosimetry in the BNCT Patient Treatment Room at the Brookhaven Medical Research Reactor

    SciTech Connect

    Holden,N.; Reciniello, R.; Hu, J.

    2006-01-01

    The BMRR was a 3 MW light water reactor that had an epithermal neutron beam that was used to perform clinical trials on patients with malignant brain tumors. A series of measurements and calculations had been performed in the treatment room both prior to the trials and during the trials. The details of the measurements and the Monte Carlo calculations are presented and compared.

  10. Effects of Water Radiolysis in Water Cooled Reactors - Nuclear Energy Research Initiative (NERI) Program

    SciTech Connect

    S. M. Pimblott

    2000-10-01

    OAK B188 Quarterly Progress Report on NERI Proposal No.99-0010 for the Development of an Experiment and Calculation Based Model to Describe the Effects of Radiation on Non-standard Aqueous Systems Like Those Encountered in the Advanced Light Water Reactor

  11. Gaseous-fuel nuclear reactor research for multimegawatt power in space

    NASA Technical Reports Server (NTRS)

    Thom, K.; Schneider, R. T.; Helmick, H. H.

    1977-01-01

    In the gaseous-fuel reactor concept, the fissile material is contained in a moderator-reflector cavity and exists in the form of a flowing gas or plasma separated from the cavity walls by means of fluid mechanical forces. Temperatures in excess of structural limitations are possible for low-specific-mass power and high-specific-impulse propulsion in space. Experiments have been conducted with a canister filled with enriched UF6 inserted into a beryllium-reflected cavity. A theoretically predicted critical mass of 6 kg was measured. The UF6 was also circulated through this cavity, demonstrating stable reactor operation with the fuel in motion. Because the flowing gaseous fuel can be continuously processed, the radioactive waste in this type of reactor can be kept small. Another potential of fissioning gases is the possibility of converting the kinetic energy of fission fragments directly into coherent electromagnetic radiation, the nuclear pumping of lasers. Numerous nuclear laser experiments indicate the possibility of transmitting power in space directly from fission energy. The estimated specific mass of a multimegawatt gaseous-fuel reactor power system is from 1 to 5 kg/kW while the companion laser-power receiver station would be much lower in specific mass.

  12. Advanced reactor safety research. Quarterly report, April-June 1982. Volume 22

    SciTech Connect

    1983-10-01

    Overall objective of this work is to provide NRC a comprehensive data base essential to (1) defining key safety issues, (2) understanding risk-significant accident sequences, (3) developing and verifying models used in safety assessments, and (4) assuring the public that power reactor systems will not be licensed and placed in commercial service in the United States without appropriate consideration being given to their effects on health and safety. This report describes progress in a number of activities dealing with current safety issues relevant to both light water and breeder reactors. The work includes a broad range of experiments to simulate accidental conditions to provide the required data base to understand important accident sequences and to serve as a basis for development and verification of the complex computer simulation models and codes used in accident analysis and licensing reviews. Such a program must include the development of analytical models, verified by experiment, which can be used to predict reactor and safety system performance under a broad variety of abnormal conditions. Current major emphasis is focused on providing information to NRC relevant to (1) its deliberations and decisions dealing with severe LWR accidents, and (2) its safety evaluation of the proposed Clinch River Breeder Reactor.

  13. [Experimental research on combined water and air backwashing reactor technology for biological activated carbon].

    PubMed

    Xie, Zhi-Gang; Qiu, Xue-Min; Zhao, Yan-Ling

    2012-01-01

    To proper control the backwashing process of biological activated carbon (BAC) reactor and improve the overall operation performance, the evaluative indexes such as backwashing wastewater turbidity, organic pollutants removal rate of pre and post-backwashing, and the variation of biomass and biological activity in carbon column are used to compare and analyze the effect of three different combined water and air backwashing methods on the operation of BAC reactor. The result shows that intermittent combined water and air backwashing method is most suitable to BAC reactor. The biological activaty obviously increases by 62.5% after intermittent combined water and air backwashing process. While, the biological activaty using the backwashing method of air plus water and the backwashing method of water and air compounded plus water washing increases by 55.6%, 38.5%, respectively. After backwashing 308h, the reactor recovered to its normal function after intermittent combined water and air backwashing process with the removal rate of UV254 reaching to 60.0%. The fulvic-like fluorescence peak of backwashing water are very weak, and are characterized by low-excitation wavelength tryptophan like (peak S) and high excitation wavelength of tryptophan (peak T), which are caused by the microbial debris washed down. The three-dimensional fluorescence spectra also show that microbial fragments are easy to be washed clean with intermittent combined water and air backwashing. PMID:22452199

  14. [Experimental research on combined water and air backwashing reactor technology for biological activated carbon].

    PubMed

    Xie, Zhi-Gang; Qiu, Xue-Min; Zhao, Yan-Ling

    2012-01-01

    To proper control the backwashing process of biological activated carbon (BAC) reactor and improve the overall operation performance, the evaluative indexes such as backwashing wastewater turbidity, organic pollutants removal rate of pre and post-backwashing, and the variation of biomass and biological activity in carbon column are used to compare and analyze the effect of three different combined water and air backwashing methods on the operation of BAC reactor. The result shows that intermittent combined water and air backwashing method is most suitable to BAC reactor. The biological activaty obviously increases by 62.5% after intermittent combined water and air backwashing process. While, the biological activaty using the backwashing method of air plus water and the backwashing method of water and air compounded plus water washing increases by 55.6%, 38.5%, respectively. After backwashing 308h, the reactor recovered to its normal function after intermittent combined water and air backwashing process with the removal rate of UV254 reaching to 60.0%. The fulvic-like fluorescence peak of backwashing water are very weak, and are characterized by low-excitation wavelength tryptophan like (peak S) and high excitation wavelength of tryptophan (peak T), which are caused by the microbial debris washed down. The three-dimensional fluorescence spectra also show that microbial fragments are easy to be washed clean with intermittent combined water and air backwashing.

  15. Twenty-second water reactor safety information meeting. Volume 2: Severe accident research, thermal hydraulic research for advanced passive LWRs, high-burnup fuel behavior

    SciTech Connect

    Monteleone, S.

    1995-04-01

    This three-volume report contains papers presented at the Twenty-Second Water Reactor Safety Information Meeting held at the Bethesda Marriott Hotel, Bethesda, Maryland, during the week of October 24-26, 1994. The papers are printed in the order of their presentation in each session and describe progress and results of programs in nuclear safety research conducted in this country and abroad. Foreign participation in the meeting included papers presented by researchers from Finland, France, Italy, Japan, Russia, and United Kingdom. The titles of the papers and the names of the authors have been updated and may differ from those that appeared in the final program of the meeting.

  16. Wrestling with Pedagogical Change: The TEAL Initiative at MIT

    ERIC Educational Resources Information Center

    Breslow, Lori

    2010-01-01

    In the late 1990s, the physics department at the Massachusetts Institute of Technology (MIT) had a problem. The department was responsible for teaching the two required physics courses that are part of the General Institute Requirements (GIRs), MIT's core curriculum--Physics I (mechanics, or in MIT parlance, 8.01) and Physics II (electricity and…

  17. High-temperature gas-cooled reactor safety studies for the Division of Reactor Safety Research. Quarterly progress report, July 1-September 30, 1981

    SciTech Connect

    Ball, S.J.; Cleveland, J.C.; Conklin, J.C.; Harrington, R.M.

    1982-01-01

    Development work continued on the accident dynamics simulation codes ORTAP, BLAST, and ORECA for the Fort St. Vrain (FSV) reactor. New steam line and main steam bypass system models were developed and incorporated into ORTAP. An initial simulation of the FSV prestressed concrete reactor vessel and liner cooling system was developed and tested for use in the severe accident sequence analysis task.

  18. Study of coolant activation and dose rates with flow rate and power perturbations in pool-type research reactors

    SciTech Connect

    Mirza, N.M.; Mirza, S.M.; Ahmad, N. )

    1991-12-01

    This paper reports on a computer code using the multigroup diffusion theory based LEOPARD and ODMUG programs that has been developed to calculate the activity in the coolant leaving the core of a pool-type research reactor. Using this code, the dose rates at various locations along the coolant path with varying coolant flow rate and reactor power perturbations are determined. A flow rate decrease from 1000 to 145 m{sup 3}/h is considered. The results indicate that a flow rate decrease leads to an increase in the coolant outlet temperature, which affects the neutron group constants and hence the group fluxes. The activity in the coolant leaving the core increases with flow rate decrease. However, at the inlet of the holdup tank, the total dose rate first increases, then passes through a maximum at {approximately} 500 m{sup 3}/h, and finally decreases with flow rate decrease. The activity at the outlet of the holdup tank is mainly due to {sup 24}Na and {sup 56}Mn, and it increases by {approximately} 2% when the flow rate decreases from 1000 to 145 m{sup 3}/h. In an accidental power rise at constant flow rate, the activity in the coolant increases, and the dose rates at all the points along the coolant path show a slight nonlinear rise as the reactor power density increases.

  19. Monte-Carlo calculations for the development of a BNCT neutron source at the Kyiv Research Reactor.

    PubMed

    Gritzay, O O; Kalchenko, O I; Klimova, N A; Razbudey, V F; Sanzhur, A I; Binney, S E

    2004-11-01

    The results presented in this paper display our continuing steps toward development of a neutron source with parameters required by boron neutron capture therapy (BNCT) at the Kyiv Research Reactor (KRR). The purpose of this work was: 1. calculation of the neutron flux which can be achieved at the greatest possible approach of a patient to the reactor core; 2. analysis of the influence of a nickel collimator and a nickel-60 filter on the characteristics of the neutron beam; 3. creation and validation of the MCNP calculational pattern for an actual core fuel load in the KRR. Results of calculations were carried out by means of the MCNP4C code included: 1. An epithermal neutron flux of 3x10(9)-5x10(9)neutron/cm(2)s with an epithermal-to-fast flux ratio of 80-230 could be obtained at the KRR, using a natural nickel layer on the interior borated polyethylene collimator wall and a (60)Ni filter. 2. Use of the (60)Ni filter may be useful to increase the ratio epithermal-to-fast flux without a substantial decrease in the magnitude of the epithermal neutron flux. 3. The MCNP model proposed in this paper could also be useful for reactor safety calculations.

  20. Non-destructive research methods applied on materials for the new generation of nuclear reactors

    NASA Astrophysics Data System (ADS)

    Bartošová, I.; Slugeň, V.; Veterníková, J.; Sojak, S.; Petriska, M.; Bouhaddane, A.

    2014-06-01

    The paper is aimed on non-destructive experimental techniques applied on materials for the new generation of nuclear reactors (GEN IV). With the development of these reactors, also materials have to be developed in order to guarantee high standard properties needed for construction. These properties are high temperature resistance, radiation resistance and resistance to other negative effects. Nevertheless the changes in their mechanical properties should be only minimal. Materials, that fulfil these requirements, are analysed in this work. The ferritic-martensitic (FM) steels and ODS steels are studied in details. Microstructural defects, which can occur in structural materials and can be also accumulated during irradiation due to neutron flux or alpha, beta and gamma radiation, were analysed using different spectroscopic methods as positron annihilation spectroscopy and Barkhausen noise, which were applied for measurements of three different FM steels (T91, P91 and E97) as well as one ODS steel (ODS Eurofer).

  1. Research at ITER towards DEMO: Specific reactor diagnostic studies to be carried out on ITER

    SciTech Connect

    Krasilnikov, A. V.; Kaschuck, Y. A.; Vershkov, V. A.; Petrov, A. A.; Petrov, V. G.; Tugarinov, S. N.

    2014-08-21

    In ITER diagnostics will operate in the very hard radiation environment of fusion reactor. Extensive technology studies are carried out during development of the ITER diagnostics and procedures of their calibration and remote handling. Results of these studies and practical application of the developed diagnostics on ITER will provide the direct input to DEMO diagnostic development. The list of DEMO measurement requirements and diagnostics will be determined during ITER experiments on the bases of ITER plasma physics results and success of particular diagnostic application in reactor-like ITER plasma. Majority of ITER diagnostic already passed the conceptual design phase and represent the state of the art in fusion plasma diagnostic development. The number of related to DEMO results of ITER diagnostic studies such as design and prototype manufacture of: neutron and γ–ray diagnostics, neutral particle analyzers, optical spectroscopy including first mirror protection and cleaning technics, reflectometry, refractometry, tritium retention measurements etc. are discussed.

  2. Research at ITER towards DEMO: Specific reactor diagnostic studies to be carried out on ITER

    NASA Astrophysics Data System (ADS)

    Krasilnikov, A. V.; Kaschuck, Y. A.; Vershkov, V. A.; Petrov, A. A.; Petrov, V. G.; Tugarinov, S. N.

    2014-08-01

    In ITER diagnostics will operate in the very hard radiation environment of fusion reactor. Extensive technology studies are carried out during development of the ITER diagnostics and procedures of their calibration and remote handling. Results of these studies and practical application of the developed diagnostics on ITER will provide the direct input to DEMO diagnostic development. The list of DEMO measurement requirements and diagnostics will be determined during ITER experiments on the bases of ITER plasma physics results and success of particular diagnostic application in reactor-like ITER plasma. Majority of ITER diagnostic already passed the conceptual design phase and represent the state of the art in fusion plasma diagnostic development. The number of related to DEMO results of ITER diagnostic studies such as design and prototype manufacture of: neutron and γ-ray diagnostics, neutral particle analyzers, optical spectroscopy including first mirror protection and cleaning technics, reflectometry, refractometry, tritium retention measurements etc. are discussed.

  3. Reactor pressure vessel structural integrity research in the US Nuclear Regulatory Commission HSST and HSSI Programs

    SciTech Connect

    Pennell, W.E.; Corwin, W.R.

    1994-02-01

    This report discusses development on the technology used to assess the safety of irradiation-embrittled nuclear reactor pressure vessels containing flaws. Fracture mechanics tests on reactor pressure vessel steel have shown that local brittle zones do not significantly degrade the material fracture toughness, constraint relaxation at the crack tip of shallow surface flaws results in increased fracture toughness, and biaxial loading reduces but does not eliminate the shallow-flaw fracture toughness elevation. Experimental irradiation investigations have shown that the irradiation-induced shift in Charpy V-notch versus temperature behavior may not be adequate to conservatively assess fracture toughness shifts due to embrittlement and the wide global variations of initial chemistry and fracture properties of a nominally uniform material within a pressure vessel may confound accurate integrity assessments that require baseline properties.

  4. Reactor safety research programs. Quarterly report, April-June 1983. Vol. 2

    SciTech Connect

    Edler, S.K.

    1983-12-01

    This document summarizes work performed by Pacific Northwest Laboratory from April 1 through June 30, 1983, for the Division of Accident Evaluation and the Division of Engineering Technology, US Nuclear Regulatory Commission. Evaluations of nondestructive examination (NDE) techniques and instrumentation are reported; areas of investigation include demonstrating the feasibility of determining the strength of structural graphite, evaluating the feasibility of detecting and analyzing flaw growth in reactor pressure boundary systems, examining NDE reliability and probabilistic fracture mechanics, and assessing the integrity of pressurized water reactor steam generator tubes where service-induced degradation has been indicated. Experimental data and analytical models are being provided to aid in decision making regarding pipe-to-pipe impacts following postulated breaks in high-energy fluid system piping. Experimental data and validated models are being used to determine a method for evaluating the acceptance of welded or weld-repaired stainless steel piping. Core thermal models are being developed to provide better digital codes to compute the behavior or full-scale reactor systems under postulated accident conditions. High-temperature materials property tests are being conducted to provide data on severe core damage fuel behavior. Severe fuel damage accident tests are being conducted at the NRU reactor, Chalk River, Canada; and an instrumented fuel assembly irradiation program is being performed at Halden, Norway. Fuel assemblies and analytical support are being provided for experimental programs at other facilities, including fuel rod deformation and severe fuel damage tests for the Super Sara Test Program, Ispra, Italy; and experimental programs at the Power Burst Facility, Idaho National Engineering Laboratory, Idaho Falls, Idaho.

  5. Loss-of-Flow and Loss-of-Pressure Simulations of the BR2 Research Reactor with HEU and LEU Fuel

    SciTech Connect

    Licht, J.; Bergeron, A.; Dionne, B.; Sikik, E.; Van den Branden, G.; Koonen, E.

    2016-01-01

    Belgian Reactor 2 (BR2) is a research and test reactor located in Mol, Belgium and is primarily used for radioisotope production and materials testing. The Materials Management and Minimization (M3) Reactor Conversion Program of the National Nuclear Security Administration (NNSA) is supporting the conversion of the BR2 reactor from Highly Enriched Uranium (HEU) fuel to Low Enriched Uranium (LEU) fuel. The reactor core of BR2 is located inside a pressure vessel that contains 79 channels in a hyperboloid configuration (Figure 1). The core configuration is highly variable as each channel can contain a fuel assembly, a control or regulating rod, an experimental device, or a beryllium or aluminum plug. Because of this variability, a representative core configuration (Figure 2), based on current reactor use, has been defined for the fuel conversion analyses [1]. The code RELAP5/Mod 3.3 [2] was used to perform the transient thermal-hydraulic safety analyses of the BR2 reactor to support reactor conversion. The input model has been modernized relative to that historically used at BR2 taking into account the best modeling practices developed by Argonne National Laboratory (ANL) and BR2 engineers.

  6. Proceedings of the US Nuclear Regulatory Commission twentieth water reactor safety information meeting; Volume 2, Severe accident research, Thermal hydraulics

    SciTech Connect

    Weiss, A.J.

    1993-03-01

    This three-volume report contains papers presented at the Twentieth Water Reactor Safety Information Meeting held at the Bethesda Marriott Hotel, Bethesda, Maryland, during the week of October 21--23, 1992. The papers describe progress and results of programs in nuclear safety research conducted in this country and abroad. Foreign participation in the meeting included 10 different papers presented by researchersfrom CEC, China, Finland, France, Germany, Japan, Spain and Taiwan. Selected papers have been processed separately for inclusion in the Energy Science and Technology Database.

  7. Implementation of the k0-NAA method in the NAA#3 irradiation hole of the HANARO research reactor

    NASA Astrophysics Data System (ADS)

    Chung, Yong Sam; Dung, Ho Manh; Moon, Jong Hwa; Park, Kwang Won; Kim, Hark Rho

    2006-08-01

    The NAA#3 irradiation hole in the 30 MW HANARO research reactor of the Korea Atomic Energy Research Institute (KAERI), with a thermal neutron flux of 1.26×10 14 cm -2 s -1, has been regarded as suitable for the application of k0-based neutron activation analysis ( k0-NAA). The objectives of the present work were: (a) to characterize the NAA#3 irradiation hole via the determination of the neutron spectrum parameters required for the method, (b) to calibrate the HPGe gamma-ray spectrometer system via establishing the detection efficiency curves and (c) to assess the quality of the k0-NAA method by the analysis of six certified reference materials, three of which were of biological nature and three of environmental origin. The results obtained indicated that, by using the k0-NAA method, approximately 25 or 35 elements could be quantitatively determined in the biological and environmental samples, respectively. The deviations between the experimental and the certified values for the determined elements were generally within 12% with u-scores mostly below 2. The results prove that the k0-NAA method, implemented in the HANARO research reactor, is applicable for multi-element analysis in biological and environmental samples with a rather high analytical performance and that the method is available for further practical applications.

  8. Reactor safety research programs. Quarterly report, October-December 1983. Vol. 4

    SciTech Connect

    Edler, S.K.

    1984-05-01

    Evaluations of nondestructive examination (NDE) techniques and instrumentation include investigating the feasibility of detecting and analyzing flaw growth in reactor pressure boundary systems and examining NDE reliability and probabilistic fracture mechanics. Accelerated pellet-cladding interaction modeling is being conducted to predict the probability of fuel rod failure under normal operating conditions. Experimental data and analytical models are being provided to aid in decision making regarding pipe-to-pipe impacts following postulated breaks in high-energy fluid system piping. Experimental data and validated models are being used to determine a method for evaluating the acceptance of welded or weld-repaired stainless steel piping. Thermal-hydraulic models are being developed to provide better digital codes to compute the behavior of full-scale reactor systems under postulated accident conditions. High-temperature materials property tests are being conducted to provide data on severe core damage fuel behavior. Severe fuel damage accident tests are being conducted at the NRU reactor, Chalk River, Canada; an instrumented fuel assembly irradiation program is being performed at Halden, Norway; and fuel assemblies and analytical support are being provided for experimental programs at the Power Burst Facility.

  9. Advanced Test Reactor Tour

    SciTech Connect

    Miley, Don

    2011-01-01

    The Advanced Test Reactor at Idaho National Laboratory is the foremost nuclear materials test reactor in the world. This virtual tour describes the reactor, how experiments are conducted, and how spent nuclear fuel is handled and stored. For more information about INL research, visit http://www.facebook.com/idahonationallaboratory.

  10. Advanced Test Reactor Tour

    ScienceCinema

    Miley, Don

    2016-07-12

    The Advanced Test Reactor at Idaho National Laboratory is the foremost nuclear materials test reactor in the world. This virtual tour describes the reactor, how experiments are conducted, and how spent nuclear fuel is handled and stored. For more information about INL research, visit http://www.facebook.com/idahonationallaboratory.

  11. Center for Multiscale Plasma Dynamics: Report on Activities (UCLA/MIT), 2009-2010

    SciTech Connect

    Troy Carter

    2011-04-18

    The final 'phaseout' year of the CMPD ended July 2010; a no cost extension was requested until May 2011 in order to enable the MIT subcontract funds to be fully utilized. Research progress over this time included verification and validation activities for the BOUT and BOUT++ code, studies of spontaneous reconnection in the VTF facility at MIT, and studies of the interaction between Alfven waves and drift waves in LAPD. The CMPD also hosted the 6th plasma physics winter school in 2010 (jointly with the NSF frontier center the Center for Magnetic Self-Organization, significant funding came from NSF for this most recent iteration of the Winter School).

  12. Technology, safety, and costs of decommissioning reference nuclear research and test reactors: sensitivity of decommissioning radiation exposure and costs to selected parameters

    SciTech Connect

    Konzek, G.J.

    1983-07-01

    Additional analyses of decommissioning at the reference research and test (R and T) reactors and analyses of five recent reactor decommissionings are made that examine some parameters not covered in the initial study report (NUREG/CR-1756). The parameters examined for decommissioning are: (1) the effect on costs and radiation exposure of plant size and/or type; (2) the effects on costs of increasing disposal charges and of unavailability of waste disposal capacity at licensed waste disposal facilities; and (3) the costs of and the available alternatives for the disposal of nuclear R and T reactor fuel assemblies.

  13. Safety analysis for operating the Annular Core Research Reactor with Cintichem-type targets installed in the central region of the core

    SciTech Connect

    PARMA JR.,EDWARD J.

    2000-01-01

    Production of the molybdenum-99 isotope at the Annular Core Research Reactor requires highly enriched, uranium oxide loaded targets to be irradiated for several days in the high neutron-flux region of the core. This report presents the safety analysis for the irradiation of up to seven Cintichem-type targets in the central region of the core and compares the results to the Annular Core Research Reactor Safety Analysis Report. A 19 target grid configuration is presented that allows one to seven targets to be irradiated, with the remainder of the grid locations filled with aluminum ''void'' targets. Analyses of reactor, neutronic, thermal hydraulics, and heat transfer calculations are presented. Steady-state operation and accident scenarios are analyzed with the conclusion that the reactor can be operated safely with seven targets in the grid, and no additional risk to the public.

  14. Abdichtungen im Verbund mit Fliesen und Platten

    NASA Astrophysics Data System (ADS)

    Platts, Thomas

    Abdichtungen im Verbund mit Fliesen und Platten, im Folgenden auch als Verbundabdichtungen oder mit Kurzzeichen als AIV bezeichnet, haben sich in der Baupraxis insbesondere in Innenräumen wegen des vereinfachten konstruktiven Aufbaus gegenüber Bahnenabdichtungen nach DIN 18195-5 [14.1] in der Mehrzahl der Ausführungen durchgesetzt und bewährt. Sie können im Innen- und Außenbereich angeordnet werden und sind dadurch gekennzeichnet, dass die Nutzschicht in Boden- und Wandbereichen im Dünnbettverfahren unmittelbar auf die Abdichtung aufgebracht wird. Aufwändige Zwischenschichten oder Einbauteile wie armierter Putz, Telleranker etc. entfallen (Bild 14.1) und es lassen sich geringere Aufbauhöhen realisieren.

  15. Micro-channel catalytic reactor integration in CAPER and research/development on highly tritiated water handling and processing

    SciTech Connect

    Demange, D.; Cristescu, I.; Fanghaenel, E.; Gramlich, N.; Le, T.L.; Michling, R.; Moosmann, H.; Simon, K.H.; Wagner, R.; Welte, S.; Glugla, M.; Shu, W.M.; Willms, R.S.

    2015-03-15

    The CAPER facility of the Tritium Laboratory Karlsruhe has demonstrated the technology for the tokamak exhaust processing. CAPER has been significantly upgraded to pursue research/development programs towards highly tritiated water (HTW) handling and processing. The preliminary tests using a metal oxide reactor producing HTW afterward de-tritiated with PERMCAT were successful. In a later stage, a micro-channel catalytic reactor was installed in view of long term research program on HTW. The integration of this new system in CAPER was carried out along with a careful safety analysis due to high risk associated with such experiments. First experiments using the μ-CCR were performed trouble free, and HTW up to 360 kCi/kg was produced at a rate of 0.5 g/h. Such HTW was collected into a platinum zeolite bed (2 g of HTW for 20 g of Pt-zeolite), and in-situ detritiation was performed via isotopic exchange with deuterium. These first experimental results with tritium confirmed the potential for the capture and exchange method to be used for HTW in ITER. (authors)

  16. Implementation of k0-INAA standardisation at ITU TRIGA Mark II research reactor, Turkey based on k0-IAEA software

    NASA Astrophysics Data System (ADS)

    Esen, Ayse Nur; Haciyakupoglu, Sevilay

    2016-02-01

    The purpose of this study is to test the applicability of k0-INAA method at the Istanbul Technical University TRIGA Mark II research reactor. The neutron spectrum parameters such as epithermal neutron flux distribution parameter (α), thermal to epithermal neutron flux ratio (f) and thermal neutron flux (φth) were determined at the central irradiation channel of the ITU TRIGA Mark II research reactor using bare triple-monitor method. HPGe detector calibrations and calculations were carried out by k0-IAEA software. The α, f and φth values were calculated to be -0.009, 15.4 and 7.92·1012 cm-2 s-1, respectively. NIST SRM 1633b coal fly ash and intercomparison samples consisting of clay and sandy soil samples were used to evaluate the validity of the method. For selected elements, the statistical evaluation of the analysis results was carried out by z-score test. A good agreement between certified/reported and experimental values was obtained.

  17. Grundlegende Steuerungsverfahren im heterogenen Logistiknetz mit Kanban

    NASA Astrophysics Data System (ADS)

    Dickmann, Eva; Dickmann, Philipp; Lödding, Hermann; Möller, Niklas; Rücker, Thomas; Schneider, Herfried M.; Zäh, Michael F.

    In vielen Unternehmen werden heterogene (verschiedene) Steuerungen in einem abgestimmten Konzept kombiniert. Je nach Anwendungsfall und Rahmenbedingungen werden Kombinationen allgemein bekannter Steuerungen oder Steuerungsvarianten gemischt eingesetzt, um eine optimale Steuerung für unterschiedliche Fälle zu erreichen. Hierbei stehen neben den bekannten und weit verbreiteten Methoden, wie Material Requirements Planning (MRP) oder Kanban, auch weniger bekannte oder neue Methoden zur Auswahl, wie die Produktionssteuerung mit dezentraler, bestandsorientierter Fertigungsregelung (DBF). Kanban ist ein simples und effizientes Steuerungskonzept, das in der klassischen Form für spezifische einfache Anwendungsfälle umsetzbar ist. Hochentwickelte Steuerungsalgorithmen können helfen, komplexe Abläufe optimal abzubilden. Mit einer grundlegenden Vereinfachung der Abläufe kann allerdings in vielen Fällen ein wesentlich stärkerer und umfassender Verbesserungseffekt erzielt werden. Die wesentliche Fragestellung sollte folglich lauten: Warum ist der Ablauf nicht mit einer einfachen Steuerung wie Kanban abzubilden? Um die Vorteile des Konzepts auch in untypischen Bereichen anwenden zu können, sind jedoch verschiedene Varianten oder Kanban-ähnliche Steuerungsmethoden entstanden. Darüber hinaus sind in der Praxis hybride Steuerungen im Einsatz, welche so kombiniert werden, dass die Zusammensetzung anspruchsvolle Eigenschaftsbilder noch exakt abbildet. In der Praxis basieren die Steuerungsentscheidungen nur zu einem kleinen Teil auf den eigentlichen Steuerungsalgorithmen, wie sie uns das MRP-System zur Verfügung stellt. Moderne Steuerungswelten" schließen alle relevanten Informationsquellen in eine heterogene Entscheidungsmatrix mit ein. Letztlich zählt nicht, ob die Entscheidung auf den Informationen aus dem MRP-System oder auf Softfacts basierend getroffen wurde, sondern nur, ob die Entscheidung erfolgreich war.

  18. Theoretical analysis of the subcritical experiments performed in the IPEN/MB-01 research reactor facility

    SciTech Connect

    Lee, S. M.; Dos Santos, A.

    2012-07-01

    The theoretical analysis of the subcritical experiments performed at the IPEN/MB-01 reactor employing the coupled NJOY/AMPX-II/TORT systems was successfully accomplished. All the analysis was performed employing ENDF/B-VII.0. The theoretical approach follows all the steps of the subcritical model of Gandini and Salvatores. The theory/experiment comparison reveals that the calculated subcritical reactivity is in a very good agreement to the experimental values. The subcritical index ({xi}) shows some discrepancies although in this particular case some work still have to be made to model in a better way the neutron source present in the experiments. (authors)

  19. Mishap Investigation Team (MIT) - Barksdale AFB, Louisiana

    NASA Technical Reports Server (NTRS)

    Stepaniak, Philip

    2005-01-01

    The Shuttle Program is organized to support a Shuttle mishap using the resources of the MIT. The afternoon of Feb. 1, 2003, the MIT deployed to Barksdale AFB. This location became the investigative center and interim storage location for crewmembers received from the Lufkin Disaster Field Office (DFO). Working under the leadership of the MIT Lead, the medical team executed a short-term plan that included search, recovery, and identification including coordination with the Armed Forces Institute of Pathology Temporary operations was set up at Barksdale Air Force Base for two weeks. During this time, coordination with the DFO field recovery teams, AFIP personnel, and the crew surgeons was on going. In addition, the crewmember families and NASA management were updated daily. The medical team also dealt with public reports and questions concerning biological and chemical hazards, which were coordinated with SPACEHAB, Inc., Kennedy Space Center (KSC) Medical Operations and the Johnson Space Center (JSC) Space Medicine office. After operations at Barksdale were concluded the medical team transitioned back to Houston and a long-term search, recovery and identification plan was developed.

  20. MIT Lincoln Laboratory: Physics and Technology in the National Interest

    NASA Astrophysics Data System (ADS)

    Ralston, Richard

    2001-03-01

    This year, MIT is celebrating the 50th anniversary of the founding of Lincoln Laboratory, which was formed at the request of the DoD with the initial goal of developing a national air defense system. In its 50 years, the Laboratory staff have made significant contributions in diverse areas including radar imaging, satellite communications, digital signal processing, computer science, semiconductor materials and solid state physics. The Laboratory has been true to its mission statement, which places strong emphasis on the application of advanced electronics to R&D in the national interest. Much of the technology is transitioned to U.S. industry for both government and commercial use. Annually more than 500 publications and meeting speeches are given, and cooperative developments with industry have targeted technology transitions ranging from next-generation photolithographic tools to microchip lasers. The Laboratory staff have been granted over 400 patents, and license to this intellectual property is at the core of many of the over 70 spin-off companies. MIT employs 2,300 people at Lincoln, including 1,200 professionals with degrees in physics, math, computer science, materials science and the engineering disciplines. Two-fifths of the professional staff are at the doctoral level; over two-thirds hold advanced degrees. This presentation will describe recent examples of research challenges for physicists in a multidisciplinary project-oriented environment.

  1. Education Outreach at MIT Plasma Science Fusion Center

    NASA Astrophysics Data System (ADS)

    Censabella, V.; Nachtrieb, R.; Rivenberg, P.

    1998-11-01

    Outreach at the MIT PSFC consists of volunteers working together to increase the public's knowledge of fusion and plasma-related experiments. Seeking to generate excitement about science, engineering and mathematics, the PSFC holds a number of outreach activities throughout the year, such as Middle and High School Outreach Days. Outreach also includes the Mr. Magnet Program, which uses an interactive strategy to engage elementary school children. Included in this year's presentation will be a live demo of a compressed-air bottle rocket (really a one-liter plastic soda bottle) for use in high school science classrooms that researchers at the Cambridge Physics Outlet (a PSFC spin-off company) have developed. To prepare the rocket for launch, the bottle is filled with compressed air at pressures up to 80 psi and the end is plugged. The rocket is released when the plug is pulled. The gas escapes at supersonic velocities and accelerates the bottle at over 1000 m/s^2. The velocity of the bottle is measured at many locations along its ``trajectory". A simple thermodynamic model predicts performance in excellent agreement with observation. The PSFC maintains a Home Page on the World Wide Web, which can be reached at http://pfc.mit.edu.

  2. Accident Analyses for Conversion of the University of Missouri Research Reactor (MURR) from Highly-Enriched to Low-Enriched Uranium

    SciTech Connect

    Stillman, J. A.; Feldman, E. E.; Wilson, E. H.; Foyto, L. P.; Kutikkad, K.; McKibben, J. C.; Peters, N. J.; Cowherd, W. M.; Rickman, B.

    2014-12-01

    This report contains the results of reactor accident analyses for the University of Missouri Research Reactor (MURR). The calculations were performed as part of the conversion from the use of highly-enriched uranium (HEU) fuel to the use of low-enriched uranium (LEU) fuel. The analyses were performed by staff members of the Global Threat Reduction Initiative (GTRI) Reactor Conversion Program at the Argonne National Laboratory (ANL), the MURR Facility, and the Nuclear Engineering Program – College of Engineering, University of Missouri-Columbia. The core conversion to LEU is being performed with financial support from the U. S. government. This report contains the results of reactor accident analyses for the University of Missouri Research Reactor (MURR). The calculations were performed as part of the conversion from the use of highly-enriched uranium (HEU) fuel to the use of low-enriched uranium (LEU) fuel. The analyses were performed by staff members of the Global Threat Reduction Initiative (GTRI) Reactor Conversion Program at the Argonne National Laboratory (ANL), the MURR Facility, and the Nuclear Engineering Program – College of Engineering, University of Missouri-Columbia. The core conversion to LEU is being performed with financial support from the U. S. government. In the framework of non-proliferation policies, the international community presently aims to minimize the amount of nuclear material available that could be used for nuclear weapons. In this geopolitical context most research and test reactors, both domestic and international, have started a program of conversion to the use of LEU fuel. A new type of LEU fuel based on an alloy of uranium and molybdenum (U-Mo) is expected to allow the conversion of U.S. domestic high performance reactors like MURR. This report presents the results of a study of core behavior under a set of accident conditions for MURR cores fueled with HEU U-Alx dispersion fuel or LEU monolithic U-Mo alloy fuel with 10 wt% Mo

  3. Report of the ANS Project Feasibility Workshop for a High Flux Isotope Reactor-Center for Neutron Research Facility

    SciTech Connect

    Peretz, F.J.; Booth, R.S.

    1995-07-01

    The Advanced Neutron Source (ANS) Conceptual Design Report (CDR) and its subsequent updates provided definitive design, cost, and schedule estimates for the entire ANS Project. A recent update to this estimate of the total project cost for this facility was $2.9 billion, as specified in the FY 1996 Congressional data sheet, reflecting a line-item start in FY 1995. In December 1994, ANS management decided to prepare a significantly lower-cost option for a research facility based on ANS which could be considered during FY 1997 budget deliberations if DOE or Congressional planners wished. A cost reduction for ANS of about $1 billion was desired for this new option. It was decided that such a cost reduction could be achieved only by a significant reduction in the ANS research scope and by maximum, cost-effective use of existing High Flux Isotope Reactor (HFIR) and ORNL facilities to minimize the need for new buildings. However, two central missions of the ANS -- neutron scattering research and isotope production-were to be retained. The title selected for this new option was High Flux Isotope Reactor-Center for Neutron Research (HFIR-CNR) because of the project`s maximum use of existing HFIR facilities and retention of selected, central ANS missions. Assuming this shared-facility requirement would necessitate construction work near HFIR, it was specified that HFIR-CNR construction should not disrupt normal operation of HFIR. Additional objectives of the study were that it be highly credible and that any material that might be needed for US Department of Energy (DOE) and Congressional deliberations be produced quickly using minimum project resources. This requirement made it necessary to rely heavily on the ANS design, cost, and schedule baselines. A workshop methodology was selected because assessment of each cost and/or scope-reduction idea required nearly continuous communication among project personnel to ensure that all ramifications of propsed changes.

  4. Groundwater Monitoring and Control Before Decommissioning of the Research Reactor VVR-S from Magurele-Bucharest

    SciTech Connect

    Dragusin, Mitica

    2008-01-15

    The research reactor type VVR-S (tank type, water is cooler, moderator and reflector, thermal power- 2 MW, thermal energy- 9. 52 GW d) was put into service in July 1957 and, in December 1997 was shout down. In 2002, Romanian Government decided to put the research reactor in the permanent shut-down in order to start the decommissioning. This nuclear facility was used in nuclear research and radioisotope production for 40 years, without events, incidents or accidents. Within the same site, in the immediate vicinity of the research reactor, there are many other nuclear facilities: Radioactive Waste Treatment Plant, Tandem Van der Graaf heavy ions accelerator, Cyclotron, Industrial Irradiator, Radioisotope Production Center. The objectives of this work were dedicated on the water underground analyses described in the following context: - presentation of the approaches in planning the number of drillings, vertical soil profiles (characteristics, analyses, direction of the flow of underground water, uncertainties in measurements); - presentation of the instrumentation used in analyses of water, soil and vegetation samples - analyses and final conclusions on results of the measurements; - comparison of the results of measurements on underground water from drillings with the measurements results on samples from the town and the system of drinking water - supplied from the second level of underground water. According to the analysis, in general, no values higher than the Minimum Detectable Activity were detected in water samples (MDA) for Pb{sup 212}, Bi{sup 214}, Pb{sup 214}, Ac{sup 228}, but situated under values foreseen in drinking water. Distribution of Uranium As results of the Uranium determination, values higher than 0,004 mg/l (4 ppb) were detected, values that represent the average contents in the underground water. The higher values, 2-3 times higher than background, were detected in the water from the drillings F15, F12, F5, F13, drillings located between RWTP

  5. Automated system for neutron activation analysis determination of short lived isotopes at The DOW Chemical Company's TRIGA research reactor

    NASA Astrophysics Data System (ADS)

    Zieman, J. J.; Rigot, W. L.; Romick, J. D.; Quinn, T. J.; Kocher, C. W.

    1994-12-01

    An automated neutron activation analysis (NAA) system for the determination of short lived isotopes was constructed at The DOW Chemical Company's TRIGA Research Reactor in 1993. The NAA group of the Analytical Sciences Laboratory uses the reactor for thousands of analyses each year and therefore automation is important to achieve and maintain high throughput and precision (productivity). This project is complementary to automation of the long-lived counting facilities (see Romick et al., these Proceedings). Canberra/Nuclear Data Systems DEC-based software and electronics modules and an I/O mounting board are the basic commercial components. A Fortran program on a VAX computer controls I/O via ethernet to an Acquisition Interface Module (AIM). The AIM controls the γ spectrometer modules and is interfaced to a Remote Parallel Interface (RPI) module which controls the pneumatic transfer apparatus with TTL signals to the I/O mounting board. Near-infrared sensors are used to monitor key points in the transfer system. Spectra are acquired by a single HPGe detector mounted on a sliding rail to allow flexible and more reproducible counting geometries than with manual sample handling. The maximum sample size is 8 ml in a heat-sealed two dram vial. The sample vial is nested into a "rabbit" vial for irradiation which can be automatically removed prior to spectrum collection. The system was designed to be used by the reactor operator at the control console without the aid of an additional experimenter. Applications include the determination of selenium and silver in coal and water, fluorine in tetra-fluoro ethylene (TFE) coated membranes, aluminum and titanium in composite materials and trace fluorine in non-chlorinated cleaning solvents. Variable dead time software allows analysis for 77mSe despite high dead times from 16N encountered in samples.

  6. Decommissioning of the Dragon High Temperature Reactor (HTR) Located at the Former United Kingdom Atomic Energy Authority (UKAEA) Research Site at Winfrith - 13180

    SciTech Connect

    Smith, Anthony A.

    2013-07-01

    The Dragon Reactor was constructed at the United Kingdom Atomic Energy Research Establishment at Winfrith in Dorset through the late 1950's and into the early 1960's. It was a High Temperature Gas Cooled Reactor (HTR) with helium gas coolant and graphite moderation. It operated as a fuel testing and demonstration reactor at up to 20 MW (Thermal) from 1964 until 1975, when international funding for this project was terminated. The fuel was removed from the core in 1976 and the reactor was put into Safestore. To meet the UK's Nuclear Decommissioning Authority (NDA) objective to 'drive hazard reduction' [1] it is necessary to decommission and remediate all the Research Sites Restoration Ltd (RSRL) facilities. This includes the Dragon Reactor where the activated core, pressure vessel and control rods and the contaminated primary circuit (including a {sup 90}Sr source) still remain. It is essential to remove these hazards at the appropriate time and return the area occupied by the reactor to a safe condition. (author)

  7. Neutron spectrometry and dosimetry study at two research nuclear reactors using Bonner sphere spectrometer (BSS), rotational spectrometer (ROSPEC) and cylindrical nested neutron spectrometer (NNS).

    PubMed

    Atanackovic, J; Matysiak, W; Hakmana Witharana, S S; Aslam, I; Dubeau, J; Waker, A J

    2013-01-01

    Neutron spectrometry and subsequent dosimetry measurements were undertaken at the McMaster Nuclear Reactor (MNR) and AECL Chalk River National Research Universal (NRU) Reactor. The instruments used were a Bonner sphere spectrometer (BSS), a cylindrical nested neutron spectrometer (NNS) and a commercially available rotational proton recoil spectrometer. The purposes of these measurements were to: (1) compare the results obtained by three different neutron measuring instruments and (2) quantify neutron fields of interest. The results showed vastly different neutron spectral shapes for the two different reactors. This is not surprising, considering the type of the reactors and the locations where the measurements were performed. MNR is a heavily shielded light water moderated reactor, while NRU is a heavy water moderated reactor. The measurements at MNR were taken at the base of the reactor pool, where a large amount of water and concrete shielding is present, while measurements at NRU were taken at the top of the reactor (TOR) plate, where there is only heavy water and steel between the reactor core and the measuring instrument. As a result, a large component of the thermal neutron fluence was measured at MNR, while a negligible amount of thermal neutrons was measured at NRU. The neutron ambient dose rates at NRU TOR were measured to be between 0.03 and 0.06 mSv h⁻¹, while at MNR, these values were between 0.07 and 2.8 mSv h⁻¹ inside the beam port and <0.2 mSv h⁻¹ between two operating beam ports. The conservative uncertainty of these values is 15 %. The conservative uncertainty of the measured integral neutron fluence is 5 %. It was also found that BSS over-responded slightly due to a non-calibrated response matrix.

  8. Natural and man-made radioactivity in soils and plants around the research reactor of Inshass.

    PubMed

    Higgy, R H; Pimpl, M

    1998-12-01

    The specific radioactivities of the U-series, 232Th, 137Cs and 40K were measured in soil samples around the Inshass reactor in Cairo, using a gamma-ray spectrometer with a HpGe detector. The alpha activity of 238U, 234U and 235U was measured in the same soil samples by surface barrier detectors after radiochemical separation and the obtained results were compared with the specific activities determined by gamma-measurements. The alpha-activity of 238Pu, 239+240Pu, 241Am, 242Cm and 244Cm was measured after radiochemical separation by surface barrier detectors for both soil and plant samples. Then beta-activity of 241Pu was measured using liquid scintillation spectrometry. PMID:9776618

  9. High temperature reactors

    NASA Astrophysics Data System (ADS)

    Dulera, I. V.; Sinha, R. K.

    2008-12-01

    With the advent of high temperature reactors, nuclear energy, in addition to producing electricity, has shown enormous potential for the production of alternate transport energy carrier such as hydrogen. High efficiency hydrogen production processes need process heat at temperatures around 1173-1223 K. Bhabha Atomic Research Centre (BARC), is currently developing concepts of high temperature reactors capable of supplying process heat around 1273 K. These reactors would provide energy to facilitate combined production of hydrogen, electricity, and drinking water. Compact high temperature reactor is being developed as a technology demonstrator for associated technologies. Design has been also initiated for a 600 MWth innovative high temperature reactor. High temperature reactor development programme has opened new avenues for research in areas like advanced nuclear fuels, high temperature and corrosion resistant materials and protective coatings, heavy liquid metal coolant technologies, etc. The paper highlights design of these reactors and their material related requirements.

  10. Research Reactor MZFR, Karlsruhe, Germany Under Water Thermal Cutting of the Moderator Vessel and of the Thermal Shield

    SciTech Connect

    Loeb, A.; Eisenmann, B.; Prechtl, E.

    2006-07-01

    This paper presents the segmentation of the moderator vessel and of the thermal shield of the MZFR research reactor by means of under water plasma and contact arc metal cutting. The moderator vessel and the thermal shield are the most essential parts of the reactor vessel internals. These components have been segmented in 2005 by means of remotely controlled under water cutting utilizing a special manipulator system, a plasma torch and CAMC (Contact Arc Metal Cutting) as cutting tools. The engineered equipment used is a highly advanced design developed in a two years R and D program. It was qualified to cut through steel walls of more than 100 mm thickness in 8 meters water depth. Both the moderator vessel and the thermal shield had to be cut into such size that the segments could afterwards be packed into shielded waste containers each with a volume of roughly 1 m{sup 3}. Segmentation of the moderator vessel and of the thermal shield was performed within 15 months. (authors)

  11. TRIGA-SPEC: A setup for mass spectrometry and laser spectroscopy at the research reactor TRIGA Mainz

    NASA Astrophysics Data System (ADS)

    Ketelaer, J.; Krämer, J.; Beck, D.; Blaum, K.; Block, M.; Eberhardt, K.; Eitel, G.; Ferrer, R.; Geppert, C.; George, S.; Herfurth, F.; Ketter, J.; Nagy, Sz.; Neidherr, D.; Neugart, R.; Nörtershäuser, W.; Repp, J.; Smorra, C.; Trautmann, N.; Weber, C.

    2008-09-01

    The research reactor TRIGA Mainz is an ideal facility to provide neutron-rich nuclides with production rates sufficiently large for mass spectrometric and laser spectroscopic studies. Within the TRIGA-SPEC project, a Penning trap as well as a beamline for collinear laser spectroscopy are being installed. Several new developments will ensure high sensitivity of the trap setup enabling mass measurements even on a single ion. Besides neutron-rich fission products produced in the reactor, also heavy nuclides such as 235U or 252Cf can be investigated for the first time with an off-line ion source. The data provided by the mass measurements will be of interest for astrophysical calculations on the rapid neutron-capture process as well as for tests of mass models in the heavy-mass region. The laser spectroscopic measurements will yield model-independent information on nuclear ground-state properties such as nuclear moments and charge radii of neutron-rich nuclei of refractory elements far from stability. TRIGA-SPEC also serves as a test facility for mass and laser spectroscopic experiments at SHIPTRAP and the low-energy branch of the future GSI facility FAIR. This publication describes the experimental setup as well as its present status.

  12. A New Class of Risk-Importance Measures to Support Reactor Aging Management and the Prioritization of Materials Degradation Research

    SciTech Connect

    Unwin, Stephen D.; Lowry, Peter P.; Toyooka, Michael Y.

    2010-06-07

    As the US fleet of light water reactors ages, the risks of operation might be expected to increase. Although probabilistic risk assessment has proven a critical resource in risk-informed regulatory decision-making, limitations in current methods and models have constrained their prospective value in reactor aging management. These limitations stem principally from the use of static component failure rate models (which do not allow the impact of component aging on failure rates to be represented) and a very limited treatment of passive components (which would be expected to have an increasingly significant risk contribution in an aging system). Yet, a PRA captures a substantial knowledge base that could be of significant value in addressing plant aging. In this paper we will describe a methodology and a new class of risk importance measures that allow the use of an existing PRA model to support the management of plant aging, the prioritization of improvements to non-destructive examination and monitoring techniques, and the establishment of research emphases in materials science. This methodology makes use of data resources generated under the USNRC Proactive Management of Materials Degradation program which addresses the anticipated effects of numerous aging degradation mechanisms on a wide variety of component types.

  13. Design, construction and characterization of a new neutron beam for neutron radiography at the Tehran Research Reactor

    NASA Astrophysics Data System (ADS)

    Choopan Dastjerdi, M. H.; Khalafi, H.; Kasesaz, Y.; Mirvakili, S. M.; Emami, J.; Ghods, H.; Ezzati, A.

    2016-05-01

    To obtain a thermal neutron beam for neutron radiography applications, a neutron collimator has been designed and implemented at the Tehran Research Reactor (TRR). TRR is a 5 MW open pool light water moderated reactor with seven beam tubes. The neutron collimator is implemented in the E beam tube of the TRR. The design of the neutron collimator was performed using MCNPX Monte Carlo code. In this work, polycrystalline bismuth and graphite have been used as a gamma filter and an illuminator, respectively. The L/D parameter of the facility was chosen in the range of 150-250. The thermal neutron flux at the image plane can be varied from 2.26×106 to 6.5×106 n cm-2 s-1. Characterization of the beam was performed by ASTM standard IQI and foil activation technique to determine the quality of neutron beam. The results show that the obtained neutron beam has a good quality for neutron radiography applications.

  14. Digitized neutron imaging with high spatial resolution at a low power research reactor: I. Analysis of detector performance

    NASA Astrophysics Data System (ADS)

    Zawisky, M.; Hameed, F.; Dyrnjaja, E.; Springer, J.

    2008-03-01

    Imaging techniques provide an indispensable tool for investigation of materials. Neutrons, due to their specific properties, offer a unique probe for many aspects of condensed matter. Neutron imaging techniques present a challenging experimental task, especially at a low power research reactor. The Atomic Institute with a 250 kW TRIGA MARK II reactor looks back at a long tradition in neutron imaging. Here we report on the advantages gained in a recent upgrade of the imaging instrument including the acquisition of a thin-plate scintillation detector, a single counting micro-channel plate detector, and an imaging plate detector in combination with a high resolution scanner. We analyze the strengths and limitations of each detector in the field of neutron radiography and tomography, and demonstrate that high resolution digitized imaging down to the 50 μm scale can be accomplished with weak beam intensities of 1.3×10 5 n/cm 2 s, if appropriate measures are taken for the inevitable extension of measurement times. In a separate paper we will present some promising first results from the fields of engineering and geology.

  15. Argonne Liquid-Metal Advanced Burner Reactor : components and in-vessel system thermal-hydraulic research and testing experience - pathway forward.

    SciTech Connect

    Kasza, K.; Grandy, C.; Chang, Y.; Khalil, H.; Nuclear Engineering Division

    2007-06-30

    This white paper provides an overview and status report of the thermal-hydraulic nuclear research and development, both experimental and computational, conducted predominantly at Argonne National Laboratory. Argonne from the early 1970s through the early 1990s was the Department of Energy's (DOE's) lead lab for thermal-hydraulic development of Liquid Metal Reactors (LMRs). During the 1970s and into the mid-1980s, Argonne conducted thermal-hydraulic studies and experiments on individual reactor components supporting the Experimental Breeder Reactor-II (EBR-II), Fast Flux Test Facility (FFTF), and the Clinch River Breeder Reactor (CRBR). From the mid-1980s and into the early 1990s, Argonne conducted studies on phenomena related to forced- and natural-convection thermal buoyancy in complete in-vessel models of the General Electric (GE) Prototype Reactor Inherently Safe Module (PRISM) and Rockwell International (RI) Sodium Advanced Fast Reactor (SAFR). These two reactor initiatives involved Argonne working closely with U.S. industry and DOE. This paper describes the very important impact of thermal hydraulics dominated by thermal buoyancy forces on reactor global operation and on the behavior/performance of individual components during postulated off-normal accident events with low flow. Utilizing Argonne's LMR expertise and design knowledge is vital to the further development of safe, reliable, and high-performance LMRs. Argonne believes there remains an important need for continued research and development on thermal-hydraulic design in support of DOE's and the international community's renewed thrust for developing and demonstrating the Global Nuclear Energy Partnership (GNEP) reactor(s) and the associated Argonne Liquid Metal-Advanced Burner Reactor (LM-ABR). This white paper highlights that further understanding is needed regarding reactor design under coolant low-flow events. These safety-related events are associated with the transition from normal high

  16. Innovations and enhancements in neutronic analysis of the Big-10 university research and training reactors based on the AGENT code system

    SciTech Connect

    Hursin, M.; Shanjie, X.; Burns, A.; Hopkins, J.; Satvat, N.; Gert, G.; Tsoukalas, L. H.; Jevremovic, T.

    2006-07-01

    Introduction. This paper summarizes salient aspects of the 'virtual' reactor system developed at Purdue Univ. emphasizing efficient neutronic modeling through AGENT (Arbitrary Geometry Neutron Transport) a deterministic neutron transport code. DOE's Big-10 Innovations in Nuclear Infrastructure and Education (INIE) Consortium was launched in 2002 to enhance scholarship activities pertaining to university research and training reactors (URTRs). Existing and next generation URTRs are powerful campus tools for nuclear engineering as well as a number of disciplines that include, but are not limited to, medicine, biology, material science, and food science. Advancing new computational environments for the analysis and configuration of URTRs is an important Big-10 INIE aim. Specifically, Big-10 INIE has pursued development of a 'virtual' reactor, an advanced computational environment to serve as a platform on which to build operations, utilization (research and education), and systemic analysis of URTRs physics. The 'virtual' reactor computational system will integrate computational tools addressing the URTR core and near core physics (transport, dynamics, fuel management and fuel configuration); thermal-hydraulics; beam line, in-core and near-core experiments; instrumentation and controls; confinement/containment and security issues. Such integrated computational environment does not currently exist. The 'virtual' reactor is designed to allow researchers and educators to configure and analyze their systems to optimize experiments, fuel locations for flux shaping, as well as detector selection and configuration. (authors)

  17. Engineering and Physics Optimization of Breed and Burn Fast Reactor Systems: Annual and Final Report

    SciTech Connect

    Kevan D. Weaver; Theron Marshall; James Parry

    2005-10-01

    The Idaho National Laboratory (INL) contribution to the Nuclear Energy Research Initiative (NERI) project number 2002-005 was divided into reactor physics, and thermal-hydraulics and plant design. The research targeted credible physics and thermal-hydraulics models for a gas-cooled fast reactor, analyzing various fuel and in-core fuel cycle options to achieve a true breed and burn core, and performing a design basis Loss of Coolant Accident (LOCA) analysis on that design. For the physics analysis, a 1/8 core model was created using different enrichments and simulated equilibrium fuel loadings. The model was used to locate the hot spot of the reactor, and the peak to average energy deposition at that location. The model was also used to create contour plots of the flux and energy deposition over the volume of the reactor. The eigenvalue over time was evaluated using three different fuel configurations with the same core geometry. The breeding capabilities of this configuration were excellent for a 7% U-235 model and good in both a plutonium model and a 14% U-235 model. Changing the fuel composition from the Pu fuel which provided about 78% U-238 for breeding to the 14% U-235 fuel with about 86% U-238 slowed the rate of decrease in the eigenvalue a noticeable amount. Switching to the 7% U-235 fuel with about 93% U-238 showed an increase in the eigenvalue over time. For the thermal-hydraulic analysis, the reactor design used was the one forwarded by the MIT team. This reactor design uses helium coolant, a Brayton cycle, and has a thermal power of 600 MW. The core design parameters were supplied by MIT; however, the other key reactor components that were necessary for a plausible simulation of a LOCA were not defined. The thermal-hydraulic and plant design research concentrated on determining reasonable values for those undefined components. The LOCA simulation was intended to provide insights on the influence of the Reactor Cavity Cooling System (RCCS), the

  18. Derived release limits for the greek research reactor site based on a diagnostic atmospheric modeling system for irregular terrain.

    PubMed

    Varvayanni, M; Catsaros, N; Antonopoulos-Domis, M

    2005-04-01

    The upper limits for the rate of release of radionuclides into the atmosphere, i.e., the "derived release limits," are calculated for the Greek Research Reactor (GRR-1) in order to determine possible operational schemes compatible with the effective dose limits for the general population. GRR-1 is located at the northwestern foot of Hymettos Mountain and at the eastern border of the urbanized area of Athens basin. Due to the topographic complexity of the region, the meteorological and atmospheric dispersion calculations were based on a numerical modeling system that is especially designed to work over irregular terrains by using a prismatic unstructured grid. The calculation of derived release limits was made using guidelines and methods that conform to the system of dose limits prescribed by the European radiation protection regulations. PMID:15761295

  19. High-temperature gas-cooled reactor safety studies for the Division of Reactor Safety Research. Quarterly progress report, January 1-March 31, 1980

    SciTech Connect

    Ball, S.J.; Cleveland, J.C.; Conklin, J.C.; Harrington, R.M.

    1980-08-01

    Work continued on development of the ORTAP, ORECA, and BLAST codes; and verification studies were continued on the ORECA, CORTAP, and BLAST codes. An improved steam turbine plant model (ORTURB) for use in ORTAP was developed and checked. Predictions from BLAST, CORTAP, and ORECA were compared with various transient test data from the Fort St. Vrain reactor.

  20. High-temperature gas-cooled reactor safety studies for the Division of Reactor Safety Research. Quarterly progress report, October 1-December 31, 1981

    SciTech Connect

    Ball, S J; Clapp, Jr, N E; Cleveland, J C; Conklin, J C; Harrington, R M; Kornegay, F C

    1982-05-01

    Work continued on code development and verification activities and included improvements in the ORTAP code steam line model and the ORECA code capabilities for long-term transients. A preliminary severe accident sequence analysis exercise is presented that includes reactor building release source term, atmospheric dispersion, and radiation exposure calculations.

  1. Dealing with Historical Discrepancies: The Recovery of National Research Experiment (NRX) Reactor Fuel Rods at Chalk River Laboratories (CRL) - 13324

    SciTech Connect

    Vickerd, Meggan

    2013-07-01

    Following the 1952 National Research Experiment (NRX) Reactor accident, fuel rods which had short irradiation histories were 'temporarily' buried in wooden boxes at the 'disposal grounds' during the cleanup effort. The Nuclear Legacy Liabilities Program (NLLP), funded by Natural Resources Canada (NRCan), strategically retrieves legacy waste and restores lands affected by Atomic Energy of Canada Limited (AECL) early operations. Thus under this program the recovery of still buried NRX reactor fuel rods and their relocation to modern fuel storage was identified as a priority. A suspect inventory of NRX fuels was compiled from historical records and various research activities. Site characterization in 2005 verified the physical location of the fuel rods and determined the wooden boxes they were buried in had degraded such that the fuel rods were in direct contact with the soil. The fuel rods were recovered and transferred to a modern fuel storage facility in 2007. Recovered identification tags and measured radiation fields were used to identify the inventory of these fuels. During the retrieval activity, a discrepancy was discovered between the anticipated number of fuel rods and the number found during the retrieval. A total of 32 fuel rods and cans of cut end pieces were recovered from the specified site, which was greater than the anticipated 19 fuel rods and cans. This discovery delayed the completion of the project, increased the associated costs, and required more than anticipated storage space in the modern fuel storage facility. A number of lessons learned were identified following completion of this project, the most significant of which was the potential for discrepancies within the historical records. Historical discrepancies are more likely to be resolved by comprehensive historical record searches and site characterizations. It was also recommended that a complete review of the wastes generated, and the total affected lands as a result of this historic

  2. Engineering and Physics Optimization of Breed and Burn Fast Reactor Systems; NUCLEAR ENERGY RESEARCH INITIATIVE (NERI) QUARTERLY PROGRESS REPORT

    SciTech Connect

    Pavel Hejzlar, Peter Yarsky, Mike Driscoll, Dan Wachs, Kevan Weaver, Ken Czerwinski, Mike Pope, James Parry, Theron D. Marshall, Cliff B. Davis, Dustin Crawford, Thomas Hartmann, Pradip Saha; Hejzlar, Pavel; Yarsky, Peter; Driscoll, Mike; Wachs, Dan; Weaver, Kevan; Czerwinski, Ken; Pope, Mike; Parry, James; Marshall, Theron D.; Davis, Cliff B.; Crawford, Dustin; Hartmann, Thomas; Saha, Pradip

    2005-01-31

    This project is organized under four major tasks (each of which has two or more subtasks) with contributions among the three collaborating organizations (MIT, INEEL and ANL-West): Task A: Core Physics and Fuel Cycle; Task B: Core Thermal Hydraulics; Task C: Plant Design; Task D: Fuel Design The lead PI, Michael J. Driscoll, has consolidated and summarized the technical progress submissions provided by the contributing investigators from all sites, under the above principal task headings.

  3. MC21 analysis of the MIT PWR benchmark: Hot zero power results

    SciTech Connect

    Kelly Iii, D. J.; Aviles, B. N.; Herman, B. R.

    2013-07-01

    MC21 Monte Carlo results have been compared with hot zero power measurements from an operating pressurized water reactor (PWR), as specified in a new full core PWR performance benchmark from the MIT Computational Reactor Physics Group. Included in the comparisons are axially integrated full core detector measurements, axial detector profiles, control rod bank worths, and temperature coefficients. Power depressions from grid spacers are seen clearly in the MC21 results. Application of Coarse Mesh Finite Difference (CMFD) acceleration within MC21 has been accomplished, resulting in a significant reduction of inactive batches necessary to converge the fission source. CMFD acceleration has also been shown to work seamlessly with the Uniform Fission Site (UFS) variance reduction method. (authors)

  4. Erlebniseinkauf in der Innenstadt mit hoher Akzeptanz

    NASA Astrophysics Data System (ADS)

    Pangels, Rolf

    2002-03-01

    Im Oktober 2000 führte die BAG zum zehnten Mal die über die Grenzen des Einzelhandels bekannte Untersuchung "Kundenverkehr" in mehr als hundertfünfzig deutschen Städten durch. In Kooperation mit der Swiss Retail Federation sowie mit Unterstützung der femged (European Federation of Medium-size and Major Retailers) wurde die Untersuchung erstmals auch in der Schweiz und in Österreich durchgeführt. Es beteiligten sich insgesamt 463 Unternehmen an der Untersuchung, die knapp 9,5 Mio. Besucher gezählt haben und davon mehr als 360.000 Kunden nach bestimmten Parametern befragten. Die Daten für Deutschland wurden, wie in den Jahren zuvor, vom Institut für Handelsforschung an der Universität Köln ausgewertet. Die Zahlen der Untersuchung in der Schweiz und Österreich wurden von der wirtschafts- und sozialwissenschaftlichen Beratungsgesellschaft ECON-Consult in Köln zusammengetragen und analysiert.

  5. Research and development associated with licensing of MHTGR (Modular High Temperature Gas-Cooled Reactor)

    SciTech Connect

    Jones, H.

    1990-01-01

    The Modular High Temperature Gas-Cooled Reactor (MHTGR) currently under development by the US Department of Energy (US-DOE) for commercial applications has top-level goals of producing safe, economical power for the US utility industry. The utility industry has been represented in formulating design and licensing requirements through both a Utility User Requirements Document'' and by participating in the DOE system engineering process known as the Integrated Approach.'' The result of this collaboration has been to set stringent goals for both the safety and operational reliability of the MHTGR. To achieve these goals, the designer must have access to a more comprehensive data base of properties in several fields of technology than is currently available. A technology development program has been planned to provide this data to the designer in time to support both his design activities and the submittal of formal licensing application documents. The US-DOE has chosen the Oak Ridge National Laboratory (ORNL) to take the lead in planning and executing these technology programs. When completed these will augment the designer's current data base and provide the necessary depth to meet the stringent goals which have been set for the MHTGR. It is worth noting that the goals of safety and operational reliability are complementary, and the data required from the technology development program will be similar. Therefore, the program to support the licensing of the MHTGR is not separate from that required for design, but is a subset of that which meets all the requirements that result from implementing the US-DOE's integrated approach. 38 figs.

  6. Depletion analysis of the UMLRR reactor core using MCNP6

    NASA Astrophysics Data System (ADS)

    Odera, Dim Udochukwu

    Accurate knowledge of the neutron flux and temporal nuclide inventory in reactor physics calculations is necessary for a variety of application in nuclear engineering such as criticality safety, safeguards, and spent fuel storage. The Monte Carlo N- Particle (MCNP6) code with integrated buildup depletion code (CINDER90) provides a high-fidelity tool that can be used to perform 3D, full core simulation to evaluate fissile material utilization, and nuclide inventory calculations as a function of burnup. The University of Massachusetts Lowell Research Reactor (UMLRR) reactor has been modeled with the deterministic based code, VENTURE and with an older version of MCNP (MCNP5). The MIT developed MCODE (MCNP ORIGEN DEPLETION CODE) was used previously to perform some limited depletion calculations. This work chronicles the use of MCNP6, released in June 2013, to perform coupled neutronics and depletion calculation. The results are compared to previously benchmarked results. Furthermore, the code is used to determine the ratio of fission products 134Cs and 137Cs (burnup indicators), and the resultant ratio is compared to the burnup of the UMLRR.

  7. Reactor operations informal report, October 1994

    SciTech Connect

    Hauptman, H.M.; Petro, J.N.; Jacobi, O.; Lettieri, V.; Holden, N.; Ports, D.; Petricek, R.

    1994-10-01

    This monthly progress report is divided into two parts. Part one covers the Brookhaven Medical Research Reactor and part two covers the Brookhaven High Flux Beam Reactor. Information is given for each reactor covering the following areas: reactor operation; instrumentation; mechanical maintenance; occurrence reports; and reactor safety.

  8. Nuclear Reactor Physics

    NASA Astrophysics Data System (ADS)

    Stacey, Weston M.

    2001-02-01

    An authoritative textbook and up-to-date professional's guide to basic and advanced principles and practices Nuclear reactors now account for a significant portion of the electrical power generated worldwide. At the same time, the past few decades have seen an ever-increasing number of industrial, medical, military, and research applications for nuclear reactors. Nuclear reactor physics is the core discipline of nuclear engineering, and as the first comprehensive textbook and reference on basic and advanced nuclear reactor physics to appear in a quarter century, this book fills a large gap in the professional literature. Nuclear Reactor Physics is a textbook for students new to the subject, for others who need a basic understanding of how nuclear reactors work, as well as for those who are, or wish to become, specialists in nuclear reactor physics and reactor physics computations. It is also a valuable resource for engineers responsible for the operation of nuclear reactors. Dr. Weston Stacey begins with clear presentations of the basic physical principles, nuclear data, and computational methodology needed to understand both the static and dynamic behaviors of nuclear reactors. This is followed by in-depth discussions of advanced concepts, including extensive treatment of neutron transport computational methods. As an aid to comprehension and quick mastery of computational skills, he provides numerous examples illustrating step-by-step procedures for performing the calculations described and chapter-end problems. Nuclear Reactor Physics is a useful textbook and working reference. It is an excellent self-teaching guide for research scientists, engineers, and technicians involved in industrial, research, and military applications of nuclear reactors, as well as government regulators who wish to increase their understanding of nuclear reactors.

  9. MMPI and MIT Discriminators of Biogenic and Psychogenic Impotence

    ERIC Educational Resources Information Center

    Beutler, Larry E.; And Others

    1975-01-01

    Male patients complaining of impotence (N=32) were administered the Male Impotence Test (MIT) and the Minnesota Multiphasic Personality Inventory (MMPI). The results suggested that the MIT is without value for differentiating between psychogenic and biogenic impotence, whereas two rules from the MMPI appropriately classified 90 percent of the…

  10. Physik gestern und heute: Visualisierung mit der Schlierenmethode

    NASA Astrophysics Data System (ADS)

    Heering, Peter

    2006-07-01

    Der Name des österreichischen Forschers Ernst Mach ist heute noch mit der Schallgeschwindigkeit verbunden. Diese Auszeichnung resultiert aus Machs Untersuchungen, wie sich Projektile mit Überschallgeschwindigkeit durch die Luft bewegen. Gerade in jüngster Zeit hat die Anwendung derartiger Methoden durch technische Modifikationen wieder einen Aufschwung erfahren.

  11. Proceedings of the Twenty-First Water Reactor Safety Information Meeting: Volume 1, Plenary session; Advanced reactor research; advanced control system technology; advanced instrumentation and control hardware; human factors research; probabilistic risk assessment topics; thermal hydraulics; thermal hydraulic research for advanced passive LWRs

    SciTech Connect

    Monteleone, S.

    1994-04-01

    This three-volume report contains 90 papers out of the 102 that were presented at the Twenty-First Water Reactor Safety Information Meeting held at the Bethesda Marriott Hotel, Bethesda, Maryland, during the week of October 25--27, 1993. The papers are printed in the order of their presentation in each session and describe progress and results of programs in nuclear safety research conducted in this country and abroad. Foreign participation in the meeting included papers presented by researchers from France, Germany, Japan, Russia, Switzerland, Taiwan, and United Kingdom. The titles of the papers and the names of the authors have been updated and may differ from those that appeared in the final program of the meeting. Individual papers have been cataloged separately. This document, Volume 1 covers the following topics: Advanced Reactor Research; Advanced Instrumentation and Control Hardware; Advanced Control System Technology; Human Factors Research; Probabilistic Risk Assessment Topics; Thermal Hydraulics; and Thermal Hydraulic Research for Advanced Passive Light Water Reactors.

  12. Progress and challenges of nuclear science development in Vietnam - an outlook on the occassion of the 10-th anniversary of the Dalat Nuclear Research Reactor

    SciTech Connect

    Hien, P.D.

    1994-12-31

    Over ten years since the commissioning of the Dalat nuclear research reactor a number of nuclear techniques have been developed and applied in Vietnam Manufacturing of radioisotopes and nuclear instruments, development of isotope tracer and nuclear analytical techniques for environmental studies, exploitation of filtered neutron beams, ... have been major activities of reactor utilizations. Efforts made during ten years of reactor operation have resulted also in establishing and sustaining the applications of nuclear techniques in medicine, industry, agriculture, etc. The successes achieved and lessons teamed over the past ten years are discussed illustrating the approaches taken for developing the nuclear science in the conditions of a country having a very low national income and experiencing a transition from a centrally planned to a market-oriented economic system.

  13. Unfälle mit Kleintransportern

    NASA Astrophysics Data System (ADS)

    Tschirschwitz, Christian

    Auf einer außerörtlichen Bundesstraße geriet ein mit vier Personen besetzter Pkw Toyota Corolla aus letztlich nicht vollständig geklärten Gründen ins Schleudern. Nachdem sich das Fahrzeug beträchtlich entgegen dem Uhrzeigersinn ausgedreht hatte, prallte ein entgegenkommender Kleintransporter VW T4 frontal an die rechte Flanke des Toyota. Der Transporter wurde gedreht, ausgehoben und durch einen Pkw Ford Escort unterfahren. Alle Fahrzeuge kamen in Kollisionsortnähe zum Endstand. Die vier Toyota-Insassen wurden getötet. Aus den anderen Fahrzeugen wurden sechs Personen überwiegend schwer verletzt. Unbeteiligte Zeugen waren nicht vorhanden.

  14. Assessment of the neutron activation of a stainless steel sample in a Research Nuclear Reactor using the Monte Carlo method and CINDER'90

    NASA Astrophysics Data System (ADS)

    Lázaro, Ignacio; Ródenas, José; Marques, José G.; Gallardo, Sergio

    2014-06-01

    Materials in a nuclear reactor are activated by neutron irradiation. When they are withdrawn from the reactor and placed in some storage, the potential dose received by workers in the surrounding area must be taken into account. In previous papers, activation of control rods in a NPP with BWR and dose rates around the storage pool have been estimated using the MCNP5 code based on the Monte Carlo method. Models were validated comparing simulation results with experimental measurements. As the activation is mostly produced in stainless steel components of control rods the activation model can be also validated by means of experimental measurements on a stainless steel sample after being irradiated in a reactor. This has been done in the Portuguese Research Reactor at Instituto Tecnológico e Nuclear. The neutron activation has been calculated by two different methods, Monte Carlo and CINDER'90, and results have been compared. After irradiation, dose rates at the water surface of the reactor pool were measured, with the irradiated stainless steel sample submerged at different positions under water. Experimental measurements have been compared with simulation results using Monte Carlo. The comparison shows a good agreement confirming the validation of models.

  15. Teaching ``The Physics of Energy'' at MIT

    NASA Astrophysics Data System (ADS)

    Jaffe, Robert

    2009-05-01

    New physics courses on energy are popping up at colleges and universities across the country. Many require little or no previous physics background, aiming to introduce a broad audience to this complex and critical problem, often augmenting the scientific message with economic and policy discussions. Others are advanced courses, focussing on highly specialized subjects like solar voltaics, nuclear physics, or thermal fluids, for example. About two years ago Washington Taylor and I undertook to develop a course on the ``Physics of Energy'' open to all MIT students who had taken MIT's common core of university level calculus, physics, and chemistry. By avoiding higher level prerequisites, we aimed to attract and make the subject relevant to students in the life sciences, economics, etc. --- as well as physical scientists and engineers --- who want to approach energy issues in a sophisticated and analytical fashion, exploiting their background in calculus, mechanics, and E & M, but without having to take advanced courses in thermodynamics, quantum mechanics, or nuclear physics beforehand. Our object was to interweave teaching the fundamental physics principles at the foundations of energy science with the applications of those principles to energy systems. We envisioned a course that would present the basics of statistical, quantum, and fluid mechanics at a fairly sophisticated level and apply those concepts to the study of energy sources, conversion, transport, losses, storage, conservation, and end use. In the end we developed almost all of the material for the course from scratch. The course debuted this past fall. I will describe what we learned and what general lessons our experience might have for others who contemplate teaching energy physics broadly to a technically sophisticated audience.

  16. 77 FR 68155 - The Armed Forces Radiobiology Research Institute TRIGA Reactor: Facility Operating License No. R-84

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-11-15

    ... the licensee to operate the AFFRI TRIGA Reactor up to a steady-state thermal power of 1.1 MW for an additional 20 years from the date of issuance. DATES: Submit comments by December 17, 2012. Requests for a... authorize the licensee to operate the AFFRI TRIGA Reactor up to a steady-state thermal power of 1.1 MW...

  17. DOE-NE Light Water Reactor Sustainability Program and EPRI Long-Term Operations Program. Joint Research and Development Plan

    SciTech Connect

    Williams, Don

    2014-04-01

    Nuclear power has contributed almost 20% of the total amount of electricity generated in the United States over the past two decades. High capacity factors and low operating costs make nuclear power plants (NPPs) some of the most economical power generators available. Further, nuclear power remains the single largest contributor (nearly 70%) of non-greenhouse gas-emitting electric power generation in the United States. Even when major refurbishments are performed to extend operating life, these plants continue to represent cost-effective, low-carbon assets to the nation’s electrical generation capability. By the end of 2014, about one-third of the existing domestic fleet will have passed their 40th anniversary of power operations, and about one-half of the fleet will reach the same 40-year mark within this decade. Recognizing the challenges associated with pursuing extended service life of commercial nuclear power plants, the U.S. Department of Energy’s (DOE) Office of Nuclear Energy (NE) and the Electric Power Research Institute (EPRI) have established separate but complementary research and development programs (DOE-NE’s Light Water Reactor Sustainability [LWRS] Program and EPRI’s Long-Term Operations [LTO] Program) to address these challenges. To ensure that a proper linkage is maintained between the programs, DOE-NE and EPRI executed a memorandum of understanding in late 2010 to “establish guiding principles under which research activities (between LWRS and LTO) could be coordinated to the benefit of both parties.” This document represents the third annual revision to the initial version (March 2011) of the plan as called for in the memorandum of understanding.

  18. Applications of Nd:YAG laser micromanufacturing in High Temperature Gas Reactor research

    SciTech Connect

    I. J. van Rooyen; C. A. Smal; J. Steyn; H. Greyling

    2012-08-01

    Two innovative applications of Nd:YAG laser micromachining techniques are demonstrated in this publication. Research projects to determine the fission product transport mechanisms in TRISO coated particles necessitate heat treatment studies as well as the manufacturing of a unique sealed system for experimentation at very high temperatures. This article describes firstly the design and creation of an alumina jig designed to contain 500 {mu}m diameter ZrO2 spheres intended for annealing experiments at temperatures up to 1600 C. Functional requirements of this jig are the precision positioning of spheres for laser ablation, welding and post weld heat treatment in order to ensure process repeatability and accurate indexing of individual spheres. The design challenges and the performance of the holding device are reported. Secondly the manufacture of a sealing system using laser micromachining is reported. ZrO2 micro plugs isolate the openings of micro-machined cavities to produce a gas-tight seal fit for application in a high temperature environment. The technique is described along with a discussion of the problems experienced during the sealing process. Typical problems experienced were seating dimensions and the relative small size ({approx} 200 {mu}m) of these plugs that posed handling challenges. Manufacturing processes for both the tapered seating cavity and the plug are demonstrated. In conclusion, this article demonstrates the application of Nd-YAG micromachining in an innovative way to solve practical research problems.

  19. Successful Completion of the Largest Shipment of Russian Research Reactor High-Enriched Uranium Spent Nuclear Fuel from Czech Republic to Russian Federation

    SciTech Connect

    Michael Tyacke; Dr. Igor Bolshinsky; Jeff Chamberlin

    2008-07-01

    On December 8, 2007, the largest shipment of high-enriched uranium spent nuclear fuel was successfully made from a Russian-designed nuclear research reactor in the Czech Republic to the Russian Federation. This accomplishment is the culmination of years of planning, negotiations, and hard work. The United States, Russian Federation, and the International Atomic Energy Agency have been working together on the Russian Research Reactor Fuel Return (RRRFR) Program in support of the Global Threat Reduction Initiative. In February 2003, RRRFR Program representatives met with the Nuclear Research Institute in Rež, Czech Republic, and discussed the return of their high-enriched uranium spent nuclear fuel to the Russian Federation for reprocessing. Nearly 5 years later, the shipment was made. This paper discusses the planning, preparations, coordination, and cooperation required to make this important international shipment.

  20. Cooperative research and development for artificial intelligence based reactor diagnostic system

    SciTech Connect

    Reifman, J.; Wei, T.Y.C.; Abboud, R.G.; Chasensky, T.M.

    1994-10-01

    Artificial Intelligence (AI) techniques in the form of knowledge-based Expert Systems (ESs) have been proposed to provide on-line decision-making support for plant operators during both normal and emergency conditions. However, in spite of the great interest in these advanced techniques, their application in the diagnosis of large-scale processes has not yet reached its full potential because of limitations of the knowledge base. These limitations include problems with knowledge acquisition and the use of an event-oriented approach for process diagnosis. To investigate the capabilities of this two-level hierarchical knowledge structure, Commonwealth Research Corporation (CRC) and Argonne National Laboratory (ANL)are collaborating on a DOE-sponsored Cooperative Research and Development Agreement (CRADA) project to perform feasibility studies on the proposed diagnostic system. Investigations are being performed in the construction of a physics-based plant level process diagnostic ES and the characterization of component-level fault project is to develop a computer-based system using this Al approach to assist process plant operators during off-normal plant conditions. The proposed computer-based system will use T-H signals complemented by other non-T-H signals available in the data stream to provide the process operator with the component which most likely caused the observed process disturbance. To demonstrate the scale-up feasibility of the proposed diagnostic system it is being developed for use with the Chemical Volume Control System (CVCS) of a nuclear power plant. This is an ongoing multi-year project and the remainder of this paper presents a mid-term status report.

  1. Radiological Survey of Contaminated Installations of Research Reactor before Dismantling in High Dose Conditions with Complex for Remote Measurements of Radioactivity - 12069

    SciTech Connect

    Danilovich, Alexey; Ivanov, Oleg; Lemus, Alexey; Smirnov, Sergey; Stepanov, Vyacheslav; Volkovich, Anatoly

    2012-07-01

    Decontamination and decommissioning of the research reactors MR (Testing Reactor) and RFT (Reactor of Physics and Technology) has recently been initiated in the National Research Center (NRC) 'Kurchatov institute', Moscow. These research reactors have a long history and many installations - nine loop facilities for experiments with different kinds of fuel. When decommissioning nuclear facilities it is necessary to measure the distribution of radioactive contamination in the rooms and at the equipment at high levels of background radiation. At 'Kurchatov Institute' some special remote control measuring systems were developed and they are applied during dismantling of the reactors MR and RFT. For a survey of high-level objects a radiometric system mounted on the robotic Brokk vehicle is used. This system has two (4π and collimated) dose meters and a high resolution video camera. Maximum measured dose rate for this system is ∼8.5 Sv/h. To determine the composition of contaminants, a portable spectrometric system is used. It is a remotely controlled, collimated detector for scanning the distribution of radioactive contamination. To obtain a detailed distribution of contamination a remote-controlled gamma camera is applied. For work at highly contaminated premises with non-uniform background radiation, another camera is equipped with rotating coded mask (coded aperture imaging). As a result, a new system of instruments for remote radioactivity measurements with wide range of sensitivity and angular resolution was developed. The experience and results of measurements in different areas of the reactor and at its loop installations, with emphasis on the radioactive survey of highly-contaminated samples, are presented. These activities are conducted under the Federal Program for Nuclear and Radiation Safety of Russia. Adaptation of complex remote measurements of radioactivity and survey of contaminated installations of research reactor before dismantling in high dose

  2. Study on void fraction distribution in the moderator cell of Cold Neutron Source systems in China Advanced Research Reactor

    NASA Astrophysics Data System (ADS)

    Li, Liangxing; Li, Huixiong; Hu, Jinfeng; Bi, Qincheng; Chen, Tingkuan

    2007-04-01

    A physical model is developed for analyzing and evaluating the void fraction profiles in the moderator cell of the Cold Neutron Source (CNS) of the China Advanced Research Reactor (CARR), which is now constructing in the China Institute of Atomic Energy (CIAE). The results derived from the model are compared with the related experimental data and its propriety is verified. The model is then used to explore the influence of various factors, including the diameter of boiling vapor bubbles, liquid density, liquid viscosity and the total heating power acted on the moderator cell, on the void fraction profiles in the cell. The results calculated with the present model indicate that the void fraction in the moderator cell increases linearly with heating power, and increases with the liquid viscosity, but decreases as the size of bubbles increases, and increases linearly with heating power. For the case where hydrogen is being used as a moderator, calculation results show that the void fraction in the moderator cell may be less than 30%, which is the maximum void fraction permitted from the nuclear physics point of view. The model and the calculation results will help to obtain insight of the mechanism that controls the void fraction distribution in the moderator cell, and provide theoretical supports for the moderator cell design.

  3. Preliminary validation of computational model for neutron flux prediction of Thai Research Reactor (TRR-1/M1)

    NASA Astrophysics Data System (ADS)

    Sabaibang, S.; Lekchaum, S.; Tipayakul, C.

    2015-05-01

    This study is a part of an on-going work to develop a computational model of Thai Research Reactor (TRR-1/M1) which is capable of accurately predicting the neutron flux level and spectrum. The computational model was created by MCNPX program and the CT (Central Thimble) in-core irradiation facility was selected as the location for validation. The comparison was performed with the typical flux measurement method routinely practiced at TRR-1/M1, that is, the foil activation technique. In this technique, gold foil is irradiated for a certain period of time and the activity of the irradiated target is measured to derive the thermal neutron flux. Additionally, the flux measurement with SPND (self-powered neutron detector) was also performed for comparison. The thermal neutron flux from the MCNPX simulation was found to be 1.79×1013 neutron/cm2s while that from the foil activation measurement was 4.68×1013 neutron/cm2s. On the other hand, the thermal neutron flux from the measurement using SPND was 2.47×1013 neutron/cm2s. An assessment of the differences among the three methods was done. The difference of the MCNPX with the foil activation technique was found to be 67.8% and the difference of the MCNPX with the SPND was found to be 27.8%.

  4. Spectrum evaluation at the filter-modified neutron irradiation field for neutron capture therapy in Kyoto University Research Reactor

    NASA Astrophysics Data System (ADS)

    Sakurai, Yoshinori; Kobayashi, Tooru

    2004-10-01

    The Heavy Water Neutron Irradiation Facility of the Kyoto University Research Reactor (KUR-HWNIF) was updated in March 1996, mainly to improve the facility for neutron capture therapy (NCT). In this facility, neutron beams with various energy spectra, from almost pure thermal to epithermal, are available. The evaluation of the neutron energy spectra by multi-activation-foil method was performed as a series of the facility characterization. The spectra at the normal irradiation position were evaluated for the combinations of heavy-water thickness of the spectrum shifter and the open-close condition of the cadmium and boral filters. The initial spectra were made mainly using a two-dimensional transport code, and the final spectra were obtained using an adjusting code. For the verification of the evaluated spectra, simulation calculations using a phantom were performed on the assumption of NCT-clinical-irradiation conditions. It resulted that the calculated data for the depth neutron-flux distributions were in good agreement with the experimental ones.

  5. Design of a high-flux epithermal neutron beam using 235U fission plates at the Brookhaven Medical Research Reactor.

    PubMed

    Liu, H B; Brugger, R M; Rorer, D C; Tichler, P R; Hu, J P

    1994-10-01

    Beams of epithermal neutrons are being used in the development of boron neutron capture therapy for cancer. This report describes a design study in which 235U fission plates and moderators are used to produce an epithermal neutron beam with higher intensity and better quality than the beam currently in use at the Brookhaven Medical Research Reactor (BMRR). Monte Carlo calculations are used to predict the neutron and gamma fluxes and absorbed doses produced by the proposed design. Neutron flux measurements at the present epithermal treatment facility (ETF) were made to verify and compare with the computed results where feasible. The calculations indicate that an epithermal neutron beam produced by a fission-plate converter could have an epithermal neutron intensity of 1.2 x 10(10) n/cm2.s and a fast neutron dose per epithermal neutron of 2.8 x 10(-11) cGy.cm2/nepi plus being forward directed. This beam would be built into the beam shutter of the ETF at the BMRR. The feasibility of remodeling the facility is discussed.

  6. NEUTRONIC REACTOR

    DOEpatents

    Fermi, E.; Zinn, W.H.; Anderson, H.L.

    1958-09-16

    Means are presenied for increasing the reproduction ratio of a gaphite- moderated neutronic reactor by diminishing the neutron loss due to absorption or capture by gaseous impurities within the reactor. This means comprised of a fluid-tight casing or envelope completely enclosing the reactor and provided with a valve through which the casing, and thereby the reactor, may be evacuated of atmospheric air.

  7. Extraction of pure thermal neutron beam for the proposed PGNAA facility at the TRIGA research reactor of AERE, Savar, Bangladesh

    NASA Astrophysics Data System (ADS)

    Alam, Sabina; Zaman, M. A.; Islam, S. M. A.; Ahsan, M. H.

    1993-10-01

    A study on collimators and filters for the design of a spectrometer for prompt gamma neutron activation analysis (PGNAA) at one of the radial beamports of the TRIGA Mark II reactor at AERE, Savar has been carried out. On the basis of this study a collimator and a filter have been designed for the proposed PGNAA facility. Calculations have been done for measuring neutron flux at various positions of the core of the reactor using the computer code TRIGAP. Gamma dose in the core of the reactor has also been measured experimentally using TLD technique in the present work.

  8. Understanding the Self-Directed Online Learning Preferences, Goals, Achievements, and Challenges of MIT OpenCourseWare Subscribers

    ERIC Educational Resources Information Center

    Bonk, Curtis J.; Lee, Mimi Miyoung; Kou, Xiaojing; Xu, Shuya; Sheu, Feng-Ru

    2015-01-01

    This research targeted the learning preferences, goals and motivations, achievements, challenges, and possibilities for life change of self-directed online learners who subscribed to the monthly OpenCourseWare (OCW) e-newsletter from MIT. Data collection included a 25-item survey of 1,429 newsletter subscribers; 613 of whom also completed an…

  9. Design of an Actinide Burning, Lead or Lead-Bismuth Cooled Reactor That Produces Low Cost Electricty - FY-02 Annual Report

    SciTech Connect

    Mac Donald, Philip Elsworth; Buongiorno, Jacopo

    2002-10-01

    The purpose of this collaborative Idaho National Engineering and Environmental Laboratory (INEEL) and Massachusetts Institute of Technology (MIT) Laboratory Directed Research and Development (LDRD) project is to investigate the suitability of lead or lead-bismuth cooled fast reactors for producing low-cost electricity as well as for actinide burning. The goal is to identify and analyze the key technical issues in core neutronics, materials, thermal-hydraulics, fuels, and economics associated with the development of this reactor concept. Work has been accomplished in four major areas of research: core neutronic design, plant engineering, material compatibility studies, and coolant activation. The publications derived from work on this project (since project inception) are listed in Appendix A. This is the third in a series of Annual Reports for this project, the others are also listed in Appendix A as FY-00 and FY-01 Annual Reports.

  10. Design of an Actinide Burning, Lead or Lead-Bismuth Cooled Reactor that Produces Low Cost Electricity FY-01 Annual Report, October 2001

    SciTech Connect

    Mac Donald, Philip Elsworth; Buongiorno, Jacopo; Davis, Cliff Bybee; Herring, James Stephen; Loewen, Eric Paul; Smolik, Galen Richard; Weaver, Kevan Dean; Todreas, N.

    2001-10-01

    The purpose of this collaborative Idaho National Engineering and Environmental Laboratory (INEEL) and Massachusetts Institute of Technology (MIT) Laboratory Directed Research and Development (LDRD) project is to investigate the suitability of lead or lead-bismuth cooled fast reactors for producing low-cost electricity as well as for actinide burning. The goal is to identify and analyze the key technical issues in core neutronics, materials, thermal-hydraulics, fuels, and economics associated with the development of this reactor concept. Work has been accomplished in four major areas of research: core neutronic design, plant engineering, material compatibility studies, and coolant activation. The publications derived from work on this project (since project inception) are listed in Appendix A.

  11. Air Ingress Analyses on a High Temperature Gas-Cooled Reactor

    SciTech Connect

    Oh, Chang H; Moore, Richard Leroy; Merrill, Brad Johnson; Petti, David Andrew

    2001-11-01

    A primary-pipe break accident is one of the design-basis accidents of a high-temperature gas-cooled reactor (HTGR). When this accident occurs, air is anticipated to enter the reactor core from the break and oxidize the in-core graphite structure in the modular pebble bed reactor (MPBR). This paper presents the results of the graphite oxidation model developed as part of the Idaho National Engineering and Environmental Laboratory's Direct Research and Development effort. Although gas reactors have been tried in the past with limited success, the innovations of modularity and integrated state-ofart control systems coupled with improved fuel design and a pebble bed core make this design potentially very attractive from an economic and technical perspective. A schematic diagram on a reference design of the MPBR has been established on a major component level (INEEL & MIT, 1999). Steady-state and transient thermal hydraulics models will be produced with key parameters established for these conditions at all major components. Development of an integrated plant model to allow for transient analysis on a more sophisticated level is now being developed. In this paper, preliminary results of the hypothetical air ingress are presented. A graphite oxidation model was developed to determine temperature and the control mechanism in the spherical graphite geometry.

  12. Studies on the closed-loop digital control of multi-modular reactors

    SciTech Connect

    Bernard, J.A. . Nuclear Reactor Lab.); Henry, A.F.; Lanning, D.D.; Meyer, J.E. . Dept. of Nuclear Engineering)

    1992-11-01

    This report describes the theoretical development and the evaluation via both experiment and simulation of digital methods for the closed-loop control of power, temperature, and steam generator level in multi-modular reactors. The major conclusion of the research reported here is that the technology is currently available to automate many aspects of the operation of multi-modular plants. This will in turn minimize the number of required personnel and thus contain both operating and personnel costs, allow each module to be operated at a different power level thereby staggering the times at which refuelings would be needed, and maintain the competitiveness of US industry relative to foreign vendors who are developing and applying advanced control concepts. The technology described in this report is appropriate to the proposed multi-modular reactor designs and to present-generation pressurized water reactors. Its extension to boiling water reactors is possible provided that the commitment is made to create a real-time model of a BWR. The work reported here was performed by the Massachusetts Institute of Technology (MIT) under contract to the Oak Ridge National Laboratory (ORNL) and to the United States Department of Energy (Division of Industry and University Programs, Contract No. DE-FG07-90ER12930.)

  13. Studies on the closed-loop digital control of multi-modular reactors. Final report

    SciTech Connect

    Bernard, J.A.; Henry, A.F.; Lanning, D.D.; Meyer, J.E.

    1992-11-01

    This report describes the theoretical development and the evaluation via both experiment and simulation of digital methods for the closed-loop control of power, temperature, and steam generator level in multi-modular reactors. The major conclusion of the research reported here is that the technology is currently available to automate many aspects of the operation of multi-modular plants. This will in turn minimize the number of required personnel and thus contain both operating and personnel costs, allow each module to be operated at a different power level thereby staggering the times at which refuelings would be needed, and maintain the competitiveness of US industry relative to foreign vendors who are developing and applying advanced control concepts. The technology described in this report is appropriate to the proposed multi-modular reactor designs and to present-generation pressurized water reactors. Its extension to boiling water reactors is possible provided that the commitment is made to create a real-time model of a BWR. The work reported here was performed by the Massachusetts Institute of Technology (MIT) under contract to the Oak Ridge National Laboratory (ORNL) and to the United States Department of Energy (Division of Industry and University Programs, Contract No. DE-FG07-90ER12930.)

  14. MIT ASTROMAG 1.7 meter disk magnet design report

    NASA Technical Reports Server (NTRS)

    Marston, P. G.; Hale, J. R.; Vieira, R.; Zhukovsky, A.; Titus, P. H.; Sullivan, J. D.; Dawson, A. M.

    1990-01-01

    MIT has proposed a magnet design for ASTROMAG, which has demonstrated substantial improvement in performance as compared with the present HEAO baseline design. Several advantages of the MIT disk design are listed along with design characteristics. Details of field contours and active field regions are shown along with comparisons with other designs. Three alternative design configurations for the ASTROMAG disk coils are summarized. The parameters of the conductors are listed and basic parameters for each of the complete systems are shown.

  15. Design of boron carbide-shielded irradiation channel of the outer irradiation channel of the Ghana Research Reactor-1 using MCNP.

    PubMed

    Abrefah, R G; Sogbadji, R B M; Ampomah-Amoako, E; Birikorang, S A; Odoi, H C; Nyarko, B J B

    2011-01-01

    The MCNP model for the Ghana Research Reactor-1 was redesigned to incorporate a boron carbide-shielded irradiation channel in one of the outer irradiation channels. Extensive investigations were made before arriving at the final design of only one boron carbide covered outer irradiation channel; as all the other designs that were considered did not give desirable results of neutronic performance. The concept of redesigning a new MCNP model, which has a boron carbide-shielded channel is to equip the Ghana Research Reactor-1 with the means of performing efficient epithermal neutron activation analysis. After the simulation, a comparison of the results from the original MCNP model for the Ghana Research Reactor-1 and the new redesigned model of the boron carbide shielded channel was made. The final effective criticality of the original MCNP model for the GHARR-1 was recorded as 1.00402 while that of the new boron carbide designed model was recorded as 1.00282. Also, a final prompt neutron lifetime of 1.5245 × 10(-4)s was recorded for the new boron carbide designed model while a value of 1.5571 × 10(-7)s was recorded for the original MCNP design of the GHARR-1.

  16. A high performance neutron powder diffractometer at 3 MW Triga Mark-II research reactor in Bangladesh

    NASA Astrophysics Data System (ADS)

    Kamal, I.; Yunus, S. M.; Datta, T. K.; Zakaria, A. K. M.; Das, A. K.; Aktar, S.; Hossain, S.; Berliner, R.; Yelon, W. B.

    2016-07-01

    A high performance neutron diffractometer called Savar Neutron Diffractometer (SAND) was built and installed at radial beam port-2 of TRIGA Mark II research reactor at AERE, Savar, Dhaka, Bangladesh. Structural studies of materials are being done by this technique to characterize materials crystallograpohically and magnetically. The micro-structural information obtainable by neutron scattering method is very essential for determining its technological applications. This technique is unique for understanding the magnetic behavior in magnetic materials. Ceramic, steel, electronic and electric industries can be benefited from this facility for improving their products and fabrication process. This instrument consists of a Popovicimonochromator with a large linear position sensitive detector array. The monochromator consists of nine blades of perfect single crystal of silicon with 6mm thickness each. The monochromator design was optimized to provide maximum flux on 3mm diameter cylindrical sample with a relatively flat angular dependence of resolution. Five different wave lengths can be selected by orienting the crystal at various angles. A sapphire filter was used before the primary collimator to minimize the first neutron. The detector assembly is composed of 15 linear position sensitive proportional counters placed at either 1.1 m or 1.6 m from the sample position and enclosed in a air pad supported high density polythene shield. Position sensing is obtained by charge division using 1-wide NIM position encoding modules (PEM). The PEMs communicate with the host computer via USB. The detector when placed at 1.1 m, subtends 30˚ (2θ) at each step and covers 120˚ in 4 steps. When the detector is placed at 1.6 m it subtends 20˚ at each step and covers 120˚ in 6 steps. The instrument supports both low and high temperature sample environment. The instrument supports both low and high temperature sample environment. The diffractometer is a state-of-the art technology

  17. Optimization study for an epithermal neutron beam for boron neutron capture therapy at the University of Virginia Research Reactor

    SciTech Connect

    Burns, T.D. Jr.

    1995-05-01

    The non-surgical brain cancer treatment modality, Boron Neutron Capture Therapy (BNCT), requires the use of an epithermal neutron beam. This purpose of this thesis was to design an epithermal neutron beam at the University of Virginia Research Reactor (UVAR) suitable for BNCT applications. A suitable epithermal neutron beam for BNCT must have minimal fast neutron and gamma radiation contamination, and yet retain an appreciable intensity. The low power of the UVAR core makes reaching a balance between beam quality and intensity a very challenging design endeavor. The MCNP monte carlo neutron transport code was used to develop an equivalent core radiation source, and to perform the subsequent neutron transport calculations necessary for beam model analysis and development. The code accuracy was validated by benchmarking output against experimental criticality measurements. An epithermal beam was designed for the UVAR, with performance characteristics comparable to beams at facilities with cores of higher power. The epithermal neutron intensity of this beam is 2.2 {times} 10{sup 8} n/cm{sup 2} {center_dot} s. The fast neutron and gamma radiation KERMA factors are 10 {times} 10{sup {minus}11}cGy{center_dot}cm{sup 2}/n{sub epi} and 20 {times} 10{sup {minus}11} cGy{center_dot}cm{sup 2}/n{sub epi}, respectively, and the current-to-flux ratio is 0.85. This thesis has shown that the UVAR has the capability to provide BNCT treatments, however the performance characteristics of the final beam of this study were limited by the low core power.

  18. OPTIMIZATION OF THE EPITHERMAL NEUTRON BEAM FOR BORON NEUTRON CAPTURE THERAPY AT THE BROOKHAVEN MEDICAL RESEARCH REACTOR.

    SciTech Connect

    HU,J.P.; RORER,D.C.; RECINIELLO,R.N.; HOLDEN,N.E.

    2002-08-18

    Clinical trials of Boron Neutron Capture Therapy for patients with malignant brain tumor had been carried out for half a decade, using an epithermal neutron beam at the Brookhaven's Medical Reactor. The decision to permanently close this reactor in 2000 cut short the efforts to implement a new conceptual design to optimize this beam in preparation for use with possible new protocols. Details of the conceptual design to produce a higher intensity, more forward-directed neutron beam with less contamination from gamma rays, fast and thermal neutrons are presented here for their potential applicability to other reactor facilities. Monte Carlo calculations were used to predict the flux and absorbed dose produced by the proposed design. The results were benchmarked by the dose rate and flux measurements taken at the facility then in use.

  19. RERTR program activities related to the development and application of new LEU fuels. [Reduced Enrichment Research and Test Reactor; low-enriched uranium

    SciTech Connect

    Travelli, A.

    1983-01-01

    The statue of the U.S. Reduced Enrichment Research and Test Reactor (RERTR) Program is reviewed. After a brief outline of RERTR Program objectives and goals, program accomplishments are discussed with emphasis on the development, demonstration and application of new LEU fuels. Most program activities have proceeded as planned, and a combination of two silicide fuels (U/sub 3/Si/sub 2/-Al and U/sub 3/Si-Al) holds excellent promise for achieving the long-term program goals. Current plans and schedules project the uranium density of qualified RERTR fuels for plate-type reactors to grow by approximately 1 g U/cm/sup 3/ each year, from the current 1.7 g U/cm/sup 3/ to the 7.0 g U/cm/sup 3/ which will be reached in late 1988. The technical needs of research and test reactors for HEU exports are also forecasted to undergo a gradual but dramatic decline in the coming years.

  20. Calculation and comparison of xenon and samarium reactivities of the HEU, LEU core in the low power research reactor.

    PubMed

    Dawahra, S; Khattab, K; Saba, G

    2015-07-01

    Comparative studies for the conversion of the fuel from HEU to LEU in the Miniature Neutron Source Reactor (MNSR) have been performed using the MCNP4C and GETERA codes. The precise calculations of (135)Xe and (149)Sm concentrations and reactivities were carried out and compared during the MNSR operation time and after shutdown for the existing HEU fuel (UAl4-Al, 90% enriched) and the potential LEU fuels (U3Si2-Al, U3Si-Al, U9Mo-Al, 19.75% enriched and UO2, 12.6% enriched) in this paper using the MCNP4C and GETERA codes. It was found that the (135)Xe and (149)Sm reactivities did not reach their equilibrium reactivities during the daily operating time of the reactor. The (149)Sm reactivities could be neglected compared to (135)Xe reactivities during the reactor operating time and after shutdown. The calculations for the UAl4-Al produced the highest (135)Xe reactivity in all the studied fuel group during the reactor operation (0.39 mk) and after the reactor shutdown (0.735 mk), It followed by U3Si-Al (0.34 mk, 0.653 mk), U3Si2-Al (0.33 mk, 0.634 mk), U9Mo-Al (0.3 mk, 0.568 mk) and UO2 (0.24 mk, 0.448 mk) fuels, respectively. Finally, the results showed that the UO2 was the best candidate for fuel conversion to LEU in the MNSR since it gave the lowest (135)Xe reactivity during the reactor operation and after shutdown.

  1. Conversion and Evaluation of the University of Massachusetts Lowell Research Reactor From High-Enriched To Low-Enriched Uranium Fuel

    SciTech Connect

    Leo M. Bobek

    2003-11-19

    The process for converting the University of Massachusetts Lowell Research Reactor (UMLRR) from high-enrichment uranium (HEU) fuel to low-enrichment uranium (LEU) fuel began in 1988. Several years of design reviews, computational modeling, and thermal hydraulic analyses resulted in a preliminary reference core design and configuration based on 20 standard, MTR-type, flat-plate, 19.75% enriched, uranium silicide (u3Si2) fuel elements. A final safety analysis for the fuel conversion was submitted to the Nuclear Regulatory Commission (NRC) in 1993. The NRC made two additional requests for additional information and supplements were submitted in 1994 and 1997. The new UMLRR Reactor Supervisor initiated an effort to change the LEU reference core configuration to eliminate a complicated control rod modification needed for the smaller core.

  2. NUCLEAR REACTOR

    DOEpatents

    Treshow, M.

    1961-09-01

    A boiling-water nuclear reactor is described wherein control is effected by varying the moderator-to-fuel ratio in the reactor core. This is accomplished by providing control tubes containing a liquid control moderator in the reactor core and providing means for varying the amount of control moderatcr within the control tubes.

  3. NEUTRONIC REACTOR

    DOEpatents

    Daniels, F.

    1959-10-27

    A reactor in which at least a portion of the moderator is in the form of movable refractory balls is described. In addition to their moderating capacity, these balls may serve as carriers for fissionable material or fertile material, or may serve in a coolant capacity to remove heat from the reactor. A pneumatic system is used to circulate the balls through the reactor.

  4. Nuclear Energy Research Initiative Program (NERI) Quarterly Progress Report; New Design Equations for Swelling and Irradiation Creep in Generation IV Reactors

    SciTech Connect

    Wolfer, W G; Surh, M P; Garner, F A; Chrzan, D C; Schaldach, C; Sturgeon, J B

    2003-02-13

    The objectives of this research project are to significantly extend the theoretical foundation and the modeling of radiation-induced microstructural changes in structural materials used in Generation IV nuclear reactors, and to derive from these microstructure models the constitutive laws for void swelling, irradiation creep and stress-induced swelling, as well as changes in mechanical properties. The need for the proposed research is based on three major developments and advances over the past two decades. First, new experimental discoveries have been made on void swelling and irradiation creep which invalidate previous theoretical models and empirical constitutive laws for swelling and irradiation creep. Second, recent advances in computational methods and power make it now possible to model the complex processes of microstructure evolution over long-term neutron exposures. Third, it is now required that radiation-induced changes in structural materials over extended lifetimes be predicted and incorporated in the design of Generation IV reactors. Our approach to modeling and data analysis is a dual one in accord with both the objectives to simulate the evolution of the microstructure and to develop design equations for macroscopic properties. Validation of the models through data analysis is therefore carried out at both the microscopic and the macroscopic levels. For the microstructure models, we utilize the transmission electron microscopy results from steels irradiated in reactors and from model materials irradiated by neutrons as well as ion bombardments. The macroscopic constitutive laws will be tested and validated by analyzing density data, irradiation creep data, diameter changes of fuel elements, and post-irradiation tensile data. Validation of both microstructure models and macroscopic constitutive laws is a more stringent test of the internal consistency of the underlying science for radiation effects in structural materials for nuclear reactors.

  5. CONVECTION REACTOR

    DOEpatents

    Hammond, R.P.; King, L.D.P.

    1960-03-22

    An homogeneous nuclear power reactor utilizing convection circulation of the liquid fuel is proposed. The reactor has an internal heat exchanger looated in the same pressure vessel as the critical assembly, thereby eliminating necessity for handling the hot liquid fuel outside the reactor pressure vessel during normal operation. The liquid fuel used in this reactor eliminates the necessity for extensive radiolytic gas rocombination apparatus, and the reactor is resiliently pressurized and, without any movable mechanical apparatus, automatically regulates itself to the condition of criticality during moderate variations in temperature snd pressure and shuts itself down as the pressure exceeds a predetermined safe operating value.

  6. Radiological impact on the workers, members of the public, and environment from the partial decommissioning of Pakistan Research Reactor-I and its associated radioactive residues.

    PubMed

    Ali, A; Orfi, S D; Manzur, H; Aslam, M

    2001-05-01

    The Pakistan Research Reactor-I (PARR-I) is a swimming pool type research reactor originally designed and built for a thermal power of 5 MW using High Enriched Uranium (HEU) fuel. In 1990-1991 the reactor was redesigned, partially decommissioned and recommissioned to operate with Low Enriched Uranium (LEU) fuel at a thermal power of 10 MW. An essential requirement, construction and commissioning of a wet spent fuel storage bay and fabrication of an irradiated fuel transfer cask were completed before actual dismantling of the reactor core. During the partial decommissioning operations, radioactive waste generated included 600 m3 low-level liquid radioactive waste and 14 m3 of solid radioactive waste with an average specific activity of 4.52 Bq ml(-1) and 2.22 kBq g(-1), respectively. External radiation doses of the workers were determined using TLD (NG 6,7) and direct reading dosimeters. The maximum individual external radiation dose received by any worker during this practice was 5 mSv, which was 25% of the annual dose limit of 20 mSv. Detection and measurement of internal contamination was carried out using bioassay techniques. During the whole operation, not a single case of internal contamination was detected. The ambient radiation levels around waste seepage pits are periodically monitored using TLD (G-2 cards) and G. M. radiation survey meters. Underground migration of radioactivity is checked by analyzing seepage water samples taken from boreholes that have been dug at different locations in the vicinity of the radioactive residues. The monitoring around disposal sites containing radioactive residues has been continued during the last 9 y and will be continued in the future. So far, no rise in the environmental gamma radiation dose level and migration of underground radionuclides has been found in the vicinity of these disposal sites. Working personal during the decommissioning of PARR-I have been found to be radiologically safe. Adherence to the ALARA

  7. Benchmarking on Tsunami Currents with ComMIT

    NASA Astrophysics Data System (ADS)

    Sharghi vand, N.; Kanoglu, U.

    2015-12-01

    There were no standards for the validation and verification of tsunami numerical models before 2004 Indian Ocean tsunami. Even, number of numerical models has been used for inundation mapping effort, evaluation of critical structures, etc. without validation and verification. After 2004, NOAA Center for Tsunami Research (NCTR) established standards for the validation and verification of tsunami numerical models (Synolakis et al. 2008 Pure Appl. Geophys. 165, 2197-2228), which will be used evaluation of critical structures such as nuclear power plants against tsunami attack. NCTR presented analytical, experimental and field benchmark problems aimed to estimate maximum runup and accepted widely by the community. Recently, benchmark problems were suggested by the US National Tsunami Hazard Mitigation Program Mapping & Modeling Benchmarking Workshop: Tsunami Currents on February 9-10, 2015 at Portland, Oregon, USA (http://nws.weather.gov/nthmp/index.html). These benchmark problems concentrated toward validation and verification of tsunami numerical models on tsunami currents. Three of the benchmark problems were: current measurement of the Japan 2011 tsunami in Hilo Harbor, Hawaii, USA and in Tauranga Harbor, New Zealand, and single long-period wave propagating onto a small-scale experimental model of the town of Seaside, Oregon, USA. These benchmark problems were implemented in the Community Modeling Interface for Tsunamis (ComMIT) (Titov et al. 2011 Pure Appl. Geophys. 168, 2121-2131), which is a user-friendly interface to the validated and verified Method of Splitting Tsunami (MOST) (Titov and Synolakis 1995 J. Waterw. Port Coastal Ocean Eng. 121, 308-316) model and is developed by NCTR. The modeling results are compared with the required benchmark data, providing good agreements and results are discussed. Acknowledgment: The research leading to these results has received funding from the European Union's Seventh Framework Programme (FP7/2007-2013) under grant

  8. Harvard--MIT research program in short-lived radiopharmaceuticals

    SciTech Connect

    Not Available

    1991-03-01

    This report describes progress on five projects. The first project showed a 1000 fold concentration of the cationic complex {sup 99m}Tc (MIBI) in heart cell mitochondria vs heart cell cytoplasm, as determined by high resolution electron probe microanalysis. Additional technetium-99m based complexes are being developed and tested. The second project involves evaluating technetium acetylacteonates as potential indicators of cerebral blood flow. An intermediate in the synthesis of a technetium porphyrin complex has been synthesized; an oxotechnetium(V)-2,4-pentanedione complex has been prepared and is currently being characterized. The third project involves using radio labelled antibodies for diagnosis and treatment of cancer. An early discovery was that chloramine-T based iodination protocols resulted in a reversal of the charge on mouse lgGs. Immunoperoxidase-labelled monoclonal antibody MOv 18 was shown to bind specifically to the most frequent ovarian aderon carcinomas, and not to healthy tissue, making this antibody a good candidate for immunotherapy or immunodetection. Work on a specific immunotherapy protocol suffered a setback when one reagent, a {sup 125}I-biotin complex, proved to be unstable in vivo. The fourth project involves labelling antibodies with positron emitting radionuclides. Radiofluorination was accomplished through reductive alkylation of {sup 18}F-aldehyde, or pentafluorophenyl esters. Radioiodination was accomplished using alkyl-tin derivation exchange. The fifth project examined antibody modification for use in radioimmune imaging. Technetium-99m-labelled lgG was shown to be biologically equivalent to Indium-III-labelled lgG for imaging focal sites of inflamation. Also, Indium III labelling of small bioactive peptides was examined as a means of imaging important physiological processes. 44 refs., 2 figs.

  9. Regional climate projection of the Maritime Continent using the MIT Regional Climate Model

    NASA Astrophysics Data System (ADS)

    IM, E. S.; Eltahir, E. A. B.

    2014-12-01

    Given that warming of the climate system is unequivocal (IPCC AR5), accurate assessment of future climate is essential to understand the impact of climate change due to global warming. Modelling the climate change of the Maritime Continent is particularly challenge, showing a high degree of uncertainty. Compared to other regions, model agreement of future projections in response to anthropogenic emission forcings is much less. Furthermore, the spatial and temporal behaviors of climate projections seem to vary significantly due to a complex geographical condition and a wide range of scale interactions. For the fine-scale climate information (27 km) suitable for representing the complexity of climate change over the Maritime Continent, dynamical downscaling is performed using the MIT regional climate model (MRCM) during two thirty-year period for reference (1970-1999) and future (2070-2099) climate. Initial and boundary conditions are provided by Community Earth System Model (CESM) simulations under the emission scenarios projected by MIT Integrated Global System Model (IGSM). Changes in mean climate as well as the frequency and intensity of extreme climate events are investigated at various temporal and spatial scales. Our analysis is primarily centered on the different behavior of changes in convective and large-scale precipitation over land vs. ocean during dry vs. wet season. In addition, we attempt to find the added value to downscaled results over the Maritime Continent through the comparison between MRCM and CESM projection. Acknowledgements.This research was supported by the National Research Foundation Singapore through the Singapore MIT Alliance for Research and Technology's Center for Environmental Sensing and Modeling interdisciplinary research program.

  10. The Innovations, Technology and Waste Management Approaches to Safely Package and Transport the World's First Radioactive Fusion Research Reactor for Burial

    SciTech Connect

    Keith Rule; Erik Perry; Jim Chrzanowski; Mike Viola; Ron Strykowsky

    2003-09-15

    Original estimates stated that the amount of radioactive waste that will be generated during the dismantling of the Tokamak Fusion Test Reactor will approach two million kilograms with an associated volume of 2,500 cubic meters. The materials were activated by 14 MeV neutrons and were highly contaminated with tritium, which present unique challenges to maintain integrity during packaging and transportation. In addition, the majority of this material is stainless steel and copper structural metal that were specifically designed and manufactured for this one-of-a-kind fusion research reactor. This provided further complexity in planning and managing the waste. We will discuss the engineering concepts, innovative practices, and technologies that were utilized to size reduce, stabilize, and package the many unique and complex components of this reactor. This waste was packaged and shipped in many different configurations and methods according to the transportation regulations and disposal facility requirements. For this particular project, we were able to utilize two separate disposal facilities for burial. This paper will conclude with a complete summary of the actual results of the waste management costs, volumes, and best practices that were developed from this groundbreaking and successful project.

  11. LOCA Simulation in the National Research Universal Reactor Program Postirradiation Examination Results for the Third Materials Experiment (MT-3) - Second Campaign

    SciTech Connect

    Haberman, J. H.

    1985-06-01

    A series of in-reactor experiments were conducted using full-length 32-rod pressurized water reactor (PWR} fuel bundles as part of the Loss-of-Coolant Accident (LOCA} Simulation Program by Pacific Northwest Laboratory (PNL). The third materials test (MT-3} was the sixth experiment in a series of thermalhydraulic and materials deformation/rupture experiments conducted in the National Research Universal (NRU) Reactor, Chalk River, Ontario, Canada. The MT-3 experiment was jointly funded by the U.S. Nuclear Regulatory Commission (NRC) and the United Kingdom Atomic Energy Authority (UKAEA) with the main objective of evaluating ballooning and rupture during active two-phase cooling at elevated temperatures. All 12 test rods in the center of the 32-rod bundle failed with an average peak strain of 55.4%. At the request of the UKAEA, a destructive postirradiation examination (PIE) was performed on 7 of the 12 test rods. The results of this examination were presented in a previous report. Subsequently, and at the request of UKAEA, PIE was performed on three additional rods along with further examination of one of the previously examined rods. Information obtained from the PIE included cladding thickness measurements, cladding metallography, and particle size analysis of the fractured fuel pellets. This report describes the additional PIE work performed and presents the results of the examinations.

  12. Corrosion of the AlFeNi alloy used for the fuel cladding in the Jules Horowitz research reactor

    NASA Astrophysics Data System (ADS)

    Wintergerst, M.; Dacheux, N.; Datcharry, F.; Herms, E.; Kapusta, B.

    2009-09-01

    The AlFeNi aluminium alloy (1 wt% Fe, 1 wt% Ni, 1 wt% Mg) is expected to be used as nuclear fuel cladding for the Jules Horowitz experimental reactor. To guarantee a safe behaviour of the fuel, a good understanding of the fuel clad corrosion mechanisms is required. In this field, the experimental characterization of the selected alloy was performed. Then experimental studies of the aluminium alloy corrosion product obtained in autoclaves have shown an oxide film composed of two layers. This duplex structure results from a mixed growth mechanism: an anionic growth to develop the inner oxide and a cationic diffusion parallel to a dissolution-precipitation process to form the outer zone. Dynamic experiments at 70 °C have demonstrated that a solid diffusion step controls the release kinetic. Then post-irradiation exams performed on irradiated fuel plates were used to investigate the effects of the irradiation on the corrosion behaviour in the reactor core.

  13. Research Update: Atmospheric pressure spatial atomic layer deposition of ZnO thin films: Reactors, doping, and devices

    SciTech Connect

    Hoye, Robert L. Z. E-mail: jld35@cam.ac.uk; MacManus-Driscoll, Judith L. E-mail: jld35@cam.ac.uk; Muñoz-Rojas, David; Nelson, Shelby F.; Illiberi, Andrea; Poodt, Paul

    2015-04-01

    Atmospheric pressure spatial atomic layer deposition (AP-SALD) has recently emerged as an appealing technique for rapidly producing high quality oxides. Here, we focus on the use of AP-SALD to deposit functional ZnO thin films, particularly on the reactors used, the film properties, and the dopants that have been studied. We highlight how these films are advantageous for the performance of solar cells, organometal halide perovskite light emitting diodes, and thin-film transistors. Future AP-SALD technology will enable the commercial processing of thin films over large areas on a sheet-to-sheet and roll-to-roll basis, with new reactor designs emerging for flexible plastic and paper electronics.

  14. Molecular beam mass spectrometer equipped with a catalytic wall reactor for in situ studies in high temperature catalysis research

    SciTech Connect

    Horn, R.; Ihmann, K.; Ihmann, J.; Jentoft, F.C.; Geske, M.; Taha, A.; Pelzer, K.; Schloegl, R.

    2006-05-15

    A newly developed apparatus combining a molecular beam mass spectrometer and a catalytic wall reactor is described. The setup has been developed for in situ studies of high temperature catalytic reactions (>1000 deg. C), which involve besides surface reactions also gas phase reactions in their mechanism. The goal is to identify gas phase radicals by threshold ionization. A tubular reactor, made from the catalytic material, is positioned in a vacuum chamber. Expansion of the gas through a 100 {mu}m sampling orifice in the reactor wall into differentially pumped nozzle, skimmer, and collimator chambers leads to the formation of a molecular beam. A quadrupole mass spectrometer with electron impact ion source designed for molecular beam inlet and threshold ionization measurements is used as the analyzer. The sampling time from nozzle to detector is estimated to be less than 10 ms. A detection time resolution of up to 20 ms can be reached. The temperature of the reactor is measured by pyrometry. Besides a detailed description of the setup components and the physical background of the method, this article presents measurements showing the performance of the apparatus. After deriving the shape and width of the energy spread of the ionizing electrons from measurements on N{sub 2} and He we estimated the detection limit in threshold ionization measurements using binary mixtures of CO in N{sub 2} to be in the range of several hundreds of ppm. Mass spectra and threshold ionization measurements recorded during catalytic partial oxidation of methane at 1250 deg. C on a Pt catalyst are presented. The detection of CH{sub 3}{center_dot} radicals is successfully demonstrated.

  15. Research into the pyrolysis of pure cellulose, lignin, and birch wood flour in the China Lake entrained-flow reactor

    SciTech Connect

    Diebold, J.

    1980-06-01

    This experimental program used the China Lake entrained-flow pyrolysis reactor to briefly investigate the pyrolysis of pure cellulose, pure lignin, and birch wood flour. The study determined that the cellulose and wood flour do pyrolyze to produce primarily gaseous products containing significant amounts of ethylene and other useful hydrocarbons. During attempts to pyrolyze powdered lignin, the material melted and bubbled to block the reactor entrance. The pure cellulose and wood flour produced C/sub 2/ + yields of 12% to 14% by weight, which were less than yields from an organic feedstock derived from processed municipal trash. The char yields were 0.1% by weight from cellulose and 1.5% from birch wood flour - one to two orders of magnitude less than were produced from the trash-derived feedstock. In scanning electron microscope photographs, most of the wood flour char had a sintered and agglomerated appearance, although some particles retained the gross cell characteristics of the wood flour. The appearance of the char particles indicated that the material had once been molten and possibly vapor before it formed spheroidal particles about 1 ..mu..m diameter which agglomerated to form larger char particles. The ability to completely melt or vaporize lignocellulosic materials under conditions of high heating rates has now been demonstrated in a continuous flow reactor and promises new techniques for fast pyrolysis. This char was unexpectedly attracted by a magnet, presumably because of iron contamination from the pyrolysis reactor tube wall. The production of water-insoluble tars was negligible compared to the tars produced from trash-derived feedstock. The production of water-soluble organic materials was fairly low and qualitatively appeared to vary inversely with temperature. This study was of a preliminary nature and additional studies are necessary to optimize ethylene production from these feedstocks.

  16. PROJECT-SPECIFIC TYPE A VERIFICATION FOR THE BROOKHAVEN GRAPHITE RESEARCH REACTOR ENGINEERED CAP, BROOKHAVEN NATIONAL LABORATORY UPTON, NEW YORK DCN 5098-SR-07-0

    SciTech Connect

    Evan Harpenau

    2011-07-15

    The Oak Ridge Institute for Science and Education (ORISE) has reviewed the project documentation and data for the Brookhaven Graphite Research Reactor (BGRR) Engineered Cap at Brookhaven National Laboratory (BNL) in Upton, New York. The Brookhaven Science Associates (BSA) have completed removal of affected soils and performed as-left surveys by BSA associated with the BGRR Engineered Cap. Sample results have been submitted, as required, to demonstrate that remediation efforts comply with the cleanup goal of {approx}15 mrem/yr above background to a resident in 50 years (BNL 2011a).

  17. Determination of 63Ni and 59Ni in spent ion-exchange resin and activated charcoal from the IEA-R1 nuclear research reactor.

    PubMed

    Taddei, M H T; Macacini, J F; Vicente, R; Marumo, J T; Sakata, S K; Terremoto, L A A

    2013-07-01

    A radiochemical method has been adapted to determine (59)Ni and (63)Ni in samples of radioactive wastes from the water cleanup system of the IEA-R1 nuclear research reactor. The process includes extraction chromatographic resin with dimethylglyoxime (DMG) as a functional group. Activity concentrations of (59)Ni and (63)Ni were measured, respectively, by X-ray spectrometry and liquid scintillation counting, whereas the chemical yield was determined by ICP-OES. The average ratio of measured activity concentrations of (63)Ni and (59)Ni agree well with theory.

  18. Education Outreach at MIT Plasma Science and Fusion Center

    NASA Astrophysics Data System (ADS)

    Censabella, V.; Rivenberg, P.

    1999-11-01

    Outreach at the MIT PSFC consists of volunteers working together to increase the public's knowledge of fusion and plasma-related experiments. Seeking to generate excitement about science, engineering and mathematics, the PSFC holds a number of outreach activities throughout the year, such as Middle and High School Outreach Days. Outreach also includes the Mr. Magnet Program, which uses an interactive strategy to engage elementary school children. The PSFC maintains a Home Page on the World Widee Web, which can be reached at http://psfc.mit.edu.

  19. Evaluation of Dynamics of the West African Monsoon Jump Simulated by the MIT Regional Climate Model

    NASA Astrophysics Data System (ADS)

    Eltahir, Elfatih A. B.; Im, Eun-Soon

    2015-04-01

    The seasonal advance and retreat of the West African monsoon behaves abrupt northward jump of maximum rainfall from the Guinean coast to the Sahel region. Both global and regional climate models have difficulties in accurately reproducing such a behavior due to its complexity combined the dynamical and physical processes. In this study, we evaluate the performance of the MIT Regional Climate Model (MRCM) in simulating the West African monsoon. For this, 20-year long-term simulation (1989-2008) is performed using the ERAInterim reanalysis as the initial and boundary condition, and the analysis primarily focuses on the dynamics associated with abrupt phase transitions of the monsoon rainfall. We first examine detailed characteristics in terms of the onset, maximum, and retreat of the monsoon rainfall using daily precipitation. We then present the dynamical explanation behind rainfall variability from the analysis of the absolute vorticity near the tropopause and the meridional gradient of boundary-layer entropy within the dynamical theory proposed by Eltahir and Gong (1996). Acknowledgements : This research was supported by the National Research Foundation Singapore through the Singapore MIT Alliance for Research and Technology's Center for Environmental Sensing and Modeling interdisciplinary research program.

  20. NRC Targets University Reactors.

    ERIC Educational Resources Information Center

    Marshall, Eliot

    1984-01-01

    The Nuclear Regulatory Commission (NRC) wants universities to convert to low-grade fuel in their research reactions. Researchers claim the conversion, which will bring U.S. reactors in line with a policy the NRC is trying to impress on foreigners, could be financially and scientifically costly. Impact of the policy is considered. (JN)

  1. NEUTRONIC REACTOR

    DOEpatents

    Fraas, A.P.; Mills, C.B.

    1961-11-21

    A neutronic reactor in which neutron moderation is achieved primarily in its reflector is described. The reactor structure consists of a cylindrical central "island" of moderator and a spherical moderating reflector spaced therefrom, thereby providing an annular space. An essentially unmoderated liquid fuel is continuously passed through the annular space and undergoes fission while contained therein. The reactor, because of its small size, is particularly adapted for propulsion uses, including the propulsion of aircraft. (AEC)

  2. REACTOR COOLING

    DOEpatents

    Quackenbush, C.F.

    1959-09-29

    A nuclear reactor with provisions for selectively cooling the fuel elements is described. The reactor has a plurality of tubes extending throughout. Cylindrical fuel elements are disposed within the tubes and the coolant flows through the tubes and around the fuel elements. The fuel elements within the central portion of the reactor are provided with roughened surfaces of material. The fuel elements in the end portions of the tubes within the reactor are provlded with low conduction jackets and the fuel elements in the region between the central portion and the end portions are provided with smooth surfaces of high heat conduction material.

  3. NRC review of Electric Power Research Institute`s advanced light water reactor utility requirements document. Passive plant designs, chapters 2-13, project number 669

    SciTech Connect

    Not Available

    1994-08-01

    The Electric Power Research Institute (EPRI) is preparing a compendium of technical requirements, referred to as the {open_quotes}Advanced Light Water Reactor [ALWR] Utility Requirements Document{close_quotes}, that is acceptable to the design of an ALWR power plant. When completed, this document is intended to be a comprehensive statement of utility requirements for the design, construction, and performance of an ALWR power plant for the 1990s and beyond. The Requirements Document consists of three volumes. Volume I, {open_quotes}ALWR Policy and Summary of Top-Tier Requirements{close_quotes}, is a management-level synopsis of the Requirements Document, including the design objectives and philosophy, the overall physical configuration and features of a future nuclear plant design, and the steps necessary to take the proposed ALWR design criteria beyond the conceptual design state to a completed, functioning power plant. Volume II consists of 13 chapters and contains utility design requirements for an evolutionary nuclear power plant [approximately 1350 megawatts-electric (MWe)]. Volume III contains utility design requirements for nuclear plants for which passive features will be used in their designs (approximately 600 MWe). In April 1992, the staff of the Office of Nuclear Reactor Regulation, U.S. Nuclear Regulatory Commission, issued Volume 1 and Volume 2 (Parts 1 and 2) of its safety evaluation report (SER) to document the results of its review of Volumes 1 and 2 of the Requirements Document. Volume 1, {open_quotes}NRC Review of Electric Power Research Institute`s Advanced Light Water Reactor Utility Requirements Document - Program Summary{close_quotes}, provided a discussion of the overall purpose and scope of the Requirements Document, the background of the staff`s review, the review approach used by the staff, and a summary of the policy and technical issues raised by the staff during its review.

  4. NRC review of Electric Power Research Institute`s advanced light water reactor utility requirements document. Passive plant designs, chapter 1, project number 669

    SciTech Connect

    Not Available

    1994-08-01

    The Electric Power Research Institute (EPRI) is preparing a compendium of technical requirements, referred to as the {open_quotes}Advanced Light Water Reactor [ALWR] Utility Requirements Document{close_quotes}, that is acceptable to the design of an ALWR power plant. When completed, this document is intended to be a comprehensive statement of utility requirements for the design, construction, and performance of an ALWR power plant for the 1990s and beyond. The Requirements Document consists of three volumes. Volume 1, {open_quotes}ALWR Policy and Summary of Top-Tier Requirements{close_quotes}, is a management-level synopsis of the Requirements Document, including the design objectives and philosophy, the overall physical configuration and features of a future nuclear plant design, and the steps necessary to take the proposed ALWR design criteria beyond the conceptual design state to a completed, functioning power plant. Volume II consists of 13 chapters and contains utility design requirements for an evolutionary nuclear power plant [approximately 1350 megawatts-electric (MWe)]. Volume III contains utility design requirements for nuclear plants for which passive features will be used in their designs (approximately 600 MWe). In April 1992, the staff of the Office of Nuclear Reactor Regulation, U.S. Nuclear Regulatory Commission, issued Volume 1 and Volume 2 (Parts 1 and 2) of its safety evaluation report (SER) to document the results of its review of Volumes 1 and 2 of the Requirements Document. Volume 1, {open_quotes}NRC Review of Electric Power Research Institute`s Advanced Light Water Reactor Utility Requirements Document - Program Summary{close_quotes}, provided a discussion of the overall purpose and scope of the Requirements Document, the background of the staff`s review, the review approach used by the staff, and a summary of the policy and technical issues raised by the staff during its review.

  5. The use of U/sub 3/Si/sub 2/ dispersed in aluminum in plate-type fuel elements for research and test reactors

    SciTech Connect

    Snelgrove, J.L.; Domagala, R.F.; Hofman, G.L.; Wiencek, T.C.; Copeland, G.L.; Hobbs, R.W.; Senn, R.L.

    1987-10-01

    A high-density fuel based on U/sub 3/Si/sub 2/ dispersed in aluminum has been developed and tested for use in converting plate-type research and test reactors from the use of highly enriched uranium to the use of low-enriched uranium. Results of preirradiation testing and the irradiation and postirradiation examination of miniature fuel plates and full-sized fuel elements are summarized. Swelling of the U/sub 3/Si/sub 2/ fuel particles is a linear function of the fission density in the particle to well beyond the fission density achievable in low-enriched fuels. U/sub 3/Si/sub 2/ particle swelling rate is approximately the same as that of the commonly used UAl/sub x/ fuel particle. The presence of minor amounts of U/sub 3/Si or uranium solid solution in the fuel result in greater, but still acceptable, fuel swelling. Blister threshold temperatures are at least as high as those of currently used fuels. An exothermic reaction occurs near the aluminum melting temperature, but the measured energy releases were low enough not to substantially worsen the consequences of an accident. U/sub 3/Si/sub 2/-aluminum dispersion fuel with uranium densities up to at least 4.8 Mg/m/sup 3/ is a suitable LEU fuel for typical plate-type research and test reactors. 42 refs., 28 figs., 7 tabs.

  6. MIT Mints a Valuable New Form of Academic Currency

    ERIC Educational Resources Information Center

    Carey, Kevin

    2012-01-01

    The Massachusetts Institute of Technology (MIT) has invented or improved many world-changing things--radar, information theory, and synthetic self-replicating molecules, to name a few. Last month the university announced, to mild fanfare, an invention that could be similarly transformative, this time for higher education itself. It is called MITx.…

  7. How Much Have They Retained? Making Unseen Concepts Seen in a Freshman Electromagnetism Course at MIT

    NASA Astrophysics Data System (ADS)

    Dori, Yehudit Judy; Hult, Erin; Breslow, Lori; Belcher, John W.

    2007-08-01

    The introductory freshmen electromagnetism course at MIT has been taught since 2000 using a studio physics format entitled TEAL—Technology Enabled Active Learning. TEAL has created a collaborative, hands-on environment where students carry out desktop experiments, submit web-based assignments, and have access to a host of visualizations and simulations. These learning tools help them visualize unseen electromagnetic concepts and develop stronger intuition about related phenomena. A previous study has shown that students who took the course in the TEAL format (the experimental group) gained significantly better conceptual understanding than those who took it in the traditional lecture-recitation format (the control group). The present longitudinal study focuses on the extent to which these two research groups (experimental and control) retain conceptual understanding about a year to 18 months after finishing the course. It also examines students attitudes about whether the teaching format (TEAL or traditional) contributes to their learning in advanced courses. Our research has indicated that the long-term effect of the TEAL course on students' retention of concepts was significantly stronger than that of the traditional course. This research is significant because it documents the long-term cognitive and affective impact of the TEAL studio physics format on learning outcomes of MIT students.

  8. NEUTRONIC REACTOR

    DOEpatents

    Wigner, E.P.

    1958-04-22

    A nuclear reactor for isotope production is described. This reactor is designed to provide a maximum thermal neutron flux in a region adjacent to the periphery of the reactor rather than in the center of the reactor. The core of the reactor is generally centrally located with respect tn a surrounding first reflector, constructed of beryllium. The beryllium reflector is surrounded by a second reflector, constructed of graphite, which, in tune, is surrounded by a conventional thermal shield. Water is circulated through the core and the reflector and functions both as a moderator and a coolant. In order to produce a greatsr maximum thermal neutron flux adjacent to the periphery of the reactor rather than in the core, the reactor is designed so tbat the ratio of neutron scattering cross section to neutron absorption cross section averaged over all of the materials in the reflector is approximately twice the ratio of neutron scattering cross section to neutron absorption cross section averaged over all of the material of the core of the reactor.

  9. NEUTRONIC REACTOR

    DOEpatents

    Metcalf, H.E.; Johnson, H.W.

    1961-04-01

    BS>A nuclear reactor incorporating fuel rods passing through a moderator and including tubes of a material of higher Thermal conductivity than the fuel in contact with the fuel is described. The tubes extend beyond the active portion of the reactor into contant with a fiuld coolant.

  10. Reactor building

    SciTech Connect

    Hista, J. C.

    1984-09-18

    Reactor building comprising a vessel shaft anchored in a slab which is peripherally locked. This reactor building comprises a confinement enclosure within which are positioned internal structures constituted by an internal structure floor, a vessel shaft, a slab being positioned between the general floor and the internal structure floor, the vesse

  11. Twenty-First Water Reactor Safety Information Meeting. Volume 3, Primary system integrity; Aging research, products and applications; Structural and seismic engineering; Seismology and geology: Proceedings

    SciTech Connect

    Monteleone, S.

    1994-04-01

    This three-volume report contains 90 papers out of the 102 that were presented at the Twenty-First Water Reactor Safety Information Meeting held at the Bethesda Marriott Hotel, Bethesda, Maryland, during the week of October 25-27, 1993. The papers are printed in the order of their presentation in each session and describe progress and results of programs in nuclear safety research conducted in this country and abroad. Foreign participation in the meeting included papers presented by researchers from France, Germany, Japan, Russia, Switzerland, Taiwan, and United Kingdom. The titles of the papers and the names of the authors have been updated and may differ from those that appeared in the final program of the meeting. Selected papers were indexed separately for inclusion in the Energy Science and Technology Database.

  12. Nuclear Security: Action May Be Needed to Reassess the Security of NRC-Licensed Research Reactors. Report to the Ranking Member, Subcommittee on National Security and Foreign Affairs, Committee on Oversight and Government Reform, House of Representatives. GAO-08-403

    ERIC Educational Resources Information Center

    Aloise, Gene

    2008-01-01

    There are 37 research reactors in the United States, mostly located on college campuses. Of these, 33 reactors are licensed and regulated by the Nuclear Regulatory Commission (NRC). Four are operated by the Department of Energy (DOE) and are located at three national laboratories. Although less powerful than commercial nuclear power reactors,…

  13. Research on the HYLIFE liquid-first-wall concept for future laser-fusion reactors. Final report No. 5

    SciTech Connect

    Hoffman, M.A.

    1980-09-01

    It has been proposed to protect the structural walls of a future laser fusion reactor with a curtain or fluid-wall of liquid lithium jets. As part of the investigation of this concept, experiments have been performed on planar sheet water jets issuing vertically downward from slit nozzles. The nozzles were subjected to transverse forced harmonic excitation to simulate the vibrational environment of the laser fusion reactor, and experiments were run at both 1 atm and at lower ambient pressures. Linear temporal stability theory is shown to predict the onset of the unstable regime and the initial spatial growth rates quite well for the cases where the amplitudes of the nozzle vibration are not too large and the waveform is nearly sinusoidal. In addition, both the linear theory and a simplified trajectory theory are shown to predict the initial wave envelope amplitudes very well. For larger amplitude nozzle excitation, the waveform becomes highly nonlinear and non-sinusoidal and can resemble a sawtooth waveform in some cases; these latter experimental results can only be partially explained by existing theories at the present time.

  14. The IAEA Coordinated Research Program on HTGR Reactor Physics, Thermal-hydraulics and Depletion Uncertainty Analysis: Description of the Benchmark Test Cases and Phases

    SciTech Connect

    Frederik Reitsma; Gerhard Strydom; Bismark Tyobeka; Kostadin Ivanov

    2012-10-01

    The continued development of High Temperature Gas Cooled Reactors (HTGRs) requires verification of design and safety features with reliable high fidelity physics models and robust, efficient, and accurate codes. The uncertainties in the HTR analysis tools are today typically assessed with sensitivity analysis and then a few important input uncertainties (typically based on a PIRT process) are varied in the analysis to find a spread in the parameter of importance. However, one wish to apply a more fundamental approach to determine the predictive capability and accuracies of coupled neutronics/thermal-hydraulics and depletion simulations used for reactor design and safety assessment. Today there is a broader acceptance of the use of uncertainty analysis even in safety studies and it has been accepted by regulators in some cases to replace the traditional conservative analysis. Finally, there is also a renewed focus in supplying reliable covariance data (nuclear data uncertainties) that can then be used in uncertainty methods. Uncertainty and sensitivity studies are therefore becoming an essential component of any significant effort in data and simulation improvement. In order to address uncertainty in analysis and methods in the HTGR community the IAEA launched a Coordinated Research Project (CRP) on the HTGR Uncertainty Analysis in Modelling early in 2012. The project is built on the experience of the OECD/NEA Light Water Reactor (LWR) Uncertainty Analysis in Best-Estimate Modelling (UAM) benchmark activity, but focuses specifically on the peculiarities of HTGR designs and its simulation requirements. Two benchmark problems were defined with the prismatic type design represented by the MHTGR-350 design from General Atomics (GA) while a 250 MW modular pebble bed design, similar to the INET (China) and indirect-cycle PBMR (South Africa) designs are also included. In the paper more detail on the benchmark cases, the different specific phases and tasks and the latest

  15. Moon base reactor system

    NASA Technical Reports Server (NTRS)

    Chavez, H.; Flores, J.; Nguyen, M.; Carsen, K.

    1989-01-01

    The objective of our reactor design is to supply a lunar-based research facility with 20 MW(e). The fundamental layout of this lunar-based system includes the reactor, power conversion devices, and a radiator. The additional aim of this reactor is a longevity of 12 to 15 years. The reactor is a liquid metal fast breeder that has a breeding ratio very close to 1.0. The geometry of the core is cylindrical. The metallic fuel rods are of beryllium oxide enriched with varying degrees of uranium, with a beryllium core reflector. The liquid metal coolant chosen was natural lithium. After the liquid metal coolant leaves the reactor, it goes directly into the power conversion devices. The power conversion devices are Stirling engines. The heated coolant acts as a hot reservoir to the device. It then enters the radiator to be cooled and reenters the Stirling engine acting as a cold reservoir. The engines' operating fluid is helium, a highly conductive gas. These Stirling engines are hermetically sealed. Although natural lithium produces a lower breeding ratio, it does have a larger temperature range than sodium. It is also corrosive to steel. This is why the container material must be carefully chosen. One option is to use an expensive alloy of cerbium and zirconium. The radiator must be made of a highly conductive material whose melting point temperature is not exceeded in the reactor and whose structural strength can withstand meteor showers.

  16. MitBASE : a comprehensive and integrated mitochondrial DNA database. The present status

    PubMed Central

    Attimonelli, M.; Altamura, N.; Benne, R.; Brennicke, A.; Cooper, J. M.; D’Elia, D.; Montalvo, A. de; Pinto, B. de; De Robertis, M.; Golik, P.; Knoop, V.; Lanave, C.; Lazowska, J.; Licciulli, F.; Malladi, B. S.; Memeo, F.; Monnerot, M.; Pasimeni, R.; Pilbout, S.; Schapira, A. H. V.; Sloof, P.; Saccone, C.

    2000-01-01

    MitBASE is an integrated and comprehensive database of mitochondrial DNA data which collects, under a single interface, databases for Plant, Vertebrate, Invertebrate, Human, Protist and Fungal mtDNA and a Pilot database on nuclear genes involved in mitochondrial biogenesis in Saccharomyces cerevisiae. MitBASE reports all available information from different organisms and from intraspecies variants and mutants. Data have been drawn from the primary databases and from the literature; value adding information has been structured, e.g., editing information on protist mtDNA genomes, pathological information for human mtDNA variants, etc. The different databases, some of which are structured using commercial packages (Microsoft Access, File Maker Pro) while others use a flat-file format, have been integrated under ORACLE. Ad hoc retrieval systems have been devised for some of the above listed databases keeping into account their peculiarities. The database is resident at the EBI and is available at the following site: http://www3.ebi.ac.uk/Research/Mitbase/mitbase.pl . The impact of this project is intended for both basic and applied research. The study of mitochondrial genetic diseases and mitochondrial DNA intraspecies diversity are key topics in several biotechnological fields. The database has been funded within the EU Biotechnology programme. PMID:10592207

  17. Compact Reactor

    SciTech Connect

    Williams, Pharis E.

    2007-01-30

    Weyl's Gauge Principle of 1929 has been used to establish Weyl's Quantum Principle (WQP) that requires that the Weyl scale factor should be unity. It has been shown that the WQP requires the following: quantum mechanics must be used to determine system states; the electrostatic potential must be non-singular and quantified; interactions between particles with different electric charges (i.e. electron and proton) do not obey Newton's Third Law at sub-nuclear separations, and nuclear particles may be much different than expected using the standard model. The above WQP requirements lead to a potential fusion reactor wherein deuterium nuclei are preferentially fused into helium nuclei. Because the deuterium nuclei are preferentially fused into helium nuclei at temperatures and energies lower than specified by the standard model there is no harmful radiation as a byproduct of this fusion process. Therefore, a reactor using this reaction does not need any shielding to contain such radiation. The energy released from each reaction and the absence of shielding makes the deuterium-plus-deuterium-to-helium (DDH) reactor very compact when compared to other reactors, both fission and fusion types. Moreover, the potential energy output per reactor weight and the absence of harmful radiation makes the DDH reactor an ideal candidate for space power. The logic is summarized by which the WQP requires the above conditions that make the prediction of DDH possible. The details of the DDH reaction will be presented along with the specifics of why the DDH reactor may be made to cause two deuterium nuclei to preferentially fuse to a helium nucleus. The presentation will also indicate the calculations needed to predict the reactor temperature as a function of fuel loading, reactor size, and desired output and will include the progress achieved to date.

  18. MIT Adopts a Quiet Global Strategy

    ERIC Educational Resources Information Center

    Fischer, Karin

    2012-01-01

    Back in the 1960s and 1970s, the Massachusetts Institute of Technology was in the university-building business. The elite institute is back in the university-building business. In addition to the thousands of faculty research collaborations around the globe, the university over the past five years has once more engaged in ambitious efforts to…

  19. Characterization of Neutron and Gamma Dose in the Irradiation Cell of Texas A and M University Research Reactor

    SciTech Connect

    Vasudevan, Latha; Reece, Warren D.; Chirayath, Sunil S.; Aghara, Sukesh

    2011-07-01

    The Monte Carlo N-Particle (MCNP) code was used to develop a three dimensional computational model of the Texas A and M University Nuclear Science Center Reactor (NSCR) operating against the irradiation (dry cell) at steady state thermal power of 1 MW. The geometry of the NSCR core and the dry cell were modeled in detail. NSCR is used for a wide variety of experiments that utilizes the dry cell for neutron as well as gamma irradiation of samples. Information on the neutron and gamma radiation environment inside the dry cell is required to facilitate irradiation of samples. This paper presents the computed neutron flux, neutron and gamma dose rate, and foil reaction rates in the dry cell, obtained through MCNP5 simulations of the NSCR core. The neutron flux was measured using foil activation method and the reaction rates obtained from {sup 197}Au(n,{gamma}){sup 198}Au and {sup 54}Fe(n,p){sup 54}Mn were compared with the model and they showed agreement within {approx} 20%. The gamma dose rate at selected locations inside the dry cell was measured using radiochromic films and the results indicate slightly higher dose rates than predicted from the model. This is because the model calculated only prompt gamma dose rates during reactor operation while the radiochromic films measured gammas from activation products and fission product decayed gammas. The model was also used to calculate the neutron energy spectra for the energy range from 0.001 eV- 20 MeV. (authors)

  20. Management of Spent Nuclear Fuel of Nuclear Research Reactor VVR-S at the National Institute of Physics and Nuclear Engineering, Bucharest, Romania

    NASA Astrophysics Data System (ADS)

    Biro, Lucian

    2009-05-01

    The Nuclear Research Reactor VVR-S (RR-VVR-S) located in Magurele-Bucharest, Romania, was designed for research and radioisotope production. It was commissioned in 1957 and operated without any event or accident for forty years until shut down in 1997. In 2002, by government decree, it was permanently shutdown for decommissioning. The National Institute of Physics and Nuclear Engineering (IFIN-HH) is responsible for decommissioning the RR-VVR-S, the first nuclear decommissioning project in Romania. In this context, IFIN-HH prepared and obtained approval from the Romanian Nuclear Regulatory Body for the Decommissioning Plan. One of the most important aspects for decommissioning the RR-VVR-S is solving the issue of the fresh and spent nuclear fuel (SNF) stored on site in wet storage pools. In the framework of the Russian Research Reactor Fuel Return Program (RRRFR), managed by the U.S. Department of Energy and in cooperation with the International Atomic Energy Agency and the Rosatom State Corporation, Romania repatriated all fresh HEU fuel to the Russian Federation in 2003 and the HEU SNF will be repatriated to Russia in 2009. With the experience and lessons learned from this action and with the financial support of the Romanian Government it will be possible for Romania to also repatriate the LEU SNF to the Russian Federation before starting the dismantling and decontamination of the nuclear facility. [4pt] In collaboration with K. Allen, Idaho National Laboratory, USA; L. Biro, National Commission for Nuclear Activities Control, Romania; and M. Dragusin, National Institute of Physics and Nuclear Engineering, Bucharest-Magurele, Romania.

  1. NUCLEAR REACTOR

    DOEpatents

    Moore, R.V.; Bowen, J.H.; Dent, K.H.

    1958-12-01

    A heterogeneous, natural uranium fueled, solid moderated, gas cooled reactor is described, in which the fuel elements are in the form of elongated rods and are dlsposed within vertical coolant channels ln the moderator symmetrically arranged as a regular lattice in groups. This reactor employs control rods which operate in vertical channels in the moderator so that each control rod is centered in one of the fuel element groups. The reactor is enclosed in a pressure vessel which ls provided with access holes at the top to facilitate loading and unloadlng of the fuel elements, control rods and control rod driving devices.

  2. NEUTRONIC REACTOR

    DOEpatents

    Fermi, E.

    1960-04-01

    A nuclear reactor is described consisting of blocks of graphite arranged in layers, natural uranium bodies disposed in holes in alternate layers of graphite blocks, and coolant tubes disposed in the layers of graphite blocks which do not contain uranium.

  3. NEUTRONIC REACTOR

    DOEpatents

    Anderson, H.L.

    1960-09-20

    A nuclear reactor is described comprising fissionable material dispersed in graphite blocks, helium filling the voids of the blocks and the spaces therebetween, and means other than the helium in thermal conductive contact with the graphite for removing heat.

  4. Chemical Reactors.

    ERIC Educational Resources Information Center

    Kenney, C. N.

    1980-01-01

    Describes a course, including content, reading list, and presentation on chemical reactors at Cambridge University, England. A brief comparison of chemical engineering education between the United States and England is also given. (JN)

  5. NEUTRONIC REACTOR

    DOEpatents

    Hurwitz, H. Jr.; Brooks, H.; Mannal, C.; Payne, J.H.; Luebke, E.A.

    1959-03-24

    A reactor of the heterogeneous, liquid cooled type is described. This reactor is comprised of a central region of a plurality of vertically disposed elongated tubes surrounded by a region of moderator material. The central region is comprised of a central core surrounded by a reflector region which is surrounded by a fast neutron absorber region, which in turn is surrounded by a slow neutron absorber region. Liquid sodium is used as the primary coolant and circulates through the core which contains the fuel elements. Control of the reactor is accomplished by varying the ability of the reflector region to reflect neutrons back into the core of the reactor. For this purpose the reflector is comprised of moderator and control elements having varying effects on reactivity, the control elements being arranged and actuated by groups to give regulation, shim, and safety control.

  6. NUCLEAR REACTOR

    DOEpatents

    Miller, H.I.; Smith, R.C.

    1958-01-21

    This patent relates to nuclear reactors of the type which use a liquid fuel, such as a solution of uranyl sulfate in ordinary water which acts as the moderator. The reactor is comprised of a spherical vessel having a diameter of about 12 inches substantially surrounded by a reflector of beryllium oxide. Conventionnl control rods and safety rods are operated in slots in the reflector outside the vessel to control the operation of the reactor. An additional means for increasing the safety factor of the reactor by raising the ratio of delayed neutrons to prompt neutrons, is provided and consists of a soluble sulfate salt of beryllium dissolved in the liquid fuel in the proper proportion to obtain the result desired.

  7. REACTOR SHIELD

    DOEpatents

    Wigner, E.P.; Ohlinger, L.E.; Young, G.J.; Weinberg, A.M.

    1959-02-17

    Radiation shield construction is described for a nuclear reactor. The shield is comprised of a plurality of steel plates arranged in parallel spaced relationship within a peripheral shell. Reactor coolant inlet tubes extend at right angles through the plates and baffles are arranged between the plates at right angles thereto and extend between the tubes to create a series of zigzag channels between the plates for the circulation of coolant fluid through the shield. The shield may be divided into two main sections; an inner section adjacent the reactor container and an outer section spaced therefrom. Coolant through the first section may be circulated at a faster rate than coolant circulated through the outer section since the area closest to the reactor container is at a higher temperature and is more radioactive. The two sections may have separate cooling systems to prevent the coolant in the outer section from mixing with the more contaminated coolant in the inner section.

  8. NUCLEAR REACTOR

    DOEpatents

    Sherman, J.; Sharbaugh, J.E.; Fauth, W.L. Jr.; Palladino, N.J.; DeHuff, P.G.

    1962-10-23

    A nuclear reactor incorporating seed and blanket assemblies is designed. Means are provided for obtaining samples of the coolant from the blanket assemblies and for varying the flow of coolant through the blanket assemblies. (AEC)

  9. NEUTRONIC REACTORS

    DOEpatents

    Vernon, H.C.

    1959-01-13

    A neutronic reactor of the heterogeneous, fluid cooled tvpe is described. The reactor is comprised of a pressure vessel containing the moderator and a plurality of vertically disposed channels extending in spaced relationship through the moderator. Fissionable fuel material is placed within the channels in spaced relationship thereto to permit circulation of the coolant fluid. Separate means are provided for cooling the moderator and for circulating a fluid coolant thru the channel elements to cool the fuel material.

  10. NUCLEAR REACTOR

    DOEpatents

    Anderson, C.R.

    1962-07-24

    A fluidized bed nuclear reactor and a method of operating such a reactor are described. In the design means are provided for flowing a liquid moderator upwardly through the center of a bed of pellets of a nentron-fissionable material at such a rate as to obtain particulate fluidization while constraining the lower pontion of the bed into a conical shape. A smooth circulation of particles rising in the center and falling at the outside of the bed is thereby established. (AEC)

  11. NUCLEAR REACTOR

    DOEpatents

    Breden, C.R.; Dietrich, J.R.

    1961-06-20

    A water-soluble non-volatile poison may be introduced into a reactor to nullify excess reactivity. The poison is removed by passing a side stream of the water containing the soluble poison to an evaporation chamber. The vapor phase is returned to the reactor to decrease the concentration of soluble poison and the liquid phase is returned to increase the concentration of soluble poison.

  12. NUCLEAR REACTOR

    DOEpatents

    Grebe, J.J.

    1959-07-14

    High temperature reactors which are uniquely adapted to serve as the heat source for nuclear pcwered rockets are described. The reactor is comprised essentially of an outer tubular heat resistant casing which provides the main coolant passageway to and away from the reactor core within the casing and in which the working fluid is preferably hydrogen or helium gas which is permitted to vaporize from a liquid storage tank. The reactor core has a generally spherical shape formed entirely of an active material comprised of fissile material and a moderator material which serves as a diluent. The active material is fabricated as a gas permeable porous material and is interlaced in a random manner with very small inter-connecting bores or capillary tubes through which the coolant gas may flow. The entire reactor is divided into successive sections along the direction of the temperature gradient or coolant flow, each section utilizing materials of construction which are most advantageous from a nuclear standpoint and which at the same time can withstand the operating temperature of that particular zone. This design results in a nuclear reactor characterized simultaneously by a minimum critiral size and mass and by the ability to heat a working fluid to an extremely high temperature.

  13. Measurement of DNA damage induced by irradiation with gamma-rays from a TRIGA Mark II research reactor in human cells using Fast Micromethod.

    PubMed

    Hassanein, Hamdy; Müller, Claudia I; Schlösser, Dietmar; Kratz, Karl-Ludwig; Senyuk, Olga F; Schröder, Heinz C

    2002-06-01

    The Fast Micromethod is a novel quick and convenient microplate assay for determination of DNA single-strand breaks. This method measures the rate of unwinding of cellular DNA upon exposure to alkaline conditions using a fluorescent dye which preferentially binds to double-stranded DNA. Here we applied this method to determine the levels of DNA single-strand breaks in HeLa cells induced by y-irradiation deriving from fission isotopes and activation products at the TRIGA Mark II research reactor in Mainz. An increased strand scission factor (SSF) value, which is indicative for DNA damage, was found at doses of 1 Gy and higher. A similar increase in SSF value, which further increased in a dose-dependent manner, was found in human peripheral blood mononuclear cells after irradiation with 6 MV X-rays from a linear accelerator to give a total exposure of 0.5 to 10 Gy.

  14. Controllability of depth dose distribution for neutron capture therapy at the Heavy Water Neutron Irradiation Facility of Kyoto University Research Reactor.

    PubMed

    Sakurai, Yoshinori; Kobayashi, Tooru

    2002-10-01

    The updating construction of the Heavy Water Neutron Irradiation Facility of the Kyoto University Research Reactor has been performed from November 1995 to March 1996 mainly for the improvement in neutron capture therapy. On the performance, the neutron irradiation modes with the variable energy spectra from almost pure thermal to epi-thermal neutrons became available by the control of the heavy-water thickness in the spectrum shifter and by the open-and-close of the cadmium and boral thermal neutron filters. The depth distributions of thermal, epi-thermal and fast neutron fluxes were measured by activation method using gold and indium, and the depth distributions of gamma-ray absorbed dose rate were measured using thermo-luminescent dosimeter of beryllium oxide for the several irradiation modes. From these measured data, the controllability of the depth dose distribution using the spectrum shifter and the thermal neutron filters was confirmed.

  15. A two-phase flow regime map for a MAPLE-type nuclear research reactor fuel channel: Effect of hexagonal finned bundle

    SciTech Connect

    Harvel, G.D.; Chang, J.S.; Krishnan, V.S.

    1997-05-01

    A two-phase flow regime map is developed experimentally and theoretically for a vertical hexagonal flow channel with and without a 36-finned rod hexagonal bundle. This type of flow channel is of interest to MAPLE-type nuclear research reactors. The flow regime maps are determined by visual observations and observation of waveforms shown by a capacitance-type void fraction meter. The experimental results show that the inclusion of the finned hexagonal bundle shifts the flow regime transition boundaries toward higher water flow rates. Existing flow regime maps based on pipe flow require slight modifications when applied to the hexagonal flow channel with and without a MAPLE-type finned hexagonal bundle. The proposed theoretical model agrees well with experimental results.

  16. Measurement of DNA damage induced by irradiation with gamma-rays from a TRIGA Mark II research reactor in human cells using Fast Micromethod.

    PubMed

    Hassanein, Hamdy; Müller, Claudia I; Schlösser, Dietmar; Kratz, Karl-Ludwig; Senyuk, Olga F; Schröder, Heinz C

    2002-06-01

    The Fast Micromethod is a novel quick and convenient microplate assay for determination of DNA single-strand breaks. This method measures the rate of unwinding of cellular DNA upon exposure to alkaline conditions using a fluorescent dye which preferentially binds to double-stranded DNA. Here we applied this method to determine the levels of DNA single-strand breaks in HeLa cells induced by y-irradiation deriving from fission isotopes and activation products at the TRIGA Mark II research reactor in Mainz. An increased strand scission factor (SSF) value, which is indicative for DNA damage, was found at doses of 1 Gy and higher. A similar increase in SSF value, which further increased in a dose-dependent manner, was found in human peripheral blood mononuclear cells after irradiation with 6 MV X-rays from a linear accelerator to give a total exposure of 0.5 to 10 Gy. PMID:12064446

  17. BEAMS Lab at MIT: Status report

    PubMed Central

    Liberman, Rosa G.; Skipper, Paul L.; Tannenbaum, Steven R.

    2009-01-01

    The Biological Engineering Accelerator Mass Spectrometry (BEAMS) Lab at the Massachusetts Institute of Technology is a facility dedicated to incorporating AMS into life sciences research. As such, it is focused exclusively on radiocarbon and tritium AMS and makes use of a particularly compact instrument of a size compatible with most laboratory space. Recent developments at the BEAMS Lab were aimed to improve different stages of the measurement process, such as the carbon sample injection interface, the simultaneous detection of tritium and hydrogen and finally, the overall operation of the system. Upgrades and results of those efforts are presented here. PMID:20383276

  18. Using reactor operating experience to improve the design of a new Broad Application Test Reactor

    SciTech Connect

    Fletcher, C.D.; Ryskamp, J.M.; Drexler, R.L.; Leyse, C.F.

    1993-07-01

    Increasing regulatory demands and effects of plant aging are limiting the operation of existing test reactors. Additionally, these reactors have limited capacities and capabilities for supporting future testing missions. A multidisciplinary team of experts developed sets of preliminary safety requirements, facility user needs, and reactor design concepts for a new Broad Application Test Reactor (BATR). Anticipated missions for the new reactor include fuels and materials irradiation testing, isotope production, space testing, medical research, fusion testing, intense positron research, and transmutation doping. The early BATR design decisions have benefited from operating experiences with existing reactors. This paper discusses these experiences and highlights their significance for the design of a new BATR.

  19. The Kubo-Greenwood expression and 2d MIT transport

    NASA Astrophysics Data System (ADS)

    Castner, Theodore

    2010-03-01

    The 2d MIT in GaAs heterostructures (p- and n-type)features a mobility that drops continuously as the reduced density x= n/nc-1 is decreased. The Kubo-Greenwood result [1] predicts μ = (eɛh/hnc)α^2(x) where α is a normalized DOS. α(x)is obtained from the data [p-type, Gao et al. [2]; n-type Lilly et al. [3

  20. Sequential extraction of Cs and Sr from Ain Oussera soils around Es-Salam research reactor facility.

    PubMed

    Bouzidi, Abdelkader; Ararem, Abderrahmane; Imessaoudene, Djillali; Yabrir, Benalia

    2015-10-01

    Four types of undisturbed soil in Ain Oussera region around the Es-Salam reactor facility, located in the south of Algiers, Algeria, at about 200km, were artificially contaminated for one year with stable CsCl and SrCl2 in order to simulate an accidental release of these elements. This study was performed using sequential extraction procedure based on Shultz method and containing six fractions. The selectivity of the extraction protocol was confirmed by analyzing some elements (Ca, C, Fe, Mn, Si and Al) designed as indicators of the targeted phases. The obtained results showed an acceptable reproducibility, in view of the coefficients of variation that were in most cases less than 15%. The results revealed a clear proportional correlation between the extracted Cs and Sr in fractions for each soil and some of soils physicochemical properties. Organic matter appears to play an important role in the soil retention, particularly for Cs where the extracted percentage exceeds to 30% in whole soils. In contrast, strontium expresses a remarkable affinity for the fraction bound to carbonates. The obtained data also indicate that the availability of Cs in the four soils is less important compared to Sr availability. This is illustrated by the higher value of extracted Sr in the easily extractible phase, including the water-soluble and the exchangeable fraction. PMID:26456618