Science.gov

Sample records for mite varroa jacobsoni

  1. [Bee mite: Varroa jacobsoni qudemans].

    PubMed

    Ozer, N; Boşgelmez, A

    1983-07-01

    Varroatosis caused by varroa jacobsoni on honeybee, Apis mellifera L., is currently one of the worlds major bee keeping problems. The mite parasites the adult honey bee, as well as its developmental stages, by sucking the insects's haemolymph. Up to date, many chemicals were used against this mite but still there is no chemical which has 100% effect and at the same time bees and their brood demonstrate a good tolerance. The investigations on biology and therapy on Varroa are still going on in many countries.

  2. [Developmental stages of the mite Varroa jacobsoni Oudemans, 1904 (Acari: Dermanyssidae)].

    PubMed

    Haragsim, O; Samsinák, K

    1986-02-01

    The mite Varroa jacobsoni Oudemans, 1904, is a dangerous parasite of bees which has spread over Europe and other continents in recent two decades. The rapid spreading of the parasite has become a serious problem to veterinarians and bee-keepers in many countries of the world. The development of the mite Varroa jacobsoni has not yet been studied in all details. A detailed taxonomic description of the developmental stages of female and male mite is presented. The female develops from egg into larva, nymph I and nymph II. No deutonymph II has been found in the development of the males, so it is assumed that, like in some other parasitic mite species, this stage is missing in the development of Varroa jacobsoni males. It has been concluded from the morphology of the mouth parts that the adult male cannot parasitize the pupae nor adult bees and that it does not take in food during its short life.

  3. [The mite Varroa jacobsoni Oudemans, 1904 on larvae of common wasp Vespa (Paravespula) vulgaris L].

    PubMed

    Jeliński, M

    1990-01-01

    The nest with living wasps in Swarzedz was destroyed on 5th September 1988. Three adult females of Varroa jacobsoni were found on larvae of Vespa (Paravespula) vulgaris. It was the first record of the occurrence of V. jacobsoni in V. (P.) vulgaris colony in Poland.

  4. Juvenile hormone titer in capped worker brood of Apis mellifera and reproduction in the bee mite Varroa jacobsoni.

    PubMed

    Rosenkranz, P; Rachinsky, A; Strambi, A; Strambi, C; Röpstorf, P

    1990-05-01

    Juvenile hormone (JH) titers were recorded from fifth instar worker larvae of Apis mellifera carnica, Apis mellifera lamarckii, and Africanized honeybees kept under temperate and tropical climatic conditions. No differences in hormone titer according to honeybee race or climatic conditions were determined. However, the rate of reproduction of the ectoparasitic mite, Varroa jacobsoni, on larvae of the different honeybee races was highly variable. The possible role of honeybee JH in control of the parasite's reproduction is discussed.

  5. Differential gene expression in Varroa jacobsoni mites following a host shift to European honey bees (Apis mellifera).

    PubMed

    Andino, Gladys K; Gribskov, Michael; Anderson, Denis L; Evans, Jay D; Hunt, Greg J

    2016-11-16

    Varroa mites are widely considered the biggest honey bee health problem worldwide. Until recently, Varroa jacobsoni has been found to live and reproduce only in Asian honey bee (Apis cerana) colonies, while V. destructor successfully reproduces in both A. cerana and A. mellifera colonies. However, we have identified an island population of V. jacobsoni that is highly destructive to A. mellifera, the primary species used for pollination and honey production. The ability of these populations of mites to cross the host species boundary potentially represents an enormous threat to apiculture, and is presumably due to genetic variation that exists among populations of V. jacobsoni that influences gene expression and reproductive status. In this work, we investigate differences in gene expression between populations of V. jacobsoni reproducing on A. cerana and those either reproducing or not capable of reproducing on A. mellifera, in order to gain insight into differences that allow V. jacobsoni to overcome its normal species tropism. We sequenced and assembled a de novo transcriptome of V. jacobsoni. We also performed a differential gene expression analysis contrasting biological replicates of V. jacobsoni populations that differ in their ability to reproduce on A. mellifera. Using the edgeR, EBSeq and DESeq R packages for differential gene expression analysis, we found 287 differentially expressed genes (FDR ≤ 0.05), of which 91% were up regulated in mites reproducing on A. mellifera. In addition, mites found reproducing on A. mellifera showed substantially more variation in expression among replicates. We searched for orthologous genes in public databases and were able to associate 100 of these 287 differentially expressed genes with a functional description. There is differential gene expression between the two mite groups, with more variation in gene expression among mites that were able to reproduce on A. mellifera. A small set of genes showed reduced

  6. The transmission of deformed wing virus between honeybees (Apis mellifera L.) by the ectoparasitic mite varroa jacobsoni Oud

    PubMed

    Bowen-Walker; Martin; Gunn

    1999-01-01

    Under field conditions, Varroa jacobsoni were shown to be highly effective vectors of deformed wing virus (DWV) between bees. Adult female mites obtained from honeybee pupae naturally infected with DWV contained virus titers many times in excess of those found in their hosts and, beyond that, which might be expected from a concentration effect. It is therefore possible that DWV may be capable of replicating within V. jacobsoni. Bees which tested positive for DWV exhibited characteristic morphological deformity and/or they died during pupation. Asymptomatic bees had much lower virus titers than those which were deformed or had died during pupation. It is therefore suggested that for DWV to cause pathology it must be present in pupae above a certain concentration. The amount of DWV vectored by V. jacobsoni will depend on the mites' level of infection, which will in turn depend on whether they had fed previously on dead or deformed bees and also on the rate of replication of the virus within the mites. Consequently, developing bees infested with large numbers of mites could suffer a high incidence of deformity if the mites are heavily infected or harbor an especially virulent strain of virus. A positive relationship was found between increasing numbers of mites on individual bees and the incidence of morphological deformity and death. This probably reflected the large number of viral particles transmitted by the mites, which resulted in many multiply infested bees dying before emergence. These results demonstrate the importance of the role of viruses when considering the pathology of V. jacobsoni and that much of the pathology previously associated with the effects of mite feeding could be attributed directly to secondary pathogens vectored by V. jacobsoni. Copyright 1999 Academic Press.

  7. Persistence and effectiveness of pyrethroids in plastic strips against Varroa jacobsoni (Acari: Varroidae) and mite resistance in a Mediterranean area.

    PubMed

    Floris, I; Cabras, P; Garau, V L; Minelli, E V; Satta, A; Troullier, J

    2001-08-01

    An apiary trial was conducted in 1997 in Sardinia, Italy, to verify the effectiveness of fluvalinate in polyvinyl chloride strips and flumethrin in polyethylene strips against Varroa jacobsoni Oudemans. Two indices to evaluate the efficacy of the treatments were adopted: percentage change in mite infestation of worker-sealed brood cells considering only treated hives and percentage change in mite mortality, and the natural variation in mite populations recorded in control hives during the trial. All acaricide treatments reduced the level of mite infestation of both sealed brood and adult bees. However, their effectiveness was slightly reduced in comparison to previous studies because of mite resistance phenomena. Portions of polyethylene strips of flumethrin from treated hives were sampled weekly to determine acaricide persistence using gas chromatography. After 4 wk, a slight reduction (approximately 9%) of the active ingredient content was observed. A laboratory bioassay also was performed to establish the resistance of adult female mites to fluvalinate. Mites were sampled from the experimental apiary and from various Sardinian apiaries which had primarily been subjected to fluvalinate applications in plastic strips or wood inserts for years. Mite resistance varied from 0 to 96%, depending on the acaricide management adopted. The lowest resistance level occurred in an apiary where pyrethroids had never been used, whereas the highest level occurred in an apiary, with intensive use of fluvalinate in wood inserts.

  8. Peculiarities in ontogenesis and reproductive cycle of the mite Varroa jacobsoni (Parasitiformes, Varroidae) and its relation to the host Apis mellifera.

    PubMed

    Akimov, I A; Yastrebtsov, A V

    1991-01-01

    On the basis on functional morphology and ecology of Varroa jacobsoni the reproductive cycle of female mites was divided into 5 stages: copulation, puberty, preoviposition, oviposition, rehabilitation. The whole ontogeny from egg to formed protonymph in the chorion proceeds very intensively (26 to 30 hours). Besides the reproductive potential is realized during an extremely short period (6 to 7 days) which duration is determined by the total duration of the mite's ontogeny, so that the development of adult mites in all of the viable eggs laid has to be completed by the time the bees leave the brood.

  9. Relationship of the neutral sterols and ecdysteroids of the parasitic mite, Varroa jacobsoni to those of the honey bee, Apis mellifera.

    PubMed

    Hartfelder, K; Feldlaufer, M F.

    1997-06-01

    The neutral sterols of the parasitic mite Varroa jacobsoni were compared with Apis mellifera carnica drone pupae. Analysis by GLC-mass spectrometry indicated mite sterols were reflective of the sterol composition of the drones; 24-methylenecholesterol was the major sterol in both species, with lesser amounts of sitosterol and isofucosterol. Cholesterol accounted for less than 1% of the total sterols. Ecdysteroid analyses indicated drones contained primarily makisterone A. In addition to makisterone A, mites contained ecdysone and 20-hydroxyecdysone, which accounted for over 66% of the ecdysteroid detected. These results indicate that while V. jacobsoni are apparently unable to convert dietary sterols to cholesterol, they are able to produce significant amount of C(27) ecdysteroids in a low cholesterol environment.

  10. Occurrence of acute paralysis virus of the honey bee (Apis mellifera) in a Hungarian apiary infested with the parasitic mite Varroa jacobsoni.

    PubMed

    Békési, L; Ball, B V; Dobos-Kovács, M; Bakonyi, T; Rusvai, M

    1999-01-01

    Viruses of the honey bee have been known for a long time; however, recently the attention of scientists and apiculturalists has turned towards the relationship between these viruses and the parasitic mite Varroa jacobsoni. Although clinical symptoms indicated the presence of some of the viruses of bees in Hungary, none have previously been isolated or identified. During July unusual adult bee and brood mortality was observed in some colonies of an apiary in Budapest known to be infested with Varroa jacobsoni. Large amounts of acute paralysis virus (APV) were detected serologically in healthy honey bee pupae killed by the injection of a bacteria-free extract of diseased adult bees. Crystalline arrays of 30 nm particles were seen in ultrathin sections of the tissues of injected pupae and naturally infected adult bees. In spite of the application of acaricide treatments the bee population in several colonies had collapsed by the end of summer and the apiary suffered severe wintering losses.

  11. Variations in chemical mimicry by the ectoparasitic mite Varroa jacobsoni according to the developmental stage of the host honey-bee Apis mellifera.

    PubMed

    Martin, C; Salvy, M; Provost, E; Bagnères, A; Roux, M; Crauser, D; Clement, J; Le Conte, Y

    2001-03-15

    The ectoparasitic mite Varroa jacobsoni poses a major threat to the survival of European honey-bee populations. Development of effective control methods is therefore much needed. Study of interspecific chemical communication between the parasite and host is a particularly promising avenue of research. Previous study has shown that the cuticular hydrocarbons of the parasite mite Varroa jacobsoni are qualitatively identical to those of its honey-bee host Apis mellifera (Nation J.L., Sanford M.T., Milne K., 1992. Cuticular hydrocarbons from Varroa jacobsoni. Experimental and Applied Acarology 16, 331-344). The purpose of the present study was to compare the cuticular hydrocarbon patterns of the two species at different stages of bee development. Cuticular components were identified by gas chromatography/mass spectrometry. The proportion of each component was calculated at three stages of bee development (larvae, pupa, emerging bee). The degree of chemical mimicry between the parasite and host was evaluated by multivariate analyses using the resulting proportions for each category of individuals. There were four main findings. The first was that the proportions of some components are different at the larval, pupal and imago stage of bee development. Second, Varroa profiles vary depending on the developmental stage of the host. Third, the cuticular profile of adult mites is more similar to that of the stage of the host than that of later and/or earlier stages except for parasites collected from emerging adult bees. Fourth, the degree of mimicry by Varroa is greater during larval and pupal stages than during the emerging adult bee stages. The role of chemical mimicry - although it is not perfect - in enabling parasites to infest bee colonies by the parasite is discussed.

  12. Field evaluation of neem and canola oil for the selective control of the honey bee (Hymenoptera: Apidae) mite parasites Varroa jacobsoni (Acari: Varroidae) and Acarapis woodi (Acari: Tarsonemidae).

    PubMed

    Melathopoulos, A P; Winston, M L; Whittington, R; Higo, H; Le Doux, M

    2000-06-01

    Neem oil, neem extract (neem-aza), and canola oil were evaluated for the management of the honey bee mite parasites Varroa jacobsoni (Oudemans) and Acarapis woodi (Rennie) in field experiments. Spraying neem oil on bees was more effective at controlling V. jacobsoni than feeding oil in a sucrose-based matrix (patty), feeding neem-aza in syrup, or spraying canola oil. Neem oil sprays also protected susceptible bees from A. woodi infestation. Only neem oil provided V. jacobsoni control comparable to the known varroacide formic acid, but it was not as effective as the synthetic product Apistan (tau-fluvalinate). Neem oil was effective only when sprayed six times at 4-d intervals and not when applied three times at 8-d intervals. Neem oil spray treatments had no effect on adult honey bee populations, but treatments reduced the amount of sealed brood in colonies by 50% and caused queen loss at higher doses. Taken together, the results suggest that neem and canola oil show some promise for managing honey bee parasitic mites, but the negative effects of treatments to colonies and the lower efficacy against V. jacobsoni compared with synthetic acaricides may limit their usefulness to beekeepers.

  13. Modifications of the cuticular hydrocarbon profile of Apis mellifera worker bees in the presence of the ectoparasitic mite Varroa jacobsoni in brood cells.

    PubMed

    Salvy, M; Martin, C; Bagnères, A G; Provost, E; Roux, M; Le Conte, Y; Clément, J L

    2001-02-01

    Varroa jacobsoni is an ectoparasite of Apis mellifera which invades brood cells, on 8-day-old larvae several hours before cell capping. Reproduction of the parasite takes place in the capped brood cells during the nymphose of the bee. Cuticular hydrocarbons of unparasitized bees and of bees parasitized by Varroa jacobsoni were extracted and analysed by gas chromatography (GC) coupled with mass spectrometry (GC-MS). Three developmental stages of worker honey bees were studied: larvae, pupae and emergent adults. The comparison between unparasitized and parasitized hosts was performed with Principal Components Analysis coupled with a multivariate variance analysis. The cuticular hydrocarbon profiles of honey bees were qualitatively similar, for the 3 developmental stages and regardless of the presence of Varroa in the cells. Nevertheless, comparison of the relative proportions of hydrocarbons showed that the cuticular profiles of pupae and emergent adults parasitized by 1 mite and of larvae parasitized by 2 mites were significantly different from the corresponding unparasitized individuals. Such modifications could be regarded (i) as a cause of the multi-infestation in larvae during invasion of brood and (ii) as a consequence of stress and/or removal of proteins contained in the haemolymph of the host during its development.

  14. Morphological features of gut ontogeny in the parasitic mite Varroa jacobsoni.

    PubMed

    Gorgol, V T

    1991-01-01

    The study was focused on the morphological features of the gut through all of its developmental stages in both male and female V. jacobsoni from the drone brood. Histochemical methods were used. Along with histophysiological similarities, there are morphological differences in the gut structure in male and female. Gut development in this parasite's ontogeny is characterized by both morphological conservatism and substantial functional flexibility.

  15. Does the Spatial Distribution of the Parasitic Mite Varroa jacobsoni Oud. (Mesostigmata: Varroidae) in Worker Brood of Honey Bee Apis Mellifera L. (Hymenoptera: Apidae) Rely on an Aggregative Process?

    NASA Astrophysics Data System (ADS)

    Salvy, M.; Capowiez, Y.; Le Conte, Y.; Salvy, M.; Clément, J.-L.

    Varroa jacobsoni is an ectoparasite of honey bees which reproduces in capped brood cells. Multi-infestation is frequently observed in worker brood and can be interpreted as an aggregative phenomenon. The aim of this study was to determine whether the distribution of V. jacobsoni in worker brood cells relies on a random or an aggregative process. We studied the distribution of Varroa females in capped worker brood at similar age by comparing, by a Monte Carlo test, the observed frequency distribution of mites per cell to simulated distributions based on a random process. A complementary approach, using the "nearest neighbor distances" (NND) with Monte Carlo tests, was investigated to study the spatial distribution (a) between mites in different cells and (b) between infested cells in brood. The observed distributions did not differ significantly from that expected by a random process, and we conclude that there is no aggregation during invasion of V. jacobsoni in worker brood.

  16. Does the spatial distribution of the parasitic mite varroa jacobsoni oud. (Mesostigmata: varroidae) in worker brood of honey bee apis mellifera L. (Hymenoptera: apidae) rely on an aggregative process?

    PubMed

    Salvy; Capowiez; Le Conte Y; Clement

    1999-11-01

    Varroa jacobsoni is an ectoparasite of honey bees which reproduces in capped brood cells. Multi-infestation is frequently observed in worker brood and can be interpreted as an aggregative phenomenon. The aim of this study was to determine whether the distribution of V. jacobsoni in worker brood cells relies on a random or an aggregative process. We studied the distribution of Varroa females in capped worker brood at similar age by comparing, by a Monte Carlo test, the observed frequency distribution of mites per cell to simulated distributions based on a random process. A complementary approach, using the "nearest neighbor distances" (NND) with Monte Carlo tests, was investigated to study the spatial distribution (a) between mites in different cells and (b) between infested cells in brood. The observed distributions did not differ significantly from that expected by a random process, and we conclude that there is no aggregation during invasion of V. jacobsoni in worker brood.

  17. Varroa jacobsoni (Acari: Varroidae) is more than one species.

    PubMed

    Anderson, D L; Trueman, J W

    2000-03-01

    Varroa jacobsoni was first described as a natural ectoparasitic mite of the Eastern honeybee (Apis cerana) throughout Asia. It later switched host to the Western honeybee (A. mellifera) and has now become a serious pest of that bee worldwide. The studies reported here on genotypic, phenotypic and reproductive variation among V. jacobsoni infesting A. cerana throughout Asia demonstrate that V. jacobsoni is a complex of at least two different species. In a new classification V. jacobsoni is here redefined as encompassing nine haplotypes (mites with distinct mtDNA CO-I gene sequences) that infest A. cerana in the Malaysia Indonesia region. Included is a Java haplotype, specimens of which were used to first describe V. jacobsoni at the beginning of this century. A new name, V. destructor n. sp., is given to six haplotypes that infest A. cerana on mainland Asia. Adult females of V. destructor are significantly larger and less spherical in shape than females of V. jacobsoni and they are also reproductively isolated from females of V. jacobsoni. The taxonomic positions of a further three unique haplotypes that infest A. cerana in the Philippines is uncertain and requires further study. Other studies reported here also show that only two of the 18 different haplotypes concealed within the complex of mites infesting A. cerana have become pests of A. mellifera worldwide. Both belong to V. destructor, and they are not V. jacobsoni. The most common is a Korea haplotype, so-called because it was also found parasitizing A. cerana in South Korea. It was identified on A. mellifera in Europe, the Middle East, Africa, Asia, and the Americas. Less common is a Japan/Thailand haplotype, so-called because it was also found parasitizing A. cerana in Japan and Thailand. It was identified on A. mellifera in Japan, Thailand and the Americas. Our results imply that the findings of past research on V. jacobsoni are applicable mostly to V. destructor. Our results will also influence quarantine

  18. Multiple host shifts by the emerging honeybee parasite, Varroa jacobsoni.

    PubMed

    Roberts, J M K; Anderson, D L; Tay, W T

    2015-05-01

    Host shifts are a key mechanism of parasite evolution and responsible for the emergence of many economically important pathogens. Varroa destructor has been a major factor in global honeybee (Apis mellifera) declines since shifting hosts from the Asian honeybee (Apis cerana) > 50 years ago. Until recently, only two haplotypes of V. destructor (Korea and Japan) had successfully host shifted to A. mellifera. In 2008, the sister species V. jacobsoni was found for the first time parasitizing A. mellifera in Papua New Guinea (PNG). This recent host shift presents a serious threat to world apiculture but also provides the opportunity to examine host shifting in this system. We used 12 microsatellites to compare genetic variation of V. jacobsoni on A. mellifera in PNG with mites on A. cerana in both PNG and surrounding regions. We identified two distinct lineages of V. jacobsoni reproducing on A. mellifera in PNG. Our analysis indicated independent host shift events have occurred through small numbers of mites shifting from local A. cerana populations. Additional lineages were found in the neighbouring Papua and Solomon Islands that had partially host shifted to A. mellifera, that is producing immature offspring on drone brood only. These mites were likely in transition to full colonization of A. mellifera. Significant population structure between mites on the different hosts suggested host shifted V. jacobsoni populations may not still reproduce on A. cerana, although limited gene flow may exist. Our studies provide further insight into parasite host shift evolution and help characterize this new Varroa mite threat to A. mellifera worldwide. © 2015 John Wiley & Sons Ltd.

  19. DNA evidence of the origin of Varroa jacobsoni Oudemans in the Americas.

    PubMed

    de Guzman, L I; Rinderer, T E; Stelzer, J A

    1997-10-01

    Randomly amplified polymorphic DNA (RAPD) was used to examine possible origin of Varroa jacobsoni Oudemans in the Americas. Among 64 primers screened, 2 primers provided variation which was informative for this study. All V. jacobsoni collected from the United States had the same banding pattern to that of mites collected from Russia, Morocco, Germany, Italy, Spain, and Portugal (Russian pattern). This banding pattern was different from the pattern found for mites collected from Japan, Brazil, and Puerto Rico (Japanese pattern). The Japanese pattern lacked a 766-bp band found in the Russian pattern (OPE-07). With primer OPP-03, the Russian pattern had a distinct band at 442 bp not found in the Japanese pattern. Two bands located at 675 and 412 bp were specific to the Japanese pattern. These results suggest that the V. jacobsoni of the United States is probably predominantly Russian in origin (via Europe), while the V. jacobsoni of Brazil and Puerto Rico are probably predominantly Japanese in origin.

  20. Comparative laboratory toxicity of neem pesticides to honey bees (Hymenoptera: Apidae), their mite parasites Varroa jacobsoni (Acari: Varroidae) and Acarapis woodi (Acari: Tarsonemidae), and brood pathogens Paenibacillus larvae and Ascophaera apis.

    PubMed

    Melathopoulos, A P; Winston, M L; Whittington, R; Smith, T; Lindberg, C; Mukai, A; Moore, M

    2000-04-01

    Laboratory bioassays were conducted to evaluate neem oil and neem extract for the management of key honey bee (Apis mellifera L.) pests. Neem pesticides inhibited the growth of Paenibacillus larvae (Ash, Priest & Collins) in vitro but had no effect on the growth of Ascophaera apis (Olive & Spiltoir). Azadirachtin-rich extract (neem-aza) was 10 times more potent than crude neem oil (neem oil) against P. larvae suggesting that azadirachtin is a main antibiotic component in neem. Neem-aza, however, was ineffective at controlling the honey bee mite parasites Varroa jacobsoni (Ouduemans) and Acarapis woodi (Rennie). Honey bees also were deterred from feeding on sucrose syrup containing > 0.01 mg/ml of neem-aza. However, neem oil applied topically to infested bees in the laboratory proved highly effective against both mite species. Approximately 50-90% V. jacobsoni mortality was observed 48 h after treatment with associated bee mortality lower than 10%. Although topically applied neem oil did not result in direct A. woodi mortality, it offered significant protection of bees from infestation by A. woodi. Other vegetable and petroleum-based oils also offered selective control of honey bee mites, suggesting neem oil has both a physical and a toxicological mode of action. Although oils are not as selective as the V. jacobsoni acaricide tau-fluvalinate, they nonetheless hold promise for the simultaneous management of several honey bee pests.

  1. Newly isolated bacterial strains belonging to Bacillaceae (Bacillus sp.) and Micrococcaceae accelerate death of the honey bee mite, Varroa destructor (V. jacobsoni), in laboratory assays.

    PubMed

    Tsagou, Vasiliki; Lianou, Alexandra; Lazarakis, Dimitrios; Emmanouel, Nikolaos; Aggelis, George

    2004-03-01

    Newly isolated bacterial strains belonging to Bacillaceae (Bacillus sp.), Micrococcaceae and three unidentified strains were tested for their pathogenicity against the mite, Varroa destructor. The Bacillus sp. strain and two of the strains belonging to the Micrococcaceae family significantly decreased the time for 50% mortality of the mite population (up to 57%) and hence may be potential control agents. In in vitro bioassay whole cells, extracellular broth and cellular extract of the Bacillus sp. strain effectively killed the mites, suggesting that both endotoxins and exotoxins contributed to the killing.

  2. Coevolution while you wait: Varroa jacobsoni, a new parasite of western honeybees.

    PubMed

    Oldroyd

    1999-08-01

    The mite Varroa jacobsoni is a brood parasite of the Asian hive bee, Apis cerana. The recent switch in host from A. cerana to the western honeybee, Apis mellifera, offers an exceptional opportunity for studying preadaptation and host-parasite relations. The fact that this host shift appears to have happened on at least two separate occasions, with differing outcomes, must be unique. At another level, the rapacious spread of this mite throughout the world is testimony to the ineffectiveness of international quarantine laws.

  3. Laboratory evaluation of miticides to control Varroa jacobsoni (Acari: Varroidae), a honey bee (Hymenoptera: Apidae) parasite.

    PubMed

    Lindberg, C M; Melathopoulos, A P; Winston, M L

    2000-04-01

    A laboratory bioassay was developed to evaluate miticides to control Varroa jacobsoni (Oudemans), an important parasite of the honey bee, Apis mellifera L. Bees and mites were exposed to applications of essential oil constituents in petri dishes (60 by 20 mm). The registered mite control agents tau-fluvalinate (Apistan) and formic acid also were evaluated as positive controls. Treatments that caused high mite mortality (> 70%) at doses that produced low bee mortality (< 30%) were considered mite selective. The six most selective of the 22 treatments tested (clove oil, benzyl acetate, thymol, carvacrol, methyl salicylate, and Magic3) were further evaluated to estimate LD50 values and selectivity ratios (A. mellifera LD50/V. jacobsoni LD50) at 24, 43, and 67 h after exposure. Tau-fluvalinate was the most selective treatment, but thymol, clove oil, Magic3, and methyl salicylate demonstrated selectivity equal to or greater than formic acid. The effect of mode of application (complete exposure versus vapor only) on bee and mite mortality was assessed for thymol, clove oil, and Magic3 by using a 2-chambered dish design. Estimated V. jacobsoni LD50 values were significantly lower for complete exposure applications of thymol and Magic3, suggesting that both vapor and topical exposure influenced mite mortality, whereas estimated values for clove oil suggested that topical exposure had little or no influence on mite mortality. These results indicate that essential oil constituents alone may not be selective enough to control Varroa under all conditions, but could be a useful component of an integrated pest management approach to parasitic mite management in honey bee colonies.

  4. Live Varroa jacobsoni (Mesostigmata: Varroidae) fallen from honey bee (Hymenoptera: Apidae) colonies.

    PubMed

    Webster, T C; Thacker, E M; Vorisek, F E

    2000-12-01

    The proportion of Varroa jacobsoni Oudemans that were alive and mobile when they fell from honey bees, Apis mellifera L., in hives was measured during a 20-wk period to determine the potential use of systems that prevent these mites from returning to the bees. Traps designed to discriminate between the live, fallen mites and those that are dead or immobile were used on hive bottom boards. A large fraction of the fallen mites was alive when acaricide was not in use and also when fluvalinate or coumaphos treatments were in the hives. The live proportion of mitefall increased during very hot weather. The proportion of mitefall that was alive was higher at the rear and sides of the hive compared with that falling from center frames near the hive entrance. More sclerotized than callow mites were alive when they fell. A screen-covered trap that covers the entire hive bottom board requires a sticky barrier to retain all live mites. This trap or another method that prevents fallen, viable mites from returning to the hive is recommended as a part of an integrated control program. It also may slow the development of acaricide resistance in V. jacobsoni and allow the substitution of less hazardous chemicals for the acaricides currently in use.

  5. [Varroa mites in the apiaries of Campania region].

    PubMed

    Mazzone, P; Caprio, E; Cringoli, G

    2004-06-01

    Mites in the genus Varroa are obligate ectoparasites of honey bee populations worldwide. Recent evidence from morphological, geographical, and especially genetic variation has spurred an important revision of Varroa taxonomy. Specifically, mitochondrial DNA (mtDNA) evidence suggests that the main mite pest on western honey bees (Apis mellifera) is not Varroa jacobsoni, as first described, but a distinct species now named Varroa destructor. Genetic markers also have been used to support a taxonomic basis for regional differences in how Varroa mites impact honey bees. Recent morphometric and molecular studies confirmed the presence of the species V. destructor also in the apiaries of the Campania region of southern Italy. In the three-year period 2001-2003 a survey was conducted in 118 municipalities of the five provinces of the Campania region in order to add data to the limited epidemiological information available regarding Varroa destructor in this zone. The level of infestation by the mite was assessed on a total of 521 apiaries (241 apiaries were inspected on 2001, 154 on 2002, and 126 on 2003). In each apiary, 100 comb cells were examined and in each province the level of infestation was calculated using the following formula: (number of Varroa specimens/number of open comb cells) x 100. In order to display the level of infestation, Geographical Information Systems were used in order to draw parasitological maps.

  6. [Development of infestation with Varroa jacobsoni O. in bee colonies in Tunisia].

    PubMed

    Ritter, W; Michel, P; Schwendemann, A; Bartoldi, M

    1990-04-01

    The mite Varroa jacobsoni, an ectoparasite of the honey bee, was imported to Tunisia probably in 1976. Afterwards, this parasitosis caused severe losses of colonies for several years. The continued examination of the level of infestation in colonies of a "GTZ" project stated a steady number of mites since 1980. Only in a few colonies, the infestation was above the limit of damage. Though the colonies in North West Tunisia did not receive any treatment since 1986 there was no increase of infestation. In order to investigate the reason for this the mites' ability of reproduction was examined during two following years. The portion of infertile female mites in the worker brood in most of the colonies was with 50% considerably higher than in Europe. In Brazil, the adaptation between host and mite produced similar low reproduction rates. As, however, in Tunisia the portion of infertile females in the drone brood of the individual colonies corresponded to the one in the worker brood climatic conditions are supposed to be responsible.

  7. Why do Varroa mites prefer nurse bees?

    PubMed Central

    Xie, Xianbing; Huang, Zachary Y.; Zeng, Zhijiang

    2016-01-01

    The Varroa mite, Varroa destructor, is an acarine ecto-parasite on Apis mellifera. It is the worst pest of Apis mellifera, yet its reproductive biology on the host is not well understood. In particular, the significance of the phoretic stage, when mites feed on adult bees for a few days, is not clear. In addition, it is not clear whether the preference of mites for nurses observed in the laboratory also happens inside real colonies. We show that Varroa mites prefer nurses over both newly emerged bees and forgers in a colony setting. We then determined the mechanism behind this preference. We show that this preference maximizes Varroa fitness, although due to the fact that each mite must find a second host (a pupa) to reproduce, the fitness benefit to the mites is not immediate but delayed. Our results suggest that the Varroa mite is a highly adapted parasite for honey bees. PMID:27302644

  8. [Control strategies against Varroa mites].

    PubMed

    Lodesani, M

    2004-06-01

    In many cases, the easiest way to control a pest or a pathogen is to resort to chemical treatments. In the short period this option is often the most convenient economically and usually does not require refined knowledge of the biology of the pest. Many efforts have been directed to develop chemical treatments against Varroa destructor Anderson & Trueman. Nowadays, product based on organic acids, essential oils, pyrethroids, organophosphate, and formamidine are available. Resistance is serious problem in the chemotherapy of parasites and pathogens of the honeybee. High-level resistance to several active substances (the pyrethroids acrinathrin, flumethrin, fluvalinate; the organophosphate coumaphos; the formamidine amitraz) was detected with laboratory assays in different varroa populations and caused failure of the control in the field. At the end of the '80s, products based on pyrethroids, very effective against the mite, but without any appreciable side effect on bees, became available. Resistance to fluvalinate in Italy and later in other countries caused serious damage to beekeeping; early detection was crucial to reduce losses. The problem of developing suitable treatments was difficult in the case of the varroa mite because most substances active against V. destructor have unacceptable side effects on bees. The idea that the mite could be controlled indefinitely with these strategies began to gain ground.

  9. [Varroa destructor (Anderson and Trueman, 2000); the change in classification within the genus Varroa (Oudemans, 1904)].

    PubMed

    Topolska, G

    2001-01-01

    Varroa jacobsoni was noted for the first time in 1904, in the nest ofApis cerana. In Apis mellifera nests the first Varroa mites were probably found in Korea (1950), next in Japan (1958). In the following years they have spread all over the world. All the time they were regarded as V. jacobsoni. Recently Anderson and Trueman have proved that Varroa jacobsoni is more than one species. They gave the new name Varroa destructor n. sp. to the group of six haplotypes. Mites, which became pests ofA. mellifera worldwide, belong to V. destructor.

  10. Variability of the honey bee mite Varroa destructor in Serbia, based on mtDNA analysis.

    PubMed

    Gajic, Bojan; Radulovic, Zeljko; Stevanovic, Jevrosima; Kulisic, Zoran; Vucicevic, Milos; Simeunovic, Predrag; Stanimirovic, Zoran

    2013-09-01

    Only two mitochondrial haplotypes (Korea and Japan) of Varroa destructor, the ectoparasitic honey bee mite, are known to be capable of infesting and successfully reproducing in Apis mellifera colonies worldwide. Varroa destructor (then called Varroa jacobsoni) was observed in Serbia for the first time in 1976. In order to obtain insight into the genetic variability of the mites parasitizing A. mellifera we analyzed 45 adult female mites sampled from nine localities dispersed throughout Serbia. Four fragments within cox1, atp6, cox3 and cytb mtDNA genes were sequenced. The Korea haplotype of V. destructor was found to be present at all localities, but also two new haplotypes (Serbia 1 and Peshter 1) were revealed, based on cox1 and cytb sequence variability. The simultaneous occurrence of Korea and Serbia 1 haplotypes was observed at five localities, whereas Peshter 1 haplotype was identifed at only one place.

  11. Attraction of the Parasitic Mite Varroa to the Drone Larvae of Honey Bees by Simple Aliphatic Esters

    NASA Astrophysics Data System (ADS)

    Le Conte, Yves; Arnold, Gerard; Trouiller, Jerome; Masson, Claudine; Chappe, Bertrand; Ourisson, Guy

    1989-08-01

    An important parasitic threat to honey bees, the mite Varroa jacobsoni, is attracted to its major prey, drone larvae, by methyl and ethyl esters of straight-chain fatty acids, in particular methyl palmitate. These esters were extracted from drone larvae with n-hexane and were identified by gas chromatography-mass spectrometry. Their behavioral effect was evaluated with the use of a four-arm airflow olfactometer.

  12. Attraction of the parasitic mite varroa to the drone larvae of honey bees by simple aliphatic esters.

    PubMed

    Le Conte, Y; Arnold, G; Trouiller, J; Masson, C; Chappe, B; Ourisson, G

    1989-08-11

    An important parasitic threat to honey bees, the mite Varroa jacobsoni, is attracted to its major prey, drone larvae, by methyl and ethyl esters of straight-chain fatty acids, in particular methyl palmitate. These esters were extracted from drone larvae with n-hexane and were identified by gas chromatography-mass spectrometry. Their behavioral effect was evaluated with the use of a four-arm airflow olfactometer.

  13. Experimental examinations concerning the problem of deformed emerging bees after infestation with Varroa jacobsoni.

    PubMed

    Koch, W; Ritter, W

    1991-07-01

    The deformations of bees occurring in connection with varroatosis was examined both in case of natural and artificial infestation. Under both conditions, the number of bees showing wing deformations increased with the degree of mite infestation. Shortened abdomina, however, only appeared in the case of natural infestation. Inadequate brood care in colonies severely infested by Varroa mites is supposed to be responsible. Wing deformations could be produced by experimental haemolymph extraction.

  14. Effective fall treatment of Varroa jacobsoni (Acari: Varroidae) with a new formulation of formic acid in colonies of Apis mellifera (Hymenoptera: Apidae) in the northeastern United States.

    PubMed

    Calderone, N W

    2000-08-01

    New formulations of formic acid and thymol, both individually and in combination with various essential oils, were compared with Apistan to determine their efficacy as fall treatments for control of Varroa jacobsoni (Oudemans), a parasitic mite of the honey bee, Apis mellifera L. Percent mite mortality in colonies treated with 300 ml of 65% formic acid averaged 94.2 +/- 1.41% (least square means +/- SE, n = 24), equivalent to those receiving four, 10% strips of Apistan (92.6 +/- 1.79%, n = 6). Treatment with thymol (n = 24) resulted in an average mite mortality of 75.4 +/- 5.79%, significantly less than that attained with Apistan or formic acid. The addition of essential oils did not affect treatment efficacy of either formic acid or thymol. The ratio of the coefficients of variation for percentage mortality for the formic acid (CVFA) and Apistan (CVA) groups was CVFA/CVA = 0.66. This indicates that the formic acid treatment was as consistent as the Apistan treatment. Thymol treatments did not provide as consistent results as Apistan or formic acid. Coefficient variation ratios for percentage mortality for the thymol group (CVT) with the Apistan and formic acid groups were CVT/CVA = 4.47 and CVT/CVFA = 6.76, respectively. In a second experiment, colonies received a 4-wk fall treatment of either 300 ml of 65% formic acid (n = 24) or four, 10% strips of Apistan (n = 6). The next spring, mite levels in the formic acid group (554.3 +/- 150.20 mites) were similar to those in the Apistan treatment group (571.3 +/- 145.05 mites) (P = 0.93). Additionally, the quantities of bees, brood, pollen, and nectar/honey in the two treatment groups were not significantly different (P > or = 0.50 each variable). These results suggest that formic acid is an effective alternative to Apistan as a fall treatment for varroa mites in temperate climates.

  15. A new product with formic acid for Varroa jacobsoni Oud. control in Argentina. I. Efficacy.

    PubMed

    Eguaras, M; Del Hoyo, M; Palacio, M A; Ruffinengo, S; Bedascarrasbure, E L

    2001-02-01

    An organic product based on formic acid in a gel matrix was evaluated for use in Varroa control under autumnal climatic conditions in Argentina. Twenty colonies each received two gel packets with formic acid in two applications and numbers of falling mites were registered. After this treatment colonies received two other acaricides in order to compare efficacy. Average final efficacy in colonies treated with the organic product was 92% with a low variability. The gel matrix kept an adequate formic acid concentration inside the colonies with only two applications. This product is, therefore, a good alternative for Varroa control because it is organic, easy to use and presents a low variability in final efficacy between colonies. No queen, brood, or adult honeybee mortality was registered.

  16. Hygienic Activity Toward Varroa Mites in Capped Brood is not Dependent on Mite Reproductive Status

    USDA-ARS?s Scientific Manuscript database

    - The varroa resistance of bees selectively bred for high levels of varroa sensitive hygiene (VSH) is characterized by a reduction of (1) the mite infestation rate (Harris 2007 J. Apic. Res. / Bee World 46: 134-139) and (2) the percentage of fertile mites (Harris and Harbo 1999 J. Econ. Entomol. 92:...

  17. [The effect of Varroa jacobsoni invasion on bee colonies with queens of different breeds in the fourth year of the disease].

    PubMed

    Romaniuk, K; Sokół, R; Witkiewicz, W

    1993-01-01

    The objective of the work was to determine the effect of invasion of Varroa jacobsoni on the bee colonies of different breeds in the fourth year of varrosis. It was found out that bee colonies which were not treated died in the fourth year of the disease, while treated ones were debilitated. The main loss concerned the bee colonies with augustonian and carnica queens. The most resistant were colonies with caucasian queens.

  18. EPA-registered Pesticide Products Approved for Use Against Varroa Mites in Bee Hives

    EPA Pesticide Factsheets

    Varroa mites are parasites that feed on developing bees, leading to brood mortality and reduced lifespan of worker bees and transmit numerous honeybee viruses. Find pesticides that are approved for use against Varroa mites.

  19. Mechanisms of insecticide resistance in field populations of varroa mite (Acari: Mesostigmata: Varroidae)in Florida

    USDA-ARS?s Scientific Manuscript database

    The ectoparasitic mite Varroa destuctor is a serious threat to beekeeping and crops that rely on honey bee for pollination. The Varroa mite not only causes significant damage to honey bees by feeding on their haemolymph, but also serves as a vector of disease. In addition, the Varroa mite has develo...

  20. Influence of Varroa mite (Varroa destructor) infestation levels and management practices on insecticide sensitivity in the honey bee (Apis mellifera)

    USDA-ARS?s Scientific Manuscript database

    Because Varroa mites may cause devastating losses of honey bees through direct feeding, transmitting diseases, and increasing pathogen susceptibility, chemical and mechanical practices commonly are used to reduce mite infestation. While miticide applications are typically the most consistent and eff...

  1. Asynchronous development of Honey Bee host and Varroa destructor (Mesostigmata: Varroidae) influences reproductive potential of mites

    USDA-ARS?s Scientific Manuscript database

    A high proportion of non-reproductive (NR) Varroa destructor, is commonly observed in honey bee colonies displaying the Varroa sensitive hygienic trait (VSH). These studies were conducted to determine the influence of brood removal and subsequent host re-invasion of Varroa mites on mite reproduction...

  2. Three halloween genes from the varroa mite, varroa destructor (Anderson & Trueman) and their expression during reproduction

    USDA-ARS?s Scientific Manuscript database

    Ecdysteroid biosynthesis involves sequential enzymatic hydroxylations by two microsomal enzymes plus five cytochrome P450’s, collectively known as Halloween genes. Complete sequences for three Halloween genes, spook (Vdspo), disembodied (Vddib) and shade (Vdshd), were identified in varroa mites and ...

  3. Ligand selectivity in tachykinin and natalisin neuropeptidergic systems of the honey bee parasitic mite Varroa destructor

    USDA-ARS?s Scientific Manuscript database

    The varroa mite, Varroa destructor, is a devastating ectoparasite of the honey bees Apis mellifera and A. cerana. Control of these mites in beehives is a challenge in part due to the lack of toxic agents that are specific to mites and not to the host honey bee. In searching for a specific toxic targ...

  4. Gene expression in honey bee (Apis mellifera) larvae exposed to pesticides and Varroa mites (Varroa destructor).

    PubMed

    Gregorc, Aleš; Evans, Jay D; Scharf, Mike; Ellis, James D

    2012-08-01

    Honey bee (Apis mellifera) larvae reared in vitro were exposed to one of nine pesticides and/or were challenged with the parasitic mite, Varroa destructor. Total RNA was extracted from individual larvae and first strand cDNAs were generated. Gene-expression changes in larvae were measured using quantitative PCR (qPCR) targeting transcripts for pathogens and genes involved in physiological processes, bee health, immunity, and/or xenobiotic detoxification. Transcript levels for Peptidoglycan Recognition Protein (PGRPSC), a pathogen recognition gene, increased in larvae exposed to Varroa mites (P<0.001) and were not changed in pesticide treated larvae. As expected, Varroa-parasitized brood had higher transcripts of Deformed Wing Virus than did control larvae (P<0.001). Varroa parasitism, arguably coupled with virus infection, resulted in significantly higher transcript abundances for the antimicrobial peptides abaecin, hymenoptaecin, and defensin1. Transcript levels for Prophenoloxidase-activating enzyme (PPOact), an immune end product, were elevated in larvae treated with myclobutanil and chlorothalonil (both are fungicides) (P<0.001). Transcript levels for Hexameric storage protein (Hsp70) were significantly upregulated in imidacloprid, fluvalinate, coumaphos, myclobutanil, and amitraz treated larvae. Definitive impacts of pesticides and Varroa parasitism on honey bee larval gene expression were demonstrated. Interactions between larval treatments and gene expression for the targeted genes are discussed. Copyright © 2012 Elsevier Ltd. All rights reserved.

  5. Three Halloween genes from the Varroa mite, Varroa destructor (Anderson & Trueman) and their expression during reproduction.

    PubMed

    Cabrera, A R; Shirk, P D; Evans, J D; Hung, K; Sims, J; Alborn, H; Teal, P E A

    2015-06-01

    The ecdysteroid biosynthetic pathway involves sequential enzymatic hydroxylations by a group of enzymes collectively known as Halloween gene proteins. Complete sequences for three Halloween genes, spook (Vdspo), disembodied (Vddib) and shade (Vdshd), were identified in varroa mites and sequenced. Phylogenetic analyses of predicted amino acid sequences for Halloween orthologues showed that the acarine orthologues were distantly associated with insect and crustacean clades indicating that acarine genes had more ancestral characters. The lack of orthologues or pseudogenes for remaining genes suggests these pathway elements had not evolved in ancestral arthropods. Vdspo transcript levels were highest in gut tissues, while Vddib transcript levels were highest in ovary-lyrate organs. In contrast, Vdshd transcript levels were lower overall but present in both gut and ovary-lyrate organs. All three transcripts were present in eggs removed from gravid female mites. A brood cell invasion assay was developed for acquiring synchronously staged mites. Mites within 4 h of entering a brood cell had transcript levels of all three that were not significantly different from mites on adult bees. These analyses suggest that varroa mites may be capable of modifying 7-dehydro-cholesterol precursor and hydroxylations of other steroid precursors, but whether the mites directly produce ecdysteroid precursors and products remains undetermined. Published 2014. This article is a U.S. Government work and is in the public domain in the USA.

  6. High Varroa mite abundance influences chemical profiles of worker bees and mite-host preferences.

    PubMed

    Cervo, R; Bruschini, C; Cappa, F; Meconcelli, S; Pieraccini, G; Pradella, D; Turillazzi, S

    2014-09-01

    Honeybee disappearance is one of the major environmental and economic challenges this century has to face. The ecto-parasitic mite Varroa destructor represents one of the main causes of the worldwide beehive losses. Although halting mite transmission among beehives is of primary importance to save honeybee colonies from further decline, the natural route used by mites to abandon a collapsing colony has not been extensively investigated so far. Here, we explored whether, with increasing mite abundance within the colony, mites change their behaviour to maximize the chances of leaving a highly infested colony. We show that, at low mite abundance, mites remain within the colony and promote their reproduction by riding nurses that they distinguish from foragers by different chemical cuticular signatures. When mite abundance increases, the chemical profile of nurses and foragers tends to overlap, promoting mite departure from exploited colonies by riding pollen foragers.

  7. Semiochemical basis of infestation of honey bee brood byVarroa jacobsoni.

    PubMed

    Trouiller, J; Arnold, G; Chappe, B; Le Conte, Y; Masson, C

    1992-11-01

    Capping of workerApis mellifera cells is elicited by four fatty acid methyl esters (Methyl palmitate, methyl oleate, methyl linoleate, and methyl linolenate) that are present on the surface of the worker and drone larvae only a few hours before the cell is closed. The amount of the pheromone reaches its maximum value when the cell has just been capped, at 8.5 and at 10.25 days of age, respectively, for worker and drone larvae. Thereafter, the amount of the pheromone decreases to its initial level. These data suggest that the esters also have a role in the capping of the drone cells, the temporal signal allowing the worker bees to recognize the age of the larvae and then to do the appropriate behavior. Two pheromonal components, methyl palmitate and methyl linolenate, and the inactive ethyl palmitate are kairomones attractive toVarroa females. Their secretion by the larvae follows the same pattern of development as the pheromonal signal. The longer and greater kairomonal signal in drone larvae, compared to worker secretion, could explain the preference ofVarroa towards drone brood.

  8. Genomic organization and reproductive regulation of a carrier/storage protein in the Varroa Mite, Varroa destructor (Anderson & Trueman)

    USDA-ARS?s Scientific Manuscript database

    The complete genomic region and corresponding transcript of the most abundant protein in the phoretic varroa mite, Varroa destructor (Anderson & Trueman), were sequenced and found to be homologous with hemelipoglyco-proteins (HeLP/CP) of acarines. The genomic arrangement showed the presence of 14 in...

  9. Variable induction of vitellogenin genes in the varroa mite, Varroa destructor (Anderson & Trueman) by the honeybee, Apis mellifera L, host and its environment

    USDA-ARS?s Scientific Manuscript database

    Transcript levels of vitellogenins (Vgs) in the varroa mite, Varroa destructor (Anderson & Trueman) were variably induced by interactions between the developing honeybee as a food source and the capped honeybee cell environment. Transcripts for 2 Vgs of varroa mites were sequenced and putative Vg pr...

  10. A Scientific note on Varroa mites found in East Africa; Threat or Opportunity

    USDA-ARS?s Scientific Manuscript database

    Varroa mites have devastated Apis mellifera L. honeybee populations wherever they co-occur around the world, yet in East Africa these mites may have finally met their match. Varroa destructor Anderson and Truman (Acari:Varroidae) was found in Kenya and Tanzania for the first time in early 2009, but...

  11. Effects of varroa mites and bee diseases on pollination efficacy of honey bees

    USDA-ARS?s Scientific Manuscript database

    Varroa mites and viral diseases are known to affect the efficiency of crop pollination by honey. This study elucidates effects of varroa mites and bee diseases on the foraging behavior of adult bees and the consequences on successful fruit pollination. Four honey bee colonies of about 4,500 bees eac...

  12. Isolation of oxalotrophic bacteria associated with Varroa destructor mites.

    PubMed

    Maddaloni, M; Pascual, D W

    2015-11-01

    Bacteria associated with varroa mites were cultivated and genotyped by 16S RNA. Under our experimental conditions, the cultivable bacteria were few in number, and most of them proved to be fastidious to grow. Cultivation with seven different media under O2 /CO2 conditions and selection for colony morphology yielded a panel of species belonging to 13 different genera grouped in two different phyla, proteobacteria and actinobacteria. This study identified one species of actinobacteria that is a known commensal of the honey bee. Some isolates are oxalotrophic, a finding that may carry ramifications into the use of oxalic acid to control the number of phoretic mites in the managed colonies of honey bees. Oxalic acid, legally or brevi manu, is widely used to control phoretic Varroa destructor mites, a major drive of current honey bees' colony losses. Unsubstantiated by sanctioned research are rumours that in certain instances oxalic acid is losing efficacy, forcing beekeepers to increase the frequency of treatments. This investigation fathoms the hypothesis that V. destructor associates with bacteria capable of degrading oxalic acid. The data show that indeed oxalotrophy, a rare trait among bacteria, is common in bacteria that we isolated from V. destructor mites. This finding may have ramifications in the use of oxalic acid as a control agent. © 2015 The Society for Applied Microbiology.

  13. Honey Bee (Hymenoptera: Apidae) with the Trait of Varroa Sensitive Hygiene Remove Brood with All Reproductive Stages of Varroa Mites (Mesostigmata: Varroidae)

    USDA-ARS?s Scientific Manuscript database

    Varroa Sensitive Hygiene (VSH) is a trait of honey bees, Apis mellifera L., which supports resistance to Varroa destructor mites. VSH is the hygienic removal of mite-infested pupae from capped brood. Bees selectively bred for VSH produce colonies in which the fertility of mites decreases over time...

  14. Population growth of Varroa destructor (Acari: Varroidae) in honey bee colonies is affected by the number of foragers with mites

    USDA-ARS?s Scientific Manuscript database

    Varroa mites are a serious pest of honey bees and the leading cause of colony losses. Varroa have relatively low reproductive rates, so populations should not increase rapidly, but often they do. Other factors might contribute to the growth of Varroa populations including mite migration into colonie...

  15. Influence of Varroa Mite (Varroa destructor) Management Practices on Insecticide Sensitivity in the Honey Bee (Apis mellifera)

    PubMed Central

    Rinkevich, Frank D.; Danka, Robert G.; Healy, Kristen B.

    2017-01-01

    Since Varroa mites may cause devastating losses of honey bees through direct feeding, transmitting diseases, and increasing pathogen susceptibility, chemical and mechanical practices commonly are used to reduce mite infestation. While miticide applications are typically the most consistent and efficacious Varroa mite management method, miticide-induced insecticide synergism in honey bees, and the evolution of resistance in Varroa mites are reasonable concerns. We treated colonies with the miticide amitraz (Apivar®), used IPM practices, or left some colonies untreated, and then measured the effect of different levels of mite infestations on the sensitivity of bees to phenothrin, amitraz, and clothianidin. Sensitivity to all insecticides varied throughout the year among and within treatment groups. Clothianidin sensitivity decreased with increasing mite levels, but no such correlation was seen with phenothrin or amitraz. These results show that insecticide sensitivity is dynamic throughout the 5 months test. In-hive amitraz treatment according to the labeled use did not synergize sensitivity to the pesticides tested and this should alleviate concern over potential synergistic effects. Since IPM practices were largely ineffective at reducing Varroa mite infestation, reliance on chemical methods of Varroa mite management is likely to continue. However, miticides must be used judiciously so the long term effectiveness of these compounds can be maximized. These data demonstrate the complex and dynamic variables that contribute to honey bee colony health. The results underscore the importance of controlling for as many of these variables as possible in order to accurately determine the effects of each of these factors as they act alone or in concert with others. PMID:28085045

  16. Influence of Varroa Mite (Varroa destructor) Management Practices on Insecticide Sensitivity in the Honey Bee (Apis mellifera).

    PubMed

    Rinkevich, Frank D; Danka, Robert G; Healy, Kristen B

    2017-01-11

    Since Varroa mites may cause devastating losses of honey bees through direct feeding, transmitting diseases, and increasing pathogen susceptibility, chemical and mechanical practices commonly are used to reduce mite infestation. While miticide applications are typically the most consistent and efficacious Varroa mite management method, miticide-induced insecticide synergism in honey bees, and the evolution of resistance in Varroa mites are reasonable concerns. We treated colonies with the miticide amitraz (Apivar(®)), used IPM practices, or left some colonies untreated, and then measured the effect of different levels of mite infestations on the sensitivity of bees to phenothrin, amitraz, and clothianidin. Sensitivity to all insecticides varied throughout the year among and within treatment groups. Clothianidin sensitivity decreased with increasing mite levels, but no such correlation was seen with phenothrin or amitraz. These results show that insecticide sensitivity is dynamic throughout the 5 months test. In-hive amitraz treatment according to the labeled use did not synergize sensitivity to the pesticides tested and this should alleviate concern over potential synergistic effects. Since IPM practices were largely ineffective at reducing Varroa mite infestation, reliance on chemical methods of Varroa mite management is likely to continue. However, miticides must be used judiciously so the long term effectiveness of these compounds can be maximized. These data demonstrate the complex and dynamic variables that contribute to honey bee colony health. The results underscore the importance of controlling for as many of these variables as possible in order to accurately determine the effects of each of these factors as they act alone or in concert with others.

  17. A method for rapidly marking adult varroa mites for use in brood inoculation experiments

    USDA-ARS?s Scientific Manuscript database

    We explored a method for marking varroa mites using correction fluid (PRESTO!TM Jumbo Correction Pen, Pentel Co., Ltd., Japan). Individual mites were placed on a piece of nylon mesh (165 mesh) to prevent the mites from moving during marking. A small piece of nylon fishing line (diameter = 0.30 mm)...

  18. A feeding protocol for delivery of agents to assess development in Varroa mites

    USDA-ARS?s Scientific Manuscript database

    A novel feeding protocol for delivery of bio-active agents to Varroa mites was developed by providing mites with honey bee larva hemolymph supplemented with cultured insect cells and selected materials suspended delivered on a fibrous cotton substrate. Mites were starved, fed on treated hemolymph to...

  19. Parasitic mites of honey bees: life history, implications, and impact.

    PubMed

    Sammataro, D; Gerson, U; Needham, G

    2000-01-01

    The hive of the honey bee is a suitable habitat for diverse mites (Acari), including nonparasitic, omnivorous, and pollen-feeding species, and parasites. The biology and damage of the three main pest species Acarapis woodi, Varroa jacobsoni, and Tropilaelaps clareae is reviewed, along with detection and control methods. The hypothesis that Acarapis woodi is a recently evolved species is rejected. Mite-associated bee pathologies (mostly viral) also cause increasing losses to apiaries. Future studies on bee mites are beset by three main problems: (a) The recent discovery of several new honey bee species and new bee-parasitizing mite species (along with the probability that several species are masquerading under the name Varroa jacobsoni) may bring about new bee-mite associations and increase damage to beekeeping; (b) methods for studying bee pathologies caused by viruses are still largely lacking; (c) few bee- and consumer-friendly methods for controlling bee mites in large apiaries are available.

  20. Screening for bacterial contaminants in a Beauveria bassiana-based biopesticide against varroa mites

    USDA-ARS?s Scientific Manuscript database

    In a collaborative effort to develop a biopesticide against varroa, strains of entomopathogenic fungus, a Beauveria bassiana isolate was isolated from varroa mites found in beehives in France and tested in bioassays at the European Biological Control Laboratory. This isolate was shown to be virulent...

  1. Cloning and submission to the Natural Center for Biotechnology Information (NCBI) database of two complete vitellogenin genes from the varroa mite, Varroa destructor

    USDA-ARS?s Scientific Manuscript database

    The varroa mite, Varroa destructor, is a honeybee ectoparasite considered the most important pest in apiaries throughout the US. Vitellogenins are the yolk proteins produced by the ovipositing female mite and deposited into the oocytes to provide nutrients to the developing embryo. Scientists at CMA...

  2. Identification and molecular cloning of three Halloween genes in the varroa mite, Varroa destructor (Anderson & Trueman) (Acari: Varroidae)

    USDA-ARS?s Scientific Manuscript database

    Biosynthesis of 20-hydroxyecdysone (20E) in insects involves the action of five cytochrome P450s collectively known as Halloween genes. The complete transcripts of 3 Halloween genes [spook (Vdspo), disembodied (Vddib) and shade (Vdshd)] from the varroa mite were identified, sequenced and mapped to t...

  3. Varroa destructor Mites Can Nimbly Climb from Flowers onto Foraging Honey Bees

    PubMed Central

    Smith, Michael L.; Seeley, Thomas D.

    2016-01-01

    Varroa destructor, the introduced parasite of European honey bees associated with massive colony deaths, spreads readily through populations of honey bee colonies, both managed colonies living crowded together in apiaries and wild colonies living widely dispersed in natural settings. Mites are hypothesized to spread between most managed colonies via phoretically riding forager bees when they engage in robbing colonies or they drift between hives. However, widely spaced wild colonies show Varroa infestation despite limited opportunities for robbing and little or no drifting of bees between colonies. Both wild and managed colonies may also exchange mites via another mechanism that has received remarkably little attention or study: floral transmission. The present study tested the ability of mites to infest foragers at feeders or flowers. We show that Varroa destructor mites are highly capable of phoretically infesting foraging honey bees, detail the mechanisms and maneuvers by which they do so, and describe mite behaviors post-infestation. PMID:27942015

  4. Varroa destructor Mites Can Nimbly Climb from Flowers onto Foraging Honey Bees.

    PubMed

    Peck, David T; Smith, Michael L; Seeley, Thomas D

    2016-01-01

    Varroa destructor, the introduced parasite of European honey bees associated with massive colony deaths, spreads readily through populations of honey bee colonies, both managed colonies living crowded together in apiaries and wild colonies living widely dispersed in natural settings. Mites are hypothesized to spread between most managed colonies via phoretically riding forager bees when they engage in robbing colonies or they drift between hives. However, widely spaced wild colonies show Varroa infestation despite limited opportunities for robbing and little or no drifting of bees between colonies. Both wild and managed colonies may also exchange mites via another mechanism that has received remarkably little attention or study: floral transmission. The present study tested the ability of mites to infest foragers at feeders or flowers. We show that Varroa destructor mites are highly capable of phoretically infesting foraging honey bees, detail the mechanisms and maneuvers by which they do so, and describe mite behaviors post-infestation.

  5. Population growth of Varroa destructor (Acari: Varroidae) in colonies of Russian and unselected honey bee (Hymenoptera: Apidae) stock as related to numbers of foragers with mites

    USDA-ARS?s Scientific Manuscript database

    Varroa mites are an external parasite of honey bees and a leading cause of colony losses worldwide. Varroa populations can be controlled with miticides, but mite resistant stocks such as the Russian honey bee (RHB) also are available. RHB and other mite resistant stock limit Varroa population growth...

  6. Genotypic variability and relationships between mite infestation levels, mite damage, grooming intensity, and removal of Varroa destructor mites in selected strains of worker honey bees (Apis mellifera L.).

    PubMed

    Guzman-Novoa, Ernesto; Emsen, Berna; Unger, Peter; Espinosa-Montaño, Laura G; Petukhova, Tatiana

    2012-07-01

    The objective of this study was to demonstrate genotypic variability and analyze the relationships between the infestation levels of the parasitic mite Varroa destructor in honey bee (Apis mellifera) colonies, the rate of damage of fallen mites, and the intensity with which bees of different genotypes groom themselves to remove mites from their bodies. Sets of paired genotypes that are presumably susceptible and resistant to the varroa mite were compared at the colony level for number of mites falling on sticky papers and for proportion of damaged mites. They were also compared at the individual level for intensity of grooming and mite removal success. Bees from the "resistant" colonies had lower mite population rates (up to 15 fold) and higher percentages of damaged mites (up to 9 fold) than bees from the "susceptible" genotypes. At the individual level, bees from the "resistant" genotypes performed significantly more instances of intense grooming (up to 4 fold), and a significantly higher number of mites were dislodged from the bees' bodies by intense grooming than by light grooming (up to 7 fold) in all genotypes. The odds of mite removal were high and significant for all "resistant" genotypes when compared with the "susceptible" genotypes. The results of this study strongly suggest that grooming behavior and the intensity with which bees perform it, is an important component in the resistance of some honey bee genotypes to the growth of varroa mite populations. The implications of these results are discussed.

  7. Genomic organization and reproductive regulation of a large lipid transfer protein in the varroa mite, Varroa destructor (Anderson & Trueman).

    PubMed

    Cabrera, A R; Shirk, P D; Duehl, A J; Donohue, K V; Grozinger, C M; Evans, J D; Teal, P E A

    2013-10-01

    The complete genomic region and corresponding transcript of the most abundant protein in phoretic varroa mites, Varroa destructor (Anderson & Trueman), were sequenced and have homology with acarine hemelipoglycoproteins and the large lipid transfer protein (LLTP) super family. The genomic sequence of VdLLTP included 14 introns and the mature transcript coded for a predicted polypeptide of 1575 amino acid residues. VdLLTP shared a minimum of 25% sequence identity with acarine LLTPs. Phylogenetic assessment showed VdLLTP was most closely related to Metaseiulus occidentalis vitellogenin and LLTP proteins of ticks; however, no heme binding by VdLLTP was detected. Analysis of lipids associated with VdLLTP showed that it was a carrier for free and esterified C12 -C22 fatty acids from triglycerides, diacylglycerides and monoacylglycerides. Additionally, cholesterol and β-sitosterol were found as cholesterol esters linked to common fatty acids. Transcript levels of VdLLTP were 42 and 310 times higher in phoretic female mites when compared with males and quiescent deutonymphs, respectively. Coincident with initiation of the reproductive phase, VdLLTP transcript levels declined to a third of those in phoretic female mites. VdLLTP functions as an important lipid transporter and should provide a significant RNA interference target for assessing the control of varroa mites. Published 2013. This article is a U.S. Government work and is in the public domain in the USA.

  8. Deformed wing virus is a recent global epidemic in honeybees driven by Varroa mites.

    PubMed

    Wilfert, L; Long, G; Leggett, H C; Schmid-Hempel, P; Butlin, R; Martin, S J M; Boots, M

    2016-02-05

    Deformed wing virus (DWV) and its vector, the mite Varroa destructor, are a major threat to the world's honeybees. Although the impact of Varroa on colony-level DWV epidemiology is evident, we have little understanding of wider DWV epidemiology and the role that Varroa has played in its global spread. A phylogeographic analysis shows that DWV is globally distributed in honeybees, having recently spread from a common source, the European honeybee Apis mellifera. DWV exhibits epidemic growth and transmission that is predominantly mediated by European and North American honeybee populations and driven by trade and movement of honeybee colonies. DWV is now an important reemerging pathogen of honeybees, which are undergoing a worldwide manmade epidemic fueled by the direct transmission route that the Varroa mite provides. Copyright © 2016, American Association for the Advancement of Science.

  9. Asynchronous development of honey bee host and Varroa destructor (Mesostigmata: Varroidae) influences reproductive potential of mites.

    PubMed

    Kirrane, Maria J; De Guzman, Lilia I; Rinderer, Thomas E; Frake, Amanda M; Wagnitz, Jeremy; Whelan, Pádraig M

    2011-08-01

    A high proportion of nonreproductive (NR) Varroa destructor Anderson & Trueman (Mesostigmata: Varroidae), is commonly observed in honey bee colonies displaying the varroa sensitive hygienic trait (VSH). This study was conducted to determine the influence of brood removal and subsequent host reinvasion of varroa mites on mite reproduction. We collected foundress mites from stages of brood (newly sealed larvae, prepupae, white-eyed pupae, and pink-eyed pupae) and phoretic mites from adult bees. We then inoculated these mites into cells containing newly sealed larvae. Successful reproduction (foundress laid both a mature male and female) was low (13%) but most common in mites coming from sealed larvae. Unsuccessful reproductive attempts (foundress failed to produce both a mature male and female) were most common in mites from sealed larvae (22%) and prepupae (61%). Lack of any progeny was most common for mites from white-eyed (83%) and pink-eyed pupae (92%). We also collected foundress mites from sealed larvae and transferred them to cells containing newly sealed larvae, prepupae, white-eyed pupae, or pink-eyed pupae. Successful reproduction only occurred in the transfers to sealed larvae (26%). Unsuccessful reproductive attempts were most common in transfers to newly sealed larvae (40%) and to prepupae (25%). Unsuccessful attempts involved the production of immature progeny (60%), the production of only mature daughters (26%) or the production of only a mature male (14%). Generally, lack of progeny was not associated with mites having a lack of stored sperm. Our results suggest that mites exposed to the removal of prepupae or older brood due to hygiene are unlikely to produce viable mites if they invade new hosts soon after brood removal. Asynchrony between the reproductive status of reinvading mites and the developmental stage of their reinvasion hosts may be a primary cause of NR mites in hygienic colonies. Even if reinvading mites use hosts having the proper age

  10. Brood removal or queen caging combined with oxalic acid treatment to control varroa mites (Varroa destructor) in honey bee colonies (Apis mellifera)

    USDA-ARS?s Scientific Manuscript database

    Few studies of honey bee colonies exist where varroa mite control is achieved by integrating broodless conditions, through either total brood removal or queen caging, in combination with oxalic acid (OA) applications. We observed significant varroa mortality after applications of OA in obtaining bro...

  11. Two novel viruses associated with the Apis mellifera pathogenic mite Varroa destructor.

    PubMed

    Levin, Sofia; Sela, Noa; Chejanovsky, Nor

    2016-11-24

    Varroa destructor infestation of Apis mellifera colonies carries and/or promotes replication of honey bee viruses like the Deformed wing virus, the Varroa destructor virus-1, the Acute bee paralysis virus, the Israeli acute bee paralysis virus and the Kashmir bee virus that have been well described and characterized; but viruses exclusively associated with Varroa were not found. To look for viruses that may associate with- or infect V. destructor we performed deep sequencing (RNA-seq) of RNA extracted from honey bees and mites in Varroa-infested untreated colonies. Comparative bioinformatic analysis of the two separate contig-assemblies generated from the sequences' reads annotated using Blastx enabled identification of new viruses unique to Varroa and absent in A. mellifera: an Iflavirus and a virus with homology to Ixodes scapularis associated virus 2, that we named Varroa destructor virus 2 (VDV-2) and 3(VDV-3), respectively. We validated these findings sequencing the mite- and honey bee-viromes and in separate mites and honey bees randomly sampled. The complete genomes of VDV-2 and VDV-3 bear 9576 nucleotides and 4202 nucleotides, respectively. Phylogenetic analysis of VDV-3 suggests that it belongs to a new group of viruses. Our results open venues for investigating the pathogenicity of these V. destructor viruses.

  12. Two novel viruses associated with the Apis mellifera pathogenic mite Varroa destructor

    PubMed Central

    Levin, Sofia; Sela, Noa; Chejanovsky, Nor

    2016-01-01

    Varroa destructor infestation of Apis mellifera colonies carries and/or promotes replication of honey bee viruses like the Deformed wing virus, the Varroa destructor virus-1, the Acute bee paralysis virus, the Israeli acute bee paralysis virus and the Kashmir bee virus that have been well described and characterized; but viruses exclusively associated with Varroa were not found. To look for viruses that may associate with- or infect V. destructor we performed deep sequencing (RNA-seq) of RNA extracted from honey bees and mites in Varroa-infested untreated colonies. Comparative bioinformatic analysis of the two separate contig-assemblies generated from the sequences’ reads annotated using Blastx enabled identification of new viruses unique to Varroa and absent in A. mellifera: an Iflavirus and a virus with homology to Ixodes scapularis associated virus 2, that we named Varroa destructor virus 2 (VDV-2) and 3(VDV-3), respectively. We validated these findings sequencing the mite- and honey bee-viromes and in separate mites and honey bees randomly sampled. The complete genomes of VDV-2 and VDV-3 bear 9576 nucleotides and 4202 nucleotides, respectively. Phylogenetic analysis of VDV-3 suggests that it belongs to a new group of viruses. Our results open venues for investigating the pathogenicity of these V. destructor viruses. PMID:27883042

  13. [Effectiveness of the preparation of Bayvarol-Strips (R) in control of Varroa jacobsoni mites].

    PubMed

    Jeliński, M

    1993-01-01

    There were investigated plastic strips with active ingredient flumethrin: Bayvarol-Strips (R). There were used 4 strips for a treatment. They were placed between combs of honey bee colony. The mean effectiveness of te medication was 95.6%. Bayvarol-Strips (R) were harmless for bees.

  14. A feeding protocol for delivery of agents to assess development in Varroa mites

    PubMed Central

    2017-01-01

    A novel feeding protocol for delivery of bio-active agents to Varroa mites was developed by providing mites with honey bee larva hemolymph supplemented with cultured insect cells and selected materials delivered on a fibrous cotton substrate. Mites were starved, fed on treated hemolymph to deliver selected agents and then returned to bee larvae. Transcript levels of two reference genes, actin and glyceraldehyde 3-phosphate dehydrogenase (GAPDH), as well as for nine selected genes involved in reproductive processes showed that the starvation and feeding protocol periods did not pose a high level of stress to the mites as transcript levels remained comparable between phoretic mites and those completing the protocol. The feeding protocol was used to deliver molecules such as hormone analogs or plasmids. Mites fed with Tebufenozide, an ecdysone analog, had higher transcript levels of shade than untreated or solvent treated mites. In order to extend this feeding protocol, cultured insect cells were incorporated to a final ratio of 1 part cells and 2 parts hemolymph. Although supplementation with Bombyx mori Bm5 cells increased the amount of hemolymph consumed per mite, there was a significant decrease in the percentage of mites that fed and survived. On the other hand, Drosophila melanogaster S2 cells reduced significantly the percentage of mites that fed and survived as well as the amount of hemolymph consumed. The feeding protocol provides a dynamic platform with which to challenge the Varroa mite to establish efficacy of control agents for this devastating honey bee pest. PMID:28448606

  15. A feeding protocol for delivery of agents to assess development in Varroa mites.

    PubMed

    Cabrera, Ana R; Shirk, Paul D; Teal, Peter E A

    2017-01-01

    A novel feeding protocol for delivery of bio-active agents to Varroa mites was developed by providing mites with honey bee larva hemolymph supplemented with cultured insect cells and selected materials delivered on a fibrous cotton substrate. Mites were starved, fed on treated hemolymph to deliver selected agents and then returned to bee larvae. Transcript levels of two reference genes, actin and glyceraldehyde 3-phosphate dehydrogenase (GAPDH), as well as for nine selected genes involved in reproductive processes showed that the starvation and feeding protocol periods did not pose a high level of stress to the mites as transcript levels remained comparable between phoretic mites and those completing the protocol. The feeding protocol was used to deliver molecules such as hormone analogs or plasmids. Mites fed with Tebufenozide, an ecdysone analog, had higher transcript levels of shade than untreated or solvent treated mites. In order to extend this feeding protocol, cultured insect cells were incorporated to a final ratio of 1 part cells and 2 parts hemolymph. Although supplementation with Bombyx mori Bm5 cells increased the amount of hemolymph consumed per mite, there was a significant decrease in the percentage of mites that fed and survived. On the other hand, Drosophila melanogaster S2 cells reduced significantly the percentage of mites that fed and survived as well as the amount of hemolymph consumed. The feeding protocol provides a dynamic platform with which to challenge the Varroa mite to establish efficacy of control agents for this devastating honey bee pest.

  16. Population growth of Varroa destructor (Acari: Varroidae) in honey bee colonies is affected by the number of foragers with mites.

    PubMed

    DeGrandi-Hoffman, Gloria; Ahumada, Fabiana; Zazueta, Victor; Chambers, Mona; Hidalgo, Geoffrey; deJong, Emily Watkins

    2016-05-01

    Varroa mites are a serious pest of honey bees and the leading cause of colony losses. Varroa have relatively low reproductive rates, so populations should not increase rapidly, but often they do. Other factors might contribute to the growth of varroa populations including mite migration into colonies on foragers from other hives. We measured the proportion of foragers carrying mites on their bodies while entering and leaving hives, and determined its relationship to the growth of varroa populations in those hives at two apiary sites. We also compared the estimates of mite population growth with predictions from a varroa population dynamics model that generates estimates of mite population growth based on mite reproduction. Samples of capped brood and adult bees indicated that the proportion of brood cells infested with mites and adult bees with phoretic mites was low through the summer but increased sharply in the fall especially at site 1. The frequency of capturing foragers with mites on their bodies while entering or leaving hives also increased in the fall. The growth of varroa populations at both sites was not significantly related to our colony estimates of successful mite reproduction, but instead to the total number of foragers with mites (entering and leaving the colony). There were more foragers with mites at site 1 than site 2, and mite populations at site 1 were larger especially in the fall. The model accurately estimated phoretic mite populations and infested brood cells until November when predictions were much lower than those measured in colonies. The rapid growth of mite populations particularly in the fall being a product of mite migration rather than mite reproduction only is discussed.

  17. Efficacy of two fungus-based biopesticide against the honeybee ectoparasitic mite, Varroa destructor.

    PubMed

    Ahmed, Abdelaal A; Abd-Elhady, Hany K

    2013-08-15

    The varroa mite, Varroa destructor (Anderson and Trueman) (Acari: Varroidae), is known as the most serious ectoparasitic mite on honeybee, Apis mellifera (Hymenoptera: Apidae) in the world. Based on the spores of entomopathogenic fungi, two commercial preparations; Bioranza (Metarhizium anisopliae) and Biovar (Beauveria bassiana) were evaluated through application into the hives against varroa mite. Data showed significant differences between treatments with Bioranza and Biovar, the results were significant after 7 and 14 days post-treatment. Mean a daily fallen mite individual was significantly different between the hives before and after the applications of the two biopesticides and wheat flour. Also, mites' mortality was, significantly, different between the hives before and after treatments. There were significant differences between treatments with the two biopesticides in worker's body weight. Bioranza and Biovar did not infect the honeybee in larval, prepupal, pupal and adult stages. Scanning and transmission electron microscopy images showed spores and hyphae penetration through stigma and wounds on varroa. The results suggest that Bioranza and Biovar are potentially are effective biopesticides against V. destructor in honeybee colonies.

  18. Regular dorsal dimples and damaged mites of Varroa destructor in some Iranian honey bees (Apis mellifera).

    PubMed

    Ardestani, Masoud M; Ebadi, Rahim; Tahmasbi, Gholamhossein

    2011-07-01

    The frequency of damaged Varroa destructor Anderson and Trueman (Mesostigmata: Varroidae) found on the bottom board of hives of the honey bee, Apis mellifera L. (Hymenoptera: Apidae) has been used as an indicator of the degree of tolerance or resistance of honey bee colonies against mites. However, it is not clear that this measure is adequate. These injuries should be separated from regular dorsal dimples that have a developmental origin. To investigate damage to Varroa mites and regular dorsal dimples, 32 honey bee (A. mellifera) colonies were selected from four Iranian provinces: Isfahan, Markazi, Qazvin, and Tehran. These colonies were part of the National Honey bee Breeding Program that resulted in province-specific races. In April, Varroa mites were collected from heavily infested colonies and used to infest the 32 experimental colonies. In August, 20 of these colonies were selected (five colonies from each province). Adult bees from these colonies were placed in cages and after introducing mites, damaged mites were collected from each cage every day. The average percentage of injured mites ranged from 0.6 to 3.0% in four provinces. The results did not show any statistical differences between the colonies within provinces for injuries to mites, but there were some differences among province-specific lines. Two kinds of injuries to the mites were observed: injuries to legs and pedipalps, and injuries to other parts of the body. There were also some regular dorsal dimples on dorsal idiosoma of the mites that were placed in categories separate from mites damaged by bees. This type of classification helps identifying damage to mites and comparing them with developmental origin symptoms, and may provide criteria for selecting bees tolerant or resistant to this mite.

  19. Age and reproductive status of adult Varroa mites affect grooming success of honey bees.

    PubMed

    Kirrane, Maria J; de Guzman, Lilia I; Rinderer, Thomas E; Frake, Amanda M; Wagnitz, Jeremy; Whelan, Pádraig M

    2012-12-01

    This study evaluated for the first time the grooming response of honey bees to Varroa mites of different ages and reproductive statuses in the laboratory. Plastic cages containing a section of dark comb and about 200 bees were inoculated with groups of four classes of mites: gravid, phoretic foundresses, phoretic daughters and a combination of gravid and phoretic foundress mites. Each cage received 20 mites belonging to one of these classes. Our results showed that, 1 day after mite inoculation, phoretic daughter mites were the most prone to grooming by honey bees with an average mite drop of 49.8 ± 2.6 %. The lowest mite drop was recorded for bees inoculated with phoretic foundresses (30.3 ± 3.6 %) but was comparable to bees inoculated with gravid mites (31.8 ± 3.8 %) and the combination of gravid and phoretic foundress mites (34.2 ± 3.2 %). No differences among mite types were detected during the second and third days of observation. Regardless of mite type, the highest mite drop was recorded on the first day (35 ± 2.1 %) compared to the drop for any subsequent day (<10 %). Because of the great reproductive potential of daughter mites, their inclusion in assessments of grooming behaviour may increase our insight into the importance of grooming in mite resistance.

  20. Bacteria detected in the honeybee parasitic mite Varroa destructor collected from beehive winter debris.

    PubMed

    Hubert, J; Erban, T; Kamler, M; Kopecky, J; Nesvorna, M; Hejdankova, S; Titera, D; Tyl, J; Zurek, L

    2015-09-01

    The winter beehive debris containing bodies of honeybee parasitic mite Varroa destructor is used for veterinary diagnostics. The Varroa sucking honeybee haemolymph serves as a reservoir of pathogens including bacteria. Worker bees can pick up pathogens from the debris during cleaning activities and spread the infection to healthy bees within the colony. The aim of this study was to detect entomopathogenic bacteria in the Varroa collected from the winter beehive debris. Culture-independent approach was used to analyse the mite-associated bacterial community. Total DNA was extracted from the samples of 10 Varroa female individuals sampled from 27 different sites in Czechia. The 16S rRNA gene was amplified using universal bacterial primers, cloned and sequenced, resulting in a set of 596 sequences representing 29 operational taxonomic units (OTU97). To confirm the presence of bacteria in Varroa, histological sections of the mites were observed. Undetermined bacteria were observed in the mite gut and fat tissue. Morganella sp. was the most frequently detected taxon, followed by Enterococcus sp., Pseudomonas sp., Rahnella sp., Erwinia sp., and Arsenophonus sp. The honeybee putative pathogen Spiroplasma sp. was detected at one site and Bartonella-like bacteria were found at four sites. PCR-based analysis using genus-specific primers enabled detection of the following taxa: Enterococcus, Bartonella-like bacteria, Arsenophonus and Spiroplasma. We found potentially pathogenic (Spiroplasma) and parasitic bacteria (Arsenophonus) in mites from winter beehive debris. The mites can be reservoirs of the pathogenic bacteria in the apicultures. © 2015 The Society for Applied Microbiology.

  1. A New Stratified Sampling Procedure which Decreases Error Estimation of Varroa Mite Number on Sticky Boards.

    PubMed

    Kretzschmar, A; Durand, E; Maisonnasse, A; Vallon, J; Le Conte, Y

    2015-06-01

    A new procedure of stratified sampling is proposed in order to establish an accurate estimation of Varroa destructor populations on sticky bottom boards of the hive. It is based on the spatial sampling theory that recommends using regular grid stratification in the case of spatially structured process. The distribution of varroa mites on sticky board being observed as spatially structured, we designed a sampling scheme based on a regular grid with circles centered on each grid element. This new procedure is then compared with a former method using partially random sampling. Relative error improvements are exposed on the basis of a large sample of simulated sticky boards (n=20,000) which provides a complete range of spatial structures, from a random structure to a highly frame driven structure. The improvement of varroa mite number estimation is then measured by the percentage of counts with an error greater than a given level.

  2. Effects of varroa mites and bee disease on pollination efficacy of honeybees

    USDA-ARS?s Scientific Manuscript database

    Single-stranded RNA viruses cause disease and behavioral changes in many insects, especially honey bees. Varroa mites and viral diseases are known to affect the efficiency of crop pollination by honey bees by eliminating colonies, but almost no information exists about their influence on pollination...

  3. Identification of three Halloween genes from the varroa mite and their expression during brood cell invasion

    USDA-ARS?s Scientific Manuscript database

    Biosynthesis of 20-hydroxyecdysone (20E) in insects involves the action of five cytochrome P450s collectively known as Halloween genes. Transcripts from 3 Halloween genes [spook (Vdspo), disembodied (Vddib) and shade (Vdshd)] from the varroa mite were identified, sequenced and mapped to their genomi...

  4. Monitoring for resistance to organophosphorus and pyrethroid insecticides in varroa mite populations

    USDA-ARS?s Scientific Manuscript database

    The occurrence of resistance in Varroa mite populations is a serious threat to the beekeeping industry and crops that rely on the honey bee for pollination. Integrated pest management strategies for control of this pest include the judicious use of insecticides. To monitor field populations of Varro...

  5. Examination on the Reproductive Success of Re-Invading Varroa Mites

    USDA-ARS?s Scientific Manuscript database

    High proportions of non-reproductive (NR) Varroa mites have been reported in honey bee colonies exhibiting resistance to this parasite. This non-reproduction is associated with hygienic behavior (Harris et al., 2010 Ann. Entomol. Soc. Am. 103: 146-152); however, the mechanism by which this occurs is...

  6. Differential gene expression associated with honey bee grooming behavior in response to varroa mites

    USDA-ARS?s Scientific Manuscript database

    Honey bee (Apis mellifera) grooming behavior is an important mechanism of resistance against the parasitic mite Varroa destructor. This research was conducted to study associations between grooming behavior and the expression of selected immune, neural, detoxification, developmental and health-relat...

  7. Powdered sugar shake to monitor and oxalic acid treatments to control varroa mites (Parasitiformes: Varroidae) in honey bee (Hymenoptera: Apidae) colonies

    USDA-ARS?s Scientific Manuscript database

    Effective monitoring and alternative strategies to control the ectoparasitic mite, Varroa destructor Anderson and Truemann (Parasitiformes: Varroidae), (varroa) are crucial for determining when to apply effective treatments to honey bee, Apis mellifera L. (Hymenoptera: Apidae), colonies. Using simpl...

  8. Fertility and reproductive rate of Varroa mite, Varroa destructor, in native and exotic honeybee, Apis mellifera L., colonies under Saudi Arabia conditions.

    PubMed

    Alattal, Yehya; AlGhamdi, Ahmad; Single, Arif; Ansari, Mohammad Javed; Alkathiri, Hussien

    2017-07-01

    Varroa mite is the most destructive pest to bee colonies worldwide. In Saudi Arabia, preliminary data indicated high infestation levels in the exotic honeybee colonies; such as Apis mellifera carnica and Apis mellifera ligustica, compared to native honeybee subspecies Apis mellifera jemenitica, which may imply higher tolerance to Varroasis. In this study, fertility and reproductive rate of Varroa mite, Varroa destructor, in capped brood cells of the native honeybee subspecies were investigated and compared with an exotic honeybee subspecies, A. m. carnica. Mite fertility was almost alike (87.5% and 89.4%) in the native and craniolan colonies respectively. Similarly, results did not show significant differences in reproduction rate between both subspecies (F = 0.66, Pr > F = 0.42). Number of adult Varroa daughters per fertile mother mite was 2.0 and 2.1 for native and craniolan honeybee subspecies respectively. This may indicate that mechanisms of keeping low infestation rates in the native honeybee colonies are not associated with Varroa reproduction. Therefore, potential factors of keeping lower Varroa infestation rates in native honey bee subspecies should be further investigated.

  9. Viral epidemiology of the adult Apis Mellifera infested by the Varroa destructor mite.

    PubMed

    Bernardi, Sara; Venturino, Ezio

    2016-05-01

    The ectoparasitic mite Varroa destructor has become one of the major worldwide threats for apiculture. Varroa destructor attacks the honey bee Apis mellifera weakening its host by sucking hemolymph. However, the damage to bee colonies is not strictly related to the parasitic action of the mite but it derives, above all, from its action as vector increasing the transmission of many viral diseases such as acute paralysis (ABPV) and deformed wing viruses (DWV), that are considered among the main causes of CCD (Colony Collapse Disorder). In this work we discuss an [Formula: see text] model that describes how the presence of the mite affects the epidemiology of these viruses on adult bees. The acronym [Formula: see text] means that the disease affects both populations. In fact it accounts for the bee and mite populations, that are each divided among the S (susceptible) and I (infected) states. We characterize the system behavior, establishing that ultimately either only healthy bees survive, or the disease becomes endemic and mites are wiped out. Another dangerous alternative is the Varroa invasion scenario with the extinction of healthy bees. The final possible configuration is the coexistence equilibrium in which honey bees share their infected hive with mites. The analysis is in line with some observed facts in natural honey bee colonies. Namely, these diseases are endemic. Further, if the mite population is present, necessarily the viral infection occurs. The findings of this study indicate that a low horizontal transmission rate of the virus among honey bees in beehives will help in protecting bee colonies from Varroa infestation and viral epidemics.

  10. Isolation, characterization, and expression analyses of ecdysone receptor 1, ecdysone receptor 2 and ultraspiracle genes in varroa destructor mite

    USDA-ARS?s Scientific Manuscript database

    The varroa mite, Varroa destructor, is a honeybee ectoparasite considered the most important pest in apiaries throughout the US. Ecdysone receptor is a hormone secreted by the prothoracic gland of insects that controls ecdysis and stimulates metamorphosis. The ecdysone receptor is a nuclear receptor...

  11. A new record of phoretic mites on honey bee Apis mellifera L. in Egypt.

    PubMed

    Abou Senna, F M

    1997-12-01

    Five species of mites, belonging to different families, were found infesting honeybee workers, Apis mellifera L., in different apiaries in Al-Gharbiya Governorate, Nile Delta. All the identified species except Varroa jacobsoni Oudemans (Varroidae) are new records for the phoretic bee mites in Egypt. These are Neocypholaelaps indica Evans (Ameroseiidae), Pediculochelus raulti Lavoipiere (Pediculochelidae), Tarsonemus indoapis Lindquist (Tarsonemidae) and Chaetodactylus osmiae (dufour) (Chaetodactylidae). The host parasite relationship was discussed. A brief diagnosis with diagrammatic illustrations is given.

  12. Host Specificity in the Honeybee Parasitic Mite, Varroa spp. in Apis mellifera and Apis cerana.

    PubMed

    Beaurepaire, Alexis L; Truong, Tuan A; Fajardo, Alejandro C; Dinh, Tam Q; Cervancia, Cleofas; Moritz, Robin F A

    2015-01-01

    The ectoparasitic mite Varroa destructor is a major global threat to the Western honeybee Apis mellifera. This mite was originally a parasite of A. cerana in Asia but managed to spill over into colonies of A. mellifera which had been introduced to this continent for honey production. To date, only two almost clonal types of V. destructor from Korea and Japan have been detected in A. mellifera colonies. However, since both A. mellifera and A. cerana colonies are kept in close proximity throughout Asia, not only new spill overs but also spill backs of highly virulent types may be possible, with unpredictable consequences for both honeybee species. We studied the dispersal and hybridisation potential of Varroa from sympatric colonies of the two hosts in Northern Vietnam and the Philippines using mitochondrial and microsatellite DNA markers. We found a very distinct mtDNA haplotype equally invading both A. mellifera and A. cerana in the Philippines. In contrast, we observed a complete reproductive isolation of various Vietnamese Varroa populations in A. mellifera and A. cerana colonies even if kept in the same apiaries. In light of this variance in host specificity, the adaptation of the mite to its hosts seems to have generated much more genetic diversity than previously recognised and the Varroa species complex may include substantial cryptic speciation.

  13. Host Specificity in the Honeybee Parasitic Mite, Varroa spp. in Apis mellifera and Apis cerana

    PubMed Central

    Beaurepaire, Alexis L.; Dinh, Tam Q.; Cervancia, Cleofas; Moritz, Robin F. A.

    2015-01-01

    The ectoparasitic mite Varroa destructor is a major global threat to the Western honeybee Apis mellifera. This mite was originally a parasite of A. cerana in Asia but managed to spill over into colonies of A. mellifera which had been introduced to this continent for honey production. To date, only two almost clonal types of V. destructor from Korea and Japan have been detected in A. mellifera colonies. However, since both A. mellifera and A. cerana colonies are kept in close proximity throughout Asia, not only new spill overs but also spill backs of highly virulent types may be possible, with unpredictable consequences for both honeybee species. We studied the dispersal and hybridisation potential of Varroa from sympatric colonies of the two hosts in Northern Vietnam and the Philippines using mitochondrial and microsatellite DNA markers. We found a very distinct mtDNA haplotype equally invading both A. mellifera and A. cerana in the Philippines. In contrast, we observed a complete reproductive isolation of various Vietnamese Varroa populations in A. mellifera and A. cerana colonies even if kept in the same apiaries. In light of this variance in host specificity, the adaptation of the mite to its hosts seems to have generated much more genetic diversity than previously recognised and the Varroa species complex may include substantial cryptic speciation. PMID:26248192

  14. Behavior of varroa mites in worker brood cells of Africanized honey bees.

    PubMed

    Calderón, Rafael A; Fallas, Natalia; Zamora, Luis G; van Veen, Johan W; Sánchez, Luis A

    2009-12-01

    The ectoparasitic mite Varroa destructor is currently the most important pest of the honey bee, Apis mellifera. Because mite reproduction occurs within the sealed cell, the direct observation of varroa activity inside the cell is difficult. A video observation method using transparent polystyrol cells containing infested brood was used to analyze the behavior of varroa mites in worker brood of Africanized honey bees. We recorded how mites feed on the larva and pupa, construct a fecal accumulation site and how the bee larva carried out some longitudinal movements around the cell. The feeding activity of the foundress mite varies during the course of the cycle. On the prepupa mites were found to feed often (0.3 +/- 0.2 bouts h(-1)) for a period of 8.7 +/- 8.4 min h(-1) and there was no preference for a specific segment as feeding site. On the opposite, during the pupal stage mites fed less often (0.1 +/- 0.1 bouts h(-1)) for a period of 6.2 +/- 4.0 min h(-1) and almost always at a particular site (92.4%). On pupa, 83.7% of the feeding was on the 2nd abdominal segment (n = 92), and only few perforations were found on the thorax. Varroa shows a preference for defecation in the posterior part of the cell (cell apex), close to the bee's anal zone. We found a high correlation between the position of the feeding site on the pupa and the position of the fecal accumulation on the cell wall. Most infested cells have only one fecal accumulation site and it was the favorite resting site for the mite, where it spent 24.3 +/- 3.9 min h(-1). Longitudinal displacements were observed in 28.0% (n = 25) of the analyzed bee larvae. Turning movements around the cell, from the bottom to the top, were carried out by these larvae, mainly during the second day (47.7 +/- 22.5 min h(-1)), just before pupation, with a total time of 874.9 +/- 262.2 min day(-1) (n = 7 individuals). These results in worker brood of Africanized bees demonstrate adaptations of varroa mites to parasitizing the

  15. Oxalic acid: a prospective tool for reducing Varroa mite populations in package bees.

    PubMed

    Aliano, Nicholas P; Ellis, Marion D

    2009-08-01

    Numerous studies have investigated using oxalic acid (OA) to control Varroa mites in honey bee colonies. In contrast, techniques for treating package bees with OA have not been investigated. The goal of this study was to develop a protocol for using OA to reduce mite infestation in package bees. We made 97 mini packages of Varroa-infested adult bees. Each package contained 1,613 +/- 18 bees and 92 +/- 3 mites, and represented an experimental unit. We prepared a 2.8% solution of OA by mixing 35 g OA with 1 l of sugar water (sugar:water = 1:1; w:w). Eight treatments were assigned to the packages based on previous laboratory bioassays that characterized the acute contact toxicity of OA to mites and bees. We administered the treatments by spraying the OA solution directly on the bees through the mesh screen cage using a pressurized air brush and quantified mite and bee mortality over a 10-day period. Our results support applying an optimum volume of 3.0 ml of a 2.8% OA solution per 1,000 bees to packages for effective mite control with minimal adult bee mortality. The outcome of our research provides beekeepers and package bee shippers guidance for using OA to reduce mite populations in package bees.

  16. Susceptibility of Varroa destructor (Acari: Varroidae) to synthetic acaricides in Uruguay: Varroa mites' potential to develop acaricide resistance.

    PubMed

    Maggi, Matías Daniel; Ruffinengo, Sergio Roberto; Mendoza, Yamandú; Ojeda, Pilar; Ramallo, Gustavo; Floris, Iganazio; Eguaras, Martín Javier

    2011-04-01

    The purpose of this study was to estimate the acaricide susceptibility of Varroa destructor populations from Uruguay, which had never been exposed to synthetic acaricides. It was also to determine whether acaricide resistance to coumaphos occurred in apiaries in which acaricide rotation had been applied. Bioassays with acaricides against mite populations that had never been exposed to synthetic acaricides were performed, also against mite populations in which control failures with coumaphos had been reported. Additionally, coumaphos' effectiveness in honeybee colonies was experimentally tested. The lethal concentration that kills 50% of the exposed animals (LC(50)) for susceptible mite populations amounted to 0.15 μg/Petri dish for coumaphos and to less than 0.3 μg/Petri dish for the other acaricides. Coumaphos LC(50) was above 40 μg/Petri dish for resistant mites. The effectiveness of coumaphos in honeybee colonies parasitized by V. destructor ranged from 17.6% to 93.9%. LC(50) for mite populations susceptible to the most commonly applied miticides was determined, and the first case of coumaphos resistance recorded in Uruguay was established.

  17. Ligand selectivity in tachykinin and natalisin neuropeptidergic systems of the honey bee parasitic mite Varroa destructor.

    PubMed

    Jiang, Hongbo; Kim, Donghun; Dobesh, Sharon; Evans, Jay D; Nachman, Ronald J; Kaczmarek, Krzysztof; Zabrocki, Janusz; Park, Yoonseong

    2016-01-28

    The varroa mite, Varroa destructor, is a devastating ectoparasite of the honey bees Apis mellifera and A. cerana. Control of these mites in beehives is a challenge in part due to the lack of toxic agents that are specific to mites and not to the host honey bee. In searching for a specific toxic target of varroa mites, we investigated two closely related neuropeptidergic systems, tachykinin-related peptide (TRP) and natalisin (NTL), and their respective receptors. Honey bees lack both NTL and the NTL receptor in their genome sequences, providing the rationale for investigating these receptors to understand their specificities to various ligands. We characterized the receptors for NTL and TRP of V. destructor (VdNTL-R and VdTRP-R, respectively) and for TRP of A. mellifera (AmTRP-R) in a heterologous reporter assay system to determine the activities of various ligands including TRP/NTL peptides and peptidomimetics. Although we found that AmTRP-R is highly promiscuous, activated by various ligands including two VdNTL peptides when a total of 36 ligands were tested, we serendipitously found that peptides carrying the C-terminal motif -FWxxRamide are highly specific to VdTRP-R. This motif can serve as a seed sequence for designing a VdTRP-R-specific agonist.

  18. Ligand selectivity in tachykinin and natalisin neuropeptidergic systems of the honey bee parasitic mite Varroa destructor

    PubMed Central

    Jiang, Hongbo; Kim, Donghun; Dobesh, Sharon; Evans, Jay D.; Nachman, Ronald J.; Kaczmarek, Krzysztof; Zabrocki, Janusz; Park, Yoonseong

    2016-01-01

    The varroa mite, Varroa destructor, is a devastating ectoparasite of the honey bees Apis mellifera and A. cerana. Control of these mites in beehives is a challenge in part due to the lack of toxic agents that are specific to mites and not to the host honey bee. In searching for a specific toxic target of varroa mites, we investigated two closely related neuropeptidergic systems, tachykinin-related peptide (TRP) and natalisin (NTL), and their respective receptors. Honey bees lack both NTL and the NTL receptor in their genome sequences, providing the rationale for investigating these receptors to understand their specificities to various ligands. We characterized the receptors for NTL and TRP of V. destructor (VdNTL-R and VdTRP-R, respectively) and for TRP of A. mellifera (AmTRP-R) in a heterologous reporter assay system to determine the activities of various ligands including TRP/NTL peptides and peptidomimetics. Although we found that AmTRP-R is highly promiscuous, activated by various ligands including two VdNTL peptides when a total of 36 ligands were tested, we serendipitously found that peptides carrying the C-terminal motif -FWxxRamide are highly specific to VdTRP-R. This motif can serve as a seed sequence for designing a VdTRP-R-specific agonist. PMID:26817786

  19. Effect of acaricide resistance on reproductive ability of the honey bee mite Varroa destructor.

    PubMed

    Martin, Stephen J; Elzen, Patti J; Rubink, William R

    2002-01-01

    The reproduction of pyrethroid-resistant Varroa destructor mite, a brood parasite of honey bees, was observed in Weslaco, Texas, and the results compared with known susceptible mite populations from other studies. Seven Apis mellifera colonies that had mite populations resistant to the acaricide Apistan were used. Pyrethroid-resistance was confirmed when only 17% rather than 90% of mites confined in dishes containing Apistan died after 12 h of exposure. The average number of eggs laid by resistant mites invading worker and drone cells was 4.4 and 5.4 respectively. This is similar to the number of eggs laid by susceptible mites in worker (4.4-4.8) or drone (4.7-5.5) cells. Also the average number of fertilised V. destructor female mites produced by resistant mites in worker (1.0) and drone (2.1) cells were similar to the number produced by susceptible mites in worker (0.9) and drone (1.9-2.2) cells. In addition, no major differences between the resistant and susceptible mite populations were observed in either worker or drone cells when six different reproductive categories and offspring mortality rates were compared. Therefore, it appears that there is little or no reproductive fitness cost associated with pyrethroid resistance in V. destructor in Texas.

  20. Varroa-tolerant Italian honey bees introduced from Brazil were not more efficient in defending themselves against the mite Varroa destructor than Carniolan bees in Germany.

    PubMed

    Corrêa-Marques, M H; De Jong, D; Rosenkranz, P; Gonçalves, L S

    2002-06-30

    In Europe and North America honey bees cannot be kept without chemical treatments against Varroa destructor. Nevertheless, in Brazil an isolated population of Italian honey bees has been kept on an island since 1984 without treatment against this mite. The infestation rates in these colonies have decreased over the years. We looked for possible varroa-tolerance factors in six Italian honey bee colonies prepared with queens from this Brazilian island population, compared to six Carniolan colonies, both tested at the same site in Germany. One such factor was the percentage of damaged mites in the colony debris, which has been reported as an indicator of colony tolerance to varroa. A mean of 35.8% of the varroa mites collected from the bottoms of the Italian bee colonies were found damaged, among which 19.1% were still alive. A significantly greater proportion of damaged mites were found in the Carniolan bees (42.3%) and 22.5% were collected alive. The most frequent kind of damage found was damaged legs alone, affecting 47.4% of the mites collected from debris in Italian bees, which was similar to the amount found in Carniolan colonies (46%). The mean infestation rate by the varroa mite in the worker brood cells in the Italian bee colonies was 3.9% in June and 3.5% in July, and in drone brood cells it was 19.3% in June. In the Carniolan honey bee colonies the mean infestation rates in worker brood cells were 3.0 and 6.7%, respectively in the months of June and July and 19.7% in drone brood cells in June. In conclusion, the 'Varroa-tolerant' Italian honey bees introduced from Brazil produced lower percentages of damaged mites (Varroa destructor) in hive debris and had similar brood infestation rates when compared to 'susceptible' Carniolan bees in Germany. In spite of the apparent adaptation of this population of Italian bees in Brazil, we found no indication of superiority of these bees when we examined the proportions of damaged mites and the varroa-infestation rates

  1. Population Growth of Varroa destructor (Acari: Varroidae) in Colonies of Russian and Unselected Honey Bee (Hymenoptera: Apidae) Stocks as Related to Numbers of Foragers With Mites.

    PubMed

    DeGrandi-Hoffman, Gloria; Ahumada, Fabiana; Danka, Robert; Chambers, Mona; DeJong, Emily Watkins; Hidalgo, Geoff

    2017-03-20

    Varroa (Varroa destructor Anderson and Trueman) is an external parasite of honey bees (Apis mellifera L.) and a leading cause of colony losses worldwide. Varroa populations can be controlled with miticides, but mite-resistant stocks such as the Russian honey bee (RHB) also are available. Russian honey bee and other mite-resistant stocks limit Varroa population growth by affecting factors that contribute to mite reproduction. However, mite population growth is not entirely due to reproduction. Numbers of foragers with mites (FWM) entering and leaving hives also affect the growth of mite populations. If FWM significantly contribute to Varroa population growth, mite numbers in RHB colonies might not differ from unselected lines (USL). Foragers with mites were monitored at the entrances of RHB and USL hives from August to November, 2015, at two apiary sites. At site 1, RHB colonies had fewer FWM than USL and smaller phoretic mite populations. Russian honey bee also had fewer infested brood cells and lower percentages with Varroa offspring than USL. At site 2, FWM did not differ between RHB and USL, and phoretic mite populations were not significantly different. At both sites, there were sharp increases in phoretic mite populations from September to November that corresponded with increasing numbers of FWM. Under conditions where FWM populations are similar between RHB and USL, attributes that contribute to mite resistance in RHB may not keep Varroa population levels below that of USL.

  2. Acaricide treatment affects viral dynamics in Varroa destructor-infested honey bee colonies via both host physiology and mite control.

    PubMed

    Locke, Barbara; Forsgren, Eva; Fries, Ingemar; de Miranda, Joachim R

    2012-01-01

    Honey bee (Apis mellifera) colonies are declining, and a number of stressors have been identified that affect, alone or in combination, the health of honey bees. The ectoparasitic mite Varroa destructor, honey bee viruses that are often closely associated with the mite, and pesticides used to control the mite population form a complex system of stressors that may affect honey bee health in different ways. During an acaricide treatment using Apistan (plastic strips coated with tau-fluvalinate), we analyzed the infection dynamics of deformed wing virus (DWV), sacbrood virus (SBV), and black queen cell virus (BQCV) in adult bees, mite-infested pupae, their associated Varroa mites, and uninfested pupae, comparing these to similar samples from untreated control colonies. Titers of DWV increased initially with the onset of the acaricide application and then slightly decreased progressively coinciding with the removal of the Varroa mite infestation. This initial increase in DWV titers suggests a physiological effect of tau-fluvalinate on the host's susceptibility to viral infection. DWV titers in adult bees and uninfested pupae remained higher in treated colonies than in untreated colonies. The titers of SBV and BQCV did not show any direct relationship with mite infestation and showed a variety of possible effects of the acaricide treatment. The results indicate that other factors besides Varroa mite infestation may be important to the development and maintenance of damaging DWV titers in colonies. Possible biochemical explanations for the observed synergistic effects between tau-fluvalinate and virus infections are discussed.

  3. Acaricide Treatment Affects Viral Dynamics in Varroa destructor-Infested Honey Bee Colonies via both Host Physiology and Mite Control

    PubMed Central

    Forsgren, Eva; Fries, Ingemar; de Miranda, Joachim R.

    2012-01-01

    Honey bee (Apis mellifera) colonies are declining, and a number of stressors have been identified that affect, alone or in combination, the health of honey bees. The ectoparasitic mite Varroa destructor, honey bee viruses that are often closely associated with the mite, and pesticides used to control the mite population form a complex system of stressors that may affect honey bee health in different ways. During an acaricide treatment using Apistan (plastic strips coated with tau-fluvalinate), we analyzed the infection dynamics of deformed wing virus (DWV), sacbrood virus (SBV), and black queen cell virus (BQCV) in adult bees, mite-infested pupae, their associated Varroa mites, and uninfested pupae, comparing these to similar samples from untreated control colonies. Titers of DWV increased initially with the onset of the acaricide application and then slightly decreased progressively coinciding with the removal of the Varroa mite infestation. This initial increase in DWV titers suggests a physiological effect of tau-fluvalinate on the host's susceptibility to viral infection. DWV titers in adult bees and uninfested pupae remained higher in treated colonies than in untreated colonies. The titers of SBV and BQCV did not show any direct relationship with mite infestation and showed a variety of possible effects of the acaricide treatment. The results indicate that other factors besides Varroa mite infestation may be important to the development and maintenance of damaging DWV titers in colonies. Possible biochemical explanations for the observed synergistic effects between tau-fluvalinate and virus infections are discussed. PMID:22020517

  4. Immunolocalization of deformed wing virus particles within the mite Varroa destructor.

    PubMed

    Santillán-Galicia, Ma Teresa; Carzaniga, Raffaella; Ball, Brenda V; Alderson, Peter G

    2008-07-01

    Deformed wing virus (DWV) induces wing deformation when bees are infected during their pupal development. Field observations and laboratory experiments suggest that the mite Varroa destructor is a vector of the virus. Moreover, it has been stated that DWV replicates within this mite. In order to understand the role of V. destructor in the transmission of DWV, the objective of this work was to locate the sites of retention and/or replication of DWV within the mite by immunohistochemistry. There was no evidence that DWV was replicating in the mite as no tissues showed specific antibody binding to DWV. Also, there were no specific structures that could be suggested as retention sites. DWV was found only in the midgut lumen of V. destructor in structures resembling large, dense spheres, which were presumably faecal pellets.

  5. Comparative proteomic analysis reveals mite (Varroa destructor) resistance-related proteins in Eastern honeybees (Apis cerana).

    PubMed

    Ji, T; Shen, F; Liu, Z; Yin, L; Shen, J; Liang, Q; Luo, Y X

    2015-08-21

    The mite (Varroa destructor) has become the greatest threat to apiculture worldwide. As the original host of the mite, Apis cerana can effectively resist the mite. An increased understanding of the resistance mechanisms of Eastern honeybees against V. destructor may help researchers to protect other species against these parasites. In this study, the proteomes of 4 Apis cerana colonies were analyzed using an isobaric tag for relative and absolute quantitation technology. We determined the differences in gene and protein expression between susceptible and resistant colonies that were either unchallenged or challenged by V. destructor. The results showed that a total of 1532 proteins were identified. Gene Ontology enrichment analysis suggested that the transcription factors and basic metabolic and respiratory processes were efficient and feasible factors controlling this resistance, and 12 differentially expressed proteins were identified in Venn analysis. The results were validated by quantitative polymerase chain reaction. This study may provide insight into the genetic mechanisms underlying the resistance of honeybee to mites.

  6. Resistance phenomena to amitraz from populations of the ectoparasitic mite Varroa destructor of Argentina.

    PubMed

    Maggi, Matías D; Ruffinengo, Sergio R; Negri, Pedro; Eguaras, Martín J

    2010-10-01

    In Argentina, Varroa destructor resistance to coumaphos has been previously reported. However, the status of mite susceptibility to other hard acaricides is still unknown. At present, high infestation levels of V. destructor are being detected in colonies of Apis mellifera after treatment with amitraz. The aim of the present study was to determine the LC(50) of amitraz in V. destructor from three apiaries with high mite density after treatment with the acaricide. The LC(50) values were 3.9, 3.5, and 3.7 μg/Petri dish for mites from three different apiaries. Significant LC(50) differences were detected between resistant and susceptible mites. LC(50) increased 35-39-fold when compared to the corresponding baseline, suggesting the development of resistance. These results are the first report of resistance to amitraz in V. destructor in Argentina and extend the knowledge according to the status of acaricides resistance in the country.

  7. Detection of the high risk pyrethroid resistant Varroa destructor mites in apiaries of the Warmia-Mazury province in Poland.

    PubMed

    Lipiński, Zbigniew; Szubstarski, Jarosław; Szubstarska, Dagna

    2007-01-01

    The aim of our current study was to investigate the possible occurence of pyrethroid (taufluvalinate) resistant Varroa mites infestations in 24 randomly chosen apiaries of Warmia-Mazury province of northeast Poland. The methodology used for the analysis of resistant Varroa strains strictly followed the protocol described by Milani. We identified 3 apiaries that were infested with high risk pyrethroid resistance mites and a further 9 apiaries that were free from this resitance. The brood samples collected from the remaining apiaries did not contain sufficient numbers of parasites to enable us to properly perform the assay. Our finding that 25% of the tested brood samples showed a high risk of fully pyrethroid resistant Varroa mite contamination indicates that resistant Varroa may become wide spread in apiaries in Poland. Interestingly these high risk resistant mites were found in honeybee colonies with low levels of Varroa infestation, with an average rate of 2.16%. We also discuss the role of amitraz (amidine) in the phenomenon of Varroa resistance to pyrethroids.

  8. Conditional immune-gene suppression of honeybees parasitized by Varroa mites

    PubMed Central

    Gregory, Pamela G.; Evans, Jay D.; Rinderer, Thomas; de Guzman, Lilia

    2005-01-01

    The ectoparasitic mite, Varroa destructor, is the most destructive parasite of managed honeybee colonies worldwide. Since V. destructor transfers pathogens to honeybees, it may be adaptive for bees to respond to mite infestation by upregulating their immune responses. Mites, however, may overcome the host's immune responses by suppressing them, which could facilitate the mite's ability to feed on hemolymph. A humoral immune response of bees parasitized by V. destructor may be detected by studying the expression levels of antibacterial peptides, such as abaecin and defensin, known to be immune-responsive. Expression levels for these two antibacterial peptides changed non-linearly with respect to the number of mites parasitizing honeybee pupae. Bees exposed to low or moderate number of mites had fewer immune-related transcripts than pupae that were never parasitized or pupae with high mite loads. Although many of the pupae tested indicated the presence of bacteria, no correlation with mite numbers or immune-response levels existed. All bees tested negative for acute paralysis and Kashmir bee viruses known to be vectored by V. destructor. PMID:16299597

  9. The role of varroa mites in infections of Kashmir bee virus (KBV) and deformed wing virus (DWV) in honey bees.

    PubMed

    Shen, Miaoqing; Yang, Xiaolong; Cox-Foster, Diana; Cui, Liwang

    2005-11-10

    To determine the roles of varroa mites in activating or vectoring viral infections, we performed quantitative comparison of viral infections between bees with and without mites by dot blot analysis and enzyme-linked immunosorbent assay (ELISA). Under natural and artificial mite infestations, bee pupae contained significantly higher levels of Kashmir bee virus (KBV) and deformed wing virus (DWV) RNAs and KBV structural proteins than mite-free pupae. Moreover, in mite-infested bee pupae, DWV had amplified to extremely high titers with viral genomic RNA being clearly visible after separation of total bee RNA in agarose gels. Linear regression analysis has shown a positive correlation between the number of mites introduced and the levels of viral RNAs. The detection of viral RNAs in the nymph and adult mites underline the possible role of varroa in virus transmission. However, most groups of virus-free adult mites (9/12) were associated with bee pupae heavily infected by viruses, suggesting that the elevated viral titers in mite-infested pupae more likely resulted from activated viral replication. Based on these observations and our concurrent research demonstrating suppressed immune responses in bees infested with mites, we propose that parasitization by varroa suppresses the immunity of honey bees, leading to activation of persistent, latent viral infection.

  10. Transcriptome analysis of the synganglion from the honey bee mite, Varroa destructor and RNAi knockdown of neural peptide targets.

    PubMed

    Campbell, Ewan M; Budge, Giles E; Watkins, Max; Bowman, Alan S

    2016-03-01

    Varroa mites (Varroa destructor) and the viruses that they transmit are one of the major contributing factors to the global honey bee crisis. Gene products within the nervous system are the targets of all the insecticides currently used to control Varroa but there is a paucity of transcriptomic data available for Varroa neural tissues. A cDNA library from the synganglia ("brains") of adult female Varroa was constructed and 600 ESTs sequenced and analysed revealing several current and potential druggable targets. Contigs coding for the deformed wing virus (DWV) variants V. destructor virus-1 (VDV-1) and the recombinant (VDV-1DVD) were present in the synganglion library. Negative-sense RNA-specific PCR indicated that VDV-1 replicates in the Varroa synganglion and all other tissues tested, but we could not detect DWV replicating in any Varroa tissue. Two neuropeptides were identified in the synganlion EST library: a B-type allatostatin and a member of the crustacean hyperglycaemic hormone (CHH) superfamily. Knockdown of the allatostatin or the CHH-like gene by double-stranded RNA-interference (dsRNAi) resulted in 85% and 55% mortality, respectively, of Varroa. Here, we present the first transcriptomic survey in Varroa and demonstrate that neural genes can be targeted by dsRNAi either for genetic validation of putative targets during drug discovery programmes or as a potential control measure in itself.

  11. Transcriptional responses in eastern honeybees (Apis cerana) infected with mites, Varroa destructor.

    PubMed

    Ji, T; Yin, L; Liu, Z; Liang, Q; Luo, Y; Shen, J; Shen, F

    2014-10-31

    The Varroa destructor mite has become the greatest threat to Apis mellifera health worldwide, but rarely causes serious damage to its native host Apis cerana. Understanding the resistance mechanisms of eastern bees against Varroa mites will help researchers determine how to protect other species from this organism. The A. cerana genome has not been previously sequenced; hence, here we sequenced the A. cerana nurse workers transcriptome and monitored the differential gene expression of A. cerana bees challenged by V. destructor. Using de novo transcriptome assembly, we obtained 91,172 unigenes (transcripts) for A. cerana. Differences in gene expression levels between the unchallenged (Con) and challenged (Con2) samples were estimated, and a total of 36,691 transcripts showed a 2-fold difference (at least) between the 2 libraries. A total of 272 differentially expressed genes showed differences greater than 15-fold, and 265 unigenes were present at higher levels in Con2 than in Con. Among the upregulated unigenes in the Con2 colony, genes related to skeletal muscle movement (troponin and calcium-transporting ATPase), olfactory sensitivity (odorant binding proteins, and Down syndrome cell adhesion molecule gene) and transcription factors (cyclic adenosine monophosphate-responsive element-binding protein and transcription factor mblk-1) appeared to be involved in Varroa resistance. Real-time polymerase chain reaction was performed to validate these differentially expressed genes screened by the sequencing approach, and sufficient consistency was observed between the two methods. These findings strongly support that hygienic and grooming behaviors play important roles in Varroa resistance.

  12. Immunogene and viral transcript dynamics during parasitic Varroa destructor mite infection of developing honey bee (Apis mellifera) pupae.

    PubMed

    Kuster, Ryan D; Boncristiani, Humberto F; Rueppell, Olav

    2014-05-15

    The ectoparasitic Varroa destructor mite is a major contributor to the ongoing honey bee health crisis. Varroa interacts with honey bee viruses, exacerbating their pathogenicity. In addition to vectoring viruses, immunosuppression of the developing honey bee hosts by Varroa has been proposed to explain the synergy between viruses and mites. However, the evidence for honey bee immune suppression by V. destructor is contentious. We systematically studied the quantitative effects of experimentally introduced V. destructor mites on immune gene expression at five specific time points during the development of the honey bee hosts. Mites reproduced normally and were associated with increased titers of deformed wing virus in the developing bees. Our data on different immune genes show little evidence for immunosuppression of honey bees by V. destructor. Experimental wounding of developing bees increases relative immune gene expression and deformed wing virus titers. Combined, these results suggest that mite feeding activity itself and not immunosuppression may contribute to the synergy between viruses and mites. However, our results also suggest that increased expression of honey bee immune genes decreases mite reproductive success, which may be explored to enhance mite control strategies. Finally, our expression data for multiple immune genes across developmental time and different experimental treatments indicates co-regulation of several of these genes and thus improves our understanding of the understudied honey bee immune system.

  13. The effect of queen pheromone status on Varroa mite removal from honey bee colonies with different grooming ability.

    PubMed

    Bahreini, Rassol; Currie, Robert W

    2015-07-01

    The objective of this study was to assess the effects of honey bees (Apis mellifera L.) with different grooming ability and queen pheromone status on mortality rates of Varroa mites (Varroa destructor Anderson and Trueman), mite damage, and mortality rates of honey bees. Twenty-four small queenless colonies containing either stock selected for high rates of mite removal (n = 12) or unselected stock (n = 12) were maintained under constant darkness at 5 °C. Colonies were randomly assigned to be treated with one of three queen pheromone status treatments: (1) caged, mated queen, (2) a synthetic queen mandibular pheromone lure (QMP), or (3) queenless with no queen substitute. The results showed overall mite mortality rate was greater in stock selected for grooming than in unselected stock. There was a short term transitory increase in bee mortality rates in selected stock when compared to unselected stock. The presence of queen pheromone from either caged, mated queens or QMP enhanced mite removal from clusters of bees relative to queenless colonies over short periods of time and increased the variation in mite mortality over time relative to colonies without queen pheromone, but did not affect the proportion of damaged mites. The effects of source of bees on mite damage varied with time but damage to mites was not reliably related to mite mortality. In conclusion, this study showed differential mite removal of different stocks was possible under low temperature. Queen status should be considered when designing experiments using bioassays for grooming response.

  14. Entomopathogenic fungi as potential biocontrol agents of the ecto-parasitic mite, Varroa destructor, and their effect on the immune response of honey bees (Apis mellifera L.).

    PubMed

    Hamiduzzaman, Mollah Md; Sinia, Alice; Guzman-Novoa, Ernesto; Goodwin, Paul H

    2012-11-01

    Three isolates of each of the entomopathogenic fungi, Metarhizium anisopliae, Beauveria bassiana and Clonostachys rosea, were assessed for their pathogenicity to the honey bee parasitic mite, Varroa destructor. The fungi were applied to varroa mites by immersing them in a spore solution, and then the inoculated mites were placed on honey bee brood inside capped cells. At 7 days post inoculation (dpi), the three fungi caused significant varroa mortality compared to non-inoculated mites. In brood treated only with varroa mites, expression of the honey bee genes, hymenoptaecin and poly U binding factor 68 Kd (pUf68), decreased over time, while expression of blue cheese (BlCh) and single minded (SiMd) was not affected. In brood inoculated directly only with M. anisopliae or B. bassiana, the emerged adults showed reduced weight indicating infection by the fungi, which was confirmed by observation of hyphae in the brood. Fungal infection of the brood resulted in increased expression of hymenoptaecin, pUf68 and BlCh, but not SiMd. In brood treated with varroa mites that had been inoculated with the fungi, expression of hymenoptaecin, pUf68 and BlCh, but not SiMd, was even more up-regulated. While varroa mites can suppress gene expression in honey bee brood, varroa mites infected with entomopathogenic fungi induced their expression. This may be due to a low level of fungal infection of the bee, which negated the immunosuppression by the mites. Therefore, entomopathogenic fungi could reduce varroa mite damage to honey bee brood by both infecting the parasite and preventing varroa-associated suppression of honey bee immunity. Copyright © 2012 Elsevier Inc. All rights reserved.

  15. Variable induction of vitellogenin genes in the varroa mite, Varroa destructor (Anderson & Trueman), by the honeybee, Apis mellifera L, host and its environment.

    PubMed

    Cabrera Cordon, A R; Shirk, P D; Duehl, A J; Evans, J D; Teal, P E A

    2013-02-01

    Transcript levels of vitellogenins (Vgs) in the varroa mite, Varroa destructor (Anderson & Trueman), were variably induced by interactions between the developing honeybee, Apis mellifera L, as a food source and the capped honeybee cell environment. Transcripts for two Vgs of varroa mites were sequenced and putative Vg protein products characterized. Sequence analysis of VdVg1 and VdVg2 proteins showed that each had greater similarity with Vg1 and Vg2 proteins from ticks, respectively, than between themselves and were grouped separately by phylogenetic analyses. This suggests there was a duplication of the ancestral acarine Vg gene prior to the divergence of the mites and ticks. Low levels of transcript were detected in immature mites, males and phoretic females. Following cell invasion by phoretic females, VdVg1 and VdVg2 transcript levels were up-regulated after cell capping to a maximum at the time of partial cocoon formation by the honeybee. During oviposition the two transcripts were differentially expressed with higher levels of VdVg2 being observed. A bioassay based on assessing the transcript levels was established. Increases in VdVg1 and VdVg2 transcripts were induced experimentally in phoretic females when they were placed inside a cell containing an early metamorphosing last instar bee but not when exposed to the metamorphosing bee alone. The variable response of Vg expression to the food source as well as environmental cues within the capped cell demonstrates that perturbation of host-parasite interactions may provide avenues to disrupt the reproductive cycle of the varroa mites and prevent varroasis. Published 2013. This article is a U.S. Government work and is in the public domain in the USA.

  16. Composition of fatty acids in the Varroa destructor mites and their hosts, Apis mellifera drone-prepupae.

    PubMed

    Dmitryjuk, Małgorzata; Zalewski, Kazimierz; Raczkowski, Marek; Żółtowska, Krystyna

    2015-01-01

    The fatty acid (FA) profile of lipids extracted from the Varroa destructor parasitic mite and its host, drone-prepupae of Apis mellifera, was determined by gas chromatography (GC). The percentages of saturated fatty acids (SFAs), monounsaturated fatty acids (MUFAs) and polyunsaturated fatty acids (PUFAs) were generally similar in parasites and their hosts. Fatty acids were arranged in the following descending order based on their content: MUFAs (ca. 52-55%), SFAs (ca. 41%) and PUFAs (ca. 3%). The predominant fatty acids were oleic acid (46% in mites, 44% in prepupae) and palmitic acid (23% and 30%, respectively). Varroa parasites differed from their hosts in the quantity of individual FAs and in their FA profiles. Three PUFAs noted in the host were not observed in parasitic mites, whereas the presence of C21:0, C24:0 and C22:1 FAs was reported in mites, but not in drones.

  17. Persistence of subclinical deformed wing virus infections in honeybees following Varroa mite removal and a bee population turnover.

    PubMed

    Locke, Barbara; Semberg, Emilia; Forsgren, Eva; de Miranda, Joachim R

    2017-01-01

    Deformed wing virus (DWV) is a lethal virus of honeybees (Apis mellifera) implicated in elevated colony mortality rates worldwide and facilitated through vector transmission by the ectoparasitic mite Varroa destructor. Clinical, symptomatic DWV infections are almost exclusively associated with high virus titres during pupal development, usually acquired through feeding by Varroa mites when reproducing on bee pupae. Control of the mite population, generally through acaricide treatment, is essential for breaking the DWV epidemic and minimizing colony losses. In this study, we evaluated the effectiveness of remedial mite control on clearing DWV from a colony. DWV titres in adult bees and pupae were monitored at 2 week intervals through summer and autumn in acaricide-treated and untreated colonies. The DWV titres in Apistan treated colonies was reduced 1000-fold relative to untreated colonies, which coincided with both the removal of mites and also a turnover of the bee population in the colony. This adult bee population turnover is probably more critical than previously realized for effective clearing of DWV infections. After this initial reduction, subclinical DWV titres persisted and even increased again gradually during autumn, demonstrating that alternative non-Varroa transmission routes can maintain the DWV titres at significant subclinical levels even after mite removal. The implications of these results for practical recommendations to mitigate deleterious subclinical DWV infections and improving honeybee health management are discussed.

  18. Evaluating pure Africanized honey bees and hybrid crosses for colony health and resistance to varroa mites in a subtropical climate

    USDA-ARS?s Scientific Manuscript database

    Different honey bee, Apis mellifera L., breeds were evaluated for overall health and for resistance to the parastic mite, Varroa destructor Oud. in the subtropical Lower Rio Grande Valley (LRGV) in south Texas from June 2005 through October 2006. Breeds examined that have shown genetic resistance ...

  19. Inside Honeybee Hives: Impact of Natural Propolis on the Ectoparasitic Mite Varroa destructor and Viruses.

    PubMed

    Drescher, Nora; Klein, Alexandra-Maria; Neumann, Peter; Yañez, Orlando; Leonhardt, Sara D

    2017-02-06

    Social immunity is a key factor for honeybee health, including behavioral defense strategies such as the collective use of antimicrobial plant resins (propolis). While laboratory data repeatedly show significant propolis effects, field data are scarce, especially at the colony level. Here, we investigated whether propolis, as naturally deposited in the nests, can protect honeybees against ectoparasitic mites Varroa destructor and associated viruses, which are currently considered the most serious biological threat to European honeybee subspecies, Apis mellifera, globally. Propolis intake of 10 field colonies was manipulated by either reducing or adding freshly collected propolis. Mite infestations, titers of deformed wing virus (DWV) and sacbrood virus (SBV), resin intake, as well as colony strength were recorded monthly from July to September 2013. We additionally examined the effect of raw propolis volatiles on mite survival in laboratory assays. Our results showed no significant effects of adding or removing propolis on mite survival and infestation levels. However, in relation to V. destructor, DWV titers increased significantly less in colonies with added propolis than in propolis-removed colonies, whereas SBV titers were similar. Colonies with added propolis were also significantly stronger than propolis-removed colonies. These findings indicate that propolis may interfere with the dynamics of V. destructor-transmitted viruses, thereby further emphasizing the importance of propolis for honeybee health.

  20. Inside Honeybee Hives: Impact of Natural Propolis on the Ectoparasitic Mite Varroa destructor and Viruses

    PubMed Central

    Drescher, Nora; Klein, Alexandra-Maria; Neumann, Peter; Yañez, Orlando; Leonhardt, Sara D.

    2017-01-01

    Social immunity is a key factor for honeybee health, including behavioral defense strategies such as the collective use of antimicrobial plant resins (propolis). While laboratory data repeatedly show significant propolis effects, field data are scarce, especially at the colony level. Here, we investigated whether propolis, as naturally deposited in the nests, can protect honeybees against ectoparasitic mites Varroa destructor and associated viruses, which are currently considered the most serious biological threat to European honeybee subspecies, Apis mellifera, globally. Propolis intake of 10 field colonies was manipulated by either reducing or adding freshly collected propolis. Mite infestations, titers of deformed wing virus (DWV) and sacbrood virus (SBV), resin intake, as well as colony strength were recorded monthly from July to September 2013. We additionally examined the effect of raw propolis volatiles on mite survival in laboratory assays. Our results showed no significant effects of adding or removing propolis on mite survival and infestation levels. However, in relation to V. destructor, DWV titers increased significantly less in colonies with added propolis than in propolis-removed colonies, whereas SBV titers were similar. Colonies with added propolis were also significantly stronger than propolis-removed colonies. These findings indicate that propolis may interfere with the dynamics of V. destructor-transmitted viruses, thereby further emphasizing the importance of propolis for honeybee health. PMID:28178181

  1. Genomic survey of the ectoparasitic mite Varroa destructor, a major pest of the honey bee Apis mellifera

    PubMed Central

    2010-01-01

    Background The ectoparasitic mite Varroa destructor has emerged as the primary pest of domestic honey bees (Apis mellifera). Here we present an initial survey of the V. destructor genome carried out to advance our understanding of Varroa biology and to identify new avenues for mite control. This sequence survey provides immediate resources for molecular and population-genetic analyses of Varroa-Apis interactions and defines the challenges ahead for a comprehensive Varroa genome project. Results The genome size was estimated by flow cytometry to be 565 Mbp, larger than most sequenced insects but modest relative to some other Acari. Genomic DNA pooled from ~1,000 mites was sequenced to 4.3× coverage with 454 pyrosequencing. The 2.4 Gbp of sequencing reads were assembled into 184,094 contigs with an N50 of 2,262 bp, totaling 294 Mbp of sequence after filtering. Genic sequences with homology to other eukaryotic genomes were identified on 13,031 of these contigs, totaling 31.3 Mbp. Alignment of protein sequence blocks conserved among V. destructor and four other arthropod genomes indicated a higher level of sequence divergence within this mite lineage relative to the tick Ixodes scapularis. A number of microbes potentially associated with V. destructor were identified in the sequence survey, including ~300 Kbp of sequence deriving from one or more bacterial species of the Actinomycetales. The presence of this bacterium was confirmed in individual mites by PCR assay, but varied significantly by age and sex of mites. Fragments of a novel virus related to the Baculoviridae were also identified in the survey. The rate of single nucleotide polymorphisms (SNPs) in the pooled mites was estimated to be 6.2 × 10-5per bp, a low rate consistent with the historical demography and life history of the species. Conclusions This survey has provided general tools for the research community and novel directions for investigating the biology and control of Varroa mites. Ongoing

  2. Genomic survey of the ectoparasitic mite Varroa destructor, a major pest of the honey bee Apis mellifera.

    PubMed

    Cornman, Scott R; Schatz, Michael C; Johnston, Spencer J; Chen, Yan-Ping; Pettis, Jeff; Hunt, Greg; Bourgeois, Lanie; Elsik, Chris; Anderson, Denis; Grozinger, Christina M; Evans, Jay D

    2010-10-25

    The ectoparasitic mite Varroa destructor has emerged as the primary pest of domestic honey bees (Apis mellifera). Here we present an initial survey of the V. destructor genome carried out to advance our understanding of Varroa biology and to identify new avenues for mite control. This sequence survey provides immediate resources for molecular and population-genetic analyses of Varroa-Apis interactions and defines the challenges ahead for a comprehensive Varroa genome project. The genome size was estimated by flow cytometry to be 565 Mbp, larger than most sequenced insects but modest relative to some other Acari. Genomic DNA pooled from ~1,000 mites was sequenced to 4.3× coverage with 454 pyrosequencing. The 2.4 Gbp of sequencing reads were assembled into 184,094 contigs with an N50 of 2,262 bp, totaling 294 Mbp of sequence after filtering. Genic sequences with homology to other eukaryotic genomes were identified on 13,031 of these contigs, totaling 31.3 Mbp. Alignment of protein sequence blocks conserved among V. destructor and four other arthropod genomes indicated a higher level of sequence divergence within this mite lineage relative to the tick Ixodes scapularis. A number of microbes potentially associated with V. destructor were identified in the sequence survey, including ~300 Kbp of sequence deriving from one or more bacterial species of the Actinomycetales. The presence of this bacterium was confirmed in individual mites by PCR assay, but varied significantly by age and sex of mites. Fragments of a novel virus related to the Baculoviridae were also identified in the survey. The rate of single nucleotide polymorphisms (SNPs) in the pooled mites was estimated to be 6.2 × 10-5 per bp, a low rate consistent with the historical demography and life history of the species. This survey has provided general tools for the research community and novel directions for investigating the biology and control of Varroa mites. Ongoing development of Varroa genomic

  3. Impact of two treatments of a formulation of Beauveria bassiana (Deuteromycota: Hyphomycetes) conidia on Varroa mites (Acari: Varroidae) and on honeybee (Hymenoptera: Apidae) colony health

    USDA-ARS?s Scientific Manuscript database

    Bee colonies in southern France were treated with conidia from 2 strains of Beauveria bassiana – one commercial (GHA) and the other isolated from Varroa mites in the region (Bb05002). Objectives were to evaluate treatment effect on colony weight, adult bee mass, capped brood, and on Varroa fall onto...

  4. Three QTL in the honey bee Apis mellifera L. suppress reproduction of the parasitic mite Varroa destructor.

    PubMed

    Behrens, Dieter; Huang, Qiang; Geßner, Cornelia; Rosenkranz, Peter; Frey, Eva; Locke, Barbara; Moritz, Robin F A; Kraus, F B

    2011-12-01

    Varroa destructor is a highly virulent ectoparasitic mite of the honey bee Apis mellifera and a major cause of colony losses for global apiculture. Typically, chemical treatment is essential to control the parasite population in the honey bee colony. Nevertheless a few honey bee populations survive mite infestation without any treatment. We used one such Varroa mite tolerant honey bee lineage from the island of Gotland, Sweden, to identify quantitative trait loci (QTL) controlling reduced mite reproduction. We crossed a queen from this tolerant population with drones from susceptible colonies to rear hybrid queens. Two hybrid queens were used to produce a mapping population of haploid drones. We discriminated drone pupae with and without mite reproduction, and screened the genome for potential QTL using a total of 216 heterozygous microsatellite markers in a bulk segregant analysis. Subsequently, we fine mapped three candidate target regions on chromosomes 4, 7, and 9. Although the individual effect of these three QTL was found to be relatively small, the set of all three had significant impact on suppression of V. destructor reproduction by epistasis. Although it is in principle possible to use these loci for marker-assisted selection, the strong epistatic effects between the three loci complicate selective breeding programs with the Gotland Varroa tolerant honey bee stock.

  5. Three QTL in the honey bee Apis mellifera L. suppress reproduction of the parasitic mite Varroa destructor

    PubMed Central

    Behrens, Dieter; Huang, Qiang; Geßner, Cornelia; Rosenkranz, Peter; Frey, Eva; Locke, Barbara; Moritz, Robin F A; Kraus, F B

    2011-01-01

    Varroa destructor is a highly virulent ectoparasitic mite of the honey bee Apis mellifera and a major cause of colony losses for global apiculture. Typically, chemical treatment is essential to control the parasite population in the honey bee colony. Nevertheless a few honey bee populations survive mite infestation without any treatment. We used one such Varroa mite tolerant honey bee lineage from the island of Gotland, Sweden, to identify quantitative trait loci (QTL) controlling reduced mite reproduction. We crossed a queen from this tolerant population with drones from susceptible colonies to rear hybrid queens. Two hybrid queens were used to produce a mapping population of haploid drones. We discriminated drone pupae with and without mite reproduction, and screened the genome for potential QTL using a total of 216 heterozygous microsatellite markers in a bulk segregant analysis. Subsequently, we fine mapped three candidate target regions on chromosomes 4, 7, and 9. Although the individual effect of these three QTL was found to be relatively small, the set of all three had significant impact on suppression of V. destructor reproduction by epistasis. Although it is in principle possible to use these loci for marker-assisted selection, the strong epistatic effects between the three loci complicate selective breeding programs with the Gotland Varroa tolerant honey bee stock. PMID:22393513

  6. Evidence for passive chemical camouflage in the parasitic mite Varroa destructor.

    PubMed

    Kather, Ricarda; Drijfhout, Falko P; Shemilt, Sue; Martin, Stephen J

    2015-02-01

    Social insect colonies provide a stable and safe environment for their members. Despite colonies being heavily guarded, parasites have evolved numerous strategies to invade and inhabit these hostile places. Two such strategies are (true) chemical mimicry via biosynthesis of host odor, and chemical camouflage, in which compounds are acquired from the host. The ectoparasitic mite Varroa destructor feeds on hemolymph of its honey bee host, Apis mellifera. The mite's odor closely resembles that of its host, which allows V. destructor to remain undetected as it lives on the adult host during its phoretic phase and while reproducing on the honeybee brood. During the mite life cycle, it switches between host adults and brood, which requires it to adjust its profile to mimic the very different odors of honey bee brood and adults. In a series of transfer experiments, using bee adults and pupae, we tested whether V. destructor changes its profile by synthesizing compounds or by using chemical camouflage. We show that V. destructor required direct access to host cuticle to mimic its odor, and that it was unable to synthesize host-specific compounds itself. The mite was able to mimic host odor, even when dead, indicating a passive physico-chemical mechanism of the parasite cuticle. The chemical profile of V. destructor was adjusted within 3 to 9 h after switching hosts, demonstrating that passive camouflage is a highly efficient, fast and flexible way for the mite to adapt to a new host profile when moving between different host life stages or colonies.

  7. Brain metabolomic profiling of eastern honey bee (Apis cerana) infested with the mite Varroa destructor.

    PubMed

    Wu, Jiang-Li; Zhou, Chun-Xue; Wu, Peng-Jie; Xu, Jin; Guo, Yue-Qin; Xue, Fei; Getachew, Awraris; Xu, Shu-Fa

    2017-01-01

    The mite Varroa destructor is currently the greatest threat to apiculture as it is causing a global decrease in honey bee colonies. However, it rarely causes serious damage to its native hosts, the eastern honey bees Apis cerana. To better understand the mechanism of resistance of A. cerana against the V. destructor mite, we profiled the metabolic changes that occur in the honey bee brain during V. destructor infestation. Brain samples were collected from infested and control honey bees and then measured using an untargeted liquid chromatography-tandem mass spectrometry (LC-MS/MS)-based global metabolomics method, in which 7918 and 7462 ions in ESI+ and ESI- mode, respectively, were successfully identified. Multivariate statistical analyses were applied, and 64 dysregulated metabolites, including fatty acids, amino acids, carboxylic acid, and phospholipids, amongst others, were identified. Pathway analysis further revealed that linoleic acid metabolism; propanoate metabolism; and glycine, serine, and threonine metabolism were acutely perturbed. The data obtained in this study offer insight into the defense mechanisms of A. cerana against V. destructor mites and provide a better method for understanding the synergistic effects of parasitism on honey bee colonies.

  8. Identification of developmentally-specific kinotypes and mechanisms of Varroa mite resistance through whole-organism, kinome analysis of honeybee

    PubMed Central

    Robertson, Albert J.; Trost, Brett; Scruten, Erin; Robertson, Thomas; Mostajeran, Mohammad; Connor, Wayne; Kusalik, Anthony; Griebel, Philip; Napper, Scott

    2014-01-01

    Recent investigations associate Varroa destructor (Mesostigmata: Varroidae) parasitism and its associated pathogens and agricultural pesticides with negative effects on colony health, resulting in sporadic global declines in domestic honeybee (Apis mellifera) populations. These events have motivated efforts to develop research tools that can offer insight into the causes of declining bee health as well as identify biomarkers to guide breeding programs. Here we report the development of a bee-specific peptide array for characterizing global cellular kinase activity in whole bee extracts. The arrays reveal distinct, developmentally-specific signaling profiles between bees with differential susceptibility to infestation by Varroa mites. Gene ontology analysis of the differentially phosphorylated peptides indicates that the differential susceptibility to Varroa mite infestation does not reflect compromised immunity; rather, there is evidence for mite-mediated immune suppression within the susceptible phenotype that may reduce the ability of these bees to counter secondary viral infections. This hypothesis is supported by the demonstration of more diverse viral infections in mite-infested, susceptible adult bees. The bee-specific peptide arrays are an effective tool for understanding the molecular basis of this complex phenotype as well as for the discovery and utilization of phosphorylation biomarkers for breeding programs. PMID:24904639

  9. Honey bee Apis mellifera parasites in the absence of Nosema ceranae fungi and Varroa destructor mites.

    PubMed

    Shutler, Dave; Head, Krista; Burgher-MacLellan, Karen L; Colwell, Megan J; Levitt, Abby L; Ostiguy, Nancy; Williams, Geoffrey R

    2014-01-01

    Few areas of the world have western honey bee (Apis mellifera) colonies that are free of invasive parasites Nosema ceranae (fungi) and Varroa destructor (mites). Particularly detrimental is V. destructor; in addition to feeding on host haemolymph, these mites are important vectors of several viruses that are further implicated as contributors to honey bee mortality around the world. Thus, the biogeography and attendant consequences of viral communities in the absence of V. destructor are of significant interest. The island of Newfoundland, Province of Newfoundland and Labrador, Canada, is free of V. destructor; the absence of N. ceranae has not been confirmed. Of 55 Newfoundland colonies inspected visually for their strength and six signs of disease, only K-wing had prevalence above 5% (40/55 colonies = 72.7%). Similar to an earlier study, screenings again confirmed the absence of V. destructor, small hive beetles Aethina tumida (Murray), tracheal mites Acarapis woodi (Rennie), and Tropilaelaps spp. ectoparasitic mites. Of a subset of 23 colonies screened molecularly for viruses, none had Israeli acute paralysis virus, Kashmir bee virus, or sacbrood virus. Sixteen of 23 colonies (70.0%) were positive for black queen cell virus, and 21 (91.3%) had some evidence for deformed wing virus. No N. ceranae was detected in molecular screens of 55 colonies, although it is possible extremely low intensity infections exist; the more familiar N. apis was found in 53 colonies (96.4%). Under these conditions, K-wing was associated (positively) with colony strength; however, viruses and N. apis were not. Furthermore, black queen cell virus was positively and negatively associated with K-wing and deformed wing virus, respectively. Newfoundland honey bee colonies are thus free of several invasive parasites that plague operations in other parts of the world, and they provide a unique research arena to study independent pathology of the parasites that are present.

  10. Differential Gene Expression Associated with Honey Bee Grooming Behavior in Response to Varroa Mites.

    PubMed

    Hamiduzzaman, Mollah Md; Emsen, Berna; Hunt, Greg J; Subramanyam, Subhashree; Williams, Christie E; Tsuruda, Jennifer M; Guzman-Novoa, Ernesto

    2017-02-03

    Honey bee (Apis mellifera) grooming behavior is an important mechanism of resistance against the parasitic mite Varroa destructor. This research was conducted to study associations between grooming behavior and the expression of selected immune, neural, detoxification, developmental and health-related genes. Individual bees tested in a laboratory assay for various levels of grooming behavior in response to V. destructor were also analyzed for gene expression. Intense groomers (IG) were most efficient in that they needed significantly less time to start grooming and fewer grooming attempts to successfully remove mites from their bodies than did light groomers (LG). In addition, the relative abundance of the neurexin-1 mRNA, was significantly higher in IG than in LG, no groomers (NG) or control (bees without mite). The abundance of poly U binding factor kd 68 and cytochrome p450 mRNAs were significantly higher in IG than in control bees. The abundance of hymenoptaecin mRNA was significantly higher in IG than in NG, but it was not different from that of control bees. The abundance of vitellogenin mRNA was not changed by grooming activity. However, the abundance of blue cheese mRNA was significantly reduced in IG compared to LG or NG, but not to control bees. Efficient removal of mites by IG correlated with different gene expression patterns in bees. These results suggest that the level of grooming behavior may be related to the expression pattern of vital honey bee genes. Neurexin-1, in particular, might be useful as a bio-marker for behavioral traits in bees.

  11. Honey Bee Apis mellifera Parasites in the Absence of Nosema ceranae Fungi and Varroa destructor Mites

    PubMed Central

    Shutler, Dave; Head, Krista; Burgher-MacLellan, Karen L.; Colwell, Megan J.; Levitt, Abby L.; Ostiguy, Nancy; Williams, Geoffrey R.

    2014-01-01

    Few areas of the world have western honey bee (Apis mellifera) colonies that are free of invasive parasites Nosema ceranae (fungi) and Varroa destructor (mites). Particularly detrimental is V. destructor; in addition to feeding on host haemolymph, these mites are important vectors of several viruses that are further implicated as contributors to honey bee mortality around the world. Thus, the biogeography and attendant consequences of viral communities in the absence of V. destructor are of significant interest. The island of Newfoundland, Province of Newfoundland and Labrador, Canada, is free of V. destructor; the absence of N. ceranae has not been confirmed. Of 55 Newfoundland colonies inspected visually for their strength and six signs of disease, only K-wing had prevalence above 5% (40/55 colonies = 72.7%). Similar to an earlier study, screenings again confirmed the absence of V. destructor, small hive beetles Aethina tumida (Murray), tracheal mites Acarapis woodi (Rennie), and Tropilaelaps spp. ectoparasitic mites. Of a subset of 23 colonies screened molecularly for viruses, none had Israeli acute paralysis virus, Kashmir bee virus, or sacbrood virus. Sixteen of 23 colonies (70.0%) were positive for black queen cell virus, and 21 (91.3%) had some evidence for deformed wing virus. No N. ceranae was detected in molecular screens of 55 colonies, although it is possible extremely low intensity infections exist; the more familiar N. apis was found in 53 colonies (96.4%). Under these conditions, K-wing was associated (positively) with colony strength; however, viruses and N. apis were not. Furthermore, black queen cell virus was positively and negatively associated with K-wing and deformed wing virus, respectively. Newfoundland honey bee colonies are thus free of several invasive parasites that plague operations in other parts of the world, and they provide a unique research arena to study independent pathology of the parasites that are present. PMID:24955834

  12. Intensively Cultivated Landscape and Varroa Mite Infestation Are Associated with Reduced Honey Bee Nutritional State

    PubMed Central

    Dolezal, Adam G; Carrillo-Tripp, Jimena; Miller, W. Allen; Bonning, Bryony C.; Toth, Amy L.

    2016-01-01

    As key pollinators, honey bees are crucial to many natural and agricultural ecosystems. An important factor in the health of honey bees is the availability of diverse floral resources. However, in many parts of the world, high-intensity agriculture could result in a reduction in honey bee forage. Previous studies have investigated how the landscape surrounding honey bee hives affects some aspects of honey bee health, but to our knowledge there have been no investigations of the effects of intensively cultivated landscapes on indicators of individual bee health such as nutritional physiology and pathogen loads. Furthermore, agricultural landscapes in different regions vary greatly in forage and land management, indicating a need for additional information on the relationship between honey bee health and landscape cultivation. Here, we add to this growing body of information by investigating differences in nutritional physiology between honey bees kept in areas of comparatively low and high cultivation in an area generally high agricultural intensity in the Midwestern United States. We focused on bees collected directly before winter, because overwintering stress poses one of the most serious problems for honey bees in temperate climates. We found that honey bees kept in areas of lower cultivation exhibited higher lipid levels than those kept in areas of high cultivation, but this effect was observed only in colonies that were free of Varroa mites. Furthermore, we found that the presence of mites was associated with lower lipid levels and higher titers of deformed wing virus (DWV), as well as a non-significant trend towards higher overwinter losses. Overall, these results show that mite infestation interacts with landscape, obscuring the effects of landscape alone and suggesting that the benefits of improved foraging landscape could be lost without adequate control of mite infestations. PMID:27070422

  13. Intensively Cultivated Landscape and Varroa Mite Infestation Are Associated with Reduced Honey Bee Nutritional State.

    PubMed

    Dolezal, Adam G; Carrillo-Tripp, Jimena; Miller, W Allen; Bonning, Bryony C; Toth, Amy L

    2016-01-01

    As key pollinators, honey bees are crucial to many natural and agricultural ecosystems. An important factor in the health of honey bees is the availability of diverse floral resources. However, in many parts of the world, high-intensity agriculture could result in a reduction in honey bee forage. Previous studies have investigated how the landscape surrounding honey bee hives affects some aspects of honey bee health, but to our knowledge there have been no investigations of the effects of intensively cultivated landscapes on indicators of individual bee health such as nutritional physiology and pathogen loads. Furthermore, agricultural landscapes in different regions vary greatly in forage and land management, indicating a need for additional information on the relationship between honey bee health and landscape cultivation. Here, we add to this growing body of information by investigating differences in nutritional physiology between honey bees kept in areas of comparatively low and high cultivation in an area generally high agricultural intensity in the Midwestern United States. We focused on bees collected directly before winter, because overwintering stress poses one of the most serious problems for honey bees in temperate climates. We found that honey bees kept in areas of lower cultivation exhibited higher lipid levels than those kept in areas of high cultivation, but this effect was observed only in colonies that were free of Varroa mites. Furthermore, we found that the presence of mites was associated with lower lipid levels and higher titers of deformed wing virus (DWV), as well as a non-significant trend towards higher overwinter losses. Overall, these results show that mite infestation interacts with landscape, obscuring the effects of landscape alone and suggesting that the benefits of improved foraging landscape could be lost without adequate control of mite infestations.

  14. Africanized honey bees (Apis mellifera) have low infestation levels of the mite Varroa destructor in different ecological regions in Mexico.

    PubMed

    Medina-Flores, C A; Guzmán-Novoa, E; Hamiduzzaman, M M; Aréchiga-Flores, C F; López-Carlos, M A

    2014-02-21

    Honey bee (Apis mellifera) colonies of African and European descent were compared for levels of Varroa destructor infestation in 3 different ecological regions in Mexico. The 300 colonies that were studied were located in subtropical, temperate sub-humid, and temperate dry climates. The morphotype and mitotype of adult bees as well as their rates of infestation by varroa mites were determined. Additionally, the number of combs with brood and covered with bees was recorded for each colony. The highest frequency of colonies that were classified as African-derived was found in the subtropical environment, whereas the lowest occurred in the temperate dry region. Overall, the colonies of African genotype had significantly lower mite infestation rates (3.5±0.34%) than the colonies of European genotype (4.7±0.49%) regardless of the region sampled. Significant effects of genotype and region on Varroa infestation rates were evident, and there were no differences in bee population or capped brood between genotypes. Mite infestation levels were significantly lower in the colonies of the temperate dry region than in the colonies of the other 2 regions. These results are discussed within the context of results from studies that were previously conducted in Brazil. This is the first study that demonstrates the effects of Africanization and ecological environment on V. destructor infestation rates in honey bee colonies in North America.

  15. Resistance rather than tolerance explains survival of savannah honeybees (Apis mellifera scutellata) to infestation by the parasitic mite Varroa destructor.

    PubMed

    Strauss, Ursula; Dietemann, Vincent; Human, Hannelie; Crewe, Robin M; Pirk, Christian W W

    2016-03-01

    Varroa destructor is considered the most damaging parasite affecting honeybees (Apis mellifera L.). However, some honeybee populations such as the savannah honeybee (Apis mellifera scutellata) can survive mite infestation without treatment. It is unclear if survival is due to resistance mechanisms decreasing parasite reproduction or to tolerance mechanisms decreasing the detrimental effects of mites on the host. This study investigates both aspects by quantifying the reproductive output of V. destructor and its physiological costs at the individual host level. Costs measured were not consistently lower when compared with susceptible honeybee populations, indicating a lack of tolerance. In contrast, reproduction of V. destructor mites was distinctly lower than in susceptible populations. There was higher proportion of infertile individuals and the reproductive success of fertile mites was lower than measured to date, even in surviving populations. Our results suggest that survival of savannah honeybees is based on resistance rather than tolerance to this parasite. We identified traits that may be useful for breeding programmes aimed at increasing the survival of susceptible populations. African honeybees may have benefited from a lack of human interference, allowing natural selection to shape a population of honeybees that is more resistant to Varroa mite infestation.

  16. A scientific note on the detection of honeybee viruses using real-time PCR (TaqMan) in Varroa mites collected from a Thai honeybee (Apis mellifera) apiary.

    PubMed

    Chantawannakul, P; Ward, L; Boonham, N; Brown, M

    2006-01-01

    Bee parasitic mite syndrome is a disease complex of colonies simultaneously infested with Varroa destructor mites and infected with viruses and accompanied by high mortality. By using real-time PCR (TaqMan), five out of seven bee viruses were detected in mite samples (V. destructor) collected from Thailand. Moreover, the results of this study provide an evidence for the co-existence of several bee viruses in a single mite. This is also the first report of bee viruses in mites from Thailand.

  17. [Mites (Acarida) of honey bee (Apis mellifera L.) in Poland].

    PubMed

    Chmielewski, W

    1991-01-01

    400 samples of natural winter debris collected from bee hives, 150 samples of stored honey and 100 samples of pollen collected by bees were examined; full of food and empty honey combs, brood and adult bees were also observed. 100% of samples of debris, 90% of pollen and almost 24% of honey samples contained mites; they were found also on honey combs and on died and living bees (brood, imagines). 33 mite species were found. Besides of parasite Varroa jacobsoni Oud. numerous mites belonging to Acaridae, Ameroseiidae, Tarsonemidae and Tydeidae were frequent. They are often accompanied by predatory mites from families Cheyletidae, Aceosejidae, Laelapidae, Bdellidae and Cunaxidae. 3 stated species--Acotyledon paradoxa Oud., Lasioacarus nidicolus Kadz. et Sev. and Thyreophagus odyneri Fain are new for Poland.

  18. Duration and spread of an entomopathogenic fungus, Beauveria bassiana (Deuteromycota: Hyphomycetes), used to treat varroa mites (Acari: Varroidae) in honey bee (Hymenoptera: Apidae) hives.

    PubMed

    Meikle, W G; Mercadier, G; Holst, N; Nansen, C; Girod, V

    2007-02-01

    A strain of the fungus Beauveria bassiana (Balsamo) Vuillemin (Deuteromycota: Hyphomycetes) isolated from varroa mites, Varroa destructor Anderson & Trueman (Acari: Varroidae), was used to treat honey bees, Apis mellifera L. (Hymenoptera: Apidae), against varroa mites in southern France. Fungal treatment caused a significant increase in the percentage of infected varroa mites compared with control treatments in two field experiments. In the first experiment, hives were treated with a formulation containing 0.37 g of B. bassiana conidia per hive and in the second experiment with a dose of 1.0 g of conidia per hive. The percentage of infected varroa mites also increased in the nontreated (control) hives, suggesting a movement of conidia, probably via bee drift, among the hives. Mite fall was significantly higher among treated hives compared with control hives on the sixth and eighth days after treatment in the first experiment. These days correspond to previously published data on the median survivorship of mites exposed to that fungal solate. The interaction of treatment and date was significant in the second experiment with respect to mite fall. Increases in colony-forming unit (cfu) density per bee were observed in all treatments but were significantly higher among bees from treated hives than control hives for at least a week after treatment. The relationship between cfu density per bee and proportion infected was modeled using a sigmoid curve. High levels of infection (>80%) were observed for cfu density per bee as low as 5 x 102 per bee, but the cfu density in hives treated with 0.37 g generally dropped below this level less than a week after treatment.

  19. Fine scale population genetic structure of Varroa destructor, an ectoparasitic mite of the honey bee (Apis mellifera).

    PubMed

    Dynes, Travis L; De Roode, Jacobus C; Lyons, Justine I; Berry, Jennifer A; Delaplane, Keith S; Brosi, Berry J

    2016-01-01

    Varroa destructor is an obligate ectoparasitic mite and the most important biotic threat currently facing honey bees (Apis mellifera). We used neutral microsatellites to analyze previously unreported fine scale population structure of V. destructor, a species characterized by extreme lack of genetic diversity owing to multiple bottleneck events, haplodiploidy, and primarily brother-sister matings. Our results surprisingly indicate that detectable hierarchical genetic variation exists between apiaries, between colonies within an apiary, and even within colonies. This finding of within-colony parasite diversity provides empirical evidence that the spread of V. destructor is not accomplished solely by vertical transmission but that horizontal transmission (natural or human-mediated) must occur regularly.

  20. Esterases of Varroa destructor (Acari: Varroidae), parasitic mite of the honeybee.

    PubMed

    Dmitryjuk, Małgorzata; Żołtowska, Krystyna; Frączek, Regina; Lipiński, Zbigniew

    2014-04-01

    Varroa destructor is an ectoparasite that causes serious damage to the population of the honeybee. Increasing resistance of the parasite to acaricides is related, among others, to metabolic adaptations of its esterases to facilitate decomposition of the chemicals used. Esterases are a large heterogeneous group of enzymes that metabolize a number of endogenous and exogenous substrates with ester binding. The aim of the present study was to determine the activity of esterases in the body extracts (BE) and excretion/secretion products (E/SP) of the mite. The enzymes contained in the E/SP should originate mainly from the salivary glands and the alimentary system and they may play a particularly important role in the first line of defence of the mite against acaricides. Activity of cholinesterases (ChEs) [acetylcholinesterase (AChE) and butyrylcholinesterase], carboxylesterases (CEs) and phosphatases [alkaline phosphatase (AP) and acid phosphatase (AcP)] was investigated. The activity of all the enzymes except AChE was higher in the E/SP than in the BE. ChEs from the BE and from the E/SP reacted differently on eserine, a ChE inhibitor. Eserine inhibited both enzymes from the BE, increased decomposition of acetylcholine, but did not influence hydrolysis of butyrylcholine by the E/SP. Activity of the CEs from the BE in relation to the esters of carboxylic acids can be presented in the following series: C10 > C12 > C14 > C8 > C2 > C4 = C16, while activity of the CEs from the E/SP was: C4 > C8 > C2 > C14 > C10 > C12 > C16. The inhibitor of CEs, triphenyl phosphate, reduced the activity of esterases C2–C8 and C14–C16; however, it acted in the opposite way to CEs C10 and C12. The activity of both phosphatases was higher in the E/SP than in the BE (AcP about twofold and AP about 2.6-fold); the activities of AP and AcP in the same material were similar. Given the role of esterases in resistance to pesticides, further studies are necessary to obtain complete biochemical

  1. Intricate transmission routes and interactions between picorna-like viruses (Kashmir bee virus and sacbrood virus) with the honeybee host and the parasitic varroa mite.

    PubMed

    Shen, Miaoqing; Cui, Liwang; Ostiguy, Nancy; Cox-Foster, Diana

    2005-08-01

    Viral diseases of honeybees are a major problem in apiculture, causing serious economic losses worldwide, especially in combination with varroa mites. To increase understanding of the relationship among viruses, mites and colony decline, the tripartite relationships among bees, viruses [Kashmir bee virus (KBV) and sacbrood virus (SBV)] and varroa mites have been investigated systematically. To develop an antibody-based test for KBV, two structural recombinant proteins were purified for polyclonal-antibody production. By using ELISA and RT-PCR, the presence of KBV and SBV was studied comparatively in different developmental stages and castes of bees. The results demonstrated that KBV may persist as a viral genome with extremely low levels of viral-capsid proteins and that KBV and SBV can co-infect honeybees. This study indicated the presence of KBV and SBV RNAs in both queens and eggs by RT-PCR, suggesting a route of transovarial transmission. Horizontal transmission is also very likely among adult bees and from adult workers to larvae through contaminated food resources, because both viruses have been detected in all developmental stages and food sources (brood food, honey, pollen and royal jelly). Furthermore, it was demonstrated that mites were another possible route of horizontal transmission, as both viruses were detected in mites and their saliva. This study, for the first time, detected co-occurrence of viruses in varroa, further underlining the importance of the mites in vectoring different bee viruses. Therefore, these results indicated that multiple infection routes exist for honeybee viral diseases.

  2. Development of a user-friendly delivery method for the fungus Metarhizium anisopliac to control the ectoparasitic mite Varroa destructor in honey bee, Apis mellifera, colonies

    USDA-ARS?s Scientific Manuscript database

    A user-friendly method to deliver Metarhizium spores to honey bee colonies for control of Varroa mites was developed and tested. Patty blend formulations protected the fungal spores at brood nest temperatures and served as an improved delivery system of the fungus to bee hives. Field trials conducte...

  3. Pseudomonas contamination of a fungal-based biopesticide: implications for honey bee (Hymenoptera: Apidae) health and varroa mite (Acari: Varroidae) control

    USDA-ARS?s Scientific Manuscript database

    A biopesticide, formulated with commercially-prepared conidia of a strain of Beauveria bassiana isolated from Varroa mites, was tested in a field experiment in southern France to compare published results from the same geographic region with the same biopesticide but made with laboratory-prepared co...

  4. Autumn invasion rates of Varroa destructor (Mesostigmata: Varroidae) into honey bee (Hymenoptera: Apidae) colonies and the resulting increase in mite populations.

    PubMed

    Frey, Eva; Rosenkranz, Peter

    2014-04-01

    The honey bee parasite Varroa destructor Anderson & Trueman can disperse and invade honey bee colonies by attaching to "drifting" and "robbing" honey bees that move into nonnatal colonies. We quantified the weekly invasion rates and the subsequent mite population growth from the end of July to November 2011 in 28 honey bee colonies kept in two apiaries that had high (HBD) and low (LBD) densities of neighboring colonies. At each apiary, half (seven) of the colonies were continuously treated with acaricides to kill all Varroa mites and thereby determine the invasion rates. The other group of colonies was only treated before the beginning of the experiment and then left untreated to record Varroa population growth until a final treatment in November. The numbers of bees and brood cells of all colonies were estimated according to the Liebefeld evaluation method. The invasion rates varied among individual colonies but revealed highly significant differences between the study sites. The average invasion rate per colony over the entire 3.5-mo period ranged from 266 to 1,171 mites at the HBD site compared with only 72 to 248 mites at the LBD apiary. In the untreated colonies, the Varroa population reached an average final infestation in November of 2,082 mites per colony (HBD) and 340 mites per colony (LBD). All colonies survived the winter; however, the higher infested colonies lost about three times more bees compared with the lower infested colonies. Therefore, mite invasion and late-year population growth must be considered more carefully for future treatment concepts in temperate regions.

  5. Effect of concentration and exposure time on treatment efficacy against Varroa mites (Acari: Varroidae) during indoor winter fumigation of honey bees (Hymenoptera: Apidae) with formic acid.

    PubMed

    Underwood, Robyn M; Currie, Robert W

    2005-12-01

    The combination of the concentration of formic acid and the duration of fumigation (CT product) during indoor treatments of honey bee, Apis mellifera L., colonies to control the varroa mite, Varroa destructor Anderson & Trueman, determines the efficacy of the treatment. Because high concentrations can cause queen mortality, we hypothesized that a high CT product given as a low concentration over a long exposure time rather than as a high concentration over a short exposure time would allow effective control of varroa mites without the detrimental effects on queens. The objective of this study was to assess different combinations of formic acid concentration and exposure time with similar CT products in controlling varroa mites while minimizing the effect on worker and queen honey bees. Treated colonies were exposed to a low, medium, or high concentration of formic acid until a mean CT product of 471 ppm*d in room air was realized. The treatments consisted of a long-term low concentration of 19 ppm for 27 d, a medium-term medium concentration of 42 ppm for 10 d, a short-term high concentration of 53 ppm for 9 d, and an untreated control. Both short-term high-concentration and medium-term medium-concentration fumigation with formic acid killed varroa mites, with averages of 93 and 83% mortality, respectively, but both treatments also were associated with an increase in mortality of worker bees, queen bees, or both. Long-term low-concentration fumigation had lower efficacy (60% varroa mite mortality), but it did not increase worker or queen bee mortality. This trend differed slightly in colonies from two different beekeepers. Varroa mite mean abundance was significantly decreased in all three acid treatments relative to the control. Daily worker mortality was significantly increased by the short-term high concentration treatment, which was reflected by a decrease in the size of the worker population, but not an increase in colony mortality. Queen mortality was

  6. Molecular genetic analysis of Varroa destructor mites in brood, fallen injured mites and worker bee longevity in honey bees

    USDA-ARS?s Scientific Manuscript database

    Two important traits that contribute to honey bee (Apis mellifera) colony survival are resistance to Varroa destructor and longevity of worker bees. We investigated the relationship between a panel of single nucleotide polymorphism (SNP) markers and three phenotypic measurements of colonies: a) perc...

  7. Genetic characterization of the mite Varroa destructor (Acari: Varroidae) collected from honey bees Apis mellifera (Hymenoptera, Apidae) in the state of Santa Catarina, Brazil.

    PubMed

    Strapazzon, R; Carneiro, F E; Guerra, J C V; Moretto, G

    2009-08-18

    The mite Varroa destructor is an ectoparasite that is considered a major pest for beekeeping with European honey bees. However, Africanized bee colonies are less threatened by this ectoparasite, because infestation levels remain low in these bees. The low reproductive ability of female mites of the Japanese biotype (J), introduced to Brazil early in the 1970s was initially considered the main factor for the lack of virulence of this parasite on Africanized bees. In other regions of the world where the Korean (K) biotype of this mite was introduced, there have been serious problems with Varroa due to the high reproductive potential of the mite. However, a significant increase in the reproductive rate of females of Varroa in Brazil has been recently demonstrated; the cause could be a change in the type of Varroa in the bee colonies. We evaluated the prevalence of haplotypes J and K in mite samples collected from the State of Santa Catarina and from the island of Fernando de Noronha in the State of Pernambuco. The analysis of the mitochondrial genome (PCR + RFLP) revealed haplotype K in all samples from Santa Catarina and haplotype J in all samples from Fernando de Noronha. The analysis of microsatellites (nuclear genome) in bees from Fernando de Noronha showed only the specific alleles of haplotype J, while in bees from Santa Catarina, these alleles were found in only 2.8% of the samples. The high frequency of individuals with Korean genetic material is probably to the reason for the current high reproductive capacity of the mite V. destructor recorded in Santa Catarina.

  8. Biological activity of some plant essential oils against Varroa destructor (Acari: Varroidae), an ectoparasitic mite of Apis mellifera (Hymenoptera: Apidae).

    PubMed

    Ghasemi, Vahid; Moharramipour, Saeid; Tahmasbi, Gholamhosein

    2011-10-01

    This experiment was conducted to evaluate acaricidal activity of the essential oils of Thymus kotschyanus, Ferula assa-foetida and Eucalyptus camaldulensis against Varroa destructor under laboratory conditions. Moreover, fumigant toxicity of these oils was tested on Apis mellifera. After preliminary dose-setting experiments, mites and honey bees were exposed to different concentrations of the oil, with 10 h exposure time. Essential oil of T. kotschyanus appeared the most potent fumigant for V. destructor (LC(50) = 1.07, 95% confidence limit (CL) = 0.87-1.26 μl/l air), followed by E. camaldulensis (LC(50) = 1.74, 95% CL = 0.96-2.50 μl/l air). The lowest acaricidal activity (LC(50) = 2.46, 95% CL = 2.10-2.86 μl/l air) was attributed to essential oil of F. assa-foetida. Surprisingly, among the three oils tested, essential oil of T. kotschyanus had the lowest insecticidal activity against A. mellifera (LC(50) = 5.08, 95% CL = 4.54-5.06 μl/l air). These findings proved that essential oil of T. kotschyanus has potential of practical value for use as alternative acaricide in the management of varroa in apiaries.

  9. Fine scale population genetic structure of Varroa destructor, an ectoparasitic mite of the honey bee (Apis mellifera)

    PubMed Central

    Dynes, Travis L.; De Roode, Jacobus C.; Lyons, Justine I.; Berry, Jennifer A.; Delaplane, Keith S.; Brosi, Berry J.

    2016-01-01

    Varroa destructor is an obligate ectoparasitic mite and the most important biotic threat currently facing honey bees (Apis mellifera). We used neutral microsatellites to analyze previously unreported fine scale population structure of V. destructor, a species characterized by extreme lack of genetic diversity owing to multiple bottleneck events, haplodiploidy, and primarily brother-sister matings. Our results surprisingly indicate that detectable hierarchical genetic variation exists between apiaries, between colonies within an apiary, and even within colonies. This finding of within-colony parasite diversity provides empirical evidence that the spread of V. destructor is not accomplished solely by vertical transmission but that horizontal transmission (natural or human-mediated) must occur regularly. PMID:27812229

  10. Repeatability of measurements of removal of mite-infested brood to assess Varroa Sensitive Hygiene

    USDA-ARS?s Scientific Manuscript database

    Varroa Sensitive Hygiene is a useful resistance trait that bee breeders could increase in different populations with cost-effective and reliable tests. We investigated the reliability of a one-week test estimating the changes in infestation of brood introduced into highly selected and unselected co...

  11. Development of a user-friendly delivery method for the fungus Metarhizium anisopliae to control the ectoparasitic mite Varroa destructor in honey bee, Apis mellifera, colonies.

    PubMed

    Kanga, Lambert H B; Adamczyk, John; Patt, Joseph; Gracia, Carlos; Cascino, John

    2010-12-01

    A user-friendly method to deliver Metarhizium spores to honey bee colonies for control of Varroa mites was developed and tested. Patty blend formulations protected the fungal spores at brood nest temperatures and served as an improved delivery system of the fungus to bee hives. Field trials conducted in 2006 in Texas using freshly harvested spores indicated that patty blend formulations of 10 g of conidia per hive (applied twice) significantly reduced the numbers of mites per adult bee, mites in sealed brood cells, and residual mites at the end of the 47-day experimental period. Colony development in terms of adult bee populations and brood production also improved. Field trials conducted in 2007 in Florida using less virulent spores produced mixed results. Patty blends of 10 g of conidia per hive (applied twice) were less successful in significantly reducing the number of mites per adult bee. However, hive survivorship and colony strength were improved, and the numbers of residual mites were significantly reduced at the end of the 42-day experimental period. The overall results from 2003 to 2008 field trials indicated that it was critical to have fungal spores with good germination, pathogenicity and virulence. We determined that fungal spores (1 × 10(10) viable spores per gram) with 98% germination and high pathogenicity (95% mite mortality at day 7) provided successful control of mite populations in established honey bee colonies at 10 g of conidia per hive (applied twice). Overall, microbial control of Varroa mite with M. anisopliae is feasible and could be a useful component of an integrated pest management program.

  12. Haplotype identification and detection of mitochondrial DNA heteroplasmy in Varroa destructor mites using ARMS and PCR-RFLP methods.

    PubMed

    Gajić, Bojan; Stevanović, Jevrosima; Radulović, Željko; Kulišić, Zoran; Vejnović, Branislav; Glavinić, Uroš; Stanimirović, Zoran

    2016-11-01

    In the present study, amplification refractory mutation system (ARMS) and polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) methods were used for identification of recently described Serbia 1 (S1) and Peshter 1 (P1) mitochondrial haplotypes of Varroa destructor. Based on single nucleotide polymorphisms (SNPs) within cytochrome oxidase 1 (cox1) and cytochrome b (cytb) gene sequences, a total of 64 adult V. destructor females were analyzed from locations where the S1 and P1 haplotypes had been detected previously. Results of haplotype identification obtained by ARMS and PCR-RFLP methods were completely consistent with the sequencing data. Furthermore, in some analyzed samples the occurrence of site heteroplasmy at haplotype-defining sites was detected, as it was confirmed by double peaks in the sequence chromatograms. Neither mites with simultaneous nucleotide variability, nor those with combined SNP and heteroplasmy in cox1 and cytb were found. Given that this is the first occurrence of site heteroplasmy in V. destructor, the origin of this phenomenon and possible specific traits of heteroplasmic mites have yet to be determined.

  13. The Potential of Bee-Generated Carbon Dioxide for Control of Varroa Mite (Mesostigmata: Varroidae) in Indoor Overwintering Honey bee (Hymenoptera: Apidae) Colonies.

    PubMed

    Bahreini, Rassol; Currie, Robert W

    2015-10-01

    The objective of this study was to manipulate ventilation rate to characterize interactions between stocks of honey bees (Apis mellifera L.) and ventilation setting on varroa mite (Varroa destructor Anderson and Trueman) mortality in honey bee colonies kept indoors over winter. The first experiment used colonies established from stock selected locally for wintering performance under exposure to varroa (n = 6) and unselected bees (n = 6) to assess mite and bee mortality and levels of carbon dioxide (CO2) and oxygen (O2) in the bee cluster when kept under a simulated winter condition at 5°C. The second experiment, used colonies from selected bees (n = 10) and unselected bees (n = 12) that were exposed to either standard ventilation (14.4 liter/min per hive) or restricted ventilation (0.24 liter/min per hive, in a Plexiglas ventilation chamber) during a 16-d treatment period to assess the influence of restricted air flow on winter mortality rates of varroa mites and honey bees. Experiment 2 was repeated in early, mid-, and late winter. The first experiment showed that under unrestricted ventilation with CO2 concentrations averaging <2% there was no correlation between CO2 and varroa mite mortality when colonies were placed under low temperature. CO2 was negatively correlated with O2 in the bee cluster in both experiments. When ventilation was restricted, mean CO2 level (3.82 ± 0.31%, range 0.43-8.44%) increased by 200% relative to standard ventilation (1.29 ± 0.31%; range 0.09-5.26%) within the 16-d treatment period. The overall mite mortality rates and the reduction in mean abundance of varroa mite over time was greater under restricted ventilation (37 ± 4.2%) than under standard ventilation (23 ± 4.2%) but not affected by stock of bees during the treatment period. Selected bees showed overall greater mite mortality relative to unselected bees in both experiments. Restricting ventilation increased mite mortality, but did not

  14. Molecular and biochemical properties of storage mites (except Blomia species).

    PubMed

    Fernández-Caldas, Enrique; Iraola, Victor; Carnés, Jerónimo

    2007-01-01

    In recent years, the allergological importance of different mite species not belonging to the family Pyroglyphidae has been demonstrated. These mites, commonly named storage mites, include Lepidoglyphus destructor, Glycyphagus domesticus, Tyrophagus putrescentiae, Acarus siro, Aleuroglyphus ovatus, Suidasia medanensis and Thyreophagus entomophagus. Several allergens from these species have been purified, sequenced and cloned. Many of these allergens have shown sequence homology and a biological function similar to those previously described in Blomia tropicalis and the Dermatophagoides spp. The main allergens described in storage mites include fatty acid binding proteins, tropomysin and paramyosin homologues, apoliphorine like proteins, alfa-tubulines and other, such as group 2, 5 and 7 allergens, which definitive biological function has not been described yet. Besides the purification and characterization of allergens, the allergenicity of other species such as Acarus farris, Austroglycyphagus malaysiensis, Blomia kulagini and B. tjibodas, Cheyletus eruditus, Chortoglyphus arcuatus, Gohieria fusca, Thyreophagus entomophagus and Tyrophagus longior has been investigated. Research has also been conducted to identify allergens in parasitic mites, such as Psoroptes ovis, Sarcoptes scabiei, Varroa jacobsoni, Diplaegidia columbae and Hemisarcoptes cooremani. The allergenicity of mites present in agricultural environments has been investigated. Crossreactivity studies have also been performed to elucidate to what extent all these mites share common, or species specific epitopes. Herein we present a comprehensive review of the allergenicity of mite species which have been implicated in human respiratory and/or dermatological diseases.

  15. Responses to Varroa by honey bees with different levels of Varroa Sensitive Hygiene

    USDA-ARS?s Scientific Manuscript database

    The mite-resistance trait called suppression of mite reproduction (SMR) is a form of hygienic behavior that we have named varroa sensitive hygiene (VSH). With VSH, adult worker bees (Apis mellifera) disrupt the population growth of parasitic mites (Varroa destructor) by removing mite-infested bee p...

  16. In-depth proteomic analysis of Varroa destructor: Detection of DWV-complex, ABPV, VdMLV and honeybee proteins in the mite

    PubMed Central

    Erban, Tomas; Harant, Karel; Hubalek, Martin; Vitamvas, Pavel; Kamler, Martin; Poltronieri, Palmiro; Tyl, Jan; Markovic, Martin; Titera, Dalibor

    2015-01-01

    We investigated pathogens in the parasitic honeybee mite Varroa destructor using nanoLC-MS/MS (TripleTOF) and 2D-E-MS/MS proteomics approaches supplemented with affinity-chromatography to concentrate trace target proteins. Peptides were detected from the currently uncharacterized Varroa destructor Macula-like virus (VdMLV), the deformed wing virus (DWV)-complex and the acute bee paralysis virus (ABPV). Peptide alignments revealed detection of complete structural DWV-complex block VP2-VP1-VP3, VDV-1 helicase and single-amino-acid substitution A/K/Q in VP1, the ABPV structural block VP1-VP4-VP2-VP3 including uncleaved VP4/VP2, and VdMLV coat protein. Isoforms of viral structural proteins of highest abundance were localized via 2D-E. The presence of all types of capsid/coat proteins of a particular virus suggested the presence of virions in Varroa. Also, matches between the MWs of viral structural proteins on 2D-E and their theoretical MWs indicated that viruses were not digested. The absence/scarce detection of non-structural proteins compared with high-abundance structural proteins suggest that the viruses did not replicate in the mite; hence, virions accumulate in the Varroa gut via hemolymph feeding. Hemolymph feeding also resulted in the detection of a variety of honeybee proteins. The advantages of MS-based proteomics for pathogen detection, false-positive pathogen detection, virus replication, posttranslational modifications, and the presence of honeybee proteins in Varroa are discussed. PMID:26358842

  17. In-depth proteomic analysis of Varroa destructor: Detection of DWV-complex, ABPV, VdMLV and honeybee proteins in the mite.

    PubMed

    Erban, Tomas; Harant, Karel; Hubalek, Martin; Vitamvas, Pavel; Kamler, Martin; Poltronieri, Palmiro; Tyl, Jan; Markovic, Martin; Titera, Dalibor

    2015-09-11

    We investigated pathogens in the parasitic honeybee mite Varroa destructor using nanoLC-MS/MS (TripleTOF) and 2D-E-MS/MS proteomics approaches supplemented with affinity-chromatography to concentrate trace target proteins. Peptides were detected from the currently uncharacterized Varroa destructor Macula-like virus (VdMLV), the deformed wing virus (DWV)-complex and the acute bee paralysis virus (ABPV). Peptide alignments revealed detection of complete structural DWV-complex block VP2-VP1-VP3, VDV-1 helicase and single-amino-acid substitution A/K/Q in VP1, the ABPV structural block VP1-VP4-VP2-VP3 including uncleaved VP4/VP2, and VdMLV coat protein. Isoforms of viral structural proteins of highest abundance were localized via 2D-E. The presence of all types of capsid/coat proteins of a particular virus suggested the presence of virions in Varroa. Also, matches between the MWs of viral structural proteins on 2D-E and their theoretical MWs indicated that viruses were not digested. The absence/scarce detection of non-structural proteins compared with high-abundance structural proteins suggest that the viruses did not replicate in the mite; hence, virions accumulate in the Varroa gut via hemolymph feeding. Hemolymph feeding also resulted in the detection of a variety of honeybee proteins. The advantages of MS-based proteomics for pathogen detection, false-positive pathogen detection, virus replication, posttranslational modifications, and the presence of honeybee proteins in Varroa are discussed.

  18. An evaluation of the associations of parameters related to the fall of Varroa destructor (Acari: Varroidae) from commercial honey bee (Hymenoptera: Apidae) colonies as tools for selective breeding for mite resistance.

    PubMed

    Rinderer, Thomas E; De Guzman, Lilia I; Frake, Amanda M; Tarver, Matthew R; Khongphinitbunjong, Kitiphong

    2014-04-01

    Varroa destructor (Anderson and Trueman) trapped on bottom boards were assessed as indirect measurements of colony mite population differences and potential indicators of mite resistance in commercial colonies of Russian and Italian honey bees (Apis mellifera L.) by using 35 candidate measurements. Measurements included numbers of damaged and nondamaged younger mites, nymphs, damaged and nondamaged older mites, fresh mites, and all mites, each as a proportion of total mites in the colonies and as a proportion of all trapped mites or all trapped fresh mites. Several measurements differed strongly between the stocks, suggesting that the detailed characteristics of trapped mites may reflect the operation of resistance mechanisms in the Russian honey bees. Regression analyses were used to determine the relationships of these candidate measurements with the number of mites in the colonies. The largest positive regressions differed for the two stocks (Italian honey bees: trapped mites and trapped younger mites; Russian honey bees: trapped younger mites and trapped fresh mites). Also, the regressions for Italian honey bees were substantially stronger. The largest negative regressions with colony mites for both stocks were for the proportion of older mites out of all trapped mites. Although these regressions were statistically significant and consistent with those previously reported, they were weaker than those previously reported. The numbers of mites in the colonies were low, especially in the Russian honey bee colonies, which may have negatively influenced the precision of the regressions.

  19. Resistance to Varroa destructor (Mesostigmata: Varroidae) when mite-resistant queen honey bees (Hymenoptera: Apidae) were free-mated with unselected drones.

    PubMed

    Harbo, J R; Harris, J W

    2001-12-01

    This study demonstrated (1) that honey bees, Apis mellifera L, can express a high level of resistance to Varroa destructor Anderson & Trueman when bees were selected for only one resistant trait (suppression of mite reproduction); and (2) that a significant level of mite-resistance was retained when these queens were free-mated with unselected drones. The test compared the growth of mite populations in colonies of bees that each received one of the following queens: (1) resistant--queens selected for suppression of mite reproduction and artificially inseminated in Baton Rouge with drones from similarly selected stocks; (2) resistant x control--resistant queens, as above, produced and free-mated to unselected drones by one of four commercial queen producers; and (3) control--commercial queens chosen by the same four queen producers and free-mated as above. All colonies started the test with approximately 0.9 kg of bees that were naturally infested with approximately 650 mites. Colonies with resistant x control queens ended the 115-d test period with significantly fewer mites than did colonies with control queens. This suggests that beekeepers can derive immediate benefit from mite-resistant queens that have been free-mated to unselected drones. Moreover, the production and distribution of these free-mated queens from many commercial sources may be an effective way to insert beneficial genes into our commercial population of honey bees without losing the genetic diversity and the useful beekeeping characteristics of this population.

  20. Field trials using the fungal pathogen, Metarhizium anisopliae (Deuteromycetes: Hyphomycetes) to control the ectoparasitic mite, Varroa destructor (Acari: Varroidae) in honey bee, Apis mellifera (Hymenoptera: Apidae) colonies.

    PubMed

    Kanga, Lambert Houssou Ble; Jones, Walker A; James, Rosalind R

    2003-08-01

    The potential for Metarhizium anisopliae (Metschinkoff) to control the parasitic mite, Varroa destructor (Anderson and Trueman) in honey bee colonies was evaluated in field trials against the miticide, tau-fluvalinate (Apistan). Peak mortality of V. destructor occurred 3-4 d after the conidia were applied; however, the mites were still infected 42 d posttreatments. Two application methods were tested: dusts and strips coated with the fungal conidia, and both methods resulted in successful control of mite populations. The fungal treatments were as effective as the Apistan, at the end of the 42-d period of the experiment. The data suggested that optimum mite control could be achieved when no brood is being produced, or when brood production is low, such as in the early spring or late fall. M. anisopliae was harmless to the honey bees (adult bees, or brood) and colony development was not affected. Mite mortality was highly correlated with mycosis in dead mites collected from sticky traps, indicating that the fungus was infecting and killing the mites. Because workers and drones drift between hives, the adult bees were able to spread the fungus between honey bee colonies in the apiary, a situation that could be beneficial to beekeepers.

  1. Honey Bee Colonies Headed by Hyperpolyandrous Queens Have Improved Brood Rearing Efficiency and Lower Infestation Rates of Parasitic Varroa Mites.

    PubMed

    Delaplane, Keith S; Pietravalle, Stéphane; Brown, Mike A; Budge, Giles E

    2015-01-01

    A honey bee queen mates on wing with an average of 12 males and stores their sperm to produce progeny of mixed paternity. The degree of a queen's polyandry is positively associated with measures of her colony's fitness, and observed distributions of mating number are evolutionary optima balancing risks of mating flights against benefits to the colony. Effective mating numbers as high as 40 have been documented, begging the question of the upper bounds of this behavior that can be expected to confer colony benefit. In this study we used instrumental insemination to create three classes of queens with exaggerated range of polyandry--15, 30, or 60 drones. Colonies headed by queens inseminated with 30 or 60 drones produced more brood per bee and had a lower proportion of samples positive for Varroa destructor mites than colonies whose queens were inseminated with 15 drones, suggesting benefits of polyandry at rates higher than those normally obtaining in nature. Our results are consistent with two hypotheses that posit conditions that reward such high expressions of polyandry: (1) a queen may mate with many males in order to promote beneficial non-additive genetic interactions among subfamilies, and (2) a queen may mate with many males in order to capture a large number of rare alleles that regulate resistance to pathogens and parasites in a breeding population. Our results are unique for identifying the highest levels of polyandry yet detected that confer colony-level benefit and for showing a benefit of polyandry in particular toward the parasitic mite V. destructor.

  2. Honey Bee Colonies Headed by Hyperpolyandrous Queens Have Improved Brood Rearing Efficiency and Lower Infestation Rates of Parasitic Varroa Mites

    PubMed Central

    Delaplane, Keith S.; Pietravalle, Stéphane; Brown, Mike A.; Budge, Giles E.

    2015-01-01

    A honey bee queen mates on wing with an average of 12 males and stores their sperm to produce progeny of mixed paternity. The degree of a queen’s polyandry is positively associated with measures of her colony’s fitness, and observed distributions of mating number are evolutionary optima balancing risks of mating flights against benefits to the colony. Effective mating numbers as high as 40 have been documented, begging the question of the upper bounds of this behavior that can be expected to confer colony benefit. In this study we used instrumental insemination to create three classes of queens with exaggerated range of polyandry– 15, 30, or 60 drones. Colonies headed by queens inseminated with 30 or 60 drones produced more brood per bee and had a lower proportion of samples positive for Varroa destructor mites than colonies whose queens were inseminated with 15 drones, suggesting benefits of polyandry at rates higher than those normally obtaining in nature. Our results are consistent with two hypotheses that posit conditions that reward such high expressions of polyandry: (1) a queen may mate with many males in order to promote beneficial non-additive genetic interactions among subfamilies, and (2) a queen may mate with many males in order to capture a large number of rare alleles that regulate resistance to pathogens and parasites in a breeding population. Our results are unique for identifying the highest levels of polyandry yet detected that confer colony-level benefit and for showing a benefit of polyandry in particular toward the parasitic mite V. destructor. PMID:26691845

  3. How does the mite Varroa destructor kill the honeybee Apis mellifera? Alteration of cuticular hydrcarbons and water loss in infested honeybees.

    PubMed

    Annoscia, Desiderato; Del Piccolo, Fabio; Nazzi, Francesco

    2012-12-01

    Several factors threaten the health of honeybees; among them the parasitic mite Varroa destructor and the Deformed Wing Virus play a major role. Recently, the dangerous interplay between the mite and the virus was studied in detail and the transition, triggered by mite feeding, from a benign covert infection to a devastating viral outbreak, characterized by an intense viral replication, associated with some characteristic symptoms, was described. In order to gain insight into the events preceding that crucial transition we carried out standardized lab experiments aiming at studying the effects of parasitization in asymptomatic bees to establish a relationship between such effects and bee mortality. It appears that parasitization alters the capacity of the honeybee to regulate water exchange; this, in turn, has severe effects on bee survival. These results are discussed in light of possible novel strategies aiming at mitigating the impact of the parasite on honeybee health. Copyright © 2012 Elsevier Ltd. All rights reserved.

  4. Simulation modelling as a tool for evaluating surveillance programmes for detection of the Asian honeybee mite ( Varroa destructor ) in the South Island of New Zealand.

    PubMed

    Sanson, R L

    2007-12-01

    To use a simulation model of the spread of the Asian honeybee mite (Varroa destructor) amongst apiaries, to evaluate a series of detection surveillance programmes for the South Island of New Zealand. Five potential incursion sites into the South Island were selected. A stochastic spatial simulation model, Varroa_ sim, was adapted to simulate spread of the mite from these sites as a series of silent-phase propagating epidemics. The study population comprised all apiaries in the South Island registered in the Ministry of Agriculture and Forestry's (MAF's) apiary database in 2003. Six different surveillance programmes were simulated to try and detect the mite. Three of these were the actual multi-stage sampling plans conducted during the autumn (March-May) of 2001, 2002 and 2003, and the other three involved simple random sampling with sampling fractions equivalent to the actual numbers of apiaries tested in each of those years. The relative performances of the different surveillance plans were evaluated in terms of their ability to detect the mite early before it had spread too far and whilst there might still be a chance of eradication. There were 13,798 registered apiaries in the South Island with valid map coordinates in the apiary database at the time of the study. The model generated 50 epidemics against which the various surveillance programmes were evaluated. The actual surveillance programmes conducted during the autumn of 2001 and 2002 generally performed fairly well in detecting the mite. The programme conducted in autumn 2003 detected the mite reasonably well in high-risk areas, but was very poor in low-risk areas. The simple random sampling strategies performed surprisingly well, and their relative rankings were proportional to the sampling fractions employed. This study showed the value in using a spatial simulation model to generate plausible silent-phase epidemics, against which detection surveillance programmes could be evaluated, in ways that would

  5. Impact of two treatments of a formulation of Beauveria bassiana (Deuteromycota: Hyphomycetes) conidia on Varroa mites (Acari: Varroidae) and on honeybee (Hymenoptera: Apidae) colony health.

    PubMed

    Meikle, William G; Mercadier, Guy; Holst, Niels; Girod, Vincent

    2008-12-01

    Bee colonies in southern France were treated with conidia (asexual spores) from two strains of Beauveria bassiana, an entomopathogenic fungus. One strain was commercial (GHA) and the other had been isolated from Varroa mites in the region (Bb05002). Objectives were to evaluate treatment effect on colony weight, adult bee mass, capped brood, and on Varroa fall onto sticky boards. Treatments included conidia formulated with either carnauba or candelilla wax powder, candelilla wax powder alone, or control; in two treatment groups formulation was applied a second time after one week. Treatment did not affect colony health. Colonies treated twice with Bb05002 conidia and carnauba wax powder had significantly higher mite fall compared to colonies treated with blank candelilla wax powder. The proportion of fallen mites that were infected in both conidia treatments was higher than controls for 18 days after the second treatment. The number of fungal propagules on the bees themselves remained elevated for about 14 days after the second treatment. These results were compared to published results from previous experiments with regard to infection duration.

  6. Lower Virus Infections in Varroa destructor-Infested and Uninfested Brood and Adult Honey Bees (Apis mellifera) of a Low Mite Population Growth Colony Compared to a High Mite Population Growth Colony

    PubMed Central

    Emsen, Berna; Hamiduzzaman, Mollah Md.; Goodwin, Paul H.; Guzman-Novoa, Ernesto

    2015-01-01

    A comparison was made of the prevalence and relative quantification of deformed wing virus (DWV), Israeli acute paralysis virus (IAPV), black queen cell virus (BQCV), Kashmir bee virus (KBV), acute bee paralysis virus (ABPV) and sac brood virus (SBV) in brood and adult honey bees (Apis mellifera) from colonies selected for high (HMP) and low (LMP) Varroa destructor mite population growth. Two viruses, ABPV and SBV, were never detected. For adults without mite infestation, DWV, IAPV, BQCV and KBV were detected in the HMP colony; however, only BQCV was detected in the LMP colony but at similar levels as in the HMP colony. With mite infestation, the four viruses were detected in adults of the HMP colony but all at higher amounts than in the LMP colony. For brood without mite infestation, DWV and IAPV were detected in the HMP colony, but no viruses were detected in the LMP colony. With mite infestation of brood, the four viruses were detected in the HMP colony, but only DWV and IAPV were detected and at lower amounts in the LMP colony. An epidemiological explanation for these results is that pre-experiment differences in virus presence and levels existed between the HMP and LMP colonies. It is also possible that low V. destructor population growth in the LMP colony resulted in the bees being less exposed to the mite and thus less likely to have virus infections. LMP and HMP bees may have also differed in susceptibility to virus infection. PMID:25723540

  7. Lower virus infections in Varroa destructor-infested and uninfested brood and adult honey bees (Apis mellifera) of a low mite population growth colony compared to a high mite population growth colony.

    PubMed

    Emsen, Berna; Hamiduzzaman, Mollah Md; Goodwin, Paul H; Guzman-Novoa, Ernesto

    2015-01-01

    A comparison was made of the prevalence and relative quantification of deformed wing virus (DWV), Israeli acute paralysis virus (IAPV), black queen cell virus (BQCV), Kashmir bee virus (KBV), acute bee paralysis virus (ABPV) and sac brood virus (SBV) in brood and adult honey bees (Apis mellifera) from colonies selected for high (HMP) and low (LMP) Varroa destructor mite population growth. Two viruses, ABPV and SBV, were never detected. For adults without mite infestation, DWV, IAPV, BQCV and KBV were detected in the HMP colony; however, only BQCV was detected in the LMP colony but at similar levels as in the HMP colony. With mite infestation, the four viruses were detected in adults of the HMP colony but all at higher amounts than in the LMP colony. For brood without mite infestation, DWV and IAPV were detected in the HMP colony, but no viruses were detected in the LMP colony. With mite infestation of brood, the four viruses were detected in the HMP colony, but only DWV and IAPV were detected and at lower amounts in the LMP colony. An epidemiological explanation for these results is that pre-experiment differences in virus presence and levels existed between the HMP and LMP colonies. It is also possible that low V. destructor population growth in the LMP colony resulted in the bees being less exposed to the mite and thus less likely to have virus infections. LMP and HMP bees may have also differed in susceptibility to virus infection.

  8. Simplified methods of evaluating colonies for levels of Varroa Sensitive Hygiene (VSH)

    USDA-ARS?s Scientific Manuscript database

    Varroa sensitive hygiene (VSH) is a trait of honey bees, Apis mellifera, that supports resistance to varroa mites, Varroa destructor. Components of VSH were evaluated to identify simple methods for selection of the trait. Varroa mite population growth was measured in colonies with variable levels of...

  9. An evaluation of the associations of parameters related to the fall of Varroa destructor (Acari: Varroidae) from commercial honey bee (Hymenoptera: Apidae) colonies as tools for selective breeding for mite resistance.

    USDA-ARS?s Scientific Manuscript database

    Varroa destructor (Anderson and Trueman) trapped on bottom boards were assessed as indirect measurements of colony mite population differences in commercial colonies of Russian and Italian honey bees (Apis mellifera L.) using 35 candidate measurements. Measurements included numbers of damaged and no...

  10. A rapid survey technique for Tropilaelaps mite (Mesostigmata: Laclapidae) detection

    USDA-ARS?s Scientific Manuscript database

    Parasitic mites affect pollinator helath and the varroa mite (Varroa destructor Anderson and Trueman) is the most serious single threat to honey bees. Another group of mites with similar life histories to varroa mites, Tropilaelaps (Delfinado and Baker) species, have become a damaging pest of Europe...

  11. Bidirectional transfer of RNAi between honey bee and Varroa destructor: Varroa gene silencing reduces Varroa population.

    PubMed

    Garbian, Yael; Maori, Eyal; Kalev, Haim; Shafir, Sharoni; Sela, Ilan

    2012-12-01

    The mite Varroa destructor is an obligatory ectoparasite of the honey bee (Apis mellifera) and is one of the major threats to apiculture worldwide. We previously reported that honey bees fed on double-stranded RNA (dsRNA) with a sequence homologous to that of the Israeli acute paralysis virus are protected from the viral disease. Here we show that dsRNA ingested by bees is transferred to the Varroa mite and from mite on to a parasitized bee. This cross-species, reciprocal exchange of dsRNA between bee and Varroa engendered targeted gene silencing in the latter, and resulted in an over 60% decrease in the mite population. Thus, transfer of gene-silencing-triggering molecules between this invertebrate host and its ectoparasite could lead to a conceptually novel approach to Varroa control.

  12. Bidirectional Transfer of RNAi between Honey Bee and Varroa destructor: Varroa Gene Silencing Reduces Varroa Population

    PubMed Central

    Kalev, Haim; Shafir, Sharoni; Sela, Ilan

    2012-01-01

    The mite Varroa destructor is an obligatory ectoparasite of the honey bee (Apis mellifera) and is one of the major threats to apiculture worldwide. We previously reported that honey bees fed on double-stranded RNA (dsRNA) with a sequence homologous to that of the Israeli acute paralysis virus are protected from the viral disease. Here we show that dsRNA ingested by bees is transferred to the Varroa mite and from mite on to a parasitized bee. This cross-species, reciprocal exchange of dsRNA between bee and Varroa engendered targeted gene silencing in the latter, and resulted in an over 60% decrease in the mite population. Thus, transfer of gene-silencing-triggering molecules between this invertebrate host and its ectoparasite could lead to a conceptually novel approach to Varroa control. PMID:23308063

  13. Status of bees with the trait of varroa sensitive hygiene (VSH) for varroa resistance

    USDA-ARS?s Scientific Manuscript database

    The utility of USDA-developed Russian and varroa sensitive hygiene (VSH) honey bees, Apis mellifera L. (Hymenoptera: Apidae), was compared to that of locally produced, commercial Italian bees during 2004-2006 in beekeeping operations in Alabama, USA. Infestations of varroa mites, Varroa destructor ...

  14. Seasonal cycle of inbreeding and recombination of the parasitic mite Varroa destructor in honeybee colonies and its implications for the selection of acaricide resistance.

    PubMed

    Beaurepaire, Alexis L; Krieger, Klemens J; Moritz, Robin F A

    2017-06-01

    Varroa destructor is the most devastating parasite of the Western honeybee, Apis mellifera. In the light of the arm race opposing the host and its parasite, the population dynamics and genetic diversity of these organisms are key parameters. However, the life cycle of V. destructor is characterized by extreme inbreeding due to full sibling mating in the host brood cells. We here present an equation reflecting the evolution of inbreeding in such a clonal system, and compare our predictions with empirical data based on the analysis of seven microsatellite markers. This comparison revealed that the mites perform essentially incestuous mating in the beginning of the brood season. However, this pattern changes with the development of mite infestation. Despite the fact that the overall level of genetic diversity of the mites remained low through the season, multiple inbred lineages were identified in the mites we sampled in June. As a response to the decrease of brood availability and the increase of the parasite population in parallel in the colonies, these lineages recombined towards the end of the season as mites co-infest brood cells. Our results suggest that the ratio of the number of mite per brood cell in the colony determines the genetic structure of the populations of V. destructor. This intracolonial population dynamics has great relevance for the selection of acaricide resistance in V. destructor. If chemical treatments occur before the recombination phase, inbreeding will greatly enhance the fixation of resistance alleles at the colony level. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. Biology and control of Varroa destructor.

    PubMed

    Rosenkranz, Peter; Aumeier, Pia; Ziegelmann, Bettina

    2010-01-01

    The ectoparasitic honey bee mite Varroa destructor was originally confined to the Eastern honey bee Apis cerana. After a shift to the new host Apis mellifera during the first half of the last century, the parasite dispersed world wide and is currently considered the major threat for apiculture. The damage caused by Varroosis is thought to be a crucial driver for the periodical colony losses in Europe and the USA and regular Varroa treatments are essential in these countries. Therefore, Varroa research not only deals with a fascinating host-parasite relationship but also has a responsibility to find sustainable solutions for the beekeeping. This review provides a survey of the current knowledge in the main fields of Varroa research including the biology of the mite, damage to the host, host tolerance, tolerance breeding and Varroa treatment. We first present a general view on the functional morphology and on the biology of the Varroa mite with special emphasis on host-parasite interactions during reproduction of the female mite. The pathology section describes host damage at the individual and colony level including the problem of transmission of secondary infections by the mite. Knowledge of both the biology and the pathology of Varroa mites is essential for understanding possible tolerance mechanisms in the honey bee host. We comment on the few examples of natural tolerance in A. mellifera and evaluate recent approaches to the selection of Varroa tolerant honey bees. Finally, an extensive listing and critical evaluation of chemical and biological methods of Varroa treatments is given. This compilation of present-day knowledge on Varroa honey bee interactions emphasizes that we are still far from a solution for Varroa infestation and that, therefore, further research on mite biology, tolerance breeding, and Varroa treatment is urgently needed.

  16. Development of a gel formulation of formic acid for control of parasitic mites of honey bees.

    PubMed

    Kochansky, J; Shimanuki, H

    1999-09-01

    Formic acid has been used in various countries for the control of parasitic mites of honey bees (Apis mellifera), particularly the Varroa mite (Varroa jacobsoni) and the tracheal mite (Acarapis woodi). Its corrosivity and consequent fear of liability have precluded commercial interest in the United States, and its rapid vaporization requires frequent reapplication. We have developed a gel formulation of formic acid which provides controlled release over 2-3 weeks and improves the convenience and safety of handling of formic acid. The strong acidity of formic acid restricts the choice of gelling agents; vegetable gellants such as agar are destroyed, and bentonite clay derivatives do not gel, even with high-shear mixing. Polyacrylamides lead to viscous liquids lacking thixotropic properties. High-molecular-weight poly(acrylic acids) and fumed silicas provided gels with suitable physical characteristics. The poly(acrylic acid) gels were difficult to mix and gave slower and nonlinear release behavior, while the fumed silica gels were easy to prepare and linear in formic acid vaporization.

  17. Evaluation of Mite-Away-II for fall control of Varroa destructor (Acari: Varroidae) in colonies of the honey bee Apis mellifera (Hymenoptera: Apidae) in the northeastern USA.

    PubMed

    Calderone, Nicholas W

    2010-02-01

    Mite-Away II, a recently-registered product with a proprietary formulation of formic acid, was evaluated under field conditions in commercial apiaries in upstate New York (USA) for the fall control of Varroa destructor Anderson & Trueman in colonies of the honey bee, Apis mellifera L. Ambient temperatures during the treatment period were in the lower half of the range recommended on the label, but were typical for early fall in upstate New York. Average mite mortality was 60.2 +/- 2.2% in the Mite-Away II group and 23.3 +/- 2.6% in the untreated control group. These means were significantly different from each other, but the level of control was only moderate. These results demonstrate that Mite-Away II may not always provide an adequate level of control even when the temperature at the time of application falls within the recommended range stated on the product's label. To make the best use of temperature-sensitive products, I suggest that the current, single-value, economic treatment threshold be replaced with an economic treatment range. The limits for this range are specified by two pest density values. The lower limit is the usual pest density that triggers a treatment. The upper limit is the maximum pest density that one can expect to reduce to a level below the lower limit given the temperatures expected during the treatment period. When the actual pest density exceeds the upper limit, the product should not be recommended; or, a warning should be included indicating that acceptable control may not be achieved.

  18. Fine-Scale Linkage Mapping Reveals a Small Set of Candidate Genes Influencing Honey Bee Grooming Behavior in Response to Varroa Mites

    PubMed Central

    Arechavaleta-Velasco, Miguel E.; Alcala-Escamilla, Karla; Robles-Rios, Carlos; Tsuruda, Jennifer M.; Hunt, Greg J.

    2012-01-01

    Populations of honey bees in North America have been experiencing high annual colony mortality for 15–20 years. Many apicultural researchers believe that introduced parasites called Varroa mites (V. destructor) are the most important factor in colony deaths. One important resistance mechanism that limits mite population growth in colonies is the ability of some lines of honey bees to groom mites from their bodies. To search for genes influencing this trait, we used an Illumina Bead Station genotyping array to determine the genotypes of several hundred worker bees at over a thousand single-nucleotide polymorphisms in a family that was apparently segregating for alleles influencing this behavior. Linkage analyses provided a genetic map with 1,313 markers anchored to genome sequence. Genotypes were analyzed for association with grooming behavior, measured as the time that individual bees took to initiate grooming after mites were placed on their thoraces. Quantitative-trait-locus interval mapping identified a single chromosomal region that was significant at the chromosome-wide level (p<0.05) on chromosome 5 with a LOD score of 2.72. The 95% confidence interval for quantitative trait locus location contained only 27 genes (honey bee official gene annotation set 2) including Atlastin, Ataxin and Neurexin-1 (AmNrx1), which have potential neurodevelopmental and behavioral effects. Atlastin and Ataxin homologs are associated with neurological diseases in humans. AmNrx1 codes for a presynaptic protein with many alternatively spliced isoforms. Neurexin-1 influences the growth, maintenance and maturation of synapses in the brain, as well as the type of receptors most prominent within synapses. Neurexin-1 has also been associated with autism spectrum disorder and schizophrenia in humans, and self-grooming behavior in mice. PMID:23133594

  19. Rapid method for DNA extraction from the honey bee Apis mellifera and the parasitic bee mite Varroa destructor using lysis buffer and proteinase K.

    PubMed

    Issa, M R C; Figueiredo, V L C; De Jong, D; Sakamoto, C H; Simões, Z L P

    2013-10-22

    We developed a rapid method for extraction of DNA from honey bees, Apis mellifera, and from the parasitic bee mite, Varroa destructor. The advantages include fast processing and low toxicity of the substances that are utilized. We used lysis buffer with nonionic detergents to lyse cell walls and proteinase K to digest proteins. We tested whole thorax, thoracic muscle mass, legs, and antennae from individual bees; the mites were processed whole (1 mite/sample). Each thorax was incubated whole, without cutting, because exocuticle color pigment darkened the extraction solution, interfering with PCR results. The procedure was performed with autoclaved equipment and laboratory gloves. For each sample, we used 100 µL lysis buffer (2 mL stock solution of 0.5 M Tris/HCl, pH 8.5, 10 mL stock solution of 2 M KCl, 500 µL solution of 1 M MgCl2, 2 mL NP40, and 27.6 g sucrose, completed to 200 mL with bidistilled water and autoclaved) and 2 µL proteinase K (10 mg/mL in bidistilled water previously autoclaved, as proteinase K cannot be autoclaved). Tissues were incubated in the solutions for 1-2 h in a water bath (62°-68 °C) or overnight at 37 °C. After incubation, the tissues were removed from the extraction solution (lysis buffer + proteinase K) and the solution heated to 92 °C for 10 min, for proteinase K inactivation. Then, the solution with the extracted DNA was stored in a refrigerator (4°-8 °C) or a freezer (-20 °C). This method does not require centrifugation or phenol/chloroform extraction. The reduced number of steps allowed us to sample many individuals/day. Whole mites and bee antennae were the most rapidly processed. All bee tissues gave the same quality DNA. This method, even using a single bee antenna or a single mite, was adequate for extraction and analysis of bee genomic and mitochondrial DNA and mite genomic DNA.

  20. Correlation of proteome-wide changes with social immunity behaviors provides insight into resistance to the parasitic mite, Varroa destructor, in the honey bee (Apis mellifera)

    PubMed Central

    2012-01-01

    Background Disease is a major factor driving the evolution of many organisms. In honey bees, selection for social behavioral responses is the primary adaptive process facilitating disease resistance. One such process, hygienic behavior, enables bees to resist multiple diseases, including the damaging parasitic mite Varroa destructor. The genetic elements and biochemical factors that drive the expression of these adaptations are currently unknown. Proteomics provides a tool to identify proteins that control behavioral processes, and these proteins can be used as biomarkers to aid identification of disease tolerant colonies. Results We sampled a large cohort of commercial queen lineages, recording overall mite infestation, hygiene, and the specific hygienic response to V. destructor. We performed proteome-wide correlation analyses in larval integument and adult antennae, identifying several proteins highly predictive of behavior and reduced hive infestation. In the larva, response to wounding was identified as a key adaptive process leading to reduced infestation, and chitin biosynthesis and immune responses appear to represent important disease resistant adaptations. The speed of hygienic behavior may be underpinned by changes in the antenna proteome, and chemosensory and neurological processes could also provide specificity for detection of V. destructor in antennae. Conclusions Our results provide, for the first time, some insight into how complex behavioural adaptations manifest in the proteome of honey bees. The most important biochemical correlations provide clues as to the underlying molecular mechanisms of social and innate immunity of honey bees. Such changes are indicative of potential divergence in processes controlling the hive-worker maturation. PMID:23021491

  1. Elucidating the mechanisms underlying the beneficial health effects of dietary pollen on honey bees (Apis mellifera) infested by Varroa mite ectoparasites.

    PubMed

    Annoscia, Desiderato; Zanni, Virginia; Galbraith, David; Quirici, Anna; Grozinger, Christina; Bortolomeazzi, Renzo; Nazzi, Francesco

    2017-07-24

    Parasites and pathogens of the honey bee (Apis mellifera) are key factors underlying colony losses, which are threatening the beekeeping industry and agriculture as a whole. To control the spread and development of pathogen infections within the colony, honey bees use plant resins with antibiotic activity, but little is known about the properties of other substances, that are mainly used as a foodstuff, for controlling possible diseases both at the individual and colony level. In this study, we tested the hypothesis that pollen is beneficial for honey bees challenged with the parasitic mite Varroa destructor associated to the Deformed Wing Virus. First, we studied the effects of pollen on the survival of infested bees, under laboratory and field conditions, and observed that a pollen rich diet can compensate the deleterious effects of mite parasitization. Subsequently, we characterized the pollen compounds responsible for the observed positive effects. Finally, based on the results of a transcriptomic analysis of parasitized bees fed with pollen or not, we developed a comprehensive framework for interpreting the observed effects of pollen on honey bee health, which incorporates the possible effects on cuticle integrity, energetic metabolism and immune response.

  2. Evaluation of Oxalic Acid Treatments against the Mite Varroa destructor and Secondary Effects on Honey Bees Apis mellifera

    PubMed Central

    Adjlane, Noureddine; Tarek, El-Ounass; Haddad, Nizar

    2016-01-01

    Background: The Varroa destructor varroasis is a very serious parasite of honeybee Apis mellifera. The objective of this study was to evaluate the effectiveness of Varroa treatment using organic acid (oxalic acid) in Algeria identifying its side effects on bee colonies. Methods: Treatment was conducted in one apiary consisting 30 colonies kept in Langstroth hives kind. Oxalic acid dripped directly on bees 5ml of this solution of oxalic acid per lane occupied by a syringe. Three doses were tested: 4.2, 3.2 and 2.1% oxalic acid is 100, 75 and 50 g of oxalic acid dehydrate in one litter of sugar syrup (1water to1 surge) concentration. Results: The percentage of average efficiency obtained for the first dose was 81%, 72.19% for the second dose, and 65% for third one, while the dose of 100 g oxalic acid causes a weakening of honey bee colonies. Conclusion: The experiments revealed that clear variation in the treatment efficiency among colonies that this might be related to brood presence therefore in order to assure the treatment efficiency oxalic acid should be part of a bigger strategy of Varroa treatment. PMID:28032102

  3. Evaluation of Oxalic Acid Treatments against the Mite Varroa destructor and Secondary Effects on Honey Bees Apis mellifera.

    PubMed

    Adjlane, Noureddine; Tarek, El-Ounass; Haddad, Nizar

    2016-12-01

    The Varroa destructor varroasis is a very serious parasite of honeybee Apis mellifera. The objective of this study was to evaluate the effectiveness of Varroa treatment using organic acid (oxalic acid) in Algeria identifying its side effects on bee colonies. Treatment was conducted in one apiary consisting 30 colonies kept in Langstroth hives kind. Oxalic acid dripped directly on bees 5ml of this solution of oxalic acid per lane occupied by a syringe. Three doses were tested: 4.2, 3.2 and 2.1% oxalic acid is 100, 75 and 50 g of oxalic acid dehydrate in one litter of sugar syrup (1water to1 surge) concentration. The percentage of average efficiency obtained for the first dose was 81%, 72.19% for the second dose, and 65% for third one, while the dose of 100 g oxalic acid causes a weakening of honey bee colonies. The experiments revealed that clear variation in the treatment efficiency among colonies that this might be related to brood presence therefore in order to assure the treatment efficiency oxalic acid should be part of a bigger strategy of Varroa treatment.

  4. Evaluation of the impact of Exomite Pro on Varroa mite (Varroa destructor) populations and honeybee (Apis mellifera) colonies: efficacy, side effects and residues.

    PubMed

    Tananaki, Chrysoula; Goras, Georgios; Huggett, Nicola; Karazafiris, Emmanouel; Dimou, Maria; Thrasyvoulou, Andreas

    2014-04-01

    In this research, we examined the application of thymol-based powder, directly over the top of the brood frames in colonies with different population in a 2-year study. The efficacy against mites, the side effects on bees and the contamination of honey were studied comparably to thymol-based gel treatment. In one-store colonies, thymol-based powder treatment gave average efficacy 64.5% and did not differ significantly from thymol-based gel treatment (65.4%). The natural mortality in control colonies was 41.4% and the corrected efficacy (E T) during 2 years was 39.4 and 40.9%, respectively. In two-store bee colonies, the application of thymol-based powder on top of each hive body gave higher E T (45,4%) than on top of the double body hive (40.4%), without statistically significant differences. The average concentration of thymol residues in honey 24 days after the application was 368 and 1,119 μg kg(-1) for the honey of colonies treated with thymol-based powder and thymol-base gel, respectively.

  5. A sequential sampling scheme for detecting infestation levels of tracheal mites (Heterostigmata: Tarsonemidae) in honey bee (Hymenoptera: Apidae) colonies.

    PubMed

    Frazier, M T; Finley, J; Harkness, W; Rajotte, E G

    2000-06-01

    The introduction of parasitic honey bee mites, the tracheal mite, Acarapis woodi (Rennie) in 1984 and the Varroa mite, Varroa jacobsoni, in 1987, has dramatically increased the winter mortality of honey bee, Apis mellifera L., colonies in many areas of the United States. Some beekeepers have minimized their losses by routinely treating their colonies with menthol, currently the only Environmental Protection Agency-approved and available chemical for tracheal mite control. Menthol is also expensive and can interfere with honey harvesting. Because of inadequate sampling techniques and a lack of information concerning treatment, this routine treatment strategy has increased the possibility that tracheal mites will develop resistance to menthol. It is important to establish economic thresholds and treat colonies with menthol only when treatment is warranted rather than treating all colonies regardless of infestation level. The use of sequential sampling may reduce the amount of time and effort expended in examining individual colonies and determining if treatment is necessary. Sequential sampling also allows statistically based estimates of the percentage of bees in standard Langstroth hives infested with mites while controlling for the possibility of incorrectly assessing the amount of infestation. On the average, sequential sampling plans require fewer observations (bees) to reach a decision for specified probabilities of type I and type II errors than are required for fixed sampling plans, especially when the proportion of infested bees is either very low or very high. We developed a sequential sampling decision plan to allow the user to choose specific economic injury levels and the probability of making type I and type II errors which can result inconsiderable savings in time, labor and expense.

  6. Occurrence of Deformed wing virus, Chronic bee paralysis virus and mtDNA variants in haplotype K of Varroa destructor mites in Syrian apiaries.

    PubMed

    Elbeaino, Toufic; Daher-Hjaij, Nouraldin; Ismaeil, Faiz; Mando, Jamal; Khaled, Bassem Solaiman; Kubaa, Raied Abou

    2016-05-01

    A small-scale survey was conducted on 64 beehives located in four governorates of Syria in order to assess for the first time the presence of honeybee-infecting viruses and of Varroa destructor mites in the country. RT-PCR assays conducted on 192 honeybees (Apis mellifera L.) using virus-specific primers showed that Deformed wing virus (DWV) was present in 49 (25.5%) of the tested samples and Chronic bee paralysis virus (CBPV) in 2 (1.04%), whereas Acute bee paralysis virus, Sacbrood virus, Black queen cell virus and Kashmir bee virus were absent. Nucleotide sequences of PCR amplicons obtained from DWV and CBPV genomes shared 95-97 and 100% identity with isolates reported in the GenBank, respectively. The phylogenetic tree grouped the Syrian DWV isolates in one cluster, distinct from all those of different origins reported in the database. Furthermore, 19 adult V. destructor females were genetically analyzed by amplifying and sequencing four fragments in cytochrome oxidase subunit 1 (cox1), ATP synthase 6 (atp6), cox3 and cytochrome b (cytb) mitochondrial DNA (mtDNA) genes. Sequences of concatenated V. destructor mtDNA genes (2696 bp) from Syria were similar to the Korean (K) haplotype and were found recurrently in all governorates. In addition, two genetic lineages of haplotype K with slight variations (0.2-0.3%) were present only in Tartous and Al-Qunaitra governorates.

  7. Phenotypic and genetic analyses of the Varroa Sensitive Hygienic trait in Russian Honey Bee (Hymenoptera: Apidae) colonies

    USDA-ARS?s Scientific Manuscript database

    Varroa destructor continues to threaten colonies of European honey bees. General hygiene and more specific VarroaVarroa Sensitive Hygiene (VSH) provide resistance toward the Varroa mite in a number of stocks. In this study, Russian (RHB) and Italian honey bees were assessed for the VSH trait. Two...

  8. Disease dynamics of honeybees with Varroa destructor as parasite and virus vector

    USDA-ARS?s Scientific Manuscript database

    The worldwide decline in honeybee colonies during the past 50 years has often been linked to the spread of the parasitic mite Varroa destructor and its interaction with certain honeybee viruses carried by Varroa mites. In this article, we propose a honeybee-mite-virus model that incorporates (1) par...

  9. Impact of Varroa destructor on honeybee (Apis mellifera scutellata) colony development in South Africa.

    PubMed

    Strauss, Ursula; Pirk, Christian W W; Crewe, Robin M; Human, Hannelie; Dietemann, Vincent

    2015-01-01

    The devastating effects of Varroa destructor Anderson & Trueman on European honeybee colonies (Apis mellifera L.) have been well documented. Not only do these mites cause physical damage to parasitised individuals when they feed on them, they also transmit viruses and other pathogens, weaken colonies and can ultimately cause their death. Nevertheless, not all honeybee colonies are doomed once Varroa mites become established. Some populations, such as the savannah honeybee, A. m. scutellata, have become tolerant after the introduction of the parasite and are able to withstand the presence of these mites without the need for acaricides. In this study, we measured daily Varroa mite fall, Varroa infestation rates of adult honeybees and worker brood, and total Varroa population size in acaricide treated and untreated honeybee colonies. In addition, honeybee colony development was compared between these groups in order to measure the cost incurred by Varroa mites to their hosts. Daily Varroa mite fall decreased over the experimental period with different dynamics in treated and untreated colonies. Varroa infestation rates in treated adult honeybees and brood were lower than in untreated colonies, but not significantly so. Thus, indicating a minimal benefit of treatment thereby suggesting that A. m. scutellata have the ability to maintain mite populations at low levels. We obtained baseline data on Varroa population dynamics in a tolerant honeybee over the winter period. Varroa mites appeared to have a low impact on this honeybee population, given that colony development was similar in the treated and untreated colonies.

  10. Varroa destructor: research avenues towards sustainable control

    USDA-ARS?s Scientific Manuscript database

    A recent review article about sustainable control of Varroa mites implies that little progress has been made in developing and applying honey bees that have genetic resistance to mites. Here we explain some of the successes that have resulted from research into genetic resistance In sum, we suggest ...

  11. Comparison of Varroa destructor and Worker Honeybee Microbiota Within Hives Indicates Shared Bacteria.

    PubMed

    Hubert, Jan; Kamler, Martin; Nesvorna, Marta; Ledvinka, Ondrej; Kopecky, Jan; Erban, Tomas

    2016-08-01

    The ectoparasitic mite Varroa destructor is a major pest of the honeybee Apis mellifera. In a previous study, bacteria were found in the guts of mites collected from winter beehive debris and were identified using Sanger sequencing of their 16S rRNA genes. In this study, community comparison and diversity analyses were performed to examine the microbiota of honeybees and mites at the population level. The microbiota of the mites and honeybees in 26 colonies in seven apiaries in Czechia was studied. Between 10 and 50 Varroa females were collected from the bottom board, and 10 worker bees were removed from the peripheral comb of the same beehive. Both bees and mites were surface sterilized. Analysis of the 16S rRNA gene libraries revealed significant differences in the Varroa and honeybee microbiota. The Varroa microbiota was less diverse than was the honeybee microbiota, and the relative abundances of bacterial taxa in the mite and bee microbiota differed. The Varroa mites, but not the honeybees, were found to be inhabited by Diplorickettsia. The relative abundance of Arsenophonus, Morganella, Spiroplasma, Enterococcus, and Pseudomonas was higher in Varroa than in honeybees, and the Diplorickettsia symbiont detected in this study is specific to Varroa mites. The results demonstrated that there are shared bacteria between Varroa and honeybee populations but that these bacteria occur in different relative proportions in the honeybee and mite bacteriomes. These results support the suggestion of bacterial transfer via mites, although only some of the transferred bacteria may be harmful.

  12. A Genome Wide Genotyping Study To Find Candidate Genes That Influence Varroa-Sensitive Hygiene (VSH)

    USDA-ARS?s Scientific Manuscript database

    Varroa parasitism of honey bees is widely considered by apicultural researchers to be the greatest threat to beekeeping. Varroa-sensitive hygiene (VSH) is one of two identified behaviors that are highly important for controlling the growth of Varroa mite populations in bee hives. Bees exhibiting th...

  13. Brood removal influences fall of Varroa destructor (Mesostigmata: Varroidae) in honey bee (Hymenoptera: Apidae) colonies

    USDA-ARS?s Scientific Manuscript database

    The hygienic removal of brood infested with Varroa destructor by Apis mellifera disrupts the reproduction of the infesting mites and exposes the foundress mites to potential removal from the colony by grooming. Using brood deliberately infested with marked Varroa, we investigated the association bet...

  14. Varroa destructor is an effective vector of Israeli acute paralysis virus in the honeybee, Apis mellifera.

    PubMed

    Di Prisco, Gennaro; Pennacchio, Francesco; Caprio, Emilio; Boncristiani, Humberto F; Evans, Jay D; Chen, Yanping

    2011-01-01

    The Israeli acute paralysis virus (IAPV) is a significant marker of honeybee colony collapse disorder (CCD). In the present work, we provide the first evidence that Varroa destructor is IAPV replication-competent and capable of vectoring IAPV in honeybees. The honeybees became infected with IAPV after exposure to Varroa mites that carried the virus. The copy number of IAPV in bees was positively correlated with the density of Varroa mites and time period of exposure to Varroa mites. Further, we showed that the mite-virus association could possibly reduce host immunity and therefore promote elevated levels of virus replication. This study defines an active role of Varroa mites in IAPV transmission and sheds light on the epidemiology of IAPV infection in honeybees.

  15. Can we disrupt the sensing of honey bees by the bee parasite Varroa destructor?

    PubMed

    Eliash, Nurit; Singh, Nitin Kumar; Kamer, Yosef; Pinnelli, Govardhana Reddy; Plettner, Erika; Soroker, Victoria

    2014-01-01

    The ectoparasitic mite, Varroa destructor, is considered to be one of the most significant threats to apiculture around the world. Chemical cues are known to play a significant role in the host-finding behavior of Varroa. The mites distinguish between bees from different task groups, and prefer nurses over foragers. We examined the possibility of disrupting the Varroa--honey bee interaction by targeting the mite's olfactory system. In particular, we examined the effect of volatile compounds, ethers of cis 5-(2'-hydroxyethyl) cyclopent-2-en-1-ol or of dihydroquinone, resorcinol or catechol. We tested the effect of these compounds on the Varroa chemosensory organ by electrophysiology and on behavior in a choice bioassay. The electrophysiological studies were conducted on the isolated foreleg. In the behavioral bioassay, the mite's preference between a nurse and a forager bee was evaluated. We found that in the presence of some compounds, the response of the Varroa chemosensory organ to honey bee headspace volatiles significantly decreased. This effect was dose dependent and, for some of the compounds, long lasting (>1 min). Furthermore, disruption of the Varroa volatile detection was accompanied by a reversal of the mite's preference from a nurse to a forager bee. Long-term inhibition of the electrophysiological responses of mites to the tested compounds was a good predictor for an alteration in the mite's host preference. These data indicate the potential of the selected compounds to disrupt the Varroa--honey bee associations, thus opening new avenues for Varroa control.

  16. Migration effects on population dynamics of the honeybee-mite interactions

    USDA-ARS?s Scientific Manuscript database

    Honeybees are amazing and highly beneficial insect species that play important roles in undisturbed and agricultural ecosystems. Unfortunately, honeybees are increasingly threatened by numerous factors, most notably the parasitic Varroa mite (Varroa destructor Anderson and Trueman). A recent field s...

  17. Varroa-virus interaction in collapsing honey bee colonies.

    PubMed

    Francis, Roy M; Nielsen, Steen L; Kryger, Per

    2013-01-01

    Varroa mites and viruses are the currently the high-profile suspects in collapsing bee colonies. Therefore, seasonal variation in varroa load and viruses (Acute-Kashmir-Israeli complex (AKI) and Deformed Wing Virus (DWV)) were monitored in a year-long study. We investigated the viral titres in honey bees and varroa mites from 23 colonies (15 apiaries) under three treatment conditions: Organic acids (11 colonies), pyrethroid (9 colonies) and untreated (3 colonies). Approximately 200 bees were sampled every month from April 2011 to October 2011, and April 2012. The 200 bees were split to 10 subsamples of 20 bees and analysed separately, which allows us to determine the prevalence of virus-infected bees. The treatment efficacy was often low for both treatments. In colonies where varroa treatment reduced the mite load, colonies overwintered successfully, allowing the mites and viruses to be carried over with the bees into the next season. In general, AKI and DWV titres did not show any notable response to the treatment and steadily increased over the season from April to October. In the untreated control group, titres increased most dramatically. Viral copies were correlated to number of varroa mites. Most colonies that collapsed over the winter had significantly higher AKI and DWV titres in October compared to survivors. Only treated colonies survived the winter. We discuss our results in relation to the varroa-virus model developed by Stephen Martin.

  18. Varroa-Virus Interaction in Collapsing Honey Bee Colonies

    PubMed Central

    Francis, Roy M.; Nielsen, Steen L.; Kryger, Per

    2013-01-01

    Varroa mites and viruses are the currently the high-profile suspects in collapsing bee colonies. Therefore, seasonal variation in varroa load and viruses (Acute-Kashmir-Israeli complex (AKI) and Deformed Wing Virus (DWV)) were monitored in a year-long study. We investigated the viral titres in honey bees and varroa mites from 23 colonies (15 apiaries) under three treatment conditions: Organic acids (11 colonies), pyrethroid (9 colonies) and untreated (3 colonies). Approximately 200 bees were sampled every month from April 2011 to October 2011, and April 2012. The 200 bees were split to 10 subsamples of 20 bees and analysed separately, which allows us to determine the prevalence of virus-infected bees. The treatment efficacy was often low for both treatments. In colonies where varroa treatment reduced the mite load, colonies overwintered successfully, allowing the mites and viruses to be carried over with the bees into the next season. In general, AKI and DWV titres did not show any notable response to the treatment and steadily increased over the season from April to October. In the untreated control group, titres increased most dramatically. Viral copies were correlated to number of varroa mites. Most colonies that collapsed over the winter had significantly higher AKI and DWV titres in October compared to survivors. Only treated colonies survived the winter. We discuss our results in relation to the varroa-virus model developed by Stephen Martin. PMID:23526946

  19. Decreased flight performance and sperm production in drones of the honey bee (Apis mellifera) slightly infested by Varroa destructor mites during pupal development.

    PubMed

    Duay, Pedro; De Jong, David; Engels, Wolf

    2002-09-30

    We developed a bioassay to measure the flying power of drone, in order to determine which drones could reach a drone congregation area. A wind tunnel was used to test unparasitized drones and drones slightly parasitized by one or two mites during pupal development, and counts were made of the number of spermatozoa that they produced. Drones parasitized with one mite flew as long as control drones (x= 6'55" and 6'48", respectively, P = 0.512); however, those that had been infested by two mites flew significantly less (x= 2'16", P<0.001). There was a significant positive correlation (P<0.01) between flight duration and the number of spermatozoa per drone in control group (r = 0.53), and in both the one mite (r = 0.43) and two mite (r = 0.54) groups. Drones infested during development with one or two mites produced 24 and 45% fewer sperm, respectively.

  20. Varroa Sensitive Hygiene and Drone Brood

    USDA-ARS?s Scientific Manuscript database

    Honey bees have been bred to express high levels of varroa sensitive hygiene (VSH), which is the removal of mite-infested pupae from capped worker brood. This hygienic behavior is a complex interaction of bees and brood in which brood cells sometimes are inspected, and then brood is either removed (...

  1. High-Resolution Linkage Analyses to Identify Genes That Influence Varroa Sensitive Hygiene Behavior in Honey Bees.

    USDA-ARS?s Scientific Manuscript database

    Varroa mites (V. destructor) are a major threat to honey bees (Apis melilfera) and beekeeping worldwide and likely lead to colony decline if colonies are not treated. Most treatments involve chemical control of the mites; however, Varroa has evolved resistance to many of these miticides, leaving be...

  2. Factors influencing the prevalence and infestation levels of Varroa destructor in honeybee colonies in two highland agro-ecological zones of Uganda.

    PubMed

    Chemurot, Moses; Akol, Anne M; Masembe, Charles; de Smet, Lina; Descamps, Tine; de Graaf, Dirk C

    2016-04-01

    Varroa mites are ecto-parasites of honeybees and are a threat to the beekeeping industry. We identified the haplotype of Varroa mites and evaluated potential factors that influence their prevalence and infestation levels in the eastern and western highland agro-ecological zones of Uganda. This was done by collecting samples of adult worker bees between December 2014 and September 2015 in two sampling moments. Samples of bees were screened for Varroa using the ethanol wash method and the mites were identified by molecular techniques. All DNA sequences obtained from sampled mite populations in the two zones were 100 % identical to the Korean Haplotype (AF106899). Mean mite prevalence in the apiaries was 40 and 53 % for the western and eastern zones, respectively, during the first sampling. Over the second sampling, mean mite prevalence increased considerably in the western (59 %) but not in the eastern (51 %) zone. Factors that were associated with Varroa mite infestation levels include altitude, nature of apiary slope and apiary management practices during the first sampling. Our results further showed that Varroa mites were spreading from lower to higher elevations. Feral colonies were also infested with Varroa mites at infestation levels not significantly different from those in managed colonies. Colony productivity and strength were not correlated to mite infestation levels. We recommend a long-term Varroa mite monitoring strategy in areas of varying landscape and land use factors for a clear understanding of possible changes in mite infestation levels among African honeybees for informed decision making.

  3. Changes in infestation, cell cap condition, and reproductive status of Varroa destructor (Mesostigmata: Varrroidae) in brood exposed to honey bees with Varroa sensitive hygiene

    USDA-ARS?s Scientific Manuscript database

    Honey bees (Apis mellifera L.) bred for Varroa sensitive hygiene (VSH) selectively remove pupae infested with Varroa destructor Anderson & Trueman from capped brood that is inserted into the nest. After one week, remaining brood cells tend to have been uncapped and recapped, and remaining mites are...

  4. The control of Varroa destructor using oxalic acid.

    PubMed

    Gregorc, Ales; Planinc, I

    2002-05-01

    Twenty-four honeybee (Apis mellifera) colonies were used to monitor the efficacy of a solution of 2.9% oxalic acid (OA) and 31.9% sugar against the mite Varroa destructor. Mite mortality was established prior to and after OA treatments, which were conducted in August and September. The treatments resulted in 37% mite mortality as opposed to 1.11% in the controls. OA treatment conducted in September on previously untreated colonies resulted in 25% mite mortality. OA treatments in October and November resulted in approximately 97% mite mortality. These results suggest that OA is effective during the broodless period and less effective when applied to colonies with capped broods. The possible use of OA against the Varroa mite in honeybee colonies as an alternative to routine chemical treatments is discussed.

  5. A new detection method for a newly revealed mechanism of pyrethroid resistance development in Varroa destructor.

    PubMed

    Strachecka, Aneta; Borsuk, Grzegorz; Olszewski, Krzysztof; Paleolog, Jerzy

    2015-11-01

    The Varroa destructor mite has recently displayed an ever increasing resistance to new drugs, contributing to CCD proliferation. This work was aimed at determining new viable methods for identifying the pyrethroid resistance of V. destructor and DNA methylation in resistant and sensitive mites. DNA was extracted from Varroa mites. Nucleotide changes in the DNA of pyrethroid-resistant, pyrethroid-sensitive, and control mites were identified with polymerase chain reaction single-strand conformation polymorphism (PCR-SSCP) in the case of five mitochondrial gene fragments. More bands were observed in the drug-resistant mites than in the other two groups. Sequencing confirmed these observations. Decreased global DNA methylation levels were observed in the pyrethroid-resistant mites. There exists a previously undescribed mechanism of pyrethroid resistance development in Varroa mites. The PCR-SSCP methods can be considered and further developed as useful tools for detecting V. destructor resistance.

  6. Expression of varroa sensitive hygiene (VSH) in commercial VSH honey bees (Hymenoptera: Apidae)

    USDA-ARS?s Scientific Manuscript database

    We tested six commercial sources of honey bees (Apis mellifera L.) that were bred to include the trait of varroa sensitive hygiene (VSH). VSH confers resistance to the parasitic mite Varroa destructor Anderson & Trueman. Queens from these sources were established in colonies which later were measure...

  7. Population dynamics of Varroa destructor (Acari: Varroidae) in commercial honey bee colonies and implications for control

    USDA-ARS?s Scientific Manuscript database

    Treatment schedules to maintain low levels of Varroa mites in honey bee colonies were tested in hives started from either package bees or splits of larger colonies. The schedules were developed based on predictions of Varroa population growth generated from a mathematical model of honey bee colony ...

  8. Differential gene expression of the honey bee Apis mellifera associated with Varroa destructor infection

    PubMed Central

    Navajas, M; Migeon, A; Alaux, C; Martin-Magniette, ML; Robinson, GE; Evans, JD; Cros-Arteil, S; Crauser, D; Le Conte, Y

    2008-01-01

    Background The parasitic mite, Varroa destructor, is the most serious pest of the western honey bee, Apis mellifera, and has caused the death of millions of colonies worldwide. This mite reproduces in brood cells and parasitizes immature and adult bees. We investigated whether Varroa infestation induces changes in Apis mellifera gene expression, and whether there are genotypic differences that affect gene expression relevant to the bee's tolerance, as first steps toward unravelling mechanisms of host response and differences in susceptibility to Varroa parasitism. Results We explored the transcriptional response to mite parasitism in two genetic stocks of A. mellifera which differ in susceptibility to Varroa, comparing parasitized and non-parasitized full-sister pupae from both stocks. Bee expression profiles were analyzed using microarrays derived from honey bee ESTs whose annotation has recently been enhanced by results from the honey bee genome sequence. We measured differences in gene expression in two colonies of Varroa-susceptible and two colonies of Varroa-tolerant bees. We identified a set of 148 genes with significantly different patterns of expression: 32 varied with the presence of Varroa, 116 varied with bee genotype, and 2 with both. Varroa parasitism caused changes in the expression of genes related to embryonic development, cell metabolism and immunity. Bees tolerant to Varroa were mainly characterized by differences in the expression of genes regulating neuronal development, neuronal sensitivity and olfaction. Differences in olfaction and sensitivity to stimuli are two parameters that could, at least in part, account for bee tolerance to Varroa; differences in olfaction may be related to increased grooming and hygienic behavior, important behaviors known to be involved in Varroa tolerance. Conclusion These results suggest that differences in behavior, rather than in the immune system, underlie Varroa tolerance in honey bees, and give an indication

  9. The invasive Korea and Japan types of Varroa destructor, ectoparasitic mites of the Western honeybee (Apis mellifera), are two partly isolated clones.

    PubMed

    Solignac, Michel; Cornuet, Jean-Marie; Vautrin, Dominique; Le Conte, Yves; Anderson, Denis; Evans, Jay; Cros-Arteil, Sandrine; Navajas, Maria

    2005-02-22

    Varroa destructor, now a major pest of the Western honeybee, Apis mellifera, switched from its original host, the Eastern honeybee, A. cerana, ca. 50 years ago. So far, only two out of several known mitochondrial haplotypes of V. destructor have been found to be capable of reproducing on A. mellifera (Korea and Japan). These haplotypes are associated in almost complete cytonuclear disequilibrium to diagnostic alleles at 11 microsatellite loci. By contrast, microsatellite polymorphism within each type is virtually absent, because of a severe bottleneck at the time of host change. Accordingly, 12 mitochondrial sequences of 5185 nucleotides displayed 0.40% of nucleotide divergence between haplotypes and no intra haplotype variation. Hence, each type has a quasi-clonal structure. The nascent intratype variability is subsequent to the clone formation 50 years ago: in both types the variant alleles differ from the most common by one (in 10 cases), two (five cases) or three (one case) repeated motifs. In addition to individuals of the two 'pure' types, five F1 hybrids and 19 recombinant individuals (Japan alleles introgressed into the Korea genetic background) were detected. The existence of F1 and recombinant individuals in admixed populations requires that double infestations of honeybee cells occur in a high proportion but the persistence of pure types suggests a post-zygotic isolation between the two clones.

  10. The invasive Korea and Japan types of Varroa destructor, ectoparasitic mites of the Western honeybee (Apis mellifera), are two partly isolated clones

    PubMed Central

    Solignac, Michel; Cornuet, Jean-Marie; Vautrin, Dominique; Le Conte, Yves; Anderson, Denis; Evans, Jay; Cros-Arteil, Sandrine; Navajas, Maria

    2005-01-01

    Varroa destructor, now a major pest of the Western honeybee, Apis mellifera, switched from its original host, the Eastern honeybee, A. cerana, ca. 50 years ago. So far, only two out of several known mitochondrial haplotypes of V. destructor have been found to be capable of reproducing on A. mellifera (Korea and Japan). These haplotypes are associated in almost complete cytonuclear disequilibrium to diagnostic alleles at 11 microsatellite loci. By contrast, microsatellite polymorphism within each type is virtually absent, because of a severe bottleneck at the time of host change. Accordingly, 12 mitochondrial sequences of 5185 nucleotides displayed 0.40% of nucleotide divergence between haplotypes and no intra haplotype variation. Hence, each type has a quasi-clonal structure. The nascent intratype variability is subsequent to the clone formation 50 years ago: in both types the variant alleles differ from the most common by one (in 10 cases), two (five cases) or three (one case) repeated motifs. In addition to individuals of the two ‘pure’ types, five F1 hybrids and 19 recombinant individuals (Japan alleles introgressed into the Korea genetic background) were detected. The existence of F1 and recombinant individuals in admixed populations requires that double infestations of honeybee cells occur in a high proportion but the persistence of pure types suggests a post-zygotic isolation between the two clones. PMID:15734696

  11. On the front line: quantitative virus dynamics in honeybee (Apis mellifera L.) colonies along a new expansion front of the parasite Varroa destructor.

    PubMed

    Mondet, Fanny; de Miranda, Joachim R; Kretzschmar, Andre; Le Conte, Yves; Mercer, Alison R

    2014-08-01

    Over the past fifty years, annual honeybee (Apis mellifera) colony losses have been steadily increasing worldwide. These losses have occurred in parallel with the global spread of the honeybee parasite Varroa destructor. Indeed, Varroa mite infestations are considered to be a key explanatory factor for the widespread increase in annual honeybee colony mortality. The host-parasite relationship between honeybees and Varroa is complicated by the mite's close association with a range of honeybee viral pathogens. The 10-year history of the expanding front of Varroa infestation in New Zealand offered a rare opportunity to assess the dynamic quantitative and qualitative changes in honeybee viral landscapes in response to the arrival, spread and level of Varroa infestation. We studied the impact of de novo infestation of bee colonies by Varroa on the prevalence and titres of seven well-characterised honeybee viruses in both bees and mites, using a large-scale molecular ecology approach. We also examined the effect of the number of years since Varroa arrival on honeybee and mite viral titres. The dynamic shifts in the viral titres of black queen cell virus and Kashmir bee virus mirrored the patterns of change in Varroa infestation rates along the Varroa expansion front. The deformed wing virus (DWV) titres in bees continued to increase with Varroa infestation history, despite dropping infestation rates, which could be linked to increasing DWV titres in the mites. This suggests that the DWV titres in mites, perhaps boosted by virus replication, may be a major factor in maintaining the DWV epidemic after initial establishment. Both positive and negative associations were identified for several pairs of viruses, in response to the arrival of Varroa. These findings provide important new insights into the role of the parasitic mite Varroa destructor in influencing the viral landscape that affects honeybee colonies.

  12. On the Front Line: Quantitative Virus Dynamics in Honeybee (Apis mellifera L.) Colonies along a New Expansion Front of the Parasite Varroa destructor

    PubMed Central

    Mondet, Fanny; de Miranda, Joachim R.; Kretzschmar, Andre; Le Conte, Yves; Mercer, Alison R.

    2014-01-01

    Over the past fifty years, annual honeybee (Apis mellifera) colony losses have been steadily increasing worldwide. These losses have occurred in parallel with the global spread of the honeybee parasite Varroa destructor. Indeed, Varroa mite infestations are considered to be a key explanatory factor for the widespread increase in annual honeybee colony mortality. The host-parasite relationship between honeybees and Varroa is complicated by the mite's close association with a range of honeybee viral pathogens. The 10-year history of the expanding front of Varroa infestation in New Zealand offered a rare opportunity to assess the dynamic quantitative and qualitative changes in honeybee viral landscapes in response to the arrival, spread and level of Varroa infestation. We studied the impact of de novo infestation of bee colonies by Varroa on the prevalence and titres of seven well-characterised honeybee viruses in both bees and mites, using a large-scale molecular ecology approach. We also examined the effect of the number of years since Varroa arrival on honeybee and mite viral titres. The dynamic shifts in the viral titres of black queen cell virus and Kashmir bee virus mirrored the patterns of change in Varroa infestation rates along the Varroa expansion front. The deformed wing virus (DWV) titres in bees continued to increase with Varroa infestation history, despite dropping infestation rates, which could be linked to increasing DWV titres in the mites. This suggests that the DWV titres in mites, perhaps boosted by virus replication, may be a major factor in maintaining the DWV epidemic after initial establishment. Both positive and negative associations were identified for several pairs of viruses, in response to the arrival of Varroa. These findings provide important new insights into the role of the parasitic mite Varroa destructor in influencing the viral landscape that affects honeybee colonies. PMID:25144447

  13. Can We Disrupt the Sensing of Honey Bees by the Bee Parasite Varroa destructor?

    PubMed Central

    Eliash, Nurit; Singh, Nitin Kumar; Kamer, Yosef; Pinnelli, Govardhana Reddy; Plettner, Erika; Soroker, Victoria

    2014-01-01

    Background The ectoparasitic mite, Varroa destructor, is considered to be one of the most significant threats to apiculture around the world. Chemical cues are known to play a significant role in the host-finding behavior of Varroa. The mites distinguish between bees from different task groups, and prefer nurses over foragers. We examined the possibility of disrupting the Varroa – honey bee interaction by targeting the mite's olfactory system. In particular, we examined the effect of volatile compounds, ethers of cis 5-(2′-hydroxyethyl) cyclopent-2-en-1-ol or of dihydroquinone, resorcinol or catechol. We tested the effect of these compounds on the Varroa chemosensory organ by electrophysiology and on behavior in a choice bioassay. The electrophysiological studies were conducted on the isolated foreleg. In the behavioral bioassay, the mite's preference between a nurse and a forager bee was evaluated. Principal findings We found that in the presence of some compounds, the response of the Varroa chemosensory organ to honey bee headspace volatiles significantly decreased. This effect was dose dependent and, for some of the compounds, long lasting (>1 min). Furthermore, disruption of the Varroa volatile detection was accompanied by a reversal of the mite's preference from a nurse to a forager bee. Long-term inhibition of the electrophysiological responses of mites to the tested compounds was a good predictor for an alteration in the mite's host preference. Conclusions These data indicate the potential of the selected compounds to disrupt the Varroa - honey bee associations, thus opening new avenues for Varroa control. PMID:25226388

  14. Comparative Performance of Two Mite-Resistant Stocks of Honey Bees (Hymenoptera: Apidae) in Alabama Beekeeping Operations

    USDA-ARS?s Scientific Manuscript database

    The utility of USDA-developed Russian and varroa sensitive hygiene (VSH) honey bees, Apis mellifera L. (Hymenoptera: Apidae), was compared to that of locally produced, commercial Italian bees during 2004-2006 in beekeeping operations in Alabama, USA. Infestations of varroa mites, Varroa destructor ...

  15. Global Status of Honey Bee Mites

    USDA-ARS?s Scientific Manuscript database

    Parasitic bee mites have become a major problem to both beekeepers and honey bees. This chapter updates the latest information we have on the three mite species, Acarapis (tracheal), Varroa and Tropilaelaps that are currently a threat to honey bees. It also updates the current information on the ...

  16. Does the removal of mite-infested brood facilitate grooming?

    USDA-ARS?s Scientific Manuscript database

    The relationship between the removal of mite-infested brood and mite drop was compared using Russian (RHB, n = 9) and Italian (IHB, n = 9) honey bee colonies. A cloake board was used to isolate test brood frame on the top hive body and the metal sheet served as a varroa trap. Inoculum mites were col...

  17. Development of improved molecular methods for the detection of deformed wing virus (DWV) in honeybees (Apis mellifera L.) and mites ( Varroa destructor Oud.).

    PubMed

    Parrella, G; Caprio, E; Mazzone, P

    2006-01-01

    A simple and rapid method for the extraction of total nucleic acid from honeybee and mite, useful either as template for RT-PCR or in nucleic acids hybridization, was developed. Sensitivity of the methods were evaluated up to 10(9) and 10(6) dilution of TNAs extracted from a single honeybee, for reverse transcriptase polymerase chain reaction and molecular hybridization respectively. The two diagnostic methods developed could be useful for the study of the molecular biology and the pathology of DWV. For practical applications dot-blot hybridization could be used in order to study the incidence of DWV in honeybees populations. The method is enough sensitive, rapid and less affected by contamination problems compared to RT-PCR and thus it could be applied to the sanitary certification of honeybees and their products.

  18. Population growth of Varroa destructor (Acari: Varroidae) in commercial honey bee colonies treated with beta plant acids.

    PubMed

    DeGrandi-Hoffman, Gloria; Ahumada, Fabiana; Curry, Robert; Probasco, Gene; Schantz, Lloyd

    2014-10-01

    Varroa (Varroa destuctor Anderson and Trueman) populations in honey bee (Apis mellifera L.) colonies might be kept at low levels by well-timed miticide applications. HopGuard(®) (HG) that contains beta plant acids as the active ingredient was used to reduce mite populations. Schedules for applications of the miticide that could maintain low mite levels were tested in hives started from either package bees or splits of larger colonies. The schedules were developed based on defined parameters for efficacy of the miticide and predictions of varroa population growth generated from a mathematical model of honey bee colony-varroa population dynamics. Colonies started from package bees and treated with HG in the package only or with subsequent HG treatments in the summer had 1.2-2.1 mites per 100 bees in August. Untreated controls averaged significantly more mites than treated colonies (3.3 mites per 100 bees). By October, mite populations ranged from 6.3 to 15.0 mites per 100 bees with the lowest mite numbers in colonies treated with HG in August. HG applications in colonies started from splits in April reduced mite populations to 0.12 mites per 100 bees. In September, the treated colonies had significantly fewer mites than the untreated controls. Subsequent HG applications in September that lasted for 3 weeks reduced mite populations to levels in November that were significantly lower than in colonies that were untreated or had an HG treatment that lasted for 1 week. The model accurately predicted colony population growth and varroa levels until the fall when varroa populations measured in colonies established from package bees or splits were much greater than predicted. Possible explanations for the differences between actual and predicted mite populations are discussed.

  19. Using Single-nucleotide Polymorphisms and Genetic Mapping to find Candidate Genes that Influence Varroa-Specific Hygiene

    USDA-ARS?s Scientific Manuscript database

    Varroa-sensitive hygienic (VSH) behavior is one of two behaviors identified that are most important for controlling the growth of Varroa mite populations in bee hives. A study was conducted to map quantitative trait loci (QTL) that influence VSH so that resistance genes could be identified. Crosses ...

  20. Du nouveau dans la lutte biologique contre Varroa destructor

    USDA-ARS?s Scientific Manuscript database

    The European Biological Control Laboratory and the Association for the Development of Professional Beekeeping are working together to find a biological control solution against varroa mites. In spring 2005 the insect pathology team at EBCL found entomopathogenic fungi, Beauveria bassiana, on varro...

  1. Challenges for developing biopesticides against Varroa destructor (Mesostigamata: Varroidae)

    USDA-ARS?s Scientific Manuscript database

    Control of the major pest of apiculture, the ectoparasitic mite Varroa destructor, using biopesticides would resolve many of the problems experienced with other forms of control, such as chemical control, hive manipulation or selection of resistant strains. Several research groups have developed and...

  2. Are Dispersal Mechanisms Changing the Host-Parasite Relationship and Increasing the Virulence of Varroa destructor (Mesostigmata: Varroidae) in Managed Honey Bee (Hymenoptera: Apidae) Colonies?

    PubMed

    DeGrandi-Hoffman, Gloria; Ahumada, Fabiana; Graham, Henry

    2017-08-01

    Varroa (Varroa destructor Anderson and Trueman) are a serious pest of European honey bees (Apis mellifera L.), and difficult to control in managed colonies. In our 11-mo longitudinal study, we applied multiple miticide treatments, yet mite numbers remained high and colony losses exceeded 55%. High mortality from varroa in managed apiaries is a departure from the effects of the mite in feral colonies where bees and varroa can coexist. Differences in mite survival strategies and dispersal mechanisms may be contributing factors. In feral colonies, mites can disperse through swarming. In managed apiaries, where swarming is reduced, mites disperse on foragers robbing or drifting from infested hives. Using a honey bee-varroa population model, we show that yearly swarming curtails varroa population growth, enabling colony survival for >5 yr. Without swarming, colonies collapsed by the third year. To disperse, varroa must attach to foragers that then enter other hives. We hypothesize that stress from parasitism and virus infection combined with effects that viruses have on cognitive function may contribute to forager drift and mite and virus dispersal. We also hypothesize that drifting foragers with mites can measurably increase mite populations. Simulations initialized with field data indicate that low levels of drifting foragers with mites can create sharp increases in mite populations in the fall and heavily infested colonies in the spring. We suggest new research directions to investigate factors leading to mite dispersal on foragers, and mite management strategies with consideration of varroa as a migratory pest. Published by Oxford University Press on behalf of Entomological Society of America 2017. This work is written by US Government employees and is in the public domain in the US.

  3. Varroa destructor resistance of honey bees in Hawaii, USA, that express various levels of Varroa sensitive hygiene (VSH)

    USDA-ARS?s Scientific Manuscript database

    The Big Island of Hawaii, USA, supports an important honey bee (Apis mellifera) queen rearing industry that has been threatened by Varroa destructor since 2008. Miticides widely used to manage mites are known to interfere with queen rearing and sperm production. We investigated whether bees bred for...

  4. Comparing oxalic acid and sucrocide treatments for Varroa destructor (Acari: Varroidae) control under desert conditions.

    PubMed

    Sammataro, D; Finley, J; Underwood, R

    2008-08-01

    The effectiveness of oxalic acid (OA) and Sucrocide (S) (AVA Chemical Ventures, L.L.C., Portsmouth, NH) in reducing populations of the varroa mite Varroa destructor Anderson & Trueman (Acari: Varroidae) in honey bee, Apis mellifera L. (Hymenoptera: Apidae) colonies was measured under the desert conditions of Arizona, USA. OA and S were applied three times 7 d apart. A 3.2% solution of OA was applied in sugar syrup via a large volume syringe, trickling 5 ml per space between frames in the colony. S was applied at a concentration of 0.625% (mixed with water), according to the label directions, using a compressed air Chapin sprayer at 20 psi to apply 59 ml per frame space. Varroa mites, collected on a sticky board before, during, and after the treatments, were counted to assess the effectiveness of the treatments. This study showed that a desert climate zone did not confer any positive or negative results on the acaricidal properties of OA. Even with brood present in colonies, significant varroa mite mortality occurred in the OA colonies. In contrast, we found that Sucrocide was not effective as a mite control technique. Despite its ability to increase mite mortality in the short-term, varroa mite populations measured posttreatment were not affected any more by Sucrocide than by no treatment at all.

  5. Concurrent infestations by Aethina tumida and Varroa destructor alters thermoregulation in Apis mellifera winter clusters

    USDA-ARS?s Scientific Manuscript database

    The small hive beetle, Aethina tumida, and the ectoparasitic mite, Varroa destructor, are parasites of the honeybee, Apis mellifera. Both parasites overwinter in honeybee colonies. The efficacy of thermoregulation might be reduced in beetle and mite infested clusters, due to altered activity of host...

  6. Selecting honey bees for worker brood that reduces the reproduction of Varroa destructor

    USDA-ARS?s Scientific Manuscript database

    We investigated an effect of Apis mellifera worker brood on the reproduction of Varroa destructor as a resistance trait by conducting seven generations of bidirectional selection. Initial tests showed two-fold differences in mite fecundity (progeny per foundress mites) between colonies of different...

  7. Associations of parameters related to the fall of Varroa destructor (Mesostigmata: Varroidae) in Russian and Italian honey bee (Hymenoptera: Apidae) colonies.

    PubMed

    Rinderer, Thomas E; De Guzman, Lilia I; Frake, Amanda M

    2013-04-01

    Varroa destructor (Anderson and Truman) trapped on bottom boards were assessed as indirect measurements of colony mite populations and mite fall in colonies of Russian and Italian honey bees using 29 candidate measurements. Measurements included damaged and nondamaged younger mites, damaged and nondamaged older mites, fresh mites and all mites, each as a proportion of total mites in the colonies and as a proportion of all trapped mites or all trapped fresh mites. Regression analyses were used to determine the relationships of these candidate measurements to the number of mites in the colonies. The largest positive regressions were found for trapped younger mites (Y) and trapped fresh mites (F). Measurments of Y and F across time could be used to estimate mite population growth for the purposes of selective breeding. The largest negative regressions with colony mites were observed for: trapped older mites/trapped mites (O/T), trapped older mites/trapped younger mites (O/Y), and trapped injured older mites/injured mites (IO/I). O/T and O/Y are significantly higher for Russian honey bee colonies suggesting that they are related to at least some of the mechanisms used by Russian honey bee to resist Varroa population growth. O/T and O/Y have strong negative relationships with colony mites for both Russian honey bee and Italian colonies suggesting that both strains possibly could be selected for reduced colony mites using O/T or O/Y.

  8. Disease dynamics of honeybees with Varroa destructor as parasite and virus vector.

    PubMed

    Kang, Yun; Blanco, Krystal; Davis, Talia; Wang, Ying; DeGrandi-Hoffman, Gloria

    2016-05-01

    The worldwide decline in honeybee colonies during the past 50 years has often been linked to the spread of the parasitic mite Varroa destructor and its interaction with certain honeybee viruses carried by Varroa mites. In this paper, we propose a honeybee-mite-virus model that incorporates (1) parasitic interactions between honeybees and the Varroa mites; (2) five virus transmission terms between honeybees and mites at different stages of Varroa mites: from honeybees to honeybees, from adult honeybees to the phoretic mites, from brood to the reproductive mites, from the reproductive mites to brood, and from adult honeybees to the phoretic mites; and (3) Allee effects in the honeybee population generated by its internal organization such as division of labor. We provide completed local and global analysis for the full system and its subsystems. Our analytical and numerical results allow us have a better understanding of the synergistic effects of parasitism and virus infections on honeybee population dynamics and its persistence. Interesting findings from our work include: (a) due to Allee effects experienced by the honeybee population, initial conditions are essential for the survival of the colony. (b) Low adult honeybees to brood ratios have destabilizing effects on the system which generate fluctuating dynamics that lead to a catastrophic event where both honeybees and mites suddenly become extinct. This catastrophic event could be potentially linked to Colony Collapse Disorder (CCD) of honeybee colonies. (c) Virus infections may have stabilizing effects on the system, and parasitic mites could make disease more persistent. Our model illustrates how the synergy between the parasitic mites and virus infections consequently generates rich dynamics including multiple attractors where all species can coexist or go extinct depending on initial conditions. Our findings may provide important insights on honeybee viruses and parasites and how to best control them

  9. Varroa destructor changes its cuticular hydrocarbons to mimic new hosts

    PubMed Central

    Le Conte, Y.; Huang, Z. Y.; Roux, M.; Zeng, Z. J.; Christidès, J.-P.; Bagnères, A.-G.

    2015-01-01

    Varroa destructor (Vd) is a honeybee ectoparasite. Its original host is the Asian honeybee, Apis cerana, but it has also become a severe, global threat to the European honeybee, Apis mellifera. Previous studies have shown that Varroa can mimic a host's cuticular hydrocarbons (HC), enabling the parasite to escape the hygienic behaviour of the host honeybees. By transferring mites between the two honeybee species, we further demonstrate that Vd is able to mimic the cuticular HC of a novel host species when artificially transferred to this new host. Mites originally from A. cerana are more efficient than mites from A. mellifera in mimicking HC of both A. cerana and A. mellifera. This remarkable adaptability may explain their relatively recent host-shift from A. cerana to A. mellifera. PMID:26041867

  10. The influence of Nosema (Microspora: Nosematidae) infection on honey bee (Hymenoptera: Apidae) defense against Varroa destructor (Mesostigmata: Varroidae).

    PubMed

    Bahreini, Rassol; Currie, Robert W

    2015-11-01

    The objectives of this study were to quantify the costs and benefits of co-parasitism with Varroa (Varroa destructor Anderson and Trueman) and Nosema (Nosema ceranae Fries and Nosema apis Zander) on honey bees (Apis mellifera L.) with different defense levels. Newly-emerged worker bees from either high-mite-mortality-rate (high-MMR) bees or low-mite-mortality-rate (low-MMR) bees were confined in forty bioassay cages which were either inoculated with Nosema spores [Nosema (+) group] or were left un-inoculated [Nosema (-) group]. Caged-bees were then inoculated with Varroa mites [Varroa (+) group] or were left untreated [Varroa (-) group]. This established four treatment combinations within each Nosema treatment group: (1) low-MMR Varroa (-), (2) high-MMR Varroa (-), (3) low-MMR Varroa (+) and (4) high-MMR Varroa (+), each with five replicates. Overall mite mortality in high-MMR bees (0.12±0.02 mites per day) was significantly greater than in the low-MMR bees (0.06±0.02 mites per day). In the Nosema (-) groups bee mortality was greater in high-MMR bees than low-MMR bees but only when bees had a higher mite burden. Overall, high-MMR bees in the Nosema (-) group showed greater reductions in mean abundance of mites over time compared with low-MMR bees, when inoculated with additional mites. However, high-MMR bees could not reduce mite load as well as in the Nosema (-) group when fed with Nosema spores. Mean abundance of Nosema spores in live bees and dead bees of both strains of bees was significantly greater in the Nosema (+) group. Molecular analyses confirmed the presence of both Nosema species in inoculated bees but N. ceranae was more abundant than N. apis and unlike N. apis increased over the course of the experiment. Collectively, this study showed differential mite mortality rates among different genotypes of bees, however, Nosema infection restrained Varroa removal success in high-MMR bees.

  11. Associations of Parameters Related to the Fall of Varroa destructor (Mesostigmata: Varroidae) in Russian and Italian Honey Bee (Hymenoptera: Apidae) Colonies

    USDA-ARS?s Scientific Manuscript database

    Varroa destructor (Anderson and Truman) trapped on bottom boards were assessed as indirect measurements of colony mite populations and mite fall in colonies of Russian (RHB) and Italian (I) honey bees using 29 candidate measurements. Measurements included damaged and non-damaged younger mites, damag...

  12. Differential gene expression of two extreme honey bee (Apis mellifera) colonies showing varroa tolerance and susceptibility.

    PubMed

    Jiang, S; Robertson, T; Mostajeran, M; Robertson, A J; Qiu, X

    2016-06-01

    Varroa destructor, an ectoparasitic mite of honey bees (Apis mellifera), is the most serious pest threatening the apiculture industry. In our honey bee breeding programme, two honey bee colonies showing extreme phenotypes for varroa tolerance/resistance (S88) and susceptibility (G4) were identified by natural selection from a large gene pool over a 6-year period. To investigate potential defence mechanisms for honey bee tolerance to varroa infestation, we employed DNA microarray and real time quantitative (PCR) analyses to identify differentially expressed genes in the tolerant and susceptible colonies at pupa and adult stages. Our results showed that more differentially expressed genes were identified in the tolerant bees than in bees from the susceptible colony, indicating that the tolerant colony showed an increased genetic capacity to respond to varroa mite infestation. In both colonies, there were more differentially expressed genes identified at the pupa stage than at the adult stage, indicating that pupa bees are more responsive to varroa infestation than adult bees. Genes showing differential expression in the colony phenotypes were categorized into several groups based on their molecular functions, such as olfactory signalling, detoxification processes, exoskeleton formation, protein degradation and long-chain fatty acid metabolism, suggesting that these biological processes play roles in conferring varroa tolerance to naturally selected colonies. Identification of differentially expressed genes between the two colony phenotypes provides potential molecular markers for selecting and breeding varroa-tolerant honey bees. © 2016 The Royal Entomological Society.

  13. Examining the role of foraging and malvolio in host-finding behavior in the honey bee parasite, Varroa destructor (Anderson & Trueman)

    USDA-ARS?s Scientific Manuscript database

    When a female varroa mite, Varroa destructor (Anderson & Trueman), invades a honey bee brood cell, the physiology rapidly changes from the feeding phoretic to reproductive. Changes in the foraging and malvolio transcript levels in the brain have been associated with modulated intra-specific food sea...

  14. Observation of Varroa destructor behavior in capped worker brood of Africanized honey bees.

    PubMed

    Calderón, Rafael A; Chaves, Guisella; Sánchez, Luis A; Calderón, Rolando

    2012-11-01

    The behavioral activity of Varroa destructor was observed using transparent cells. Mite oviposition started at 45.0 ± 25.0 h post capping, followed by the next eggs laid at regular 27.3 ± 2.0 h intervals. On the prepupa, mites were found to feed often and there was no preference for a specific segment as a feeding site. During the pupal stage the mite fed less often and almost always at the same point. Varroa showed a preference for defecation in the posterior part of the cell. A significant association was observed between the position of the feeding point in the pupa and the defecation site on the cell wall. Displacement behavior was observed in 71 % of the infested bee larvae and a major change in the free space available for varroa in the cell occurred when the prepupa molted into a pupa.

  15. Specific Cues Associated With Honey Bee Social Defence against Varroa destructor Infested Brood

    PubMed Central

    Mondet, Fanny; Kim, Seo Hyun; de Miranda, Joachim R.; Beslay, Dominique; Le Conte, Yves; Mercer, Alison R.

    2016-01-01

    Social immunity forms an essential part of the defence repertoire of social insects. In response to infestation by the parasitic mite Varroa destructor and its associated viruses, honey bees (Apis mellifera L.) have developed a specific behaviour (varroa-sensitive hygiene, or VSH) that helps protect the colony from this parasite. Brood cells heavily infested with mites are uncapped, the brood killed, and the cell contents removed. For this extreme sacrifice to be beneficial to the colony, the targeting of parasitized brood for removal must be accurate and selective. Here we show that varroa-infested brood produce uniquely identifiable cues that could be used by VSH-performing bees to identify with high specificity which brood cells to sacrifice. This selective elimination of mite-infested brood is a disease resistance strategy analogous to programmed cell death, where young bees likely to be highly dysfunctional as adults are sacrificed for the greater good of the colony. PMID:27140530

  16. Ecology, life history and management of tropilaelaps mites

    USDA-ARS?s Scientific Manuscript database

    Parasitic mites are the major threat of the Western honey bee, Apis mellifera. For much of the world, Varroa destructor single-handedly inflicts unsurmountable problems to A. mellifera beekeeping. However, A. mellifera in Asia is also faced with another genus of destructive parasitic mite, Tropilae...

  17. Increased tolerance and resistance to virus infections: a possible factor in the survival of Varroa destructor-resistant honey bees (Apis mellifera).

    PubMed

    Locke, Barbara; Forsgren, Eva; de Miranda, Joachim R

    2014-01-01

    The honey bee ectoparasitic mite, Varroa destructor, has a world-wide distribution and inflicts more damage than all other known apicultural diseases. However, Varroa-induced colony mortality is more accurately a result of secondary virus infections vectored by the mite. This means that honey bee resistance to Varroa may include resistance or tolerance to virus infections. The aim of this study was to see if this is the case for a unique population of mite-resistant (MR) European honey bees on the island of Gotland, Sweden. This population has survived uncontrolled mite infestation for over a decade, developing specific mite-related resistance traits to do so. Using RT-qPCR techniques, we monitored late season virus infections, Varroa mite infestation and honey bee colony population dynamics in the Gotland MR population and compared this to mite-susceptible (MS) colonies in a close by apiary. From summer to autumn the deformed wing virus (DWV) titres increased similarly between the MR and MS populations, while the black queen cell virus (BQCV) and sacbrood virus (SBV) titres decreased substantially in the MR population compared to the MS population by several orders of magnitude. The MR colonies all survived the following winter with high mite infestation, high DWV infection, small colony size and low proportions of autumn brood, while the MS colonies all perished. Possible explanations for these changes in virus titres and their relevance to Varroa resistance and colony winter survival are discussed.

  18. Increased Tolerance and Resistance to Virus Infections: A Possible Factor in the Survival of Varroa destructor-Resistant Honey Bees (Apis mellifera)

    PubMed Central

    Locke, Barbara; Forsgren, Eva; de Miranda, Joachim R.

    2014-01-01

    The honey bee ectoparasitic mite, Varroa destructor, has a world-wide distribution and inflicts more damage than all other known apicultural diseases. However, Varroa-induced colony mortality is more accurately a result of secondary virus infections vectored by the mite. This means that honey bee resistance to Varroa may include resistance or tolerance to virus infections. The aim of this study was to see if this is the case for a unique population of mite-resistant (MR) European honey bees on the island of Gotland, Sweden. This population has survived uncontrolled mite infestation for over a decade, developing specific mite-related resistance traits to do so. Using RT-qPCR techniques, we monitored late season virus infections, Varroa mite infestation and honey bee colony population dynamics in the Gotland MR population and compared this to mite-susceptible (MS) colonies in a close by apiary. From summer to autumn the deformed wing virus (DWV) titres increased similarly between the MR and MS populations, while the black queen cell virus (BQCV) and sacbrood virus (SBV) titres decreased substantially in the MR population compared to the MS population by several orders of magnitude. The MR colonies all survived the following winter with high mite infestation, high DWV infection, small colony size and low proportions of autumn brood, while the MS colonies all perished. Possible explanations for these changes in virus titres and their relevance to Varroa resistance and colony winter survival are discussed. PMID:24926792

  19. An amino acid substitution (L925V) associated with resistance to pyrethroids in Varroa destructor.

    PubMed

    González-Cabrera, Joel; Davies, T G Emyr; Field, Linda M; Kennedy, Peter J; Williamson, Martin S

    2013-01-01

    The Varroa mite, Varroa destructor, is an important pest of honeybees and has played a prominent role in the decline in bee colony numbers over recent years. Although pyrethroids such as tau-fluvalinate and flumethrin can be highly effective in removing the mites from hives, their intensive use has led to many reports of resistance. To investigate the mechanism of resistance in UK Varroa samples, the transmembrane domain regions of the V. destructor voltage-gated sodium channel (the main target site for pyrethroids) were PCR amplified and sequenced from pyrethroid treated/untreated mites collected at several locations in Central/Southern England. A novel amino acid substitution, L925V, was identified that maps to a known hot spot for resistance within the domain IIS5 helix of the channel protein; a region that has also been proposed to form part of the pyrethroid binding site. Using a high throughput diagnostic assay capable of detecting the mutation in individual mites, the L925V substitution was found to correlate well with resistance, being present in all mites that had survived tau-fluvalinate treatment but in only 8 % of control, untreated samples. The potential for using this assay to detect and manage resistance in Varroa-infected hives is discussed.

  20. An Amino Acid Substitution (L925V) Associated with Resistance to Pyrethroids in Varroa destructor

    PubMed Central

    González-Cabrera, Joel; Davies, T. G. Emyr; Field, Linda M.; Kennedy, Peter J.; Williamson, Martin S.

    2013-01-01

    The Varroa mite, Varroa destructor, is an important pest of honeybees and has played a prominent role in the decline in bee colony numbers over recent years. Although pyrethroids such as tau-fluvalinate and flumethrin can be highly effective in removing the mites from hives, their intensive use has led to many reports of resistance. To investigate the mechanism of resistance in UK Varroa samples, the transmembrane domain regions of the V. destructor voltage-gated sodium channel (the main target site for pyrethroids) were PCR amplified and sequenced from pyrethroid treated/untreated mites collected at several locations in Central/Southern England. A novel amino acid substitution, L925V, was identified that maps to a known hot spot for resistance within the domain IIS5 helix of the channel protein; a region that has also been proposed to form part of the pyrethroid binding site. Using a high throughput diagnostic assay capable of detecting the mutation in individual mites, the L925V substitution was found to correlate well with resistance, being present in all mites that had survived tau-fluvalinate treatment but in only 8 % of control, untreated samples. The potential for using this assay to detect and manage resistance in Varroa-infected hives is discussed. PMID:24367572

  1. Octanoic acid confers to royal jelly varroa-repellent properties

    NASA Astrophysics Data System (ADS)

    Nazzi, Francesco; Bortolomeazzi, Renzo; Della Vedova, Giorgio; Del Piccolo, Fabio; Annoscia, Desiderato; Milani, Norberto

    2009-02-01

    The mite Varroa destructor Anderson & Trueman is a parasite of the honeybee Apis mellifera L. and represents a major threat for apiculture in the Western world. Reproduction takes place only inside bee brood cells that are invaded just before sealing; drone cells are preferred over worker cells, whereas queen cells are not normally invaded. Lower incidence of mites in queen cells is at least partly due to the deterrent activity of royal jelly. In this study, the repellent properties of royal jelly were investigated using a lab bioassay. Chemical analysis showed that octanoic acid is a major volatile component of royal jelly; by contrast, the concentration is much lower in drone and worker larval food. Bioassays, carried out under lab conditions, demonstrated that octanoic acid is repellent to the mite. Field studies in bee colonies confirmed that the compound may interfere with the process of cell invasion by the mite.

  2. Hygienic and grooming behaviors in African and European honeybees-New damage categories in Varroa destructor

    USDA-ARS?s Scientific Manuscript database

    Varroa destructor is an ectoparasitic pest of honeybees, and a threat to the survival of the apiculture industry. Several studies have shown that unlike European honeybees, African honeybee populations appear to be minimally affected when attacked by this mite. However, little is known about the und...

  3. Varroa destructor, a potential vector of Israeli Acute Paralysis Virus in honey bees, Apis mellifera

    USDA-ARS?s Scientific Manuscript database

    Although the role of the parasitic mite, Varroa destructor, as a vector in transmission of viruses between honey bees is well established, no study has shown that it can similarly transmit Israeli Acute Paralysis Virus (IAPV), a virus that was found to be associated with Colony Collapse Disorder (CC...

  4. Tropilaelaps mercedesae and Varroa destructor: prevalence and reproduction in concurrently infested Apis mellifera colonies

    USDA-ARS?s Scientific Manuscript database

    The prevalence of Tropilaelaps mercedesae and Varroa destructor in concurrently infested A. mellifera colonies in Thailand was monitored. We also assessed the reproductive ability of T. mercedesae and V. destructor in naturally infested brood and in brood cells deliberately infested with both mite g...

  5. Prevalence and reproduction of Tropilaelaps mercedesae and Varroa destructor in concurrently infested Apis mellifera colonies

    USDA-ARS?s Scientific Manuscript database

    The prevalence of Tropilaelaps mercedesae and Varroa destructor in concurrently infested A. mellifera colonies in Thailand was monitored. We also assessed the fecundity of T. mercedesae and V. destructor in naturally infested brood and in brood cells deliberately infested with both mite genera. Resu...

  6. Integrated varroa control in honey bee colonies (Apis mellifera carnica) with or without brood

    USDA-ARS?s Scientific Manuscript database

    Studies were conducted in two apiaries in order to assess the comparative efficacy of oxalic acid (OA), formic acid (FA) and Thymovar against varroa mites in honey bee colonies. Treatments were performed using 85% FA and OA consisted of 2.9% oxalic acid dihydrate and 31.9% sugar in water. Consecutiv...

  7. Les micro-champignons, nouvel espoir dans la lutte biologique contre Varroa destructor

    USDA-ARS?s Scientific Manuscript database

    After almost twenty years, research on the chemical control of Varroa destructor has still not provided a final answer. This mite parasite is still a serious menace to colonies of Apis mellifera. Laboratory work has shown that several species of entomopathogenic fungi, which are found naturally in ...

  8. Differential viral levels and immune gene expression in three stocks of Apis mellifera induced by different numbers of Varroa destructor.

    PubMed

    Khongphinitbunjong, Kitiphong; de Guzman, Lilia I; Tarver, Matthew R; Rinderer, Thomas E; Chen, Yanping; Chantawannakul, Panuwan

    2015-01-01

    The viral levels and immune responses of Italian honey bees (IHB), Russian honey bees (RHB) and an outcross of Varroa Sensitive Hygienic bees (POL) deliberately infested with one or two foundress Varroa were compared. We found that the Deformed wing virus (DWV) level in IHB inoculated with one or two foundress Varroa increased to about 10(3) or 10(5) fold the levels of their uninfested brood. In contrast, POL (10(2) or 10(4) fold) and RHB (10(2) or l0(4) fold) supported a lower increase in DWV levels. The feeding of different stages of Varroa nymphs did not increase DWV levels of their pupal hosts. Analyses of their corresponding Varroa mites showed the same trends: two foundress Varroa yielded higher DWV levels than one foundress, and the addition of nymphs did not increase viral levels. Using the same pupae examined for the presence of viruses, 16 out of 24 genes evaluated showed significant differential mRNA expression levels among the three honey bee stocks. However, only four genes (Defensin, Dscam, PPOact and spaetzle), which were expressed at similar levels in uninfested pupae, were altered by the number of feeding foundress Varroa and levels of DWV regardless of stocks. This research provides the first evidence that immune response profiles of different honey bee stocks are induced by Varroa parasitism.

  9. Genome Characterization, Prevalence and Distribution of a Macula-Like Virus from Apis mellifera and Varroa destructor.

    PubMed

    de Miranda, Joachim R; Cornman, R Scott; Evans, Jay D; Semberg, Emilia; Haddad, Nizar; Neumann, Peter; Gauthier, Laurent

    2015-07-06

    Around 14 distinct virus species-complexes have been detected in honeybees, each with one or more strains or sub-species. Here we present the initial characterization of an entirely new virus species-complex discovered in honeybee (Apis mellifera L.) and varroa mite (Varroa destructor) samples from Europe and the USA. The virus has a naturally poly-adenylated RNA genome of about 6500 nucleotides with a genome organization and sequence similar to the Tymoviridae (Tymovirales; Tymoviridae), a predominantly plant-infecting virus family. Literature and laboratory analyses indicated that the virus had not previously been described. The virus is very common in French apiaries, mirroring the results from an extensive Belgian survey, but could not be detected in equally-extensive Swedish and Norwegian bee disease surveys. The virus appears to be closely linked to varroa, with the highest prevalence found in varroa samples and a clear seasonal distribution peaking in autumn, coinciding with the natural varroa population development. Sub-genomic RNA analyses show that bees are definite hosts, while varroa is a possible host and likely vector. The tentative name of Bee Macula-like virus (BeeMLV) is therefore proposed. A second, distantly related Tymoviridae-like virus was also discovered in varroa transcriptomes, tentatively named Varroa Tymo-like virus (VTLV).

  10. Genome Characterization, Prevalence and Distribution of a Macula-Like Virus from Apis mellifera and Varroa destructor

    PubMed Central

    de Miranda, Joachim R.; Cornman, R. Scott; Evans, Jay D.; Semberg, Emilia; Haddad, Nizar; Neumann, Peter; Gauthier, Laurent

    2015-01-01

    Around 14 distinct virus species-complexes have been detected in honeybees, each with one or more strains or sub-species. Here we present the initial characterization of an entirely new virus species-complex discovered in honeybee (Apis mellifera L.) and varroa mite (Varroa destructor) samples from Europe and the USA. The virus has a naturally poly-adenylated RNA genome of about 6500 nucleotides with a genome organization and sequence similar to the Tymoviridae (Tymovirales; Tymoviridae), a predominantly plant-infecting virus family. Literature and laboratory analyses indicated that the virus had not previously been described. The virus is very common in French apiaries, mirroring the results from an extensive Belgian survey, but could not be detected in equally-extensive Swedish and Norwegian bee disease surveys. The virus appears to be closely linked to varroa, with the highest prevalence found in varroa samples and a clear seasonal distribution peaking in autumn, coinciding with the natural varroa population development. Sub-genomic RNA analyses show that bees are definite hosts, while varroa is a possible host and likely vector. The tentative name of Bee Macula-like virus (BeeMLV) is therefore proposed. A second, distantly related Tymoviridae-like virus was also discovered in varroa transcriptomes, tentatively named Varroa Tymo-like virus (VTLV). PMID:26154017

  11. Examining the role of foraging and malvolio in host-finding behavior in the honey bee parasite, Varroa destructor (Anderson & Trueman).

    PubMed

    Cabrera, Ana R; Shirk, Paul D; Teal, Peter E A; Grozinger, Christina M; Evans, Jay D

    2014-02-01

    When a female varroa mite, Varroa destructor (Anderson & Trueman), invades a honey bee brood cell, the physiology rapidly changes from feeding phoretic to reproductive. Changes in foraging and malvolio transcript levels in the brain have been associated with modulated intra-specific food searching behaviors in insects and other invertebrates. Transcription profiles for both genes were examined during and immediately following brood cell invasion to assess their role as potential control elements. Vdfor and Vdmvl transcripts were found in all organs of varroa mites with the highest Vdfor transcript levels in ovary-lyrate organs and the highest Vdmvl in Malpighian tubules. Changes in transcript levels of Vdfor and Vdmvl in synganglia were not associated with the cell invasion process, remaining comparable between early reproductive mites (collected from the pre-capping brood cells) and phoretic mites. However, Vdfor and Vdmvl transcript levels were lowered by 37 and 53%, respectively, in synganglia from reproductive mites compared to early reproductive mites, but not significantly different to levels in synganglia from phoretic mites. On the other hand, in whole body preparations the Vdfor and Vdmvl had significantly higher levels of transcript in reproductive mites compared to phoretic and early reproductive, mainly due to the presence of both transcripts accumulating in the eggs carried by the ovipositing mite. Varroa mites are a critical component for honey bee population decline and finding varroa mite genes associated with brood cell invasion, reproduction, ion balance and other physiological processes will facilitate development of novel control avenues for this honey bee parasite. © 2013 Wiley Periodicals, Inc.

  12. Are dispersal mechanisms changing the host-parasite relationship and increasing the virulence of Varroa destructor [Acari:Varroidae] in managed honey bee [Hymenoptera: Apidae] colonies?

    USDA-ARS?s Scientific Manuscript database

    Varroa mites are the most serious pest of honey bees worldwide, and difficult to control in managed colonies. We show in a longitudinal study that even with multiple miticide treatments in the summer and fall, mite numbers remained high and colony losses exceeded 55%. Furthermore, large heavily infe...

  13. A selective sweep in a Varroa destructor resistant honeybee (Apis mellifera) population.

    PubMed

    Lattorff, H Michael G; Buchholz, Josephine; Fries, Ingemar; Moritz, Robin F A

    2015-04-01

    The mite Varroa destructor is one of the most dangerous parasites of the Western honeybee (Apis mellifera) causing enormous colony losses worldwide. Various chemical treatments for the control of the Varroa mite are currently in use, which, however, lead to residues in bee products and often to resistance in mites. This facilitated the exploration of alternative treatment methods and breeding for mite resistant honeybees has been in focus for breeders in many parts of the world with variable results. Another approach has been applied to a honeybee population on Gotland (Sweden) that was exposed to natural selection and survived Varroa-infestation for more than 10years without treatment. Eventually this population became resistant to the parasite by suppressing the reproduction of the mite. A previous QTL mapping study had identified a region on chromosome 7 with major loci contributing to the mite resistance. Here, a microsatellite scan of the significant candidate QTL regions was used to investigate potential footprints of selection in the original population by comparing the study population on Gotland before (2000) and after selection (2007). Genetic drift had caused an extreme loss of genetic diversity in the 2007 population for all genetic markers tested. In addition to this overall reduction of heterozygosity, two loci on chromosome 7 showed an even stronger and significant reduction in diversity than expected from genetic drift alone. Within the selective sweep eleven genes are annotated, one of them being a putative candidate to interfere with reduced mite reproduction. A glucose-methanol-choline oxidoreductase (GMCOX18) might be involved in changing volatiles emitted by bee larvae that might be essential to trigger oogenesis in Varroa. Copyright © 2015 Elsevier B.V. All rights reserved.

  14. Removal of drone brood from Apis mellifera (Hymenoptera: Apidae) colonies to control Varroa destructor (Acari: Varroidae) and retain adult drones.

    PubMed

    Wantuch, Holly A; Tarpy, David R

    2009-12-01

    The parasitic mite Varroa destructor Anderson & Trueman (Acari: Varroidae) has plagued European honey bees, Apis mellifera L. (Hymenoptera: Apidae), in the Americas since its introduction in the 1980s. For many years, these mites were sufficiently controlled using synthetic acaricides. Recently, however, beekeepers have experienced increased resistance by mites to chemical pesticides, which are also known to leave residues in hive products such as wax and honey. Thus there has been increased emphasis on nonchemical integrated pest management control tactics for Varroa. Because mites preferentially reproduce in drone brood (pupal males), we developed a treatment strategy focusing on salvaging parasitized drones while removing mites from them. We removed drone brood from colonies in which there was no acaricidal application and banked them in separate "drone-brood receiving" colonies treated with pesticides to kill mites emerging with drones. We tested 20 colonies divided into three groups: 1) negative control (no mite treatment), 2) positive control (treatment with acaricides), and 3) drone-brood removal and placement into drone-brood receiving colonies. We found that drone-brood trapping significantly lowered mite numbers during the early months of the season, eliminating the need for additional control measures in the spring. However, mite levels in the drone-brood removal group increased later in the summer, suggesting that this benefit does not persist throughout the entire season. Our results suggest that this method of drone-brood trapping can be used as an element of an integrated control strategy to control varroa mites, eliminating a large portion of the Varroa population with limited chemical treatments while retaining the benefits of maintaining adult drones in the population.

  15. Distance Between Honey Bee Apis mellifera Colonies Regulates Populations of Varroa destructor at a Landscape Scale.

    PubMed

    Nolan, Maxcy P; Delaplane, Keith S

    2016-01-01

    Inter-colony distance of Apis mellifera significantly affects colony numbers of the parasitic mite Varroa destructor. We set up 15 apiaries, each consisting of two colonies. Each apiary pair was assigned an inter-colony distance of 0, 10, or 100 m. Colonies were rendered nearly mite-free, then one colony in each pair was seeded with 300 female mites (mite-donor colony), while the other remained uninoculated (mite-recipient colony). After four months of monitoring, a whole model analysis showed that apiaries in which colonies were spaced 100 m apart contained lower average mite numbers than 0 m or 10 m apiaries. There were interactions among colony type, distance, and sampling date; however, when there were significant differences mite numbers were always lower in 100 m apiaries than 10 m apiaries. These findings pose the possibility that Varroa populations are resource regulated at a landscape scale: near-neighbor colonies constitute reproductive resource for mites in the form of additional bee brood.

  16. Distance Between Honey Bee Apis mellifera Colonies Regulates Populations of Varroa destructor at a Landscape Scale

    PubMed Central

    Nolan, Maxcy P.; Delaplane, Keith S.

    2016-01-01

    Inter-colony distance of Apis mellifera significantly affects colony numbers of the parasitic mite Varroa destructor. We set up 15 apiaries, each consisting of two colonies. Each apiary pair was assigned an inter-colony distance of 0, 10, or 100 m. Colonies were rendered nearly mite-free, then one colony in each pair was seeded with 300 female mites (mite-donor colony), while the other remained uninoculated (mite-recipient colony). After four months of monitoring, a whole model analysis showed that apiaries in which colonies were spaced 100 m apart contained lower average mite numbers than 0 m or 10 m apiaries. There were interactions among colony type, distance, and sampling date; however, when there were significant differences mite numbers were always lower in 100 m apiaries than 10 m apiaries. These findings pose the possibility that Varroa populations are resource regulated at a landscape scale: near-neighbor colonies constitute reproductive resource for mites in the form of additional bee brood. PMID:27812228

  17. Phenotypic and Genetic Analyses of the Varroa Sensitive Hygienic Trait in Russian Honey Bee (Hymenoptera: Apidae) Colonies

    PubMed Central

    Kirrane, Maria J.; de Guzman, Lilia I.; Holloway, Beth; Frake, Amanda M.; Rinderer, Thomas E.; Whelan, Pádraig M.

    2015-01-01

    Varroa destructor continues to threaten colonies of European honey bees. General hygiene, and more specific Varroa Sensitive Hygiene (VSH), provide resistance towards the Varroa mite in a number of stocks. In this study, 32 Russian (RHB) and 14 Italian honey bee colonies were assessed for the VSH trait using two different assays. Firstly, colonies were assessed using the standard VSH behavioural assay of the change in infestation of a highly infested donor comb after a one-week exposure. Secondly, the same colonies were assessed using an “actual brood removal assay” that measured the removal of brood in a section created within the donor combs as a potential alternative measure of hygiene towards Varroa-infested brood. All colonies were then analysed for the recently discovered VSH quantitative trait locus (QTL) to determine whether the genetic mechanisms were similar across different stocks. Based on the two assays, RHB colonies were consistently more hygienic toward Varroa-infested brood than Italian honey bee colonies. The actual number of brood cells removed in the defined section was negatively correlated with the Varroa infestations of the colonies (r2 = 0.25). Only two (percentages of brood removed and reproductive foundress Varroa) out of nine phenotypic parameters showed significant associations with genotype distributions. However, the allele associated with each parameter was the opposite of that determined by VSH mapping. In this study, RHB colonies showed high levels of hygienic behaviour towards Varroa -infested brood. The genetic mechanisms are similar to those of the VSH stock, though the opposite allele associates in RHB, indicating a stable recombination event before the selection of the VSH stock. The measurement of brood removal is a simple, reliable alternative method of measuring hygienic behaviour towards Varroa mites, at least in RHB stock. PMID:25909856

  18. Phenotypic and genetic analyses of the varroa sensitive hygienic trait in Russian honey bee (hymenoptera: apidae) colonies.

    PubMed

    Kirrane, Maria J; de Guzman, Lilia I; Holloway, Beth; Frake, Amanda M; Rinderer, Thomas E; Whelan, Pádraig M

    2014-01-01

    Varroa destructor continues to threaten colonies of European honey bees. General hygiene, and more specific Varroa Sensitive Hygiene (VSH), provide resistance towards the Varroa mite in a number of stocks. In this study, 32 Russian (RHB) and 14 Italian honey bee colonies were assessed for the VSH trait using two different assays. Firstly, colonies were assessed using the standard VSH behavioural assay of the change in infestation of a highly infested donor comb after a one-week exposure. Secondly, the same colonies were assessed using an "actual brood removal assay" that measured the removal of brood in a section created within the donor combs as a potential alternative measure of hygiene towards Varroa-infested brood. All colonies were then analysed for the recently discovered VSH quantitative trait locus (QTL) to determine whether the genetic mechanisms were similar across different stocks. Based on the two assays, RHB colonies were consistently more hygienic toward Varroa-infested brood than Italian honey bee colonies. The actual number of brood cells removed in the defined section was negatively correlated with the Varroa infestations of the colonies (r2 = 0.25). Only two (percentages of brood removed and reproductive foundress Varroa) out of nine phenotypic parameters showed significant associations with genotype distributions. However, the allele associated with each parameter was the opposite of that determined by VSH mapping. In this study, RHB colonies showed high levels of hygienic behaviour towards Varroa -infested brood. The genetic mechanisms are similar to those of the VSH stock, though the opposite allele associates in RHB, indicating a stable recombination event before the selection of the VSH stock. The measurement of brood removal is a simple, reliable alternative method of measuring hygienic behaviour towards Varroa mites, at least in RHB stock.

  19. Repellent and acaricidal effects of botanical extracts on Varroa destructor.

    PubMed

    Damiani, Natalia; Gende, Liesel B; Maggi, Matías D; Palacios, Sara; Marcangeli, Jorge A; Eguaras, Martín J

    2011-01-01

    Extracts of indigenous plants from South America have shown a broad spectrum of bioactivities. No-contaminant and natural substances have recently resurged as control treatment options for varroosis in honey bee colonies from Argentina. The aim of this work was to evaluate the biological activity of botanical extracts from Baccharis flabellata and Minthostachys verticillata on Varroa destructor and Apis mellifera. The acaricidal and insecticidal activities were assessed by the spraying application method. Both ethanolic extracts showed high levels of toxicity against the mites and were harmless to their host, A. mellifera. During the attractive-repellent test, the olfactory stimulus evoked for the extract from B. flabellata resulted as a repellent for mites. The aromatic stimulus of these extracts would be strong enough to cause disturbance on the behavior of V. destructor. Thus, the repellent effect of these substances plus the toxicity on mites postulate these botanical extracts like promising natural compound to be incorporated for the control of varroosis.

  20. First detection of Varroa destructor resistance to coumaphos in Argentina.

    PubMed

    Maggi, Matías Daniel; Ruffinengo, Sergio R; Damiani, Natalia; Sardella, Norma H; Eguaras, Martín J

    2009-04-01

    In Argentina, studies on Varroa destructor resistance to coumaphos are still unknown. At present, high infestation levels of V. destructor are being detected in colonies of Apis mellifera after treatment with this acaricide. The aim of the present study was to determine the LC50 of coumaphos in V. destructor from four apiaries with high mite density after treatment with coumaphos. The LC50's were 112, 319, 127 and 133 microg/Petri dish for mites from the four apiaries. Significant LC50 differences were detected between resistant and susceptible mites. LC50 increased 197-559-fold when compared to the corresponding baseline, suggesting the development of resistance. These results are the first report of resistance to coumaphos in V. destructor in Argentina.

  1. The New Zealand experience of varroa invasion highlights research opportunities for Australia.

    PubMed

    Iwasaki, Jay M; Barratt, Barbara I P; Lord, Janice M; Mercer, Alison R; Dickinson, Katharine J M

    2015-11-01

    The Varroa mite (Varroa destructor) is implicated as a major disease factor in honey bee (Apis mellifera) populations worldwide. Honey bees are extensively relied upon for pollination services, and in countries such as New Zealand and Australia where honey bees have been introduced specifically for commercial pollinator services, the economic effects of any decline in honey bee numbers are predicted to be profound. V. destructor established in New Zealand in 2000 but as yet, Australia remains Varroa-free. Here we analyze the history of V. destructor invasion and spread in New Zealand and discuss the likely long-term impacts. When the mite was discovered in New Zealand, it was considered too well established for eradication to be feasible. Despite control efforts, V. destructor has since spread throughout the country. Today, assessing the impacts of the arrival of V. destructor in this country is compromised by a paucity of data on pollinator communities as they existed prior to invasion. Australia's Varroa-free status provides a rare and likely brief window of opportunity for the global bee research community to gain understanding of honey bee-native pollinator community dynamics prior to Varroa invasion.

  2. RAPD identification of Varroa destructor genotypes in Brazil and other regions of the Americas.

    PubMed

    Guerra, J C V; Issa, M R C; Carneiro, F E; Strapazzon, R; Moretto, G

    2010-02-23

    The mite Varroa destructor is the main pest causing damage to apiculture worldwide. In Brazil and other parts of the world, where bees of African origin and their hybrids predominate, the bees can survive these mites without treatment. Studies have shown a correlation between the various genotypes of the mite and its fertility in different geographical regions. Information about mite genotype could be helpful in understanding the diverse effects and relationships of the mite with bees in different regions of the world. DNA analysis by RAPD technique has permitted identification of three distinct genotypes in the mite V. destructor, namely Russian, Japanese and Papua New Guinea. We found predominance of the Russian genotype in Brazil, along with other parts of South America, and in Cuba and Mexico. The Japanese genotype was exclusively found on Fernando de Noronha Island in Brazil.

  3. Bioactivity of propolis from different geographical origins on Varroa destructor (Acari: Varroidae).

    PubMed

    Damiani, Natalia; Fernández, Natalia J; Maldonado, Luis M; Alvarez, Alejandro R; Eguaras, Martín J; Marcangeli, Jorge A

    2010-06-01

    Varroa destructor is an ectoparasitic mite that affects colonies of honey bee Apis mellifera worldwide. In the last years, substances of botanical origin have emerged as natural alternative acaricides to diminish the population levels of the mite. In the present work, the bioactivity of propolis from different geographical locations of Pampean region from Argentina on V. destructor was evaluated. Fourteen propolis samples were organoleptic and physicochemically characterized and, by means topical applications, their activity was tested on mites. All propolis had a homogeneous composition and the bioactivity levels against mites were comparable among the different propolis samples. The percentage of mites killed by the treatments ranged between 60.5% and 90% after 30 s of exposure. Thus, V. destructor was highly susceptible to propolis. Moreover, the mites remained anesthetized during the first hours after topical treatment. The results suggest that propolis from Argentinean pampas could be incorporated in honey bee colonies as acaricidal treatment by spraying.

  4. The effects of beta acids from hops (Humulus lupulus) on mortality of Varroa destructor (Acari: Varroidae).

    PubMed

    Degrandi-Hoffman, Gloria; Ahumada, Fabiana; Probasco, Gene; Schantz, Lloyd

    2012-12-01

    Hop (Humulus lupulus L.) beta acids (HBA) were tested for miticidal effects on varroa destructor Anderson and Trueman, a parasitic mite of the honey bee (Apis mellifera L.). When varroa were placed on bees that had topical applications of 1 % HBA, there was 100 % mite mortality. Bee mortality was unaffected. Cardboard strips saturated with HBA and placed in colonies resulted in mite drop that was significantly greater than in untreated hives. HBA was detected on about 60 % of the bees in colonies during the first 48 h after application. Mite drop in colonies lasted for about 7 days with the highest drop occurring in the first 2-3 days after treatment. There was a reduction in the percentages of bees with HBA and in the amounts on their bodies after 7 days. Bee and queen mortality in the colonies were not affected by HBA treatments. When cardboard strips saturated with HBA were put in packages of bees, more than 90 % of the mites were killed without an increase in bee mortality. HBA might have potential to control varroa when establishing colonies from packages or during broodless periods.

  5. Comparison of tau-fluvalinate, acrinathrin, and amitraz effects on susceptible and resistant populations of Varroa destructor in a vial test.

    PubMed

    Kamler, Martin; Nesvorna, Marta; Stara, Jitka; Erban, Tomas; Hubert, Jan

    2016-05-01

    The parasitic mite Varroa destructor is a major pest of the western honeybee, Apis mellifera. The development of acaricide resistance in Varroa populations is a global issue. Discriminating concentrations of acaricides are widely used to detect pest resistance. Two methods, using either glass vials or paraffin capsules, are used to screen for Varroa resistance to various acaricides. We found the glass vial method to be useless for testing Varroa resistance to acaridices, so we developed a polypropylene vial bioassay. This method was tested on tau-fluvalinate-, acrinathrin-, and amitraz-resistant mite populations from three apiaries in Czechia. Acetone was used as a control and technical grade acaricide compounds diluted in acetone were applied to the polypropylene vials. The solutions were spread on the vial surface by rolling the vial, and were then evaporated. Freshly collected Varroa females were placed in the vials and the mortality of the exposed mites was measured after 24 h. The Varroa populations differed in mortality between the apiaries and the tested compounds. Mites from the Kyvalka site were resistant to acrinathrin, tau-fluvalinate, and amitraz, while mites from the Postrizin site were susceptible to all three acaricides. In Prelovice apiary, the mites were susceptible to acrinathrin and amitraz, but not to tau-fluvalinate. The calculated discriminating concentrations for tau-fluvalinate, acrinathrin, and amitraz were 0.66, 0.26 and 0.19 µg/mL, respectively. These results indicate that polyproplyne vial tests can be used to determine discriminating concentrations for the early detection of acaricide resistant Varroa. Finally, multiple-resistance in Kyvalka may indicate metabolic resistance.

  6. Acaricidal activity of Swietenia mahogani and Swietenia macrophylla ethanolic extracts against Varroa destructor in honeybee colonies.

    PubMed

    El Zalabani, Soheir M; El-Askary, Hesham I; Mousa, Ola M; Issa, Marwa Y; Zaitoun, Ahmed A; Abdel-Sattar, Essam

    2012-02-01

    The acaricidal (miticidal) activity of 90% ethanolic extracts of leaves and stem bark of Swietenia mahogani and Swietenia macrophylla were tested against Varroa destructor mite. Four concentrations were used over two different time intervals under laboratory and field conditions. In general, it was noticed that the acaricidal effect based on mortality and LC(50) of all tested extracts against the Varroa mite was concentration and time dependant. The acaricidal action against Varroa mites was relatively the least for the S. macrophylla stem bark extract at 500 ppm concentration after 48 h while it reached 100% and 95% in case of S. mahogani bark and S. macrophylla leaves, respectively. The% infestation with Varroa in colonies treated with the different extracts at various time intervals showed that the rate of infestation decreased to 0.0% after 12 days from the beginning of treatments with 500 ppm of S. mahogani leaves extract compared to 0.79% decrease after treatment with Mitac, a reference drug (60 mg/colony). The rate of infestation in case of treatments with S. mahogani bark, S. macrophylla leaves and S. macrophylla bark was decreased to 0.11%, 2.41% and 1.08%, respectively. The highest reduction was observed with S. mahogani leaves extract followed by S. mahogani bark. All the tested extracts showed less or no effect on honey bees at the different concentrations and at different bioassay times. This study suggested that the use of natural plant extracts or their products as ecofriendly biodegradable agents could be of high value for the control of Varroa mite.

  7. Host adaptations reduce the reproductive success of Varroa destructor in two distinct European honey bee populations.

    PubMed

    Locke, Barbara; Conte, Yves Le; Crauser, Didier; Fries, Ingemar

    2012-06-01

    Honey bee societies (Apis mellifera), the ectoparasitic mite Varroa destructor, and honey bee viruses that are vectored by the mite, form a complex system of host-parasite interactions. Coevolution by natural selection in this system has been hindered for European honey bee hosts since apicultural practices remove the mite and consequently the selective pressures required for such a process. An increasing mite population means increasing transmission opportunities for viruses that can quickly develop into severe infections, killing a bee colony. Remarkably, a few subpopulations in Europe have survived mite infestation for extended periods of over 10 years without management by beekeepers and offer the possibility to study their natural host-parasite coevolution. Our study shows that two of these "natural" honey bee populations, in Avignon, France and Gotland, Sweden, have in fact evolved resistant traits that reduce the fitness of the mite (measured as the reproductive success), thereby reducing the parasitic load within the colony to evade the development of overt viral infections. Mite reproductive success was reduced by about 30% in both populations. Detailed examinations of mite reproductive parameters suggest these geographically and genetically distinct populations favor different mechanisms of resistance, even though they have experienced similar selection pressures of mite infestation. Compared to unrelated control colonies in the same location, mites in the Avignon population had high levels of infertility while in Gotland there was a higher proportions of mites that delayed initiation of egg-laying. Possible explanations for the observed rapid coevolution are discussed.

  8. Host adaptations reduce the reproductive success of Varroa destructor in two distinct European honey bee populations

    PubMed Central

    Locke, Barbara; Conte, Yves Le; Crauser, Didier; Fries, Ingemar

    2012-01-01

    Honey bee societies (Apis mellifera), the ectoparasitic mite Varroa destructor, and honey bee viruses that are vectored by the mite, form a complex system of host–parasite interactions. Coevolution by natural selection in this system has been hindered for European honey bee hosts since apicultural practices remove the mite and consequently the selective pressures required for such a process. An increasing mite population means increasing transmission opportunities for viruses that can quickly develop into severe infections, killing a bee colony. Remarkably, a few subpopulations in Europe have survived mite infestation for extended periods of over 10 years without management by beekeepers and offer the possibility to study their natural host–parasite coevolution. Our study shows that two of these “natural” honey bee populations, in Avignon, France and Gotland, Sweden, have in fact evolved resistant traits that reduce the fitness of the mite (measured as the reproductive success), thereby reducing the parasitic load within the colony to evade the development of overt viral infections. Mite reproductive success was reduced by about 30% in both populations. Detailed examinations of mite reproductive parameters suggest these geographically and genetically distinct populations favor different mechanisms of resistance, even though they have experienced similar selection pressures of mite infestation. Compared to unrelated control colonies in the same location, mites in the Avignon population had high levels of infertility while in Gotland there was a higher proportions of mites that delayed initiation of egg-laying. Possible explanations for the observed rapid coevolution are discussed. PMID:22833790

  9. The effects of beta acids from hops (Humulus lupulus L.)on mortality of Varroa destructor (Acari: Varroidae)

    USDA-ARS?s Scientific Manuscript database

    Beta acids from hop plants (Humulus lupulus L.) reduce feeding and oviposition behaviors and increase mortality in certain phytophagous mites. These compounds were tested for their effects on Varroa destructor (Anderson and Trueman) mortality. The effects of hops beta acids (HBA) on honey bee (Apis ...

  10. Dead or alive: Deformed Wing Virus and Varroa destructor reduce the life span of winter honey bees

    USDA-ARS?s Scientific Manuscript database

    Elevated winter losses of managed honey bee colonies are a major concern, but the underlying mechanisms remain controversial. Among suspects are the parasitic mite Varroa destructor, the microsporidian Nosema ceranae and associated viruses. Here, we hypothesize that pathogens reduce the life expecta...

  11. Morphotypes of Varroa destructor collected in Apis mellifera colonies from different geographic locations of Argentina.

    PubMed

    Maggi, Matías D; Sardella, Norma H; Ruffinengo, Sergio R; Eguaras, Martín J

    2009-11-01

    Parasites display considerable phenotypic plasticity in life-history traits such as, body size. Varroa destructor is an ectoparasitic mite of the western honey bee Apis mellifera. Several studies have reported that in V. destructor, there is a wide phenotypic plasticity within a population of mites. However, it is unknown if there are morphologic variations in V. destructor populations affecting different A. mellifera populations. A morphometric study of V. destructor populations was conducted to provide information concerned to the relationships among parasite populations found in different geographic locations from A. mellifera colonies of Argentina. The hypothesis tested was different morphotypes of V. destructor populations parasitizing different A. mellifera populations from Argentina exist. A discriminant analysis employing eight morphologic variables revealed that it is possible to differentiate morphotypes of mites in Argentina. However, the level of discrimination detected among mites population varied according to the grouping of mite's population. Possible causes explaining the morphometric variability in the V. destructor populations were discussed.

  12. Practical sampling plans for Varroa destructor (Acari: Varroidae) in Apis mellifera (Hymenoptera: Apidae) colonies and apiaries.

    PubMed

    Lee, K V; Moon, R D; Burkness, E C; Hutchison, W D; Spivak, M

    2010-08-01

    The parasitic mite Varroa destructor Anderson & Trueman (Acari: Varroidae) is arguably the most detrimental pest of the European-derived honey bee, Apis mellifera L. Unfortunately, beekeepers lack a standardized sampling plan to make informed treatment decisions. Based on data from 31 commercial apiaries, we developed sampling plans for use by beekeepers and researchers to estimate the density of mites in individual colonies or whole apiaries. Beekeepers can estimate a colony's mite density with chosen level of precision by dislodging mites from approximately to 300 adult bees taken from one brood box frame in the colony, and they can extrapolate to mite density on a colony's adults and pupae combined by doubling the number of mites on adults. For sampling whole apiaries, beekeepers can repeat the process in each of n = 8 colonies, regardless of apiary size. Researchers desiring greater precision can estimate mite density in an individual colony by examining three, 300-bee sample units. Extrapolation to density on adults and pupae may require independent estimates of numbers of adults, of pupae, and of their respective mite densities. Researchers can estimate apiary-level mite density by taking one 300-bee sample unit per colony, but should do so from a variable number of colonies, depending on apiary size. These practical sampling plans will allow beekeepers and researchers to quantify mite infestation levels and enhance understanding and management of V. destructor.

  13. Comparative performance of two mite-resistant stocks of honey bees (Hymenoptera: Apidae) in Alabama beekeeping operations.

    PubMed

    Ward, Kenneth; Danka, Robert; Ward, Rufina

    2008-06-01

    The utility of USDA-developed Russian and varroa sensitive hygiene (VSH) honey bees, Apis mellifera L. (Hymenoptera: Apidae), was compared with that of locally produced, commercial Italian bees during 2004-2006 in beekeeping operations in Alabama, USA. Infestations of varroa mites, Varroa destructor Anderson & Truman (Acari: Varroidae), were measured twice each year, and colonies that reached established economic treatment thresholds (one mite per 100 adult bees in late winter; 5-10 mites per 100 adult bees in late summer) were treated with acaricides. Infestations of tracheal mites, Acarapis woodi (Rennie) (Acari: Tarsonemidae), were measured autumn and compared with a treatment threshold of 20% mite prevalence. Honey production was measured in 2005 and 2006 for colonies that retained original test queens. Throughout the three seasons of measurement, resistant stocks required less treatment against parasitic mites than the Italian stock. The total percentages of colonies needing treatment against varroa mites were 12% of VSH, 24% of Russian, and 40% of Italian. The total percentages requiring treatment against tracheal mites were 1% of Russian, 8% of VSH and 12% of Italian. The average honey yield of Russian and VSH colonies was comparable with that of Italian colonies each year. Beekeepers did not report any significant behavioral problems with the resistant stocks. These stocks thus have good potential for use in nonmigratory beekeeping operations in the southeastern United States.

  14. Ecology, Life History, and Management of Tropilaelaps Mites.

    PubMed

    de Guzman, Lilia I; Williams, Geoffrey R; Khongphinitbunjong, Kitiphong; Chantawannakul, Panuwan

    2017-03-15

    Parasitic mites are the major threat to the Western honey bee, Apis mellifera L. For much of the world, Varroa destructor Anderson & Trueman single-handedly inflicts unsurmountable problems to A. mellifera beekeeping. However, A. mellifera in Asia is also faced with another genus of destructive parasitic mite, Tropilaelaps. The life history of these two parasitic mites is very similar, and both have the same food requirements (i.e., hemolymph of developing brood). Hence, parasitism by Tropilaelaps spp., especially Tropilaelaps mercedesae and Tropilaelaps clareae, also results in death of immature brood or wing deformities in infested adult bees. The possible introduction of Tropilaelaps mites outside their current range heightens existing dilemmas brought by Varroa mites. In this review, we provide historic, as well as current information on the taxonomic status, life history, distribution and host range, diagnosis, and control of Tropilaelaps mites. Because the biology of Tropilaelaps mites is not well known, we also suggest areas of research that demand immediate attention. Any biological information about Tropilaelaps mites will provide useful information for the development of control measures against them.

  15. A Varroa destructor protein atlas reveals molecular underpinnings of developmental transitions and sexual differentiation.

    PubMed

    McAfee, Alison; Chan, Queenie; Evans, Jay; Foster, Leonard J

    2017-09-03

    Varroa destructor is the most economically damaging honey bee pest, weakening colonies by simultaneously parasitizing bees and transmitting harmful viruses. Despite these impacts on honey bee health, surprisingly little is known about its fundamental molecular biology. Here we present a Varroa protein atlas crossing all major developmental stages (egg, protonymph, deutonymph and adult) for both male and female mites as a web-based interactive tool (http://foster.nce.ubc.ca/varroa/index.html). We used intensity-based label-free quantitation to find 1,433 differentially expressed proteins across developmental stages. Enzymes for processing carbohydrates and amino acids were among many of these differences as well as proteins involved in cuticle formation. Lipid transport involving vitellogenin was the most significantly enriched biological process in the foundress (reproductive female) and young mites. In addition, we found that 101 proteins were sexually regulated and functional enrichment analysis suggests that chromatin remodeling may be a key feature of sex determination. In a proteogenomic effort, we identified 519 protein-coding regions, 301 of which were supported by two or more peptides and 169 of which were differentially expressed. Overall, this work provides a first-of-its-kind interrogation of the patterns of protein expression that govern the Varroa life cycle and the tools we have developed will support further research on this threatening honey bee pest. Copyright © 2017, The American Society for Biochemistry and Molecular Biology.

  16. Antennae hold a key to Varroa-sensitive hygiene behaviour in honey bees.

    PubMed

    Mondet, Fanny; Alaux, Cédric; Severac, Dany; Rohmer, Marine; Mercer, Alison R; Le Conte, Yves

    2015-05-22

    In honey bees, Varroa sensitive hygiene (VSH) behaviour, which involves the detection and removal of brood parasitised by the mite Varroa destructor, can actively participate in the survival of colonies facing Varroa outbreaks. This study investigated the mechanisms of VSH behaviour, by comparing the antennal transcriptomes of bees that do and do not perform VSH behaviour. Results indicate that antennae likely play a key role in the expression of VSH behaviour. Comparisons with the antennal transcriptome of nurse and forager bees suggest that VSH profile is more similar to that of nurse bees than foragers. Enhanced detection of certain odorants in VSH bees may be predicted from transcriptional patterns, as well as a higher metabolism and antennal motor activity. Interestingly, Deformed wing virus/Varroa destructor virus infections were detected in the antennae, with higher level in non-VSH bees; a putative negative impact of viral infection on bees' ability to display VSH behaviour is proposed. These results bring new perspectives to the understanding of VSH behaviour and the evolution of collective defence by focusing attention on the importance of the peripheral nervous system. In addition, such data might be useful for promoting marker-assisted selection of honey bees that can survive Varroa infestations.

  17. Antennae hold a key to Varroa-sensitive hygiene behaviour in honey bees

    PubMed Central

    Mondet, Fanny; Alaux, Cédric; Severac, Dany; Rohmer, Marine; Mercer, Alison R.; Le Conte, Yves

    2015-01-01

    In honey bees, Varroa sensitive hygiene (VSH) behaviour, which involves the detection and removal of brood parasitised by the mite Varroa destructor, can actively participate in the survival of colonies facing Varroa outbreaks. This study investigated the mechanisms of VSH behaviour, by comparing the antennal transcriptomes of bees that do and do not perform VSH behaviour. Results indicate that antennae likely play a key role in the expression of VSH behaviour. Comparisons with the antennal transcriptome of nurse and forager bees suggest that VSH profile is more similar to that of nurse bees than foragers. Enhanced detection of certain odorants in VSH bees may be predicted from transcriptional patterns, as well as a higher metabolism and antennal motor activity. Interestingly, Deformed wing virus/Varroa destructor virus infections were detected in the antennae, with higher level in non-VSH bees; a putative negative impact of viral infection on bees’ ability to display VSH behaviour is proposed. These results bring new perspectives to the understanding of VSH behaviour and the evolution of collective defence by focusing attention on the importance of the peripheral nervous system. In addition, such data might be useful for promoting marker-assisted selection of honey bees that can survive Varroa infestations. PMID:26000641

  18. Varroa destructor and Viruses association in honey bee colonies under different climatic conditions.

    PubMed

    Giacobino, Agostina; Molineri, Ana I; Pacini, Adriana; Fondevila, Norberto; Pietronave, Hernán; Rodríguez, Graciela; Palacio, Alejandra; Cagnolo, Natalia Bulacio; Orellano, Emanuel; Salto, César E; Signorini, Marcelo L; Merke, Julieta

    2016-03-11

    Honey bee colonies are threatened by multiple factors including complex interactions between environmental and diseases such as parasitic mites and viruses. We compared the presence of honeybee-pathogenic viruses and Varroa infestation rate in four apiaries: commercial colonies that received treatment against Varroa and non-treated colonies that did not received any treatment for the last four years located in temperate and subtropical climate. In addition, we evaluated the effect of climate and Varroa treatment on DWV amounts. In both climates, DWV was the most prevalent virus, being the only present virus in subtropical colonies. Moreover, colonies from subtropical climate also showed reduced DWV amounts and lower Varroa infestation rates than colonies from temperate climate. Nevertheless, non-treated colonies in both climate conditions are able to survive several years. Environment appears as a key factor interacting with local bee populations and influencing colony survival beyond Varroa and Virus presence. This article is protected by copyright. All rights reserved. © 2016 Society for Applied Microbiology and John Wiley & Sons Ltd.

  19. Varroa destructor and viruses association in honey bee colonies under different climatic conditions.

    PubMed

    Giacobino, Agostina; Molineri, Ana I; Pacini, Adriana; Fondevila, Norberto; Pietronave, Hernán; Rodríguez, Graciela; Palacio, Alejandra; Bulacio Cagnolo, Natalia; Orellano, Emanuel; Salto, César E; Signorini, Marcelo L; Merke, Julieta

    2016-06-01

    Honey bee colonies are threatened by multiple factors including complex interactions between environmental and diseases such as parasitic mites and viruses. We compared the presence of honeybee-pathogenic viruses and Varroa infestation rate in four apiaries: commercial colonies that received treatment against Varroa and non-treated colonies that did not received any treatment for the last 4 years located in temperate and subtropical climate. In addition, we evaluated the effect of climate and Varroa treatment on deformed wing virus (DWV) amounts. In both climates, DWV was the most prevalent virus, being the only present virus in subtropical colonies. Moreover, colonies from subtropical climate also showed reduced DWV amounts and lower Varroa infestation rates than colonies from temperate climate. Nevertheless, non-treated colonies in both climate conditions are able to survive several years. Environment appears as a key factor interacting with local bee populations and influencing colony survival beyond Varroa and virus presence. © 2016 Society for Applied Microbiology and John Wiley & Sons Ltd.

  20. Superinfection exclusion and the long-term survival of honey bees in Varroa-infested colonies.

    PubMed

    Mordecai, Gideon J; Brettell, Laura E; Martin, Stephen J; Dixon, David; Jones, Ian M; Schroeder, Declan C

    2016-05-01

    Over the past 50 years, many millions of European honey bee (Apis mellifera) colonies have died as the ectoparasitic mite, Varroa destructor, has spread around the world. Subsequent studies have indicated that the mite's association with a group of RNA viral pathogens (Deformed Wing Virus, DWV) correlates with colony death. Here, we propose a phenomenon known as superinfection exclusion that provides an explanation of how certain A. mellifera populations have survived, despite Varroa infestation and high DWV loads. Next-generation sequencing has shown that a non-lethal DWV variant 'type B' has become established in these colonies and that the lethal 'type A' DWV variant fails to persist in the bee population. We propose that this novel stable host-pathogen relationship prevents the accumulation of lethal variants, suggesting that this interaction could be exploited for the development of an effective treatment that minimises colony losses in the future.

  1. Superinfection exclusion and the long-term survival of honey bees in Varroa-infested colonies

    PubMed Central

    Mordecai, Gideon J; Brettell, Laura E; Martin, Stephen J; Dixon, David; Jones, Ian M; Schroeder, Declan C

    2016-01-01

    Over the past 50 years, many millions of European honey bee (Apis mellifera) colonies have died as the ectoparasitic mite, Varroa destructor, has spread around the world. Subsequent studies have indicated that the mite's association with a group of RNA viral pathogens (Deformed Wing Virus, DWV) correlates with colony death. Here, we propose a phenomenon known as superinfection exclusion that provides an explanation of how certain A. mellifera populations have survived, despite Varroa infestation and high DWV loads. Next-generation sequencing has shown that a non-lethal DWV variant ‘type B' has become established in these colonies and that the lethal ‘type A' DWV variant fails to persist in the bee population. We propose that this novel stable host-pathogen relationship prevents the accumulation of lethal variants, suggesting that this interaction could be exploited for the development of an effective treatment that minimises colony losses in the future. PMID:26505829

  2. Oldest Varroa tolerant honey bee population provides insight into the origins of the global decline of honey bees

    PubMed Central

    Brettell, L. E.; Martin, S. J.

    2017-01-01

    The ecto-parasitic mite Varroa destructor has transformed the previously inconsequential Deformed Wing Virus (DWV) into the most important honey bee viral pathogen responsible for the death of millions of colonies worldwide. Naturally, DWV persists as a low level covert infection transmitted between nest-mates. It has long been speculated that Varroa via immunosuppression of the bees, activate a covert infection into an overt one. Here we show that despite Varroa feeding on a population of 20–40 colonies for over 30 years on the remote island of Fernando de Noronha, Brazil no such activation has occurred and DWV loads have remained at borderline levels of detection. This supports the alternative theory that for a new vector borne viral transmission cycle to start, an outbreak of an overt infection must first occur within the host. Therefore, we predict that this honey bee population is a ticking time-bomb, protected by its isolated position and small population size. This unique association between mite and bee persists due to the evolution of low Varroa reproduction rates. So the population is not adapted to tolerate Varroa and DWV, rather the viral quasispecies has simply not yet evolved the necessary mutations to produce a virulent variant. PMID:28393875

  3. Oldest Varroa tolerant honey bee population provides insight into the origins of the global decline of honey bees.

    PubMed

    Brettell, L E; Martin, S J

    2017-04-10

    The ecto-parasitic mite Varroa destructor has transformed the previously inconsequential Deformed Wing Virus (DWV) into the most important honey bee viral pathogen responsible for the death of millions of colonies worldwide. Naturally, DWV persists as a low level covert infection transmitted between nest-mates. It has long been speculated that Varroa via immunosuppression of the bees, activate a covert infection into an overt one. Here we show that despite Varroa feeding on a population of 20-40 colonies for over 30 years on the remote island of Fernando de Noronha, Brazil no such activation has occurred and DWV loads have remained at borderline levels of detection. This supports the alternative theory that for a new vector borne viral transmission cycle to start, an outbreak of an overt infection must first occur within the host. Therefore, we predict that this honey bee population is a ticking time-bomb, protected by its isolated position and small population size. This unique association between mite and bee persists due to the evolution of low Varroa reproduction rates. So the population is not adapted to tolerate Varroa and DWV, rather the viral quasispecies has simply not yet evolved the necessary mutations to produce a virulent variant.

  4. Spread and strain determination of Varroa destructor (Acari: Varroidae) in Madagascar since its first report in 2010.

    PubMed

    Rasolofoarivao, Henriette; Clémencet, Johanna; Ravaomanarivo, Lala Harivelo Raveloson; Razafindrazaka, Dimby; Reynaud, Bernard; Delatte, Hélène

    2013-08-01

    Varroa destructor is a major pest in world beekeeping. It was first detected in Madagascar in 2010 on the endemic honeybee Apis mellifera unicolor. To evaluate V. destructor spread dynamics in Madagascar a global survey was conducted in 2011-2012. A total of 695 colonies from 30 districts were inspected for the presence of mites. 2 years after its introduction, nine districts were found infested. Varroa destructor spread was relatively slow compared to other countries with a maximum progression of 40 km per year, the five newly infested districts being located next to the first infested ones. The incidence of mite infestation was also investigated by monitoring 73 colonies from five apiaries during 1 year (2011-2012). Sixty percent of local colony mortality was recorded after 1 year of survey. Varroa destructor strain determination was done by partial sequencing of the cytochrome oxidase I gene of 13 phoretic mites sampled in five districts. A single V. destructor mitochondrial haplotype was detected, the Korean type, also present in the closest African countries. A global pathogen survey was also conducted on the colonies inspected for mite presence. The greater wax moth, Galleria mellonella has been found in all colonies all over the country. Two other pathogens and morphological abnormalities in workers, such as deformed wings, were found associated with only V. destructor presence. A prevention management plan must be implemented to delimit mite spread across the island.

  5. Varroa destructor (Mesostigmata: Varroidae) Parasitism and Climate Differentially Influence the Prevalence, Levels, and Overt Infections of Deformed Wing Virus in Honey Bees (Hymenoptera: Apidae).

    PubMed

    Anguiano-Baez, Ricardo; Guzman-Novoa, Ernesto; Md Hamiduzzaman, Mollah; Espinosa-Montaño, Laura G; Correa-Benítez, Adriana

    2016-01-01

    The prevalence and loads of deformed wing virus (DWV) between honey bee (Apis mellifera L.) colonies from a tropical and a temperate environment were compared. The interaction between these environments and the mite Varroa destructor in relation to DWV prevalence, levels, and overt infections, was also analyzed. V. destructor rates were determined, and samples of mites, adult bees, brood parasitized with varroa mites and brood not infested by mites were analyzed. DWV was detected in 100% of the mites and its prevalence and loads in honey bees were significantly higher in colonies from the temperate climate than in colonies from the tropical climate. Significant interactions were found between climate and type of sample, with the highest levels of DWV found in varroa-parasitized brood from temperate climate colonies. Additionally, overt infections were observed only in the temperate climate. Varroa parasitism and DWV loads in bees from colonies with overt infections were significantly higher than in bees from colonies with covert infections. These results suggest that interactions between climate, V. destructor, and possibly other factors, may play a significant role in the prevalence and levels of DWV in honey bee colonies, as well as in the development of overt infections. Several hypotheses are discussed to explain these results. © The Author 2016. Published by Oxford University Press on behalf of the Entomological Society of America.

  6. Varroa destructor (Mesostigmata: Varroidae) Parasitism and Climate Differentially Influence the Prevalence, Levels, and Overt Infections of Deformed Wing Virus in Honey Bees (Hymenoptera: Apidae)

    PubMed Central

    Guzman-Novoa, Ernesto; Md. Hamiduzzaman, Mollah; Espinosa-Montaño, Laura G.; Correa-Benítez, Adriana

    2016-01-01

    The prevalence and loads of deformed wing virus (DWV) between honey bee (Apis mellifera L.) colonies from a tropical and a temperate environment were compared. The interaction between these environments and the mite Varroa destructor in relation to DWV prevalence, levels, and overt infections, was also analyzed. V. destructor rates were determined, and samples of mites, adult bees, brood parasitized with varroa mites and brood not infested by mites were analyzed. DWV was detected in 100% of the mites and its prevalence and loads in honey bees were significantly higher in colonies from the temperate climate than in colonies from the tropical climate. Significant interactions were found between climate and type of sample, with the highest levels of DWV found in varroa-parasitized brood from temperate climate colonies. Additionally, overt infections were observed only in the temperate climate. Varroa parasitism and DWV loads in bees from colonies with overt infections were significantly higher than in bees from colonies with covert infections. These results suggest that interactions between climate, V. destructor, and possibly other factors, may play a significant role in the prevalence and levels of DWV in honey bee colonies, as well as in the development of overt infections. Several hypotheses are discussed to explain these results. PMID:27252482

  7. Genetic structure of Varroa destructor populations infesting Apis mellifera colonies in Argentina.

    PubMed

    Maggi, M; Medici, S; Quintana, S; Ruffinengo, S; Marcángeli, J; Gimenez Martinez, P; Fuselli, S; Eguaras, M

    2012-04-01

    Although mitochondrial DNA mapping of Varroa destructor revealed the presence of several haplotypes, only two of them (Korean and Japanese haplotypes) were capable to infest Apis mellifera populations. Even though the Korean haplotype is the only one that has been reported in Argentina, these conclusions were based on mites sampled in apiaries from a specific geographical place (Buenos Aires province). To study mites from several sites of Argentina could reveal the presence of the Japanese genotype, especially considering sites near to Brazil, where Japanese haplotype was already detected. The aim of this work was to study the genetic structure of V. destructor populations from apiaries located in various provinces of Argentina, in order to determine the presence of different haplotypes. The study was carried out between January 2006 and December 2009. Phoretic adult Varroa mites were collected from honey bee workers sampled from colonies of A. mellifera located in Entre Ríos, Buenos Aires, Corrientes, Río Negro, Santa Cruz and Neuquén provinces. Twenty female mites from each sampling site were used to carry out the genetic analysis. For DNA extraction a nondestructive method was used. DNA sequences were compared to Korean haplotype (AF106899) and Japanese haplotype (AF106897). All DNA sequences obtained from mite populations sampled in Argentina, share 98% of similitude with Korean Haplotype (AF106899). Taking into account these results, we are able to conclude that Korean haplotype is cosmopolite in Argentina.

  8. High-resolution linkage analyses to identify genes that influence Varroa sensitive hygiene behavior in honey bees.

    PubMed

    Tsuruda, Jennifer M; Harris, Jeffrey W; Bourgeois, Lanie; Danka, Robert G; Hunt, Greg J

    2012-01-01

    Varroa mites (V. destructor) are a major threat to honey bees (Apis melilfera) and beekeeping worldwide and likely lead to colony decline if colonies are not treated. Most treatments involve chemical control of the mites; however, Varroa has evolved resistance to many of these miticides, leaving beekeepers with a limited number of alternatives. A non-chemical control method is highly desirable for numerous reasons including lack of chemical residues and decreased likelihood of resistance. Varroa sensitive hygiene behavior is one of two behaviors identified that are most important for controlling the growth of Varroa populations in bee hives. To identify genes influencing this trait, a study was conducted to map quantitative trait loci (QTL). Individual workers of a backcross family were observed and evaluated for their VSH behavior in a mite-infested observation hive. Bees that uncapped or removed pupae were identified. The genotypes for 1,340 informative single nucleotide polymorphisms were used to construct a high-resolution genetic map and interval mapping was used to analyze the association of the genotypes with the performance of Varroa sensitive hygiene. We identified one major QTL on chromosome 9 (LOD score = 3.21) and a suggestive QTL on chromosome 1 (LOD = 1.95). The QTL confidence interval on chromosome 9 contains the gene 'no receptor potential A' and a dopamine receptor. 'No receptor potential A' is involved in vision and olfaction in Drosophila, and dopamine signaling has been previously shown to be required for aversive olfactory learning in honey bees, which is probably necessary for identifying mites within brood cells. Further studies on these candidate genes may allow for breeding bees with this trait using marker-assisted selection.

  9. High-Resolution Linkage Analyses to Identify Genes That Influence Varroa Sensitive Hygiene Behavior in Honey Bees

    PubMed Central

    Tsuruda, Jennifer M.; Harris, Jeffrey W.; Bourgeois, Lanie; Danka, Robert G.; Hunt, Greg J.

    2012-01-01

    Varroa mites (V. destructor) are a major threat to honey bees (Apis melilfera) and beekeeping worldwide and likely lead to colony decline if colonies are not treated. Most treatments involve chemical control of the mites; however, Varroa has evolved resistance to many of these miticides, leaving beekeepers with a limited number of alternatives. A non-chemical control method is highly desirable for numerous reasons including lack of chemical residues and decreased likelihood of resistance. Varroa sensitive hygiene behavior is one of two behaviors identified that are most important for controlling the growth of Varroa populations in bee hives. To identify genes influencing this trait, a study was conducted to map quantitative trait loci (QTL). Individual workers of a backcross family were observed and evaluated for their VSH behavior in a mite-infested observation hive. Bees that uncapped or removed pupae were identified. The genotypes for 1,340 informative single nucleotide polymorphisms were used to construct a high-resolution genetic map and interval mapping was used to analyze the association of the genotypes with the performance of Varroa sensitive hygiene. We identified one major QTL on chromosome 9 (LOD score = 3.21) and a suggestive QTL on chromosome 1 (LOD = 1.95). The QTL confidence interval on chromosome 9 contains the gene ‘no receptor potential A’ and a dopamine receptor. ‘No receptor potential A’ is involved in vision and olfaction in Drosophila, and dopamine signaling has been previously shown to be required for aversive olfactory learning in honey bees, which is probably necessary for identifying mites within brood cells. Further studies on these candidate genes may allow for breeding bees with this trait using marker-assisted selection. PMID:23133626

  10. Impact of the Phoretic Phase on Reproduction and Damage Caused by Varroa destructor (Anderson and Trueman) to Its Host, the European Honey Bee (Apis mellifera L.).

    PubMed

    Piou, Vincent; Tabart, Jérémy; Urrutia, Virginie; Hemptinne, Jean-Louis; Vétillard, Angélique

    2016-01-01

    Varroa destructor is a parasitic mite of the honeybee that causes thousands of colony losses worldwide. The parasite cycle is composed of a phoretic and a reproductive phase. During the former, mites stay on adult bees, mostly on nurses, to feed on hemolymph. During the latter, the parasites enter brood cells and reproduce. We investigated if the type of bees on which Varroa stays during the phoretic phase and if the duration of this stay influenced the reproductive success of the parasite and the damage caused to bees. For that purpose, we used an in vitro rearing method developed in our laboratory to assess egg laying rate and the presence and number of fully molted daughters. The expression level of two Varroa vitellogenin genes (VdVg1 and VdVg2), known to vary throughout reproduction, was also quantified. Results showed that the status of the bees or time spent during the phoretic phase impacts neither reproduction parameters nor the Varroa vitellogenin genes levels of expression. However, we correlated these parameters to the gene expression and demonstrated that daughters expressed the vitellogenin genes at lower levels than their mother. Regarding the damage to bees, the data indicated that a longer stay on adult bees during the phoretic phase resulted in more frequent physical deformity in newborn bees. We showed that those mites carry more viral loads of the Deformed Wing Virus and hence trigger more frequently overt infections. This study provides new perspectives towards a better understanding of the Varroa-honeybee interactions.

  11. Identification and gene-silencing of a putative odorant receptor transcription factor in Varroa destructor: possible role in olfaction.

    PubMed

    Singh, N K; Eliash, N; Stein, I; Kamer, Y; Ilia, Z; Rafaeli, A; Soroker, V

    2016-04-01

    The ectoparasitic mite Varroa destructor is one of the major threats to apiculture. Using a behavioural choice bioassay, we determined that phoretic mites were more successful in reaching a bee than reproductive mites, suggesting an energy trade-off between reproduction and host selection. We used both chemo-ecological and molecular strategies to identify the regulation of the olfactory machinery of Varroa and its association with reproduction. We focused on transcription regulation. Using primers designed to the conserved DNA binding region of transcription factors, we identified a gene transcript in V. destructor homologous to the pheromone receptor transcription factor (PRTF) gene of Pediculus humanus corporis. Quantitative PCR (qPCR) revealed that this PRTF-like gene transcript is expressed in the forelegs at higher levels than in the body devoid of forelegs. Subsequent comparative qPCR analysis showed that transcript expression was significantly higher in the phoretic as compared to the reproductive stage. Electrophysiological and behavioural studies revealed a reduction in the sensitivity of PRTF RNA interference-silenced mites to bee headspace, consistent with a reduction in the mites' ability to reach a host. In addition, vitellogenin expression was stimulated in PRTF-silenced mites to similar levels as found in reproductive mites. These data shed light upon the regulatory mechanism of host chemosensing in V. destructor. © 2016 The Royal Entomological Society.

  12. Hygienic and grooming behaviors in African and European honeybees—New damage categories in Varroa destructor

    PubMed Central

    Fombong, Ayuka T.; Yusuf, Abdullahi A.; Pirk, Christian W. W.; Stuhl, Charles

    2017-01-01

    Varroa destructor is an ectoparasitic pest of honeybees, and a threat to the survival of the apiculture industry. Several studies have shown that unlike European honeybees, African honeybee populations appear to be minimally affected when attacked by this mite. However, little is known about the underlying drivers contributing to survival of African honeybee populations against the mite. We hypothesized that resistant behavioral defenses are responsible for the survival of African honeybees against the ectoparasite. We tested this hypothesis by comparing grooming and hygienic behaviors in the African savannah honeybee Apis mellifera scutellata in Kenya and A. mellifera hybrids of European origin in Florida, USA against the mite. Grooming behavior was assessed by determining adult mite infestation levels, daily mite fall per colony and percentage mite damage (as an indicator of adult grooming rate), while hygienic behavior was assessed by determining the brood removal rate after freeze killing a section of the brood. Our results identified two additional undescribed damaged mite categories along with the six previously known damage categories associated with the grooming behavior of both honeybee subspecies. Adult mite infestation level was approximately three-fold higher in A. mellifera hybrids of European origin than in A. m. scutellata, however, brood removal rate, adult grooming rate and daily natural mite fall were similar in both honeybee subspecies. Unlike A. mellifera hybrids of European origin, adult grooming rate and brood removal rate did not correlate with mite infestation levels on adult worker honeybee of A. m. scutellata though they were more aggressive towards the mites than their European counterparts. Our results provide valuable insights into the tolerance mechanisms that contribute to the survival of A. m. scutellata against the mite. PMID:28622341

  13. Hygienic and grooming behaviors in African and European honeybees-New damage categories in Varroa destructor.

    PubMed

    Nganso, Beatrice T; Fombong, Ayuka T; Yusuf, Abdullahi A; Pirk, Christian W W; Stuhl, Charles; Torto, Baldwyn

    2017-01-01

    Varroa destructor is an ectoparasitic pest of honeybees, and a threat to the survival of the apiculture industry. Several studies have shown that unlike European honeybees, African honeybee populations appear to be minimally affected when attacked by this mite. However, little is known about the underlying drivers contributing to survival of African honeybee populations against the mite. We hypothesized that resistant behavioral defenses are responsible for the survival of African honeybees against the ectoparasite. We tested this hypothesis by comparing grooming and hygienic behaviors in the African savannah honeybee Apis mellifera scutellata in Kenya and A. mellifera hybrids of European origin in Florida, USA against the mite. Grooming behavior was assessed by determining adult mite infestation levels, daily mite fall per colony and percentage mite damage (as an indicator of adult grooming rate), while hygienic behavior was assessed by determining the brood removal rate after freeze killing a section of the brood. Our results identified two additional undescribed damaged mite categories along with the six previously known damage categories associated with the grooming behavior of both honeybee subspecies. Adult mite infestation level was approximately three-fold higher in A. mellifera hybrids of European origin than in A. m. scutellata, however, brood removal rate, adult grooming rate and daily natural mite fall were similar in both honeybee subspecies. Unlike A. mellifera hybrids of European origin, adult grooming rate and brood removal rate did not correlate with mite infestation levels on adult worker honeybee of A. m. scutellata though they were more aggressive towards the mites than their European counterparts. Our results provide valuable insights into the tolerance mechanisms that contribute to the survival of A. m. scutellata against the mite.

  14. Key management practices to prevent high infestation levels of Varroa destructor in honey bee colonies at the beginning of the honey yield season.

    PubMed

    Giacobino, Agostina; Molineri, Ana; Bulacio Cagnolo, Natalia; Merke, Julieta; Orellano, Emanuel; Bertozzi, Ezequiel; Masciangelo, Germán; Pietronave, Hernán; Pacini, Adriana; Salto, Cesar; Signorini, Marcelo

    2016-09-01

    Varroa destructor is considered one of the main threats to worldwide apiculture causing a variety of physiological effects at individual and colony level. Also, Varroa mites are often associated with several honey bee viruses presence. Relatively low levels of Varroa during the spring, at the beginning of the honey yield season, can have a significant economic impact on honey production and colony health. Winter treatments against Varroa and certain management practices may delay mite population growth during following spring and summer improving colonies performance during the honey yield season. The aim of this study was to identify risk factors associated with the presence of Varroa destructor in late spring in apiaries from temperate climate. A longitudinal study was carried out in 48 apiaries, randomly selected to evaluate V. destructor infestation level throughout the year. The percentage of infestation with V. destructor was assessed four times during one year and the beekeepers answered a survey concerning all management practices applied in the colonies. We used a generalized linear mixed model to determine association between risk of achieving 2% infestation on adult bees at the beginning of the honey yield season and all potential explanatory variables. The complete dataset was scanned to identify colonies clusters with a higher probability of achieving damage thresholds throughout the year. Colonies that achieved ≥2% of infestation with V. destructor during spring were owned by less experienced beekeepers. Moreover, as Varroa populations increase exponentially during spring and summer, if the spring sampling time is later this growth remains unobserved. Monitoring and winter treatment can be critical for controlling mite population during the honey production cycle. Spatial distribution of colonies with a higher risk of achieving high Varroa levels seems to be better explained by management practices than a geographical condition.

  15. Effects of Imidacloprid and Varroa destructor on survival and health of European honey bees, Apis mellifera.

    PubMed

    Abbo, Pendo M; Kawasaki, Joshua K; Hamilton, Michele; Cook, Steven C; DeGrandi-Hoffman, Gloria; Li, Wen Feng; Liu, Jie; Chen, Yan Ping

    2017-06-01

    There has been growing concern over declines in populations of honey bees and other pollinators which are a vital part to our food security. It is imperative to identify factors responsible for accelerated declines in bee populations and develop solutions for reversing bee losses. While exact causes of colony losses remain elusive, risk factors thought to play key roles are ectoparasitic mites Varroa destructor and neonicotinoid pesticides. The present study aims to investigate effects of a neonicotinoid pesticide Imidacloprid and Varroa mites individually on survivorship, growth, physiology, virus dynamics and immunity of honey bee workers. Our study provides clear evidence that the exposure to sublethal doses of Imidacloprid could exert a significantly negative effect on health and survival of honey bees. We observed a significant reduction in the titer of vitellogenin (Vg), an egg yolk precursor that regulates the honey bees development and behavior and often are linked to energy homeostasis, in bees exposed to Imidacloprid. This result indicates that sublethal exposure to neonicotinoid could lead to increased energy usage in honey bees as detoxification is a energy-consuming metabolic process and suggests that Vg could be a useful biomarker for measuring levels of energy stress and sublethal effects of pesticides on honey bees. Measurement of the quantitative effects of different levels of Varroa mite infestation on the replication dynamic of Deformed wing virus (DWV), an RNA virus associated with Varroa infestation, and expression level of immune genes yields unique insights into how honey bees respond to stressors under laboratory conditions. © 2016 Institute of Zoology, Chinese Academy of Sciences.

  16. Effects of multiple applications of a Beauveria based biopesticide on Varroa destructor (Acari: Varroidae) densities in honey bee (Hymenoptera: Apidae) colonies

    USDA-ARS?s Scientific Manuscript database

    A biopesticide, formulated with a strain of Beauveria bassiana isolated from varroa mites, was tested in an experiment in southern France and the results were were compared to published results from previous experiments with the same biopesticide. Bee colonies were treated either with biopesticide, ...

  17. Expression of Varroa sensitive hygiene (VSH) in commercial VSH honey bees (Hymenoptera: Apidae).

    PubMed

    Danka, Robert G; Harris, Jeffrey W; Villa, José D

    2011-06-01

    We tested six commercial sources of honey bees, Apis mellifera L. (Hymenoptera: Apidae), whose breeding incorporated the trait of Varroa sensitive hygiene (VSH). VSH confers resistance to the parasitic mite Varroa destructor Anderson & Trueman by enhancing the ability of the bees to hygienically remove mite-infested brood. VSH production queens (i.e., queens commercially available for use in beekeepers' production colonies) from the six sources were established in colonies which later were measured for VSH. Their responses were compared with those of colonies with three other types of queens, as follows: VSH queens from the selected closed population maintained by USDA-ARS for research and as a source of breeding germplasm, queens from the cooperating commercial distributor of this germplasm, and queens of a commercial, mite-susceptible source. The reduction of mite infestation in brood combs exposed to test colonies for 1 wk differed significantly between groups. On average, colonies with VSH production queens reduced infestation by 44%. This group average was intermediate between the greater removal by pure ARS VSH (76%) and the cooperators' breeding colonies (64%), and the lesser removal by susceptible colonies (7%). VSH production colonies from the different sources had variable expression of hygiene against mites, with average reduced infestations ranging from 22 to 74%. In addition, infertility was high among mites that remained in infested cells in VSH breeder colonies from ARS and the commercial distributor but was lower and more variable in VSH production colonies and susceptible colonies. Commercial VSH production colonies supply mite resistance that generally seems to be useful for beekeeping. Resistance probably could be improved if more VSH drones sources were supplied when VSH production queens are being mated.

  18. LD50 and repellent effects of essential oils from Argentinian wild plant species on Varroa destructor.

    PubMed

    Ruffinengo, Sergio; Eguaras, Martin; Floris, Ignazio; Faverin, Claudia; Bailac, Pedro; Ponzi, Marta

    2005-06-01

    The repellent and acaricidal effects of some essential oils from the most typical wild plant species of northern Patagonia, Argentina, on Varroa destructor Anderson & Trueman were evaluated using a complete exposure test. Honey bees, Apis mellifera L., and mites (five specimens of each per dish) were introduced in petri dishes having different oil concentrations (from 0.1 to 25 micro per cage). Survival of bees and mites was registered after 24, 48, and 72 h. An attraction/repellence test was performed using a wax tube impregnated with essential oil and another tube containing wax only. The lowest LD50 values for mites were registered for Acantholippia seriphioides (A. Gray) Mold. (1.27 microl per cage) and Schinus molle L. (2.65 microl per cage) after 24 h, and for Wedelia glauca (Ortega) O. Hoffm. ex Hicken (0.59 microl per cage) and A. seriphioides (1.09 microl per cage) after 72 h of treatment. The oil with the highest selectivity ratio (A. mellifera LD50/V. destructor LD50) was the one extracted from S. molle (>16). Oils of Lippia junelliana (Mold.) Troncoso, Minthostachys mollis (HBK) Grieseb., and Lippia turbinata Grieseb. mixed with wax had repellent properties. None of the oils tested had attractive effects on Varroa mites.

  19. Genome-Wide Association Study of a Varroa-Specific Defense Behavior in Honeybees (Apis mellifera)

    PubMed Central

    Spötter, Andreas; Gupta, Pooja; Mayer, Manfred; Reinsch, Norbert

    2016-01-01

    Honey bees are exposed to many damaging pathogens and parasites. The most devastating is Varroa destructor, which mainly affects the brood. A promising approach for preventing its spread is to breed Varroa-resistant honey bees. One trait that has been shown to provide significant resistance against the Varroa mite is hygienic behavior, which is a behavioral response of honeybee workers to brood diseases in general. Here, we report the use of an Affymetrix 44K SNP array to analyze SNPs associated with detection and uncapping of Varroa-parasitized brood by individual worker bees (Apis mellifera). For this study, 22 000 individually labeled bees were video-monitored and a sample of 122 cases and 122 controls was collected and analyzed to determine the dependence/independence of SNP genotypes from hygienic and nonhygienic behavior on a genome-wide scale. After false-discovery rate correction of the P values, 6 SNP markers had highly significant associations with the trait investigated (α < 0.01). Inspection of the genomic regions around these SNPs led to the discovery of putative candidate genes. PMID:26774061

  20. Genome-Wide Association Study of a Varroa-Specific Defense Behavior in Honeybees (Apis mellifera).

    PubMed

    Spötter, Andreas; Gupta, Pooja; Mayer, Manfred; Reinsch, Norbert; Bienefeld, Kaspar

    2016-05-01

    Honey bees are exposed to many damaging pathogens and parasites. The most devastating is Varroa destructor, which mainly affects the brood. A promising approach for preventing its spread is to breed Varroa-resistant honey bees. One trait that has been shown to provide significant resistance against the Varroa mite is hygienic behavior, which is a behavioral response of honeybee workers to brood diseases in general. Here, we report the use of an Affymetrix 44K SNP array to analyze SNPs associated with detection and uncapping of Varroa-parasitized brood by individual worker bees (Apis mellifera). For this study, 22 000 individually labeled bees were video-monitored and a sample of 122 cases and 122 controls was collected and analyzed to determine the dependence/independence of SNP genotypes from hygienic and nonhygienic behavior on a genome-wide scale. After false-discovery rate correction of the P values, 6 SNP markers had highly significant associations with the trait investigated (α < 0.01). Inspection of the genomic regions around these SNPs led to the discovery of putative candidate genes.

  1. Rotenone and oxalic acid as alternative acaricidal treatments for Varroa destructor in honeybee colonies.

    PubMed

    Gregorc, Ales; Poklukar, Janez

    2003-02-27

    This experiment assessed the efficacy of rotenone and oxalic acid (OA) in an aqueous sugar solution in controlling the honeybee mite Varroa destructor. Colonies were populated with mite-infested brood combs and worker bees. Three rotenone or OA treatments administered during the period with capped brood on 31 July, 14 and 18 August resulted in an average efficacy of 24.10%. In untreated colonies mite mortality averaged 5.40%. No significant differences (P>0.05) were found between the rotenone and OA treatments. Three OA treatments administered on 9, 12 and 18 September resulted in a 77.93% mite mortality. An increase in mite drop (P<0.05) was observed at 2 and 4 days after each treatment. OA applications in broodless colonies resulted in significantly (P<0.001) higher mite mortality rates (98.65% average) than the three treatments of rotenone or OA in colonies with capped brood. The dynamics of mite mortality after each rotenone or OA treatment are discussed in this study.

  2. Environment or beekeeping management: What explains better the prevalence of honey bee colonies with high levels of Varroa destructor?

    PubMed

    Giacobino, Agostina; Pacini, Adriana; Molineri, Ana; Bulacio Cagnolo, N; Merke, J; Orellano, E; Bertozzi, E; Masciangelo, G; Pietronave, H; Signorini, M

    2017-06-01

    Varroa destructor is one of the major threats to honey bee colonies. The mite abundance in the colonies is affected by environmental conditions as well as by beekeeping management. The aim of this study was to recognize the main drivers associated with autumn V. destructor infestation in honey bee colonies when different regions from Argentina are compared. A total of 361 colonies distributed in five Argentinean eco-regions were examined to evaluate Varroa mite infestation rate during autumn and Nosema sp. presence. Regions were different regarding annual temperature, precipitation and especially vegetation landscape. In addition, beekeeping management practices were obtained from a checklist questionnaire answered by the beekeepers. The prevalence of colonies with high infestation level was lower in semi-arid Chaco followed by humid and transition Chaco regions. Also, colonies that were positive for Nosema sp. showed a higher Varroa infestation rate. The "environmental" effect was stronger compared with the influence of secondary drivers associated with beekeeping activities. As well, a significant association between V. destructor infestation rates and Nosema presence was identified. Under contrasting natural conditions, environment seems a predominant driver on Varroa destructor infestation level in honey bee colonies. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Demodex mites.

    PubMed

    Elston, Carly A; Elston, Dirk M

    2014-01-01

    Demodex mites are normal inhabitants of human hair follicles. D folliculorum is found predominantly in the follicular infundibulum of facial skin and is typically present in small groups. D brevis, the smaller of the two species, predominates on the trunk, typically as solitarily mites within the sebaceous glands and ducts. In a wide variety of animals, Demodex mites are recognized as a cause of mange. The role of Demodex mites as agents of human disease has been more controversial, but evidence favors their involvement in acneiform eruptions, folliculitis, and a range of eruptions in immunosuppressed patients.

  4. Next generation sequencing of Apis mellifera syriaca identifies genes for Varroa resistance and beneficial bee keeping traits.

    PubMed

    Haddad, Nizar; Mahmud Batainh, Ahmed; Suleiman Migdadi, Osama; Saini, Deepti; Krishnamurthy, Venkatesh; Parameswaran, Sriram; Alhamuri, Zaid

    2016-08-01

    Apis mellifera syriaca exhibits a high degree of tolerance to pests and pathogens including varroa mites. This native honey bee subspecies of Jordan expresses behavioral adaptations to high temperature and dry seasons typical of the region. However, persistent honey bee imports of commercial breeder lines are endangering local honey bee population. This study reports the use of next-generation sequencing (NGS) technology to study the A. m. syriaca genome and to identify genetic factors possibly contributing toward mite resistance and other favorable traits. We obtained a total of 46.2 million raw reads by applying the NGS to sequence A. m. syriaca and used extensive bioinformatics approach to identify several candidate genes for Varroa mite resistance, behavioral and immune responses characteristic for these bees. As a part of characterizing the functional regulation of molecular genetic pathway, we have mapped the pathway genes potentially involved using information from Drosophila melanogaster and present possible functional changes implicated in responses to Varroa destructor mite infestation toward this. We performed in-depth functional annotation methods to identify ∼600 candidates that are relevant, genes involved in pathways such as microbial recognition and phagocytosis, peptidoglycan recognition protein family, Gram negative binding protein family, phagocytosis receptors, serpins, Toll signaling pathway, Imd pathway, Tnf, JAK-STAT and MAPK pathway, heamatopioesis and cellular response pathways, antiviral, RNAi pathway, stress factors, etc. were selected. Finally, we have cataloged function-specific polymorphisms between A. mellifera and A. m. syriaca that could give better understanding of varroa mite resistance mechanisms and assist in breeding. We have identified immune related embryonic development (Cactus, Relish, dorsal, Ank2, baz), Varroa hygiene (NorpA2, Zasp, LanA, gasp, impl3) and Varroa resistance (Pug, pcmt, elk, elf3-s10, Dscam2, Dhc64C, gro

  5. High-throughput sequencing identification of genes involved with Varroa destructor resistance in the eastern honeybee, Apis cerana.

    PubMed

    Ji, T; Yin, L; Liu, Z; Shen, F; Shen, J

    2014-10-31

    Varroa destructor is the greatest threat to the honeybee Apis mellifera worldwide, while it rarely causes serious harm to its native host, the Eastern honeybee Apis cerana. The genetic mechanisms underlying the resistance of A. cerana to Varroa remain unclear. Thus, understanding the molecular mechanism of resistance to Varroa may provide useful insights for reducing this disease in other organisms. In this study, the transcriptomes of two A. cerana colonies were sequenced using the Illumina Solexa sequencing method. One colony was highly affected by mites, whereas the other colony displayed strong resistance to V. destructor. We determined differences in gene expression in the two colonies after challenging the colonies with V. destructor. After de novo transcriptome assembly, we obtained 91,172 unigenes for A. cerana and found that 288 differentially expressed genes varied by more than 15-fold. A total of 277 unigenes were present at higher levels in the non-affected colony. Genes involved in resistance to Varroa included unigenes related to skeletal muscle movement, olfactory sensitivity, and transcription factors. This suggests that hygienic behavior and grooming behavior may play important roles in the resistance to Varroa.

  6. Towards a better understanding of Apis mellifera and Varroa destructor microbiomes: introducing 'phyloh' as a novel phylogenetic diversity analysis tool.

    PubMed

    Sandionigi, A; Vicario, S; Prosdocimi, E M; Galimberti, A; Ferri, E; Bruno, A; Balech, B; Mezzasalma, V; Casiraghi, M

    2015-07-01

    The study of diversity in biological communities is an intriguing field. Huge amount of data are nowadays available (provided by the innovative DNA sequencing techniques), and management, analysis and display of results are not trivial. Here, we propose for the first time the use of phylogenetic entropy as a measure of bacterial diversity in studies of microbial community structure. We then compared our new method (i.e. the web tool phyloh) for partitioning phylogenetic diversity with the traditional approach in diversity analyses of bacteria communities. We tested phyloh to characterize microbiome in the honeybee (Apis mellifera, Insecta: Hymenoptera) and its parasitic mite varroa (Varroa destructor, Arachnida: Parasitiformes). The rationale is that the comparative analysis of honeybee and varroa microbiomes could open new perspectives concerning the role of the parasites on honeybee colonies health. Our results showed a dramatic change of the honeybee microbiome when varroa occurs, suggesting that this parasite is able to influence host microbiome. Among the different approaches used, only the entropy method, in conjunction with phylogenetic constraint as implemented in phyloh, was able to discriminate varroa microbiome from that of parasitized honeybees. In conclusion, we foresee that the use of phylogenetic entropy could become a new standard in the analyses of community structure, in particular to prove the contribution of each biological entity to the overall diversity.

  7. Propolis chemical composition and honeybee resistance against Varroa destructor.

    PubMed

    Popova, M; Reyes, M; Le Conte, Y; Bankova, V

    2014-01-01

    Propolis is known as honeybee chemical defence against infections and parasites. Its chemical composition is variable and depends on the specificity of the local flora. However, there are no data concerning the relationship between propolis chemical composition and honeybee colony health. We tried to answer this question, studying the chemical composition of propolis of bee colonies from an apiary near Avignon, which are tolerant to Varroa destructor, comparing it with colonies from the same apiary which are non-tolerant to the mites. The results indicated that non-tolerant colonies collected more resin than the tolerant ones. The percentage of four biologically active compounds - caffeic acid and pentenyl caffeates - was higher in propolis from tolerant colonies. The results of this study pave the way to understanding the effect of propolis in individual and social immunity of the honeybees. Further studies are needed to clarify the relationship between propolis chemical composition and honeybee colony health.

  8. Brood cell size of Apis mellifera modifies the reproductive behavior of Varroa destructor.

    PubMed

    Maggi, Matías; Damiani, Natalia; Ruffinengo, Sergio; De Jong, David; Principal, Judith; Eguaras, Martín

    2010-03-01

    We undertook a field study to determine whether comb cell size affects the reproductive behavior of Varroa destructor under natural conditions. We examined the effect of brood cell width on the reproductive behavior of V. destructor in honey bee colonies, under natural conditions. Drone and worker brood combs were sampled from 11 colonies of Apis mellifera. A Pearson correlation test and a Tukey test were used to determine whether mite reproduction rate varied with brood cell width. Generalized additive model analysis showed that infestation rate increased positively and linearly with the width of worker and drone cells. The reproduction rate for viable mother mites was 0.96 viable female descendants per original invading female. No significant correlation was observed between brood cell width and number of offspring of V. destructor. Infertile mother mites were more frequent in narrower brood cells.

  9. A comparison of the reproductive ability of Varroa destructor (Mesostigmata:Varroidae) in worker and drone brood of Africanized honey bees (Apis mellifera).

    PubMed

    Calderón, Rafael A; Zamora, Luis G; Van Veen, Johan W; Quesada, Mariela V

    2007-01-01

    Colony infestation by the parasitic mite, Varroa destructor is one of the most serious problems for beekeeping worldwide. In order to reproduce varroa females, enter worker or drone brood shortly before the cell is sealed. To test the hypothesis that, due to the preference of mites to invade drone brood to reproduce, a high proportion of the mite reproduction should occur in drone cells, a comparative study of mite reproductive rate in worker and drone brood of Africanized honey bees (AHB) was done for 370 mites. After determining the number, developmental stage and sex of the offspring in worker cells, the foundress female mite was immediately transferred into an uninfested drone cell. Mite fertility in single infested worker and drone brood cells was 76.5 and 79.3%, respectively. There was no difference between the groups (X(2)= 0.78, P = 0.37). However, one of the most significant differences in mite reproduction was the higher percentage of mites producing viable offspring (cells that contain one live adult male and at least one adult female mite) in drone cells (38.1%) compared to worker cells (13.8%) (X(2)= 55.4, P < 0.01). Furthermore, a high level of immature offspring occurred in worker cells and not in drone cells (X(2)= 69, P < 0.01). Although no differences were found in the percentage of non-reproducing mites, more than 74% (n = 85) of the mites that did not reproduce in worker brood, produced offspring when they were transferred to drone brood.

  10. New Miticides for Integrated Pest Management of Varroa destructor (Acari: Varroidae) in Honey Bee Colonies on the Canadian Prairies.

    PubMed

    Vandervalk, L P; Nasr, M E; Dosdall, L M

    2014-12-01

    Varroa destructor Anderson and Trueman 2000 (Acari: Varroidae) is an ectoparasitic mite of the honey bee, Apis mellifera L. (Hymenoptera: Apidae). Honey bee colonies require extensive management to prevent mortality caused by varroa mites and the viruses they vector. New miticides (Thymovar and HopGuard) to manage varroa mites were evaluated during the spring and fall treatment windows of the Canadian prairies to determine their effectiveness as part of an integrated management strategy. Thymovar and HopGuard were evaluated alongside the currently used industry standards: Apivar and formic acid. Results demonstrated that Apivar and formic acid remain effective V. destructor management options under spring and fall conditions. Applications of Thymovar during spring were associated with a reduction in brood area, and therefore should be limited to the fall season. The miticide HopGuard was not effective in managing V. destructor, and alteration of the current delivery system is necessary. This study demonstrates the potential for new effective treatment options to supplement currently used V. destructor integrated pest management systems.

  11. Resin foraging dynamics in Varroa destructor infested hives. A case of medication of kin?

    PubMed

    Pusceddu, Michelina; Piluzza, Giannella; Theodorou, Panagiotis; Buffa, Franco; Ruiu, Luca; Bullitta, Simonetta; Floris, Ignazio; Satta, Alberto

    2017-08-10

    Social insects have evolved colony behavioral, physiological and organizational adaptations (social immunity) to reduce the risks of parasitization and/or disease transmission. The collection of resin from various plants and its use in the hive as propolis, is a clear example of behavioral defense. For Apis mellifera, an increased propolis content in the hive may correspond to variations in the microbial load of the colony and to a down-regulation of an individual bee's immune response. However, many aspects of such antimicrobial mechanism still need to be clarified. Assuming that bacterial and fungal infection mechanisms differ from the action of a parasite, we studied the resin collection dynamics in Varroa destructor infested honeybee colonies. Comparative experiments involving hives with different mite infestation levels were conducted in order to assess the amount of resin collected and propolis quality within the hive, over a two year period (2014 and 2015). Our study demonstrates that when A. mellifera colonies are under stress because of Varroa infestation, an increase in the number of resin foragers is recorded, even if a general intensification of the foraging activity is not observed. A reduction in the total polyphenolic content in propolis produced in infested vs uninfested hives was also noticed. Considering that different propolis types show varying levels of inhibition against a variety of honey bee pathogens in vitro, it would be very important to study the effects against Varroa of two diverse types of propolis: from Varroa free and from Varroa infested hives. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  12. Acaricidal and insecticidal activity of essential oils on Varroa destructor (Acari: Varroidae) and Apis mellifera (Hymenoptera: Apidae).

    PubMed

    Damiani, Natalia; Gende, Liesel B; Bailac, Pedro; Marcangeli, Jorge A; Eguaras, Martín J

    2009-12-01

    Varroa destructor is an external parasitic mite that is a serious pest of honeybees and has caused severe losses of colonies worldwide. One of the feasible alternative treatments being used for their control is essential oils. The aim of this work was to evaluate the bioactivity of some essential oils on V. destructor and Apis mellifera in relation with their chemical composition and physicochemical properties. Lavender, lavendin and laurel essential oils showed linalool as main compound in their composition. 1,8-Cineole was also present as a predominant component in the laurel essential oil. However, thyme oil was characterized by a high concentration of thymol. Mites and bees toxicity was tested by means of complete exposure method. For mites, LC(50) values for laurel, lavender and lavendin essential oil did not show significant variation throughout all observation times. However, the LC(50) values for thyme oil at 48 and 72 h were lower than at 24 h. Bee mortality was evident only in treatment with thyme oil. At 48 and 72 h, lavender essential oil presented better selectivity indexes. In this research, all essential oils caused mite mortality without severe harmful effects on adult bees. The simultaneous evaluation of the physicochemical analysis of the essential oils, the characterization of the dosage response relationships among them, and the mortality effects on mite and bees, give us the possibility to obtain comparative results for future research in Varroa control.

  13. Transcriptional signatures of parasitization and markers of colony decline in Varroa-infested honey bees (Apis mellifera).

    PubMed

    Zanni, Virginia; Galbraith, David A; Annoscia, Desiderato; Grozinger, Christina M; Nazzi, Francesco

    2017-08-01

    Extensive annual losses of honey bee colonies (Apis mellifera L.) reported in the northern hemisphere represent a global problem for agriculture and biodiversity. The parasitic mite Varroa destructor, in association with deformed wing virus (DWV), plays a key role in this phenomenon, but the underlying mechanisms are still unclear. To elucidate these mechanisms, we analyzed the gene expression profile of uninfested and mite infested bees, under laboratory and field conditions, highlighting the effects of parasitization on the bee's transcriptome under a variety of conditions and scenarios. Parasitization was significantly correlated with higher viral loads. Honey bees exposed to mite infestation exhibited an altered expression of genes related to stress response, immunity, nervous system function, metabolism and behavioural maturation. Additionally, mite infested young bees showed a gene expression profile resembling that of forager bees. To identify potential molecular markers of colony decline, the expression of genes that were commonly regulated across the experiments were subsequently assessed in colonies experiencing increasing mite infestation levels. These studies suggest that PGRP-2, hymenoptaecin, a glucan recognition protein, UNC93 and a p450 cytocrome maybe suitable general biomarkers of Varroa-induced colony decline. Furthermore, the reliability of vitellogenin, a yolk protein previously identified as a good marker of colony survival, was confirmed here. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Reproduction of Varroa destructor and offspring mortality in worker and drone brood cells of Africanized honey bees.

    PubMed

    Calderón, R A; Ureña, S; van Veen, J W

    2012-04-01

    Varroa destructor is known to be the most serious parasite of Apis mellifera worldwide. In order to reproduce varroa females enter worker or drone brood shortly before the cell is sealed. From March to December 2008, the reproductive rate and offspring mortality (mature and immature stages), focusing on male absence and male mortality of V. destructor, was investigated in naturally infested worker and drone brood of Africanized honey bees (AHB) in Costa Rica. Data were obtained from 388 to 403 single infested worker and drone brood cells, respectively. Mite fertility in worker and drone brood cells was 88.9 and 93.1%, respectively. There was no difference between the groups (X(2) = 3.6, P = 0.06). However, one of the most significant differences in mite reproduction was the higher percentage of mites producing viable offspring in drone cells (64.8%) compared to worker cells (37.6%) (X(2) = 57.2, P < 0.05). A greater proportion of mites in worker brood cells produced non-viable female offspring. Mite offspring mortality in both worker and drone cells was high in the protonymph stage (mobile and immobile). A significant finding was the high rate of male mortality. The worker and drone brood revealed that 23.9 and 6.9%, respectively, of the adult male offspring was found dead. If the absence (missing) of the male and adult male mortality are taken together the percentage of cells increased to 40.0 and 21.3% in worker and drone cells, respectively (X(2) = 28.8, P < 0.05). The absence of the male or male mortality in a considerable number of worker cells naturally infested with varroa is the major factor in our study which reduces the production of viable daughters in AHB colonies in Costa Rica.

  15. PCR-based detection of a tracheal mite of the honey bee Acarapis woodi.

    PubMed

    Kojima, Yuriko; Yoshiyama, Mikio; Kimura, Kiyoshi; Kadowaki, Tatsuhiko

    2011-10-01

    The effects of the tracheal mite Acarapis woodi on the health of honey bees have been neglected since the prevalence of Varroa mites to Apis mellifera colonies. However, tracheal mite infestation of honey bee colonies still occurs worldwide and could impose negative impact on apiculture. The detection of A. woodi requires the dissection of honey bees followed by microscopic observation of the tracheal sacs. We thus developed PCR methods to detect A. woodi. These methods facilitate rapid and sensitive detection of A. woodi in many honey bee samples for epidemiologic surveys.

  16. Comparing data on the reproduction of Varroa destructor.

    PubMed

    Corrêa-Marques, Maria H; Medina, Luis Medina; Martin, Stephen J; De Jong, David

    2003-03-31

    Varroa destructor reproductive success is considered an important character for determining the resistance of honey bees to this mite parasite. However, most of the published data are not comparable due to the different methods of ascertaining and reporting reproduction. A recently published technique that involves reconstructing mite families in older worker brood gives repeatable and reliable parameters. This methodology was used to compare various categories of reproduction of approximately 1,000 V. destructor females in each of three studies on Africanized bees in Brazil and Mexico and European bees in England. The most objective and useful measure was the determination of the number of viable females per female that had invaded the worker brood in singly infested cells, which was denominated the "effective reproduction rate". Viable females are those that can reach the adult stage and have a mate available. The effective reproduction rate in worker brood was 0.64, 0.73 and 1.01 in Brazil, Mexico and England, respectively. Standardization of reproduction determination techniques would make published data comparable and much more useful.

  17. Statistical methods to quantify the effect of mite parasitism on the probability of death in honey bee colonies

    USDA-ARS?s Scientific Manuscript database

    Varroa destructor is a mite parasite of European honey bees, Apis mellifera, that weakens the population, can lead to the death of an entire honey bee colony, and is believed to be the parasite with the most economic impact on beekeeping. The purpose of this study was to estimate the probability of ...

  18. Effects of Varroa destructor on temperature and humidity conditions and expression of energy metabolism genes in infested honeybee colonies.

    PubMed

    Hou, C S; Li, B B; Deng, S; Diao, Q Y

    2016-09-23

    Varroa destructor mites pose an increasing global threat to the apicultural industry and agricultural ecology; however, the issue of whether certain environmental factors reflect the level of mite infection is far from resolved. Here, a wireless sensor network (WSN) system was used to examine how V. destructor, which has vital impacts on honeybee (Apis mellifera) health and survival, affects the temperature and humidity of honeybee hives in a field experiment. This approach may facilitate early identification of V. destructor in hives, and thus enable timely remedial action. Using quantitative PCR, we also evaluated the expression of two genes, adipokinetic hormone (AKH) and adipokinetic hormone receptor (AKHR).The results showed that temperature in highly infested broods was higher than that in broods with low infestation. Moreover, mite infection in honeybee colonies was positively correlated with temperature but negatively correlated with humidity (P < 0.05). Similar to previous observations, quantitative analysis suggested that the expression levels of AKH and AKHR from honeybees with low infection were significantly higher than those from bees with high infection (P < 0.01). These results showed that the expression levels of these genes in colonies with high mite infestation were closely associated with changes in hive temperature and humidity. This study demonstrates that Varroa infection not only causes changes in temperature inside honeybee colonies, but also affects the expression of honeybee energy metabolism genes.

  19. Continuous release of oregano oil effectively and safely controls Varroa destructor infestations in honey bee colonies in a northern climate.

    PubMed

    Sabahi, Qodratollah; Gashout, Hanan; Kelly, Paul G; Guzman-Novoa, Ernesto

    2017-07-01

    The ectoparasitic mite Varroa destructor is responsible for the death of millions of honey bee (Apis mellifera) colonies worldwide. Testing potential miticide compounds with different delivery methods that effectively control V. destructor and have low toxicity for honey bees is crucial to manage this parasite in hives. We determined the varroacide efficacy of three natural compounds delivered to hives with three application methods over a 4-week period. Oxalic acid in a sucrose solution was applied impregnated in cardboard (T1). A mixture of oregano and clove oils in an ethanol-gelatin solution was applied impregnated in absorbent pads (T2). Oregano oil alone was delivered using electric vaporizers (T3) to test the hypothesis that continuous release of miticides increases the varroacidal efficacy of essential oils. The varroa mite control rates for treatments T1-T3 were 76.5 ± 7.11, 57.8 ± 12.79 and 97.4 ± 0.68%, respectively, and there were no differences for bee mortality between control and treatments 1 and 3. Additionally, most mites were killed in the first 2 weeks in T3 colonies compared to the last 2 weeks in colonies of the other treatments. These results demonstrate the importance of continuously releasing natural miticides to achieve safe and high rates of mite control in hives. They also show that oregano oil may be an effective miticide against V. destructor infestations in colonies.

  20. Impact of the Phoretic Phase on Reproduction and Damage Caused by Varroa destructor (Anderson and Trueman) to Its Host, the European Honey Bee (Apis mellifera L.)

    PubMed Central

    Piou, Vincent; Tabart, Jérémy; Urrutia, Virginie; Hemptinne, Jean-Louis; Vétillard, Angélique

    2016-01-01

    Varroa destructor is a parasitic mite of the honeybee that causes thousands of colony losses worldwide. The parasite cycle is composed of a phoretic and a reproductive phase. During the former, mites stay on adult bees, mostly on nurses, to feed on hemolymph. During the latter, the parasites enter brood cells and reproduce. We investigated if the type of bees on which Varroa stays during the phoretic phase and if the duration of this stay influenced the reproductive success of the parasite and the damage caused to bees. For that purpose, we used an in vitro rearing method developed in our laboratory to assess egg laying rate and the presence and number of fully molted daughters. The expression level of two Varroa vitellogenin genes (VdVg1 and VdVg2), known to vary throughout reproduction, was also quantified. Results showed that the status of the bees or time spent during the phoretic phase impacts neither reproduction parameters nor the Varroa vitellogenin genes levels of expression. However, we correlated these parameters to the gene expression and demonstrated that daughters expressed the vitellogenin genes at lower levels than their mother. Regarding the damage to bees, the data indicated that a longer stay on adult bees during the phoretic phase resulted in more frequent physical deformity in newborn bees. We showed that those mites carry more viral loads of the Deformed Wing Virus and hence trigger more frequently overt infections. This study provides new perspectives towards a better understanding of the Varroa-honeybee interactions. PMID:27096154

  1. An atypical residue in the pore of Varroa destructor GABA-activated RDL receptors affects picrotoxin block and thymol modulation

    PubMed Central

    Price, Kerry L.; Lummis, Sarah C.R.

    2014-01-01

    GABA-activated RDL receptors are the insect equivalent of mammalian GABAA receptors, and play a vital role in neurotransmission and insecticide action. Here we clone the pore lining M2 region of the Varroa mite RDL receptor and show that it has 4 atypical residues when compared to M2 regions of most other insects, including bees, which are the major host of Varroa mites. We create mutant Drosophila RDL receptors containing these substitutions and characterise their effects on function. Using two electrode voltage clamp electrophysiology we show that one substitution (T6′M) ablates picrotoxin inhibition and increases the potency of GABA. This mutation also alters the effect of thymol, which enhances both insect and mammalian GABA responses, and is widely used as a miticide. Thymol decreases the GABA EC50 of WT receptors, enhancing responses, but in T6′M-containing receptors it is inhibitory. The other 3 atypical residues have no major effects on either the GABA EC50, the picrotoxin potency or the effect of thymol. In conclusion we show that the RDL 6′ residue is important for channel block, activation and modulation, and understanding its function also has the potential to prove useful in the design of Varroa-specific insecticidal agents. PMID:25460510

  2. Mite allergy and mite exposure in Iceland.

    PubMed

    Hallas, Thorkil E; Gislason, Thorarinn; Gislason, David

    2011-01-01

    In this overview of investigations into mite allergy in Iceland and of the current understanding of the sources of exposure, 2 major categories of mite-induced allergies were encountered. The first was house dust mite allergy due to house dust mites from unknown sources, and the second was barn allergy caused by mites connected with the degradation of stored hay. Characteristics of these diseases have been obtained from surveys where skin prick tests were made with commercially available extracts of mites and from zoological investigations where mites had been found in different kinds of dusts relevant for the tested persons. The investigations uncovered a discrepancy between the capital Reykjavik and countryside farms. While the frequencies of sensitization to house dust mites and barn mites are rather similar in the capital area and in the rural area, the exposure to these mites is unexpectedly low in the capital area. Thus, sensitization appears to take place preferably in the rural area.

  3. Dead or alive: deformed wing virus and Varroa destructor reduce the life span of winter honeybees.

    PubMed

    Dainat, Benjamin; Evans, Jay D; Chen, Yan Ping; Gauthier, Laurent; Neumann, Peter

    2012-02-01

    Elevated winter losses of managed honeybee colonies are a major concern, but the underlying mechanisms remain controversial. Among the suspects are the parasitic mite Varroa destructor, the microsporidian Nosema ceranae, and associated viruses. Here we hypothesize that pathogens reduce the life expectancy of winter bees, thereby constituting a proximate mechanism for colony losses. A monitoring of colonies was performed over 6 months in Switzerland from summer 2007 to winter 2007/2008. Individual dead workers were collected daily and quantitatively analyzed for deformed wing virus (DWV), acute bee paralysis virus (ABPV), N. ceranae, and expression levels of the vitellogenin gene as a biomarker for honeybee longevity. Workers from colonies that failed to survive winter had a reduced life span beginning in late fall, were more likely to be infected with DWV, and had higher DWV loads. Colony levels of infection with the parasitic mite Varroa destructor and individual infections with DWV were also associated with reduced honeybee life expectancy. In sharp contrast, the level of N. ceranae infection was not correlated with longevity. In addition, vitellogenin gene expression was significantly positively correlated with ABPV and N. ceranae loads. The findings strongly suggest that V. destructor and DWV (but neither N. ceranae nor ABPV) reduce the life span of winter bees, thereby constituting a parsimonious possible mechanism for honeybee colony losses.

  4. Reproduction of Varroa destructor in worker brood of Africanized honey bees (Apis mellifera).

    PubMed

    Medina, Luis Medina; Martin, Stephen J; Espinosa-Montaño, Laura; Ratnieks, Francis L W

    2002-01-01

    Reproduction and population growth of Varroa destructor was studied in ten naturally infested, Africanized honey bee (AHB) (Apis mellifera) colonies in Yucatan, Mexico. Between February 1997 and January 1998 monthly records of the amount of pollen, honey, sealed worker and drone brood were recorded. In addition, mite infestation levels of adult bees and worker brood and the fecundity of the mites reproducing in worker cells were determined. The mean number of sealed worker brood cells (10,070 +/- 1,790) remained fairly constant over the experimental period in each colony. However, the presence and amount of sealed drone brood was very variable. One colony had drone brood for 10 months and another for only 1 month. Both the mean infestation level of worker brood (18.1 +/- 8.4%) and adult bees (3.5 +/- 1.3%) remained fairly constant over the study period and did not increase rapidly as is normally observed in European honey bees. In fact, the estimated mean number of mites fell from 3,500 in February 1997 to 2,380 in January 1998. In May 2000 the mean mite population in the study colonies was still only 1,821 mites. The fertility level of mites in this study was much higher (83-96%) than in AHB in Brazil (25-57%). and similar to that found in EHB (76-94%). Mite fertility remained high throughout the entire study and was not influenced by the amount of pollen, honey or worker brood in the colonies.

  5. MITE display.

    PubMed

    Casa, Alexandra M; Nagel, Alexander; Wessler, Susan R

    2004-01-01

    Genome size differences among crop plants are largely due to unequal accumulation of repetitive DNA sequences, mainly transposable elements (TEs). Over the past decade, many families of miniature inverted-repeat transposable elements (MITEs) have been identified and characterized in a variety of organisms including animals and plants. MITEs are characterized by short terminal inverted repeats (TIRs) (10-15 bp), small size (approx 100 to 500 bp), high-copy-number (approx 1000 to 15,000 per haploid genome), and a preference for insertion into 2-bp to 3-bp targets that are rich in A and T residues. In this chapter, we present a modified transposon display procedure based on the maize MITE family Heartbreaker (Hbr). This technique is similar to AFLP in which AFLP adaptors are ligated to compatible ends of digested genomic DNA. Subsets of Hbr-containing fragments are then amplified using one AFLP primer and another primer complementary to an internal sequence of the Hbr element. Like AFLP, the Hbr display method permits the simultaneous analysis of numerous DNA fragments. Given the plethora of available marker systems, the major advantage of Hbr markers, and perhaps most MITE-based markers, is a preference for insertion in or near transcriptionally active genomic regions. This feature may be especially valuable in the large genomes of agriculturally important plants like maize, wheat, and barley where gene-rich islands are thought to exist in a sea of retrotransposons. Having a class of markers that are enriched in genic regions, coupled with the ease of isolating MITE markers, could expedite chromosome walks and map-based cloning protocols in these organisms.

  6. Changes in the Bacteriome of Honey Bees Associated with the Parasite Varroa destructor, and Pathogens Nosema and Lotmaria passim.

    PubMed

    Hubert, Jan; Bicianova, Martina; Ledvinka, Ondrej; Kamler, Martin; Lester, Philip J; Nesvorna, Marta; Kopecky, Jan; Erban, Tomas

    2017-04-01

    The honey bee, Apis mellifera, is a globally important species that suffers from a variety of pathogens and parasites. These parasites and pathogens may have sublethal effects on their bee hosts via an array of mechanisms, including through a change in symbiotic bacterial taxa. Our aim was to assess the influence of four globally widespread parasites and pathogens on the honey bee bacteriome. We examined the effects of the ectoparasitic mite Varroa destructor, the fungal pathogens Nosema apis and Nosema ceranae, and the trypanosome Lotmaria passim. Varroa was detected by acaricidal treatment, Nosema and L. passim by PCR, and the bacteriome using MiSeq 16S rRNA gene sequencing. Overall, the 1,858,850 obtained sequences formed 86 operational taxonomic units (OTUs) at 3 % dissimilarity. Location, time of year, and degree of infestation by Varroa had significant effects on the composition of the bacteriome of honey bee workers. Based on statistical correlations, we found varroosis more important factor than N. ceranae, N. apis, and L. passim infestation influencing the honey bee bacteriome and contributing to the changes in the composition of the bacterial community in adult bees. At the population level, Varroa appeared to modify 20 OTUs. In the colonies with high Varroa infestation levels (varroosis), the relative abundance of the bacteria Bartonella apis and Lactobacillus apis decreased. In contrast, an increase in relative abundance was observed for several taxa including Lactobacillus helsingborgensis, Lactobacillus mellis, Commensalibacter intestini, and Snodgrassella alvi. The results showed that the "normal" bacterial community is altered by eukaryotic parasites as well as displaying temporal changes and changes associated with the geographical origin of the beehive.

  7. Behavioral Modulation of Infestation by Varroa destructor in Bee Colonies. Implications for Colony Stability.

    PubMed

    de Figueiró Santos, Joyce; Coelho, Flávio Codeço; Bliman, Pierre-Alexandre

    2016-01-01

    Colony Collapse Disorder (CCD) has become a global problem for beekeepers and for the crops that depend on bee pollination. While many factors are known to increase the risk of colony collapse, the ectoparasitic mite Varroa destructor is considered to be the most serious one. Although this mite is unlikely to cause the collapse of hives itself, it is the vector for many viral diseases which are among the likely causes for Colony Collapse Disorder. The effects of V. destructor infestation differ from one part of the world to another, with greater morbidity and higher colony losses in European honey bees (EHB) in Europe, Asia and North America. Although this mite has been present in Brazil for many years, there have been no reports of colony losses amongst Africanized Honey Bees (AHB). Studies carried out in Mexico have highlighted different behavioral responses by the AHB to the presence of the mite, notably as far as grooming and hygienic behavior are concerned. Could these explain why the AHB are less susceptible to Colony Collapse Disorder? In order to answer this question, we have developed a mathematical model of the infestation dynamics to analyze the role of resistance behavior by bees in the overall health of the colony, and as a consequence, its ability to face epidemiological challenges.

  8. Behavioral Modulation of Infestation by Varroa destructor in Bee Colonies. Implications for Colony Stability

    PubMed Central

    2016-01-01

    Colony Collapse Disorder (CCD) has become a global problem for beekeepers and for the crops that depend on bee pollination. While many factors are known to increase the risk of colony collapse, the ectoparasitic mite Varroa destructor is considered to be the most serious one. Although this mite is unlikely to cause the collapse of hives itself, it is the vector for many viral diseases which are among the likely causes for Colony Collapse Disorder. The effects of V. destructor infestation differ from one part of the world to another, with greater morbidity and higher colony losses in European honey bees (EHB) in Europe, Asia and North America. Although this mite has been present in Brazil for many years, there have been no reports of colony losses amongst Africanized Honey Bees (AHB). Studies carried out in Mexico have highlighted different behavioral responses by the AHB to the presence of the mite, notably as far as grooming and hygienic behavior are concerned. Could these explain why the AHB are less susceptible to Colony Collapse Disorder? In order to answer this question, we have developed a mathematical model of the infestation dynamics to analyze the role of resistance behavior by bees in the overall health of the colony, and as a consequence, its ability to face epidemiological challenges. PMID:27583438

  9. Body size variability of Varroa destructor and its role in acaricide tolerance.

    PubMed

    Maggi, Matías; Peralta, Luciano; Ruffinengo, Sergio; Fuselli, S; Eguaras, Martín

    2012-06-01

    Phenotypic plasticity has been defined as the ability of a genotype to produce different phenotypes when exposed to distinct environments throughout its ontogeny. Morphological variability of individuals is an example of this plasticity. Taking into account that several studies have reported a wide morphological variability in Varroa destructor populations, we evaluated if the body size plasticity of the parasite constituted a key factor able to modulate mites survival when they were exposed to a drug bioassays. Drug bioassays against mites were conducted using three different Syzygium aromaticum essential oil concentrations (0.5, 1, and 5 μl/capsule) and controls. After 4 h of exposition, mite mortality was registered. The width (WS) and length (LS) of the dorsal shield were measured in dead mites. General lineal models were carried to determine if V. destructor survival to acaricides was related to the explanatory variables. Data modelling confirmed that WS and LS variables, together with time interaction, were significantly related to V. destructor survival when the parasites were exposed to acaricides. The models proposed demonstrated that for the smaller S. aromaticum essential oil concentration, the larger the parasite body, the greater the probability that it remains alive at the end of the bioassay. Such relationship was inverse for the other two concentrations tested. Possible causes explaining the body size variability in V. destructor individuals were discussed.

  10. A Mathematical Model of Forager Loss in Honeybee Colonies Infested with Varroa destructor and the Acute Bee Paralysis Virus.

    PubMed

    Ratti, Vardayani; Kevan, Peter G; Eberl, Hermann J

    2017-06-01

    We incorporate a mathematical model of Varroa destructor and the Acute Bee Paralysis Virus with an existing model for a honeybee colony, in which the bee population is divided into hive bees and forager bees based on tasks performed in the colony. The model is a system of five ordinary differential equations with dependent variables: uninfected hive bees, uninfected forager bees, infected hive bees, virus-free mites and virus-carrying mites. The interplay between forager loss and disease infestation is studied. We study the stability of the disease-free equilibrium of the bee-mite-virus model and observe that the disease cannot be fought off in the absence of varroacide treatment. However, the disease-free equilibrium can be stable if the treatment is strong enough and also if the virus-carrying mites become virus-free at a rate faster than the mite birth rate. The critical forager loss due to homing failure, above which the colony fails, is calculated using simulation experiments for disease-free, treated and untreated mite-infested, and treated virus-infested colonies. A virus-infested colony without varroacide treatment fails regardless of the forager mortality rate.

  11. A Mathematical Model of the Honeybee-Varroa destructor-Acute Bee Paralysis Virus System with Seasonal Effects.

    PubMed

    Ratti, Vardayani; Kevan, Peter G; Eberl, Hermann J

    2015-08-01

    A mathematical model for the honeybee-varroa mite-ABPV system is proposed in terms of four differential equations for the: infected and uninfected bees in the colony, number of mites overall, and of mites carrying the virus. To account for seasonal variability, all parameters are time periodic. We obtain linearized stability conditions for the disease-free periodic solutions. Numerically, we illustrate that, for appropriate parameters, mites can establish themselves in colonies that are not treated with varroacides, leading to colonies with slightly reduced number of bees. If some of these mites carry the virus, however, the colony might fail suddenly after several years without a noticeable sign of stress leading up to the failure. The immediate cause of failure is that at the end of fall, colonies are not strong enough to survive the winter in viable numbers. We investigate the effect of the initial disease infestation on collapse time, and how varroacide treatment affects long-term behavior. We find that to control the virus epidemic, the mites as disease vector should be controlled.

  12. Selection for varroatosis resistance in honeybees.

    PubMed

    Moritz, R F

    1994-06-01

    The parasitic mite Varroa jacobsoni is a major problem for beekeeping worldwide. It can be controlled efficiently with a variety of ocaracides. However, Robin F.A. Moritz argues that, owing to the risk of honey contamination and the costs involved with continuous treatment of honeybee (Apis mellifera L.) colonies, there is a pressing need to find alternative ways of varroatosis control. A variety of physiological and behavioural traits of the honeybee are known to control efficiently the development and spread of V. jacobsoni infestation. Breeding of a varroatosis-resistant honeybee seems possible and selection could offer swift results if one capitalizes on the male haploid population structure of the honeybee.

  13. Functionality of Varroa-resistant honey bees (Hymenoptera: Apidae) when used for western U.S. honey production and almond pollination.

    PubMed

    Rinderer, Tihomas E; Danka, Robert G; Johnson, Stephanie; Bourgeois, A Lelania; Frake, Amanda M; Villa, José D; De Guzman, Lilia I; Harris, Jeffrey W

    2014-04-01

    Two types of honey bees, Apis mellifera L., bred for resistance to Varroa destructor Anderson & Trueman, were evaluated for performance when used for honey production in Montana, and for almond pollination the following winter. Colonies of Russian honey bees and outcrossed honey bees with Varroa-sensitive hygiene (VSH) were compared with control colonies of Italian honey bees. All colonies were managed without miticide treatments. In total, 185 and 175 colonies were established for trials in 2010-2011 and 2011-2012, respectively. Survival of colonies with original queens or with supersedure queens was similar among stocks for both years. Colony sizes of the Varroa-resistant stocks were as large as or larger than the control colonies during periods critical to honey production and almond pollination. Honey production varied among stocks. In the first year, all stocks produced similar amounts of honey. In the second year, Russian honey bees colonies produced less honey than the control colonies. V. destructor infestations also varied among stocks. In the first year, control colonies had more infesting mites than either of the Varroa-resistant stocks, especially later in the year. In the second year, the control and outcrossed Varroa-sensitive hygiene colonies had high and damaging levels of infestation while the Russian honey bees colonies maintained lower levels of infestation. Infestations of Acarapis woodi (Rennie) were generally infrequent and low. All the stocks had similarly high Nosema ceranae infections in the spring and following winter of both years. Overall, the two Varroa-resistant stocks functioned adequately in this model beekeeping system.

  14. Development of a 44K SNP assay focussing on the analysis of a varroa-specific defence behaviour in honey bees (Apis mellifera carnica).

    PubMed

    Spötter, A; Gupta, P; Nürnberg, G; Reinsch, N; Bienefeld, K

    2012-03-01

    Honey bees are exposed to a number of damaging pathogens and parasites. The most destructive among them, affecting mainly the brood, is Varroa destructor. A promising approach to prevent its spread is to breed for Varroa-tolerant honey bees. A trait that has been shown to provide significant resistance against the Varroa mite is hygienic behaviour, a behavioural response of honey bee workers to brood diseases in general. This study reports the development of a 44K SNP assay, specifically designed for the analysis of hygienic behaviour of individual worker bees (Apis mellifera carnica) directed against V. destructor. Initially, 70,000 SNPs chosen from a large set of SNPs published by the Honey Bee Genome Project were validated for their suitability in the analysis of the Varroa resistance trait 'uncapping of Varroa-infested brood'. This was achieved by genotyping of pooled DNA samples of trait bearers and two trait-negative controls using next-generation sequencing. Approximately 36,000 of these validated SNPs and another 8000 SNPs not validated in this study were selected for the construction of a SNP assay. This assay will be employed in following experiments to analyse individualized DNA samples in order to identify quantitative trait loci (QTL) involved in the control of the investigated trait and to evaluate and possibly confirm QTL found in other studies. However, this assay is not just suitable to study Varroa tolerance, it is as well applicable to analyse any other trait in honey bees. In addition, because of its high density, this assay provides access into genomic selection with respect to several traits considered in honey bee breeding. It will become publicly available via AROS Applied Biotechnology AS, Aarhus, Denmark, before the end of the year 2011.

  15. A mutualistic symbiosis between a parasitic mite and a pathogenic virus undermines honey bee immunity and health.

    PubMed

    Di Prisco, Gennaro; Annoscia, Desiderato; Margiotta, Marina; Ferrara, Rosalba; Varricchio, Paola; Zanni, Virginia; Caprio, Emilio; Nazzi, Francesco; Pennacchio, Francesco

    2016-03-22

    Honey bee colony losses are triggered by interacting stress factors consistently associated with high loads of parasites and/or pathogens. A wealth of biotic and abiotic stressors are involved in the induction of this complex multifactorial syndrome, with the parasitic mite Varroa destructor and the associated deformed wing virus (DWV) apparently playing key roles. The mechanistic basis underpinning this association and the evolutionary implications remain largely obscure. Here we narrow this research gap by demonstrating that DWV, vectored by the Varroa mite, adversely affects humoral and cellular immune responses by interfering with NF-κB signaling. This immunosuppressive effect of the viral pathogen enhances reproduction of the parasitic mite. Our experimental data uncover an unrecognized mutualistic symbiosis between Varroa and DWV, which perpetuates a loop of reciprocal stimulation with escalating negative effects on honey bee immunity and health. These results largely account for the remarkable importance of this mite-virus interaction in the induction of honey bee colony losses. The discovery of this mutualistic association and the elucidation of the underlying regulatory mechanisms sets the stage for a more insightful analysis of how synergistic stress factors contribute to colony collapse, and for the development of new strategies to alleviate this problem.

  16. A Field Experiment to Assess the Rate of Infestation in Honey Bee Populations of Two Metarhizium anisopliae Isolates on Varroa destructor (Acari: Mesostigmata)

    PubMed Central

    Pirali-kheirabadi, Khodadad; Teixeira-da-Silva, Jaime A; Razzaghi-Abyaneh, Mehdi; Nazemnia, Mehdi

    2013-01-01

    Background: The protective effect of two isolates of an entomopathogenic fungus, Metarhizium anisopliae (DEMI 002 and Iran 437C) on the adult stage of Varroa destructor was evaluated in comparison with fluvalinate strips in the field. Methods: A total of 12 honey bee colonies were provided from an apiculture farm. The selected hives were divided into 4 groups (3 hives per group). The first group was the control, treated with distilled water. The other two groups were exposed to different fungi (M. anisopliae isolates DEMI 002 and Iran 437C) and the last group was treated with one strip of fluvalinate per colony. The number of fallen mites was counted using sticky traps during a 6-day period, six days before and after treatments. A fungal suspension at a concentration of 5× 106 conidia/mL was sprayed onto the frames and the number of fallen mites was counted. Results: Metarhizium anisopliae DEMI 002 and Iran 437C isolates were as effective (i.e., caused as much mite fall) as the fluvalinate strip in controlling bee colonies than no treatment. Conclusion: Both M. anisopliae isolates are promising candidates as agents in the control of Varroa mites under field conditions. Isolate DEMI 002 can be considered as a possible non-chemical biocontrol agent for controlling bee infestation with V. destructor in the field. In order to substantiate this hypothesis, tests are currently being performed using larger colonies and larger doses than tested in the present study in our beekeeping. PMID:23785691

  17. Novel Mutations in the Voltage-Gated Sodium Channel of Pyrethroid-Resistant Varroa destructor Populations from the Southeastern USA

    PubMed Central

    González-Cabrera, Joel; Rodríguez-Vargas, Sonia; Davies, T. G. Emyr; Field, Linda M.; Schmehl, Daniel; Ellis, James D.; Krieger, Klemens; Williamson, Martin S.

    2016-01-01

    The parasitic mite Varroa destructor has a significant worldwide impact on bee colony health. In the absence of control measures, parasitized colonies invariably collapse within 3 years. The synthetic pyrethroids tau-fluvalinate and flumethrin have proven very effective at managing this mite within apiaries, but intensive control programs based mainly on one active ingredient have led to many reports of pyrethroid resistance. In Europe, a modification of leucine to valine at position 925 (L925V) of the V. destructor voltage-gated sodium channel was correlated with resistance, the mutation being found at high frequency exclusively in hives with a recent history of pyrethroid treatment. Here, we identify two novel mutations, L925M and L925I, in tau-fluvalinate resistant V. destructor collected at seven sites across Florida and Georgia in the Southeastern region of the USA. Using a multiplexed TaqMan® allelic discrimination assay, these mutations were found to be present in 98% of the mites surviving tau-fluvalinate treatment. The mutations were also found in 45% of the non-treated mites, suggesting a high potential for resistance evolution if selection pressure is applied. The results from a more extensive monitoring programme, using the Taqman® assay described here, would clearly help beekeepers with their decision making as to when to include or exclude pyrethroid control products and thereby facilitate more effective mite management programmes. PMID:27191597

  18. Characterization of the Copy Number and Variants of Deformed Wing Virus (DWV) in the Pairs of Honey Bee Pupa and Infesting Varroa destructor or Tropilaelaps mercedesae

    PubMed Central

    Wu, Yunfei; Dong, Xiaofeng; Kadowaki, Tatsuhiko

    2017-01-01

    Recent honey bee colony losses, particularly during the winter, have been shown to be associated with the presence of both ectoparasitic mites and Deformed Wing Virus (DWV). Whilst the role of Varroa destructor mites as a viral vector is well established, the role of Tropilaelaps mercedesae mites in viral transmission has not been fully investigated. In this study, we tested the effects that V. destructor and T. mercedesae infestation have on fluctuation of the DWV copy number and alteration of the virus variants in honey bees by characterizing individual pupae and their infesting mites. We observed that both mite species were associated with increased viral copy number in honey bee pupae. We found a positive correlation between DWV copy number in pupae and copy number in infesting mites, and the same DWV type A variant was present in either low or high copy number in both honey bee pupae and infesting V. destructor. These data also suggest that variant diversity is similar between honey bee pupae and the mites that infest them. These results support a previously proposed hypothesis that DWV suppresses the honey bee immune system when virus copy number reaches a specific threshold, promoting greater replication. PMID:28878743

  19. Characterization of the Copy Number and Variants of Deformed Wing Virus (DWV) in the Pairs of Honey Bee Pupa and Infesting Varroa destructor or Tropilaelaps mercedesae.

    PubMed

    Wu, Yunfei; Dong, Xiaofeng; Kadowaki, Tatsuhiko

    2017-01-01

    Recent honey bee colony losses, particularly during the winter, have been shown to be associated with the presence of both ectoparasitic mites and Deformed Wing Virus (DWV). Whilst the role of Varroa destructor mites as a viral vector is well established, the role of Tropilaelaps mercedesae mites in viral transmission has not been fully investigated. In this study, we tested the effects that V. destructor and T. mercedesae infestation have on fluctuation of the DWV copy number and alteration of the virus variants in honey bees by characterizing individual pupae and their infesting mites. We observed that both mite species were associated with increased viral copy number in honey bee pupae. We found a positive correlation between DWV copy number in pupae and copy number in infesting mites, and the same DWV type A variant was present in either low or high copy number in both honey bee pupae and infesting V. destructor. These data also suggest that variant diversity is similar between honey bee pupae and the mites that infest them. These results support a previously proposed hypothesis that DWV suppresses the honey bee immune system when virus copy number reaches a specific threshold, promoting greater replication.

  20. Nutrigenomics in honey bees: digital gene expression analysis of pollen's nutritive effects on healthy and varroa-parasitized bees

    PubMed Central

    2011-01-01

    Background Malnutrition is a major factor affecting animal health, resistance to disease and survival. In honey bees (Apis mellifera), pollen, which is the main dietary source of proteins, amino acids and lipids, is essential to adult bee physiological development while reducing their susceptibility to parasites and pathogens. However, the molecular mechanisms underlying pollen's nutritive impact on honey bee health remained to be determined. For that purpose, we investigated the influence of pollen nutrients on the transcriptome of worker bees parasitized by the mite Varroa destructor, known for suppressing immunity and decreasing lifespan. The 4 experimental groups (control bees without a pollen diet, control bees fed with pollen, varroa-parasitized bees without a pollen diet and varroa-parasitized bees fed with pollen) were analyzed by performing a digital gene expression (DGE) analysis on bee abdomens. Results Around 36, 000 unique tags were generated per DGE-tag library, which matched about 8, 000 genes (60% of the genes in the honey bee genome). Comparing the transcriptome of bees fed with pollen and sugar and bees restricted to a sugar diet, we found that pollen activates nutrient-sensing and metabolic pathways. In addition, those nutrients had a positive influence on genes affecting longevity and the production of some antimicrobial peptides. However, varroa parasitism caused the development of viral populations and a decrease in metabolism, specifically by inhibiting protein metabolism essential to bee health. This harmful effect was not reversed by pollen intake. Conclusions The DGE-tag profiling methods used in this study proved to be a powerful means for analyzing transcriptome variation related to nutrient intake in honey bees. Ultimately, with such an approach, applying genomics tools to nutrition research, nutrigenomics promises to offer a better understanding of how nutrition influences body homeostasis and may help reduce the susceptibility of bees

  1. Nutrigenomics in honey bees: digital gene expression analysis of pollen's nutritive effects on healthy and varroa-parasitized bees.

    PubMed

    Alaux, Cédric; Dantec, Christelle; Parrinello, Hughes; Le Conte, Yves

    2011-10-10

    Malnutrition is a major factor affecting animal health, resistance to disease and survival. In honey bees (Apis mellifera), pollen, which is the main dietary source of proteins, amino acids and lipids, is essential to adult bee physiological development while reducing their susceptibility to parasites and pathogens. However, the molecular mechanisms underlying pollen's nutritive impact on honey bee health remained to be determined. For that purpose, we investigated the influence of pollen nutrients on the transcriptome of worker bees parasitized by the mite Varroa destructor, known for suppressing immunity and decreasing lifespan. The 4 experimental groups (control bees without a pollen diet, control bees fed with pollen, varroa-parasitized bees without a pollen diet and varroa-parasitized bees fed with pollen) were analyzed by performing a digital gene expression (DGE) analysis on bee abdomens. Around 36, 000 unique tags were generated per DGE-tag library, which matched about 8, 000 genes (60% of the genes in the honey bee genome). Comparing the transcriptome of bees fed with pollen and sugar and bees restricted to a sugar diet, we found that pollen activates nutrient-sensing and metabolic pathways. In addition, those nutrients had a positive influence on genes affecting longevity and the production of some antimicrobial peptides. However, varroa parasitism caused the development of viral populations and a decrease in metabolism, specifically by inhibiting protein metabolism essential to bee health. This harmful effect was not reversed by pollen intake. The DGE-tag profiling methods used in this study proved to be a powerful means for analyzing transcriptome variation related to nutrient intake in honey bees. Ultimately, with such an approach, applying genomics tools to nutrition research, nutrigenomics promises to offer a better understanding of how nutrition influences body homeostasis and may help reduce the susceptibility of bees to (less virulent) pathogens.

  2. Biophysical characterization of the Varroa destructor NaV1 sodium channel and its affinity for τ-fluvalinate insecticide.

    PubMed

    Gosselin-Badaroudine, Pascal; Chahine, Mohamed

    2017-03-29

    The decline of the western honeybee (Apis mellifera) has been reported to be due to parasitism by Varroa destructor mites and to colony collapse disorder in which these mites may be involved. In-hive chemicals such as τ-fluvalinate are being used to control Vdestructor populations. This approach may lead to the chronic exposure of bees to this liposoluble chemical, which tends to accumulate in hives. We cloned a variant of the V. destructor sodium channel (VdNav1) and studied its biophysical characteristics and sensitivity to τ-fluvalinate using the Xenopus oocyte expression system and the 2-microelectrode voltage-clamp technique. We compared the affinity of VdNav1 for τ-fluvalinate with the honeybee voltage-dependent sodium ortholog. Our results showed that the honeybee sodium channel is more sensitive to τ-fluvalinate than the V. destructor channel, suggesting that care must be taken when treating hives with this chemical.-Gosselin-Badaroudine, P., Chahine, M. Biophysical characterization of the Varroa destructor NaV1 sodium channel and its affinity for τ-fluvalinate insecticide.

  3. Effects of western honey bee (Hymenoptera: Apidae) colony, cell type, and larval sex on host acquisition by female Varroa destructor (Acari: Varroidae).

    PubMed

    Calderone, N W; Kuenen, L P

    2001-10-01

    Female mites of the genus Varroa reproduce on the immature stages of Apis cerana F. and A. mellifera L. Mites are found more often in drone brood than worker brood, and while evolutionary explanations for this bias are well supported, the proximate mechanisms are not known. In one experiment, we verified that the proportion of hosts with one or more mites (MPV, mite prevalence value) was significantly greater for drones (0.763 +/- 0.043) (lsmean +/- SE) than for workers (0.253 +/- 0.043) in populations of mites and bees in the United States. Similar results were found for the average number of mites per host. In a second experiment, using a cross-fostering technique in which worker and drone larvae were reared in both worker and drone cells, we found that cell type, larval sex, colony and all interactions affected the level of mites on a host. Mite prevalence values were greatest in drone larvae reared in drone cells (0.907 +/- 0.025), followed by drone larvae reared in worker cells (0.751 +/- 0.025), worker larvae reared in worker cells (0.499 +/- 0.025), and worker larvae reared in drone cells (0.383 +/- 0.025). Similar results were found for the average number of mites per host. Our data show that mite levels are affected by environmental factors (cell type), by factors intrinsic to the host (sex), and by interactions between these factors. In addition, colony-to-colony variation is important to the expression of intrinsic and environmental factors.

  4. Molecular Prevalence of Acarapis Mite Infestations in Honey Bees in Korea

    PubMed Central

    Ahn, Ah-Jin; Ahn, Kyu-Sung; Noh, Jin-Hyeong; Kim, Young-Ha; Yoo, Mi-Sun; Kang, Seung-Won; Yu, Do-Hyeon; Shin, Sung Shik

    2015-01-01

    Acarapis mites, including Acarapis woodi, Acarapis externus, and Acarapis dorsalis, are parasites of bees which can cause severe damage to the bee industry by destroying colonies and decreasing honey production. All 3 species are prevalent throughout many countries including UK, USA, Iran, Turkey, China, and Japan. Based on previous reports of Acarapis mites occurring in northeast Asia, including China and Japan, we investigated a survey of Acarapis mite infestations in honey bees in Korean apiaries. A total of 99 colonies of Apis mellifera were sampled from 5 provinces. The head and thorax of 20 bees from each colony were removed for DNA extraction. PCR assays were performed with 3 primer sets, including T, A, and K primers. Results indicated that 42.4% (42/99) of samples were Acarapis-positive by PCR assay which were sequenced to identify species. Each sequence showed 92.6-99.3% homology with reference sequences. Based on the homology, the number of colonies infected with A. dorsalis was 32 which showed the highest infection rate among the 3 species, while the number of colonies infected with A. externus and A. woodi was 9 and 1, respectively. However, none of the Acarapis mites were morphologically detected. This result could be explained that all apiaries in the survey used acaricides against bee mites such as Varroa destructor and Tropilaelaps clareae which also affect against Acarapis mites. Based on this study, it is highly probable that Acarapis mites as well as Varroa and Tropilaelaps could be prevalent in Korean apiaries. PMID:26174825

  5. Mites and allergy.

    PubMed

    Fernández-Caldas, Enrique; Puerta, Leonardo; Caraballo, Luis

    2014-01-01

    Allergic diseases triggered by mite allergens include allergic rhinoconjunctivitis, asthma, atopic dermatitis and other skin diseases. Since the early discovery of the allergenic role of mites of the genus Dermatophagoides in the mid 1960s, numerous species have been described as the source of allergens capable of sensitizing and inducing allergic symptoms in sensitized and genetically predisposed individuals. The main sources of allergens in house dust worldwide are the fecal pellets of the mite species D. pteronyssinus, D. farinae, Euroglyphus maynei and the storage mites Blomia tropicalis, Lepidoglyphus destructor and Tyropahgus putrescentiae. Group 1 and 2 allergens are major house dust mite allergens. The main allergens in storage mites include fatty acid-binding proteins, tropomyosin and paramyosin homologues, apolipophorin-like proteins, α-tubulins and others, such as group 2, 5 and 7 allergens. Cross-reactivity is an important and common immunological feature among mites. Currently, purified native or recombinant allergens, epitope mapping, proteomic approaches and T cell proliferation techniques are being used to assess cross-reactivity. Mites contain potent enzymes capable of degrading a wide range of substrates. Most mite allergens are enzymes. Advances in genomics and molecular biology will improve our ability to understand the genetics of specific IgE responses to mites. Mite allergen avoidance and immunotherapy are the only two allergen-specific ways to treat mite-induced respiratory and cutaneous diseases. © 2014 S. Karger AG, Basel.

  6. A mutualistic symbiosis between a parasitic mite and a pathogenic virus undermines honey bee immunity and health

    PubMed Central

    Di Prisco, Gennaro; Annoscia, Desiderato; Margiotta, Marina; Ferrara, Rosalba; Varricchio, Paola; Zanni, Virginia; Caprio, Emilio; Nazzi, Francesco; Pennacchio, Francesco

    2016-01-01

    Honey bee colony losses are triggered by interacting stress factors consistently associated with high loads of parasites and/or pathogens. A wealth of biotic and abiotic stressors are involved in the induction of this complex multifactorial syndrome, with the parasitic mite Varroa destructor and the associated deformed wing virus (DWV) apparently playing key roles. The mechanistic basis underpinning this association and the evolutionary implications remain largely obscure. Here we narrow this research gap by demonstrating that DWV, vectored by the Varroa mite, adversely affects humoral and cellular immune responses by interfering with NF-κB signaling. This immunosuppressive effect of the viral pathogen enhances reproduction of the parasitic mite. Our experimental data uncover an unrecognized mutualistic symbiosis between Varroa and DWV, which perpetuates a loop of reciprocal stimulation with escalating negative effects on honey bee immunity and health. These results largely account for the remarkable importance of this mite–virus interaction in the induction of honey bee colony losses. The discovery of this mutualistic association and the elucidation of the underlying regulatory mechanisms sets the stage for a more insightful analysis of how synergistic stress factors contribute to colony collapse, and for the development of new strategies to alleviate this problem. PMID:26951652

  7. Laboratory study on the effects of temperature and three ventilation rates on infestations of Varroa destructor in clusters of honey bees (Hymenoptera: Apidae).

    PubMed

    Kozak, Paul R; Currie, Robert W

    2011-12-01

    In this study, reduced levels of ventilation were applied to small clusters of bees under controlled conditions to determine whether lowered ventilation rates and the resulting increased levels of CO2 could increase the mortality rates of varroa. Two experiments were performed at two different temperatures (10 degrees C and 25 degrees C). Both experiments compared varroa mortality among high (360 liters/h), medium (42.5 liters/h), and low (14 liters/h) rates of ventilation. The clusters of bees (approximately 300 worker bees) in bioassay cages with 40 introduced varroa mites were placed into self-contained glass chambers and were randomly assigned to one of the three ventilation treatments within incubators set at either of the two temperatures. Bee and varroa mortality and the levels of CO2 concentration were measured in each of the experimental chambers. In both experiments, CO2 levels within the chamber increased, with a decrease in ventilation with CO2 reaching a maximum of 1.2 +/- 0.45% at 10 degrees C and 2.13 +/- 0.2% at 25 degrees C under low ventilation. At high ventilation rates, CO2 concentration in chamber air was similar at 10 degrees C (1.1 +/- 1.5%) and 25 degrees C (1.9 +/- 1.1%). Both humidity and CO2 concentration were higher at 25 degrees C than at 10 degrees C. Bee mortality was similar within all ventilation rate treatments at either 10 degrees C (11.5 +/- 2.7-19.3 +/- 3.8%) or 25 degrees C (15.2 +/- 1.9-20.7 +/- 3.5%). At 10 degrees C, varroa mortality (percentage dead) was greatest in the high ventilation treatment (12.2 +/- 2.1%), but only slightly higher than under low (3.7 +/- 1.7%) and medium ventilation (4.9 +/- 1.6%). At 25 degrees C, varroa mortality was greatest under low ventilation at 46.12 +/- 7.7% and significantly greater than at either medium (29.7 +/- 7.4%) or low ventilation (9.5 +/- 1.6.1%). This study demonstrates that at 25 degrees C, restricted ventilation, resulting in high levels of CO2 in the surrounding environment of

  8. Synthesis of Enantiopure Alicyclic Ethers and Their Activity on the Chemosensory Organ of the Ectoparasite of Honey Bees, Varroa destructor.

    PubMed

    Pinnelli, Govardhana R; Singh, Nitin K; Soroker, Victoria; Plettner, Erika

    2016-11-16

    The preparation of enantiopure conformationally restricted alicyclic ethers and their inhibitory activities on the chemosensory organ of the Varroa destructor, a parasite of honey bees, are reported in this article. We tested the effect of enantiopure ethers of cis-5-(2'-hydroxyethyl)cyclopent-2-en-1-ol on the Varroa chemosensory organ by electrophysiology, for their ability to inhibit the responses to two honey bee-produced odors that are important for the mite to locate its host: nurse bee head space odor and (E)-β-ocimene, a honey bee brood pheromone. Previous work with the racemic compounds showed that they suppress the mite's olfactory response to its bee host, which led to incorrect host choice. Based on a structure-activity relationship, we predicted that the two most active compounds-cis-1-butoxy-5-(2'-methoxyethyl)cyclopent-2-ene, cy{4,1}, and (cis-1-ethoxy-5-(2'ethoxyethyl)cyclopent-2-ene, cy{2,2}-could have opposite active enantiomers. Here we studied the enantiomers of both ethers, whose preparation involved enzymatic resolution of racemic diol cis-5-(2'-hydroxyethyl)cyclopent-2-en-1-ol using Lipase AK with vinyl acetate. The racemic diol was prepared from commercially available 2,5-norbornadiene. We observed that the responses of the chemosensory organ to honey bee head space volatiles were significantly decreased by both enantiomers of cy{4,1} and cy{2,2}, but that responses to (E)-β-ocimene were decreased significantly only by (+)-cy{4,1} (1R,5S) and (-)-cy{2,2} (1S,5R) and not by their respective enantiomers. The importance of this result is that the racemates could be used to inhibit olfactory detection of bee odors by mites, without a loss in activity relative to the more expensive enantiopure compounds.

  9. Risk factors associated with the presence of Varroa destructor in honey bee colonies from east-central Argentina.

    PubMed

    Giacobino, A; Bulacio Cagnolo, N; Merke, J; Orellano, E; Bertozzi, E; Masciangelo, G; Pietronave, H; Salto, C; Signorini, M

    2014-08-01

    Varroa destructor is considered one of the major threats for worldwide apiculture. Damage caused by varroa mite includes body weight loss, malformation and weakening of the bees. It was also suggested as the main cause associated with colony winter mortality and as an important vector for several honey bee viruses. Little is known about multiple factors and their interaction affecting V. destructor prevalence in apiaries from South America. The aim of this study was to identify risk factors associated with V. destructor prevalence in east-central Argentina. Parasitic mite infestation level and colony strength measures were evaluated in 63 apiaries distributed in 4 different regions in east-central Argentina in a cross sectional study. Data regarding management practices in each apiary were collected by means of a questionnaire. A mixed-effects logistic regression model was constructed to associate management variables with the risk of achieving mite infestation higher than 3%. Colonies owned by beekeepers who indicated that they did not monitor colonies after mite treatment (OR=2.305; 95% CI: 0.944-5.629) nor disinfect hives woodenware material (OR=2.722; 95% CI: 1.380-5.565) were associated with an increased risk of presenting high intensity infestation with V. destructor (>3%). On the other hand, beekeepers who reported replacing more than 50% of the queens in their operation (OR=0.305; 95% CI: 0.107-0.872), feeding colonies protein substitute containing natural pollen (OR=0.348; 95% CI: 0.129-0.941) and feeding colonies High Fructose Corn Syrup (HFCS) (OR=0.108; 95% CI: 0.032-0.364), had colonies that were less likely to have V. destructor infestations above 3%, than beekeepers who did not report using these management practices. Further research should be conducted considering that certain management practices were associated to mite infestation level in order to improve the sanitary condition in the colonies. Epidemiological studies provide key information to

  10. Evaluation of spring organic treatments against Varroa destructor (Acari: Varroidae) in honey bee Apis mellifera (Hymenoptera: Apidae) colonies in eastern Canada.

    PubMed

    Giovenazzo, Pierre; Dubreuil, Pascal

    2011-09-01

    The objective of this study was to measure the efficacy of two organic acid treatments, formic acid (FA) and oxalic acid (OA) for the spring control of Varroa destructor (Anderson and Trueman) in honey bee (Apis mellifera L.) colonies. Forty-eight varroa-infested colonies were randomly distributed amongst six experimental groups (n = 8 colonies per group): one control group (G1); two groups tested applications of different dosages of a 40 g OA/l sugar solution 1:1 trickled on bees (G2 and G3); three groups tested different applications of FA: 35 ml of 65% FA in an absorbent Dri-Loc(®) pad (G4); 35 ml of 65% FA poured directly on the hive bottom board (G5) and MiteAwayII™ (G6). The efficacy of treatments (varroa drop), colony development, honey yield and hive survival were monitored from May until September. Five honey bee queens died during this research, all of which were in the FA treated colonies (G4, G5 and G6). G6 colonies had significantly lower brood build-up during the beekeeping season. Brood populations at the end of summer were significantly higher in G2 colonies. Spring honey yield per colony was significantly lower in G6 and higher in G1. Summer honey flow was significantly lower in G6 and higher in G3 and G5. During the treatment period, there was an increase of mite drop in all the treated colonies. Varroa daily drop at the end of the beekeeping season (September) was significantly higher in G1 and significantly lower in G6. The average number of dead bees found in front of hives during treatment was significantly lower in G1, G2 and G3 versus G4, G5 and G6. Results suggest that varroa control is obtained from all spring treatment options. However, all groups treated with FA showed slower summer hive population build-up resulting in reduced honey flow and weaker hives at the end of summer. FA had an immediate toxic effect on bees that resulted in queen death in five colonies. The OA treatments that were tested have minimal toxic impacts on the

  11. ULTRASTRUCURAL STUDY OF BEE LOUSE VARROA DESTRUCTOR ANDERSON & TRUEMAN 2000 (ACARI: VARROIDAE) WITH RESISTANCE MODELS FROM APIS MELLIFERA L.

    PubMed

    Ammar, Khalaf Nour Abd El-Wahed

    2015-08-01

    The ectoparasitic mite Varroa destructor is the most dangerous pest of honeybee Egyptian race Apis mellifera L., as it causes many losses in apiculture worldwide. Adult female mites are flattened with a dome-shaped dorsal shield. The present SEM study revealed that the flat ventral surface is composed of series of plates. There are 5 rows of small, chemoreceptor papillae posterior to the genito-ventro anal shield, and a unique respiratory structure (peritreme) is located laterally above Coxa III. Peritreme is a chitinized elongated area surrounding stigma opening, provided by a lid that looks like a rose with a curly thick inner membrane which has numerous teeth-like projections. Mite' legs appeared to be modified for parasitism and each is tipped by one distal empodium. The pretarsus of the first pair of legs becomes a concave sucker and the pretarsus of the 3 pairs of the posterior legs consists of membranous amblacral pad (the caruncle). The mouthparts appeared well modified for its diet on bee hernolymph with its' powerful pedipalp for host attachment. High magnification revealed different types of setae distributed on the body, the mechano-receptor pedipalp short. and long anal setae and dorsal shield sensory simple setae.

  12. Acute contact toxicity of oxalic acid to Varroa destructor (Acari: Varroidae) and their Apis mellifera (Hymenoptera: Apidae) hosts in laboratory bioassays.

    PubMed

    Aliano, Nicholas P; Ellis, Marion D; Siegfried, Blair D

    2006-10-01

    Laboratory bioassays were performed to characterize the acute contact toxicity of oxalic acid (OA) to Varroa destructor (Anderson and Trueman) and their honey bee hosts (Apis mellifera L.). Specifically, glass-vial residual bioassays were conducted to determine the lethal concentration of OA for V. destructor, and topical applications of OA in acetone were conducted to determine the lethal dose for honey bees. The results indicate that OA has a low acute toxicity to honey bees and a high acute toxicity to mites. The toxicity data will help guide scientists in delivering optimum dosages of OA to the parasite and its host, and will be useful in making treatment recommendations. The data will also facilitate future comparisons of toxicity if mite resistance to OA becomes evident.

  13. Responses of Varroa-resistant honey bees (Apis mellifera L.) to Deformed wing virus

    USDA-ARS?s Scientific Manuscript database

    The negative impact of Deformedwing virus (DWV) on European honey bees Apis mellifera is magnified by Varroa destructor parasitism. This study compared the responses of two Varroa-resistant honey bee stocks, pure Russian honey bees (RHB) and out-crossed Varroa Sensitive Hygienic bees, Pol-line (POL)...

  14. Responses of Varroa-resistant honey bees (Apis mellifera L.) to Deformed Wing Virus

    USDA-ARS?s Scientific Manuscript database

    The impact of Deformed wing virus (DWV) on Apis mellifera is magnified by Varroa destructor parasitism. This study compared the responses of two Varroa-resistant honey bee stocks [Russian honey bees (RHB) and an outcross of Varroa Sensitive Hygienic bees (POL)] to DWV infection to that of Italian ho...

  15. Influence of Honey Bee Genotype and Wintering Method on Wintering Performance of Varroa destructor (Parasitiformes: Varroidae)-Infected Honey Bee (Hymenoptera: Apidae) Colonies in a Northern Climate.

    PubMed

    Bahreini, Rassol; Currie, Robert W

    2015-08-01

    The objective of this study was to assess the effectiveness of a cooperative breeding program designed to enhance winter survival of honey bees (Apis mellifera L.) when exposed to high levels of varroa (Varroa destructor Anderson and Trueman) in outdoor-wintered and indoor-wintered colonies. Half of the colonies from selected and unselected stocks were randomly assigned to be treated with late autumn oxalic acid treatment or to be left untreated. Colonies were then randomly assigned to be wintered either indoors (n = 37) or outdoors (n = 40). Late autumn treatment with oxalic acid did not improve wintering performance. However, genotype of bees affected colony survival and the proportion of commercially viable colonies in spring, as indicated by greater rates of colony survival and commercially viable colonies for selected stock (43% survived and 33% were viable) in comparison to unselected stock (19% survived and 9% were viable) across all treatment groups. Indoor wintering improved spring bee population score, proportion of colonies surviving, and proportion of commercially viable colonies relative to outdoor wintering (73% of selected stock and 41% of unselected stock survived during indoor wintering). Selected stock showed better "tolerance" to varroa as the selected stock also maintained higher bee populations relative to unselected stock. However, there was no evidence of "resistance" in selected colonies (reduced mite densities). Collectively, this experiment showed that breeding can improve tolerance to varroa and this can help minimize colony loss through winter and improve colony wintering performance. Overall, colony wintering success of both genotypes of bees was better when colonies were wintered indoors than when colonies were wintered outdoors.

  16. Field efficacy of acaricides against Varroa destructor.

    PubMed

    Gracia, María Jesús; Moreno, Carlos; Ferrer, Montserrat; Sanz, Alfredo; Peribáñez, Miguel Ángel; Estrada, Rosa

    2017-01-01

    Field trials were conducted in Northeast Spain (Aragón) to evaluate the effectiveness of two acaricides against Varroa destructor. These experiments took into account the season of the year, apiary, colony, and developmental state and strength of the colony. The acaricides used were a synthetic (amitraz, Apivar®) and a natural (formulated from Api Life Var®, thymol oil and thymol alcohol) product. The treatments used in the present study reduce high infestations of V. destructor, although they do not eliminate the infestation. Similar efficacies between treatments were found. Nevertheless, the efficacy of a treatment depends on the apiary where applied. Moreover, the detected variability in the apiary and hive poses a challenge to the identification of the significant factors. Therefore, more field studies to assess efficacies in several apiaries are needed to obtain a better understanding of the effects of the applied treatments.

  17. Field efficacy of acaricides against Varroa destructor

    PubMed Central

    Gracia, María Jesús; Moreno, Carlos; Ferrer, Montserrat; Sanz, Alfredo; Peribáñez, Miguel Ángel; Estrada, Rosa

    2017-01-01

    Field trials were conducted in Northeast Spain (Aragón) to evaluate the effectiveness of two acaricides against Varroa destructor. These experiments took into account the season of the year, apiary, colony, and developmental state and strength of the colony. The acaricides used were a synthetic (amitraz, Apivar®) and a natural (formulated from Api Life Var®, thymol oil and thymol alcohol) product. The treatments used in the present study reduce high infestations of V. destructor, although they do not eliminate the infestation. Similar efficacies between treatments were found. Nevertheless, the efficacy of a treatment depends on the apiary where applied. Moreover, the detected variability in the apiary and hive poses a challenge to the identification of the significant factors. Therefore, more field studies to assess efficacies in several apiaries are needed to obtain a better understanding of the effects of the applied treatments. PMID:28158303

  18. The ectoparasitic mite Tropilaelaps mercedesae reduces western honey bee, Apismellifera, longevity and emergence weight, and promotes Deformed wing virus infections.

    PubMed

    Khongphinitbunjong, Kitiphong; Neumann, Peter; Chantawannakul, Panuwan; Williams, Geoffrey R

    2016-06-01

    Historically an ectoparasite of the native Giant honey bee Apis dorsata, the mite Tropilaelaps mercedesae has switched hosts to the introduced western honey bee Apis mellifera throughout much of Asia. Few data regarding lethal and sub-lethal effects of T. mercedesae on A. mellifera exist, despite its similarity to the devastating mite Varroa destructor. Here we artificially infested worker brood of A. mellifera with T. mercedesae to investigate lethal (longevity) and sub-lethal (emergence weight, Deformed wing virus (DWV) levels and clinical symptoms of DWV) effects of the mite on its new host. The data show that T. mercedesae infestation significantly reduced host longevity and emergence weight, and promoted both DWV levels and associated clinical symptoms. Our results suggest that T. mercedesae is a potentially important parasite to the economically important A. mellifera honey bee.

  19. Tyramine functions as a toxin in honey bee larvae during Varroa-transmitted infection by Melissococcus pluton.

    PubMed

    Kanbar, G; Engels, W; Nicholson, G J; Hertle, R; Winkelmann, G

    2004-05-01

    From wounds of honey bee pupae, caused by the mite Varroa destructor, coccoid bacteria were isolated and identified as Melissococcus pluton. The bacterial isolate was grown anaerobically in sorbitol medium to produce a toxic compound that was purified on XAD columns, gelfiltration and preparative HPLC. The toxic agent was identified by GC-MS and FTICR-MS as tyramine. The toxicity of the isolated tyramine was tested by a novel mobility test using the protozoon Stylonychia lemnae. A concentration of 0.2 mg/ml led to immediate inhibition of mobility. In addition the toxicity was studied on honey bee larvae by feeding tyramine/water mixtures added to the larval jelly. The lethal dosis of tyramine on 4-5 days old bee larvae was determined as 0.3 mg/larvae when added as a volume of 20 microl to the larval food in brood cells. Several other biogenic amines, such as phenylethylamine, histamine, spermine, cadaverine, putrescine and trimethylamine, were tested as their hydrochloric salts for comparison and were found to be inhibitory in the Stylonychia mobility test at similar concentrations. A quantitative hemolysis test with human red blood cells revealed that tyramine and histamine showed the highest membranolytic activity, followed by the phenylethylamine, trimethylamine and spermine, while the linear diamines, cadaverine and putrescine, showed a significantly lower hemolysis when calculated on a molar amine basis. The results indicate that tyramine which is a characteristic amine produced by M. pluton in culture, is the causative agent of the observed toxic symptoms in bee larvae. Thus this disease, known as European foulbrood, is possibly an infection transmitted by the Varroa destructor mite.

  20. Dust Mite Allergy

    MedlinePlus

    ... mite allergy symptoms caused by inflammation of nasal passages include: Sneezing Runny nose Itchy, red or watery ... system produces an inflammatory response in your nasal passages or lungs. Prolonged or regular exposure to the ...

  1. Dust Mite Allergy

    MedlinePlus

    ... in dust mite allergy. What causes the allergic reaction Allergies occur when your immune system reacts to ... nurse observes your skin for signs of allergic reactions after 15 minutes. If you're allergic to ...

  2. Mites and Wee Beasties.

    ERIC Educational Resources Information Center

    Reed, George H., Jr.

    1978-01-01

    A review is made of public health aspects of some arthropods that might be seen on a college or university campus. The diseases and infestations caused by mites, lice, bed bugs, fleas, and ticks are discussed. (JMF)

  3. Scabies mite, photomicrograph (image)

    MedlinePlus

    This is a photomicrograph of the scabies mite. This animal burrows in the skin, depositing both eggs and feces. Scabies infestation causes intense itching (pruritus) which leads to scratching and damage ...

  4. Scabies mite, photomicrograph (image)

    MedlinePlus

    This is a photomicrograph of the scabies mite. They burrows into the skin, depositing both eggs and feces. A scabies infestation causes intense itching (pruritus) which leads to scratching and damage ...

  5. Mites and Wee Beasties.

    ERIC Educational Resources Information Center

    Reed, George H., Jr.

    1978-01-01

    A review is made of public health aspects of some arthropods that might be seen on a college or university campus. The diseases and infestations caused by mites, lice, bed bugs, fleas, and ticks are discussed. (JMF)

  6. Carcases and mites.

    PubMed

    Braig, Henk R; Perotti, M Alejandra

    2009-10-01

    Mites are involved in the decomposition of animal carcases and human corpses at every stage. From initial decay at the fresh stage until dry decomposition at the skeletal stage, a huge diversity of Acari, including members of the Mesostigmata, Prostigmata, Astigmata, Endeostigmata, Oribatida and Ixodida, are an integral part of the constantly changing food webs on, in and beneath the carrion. During the desiccation stage in wave 6 of Mégnin's system, mites can become the dominant fauna on the decomposing body. Under conditions unfavourable for the colonisation of insects, such as concealment, low temperature or mummification, mites might become the most important or even the only arthropods on a dead body. Some mite species will be represented by a few specimens, whereas others might build up in numbers to several million individuals. Astigmata are most prominent in numbers and Mesostigmata in diversity. More than 100 mite species and over 60 mite families were collected from animal carcases, and around 75 species and over 20 families from human corpses.

  7. Interaction between Varroa destructor and imidacloprid reduces flight capacity of honeybees

    PubMed Central

    Blanken, Lisa J.; van Dooremalen, Coby

    2015-01-01

    Current high losses of honeybees seriously threaten crop pollination. Whereas parasite exposure is acknowledged as an important cause of these losses, the role of insecticides is controversial. Parasites and neonicotinoid insecticides reduce homing success of foragers (e.g. by reduced orientation), but it is unknown whether they negatively affect flight capacity. We investigated how exposing colonies to the parasitic mite Varroa destructor and the neonicotinoid insecticide imidacloprid affect flight capacity of foragers. Flight distance, time and speed of foragers were measured in flight mills to assess the relative and interactive effects of high V. destructor load and a field-realistic, chronic sub-lethal dose of imidacloprid. Foragers from colonies exposed to high levels of V. destructor flew shorter distances, with a larger effect when also exposed to imidacloprid. Bee body mass partly explained our results as bees were heavier when exposed to these stressors, possibly due to an earlier onset of foraging. Our findings contribute to understanding of interacting stressors that can explain colony losses. Reduced flight capacity decreases the food-collecting ability of honeybees and may hamper the use of precocious foraging as a coping mechanism during colony (nutritional) stress. Ineffective coping mechanisms may lead to destructive cascading effects and subsequent colony collapse. PMID:26631559

  8. Effects of Bacillus thuringiensis strains virulent to Varroa destructor on larvae and adults of Apis mellifera.

    PubMed

    Alquisira-Ramírez, Eva Vianey; Peña-Chora, Guadalupe; Hernández-Velázquez, Víctor Manuel; Alvear-García, Andrés; Arenas-Sosa, Iván; Suarez-Rodríguez, Ramón

    2017-04-04

    The sublethal effects of two strains of Bacillus thuringiensis, which were virulent in vitro to Varroa destructor, were measured on Apis mellifera. The effects of five concentrations of total protein (1, 5, 25, 50 and 100μg/mL) from the EA3 and EA26.1 strains on larval and adult honey bees were evaluated for two and seven days under laboratory conditions. Based on the concentrations evaluated, total protein from the two strains did not affect the development of larvae, the syrup consumption, locomotor activity or proboscis extension response of adults. These same parameters were also tested for the effects of three concentrations (1, 10 and 15μg/kg) of cypermethrin as a positive control. Although no significant differences were observed after two days of treatment with cypermethrin, a dose-response relationship in syrup consumption and locomotor activity was observed. A significant reduction in the proboscis extension response of the bees treated with cypermethrin was also observed. Therefore, in contrast to cypermethrin, our results indicate that the EA3 and EA26.1 strains of B. thuringiensis can be used in beehives to control V. destructor and reduce the negative effects of this mite on colonies without adverse effects on the larvae and adults of A. mellifera. Additionally, the overuse of synthetic miticides, which produce both lethal and sublethal effects on bees, can be reduced.

  9. Interaction between Varroa destructor and imidacloprid reduces flight capacity of honeybees.

    PubMed

    Blanken, Lisa J; van Langevelde, Frank; van Dooremalen, Coby

    2015-12-07

    Current high losses of honeybees seriously threaten crop pollination. Whereas parasite exposure is acknowledged as an important cause of these losses, the role of insecticides is controversial. Parasites and neonicotinoid insecticides reduce homing success of foragers (e.g. by reduced orientation), but it is unknown whether they negatively affect flight capacity. We investigated how exposing colonies to the parasitic mite Varroa destructor and the neonicotinoid insecticide imidacloprid affect flight capacity of foragers. Flight distance, time and speed of foragers were measured in flight mills to assess the relative and interactive effects of high V. destructor load and a field-realistic, chronic sub-lethal dose of imidacloprid. Foragers from colonies exposed to high levels of V. destructor flew shorter distances, with a larger effect when also exposed to imidacloprid. Bee body mass partly explained our results as bees were heavier when exposed to these stressors, possibly due to an earlier onset of foraging. Our findings contribute to understanding of interacting stressors that can explain colony losses. Reduced flight capacity decreases the food-collecting ability of honeybees and may hamper the use of precocious foraging as a coping mechanism during colony (nutritional) stress. Ineffective coping mechanisms may lead to destructive cascading effects and subsequent colony collapse. © 2015 The Author(s).

  10. Assessing grooming behavior of Russian honey bees toward Varroa destructor.

    USDA-ARS?s Scientific Manuscript database

    The grooming behavior of Russian bees was compared to Italian bees. Overall, Russian bees had significantly lower numbers of mites than the Italian bees with a mean of 1,937 ± 366 and 5,088 ± 733 mites, respectively. This low mite population in the Russian colonies was probably due to the increased ...

  11. Ecdysteroid biosynthesis in varroa mites: identification of halloween genes from the biosynthetic pathway

    USDA-ARS?s Scientific Manuscript database

    Biosynthesis of ecdysteroids involves sequential enzymatic hydroxylations by microsomal enzymes and mitochondrial cytochrome P450’s. Enzymes of the pathway are collectively known as Halloween genes. Complete sequences for three Halloween genes, spook (Vdspo), disembodied (Vddib) and shade (Vdshd), w...

  12. Mite allergy and exposure to storage mites and house dust mites in farmers.

    PubMed

    Iversen, M; Korsgaard, J; Hallas, T; Dahl, R

    1990-03-01

    Sensitization to house dust mites, storage mites and other common inhalation allergens was studied in 144 farmers using SPT and RAST. The study population was selected from a random sample of 808 farmers and consisted of 47 persons who had declared themselves to suffer from asthma, 63 persons who had reported respiratory symptoms, and 34 healthy persons without respiratory symptoms. The most prevalent RAST was towards storage mites and was found in 17% of farmers who suffered from asthma and was estimated to occur in 5% of the random sample of farmers. A positive RAST to house dust mites was found in 17% of farmers who reported to suffer from asthma. Sensitization to pollens, animal dander and grain species was rare. A positive RAST to moulds was not found. There was a strong association between a positive RAST to house dust mites and a positive RAST to storage mites (odds ratio 21.0). A positive RAST to storage mites was significantly associated with living in a dwelling in the past which was recalled as damp (odds ratio 4.9). A high number of house dust mites was found in nearly all dwellings (median count 148 mites/0.1 g dust) and a high number of storage mites was found in some dwellings. This study suggests that in humid and temperate regions of Europe, allergy to storage mites in farmers is not caused exclusively by occupational exposure but damp housing conditions and indoor exposure to storage mites may also be important.

  13. Draft genome of the honey bee ectoparasitic mite, Tropilaelaps mercedesae, is shaped by the parasitic life history

    PubMed Central

    Dong, Xiaofeng; Armstrong, Stuart D.; Xia, Dong; Makepeace, Benjamin L.; Darby, Alistair C.

    2017-01-01

    Abstract The number of managed honey bee colonies has considerably decreased in many developed countries in recent years and ectoparasitic mites are considered as major threats to honey bee colonies and health. However, their general biology remains poorly understood. We sequenced the genome of Tropilaelaps mercedesae, the prevalent ectoparasitic mite infesting honey bees in Asia, and predicted 15 190 protein-coding genes that were well supported by the mite transcriptomes and proteomic data. Although amino acid substitutions have been accelerated within the conserved core genes of two mites, T. mercedesae and Metaseiulus occidentalis, T. mercedesae has undergone the least gene family expansion and contraction between the seven arthropods we tested. The number of sensory system genes has been dramatically reduced, but T. mercedesae contains all gene sets required to detoxify xenobiotics. T. mercedesae is closely associated with a symbiotic bacterium (Rickettsiella grylli-like) and Deformed Wing Virus, the most prevalent honey bee virus. T. mercedesae has a very specialized life history and habitat as the ectoparasitic mite strictly depends on the honey bee inside a stable colony. Thus, comparison of the genome and transcriptome sequences with those of a tick and free-living mites has revealed the specific features of the genome shaped by interaction with the honey bee and colony environment. Genome and transcriptome sequences of T. mercedesae, as well as Varroa destructor (another globally prevalent ectoparasitic mite of honey bee), not only provide insights into the mite biology, but may also help to develop measures to control the most serious pests of the honey bee. PMID:28327890

  14. Draft genome of the honey bee ectoparasitic mite, Tropilaelaps mercedesae, is shaped by the parasitic life history.

    PubMed

    Dong, Xiaofeng; Armstrong, Stuart D; Xia, Dong; Makepeace, Benjamin L; Darby, Alistair C; Kadowaki, Tatsuhiko

    2017-03-01

    The number of managed honey bee colonies has considerably decreased in many developed countries in recent years and ectoparasitic mites are considered as major threats to honey bee colonies and health. However, their general biology remains poorly understood. We sequenced the genome of Tropilaelaps mercedesae, the prevalent ectoparasitic mite infesting honey bees in Asia, and predicted 15 190 protein-coding genes that were well supported by the mite transcriptomes and proteomic data. Although amino acid substitutions have been accelerated within the conserved core genes of two mites, T. mercedesae and Metaseiulus occidentalis, T. mercedesae has undergone the least gene family expansion and contraction between the seven arthropods we tested. The number of sensory system genes has been dramatically reduced, but T. mercedesae contains all gene sets required to detoxify xenobiotics. T. mercedesae is closely associated with a symbiotic bacterium (Rickettsiella grylli-like) and Deformed Wing Virus, the most prevalent honey bee virus. T. mercedesae has a very specialized life history and habitat as the ectoparasitic mite strictly depends on the honey bee inside a stable colony. Thus, comparison of the genome and transcriptome sequences with those of a tick and free-living mites has revealed the specific features of the genome shaped by interaction with the honey bee and colony environment. Genome and transcriptome sequences of T. mercedesae, as well as Varroa destructor (another globally prevalent ectoparasitic mite of honey bee), not only provide insights into the mite biology, but may also help to develop measures to control the most serious pests of the honey bee. © The Author 2017. Published by Oxford University Press.

  15. Dermatoses associated with mites other than Sarcoptes.

    PubMed

    Ken, Kimberly M; Shockman, Solomon C; Sirichotiratana, Melissa; Lent, Megan P; Wilson, Morgan L

    2014-09-01

    Mites are arthropods of the subclass Acari (Acarina). Although Sarcoptes is the mite most commonly recognized as a cause of human skin disease in the United States, numerous other mite-associated dermatoses have been described, and merit familiarity on the part of physicians treating skin disease. This review discusses several non-scabies mites and their associated diseases, including Demodex, chiggers, Cheyletiella, bird mites, grain itch, oak leaf itch, grocer's itch, tropical rat mite, snake mite, and Psoroptes.

  16. The application of molecular markers in the study of diversity in acarology: a review.

    PubMed

    Navajas, M; Fenton, B

    2000-01-01

    The application of molecular markers to the study of ticks and mites has recently yielded new insights into their population structures and taxonomic relationships. Ticks have been studied at individual, population and species level. Mites are a more diverse group and those that have been studied to the same degree as the ticks include the Tetranychidae (spider mites), Phytoseiidae (predatory mites) and the Eriophyidae. Population variation has also been studied in the important bee parasitic mite Varroa jacobsoni Oudemans. The methods used to study these organisms have much in common. At the individual level these range from general approaches, such as AFLP, RAPD or DALP, to highly specific microsatellite analysis. Although these markers also work at the population and species level, additional analysis of specific nuclear or mitochondrial genes has been conducted either by RFLP or sequencing. Molecular applications have had particular success in facilitating the identification of taxonomically difficult species, understanding population structures and elucidating phylogenetic relationships.

  17. Differential viral levels and immune gene expression in three stocks of Apis mellifera induced by different numbers of Varroa destructor

    USDA-ARS?s Scientific Manuscript database

    The viral levels and immune responses of Italian honey bees (IHB), Russian honey bees (RHB) and an outcross of Varroa Sensitive Hygienic bees (POL) deliberately infested with one or two foundress Varroa were compared. We found that the viral load in POL inoculated with one or two foundress Varroa in...

  18. Effects of brood type on Varroa-sensitive hygiene (VSH) by worker honey bees (Hymenoptera: Apidae)

    USDA-ARS?s Scientific Manuscript database

    Honey bees have been selectively bred for varroa sensitive hygiene (VSH), which is the removal of pupae that are infested by Varroa destructor from capped brood cells. This hygienic behavior is a complex interaction of bees and brood in which brood cells are inspected, and then brood is either remo...

  19. Formic acid-based treatments for control of Varroa destructor in a Mediterranean area.

    PubMed

    Satta, Alberto; Floris, Ignazio; Eguaras, Martin; Cabras, Paolo; Garau, Vincenzo Luigi; Melis, Marinella

    2005-04-01

    Two formic acid autumnal treatments, gel packets (BeeVar formulation) and impregnated paperwick (Liebig-Dispenser), were tested in apiary to evaluate their effectiveness against Varroa destructor Anderson & Trueman and their residues in honey in a Mediterranean region (Sardinia, Italy). Both treatments were efficient in the apiary control of the varroosis, with values of percentage of mite mortality ranging between 93.6 and 100%, without statistical differences between them. The more gradual release of formic acid from the gel application allowed a longer action (2 wk for each treatment) compared with the Liebig-Dispenser (approximately 3d for each treatment). The rate of daily evaporation ranged between approximately 5 and 9 g/d from BeeVar and approximately 26 and 35 g/d from the Liebig-Dispenser, in the first and second treatment, respectively. The total amount of formic acid administered per hive during all the treatment period was approximately 200 g for either treatment. A significantly higher adult bee mortality was recorded in the Liebig-Dispenser-treated hives compared with the BeeVar-treated group. On the contrary, BeeVar treatment produced an interruption of brood reared, whereas the extension of the sealed brood area of the Liebig-Dispenser-treated hives was not significantly different from that of the control hives. Neither queen mortality nor robbing activity was observed due to the treatments. Formic acid residues in honey collected in the nest were 3,855 +/- 2,061 and 3,030 +/- 1,624 mg/kg for the BeeVar- and the Liebig-Dispenser-treated hives, respectively. After 21 d from the end of the treatment, the residues fell to 1,261 +/- 1,054 and 794 +/- 518 mg/kg for the honey sampled from the BeeVar and Liebig-Dispenser groups, respectively.

  20. [Experiences with varroatosis control (field cases)].

    PubMed

    Sabolic, M; Liebig, G

    1989-01-01

    The prevalence of Varroa jacobsoni in 20 bee-farms with an average of 371 swarms in the administrative districts of Tübingen and Stuttgart was investigated between 1983 and 1987. In summer as well as after each treatment the debris was examined regularly. On 19 bee-farms the population dynamics of the mites showed a similar pattern. During the first year after the varroatosis diagnosis we found an average of 30-50 mites after autumn treatment. This number increased to 300-600 varroa mites during the second and to several thousand during the third and fourth year. Evidently, the late autumn/early winter treatment of the more heavily infected swarms (during the third or fourth year after diagnosis) with Perizin or Folbex-VA-neu was usually insufficient to prevent damage or even a complete breakdown. In such swarms formic acid in form of the Illertisser mite plate must be applied as early as August or at the latest in September (after the end of the honey season). On one of the 20 bee-farms the development of the varroa mite infection differed from the other 19 farms. In this case the mite infection developed very slowly. The husbandry and environmental conditions could not explain this phenomenon. We think that this warrants further investigations.

  1. Winter Survival of Individual Honey Bees and Honey Bee Colonies Depends on Level of Varroa destructor Infestation

    PubMed Central

    van Dooremalen, Coby; Gerritsen, Lonne; Cornelissen, Bram; van der Steen, Jozef J. M.; van Langevelde, Frank; Blacquière, Tjeerd

    2012-01-01

    Background Recent elevated winter loss of honey bee colonies is a major concern. The presence of the mite Varroa destructor in colonies places an important pressure on bee health. V. destructor shortens the lifespan of individual bees, while long lifespan during winter is a primary requirement to survive until the next spring. We investigated in two subsequent years the effects of different levels of V. destructor infestation during the transition from short-lived summer bees to long-lived winter bees on the lifespan of individual bees and the survival of bee colonies during winter. Colonies treated earlier in the season to reduce V. destructor infestation during the development of winter bees were expected to have longer bee lifespan and higher colony survival after winter. Methodology/Principal Findings Mite infestation was reduced using acaricide treatments during different months (July, August, September, or not treated). We found that the number of capped brood cells decreased drastically between August and November, while at the same time, the lifespan of the bees (marked cohorts) increased indicating the transition to winter bees. Low V. destructor infestation levels before and during the transition to winter bees resulted in an increase in lifespan of bees and higher colony survival compared to colonies that were not treated and that had higher infestation levels. A variety of stress-related factors could have contributed to the variation in longevity and winter survival that we found between years. Conclusions/Significance This study contributes to theory about the multiple causes for the recent elevated colony losses in honey bees. Our study shows the correlation between long lifespan of winter bees and colony loss in spring. Moreover, we show that colonies treated earlier in the season had reduced V. destructor infestation during the development of winter bees resulting in longer bee lifespan and higher colony survival after winter. PMID:22558421

  2. The glass is not yet half empty: agitation but not Varroa treatment causes cognitive bias in honey bees.

    PubMed

    Schlüns, Helge; Welling, Helena; Federici, Julian René; Lewejohann, Lars

    2017-03-01

    Honey bees (Apis mellifera) are prone to judge an ambiguous stimulus negatively if they had been agitated through shaking which simulates a predator attack. Such a cognitive bias has been suggested to reflect an internal emotional state analogous to humans who judge more pessimistically when they do not feel well. In order to test cognitive bias experimentally, an animal is conditioned to respond to two different stimuli, where one is punished while the other is rewarded. Subsequently a third, ambiguous stimulus is presented and it is measured whether the subject responds as if it expects a reward or a punishment. Generally, it is assumed that negative experiences lower future expectations, rendering the animals more pessimistic. Here we tested whether a most likely negatively experienced formic acid treatment against the parasitic mite Varroa destructor also affects future expectations of honey bees. We applied an olfactory learning paradigm (i.e., conditioned proboscis extension response) using two odorants and blends of these odorants as the ambiguous stimuli. Unlike agitating honey bees, exposure to formic acid did not significantly change the response to the ambiguous stimuli in comparison with untreated bees. Overall evidence suggests that the commonest treatment against one of the most harmful bee pests has no detrimental effects on cognitive bias in honey bees.

  3. Bioactivity of Rosmarinus officinalis essential oils against Apis mellifera, Varroa destructor and Paenibacillus larvae related to the drying treatment of the plant material.

    PubMed

    Maggi, M; Gende, L; Russo, K; Fritz, R; Eguaras, M

    2011-02-01

    In this study, chemical composition, physicochemical properties and bioactivity of two essential oils of Rosmarinus officinalis extracted from plant material with different drying treatments against Apis mellifera, Varroa destructor and Paenibacillus larvae were assessed. The lethal concentration 50 (LC50) for mites and bees was estimated using a complete exposure method test. The broth microdilution method was followed in order to determine the minimum inhibitory concentrations (MICs) of the essential oils against P. larvae. Physicochemical properties were similar in both the essential oils, but the percentage of components showed certain differences according to their drying treatment. β-Myrcene and 1,8-cineole were the main constituents in the oils. The LC50 for complete exposure method at 24, 48 and 72 h was minor for mites exposed to R. officinalis essential oil dried in oven conditions. MIC values were 700-800 µg mL(-1) and 1200 µg mL(-1) for R. officinalis dried in air and oven conditions, respectively. The results reported in this research show that oil toxicity against V. destructor and P. larvae differed depending on the drying treatment of the plant material before the distillation of essential oil.

  4. Mite control with low temperature washing-II. Elimination of living mites on clothing.

    PubMed

    Bischoff, E R; Fischer, A; Liebenberg, B; Kniest, F M

    1998-01-01

    Allergens produced by mites are one of the principal causes of allergic disease. House dust mites can be found in significant numbers living in textile garments, and therefore development of optimal washing conditions for delicate textiles represents an important aim for domestic mite control. Investigation of methods to eliminate house dust mites from clothing under low temperature washing conditions. Domestic house dust mites Dermatophagoides farinae were cultured on garments under favourable conditions. The breeding success was monitored in terms of population and distribution using the free-mite Mobility Test. The mite containing garments were washed at low temperature with different commercial detergents in the presence or absence of a mite control additive containing 0.03% benzyl benzoate, and the numbers of mites surviving the washing process were assessed using the Heat Escape Method. The successful culture of mites in textile garments led to mite numbers of a total of at least 9000 to 10000 mites in 10 garments (Mobility Test). After washing in a domestic washing machine with detergents alone approximately 6000 remaining mites were detected in 10 garment halfs (Heat Escape Method). In contrast, mite control by the application of the same detergents together with an additive achieved a reduction to almost 50 mites. This is an additional reduction in mite numbers of 99.2%. It is possible to achieve mite control in delicate garments by washing at low temperature in the presence of a mite control additive providing a final concentration of 0.03% benzyl benzoate.

  5. Pancake Syndrome (Oral Mite Anaphylaxis)

    PubMed Central

    2009-01-01

    Oral mite anaphylaxis is a new syndrome characterized by severe allergic manifestations occurring in atopic patients shortly after the intake of foods made with mite-contaminated wheat flour. This clinical entity, observed more frequently in tropical/subtropical environments, is more often triggered by pancakes and for that reason it has been designated "pancake syndrome". Because cooked foods are able to induce the symptoms, it has been proposed that thermoresistant allergens are involved in its production. A novel variety of this syndrome occurs during physical exercise and therefore has been named dust mite ingestion-associated exercise-induced anaphylaxis. To prevent mite proliferation and the production of anaphylaxis, it has been recommended that wheat flour be stored at low temperatures in the refrigerator. PMID:23283016

  6. Differences in Varroa destructor infestation rates of two indigenous subspecies of Apis mellifera in the Republic of South Africa.

    PubMed

    Mortensen, Ashley N; Schmehl, Daniel R; Allsopp, Mike; Bustamante, Tomas A; Kimmel, Chase B; Dykes, Mark E; Ellis, James D

    2016-04-01

    Varroa destructor Anderson & Trueman (Varroa) is a damaging pest of the Western honey bee, Apis mellifera, in North America, Europe, and Asia. However, Varroa infestations have not produced equivalent colony losses of African subspecies of honey bee throughout Africa and parts of the Americas. We surveyed the Varroa infestation rates (number of Varroa per 100 adult honey bees) in colonies of A. m. scutellata, A. m. capensis, and hybrids of the two subspecies throughout the Republic of South Africa in the fall of 2014. We found that A. m. scutellata colonies had significantly higher Varroa infestations than did A. m. capensis colonies. Furthermore, hybridized colonies of the two subspecies had Varroa infestations intermediate to those of A. m. scutellata and A. m. capensis. This is the first documentation of a clear difference in Varroa infestation rates of A. m. scutellata, A. m. capensis, and hybridized colonies in South Africa. Furthermore, our data confirm that Varroa populations in A. m. scutellata colonies are within the range of populations that are damaging to European honey bees.

  7. Do mite avoidance measures affect mite and cat airborne allergens?

    PubMed

    Carswell, F; Oliver, J; Weeks, J

    1999-02-01

    Effective mite allergen avoidance measures are presumed to reduce airborne allergens yet the quantity in the air is rarely measured. To monitor airborne allergen during a placebo-controlled mite allergen avoidance study. Bedrooms of 56 atopic asthmatic children were randomly allocated to hot washing and encasing covers + acaricide (active regime) or placebo treatment. Dust was collected from the mattress, bedding and carpets; airborne allergen was measured using Casella samplers and dust settling in open Petri dishes. Der p 1, Der p 2 and Fel d 1 were measured. After 24 weeks of mite allergen avoidance the Casella air-samplers collected Der p 1 less frequently in active than placebo-treated bedrooms (0 vs. 29%, P<0.05) and Petri dishes in the active group collected less than baseline (0.2 vs. 0.6 ng/day P<0.05). Homes without cats had less cat allergen than cat-owning homes and when actively treated for 24 weeks showed a greater reduction (P = 0.03) in mattress cat allergen than the placebo group. Encasing covers and hot washing of bed linen reduced mite aeroallergen (and mattress cat allergen in the absence of cats). This could mean dual benefits to a patient sensitive to both mite and cat.

  8. Ectoparasitic mite and fungus on Harmonia axyridis

    USDA-ARS?s Scientific Manuscript database

    Ectoparasitic mites (Acarina: Podapolipidae) and ectoparasitic fungi (Laboulbeniales: Laboulbeniaceae) occur on ladybirds (Coleoptera: Coccinellidae) throughout the world (Riddick et al., 2009). This study documents the interaction of a coccinellid-specific mite Coccipolipus hippodamiae (McDaniel &...

  9. Human Demodex Mite: The Versatile Mite of Dermatological Importance

    PubMed Central

    Rather, Parvaiz Anwar; Hassan, Iffat

    2014-01-01

    Demodex mite is an obligate human ecto-parasite found in or near the pilo-sebaceous units. Demodex folliculorum and Demodex brevis are two species typically found on humans. Demodex infestation usually remains asymptomatic and may have a pathogenic role only when present in high densities and also because of immune imbalance. All cutaneous diseases caused by Demodex mites are clubbed under the term demodicosis or demodicidosis, which can be an etiological factor of or resemble a variety of dermatoses. Therefore, a high index of clinical suspicion about the etiological role of Demodex in various dermatoses can help in early diagnosis and appropriate, timely, and cost effective management. PMID:24470662

  10. Human demodex mite: the versatile mite of dermatological importance.

    PubMed

    Rather, Parvaiz Anwar; Hassan, Iffat

    2014-01-01

    Demodex mite is an obligate human ecto-parasite found in or near the pilo-sebaceous units. Demodex folliculorum and Demodex brevis are two species typically found on humans. Demodex infestation usually remains asymptomatic and may have a pathogenic role only when present in high densities and also because of immune imbalance. All cutaneous diseases caused by Demodex mites are clubbed under the term demodicosis or demodicidosis, which can be an etiological factor of or resemble a variety of dermatoses. Therefore, a high index of clinical suspicion about the etiological role of Demodex in various dermatoses can help in early diagnosis and appropriate, timely, and cost effective management.

  11. House dust mites in Williamsburg, Virginia.

    PubMed

    Lassiter, M T; Fashing, N J

    1990-04-01

    House dust allergy is a common medical ailment. It has been well established that mites of the genus Dermatophagoides (house dust mites) are an important source of allergens and that mite counts greater than 300 per gram of dust are associated with symptoms of asthma. A survey of 22 houses in Williamsburg, Virginia, during the month of August revealed that all had mite populations exceeding this number. This may explain in part the high incidence of allergy in the Williamsburg area.

  12. Flat mites of the world - Edition 2

    USDA-ARS?s Scientific Manuscript database

    The Flat Mites of the World has an interactive key, fact sheets, descriptions, and images to aid in the identification of flat mites (Acari: Trombidiformes: Tetranychoidea: Tenuipalpidae) worldwide. The tool will help identify 36 genera of flat mites, including specific diagnostics for 13 species of...

  13. Selection of VSH-derived Pol-line honey bees and evaluation of their Varroa-resistance characteristics

    USDA-ARS?s Scientific Manuscript database

    Honey bees, Apis mellifera, that have high expression of the trait “Varroa sensitive hygiene” (VSH) have good resistance to Varroa destructor. We selected “Pol-line” bees by outcrossing VSH queens in three U.S. commercial beekeeping companies annually during 2008-2014 and selecting colonies with the...

  14. Responses to Varroa destructor and Nosema ceranae by several commercial strains of Australian and North American honey bees (Hymenoptera: Apidae)

    USDA-ARS?s Scientific Manuscript database

    The potential impact of varroa (Varroa destructor, Anderson & Trueman. 2000) on Australian beekeeping and agriculture depends in part on the levels of resistance to this parasite expressed by Australian commercial honey bees (Apis mellifera). The responses of seven lines of Australian honey bees to ...

  15. Effect of Varroa destructor, Wounding and Varroa Homogenate on Gene Expression in Brood and Adult Honey Bees.

    PubMed

    Koleoglu, Gun; Goodwin, Paul H; Reyes-Quintana, Mariana; Hamiduzzaman, Mollah Md; Guzman-Novoa, Ernesto

    2017-01-01

    Honey bee (Apis mellifera) gene expression related to immunity for hymenoptaecin (AmHym) and defensin-1 (AmDef-1), longevity for vitellogenin (AmVit2) and stem cell proliferation for poly U binding factor 68 kDa (AmPuf68) was compared following Varroa destructor parasitism, buffer injection and injection of V. destructor compounds in its homogenate. In adults, V. destructor parasitism decreased expression of all four genes, while buffer injection decreased expression of AmHym, AmPuf68 and AmVit2, and homogenate injection decreased expression of AmPuf68 and AmVit2 but increased expression of AmDef-1 relative to their respective controls. The effect of V. destructor parasitism in adults relative to the controls was not significantly different from buffer injection for AmHym and AmVit2 expression, and it was not significantly different from homogenate injection for AmPuf68 and AmVit2. In brood, V. destructor parasitism, buffer injection and homogenate injection decreased AmVit2 expression, whereas AmHym expression was decreased by V. destructor parasitism but increased by buffer and homogenate injection relative to the controls. The effect of varroa parasitism in brood was not significantly different from buffer or homogenate injection for AmPuf68 and AmVit2. Expression levels of the four genes did not correlate with detectable viral levels in either brood or adults. The results of this study indicate that the relative effects of V. destructor parasitism on honey bee gene expression are also shared with other types of stresses. Therefore, some of the effects of V. destructor on honey bees may be mostly due to wounding and injection of foreign compounds into the hemolymph of the bee during parasitism. Although both brood and adults are naturally parasitized by V. destructor, their gene expression responded differently, probably the result of different mechanisms of host responses during development.

  16. Wheat curl mite resistance: interactions of mite feeding with wheat streak mosaic virus infection.

    PubMed

    Murugan, M; Sotelo Cardona, P; Duraimurugan, P; Whitfield, A E; Schneweis, D; Starkey, S; Smith, C M

    2011-08-01

    The majority of plant viruses are dependent on arthropod vectors for spread between plants. Wheat streak mosaic virus (family Potyviridae, genus Tritimovirus, WSMV) is transmitted by the wheat curl mite, Aceria tosichella Keifer, and this virus and vector cause extensive yield losses in most major wheat (Triticum aestivum L.)-growing regions of the world. Many cultivars in use are susceptible to this vector-virus complex, and yield losses of 10-99% have been documented. wheat curl mite resistance genes have been identified in goat grass, Aegilops tauschii (Coss) Schmal., and transferred to hexaploid wheat, but very few varieties contain effectively wheat curl mite resistance, due to virulent wheat curl mite populations. However, wheat curl mite resistance remains an effective strategy to reduce losses due to WSMV. The goal of our project was to identify the most effective, reproducible, and rapid method for assessing wheat curl mite resistance. We also wanted to determine whether mite resistance is affected by WSMV infection, because the pathogen and pest commonly occur together. Single and group wheat curl mite infestations produced similar amounts of leaf rolling and folding on wheat curl mite-susceptible wheat varieties that were independent of initial wheat curl mite infestation. This finding will allow accurate, efficient, large-scale screening of wheat germplasm for wheat curl mite resistance by infesting plants with sections of wheat leaf tissue containing mixed stages of wheat curl mite. The wheat curl mite-resistant breeding line 'OK05312' displayed antibiosis (reduced wheat curl mite population development). The effect of WSMV infection on wheat curl mite reproduction was genotype-dependent. Mite populations increased on infected wheat curl mite- and WSMV-susceptible plants compared with uninfected plants, but WSMV infection had no significant effect on wheat curl mite populations on resistant plants. OK05312 is a strong source of wheat curl mite

  17. An Observational Study of Honey Bee Colony Winter Losses and Their Association with Varroa destructor, Neonicotinoids and Other Risk Factors.

    PubMed

    van der Zee, Romée; Gray, Alison; Pisa, Lennard; de Rijk, Theo

    2015-01-01

    This article presents results of an analysis of honey bee losses over the winter of 2011-2012 in the Netherlands, from a sample of 86 colonies, located at 43 apiaries. The apiaries were selected using spatially stratified random sampling. Colony winter loss data were collected and related to various measures of colony strength recorded in summer, as well as data from laboratory analysis of sample material taken from two selected colonies in each of the 43 apiaries. The logistic regression model which best explained the risk of winter loss included, in order of statistical importance, the variables (1) Varroa destructor mite infestation rate in October 2011, (2) presence of the cyano-substituted neonicotinoids acetamiprid or thiacloprid in the first 2 weeks of August 2011 in at least one of the honey bee matrices honey, bees or bee bread (pollen), (3) presence of Brassica napus (oilseed rape) or Sinapis arvensis (wild mustard) pollen in bee bread in early August 2011, and (4) a measure of the unexplained winter losses for the postal code area where the colonies were located, obtained from a different dataset. We consider in the discussion that reduced opportunities for foraging in July and August because of bad weather may have added substantially to the adverse effects of acetamiprid and thiacloprid. A novel feature of this work is its use of postal code random effects from two other independent datasets collected in the annual national monitoring by questionnaires of winter losses of honey bees in the Netherlands. These were used to plan the sample selection and also in the model fitting of the data in this study. It should however be noted that the results of the present pilot study are based on limited data, which may consequently reveal strong factors but fail to demonstrate possible interaction effects.

  18. An Observational Study of Honey Bee Colony Winter Losses and Their Association with Varroa destructor, Neonicotinoids and Other Risk Factors

    PubMed Central

    van der Zee, Romée; Gray, Alison; Pisa, Lennard; de Rijk, Theo

    2015-01-01

    This article presents results of an analysis of honey bee losses over the winter of 2011-2012 in the Netherlands, from a sample of 86 colonies, located at 43 apiaries. The apiaries were selected using spatially stratified random sampling. Colony winter loss data were collected and related to various measures of colony strength recorded in summer, as well as data from laboratory analysis of sample material taken from two selected colonies in each of the 43 apiaries. The logistic regression model which best explained the risk of winter loss included, in order of statistical importance, the variables (1) Varroa destructor mite infestation rate in October 2011, (2) presence of the cyano-substituted neonicotinoids acetamiprid or thiacloprid in the first 2 weeks of August 2011 in at least one of the honey bee matrices honey, bees or bee bread (pollen), (3) presence of Brassica napus (oilseed rape) or Sinapis arvensis (wild mustard) pollen in bee bread in early August 2011, and (4) a measure of the unexplained winter losses for the postal code area where the colonies were located, obtained from a different dataset. We consider in the discussion that reduced opportunities for foraging in July and August because of bad weather may have added substantially to the adverse effects of acetamiprid and thiacloprid. A novel feature of this work is its use of postal code random effects from two other independent datasets collected in the annual national monitoring by questionnaires of winter losses of honey bees in the Netherlands. These were used to plan the sample selection and also in the model fitting of the data in this study. It should however be noted that the results of the present pilot study are based on limited data, which may consequently reveal strong factors but fail to demonstrate possible interaction effects. PMID:26154346

  19. Honey Bees: Sweetness and Mites

    USDA-ARS?s Scientific Manuscript database

    Honey bee colony losses have been in the news lately and the potential reasons for these losses have taken up much space in the news media. In order to clarify what role mites play in the current loss (2006-2007) of bee colonies, called Colony Collapse Disorder, a better understanding of what a mit...

  20. Ecological Requirements of Chigger Mites.

    DTIC Science & Technology

    1981-05-10

    concentrations ranging from 0.07% to 2.8% of Palmolive dishwashing liquid and Tween - 80 were tested to identify the precipitation time of chigger mites, optimum...that Palmolive dishwashing detergent was superior to Tween - 80 at each concentration tested (Chi-square test, Alpha = 0.05). Addition of more than 5 ml

  1. A Virulent Strain of Deformed Wing Virus (DWV) of Honeybees (Apis mellifera) Prevails after Varroa destructor-Mediated, or In Vitro, Transmission

    PubMed Central

    Ryabov, Eugene V.; Wood, Graham R.; Fannon, Jessica M.; Moore, Jonathan D.; Bull, James C.; Chandler, Dave; Mead, Andrew; Burroughs, Nigel; Evans, David J.

    2014-01-01

    The globally distributed ectoparasite Varroa destructor is a vector for viral pathogens of the Western honeybee (Apis mellifera), in particular the Iflavirus Deformed Wing Virus (DWV). In the absence of Varroa low levels DWV occur, generally causing asymptomatic infections. Conversely, Varroa-infested colonies show markedly elevated virus levels, increased overwintering colony losses, with impairment of pupal development and symptomatic workers. To determine whether changes in the virus population were due Varroa amplifying and introducing virulent virus strains and/or suppressing the host immune responses, we exposed Varroa-naïve larvae to oral and Varroa-transmitted DWV. We monitored virus levels and diversity in developing pupae and associated Varroa, the resulting RNAi response and transcriptome changes in the host. Exposed pupae were stratified by Varroa association (presence/absence) and virus levels (low/high) into three groups. Varroa-free pupae all exhibited low levels of a highly diverse DWV population, with those exposed per os (group NV) exhibiting changes in the population composition. Varroa-associated pupae exhibited either low levels of a diverse DWV population (group VL) or high levels of a near-clonal virulent variant of DWV (group VH). These groups and unexposed controls (C) could be also discriminated by principal component analysis of the transcriptome changes observed, which included several genes involved in development and the immune response. All Varroa tested contained a diverse replicating DWV population implying the virulent variant present in group VH, and predominating in RNA-seq analysis of temporally and geographically separate Varroa-infested colonies, was selected upon transmission from Varroa, a conclusion supported by direct injection of pupae in vitro with mixed virus populations. Identification of a virulent variant of DWV, the role of Varroa in its transmission and the resulting host transcriptome changes furthers our

  2. A virulent strain of deformed wing virus (DWV) of honeybees (Apis mellifera) prevails after Varroa destructor-mediated, or in vitro, transmission.

    PubMed

    Ryabov, Eugene V; Wood, Graham R; Fannon, Jessica M; Moore, Jonathan D; Bull, James C; Chandler, Dave; Mead, Andrew; Burroughs, Nigel; Evans, David J

    2014-06-01

    The globally distributed ectoparasite Varroa destructor is a vector for viral pathogens of the Western honeybee (Apis mellifera), in particular the Iflavirus Deformed Wing Virus (DWV). In the absence of Varroa low levels DWV occur, generally causing asymptomatic infections. Conversely, Varroa-infested colonies show markedly elevated virus levels, increased overwintering colony losses, with impairment of pupal development and symptomatic workers. To determine whether changes in the virus population were due Varroa amplifying and introducing virulent virus strains and/or suppressing the host immune responses, we exposed Varroa-naïve larvae to oral and Varroa-transmitted DWV. We monitored virus levels and diversity in developing pupae and associated Varroa, the resulting RNAi response and transcriptome changes in the host. Exposed pupae were stratified by Varroa association (presence/absence) and virus levels (low/high) into three groups. Varroa-free pupae all exhibited low levels of a highly diverse DWV population, with those exposed per os (group NV) exhibiting changes in the population composition. Varroa-associated pupae exhibited either low levels of a diverse DWV population (group VL) or high levels of a near-clonal virulent variant of DWV (group VH). These groups and unexposed controls (C) could be also discriminated by principal component analysis of the transcriptome changes observed, which included several genes involved in development and the immune response. All Varroa tested contained a diverse replicating DWV population implying the virulent variant present in group VH, and predominating in RNA-seq analysis of temporally and geographically separate Varroa-infested colonies, was selected upon transmission from Varroa, a conclusion supported by direct injection of pupae in vitro with mixed virus populations. Identification of a virulent variant of DWV, the role of Varroa in its transmission and the resulting host transcriptome changes furthers our

  3. Ecdysteroid biosynthesis in varroa mites: identification of halloween genes from the biosynthetic pathway and their regulation during reproduction

    USDA-ARS?s Scientific Manuscript database

    Biosynthesis of ecdysteroids involves sequential enzymatic hydroxylations by microsomal enzymes and mitochondrial cytochrome P450’s. Enzymes of the pathway are collectively known as Halloween genes. Complete sequences for three Halloween genes, spook (Vdspo), disembodied (Vddib) and shade (Vdshd), w...

  4. Allergenicity of the mite Hemisarcoptes cooremani.

    PubMed

    Arlian, L G; Morgan, M S; Houck, M A

    1999-12-01

    A researcher experienced allergic symptoms while working with the astigmatid mite Hemisarcoptes cooremani cultured on scale insects. This mite is a predator of scale insects that often parasitize many perennial vascular plants in orchards, gardens, and ornamental nurseries worldwide; therefore, orchard and ornamental nursery workers and gardeners may be exposed to this mite. We investigated the possible allergenicity of H. cooremani and the cross-reactivity between it and other allergy-causing astigmatid mites. Serum from a subject who experienced allergic symptoms while working with H. cooremani was analyzed for IgE and IgG to proteins in an extract of this mite and of other astigmatid mites known to cause allergic reactions. The serum was used to probe proteins fractionated by SDS-PAGE or precipitated by CIE using rabbit antiserum. In addition, the subject's serum was used to directly precipitate proteins in extracts of H. cooremani and other mite species. SDS-PAGE and immunoblotting of proteins in an H. cooremani extract showed the reference serum contained IgE directed at 16-kD and 19-kD proteins. Crossed radioimmunoelectrophoresis reaction showed that the subject's serum contained antibody that precipitated a protein in an H. cooremani extract and that IgE bound to this protein. The proteins in an extract of H. cooremani did not precipitate when reacted with rabbit antisera against the dust mites D. farinae, D. pteronyssinus, and E. maynei, or the storage mites B. tropicalis, L. destructor, and T. putrescentiae. This indicated there was no cross-reactivity between H. cooremani and these mites. These results indicated that an extract of the mite H. cooremani contained at least two prominent IgE binding proteins that were not present in the other astigmatid mites. Thus, H. cooremani is the source of unique allergenic proteins and allergy to this mite may develop in orchard and ornamental nursery workers and gardeners.

  5. Evaluation of drone brood removal for management of Varroa destructor (Acari: Varroidae) in colonies of Apis mellifera (Hymenoptera: Apidae) in the northeastern United States.

    PubMed

    Calderone, N W

    2005-06-01

    The efficacy of drone brood removal for the management of Varroa destructor Anderson & Trueman in colonies of the honey bee, A. mellifera L., was evaluated. Colonies were treated with CheckMite+ in the fall of 2002. The following spring, quantities of bees and brood were equalized, but colonies were not retreated. The brood nest of each colony consisted of 18 full-depth worker combs and two full-depth drone combs. Each worker comb had <12.9 cm2 of drone cells. Standard management practices were used throughout the season. Colonies were randomly assigned to one of two groups. In the control group, drone combs remained in place throughout the season. In the treatment group, drone combs were removed on 16 June, 16 July, 16 August, and 16 September and replaced with empty drone combs (16 June) or with drone combs removed on the previous replacement date. In the early fall, the average mite-to-bee ratio in the control group was significantly greater than the corresponding ratio in the treatment group. Drone brood removal did not adversely affect colony health as measured by the size of the worker population or by honey production. Fall worker populations were similar in the two groups. Honey production in treatment colonies was greater than or similar to production in control colonies. These data demonstrate that drone brood removal can serve as a valuable component in an integrated pest management program for V. destructor and may reduce the need for other treatments on a colony-by-colony basis.

  6. Effect of Varroa destructor, Wounding and Varroa Homogenate on Gene Expression in Brood and Adult Honey Bees

    PubMed Central

    Koleoglu, Gun; Goodwin, Paul H.; Reyes-Quintana, Mariana; Hamiduzzaman, Mollah Md.; Guzman-Novoa, Ernesto

    2017-01-01

    Honey bee (Apis mellifera) gene expression related to immunity for hymenoptaecin (AmHym) and defensin-1 (AmDef-1), longevity for vitellogenin (AmVit2) and stem cell proliferation for poly U binding factor 68 kDa (AmPuf68) was compared following Varroa destructor parasitism, buffer injection and injection of V. destructor compounds in its homogenate. In adults, V. destructor parasitism decreased expression of all four genes, while buffer injection decreased expression of AmHym, AmPuf68 and AmVit2, and homogenate injection decreased expression of AmPuf68 and AmVit2 but increased expression of AmDef-1 relative to their respective controls. The effect of V. destructor parasitism in adults relative to the controls was not significantly different from buffer injection for AmHym and AmVit2 expression, and it was not significantly different from homogenate injection for AmPuf68 and AmVit2. In brood, V. destructor parasitism, buffer injection and homogenate injection decreased AmVit2 expression, whereas AmHym expression was decreased by V. destructor parasitism but increased by buffer and homogenate injection relative to the controls. The effect of varroa parasitism in brood was not significantly different from buffer or homogenate injection for AmPuf68 and AmVit2. Expression levels of the four genes did not correlate with detectable viral levels in either brood or adults. The results of this study indicate that the relative effects of V. destructor parasitism on honey bee gene expression are also shared with other types of stresses. Therefore, some of the effects of V. destructor on honey bees may be mostly due to wounding and injection of foreign compounds into the hemolymph of the bee during parasitism. Although both brood and adults are naturally parasitized by V. destructor, their gene expression responded differently, probably the result of different mechanisms of host responses during development. PMID:28081188

  7. In vitro efficacy of ByeMite and Mite-Stop on developmental stages of the red chicken mite Dermanyssus gallinae.

    PubMed

    Abdel-Ghaffar, Fathy; Semmler, Margit; Al-Rasheid, Khaled; Mehlhorn, Heinz

    2009-10-01

    The present in vitro study shows the efficacy of two antimite products (ByeMite = phoxim, Mite-Stop = neem seed extract) against all developing stages of the important red chicken mite Dermanyssus gallinae (obtained at two farms in France and Germany). While permanent contact with the active compound led to an efficacy of 100% in the case of Mite-Stop on mites in both farms, there was only a 96.2% killing effect of ByeMite on the mites of the French farm. Even short contacts of only 4 s killed 100% of mites in the case of Mite-Stop at the French farm and only 84.5% in the German farm. ByeMite, on the other hand, killed only 27.8% (Germany) and 30% (France) when mites got the chance to escape from the treated grounds to untreated ones. When using only the half doses of both products, Mite-Stop(R) still reached, after permanent contact, 100% activity on the German farm and 98.2% in France, while ByeMite killed 93.8% (Germany) and 90.6% (France). Short contact to half doses of course reduced the activity of both products (Mite-Stop = 59.3% in France, 22.1% in Germany; ByeMite = 28.8% in France, 18.8% in Germany). With respect to the fumigant activity of the products, the strains of D. gallinae reacted differently. While Mite-Stop(R) showed a clear fumigant activity in the case of the German mites, this product did not affect the French mites by air distribution, neither did ByeMite in both cases. Therefore, mites have to come in contact with both products. Against Mite-Stop, there was apparently no resistance and low doses have high efficacy after even short contacts, which regularly occur in a treated stable, where mites have the chance to leave treated places to untreated hidden spots.

  8. Study of Demodex mites: Challenges and Solutions.

    PubMed

    Lacey, N; Russell-Hallinan, A; Powell, F C

    2016-05-01

    Demodex mites are the largest and most complex organisms of the skin microflora. How they interact with the innate and adaptive immune systems is unknown. Their potential to have a pathogenic role in the causation of human skin disorders causes continued speculation. With growing interest in the microflora of human skin and its relevance to cutaneous health, the role of Demodex mites needs to be better understood. The main challenges facing scientists investigating the role of these organisms and possible solutions are reviewed under the following headings: (1) Determining the mite population in skin, (2) Transporting, extracting and imaging live mites, (3) Maintaining mites viable ex vivo and (4) Establishing methods to determine the immune response to Demodex mites and their internal contents.

  9. Bee Mite ID: Bee-associated mite genera of the world

    USDA-ARS?s Scientific Manuscript database

    Bee Mite ID contains an interactive key, fact sheets, an image gallery, and abundant supporting information. The interactive key allows you to choose characters to obtain a list of mite genera possibly matching your specimen. Consult fact sheets to find images and information for a particular mite g...

  10. Ectoparasitic mites and their Drosophila hosts.

    PubMed

    Perez-Leanos, Alejandra; Loustalot-Laclette, Mariana Ramirez; Nazario-Yepiz, Nestor; Markow, Therese Ann

    2017-01-02

    Only two parasite interactions are known for Drosophila to date: Allantonematid nematodes associated with mycophagous Drosophilids and the ectoparasitic mite Macrocheles subbadius with the Sonoran Desert endemic Drosophila nigrospiracula. Unlike the nematode-Drosophila association, breadth of mite parasitism on Drosophila species is unknown. As M. subbadius is a generalist, parasitism of additional Drosophilids is expected. We determined the extent and distribution of mite parasitism in nature Drosophilids collected in Mexico and southern California. Thirteen additional species of Drosophilids were infested. Interestingly, 10 belong to the repleta species group of the subgenus Drosophila, despite the fact that the majority of flies collected were of the subgenus Sophophora. In all cases but 2, the associated mites were M. subbadius. Drosophila hexastigma was found to have not only M. subbadius, but another Mesostigmatid mite, Paragarmania bakeri, as well. One D. hydei was also found to have a mite from genus Lasioseius attached. In both choice and no-choice experiments, mites were more attracted to repleta group species than to Sophophoran. The extent of mite parasitism clearly is much broader than previously reported and suggests a host bias mediated either by mite preference and/or some mechanism of resistance in particular Drosophilid lineages.

  11. Ectoparasitic mites and their Drosophila hosts

    PubMed Central

    Perez-Leanos, Alejandra; Loustalot-Laclette, Mariana Ramirez; Nazario-Yepiz, Nestor; Markow, Therese Ann

    2017-01-01

    ABSTRACT Only two parasite interactions are known for Drosophila to date: Allantonematid nematodes associated with mycophagous Drosophilids and the ectoparasitic mite Macrocheles subbadius with the Sonoran Desert endemic Drosophila nigrospiracula. Unlike the nematode-Drosophila association, breadth of mite parasitism on Drosophila species is unknown. As M. subbadius is a generalist, parasitism of additional Drosophilids is expected. We determined the extent and distribution of mite parasitism in nature Drosophilids collected in Mexico and southern California. Thirteen additional species of Drosophilids were infested. Interestingly, 10 belong to the repleta species group of the subgenus Drosophila, despite the fact that the majority of flies collected were of the subgenus Sophophora. In all cases but 2, the associated mites were M. subbadius. Drosophila hexastigma was found to have not only M. subbadius, but another Mesostigmatid mite, Paragarmania bakeri, as well. One D. hydei was also found to have a mite from genus Lasioseius attached. In both choice and no-choice experiments, mites were more attracted to repleta group species than to Sophophoran. The extent of mite parasitism clearly is much broader than previously reported and suggests a host bias mediated either by mite preference and/or some mechanism of resistance in particular Drosophilid lineages. PMID:27540774

  12. Mites and the implications on human health.

    PubMed

    Vogel, Patrícia; Bosco, Simone Morelo Dal; Ferla, Noeli Juarez

    2014-01-01

    The infestation by mites of stored products is of great economic importance and public health, with consequences to human health. To describe the mite species associated to food and stored products that cause implications to human health as well as to analyze the loss of quality and nutritional composition of infested food. Literature review in LILACS-BIREME, SciELO and MEDLINE databases for publications in English, Portuguese and Spanish with the descriptors "mites", "foods", "storage mites", "store product mites", "dust mites", "quality control", "quality foods", "chemical composition", "chemistry", "allergens" and "health". There were identified 80 articles, but only 55 were related to the objectives of the study. Sixteen references were mentioned in the articles that were found after checked for relevance. The activity of the mites causes loss of sanitary quality, weight and nutritional composition of the infested products, with great economic loss in the grain industry. Inhalation, ingestion or contact of mites, byproducts of metabolism and feces may sensitize susceptible individuals and cause asthma, allergic rhinitis, contact dermatitis, enteritis and lead to anaphylaxis. The monitoring of temperature and humidity is essential for the control of mites, as well as better conservation and hygiene of the units of grain storage. Copyright AULA MEDICA EDICIONES 2014. Published by AULA MEDICA. All rights reserved.

  13. Determination of acrinathrin residues in honey and beeswax.

    PubMed

    Túri, M S; Mátray, E S

    1999-01-01

    The Asian bee mite (Varroa jacobsoni Oud.) causes variable damage in Hungarian apiaries due to the different and changing conditions. Plastic and wooden strips impregnated with synthetic pyrethroid-type active ingredients show a high efficacy against the mites. These treatments, however, may leave residues in bee products (honey, propolis, wax). After experimental treatment with Gabon PA 92, the levels of active ingredient (acrinathrin) residues were determined in honey and beeswax samples. The analytical results proved that the average concentration of acrinathrin residues was less than 0.01 mg/kg in honey and less than 0.10 mg/kg in beeswax. From the food-hygienic point of view it is favourable that the honey did not become 'contaminated' with acrinathrin during the experimental treatment. The analytical results serve as a basis for the registration of this veterinary product in Hungary.

  14. Isoform-specific modulation of the chemical sensitivity of conserved TRPA1 channel in the major honeybee ectoparasitic mite, Tropilaelaps mercedesae.

    PubMed

    Dong, Xiaofeng; Kashio, Makiko; Peng, Guangda; Wang, Xinyue; Tominaga, Makoto; Kadowaki, Tatsuhiko

    2016-06-01

    We identified and characterized the TRPA1 channel of Tropilaelaps mercedesae (TmTRPA1), one of two major species of honeybee ectoparasitic mite. Three TmTRPA1 isoforms with unique N-terminal sequences were activated by heat, and the isoform highly expressed in the mite's front legs, TmTRPA1b, was also activated by 27 plant-derived compounds including electrophiles. This suggests that the heat- and electrophile-dependent gating mechanisms as nocisensitive TRPA1 channel are well conserved between arthropod species. Intriguingly, one TmTRPA1 isoform, TmTRPA1a, was activated by only six compounds compared with two other isoforms, demonstrating that the N-terminal sequences are critical determinants for the chemical sensitivity. This is the first example of isoform-specific modulation of chemical sensitivity of TRPA1 channel in one species. α-terpineol showed repellent activity towards T. mercedesae in a laboratory assay and repressed T. mercedesae entry for reproduction into the brood cells with fifth instar larvae in hives. Thus, α-terpineol could be used as the potential compound to control two major honeybee ectoparasitic mites, T. mercedesae and Varroa destructor, in the apiculture industry. © 2016 The Authors.

  15. Isoform-specific modulation of the chemical sensitivity of conserved TRPA1 channel in the major honeybee ectoparasitic mite, Tropilaelaps mercedesae

    PubMed Central

    Dong, Xiaofeng; Kashio, Makiko; Peng, Guangda; Wang, Xinyue; Tominaga, Makoto

    2016-01-01

    We identified and characterized the TRPA1 channel of Tropilaelaps mercedesae (TmTRPA1), one of two major species of honeybee ectoparasitic mite. Three TmTRPA1 isoforms with unique N-terminal sequences were activated by heat, and the isoform highly expressed in the mite's front legs, TmTRPA1b, was also activated by 27 plant-derived compounds including electrophiles. This suggests that the heat- and electrophile-dependent gating mechanisms as nocisensitive TRPA1 channel are well conserved between arthropod species. Intriguingly, one TmTRPA1 isoform, TmTRPA1a, was activated by only six compounds compared with two other isoforms, demonstrating that the N-terminal sequences are critical determinants for the chemical sensitivity. This is the first example of isoform-specific modulation of chemical sensitivity of TRPA1 channel in one species. α-terpineol showed repellent activity towards T. mercedesae in a laboratory assay and repressed T. mercedesae entry for reproduction into the brood cells with fifth instar larvae in hives. Thus, α-terpineol could be used as the potential compound to control two major honeybee ectoparasitic mites, T. mercedesae and Varroa destructor, in the apiculture industry. PMID:27307515

  16. Finding and Selecting Russian Honey Bees to be Resistant to Varroa destructor

    USDA-ARS?s Scientific Manuscript database

    During the mid-1800’s, farmers from western Russia settled far-eastern Russia. Some brought Apis mellifera with them. The area is within the home range of Apis cerana and consequently within the home range of Varroa destructor. Preliminary studies suggested that the honey bee population in far-easte...

  17. Mite exposure in a Spanish Mediterranean region.

    PubMed

    Pagán, J A; Huertas, A J; Iraola, V; Pinto, H; Martínez, R; Ramírez, M; Martos, M D; Carnés, J

    2012-01-01

    Knowledge of the domestic mite fauna and allergen levels is important for a correct diagnosis and treatment of mite allergy. Our objectives were to describe the domestic mite fauna in the region of Murcia, Spain, to quantify mite allergens in dust samples obtained from mattresses of this area and to assess the influence of geographical, climatic and dwelling factors. Dust samples were collected in a transversal descriptive study from mattresses of 51 patients who went to the Allergology Service, and from mattress of 81 neighbours or family members of these patients. A questionnaire about home environment was filled in and obtained by all participants. Mite identification was done by light microscopy and allergen determinations (Der p 1 and Der f 1) by monoclonal antibodies. Sixteen mite species were identified in the 132 dust samples collected. The most frequent species were Dermatophagoides farinae (36% of the samples), Dermatophagoides pteronyssinus (32%) and Tyrophagus putrescentiae (5.3%). There were significant differences among climatic regions. The coastal sector had greater mite abundance, being D. pteronyssinus more frequent and abundant than D. farinae. In inland areas D. farinae was the predominant mite species. Allergen levels correlated with the concentration of Dermatophagoides, with higher levels detected in coastal regions. Average annual temperature was the main outdoor factor that correlated with higher mite concentrations. Indoor main predictor of higher levels of mites was the presence of obvious signs of humidity in the home. This study demonstrates the existence of a mite fauna dominated by D. pteronyssinus and D. farinae with a strong influence of climatic factors and residential characteristics. Copyright © 2010 SEICAP. Published by Elsevier Espana. All rights reserved.

  18. Plant-Derived Tick Repellents Activate the Honey Bee Ectoparasitic Mite TRPA1.

    PubMed

    Peng, Guangda; Kashio, Makiko; Morimoto, Tomomi; Li, Tianbang; Zhu, Jingting; Tominaga, Makoto; Kadowaki, Tatsuhiko

    2015-07-14

    We have identified and characterized the TRPA1 channel of Varroa destructor (VdTRPA1), a major ectoparasitic mite of honey bee. One of the two VdTRPA1 isoforms, VdTRPA1L, was activated by a variety of plant-derived compounds, including electrophilic compounds, suggesting that chemical activation profiles are mostly shared between arthropod TRPA1 channels. Nevertheless, carvacrol and α-terpineol activated VdTRPA1L but not a honey bee noxious-stimuli-sensitive TRPA, AmHsTRPA, and Drosophila melanogaster TRPA1. Activation of VdTRPA1L in D. melanogaster taste neurons by the above compounds was sufficient to modify the gustatory behaviors. Carvacrol and α-terpineol repelled V. destructor in a laboratory assay, and α-terpineol repressed V. destructor entry for reproduction into the brood cells in hives. Understanding the functions of parasite TRP channels not only gives clues about the evolving molecular and cellular mechanisms of parasitism but also helps in the development of control methods.

  19. Cross-reactivity between storage and dust mites and between mites and shrimp.

    PubMed

    Arlian, Larry G; Morgan, Marjorie S; Vyszenski-Moher, DiAnn L; Sharra, Denada

    2009-02-01

    Many patients have sensitivities to multiple species of storage and house dust mites. It is not clear if this is because patients have multiple sensitivities to species-specific mite allergens or if these mites share many cross-reacting allergens. Our objective was to further define the cross-allergenicity between several species of storage and house dust mites using crossed-immunoelectrophoresis (CIE), crossed-radioimmunoelectrophoresis (CRIE), immunoblotting, and ELISA. CIE and CRIE reactions revealed that storage mites shared two cross-antigenic molecules and one of these bound IgE in a serum pool from mite allergic patients. Antibody in anti-sera built to each species of mite recognized many SDS-PAGE resolved proteins of other mite species and this suggested the potential for other cross-reactive allergens. Among patient sera, IgE bound to many different proteins but few had IgE that bound to a protein with common molecular weights across the mite species and this suggested mostly species-specific allergens. Antiserum built to each mite species precipitated one protein in shrimp extracts that bound anti-Der p 10 (tropomyosin) and IgE in the serum pool. Anti-Der p 10 showed strong binding to shrimp tropomyosin but very little to any of the mite proteins. ELISA showed the mite extracts contained very little tropomyosin. The storage and dust mites investigated contain mostly species-specific allergens and very small amounts of the pan-allergen tropomyosin compared to shrimp and snail.

  20. The role of mites in insect-fungus associations

    Treesearch

    R. W. Hofstetter; J. C. Moser

    2014-01-01

    The interactions among insects, mites, and fungi are diverse and complex but poorly understood in most cases. Associations among insects, mites, and fungi span an almost incomprehensible array of ecological interactions and evolutionary histories. Insects and mites often share habitats and resources and thus interact within communities. Many mites and insects rely on...

  1. Haematophagus Mites in Poultry Farms of Iran

    PubMed Central

    Rahbari, S; Nabian, S; Ronaghi, H

    2009-01-01

    Background: Blood sucking mites are important avian ectoparasites which being found on bird species worldwide. Their presence are problematic for the producers either through potential direct effects on weight gain, egg production, sperm production in roosters or as nuisance pests on worker handle hens and eggs. The aim of this study was pointing out of the status of haematophagus mites. Methods: Eight caged layer and four breeder flocks were visited, monitoring for the presence of chicken mites performed by removing and examining debris from poultry house, infested nesting material collected into zip lock plastic bags and at least 20 birds were also randomly selected to examine the presence of chicken mites. Mites obtained from each population were mounted in Hoyer’s medium on microscope slides and identified. All eight caged layer and four breeder flocks were inspected, which were infested with chicken blood feeding mites. Results: Massive infestations of Dermanyssus gallinae were common with huge numbers of parasites on birds, cages and the conveyor belts for egg. Only one farm from Mazandaran Province was infested to Ornithonyssus bursa. Conclusion: Dermanyssus gallinae was the most prevalent blood feeder mite in the breeder and caged layer flocks in Iran, while O. bursa was reported as a first record, which found only in a breeder flock in Mazanderan Province. It seems that its presence is limited into the area which affected by both warm and humid environmental conditions. PMID:22808378

  2. Allergy to house dust mites and asthma.

    PubMed

    Milián, Evelyn; Díaz, Ana María

    2004-03-01

    House dust mites have been shown to be important sources of indoor allergens associated with asthma and other allergic conditions. Asthma is a chronic respiratory disease that affects millions of people worldwide, and numerous scientific studies have shown that the prevalence of asthma is increasing. The most common dust mite species around the world include Dermatophagoides pteronyssinus (Dp), Dermatophagoides farinae (Df), Euroglyphus maynei (Em) and Blomia tropicalis (Bt). Over the past three decades, many important allergens from these species have been identified and characterized at the molecular level. The biological function of several house dust mite allergens has been elucidated, with many of them showing enzymatic activity. However, Bt allergens remain the least studied, even though this mite is very common in tropical and subtropical regions of the world, including Puerto Rico. Therefore, it is very important to include Bt in diagnostic and therapeutic strategies for house dust mite induced allergy and asthma, particularly in areas where Bt exposure and sensitization is high. Recombinant DNA technology, as well as other molecular biology and immunological techniques, have played a fundamental role in advances towards a better understanding of the biology of house dust mites and their role in allergic diseases. This kind of study also contributes to the understanding of the complex immunologic mechanisms involved in allergic reactions. The development of effective diagnostic and therapeutic approaches depends on the continuity of research of house dust mite allergens. The objectives of this review are to describe the most important aspects of house dust mite allergy and to acquaint the scientific community with the latest findings pertaining to house dust mite allergens, particularly those derived from Bt.

  3. An opilioacarid mite in Cretaceous Burmese amber

    NASA Astrophysics Data System (ADS)

    Dunlop, Jason A.; de Oliveira Bernardi, Leopoldo Ferreira

    2014-09-01

    A fossil opilioacarid mite (Parasitiformes: Opilioacarida) in Burmese amber is described as ? Opilioacarus groehni sp. nov. This ca. 99 Ma record (Upper Cretaceous: Cenomanian) represents only the third fossil example of this putatively basal mite lineage, the others originating from Eocene Baltic amber (ca. 44-49 Ma). Our new record is not only the oldest record of Opilioacarida, but it is also one of the oldest examples of the entire Parasitiformes clade. The presence of Opilioacarida—potentially Opiloacarus—in the Cretaceous of SE Asia suggests that some modern genus groups were formerly more widely distributed across the northern hemisphere, raising questions about previously suggested Gondwanan origins for these mites.

  4. Light and scanning electron microscopic investigations on MiteStop-treated poultry red mites.

    PubMed

    Locher, Nina; Klimpel, Sven; Abdel-Ghaffar, Fathy; Al Rasheid, Khaled A S; Mehlhorn, Heinz

    2010-07-01

    Recent studies of the neem seed product MiteStop showed that it has a good acaricidal effect against all developmental stages of the poultry red mite, Dermanyssus gallinae. In vitro tests proved an efficacy at direct contact, as well as by fumigant toxicity. Light and scanning electron microscopic (SEM) investigations showed no clear, morphologically visible signs of an effect caused by fumigant toxicity. Direct contact with the neem product, however, seemed to be of great impact. Chicken mites turned dark brown or even black after being treated with the neem product. SEM analysis showed damages along the body surface of the mites.

  5. Moku virus; a new Iflavirus found in wasps, honey bees and Varroa.

    PubMed

    Mordecai, Gideon J; Brettell, Laura E; Pachori, Purnima; Villalobos, Ethel M; Martin, Stephen J; Jones, Ian M; Schroeder, Declan C

    2016-10-07

    There is an increasing global trend of emerging infectious diseases (EIDs) affecting a wide range of species, including honey bees. The global epidemic of the single stranded RNA Deformed wing virus (DWV), driven by the spread of Varroa destructor has been well documented. However, DWV is just one of many insect RNA viruses which infect a wide range of hosts. Here we report the full genome sequence of a novel Iflavirus named Moku virus (MV), discovered in the social wasp Vespula pensylvanica collected in Hawaii. The novel genome is 10,056 nucleotides long and encodes a polyprotein of 3050 amino acids. Phylogenetic analysis showed that MV is most closely related to Slow bee paralysis virus (SBPV), which is highly virulent in honey bees but rarely detected. Worryingly, MV sequences were also detected in honey bees and Varroa from the same location, suggesting that MV can also infect other hymenopteran and Acari hosts.

  6. Moku virus; a new Iflavirus found in wasps, honey bees and Varroa

    PubMed Central

    Mordecai, Gideon J; Brettell, Laura E; Pachori, Purnima; Villalobos, Ethel M.; Martin, Stephen J; Jones, Ian M; Schroeder, Declan C

    2016-01-01

    There is an increasing global trend of emerging infectious diseases (EIDs) affecting a wide range of species, including honey bees. The global epidemic of the single stranded RNA Deformed wing virus (DWV), driven by the spread of Varroa destructor has been well documented. However, DWV is just one of many insect RNA viruses which infect a wide range of hosts. Here we report the full genome sequence of a novel Iflavirus named Moku virus (MV), discovered in the social wasp Vespula pensylvanica collected in Hawaii. The novel genome is 10,056 nucleotides long and encodes a polyprotein of 3050 amino acids. Phylogenetic analysis showed that MV is most closely related to Slow bee paralysis virus (SBPV), which is highly virulent in honey bees but rarely detected. Worryingly, MV sequences were also detected in honey bees and Varroa from the same location, suggesting that MV can also infect other hymenopteran and Acari hosts. PMID:27713534

  7. New and little known feather mites (Acari)

    USDA-ARS?s Scientific Manuscript database

    Feather mites (Acari: Astigmata) were analyzed with low temperature scanning electron microscopy (LT-SEM), including the description of three new species: Plicatalloptes atrichogynus sp. nov. (Analgoidea: Alloptidae) from the Neotropical cormorant Phalacrocorax brasilianus (Gmelin, 1789) (Pelecanifo...

  8. Scabies mite, eggs, and stool photomicrograph (image)

    MedlinePlus

    ... photomicrograph of a skin scraping that contains a scabies mite, eggs, and feces. This animal burrows into the skin, depositing both eggs and feces. A scabies infestation causes intense itching (pruritus) which leads to ...

  9. Mite predators of the southern pine beetle

    Treesearch

    John c. Moser

    1975-01-01

    Of 51 mites found with brood of the southern pine beetle, Dendroctonus frontalis zimmermann, and tested in the laboratory, four are primary candidates for use as natural control agents in reducing field infestations: Histiogaster arborsignis Woodring, Proctolaelaps dendroctoni Lindquist & Hunter, ...

  10. Inactivation of dust mites, dust mite allergen, and mold from carpet.

    PubMed

    Ong, Kee-Hean; Lewis, Roger D; Dixit, Anupma; MacDonald, Maureen; Yang, Mingan; Qian, Zhengmin

    2014-01-01

    Carpet is known to be a reservoir for biological contaminants, such as dust mites, dust mite allergen, and mold, if it is not kept clean. The accumulation of these contaminants in carpet might trigger allergies or asthma symptoms in both children and adults. The purpose of this study is to compare methods for removal of dust mites, dust mite allergens, and mold from carpet. Carpets were artificially worn to simulate 1 to 2 years of wear in a four-person household. The worn carpets were inoculated together with a common indoor mold (Cladosporium species) and house dust mites and incubated for 6 weeks to allow time for dust mite growth on the carpet. The carpets were randomly assigned to one of the four treatment groups. Available treatment regimens for controlling carpet contaminants were evaluated through a literature review and experimentation. Four moderately low-hazard, nondestructive methods were selected as treatments: vacuuming, steam-vapor, Neem oil (a natural tree extract), and benzalkonium chloride (a quaternary ammonium compound). Steam vapor treatment demonstrated the greatest dust mite population reduction (p < 0.05) when compared to other methods. The two physical methods, steam vapor and vacuuming, have no statistically significant efficacy in inactivating dust mite allergens (p = 0.084), but have higher efficacy when compared to the chemical method on dust mite allergens (p = 0.002). There is no statistically significant difference in the efficacy for reducing mold in carpet (p > 0.05) for both physical and chemical methods. The steam-vapor treatment effectively killed dust mites and denatured dust mite allergen in the laboratory environment.

  11. The role of mites in insect-fungus associations.

    PubMed

    Hofstetter, R W; Moser, J C

    2014-01-01

    The interactions among insects, mites, and fungi are diverse and complex but poorly understood in most cases. Associations among insects, mites, and fungi span an almost incomprehensible array of ecological interactions and evolutionary histories. Insects and mites often share habitats and resources and thus interact within communities. Many mites and insects rely on fungi for nutrients, and fungi benefit from them with regard to spore dispersal, habitat provision, or nutrient resources. Mites have important impacts on community dynamics, ecosystem processes, and biodiversity within many insect-fungus systems. Given that mites are understudied but highly abundant, they likely have bigger, more important, and more widespread impacts on communities than previously recognized. We describe mutualistic and antagonistic effects of mites on insect-fungus associations, explore the processes that underpin ecological and evolutionary patterns of these multipartite communities, review well-researched examples of the effects of mites on insect-fungus associations, and discuss approaches for studying mites within insect-fungus communities.

  12. Hyperparasitism of mosquitoes by water mite larvae.

    PubMed

    Werblow, Antje; Martin, Peter; Dörge, Dorian D; Koch, Lisa K; Mehlhorn, Heinz; Melaun, Christian; Klimpel, Sven

    2015-07-01

    Hyperparasitism of ectoparasitic water mite larvae on mosquitoes is still a neglected relationship and was investigated only in a few studies. We analysed 2313 female mosquitoes from six different sampling localities with regard to their degree of parasitism with water mite larvae. In total, we found 38 mosquito individuals parasitized by 93 water mite larvae, ranging from 1 to 12 larvae per mosquito. Water mite larvae detected are members of the two species Parathyas cf. barbigera (n = 92) and Arrenurus cf. globator (n = 1). Out of the analysed mosquitoes, individuals out of the species Aedes vexans, Anopheles claviger, Ochlerotatus communis, the Ochlerotatus cantans/annulipes group, Ochlerotatus cataphylla and Ochlerotatus sticticus were tested to be parasitized by water mite larvae. The highest prevalence was found within the species Oc. cataphylla (28.6 %) and Oc. cantans/annulipes (21.7 %). No water mite larvae were found, e.g. on individuals of Aedes cinereus, Coquillettidia richiardii, the Culex pipiens/torrentium group, Ochlerotatus caspius, Ochlerotatus dorsalis or Ochlerotatus punctor. All of the attachment sites were located between the neck and abdomen with the ventral thorax site being the most frequent one.

  13. Mites as selective fungal carriers in stored grain habitats.

    PubMed

    Hubert, Jan; Stejskal, Václav; Kubátová, Alena; Munzbergová, Zuzana; Vánová, Marie; Zd'árková, Eva

    2003-01-01

    Mites are well documented as vectors of micromycetes in stored products. Since their vectoring capacity is low due to their small size, they can be serious vectors only where there is selective transfer of a high load of specific fungal species. Therefore the aim of our work was to find out whether the transfer of fungi is selective. Four kinds of stored seeds (wheat, poppy, lettuce, mustard) infested by storage mites were subjected to mycological analysis. We compared the spectrum of micromycete species isolated from different species of mites (Acarus siro, Lepidoglyphus destructor, Tyrophagus putrescentiae, Caloglyphus rhizoglyphoides and Cheyletus malaccensis) and various kinds of stored seeds. Fungi were separately isolated from (a) the surface of mites, (b) the mites' digestive tract (= faeces), and (c) stored seeds and were then cultivated and determined. The fungal transport via mites is selective. This conclusion is supported by (i) lower numbers of isolated fungal species from mites than from seeds; (ii) lower Shannon-Weaver diversity index in the fungal communities isolated from mites than from seeds; (iii) significant effect of mites/seeds as environmental variables on fungal presence in a redundancy analysis (RDA); (iv) differences in composition of isolated fungi between mite species shown by RDA. The results of our work support the hypothesis that mite-fungal interactions are dependent on mite species. The fungi attractive to mites seem to be dispersed more than others. The selectivity of fungal transport via mites enhances their pest importance.

  14. Spectral response of spider mite infested cotton: Mite density and miticide rate study

    USDA-ARS?s Scientific Manuscript database

    Two-spotted spider mites are important pests in many agricultural systems. Spider mites (Acari: Tetranychidae) have been found to cause economic damage in corn, cotton, and sorghum. Adult glass vial bioassays indicate that Temprano™ (abamectin) is the most toxic technical miticide for adult two-spot...

  15. Mitochondrial genome evolution and tRNA truncation in Acariformes mites: new evidence from eriophyoid mites

    PubMed Central

    Xue, Xiao-Feng; Guo, Jing-Feng; Dong, Yan; Hong, Xiao-Yue; Shao, Renfu

    2016-01-01

    The subclass Acari (mites and ticks) comprises two super-orders: Acariformes and Parasitiformes. Most species of the Parasitiformes known retained the ancestral pattern of mitochondrial (mt) gene arrangement of arthropods, and their mt tRNAs have the typical cloverleaf structure. All of the species of the Acariformes known, however, have rearranged mt genomes and truncated mt tRNAs. We sequenced the mt genomes of two species of Eriophyoidea: Phyllocoptes taishanensis and Epitrimerus sabinae. The mt genomes of P. taishanensis and E. sabinae are 13,475 bp and 13,531 bp, respectively, are circular and contain the 37 genes typical of animals; most mt tRNAs are highly truncated in both mites. On the other hand, these two eriophyoid mites have the least rearranged mt genomes seen in the Acariformes. Comparison between eriophyoid mites and other Aacariformes mites showed that: 1) the most recent common ancestor of Acariformes mites retained the ancestral pattern of mt gene arrangement of arthropods with slight modifications; 2) truncation of tRNAs for cysteine, phenylalanine and histidine occurred once in the most recent common ancestor of Acariformes mites whereas truncation of other tRNAs occurred multiple times; and 3) the placement of eriophyoid mites in the order Trombidiformes needs to be reviewed. PMID:26732998

  16. Mitochondrial genome evolution and tRNA truncation in Acariformes mites: new evidence from eriophyoid mites.

    PubMed

    Xue, Xiao-Feng; Guo, Jing-Feng; Dong, Yan; Hong, Xiao-Yue; Shao, Renfu

    2016-01-06

    The subclass Acari (mites and ticks) comprises two super-orders: Acariformes and Parasitiformes. Most species of the Parasitiformes known retained the ancestral pattern of mitochondrial (mt) gene arrangement of arthropods, and their mt tRNAs have the typical cloverleaf structure. All of the species of the Acariformes known, however, have rearranged mt genomes and truncated mt tRNAs. We sequenced the mt genomes of two species of Eriophyoidea: Phyllocoptes taishanensis and Epitrimerus sabinae. The mt genomes of P. taishanensis and E. sabinae are 13,475 bp and 13,531 bp, respectively, are circular and contain the 37 genes typical of animals; most mt tRNAs are highly truncated in both mites. On the other hand, these two eriophyoid mites have the least rearranged mt genomes seen in the Acariformes. Comparison between eriophyoid mites and other Aacariformes mites showed that: 1) the most recent common ancestor of Acariformes mites retained the ancestral pattern of mt gene arrangement of arthropods with slight modifications; 2) truncation of tRNAs for cysteine, phenylalanine and histidine occurred once in the most recent common ancestor of Acariformes mites whereas truncation of other tRNAs occurred multiple times; and 3) the placement of eriophyoid mites in the order Trombidiformes needs to be reviewed.

  17. Wheat curl mite and dry bulb mite: untangling a taxonomic conundrum through a multidisciplinary approach

    USDA-ARS?s Scientific Manuscript database

    The taxonomy of two economically important eriophyoid species, Aceria tosichella (wheat curl mite, WCM) and A. tulipae (dry bulb mite, DBM), was confounded in the world literature until the late 20th century due to their morphological similarity and ambiguous data from plant-transfer and virus-trans...

  18. Mite-Proof Bedding May Help Curb Asthma Attacks

    MedlinePlus

    ... Curb Asthma Attacks: Study Kids whose mattresses and pillows were encased had less severe flare-ups, researchers ... asthma and dust mite allergy. Their mattresses and pillows were encased with mite-proof or placebo covers. ...

  19. FDA Approves New Treatment for Dust Mite Allergies

    MedlinePlus

    ... 163882.html FDA Approves New Treatment for Dust Mite Allergies Odactra is a year-round treatment for ... 2017 (HealthDay News) -- A new treatment for dust mite allergies has won approval from the U.S. Food ...

  20. Relating individual behaviour to population dynamics.

    PubMed

    Sumpter, D J; Broomhead, D S

    2001-05-07

    How do the behavioural interactions between individuals in an ecological system produce the global population dynamics of that system? We present a stochastic individual-based model of the reproductive cycle of the mite Varroa jacobsoni, a parasite of honeybees. The model has the interesting property in that its population level behaviour is approximated extremely accurately by the exponential logistic equation or Ricker map. We demonstrated how this approximation is obtained mathematically and how the parameters of the exponential logistic equation can be written in terms of the parameters of the individual-based model. Our procedure demonstrates, in at least one case, how study of animal ecology at an individual level can be used to derive global models which predict population change over time.

  1. Evidence for the safety of coumaphos, diazinon and malathion residues in honey.

    PubMed

    Fernandez Garcia, M A; Riol Melgar, M J; Herrero Latorre, C; Garcia Fernandez, M I

    1994-10-01

    Residue levels of coumaphos, diazinon and malathion in honey were analysed in 177 samples of honey collected from different regions of Lugo in NW Spain in 1988-1990. One has to expect some of them as residues in honey, even if employed properly, for example coumaphos used against the parasitic mite Varroa jacobsoni. Honey samples were extracted with acetonitrile:water (2:1 v/v), partitioned with petroleum-ether, cleaned up with a manual Florisil column or Florisil Sep-Pack, evaporated to dryness, redissolved in an appropriate volume (1 mL) and then analyzed by GLC with a silica capillary column and nitrogen-phosphorus detector. Recoveries of coumaphos, diazinon and malathion varied between 80-97%. One hundred forty-eight samples contained no detectable residues, while 29 had residues of coumaphos and diazinon in ppb levels. These residues are minimal and when eating honey are harmless for the health of human beings.

  2. Acaricides and predatory mites against the begonia mite, Polyphagotarsonemus latus (Acari: Tarsonemidae), on Hedera helix.

    PubMed

    Audenaert, Joachim; Vissers, Marc; Haleydt, Bart; Verhoeven, Ruth; Goossens, Frans; Gobin, Bruno

    2009-01-01

    In recent years, the begonia mite (Polyphagotarsonemus lotus) has become an important threat to different ornamental cultures in warm greenhouses. At present there are no professional plant protection products registered in Belgium for the control of mites of the Tarsonemidae family. In a screening trial, we evaluated the efficacy of a range of different acaricides: abamectin, milbemectin, pyridaben, spirodiclofen. Based on the results of the screening trial several products were selected for a full efficacy trial following EPPO guidelines. The best control results were obtained with two products from the avermectine group: abamectin and milbemectin. As growers currently have to rely solely on the use of natural enemies there is a strong need for practical evaluation of efficacies of the various predatory mite species (Amblyseius swirskii, A. cucumeris, A. andersoni) used in biological mite control. In a series of experiments, we screened the use of different species of predatory mites. The first efficacy trials on heavily infested plants at different rates of dosage and under different circumstances (temperature, dose rate, application technique) were started in May 2008. In these experiments Amblyseius swirskii showed good efficacy. But temperature was the limiting factor: the predatory mite needed a minimal temperature of 18 degrees C to obtain good results. Further research is necessary to search for predatory mites that can be used in winter conditions (lower temperatures, less light).

  3. Key Mites Commonly Associated With the Southern Pine Beetle

    Treesearch

    D.N. Kinn

    1976-01-01

    This paper outlines a method of preparing mites for microscopic examination and contains a simple key to the 15 species of mites commonly associated with the southern pine bark beetle. Research workers wanting to identify these mites and others curious about them, but untrained in acarology, should find little difficulty in making identifications.

  4. Mites associated with bark beetles and their hyperphoretic ophiostomatoid fungi

    Treesearch

    Richard W. Hofstetter; John Moser; Stacy Blomquist

    2014-01-01

    The role that mites play in many ecosystems is often overlooked or ignored. Within bark beetle habitats, more than 100 mite species exist and they have important impacts on community dynamics, ecosystem processes, and biodiversity of bark beetle systems. Mites use bark beetles to access and disperse among beetle-infested trees and the associations may range from...

  5. [Mites allergy in children from Tula region].

    PubMed

    Zlobina, Zh M; Pron'kina, O V; Khlgatian, S V; Berzhets, A I; Berzhets, V M

    2006-01-01

    Characteristics of allergy to mites in children living in Tula region have been revealed. It was shown that mites from Pyroglyphidae (Dermatophagoides pteronyssinus, Dermatophagoides farinae), Cheyletidae and Glycyphagidae (G. destructor, G. domesticus) families play important role in development of atopic allergy in children from this region. Efficacy of plant-origin acaricide "Milbiol" as part of prophylactic measures was evaluated. Its use in children with mild and intermediate asthma led to decrease of number of wheezing episodes, improvement of respiratory function, lessening of clinical signs of allergic rhinitis, decrease or discontinuation of usage of vasoconstrictive preparations.

  6. Computer analysis of the exploratory behavior of insects and mites in an olfactometer.

    PubMed

    Bakchine, E; Pham-Delegue, M H; Kaiser, L; Masson, C

    1990-07-01

    A method of quantification of the exploratory behavior of small animals stimulated by an odorant in a four-choice olfactometer, taking into account the interindividual variability of responses, was developed: individual tracks were time sampled according to the animal's walking speed and its positions were recorded according to the X-Y coordinates of the grid set underneath the device, the mesh of the grid suiting the animal's body size. A software, written in BASIC APPLESOFT on an APPLE IIe computer, allowed us to analyze the coordinates either of a single individual or of an experimental sample, leading to: a) the quantification of the insect distribution all over the experimental chamber, expressed in a table numbered according to the grid, where the percentage of position per square either for a given time fraction or the total observation period were reported, b) a graphic representation of the data according to several levels of greys, expressing the frequentation for each square for a given duration of observation. An analysis per time fraction allowed the chronological setup of events to appreciate. c) The collection of the positions among each flow field of the olfactometer for each individual of the experimental sample, for a given duration, was translated as the percentage of time spent in each flow field. Data files gathered these percentages for further statistical treatments. This computer method, which requires little equipment and appears to be easily adaptable to the study of biological models of various size and speed such as honeybees, trichogrammas and varroas mites, is a powerful tool for behavioral studies of small organisms tested in restricted areas.

  7. Observations on the removal of brood inoculated with Tropilaelaps mercedesae (Acari: Laelapidae) and the mite's reproductive success in Apis mellifera colonies.

    PubMed

    Khongphinitbunjong, Kitiphong; de Guzman, Lilia I; Buawangpong, Ninat; Rinderer, Thomas E; Frake, Amanda M; Chantawannakul, Panuwan

    2014-01-01

    This study assessed the response of Apis mellifera to brood deliberately infested with Tropilaelaps mercedesae. The reproductive success of T. mercedesae in mite-inoculated and naturally infested brood was also compared. The presence of T. mercedesae inside brood cells significantly affected brood removal. Thai A. mellifera removed 52.6 ± 8.2 % of the brood inoculated with T. mercedesae as compared to 17.2 ± 1.8 and 5.7 ± 1.1 % removal rates for the groups of brood with their cell cappings opened and closed without mite inoculation and the control brood (undisturbed, no mite inoculation), respectively. Brood removal peaked during the second and third days post inoculation when test brood was at the prepupal stage. Overall, non-reproduction (NR) of foundress T. mercedesae was high. However, when NR was measured based on the criteria used for Varroa, the naturally infested pupae (NIP) supported the highest NR (92.8 %). Newly sealed larvae inoculated with Tropilaelaps collected from newly sealed larvae (NSL) had 78.2 % NR and those inoculated with Tropilaelaps collected from tan-bodied pupae (TBP) had 76.8 % NR. Since Tropilaelaps is known to have a short development period and nearly all progeny reach adulthood by the time of host emergence, we also used two Tropilaelaps-specific criteria to determine NR. Foundresses that did not produce progeny and those that produced only one progeny were considered NR. Using these two criteria, NR decreased tremendously but showed similar trends with means of 65, 40 and 33 % for NIP, NSL and TBP, respectively. High NR in the NIP group may indicate increased hygienic behavior in Thai A. mellifera colonies. The removal of infested prepupae or tan-bodied pupae will likely decrease the reproductive potential of Tropilaelaps. Our study suggests that brood removal may be one of the resistance mechanisms towards T. mercedesae by naturally adapted Thai A. mellifera.

  8. Evaluation of storage mite contamination of commercial dry dog food.

    PubMed

    Brazis, Pilar; Serra, Montserrat; Sellés, Alex; Dethioux, Fabienne; Biourge, Vincent; Puigdemont, Anna

    2008-08-01

    Storage mites may be considered important allergens in dogs with atopic dermatitis. High sensitization rates to Tyrophagus, Acarus, and Lepidoglyphus species have been reported in atopic dogs, and dry pet food has been suggested as a potential source of storage mite exposure. The aim of the present study was to evaluate commercial dry dog food for contamination with storage mites, and how storage time and conditions could influence the risk of contamination. Ten different premium commercial dry dog foods formulated for skin disorders were selected. Food bags were opened and stored for 6 weeks under two different environmental conditions. At different time points, samples from each bag were collected and analysed by microscopy, guanine test, storage mite-specific traps, and a modified flotation technique. On opening, two storage mites identified as Acarus siro were isolated from one of the 10 bags by flotation technique, indicating that storage mites can be present in packaged dry dog food bags. After 5 weeks of storage under environmental conditions optimal for mite growth (23.2 +/- 2.1 degrees C and 71 +/- 5.6% of relative humidity), mites were detected by microscopic observation in nine of the 10 diets. When mites were identified by the flotation technique, Tyrophagus spp. were found to be the most common contaminating species. These results show that dry dog food can be a suitable substrate for storage mite reproduction, and that environmental and storage conditions may influence food contamination and mite development.

  9. Functionality of Varroa-Resistant Honey Bees (Hymenoptera: Apidae) When Used in Migratory Beekeeping for Crop Pollination

    USDA-ARS?s Scientific Manuscript database

    Two types of honey bees, Apis mellifera L., that were bred for resistance to Varroa destructor Anderson & Trueman were evaluated for performance when used for beekeeping in an intensive, migratory crop pollination system. Colonies of these stocks (Russian honey bees [RHB] and outcrosses of bees with...

  10. The Salivary Glands of Adult Female Varroa Destructor (Acari: Varroidae), an Ectoparasite of the Honey Bee, Apis Mellifera (Hymenoptera: Apidae)

    USDA-ARS?s Scientific Manuscript database

    Varroa destructor Anderson and Trueman 2000, an ectoparasite of honey bees, causes huge economic losses to apiculture annually. Its role as a vector of diseases is thought to involve the salivary glands as the terminal organs of transmission. The salivary glands are paired, oval, non-acinar organs...

  11. Standard methods for tracheal mite research

    USDA-ARS?s Scientific Manuscript database

    This chapter, for the COLOSS Beebook from the Bee Research Center in Switzerland, summarizes all the current information about the tracheal mite (Acarapis woodi) infesting honey bees (Apis mellifera). The chapter covers the effects on bees, its life history, and its range, as well as the identifica...

  12. Dust mite-proof pillow cover (image)

    MedlinePlus

    ... of washing bedding once a week in hot water, and dusting with a wet cloth once a week. Carpets can be a significant source of dust mites and should be vacuumed weekly with a vacuum cleaner containing a HEPA filter. Wooden and leather ...

  13. Tropical rat mites (Ornithonyssus bacoti) - serious ectoparasites.

    PubMed

    Beck, Wieland; Fölster-Holst, Regina

    2009-08-01

    In Germany there is limited information available about the distribution of the tropical rat mite (Ornithonyssus bacoti) in rodents. A few case reports show that this hematophagous mite species may also cause dermatitis in man. Having close body contact to small rodents is an important question for patients with pruritic dermatoses. The definitive diagnosis of this ectoparasitosis requires the detection of the parasite, which is more likely to be found in the environment of its host (in the cages, in the litter or in corners or cracks of the living area) than on the hosts' skin itself. A case of infestation with tropical rat mites in a family is reported here. Three mice that had been removed from the home two months before were the reservoir. The mites were detected in a room where the cage with the mice had been placed months ago. Treatment requires the eradication of the parasites on its hosts (by a veterinarian) and in the environment (by an exterminator) with adequate acaricides such as permethrin.

  14. Population survey of phytoseiid mites and spider mites on peach leaves and wild plants in Japanese peach orchard.

    PubMed

    Wari, David; Yamashita, Jun; Kataoka, Yoko; Kohara, Yoko; Hinomoto, Norihide; Kishimoto, Hidenari; Toyoshima, Shingo; Sonoda, Shoji

    2014-07-01

    A population survey of phytoseiid mites and spider mites was conducted on peach leaves and wild plants in Japanese peach orchards having different pesticide practices. The phytoseiid mite species composition on peach leaves and wild plants, as estimated using quantitative sequencing, changed during the survey period. Moreover, it varied among study sites. The phytoseiid mite species compositions were similar between peach leaves and some wild plants, such as Veronica persica, Paederia foetida, Persicaria longiseta, and Oxalis corniculata with larger quantities of phytoseiid mites, especially after mid-summer. A PCR-based method to detect the ribosomal ITS sequences of Tetranychus kanzawai and Panonychus mori from phytoseiid mites was developed. Results showed that Euseius sojaensis (specialized pollen feeder/generalist predator) uses both spider mites as prey in the field.

  15. P-MITE: a database for plant miniature inverted-repeat transposable elements

    PubMed Central

    Chen, Jiongjiong; Hu, Qun; Zhang, Yu; Lu, Chen; Kuang, Hanhui

    2014-01-01

    Miniature inverted-repeat transposable elements (MITEs) are prevalent in eukaryotic species including plants. MITE families vary dramatically and usually cannot be identified based on homology. In this study, we de novo identified MITEs from 41 plant species, using computer programs MITE Digger, MITE-Hunter and/or Repetitive Sequence with Precise Boundaries (RSPB). MITEs were found in all, but one (Cyanidioschyzon merolae), species. Combined with the MITEs identified previously from the rice genome, >2.3 million sequences from 3527 MITE families were obtained from 41 plant species. In general, higher plants contain more MITEs than lower plants, with a few exceptions such as papaya, with only 538 elements. The largest number of MITEs is found in apple, with 237 302 MITE sequences. The number of MITE sequences in a genome is significantly correlated with genome size. A series of databases (plant MITE databases, P-MITE), available online at http://pmite.hzau.edu.cn/django/mite/, was constructed to host all MITE sequences from the 41 plant genomes. The databases are available for sequence similarity searches (BLASTN), and MITE sequences can be downloaded by family or by genome. The databases can be used to study the origin and amplification of MITEs, MITE-derived small RNAs and roles of MITEs on gene and genome evolution. PMID:24174541

  16. A house dust mite allergen homologue from poultry red mite Dermanyssus gallinae (De Geer).

    PubMed

    Nisbet, A J; Huntley, J F; Mackellar, A; Sparks, N; McDevitt, R

    2006-08-01

    Tropomyosin is an allergenic, actin-binding protein and a proposed vaccine candidate from several species of parasite. Tropomyosin cDNA, obtained by polymerase chain reaction (PCR) amplification from Dermanyssus gallinae RNA, encoded a predicted protein with 89% and 88% identity to tropomyosins from the ticks Boophilus microplus and Haemaphysalis longicornis, respectively, and 85% identity to the house dust mite (HDM) tropomyosin Der p 10. Mouse antibodies raised against HDM tropomyosin reacted with a band of 38 kDa on Western blots of D. gallinae extract, consistent with the molecular masses of acarine tropomyosins and the putative product of the cDNA encoding D. gallinae tropomyosin. When the same preparation of D. gallinae proteins was used in Western blots with serum from infested hens, the IgY component of the serum bound to a number of mite proteins, but not to tropomyosin, indicating that hens are not directly exposed to this allergen during a natural infestation. Immunolocalization of tropomyosin in mites indicated a ubiquitous distribution of the molecule in mite tissues. Immunolocalization and Western blotting also indicated that poultry red mites ingest host IgY.

  17. Salivary proteins of spider mites suppress defenses in Nicotiana benthamiana and promote mite reproduction.

    PubMed

    Villarroel, Carlos A; Jonckheere, Wim; Alba, Juan M; Glas, Joris J; Dermauw, Wannes; Haring, Michel A; Van Leeuwen, Thomas; Schuurink, Robert C; Kant, Merijn R

    2016-04-01

    Spider mites (Tetranychidae sp.) are widely occurring arthropod pests on cultivated plants. Feeding by the two-spotted spider mite T. urticae, a generalist herbivore, induces a defense response in plants that mainly depends on the phytohormones jasmonic acid and salicylic acid (SA). On tomato (Solanum lycopersicum), however, certain genotypes of T. urticae and the specialist species T. evansi were found to suppress these defenses. This phenomenon occurs downstream of phytohormone accumulation via an unknown mechanism. We investigated if spider mites possess effector-like proteins in their saliva that can account for this defense suppression. First we performed an in silico prediction of the T. urticae and the T. evansi secretomes, and subsequently generated a short list of candidate effectors based on additional selection criteria such as life stage-specific expression and salivary gland expression via whole mount in situ hybridization. We picked the top five most promising protein families and then expressed representatives in Nicotiana benthamiana using Agrobacterium tumefaciens transient expression assays to assess their effect on plant defenses. Four proteins from two families suppressed defenses downstream of the phytohormone SA. Furthermore, T. urticae performance on N. benthamiana improved in response to transient expression of three of these proteins and this improvement was similar to that of mites feeding on the tomato SA accumulation mutant nahG. Our results suggest that both generalist and specialist plant-eating mite species are sensitive to SA defenses but secrete proteins via their saliva to reduce the negative effects of these defenses.

  18. Seasonal phoresy as an overwintering strategy of a phytophagous mite

    PubMed Central

    Liu, Sai; Li, Jianling; Guo, Kun; Qiao, Haili; Xu, Rong; Chen, Jianmin; Xu, Changqing; Chen, Jun

    2016-01-01

    Migration by attachment to insects is common among mites that live in temporary habitats. However, because plants provide relatively stable habitats, phytophagous mites are generally not dependent on other animals for dispersal, so whether these mites can consistently be phoretic on insects through a particular life stage remains unclear and controversial. Here, we describe an obligate phoresy of a wholly phytophagous mite, Aceria pallida, in which the mites accompanied the psyllid Bactericera gobica to its winter hibernation sites, thus successfully escaping unfavourable winter conditions, and returned to reach the buds of their host plant early the following spring. This finding provides evidence of a new overwintering strategy that has contributed to the evolutionary success of these tiny phytophagous mites. PMID:27150196

  19. Intestinal proteases of free-living and parasitic astigmatid mites.

    PubMed

    Holt, Deborah C; Burgess, Stewart T G; Reynolds, Simone L; Mahmood, Wajahat; Fischer, Katja

    2013-02-01

    Among arthropod pests, mites are responsible for considerable damage to crops, humans and other animals. However, detailed physiological data on these organisms remain sparse, mainly because of their small size but possibly also because of their extreme diversity. Focusing on intestinal proteases, we draw together information from three distinct mite species that all feed on skin but have separately adapted to a free-living, a strictly ecto-parasitic and a parasitic lifestyle. A wide range of studies involving immunohistology, molecular biology, X-ray crystallography and enzyme biochemistry of mite gut proteases suggests that these creatures have diverged considerably as house dust mites, sheep scab mites and scabies mites. Each species has evolved a particular variation of a presumably ancestral repertoire of digestive enzymes that have become specifically adapted to their individual environmental requirements.

  20. The Jean Gutierrez spider mite collection

    PubMed Central

    Migeon, Alain

    2015-01-01

    Abstract The family Tetranychidae (spider mites) currently comprises 1,275 species and represents one of the most important agricultural pest families among the Acari with approximately one hundred pest species, ten of which considered major pests. The dataset presented in this document includes all the identified spider mites composing the Jean Gutierrez Collection hosted at the CBGP (Montferrier-sur-Lez, France), gathered from 1963 to 1999 during his career at the Institut de Recherche pour le Développement (IRD). It consists of 5,262 specimens corresponding to 1,564 occurrences (combination species/host plant/date/location) of 175 species. Most specimens were collected in Madagascar and other islands of the Western Indian Ocean, New Caledonia and other islands of the South Pacific and Papuasia. The dataset constitutes today the most important one available on Tetranychidae worldwide. PMID:25878529

  1. Temperature preference and respiration of acaridid mites.

    PubMed

    Hubert, J; Pekár, S; Nesvorná, M; Sustr, V

    2010-12-01

    The thermal preferences in a grain mass and respiration at various temperatures in mites (Acari: Acarididae) of medical and economical importance [Acarus siro (L. 1758), Dermatophagoides farinae Hughes 1961, Lepidoglyphus destructor (Schrank 1871), and Tyrophagus putrescentiae (Schrank 1781)] were studied under laboratory conditions. Based on the distribution of mites in wheat, Triticum aestivum L., grain along a thermal gradient from 10 to 40 degrees C, L. destructor, D. farinae, and A. siro were classified as eurythermic and T. putrescentiae as stenothermic. The lowest preferred temperature was found for D. farinae (28 degrees C), followed by A. siro (28.5 degrees C), L. destructor (29.5 degrees C), and T. putrescentiae (31.5 degrees C). The relationship between the respiration rate and the temperature was similar for all four mite species. The highest respiration was found in the range from 31 to 33 degrees C. This is approximately 2 degrees C higher than the preferred temperature of these species. The lower temperature threshold of respiration ranged from 1 to 5 degrees C and the upper threshold ranged from 45 to 48 degrees C. Acclimatization of A. siro to temperature regimes of 5, 15, and 35 degrees C resulted in thermal preferences between 9 and 12 degrees C, 9 and 20 degrees C, and 28 and 35 degrees C, respectively. The respiration rate of acclimatized specimens increased with the temperature, reaching a maximum at 29.0 degrees C for mites acclimatized at 5 and 15 degrees C and a maximum at 33.7 degrees C for those acclimatized at 30 degrees C.

  2. Annotated checklist of Georgian oribatid mites.

    PubMed

    Murvanidze, Maka; Mumladze, Levan

    2016-03-14

    A new updated checklist of Georgian oribatid mites is based on the critical review of existing literature data and new findings. The list includes 534 oribatid species of which 21 species are new for the country recorded from more than 390 locations. For each species information of the global and regional distribution is presented with notes on ecological characteristics. As far as necessary we provide remarks on taxonomic issues to overcome the ambiguities and inconsistencies existing in literature.

  3. Evidence for horizontal transfer of Wolbachia by a Drosophila mite.

    PubMed

    Brown, Amy N; Lloyd, Vett K

    2015-07-01

    Mites are common ectoparasites of Drosophila and have been implicated in bacterial and mobile element invasion of Drosophila stocks. The obligate endobacterium, Wolbachia, has widespread effects on gene expression in their arthropod hosts and alters host reproduction to enhance its survival and propagation, often with deleterious effects in Drosophila hosts. To determine whether Wolbachia could be transferred between Drosophila melanogaster laboratory stocks by the mite Tyrophagus putrescentiae, mites were introduced to Wolbachia-infected Drosophila vials. These vials were kept adjacent to mite-free and Wolbachia-uninfected Drosophila stock vials. The Wolbachia infection statuses of the infected and uninfected flies were checked from generation 1 to 5. Results indicate that Wolbachia DNA could be amplified from mites infesting Wolbachia-infected fly stocks and infection in the previously uninfected stocks arose within generation 1 or 2, concomitant with invasion of mites from the Wolbachia-infected stock. A possible mechanism for the transfer of Wolbachia from flies to mites and vice versa, can be inferred from time-lapse photography of fly and mite interactions. We demonstrated that mites ingest Drosophila corpses, including Wolbachia-infected corpses, and Drosophila larva ingest mites, providing possible sources of Wolbachia infection and transfer. This research demonstrated that T. putrescentiae white mites can facilitate Wolbachia transfer between Drosophila stocks and that this may occur by ingestion of infected corpses. Mite-vectored Wolbachia transfer allows for rapid establishment of Wolbachia infection within a new population. This mode of Wolbachia introduction may be relevant in nature as well as in the laboratory, and could have a variety of biological consequences.

  4. Respiratory symptoms in arable farmworkers: role of storage mites.

    PubMed Central

    Blainey, A D; Topping, M D; Ollier, S; Davies, R J

    1988-01-01

    Storage mites (acarid mites) are related to the house dust mite but are usually found in agricultural environments. They have been shown to cause allergic symptoms in Scottish farmworkers exposed to stored hay, but whether farmworkers who grow and store grain are also at risk is unknown. One hundred and one farmworkers on 22 Essex farms with grain storage facilities (88% of the available workforce) participated in a survey of respiratory symptoms, with skin tests and determination of serum levels of IgE specific for mite species, including storage mites. Of the 101 workers, 21 reported attacks of cough, wheeze, or breathlessness after exposure to stored grain and 15 reported nasal symptoms after grain exposure. Storage mite specific IgE was found in 59% of farmworkers with work related respiratory symptoms, in 60% with work related nasal symptoms, and in only 9% of symptomless farmworkers. Work related respiratory and nasal symptoms were also significantly associated with atopy, and with positive skin test responses and serum IgE specific for Dermatophagoides pteronyssinus. Storage mites were found in grain samples from 16 farms in which grain was sampled, whereas D pteronyssinus was not found in any. The close association between serum storage mite specific IgE and occupational respiratory symptoms suggests that storage mites may be responsible for respiratory symptoms in these Essex farmworkers exposed to grain. PMID:3194876

  5. Mites associated with stored grain commodities in Benin, West Africa.

    PubMed

    Zannou, Ignace D; Adebo, Habib O; Zannou, Elisabeth; Hell, Kerstin

    2013-12-01

    After insects, mites are the major arthropod pests that inhabit stored agricultural products worldwide. To determine the acarofauna that infests cowpea, maize, paddy rice and sorghum in Benin (West Africa), surveys were conducted in some principal markets (Dantokpa, Glazoue and Parakou) of this country. A total of 555 samples of grains and debris were collected in May and September 2011. More than 56 species belonging to 24 mite families were recorded in the four products. These mite species included predators, parasites, fungivorous, phytophagous and other groups whose feeding habits are not well known. The family Cheyletidae was the most prevalent and the most diverse predatory mite family encountered, in which Cheyletus malaccensis Oudemans was the most abundant species. Several families of mite pests and mites responsible for allergies (Acaridae, Glycyphagidae, Pyroglyphidae, Pyemotidae and Saproglyphidae) were also detected. The three most dominant and frequent species were C. malaccensis, Suidasia nesbitti (Hughes) and Suidasia sp. Statistical analysis showed that densities of these three mite species were higher in Parakou than in Glazoue and Dantokpa, on one hand, and higher in debris than in grains, on the other hand. The densities of S. nesbitti and Suidasia sp. decreased significantly during the dry season, whereas C. malaccensis remained stable throughout the two samplings. Of all grains, sorghum was the least infested with mites. This study shows that in Benin mites are present in stored agricultural products to which they cause serious damage, and may cause various allergies to people.

  6. Effect of a change to mite-free bedding on children with mite-sensitive asthma: a controlled trial.

    PubMed Central

    Burr, M L; Neale, E; Dean, B V; Verrier-Jones, E R

    1980-01-01

    Twenty-one children with mite-sensitive asthma took part in a crossover randomised controlled trial of mite-free bedding. Each child was issued with a new sleeping bag and pillow for a month, and twice-daily peak flow readings were compared with those obtained during a month in the child's ordinary bedding. Seventeen of the children had higher mean peak flow readings during the period in the mite-free bedding (p < 0.01). The overall improvement was only modest, however, and some mites had appeared in most of the bedding by the end of the trial. New bedding may be helpful to patients with mite-sensitive asthma, but methods are needed to prevent colonisation by mites. PMID:7001668

  7. Clinical benefits of treatment with SQ house dust mite sublingual tablet in house dust mite allergic rhinitis.

    PubMed

    Andersen, Kristian Funding; Demoly, Pascal; Kleine-Tebbe, Jörg; Rehm, Dorte

    2017-03-08

    Treatment with SQ house dust mite sublingual tablet for 1 year resulted in a decreased probability of having an allergic rhinitis exacerbation day (from 11% (placebo) to 5% (SQ house dust mite sublingual tablet)) and an increased probability of having a mild allergic rhinitis day (from 16% (placebo) to 34% (SQ house dust mite sublingual tablet)). This article is protected by copyright. All rights reserved.

  8. Evidence refuting the contribution of the fungus Aspergillus penicillioides to the allergenicity of the house dust mite Dermatophagoides pteronyssinus.

    PubMed

    Hay, D B; Hart, B J; Douglas, A E

    1992-01-01

    This communication demonstrates unequivocally that the fungi associated with house dust mites do not contribute to mite allergenicity. The evidence is twofold: first, larval mites which lack fungi have allergen profiles indistinguishable from fungus-bearing adult mites. Second, the allergen profile of experimentally-derived fungus-free adult mites and mites re-fed the fungus Aspergillus penicillioides are identical.

  9. Mite not make it home: tracheal mites reduce the safety margin for oxygen delivery of flying honeybees.

    PubMed

    Harrison, J F; Camazine, S; Marden, J H; Kirkton, S D; Rozo, A; Yang, X

    2001-02-01

    Many physiological systems appear to have safety margins, with excess capacity relative to normal functional needs, but the significance of such excess capacity remains controversial. In this study, we investigate the effects of parasitic tracheal mites (Acarapis woodi) on the safety margin for oxygen delivery and flight performance of honeybees. Tracheal mites did not affect the flight metabolic rate of honeybees in normoxic (21% oxygen) or hyperoxic (40% oxygen) air, but did reduce their metabolic rate relative to uninfected bees when flying in hypoxic air (5 or 10% oxygen), demonstrating that mites reduced the safety margin for tracheal oxygen delivery. The negative effects of mites on flight metabolic rate in hypoxic atmospheres were graded with the number of mites per trachea. For example, in 10% oxygen atmospheres, flight metabolic rate was reduced by 20% by moderate mite infection and by 40% by severe mite infection. Thus, the safety margin for oxygen delivery in honeybees allows them to retain normal flight metabolic rate and behavior despite tracheal mite infection under most conditions. However, the reduction in tracheal gas-exchange capacity may constrain activities requiring the highest metabolic rates, such as flying in cool weather. In support of this hypothesis, bees that were unable to return to the hive during late-winter flights showed significantly higher levels of mite infection than bees that returned safely.

  10. Evaluation of the predatory mite, Neoseiulus californicus, for spider mite control on greenhouse sweet pepper under hot arid field conditions.

    PubMed

    Weintraub, P; Palevsky, E

    2008-06-01

    The efficacy of Neoseiulus californicus (a generalist predatory mite) for the biological control of Tetranychus urticae, was compared to release of Phytoseiulus persimilis (a specialist predatory mite) and an acaricide treatment in sweet pepper plants grown in greenhouse tunnels in a hot and arid climate. To ensure uniform pest populations, spider mites were spread on pepper plants in two seasons; a natural infestation occurred in one season. Predators were released prophylactically and curatively in separate tunnels when plants were artificially infested with spider mites, and at low and moderate spider mite populations when infestations occurred naturally. Although spider mite populations did not establish well the first year, fewer spider mites were recovered with release of N. californicus than with all other treatments. In the second year, spider mites established and the prophylactic release of N. californicus compared favorably with the acaricide-treated plants. In the course of monitoring arthropod populations, we observed a significant reduction in western flower thrips (Frankliniella occidentalis) populations in tunnels treated with N. californicus as compared with non-treated control tunnels. Our field trials validate results obtained from potted-plant experiments and confirm that N. californicus is a superior spider mite predator at high temperatures and low humidities.

  11. Role of the Varroa mite in honeybee (Apis mellifera) colony loss: A case study for adverse outcome pathway development with a nonchemical stressor

    EPA Science Inventory

    Significant honeybee colony losses have been reported across North America and Europe in recent years. A number of factors, both chemical and nonchemical, have been associated with such losses. Adverse outcome pathways (AOPs) provide a conceptual framework to describe and evalu...

  12. Role of the Varroa mite in honeybee (Apis mellifera) colony loss: A case study for adverse outcome pathway development with a nonchemical stressor

    EPA Science Inventory

    Significant honeybee colony losses have been reported across North America and Europe in recent years. A number of factors, both chemical and nonchemical, have been associated with such losses. Adverse outcome pathways (AOPs) provide a conceptual framework to describe and evalu...

  13. Occupational exposure to allergenic mites in a Polish zoo.

    PubMed

    Solarz, Krzysztof; Szilman, Piotr; Szilman, Ewa

    2004-01-01

    The study was carried out from April 2000-March 2001. During this period 49 samples of dust, litter, debris and residues from cages and run-offs of mammals, birds and reptiles in the Silesian Zoo, were examined for the presence of mites, especially the allergenic taxa. Mites were extracted using the Berlese method and preserved in 70 % ethanol. For identification, the mites were mounted in Hoyer's medium on microscope slides. Mites were found in 44 of 49 samples analyzed (89.8 %). A total of 5,097 mites were collected, from which 60.3 % were found in samples collected in spring, whereas only 13 % in summer and 24.1 % in autumn. The remaining 2.6 % of the total mite population was found in winter. Majority of mites (82.7 %) were collected from aviaries of macaws and cockatiels (Ara ararauna and Nymphicus hollandicus). A total of 10 species of astigmatid mites were identified that belong to 4 families--Acaridae, Glycyphagidae, Anoetidae and Pyroglyphidae. Generally, the allergenic mites of the order Astigmata constituted 49.5 % of the total count. Among them Acarus farris was predominant (34 % of the total count), followed by Tyrophagus putrescentiae (4.7 %), Caloglyphus sp. (4.35 %) and Acarus immobilis (4.31 %). Dermatophagoides farinae, the house-dust-mite species, was for the first time found in this environment. D. farinae (0.05 % of the total population) was associated with parrots, canids and artiodactyls. Summarizing, it should be stressed, that cages and run-offs of different mammals, aviaries of parrots and terrariums of snakes are important sources of some allergenic mites, especially A. farris and T. putrescentiae, that might cause allergies in workers.

  14. Dynamics of house dust mite transfer in modern clothing fabrics.

    PubMed

    Clarke, David; Burke, Daniel; Gormally, Michael; Byrne, Miriam

    2015-04-01

    Clothing is largely presumed as being the mechanism by which house dust mites are distributed among locations in homes, yet little research to date has investigated the capacity with which various clothing fabric types serve as vectors for their accumulation and dispersal. Although previous research has indicated that car seats provide a habitat for mite populations, dynamics involved in the transfer of mites to clothing via car seat material is still unknown. To investigate the dynamics involved in the transfer of house dust mites from car seat material to modern clothing fabrics. A total of 480 samples of car seat material were seeded with mites and subjected to contact with plain woven cotton, denim, and fleece. Contact forces equivalent to the mass of a typical adult and child were administered for different durations of contact. Mean transfer efficiencies of mites from car seat material to receiving clothing fabrics ranged from 7.2% to 19.1%. Fabric type, mite condition (live or dead), and the force applied all revealed a significant effect (P < .001 for each variable) on the transfer efficiency of house dust mites from seeded material to receiving fabrics, whereas duration of contact revealed no effect (P = .20). In particular, mean numbers of mites transferred to fleece (compared with denim and plain woven cotton) were greater for each treatment. These findings indicate that clothing type can have important implications for the colonization of other biotopes by house dust mites, with potential for affecting an individuals' personal exposure to dust mite allergens. Copyright © 2015 American College of Allergy, Asthma & Immunology. Published by Elsevier Inc. All rights reserved.

  15. Tyrophagus putrescentiae mites grown in dog food cultures and the effect mould growth has on mite survival and reproduction.

    PubMed

    Canfield, Michael S; Wrenn, William J

    2010-02-01

    The purposes of this study were to determine whether the storage mite, Tyrophagus putrescentiae, could survive and thrive on dog food and if mould growth was important to their survival. All of the chambers (n = 42) were started with 10 female mites and evaluated every other day for mite survival and for the spontaneous development of mould. Ten chambers tested the effect of low moisture on mite survival. Eight chambers were used as positive and negative controls (n = 4 each); positive control mites were fed Fleischmann's((R)) yeast and negative controls had no food source. Three dog foods were evaluated in the same manner. Four chambers had food but mould development was limited by replacing the food kernel every 48 h and four chambers were allowed to grow mould. Mites grown in chambers without moisture died from desiccation within 5 days. The termination point was day 34 when all mites in the negative control group (moisture but no food) died. Although T. putrescentiae survived and grew on all three commercial dog foods, there was no statistically significant difference in mites counts among the dog foods (P < 0.10). Mite counts in the 'no' mould and mould groups ranged from 8 to 11 and 144 to 245, respectively, and differences were significant (P < 0.0001). This study found that T. putrescentiae is a fungivorous storage mite that can grow and flourish on dog food. The study demonstrated that the presence of mould positively influences mite viability, while low relative humidity can result in detrimental consequences for T. putrescentiae.

  16. CDC-1 Enclose Continuous Rearing System for Phytoseiid Mites

    USDA-ARS?s Scientific Manuscript database

    This document describes a prototype for an enclosed and continuous rearing system for Phytoseiid mites. The document includes operation procedures and materials. Bean plants are grown in planters through a grid, which is the bottom of a tray. One-week old bean plants are infested with spider mites. ...

  17. Red Palm Mite Situation in the Caribbean and Florida

    USDA-ARS?s Scientific Manuscript database

    The red palm mite (Raoiella indica Hirst Tenuipalpidae), a pest of coconuts and ornamental palms in Asia and Africa, was reported in the Caribbean in 2004. By 2008, it had spread to at least twelve islands, two counties in Florida and to Venezuela. Red palm mite causes yellowing and leaf necrosis wi...

  18. Mite Biodiversity Under the Low Temperature Scanning Electron Microscope

    USDA-ARS?s Scientific Manuscript database

    To date, more than 55,000 mite species have been described and only a few of them have been studied. Some mites are adapted to live deep in soil, others in fresh or sea water, some are on plants, algae, fungi or animals, and others are able to survive in both extreme cold and hot temperatures. The...

  19. Prenatal Chemosensory Learning by the Predatory Mite Neoseiulus californicus

    PubMed Central

    Peralta Quesada, Paulo C.; Schausberger, Peter

    2012-01-01

    Background Prenatal or embryonic learning, behavioral change following experience made prior to birth, may have significant consequences for postnatal foraging behavior in a wide variety of animals, including mammals, birds, fish, amphibians, and molluscs. However, prenatal learning has not been previously shown in arthropods such as insects, spiders and mites. Methodology/Principal Findings We examined prenatal chemosensory learning in the plant-inhabiting predatory mite Neoseiulus californicus. We exposed these predators in the embryonic stage to two flavors (vanillin or anisaldehyde) or no flavor (neutral) by feeding their mothers on spider mite prey enriched with these flavors or not enriched with any flavor (neutral). After the predators reached the protonymphal stage, we assessed their prey choice through residence and feeding preferences in experiments, in which they were offered spider mites matching the maternal diet (neutral, vanillin or anisaldehyde spider mites) and non-matching spider mites. Predator protonymphs preferentially resided in the vicinity of spider mites matching the maternal diet irrespective of the type of maternal diet and choice situation. Across treatments, the protonymphs preferentially fed on spider mites matching the maternal diet. Prey and predator sizes did not differ among neutral, vanillin and anisaldehyde treatments, excluding the hypothesis that size-assortative predation influenced the outcome of the experiments. Conclusions/Significance Our study reports the first example of prenatal learning in arthropods. PMID:23300897

  20. Mite and Booklouse Fauna From Vacuumed Dust Samples From Beijing

    PubMed Central

    Sun, Jin-Lu; Shen, Lian; Chen, Jun; Yu, Jin-Miao

    2014-01-01

    A significant-source of allergens come from house dust that contain particles derived from arthropods, molds, and pet dander. This study evaluated mite and booklouse fauna from vacuumed dust samples in Beijing China (a temperate zone). Our survey was carried out in Beijing in the homes of mite allergic patients who visited our Allergy Department. In total, 38 homes were selected for the collection of dust samples by vacuuming, from December 2008 to January 2010. The flotation method was used to isolate mites from house dust. Permanent slides were prepared for mite specimens and mites were identified and counted under a microscope. In total, 1,798 separate mite and insect specimens were found in 345 dust samples taken from 38 homes. A total of 95 individual Dermatophagoides (D) siboney were detected in 35 dust samples from 19 homes (representing 5.3% of all mite and insect species found in house dust); in addition, this mite was found to co-exist with D. farinae (Hughes, 1961) in 33 dust samples. Our results demonstrated the presence D. siboney that co-existed with D. farinae in house dust in Beijing China (a temperate zone). PMID:24843802

  1. A sampling procedure for quantifying mites in soybeans.

    PubMed

    Storck, Lindolfo; Fiorin, Rubens Alex; Filho, Alberto Cargnelutti; Guedes, Jerson Vanderlei Carus

    2012-06-01

    To control phytophagous mites on soybean crops in an economically viable way, it is necessary to quantify the occurrence of the mites on the leaflets. Estimating the number of mites cm(-2) on leaflets is more difficult because of their irregular distribution on the leaflet surface. Therefore, the aim of this study was to determine the count-area/leaflet and the number of soybean leaflets to quantify the mites. One hundred infested plants were randomly collected. One leaflet was removed from each plant and divided into 32 sections (1.0 cm(2) per section), arranged in four columns and eight rows, to count the mites (adults, nymphs and eggs). The ideal count-area size per leaflet (Xo) was estimated by the maximum curvature of the coefficient of variation method for each of the 100 leaflets. For a count-area of Xo size, we obtained the number of mites cm(-2) per leaflet and, using the bootstrap resampling method, we estimated the point and interval averages as well as the sample size for a pre-established error. We suggest that the determination of the evaluated area size on each soybean leaflet (20 cm(2) in this case) and the bootstrap resampling estimate of the appropriate number of leaflets (12 in this case) for a bootstrap confidence interval of four mites (adults + nymphs) cm(-2) is sufficient to standardize the sampling-procedures for quantifying mites on soybean leaflets.

  2. Infestation of grasses by eriophyoid mites (Acari: Eriophyoidea) in Turkey

    USDA-ARS?s Scientific Manuscript database

    Despite the economic importance of eriophyoid mites as agricultural pests, especially of cereal crops, knowledge of the eriophyoid fauna in Turkey remains incomplete. This paper presents the results of a 3-year study on grass-infesting eriophyoid mites in Turkey. The aim of this study was to collect...

  3. Cyclodextrins as Carriers of Monterpenes into the Hemolymph of the Honey Bee (Apis mellifera) for Integrated Pest Management

    USDA-ARS?s Scientific Manuscript database

    The Varroa mite (Varroa destructor), is becoming ubiquitous worldwide and is a serious threat to honey bees. The cultivation of certain food crops are at risk. The most noted acaricides against Varroa mites are with tau-fluvaninate and with coumaphos, but the mites are showing resistance. Since t...

  4. [Bronchial asthma due to storage mite allergy].

    PubMed

    Kroidl, R F; Schwichtenberg, U; Frank, E

    2007-08-01

    In a multicenter study (7 participating centres) 132 patients with bronchial asthma (grade II or III) and sensitization to storage mites (SM) and/or house dust mites (HSM) were screened and asked to undergo further allergological evaluation. 90 patients agreed. In addition to routine skin prick tests and RAST, quantitative skin prick tests (QSPT) and bronchial provocation tests (BPT) were also performed with the suspected mite allergens. The results were correlated with aspects of the domestic and working environments. Furthermore we questioned whether the outcome of BPT could be predicted from the results of the routine skin tests/RAST and QSPT respectively. Out of a total of 145 BPTs there were 79 positive results with SM and/or HSM. Three patients were mono-allergic to SM. The correlation with the domestic environment was unremarkable. Correlation with occupational factors revealed a strong predominance of farmers (42 of 90) and suggested the same for professions involved in work in dust-laden environments like bakers (5 of 90) and workers in wood- and paper industry (7 of 90). This also means, that SM-allergy occurs in persons not occupationally exposed to dust. A prediction as to the allergological relevance of SM-allergen was not possible from viewing the routine skin prick test however positive RAST data showed a significant correlation with positive BPT to SM Lepidoglyphus. Similarly it was possible to draw an inference from QSPT as to the relevant allergy. With a positive QSPT to the SM Lepidoglyphus destructor a positive result with a BPT was highly probable. Due to small numbers it is not possible to make a similar statement for the other SM species (Acarus and Tyrophagus).

  5. Mites (Acari) as a factor in greenhouse management.

    PubMed

    Gerson, Uri; Weintraub, Phyllis G

    2012-01-01

    This review discusses the economically important pest mites (Acari) of greenhouses, aspects of their biology, and the acarine predators that attack them as well as various insect pests. Greenhouse factors affect pest mites as well as their natural enemy populations and their interactions. Conversely, pest mites affect greenhouse management in terms of the chemical and biological methods required to control their populations. Structure affects heating, cooling, and light, which can be manipulated with suitable screens. Crops often select for pests and their mite enemies. Both groups may be affected in greenhouses by adding pollen and by a CO(2)-enriched atmosphere. These factors impact pest mite populations, the damage they cause, and the methods used to control them. The possibility of incipient evolution occurring in greenhouses, along with the benefits and consequences for pest control, is discussed. Copyright © 2012 by Annual Reviews. All rights reserved.

  6. Mites (acari) infesting commensal rats in Suez Canal zone, Egypt.

    PubMed

    el Kady, G A; Shoukry, A; Ragheb, D A; el Said, A M; Habib, K S; Morsy, T A

    1995-08-01

    Mites are arthropods distinguished from ticks by usually being microscopical in size and have a hypostome unarmed with tooth-like anchoring processes. They are group in a number of suborders, each with super-families and families including many genera of medical and economic importance. In this paper, commensal rodents (Rattus norvegicus, R. r. alexandrinus and R. r. frugivorous) were surveyed in the Suez Canal Zone for their acari ectoparasites. Four species of mites were recovered. In a descending order of mite indices, they were Eulaelaps stabularis (4.83 on 6 rats), Laelaps nuttalli (3.11 on 27 rats), Ornithonyssus bacoti (1.66 on 9 rats) and Dermanyssus gallinae (0.66 on 24 rats). The overall mite indices in the three governorates were 3.66 in Suez, 2.82 in Ismailia and zero in Port Said. The medical and economic importance of the mites were discussed.

  7. Comparison between Siriraj mite allergen vaccine and standardized commercial mite vaccine by skin prick testing in normal Thai adults.

    PubMed

    Visitsunthorn, Nualanong; Pacharn, Punchama; Jirapongsananuruk, Orathai; Weeravejsukit, Sirirat; Sripramong, Chaweewan; Sookrung, Nitat; Bunnag, Chaweewan

    2010-03-01

    House dust mite is a major cause of allergic asthma and rhinitis in Thai population. Skin prick test (SPT) is a useful tool for the diagnosis of the IgE-mediated reactions. The imported commercial mite vaccine for SPT is available but it is relatively expensive. Aim of this study is to compare Siriraj Mite Allergen Vaccine (SMAV) with standardized commercial mite allergen vaccine by skin prick testing in normal Thai adults. A double blind, self-controlled study between the SMAV and standardized commercial mite allergen vaccine was performed by SPT in 17 normal Thai adult males and non-pregnant or non-lactating females aged 18-60 years. The study showed that 35.29 % of non atopic adults had positive SPT reaction to Dp and Df of both SMAV and standardized commercial mite allergen vaccine. Mean wheal and flare diameters from SPT of Dp and Df of SMAV showed strong correlation with standardized commercial mite allergen vaccine (r= 0.768 and 0.897 in Dp and Df respectively, p <0.001). The intraclass correlation was also excellent (0.893 and 0.775 in Dp and Df respectively). There was no significant difference in wheal and flare diameter between SMAV and standardized commercial mite allergen vaccine. No systemic or large local reaction was found in any of the study cases.

  8. Mechanisms and patient compliance of dust-mite avoidance regimens in dwellings of mite-allergic rhinitic patients.

    PubMed

    Kniest, F M; Wolfs, B J; Vos, H; Ducheine, B O; van Schayk-Bakker, M J; de Lange, P J; Vos, E M; van Bronswijk, J E

    1992-07-01

    We report on the mechanisms, the environmental changes and patient compliance with regard to conventional and new dust and mite avoidance measures to prevent allergic symptoms caused by mite allergens, taking into account both allergen contamination and the developmental success of pyroglyphid Acari. Twenty patients with persisting rhinitic complaints were selected and matched. Although the patients had performed some conventional dust and mite avoidance measures (patient compliance was 90%), the dwellings proved to be a stimulus for mite development. Moisture problems due to faulty construction and excessive moisture production were common. Since humidity conditions could not be changed at short notice, the 20 homes were subjected to the new variants of mite allergen avoidance based on intensive cleaning without (control) and with an acaricide incorporated (acaricidal cleaner [Acarosan]). After the carrying out of conventional avoidance measures, these patients still had allergic symptoms, and dust from only 23 to 52% of their textile objects was under the proposed guanine (mite faeces indicator) risk level. Only the acaricidal cleaner was able to decrease the allergenic mite load (and the burden of the patients) significantly in this 12 month period. With respect to mite-extermination, acaricidal cleaning was 88% better than intensive cleaning. Reduction of guanine was 38% better in the Acarosan treatment group. Clinical results have been reported elsewhere. A significant difference in favour of the acaricidal cleaning was seen in both subjective (as regards symptoms) and in objective data (total IgE). Another 50 patients were questioned.(ABSTRACT TRUNCATED AT 250 WORDS)

  9. Laboratory tests for controlling poultry red mites (Dermanyssus gallinae) with predatory mites in small 'laying hen' cages.

    PubMed

    Lesna, Izabela; Sabelis, Maurice W; van Niekerk, Thea G C M; Komdeur, Jan

    2012-12-01

    To assess their potential to control poultry red mites (Dermanyssus gallinae), we tested selected predaceous mites (Androlaelaps casalis and Stratiolaelaps scimitus) that occur naturally in wild bird nests or sometimes spontaneously invade poultry houses. This was done under laboratory conditions in cages, each with 2-3 laying hens, initially 300 poultry red mites and later the release of 1,000 predators. These small-scale tests were designed to prevent mite escape from the cages and they were carried out in three replicates at each of three temperature regimes: 26, 30 (constant day and night) and 33-25 °C (day-night cycle). After 6 weeks total population sizes of poultry red mites and predatory mites were assessed. For the temperature regimes of 26 and 33/25 °C S. scimitus reduced the poultry red mite population relative to the control experiments by a factor 3 and 30, respectively, and A. casalis by a factor of 18 and 55, respectively. At 30 °C the predators had less effect on red mites, with a reduction of 1.3-fold for S. scimitus and 5.6-fold for A. casalis. This possibly reflected hen manure condition or an effect of other invertebrates in the hen feed. Poultry red mite control was not negatively affected by temperatures as high as 33 °C and was always better in trials with A. casalis than in those with S. scimitus. In none of the experiments predators managed to eradicate the population of poultry red mites. This may be due to a prey refuge effect since most predatory mites were found in and around the manure tray at the bottom of the cage, whereas most poultry red mites were found higher up in the cage (i.e. on the walls, the cover, the perch, the nest box and the food box). The efficacy of applying predatory mites in the poultry industry may be promoted by reducing this refuge effect, boosting predatory mite populations using alternative prey and prolonged predator release devices. Biocontrol success, however, will strongly depend on how the poultry is

  10. Surveying mites (Acarina) Phoretic on the southern pine beetle (Coleoptera: Scolytidae) with sticky traps

    Treesearch

    John C. Moser

    1976-01-01

    Sticky traps caught large numbers of mites that adhere tightly or ride in protected places on attacking southern pine beetles and tetreived seom of the mites that are loosely attached. Of the 2539 beetles surveyed, only 39.6% carried mites. Seven species of phoretic mites were found; thw two most common, Tarsonemus krantzi and Trichouropoda...

  11. Strong indirect interactions of Tarsonemus mites (Acarina: Tarsonemidae) and Dendroctonus frontalis (Coleoptera: Scolytidae)

    Treesearch

    Maria J. Lombardero; Matthew P. Ayres; Richard W. Hofstetter; John C. Moser; Kier D. Lepzig

    2003-01-01

    Phoretic mites of bark beetles are classic examples of commensal ectosymbionts. However, many such mites appear to have mutualisms with fungi that could themselves interact with beetles. We tested for indirect effects of phoretic mites on Dendroctonus frontalis, which auacks and kills pine trees in North America. Tarsonemus mites...

  12. Failure of the mite-pathogenic fungus Neozygites tanajoae and the predatory mite Neoseiulus idaeus to control a population of the cassava green mite, Mononychellus tanajoa.

    PubMed

    Elliot, Simon L; de Moraes, Gilberto J; Mumford, John D

    2008-12-01

    Monitoring of a population of the phytophagous cassava green mite, Mononychellus tanajoa (Bondar), and its natural enemies was undertaken in central Bahia, Brazil, in mid-1996. In spite of the presence of extremely high densities of the predatory phytoseiid mite Neoseiulus idaeus Denmark & Muma, the phytophagous mite population reached such high densities itself that there was total overexploitation of the cassava plants, leading to total leaf loss. Meanwhile, the mite-pathogenic fungus Neozygites tanajoae Delalibera, Humber & Hajek did not affect the M. tanajoa population in its growth phase as there was no inoculum present, even though we predict from a simple regression model that there was the potential for epizootics at that time. Soon after the M. tanajoa population crashed due to defoliation, there could have been an epizootic but there were simply no mite hosts to infect. These data demonstrate the ineffectiveness of one natural enemy (the predator) in terms of prey population regulation and demonstrate the importance of timing in the possible effectiveness of the other (the pathogen). For the pathogen, this probably explains its sporadic effect on host populations as previously reported. We conclude that the fungus is likely to be most useful as an adjunct to biological control with predatory mites other than N. idaeus.

  13. Pheromonal Communication in the European House Dust Mite, Dermatophagoides pteronyssinus

    PubMed Central

    Steidle, Johannes L.M.; Barcari, Elena; Hradecky, Marc; Trefz, Simone; Tolasch, Till; Gantert, Cornelia; Schulz, Stefan

    2014-01-01

    Despite the sanitary importance of the European house dust mite Dermatophagoides pteronyssinus (Trouessart, 1897), the pheromonal communication in this species has not been sufficiently studied. Headspace analysis using solid phase micro extraction (SPME) revealed that nerol, neryl formate, pentadecane, (6Z,9Z)-6,9-heptadecadiene, and (Z)-8-heptadecene are released by both sexes whereas neryl propionate was released by males only. Tritonymphs did not produce any detectable volatiles. In olfactometer experiments, pentadecane and neryl propionate were attractive to both sexes as well as to tritonymphs. (Z)-8-heptadecene was only attractive to male mites. Therefore it is discussed that pentadecane and neryl propionate are aggregation pheromones and (Z)-8-heptadecene is a sexual pheromone of the European house dust mite D. pteronyssinus. To study the potential use of pheromones in dust mite control, long-range olfactometer experiments were conducted showing that mites can be attracted to neryl propionate over distances of at least 50 cm. This indicates that mite pheromones might be useable to monitor the presence or absence of mites in the context of control strategies. PMID:26462831

  14. Global associations between birds and vane-dwelling feather mites.

    PubMed

    Doña, Jorge; Proctor, Heather; Mironov, Sergey; Serrano, David; Jovani, Roger

    2016-11-01

    Understanding host-symbiont networks is a major question in evolutionary ecology. Birds host a great diversity of endo- and ectosymbiotic organisms, with feather mites (Arachnida: Acariformes: Analgoidea, Pterolichoidea) being among the most diverse of avian symbionts. A global approach to the ecology and evolution of bird-feather-mite associations has been hampered because of the absence of a centralized data repository. Here we present the most extensive data set of associations between feather mites and birds. Data include 12 036 records of 1887 feather mite species located on the flight feathers of 2234 bird species from 147 countries. Feather mites typically located inside quills, on the skin, or on downy body feathers are not included. Data were extracted from 493 published sources dating from 1882 to 2015. Data exploration shows that although most continents and bird families are represented, most bird species remain unexplored for feather mites. Nevertheless, this is the most comprehensive data set available for enabling global macroecological analyses of feather mites and their hosts, such as ecological network analyses. This metadata file outlines the structure of these data and provides primary references for all records used. © 2016 by the Ecological Society of America.

  15. Does plant species co-occurrence influence soil mite diversity?

    PubMed

    St John, Mark G; Wall, Diana H; Behan-Pelletier, Valerie M

    2006-03-01

    Few studies have considered whether plant taxa can be used as predictors of belowground faunal diversity in natural ecosystems. We examined soil mite (Acari) diversity beneath six grass species at the Konza Prairie Biological Station, Kansas, USA. We tested the hypotheses that soil mite species richness, abundance, and taxonomic diversity are greater (1) beneath grasses in dicultures (different species) compared to monocultures (same species), (2) beneath grasses of higher resource quality (lower C:N) compared to lower resource quality, and (3) beneath heterogeneous mixes of grasses (C3 and C4 grasses growing together) compared to homogeneous mixes (C3 or C4 grasses) using natural occurrences of plant species as treatments. This study is the first to examine the interaction between above- and belowground diversity in a natural setting with species-level resolution of a hyper-diverse taxon. Our results indicate that grasses in diculture supported a more species and phylogenetically rich soil mite fauna than was observed for monocultures and that this relationship was significant at depth but not in the upper soil horizon. We noted that mite species richness was not linearly related to grass species richness, which suggests that simple extrapolations of soil faunal diversity based on plant species inventories may underestimate the richness of associated soil mite communities. The distribution of mite size classes in dicultures was considerably different than those for monocultures. There was no difference in soil mite richness between grass combinations of differing resource quality, or resource heterogeneity.

  16. Mite fauna of dust from passenger trains in Glasgow.

    PubMed Central

    Colloff, M. J.

    1987-01-01

    The mite fauna of dust from cloth-covered seats of four passenger trains and bedding from a British Rail linen store in Glasgow was investigated; 22 samples containing 4488 mg of dust from a total surface area of 5.5 m2 were taken. Sixteen samples were positive for mites and 33 specimens belonging to 10 species were found. The most common species were Dermatophagoides pteronyssinus (Trouessart), Glycyphagus domesticus (De Geer), G. destructor (Schrank) and Euroglyphus maynei (Cooreman). The species composition bore considerable resemblance to that of house dust (although the density of mites was far lower) and the mites have probably been transported from homes via clothing and pets. Only five intact specimens, which may have been alive at the time of sampling, were found. The dust from trains consisted mostly of particles of soot. Very few skin scales, the food source of house dust mites, were detected. The small numbers of intact mites found and the absence of an identifiable food source make it unlikely that permanent populations of mites survive in upholstered seats on trains. PMID:3556435

  17. House dust mite allergy: environment evaluation and disease prevention.

    PubMed

    Yu, Sheng-Jie; Liao, En-Chih; Tsai, Jaw-Ji

    2014-10-01

    There are two groups of dust mites, house dust mites (HDMs) and storage mites (SMs), that have been identified in the household environment. Both could induce airway inflammation through activation of innate and adaptive immunity and lead to asthma. In order to monitor environmental dust mite infestation, different methods can be used to detect their presence, such as the use of floating methods, monoclonal antibodies, and nanostructured biosensor. SM could be identified in the storage room, mainly in contaminated food such as mushrooms and corn starch. In HDM-sensitive subjects and mice that were challenged with HDM or SM after sensitization, these mites could up-regulate IgE levels, T helper 2 associated cytokine production and airway hypersensitivity. Different age groups of subjects were sensitized by different species of mites. More subjects above 70 years were sensitized by SM and more subjects below the age of 40 years were sensitized to HDM. Different allergenic components of dust mite extracts, such as Der p 1, Der p 2, could activate innate immunity through activating pattern recognition receptor (PRR) and then lead to allergic inflammation. The best modality to treat HDM allergy is immunomodulation through Treg cells and IgA production. In the recent years, many studies indicated probiotics could increase IgA secretion and the number of Treg cells. However, some studies conducted in adults have contradictory effects in reducing allergic symptoms. Therefore, probiotics confer inconclusive benefits on the allergic symptoms.

  18. The use of soil mites in ecotoxicology: a review.

    PubMed

    Huguier, Pierre; Manier, Nicolas; Owojori, Olugbenga John; Bauda, Pascale; Pandard, Pascal; Römbke, Jörg

    2015-01-01

    Mites, and especially soil-inhabiting ones, have been less studied than the other invertebrates used in bio-assays for the assessment of soil quality and the hazards of chemicals, although these organisms are included in the regulatory assessment scheme of pesticides. The recent advances in the development of test methods for soil mites groups have provided more information on their sensitivities towards chemicals, which needs to be presented for a more robust assessment of the current trends in soil mite ecotoxicology. Moreover, interestingly mite is the only taxa for which test methods were developed and standardized on predatory organisms. This review summarizes the different protocols for the assessment of chemicals using soil-inhabiting mites, including laboratory, semi-field and field studies. Among the data found in the literature, most of the chemicals assessed with mites were pesticides, while a few environmental samples were assessed with these organisms. Their sensitivities towards chemicals were then compared and discussed regarding other soil invertebrates. Finally, we conclude on the usefulness of soil mites in ecotoxicology, and provide future research trail in this area.

  19. Coincidental intraguild predation by caterpillars on spider mites.

    PubMed

    Shirotsuka, Kanako; Yano, Shuichi

    2012-01-29

    Intraguild predation (IGP) is defined as the killing and eating of prey species by a predator that also can utilize the resources of the prey. It is mainly reported among carnivores that share common herbivorous prey. However, a large chewing herbivore could prey upon sedentary and/or micro herbivores in addition to utilizing a host plant. To investigate such coincidental IGP, we observed the behavioral responses of the polyphagous mite Tetranychus kanzawai Kishida (Acari: Tetranychidae) when its host plant Cayratia japonica (Thunb.) Gagnep. (Vitaceae) was attacked by hornworms, Theretra japonica Boisduval (Sphingidae) and T. oldenlandiae Fabricius (Sphingidae). We also examined an interaction between the oligophagous mite Panonychus citri McGregor (Acari: Tetranychidae) and caterpillars of the swallowtail Papilio xuthus L. (Papilionidae) that share citrus plants as their main food source. Although all T. kanzawai and some active stage P. citri tried to escape from the coincidental IGP, some were consumed together with eggs, quiescent mites, and host plant leaves, suggesting that coincidental IGP occurs on spider mites in the wild. Moreover, neither hornworms nor swallowtail caterpillars distinguished between spider mite-infested and uninfested leaves, suggesting that the mite-infested leaves do not discourage caterpillar feeding. The reasons that the mites have no effective defense against coincidental IGP other than escaping are discussed.

  20. A rapid survey technique for Tropilaelaps mite (Mesostigmata: Laelapidae) detection.

    PubMed

    Pettis, Jeffery S; Rose, Robyn; Lichtenberg, Elinor M; Chantawannakul, Panuwan; Buawangpong, Ninat; Somana, Weeraya; Sukumalanand, Prachaval; Vanengelsdorp, Dennis

    2013-08-01

    Parasitic Tropilaelaps (Delfinado and Baker) mites are a damaging pest of European honey bees (Apis mellifera L.) in Asia. These mites represent a significant threat if introduced to other regions of the world, warranting implementation of Tropilaelaps mite surveillance in uninfested regions. Current Tropilaelaps mite-detection methods are unsuitable for efficient large scale screening. We developed and tested a new bump technique that consists of firmly rapping a honey bee brood frame over a collecting pan. Our method was easier to implement than current detection tests, reduced time spent in each apiary, and minimized brood destruction. This feasibility increase overcomes the test's decreased rate of detecting infested colonies (sensitivity; 36.3% for the bump test, 54.2% and 56.7% for the two most sensitive methods currently used in Asia). Considering this sensitivity, we suggest that screening programs sample seven colonies per apiary (independent of apiary size) and 312 randomly selected apiaries in a region to be 95% sure of detecting an incipient Tropilaelaps mite invasion. Further analyses counter the currently held view that Tropilaelaps mites prefer drone bee brood cells. Tropilaelaps mite infestation rate was 3.5 +/- 0.9% in drone brood and 5.7 +/- 0.6% in worker brood. We propose the bump test as a standard tool for monitoring of Tropilaelaps mite presence in regions thought to be free from infestation. However, regulators may favor the sensitivity of the Drop test (collecting mites that fall to the bottom of a hive on sticky boards) over the less time-intensive Bump test.