Sample records for mitigating global warming

  1. Geoengineering: An Idea Whose Time Has Come?

    PubMed

    Resnik, David B; Vallero, Daniel A

    2011-12-17

    Some engineers and scientists recently have suggested that it would be prudent to consider engaging in geoengineering to mitigate global warming. Geoengineering differs from other methods for mitigating global warming because it involves a deliberate effort to affect the climate at a global scale. Although geoengineering is not a new idea, it has taken on added significance as a result of difficulties with implementing other proposals to mitigate climate change. While proponents of geoengineering admit that it can have significant risks for the environment and public health, many maintain that it is worth pursuing, given the failure of other means of mitigating global warming. Some environmental groups have voiced strong opposition to all forms of geoengineering. In this article, we examine arguments for and against geoengineering and discuss some policy options. We argue that specific geoengineering proposals should not be implemented until there is good evidence concerning their safety, efficacy, and feasibility, as well as a plan for oversight. International cooperation and public input should also be sought. Other methods for mitigating global warming should be aggressively pursued while geoengineering is under consideration. The promise of an engineering solution to global warming should not be used as an excuse to abandon or cut back current, climate mitigation efforts.

  2. Geoengineering: An Idea Whose Time Has Come?

    PubMed Central

    Resnik, David B.; Vallero, Daniel A.

    2013-01-01

    Some engineers and scientists recently have suggested that it would be prudent to consider engaging in geoengineering to mitigate global warming. Geoengineering differs from other methods for mitigating global warming because it involves a deliberate effort to affect the climate at a global scale. Although geoengineering is not a new idea, it has taken on added significance as a result of difficulties with implementing other proposals to mitigate climate change. While proponents of geoengineering admit that it can have significant risks for the environment and public health, many maintain that it is worth pursuing, given the failure of other means of mitigating global warming. Some environmental groups have voiced strong opposition to all forms of geoengineering. In this article, we examine arguments for and against geoengineering and discuss some policy options. We argue that specific geoengineering proposals should not be implemented until there is good evidence concerning their safety, efficacy, and feasibility, as well as a plan for oversight. International cooperation and public input should also be sought. Other methods for mitigating global warming should be aggressively pursued while geoengineering is under consideration. The promise of an engineering solution to global warming should not be used as an excuse to abandon or cut back current, climate mitigation efforts. PMID:23502911

  3. Nonlinear regional warming with increasing CO2 concentrations

    NASA Astrophysics Data System (ADS)

    Good, Peter; Lowe, Jason A.; Andrews, Timothy; Wiltshire, Andrew; Chadwick, Robin; Ridley, Jeff K.; Menary, Matthew B.; Bouttes, Nathaelle; Dufresne, Jean Louis; Gregory, Jonathan M.; Schaller, Nathalie; Shiogama, Hideo

    2015-02-01

    When considering adaptation measures and global climate mitigation goals, stakeholders need regional-scale climate projections, including the range of plausible warming rates. To assist these stakeholders, it is important to understand whether some locations may see disproportionately high or low warming from additional forcing above targets such as 2 K (ref. ). There is a need to narrow uncertainty in this nonlinear warming, which requires understanding how climate changes as forcings increase from medium to high levels. However, quantifying and understanding regional nonlinear processes is challenging. Here we show that regional-scale warming can be strongly superlinear to successive CO2 doublings, using five different climate models. Ensemble-mean warming is superlinear over most land locations. Further, the inter-model spread tends to be amplified at higher forcing levels, as nonlinearities grow--especially when considering changes per kelvin of global warming. Regional nonlinearities in surface warming arise from nonlinearities in global-mean radiative balance, the Atlantic meridional overturning circulation, surface snow/ice cover and evapotranspiration. For robust adaptation and mitigation advice, therefore, potentially avoidable climate change (the difference between business-as-usual and mitigation scenarios) and unavoidable climate change (change under strong mitigation scenarios) may need different analysis methods.

  4. Green-house gas mitigation capacity of a small scale rural biogas plant calculations for Bangladesh through a general life cycle assessment.

    PubMed

    Rahman, Khondokar M; Melville, Lynsey; Fulford, David; Huq, Sm Imamul

    2017-10-01

    Calculations towards determining the greenhouse gas mitigation capacity of a small-scale biogas plant (3.2 m 3 plant) using cow dung in Bangladesh are presented. A general life cycle assessment was used, evaluating key parameters (biogas, methane, construction materials and feedstock demands) to determine the net environmental impact. The global warming potential saving through the use of biogas as a cooking fuel is reduced from 0.40 kg CO 2 equivalent to 0.064 kg CO 2 equivalent per kilogram of dung. Biomethane used for cooking can contribute towards mitigation of global warming. Prior to utilisation of the global warming potential of methane (from 3.2 m 3 biogas plant), the global warming potential is 13 t of carbon dioxide equivalent. This reduced to 2 t as a result of complete combustion of methane. The global warming potential saving of a bioenergy plant across a 20-year life cycle is 217 t of carbon dioxide equivalent, which is 11 t per year. The global warming potential of the resultant digestate is zero and from construction materials is less than 1% of total global warming potential. When the biogas is used as a fuel for cooking, the global warming potential will reduce by 83% compare with the traditional wood biomass cooking system. The total 80 MJ of energy that can be produced from a 3.2 m 3 anaerobic digestion plant would replace 1.9 t of fuel wood or 632 kg of kerosene currently used annually in Bangladesh. The digestate can also be used as a nutrient rich fertiliser substituting more costly inorganic fertilisers, with no global warming potential impact.

  5. America’s Security Role in a Changing World: A Global Strategic Assessment

    DTIC Science & Technology

    2009-04-01

    actually three interrelated crises: a global warming crisis, fuel crisis, and diplomatic crisis. Global warming threatens to create an environmental...which is a diplomatic crisis, particularly for the United States. Global warming is already being used as a dip- lomatic wedge issue against America...mitigating or stopping transnational threats 4 INSS Proceedings April 7–8, 2009 actors, and effects of global warming . A result of these increasing

  6. Do mitigation strategies reduce global warming potential in the northern U.S. corn belt?

    PubMed

    Johnson, Jane M-F; Archer, David W; Weyers, Sharon L; Barbour, Nancy W

    2011-01-01

    Agricultural management practices that enhance C sequestration, reduce greenhouse gas emission (nitrous oxide [N₂O], methane [CH₄], and carbon dioxide [CO₂]), and promote productivity are needed to mitigate global warming without sacrificing food production. The objectives of the study were to compare productivity, greenhouse gas emission, and change in soil C over time and to assess whether global warming potential and global warming potential per unit biomass produced were reduced through combined mitigation strategies when implemented in the northern U.S. Corn Belt. The systems compared were (i) business as usual (BAU); (ii) maximum C sequestration (MAXC); and (iii) optimum greenhouse gas benefit (OGGB). Biomass production, greenhouse gas flux change in total and organic soil C, and global warming potential were compared among the three systems. Soil organic C accumulated only in the surface 0 to 5 cm. Three-year average emission of N₂O and CH was similar among all management systems. When integrated from planting to planting, N₂O emission was similar for MAXC and OGGB systems, although only MAXC was fertilized. Overall, the three systems had similar global warming potential based on 4-yr changes in soil organic C, but average rotation biomass was less in the OGGB systems. Global warming potential per dry crop yield was the least for the MAXC system and the most for OGGB system. This suggests management practices designed to reduce global warming potential can be achieved without a loss of productivity. For example, MAXC systems over time may provide sufficient soil C sequestration to offset associated greenhouse gas emission. by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.

  7. Toward a critical anthropology on the impact of global warming on health and human societies.

    PubMed

    Baer, Hans A

    2008-01-01

    This op-ed essay urges medical anthropologists to join a growing number of public health scholars to examine the impact of global warming on health. Adopting a critical medical anthropology perspective, I argue that global warming is yet another manifestation of the contradictions of the capitalist world system. Ultimately, an serious effort to mitigate the impact of global warming not only on health but also settlement patterns and subsistence will require the creation of a new global political economy based upon social parity, democratic processes, and environmental sustainability.

  8. Adjusting Mitigation Pathways to Stabilize Climate at 1.5°C and 2.0°C Rise in Global Temperatures to Year 2300

    NASA Astrophysics Data System (ADS)

    Goodwin, Philip; Brown, Sally; Haigh, Ivan David; Nicholls, Robert James; Matter, Juerg M.

    2018-03-01

    To avoid the most dangerous consequences of anthropogenic climate change, the Paris Agreement provides a clear and agreed climate mitigation target of stabilizing global surface warming to under 2.0°C above preindustrial, and preferably closer to 1.5°C. However, policy makers do not currently know exactly what carbon emissions pathways to follow to stabilize warming below these agreed targets, because there is large uncertainty in future temperature rise for any given pathway. This large uncertainty makes it difficult for a cautious policy maker to avoid either: (1) allowing warming to exceed the agreed target or (2) cutting global emissions more than is required to satisfy the agreed target, and their associated societal costs. This study presents a novel Adjusting Mitigation Pathway (AMP) approach to restrict future warming to policy-driven targets, in which future emissions reductions are not fully determined now but respond to future surface warming each decade in a self-adjusting manner. A large ensemble of Earth system model simulations, constrained by geological and historical observations of past climate change, demonstrates our self-adjusting mitigation approach for a range of climate stabilization targets ranging from 1.5°C to 4.5°C, and generates AMP scenarios up to year 2300 for surface warming, carbon emissions, atmospheric CO2, global mean sea level, and surface ocean acidification. We find that lower 21st century warming targets will significantly reduce ocean acidification this century, and will avoid up to 4 m of sea-level rise by year 2300 relative to a high-end scenario.

  9. The challenge to keep global warming below 2 °C

    NASA Astrophysics Data System (ADS)

    Peters, Glen P.; Andrew, Robbie M.; Boden, Tom; Canadell, Josep G.; Ciais, Philippe; Le Quéré, Corinne; Marland, Gregg; Raupach, Michael R.; Wilson, Charlie

    2013-01-01

    The latest carbon dioxide emissions continue to track the high end of emission scenarios, making it even less likely global warming will stay below 2 °C. A shift to a 2 °C pathway requires immediate significant and sustained global mitigation, with a probable reliance on net negative emissions in the longer term.

  10. The Influence of Global Warming Science Views and Sociocultural Factors on Willingness to Mitigate Global Warming

    ERIC Educational Resources Information Center

    Herman, Benjamin C.

    2015-01-01

    The science education field readily recognizes that perceptions about science's claims and nature influence socioscientific decision making. However, sociocultural factors may overshadow these perceptions when people are forced to make personally impacting choices contextualized within actual socioscientific issues. This investigation…

  11. Large differences in regional precipitation change between a first and second 2 K of global warming

    DOE PAGES

    Good, Peter; Booth, Ben B. B.; Chadwick, Robin; ...

    2016-12-06

    For adaptation and mitigation planning, stakeholders need reliable information about regional precipitation changes under different emissions scenarios and for different time periods. A significant amount of current planning effort assumes that each K of global warming produces roughly the same regional climate change. By using 25 climate models, we compare precipitation responses with three 2 K intervals of global ensemble mean warming: a fast and a slower route to a first 2 K above pre-industrial levels, and the end-of-century difference between high-emission and mitigation scenarios. Here, we show that, although the two routes to a first 2 K give verymore » similar precipitation changes, a second 2 K produces quite a different response. In particular, the balance of physical mechanisms responsible for climate model uncertainty is different for a first and a second 2 K of warming. Our results are consistent with a significant influence from nonlinear physical mechanisms, but aerosol and land-use effects may be important regionally.« less

  12. Large differences in regional precipitation change between a first and second 2 K of global warming.

    PubMed

    Good, Peter; Booth, Ben B B; Chadwick, Robin; Hawkins, Ed; Jonko, Alexandra; Lowe, Jason A

    2016-12-06

    For adaptation and mitigation planning, stakeholders need reliable information about regional precipitation changes under different emissions scenarios and for different time periods. A significant amount of current planning effort assumes that each K of global warming produces roughly the same regional climate change. Here using 25 climate models, we compare precipitation responses with three 2 K intervals of global ensemble mean warming: a fast and a slower route to a first 2 K above pre-industrial levels, and the end-of-century difference between high-emission and mitigation scenarios. We show that, although the two routes to a first 2 K give very similar precipitation changes, a second 2 K produces quite a different response. In particular, the balance of physical mechanisms responsible for climate model uncertainty is different for a first and a second 2 K of warming. The results are consistent with a significant influence from nonlinear physical mechanisms, but aerosol and land-use effects may be important regionally.

  13. Large differences in regional precipitation change between a first and second 2 K of global warming

    NASA Astrophysics Data System (ADS)

    Good, Peter; Booth, Ben B. B.; Chadwick, Robin; Hawkins, Ed; Jonko, Alexandra; Lowe, Jason A.

    2016-12-01

    For adaptation and mitigation planning, stakeholders need reliable information about regional precipitation changes under different emissions scenarios and for different time periods. A significant amount of current planning effort assumes that each K of global warming produces roughly the same regional climate change. Here using 25 climate models, we compare precipitation responses with three 2 K intervals of global ensemble mean warming: a fast and a slower route to a first 2 K above pre-industrial levels, and the end-of-century difference between high-emission and mitigation scenarios. We show that, although the two routes to a first 2 K give very similar precipitation changes, a second 2 K produces quite a different response. In particular, the balance of physical mechanisms responsible for climate model uncertainty is different for a first and a second 2 K of warming. The results are consistent with a significant influence from nonlinear physical mechanisms, but aerosol and land-use effects may be important regionally.

  14. Large differences in regional precipitation change between a first and second 2 K of global warming

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Good, Peter; Booth, Ben B. B.; Chadwick, Robin

    For adaptation and mitigation planning, stakeholders need reliable information about regional precipitation changes under different emissions scenarios and for different time periods. A significant amount of current planning effort assumes that each K of global warming produces roughly the same regional climate change. By using 25 climate models, we compare precipitation responses with three 2 K intervals of global ensemble mean warming: a fast and a slower route to a first 2 K above pre-industrial levels, and the end-of-century difference between high-emission and mitigation scenarios. Here, we show that, although the two routes to a first 2 K give verymore » similar precipitation changes, a second 2 K produces quite a different response. In particular, the balance of physical mechanisms responsible for climate model uncertainty is different for a first and a second 2 K of warming. Our results are consistent with a significant influence from nonlinear physical mechanisms, but aerosol and land-use effects may be important regionally.« less

  15. Global Changes in Drought Conditions Under Different Levels of Warming

    NASA Astrophysics Data System (ADS)

    Naumann, G.; Alfieri, L.; Wyser, K.; Mentaschi, L.; Betts, R. A.; Carrao, H.; Spinoni, J.; Vogt, J.; Feyen, L.

    2018-04-01

    Higher evaporative demands and more frequent and persistent dry spells associated with rising temperatures suggest that drought conditions could worsen in many regions of the world. In this study, we assess how drought conditions may develop across the globe for 1.5, 2, and 3°C warming compared to preindustrial temperatures. Results show that two thirds of global population will experience a progressive increase in drought conditions with warming. For drying areas, drought durations are projected to rise at rapidly increasing rates with warming, averaged globally from 2.0 month/°C below 1.5°C to 4.2 month/°C when approaching 3°C. Drought magnitudes could double for 30% of global landmass under stringent mitigation. If contemporary warming rates continue, water supply-demand deficits could become fivefold in size for most of Africa, Australia, southern Europe, southern and central states of the United States, Central America, the Caribbean, north-west China, and parts of Southern America. In approximately 20% of the global land surface, drought magnitude will halve with warming of 1.5°C and higher levels, mainly most land areas north of latitude 55°N, but also parts of South America and Eastern and South-eastern Asia. A progressive and significant increase in frequency of droughts is projected with warming in the Mediterranean basin, most of Africa, West and Southern Asia, Central America, and Oceania, where droughts are projected to happen 5 to 10 times more frequent even under ambitious mitigation targets and current 100-year events could occur every two to five years under 3°C of warming.

  16. LAND USE AS A MITIGATION STRATEGY FOR THE WATER QUALITY IMPACTS OF GLOBAL WARMING: A SCENARIO ANALYSIS ON TWO WATERSHEDS IN THE OHIO RIVER BASIN

    EPA Science Inventory

    This study uses an integrative approach to study the water quality impacts of future global climate and land use changes. In this study, changing land use types were used as a mitigation strategy to reduce the adverse impacts of global climate change on water resources. The Thorn...

  17. LAND USE AS A MITIGATION STRATEGY FOR THE WATER QUALITY IMPACTS OF GLOBAL WARMING: A SCENARIO ANALYSIS ON TWO WATERSHEDS IN THE OHIO RIVER BASIN

    EPA Science Inventory

    This study uses an integrative approach to study the water quality impacts of future global climate and land use changes. In this study, changing land use types was used as a mitigation strategy to reduce the adverse impacts of global climate change on water resources. The climat...

  18. Can reducing black carbon emissions counteract global warming?

    PubMed

    Bond, Tami C; Sun, Haolin

    2005-08-15

    Field measurements and model results have recently shown that aerosols may have important climatic impacts. One line of inquiry has investigated whether reducing climate-warming soot or black carbon aerosol emissions can form a viable component of mitigating global warming. We review and acknowledge scientific arguments against considering aerosols and greenhouse gases in a common framework, including the differences in the physical mechanisms of climate change and relevant time scales. We argue that such a joint consideration is consistent with the language of the United Nations Framework Convention on Climate Change. We synthesize results from published climate-modeling studies to obtain a global warming potential for black carbon relative to that of CO2 (680 on a 100 year basis). This calculation enables a discussion of cost-effectiveness for mitigating the largest sources of black carbon. We find that many emission reductions are either expensive or difficult to enact when compared with greenhouse gases, particularly in Annex I countries. Finally, we propose a role for black carbon in climate mitigation strategies that is consistent with the apparently conflicting arguments raised during our discussion. Addressing these emissions is a promising way to reduce climatic interference primarily for nations that have not yet agreed to address greenhouse gas emissions and provides the potential for a parallel climate agreement.

  19. Will nitrogen deposition mitigate warming-increased soil respiration in a young subtropical plantation?

    Treesearch

    Xiaofei Liu; Zhijie Yang; Chengfang Lin; Christian P. Giardina; Decheng Xiong; Weisheng Lin; Shidong Chen; Chao Xu; Guangshui Chen; Jinsheng Xie; Yiqing Li; Yusheng Yang

    2017-01-01

    Global change such as climate warming and nitrogen (N) deposition is likely to alter terrestrial carbon (C) cycling, including soil respiration (Rs), the largest CO2 source from soils to the atmosphere. To examine the effects of warming, N addition and their interactions on Rs, we...

  20. Public Constructs of Energy Values and Behaviors in Implementing Taiwan's "Energy-Conservation/Carbon-Reduction" Declarations

    ERIC Educational Resources Information Center

    Chiu, Mei-Shiu; Yeh, Huei-Ming; Spangler, Jonathan

    2016-01-01

    The emergent crisis of global warming calls for energy education for people of all ages and social groups. The Taiwanese government has publicized 10 declarations on energy conservation and carbon reduction as public behavior guidelines to mitigate global warming. This study uses interviews with quantitative assessment to explore the values and…

  1. Global farm animal production and global warming: impacting and mitigating climate change.

    PubMed

    Koneswaran, Gowri; Nierenberg, Danielle

    2008-05-01

    The farm animal sector is the single largest anthropogenic user of land, contributing to many environmental problems, including global warming and climate change. The aim of this study was to synthesize and expand upon existing data on the contribution of farm animal production to climate change. We analyzed the scientific literature on farm animal production and documented greenhouse gas (GHG) emissions, as well as various mitigation strategies. An analysis of meat, egg, and milk production encompasses not only the direct rearing and slaughtering of animals, but also grain and fertilizer production for animal feed, waste storage and disposal, water use, and energy expenditures on farms and in transporting feed and finished animal products, among other key impacts of the production process as a whole. Immediate and far-reaching changes in current animal agriculture practices and consumption patterns are both critical and timely if GHGs from the farm animal sector are to be mitigated.

  2. Local adaptation and the potential effects of a contaminant on predator avoidance and antipredator responses under global warming: a space-for-time substitution approach.

    PubMed

    Janssens, Lizanne; Dinh Van, Khuong; Debecker, Sara; Bervoets, Lieven; Stoks, Robby

    2014-03-01

    The ability to deal with temperature-induced changes in interactions with contaminants and predators under global warming is one of the outstanding, applied evolutionary questions. For this, it is crucial to understand how contaminants will affect activity levels, predator avoidance and antipredator responses under global warming and to what extent gradual thermal evolution may mitigate these effects. Using a space-for-time substitution approach, we assessed the potential for gradual thermal evolution shaping activity (mobility and foraging), predator avoidance and antipredator responses when Ischnura elegans damselfly larvae were exposed to zinc in a common-garden warming experiment at the mean summer water temperatures of shallow water bodies at southern and northern latitudes (24 and 20°C, respectively). Zinc reduced mobility and foraging, predator avoidance and escape swimming speed. Importantly, high-latitude populations showed stronger zinc-induced reductions in escape swimming speed at both temperatures, and in activity levels at the high temperature. The latter indicates that local thermal adaptation may strongly change the ecological impact of contaminants under global warming. Our study underscores the critical importance of considering local adaptation along natural gradients when integrating biotic interactions in ecological risk assessment, and the potential of gradual thermal evolution mitigating the effects of warming on the vulnerability to contaminants.

  3. Do mitigation strategies reduce global warming potential in the northern U.S. Corn Belt?

    USDA-ARS?s Scientific Manuscript database

    Agriculture is both an anthropogenic source of CO2, CH4, and N2O, and a sink for CO2 and CH4. Management can impact agriculture's net global warming potential (GWP) by changing source and/or sink. This study compared GWP among three crop management systems: business as usual (BAU), optimum greenhous...

  4. Combined climate and carbon-cycle effects of large-scale deforestation

    PubMed Central

    Bala, G.; Caldeira, K.; Wickett, M.; Phillips, T. J.; Lobell, D. B.; Delire, C.; Mirin, A.

    2007-01-01

    The prevention of deforestation and promotion of afforestation have often been cited as strategies to slow global warming. Deforestation releases CO2 to the atmosphere, which exerts a warming influence on Earth's climate. However, biophysical effects of deforestation, which include changes in land surface albedo, evapotranspiration, and cloud cover also affect climate. Here we present results from several large-scale deforestation experiments performed with a three-dimensional coupled global carbon-cycle and climate model. These simulations were performed by using a fully three-dimensional model representing physical and biogeochemical interactions among land, atmosphere, and ocean. We find that global-scale deforestation has a net cooling influence on Earth's climate, because the warming carbon-cycle effects of deforestation are overwhelmed by the net cooling associated with changes in albedo and evapotranspiration. Latitude-specific deforestation experiments indicate that afforestation projects in the tropics would be clearly beneficial in mitigating global-scale warming, but would be counterproductive if implemented at high latitudes and would offer only marginal benefits in temperate regions. Although these results question the efficacy of mid- and high-latitude afforestation projects for climate mitigation, forests remain environmentally valuable resources for many reasons unrelated to climate. PMID:17420463

  5. Combined climate and carbon-cycle effects of large-scale deforestation.

    PubMed

    Bala, G; Caldeira, K; Wickett, M; Phillips, T J; Lobell, D B; Delire, C; Mirin, A

    2007-04-17

    The prevention of deforestation and promotion of afforestation have often been cited as strategies to slow global warming. Deforestation releases CO(2) to the atmosphere, which exerts a warming influence on Earth's climate. However, biophysical effects of deforestation, which include changes in land surface albedo, evapotranspiration, and cloud cover also affect climate. Here we present results from several large-scale deforestation experiments performed with a three-dimensional coupled global carbon-cycle and climate model. These simulations were performed by using a fully three-dimensional model representing physical and biogeochemical interactions among land, atmosphere, and ocean. We find that global-scale deforestation has a net cooling influence on Earth's climate, because the warming carbon-cycle effects of deforestation are overwhelmed by the net cooling associated with changes in albedo and evapotranspiration. Latitude-specific deforestation experiments indicate that afforestation projects in the tropics would be clearly beneficial in mitigating global-scale warming, but would be counterproductive if implemented at high latitudes and would offer only marginal benefits in temperate regions. Although these results question the efficacy of mid- and high-latitude afforestation projects for climate mitigation, forests remain environmentally valuable resources for many reasons unrelated to climate.

  6. Combined Climate and Carbon-Cycle Effects of Large-Scale Deforestation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bala, G; Caldeira, K; Wickett, M

    2006-10-17

    The prevention of deforestation and promotion of afforestation have often been cited as strategies to slow global warming. Deforestation releases CO{sub 2} to the atmosphere, which exerts a warming influence on Earth's climate. However, biophysical effects of deforestation, which include changes in land surface albedo, evapotranspiration, and cloud cover also affect climate. Here we present results from several large-scale deforestation experiments performed with a three-dimensional coupled global carbon-cycle and climate model. These are the first such simulations performed using a fully three-dimensional model representing physical and biogeochemical interactions among land, atmosphere, and ocean. We find that global-scale deforestation has amore » net cooling influence on Earth's climate, since the warming carbon-cycle effects of deforestation are overwhelmed by the net cooling associated with changes in albedo and evapotranspiration. Latitude-specific deforestation experiments indicate that afforestation projects in the tropics would be clearly beneficial in mitigating global-scale warming, but would be counterproductive if implemented at high latitudes and would offer only marginal benefits in temperate regions. While these results question the efficacy of mid- and high-latitude afforestation projects for climate mitigation, forests remain environmentally valuable resources for many reasons unrelated to climate.« less

  7. How much do direct livestock emissions actually contribute to global warming?

    PubMed

    Reisinger, Andy; Clark, Harry

    2018-04-01

    Agriculture directly contributes about 10%-12% of current global anthropogenic greenhouse gas emissions, mostly from livestock. However, such percentage estimates are based on global warming potentials (GWPs), which do not measure the actual warming caused by emissions and ignore the fact that methane does not accumulate in the atmosphere in the same way as CO 2 . Here, we employ a simple carbon cycle-climate model, historical estimates and future projections of livestock emissions to infer the fraction of actual warming that is attributable to direct livestock non-CO 2 emissions now and in future, and to CO 2 from pasture conversions, without relying on GWPs. We find that direct livestock non-CO 2 emissions caused about 19% of the total modelled warming of 0.81°C from all anthropogenic sources in 2010. CO 2 from pasture conversions contributed at least another 0.03°C, bringing the warming directly attributable to livestock to 23% of the total warming in 2010. The significance of direct livestock emissions to future warming depends strongly on global actions to reduce emissions from other sectors. Direct non-CO 2 livestock emissions would contribute only about 5% of the warming in 2100 if emissions from other sectors increase unabated, but could constitute as much as 18% (0.27°C) of the warming in 2100 if global CO 2 emissions from other sectors are reduced to near or below zero by 2100, consistent with the goal of limiting warming to well below 2°C. These estimates constitute a lower bound since indirect emissions linked to livestock feed production and supply chains were not included. Our estimates demonstrate that expanding the mitigation potential and realizing substantial reductions of direct livestock non-CO 2 emissions through demand and supply side measures can make an important contribution to achieve the stringent mitigation goals set out in the Paris Agreement, including by increasing the carbon budget consistent with the 1.5°C goal. © 2017 John Wiley & Sons Ltd.

  8. The contribution of Paris to limit global warming to 2 °C

    NASA Astrophysics Data System (ADS)

    Iyer, Gokul C.; Edmonds, James A.; Fawcett, Allen A.; Hultman, Nathan E.; Alsalam, Jameel; Asrar, Ghassem R.; Calvin, Katherine V.; Clarke, Leon E.; Creason, Jared; Jeong, Minji; Kyle, Page; McFarland, James; Mundra, Anupriya; Patel, Pralit; Shi, Wenjing; McJeon, Haewon C.

    2015-12-01

    The international community has set a goal to limit global warming to 2 °C. Limiting global warming to 2 °C is a challenging goal and will entail a dramatic transformation of the global energy system, largely complete by 2040. As part of the work toward this goal, countries have been submitting their Intended Nationally Determined Contributions (INDCs) to the United Nations Framework Convention on Climate Change, indicating their emissions reduction commitments through 2025 or 2030, in advance of the 21st Conference of the Parties (COP21) in Paris in December 2015. In this paper, we use the Global Change Assessment Model (GCAM) to analyze the near versus long-term energy and economic-cost implications of these INDCs. The INDCs imply near-term actions that reduce the level of mitigation needed in the post-2030 period, particularly when compared with an alternative path in which nations are unable to undertake emissions mitigation until after 2030. We find that the latter case could require up to 2300 GW of premature retirements of fossil fuel power plants and up to 2900 GW of additional low-carbon power capacity installations within a five-year period of 2031-2035. INDCs have the effect of reducing premature retirements and new-capacity installations after 2030 by 50% and 34%, respectively. However, if presently announced INDCs were strengthened to achieve greater near-term emissions mitigation, the 2031-2035 transformation could be tempered to require 84% fewer premature retirements of power generation capacity and 56% fewer new-capacity additions. Our results suggest that the INDCs delivered for COP21 in Paris will have important contributions in reducing the challenges of achieving the goal of limiting global warming to 2 °C.

  9. Large differences in regional precipitation change between a first and second 2 K of global warming

    PubMed Central

    Good, Peter; Booth, Ben B. B.; Chadwick, Robin; Hawkins, Ed; Jonko, Alexandra; Lowe, Jason A.

    2016-01-01

    For adaptation and mitigation planning, stakeholders need reliable information about regional precipitation changes under different emissions scenarios and for different time periods. A significant amount of current planning effort assumes that each K of global warming produces roughly the same regional climate change. Here using 25 climate models, we compare precipitation responses with three 2 K intervals of global ensemble mean warming: a fast and a slower route to a first 2 K above pre-industrial levels, and the end-of-century difference between high-emission and mitigation scenarios. We show that, although the two routes to a first 2 K give very similar precipitation changes, a second 2 K produces quite a different response. In particular, the balance of physical mechanisms responsible for climate model uncertainty is different for a first and a second 2 K of warming. The results are consistent with a significant influence from nonlinear physical mechanisms, but aerosol and land-use effects may be important regionally. PMID:27922014

  10. Computational assessment of a proposed technique for global warming mitigation via albedo-enhancement of marine stratocumulus clouds

    NASA Astrophysics Data System (ADS)

    Bower, Keith; Choularton, Tom; Latham, John; Sahraei, Jalil; Salter, Stephen

    2006-11-01

    A simplified version of the model of marine stratocumulus clouds developed by Bower, Jones and Choularton [Bower, K.N., Jones, A., and Choularton, T.W., 1999. A modeling study of aerosol processing by stratocumulus clouds and its impact on GCM parameterisations of cloud and aerosol. Atmospheric Research, Vol. 50, Nos. 3-4, The Great Dun Fell Experiment, 1995-special issue, 317-344.] was used to examine the sensitivity of the albedo-enhancement global warming mitigation scheme proposed by Latham [Latham, J., 1990. Control of global warming? Nature 347, 339-340; Latham, J., 2002. Amelioration of global warming by controlled enhancement of the albedo and longevity of low-level maritime clouds. Atmos. Sci. Letters (doi:10.1006/Asle.2002.0048).] to the cloud and environmental aerosol characteristics, as well as those of the seawater aerosol of salt-mass ms and number concentration Δ N, which-under the scheme-are advertently introduced into the clouds. Values of albedo-change Δ A and droplet number concentration Nd were calculated for a wide range of values of ms, Δ N, updraught speed W, cloud thickness Δ Z and cloud-base temperature TB: for three measured aerosol spectra, corresponding to ambient air of negligible, moderate and high levels of pollution. Our choices of parameter value ranges were determined by the extent of their applicability to the mitigation scheme, whose current formulation is still somewhat preliminary, thus rendering unwarranted in this study the utilisation of refinements incorporated into other stratocumulus models. In agreement with earlier studies: (1) Δ A was found to be very sensitive to Δ N and (within certain constraints) insensitive to changes in ms, W, Δ Z and TB; (2) Δ A was greatest for clouds formed in pure air and least for highly polluted air. In many situations considered to be within the ambit of the mitigation scheme, the calculated Δ A values exceeded those estimated by earlier workers as being necessary to produce a cooling sufficient to compensate, globally, for the warming resulting from a doubling of the atmospheric carbon dioxide concentration. Our calculations provide quantitative support for the physical viability of the mitigation scheme and offer new insights into its technological requirements.

  11. Investigating the climate impacts of urbanization and the potential for cool roofs to counter future climate change in Southern California

    DOE PAGES

    Vahmani, P.; Sun, F.; Hall, A.; ...

    2016-12-15

    The climate warming effects of accelerated urbanization along with projected global climate change raise an urgent need for sustainable mitigation and adaptation strategies to cool urban climates. Our modeling results show that historical urbanization in the Los Angeles and San Diego metropolitan areas has increased daytime urban air temperature by 1.3 °C, in part due to a weakening of the onshore sea breeze circulation. We find that metropolis-wide adoption of cool roofs can meaningfully offset this daytime warming, reducing temperatures by 0.9 °C relative to a case without cool roofs. Residential cool roofs were responsible for 67% of the cooling.more » Nocturnal temperature increases of 3.1 °C from urbanization were larger than daytime warming, while nocturnal temperature reductions from cool roofs of 0.5 °C were weaker than corresponding daytime reductions. We further show that cool roof deployment could partially counter the local impacts of global climate change in the Los Angeles metropolitan area. Assuming a scenario in which there are dramatic decreases in greenhouse gas emissions in the 21st century (RCP2.6), mid- and end-of-century temperature increases from global change relative to current climate are similarly reduced by cool roofs from 1.4 °C to 0.6 °C. Assuming a scenario with continued emissions increases throughout the century (RCP8.5), mid-century warming is significantly reduced by cool roofs from 2.0 °C to 1.0 °C. The end-century warming, however, is significantly offset only in small localized areas containing mostly industrial/commercial buildings where cool roofs with the highest albedo are adopted. We conclude that metropolis-wide adoption of cool roofs can play an important role in mitigating the urban heat island effect, and offsetting near-term local warming from global climate change. Global-scale reductions in greenhouse gas emissions are the only way of avoiding long-term warming, however. We further suggest that both climate mitigation and adaptation can be pursued simultaneously using 'cool photovoltaics'.« less

  12. Investigating the climate impacts of urbanization and the potential for cool roofs to counter future climate change in Southern California

    NASA Astrophysics Data System (ADS)

    Vahmani, P.; Sun, F.; Hall, A.; Ban-Weiss, G.

    2016-12-01

    The climate warming effects of accelerated urbanization along with projected global climate change raise an urgent need for sustainable mitigation and adaptation strategies to cool urban climates. Our modeling results show that historical urbanization in the Los Angeles and San Diego metropolitan areas has increased daytime urban air temperature by 1.3 °C, in part due to a weakening of the onshore sea breeze circulation. We find that metropolis-wide adoption of cool roofs can meaningfully offset this daytime warming, reducing temperatures by 0.9 °C relative to a case without cool roofs. Residential cool roofs were responsible for 67% of the cooling. Nocturnal temperature increases of 3.1 °C from urbanization were larger than daytime warming, while nocturnal temperature reductions from cool roofs of 0.5 °C were weaker than corresponding daytime reductions. We further show that cool roof deployment could partially counter the local impacts of global climate change in the Los Angeles metropolitan area. Assuming a scenario in which there are dramatic decreases in greenhouse gas emissions in the 21st century (RCP2.6), mid- and end-of-century temperature increases from global change relative to current climate are similarly reduced by cool roofs from 1.4 °C to 0.6 °C. Assuming a scenario with continued emissions increases throughout the century (RCP8.5), mid-century warming is significantly reduced by cool roofs from 2.0 °C to 1.0 °C. The end-century warming, however, is significantly offset only in small localized areas containing mostly industrial/commercial buildings where cool roofs with the highest albedo are adopted. We conclude that metropolis-wide adoption of cool roofs can play an important role in mitigating the urban heat island effect, and offsetting near-term local warming from global climate change. Global-scale reductions in greenhouse gas emissions are the only way of avoiding long-term warming, however. We further suggest that both climate mitigation and adaptation can be pursued simultaneously using ‘cool photovoltaics’.

  13. Investigating the climate impacts of urbanization and the potential for cool roofs to counter future climate change in Southern California

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vahmani, P.; Sun, F.; Hall, A.

    The climate warming effects of accelerated urbanization along with projected global climate change raise an urgent need for sustainable mitigation and adaptation strategies to cool urban climates. Our modeling results show that historical urbanization in the Los Angeles and San Diego metropolitan areas has increased daytime urban air temperature by 1.3 °C, in part due to a weakening of the onshore sea breeze circulation. We find that metropolis-wide adoption of cool roofs can meaningfully offset this daytime warming, reducing temperatures by 0.9 °C relative to a case without cool roofs. Residential cool roofs were responsible for 67% of the cooling.more » Nocturnal temperature increases of 3.1 °C from urbanization were larger than daytime warming, while nocturnal temperature reductions from cool roofs of 0.5 °C were weaker than corresponding daytime reductions. We further show that cool roof deployment could partially counter the local impacts of global climate change in the Los Angeles metropolitan area. Assuming a scenario in which there are dramatic decreases in greenhouse gas emissions in the 21st century (RCP2.6), mid- and end-of-century temperature increases from global change relative to current climate are similarly reduced by cool roofs from 1.4 °C to 0.6 °C. Assuming a scenario with continued emissions increases throughout the century (RCP8.5), mid-century warming is significantly reduced by cool roofs from 2.0 °C to 1.0 °C. The end-century warming, however, is significantly offset only in small localized areas containing mostly industrial/commercial buildings where cool roofs with the highest albedo are adopted. We conclude that metropolis-wide adoption of cool roofs can play an important role in mitigating the urban heat island effect, and offsetting near-term local warming from global climate change. Global-scale reductions in greenhouse gas emissions are the only way of avoiding long-term warming, however. We further suggest that both climate mitigation and adaptation can be pursued simultaneously using 'cool photovoltaics'.« less

  14. Delayed detection of climate mitigation benefits due to climate inertia and variability.

    PubMed

    Tebaldi, Claudia; Friedlingstein, Pierre

    2013-10-22

    Climate change mitigation acts by reducing greenhouse gas emissions, and thus curbing, or even reversing, the increase in their atmospheric concentration. This reduces the associated anthropogenic radiative forcing, and hence the size of the warming. Because of the inertia and internal variability affecting the climate system and the global carbon cycle, it is unlikely that a reduction in warming would be immediately discernible. Here we use 21st century simulations from the latest ensemble of Earth System Model experiments to investigate and quantify when mitigation becomes clearly discernible. We use one of the scenarios as a reference for a strong mitigation strategy, Representative Concentration Pathway (RCP) 2.6 and compare its outcome with either RCP4.5 or RCP8.5, both of which are less severe mitigation pathways. We analyze global mean atmospheric CO2, and changes in annually and seasonally averaged surface temperature at global and regional scales. For global mean surface temperature, the median detection time of mitigation is about 25-30 y after RCP2.6 emissions depart from the higher emission trajectories. This translates into detection of a mitigation signal by 2035 or 2045, depending on whether the comparison is with RCP8.5 or RCP4.5, respectively. The detection of climate benefits of emission mitigation occurs later at regional scales, with a median detection time between 30 and 45 y after emission paths separate. Requiring a 95% confidence level induces a delay of several decades, bringing detection time toward the end of the 21st century.

  15. The biogeophysical effects of extreme afforestation in modeling future climate

    NASA Astrophysics Data System (ADS)

    Wang, Ye; Yan, Xiaodong; Wang, Zhaomin

    2014-11-01

    Afforestation has been deployed as a mitigation strategy for global warming due to its substantial carbon sequestration, which is partly counterbalanced with its biogeophysical effects through modifying the fluxes of energy, water, and momentum at the land surface. To assess the potential biophysical effects of afforestation, a set of extreme experiments in an Earth system model of intermediate complexity, the McGill Paleoclimate Model-2 (MPM-2), is designed. Model results show that latitudinal afforestation not only has a local warming effect but also induces global and remote warming over regions beyond the forcing originating areas. Precipitation increases in the northern hemisphere and decreases in southern hemisphere in response to afforestation. The local surface warming over the forcing originating areas in northern hemisphere is driven by decreases in surface albedo and increases in precipitation. The remote surface warming in southern hemisphere is induced by decreases in surface albedo and precipitation. The results suggest that the potential impact of afforestation on regional and global climate depended critically on the location of the forest expansion. That is, afforestation in 0°-15°N leaves a relatively minor impact on global and regional temperature; afforestation in 45°-60°N results in a significant global warming, while afforestation in 30°-45°N results in a prominent regional warming. In addition, the afforestation leads to a decrease in annual mean meridional oceanic heat transport with a maximum decrease in forest expansion of 30°-45°N. These results can help to compare afforestation effects and find areas where afforestation mitigates climate change most effectively combined with its carbon drawdown effects.

  16. Early Action on HFCs Mitigates Future Atmospheric Change

    NASA Technical Reports Server (NTRS)

    Hurwitz, Margaret M.; Fleming, Eric L.; Newman, Paul A.; Li, Feng; Liang, Qing

    2017-01-01

    As countries take action to mitigate global warming, both by ratifying the UNFCCC Paris Agreement and enacting the Kigali Amendment to the Montreal Protocol to manage hydrofluorocarbons (HFCs), it is important to consider the relative importance of the pertinent greenhouse gases (GHGs), the distinct structure of their atmospheric impacts, and how the timing of potential GHG regulations would affect future changes in atmospheric temperature and ozone. Chemistry-climate model simulations demonstrate that HFCs could contribute substantially to anthropogenic climate change by the mid-21st century, particularly in the upper troposphere and lower stratosphere i.e., global average warming up to 0.19K at 80hPa. Three HFC mitigation scenarios demonstrate the benefits of taking early action in avoiding future atmospheric change: more than 90 of the climate change impacts of HFCs can be avoided if emissions stop by 2030.

  17. Early Action on HFCs Mitigates Future Atmospheric Change

    NASA Astrophysics Data System (ADS)

    Hurwitz, Margaret; Fleming, Eric; Newman, Paul; Li, Feng; Liang, Qing

    2017-04-01

    As countries take action to mitigate global warming, both by ratifying the UNFCCC Paris Agreement and enacting the Kigali Amendment to the Montreal Protocol to manage hydrofluorocarbons (HFCs), it is important to consider the relative importance of the pertinent greenhouse gases (GHGs), the distinct structure of their atmospheric impacts, and how the timing of potential GHG regulations would affect future changes in atmospheric temperature and ozone. Chemistry-climate model simulations demonstrate that HFCs could contribute substantially to anthropogenic climate change by the mid-21st century, particularly in the upper troposphere and lower stratosphere i.e., global average warming up to 0.19K at 80hPa. Three HFC mitigation scenarios demonstrate the benefits of taking early action in avoiding future atmospheric change: more than 90% of the climate change impacts of HFCs can be avoided if emissions stop by 2030.

  18. Reducing greenhouse gas emissions in agriculture without compromising food security?

    NASA Astrophysics Data System (ADS)

    Frank, Stefan; Havlík, Petr; Soussana, Jean-Francois; Levesque, Antoine; Valin, Hugo; Wollenberg, Eva; Kleinwechter, Ulrich; Fricko, Oliver; Gusti, Mykola; Herrero, Mario; Smith, Pete; Hasegawa, Tomoko; Kraxner, Florian; Obersteiner, Michael

    2017-04-01

    To keep global warming possibly below 1.5 C and mitigate adverse effects of climate change, agriculture, like all other sectors, will have to contribute to efforts in achieving net negative emissions by the end of the century. Cost-efficient distribution of mitigation across regions and sectors is typically calculated using a global uniform carbon price in climate stabilization scenarios. However, in reality such a carbon price could substantially affect other Sustainable Development Goals. Here, we assess the implications of climate change mitigation in agriculture for agricultural production and food security using an integrated modelling framework and explore ways of relaxing the competition between climate change mitigation and food availability. Using a scenario that limits global warming to 1.5 C, results indicate a food calorie loss in 2050 of up to 330 kcal per capita in food insecure countries. If only developed countries participated in the mitigation effort, the calorie loss would be 40 kcal per capita, however the climate target would not be achieved. Land-rich countries with a high proportion of emissions from land use change, such as Brazil, could reduce emissions with only a marginal effect on food availability. In contrast, agricultural mitigation in high population (density) countries, such as China and India, would lead to substantial food calorie loss without a major contribution to global GHG mitigation. Increasing soil carbon sequestration on agricultural land using a comprehensive set of management options, would allow achieving a 1.5 C target while reducing the implied calorie loss by up to 70% and storing up to 3.5 GtCO2 in soils. Hence, the promotion of so called "win-win" mitigation options i.e. soil carbon sequestration, and ensuring successful mitigation of land use change emissions are crucial to stabilize the climate without deteriorating food security.

  19. The contribution of Paris to limit global warming to 2 °C

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Iyer, Gokul C.; Edmonds, James A.; Fawcett, Allen A.

    International negotiators have clearly articulated a goal to limit global warming to 2°C. In preparation for the 21st Conference of Parties (COP21) in Paris in December 2015, countries are submitting their Intended Nationally Determined Contributions (INDCs) to the United Nations Framework Convention on Climate Change indicating their emissions reduction commitments through 2025 or 2030. Limiting global warming to 2°C is a challenging goal and will entail a dramatic transformation of the global energy system, largely complete by 2040. The deliberations in Paris will help determine the balance of challenges faced in the near-term and long-term. We use GCAM, a globalmore » integrated assessment model, to analyze the energy and economic-cost implications of INDCs. The INDCs imply near-term actions that reduce the level of mitigation needed in the post-2030 period, particularly when compared with an alternative path, in which nations are unable to undertake emissions mitigation until after 2030. We find that the latter case could require up to 2300 GW of premature retirements of fossil fuel power plants and up to 2900 GW of additional low-carbon power capacity installations within a five-year period of 2031 to 2035. INDCs have the effect of reducing premature retirements and new-capacity installations after 2030 by 50% and 34% respectively. However, if presently announced INDCs were strengthened to achieve greater near-term emissions mitigation, the 2031-2035 transformation could be tempered to require 84% fewer premature retirements of power generation capacity and 56% fewer new-capacity additions. Our results suggest that the ensuing COP21 in Paris will be critical in shaping the challenges of limiting global warming to 2°C.« less

  20. Reducing greenhouse gas emissions in agriculture without compromising food security?

    NASA Astrophysics Data System (ADS)

    Frank, Stefan; Havlík, Petr; Soussana, Jean-François; Levesque, Antoine; Valin, Hugo; Wollenberg, Eva; Kleinwechter, Ulrich; Fricko, Oliver; Gusti, Mykola; Herrero, Mario; Smith, Pete; Hasegawa, Tomoko; Kraxner, Florian; Obersteiner, Michael

    2017-10-01

    To keep global warming possibly below 1.5 °C and mitigate adverse effects of climate change, agriculture, like all other sectors, will have to contribute to efforts in achieving net negative emissions by the end of the century. Cost-efficient distribution of mitigation across regions and economic sectors is typically calculated using a global uniform carbon price in climate stabilization scenarios. However, in reality such a carbon price would substantially affect food availability. Here, we assess the implications of climate change mitigation in the land use sector for agricultural production and food security using an integrated partial equilibrium modelling framework and explore ways of relaxing the competition between mitigation in agriculture and food availability. Using a scenario that limits global warming cost-efficiently across sectors to 1.5 °C, results indicate global food calorie losses ranging from 110-285 kcal per capita per day in 2050 depending on the applied demand elasticities. This could translate into a rise in undernourishment of 80-300 million people in 2050. Less ambitious greenhouse gas (GHG) mitigation in the land use sector reduces the associated food security impact significantly, however the 1.5 °C target would not be achieved without additional reductions outside the land use sector. Efficiency of GHG mitigation will also depend on the level of participation globally. Our results show that if non-Annex-I countries decide not to contribute to mitigation action while other parties pursue their mitigation efforts to reach the global climate target, food security impacts in these non-Annex-I countries will be higher than if they participate in a global agreement, as inefficient mitigation increases agricultural production costs and therefore food prices. Land-rich countries with a high proportion of emissions from land use change, such as Brazil, could reduce emissions with only a marginal effect on food availability. In contrast, agricultural mitigation in high population (density) countries, such as China and India, would lead to substantial food calorie loss without a major contribution to global GHG mitigation. Increasing soil carbon sequestration on agricultural land would allow reducing the implied calorie loss by 65% when sticking to the initially estimated land use mitigation requirements, thereby limiting the impact on undernourishment to 20-75 million people, and storing significant amounts of carbon in soils.

  1. Trade-offs of Solar Geoengineering and Mitigation under Climate Targets

    NASA Astrophysics Data System (ADS)

    Mohammadi Khabbazan, M.; Stankoweit, M.; Roshan, E.; Schmidt, H.; Held, H.

    2016-12-01

    Scientific analyses have hitherto focused on the pros and cons of solar-radiation management (SRM) as a climate-policy option mainly in mere isolation. Here we put SRM into the context of mitigation by a strictly temperature-target-based approach. To the best of our knowledge, for the first time, we introduce a concept for a regional integrated analysis of SRM and mitigation in-line with the `2°C target'. We explicitly account for a risk-risk comparison of SRM and global warming, extending the applicability regime of temperature targets from mitigation-only to joint-SRM-mitigation analysis while minimizing economic costs required for complying with the 2°C target. Upgrading it to include SRM, we employ the integrated energy-economy-climate model MIND. We utilize the two-box climate model of DICE and calibrate the short and long time scales respectively into GeoMIP G3 experiment and quadrupled atmospheric CO2 concentrations experiment from CEMIP5 suite. Our results show that without risk-risk accounting SRM will displace mitigation. However, our analysis highlights that the value system enshrined in the 2°C target can almost preclude SRM; this is exemplified by one single regional climate variable, here precipitation, which is confined to regional bounds compatible with 2°C of global warming. Although about a half of policy costs can be saved, the results indicate that the additional amount of CO2 that could be released to the atmosphere corresponds to only 0.2°C of further global warming. Hence, the society might debate whether the risks of SRM should be taken for that rather small amount of additional carbon emissions. Nonetheless, our results point out a significantly larger role for SRM implementation if the guardrails of some regions are relaxed.

  2. Large potential reduction in economic damages under UN mitigation targets.

    PubMed

    Burke, Marshall; Davis, W Matthew; Diffenbaugh, Noah S

    2018-05-01

    International climate change agreements typically specify global warming thresholds as policy targets 1 , but the relative economic benefits of achieving these temperature targets remain poorly understood 2,3 . Uncertainties include the spatial pattern of temperature change, how global and regional economic output will respond to these changes in temperature, and the willingness of societies to trade present for future consumption. Here we combine historical evidence 4 with national-level climate 5 and socioeconomic 6 projections to quantify the economic damages associated with the United Nations (UN) targets of 1.5 °C and 2 °C global warming, and those associated with current UN national-level mitigation commitments (which together approach 3 °C warming 7 ). We find that by the end of this century, there is a more than 75% chance that limiting warming to 1.5 °C would reduce economic damages relative to 2 °C, and a more than 60% chance that the accumulated global benefits will exceed US$20 trillion under a 3% discount rate (2010 US dollars). We also estimate that 71% of countries-representing 90% of the global population-have a more than 75% chance of experiencing reduced economic damages at 1.5 °C, with poorer countries benefiting most. Our results could understate the benefits of limiting warming to 1.5 °C if unprecedented extreme outcomes, such as large-scale sea level rise 8 , occur for warming of 2 °C but not for warming of 1.5 °C. Inclusion of other unquantified sources of uncertainty, such as uncertainty in secular growth rates beyond that contained in existing socioeconomic scenarios, could also result in less precise impact estimates. We find considerably greater reductions in global economic output beyond 2 °C. Relative to a world that did not warm beyond 2000-2010 levels, we project 15%-25% reductions in per capita output by 2100 for the 2.5-3 °C of global warming implied by current national commitments 7 , and reductions of more than 30% for 4 °C warming. Our results therefore suggest that achieving the 1.5 °C target is likely to reduce aggregate damages and lessen global inequality, and that failing to meet the 2 °C target is likely to increase economic damages substantially.

  3. Early action on HFCs mitigates future atmospheric change

    NASA Astrophysics Data System (ADS)

    Hurwitz, Margaret M.; Fleming, Eric L.; Newman, Paul A.; Li, Feng; Liang, Qing

    2016-11-01

    As countries take action to mitigate global warming, both by ratifying the UNFCCC Paris Agreement and enacting the Kigali Amendment to the Montreal Protocol to manage hydrofluorocarbons (HFCs), it is important to consider the relative importance of the pertinent greenhouse gases and the distinct structure of their atmospheric impacts, and how the timing of potential greenhouse gas regulations would affect future changes in atmospheric temperature and ozone. HFCs should be explicitly considered in upcoming climate and ozone assessments, since chemistry-climate model simulations demonstrate that HFCs could contribute substantially to anthropogenic climate change by the mid-21st century, particularly in the upper troposphere and lower stratosphere i.e., global average warming up to 0.19 K at 80 hPa. The HFC mitigation scenarios described in this study demonstrate the benefits of taking early action in avoiding future atmospheric change: more than 90% of the climate change impacts of HFCs can be avoided if emissions stop by 2030.

  4. The effect of global warming on infectious diseases.

    PubMed

    Kurane, Ichiro

    2010-12-01

    Global warming has various effects on human health. The main indirect effects are on infectious diseases. Although the effects on infectious diseases will be detected worldwide, the degree and types of the effect are different, depending on the location of the respective countries and socioeconomical situations. Among infectious diseases, water- and foodborne infectious diseases and vector-borne infectious diseases are two main categories that are forecasted to be most affected. The effect on vector-borne infectious diseases such as malaria and dengue fever is mainly because of the expansion of the infested areas of vector mosquitoes and increase in the number and feeding activity of infected mosquitoes. There will be increase in the number of cases with water- and foodborne diarrhoeal diseases. Even with the strongest mitigation procedures, global warming cannot be avoided for decades. Therefore, implementation of adaptation measures to the effect of global warming is the most practical action we can take. It is generally accepted that the impacts of global warming on infectious diseases have not been apparent at this point yet in East Asia. However, these impacts will appear in one form or another if global warming continues to progress in future. Further research on the impacts of global warming on infectious diseases and on future prospects should be conducted.

  5. Soot effects on clouds and solar absorption: Understanding the differences in recently published soot mitigation experiments. (Invited)

    NASA Astrophysics Data System (ADS)

    Bauer, S. E.; Menon, S.

    2010-12-01

    Attention has been drawn to black carbon aerosols, as a target for short-term mitigation of climate warming. This measure seems attractive because soot is assumed to warm the atmosphere and at the same time has a lifetime of just a few days. Therefore regulating soot emissions could, as a short-term action, potentially buy time by slowing global warming until regulations for longer lived greenhouse gases are set in place. Currently the scientific community debates the impacts of such mitigation measures, especially when considering indirect effects. We tested with the GISS/MATRIX model, a global climate model including detailed aerosol microphysics, the effect of reducing fossil fuel emissions and bio-fuel emissions and found that opposite changes in cloud droplet number concentration lead to positive cloud forcing numbers in the bio-fuel reduction case and negative forcing numbers in the diesel mitigation case. Similar experiments have been carried out and have recently been published by other modeling groups, finding partly similar partly contradicting results to our study. In this presentation we want to explain the differences in black carbon research carried out with complex microphysical models, by focusing on the treatment of mixing state, and separation between forcings and feedbacks.

  6. The climate response to five trillion tonnes of carbon

    NASA Astrophysics Data System (ADS)

    Tokarska, Katarzyna B.; Gillett, Nathan P.; Weaver, Andrew J.; Arora, Vivek K.; Eby, Michael

    2016-09-01

    Concrete actions to curtail greenhouse gas emissions have so far been limited on a global scale, and therefore the ultimate magnitude of climate change in the absence of further mitigation is an important consideration for climate policy. Estimates of fossil fuel reserves and resources are highly uncertain, and the amount used under a business-as-usual scenario would depend on prevailing economic and technological conditions. In the absence of global mitigation actions, five trillion tonnes of carbon (5 EgC), corresponding to the lower end of the range of estimates of the total fossil fuel resource, is often cited as an estimate of total cumulative emissions. An approximately linear relationship between global warming and cumulative CO2 emissions is known to hold up to 2 EgC emissions on decadal to centennial timescales; however, in some simple climate models the predicted warming at higher cumulative emissions is less than that predicted by such a linear relationship. Here, using simulations from four comprehensive Earth system models, we demonstrate that CO2-attributable warming continues to increase approximately linearly up to 5 EgC emissions. These models simulate, in response to 5 EgC of CO2 emissions, global mean warming of 6.4-9.5 °C, mean Arctic warming of 14.7-19.5 °C, and mean regional precipitation increases by more than a factor of four. These results indicate that the unregulated exploitation of the fossil fuel resource could ultimately result in considerably more profound climate changes than previously suggested.

  7. Strengthening of the hydrological cycle in future scenarios: atmospheric energy and water balance perspective

    NASA Astrophysics Data System (ADS)

    Alessandri, A.; Fogli, P. G.; Vichi, M.; Zeng, N.

    2012-11-01

    Future climate scenarios experiencing global warming are expected to strengthen the hydrological cycle during the 21st century (21C). We analyze the strengthening of the global-scale increase in precipitation from the perspective of changes in whole atmospheric water and energy balances. By combining energy and water equations for the whole atmosphere, we obtain constraints for the changes in surface fluxes and partitioning at the surface between sensible and latent components. We investigate the differences in the strengthening of the hydrological cycle in two centennial simulations performed with an Earth system model forced with specified atmospheric concentration pathways. Alongside the Special Report on Emissions Scenario (SRES) A1B, which is a medium-high non-mitigation scenario, we consider a new aggressive-mitigation scenario (E1) with reduced fossil fuel use for energy production aimed at stabilizing global warming below 2 K. Our results show that the mitigation scenario effectively constrains the global warming with a stabilization below 2 K with respect to the 1950-2000 historical period. On the other hand, the E1 precipitation does not follow the temperature field toward a stabilization path but continues to increase over the mitigation period. Quite unexpectedly, the mitigation scenario is shown to strengthen the hydrological cycle even more than SRES A1B till around 2070. We show that this is mostly a consequence of the larger increase in the negative radiative imbalance of atmosphere in E1 compared to A1B. This appears to be primarily related to decreased sulfate aerosol concentration in E1, which considerably reduces atmospheric absorption of solar radiation compared to A1B. The last decades of the 21C show a marked increase in global precipitation in A1B compared to E1, despite the fact that the two scenarios display almost the same overall increase of radiative imbalance with respect to the 20th century. Our results show that radiative cooling is weakly effective in A1B throughout the 21C. Two distinct mechanisms characterize the diverse strengthening of the hydrological cycle in the middle and end- 21C. It is only through a very large perturbation of surface fluxes that A1B achieves a larger increase in global precipitation in the last decades of the 21C. Our energy/water budget analysis shows that this behavior is ultimately due to a bifurcation in the Bowen ratio change between the two scenarios. This work warns that mitigation policies that promote aerosol abatement, may lead to an unexpected stronger intensification of the hydrological cycle and associated changes that may last for decades after global warming is effectively mitigated. On the other hand, it is also suggested that predictable components of the radiative forcing by aerosols may have the potential to effectively contribute to the decadal-scale predictability of changes in the hydrological strength.

  8. Emissions and temperature benefits: The role of wind power in China.

    PubMed

    Duan, Hongbo

    2017-01-01

    As a non-fossil technology, wind power has an enormous advantage over coal because of its role in climate change mitigation. Therefore, it is important to investigate how substituting wind power for coal-fired electricity will affect emission reductions, changes in radiative forcing and rising temperatures, particularly in the context of emission limits. We developed an integrated methodology that includes two parts: an energy-economy-environmental (3E) integrated model and an emission-temperature response model. The former is used to simulate the dynamic relationships between economic output, wind energy and greenhouse gas (GHG) emissions; the latter is used to evaluate changes in radiative forcing and warming. Under the present development projection, wind energy cannot serve as a major force in curbing emissions, even under the strictest space-restraining scenario. China's temperature contribution to global warming will be up to 21.76% if warming is limited to 2 degrees. With the wind-for-coal power substitution, the corresponding contribution to global radiative forcing increase and temperature rise will decrease by up to 10% and 6.57%, respectively. Substituting wind power for coal-fired electricity has positive effects on emission reductions and warming control. However, wind energy alone is insufficient for climate change mitigation. It forms an important component of the renewable energy portfolio used to combat global warming. Copyright © 2016 Elsevier Inc. All rights reserved.

  9. Offsetting global warming-induced elevated greenhouse gas emissions from an arable soil by biochar application.

    PubMed

    Bamminger, Chris; Poll, Christian; Marhan, Sven

    2018-01-01

    Global warming will likely enhance greenhouse gas (GHG) emissions from soils. Due to its slow decomposability, biochar is widely recognized as effective in long-term soil carbon (C) sequestration and in mitigation of soil GHG emissions. In a long-term soil warming experiment (+2.5 °C, since July 2008) we studied the effect of applying high-temperature Miscanthus biochar (0, 30 t/ha, since August 2013) on GHG emissions and their global warming potential (GWP) during 2 years in a temperate agroecosystem. Crop growth, physical and chemical soil properties, temperature sensitivity of soil respiration (R s ), and metabolic quotient (qCO 2 ) were investigated to yield further information about single effects of soil warming and biochar as well as on their interactions. Soil warming increased total CO 2 emissions by 28% over 2 years. The effect of warming on soil respiration did not level off as has often been observed in less intensively managed ecosystems. However, the temperature sensitivity of soil respiration was not affected by warming. Overall, biochar had no effect on most of the measured parameters, suggesting its high degradation stability and its low influence on microbial C cycling even under elevated soil temperatures. In contrast, biochar × warming interactions led to higher total N 2 O emissions, possibly due to accelerated N-cycling at elevated soil temperature and to biochar-induced changes in soil properties and environmental conditions. Methane uptake was not affected by soil warming or biochar. The incorporation of biochar-C into soil was estimated to offset warming-induced elevated GHG emissions for 25 years. Our results highlight the suitability of biochar for C sequestration in cultivated temperate agricultural soil under a future elevated temperature. However, the increased N 2 O emissions under warming limit the GHG mitigation potential of biochar. © 2017 John Wiley & Sons Ltd.

  10. Forests and climate change: forcings, feedbacks, and the climate benefits of forests.

    PubMed

    Bonan, Gordon B

    2008-06-13

    The world's forests influence climate through physical, chemical, and biological processes that affect planetary energetics, the hydrologic cycle, and atmospheric composition. These complex and nonlinear forest-atmosphere interactions can dampen or amplify anthropogenic climate change. Tropical, temperate, and boreal reforestation and afforestation attenuate global warming through carbon sequestration. Biogeophysical feedbacks can enhance or diminish this negative climate forcing. Tropical forests mitigate warming through evaporative cooling, but the low albedo of boreal forests is a positive climate forcing. The evaporative effect of temperate forests is unclear. The net climate forcing from these and other processes is not known. Forests are under tremendous pressure from global change. Interdisciplinary science that integrates knowledge of the many interacting climate services of forests with the impacts of global change is necessary to identify and understand as yet unexplored feedbacks in the Earth system and the potential of forests to mitigate climate change.

  11. Global climate change and the mitigation challenge.

    PubMed

    Princiotta, Frank

    2009-10-01

    Anthropogenic emissions of greenhouse gases, especially carbon dioxide (CO2), have led to increasing atmospheric concentrations, very likely the primary cause of the 0.8 degrees C warming the Earth has experienced since the Industrial Revolution. With industrial activity and population expected to increase for the rest of the century, large increases in greenhouse gas emissions are projected, with substantial global additional warming predicted. This paper examines forces driving CO2 emissions, a concise sector-by-sector summary of mitigation options, and research and development (R&D) priorities. To constrain warming to below approximately 2.5 degrees C in 2100, the recent annual 3% CO2 emission growth rate needs to transform rapidly to an annual decrease rate of from 1 to 3% for decades. Furthermore, the current generation of energy generation and end-use technologies are capable of achieving less than half of the emission reduction needed for such a major mitigation program. New technologies will have to be developed and deployed at a rapid rate, especially for the key power generation and transportation sectors. Current energy technology research, development, demonstration, and deployment (RDD&D) programs fall far short of what is required.

  12. Forestry and global warming: the physical and policy linkages

    NASA Astrophysics Data System (ADS)

    Trexler, M. C.

    1992-03-01

    The potential for biotically mitigating global warming is receiving a great deal of policy and technical attention around the world. Elements of the political community are drawn to the notion that land-use patterns can be modified more easily than energy consumption patterns, and some modelers suggest that the potential for storing carbon in terrestrial ecosystems is very large. Most work to date, however, uses only physical criteria in estimating how much land might be available for reforestation. Accounting for social and economic constraints is much more difficult, resulting in daunting uncertainty about what could actually be accomplished. Furthermore, our relative ignorance of the functioning of the global carbon cycle makes attempting to manipulate it for human purposes questionable at best. Nevertheless, there are many reasons besides global warming to pursue a radical restructuring of land-use patterns around the world. Such a restructuring should be undertaken in conjunction with many other measures to slow global warming, most immediately in the energy sector.

  13. European freshwater vulnerability under high rates of global warming and plausible socio-economic narratives.

    NASA Astrophysics Data System (ADS)

    Koutroulis, Aristeidis; Papadimitriou, Lamprini; Grillakis, Manolis; Tsanis, Ioannis

    2017-04-01

    Recent developments could postpone climate actions in the frame of the global climate deal of the Paris Agreement, making higher-end global warming increasingly plausible. Although not clear in the COP21 water security is fundamental to achieving low-carbon ambitions, thus climate and water policies are closely related. The projection of the relationship between global warming, water availability and water stress through their complex interactions among different sectors, along with the synergies and trade-offs between adaptation and mitigation actions, is a rather challenging task under the prism of climate change. Here we try to develop and apply a simple, transparent conceptual framework describing European vulnerability to hydrological drought of current hydro-climatic and socioeconomic status as well as projected vulnerability at specific levels of global warming (1.5oC, 2oC and 4oC) following highly rates of climatic change (RCP8.5) and considering different levels of adaptation associated to specific socioeconomic pathways (SSP2, SSP3 and SSP5).

  14. Potential Adverse Environmental Impacts of Greenhouse Gas Mitigation Strategies

    EPA Science Inventory

    For Frank Princiotta’s book, Global Climate Change—The Technology Challenge The Fourth Assessment Report released by the Intergovernmental Panel on Cli-mate Change (IPCC) in 2007 was unequivocal in its message that warming of the global climate system is now occurring, and found...

  15. Atmospheric energy and water balance perspective to projection of global-scale precipitation increase: may mitigation policies unexpectedly amplify precipitation?

    NASA Astrophysics Data System (ADS)

    Alessandri, A.; Fogli, P.; Vichi, M.; Zeng, N.

    2012-12-01

    Future climate scenarios experiencing global warming are expected to strengthen hydrological cycle during 21st century by comparison with the last decades of 20th century. From the perspective of changes in whole atmospheric water and energy budgets, we analyze strengthening of the hydrological cycle as measured by the increase in global-scale precipitation. Furthermore, by combining energy and water equations for the whole atmosphere we profitably obtain constraints for the changes in surface fluxes and for the partitioning at the surface between sensible and latent components. Above approach is applied to investigate difference in precipitation increase in two scenario centennial simulations performed with an Earth System model forced with specified atmospheric concentration pathways. Alongside medium-high non-mitigation scenario (baseline), we considered an aggressive-mitigation scenario (E1) with reduced fossil fuel use for energy production aimed at stabilizing global warming below 2K. Quite unexpectedly, mitigation scenario is shown to strengthen hydrological cycle more than baseline till around 2070, that is a couple of decades after that mitigation of global temperature was already well established in E1. Our analysis shows that this is mostly a consequence of the larger increase in the negative radiative imbalance of atmosphere in E1 compared to baseline. This appears to be primarily related to the abated aerosol concentration in E1, which considerably reduces atmospheric absorption of solar radiation compared to baseline. In contrast, last decades of 21st century (21C) show marked increase of global precipitation in baseline compared to E1, despite the fact that the two scenarios display almost same overall increase of radiative imbalance with respect to 20th century. Our results show that radiative cooling is weakly effective in baseline throughout all 21C, so that two distinct mechanisms characterize the diverse strengthening of hydrological cycle in mid and end 21C. It is only through a very large perturbation of surface fluxes that baseline achieves larger increase of global precipitation in the last decades of 21C. Our energy/water budget analysis shows that this behavior is ultimately due to a bifurcation in the Bowen ratios change between the two scenarios. This work warns that mitigation policies, by abating aerosols, may lead to unexpected stronger intensification of hydrological cycle and associated changes that may last for decades after that global warming is effectively mitigated. On the other hand, it is here suggested that predictable components of the radiative forcing by aerosols may have the potential to effectively contribute to the decadal-scale predictability of changes in the hydrological strength.

  16. Trait Acclimation Mitigates Mortality Risks of Tropical Canopy Trees under Global Warming.

    PubMed

    Sterck, Frank; Anten, Niels P R; Schieving, Feike; Zuidema, Pieter A

    2016-01-01

    There is a heated debate about the effect of global change on tropical forests. Many scientists predict large-scale tree mortality while others point to mitigating roles of CO2 fertilization and - the notoriously unknown - physiological trait acclimation of trees. In this opinion article we provided a first quantification of the potential of trait acclimation to mitigate the negative effects of warming on tropical canopy tree growth and survival. We applied a physiological tree growth model that incorporates trait acclimation through an optimization approach. Our model estimated the maximum effect of acclimation when trees optimize traits that are strongly plastic on a week to annual time scale (leaf photosynthetic capacity, total leaf area, stem sapwood area) to maximize carbon gain. We simulated tree carbon gain for temperatures (25-35°C) and ambient CO2 concentrations (390-800 ppm) predicted for the 21st century. Full trait acclimation increased simulated carbon gain by up to 10-20% and the maximum tolerated temperature by up to 2°C, thus reducing risks of tree death under predicted warming. Functional trait acclimation may thus increase the resilience of tropical trees to warming, but cannot prevent tree death during extremely hot and dry years at current CO2 levels. We call for incorporating trait acclimation in field and experimental studies of plant functional traits, and in models that predict responses of tropical forests to climate change.

  17. The effects of global warming on allergic diseases.

    PubMed

    Chan, A W; Hon, K L; Leung, T F; Ho, M H; Rosa Duque, J S; Lee, T H

    2018-06-01

    Global warming is a public health emergency. Substantial scientific evidence indicates an unequivocal rising trend in global surface temperature that has caused higher atmospheric levels of moisture retention leading to more frequent extreme weather conditions, shrinking ice volume, and gradually rising sea levels. The concomitant rise in the prevalence of allergic diseases is closely related to these environmental changes because warm and moist environments favour the proliferation of common allergens such as pollens, dust mites, molds, and fungi. Global warming also stresses ecosystems, further accelerating critical biodiversity loss. Excessive carbon dioxide, together with the warming of seawater, promotes ocean acidification and oxygen depletion. This results in a progressive decline of phytoplankton and fish growth that in turn promotes the formation of larger oceanic dead zones, disrupting the food chain and biodiversity. Poor environmental biodiversity and a reduction in the microbiome spectrum are risk factors for allergic diseases in human populations. While climate change and the existence of an allergy epidemic are closely linked according to robust international research, efforts to mitigate these have encountered strong resistance because of vested economic and political concerns in different countries. International collaboration to establish legally binding regulations should be mandatory for forest protection and energy saving. Lifestyle and behavioural changes should also be advocated at the individual level by focusing on low carbon living; avoiding food wastage; and implementing the 4Rs: reduce, reuse, recycle, and replace principles. These lifestyle measures are entirely consistent with the current recommendations for allergy prevention. Efforts to mitigate climate change, preserve biodiversity, and prevent chronic diseases are interdependent disciplines.

  18. Constraints on biomass energy deployment in mitigation pathways: the case of water scarcity

    NASA Astrophysics Data System (ADS)

    Séférian, Roland; Rocher, Matthias; Guivarch, Céline; Colin, Jeanne

    2018-05-01

    To limit global warming to well below 2 ° most of the IPCC-WGIII future stringent mitigation pathways feature a massive global-scale deployment of negative emissions technologies (NETs) before the end of the century. The global-scale deployment of NETs like Biomass Energy with Carbon Capture and Storage (BECCS) can be hampered by climate constraints that are not taken into account by Integrated assessment models (IAMs) used to produce those pathways. Among the various climate constraints, water scarcity appears as a potential bottleneck for future land-based mitigation strategies and remains largely unexplored. Here, we assess climate constraints relative to water scarcity in response to the global deployment of BECCS. To this end, we confront results from an Earth system model (ESM) and an IAM under an array of 25 stringent mitigation pathways. These pathways are compatible with the Paris Agreement long-term temperature goal and with cumulative carbon emissions ranging from 230 Pg C and 300 Pg C from January 1st onwards. We show that all stylized mitigation pathways studied in this work limit warming below 2 °C or even 1.5 °C by 2100 but all exhibit a temperature overshoot exceeding 2 °C after 2050. According to the IAM, a subset of 17 emission pathways are feasible when evaluated in terms of socio-economic and technological constraints. The ESM however shows that water scarcity would limit the deployment of BECCS in all the mitigation pathways assessed in this work. Our findings suggest that the evolution of the water resources under climate change can exert a significant constraint on BECCS deployment before 2050. In 2100, the BECCS water needs could represent more than 30% of the total precipitation in several regions like Europe or Asia.

  19. Engaging ranchers in market-based approaches to climate change mitigation: opportunities, challenges, and policy implications

    Treesearch

    Hannah Gosnell; Nicole Robinson-Maness; Susan Charnley

    2011-01-01

    Unsustainable rangeland management and land conversion are significant sources of greenhouse gas emissions and global warming; however, rangelands also can be managed to mitigate climate change by enhancing carbon uptake through increased plant production and biological sequestration. According to a 2000 USFS General Technical Report, there are opportunities to make...

  20. A Rising Tide

    ERIC Educational Resources Information Center

    Nation, Molly Trendell; Feldman, Allan; Wang, Ping

    2015-01-01

    Global climate change and its effects are real and immediate. Students must gain an understanding of climate science so they can participate in public debate about how to reduce the emission of heat-trapping gases and how their communities can mitigate the effects of global warming. In this activity, students model these effects on Earth's oceans…

  1. Evaluation of Genetic Variation in Rice to Mitigate Methane Emissions

    USDA-ARS?s Scientific Manuscript database

    Agriculture is recognized as a significant contributor to greenhouse gas emissions (GHGE) globally. Paddy rice is a significant source of methane emissions. Methane accounts for about 11% of all U.S. GHGE and it is ~25 times more potent in global warming potential than carbon dioxide. Research has s...

  2. Global climate forcing from albedo change caused by large-scale deforestation and reforestation: quantification and attribution of geographic variation

    USDA-ARS?s Scientific Manuscript database

    Large-scale deforestation and reforestation have contributed substantially to historical and contemporary global climate change in part through albedo-induced radiative forcing, with meaningful implications for forest management aiming to mitigate climate change. Associated warming or cooling varies...

  3. Climate Impacts From a Removal of Anthropogenic Aerosol Emissions

    NASA Astrophysics Data System (ADS)

    Samset, B. H.; Sand, M.; Smith, C. J.; Bauer, S. E.; Forster, P. M.; Fuglestvedt, J. S.; Osprey, S.; Schleussner, C.-F.

    2018-01-01

    Limiting global warming to 1.5 or 2.0°C requires strong mitigation of anthropogenic greenhouse gas (GHG) emissions. Concurrently, emissions of anthropogenic aerosols will decline, due to coemission with GHG, and measures to improve air quality. However, the combined climate effect of GHG and aerosol emissions over the industrial era is poorly constrained. Here we show the climate impacts from removing present-day anthropogenic aerosol emissions and compare them to the impacts from moderate GHG-dominated global warming. Removing aerosols induces a global mean surface heating of 0.5-1.1°C, and precipitation increase of 2.0-4.6%. Extreme weather indices also increase. We find a higher sensitivity of extreme events to aerosol reductions, per degree of surface warming, in particular over the major aerosol emission regions. Under near-term warming, we find that regional climate change will depend strongly on the balance between aerosol and GHG forcing.

  4. Emissions and temperature benefits: The role of wind power in China

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Duan, Hongbo, E-mail: hbduan@ucas.ac.cn

    Background: As a non-fossil technology, wind power has an enormous advantage over coal because of its role in climate change mitigation. Therefore, it is important to investigate how substituting wind power for coal-fired electricity will affect emission reductions, changes in radiative forcing and rising temperatures, particularly in the context of emission limits. Methods: We developed an integrated methodology that includes two parts: an energy-economy-environmental (3E) integrated model and an emission-temperature response model. The former is used to simulate the dynamic relationships between economic output, wind energy and greenhouse gas (GHG) emissions; the latter is used to evaluate changes in radiativemore » forcing and warming. Results: Under the present development projection, wind energy cannot serve as a major force in curbing emissions, even under the strictest space-restraining scenario. China's temperature contribution to global warming will be up to 21.76% if warming is limited to 2 degrees. With the wind-for-coal power substitution, the corresponding contribution to global radiative forcing increase and temperature rise will decrease by up to 10% and 6.57%, respectively. Conclusions: Substituting wind power for coal-fired electricity has positive effects on emission reductions and warming control. However, wind energy alone is insufficient for climate change mitigation. It forms an important component of the renewable energy portfolio used to combat global warming. - Highlights: • We assess the warming benefits associated with substitution of wind power for coal. • The effect of emission space limits on climate responses is deeply examined. • China is responsible for at most 21.76% of global warming given the 2-degree target. • Wind power alone may not be sufficient to face the challenge of climate change. • A fertile policy soil and an aggressive plan are necessary to boost renewables.« less

  5. Dealing with uncertainty: Response-resilient climate change mitigation polices for long-lived and short-lived climate pollutants

    NASA Astrophysics Data System (ADS)

    Millar, R.; Boneham, J.; Hepburn, C.; Allen, M. R.

    2015-12-01

    Climate change solutions are subject to many inherent uncertainties. One of the most important is the uncertainty over the magnitude of the physical response of the climate system to external forcing. The risk of extremely large responses to forcing, so called "fat-tail" outcomes, cannot be ruled out from the latest science and offer profound challenges when creating policies that aim to meet a specific target of global temperature change. This study offers examples of how mitigation policies can be made resilient to this uncertainty in the physical climate response via indexing policies against an attributable anthropogenic warming index (the magnitude of the observed global mean warming that is can be traced to human activities), the AWI, instead of against time directly. We show that indexing policy measures that influence the total stock of carbon in the atmosphere (such as the fraction of extracted carbon sequestered) against the AWI can largely eliminate the risk of missing the specified warming goal due to unexpectedly large climate responses as well as the risk of costly over-mitigation if the physical response turned out to be lower than expected. We offer further examples of how this methodology can be expanded to include short-lived climate pollutants as well as long-lived carbon dioxide. Indexing policies against the AWI can have important consequences for the actions of governments acting to design national climate mitigation policies as well as private sector investors looking to incentivise the transition to a climate-stable economy. We conclude with some thoughts on how these indexes can help focus attention on the long-term perspective that is consistent with the conclusions of the latest climate science on what is required to ultimately stabilise the global climate system.

  6. Scenario dependence of future changes in climate extremes under 1.5 °C and 2 °C global warming

    NASA Astrophysics Data System (ADS)

    Wang, Zhili; Lin, Lei; Zhang, Xiaoye; Zhang, Hua; Liu, Liangke; Xu, Yangyang

    2017-04-01

    The 2015 Paris Agreement aims to limit global warming below 2 °C and pursue efforts to even limit it to 1.5 °C relative to pre-industrial levels. Decision makers need reliable information on the impacts caused by these warming levels for climate mitigation and adaptation measures. We explore the changes in climate extremes, which are closely tied to economic losses and casualties, under 1.5 °C and 2 °C global warming and their scenario dependence using three sets of ensemble global climate model simulations. A warming of 0.5 °C (from 1.5 °C to 2 °C) leads to significant increases in temperature and precipitation extremes in most regions. However, the projected changes in climate extremes under both warming levels highly depend on the pathways of emissions scenarios, with different greenhouse gas (GHG)/aerosol forcing ratio and GHG levels. Moreover, there are multifold differences in several heavily polluted regions, among the scenarios, in the changes in precipitation extremes due to an additional 0.5 °C warming from 1.5 °C to 2 °C. Our results demonstrate that the chemical compositions of emissions scenarios, not just the total radiative forcing and resultant warming level, must be considered when assessing the impacts of global 1.5/2 °C warming.

  7. Scenario dependence of future changes in climate extremes under 1.5 °C and 2 °C global warming.

    PubMed

    Wang, Zhili; Lin, Lei; Zhang, Xiaoye; Zhang, Hua; Liu, Liangke; Xu, Yangyang

    2017-04-20

    The 2015 Paris Agreement aims to limit global warming below 2 °C and pursue efforts to even limit it to 1.5 °C relative to pre-industrial levels. Decision makers need reliable information on the impacts caused by these warming levels for climate mitigation and adaptation measures. We explore the changes in climate extremes, which are closely tied to economic losses and casualties, under 1.5 °C and 2 °C global warming and their scenario dependence using three sets of ensemble global climate model simulations. A warming of 0.5 °C (from 1.5 °C to 2 °C) leads to significant increases in temperature and precipitation extremes in most regions. However, the projected changes in climate extremes under both warming levels highly depend on the pathways of emissions scenarios, with different greenhouse gas (GHG)/aerosol forcing ratio and GHG levels. Moreover, there are multifold differences in several heavily polluted regions, among the scenarios, in the changes in precipitation extremes due to an additional 0.5 °C warming from 1.5 °C to 2 °C. Our results demonstrate that the chemical compositions of emissions scenarios, not just the total radiative forcing and resultant warming level, must be considered when assessing the impacts of global 1.5/2 °C warming.

  8. Scenario dependence of future changes in climate extremes under 1.5 °C and 2 °C global warming

    PubMed Central

    Wang, Zhili; Lin, Lei; Zhang, Xiaoye; Zhang, Hua; Liu, Liangke; Xu, Yangyang

    2017-01-01

    The 2015 Paris Agreement aims to limit global warming below 2 °C and pursue efforts to even limit it to 1.5 °C relative to pre-industrial levels. Decision makers need reliable information on the impacts caused by these warming levels for climate mitigation and adaptation measures. We explore the changes in climate extremes, which are closely tied to economic losses and casualties, under 1.5 °C and 2 °C global warming and their scenario dependence using three sets of ensemble global climate model simulations. A warming of 0.5 °C (from 1.5 °C to 2 °C) leads to significant increases in temperature and precipitation extremes in most regions. However, the projected changes in climate extremes under both warming levels highly depend on the pathways of emissions scenarios, with different greenhouse gas (GHG)/aerosol forcing ratio and GHG levels. Moreover, there are multifold differences in several heavily polluted regions, among the scenarios, in the changes in precipitation extremes due to an additional 0.5 °C warming from 1.5 °C to 2 °C. Our results demonstrate that the chemical compositions of emissions scenarios, not just the total radiative forcing and resultant warming level, must be considered when assessing the impacts of global 1.5/2 °C warming. PMID:28425445

  9. Management of Philippine tropical forests: Implications to global warming

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lasco, R.D.

    1997-12-31

    The first part of the paper presents the massive changes in tropical land management in the Philippines as a result of a {open_quotes}paradigm shift{close_quotes} in forestry. The second part of the paper analyzes the impacts of the above management strategies on global warming, in general, preserved forests are neither sinks not sources of greenhouse gasses (GHG). Reforestation activities are primarily net sinks of carbon specially the use of fast growing reforestation species. Estimates are given for the carbon-sequestering ability of some commonly used species. The last part of the paper policy recommendations and possible courses of action by the governmentmore » to maximize the role of forest lands in the mitigation of global warming. Private sector initiatives are also explored.« less

  10. Active transport and heat.

    PubMed

    Tait, Peter W

    2011-07-01

    Increasing heat may impede peoples' ability to be active outdoors thus limiting active transport options. Co-benefits from mitigation of and adaptation to global warming should not be assumed but need to be actively designed into strategies.

  11. Trait Acclimation Mitigates Mortality Risks of Tropical Canopy Trees under Global Warming

    PubMed Central

    Sterck, Frank; Anten, Niels P. R.; Schieving, Feike; Zuidema, Pieter A.

    2016-01-01

    There is a heated debate about the effect of global change on tropical forests. Many scientists predict large-scale tree mortality while others point to mitigating roles of CO2 fertilization and – the notoriously unknown – physiological trait acclimation of trees. In this opinion article we provided a first quantification of the potential of trait acclimation to mitigate the negative effects of warming on tropical canopy tree growth and survival. We applied a physiological tree growth model that incorporates trait acclimation through an optimization approach. Our model estimated the maximum effect of acclimation when trees optimize traits that are strongly plastic on a week to annual time scale (leaf photosynthetic capacity, total leaf area, stem sapwood area) to maximize carbon gain. We simulated tree carbon gain for temperatures (25–35°C) and ambient CO2 concentrations (390–800 ppm) predicted for the 21st century. Full trait acclimation increased simulated carbon gain by up to 10–20% and the maximum tolerated temperature by up to 2°C, thus reducing risks of tree death under predicted warming. Functional trait acclimation may thus increase the resilience of tropical trees to warming, but cannot prevent tree death during extremely hot and dry years at current CO2 levels. We call for incorporating trait acclimation in field and experimental studies of plant functional traits, and in models that predict responses of tropical forests to climate change. PMID:27242814

  12. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hill, D.

    Steps to mitigate global climate change are being negotiated internationally, but it is on the local level that its effects will be felt and actions are taken. Like many midlatitude coastal cities, metropolitan New York could expect serious consequences from global warming: killing hot spells, worsened ozone pollution, uncertain water supply, and inundation of its waterfront from higher sea level and violent storms. Seen at the local level, the opportunities and limitations of measures to mitigate or adapt to climate change become explicit. Indirect local effects from changes elsewhere in the world must also be considered.

  13. An isoline separating relatively warm from relatively cool wintertime forest surface temperatures for the southeastern United States

    Treesearch

    J. Wickham; T.G. Wade; K.H. Riitters

    2014-01-01

    Forest-oriented climate mitigation policies promote forestation as a means to increase uptake of atmospheric carbon to counteract global warming. Some have pointed out that a carbon-centric forest policy may be overstated because it discounts biophysical aspects of the influence of forests on climate. In extra-tropical regions, many climate models have shown that...

  14. The Climate Science Special Report: Perspectives on Climate Change Mitigation

    NASA Astrophysics Data System (ADS)

    DeAngelo, B. J.

    2017-12-01

    This chapter of CSSR provides scientific context for key issues regarding the long-term mitigation of climate change. Policy analysis and recommendations are beyond the scope of CSSR. Limiting and stabilizing warming to any level implies that there is an upper limit to the cumulative amount of CO2 that can be added to the atmosphere. Eventually stabilizing the global temperature requires CO2 emissions to approach zero. For a 3.6°F (2°C) or any desired global mean temperature target, an estimated range of allowable cumulative CO2 emissions from the current period onward can be calculated. Accounting for the temperature effects of non-CO2 species, cumulative CO2 emissions are required to stay below about 800 GtC in order to provide a two-thirds likelihood of preventing 3.6°F (2°C) of warming, meaning approximately 230 GtC more could be emitted globally. Assuming global emissions follow the range between the RCP8.5 and RCP4.5 scenarios, emissions could continue for approximately two decades before this cumulative carbon threshold is exceeded. Meeting a 2.7°F (1.5°C) target implies much tighter constraints. Mitigation of non-CO2 species contributes substantially to near-term cooling benefits but cannot be relied upon for ultimate stabilization goals. Successful implementation of the first round of Nationally Determined Contributions associated with the Paris Agreement will provide some likelihood of meeting the long-term temperature goal of limiting global warming to "well below" 3.6°F (2°C) above preindustrial levels; the likelihood depends strongly on the magnitude of global emission reductions after 2030. If interest in geoengineering increases, interest will also increase in assessments of the technical feasibilities, costs, risks, co-benefits, and governance challenges of these additional measures, which are as yet unproven at scale.

  15. Early Action on Hfcs Mitigates Future Atmospheric Change

    NASA Technical Reports Server (NTRS)

    Hurwitz, Margaret M.; Fleming, Eric L.; Newman, Paul A.; Li, Feng; Liang, Qing

    2016-01-01

    As countries take action to mitigate global warming, both by ratifying theUNFCCCParis Agreement and enacting the Kigali Amendment to the Montreal Protocol to manage hydrofluorocarbons (HFCs), it is important to consider the relative importance of the pertinent greenhouse gases and the distinct structure of their atmospheric impacts, and how the timing of potential greenhouse gas regulations would affect future changes in atmospheric temperature and ozone. HFCs should be explicitly considered in upcoming climate and ozone assessments, since chemistry-climate model simulations demonstrate that HFCs could contribute substantially to anthropogenic climate change by the mid- 21st century, particularly in the upper troposphere and lower stratosphere i.e., global average warming up to 0.19 Kat 80 hPa. The HFCmitigation scenarios described in this study demonstrate the benefits of taking early action in avoiding future atmospheric change: more than 90% of the climate change impacts of HFCs can be avoided if emissions stop by 2030.

  16. Global Warming: A Reduced Threat?.

    NASA Astrophysics Data System (ADS)

    Michaels, Patrick J.; Stooksbury, David E.

    1992-10-01

    One popular and apocalyptic vision of the world influenced by increasing concentrations of infrared-absorbing trace gases is that of ecological disaster brought about by rapidly rising temperatures, sea level, and evaporation rates. This vision developed from a suite of climate models that have since considerably changed in both their dynamics and their estimates of prospective warming. Observed temperatures indicate that much more warming should already have taken place than predicted by earlier models in the Northern Hemisphere, and that night, rather than day, readings in that hemisphere show a relative warming. A high-latitude polar-night warming or a general night warming could be either benign or beneficial. A large number of plant species show both increased growth and greater water-use efficiency under enhanced carbon dioxide.An extensive body of evidence now indicates that anthropo-generated sulfate emissions are mitigating some of the warming, and that increased cloudiness as a result of these emissions will further enhance night, rather than day, warming. The sulfate emissions, though, are not sufficient to explain all of the night warming. However, the sensitivity of climate to anthropogenerated aerosols, and the general lack of previously predicted warming, could drastically alter the debate on global warming in favor of less expensive policies.

  17. Microbial Carbonic Anhydrases in Biomimetic Carbon Sequestration for Mitigating Global Warming: Prospects and Perspectives

    PubMed Central

    Bose, Himadri; Satyanarayana, Tulasi

    2017-01-01

    All the leading cities in the world are slowly becoming inhospitable for human life with global warming playing havoc with the living conditions. Biomineralization of carbon dioxide using carbonic anhydrase (CA) is one of the most economical methods for mitigating global warming. The burning of fossil fuels results in the emission of large quantities of flue gas. The temperature of flue gas is quite high. Alkaline conditions are necessary for CaCO3 precipitation in the mineralization process. In order to use CAs for biomimetic carbon sequestration, thermo-alkali-stable CAs are, therefore, essential. CAs must be stable in the presence of various flue gas contaminants too. The extreme environments on earth harbor a variety of polyextremophilic microbes that are rich sources of thermo-alkali-stable CAs. CAs are the fastest among the known enzymes, which are of six basic types with no apparent sequence homology, thus represent an elegant example of convergent evolution. The current review focuses on the utility of thermo-alkali-stable CAs in biomineralization based strategies. A variety of roles that CAs play in various living organisms, the use of CA inhibitors as drug targets and strategies for overproduction of CAs to meet the demand are also briefly discussed. PMID:28890712

  18. Quantitative Analysis of Critical Factors for the Climate Impact of Landfill Mining.

    PubMed

    Laner, David; Cencic, Oliver; Svensson, Niclas; Krook, Joakim

    2016-07-05

    Landfill mining has been proposed as an innovative strategy to mitigate environmental risks associated with landfills, to recover secondary raw materials and energy from the deposited waste, and to enable high-valued land uses at the site. The present study quantitatively assesses the importance of specific factors and conditions for the net contribution of landfill mining to global warming using a novel, set-based modeling approach and provides policy recommendations for facilitating the development of projects contributing to global warming mitigation. Building on life-cycle assessment, scenario modeling and sensitivity analysis methods are used to identify critical factors for the climate impact of landfill mining. The net contributions to global warming of the scenarios range from -1550 (saving) to 640 (burden) kg CO2e per Mg of excavated waste. Nearly 90% of the results' total variation can be explained by changes in four factors, namely the landfill gas management in the reference case (i.e., alternative to mining the landfill), the background energy system, the composition of the excavated waste, and the applied waste-to-energy technology. Based on the analyses, circumstances under which landfill mining should be prioritized or not are identified and sensitive parameters for the climate impact assessment of landfill mining are highlighted.

  19. Microbial Carbonic Anhydrases in Biomimetic Carbon Sequestration for Mitigating Global Warming: Prospects and Perspectives.

    PubMed

    Bose, Himadri; Satyanarayana, Tulasi

    2017-01-01

    All the leading cities in the world are slowly becoming inhospitable for human life with global warming playing havoc with the living conditions. Biomineralization of carbon dioxide using carbonic anhydrase (CA) is one of the most economical methods for mitigating global warming. The burning of fossil fuels results in the emission of large quantities of flue gas. The temperature of flue gas is quite high. Alkaline conditions are necessary for CaCO 3 precipitation in the mineralization process. In order to use CAs for biomimetic carbon sequestration, thermo-alkali-stable CAs are, therefore, essential. CAs must be stable in the presence of various flue gas contaminants too. The extreme environments on earth harbor a variety of polyextremophilic microbes that are rich sources of thermo-alkali-stable CAs. CAs are the fastest among the known enzymes, which are of six basic types with no apparent sequence homology, thus represent an elegant example of convergent evolution. The current review focuses on the utility of thermo-alkali-stable CAs in biomineralization based strategies. A variety of roles that CAs play in various living organisms, the use of CA inhibitors as drug targets and strategies for overproduction of CAs to meet the demand are also briefly discussed.

  20. Why Not Try a Scientific Approach to Science Education?

    ERIC Educational Resources Information Center

    Wieman, Carl

    2007-01-01

    The purpose of science education is no longer simply to train that tiny fraction of the population who will become the next generation of scientists. A more scientifically literate populace is needed to address the global challenges that humanity now faces and that only science can explain and possibly mitigate, for example, global warming and…

  1. Mid-Century Warming in the Los Angeles Region and its Uncertainty using Dynamical and Statistical Downscaling

    NASA Astrophysics Data System (ADS)

    Sun, F.; Hall, A. D.; Walton, D.; Capps, S. B.; Qu, X.; Huang, H. J.; Berg, N.; Jousse, A.; Schwartz, M.; Nakamura, M.; Cerezo-Mota, R.

    2012-12-01

    Using a combination of dynamical and statistical downscaling techniques, we projected mid-21st century warming in the Los Angeles region at 2-km resolution. To account for uncertainty associated with the trajectory of future greenhouse gas emissions, we examined projections for both "business-as-usual" (RCP8.5) and "mitigation" (RCP2.6) emissions scenarios from the Fifth Coupled Model Intercomparison Project (CMIP5). To account for the considerable uncertainty associated with choice of global climate model, we downscaled results for all available global climate models in CMIP5. For the business-as-usual scenario, we find that by the mid-21st century, the most likely warming is roughly 2.6°C averaged over the region's land areas, with a 95% confidence that the warming lies between 0.9 and 4.2°C. The high resolution of the projections reveals a pronounced spatial pattern in the warming: High elevations and inland areas separated from the coast by at least one mountain complex warm 20 to 50% more than the areas near the coast or within the Los Angeles basin. This warming pattern is especially apparent in summertime. The summertime warming contrast between the inland and coastal zones has a large effect on the most likely expected number of extremely hot days per year. Coastal locations and areas within the Los Angeles basin see roughly two to three times the number of extremely hot days, while high elevations and inland areas typically experience approximately three to five times the number of extremely hot days. Under the mitigation emissions scenario, the most likely warming and increase in heat extremes are somewhat smaller. However, the majority of the warming seen in the business-as-usual scenario still occurs at all locations in the most likely case under the mitigation scenario, and heat extremes still increase significantly. This warming study is the first part of a series studies of our project. More climate change impacts on the Santa Ana wind, rainfall, snowfall and snowmelt, cloud and surface hydrology are forthcoming and could be found in www.atmos.ucla.edu/csrl.he ensemble-mean, annual-mean surface air temperature change and its uncertainty from the available CMIP5 GCMs under the RCP8.5 (left) and RCP2.6 (right) emissions scenarios, unit: °C.

  2. Assessing climate change impacts, benefits of mitigation, and uncertainties on major global forest regions under multiple socioeconomic and emissions scenarios

    DOE PAGES

    Kim, John B.; Monier, Erwan; Sohngen, Brent; ...

    2017-03-28

    We analyze a set of simulations to assess the impact of climate change on global forests where MC2 dynamic global vegetation model (DGVM) was run with climate simulations from the MIT Integrated Global System Model-Community Atmosphere Model (IGSM-CAM) modeling framework. The core study relies on an ensemble of climate simulations under two emissions scenarios: a business-as-usual reference scenario (REF) analogous to the IPCC RCP8.5 scenario, and a greenhouse gas mitigation scenario, called POL3.7, which is in between the IPCC RCP2.6 and RCP4.5 scenarios, and is consistent with a 2 °C global mean warming from pre-industrial by 2100. Evaluating the outcomesmore » of both climate change scenarios in the MC2 model shows that the carbon stocks of most forests around the world increased, with the greatest gains in tropical forest regions. Temperate forest regions are projected to see strong increases in productivity offset by carbon loss to fire. The greatest cost of mitigation in terms of effects on forest carbon stocks are projected to be borne by regions in the southern hemisphere. We compare three sources of uncertainty in climate change impacts on the world’s forests: emissions scenarios, the global system climate response (i.e. climate sensitivity), and natural variability. The role of natural variability on changes in forest carbon and net primary productivity (NPP) is small, but it is substantial for impacts of wildfire. Forest productivity under the REF scenario benefits substantially from the CO 2 fertilization effect and that higher warming alone does not necessarily increase global forest carbon levels. Finally, our analysis underlines why using an ensemble of climate simulations is necessary to derive robust estimates of the benefits of greenhouse gas mitigation. It also demonstrates that constraining estimates of climate sensitivity and advancing our understanding of CO 2 fertilization effects may considerably reduce the range of projections.« less

  3. Assessing climate change impacts, benefits of mitigation, and uncertainties on major global forest regions under multiple socioeconomic and emissions scenarios

    NASA Astrophysics Data System (ADS)

    Kim, John B.; Monier, Erwan; Sohngen, Brent; Pitts, G. Stephen; Drapek, Ray; McFarland, James; Ohrel, Sara; Cole, Jefferson

    2017-04-01

    We analyze a set of simulations to assess the impact of climate change on global forests where MC2 dynamic global vegetation model (DGVM) was run with climate simulations from the MIT Integrated Global System Model-Community Atmosphere Model (IGSM-CAM) modeling framework. The core study relies on an ensemble of climate simulations under two emissions scenarios: a business-as-usual reference scenario (REF) analogous to the IPCC RCP8.5 scenario, and a greenhouse gas mitigation scenario, called POL3.7, which is in between the IPCC RCP2.6 and RCP4.5 scenarios, and is consistent with a 2 °C global mean warming from pre-industrial by 2100. Evaluating the outcomes of both climate change scenarios in the MC2 model shows that the carbon stocks of most forests around the world increased, with the greatest gains in tropical forest regions. Temperate forest regions are projected to see strong increases in productivity offset by carbon loss to fire. The greatest cost of mitigation in terms of effects on forest carbon stocks are projected to be borne by regions in the southern hemisphere. We compare three sources of uncertainty in climate change impacts on the world’s forests: emissions scenarios, the global system climate response (i.e. climate sensitivity), and natural variability. The role of natural variability on changes in forest carbon and net primary productivity (NPP) is small, but it is substantial for impacts of wildfire. Forest productivity under the REF scenario benefits substantially from the CO2 fertilization effect and that higher warming alone does not necessarily increase global forest carbon levels. Our analysis underlines why using an ensemble of climate simulations is necessary to derive robust estimates of the benefits of greenhouse gas mitigation. It also demonstrates that constraining estimates of climate sensitivity and advancing our understanding of CO2 fertilization effects may considerably reduce the range of projections.

  4. Assessing climate change impacts, benefits of mitigation, and uncertainties on major global forest regions under multiple socioeconomic and emissions scenarios

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, John B.; Monier, Erwan; Sohngen, Brent

    We analyze a set of simulations to assess the impact of climate change on global forests where MC2 dynamic global vegetation model (DGVM) was run with climate simulations from the MIT Integrated Global System Model-Community Atmosphere Model (IGSM-CAM) modeling framework. The core study relies on an ensemble of climate simulations under two emissions scenarios: a business-as-usual reference scenario (REF) analogous to the IPCC RCP8.5 scenario, and a greenhouse gas mitigation scenario, called POL3.7, which is in between the IPCC RCP2.6 and RCP4.5 scenarios, and is consistent with a 2 °C global mean warming from pre-industrial by 2100. Evaluating the outcomesmore » of both climate change scenarios in the MC2 model shows that the carbon stocks of most forests around the world increased, with the greatest gains in tropical forest regions. Temperate forest regions are projected to see strong increases in productivity offset by carbon loss to fire. The greatest cost of mitigation in terms of effects on forest carbon stocks are projected to be borne by regions in the southern hemisphere. We compare three sources of uncertainty in climate change impacts on the world’s forests: emissions scenarios, the global system climate response (i.e. climate sensitivity), and natural variability. The role of natural variability on changes in forest carbon and net primary productivity (NPP) is small, but it is substantial for impacts of wildfire. Forest productivity under the REF scenario benefits substantially from the CO 2 fertilization effect and that higher warming alone does not necessarily increase global forest carbon levels. Finally, our analysis underlines why using an ensemble of climate simulations is necessary to derive robust estimates of the benefits of greenhouse gas mitigation. It also demonstrates that constraining estimates of climate sensitivity and advancing our understanding of CO 2 fertilization effects may considerably reduce the range of projections.« less

  5. Strengthening of the hydrological cycle in future scenarios: atmospheric energy and water balance perspective

    NASA Astrophysics Data System (ADS)

    Alessandri, A.; Fogli, P. G.; Vichi, M.; Zeng, N.

    2012-07-01

    Future climate scenarios experiencing global warming are expected to strengthen hydrological cycle during 21st century by comparison with the last decades of 20th century. We analyze strengthening of the global-scale increase in precipitation from the perspective of changes in whole atmospheric water and energy balances. Furthermore, by combining energy and water equations for the whole atmosphere we profitably obtain constraints for the changes in surface fluxes and for the partitioning at the surface between sensible and latent components. Above approach is applied to investigate difference in strengthening of hydrological cycle in two scenario centennial simulations performed with an Earth System model forced with specified atmospheric concentration pathways. Alongside the medium-high non-mitigation scenario SRES A1B, we considered a new aggressive-mitigation scenario (E1) with reduced fossil fuel use for energy production aimed at stabilizing global warming below 2 K. Quite unexpectedly, mitigation scenario is shown to strengthen hydrological cycle more than SRES A1B till around 2070. Our analysis shows that this is mostly a consequence of the larger increase in the negative radiative imbalance of atmosphere in E1 compared to A1B. This appears to be primarily related to the abated aerosol concentration in E1, which considerably reduces atmospheric absorption of solar radiation compared to A1B. In contrast, last decades of 21st century (21C) show marked increase of global precipitation in A1B compared to E1, despite the fact that the two scenarios display almost same overall increase of radiative imbalance with respect to 20th century. Our results show that radiative cooling is weakly effective in A1B throughout all 21C, so that two distinct mechanisms characterize the diverse strengthening of hydrological cycle in mid and end 21C. It is only through a very large perturbation of surface fluxes that A1B achieves larger increase of global precipitation in the last decades of 21C. Our energy/water budget analysis shows that this behavior is ultimately due to a bifurcation in the Bowen ratios change between the two scenarios. This work warns that mitigation policies, by abating aerosols, may lead to unexpected stronger intensification of hydrological cycle and associated changes that may last for decades after that global warming is effectively mitigated. On the other hand, it is here suggested that predictable components of the radiative forcing by aerosols may have the potential to effectively contribute to the decadal-scale predictability of changes in the hydrological strength.

  6. Biogeochemical potential of biomass pyrolysis systems for limiting global warming to 1.5 °C

    NASA Astrophysics Data System (ADS)

    Werner, C.; Schmidt, H.-P.; Gerten, D.; Lucht, W.; Kammann, C.

    2018-04-01

    Negative emission (NE) technologies are recognized to play an increasingly relevant role in strategies limiting mean global warming to 1.5 °C as specified in the Paris Agreement. The potentially significant contribution of pyrogenic carbon capture and storage (PyCCS) is, however, highly underrepresented in the discussion. In this study, we conduct the first quantitative assessment of the global potential of PyCCS as a NE technology based on biomass plantations. Using a process-based biosphere model, we calculate the land use change required to reach specific climate mitigation goals while observing biodiversity protection guardrails. We consider NE targets of 100–300 GtC following socioeconomic pathways consistent with a mean global warming of 1.5 °C as well as the option of additional carbon balancing required in case of failure or delay of decarbonization measures. The technological opportunities of PyCCS are represented by three tracks accounting for the sequestration of different pyrolysis products: biochar (as soil amendment), bio-oil (pumped into geological storages) and permanent-pyrogas (capture and storage of CO2 from gas combustion). In addition, we analyse how the gain in land induced by biochar-mediated yield increases on tropical cropland may reduce the pressure on land. Our results show that meeting the 1.5 °C goal through mitigation strategies including large-scale NE with plantation-based PyCCS may require conversion of natural vegetation to biomass plantations in the order of 133–3280 Mha globally, depending on the applied technology and the NE demand. Advancing towards additional bio-oil sequestration reduces land demand considerably by potentially up to 60%, while the benefits from yield increases account for another 3%–38% reduction (equalling 82–362 Mha). However, when mitigation commitments are increased by high balancing claims, even the most advanced PyCCS technologies and biochar-mediated co-benefits cannot compensate for delayed action towards phasing-out fossil fuels.

  7. Geoengineering: Direct Mitigation of Climate Warming

    EPA Science Inventory

    For Frank Princiotta’s book, Global Climate Change—The Technology Challenge With the concentrations of atmospheric greenhouse gases (GHGs) rising to levels unprecedented in the current glacial epoch, the earth’s climate system appears to be rapidly shifting into a warmer regime....

  8. Disentangling the effects of CO2 and short-lived climate forcer mitigation.

    PubMed

    Rogelj, Joeri; Schaeffer, Michiel; Meinshausen, Malte; Shindell, Drew T; Hare, William; Klimont, Zbigniew; Velders, Guus J M; Amann, Markus; Schellnhuber, Hans Joachim

    2014-11-18

    Anthropogenic global warming is driven by emissions of a wide variety of radiative forcers ranging from very short-lived climate forcers (SLCFs), like black carbon, to very long-lived, like CO2. These species are often released from common sources and are therefore intricately linked. However, for reasons of simplification, this CO2-SLCF linkage was often disregarded in long-term projections of earlier studies. Here we explicitly account for CO2-SLCF linkages and show that the short- and long-term climate effects of many SLCF measures consistently become smaller in scenarios that keep warming to below 2 °C relative to preindustrial levels. Although long-term mitigation of methane and hydrofluorocarbons are integral parts of 2 °C scenarios, early action on these species mainly influences near-term temperatures and brings small benefits for limiting maximum warming relative to comparable reductions taking place later. Furthermore, we find that maximum 21st-century warming in 2 °C-consistent scenarios is largely unaffected by additional black-carbon-related measures because key emission sources are already phased-out through CO2 mitigation. Our study demonstrates the importance of coherently considering CO2-SLCF coevolutions. Failing to do so leads to strongly and consistently overestimating the effect of SLCF measures in climate stabilization scenarios. Our results reinforce that SLCF measures are to be considered complementary rather than a substitute for early and stringent CO2 mitigation. Near-term SLCF measures do not allow for more time for CO2 mitigation. We disentangle and resolve the distinct benefits across different species and therewith facilitate an integrated strategy for mitigating both short and long-term climate change.

  9. Disentangling the effects of CO2 and short-lived climate forcer mitigation

    PubMed Central

    Rogelj, Joeri; Schaeffer, Michiel; Meinshausen, Malte; Shindell, Drew T.; Hare, William; Klimont, Zbigniew; Amann, Markus; Schellnhuber, Hans Joachim

    2014-01-01

    Anthropogenic global warming is driven by emissions of a wide variety of radiative forcers ranging from very short-lived climate forcers (SLCFs), like black carbon, to very long-lived, like CO2. These species are often released from common sources and are therefore intricately linked. However, for reasons of simplification, this CO2–SLCF linkage was often disregarded in long-term projections of earlier studies. Here we explicitly account for CO2–SLCF linkages and show that the short- and long-term climate effects of many SLCF measures consistently become smaller in scenarios that keep warming to below 2 °C relative to preindustrial levels. Although long-term mitigation of methane and hydrofluorocarbons are integral parts of 2 °C scenarios, early action on these species mainly influences near-term temperatures and brings small benefits for limiting maximum warming relative to comparable reductions taking place later. Furthermore, we find that maximum 21st-century warming in 2 °C-consistent scenarios is largely unaffected by additional black-carbon-related measures because key emission sources are already phased-out through CO2 mitigation. Our study demonstrates the importance of coherently considering CO2–SLCF coevolutions. Failing to do so leads to strongly and consistently overestimating the effect of SLCF measures in climate stabilization scenarios. Our results reinforce that SLCF measures are to be considered complementary rather than a substitute for early and stringent CO2 mitigation. Near-term SLCF measures do not allow for more time for CO2 mitigation. We disentangle and resolve the distinct benefits across different species and therewith facilitate an integrated strategy for mitigating both short and long-term climate change. PMID:25368182

  10. Intensification of hot extremes in the United States

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Diffenbaugh, Noah; Ashfaq, Moetasim

    Governments are currently considering policies that will limit greenhouse gas concentrations, including negotiation of an international treaty to replace the expiring Kyoto Protocol. Existing mitigation targets have arisen primarily from political negotiations, and the ability of such policies to avoid dangerous impacts is still uncertain. Using a large suite of climate model experiments, we find that substantial intensification of hot extremes could occur within the next 3 decades, below the 2 C global warming target currently being considered by policy makers. We also find that the intensification of hot extremes is associated with a shift towards more anticyclonic atmospheric circulationmore » during the warm season, along with warm-season drying over much of the U.S. The possibility that intensification of hot extremes could result from relatively small increases in greenhouse gas concentrations suggests that constraining global warming to 2 C may not be sufficient to avoid dangerous climate change.« less

  11. Large benefits to marine fisheries of meeting the 1.5°C global warming target.

    PubMed

    Cheung, William W L; Reygondeau, Gabriel; Frölicher, Thomas L

    2016-12-23

    Translating the Paris Agreement to limit global warming to 1.5°C above preindustrial level into impact-related targets facilitates communication of the benefits of mitigating climate change to policy-makers and stakeholders. Developing ecologically relevant impact-related targets for marine ecosystem services, such as fisheries, is an important step. Here, we use maximum catch potential and species turnover as climate-risk indicators for fisheries. We project that potential catches will decrease by more than 3 million metric tons per degree Celsius of warming. Species turnover is more than halved when warming is lowered from 3.5° to 1.5°C above the preindustrial level. Regionally, changes in maximum catch potential and species turnover vary across ecosystems, with the biggest risk reduction in the Indo-Pacific and Arctic regions when the Paris Agreement target is achieved. Copyright © 2016, American Association for the Advancement of Science.

  12. Regional Climate Impacts of Stabilizing Global Warming at 1.5 K Using Solar Geoengineering

    NASA Astrophysics Data System (ADS)

    Jones, Anthony C.; Hawcroft, Matthew K.; Haywood, James M.; Jones, Andy; Guo, Xiaoran; Moore, John C.

    2018-02-01

    The 2015 Paris Agreement aims to limit global warming to well below 2 K above preindustrial levels, and to pursue efforts to limit global warming to 1.5 K, in order to avert dangerous climate change. However, current greenhouse gas emissions targets are more compatible with scenarios exhibiting end-of-century global warming of 2.6-3.1 K, in clear contradiction to the 1.5 K target. In this study, we use a global climate model to investigate the climatic impacts of using solar geoengineering by stratospheric aerosol injection to stabilize global-mean temperature at 1.5 K for the duration of the 21st century against three scenarios spanning the range of plausible greenhouse gas mitigation pathways (RCP2.6, RCP4.5, and RCP8.5). In addition to stabilizing global mean temperature and offsetting both Arctic sea-ice loss and thermosteric sea-level rise, we find that solar geoengineering could effectively counteract enhancements to the frequency of extreme storms in the North Atlantic and heatwaves in Europe, but would be less effective at counteracting hydrological changes in the Amazon basin and North Atlantic storm track displacement. In summary, solar geoengineering may reduce global mean impacts but is an imperfect solution at the regional level, where the effects of climate change are experienced. Our results should galvanize research into the regionality of climate responses to solar geoengineering.

  13. Climate mitigation from vegetation biophysical feedbacks during the past three decades

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zeng, Zhenzhong; Piao, Shilong; Li, Laurent Z. X.

    The surface air temperature response to vegetation changes has been studied for the extreme case of land-cover change; yet, it has never been quantified for the slow but persistent increase in leaf area index (LAI) observed over the past 30 years (Earth greening). We isolate the fingerprint of increasing LAI on surface air temperature using a coupled land–atmosphere global climate model prescribed with satellite LAI observations. Furthermore, we found that the global greening has slowed down the rise in global land-surface air temperature by 0.09 ± 0.02 °C since 1982. This net cooling effect is the sum of cooling frommore » increased evapotranspiration (70%), changed atmospheric circulation (44%), decreased shortwave transmissivity (21%), and warming from increased longwave air emissivity (-29%) and decreased albedo (-6%). The global cooling originated from the regions where LAI has increased, including boreal Eurasia, Europe, India, northwest Amazonia, and the Sahel. Increasing LAI did not, but, significantly change surface air temperature in eastern North America and East Asia, where the effects of large-scale atmospheric circulation changes mask local vegetation feedbacks. Overall, the sum of biophysical feedbacks related to the greening of the Earth mitigated 12% of global land-surface warming for the past 30 years.« less

  14. POLLUTION CONTROL FOR UTILITY POWER GENERATION, 1990-2020

    EPA Science Inventory

    The paper discusses pollution control for utility power generation between the years 1990 and 2020, when the major anticipated environmental challenges facing the utility industry will be acid deposition control in the near term and global warming mitigation in the longer term. T...

  15. The impact of shale gas on the cost and feasibility of meeting climate targets—A global energy system model analysis and an exploration of uncertainties

    DOE PAGES

    Few, Sheridan; Gambhir, Ajay; Napp, Tamaryn; ...

    2017-01-27

    There exists considerable uncertainty over both shale and conventional gas resource availability and extraction costs, as well as the fugitive methane emissions associated with shale gas extraction and its possible role in mitigating climate change. This study uses a multi-region energy system model, TIAM (TIMES integrated assessment model), to consider the impact of a range of conventional and shale gas cost and availability assessments on mitigation scenarios aimed at achieving a limit to global warming of below 2 °C in 2100, with a 50% likelihood. When adding shale gas to the global energy mix, the reduction to the global energymore » system cost is relatively small (up to 0.4%), and the mitigation cost increases by 1%–3% under all cost assumptions. The impact of a “dash for shale gas”, of unavailability of carbon capture and storage, of increased barriers to investment in low carbon technologies, and of higher than expected leakage rates, are also considered; and are each found to have the potential to increase the cost and reduce feasibility of meeting global temperature goals. Finally, we conclude that the extraction of shale gas is not likely to significantly reduce the effort required to mitigate climate change under globally coordinated action, but could increase required mitigation effort if not handled sufficiently carefully.« less

  16. The impact of shale gas on the cost and feasibility of meeting climate targets—A global energy system model analysis and an exploration of uncertainties

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Few, Sheridan; Gambhir, Ajay; Napp, Tamaryn

    There exists considerable uncertainty over both shale and conventional gas resource availability and extraction costs, as well as the fugitive methane emissions associated with shale gas extraction and its possible role in mitigating climate change. This study uses a multi-region energy system model, TIAM (TIMES integrated assessment model), to consider the impact of a range of conventional and shale gas cost and availability assessments on mitigation scenarios aimed at achieving a limit to global warming of below 2 °C in 2100, with a 50% likelihood. When adding shale gas to the global energy mix, the reduction to the global energymore » system cost is relatively small (up to 0.4%), and the mitigation cost increases by 1%–3% under all cost assumptions. The impact of a “dash for shale gas”, of unavailability of carbon capture and storage, of increased barriers to investment in low carbon technologies, and of higher than expected leakage rates, are also considered; and are each found to have the potential to increase the cost and reduce feasibility of meeting global temperature goals. Finally, we conclude that the extraction of shale gas is not likely to significantly reduce the effort required to mitigate climate change under globally coordinated action, but could increase required mitigation effort if not handled sufficiently carefully.« less

  17. The interplay between knowledge, perceived efficacy, and concern about global warming and climate change: a one-year longitudinal study.

    PubMed

    Milfont, Taciano L

    2012-06-01

    If the long-term goal of limiting warming to less than 2°C is to be achieved, rapid and sustained reductions of greenhouse gas emissions are required. These reductions will demand political leadership and widespread public support for action on global warming and climate change. Public knowledge, level of concern, and perceived personal efficacy, in positively affecting these issues are key variables in understanding public support for mitigation action. Previous research has documented some contradictory associations between knowledge, personal efficacy, and concern about global warming and climate change, but these cross-sectional findings limit inferences about temporal stability and direction of influence. This study examines the relationships between these three variables over a one-year period and three waves with national data from New Zealand. Results showed a positive association between the variables, and the pattern of findings was stable and consistent across the three data points. More importantly, results indicate that concern mediates the influence of knowledge on personal efficacy. Knowing more about global warming and climate change increases overall concern about the risks of these issues, and this increased concern leads to greater perceived efficacy and responsibility to help solving them. Implications for risk communication are discussed. © 2012 Society for Risk Analysis.

  18. Climate change: a brief overview of the science and health impacts for Australia.

    PubMed

    Hanna, Elizabeth G; McIver, Lachlan J

    2018-04-16

    The scientific relationship between atmospheric CO2 and global temperatures has been understood for over a century. Atmospheric concentrations of CO2 due to burning of fossil fuels have contributed to 75% of the observed 1°C rise in global temperatures since the start of the industrial era (about 1750). Global warming is associated with intensifying climatic extremes and disruption to human society and human health. Mitigation is vital for human health as continued current emission rates are likely to lead to 4°C of warming by 2100. Further escalation of Australia's hot and erratic climate will lead to more extreme climate-related disasters of heatwaves, droughts, fires and storms, as well as shifts in disease burdens.

  19. Perceptions of Global Warming Among the Poorest Counties in the Southeastern United States.

    PubMed

    Kearney, Gregory D; Bell, Ronny A

    2018-03-07

    The geographic position and high level of poverty in the southeastern United States are significant risk factors that contribute to the region's high vulnerability to climate change. The goal of this study was to evaluate beliefs and perceptions of global warming among those living in poverty in the poorest counties in the southeastern United States. Results from this project may be used to support public health efforts to increase climate-related messaging to vulnerable and underserved communities. This was an ecological study that analyzed public opinion poll estimates from previously gathered national level survey data (2016). Responses to 5 questions related to beliefs, attitudes, and perceptions of global warming were evaluated. Counties below the national average poverty level (13.5%) were identified among 11 southeastern US states (Alabama, Arkansas, Florida, Georgia, Kentucky, Louisiana, Michigan, North Carolina, South Carolina, Tennessee, Virginia). Student t tests were used to compare public perceptions of global warming among the poorest urban and rural counties with national-level public opinion estimates. Overall, counties below the national poverty level in the southeastern US were significantly less likely to believe that global warming was happening compared with national-level estimates. The poorest rural counties were less likely to believe that global warming was happening than the poorest urban counties. Health care providers and public health leaders at regional and local levels are in ideal positions to raise awareness and advocate the health implications of climate change to decision makers for the benefit of helping underserved communities mitigate and adequately adapt to climate-related threats.

  20. Rice management interventions to mitigate greenhouse gas emissions: a review.

    PubMed

    Hussain, Saddam; Peng, Shaobing; Fahad, Shah; Khaliq, Abdul; Huang, Jianliang; Cui, Kehui; Nie, Lixiao

    2015-03-01

    Global warming is one of the gravest threats to crop production and environmental sustainability. Rice, the staple food of more than half of the world's population, is the most prominent cause of greenhouse gas (GHG) emissions in agriculture and gives way to global warming. The increasing demand for rice in the future has deployed tremendous concerns to reduce GHG emissions for minimizing the negative environmental impacts of rice cultivation. In this review, we presented a contemporary synthesis of existing data on how crop management practices influence emissions of GHGs in rice fields. We realized that modifications in traditional crop management regimes possess a huge potential to overcome GHG emissions. We examined and evaluated the different possible options and found that modifying tillage permutations and irrigation patterns, managing organic and fertilizer inputs, selecting suitable cultivar, and cropping regime can mitigate GHG emissions. Previously, many authors have discussed the feasibility principle and the influence of these practices on a single gas or, in particular, in the whole agricultural sector. Nonetheless, changes in management practices may influence more than one gas at the same time by different mechanisms or sometimes their effects may be antagonistic. Therefore, in the present attempt, we estimated the overall global warming potential of each approach to consider the magnitude of its effects on all gases and provided a comprehensive assessment of suitable crop management practices for reducing GHG emissions in rice culture.

  1. Assessing the impacts of 1.5°C of global warming - The Inter-Sectoral Impact Model Intercomparison Project (ISIMIP) approach

    NASA Astrophysics Data System (ADS)

    Zhao, F.; Frieler, K.; Warszawski, L.; Lange, S.; Schewe, J.; Reyer, C.; Ostberg, S.; Piontek, F.; Betts, R. A.; Burke, E.; Ciais, P.; Deryng, D.; Ebi, K. L.; Emanuel, K.; Elliott, J. W.; Galbraith, E. D.; Gosling, S.; Hickler, T.; Hinkel, J.; Jones, C.; Krysanova, V.; Lotze-Campen, H.; Mouratiadou, I.; Popp, A.; Tian, H.; Tittensor, D.; Vautard, R.; van Vliet, M. T. H.; Eddy, T.; Hattermann, F.; Huber, V.; Mengel, M.; Stevanovic, M.; Kirsten, T.; Mueller Schmied, H.; Denvil, S.; Halladay, K.; Suzuki, T.; Lotze, H. K.

    2016-12-01

    In Paris, France, December 2015 the Conference of Parties (COP) to the United Nations Framework Convention on Climate Change (UNFCCC) invited the IPCC to provide a "special report in 2018 on the impacts of global warming of 1.5°C above pre-industrial levels and related global greenhouse gas emission pathways". In Nairobi, Kenya, April 2016 the IPCC panel accepted the invitation. Here we describe the model simulations planned within the Inter-Sectoral Impact Model Intercomparison Project (ISIMIP) to address the request by providing tailored cross-sectoral consistent impacts projections. The protocol is designed to allow for 1) a separation of the impacts of the historical warming starting from pre-industrial conditions from other human drivers such as historical land use changes (based on pre-industrial and historical impact model simulations), 2) a quantification of the effects of an additional warming to 1.5°C including a potential overshoot and long term effects up to 2300 in comparison to a no-mitigation scenario (based on the low emissions Representative Concentration Pathway RCP2.6 and a no-mitigation scenario RCP6.0) keeping socio-economic conditions fixed at year 2005 levels, and 3) an assessment of the climate effects based on the same climate scenarios but accounting for parallel changes in socio-economic conditions following the middle of the road Shared Socioeconomic Pathway (SSP2) and differential bio-energy requirements associated with the transformation of the energy system to reach RCP2.6 compared to RCP6.0. To provide the scientific basis for an aggregation of impacts across sectors and an analysis of cross-sectoral interactions potentially damping or amplifying sectoral impacts the protocol is designed to provide consistent impacts projections across a range of impact models from different sectors (global and regional hydrological models, global gridded crop models, global vegetation models, regional forestry models, global and regional marine ecosystem and fisheries models, global and regional coastal infrastructure models, energy models, health models, and agro-economic models).

  2. Assessing the impacts of 1.5°C of global warming - The Inter-Sectoral Impact Model Intercomparison Project (ISIMIP) approach

    NASA Astrophysics Data System (ADS)

    Frieler, Katja; Warszawski, Lila; Zhao, Fang

    2017-04-01

    In Paris, France, December 2015 the Conference of Parties (COP) to the United Nations Framework Convention on Climate Change (UNFCCC) invited the IPCC to provide a "special report in 2018 on the impacts of global warming of 1.5°C above pre-industrial levels and related global greenhouse gas emission pathways". In Nairobi, Kenya, April 2016 the IPCC panel accepted the invitation. Here we describe the model simulations planned within the Inter-Sectoral Impact Model Intercomparison Project (ISIMIP) to address the request by providing tailored cross-sectoral consistent impacts projections. The protocol is designed to allow for 1) a separation of the impacts of the historical warming starting from pre-industrial conditions from other human drivers such as historical land use changes (based on pre-industrial and historical impact model simulations), 2) a quantification of the effects of an additional warming to 1.5°C including a potential overshoot and long term effects up to 2300 in comparison to a no-mitigation scenario (based on the low emissions Representative Concentration Pathway RCP2.6 and a no-mitigation scenario RCP6.0) keeping socio-economic conditions fixed at year 2005 levels, and 3) an assessment of the climate effects based on the same climate scenarios but accounting for parallel changes in socio-economic conditions following the middle of the road Shared Socioeconomic Pathway (SSP2) and differential bio-energy requirements associated with the transformation of the energy system to reach RCP2.6 compared to RCP6.0. To provide the scientific basis for an aggregation of impacts across sectors and an analysis of cross-sectoral interactions potentially damping or amplifying sectoral impacts the protocol is designed to provide consistent impacts projections across a range of impact models from different sectors (global and regional hydrological models, global gridded crop models, global vegetation models, regional forestry models, global and regional marine ecosystem and fisheries models, global and regional coastal infrastructure models, energy models, health models, and agro-economic models).

  3. Analysing regional climate change in Africa in a 1.5 °C global warming world

    NASA Astrophysics Data System (ADS)

    Weber, Torsten; Haensler, Andreas; Jacob, Daniela

    2017-04-01

    At the 21st session of the UNFCCC Conference of the Parties (COP21) in Paris, a reaffirmation to strengthen the effort to limit the global temperature increase to 1.5 °C was decided. However, even if global warming is limited, some regions might still be substantially affected by climate change, especially for continents like Africa where the socio-economic conditions are strongly linked to the climatic conditions. Hence, providing a detailed analysis of the projected climate changes in a 1.5 °C global warming scenario will allow the African society to undertake measures for adaptation in order to mitigate potential negative consequences. In order to provide such climate change information, the existing CORDEX Africa ensemble for RCP2.6 scenario simulations has systematically been increased by conducting additional REMO simulations using data from various global circulation models (GCMs) as lateral boundary conditions. Based on this ensemble, which now consists of eleven CORDEX Africa RCP2.6 regional climate model simulations from three RCMs (forced with different GCMs), various temperature and precipitation indices such as number of cold/hot days and nights, duration of the rainy season, the amount of rainfall in the rainy seasons and the number of dry spells have been calculated for a 1.5 °C global warming scenario. The applied method to define the 1.5 °C global warming period has been already applied in the IMPACT2C project. In our presentation, we will discuss the analysis of the climate indices in a 1.5 °C global warming world for the CORDEX-Africa region. Amongst presenting the magnitude of projected changes, we will also address the question for selected indices if the changes projected in a 1.5 °C global warming scenario are already larger than the climate variability and we will also draw links to the changes projected under a more extreme scenario.

  4. Past and future warming of a deep European lake (Lake Lugano): What are the climatic drivers?

    USGS Publications Warehouse

    Lepori, Fabio; Roberts, James J.

    2015-01-01

    We used four decades (1972–2013) of temperature data from Lake Lugano, Switzerland and Italy, to address the hypotheses that: [i] the lake has been warming; [ii] part of the warming reflects global trends and is independent from climatic oscillations and [iii] the lake will continue to warm until the end of the 21st century. During the time spanned by our data, the surface waters of the lake (0–5 m) warmed at rates of 0.2–0.9 °C per decade, depending on season. The temperature of the deep waters (50-m bottom) displayed a rising trend in a meromictic basin of the lake and a sawtooth pattern in the other basin, which is holomictic. Long-term variation in surfacewater temperature correlated to global warming and multidecadal variation in two climatic oscillations, the Atlantic Multidecadal Oscillation (AMO) and the East Atlantic Pattern (EA).However, we did not detect an influence of the EA on the lake's temperature (as separate from the effect of global warming). Moreover, the effect of the AMO, estimated to a maximum of +1 °C, was not sufficient to explain the observed temperature increase (+2–3 °C in summer). Based on regional climate projections, we predicted that the lake will continue to warm at least until the end of the 21st century. Our results strongly suggest that the warming of Lake Lugano is tied to globalclimate change. To sustain current ecosystem conditions in Lake Lugano, we suggest that manage- ment plans that curtail eutrophication and (or) mitigation of global warming be pursued.

  5. Future Arctic temperature change resulting from a range of aerosol emissions scenarios

    DOE PAGES

    Wobus, Cameron; Flanner, Mark; Sarofim, Marcus C.; ...

    2016-05-17

    The Arctic temperature response to emissions of aerosols – specifically black carbon (BC), organic carbon (OC), and sulfate – depends on both the sector and the region where these emissions originate. Thus, the net Arctic temperature response to global aerosol emissions reductions will depend strongly on the blend of emissions sources being targeted. We use recently published equilibrium Arctic temperature response factors for BC, OC, and sulfate to estimate the range of present-day and future Arctic temperature changes from seven different aerosol emissions scenarios. Globally, Arctic temperature changes calculated from all of these emissions scenarios indicate that present-day emissions frommore » the domestic and transportation sectors generate the majority of present-day Arctic warming from BC. However, in all of these scenarios, this warming is more than offset by cooling resulting from SO 2 emissions from the energy sector. Thus, long-term climate mitigation strategies that are focused on reducing carbon dioxide (CO 2) emissions from the energy sector could generate short-term, aerosol-induced Arctic warming. As a result, a properly phased approach that targets BC-rich emissions from the transportation sector as well as the domestic sectors in key regions – while simultaneously working toward longer-term goals of CO 2 mitigation – could potentially avoid some amount of short-term Arctic warming.« less

  6. Sound management may sequester methane in grazed rangeland ecosystems

    USDA-ARS?s Scientific Manuscript database

    Considering their contribution to global warming, the sources and sinks of methane (CH4) should be accounted when undertaking a greenhouse gas inventory for grazed rangeland ecosystems. The aim of this study was to evaluate the mitigation potential of current ecological management programs implement...

  7. Mitigating global warming potentials of methane and nitrous oxide gases from rice paddies under different irrigation regimes.

    PubMed

    Ali, Muhammad Aslam; Hoque, M Anamul; Kim, Pil Joo

    2013-04-01

    A field experiment was conducted in Bangladesh Agricultural University Farm to investigate the mitigating effects of soil amendments such as calcium carbide, calcium silicate, phosphogypsum, and biochar with urea fertilizer on global warming potentials (GWPs) of methane (CH4) and nitrous oxide (N2O) gases during rice cultivation under continuous and intermittent irrigations. Among the amendments phosphogypsum and silicate fertilizer, being potential source of electron acceptors, decreased maximum level of seasonal CH4 flux by 25-27 % and 32-38 % in continuous and intermittent irrigations, respectively. Biochar and calcium carbide amendments, acting as nitrification inhibitors, decreased N2O emissions by 36-40 % and 26-30 % under continuous and intermittent irrigations, respectively. The total GWP of CH4 and N2O gases were decreased by 7-27 % and 6-34 % with calcium carbide, phosphogypsum, and silicate fertilizer amendments under continuous and intermittent irrigations, respectively. However, biochar amendments increased overall GWP of CH4 and N2O gases.

  8. Physiological and Agronomic Performance of the Coffee Crop in the Context of Climate Change and Global Warming: A Review.

    PubMed

    DaMatta, Fábio M; Avila, Rodrigo T; Cardoso, Amanda A; Martins, Samuel C V; Ramalho, José C

    2018-05-30

    Coffee is one of the most important global crops and provides a livelihood to millions of people living in developing countries. Coffee species have been described as being highly sensitive to climate change, as largely deduced from modeling studies based on predictions of rising temperatures and changing rainfall patterns. Here, we discuss the physiological responses of the coffee tree in the context of present and ongoing climate changes, including drought, heat, and light stresses, and interactions between these factors. We also summarize recent insights on the physiological and agronomic performance of coffee at elevated atmospheric CO 2 concentrations and highlight the key role of CO 2 in mitigating the harmful effects of heat stress. Evidence is shown suggesting that warming, per se, may be less harmful to coffee suitability than previously estimated, at least under the conditions of an adequate water supply. Finally, we discuss several mitigation strategies to improve crop performance in a changing world.

  9. Global Warming Induced Changes in Rainfall Characteristics in IPCC AR5 Models

    NASA Technical Reports Server (NTRS)

    Lau, William K. M.; Wu, Jenny, H.-T.; Kim, Kyu-Myong

    2012-01-01

    Changes in rainfall characteristic induced by global warming are examined from outputs of IPCC AR5 models. Different scenarios of climate warming including a high emissions scenario (RCP 8.5), a medium mitigation scenario (RCP 4.5), and 1% per year CO2 increase are compared to 20th century simulations (historical). Results show that even though the spatial distribution of monthly rainfall anomalies vary greatly among models, the ensemble mean from a sizable sample (about 10) of AR5 models show a robust signal attributable to GHG warming featuring a shift in the global rainfall probability distribution function (PDF) with significant increase (>100%) in very heavy rain, reduction (10-20% ) in moderate rain and increase in light to very light rains. Changes in extreme rainfall as a function of seasons and latitudes are also examined, and are similar to the non-seasonal stratified data, but with more specific spatial dependence. These results are consistent from TRMM and GPCP rainfall observations suggesting that extreme rainfall events are occurring more frequently with wet areas getting wetter and dry-area-getting drier in a GHG induced warmer climate.

  10. Cloud Feedbacks on Climate: A Challenging Scientific Problem

    ScienceCinema

    Norris, Joe

    2017-12-22

    One reason it has been difficult to develop suitable social and economic policies to address global climate change is that projected global warming during the coming century has a large uncertainty range. The primary physical cause of this large uncertainty range is lack of understanding of the magnitude and even sign of cloud feedbacks on the climate system. If Earth's cloudiness responded to global warming by reflecting more solar radiation back to space or allowing more terrestrial radiation to be emitted to space, this would mitigate the warming produced by increased anthropogenic greenhouse gases. Contrastingly, a cloud response that reduced solar reflection or terrestrial emission would exacerbate anthropogenic greenhouse warming. It is likely that a mixture of responses will occur depending on cloud type and meteorological regime, and at present, we do not know what the net effect will be. This presentation will explain why cloud feedbacks have been a challenging scientific problem from the perspective of theory, modeling, and observations. Recent research results on observed multidecadal cloud-atmosphere-ocean variability over the Pacific Ocean will also be shown, along with suggestions for future research.

  11. Mitigation implications of an ice-free summer in the Arctic Ocean

    NASA Astrophysics Data System (ADS)

    González-Eguino, Mikel; Neumann, Marc B.; Arto, Iñaki; Capellán-Perez, Iñigo; Faria, Sérgio H.

    2017-01-01

    The rapid loss of sea ice in the Arctic is one of the most striking manifestations of climate change. As sea ice melts, more open water is exposed to solar radiation, absorbing heat and generating a sea-ice-albedo feedback that reinforces Arctic warming. Recent studies stress the significance of this feedback mechanism and suggest that ice-free summer conditions in the Arctic Ocean may occur faster than previously expected, even under low-emissions pathways. Here we use an integrated assessment model to explore the implications of a potentially rapid sea-ice-loss process. We consider a scenario leading to a full month free of sea ice in September 2050, followed by three potential trajectories afterward: partial recovery, stabilization, and continued loss of sea ice. We analyze how these scenarios affect the efforts to keep global temperature increase below 2°C. Our results show that sea-ice melting in the Arctic requires more stringent mitigation efforts globally. We find that global CO2 emissions would need to reach zero levels 5-15 years earlier and that the carbon budget would need to be reduced by 20%-51% to offset this additional source of warming. The extra mitigation effort would imply an 18%-59% higher mitigation cost to society. Our results also show that to achieve the 1.5°C target in the presence of ice-free summers negative emissions would be needed. This study highlights the need for a better understanding of how the rapid changes observed in the Arctic may impact our society.

  12. Contrasting regional versus global radiative forcing by megacity pollution emissions

    NASA Astrophysics Data System (ADS)

    Dang, H.; Unger, N.

    2015-10-01

    We assess the regional and global integrated radiative forcing on 20- and 100-year time horizons caused by a one-year pulse of present day pollution emissions from 10 megacity areas: Los Angeles, Mexico City, New York City, Sao Paulo, Lagos, Cairo, New Delhi, Beijing, Shanghai and Manila. The assessment includes well-mixed greenhouse gases: carbon dioxide (CO2), nitrous oxide (N2O), methane (CH4); and short-lived climate forcers: tropospheric ozone (O3) and fine mode aerosol particles (sulfate, nitrate, black carbon, primary and secondary organic aerosol). All megacities contribute net global warming on both time horizons. Most of the 10 megacity areas exert a net negative effect on their own regional radiation budget that is 10-100 times larger in magnitude than their global radiative effects. Of the cities examined, Beijing, New Delhi, Shanghai and New York contribute most to global warming with values ranging from +0.03 to 0.05 Wm-2yr on short timescales and +0.07-0.10 Wm-2yr on long timescales. Regional net 20-year radiative effects are largest for Mexico City (-0.84 Wm-2yr) and Beijing (-0.78 Wm-2yr). Megacity reduction of non-CH4 O3 precursors to improve air quality offers zero co-benefits to global climate. Megacity reduction of aerosols to improve air quality offers co-benefits to the regional radiative budget but minimal or no co-benefits to global climate with the exception of black carbon reductions in a few cities, especially Beijing and New Delhi. Results suggest that air pollution and global climate change mitigation can be treated as separate environmental issues in policy at the megacity level with the exception of CH4 action. Individual megacity reduction of CO2 and CH4 emissions can mitigate global warming and therefore offers climate safety improvements to the entire planet.

  13. Projections of Rapidly Rising Temperatures over Africa Under Low Mitigation

    NASA Technical Reports Server (NTRS)

    Engelbrecht, Francois; Adegoke, Jimmy; Bopape, Mary-Jane; Naidoo, Mogesh; Garland, Rebecca; Thatcher, Marcus; McGregor, John; Katzfe, Jack; Werner, Micha; Ichoku, Charles; hide

    2015-01-01

    An analysis of observed trends in African annual-average near-surface temperatures over the last five decades reveals drastic increases, particularly over parts of the subtropics and central tropical Africa. Over these regions, temperatures have been rising at more than twice the global rate of temperature increase. An ensemble of high-resolution downscalings, obtained using a single regional climate model forced with the sea-surface temperatures and sea-ice fields of an ensemble of global circulation model (GCM) simulations, is shown to realistically represent the relatively strong temperature increases observed in subtropical southern and northern Africa. The amplitudes of warming are generally underestimated, however. Further warming is projected to occur during the 21st century, with plausible increases of 4-6 C over the subtropics and 3-5 C over the tropics by the end of the century relative to present-day climate under the A2 (a low mitigation) scenario of the Special Report on Emission Scenarios. High impact climate events such as heat-wave days and high fire-danger days are consistently projected to increase drastically in their frequency of occurrence. General decreases in soil-moisture availability are projected, even for regions where increases in rainfall are plausible, due to enhanced levels of evaporation. The regional downscalings presented here, and recent GCM projections obtained for Africa, indicate that African annual-averaged temperatures may plausibly rise at about 1.5 times the global rate of temperature increase in the subtropics, and at a somewhat lower rate in the tropics. These projected increases although drastic, may be conservative given the model underestimations of observed temperature trends. The relatively strong rate of warming over Africa, in combination with the associated increases in extreme temperature events, may be key factors to consider when interpreting the suitability of global mitigation targets in terms of African climate change and climate change adaptation in Africa.

  14. When will we reach 1.5 of global warming?

    NASA Astrophysics Data System (ADS)

    Matthews, D.

    2017-12-01

    Recent global temperature trends indicate that we may be rapidly approaching 1.5 degrees of global warming. However, rigorous estimates of when this target will be breached are rare, and are highly sensitive to small errors in observed and model-simulated historical warming, as well as widely-varying estimates of the allowable emissions for 1.5°C. Here, I present a proposed method to estimate the time remaining to 1.5°C using a new estimate of human-attributable warming, updated CO2 emissions trends, and the latest estimates of the 1.5°C carbon budget. The resulting calculation suggests that a continuation of recent CO2 emission trends would take us past 1.5°C in 2033, a little less than 16 years from now. Uncertainties in this calculation remain large, reflecting both fundamental scientific uncertainties associated with the climate response to emissions, as well as uncertainties associated with human mitigation decisions and their effect on future CO2 and non-CO2 greenhouse gas emissions. However, it is nevertheless important to provide a robust and widely-accepted best estimate of the time remaining before we breach the climate targets that have been adopted in the Paris climate agreement, so as to clearly communicate our scientific understanding to policy makers and the general public. To this end, in an effort to visualize and track our progress towards these target, we have develop an online and projectable climate clock, which shows a real-time countdown of the time remaining to 1.5 and 2°C of global warming (see www.climateclock.net). This clock will be updated annually in light of the most recent emissions and global temperature data, and accounting for improved estimates of the remaining carbon budget associated with these climate targets. As countries around the world move forward with climate mitigation efforts, this climate clock will be able to clearly mark our progress towards the objective of adding time to the countdown so as to ultimately avoid breaching these dangerous climate thresholds.

  15. The Roadmap to Climate Stability Based on IPCC Fifth Assessment Climate Accounting Protocols

    NASA Astrophysics Data System (ADS)

    Schultz, T.

    2016-12-01

    The Climate Stabilization Council recognizes the severe impact consequences of a rapidly warming climate and the challenging mitigation requirements of reaching the COP21 aspirational goal of +1.5°C. To address this challenge, we have used the IPCC Fifth Assessment Report which presents new methods for projecting increases in average global temperature and new metrics to update global climate accounting protocols. The updated protocols allow us to assess the full spectrum of climate mitigation projects available and identify the ability of specific projects to achieve various climate warming targets at different points in time. This assessment demonstrates the need to continue focusing on reducing and removing the major sources of overall excess heat linked to CO2, methane, black carbon, and tropospheric ozone. These findings also highlight the importance of solar radiation management (SRM) and earth radiation management (ERM) to achieve climate stabilization in the near-term. By integrating advanced life-cycle assessment (LCA) into the protocols, unintended environmental or human health impact trade-offs that may be associated with deployment of specific mitigation options can be identified. These protocols have also been introduced for standardization to the international ISO 14000 process. We conclude by describing the Climate Stabilization Council's role in establishing a platform for the scientific research, evaluation, and implementation of the identified climate mitigation projects.

  16. Mitigation benefits of forestation greatly varies on short spatial scale

    NASA Astrophysics Data System (ADS)

    Yakir, Dan; Rotenberg, Eyal; Rohatin, Shani; Ramati, Efrat; Asaf, David; Dicken, Uri

    2016-04-01

    Mitigation of global warming by forestation is controversial because of its linkage to increasing surface energy load and associated surface warming. Such tradeoffs between cooling associated with carbon sequestration and warming associated with radiative effects have been considered predominantly on large spatial scales, indicating benefits of forestation mainly in the tropics but not in the boreal regions. Using mobile laboratory for measuring CO2, water and energy flux in forest and non-forest ecosystem along the climatic gradient in Israel over three years, we show that the balance between cooling and warming effects of forestation can be transformed across small spatial scale. While converting shrubland to pine forest in a semi-arid site (280 mm annual precipitations) requires several decades of carbon sequestration to balance the radiative warming effects, similar land use change under moist Mediterranean conditions (780 mm annual precipitation) just ~200 km away showed reversal of this balance. Specifically, the results indicated that in the study region (semi-arid to humid Mediterranean), net absorb radiation in pine forests is always larger than in open space ecosystems, resulting in surface warming effects (the so-called albedo effect). Similarly, depression of thermal radiation emission, mainly due canopy skin surface cooling associated with the 'convector effect' in forests compared with shrubland ecosystems also appears in all sites. But both effects decrease by about 1/2 in going from the semi-arid to the humid Mediterranean sites, while enhanced productivity of forest compared to grassland increase about fourfold. The results indicate a greater potential for forestation as climate change mitigation strategy than previously assumed.

  17. Comparison of CO2 Photoreduction Systems: A Review

    EPA Science Inventory

    Carbon dioxide (CO2) emissions are a major contributor to the climate change equation. To alleviate concerns of global warming, strategies to mitigate increase of CO2 levels in the atmosphere have to be developed. The most desirable approach is to convert the carbon dioxide to us...

  18. GLOBAL WARMING MITIGATION POTENTIAL OF THREE TREE PLANTATION SCENARIIOS

    EPA Science Inventory

    The report gives results of an analysis of three alternative uses of forests in the U.S. to reduce atmospheric carbon dioxide (CO2)concentrations: (1) planting trees with no harvesting, (2) traditional forestry, and (3) short-rotation intensive culture of trees for biomass. ncrea...

  19. Climate change and sugarcane production: potential impact and mitigation strategies

    USDA-ARS?s Scientific Manuscript database

    Sugarcane (Saccharum officinarum L.) is an important crop for sugar and bioenergy worldwide. Atmospheric carbon dioxide concentration has increased by about 30% since the mid-18th century. The increasing greenhouse gas emission and global warming during climate change clearly result in the increase ...

  20. Compensatory mechanisms mitigate the effect of warming and drought on wood formation.

    PubMed

    Balducci, Lorena; Cuny, Henri E; Rathgeber, Cyrille B K; Deslauriers, Annie; Giovannelli, Alessio; Rossi, Sergio

    2016-06-01

    Because of global warming, high-latitude ecosystems are expected to experience increases in temperature and drought events. Wood formation will have to adjust to these new climatic constraints to maintain tree mechanical stability and long-distance water transport. The aim of this study is to understand the dynamic processes involved in wood formation under warming and drought. Xylogenesis, gas exchange, water relations and wood anatomy of black spruce [Picea mariana (Mill.) B.S.P.] saplings were monitored during a greenhouse experiment where temperature was increased during daytime or night-time (+6 °C) combined with a drought period. The kinetics of tracheid development expressed as rate and duration of the xylogenesis sub-processes were quantified using generalized additive models. Drought and warming had a strong influence on cell production, but little effect on wood anatomy. The increase in cell production rate under warmer temperatures, and especially during the night-time warming at the end of the growing season, resulted in wider tree-rings. However, the strong compensation between rates and durations of cell differentiation processes mitigates warming and drought effects on tree-ring structure. Our results allowed quantification of how wood formation kinetics is regulated when water and heat stress increase, allowing trees to adapt to future environmental conditions. © 2015 John Wiley & Sons Ltd.

  1. Reducing emissions from agriculture to meet the 2 °C target.

    PubMed

    Wollenberg, Eva; Richards, Meryl; Smith, Pete; Havlík, Petr; Obersteiner, Michael; Tubiello, Francesco N; Herold, Martin; Gerber, Pierre; Carter, Sarah; Reisinger, Andrew; van Vuuren, Detlef P; Dickie, Amy; Neufeldt, Henry; Sander, Björn O; Wassmann, Reiner; Sommer, Rolf; Amonette, James E; Falcucci, Alessandra; Herrero, Mario; Opio, Carolyn; Roman-Cuesta, Rosa Maria; Stehfest, Elke; Westhoek, Henk; Ortiz-Monasterio, Ivan; Sapkota, Tek; Rufino, Mariana C; Thornton, Philip K; Verchot, Louis; West, Paul C; Soussana, Jean-François; Baedeker, Tobias; Sadler, Marc; Vermeulen, Sonja; Campbell, Bruce M

    2016-12-01

    More than 100 countries pledged to reduce agricultural greenhouse gas (GHG) emissions in the 2015 Paris Agreement of the United Nations Framework Convention on Climate Change. Yet technical information about how much mitigation is needed in the sector vs. how much is feasible remains poor. We identify a preliminary global target for reducing emissions from agriculture of ~1 GtCO 2 e yr -1 by 2030 to limit warming in 2100 to 2 °C above pre-industrial levels. Yet plausible agricultural development pathways with mitigation cobenefits deliver only 21-40% of needed mitigation. The target indicates that more transformative technical and policy options will be needed, such as methane inhibitors and finance for new practices. A more comprehensive target for the 2 °C limit should be developed to include soil carbon and agriculture-related mitigation options. Excluding agricultural emissions from mitigation targets and plans will increase the cost of mitigation in other sectors or reduce the feasibility of meeting the 2 °C limit. © 2016 The Authors Global Change Biology Published by John Wiley & Sons Ltd.

  2. Developed and developing world responsibilities for historical climate change and CO2 mitigation.

    PubMed

    Wei, Ting; Yang, Shili; Moore, John C; Shi, Peijun; Cui, Xuefeng; Duan, Qingyun; Xu, Bing; Dai, Yongjiu; Yuan, Wenping; Wei, Xin; Yang, Zhipeng; Wen, Tijian; Teng, Fei; Gao, Yun; Chou, Jieming; Yan, Xiaodong; Wei, Zhigang; Guo, Yan; Jiang, Yundi; Gao, Xuejie; Wang, Kaicun; Zheng, Xiaogu; Ren, Fumin; Lv, Shihua; Yu, Yongqiang; Liu, Bin; Luo, Yong; Li, Weijing; Ji, Duoying; Feng, Jinming; Wu, Qizhong; Cheng, Huaqiong; He, Jiankun; Fu, Congbin; Ye, Duzheng; Xu, Guanhua; Dong, Wenjie

    2012-08-07

    At the United Nations Framework Convention on Climate Change Conference in Cancun, in November 2010, the Heads of State reached an agreement on the aim of limiting the global temperature rise to 2 °C relative to preindustrial levels. They recognized that long-term future warming is primarily constrained by cumulative anthropogenic greenhouse gas emissions, that deep cuts in global emissions are required, and that action based on equity must be taken to meet this objective. However, negotiations on emission reduction among countries are increasingly fraught with difficulty, partly because of arguments about the responsibility for the ongoing temperature rise. Simulations with two earth-system models (NCAR/CESM and BNU-ESM) demonstrate that developed countries had contributed about 60-80%, developing countries about 20-40%, to the global temperature rise, upper ocean warming, and sea-ice reduction by 2005. Enacting pledges made at Cancun with continuation to 2100 leads to a reduction in global temperature rise relative to business as usual with a 1/3-2/3 (CESM 33-67%, BNU-ESM 35-65%) contribution from developed and developing countries, respectively. To prevent a temperature rise by 2 °C or more in 2100, it is necessary to fill the gap with more ambitious mitigation efforts.

  3. Development of secondary chamber for tar cracking-improvement of wood pyrolysis performance in pre-vacuum chamber

    NASA Astrophysics Data System (ADS)

    Siahaan, S.; Homma, H.; Homma, H.

    2018-02-01

    Energy crisis and global warming, in other words, climate change are critical topics discussed in various parts of the world. Global warming primarily result from too much emission of carbon dioxide (CO2) in the atmosphere. To mitigate global warming, or climate change and improve electrification in rural areas, wood pyrolysis technology is developed in a laboratory scale, of which gases are directly applicable to the gas engine generator. Our laboratory has developed a prototype of wood pyrolysis plant with a pre-vacuum chamber. However, tar yield was around 40 wt% of feedstock. This research aims to reduce tar yield by secondary tar cracking. For the secondary tar cracking, a secondary pre-vacuum chamber is installed after primary pre-vacuum chamber. Gases generated in the primary pre-vacuum chamber are lead into the secondary chamber that is heated up to 1000 K. This paper reports performance of the secondary chamber for secondary tar cracking in homogeneous mode and heterogeneous mode with char.

  4. Projected Changes in the Asian-Australian Monsoon Region in 1.5°C and 2.0°C Global-Warming Scenarios

    NASA Astrophysics Data System (ADS)

    Chevuturi, Amulya; Klingaman, Nicholas P.; Turner, Andrew G.; Hannah, Shaun

    2018-03-01

    In light of the Paris Agreement, it is essential to identify regional impacts of half a degree additional global warming to inform climate adaptation and mitigation strategies. We investigate the effects of 1.5°C and 2.0°C global warming above preindustrial conditions, relative to present day (2006-2015), over the Asian-Australian monsoon region (AAMR) using five models from the Half a degree Additional warming, Prognosis and Projected Impacts (HAPPI) project. There is considerable intermodel variability in projected changes to mean climate and extreme events in 2.0°C and 1.5°C scenarios. There is high confidence in projected increases to mean and extreme surface temperatures over AAMR, as well as more-frequent persistent daily temperature extremes over East Asia, Australia, and northern India with an additional 0.5°C warming, which are likely to occur. Mean and extreme monsoon precipitation amplify over AAMR, except over Australia at 1.5°C where there is uncertainty in the sign of the change. Persistent daily extreme precipitation events are likely to become more frequent over parts of East Asia and India with an additional 0.5°C warming. There is lower confidence in projections of precipitation change than in projections of surface temperature change. These results highlight the benefits of limiting the global-mean temperature change to 1.5°C above preindustrial, as the severity of the above effects increases with an extra 0.5°C warming.

  5. Cryoinsulation Material Development to Mitigate Obsolescence Risk for Global Warming Potential Foams

    NASA Technical Reports Server (NTRS)

    Protz, Alison; Bruyns, Roland; Nettles, Mindy

    2015-01-01

    Cryoinsulation foams currently being qualified for the Space Launch System (SLS) core stage are nonozone- depleting substances (ODP) and are compliant with current environmental regulations. However, these materials contain the blowing agent HFC-245fa, a hydrofluorocarbon (HFC), which is a Global Warming Potential (GWP) substance. In August 2014, the Environmental Protection Agency (EPA) proposed a policy change to reduce or eliminate certain HFCs, including HFC-245fa, in end-use categories including foam blowing agents beginning in 2017. The policy proposes a limited exception to allow continued use of HFC and HFC-blend foam blowing agents for military or space- and aeronautics-related applications, including rigid polyurethane spray foams, but only until 2022.

  6. Hurricanes benefit bleached corals

    PubMed Central

    Manzello, Derek P.; Brandt, Marilyn; Smith, Tyler B.; Lirman, Diego; Hendee, James C.; Nemeth, Richard S.

    2007-01-01

    Recent, global mass-mortalities of reef corals due to record warm sea temperatures have led researchers to consider global warming as one of the most significant threats to the persistence of coral reef ecosystems. The passage of a hurricane can alleviate thermal stress on coral reefs, highlighting the potential for hurricane-associated cooling to mitigate climate change impacts. We provide evidence that hurricane-induced cooling was responsible for the documented differences in the extent and recovery time of coral bleaching between the Florida Reef Tract and the U.S. Virgin Islands during the Caribbean-wide 2005 bleaching event. These results are the only known scenario where the effects of a hurricane can benefit a stressed marine community. PMID:17606914

  7. Hurricanes benefit bleached corals.

    PubMed

    Manzello, Derek P; Brandt, Marilyn; Smith, Tyler B; Lirman, Diego; Hendee, James C; Nemeth, Richard S

    2007-07-17

    Recent, global mass-mortalities of reef corals due to record warm sea temperatures have led researchers to consider global warming as one of the most significant threats to the persistence of coral reef ecosystems. The passage of a hurricane can alleviate thermal stress on coral reefs, highlighting the potential for hurricane-associated cooling to mitigate climate change impacts. We provide evidence that hurricane-induced cooling was responsible for the documented differences in the extent and recovery time of coral bleaching between the Florida Reef Tract and the U.S. Virgin Islands during the Caribbean-wide 2005 bleaching event. These results are the only known scenario where the effects of a hurricane can benefit a stressed marine community.

  8. Global Warming and Energy Transition: A Public Policy Imperative

    NASA Astrophysics Data System (ADS)

    Stone, G. T.

    2006-12-01

    The historic transition from fossil fuels to alternative energy resources has begun. This development is commonly attributed to increasing energy costs and the need for energy security. Looming ever larger, however, is the issue that will soon drive the third energy revolution: global warming. A preponderance of evidence documents accelerating warming, enlarging impacts, and human causes -- principally combustion of fossil fuels. The carbon dioxide (C02) content of Earth's atmosphere has increased more than 35 percent since the beginning of the industrial revolution and is the highest in 650,000 years. This dramatic rise of C02 and attendant positive feedbacks are already forcing significant impacts worldwide. These include atmospheric warming with shifting climatic and habitat zones, spreading tropical disease, and more extreme weather events; rapid ice loss at high latitude and high altitude; ocean warming and acidification with coral reef bleaching and intensifying tropical storms; rising sea level; and accelerating extinction rates. The 2007 draft report of the Intergovernmental Panel on Climate Change (IPCC) predicts greater warming than in previous models. A tipping point to abrupt climate change may be imminent. It is incumbent upon geoscientists and geoscience educators to assume leadership in addressing this challenge through public outreach and general education. The following topics should be integrated into all appropriate courses: the evidence of global warming and its causes; observed present and predicted future impacts of global warming; mitigation and adaptation strategies; and implications for energy policies and economic opportunities. New entry-level science and general education courses -- such as Climate Change Fundamentals and Energy in Nature, Technology, and Society -- are proving to be effective should be widely developed In addition, by workshops and presentations to civic and business organizations and by demonstrated examples of institutional commitment to energy conservation, energy efficiency, and renewable energy resources, colleges and universities must focus public and professional attention on the imperative for action and the means of reducing greenhouse gas emissions and countering global warming.

  9. Uncertainties in forecasting the response of polar bears to global climate change

    USGS Publications Warehouse

    Douglas, David C.; Atwood, Todd C.; Butterworth, Andy

    2017-01-01

    Several sources of uncertainty affect how precisely the future status of polar bears (Ursus maritimus) can be forecasted. Foremost are unknowns about the future levels of global greenhouse gas emissions, which could range from an unabated increase to an aggressively mitigated reduction. Uncertainties also arise because different climate models project different amounts and rates of future warming (and sea ice loss)—even for the same emission scenario. There are also uncertainties about how global warming could affect the Arctic Ocean’s food web, so even if climate models project the presence of sea ice in the future, the availability of polar bear prey is not guaranteed. Under a worst-case emission scenario in which rates of greenhouse gas emissions continue to rise unabated to century’s end, the uncertainties about polar bear status center on a potential for extinction. If the species were to persist, it would likely be restricted to a high-latitude refugium in northern Canada and Greenland—assuming a food web also existed with enough accessible prey to fuel weight gains for surviving onshore during the most extreme years of summer ice melt. On the other hand, if emissions were to be aggressively mitigated at the levels proposed in the Paris Climate Agreement, healthy polar bear populations would probably continue to occupy all but the most southern areas of their contemporary summer range. While polar bears have survived previous warming phases—which indicate some resiliency to the loss of sea ice habitat—what is certain is that the present pace of warming is unprecedented and will increasingly expose polar bears to historically novel stressors.

  10. Global drought and severe drought-affected populations in 1.5 and 2 °C warmer worlds

    NASA Astrophysics Data System (ADS)

    Liu, Wenbin; Sun, Fubao; Lim, Wee Ho; Zhang, Jie; Wang, Hong; Shiogama, Hideo; Zhang, Yuqing

    2018-03-01

    The 2015 Paris Agreement proposed a more ambitious climate change mitigation target on limiting global warming to 1.5 °C instead of 2 °C above preindustrial levels. Scientific investigations on environmental risks associated with these warming targets are necessary to inform climate policymaking. Based on the Coupled Model Intercomparison Project phase 5 (CMIP5) climate models, we present the first risk-based assessment of changes in global drought and the impact of severe drought on populations from additional 1.5 and 2 °C warming conditions. Our results highlight the risk of drought on a global scale and in several hotspot regions such as the Amazon, northeastern Brazil, southern Africa and Central Europe at both 1.5 and 2 °C global warming relative to the historical period, showing increases in drought durations from 2.9 to 3.2 months. Correspondingly, more total and urban populations would be exposed to severe droughts globally (+132.5 ± 216.2 million and +194.5 ± 276.5 million total population and +350.2 ± 158.8 million and +410.7 ± 213.5 million urban populations in 1.5 and 2 °C warmer worlds) and regionally (e.g., East Africa, West Africa and South Asia). Less rural populations (-217.7 ± 79.2 million and -216.2 ± 82.4 million rural populations in 1.5 and 2 °C warmer worlds) would be exposed to severe drought globally under climate warming, population growth and especially the urbanization-induced population migration. By keeping global warming at 1.5 °C above the preindustrial levels instead of 2 °C, there is a decrease in drought risks (i.e., less drought duration, less drought intensity and severity but relatively more frequent drought) and the affected total, urban and rural populations would decrease globally and in most regions. While challenging for both East Africa and South Asia, the benefits of limiting warming to below 1.5 °C in terms of global drought risk and impact reduction are significant.

  11. Natural climate solutions

    NASA Astrophysics Data System (ADS)

    Griscom, Bronson W.; Adams, Justin; Ellis, Peter W.; Houghton, Richard A.; Lomax, Guy; Miteva, Daniela A.; Schlesinger, William H.; Shoch, David; Siikamäki, Juha V.; Smith, Pete; Woodbury, Peter; Zganjar, Chris; Blackman, Allen; Campari, João; Conant, Richard T.; Delgado, Christopher; Elias, Patricia; Gopalakrishna, Trisha; Hamsik, Marisa R.; Herrero, Mario; Kiesecker, Joseph; Landis, Emily; Laestadius, Lars; Leavitt, Sara M.; Minnemeyer, Susan; Polasky, Stephen; Potapov, Peter; Putz, Francis E.; Sanderman, Jonathan; Silvius, Marcel; Wollenberg, Eva; Fargione, Joseph

    2017-10-01

    Better stewardship of land is needed to achieve the Paris Climate Agreement goal of holding warming to below 2 °C; however, confusion persists about the specific set of land stewardship options available and their mitigation potential. To address this, we identify and quantify “natural climate solutions” (NCS): 20 conservation, restoration, and improved land management actions that increase carbon storage and/or avoid greenhouse gas emissions across global forests, wetlands, grasslands, and agricultural lands. We find that the maximum potential of NCS—when constrained by food security, fiber security, and biodiversity conservation—is 23.8 petagrams of CO2 equivalent (PgCO2e) y‑1 (95% CI 20.3–37.4). This is ≥30% higher than prior estimates, which did not include the full range of options and safeguards considered here. About half of this maximum (11.3 PgCO2e y‑1) represents cost-effective climate mitigation, assuming the social cost of CO2 pollution is ≥100 USD MgCO2e‑1 by 2030. Natural climate solutions can provide 37% of cost-effective CO2 mitigation needed through 2030 for a >66% chance of holding warming to below 2 °C. One-third of this cost-effective NCS mitigation can be delivered at or below 10 USD MgCO2‑1. Most NCS actions—if effectively implemented—also offer water filtration, flood buffering, soil health, biodiversity habitat, and enhanced climate resilience. Work remains to better constrain uncertainty of NCS mitigation estimates. Nevertheless, existing knowledge reported here provides a robust basis for immediate global action to improve ecosystem stewardship as a major solution to climate change.

  12. Natural climate solutions.

    PubMed

    Griscom, Bronson W; Adams, Justin; Ellis, Peter W; Houghton, Richard A; Lomax, Guy; Miteva, Daniela A; Schlesinger, William H; Shoch, David; Siikamäki, Juha V; Smith, Pete; Woodbury, Peter; Zganjar, Chris; Blackman, Allen; Campari, João; Conant, Richard T; Delgado, Christopher; Elias, Patricia; Gopalakrishna, Trisha; Hamsik, Marisa R; Herrero, Mario; Kiesecker, Joseph; Landis, Emily; Laestadius, Lars; Leavitt, Sara M; Minnemeyer, Susan; Polasky, Stephen; Potapov, Peter; Putz, Francis E; Sanderman, Jonathan; Silvius, Marcel; Wollenberg, Eva; Fargione, Joseph

    2017-10-31

    Better stewardship of land is needed to achieve the Paris Climate Agreement goal of holding warming to below 2 °C; however, confusion persists about the specific set of land stewardship options available and their mitigation potential. To address this, we identify and quantify "natural climate solutions" (NCS): 20 conservation, restoration, and improved land management actions that increase carbon storage and/or avoid greenhouse gas emissions across global forests, wetlands, grasslands, and agricultural lands. We find that the maximum potential of NCS-when constrained by food security, fiber security, and biodiversity conservation-is 23.8 petagrams of CO 2 equivalent (PgCO 2 e) y -1 (95% CI 20.3-37.4). This is ≥30% higher than prior estimates, which did not include the full range of options and safeguards considered here. About half of this maximum (11.3 PgCO 2 e y -1 ) represents cost-effective climate mitigation, assuming the social cost of CO 2 pollution is ≥100 USD MgCO 2 e -1 by 2030. Natural climate solutions can provide 37% of cost-effective CO 2 mitigation needed through 2030 for a >66% chance of holding warming to below 2 °C. One-third of this cost-effective NCS mitigation can be delivered at or below 10 USD MgCO 2 -1 Most NCS actions-if effectively implemented-also offer water filtration, flood buffering, soil health, biodiversity habitat, and enhanced climate resilience. Work remains to better constrain uncertainty of NCS mitigation estimates. Nevertheless, existing knowledge reported here provides a robust basis for immediate global action to improve ecosystem stewardship as a major solution to climate change.

  13. Natural climate solutions

    PubMed Central

    Adams, Justin; Ellis, Peter W.; Houghton, Richard A.; Lomax, Guy; Miteva, Daniela A.; Schlesinger, William H.; Shoch, David; Siikamäki, Juha V.; Smith, Pete; Woodbury, Peter; Zganjar, Chris; Blackman, Allen; Campari, João; Conant, Richard T.; Delgado, Christopher; Elias, Patricia; Gopalakrishna, Trisha; Hamsik, Marisa R.; Herrero, Mario; Kiesecker, Joseph; Landis, Emily; Laestadius, Lars; Leavitt, Sara M.; Minnemeyer, Susan; Polasky, Stephen; Potapov, Peter; Putz, Francis E.; Sanderman, Jonathan; Silvius, Marcel; Wollenberg, Eva; Fargione, Joseph

    2017-01-01

    Better stewardship of land is needed to achieve the Paris Climate Agreement goal of holding warming to below 2 °C; however, confusion persists about the specific set of land stewardship options available and their mitigation potential. To address this, we identify and quantify “natural climate solutions” (NCS): 20 conservation, restoration, and improved land management actions that increase carbon storage and/or avoid greenhouse gas emissions across global forests, wetlands, grasslands, and agricultural lands. We find that the maximum potential of NCS—when constrained by food security, fiber security, and biodiversity conservation—is 23.8 petagrams of CO2 equivalent (PgCO2e) y−1 (95% CI 20.3–37.4). This is ≥30% higher than prior estimates, which did not include the full range of options and safeguards considered here. About half of this maximum (11.3 PgCO2e y−1) represents cost-effective climate mitigation, assuming the social cost of CO2 pollution is ≥100 USD MgCO2e−1 by 2030. Natural climate solutions can provide 37% of cost-effective CO2 mitigation needed through 2030 for a >66% chance of holding warming to below 2 °C. One-third of this cost-effective NCS mitigation can be delivered at or below 10 USD MgCO2−1. Most NCS actions—if effectively implemented—also offer water filtration, flood buffering, soil health, biodiversity habitat, and enhanced climate resilience. Work remains to better constrain uncertainty of NCS mitigation estimates. Nevertheless, existing knowledge reported here provides a robust basis for immediate global action to improve ecosystem stewardship as a major solution to climate change. PMID:29078344

  14. Albedo impact on the suitability of biochar systems to mitigate global warming.

    PubMed

    Meyer, Sebastian; Bright, Ryan M; Fischer, Daniel; Schulz, Hardy; Glaser, Bruno

    2012-11-20

    Biochar application to agricultural soils can change the surface albedo which could counteract the climate mitigation benefit of biochar systems. However, the size of this impact has not yet been quantified. Based on empirical albedo measurements and literature data of arable soils mixed with biochar, a model for annual vegetation cover development based on satellite data and an assessment of the annual development of surface humidity, an average mean annual albedo reduction of 0.05 has been calculated for applying 30-32 Mg ha(-1) biochar on a test field near Bayreuth, Germany. The impact of biochar production and application on the carbon cycle and on the soil albedo was integrated into the greenhouse gas (GHG) balance of a modeled pyrolysis based biochar system via the computation of global warming potential (GWP) characterization factors. The analysis resulted in a reduction of the overall climate mitigation benefit of biochar systems by 13-22% due to the albedo change as compared to an analysis which disregards the albedo effect. Comparing the use of the same quantity of biomass in a biochar system to a bioenergy district heating system which replaces natural gas combustion, bioenergy heating systems achieve 99-119% of the climate benefit of biochar systems according to the model calculation.

  15. Humid Heat Waves at different warming levels

    NASA Astrophysics Data System (ADS)

    Russo, S.; Sillmann, J.; Sterl, A.

    2017-12-01

    The co-occurrence of consecutive hot and humid days during a heat wave can strongly affect human health. Here, we quantify humid heat wave hazard in the recent past and at different levels of global warming.We find that the magnitude and apparent temperature peak of heat waves, such as the ones observed in Chicago in 1995 and China in 2003, have been strongly amplified by humidity. Climate model projections suggest that the percentage of area where heat wave magnitude and peak are amplified by humidity increases with increasing warming levels. Considering the effect of humidity at 1.5o and 2o global warming, highly populated regions, such as the Eastern US and China, could experience heat waves with magnitude greater than the one in Russia in 2010 (the most severe of the present era).The apparent temperature peak during such humid-heat waves can be greater than 55o. According to the US Weather Service, at this temperature humans are very likely to suffer from heat strokes. Humid-heat waves with these conditions were never exceeded in the present climate, but are expected to occur every other year at 4o global warming. This calls for respective adaptation measures in some key regions of the world along with international climate change mitigation efforts.

  16. A KNOWLEDGE DISCOVERY STRATEGY FOR RELATING SEA SURFACE TEMPERATURES TO FREQUENCIES OF TROPICAL STORMS AND GENERATING PREDICTIONS OF HURRICANES UNDER 21ST-CENTURY GLOBAL WARMING SCENARIOS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Race, Caitlin; Steinbach, Michael; Ganguly, Auroop R

    2010-01-01

    The connections among greenhouse-gas emissions scenarios, global warming, and frequencies of hurricanes or tropical cyclones are among the least understood in climate science but among the most fiercely debated in the context of adaptation decisions or mitigation policies. Here we show that a knowledge discovery strategy, which leverages observations and climate model simulations, offers the promise of developing credible projections of tropical cyclones based on sea surface temperatures (SST) in a warming environment. While this study motivates the development of new methodologies in statistics and data mining, the ability to solve challenging climate science problems with innovative combinations of traditionalmore » and state-of-the-art methods is demonstrated. Here we develop new insights, albeit in a proof-of-concept sense, on the relationship between sea surface temperatures and hurricane frequencies, and generate the most likely projections with uncertainty bounds for storm counts in the 21st-century warming environment based in turn on the Intergovernmental Panel on Climate Change Special Report on Emissions Scenarios. Our preliminary insights point to the benefits that can be achieved for climate science and impacts analysis, as well as adaptation and mitigation policies, by a solution strategy that remains tailored to the climate domain and complements physics-based climate model simulations with a combination of existing and new computational and data science approaches.« less

  17. Alternative "global warming" metrics in life cycle assessment: a case study with existing transportation data.

    PubMed

    Peters, Glen P; Aamaas, Borgar; T Lund, Marianne; Solli, Christian; Fuglestvedt, Jan S

    2011-10-15

    The Life Cycle Assessment (LCA) impact category "global warming" compares emissions of long-lived greenhouse gases (LLGHGs) using Global Warming Potential (GWP) with a 100-year time-horizon as specified in the Kyoto Protocol. Two weaknesses of this approach are (1) the exclusion of short-lived climate forcers (SLCFs) and biophysical factors despite their established importance, and (2) the use of a particular emission metric (GWP) with a choice of specific time-horizons (20, 100, and 500 years). The GWP and the three time-horizons were based on an illustrative example with value judgments and vague interpretations. Here we illustrate, using LCA data of the transportation sector, the importance of SLCFs relative to LLGHGs, different emission metrics, and different treatments of time. We find that both the inclusion of SLCFs and the choice of emission metric can alter results and thereby change mitigation priorities. The explicit inclusion of time, both for emissions and impacts, can remove value-laden assumptions and provide additional information for impact assessments. We believe that our results show that a debate is needed in the LCA community on the impact category "global warming" covering which emissions to include, the emission metric(s) to use, and the treatment of time.

  18. Warming caused by cumulative carbon emissions towards the trillionth tonne.

    PubMed

    Allen, Myles R; Frame, David J; Huntingford, Chris; Jones, Chris D; Lowe, Jason A; Meinshausen, Malte; Meinshausen, Nicolai

    2009-04-30

    Global efforts to mitigate climate change are guided by projections of future temperatures. But the eventual equilibrium global mean temperature associated with a given stabilization level of atmospheric greenhouse gas concentrations remains uncertain, complicating the setting of stabilization targets to avoid potentially dangerous levels of global warming. Similar problems apply to the carbon cycle: observations currently provide only a weak constraint on the response to future emissions. Here we use ensemble simulations of simple climate-carbon-cycle models constrained by observations and projections from more comprehensive models to simulate the temperature response to a broad range of carbon dioxide emission pathways. We find that the peak warming caused by a given cumulative carbon dioxide emission is better constrained than the warming response to a stabilization scenario. Furthermore, the relationship between cumulative emissions and peak warming is remarkably insensitive to the emission pathway (timing of emissions or peak emission rate). Hence policy targets based on limiting cumulative emissions of carbon dioxide are likely to be more robust to scientific uncertainty than emission-rate or concentration targets. Total anthropogenic emissions of one trillion tonnes of carbon (3.67 trillion tonnes of CO(2)), about half of which has already been emitted since industrialization began, results in a most likely peak carbon-dioxide-induced warming of 2 degrees C above pre-industrial temperatures, with a 5-95% confidence interval of 1.3-3.9 degrees C.

  19. When could global warming reach 4°C?

    PubMed

    Betts, Richard A; Collins, Matthew; Hemming, Deborah L; Jones, Chris D; Lowe, Jason A; Sanderson, Michael G

    2011-01-13

    The Intergovernmental Panel on Climate Change (IPCC) Fourth Assessment Report (AR4) assessed a range of scenarios of future greenhouse-gas emissions without policies to specifically reduce emissions, and concluded that these would lead to an increase in global mean temperatures of between 1.6°C and 6.9°C by the end of the twenty-first century, relative to pre-industrial. While much political attention is focused on the potential for global warming of 2°C relative to pre-industrial, the AR4 projections clearly suggest that much greater levels of warming are possible by the end of the twenty-first century in the absence of mitigation. The centre of the range of AR4-projected global warming was approximately 4°C. The higher end of the projected warming was associated with the higher emissions scenarios and models, which included stronger carbon-cycle feedbacks. The highest emissions scenario considered in the AR4 (scenario A1FI) was not examined with complex general circulation models (GCMs) in the AR4, and similarly the uncertainties in climate-carbon-cycle feedbacks were not included in the main set of GCMs. Consequently, the projections of warming for A1FI and/or with different strengths of carbon-cycle feedbacks are often not included in a wider discussion of the AR4 conclusions. While it is still too early to say whether any particular scenario is being tracked by current emissions, A1FI is considered to be as plausible as other non-mitigation scenarios and cannot be ruled out. (A1FI is a part of the A1 family of scenarios, with 'FI' standing for 'fossil intensive'. This is sometimes erroneously written as A1F1, with number 1 instead of letter I.) This paper presents simulations of climate change with an ensemble of GCMs driven by the A1FI scenario, and also assesses the implications of carbon-cycle feedbacks for the climate-change projections. Using these GCM projections along with simple climate-model projections, including uncertainties in carbon-cycle feedbacks, and also comparing against other model projections from the IPCC, our best estimate is that the A1FI emissions scenario would lead to a warming of 4°C relative to pre-industrial during the 2070s. If carbon-cycle feedbacks are stronger, which appears less likely but still credible, then 4°C warming could be reached by the early 2060s in projections that are consistent with the IPCC's 'likely range'.

  20. Global climate change and international security.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Karas, Thomas H.

    2003-11-01

    This report originates in a workshop held at Sandia National Laboratories, bringing together a variety of external experts with Sandia personnel to discuss 'The Implications of Global Climate Change for International Security.' Whatever the future of the current global warming trend, paleoclimatic history shows that climate change happens, sometimes abruptly. These changes can severely impact human water supplies, agriculture, migration patterns, infrastructure, financial flows, disease prevalence, and economic activity. Those impacts, in turn, can lead to national or international security problems stemming from aggravation of internal conflicts, increased poverty and inequality, exacerbation of existing international conflicts, diversion of national andmore » international resources from international security programs (military or non-military), contribution to global economic decline or collapse, or international realignments based on climate change mitigation policies. After reviewing these potential problems, the report concludes with a brief listing of some research, technology, and policy measures that might mitigate them.« less

  1. Carbon dioxide capture strategies from flue gas using microalgae: a review.

    PubMed

    Thomas, Daniya M; Mechery, Jerry; Paulose, Sylas V

    2016-09-01

    Global warming and pollution are the twin crises experienced globally. Biological offset of these crises are gaining importance because of its zero waste production and the ability of the organisms to thrive under extreme or polluted condition. In this context, this review highlights the recent developments in carbon dioxide (CO2) capture from flue gas using microalgae and finding the best microalgal remediation strategy through contrast and comparison of different strategies. Different flue gas microalgal remediation strategies discussed are as follows: (i) Flue gas to CO2 gas segregation using adsorbents for microalgal mitigation, (ii) CO2 separation from flue gas using absorbents and later regeneration for microalgal mitigation, (iii) Flue gas to liquid conversion for direct microalgal mitigation, and (iv) direct flue gas mitigation using microalgae. This work also studies the economic feasibility of microalgal production. The study discloses that the direct convening of flue gas with high carbon dioxide content, into microalgal system is cost-effective.

  2. Global emissions of fluorinated greenhouse gases until 2050: technical mitigation potentials and costs

    NASA Astrophysics Data System (ADS)

    Purohit, Pallav; Hoglund-Isaksson, Lena

    2016-04-01

    The anthropogenic fluorinated (F-gases) greenhouse gas emissions have increased significantly in recent years and are estimated to rise further in response to increased demand for cooling services and the phase out of ozone-depleting substances (ODS) under the Montreal Protocol. F-gases (HFCs, PFCs and SF6) are potent greenhouse gases, with a global warming effect up to 22,800 times greater than carbon dioxide (CO2). This study presents estimates of current and future global emissions of F-gases, their technical mitigation potential and associated costs for the period 2005 to 2050. The analysis uses the GAINS model framework to estimate emissions, mitigation potentials and costs for all major sources of anthropogenic F-gases for 162 countries/regions, which are aggregated to produce global estimates. For each region, 18 emission source sectors with mitigation potentials and costs were identified. Global F-gas emissions are estimated at 0.7 Gt CO2eq in 2005 with an expected increase to about 3.6 Gt CO2eq in 2050. There are extensive opportunities to reduce emissions by over 95 percent primarily through replacement with existing low GWP substances. The initial results indicate that at least half of the mitigation potential is attainable at a cost of less than 20€ per t CO2eq, while almost 90 percent reduction is attainable at less than 100€ per t CO2eq. Currently, several policy proposals have been presented to amend the Montreal Protocol to substantially curb global HFC use. We analyze the technical potentials and costs associated with the HFC mitigation required under the different proposed Montreal Protocol amendments.

  3. Changes in yields and their variability at different levels of global warming

    NASA Astrophysics Data System (ADS)

    Childers, Katelin

    2015-04-01

    An assessment of climate change impacts at different levels of global warming is crucial to inform the political discussion about mitigation targets as well as for the inclusion of climate change impacts in Integrated Assessment Models (IAMs) that generally only provide global mean temperature change as an indicator of climate change. While there is a well-established framework for the scalability of regional temperature and precipitation changes with global mean temperature change we provide an assessment of the extent to which impacts such as crop yield changes can also be described in terms of global mean temperature changes without accounting for the specific underlying emissions scenario. Based on multi-crop-model simulations of the four major cereal crops (maize, rice, soy, and wheat) on a 0.5 x 0.5 degree global grid generated within ISI-MIP, we show the average spatial patterns of projected crop yield changes at one half degree warming steps. We find that emissions scenario dependence is a minor component of the overall variance of projected yield changes at different levels of global warming. Furthermore, scenario dependence can be reduced by accounting for the direct effects of CO2 fertilization in each global climate model (GCM)/impact model combination through an inclusion of the global atmospheric CO2 concentration as a second predictor. The choice of GCM output used to force the crop model simulations accounts for a slightly larger portion of the total yield variance, but the greatest contributor to variance in both global and regional crop yields and at all levels of warming, is the inter-crop-model spread. The unique multi impact model ensemble available with ISI-MIP data also indicates that the overall variability of crop yields is projected to increase in conjunction with increasing global mean temperature. This result is consistent throughout the ensemble of impact models and across many world regions. Such a hike in yield volatility could have significant policy implications by affecting food prices and supplies.

  4. Comparing impacts of climate change and mitigation on global agriculture by 2050

    NASA Astrophysics Data System (ADS)

    van Meijl, Hans; Havlik, Petr; Lotze-Campen, Hermann; Stehfest, Elke; Witzke, Peter; Pérez Domínguez, Ignacio; Bodirsky, Benjamin Leon; van Dijk, Michiel; Doelman, Jonathan; Fellmann, Thomas; Humpenöder, Florian; Koopman, Jason F. L.; Müller, Christoph; Popp, Alexander; Tabeau, Andrzej; Valin, Hugo; van Zeist, Willem-Jan

    2018-06-01

    Systematic model inter-comparison helps to narrow discrepancies in the analysis of the future impact of climate change on agricultural production. This paper presents a set of alternative scenarios by five global climate and agro-economic models. Covering integrated assessment (IMAGE), partial equilibrium (CAPRI, GLOBIOM, MAgPIE) and computable general equilibrium (MAGNET) models ensures a good coverage of biophysical and economic agricultural features. These models are harmonized with respect to basic model drivers, to assess the range of potential impacts of climate change on the agricultural sector by 2050. Moreover, they quantify the economic consequences of stringent global emission mitigation efforts, such as non-CO2 emission taxes and land-based mitigation options, to stabilize global warming at 2 °C by the end of the century under different Shared Socioeconomic Pathways. A key contribution of the paper is a vis-à-vis comparison of climate change impacts relative to the impact of mitigation measures. In addition, our scenario design allows assessing the impact of the residual climate change on the mitigation challenge. From a global perspective, the impact of climate change on agricultural production by mid-century is negative but small. A larger negative effect on agricultural production, most pronounced for ruminant meat production, is observed when emission mitigation measures compliant with a 2 °C target are put in place. Our results indicate that a mitigation strategy that embeds residual climate change effects (RCP2.6) has a negative impact on global agricultural production relative to a no-mitigation strategy with stronger climate impacts (RCP6.0). However, this is partially due to the limited impact of the climate change scenarios by 2050. The magnitude of price changes is different amongst models due to methodological differences. Further research to achieve a better harmonization is needed, especially regarding endogenous food and feed demand, including substitution across individual commodities, and endogenous technological change.

  5. Colleges' Response to Climate Change: Lukewarm at Best

    ERIC Educational Resources Information Center

    Love, Julia

    2012-01-01

    Colleges have spent years trying to make their campuses as sustainable as possible, in part to mitigate the effects of global warming. But few of them have strategies to adapt to those effects as they happen. This summer, the most widespread drought in decades, coupled with extensive wildfires and hurricanes, has some administrators thinking about…

  6. ASSESSMENT OF THE URBAN AIR POLLUTION BENEFITS OF GLOBAL WARMING MITIGATION: SANTIAGO, SAO PAULO, MEXICO CITY, AND NEW YORK CITY. (R827351)

    EPA Science Inventory

    The perspectives, information and conclusions conveyed in research project abstracts, progress reports, final reports, journal abstracts and journal publications convey the viewpoints of the principal investigator and may not represent the views and policies of ORD and EPA. Concl...

  7. Current knowledge on effects of forest silvicultural operations on carbon sequestration in southern forests

    Treesearch

    John D. Cason; Donald L. Grebner; Andrew J. Londo; Stephen C. Grado

    2006-01-01

    Incentive programs to reduce carbon dioxide (CO2) emissions are increasing in number with the growing threat of global warming. Terrestrial sequestration of CO2 through forestry practices on newly established forests is a potential mitigation tool for developing carbon markets in the United States. The extent of industrial...

  8. Using rice genetic diversity for adaptions to and mitigation of changing environments

    USDA-ARS?s Scientific Manuscript database

    Human activities are contributing to greenhouse gas emissions and predictions are that atmospheric CO2 levels will double by the end of the century. Methane, the second most abundant greenhouse gas, is ~25 times more potent in global warming potential than carbon dioxide, and 7-17% of atmospheric me...

  9. Assessing fertilizer N placement on CH4 and N2O emissions in irrigated rice systems

    USDA-ARS?s Scientific Manuscript database

    Improved N fertilizer management practices can increase rice yields and mitigate global warming potential (GWP). While banding N has been shown to have positive effects on yield and nitrogen use efficiency (NUE), there is little information in how it affects greenhouse gas (GHG) emissions from flood...

  10. Restoring and managing cold desert shrublands for climate change mitigation (Chapter 2)

    Treesearch

    Susan E. Meyer

    2012-01-01

    The equation for slowing global warming includes decreasing carbon emissions into the atmosphere as well as increasing carbon sequestration in the biosphere. Many proposed schemes for increasing carbon sequestration, such as afforestation of nonforested lands, involve tradeoffs with other resource values, including water availability. An alternative idea is to restore...

  11. Economic mitigation challenges: how further delay closes the door for achieving climate targets

    NASA Astrophysics Data System (ADS)

    Luderer, Gunnar; Pietzcker, Robert C.; Bertram, Christoph; Kriegler, Elmar; Meinshausen, Malte; Edenhofer, Ottmar

    2013-09-01

    While the international community aims to limit global warming to below 2 ° C to prevent dangerous climate change, little progress has been made towards a global climate agreement to implement the emissions reductions required to reach this target. We use an integrated energy-economy-climate modeling system to examine how a further delay of cooperative action and technology availability affect climate mitigation challenges. With comprehensive emissions reductions starting after 2015 and full technology availability we estimate that maximum 21st century warming may still be limited below 2 ° C with a likely probability and at moderate economic impacts. Achievable temperature targets rise by up to ˜0.4 ° C if the implementation of comprehensive climate policies is delayed by another 15 years, chiefly because of transitional economic impacts. If carbon capture and storage (CCS) is unavailable, the lower limit of achievable targets rises by up to ˜0.3 ° C. Our results show that progress in international climate negotiations within this decade is imperative to keep the 2 ° C target within reach.

  12. Can climate-effective land management reduce regional warming?

    NASA Astrophysics Data System (ADS)

    Hirsch, A. L.; Wilhelm, M.; Davin, E. L.; Thiery, W.; Seneviratne, S. I.

    2017-02-01

    Limiting global warming to well below 2°C is an imminent challenge for humanity. However, even if this global target can be met, some regions are still likely to experience substantial warming relative to others. Using idealized global climate simulations, we examine the potential of land management options in affecting regional climate, with a focus on crop albedo enhancement and irrigation (climate-effective land management). The implementation is performed over all crop regions globally to provide an upper bound. We find that the implementation of both crop albedo enhancement and irrigation can reduce hot temperature extremes by more than 2°C in North America, Eurasia, and India over the 21st century relative to a scenario without management application. The efficacy of crop albedo enhancement scales with the magnitude, where a cooling response exceeding 0.5°C for hot temperature extremes was achieved with a large (i.e., ≥0.08) change in crop albedo. Regional differences were attributed to the surface energy balance response with temperature changes mostly explained by latent heat flux changes for irrigation and net shortwave radiation changes for crop albedo enhancement. However, limitations do exist, where we identify warming over the winter months when climate-effective land management is temporarily suspended. This was associated with persistent cloud cover that enhances longwave warming. It cannot be confirmed if the magnitude of this feedback is reproducible in other climate models. Our results overall demonstrate that regional warming of hot extremes in our climate model can be partially mitigated when using an idealized treatment of climate-effective land management.

  13. Evaluating the accuracy of climate change pattern emulation for low warming targets

    NASA Astrophysics Data System (ADS)

    Tebaldi, Claudia; Knutti, Reto

    2018-05-01

    Global climate policy is increasingly debating the value of very low warming targets, yet not many experiments conducted with global climate models in their fully coupled versions are currently available to help inform studies of the corresponding impacts. This raises the question whether a map of warming or precipitation change in a world 1.5 °C warmer than preindustrial can be emulated from existing simulations that reach higher warming targets, or whether entirely new simulations are required. Here we show that also for this type of low warming in strong mitigation scenarios, climate change signals are quite linear as a function of global temperature. Therefore, emulation techniques amounting to linear rescaling on the basis of global temperature change ratios (like simple pattern scaling) provide a viable way forward. The errors introduced are small relative to the spread in the forced response to a given scenario that we can assess from a multi-model ensemble. They are also small relative to the noise introduced into the estimates of the forced response by internal variability within a single model, which we can assess from either control simulations or initial condition ensembles. Challenges arise when scaling inadvertently reduces the inter-model spread or suppresses the internal variability, both important sources of uncertainty for impact assessment, or when the scenarios have very different characteristics in the composition of the forcings. Taking advantage of an available suite of coupled model simulations under low-warming and intermediate scenarios, we evaluate the accuracy of these emulation techniques and show that they are unlikely to represent a substantial contribution to the total uncertainty.

  14. A more productive, but different, ocean after mitigation

    NASA Astrophysics Data System (ADS)

    John, Jasmin G.; Stock, Charles A.; Dunne, John P.

    2015-11-01

    Reversibility studies suggest a lagged recovery of global mean sea surface temperatures after mitigation, raising the question of whether a similar lag is likely for marine net primary production (NPP). Here we assess NPP reversibility with a mitigation scenario in which projected Representative Concentration Pathway (RCP) 8.5 forcings are applied out to 2100 and then reversed over the course of the following century in a fully coupled carbon-climate Earth System Model. In contrast to the temperature lag, we find a rapid increase in global mean NPP, including an overshoot to values above contemporary means. The enhanced NPP arises from a transient imbalance between the cooling surface ocean and continued warming in subsurface waters, which weakens upper ocean density gradients, resulting in deeper mixing and enhanced surface nitrate. We also find a marine ecosystem regime shift as persistent silicate depletion results in increased prevalence of large, non-diatom phytoplankton.

  15. Quantification and Mitigation of Long-Term Impacts of Urbanization and Climate Change in the Tropical Coastal City of San Juan, Puerto Rico

    NASA Technical Reports Server (NTRS)

    Comarazamy, Daniel; Gonzalez, Jorge E.; Luvall, Jeffrey C.

    2014-01-01

    Urbanization, along with other cases of land cover and land use changes, has significant climate impacts in tropical regions with the added complexity of occurring within the context of global warming. The individual and combined effects of these two factors on the surface energy balance of a tropical city are investigated by use of an integrated atmospheric modeling approach, taking the San Juan Metropolitan Area (SJMA), Puerto Rico as the test case. To achieve this goal, an ensemble of climate and weather simulations is performed, with the climate scenarios combining urban development and sprawl with regional climate change over the past 50 years, and the short-term simulations designed to test the sensitivity to different urban vegetation configurations as mitigating alternatives. As indicator of change, we use the thermal response number (TRN), which is a measure of the sensible heating to the thermal storage of a surface or region, and the Bowen ratio, which is defined as the ratio of sensible to latent heat fluxes. The TRN of the area occupied by the SJMA has decreased as a consequence of replacing the low land coastal plain vegetation with man made materials, indicating that it takes less energy to raise the surface temperature of the urban area, whereas the TRN of forested regions has remained virtually unchanged. The global warming signal also has effects on the thermal response of the SJMA, where dryer current conditions generate lower TRN values. Differences due to global warming are more evident in the Bowen ratio pattern, mostly associated with the drier present conditions observed and its effects on sensible and latent heat fluxes. In terms of testing different mitigation strategies, the short-term simulations show that the urban area is more efficient in partitioning surface energy balance terms when green roofs are specified, as opposed to including vegetation inside the urban core.

  16. Anaerobic digestion and milking frequency as mitigation strategies of the environmental burden in the milk production system.

    PubMed

    Bacenetti, Jacopo; Bava, Luciana; Zucali, Maddalena; Lovarelli, Daniela; Sandrucci, Anna; Tamburini, Alberto; Fiala, Marco

    2016-01-01

    The aim of the study was to assess, through a cradle to farm gate Life Cycle Assessment, different mitigation strategies of the potential environmental impacts of milk production at farm level. The environmental performances of a conventional intensive dairy farm in Northern Italy (baseline scenario) were compared with the results obtained: from the introduction of the third daily milking and from the adoption of anaerobic digestion (AD) of animal slurry in a consortium AD plant. The AD plant, fed only with animal slurries coming also from nearby farms. Key parameters concerning on-farm activities (forage production, energy consumptions, agricultural machines maintenance, manure and livestock management), off-farm activities (production of fertilizers, pesticides, bedding materials, purchased forages, purchased concentrate feed, replacement animals, agricultural machines manufacturing, electricity, fuel) and transportation were considered. The functional unit was 1kg fat and protein corrected milk (FPCM) leaving the farm gate. The selected environmental impact categories were: global warming potential, acidification, eutrophication, photochemical oxidation and non-renewable energy use. The production of 1kg of FPCM caused, in the baseline scenario, the following environmental impact potentials: global warming potential 1.12kg CO2 eq; acidification 15.5g SO2 eq; eutrophication 5.62g PO4(3-) eq; photochemical oxidation 0.87g C2H4 eq/kg FPCM; energy use 4.66MJeq. The increase of milking frequency improved environmental performances for all impact categories in comparison with the baseline scenario; in particular acidification and eutrophication potentials showed the largest reductions (-11 and -12%, respectively). In anaerobic digestion scenario, compared to the baseline one, most of the impact potentials were strongly reduced. In particular the most important advantages were in terms of acidification (-29%), global warming (-22%) and eutrophication potential (-18%). The AD of cow slurry is confirmed as an effective strategy to mitigate the environmental impact of milk production at farm level. Copyright © 2015 Elsevier B.V. All rights reserved.

  17. Regulating emission of air pollutants for near-term relief from global warming

    NASA Astrophysics Data System (ADS)

    Ramanathan, V.; Xu, Y.

    2011-12-01

    The manmade greenhouse gases that are now blanketing the planet is thick enough to warm the system beyond the 20C threshold. Even with a targeted reduction in CO2 emission of 50% by 2050, we will still be adding more than 50 ppm of CO2 and add another 10C to the warming. Fortunately, there are still ways to contain the warming by reducing non-CO2 climate warmers (methane, lower atmosphere ozone, black carbon and HFCs), using available and field tested technologies. The major advantage of going for these 'low-hanging fruits' is that this approach will clean up the air and improve health and food security of south and east Asia, thus engaging developing nations more effectively in climate negotiations. These non-CO2 mitigation actions will have significant (beneficial) impacts on the chemistry, clouds and precipitation of the atmosphere and these have to be quantified adequately. For example, reducing black and organic carbon emissions (through cleaner cooking technologies in developing countries) will also lead to significant reductions in carbon monoxide, which is an ozone precursor. The institutional infrastructure for reducing non-CO2 climate warmers already exist and have a proven track record for successful climate mitigation.

  18. The effects of household management practices on the global warming potential of urban lawns.

    PubMed

    Gu, Chuanhui; Crane, John; Hornberger, George; Carrico, Amanda

    2015-03-15

    Nitrous oxide (N2O) emissions are an important component of the greenhouse gas (GHG) budget for urban turfgrasses. A biogeochemical model DNDC successfully captured the magnitudes and patterns of N2O emissions observed at an urban turfgrass system at the Richland Creek Watershed in Nashville, TN. The model was then used to study the long-term (i.e. 75 years) impacts of lawn management practice (LMP) on soil organic carbon sequestration rate (dSOC), soil N2O emissions, and net Global Warming Potentials (net GWPs). The model simulated N2O emissions and net GWP from the three management intensity levels over 75 years ranged from 0.75 to 3.57 kg N ha(-1)yr(-1) and 697 to 2443 kg CO2-eq ha(-1)yr(-1), respectively, which suggested that turfgrasses act as a net carbon emitter. Reduction of fertilization is most effective to mitigate the global warming potentials of turfgrasses. Compared to the baseline scenario, halving fertilization rate and clipping recycle as an alternative to synthetic fertilizer can reduce net GWPs by 17% and 12%, respectively. In addition, reducing irrigation and mowing are also effective in lowering net GWPs. The minimum-maintenance LMP without irrigation and fertilization can reduce annual N2O emissions and net GWPs by approximately 53% and 70%, respectively, with the price of gradual depletion of soil organic carbon, when compared to the intensive-maintenance LMP. A lawn age-dependent best management practice is recommended: a high dose fertilizer input at the initial stage of lawn establishment to enhance SOC sequestration, followed by decreasing fertilization rate when the lawn ages to minimize N2O emissions. A minimum-maintained LMP with clipping recycling, and minimum irrigation and mowing, is recommended to mitigate global warming effects from urban turfgrass systems. Among all practices, clipping recycle may be a relatively malleable behavior and, therefore, a good target for interventions seeking to reduce the environmental impacts of lawn management through public education. Our results suggest that a long-term or a chronosequence study of turfgrasses with varying ages is warranted to capture the complete dynamics of contribution of turfgrasses to global warming. Copyright © 2015 Elsevier Ltd. All rights reserved.

  19. What land covers are effective in mitigating a heat island in urban building rooftop?

    NASA Astrophysics Data System (ADS)

    Lee, S.; Ryu, Y.

    2014-12-01

    Since the 20th century, due to the rapid urbanization many urban environment problems have got blossomed and above all heat island has been recognized as an important issue. There are several causes of urban heat island, but land cover change occupies the largest portion of them. Owing to urban expansion, vegetation is changed into asphalt pavements and concrete buildings, which reduces latent heat flux. To mitigate the problems, people enlarge vegetation covers such as planting street trees, making rooftop gardens and constructing parks or install white roofs that feature high albedo on a building. While the white roofs reflect about 70% of solar radiation and absorb less radiation, vegetation has low albedo but cools the air through transpiration and fixes carbon dioxide through photosynthesis. There are some studies concerning which one is more effective to mitigate heat island between the green roof and white roof. This study compares the green roof and white roof and additionally considers carbon fixation that has not been treated in other studies. Furthermore, this study ascertains an efficiency of solar-cell panel that is used for building roof recently. The panel produces electric power but has low albedo which could warm the air. The experiment is conducted at the rooftop in Seoul, Korea and compares green roof (grass), white roof (painted cover), black roof (solar panel) and normal painted roof. Surface temperature and albedo are observed for the four roof types and incoming shortwave, outgoing longwave and carbon flux are measured in green roof solely. In the case of solar panels, the electricity generation is calculated from the incoming radiation. We compute global warming potentials for the four roof types and test which roof type is most effective in reducing global warming potential.

  20. Large sensitivity in land carbon storage due to geographical and temporal variation in the thermal response of photosynthetic capacity.

    PubMed

    Mercado, Lina M; Medlyn, Belinda E; Huntingford, Chris; Oliver, Rebecca J; Clark, Douglas B; Sitch, Stephen; Zelazowski, Przemyslaw; Kattge, Jens; Harper, Anna B; Cox, Peter M

    2018-06-01

    Plant temperature responses vary geographically, reflecting thermally contrasting habitats and long-term species adaptations to their climate of origin. Plants also can acclimate to fast temporal changes in temperature regime to mitigate stress. Although plant photosynthetic responses are known to acclimate to temperature, many global models used to predict future vegetation and climate-carbon interactions do not include this process. We quantify the global and regional impacts of biogeographical variability and thermal acclimation of temperature response of photosynthetic capacity on the terrestrial carbon (C) cycle between 1860 and 2100 within a coupled climate-carbon cycle model, that emulates 22 global climate models. Results indicate that inclusion of biogeographical variation in photosynthetic temperature response is most important for present-day and future C uptake, with increasing importance of thermal acclimation under future warming. Accounting for both effects narrows the range of predictions of the simulated global land C storage in 2100 across climate projections (29% and 43% globally and in the tropics, respectively). Contrary to earlier studies, our results suggest that thermal acclimation of photosynthetic capacity makes tropical and temperate C less vulnerable to warming, but reduces the warming-induced C uptake in the boreal region under elevated CO 2 . © 2018 The Authors. New Phytologist © 2018 New Phytologist Trust.

  1. Evolution determines how global warming and pesticide exposure will shape predator-prey interactions with vector mosquitoes.

    PubMed

    Tran, Tam T; Janssens, Lizanne; Dinh, Khuong V; Op de Beeck, Lin; Stoks, Robby

    2016-07-01

    How evolution may mitigate the effects of global warming and pesticide exposure on predator-prey interactions is directly relevant for vector control. Using a space-for-time substitution approach, we addressed how 4°C warming and exposure to the pesticide endosulfan shape the predation on Culex pipiens mosquitoes by damselfly predators from replicated low- and high-latitude populations. Although warming was only lethal for the mosquitoes, it reduced predation rates on these prey. Possibly, under warming escape speeds of the mosquitoes increased more than the attack efficiency of the predators. Endosulfan imposed mortality and induced behavioral changes (including increased filtering and thrashing and a positional shift away from the bottom) in mosquito larvae. Although the pesticide was only lethal for the mosquitoes, it reduced predation rates by the low-latitude predators. This can be explained by the combination of the evolution of a faster life history and associated higher vulnerabilities to the pesticide (in terms of growth rate and lowered foraging activity) in the low-latitude predators and pesticide-induced survival selection in the mosquitoes. Our results suggest that predation rates on mosquitoes at the high latitude will be reduced under warming unless predators evolve toward the current low-latitude phenotype or low-latitude predators move poleward.

  2. Evaluating the potential of reforestation as a mitigative measure for greenhouse gas induced global warming using an energy balance global climate model

    NASA Astrophysics Data System (ADS)

    Starheim, Fred John

    The subject of global warming due to the human addition of greenhouse gases (GHGs) to the atmosphere has been the subject of considerable attention and research in the last two decades. The principal GHG of concern related to human influence is carbon dioxide (CO2). Emissions of this gas have grown rapidly since the industrial revolution in response to the energy and agricultural demands of an increasing world population. Concern exists that the atmospheric concentrations of GHGs may rise sufficiently high so as to impose dangerous interference with the climate system. Numerous methods and measures for the sequestration and avoidance of GHGs have been proposed with the object of decreasing the growth and ultimately stabilizing atmospheric GHG concentrations. The purpose of this work is to examine the effectiveness of one such measure-that of the feasibiltiy of large-scale reforestation/afforestation efforts to mitigate projected global warming. An energy balance global climate model was selected to conduct this work. The model is based on previous work of Pease (1987) in the Annals of the AAG, (77), 450-461, which has been expanded to include dimensions of time and space. The assumed reforestation/afforestation activities are based on a World Resources Institute study by Trexler and Haugen (1995) entitled Keeping it Green Tropical Forest Opportunities for Mitigating Climate Change. The forestry activities are assumed to take place in the tropics where a year-round growing season, plentiful rainfall, and relatively low land development costs should provide the most economically favorable conditions for instituting such a program. The climate model simulations examine the effect of carbon absorption and sequestration in isolation, and then in a subsequent step, examine the combined effect of carbon absorption/sequestration and albedo changes attendant with increased forest cover. Results of the modeling show only small temperature benefits (an approximate 0.1 degree C cooling) associated with implementation of this large-scale reforestation program versus a CO2 doubling case with no forestry programs. Of the approximate 0.1 degree C temperature change, the largest effect was due to CO2 sequestration with the surface albedo effect being negligible (less than 0.01 degree C).

  3. Midlatitude Summer Drying: An Underestimated Threat in CMIP5 Models?

    NASA Astrophysics Data System (ADS)

    Douville, H.; Plazzotta, M.

    2017-10-01

    Early assessments of the hydrological impacts of global warming suggested both an intensification of the global water cycle and an expansion of dry areas. Yet these alarming conclusions were challenged by a number of latter studies emphasizing the lack of evidence in observations and historical simulations, as well as the large uncertainties in climate projections from the fifth phase of the Coupled Model Intercomparison Project (CMIP5). Here several aridity indices and a two-tier attribution strategy are used to demonstrate that a summer midlatitude drying has recently emerged over the northern continents, which is mainly attributable to anthropogenic climate change. This emerging signal is shown to be the harbinger of a long-term drying in the CMIP5 projections. Linear trends in the observed aridity indices can therefore be used as observational constraints and suggest that the projected midlatitude summer drying was underestimated by most CMIP5 models. Mitigating global warming therefore remains a priority to avoid dangerous impacts on global water and food security.

  4. Scientists' views about attribution of global warming.

    PubMed

    Verheggen, Bart; Strengers, Bart; Cook, John; van Dorland, Rob; Vringer, Kees; Peters, Jeroen; Visser, Hans; Meyer, Leo

    2014-08-19

    Results are presented from a survey held among 1868 scientists studying various aspects of climate change, including physical climate, climate impacts, and mitigation. The survey was unique in its size, broadness and level of detail. Consistent with other research, we found that, as the level of expertise in climate science grew, so too did the level of agreement on anthropogenic causation. 90% of respondents with more than 10 climate-related peer-reviewed publications (about half of all respondents), explicitly agreed with anthropogenic greenhouse gases (GHGs) being the dominant driver of recent global warming. The respondents' quantitative estimate of the GHG contribution appeared to strongly depend on their judgment or knowledge of the cooling effect of aerosols. The phrasing of the IPCC attribution statement in its fourth assessment report (AR4)-providing a lower limit for the isolated GHG contribution-may have led to an underestimation of the GHG influence on recent warming. The phrasing was improved in AR5. We also report on the respondents' views on other factors contributing to global warming; of these Land Use and Land Cover Change (LULCC) was considered the most important. Respondents who characterized human influence on climate as insignificant, reported having had the most frequent media coverage regarding their views on climate change.

  5. Towards a physical understanding of stratospheric cooling under global warming through a process-based decomposition method

    NASA Astrophysics Data System (ADS)

    Yang, Yang; Ren, R.-C.; Cai, Ming

    2016-12-01

    The stratosphere has been cooling under global warming, the causes of which are not yet well understood. This study applied a process-based decomposition method (CFRAM; Coupled Surface-Atmosphere Climate Feedback Response Analysis Method) to the simulation results of a Coupled Model Intercomparison Project, phase 5 (CMIP5) model (CCSM4; Community Climate System Model, version 4), to demonstrate the responsible radiative and non-radiative processes involved in the stratospheric cooling. By focusing on the long-term stratospheric temperature changes between the "historical run" and the 8.5 W m-2 Representative Concentration Pathway (RCP8.5) scenario, this study demonstrates that the changes of radiative radiation due to CO2, ozone and water vapor are the main divers of stratospheric cooling in both winter and summer. They contribute to the cooling changes by reducing the net radiative energy (mainly downward radiation) received by the stratospheric layer. In terms of the global average, their contributions are around -5, -1.5, and -1 K, respectively. However, the observed stratospheric cooling is much weaker than the cooling by radiative processes. It is because changes in atmospheric dynamic processes act to strongly mitigate the radiative cooling by yielding a roughly 4 K warming on the global average base. In particular, the much stronger/weaker dynamic warming in the northern/southern winter extratropics is associated with an increase of the planetary-wave activity in the northern winter, but a slight decrease in the southern winter hemisphere, under global warming. More importantly, although radiative processes dominate the stratospheric cooling, the spatial patterns are largely determined by the non-radiative effects of dynamic processes.

  6. Global Modeling and Projection of Short-Lived Climate Pollutants in an Earth System Model

    NASA Astrophysics Data System (ADS)

    Sudo, K.; Takemura, T.; Klimont, Z.; Kurokawa, J.; Akimoto, H.

    2013-12-01

    In predicting and mitigating future global warming, short-lived climate pollutants (SLCPs) such as tropospheric ozone (O3), black carbon (BC), and other related components including CH4/VOCs and aerosols play crucial roles as well as long-lived species like CO2 or N2O. Several recent studies suggests that reduction of heating SLCPs (i.e., O3 and black carbon) together with CH4 can decrease and delay the expected future warming, and can be an alternative to CO2 mitigation (Shindell et al., 2012). However it should be noted that there are still large uncertainties in simulating SLCPs and their climate impacts. For instance, present global models generally have a severe tendency to underestimate BC especially in remote areas like the polar regions as shown by the recent model intercomparison project under the IPCC (ACCMIP/AeroCOM). This problem in global BC modeling, basically coming from aging and removal processes of BC, causes still a large uncertainty in the estimate of BC's atmospheric heating and climate impacts (Bond et al., 2013; Kerr et al., 2013). This study attempted to improve global simulation of BC by developing a new scheme for simulating aging process of BC and re-evaluate radiative forcing of BC in the framework of a chemistry-aerosol coupled climate model (Earth system model) MIROC-ESM-CHEM. Our improved model with the new aging scheme appears to relatively well reproduce the observed BC concentrations and seasonality in the Arctic/Antarctic region. The new model estimates radiative forcing of BC to be 0.83 W m-2 which is about two times larger than the estimate by our original model with no aging scheme (0.41 W m-2), or the model ensemble mean in the IPCC report. Using this model, future projection of SLCPs and their climate impacts is conducted following the recent IIASA emission scenarios for the year 2030 (Klimont et al., 2006; Cofala et al., 2007). Our simulation suggests that heating SLCPs components (O3, BC, and CH4) are significantly reduced in the maximal feasible reduction (MFR) scenario, contributing to global mean temperature reduction by about -0.25 oC after 2030. This heating-SLCPs-induced warming mitigation in MFR is, however, largely cancelled out by the temperature increase due to decreases in cooling aerosols (SO42-, NO3-, and organics), resulting in temperature projection which is not quite different from the other scenarios like CLE (current legislation for air quality) or 450ppm climate stabilization (intermediate reduction) scenario. References Bond et al. (2013): Bounding the role of black carbon in the climate system: A scientific assessment, J. Geophys. Res., 118, 5380-5552, doi:10.1002/jgrd.50171, 2013. Cofala et al. (2007): Scenarios of global anthropogenic emissions of air pollutants and methane until 2030, Atmos. Environ., 41, 8486-8499. Kerr et al. (2013): Soot is warming the world even more than thought, Science, 339, 382, doi: 10.1126/science.339.6118.382. Klimont, Z., Brink, C. (2006): Modelling of Emissions of Air Pollutants and Greenhouse Gases from Agricultural Sources in Europe. International Institute for Applied Systems Analysis (IIASA), Laxenburg, Austria. Shindell et al. (2012): Simultaneously Mitigating Near-Term Climate Change and Improving Human Health and Food Security, Science, 335, 183-189, doi: 10.1126/science.1210026.

  7. Effect of global warming on willingness to pay for uninterrupted electricity supply in European nations

    NASA Astrophysics Data System (ADS)

    Cohen, Jed; Moeltner, Klaus; Reichl, Johannes; Schmidthaler, Michael

    2018-01-01

    Predicted changes in temperature and other weather events may damage the electricity grid and cause power outages. Understanding the costs of power outages and how these costs change over time with global warming can inform outage-mitigation-investment decisions. Here we show that across 19 EU nations the value of uninterrupted electricity supply is strongly related to local temperatures, and will increase as the climate warms. Bayesian hierarchical modelling of data from a choice experiment and respondent-specific temperature measures reveals estimates of willingness to pay (WTP) to avoid an hour of power outage between €0.32 and €1.86 per household. WTP varies on the basis of season and is heterogeneous between European nations. Winter outages currently cause larger per household welfare losses than summer outages per hour of outage. However, this dynamic will begin to shift under plausible future climates, with summer outages becoming substantially more costly and winter outages becoming slightly less costly on a per-household, per-hour basis.

  8. Save the Penguins: Teaching the Science of Heat Transfer through Engineering Design

    ERIC Educational Resources Information Center

    Schnittka, Christine; Bell, Randy; Richards, Larry

    2010-01-01

    Engineers, scientists, and environmental groups around the globe are hard at work finding solutions to mitigate or halt global warming. One major goal of the curriculum described here, Save the Penguins, is to help students recognize that what we do at home can affect how penguins fare in the Southern Hemisphere. In addition, students learn how…

  9. El Nino During the 1990s: Harbinger of Climatic Change or Normal Fluctuation

    NASA Technical Reports Server (NTRS)

    Wilson, Robert M.

    2000-01-01

    Today, El Nino refers to the extreme warming episodes of the globally effective, coupled ocean-atmospheric interaction commonly known as ENSO (i.e., "El Nino-Southern Oscillation"). Concerning its observed decadal frequency and severity, El Nino during the 1990's has often been regarded as being anomalous. Results of analysis reported herein; however, appear to mitigate this belief.

  10. El Nino During the 1990's: Harbinger of Climatic Change or Normal Fluctuation?

    NASA Technical Reports Server (NTRS)

    Wilson, Robert M.

    2000-01-01

    Today, El Nino refers to the extreme warming episodes of the globally effective, coupled ocean-atmospheric interaction commonly known as ENSO (i.e., "El Nino-Southern Oscillation"). Concerning its observed decadal frequency and severity, El Nino during the 1990's has often been regarded as being anomalous. Results of analysis reported herein; however, appear to mitigate this belief.

  11. Global health benefits of mitigating ozone pollution with methane emission controls.

    PubMed

    West, J Jason; Fiore, Arlene M; Horowitz, Larry W; Mauzerall, Denise L

    2006-03-14

    Methane (CH(4)) contributes to the growing global background concentration of tropospheric ozone (O(3)), an air pollutant associated with premature mortality. Methane and ozone are also important greenhouse gases. Reducing methane emissions therefore decreases surface ozone everywhere while slowing climate warming, but although methane mitigation has been considered to address climate change, it has not for air quality. Here we show that global decreases in surface ozone concentrations, due to methane mitigation, result in substantial and widespread decreases in premature human mortality. Reducing global anthropogenic methane emissions by 20% beginning in 2010 would decrease the average daily maximum 8-h surface ozone by approximately 1 part per billion by volume globally. By using epidemiologic ozone-mortality relationships, this ozone reduction is estimated to prevent approximately 30,000 premature all-cause mortalities globally in 2030, and approximately 370,000 between 2010 and 2030. If only cardiovascular and respiratory mortalities are considered, approximately 17,000 global mortalities can be avoided in 2030. The marginal cost-effectiveness of this 20% methane reduction is estimated to be approximately 420,000 US dollars per avoided mortality. If avoided mortalities are valued at 1 US dollars million each, the benefit is approximately 240 US dollars per tone of CH(4) ( approximately 12 US dollars per tone of CO(2) equivalent), which exceeds the marginal cost of the methane reduction. These estimated air pollution ancillary benefits of climate-motivated methane emission reductions are comparable with those estimated previously for CO(2). Methane mitigation offers a unique opportunity to improve air quality globally and can be a cost-effective component of international ozone management, bringing multiple benefits for air quality, public health, agriculture, climate, and energy.

  12. Well below 2 °C: Mitigation strategies for avoiding dangerous to catastrophic climate changes

    NASA Astrophysics Data System (ADS)

    Xu, Yangyang; Ramanathan, Veerabhadran

    2017-09-01

    The historic Paris Agreement calls for limiting global temperature rise to “well below 2 °C.” Because of uncertainties in emission scenarios, climate, and carbon cycle feedback, we interpret the Paris Agreement in terms of three climate risk categories and bring in considerations of low-probability (5%) high-impact (LPHI) warming in addition to the central (˜50% probability) value. The current risk category of dangerous warming is extended to more categories, which are defined by us here as follows: >1.5 °C as dangerous; >3 °C as catastrophic; and >5 °C as unknown, implying beyond catastrophic, including existential threats. With unchecked emissions, the central warming can reach the dangerous level within three decades, with the LPHI warming becoming catastrophic by 2050. We outline a three-lever strategy to limit the central warming below the dangerous level and the LPHI below the catastrophic level, both in the near term (<2050) and in the long term (2100): the carbon neutral (CN) lever to achieve zero net emissions of CO2, the super pollutant (SP) lever to mitigate short-lived climate pollutants, and the carbon extraction and sequestration (CES) lever to thin the atmospheric CO2 blanket. Pulling on both CN and SP levers and bending the emissions curve by 2020 can keep the central warming below dangerous levels. To limit the LPHI warming below dangerous levels, the CES lever must be pulled as well to extract as much as 1 trillion tons of CO2 before 2100 to both limit the preindustrial to 2100 cumulative net CO2 emissions to 2.2 trillion tons and bend the warming curve to a cooling trend.

  13. Well below 2 °C: Mitigation strategies for avoiding dangerous to catastrophic climate changes.

    PubMed

    Xu, Yangyang; Ramanathan, Veerabhadran

    2017-09-26

    The historic Paris Agreement calls for limiting global temperature rise to "well below 2 °C." Because of uncertainties in emission scenarios, climate, and carbon cycle feedback, we interpret the Paris Agreement in terms of three climate risk categories and bring in considerations of low-probability (5%) high-impact (LPHI) warming in addition to the central (∼50% probability) value. The current risk category of dangerous warming is extended to more categories, which are defined by us here as follows: >1.5 °C as dangerous; >3 °C as catastrophic; and >5 °C as unknown, implying beyond catastrophic, including existential threats. With unchecked emissions, the central warming can reach the dangerous level within three decades, with the LPHI warming becoming catastrophic by 2050. We outline a three-lever strategy to limit the central warming below the dangerous level and the LPHI below the catastrophic level, both in the near term (<2050) and in the long term (2100): the carbon neutral (CN) lever to achieve zero net emissions of CO 2 , the super pollutant (SP) lever to mitigate short-lived climate pollutants, and the carbon extraction and sequestration (CES) lever to thin the atmospheric CO 2 blanket. Pulling on both CN and SP levers and bending the emissions curve by 2020 can keep the central warming below dangerous levels. To limit the LPHI warming below dangerous levels, the CES lever must be pulled as well to extract as much as 1 trillion tons of CO 2 before 2100 to both limit the preindustrial to 2100 cumulative net CO 2 emissions to 2.2 trillion tons and bend the warming curve to a cooling trend. Copyright © 2017 the Author(s). Published by PNAS.

  14. Well below 2 °C: Mitigation strategies for avoiding dangerous to catastrophic climate changes

    PubMed Central

    Xu, Yangyang; Ramanathan, Veerabhadran

    2017-01-01

    The historic Paris Agreement calls for limiting global temperature rise to “well below 2 °C.” Because of uncertainties in emission scenarios, climate, and carbon cycle feedback, we interpret the Paris Agreement in terms of three climate risk categories and bring in considerations of low-probability (5%) high-impact (LPHI) warming in addition to the central (∼50% probability) value. The current risk category of dangerous warming is extended to more categories, which are defined by us here as follows: >1.5 °C as dangerous; >3 °C as catastrophic; and >5 °C as unknown, implying beyond catastrophic, including existential threats. With unchecked emissions, the central warming can reach the dangerous level within three decades, with the LPHI warming becoming catastrophic by 2050. We outline a three-lever strategy to limit the central warming below the dangerous level and the LPHI below the catastrophic level, both in the near term (<2050) and in the long term (2100): the carbon neutral (CN) lever to achieve zero net emissions of CO2, the super pollutant (SP) lever to mitigate short-lived climate pollutants, and the carbon extraction and sequestration (CES) lever to thin the atmospheric CO2 blanket. Pulling on both CN and SP levers and bending the emissions curve by 2020 can keep the central warming below dangerous levels. To limit the LPHI warming below dangerous levels, the CES lever must be pulled as well to extract as much as 1 trillion tons of CO2 before 2100 to both limit the preindustrial to 2100 cumulative net CO2 emissions to 2.2 trillion tons and bend the warming curve to a cooling trend. PMID:28912354

  15. The effectiveness of measures to reduce the man-made greenhouse effect. The application of a Climate-policy Model

    NASA Astrophysics Data System (ADS)

    Jain, A. K.; Bach, W.

    1994-06-01

    In this paper we briefly describe the characteristics and the performance of our 1-D Muenster Climate Model. The model system consists of coupled models including gas cycle models, an energy balance model and a sea level rise model. The chemical feedback mechanisms among greenhouse gases are not included. This model, which is a scientifically-based parameterized simulation model, is used here primarily to help assess the effectiveness of various plausible policy options in mitigating the additional man-made greenhouse warming and the resulting sea level rise. For setting priorities it is important to assess the effectiveness of the various measures by which the greenhouse effect can be reduced. To this end we take a Scenario Business-as-Usual as a reference case (Leggett et al., 1992) and study the mitigating effects of the following four packages of measures: The Copenhagen Agreements on CFC, HCFC, and halon reduction (GECR, 1992), the Tropical Forest Preservation Plan of the Climate Enquete-Commission of the German Parliament on CO2 reduction (ECGP, 1990), a detailed reduction scheme for energy-related CO2 (ECGP, 1990), and a preliminary scheme for CH4, CO, and N2O reduction (Bach and Jain, 1992 1993). The required reduction depends, among others, on the desired climate and ecosystem protection. This is defined by the Enquete-Commission and others as a mean global rate of surface temperature change of ca. 0.1 °C per decade — assumed to be critical to many ecosystems — and a mean global warming ceiling of ca. 2 °C in 2100 relative to 1860. Our results show that the Copenhagen Agreements, the Tropical Forest Preservation Plan, the energy-related CO2 reduction scheme, and the CH4 and N2O reduction schemes could mitigate the anthropogenic greenhouse warming by ca. 12%, 6%, 35%, and 9% respectively. Taken together, all four packages of measures could reduce the man-made greenhouse effect by more than 60% until 2100; i.e. over the climate sensitivity range 2.5 °C (1.5 to 4.5) for 2 × CO2, the warming could be reduced from 3.5 °C (2.4 to 5.0) without specific measures to 1.3 °C (0.9 to 2.0) with the above packages of measures; and likewise, the mean global sea level rise could be reduced from 65 cm (46 to 88) without specific measures to 32 cm (22 to 47) with the above measures. Finally, the model results also emphasize the importance of trace gases other than CO2 in mitigating additional man-made greenhouse warming. According to our preliminary estimates, CH4 could in the short term make a sizable contribution to the reduction of the greenhouse effect (because of its relatively short lifetime of 10 yr), as could N2O in the medium and long term (with a relatively long lifetime of 150 yr).

  16. Who decides who has won the bet? Total and Anthropogenic Warming Indices

    NASA Astrophysics Data System (ADS)

    Haustein, K.; Allen, M. R.; Otto, F. E. L.; Schmidt, A.; Frame, D. J.; Forster, P.; Matthews, D.

    2016-12-01

    An extension of the idea of betting markets as a means of revealing opinions about future climate are climate policies indexed to geophysical indicators: for example, to ensure net zero global carbon dioxide emissions by the time anthropogenic warming reaches 1.5 degrees above pre-industrial, given about 1 degree of warming already, emissions must fall, on average, by 20% of their current value for every tenth of a degree of anthropogenic warming from now on. In principle, policies conditioned on some measure of attributable warming are robust to uncertainty in the global climate response: the risk of a higher or lower response than expected is borne by those affected by climate change mitigation policy rather than those affected by climate change impacts, as is the case with emission targets for specific years based on "current understanding" of the response. To implement any indexed policy, or to agree payout terms for any bet on future climate, requires consensus on the definition of the index: how is it calculated, and who is responsible for releasing it? The global mean surface temperature of the current decade relative to pre-industrial may vary by 0.1 degree or more depending on precisely what is measured, what is defined as pre-industrial, and the treatment of regions with sparse data coverage in earlier years. Indices defined using different conventions, however, are all expected to evolve very similarly over the coming decades, so agreeing on a conservative, traceable index such as HadCRUT is more important than debating the "true" global temperature. A more important question is whether indexed policies and betting markets should focus on total warming, including natural and anthropogenic drivers and internal variability, or an Anthropogenic Warming Index (AWI) representing an unbiased estimate of warming attributable to human influence to date. We propose a simple AWI based solely on observed temperatures and global natural and anthropogenic forcing estimates. It is much less volatile than total observed warming, which might discourage participation in betting markets, but would be a substantial advantage for indexed policies. It is also much more relevant to the UNFCCC goal of limiting anthropogenic warming to "well below" 2 degrees. The 2016 value for the AWI will be announced at AGU.

  17. Probabilistic cost estimates for climate change mitigation.

    PubMed

    Rogelj, Joeri; McCollum, David L; Reisinger, Andy; Meinshausen, Malte; Riahi, Keywan

    2013-01-03

    For more than a decade, the target of keeping global warming below 2 °C has been a key focus of the international climate debate. In response, the scientific community has published a number of scenario studies that estimate the costs of achieving such a target. Producing these estimates remains a challenge, particularly because of relatively well known, but poorly quantified, uncertainties, and owing to limited integration of scientific knowledge across disciplines. The integrated assessment community, on the one hand, has extensively assessed the influence of technological and socio-economic uncertainties on low-carbon scenarios and associated costs. The climate modelling community, on the other hand, has spent years improving its understanding of the geophysical response of the Earth system to emissions of greenhouse gases. This geophysical response remains a key uncertainty in the cost of mitigation scenarios but has been integrated with assessments of other uncertainties in only a rudimentary manner, that is, for equilibrium conditions. Here we bridge this gap between the two research communities by generating distributions of the costs associated with limiting transient global temperature increase to below specific values, taking into account uncertainties in four factors: geophysical, technological, social and political. We find that political choices that delay mitigation have the largest effect on the cost-risk distribution, followed by geophysical uncertainties, social factors influencing future energy demand and, lastly, technological uncertainties surrounding the availability of greenhouse gas mitigation options. Our information on temperature risk and mitigation costs provides crucial information for policy-making, because it clarifies the relative importance of mitigation costs, energy demand and the timing of global action in reducing the risk of exceeding a global temperature increase of 2 °C, or other limits such as 3 °C or 1.5 °C, across a wide range of scenarios.

  18. Evolution of Diurnal Asymmetry of Surface Temperature over Different Climatic Zones

    NASA Astrophysics Data System (ADS)

    Rajendran, V.; C T, D.; Chakravorty, A.; AghaKouchak, A.

    2016-12-01

    The increase in drought, flood, diseases, crop failure etc. in the recent past has created an alarm amongst the researchers. One of the main reasons behind the intensification of these environmental hazards is the recent revelation of climate change, which is generally attributed to the human induced global warming, represented by an increase in global mean temperature. However, in order to formulate policies to mitigate and prevent the threats due to global warming, its key driving factors should be analysed at high spatial and temporal resolution. Diurnal Temperature Range (DTR) is one of the indicators of global warming. The study of the evolution of the DTR is crucial, since it affects agriculture, health, ecosystems, transport, etc. Recent studies reveal that diurnal asymmetry has decreased globally, whereas a few regional studies report a contradictory pattern and attributed them to localized feedback processes. However, an evident conclusion cannot be made using the linear trend approaches employed in the past studies and the evolution of diurnal asymmetry should be investigated using non-linear trend approach for better perception. Hence, the regional evolution of DTR trend has been analysed using the spatially-temporally Multidimensional Ensemble Empirical Mode Decomposition (MEEMD) method over India and observed a positive trend in over-all mean of DTR, while its rate of increase has declined in the recent decades. Further, the grids showing negative trend in DTR is observed in arid deserts and warm-temperate grasslands and positive trend over the west coast and sub-tropical forest in the North-East. This transition predominantly began from the west coast and is stretched with an increase in magnitude. These changes are more pronounced during winter and post-monsoon seasons, especially in the arid desert and warm-temperate grasslands, where the rate of increase in minimum temperature is higher than that of the maximum temperature. These analyses suggest that the DTR changes are influenced by both, local and global factors working in tandem, since a warmed up ocean produces contradictory DTR trends in different climatic zones. It can be inferred from this study that the impact of a global change in a region will depend on the regional climate.

  19. Global and Regional Temperature-change Potentials for Near-term Climate Forcers

    NASA Technical Reports Server (NTRS)

    Collins, W.J.; Fry, M. M.; Yu, H.; Fuglestvedt, J. S.; Shindell, D. T.; West, J. J.

    2013-01-01

    The emissions of reactive gases and aerosols can affect climate through the burdens of ozone, methane and aerosols, having both cooling and warming effects. These species are generally referred to near-term climate forcers (NTCFs) or short-lived climate pollutants (SLCPs), because of their short atmospheric residence time. The mitigation of these would be attractive for both air quality and climate on a 30-year timescale, provided it is not at the expense of CO2 mitigation. In this study we examine the climate effects of the emissions of NTCFs from 4 continental regions (East Asia, Europe, North America and South Asia) using results from the Task Force on Hemispheric Transport of Air Pollution Source-Receptor global chemical transport model simulations. We address 3 aerosol species (sulphate, particulate organic matter and black carbon - BC) and 4 ozone precursors (methane, reactive nitrogen oxides - NOx, volatile organic compounds VOC, and carbon monoxide - CO). For the aerosols the global warming potentials (GWPs) and global temperature change potentials (GTPs) are simply time-dependent scaling of the equilibrium radiative forcing, with the GTPs decreasing more rapidly with time than the GWPs. While the aerosol climate metrics have only a modest dependence on emission region, emissions of NOx and VOCs from South Asia have GWPs and GTPs of higher magnitude than from the other northern hemisphere regions. On regional basis, the northern mid-latitude temperature response to northern mid-latitude emissions is approximately twice as large as the global average response for aerosol emission, and about 20-30% larger than the global average for methane, VOC and CO emissions. We also found that temperatures in the Arctic latitudes appear to be particularly sensitive to black carbon emissions from South Asia.

  20. The limits to global-warming mitigation by terrestrial carbon removal

    NASA Astrophysics Data System (ADS)

    Boysen, Lena R.; Lucht, Wolfgang; Gerten, Dieter; Heck, Vera; Lenton, Timothy M.; Schellnhuber, Hans Joachim

    2017-05-01

    Massive near-term greenhouse gas emissions reduction is a precondition for staying "well below 2°C" global warming as envisaged by the Paris Agreement. Furthermore, extensive terrestrial carbon dioxide removal (tCDR) through managed biomass growth and subsequent carbon capture and storage is required to avoid temperature "overshoot" in most pertinent scenarios. Here, we address two major issues: First, we calculate the extent of tCDR required to "repair" delayed or insufficient emissions reduction policies unable to prevent global mean temperature rise of 2.5°C or even 4.5°C above pre-industrial level. Our results show that those tCDR measures are unable to counteract "business-as-usual" emissions without eliminating virtually all natural ecosystems. Even if considerable (Representative Concentration Pathway 4.5 [RCP4.5]) emissions reductions are assumed, tCDR with 50% storage efficiency requires >1.1 Gha of the most productive agricultural areas or the elimination of >50% of natural forests. In addition, >100 MtN/yr fertilizers would be needed to remove the roughly 320 GtC foreseen in these scenarios. Such interventions would severely compromise food production and/or biosphere functioning. Second, we reanalyze the requirements for achieving the 160-190 GtC tCDR that would complement strong mitigation action (RCP2.6) in order to avoid 2°C overshoot anytime. We find that a combination of high irrigation water input and/or more efficient conversion to stored carbon is necessary. In the face of severe trade-offs with society and the biosphere, we conclude that large-scale tCDR is not a viable alternative to aggressive emissions reduction. However, we argue that tCDR might serve as a valuable "supporting actor" for strong mitigation if sustainable schemes are established immediately.

  1. Aerosol reductions could dominate regional climate responses in low GHG emission scenarios

    NASA Astrophysics Data System (ADS)

    Samset, B. H.; Sand, M.; Smith, C. J.; Bauer, S.; Forster, P.; Fuglestvedt, J. S.; Osprey, S. M.; Schleussner, C. F.

    2017-12-01

    Limiting global warming to current political goals requires strong, rapid mitigation of anthropogenic greenhouse gas (GHG) emissions. Concurrently, emissions of anthropogenic aerosols will decline sharply, due to co-emission with greenhouse gases, and future measures to improve air quality. As the net climate effect of GHG and aerosol emissions over the industrial era is poorly constrained, predicting the impact of strong aerosol emission reductions remains challenging. Here we investigate the isolated and compound climate impacts from removing present day anthropogenic emissions of black carbon (BC), organic carbon (OC) and SO2, and moderate, near term GHG dominated global warming, using four coupled climate models. As the dominating effect of aerosol emission reduction is a removal of cooling from sulphur, the resulting climate impacts amplify those of GHG induced warming. BC emissions contribute little to reducing surface warming, but have stronger regional impacts. For the major aerosol emission regions, extreme weather indices are more sensitive to aerosol removal than to GHG increases, per degree of surface warming. East Asia in particular stands out, mainly due to the high present regional aerosol emissions. We show how present climate models indicate that future regional climate change will depend strongly on changes in loading and distribution of aerosols in the atmosphere, in addition to surface temperature change.

  2. Wheat production in Bangladesh: its future in the light of global warming.

    PubMed

    Hossain, Akbar; Teixeira da Silva, Jaime A

    2013-01-01

    The most fundamental activity of the people of Bangladesh is agriculture. Modelling projections for Bangladesh indicate that warmer temperatures linked to climate change will severely reduce the growth of various winter crops (wheat, boro rice, potato and winter vegetables) in the north and central parts. In summer, crops in south-eastern parts of the country are at risk from increased flooding as sea levels increase. Wheat is one of the most important winter crops and is temperature sensitive and the second most important grain crop after rice. In this review, we provide an up-to-date and detailed account of wheat research of Bangladesh and the impact that global warming may have on agriculture, especially wheat production. Although flooding is not of major importance or consequence to the wheat crop at present, some perspectives are provided on this stress since wheat is flood sensitive and the incidence of flooding is likely to increase. This information and projections will allow wheat breeders to devise new breeding programmes to attempt to mitigate future global warming. We discuss what this implies for food security in the broader context of South Asia.

  3. Wheat production in Bangladesh: its future in the light of global warming

    PubMed Central

    Hossain, Akbar; Teixeira da Silva, Jaime A.

    2012-01-01

    Background and aims The most fundamental activity of the people of Bangladesh is agriculture. Modelling projections for Bangladesh indicate that warmer temperatures linked to climate change will severely reduce the growth of various winter crops (wheat, boro rice, potato and winter vegetables) in the north and central parts. In summer, crops in south-eastern parts of the country are at risk from increased flooding as sea levels increase. Key facts Wheat is one of the most important winter crops and is temperature sensitive and the second most important grain crop after rice. In this review, we provide an up-to-date and detailed account of wheat research of Bangladesh and the impact that global warming may have on agriculture, especially wheat production. Although flooding is not of major importance or consequence to the wheat crop at present, some perspectives are provided on this stress since wheat is flood sensitive and the incidence of flooding is likely to increase. Projections This information and projections will allow wheat breeders to devise new breeding programmes to attempt to mitigate future global warming. We discuss what this implies for food security in the broader context of South Asia. PMID:23304431

  4. Local food web management increases resilience and buffers against global change effects on freshwaters

    NASA Astrophysics Data System (ADS)

    Urrutia-Cordero, Pablo; Ekvall, Mattias K.; Hansson, Lars-Anders

    2016-07-01

    A major challenge for ecological research is to identify ways to improve resilience to climate-induced changes in order to secure the ecosystem functions of natural systems, as well as ecosystem services for human welfare. With respect to aquatic ecosystems, interactions between climate warming and the elevated runoff of humic substances (brownification) may strongly affect ecosystem functions and services. However, we hitherto lack the adaptive management tools needed to counteract such global-scale effects on freshwater ecosystems. Here we show, both experimentally and using monitoring data, that predicted climatic warming and brownification will reduce freshwater quality by exacerbating cyanobacterial growth and toxin levels. Furthermore, in a model based on long-term data from a natural system, we demonstrate that food web management has the potential to increase the resilience of freshwater systems against the growth of harmful cyanobacteria, and thereby that local efforts offer an opportunity to secure our water resources against some of the negative impacts of climate warming and brownification. This allows for novel policy action at a local scale to counteract effects of global-scale environmental change, thereby providing a buffer period and a safer operating space until climate mitigation strategies are effectively established.

  5. Keeping global warming within 1.5 °C constrains emergence of aridification

    NASA Astrophysics Data System (ADS)

    Park, Chang-Eui; Jeong, Su-Jong; Joshi, Manoj; Osborn, Timothy J.; Ho, Chang-Hoi; Piao, Shilong; Chen, Deliang; Liu, Junguo; Yang, Hong; Park, Hoonyoung; Kim, Baek-Min; Feng, Song

    2018-01-01

    Aridity—the ratio of atmospheric water supply (precipitation; P) to demand (potential evapotranspiration; PET)—is projected to decrease (that is, areas will become drier) as a consequence of anthropogenic climate change, exacerbating land degradation and desertification1-6. However, the timing of significant aridification relative to natural variability—defined here as the time of emergence for aridification (ToEA)—is unknown, despite its importance in designing and implementing mitigation policies7-10. Here we estimate ToEA from projections of 27 global climate models (GCMs) under representative concentration pathways (RCPs) RCP4.5 and RCP8.5, and in doing so, identify where emergence occurs before global mean warming reaches 1.5 °C and 2 °C above the pre-industrial level. On the basis of the ensemble median ToEA for each grid cell, aridification emerges over 32% (RCP4.5) and 24% (RCP8.5) of the total land surface before the ensemble median of global mean temperature change reaches 2 °C in each scenario. Moreover, ToEA is avoided in about two-thirds of the above regions if the maximum global warming level is limited to 1.5 °C. Early action for accomplishing the 1.5 °C temperature goal can therefore markedly reduce the likelihood that large regions will face substantial aridification and related impacts.

  6. The many possible climates from the Paris Agreement's aim of 1.5 °C warming.

    PubMed

    Seneviratne, Sonia I; Rogelj, Joeri; Séférian, Roland; Wartenburger, Richard; Allen, Myles R; Cain, Michelle; Millar, Richard J; Ebi, Kristie L; Ellis, Neville; Hoegh-Guldberg, Ove; Payne, Antony J; Schleussner, Carl-Friedrich; Tschakert, Petra; Warren, Rachel F

    2018-06-01

    The United Nations' Paris Agreement includes the aim of pursuing efforts to limit global warming to only 1.5 °C above pre-industrial levels. However, it is not clear what the resulting climate would look like across the globe and over time. Here we show that trajectories towards a '1.5 °C warmer world' may result in vastly different outcomes at regional scales, owing to variations in the pace and location of climate change and their interactions with society's mitigation, adaptation and vulnerabilities to climate change. Pursuing policies that are considered to be consistent with the 1.5 °C aim will not completely remove the risk of global temperatures being much higher or of some regional extremes reaching dangerous levels for ecosystems and societies over the coming decades.

  7. Forest carbon sink: A potential forest investment

    NASA Astrophysics Data System (ADS)

    Zheng, Chaocheng; Zhang, Yi; Cheng, Dongxiang

    2017-01-01

    A major problem being confronted to our human society currently is that the global temperature is undoubtedly considered to be rising significantly year by year due to abundant human factors releasing carbon dioxide to around atmosphere. The problem of increasing atmospheric carbon dioxide can be addressed in a number of ways. One of these is forestry and forest management. Hence, this paper investigates a number of current issues related to mitigating the global warming problem from the point of forestry view previous to discussion on ongoing real-world activities utilizing forestry specifically to sequester carbon.

  8. Can Advances in Science and Technology Prevent Global Warming? A Critical Review of Limitations and Challenges

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Huesemann, Michael H.

    The most stringent emission scenarios published by the Intergovernmental Panel on Climate Change (IPCC) would result in the stabilization of atmospheric carbon dioxide (CO2) at concentrations of approximately 550 ppm which would produce a global temperature increase of at least 2 C by 2100. Given the large uncertainties regarding the potential risks associated with this degree of global warming, it would be more prudent to stabilize atmospheric CO2 concentrations at or below current levels which, in turn, would require a greater than 20-fold reduction (i.e., ?95%) in per capita carbon emissions in industrialized nations within the next 50 to 100more » years. Using the Kaya equation as a conceptual framework, this paper examines whether CO2 mitigation approaches such as energy efficiency improvements, carbon sequestration, and the development of carbon-free energy sources would be sufficient to bring about the required reduction in per capita carbon emissions without creating unforeseen negative impacts elsewhere. In terms of energy efficiency, large improvements (?5-fold) are in principle possible given aggressive investments in R&D and if market imperfections such as corporate subsidies are removed. However, energy efficiency improvements per se will not result in a reduction in carbon emissions if, as predicted by the IPCC, the size of the global economy has expanded 12-26 fold by 2100. Terrestrial carbon sequestration via reforestation and improved agricultural soil management has many environmental advantages but has only limited CO2 mitigation potential because the global terrestrial carbon sink (ca. 200 Gt C) is small relative to the size of fossil fuel deposits (?4000 Gt C). By contrast, very large amounts of CO2 can potentially be removed from the atmosphere via sequestration in geologic formations and oceans, but carbon storage is not permanent and is likely to create many unpredictable environmental consequences. Renewable solar energy can in theory provide large amounts of carbon-free power. However, biomass and hydroelectric energy can only be marginally expanded and large-scale solar energy installations (i.e., wind, photovoltaics, and direct thermal) are likely to have significant negative environmental impacts. Expansion of nuclear energy is highly unlikely due to concerns over reactor safety, radioactive waste management, weapons proliferation, and cost. In view of the serious limitations and liabilities of many proposed CO2 mitigation approaches it appears that there remain only few no-regrets options such as drastic energy efficiency improvements, extensive terrestrial carbon sequestration, and cautious expansion of renewable energy generation. These promising CO2 mitigation technologies have the potential to bring about the required 20-fold reduction in per capita carbon emission only if population and economic growth are halted without delay. Thus, addressing the problem of global warming requires not only technological research and development but also a reexamination of core values that mistakenly equate material consumption and economic growth to happiness and well-being.« less

  9. Constant diurnal temperature regime alters the impact of simulated climate warming on a tropical pseudoscorpion

    NASA Astrophysics Data System (ADS)

    Zeh, Jeanne A.; Bonilla, Melvin M.; Su, Eleanor J.; Padua, Michael V.; Anderson, Rachel V.; Zeh, David W.

    2014-01-01

    Recent theory suggests that global warming may be catastrophic for tropical ectotherms. Although most studies addressing temperature effects in ectotherms utilize constant temperatures, Jensen's inequality and thermal stress considerations predict that this approach will underestimate warming effects on species experiencing daily temperature fluctuations in nature. Here, we tested this prediction in a neotropical pseudoscorpion. Nymphs were reared in control and high-temperature treatments under a constant daily temperature regime, and results compared to a companion fluctuating-temperature study. At constant temperature, pseudoscorpions outperformed their fluctuating-temperature counterparts. Individuals were larger, developed faster, and males produced more sperm, and females more embryos. The greatest impact of temperature regime involved short-term, adult exposure, with constant temperature mitigating high-temperature effects on reproductive traits. Our findings demonstrate the importance of realistic temperature regimes in climate warming studies, and suggest that exploitation of microhabitats that dampen temperature oscillations may be critical in avoiding extinction as tropical climates warm.

  10. Atmospheric circulation and hydroclimate impacts of alternative warming scenarios for the Eocene

    NASA Astrophysics Data System (ADS)

    Carlson, Henrik; Caballero, Rodrigo

    2017-08-01

    Recent work in modelling the warm climates of the early Eocene shows that it is possible to obtain a reasonable global match between model surface temperature and proxy reconstructions, but only by using extremely high atmospheric CO2 concentrations or more modest CO2 levels complemented by a reduction in global cloud albedo. Understanding the mix of radiative forcing that gave rise to Eocene warmth has important implications for constraining Earth's climate sensitivity, but progress in this direction is hampered by the lack of direct proxy constraints on cloud properties. Here, we explore the potential for distinguishing among different radiative forcing scenarios via their impact on regional climate changes. We do this by comparing climate model simulations of two end-member scenarios: one in which the climate is warmed entirely by CO2 (which we refer to as the greenhouse gas (GHG) scenario) and another in which it is warmed entirely by reduced cloud albedo (which we refer to as the low CO2-thin clouds or LCTC scenario) . The two simulations have an almost identical global-mean surface temperature and equator-to-pole temperature difference, but the LCTC scenario has ˜ 11 % greater global-mean precipitation than the GHG scenario. The LCTC scenario also has cooler midlatitude continents and warmer oceans than the GHG scenario and a tropical climate which is significantly more El Niño-like. Extremely high warm-season temperatures in the subtropics are mitigated in the LCTC scenario, while cool-season temperatures are lower at all latitudes. These changes appear large enough to motivate further, more detailed study using other climate models and a more realistic set of modelling assumptions.

  11. News on Climate Change, Air Pollution, and Allergic Triggers of Asthma.

    PubMed

    D Amato, M; Cecchi, L; Annesi-Maesano, I; D Amato, G

    2018-01-01

    The rising frequency of obstructive respiratory diseases during recent years, in particular allergic asthma, can be partially explained by changes in the environment, with the increasing presence in the atmosphere of chemical triggers (particulate matter and gaseous components such as nitrogen dioxide and ozone) and biologic triggers (aeroallergens). In allergic individuals, aeroallergens stimulate airway sensitization and thus induce symptoms of bronchial asthma. Over the last 50 years, the earth's temperature has risen markedly, likely because of growing concentrations of anthropogenic greenhouse gas. Major atmospheric and climatic changes, including global warming induced by human activity, have a considerable impact on the biosphere and on the human environment. Urbanization and high levels of vehicle emissions induce symptoms of bronchial obstruction (in particular bronchial asthma), more so in people living in urban areas compared than in those who live in rural areas. Measures need to be taken to mitigate the future impact of climate change and global warming. However, while global emissions continue to rise, we must learn to adapt to climate variability.

  12. Biochar alters the resistance and resilience to drought in a tropical soil

    NASA Astrophysics Data System (ADS)

    Liang, Chenfei; Zhu, Xiaolin; Fu, Shenglei; Méndez, Ana; Gascó, Gabriel; Paz-Ferreiro, Jorge

    2014-05-01

    Soil microbes play a key role in nutrient cycling and carbon sequestration. Global change can alter soil microbial population composition and behavior. Biochar addition has been explored in the last years as a way to mitigate global warming. However, responses of microbial communities to biochar addition in particular in relation to abiotic disturbances are seldom documented. An example of these disturbances, which is predicted to be exacerbated with global warming, is regional drought. It has been known that fungal-based food webs are more resistant to drought than their bacterial counterparts. Our study found that biochar addition can increase the resistance of both the bacterial and fungal networks to drought. Contrary to expected, this result was not related to a change in the dominance of fungal or bacteria. In general, soil amended with biochar was characterized by a faster recovery of soil microbial properties to its basal values. Biochar addition to the soil also suppressed the Birch effect, a result that has not been previously reported.

  13. The role of nuclear energy in mitigating greenhouse warming

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Krakowski, R.A.

    1997-12-31

    A behavioral, top-down, forced-equilibrium market model of long-term ({approximately} 2,100) global energy-economics interactions has been modified with a bottom-up nuclear energy model and used to construct consistent scenarios describing future impacts of civil nuclear materials flows in an expanding, multi-regional (13) world economy. The relative measures and tradeoffs between economic (GNP, tax impacts, productivity, etc.), environmental (greenhouse gas accumulations, waste accumulation, proliferation risk), and energy (resources, energy mixes, supply-side versus demand-side attributes) interactions that emerge from these analyses are focused herein on advancing understanding of the role that nuclear energy (and other non-carbon energy sources) might play in mitigating greenhousemore » warming. Two ostensibly opposing scenario drivers are investigated: (a) demand-side improvements in (non-price-induced) autonomous energy efficiency improvements; and (b) supply-side carbon-tax inducements to shift energy mixes towards reduced- or non-carbon forms. In terms of stemming greenhouse warming for minimal cost of greenhouse-gas abatement, and with the limitations of the simplified taxing schedule used, a symbiotic combination of these two approaches may offer advantages not found if each is applied separately.« less

  14. Warm spring reduced carbon cycle impact of the 2012 US summer drought

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wolf, Sebastian; Keenan, Trevor F.; Fisher, Joshua B.

    The global terrestrial carbon sink offsets one-third of the world's fossil fuel emissions, but the strength of this sink is highly sensitive to large-scale extreme events. In 2012, the contiguous United States experienced exceptionally warm temperatures and the most severe drought since the Dust Bowl era of the 1930s, resulting in substantial economic damage. It is crucial to understand the dynamics of such events because warmer temperatures and a higher prevalence of drought are projected in a changing climate. Here in this paper, we combine an extensive network of direct ecosystem flux measurements with satellite remote sensing and atmospheric inversemore » modeling to quantify the impact of the warmer spring and summer drought on biosphereatmosphere carbon and water exchange in 2012. We consistently find that earlier vegetation activity increased spring carbon uptake and compensated for the reduced uptake during the summer drought, which mitigated the impact on net annual carbon uptake. The early phenological development in the Eastern Temperate Forests played a major role for the continental-scale carbon balance in 2012. The warm spring also depleted soil water resources earlier, and thus exacerbated water limitations during summer. Our results show that the detrimental effects of severe summer drought on ecosystem carbon storage can be mitigated by warming-induced increases in spring carbon uptake. However, the results also suggest that the positive carbon cycle effect of warm spring enhances water limitations and can increase summer heating through biosphere-atmosphere feedbacks.« less

  15. Warm spring reduced carbon cycle impact of the 2012 US summer drought.

    PubMed

    Wolf, Sebastian; Keenan, Trevor F; Fisher, Joshua B; Baldocchi, Dennis D; Desai, Ankur R; Richardson, Andrew D; Scott, Russell L; Law, Beverly E; Litvak, Marcy E; Brunsell, Nathaniel A; Peters, Wouter; van der Laan-Luijkx, Ingrid T

    2016-05-24

    The global terrestrial carbon sink offsets one-third of the world's fossil fuel emissions, but the strength of this sink is highly sensitive to large-scale extreme events. In 2012, the contiguous United States experienced exceptionally warm temperatures and the most severe drought since the Dust Bowl era of the 1930s, resulting in substantial economic damage. It is crucial to understand the dynamics of such events because warmer temperatures and a higher prevalence of drought are projected in a changing climate. Here, we combine an extensive network of direct ecosystem flux measurements with satellite remote sensing and atmospheric inverse modeling to quantify the impact of the warmer spring and summer drought on biosphere-atmosphere carbon and water exchange in 2012. We consistently find that earlier vegetation activity increased spring carbon uptake and compensated for the reduced uptake during the summer drought, which mitigated the impact on net annual carbon uptake. The early phenological development in the Eastern Temperate Forests played a major role for the continental-scale carbon balance in 2012. The warm spring also depleted soil water resources earlier, and thus exacerbated water limitations during summer. Our results show that the detrimental effects of severe summer drought on ecosystem carbon storage can be mitigated by warming-induced increases in spring carbon uptake. However, the results also suggest that the positive carbon cycle effect of warm spring enhances water limitations and can increase summer heating through biosphere-atmosphere feedbacks.

  16. Warm spring reduced carbon cycle impact of the 2012 US summer drought

    PubMed Central

    Keenan, Trevor F.; Fisher, Joshua B.; Richardson, Andrew D.; Scott, Russell L.; Law, Beverly E.; Litvak, Marcy E.; Brunsell, Nathaniel A.; Peters, Wouter

    2016-01-01

    The global terrestrial carbon sink offsets one-third of the world’s fossil fuel emissions, but the strength of this sink is highly sensitive to large-scale extreme events. In 2012, the contiguous United States experienced exceptionally warm temperatures and the most severe drought since the Dust Bowl era of the 1930s, resulting in substantial economic damage. It is crucial to understand the dynamics of such events because warmer temperatures and a higher prevalence of drought are projected in a changing climate. Here, we combine an extensive network of direct ecosystem flux measurements with satellite remote sensing and atmospheric inverse modeling to quantify the impact of the warmer spring and summer drought on biosphere-atmosphere carbon and water exchange in 2012. We consistently find that earlier vegetation activity increased spring carbon uptake and compensated for the reduced uptake during the summer drought, which mitigated the impact on net annual carbon uptake. The early phenological development in the Eastern Temperate Forests played a major role for the continental-scale carbon balance in 2012. The warm spring also depleted soil water resources earlier, and thus exacerbated water limitations during summer. Our results show that the detrimental effects of severe summer drought on ecosystem carbon storage can be mitigated by warming-induced increases in spring carbon uptake. However, the results also suggest that the positive carbon cycle effect of warm spring enhances water limitations and can increase summer heating through biosphere–atmosphere feedbacks. PMID:27114518

  17. Warm spring reduced carbon cycle impact of the 2012 US summer drought

    DOE PAGES

    Wolf, Sebastian; Keenan, Trevor F.; Fisher, Joshua B.; ...

    2016-04-25

    The global terrestrial carbon sink offsets one-third of the world's fossil fuel emissions, but the strength of this sink is highly sensitive to large-scale extreme events. In 2012, the contiguous United States experienced exceptionally warm temperatures and the most severe drought since the Dust Bowl era of the 1930s, resulting in substantial economic damage. It is crucial to understand the dynamics of such events because warmer temperatures and a higher prevalence of drought are projected in a changing climate. Here in this paper, we combine an extensive network of direct ecosystem flux measurements with satellite remote sensing and atmospheric inversemore » modeling to quantify the impact of the warmer spring and summer drought on biosphereatmosphere carbon and water exchange in 2012. We consistently find that earlier vegetation activity increased spring carbon uptake and compensated for the reduced uptake during the summer drought, which mitigated the impact on net annual carbon uptake. The early phenological development in the Eastern Temperate Forests played a major role for the continental-scale carbon balance in 2012. The warm spring also depleted soil water resources earlier, and thus exacerbated water limitations during summer. Our results show that the detrimental effects of severe summer drought on ecosystem carbon storage can be mitigated by warming-induced increases in spring carbon uptake. However, the results also suggest that the positive carbon cycle effect of warm spring enhances water limitations and can increase summer heating through biosphere-atmosphere feedbacks.« less

  18. Land radiative management as contributor to regional-scale climate adaptation and mitigation

    NASA Astrophysics Data System (ADS)

    Seneviratne, Sonia I.; Phipps, Steven J.; Pitman, Andrew J.; Hirsch, Annette L.; Davin, Edouard L.; Donat, Markus G.; Hirschi, Martin; Lenton, Andrew; Wilhelm, Micah; Kravitz, Ben

    2018-02-01

    Greenhouse gas emissions urgently need to be reduced. Even with a step up in mitigation, the goal of limiting global temperature rise to well below 2 °C remains challenging. Consequences of missing these goals are substantial, especially on regional scales. Because progress in the reduction of carbon dioxide emissions has been slow, climate engineering schemes are increasingly being discussed. But global schemes remain controversial and have important shortcomings. A reduction of global mean temperature through global-scale management of solar radiation could lead to strong regional disparities and affect rainfall patterns. On the other hand, active management of land radiative effects on a regional scale represents an alternative option of climate engineering that has been little discussed. Regional land radiative management could help to counteract warming, in particular hot extremes in densely populated and important agricultural regions. Regional land radiative management also raises some ethical issues, and its efficacy would be limited in time and space, depending on crop growing periods and constraints on agricultural management. But through its more regional focus and reliance on tested techniques, regional land radiative management avoids some of the main shortcomings associated with global radiation management. We argue that albedo-related climate benefits of land management should be considered more prominently when assessing regional-scale climate adaptation and mitigation as well as ecosystem services.

  19. Geoengineering to Avoid Overshoot: An Analysis of Uncertainty

    NASA Astrophysics Data System (ADS)

    Tanaka, Katsumasa; Cho, Cheolhung; Krey, Volker; Patt, Anthony; Rafaj, Peter; Rao-Skirbekk, Shilpa; Wagner, Fabian

    2010-05-01

    Even if a drastic 50% CO2-equivalent emissions reduction is achieved by year 2050, the chances of exceeding a 2°C warming are still substantial due to the uncertainty in the climate system (Meinshausen et al., 2009). Moreover, a strong mitigation is accompanied by overshoot, in which the global-mean temperature temporarily exceeds the target before arriving there. We are motivated by the question as to how much geoengineering would be considered if it were to be used to avoid overshoot even combined with a strong mitigation? How serious would the side effects be expected? This study focuses on stratospheric sulfur injections among other geoengineering proposals, the idea of which has been put forward by Crutzen (2006) and reviewed by Rasch et al. (2008). There are a number of concerns over geoengineering (e.g. Robock, 2008). But the concept of geoengineering requires further research (AMS, 2009). Studying geoengineering may be instructive to revisit the importance of mainstream mitigation strategies. The motivations above led to the following two closely linked studies: 1) Mitigation and Geoengineering The first study investigates the magnitude and start year of geoengineering intervention with the intent to avoid overshoot. This study explores the sensitivity of geoengineering profile to associated uncertainties in the climate system (climate sensitivity, tropospheric aerosol forcing, and ocean diffusivity) and in mitigation scenarios (target uncertainty (450ppm CO2-eq and 400ppm CO2-eq) and baseline uncertainty (A2, B1, and B2)). This study builds on Wigley's premise that demonstrated a basic potential of such a combined mitigation/geoengineering approach (Wigley, 2006) - however it did not examine the sensitivity of the climate response to any underlying uncertainties. This study uses a set of GGI low mitigation scenarios generated from the MESSAGE model (Riahi et al., 2007). The reduced-complexity climate and carbon cycle model ACC2 (Tanaka, 2008; Tanaka et al., 2009) is employed to calculate climate responses including associated uncertainty and to estimate geoengineering profiles to cap the warming at 2°C since preindustrial. The inversion setup for the model ACC2 is used to estimate the uncertain parameters (e.g. climate sensitivity) against associated historical observations (e.g. global-mean surface air temperature). Our preliminary results show that under climate and scenario uncertainties, a geoengineering intervention to avoid an overshoot would be with medium intensity in the latter half of this century (≈ 1 Mt. Pinatubo eruption every 4 years in terms of stratospheric sulfur injections). The start year of geoengineering intervention does not significantly influence the long-term geoengineering profile. However, a geoengineering intervention of the medium intensity could bring about substantial environmental side effects such as the destruction of stratospheric ozone. Our results point to the necessity to pursue persistently mainstream mitigation efforts. 2) Pollution Abatement and Geoengineering The second study examines the potential of geoengineering combined with air clean policy. A drastic air pollution abatement might result in an abrupt warming because it would suddenly remove the tropospheric aerosols which partly offset the background global warming (e.g. Andreae et al, 2005, Raddatz and Tanaka, 2010). This study investigates the magnitude of unrealized warming under a range of policy assumptions and associated uncertainties. Then the profile of geoengineering is estimated to suppress the warming that would be accompanied by clean air policy. This study is the first attempt to explore uncertainty in the warming caused by clean air policy - Kloster et al. (2009), which assess regional changes in climate and hydrological cycle, has not however included associated uncertainties in the analysis. A variety of policy assumptions will be devised to represent various degrees of air pollution abatement. These assumptions are used in the GAINS model to generate pollutants emissions scenarios. Such scenarios are combined with a set of GGI low mitigation scenarios and prescribed to the climate and carbon cycle model ACC2. ACC2 is employed to quantify the warming due to air pollution abatement and the geoengineering profile to avoid such a warming. Furthermore, the implications of such geoengineering interventions (e.g. ecosystem impact and adaptation capacity) are examined. References AMS (Americal Meteorological Society) (2009) A Policy Statement on 20 July 2009. http://www.ametsoc.org/policy/2009geoengineeringclimate_amsstatement.pdf Andreae (2005) Nature, 435, 1187-1190, doi:10.1038/nature03671. Crutzen (2006) Climatic Change, 77, 211-219. Kloster et al. (2009) Climate Dynamics, 33, doi:10.1007/s00382-009-0573-0. Meinshausen et al. (2009) Nature, 458, 1158-1162, doi:10.1038/nature08017. Raddatz and Tanaka (2010) Prepared for a re-submission to Geophysical Research Letters. Rasch et al. (2008) Philosophical Transactions of The Royal Society A, 366, 4007-4037, doi:10.1098/rsta.2008.0131. Riahi et al. (2007) Technological Forecasting and Social Change, 74, 887-935, doi:10.1016/j.techfore.2006.05.026. Robock (2008) Bulletin of the Atomic Scientists, 64, 14-18, doi: 10.2968/064002006. Tanaka (2008) Ph.D. thesis. International Max Planck Research School on Earth System Modelling, Hamburg, Germany. http://www.sub.uni-hamburg.de/opus/volltexte/2008/3654/ Tanaka et al. (2009) Geophysical Research Letters, 36, L16709, doi:10.1029/2009GL039642. Wigley (2008) Science, 314, 452-454, doi:10.1126/science.1131728.

  20. Herbivores rescue diversity in warming tundra by modulating trait-dependent species losses and gains.

    PubMed

    Kaarlejärvi, Elina; Eskelinen, Anu; Olofsson, Johan

    2017-09-04

    Climate warming is altering the diversity of plant communities but it remains unknown which species will be lost or gained under warming, especially considering interactions with other factors such as herbivory and nutrient availability. Here, we experimentally test effects of warming, mammalian herbivory and fertilization on tundra species richness and investigate how plant functional traits affect losses and gains. We show that herbivory reverses the impact of warming on diversity: in the presence of herbivores warming increases species richness through higher species gains and lower losses, while in the absence of herbivores warming causes higher species losses and thus decreases species richness. Herbivores promote gains of short-statured species under warming, while herbivore removal and fertilization increase losses of short-statured and resource-conservative species through light limitation. Our results demonstrate that both rarity and traits forecast species losses and gains, and mammalian herbivores are essential for preventing trait-dependent extinctions and mitigate diversity loss under warming and eutrophication.Warming can reduce plant diversity but it is unclear which species will be lost or gained under interacting global changes. Kaarlejärvi et al. manipulate temperature, herbivory and nutrients in a tundra system and find that herbivory maintains diversity under warming by reducing species losses and promoting gains.

  1. Hydropower's Biogenic Carbon Footprint.

    PubMed

    Scherer, Laura; Pfister, Stephan

    2016-01-01

    Global warming is accelerating and the world urgently needs a shift to clean and renewable energy. Hydropower is currently the largest renewable source of electricity, but its contribution to climate change mitigation is not yet fully understood. Hydroelectric reservoirs are a source of biogenic greenhouse gases and in individual cases can reach the same emission rates as thermal power plants. Little is known about the severity of their emissions at the global scale. Here we show that the carbon footprint of hydropower is far higher than previously assumed, with a global average of 173 kg CO2 and 2.95 kg CH4 emitted per MWh of electricity produced. This results in a combined average carbon footprint of 273 kg CO2e/MWh when using the global warming potential over a time horizon of 100 years (GWP100). Nonetheless, this is still below that of fossil energy sources without the use of carbon capture and sequestration technologies. We identified the dams most promising for capturing methane for use as alternative energy source. The spread among the ~1500 hydropower plants analysed in this study is large and highlights the importance of case-by-case examinations.

  2. Mitigation potential and global health impacts from emissions pricing of food commodities

    NASA Astrophysics Data System (ADS)

    Springmann, Marco; Mason-D'Croz, Daniel; Robinson, Sherman; Wiebe, Keith; Godfray, H. Charles J.; Rayner, Mike; Scarborough, Peter

    2017-01-01

    The projected rise in food-related greenhouse gas emissions could seriously impede efforts to limit global warming to acceptable levels. Despite that, food production and consumption have long been excluded from climate policies, in part due to concerns about the potential impact on food security. Using a coupled agriculture and health modelling framework, we show that the global climate change mitigation potential of emissions pricing of food commodities could be substantial, and that levying greenhouse gas taxes on food commodities could, if appropriately designed, be a health-promoting climate policy in high-income countries, as well as in most low- and middle-income countries. Sparing food groups known to be beneficial for health from taxation, selectively compensating for income losses associated with tax-related price increases, and using a portion of tax revenues for health promotion are potential policy options that could help avert most of the negative health impacts experienced by vulnerable groups, whilst still promoting changes towards diets which are more environmentally sustainable.

  3. Task toward a Realization of Commercial Tokamak Fusion Plants in 2050 -The Role of ITER and the Succeeding Developments- 5.Challenge to Innovative Technologies and the Expected Market Appeal

    NASA Astrophysics Data System (ADS)

    Tobita, Kenji; Konishi, Satoshi; Tokimatsu, Koji; Nishio, Satoshi; Hiwatari, Ryoji

    This section describes the future of fusion energy in terms of its impact on the global energy supply and global warming mitigation, the possible entry scenarios of fusion into future energy market, and innovative technologies for deploying and expanding fusion's share in the market. Section 5.1 shows that fusion energy can contribute to the stabilization of atmospheric CO2 concentration if fusion is introduced into the future energy market at a competitive price. Considerations regarding fusion's entry scenarios into the energy market are presented in Sec. 5.2, suggesting that fusion should replace fossil energy sources and thus contribute to global warming mitigation. In this sense, first generation fusion power plants should be a viable energy source with global appeal and be so attractive as to be employed in developing countries rather than in developed countries. Favorable factors lending to this purpose are fusion's stability as a power source, and its security, safety, and environmental frendliness as well as its cost-of-electricity. The requirements for core plasma to expand the share of fusion in the market in the latter half of this century are given in Sec.5.3, pointing out the importance of high beta access with low aspect ratio and plasma profile control. From this same point of view, innovative fusion technologies worthy of further development are commented on in Sec. 5.4, addressing the high temperature blanket, hydrogen production, high temperature superconductors, and hot cell maintenance.

  4. Global estimations of the inventory and mitigation potential of methane emissions from rice cultivation conducted using the 2006 Intergovernmental Panel on Climate Change Guidelines

    NASA Astrophysics Data System (ADS)

    Yan, Xiaoyuan; Akiyama, Hiroko; Yagi, Kazuyuki; Akimoto, Hajime

    2009-06-01

    The Intergovernmental Panel on Climate Change (IPCC) regularly publishes guidelines for national greenhouse gas inventories and methane emission (CH4) from rice paddies has been an important component of these guidelines. While there have been many estimates of global CH4 emissions from rice fields, none of them have been obtained using the IPCC guidelines. Therefore, we used the Tier 1 method described in the 2006 IPCC guidelines to estimate the global CH4 emissions from rice fields. To accomplish this, we used country-specific statistical data regarding rice harvest areas and expert estimates of relevant agricultural activities. The estimated global emission for 2000 was 25.6 Tg a-1, which is at the lower end of earlier estimates and close to the total emission summarized by individual national communications. Monte Carlo simulation revealed a 95% uncertainty range of 14.8-41.7 Tg a-1; however, the estimation uncertainty was found to depend on the reliability of the information available regarding the amount of organic amendments and the area of rice fields that were under continuous flooding. We estimated that if all of the continuously flooded rice fields were drained at least once during the growing season, the CH4 emissions would be reduced by 4.1 Tg a-1. Furthermore, we estimated that applying rice straw off season wherever and whenever possible would result in a further reduction in emissions of 4.1 Tg a-1 globally. Finally, if both of these mitigation options were adopted, the global CH4 emission from rice paddies could be reduced by 7.6 Tg a-1. Although draining continuously flooded rice fields may lead to an increase in nitrous oxide (N2O) emission, the global warming potential resulting from this increase is negligible when compared to the reduction in global warming potential that would result from the CH4 reduction associated with draining the fields.

  5. Temperature and Snowfall in Western Queen Maud Land Increasing Faster Than Climate Model Projections

    NASA Astrophysics Data System (ADS)

    Medley, B.; McConnell, J. R.; Neumann, T. A.; Reijmer, C. H.; Chellman, N.; Sigl, M.; Kipfstuhl, S.

    2018-02-01

    East Antarctic Ice Sheet (EAIS) mass balance is largely driven by snowfall. Recently, increased snowfall in Queen Maud Land led to years of EAIS mass gain. It is difficult to determine whether these years of enhanced snowfall are anomalous or part of a longer-term trend, reducing our ability to assess the mitigating impact of snowfall on sea level rise. We determine that the recent snowfall increases in western Queen Maud Land (QML) are part of a long-term trend (+5.2 ± 3.7% decade-1) and are unprecedented over the past two millennia. Warming between 1998 and 2016 is significant and rapid (+1.1 ± 0.7°C decade-1). Using these observations, we determine that the current accumulation and temperature increases in QML from an ensemble of global climate simulations are too low, which suggests that projections of the QML contribution to sea level rise are potentially overestimated with a reduced mitigating impact of enhanced snowfall in a warming world.

  6. Temperature and Snowfall in Western Queen Maud Land Increasing Faster than Climate Model Projections

    NASA Technical Reports Server (NTRS)

    Medley, B.; McConnell, J. R.; Neumann, T. A.; Reijmer, C. H.; Chellman, N.; Sigl, M.; Kipfstuhl, S.

    2017-01-01

    East Antarctic Ice Sheet (EAIS) mass balance is largely driven by snowfall. Recently, increased snowfall in Queen Maud Land led to years of EAIS mass gain. It is difficult to determine whether these years of enhanced snowfall are anomalous or part of a longer-term trend, reducing our ability to assess the mitigating impact of snowfall on sea level rise. We determine that the recent snowfall increases in western Queen Maud Land (QML) are part of a long-term trend (+5.2 +/- 3.7% decade(exp -1)) and are unprecedented over the past two millennia. Warming between 1998 and 2016 is significant and rapid (+1.1 +/- 0.7 C decade(exp -1)). Using these observations, we determine that the current accumulation and temperature increases in QML from an ensemble of global climate simulations are too low, which suggests that projections of the QML contribution to sea level rise are potentially overestimated with a reduced mitigating impact of enhanced snowfall in a warming world.

  7. Quantifying Land and People Exposed to Sea-Level Rise with No Mitigation and 1.5°C and 2.0°C Rise in Global Temperatures to Year 2300

    NASA Astrophysics Data System (ADS)

    Brown, S.; Nicholls, R. J.; Goodwin, P.; Haigh, I. D.; Lincke, D.; Vafeidis, A. T.; Hinkel, J.

    2018-03-01

    We use multiple synthetic mitigation sea-level scenarios, together with a non-mitigation sea-level scenario from the Warming Acidification and Sea-level Projector model. We find sea-level rise (SLR) continues to accelerate post-2100 for all but the most aggressive mitigation scenarios indicative of 1.5°C and 2.0°C. Using the Dynamic Interactive Vulnerability Assessment modeling framework, we project land and population exposed in the 1 in 100 year coastal flood plain under SLR and population change. In 2000, the flood plain is estimated at 540 × 103 km2. By 2100, under the mitigation scenarios, it ranges between 610 × 103 and 640 × 103 km2 (580 × 103 and 700 × 103 km2 for the 5th and 95th percentiles). Thus differences between the mitigation scenarios are small in 2100. However, in 2300, flood plains are projected to increase to between 700 × 103 and 960 × 103 km2 in 2300 (610 × 103 and 1290 × 103 km2) for the mitigation scenarios, but 1630 × 103 km2 (1190 × 103 and 2220 × 103 km2) for the non-mitigation scenario. The proportion of global population exposed to SLR in 2300 is projected to be between 1.5% and 5.4% (1.2%-7.6%) (assuming no population growth after 2100) for the aggressive mitigation and the non-mitigation scenario, respectively. Hence over centennial timescales there are significant benefits to climate change mitigation and temperature stabilization. However, sea-levels will continue to rise albeit at lower rates. Thus potential impacts will keep increasing necessitating adaptation to existing coastal infrastructure and the careful planning of new coastal developments.

  8. US major crops’ uncertain climate change risks and greenhouse gas mitigation benefits

    DOE PAGES

    Wing, Ian Sue; Monier, Erwan; Stern, Ari; ...

    2015-10-28

    In this study, we estimate the costs of climate change to US agriculture, and associated potential benefits of abating greenhouse gas emissions. Five major crops' yield responses to climatic variation are modeled empirically, and the results combined with climate projections for a no-policy, high-warming future, as well as moderate and stringent mitigation scenarios. Unabated warming reduces yields of wheat and soybeans by 2050, and cotton by 2100, but moderate warming increases yields of all crops except wheat. Yield changes are monetized using the results of economic simulations within an integrated climate-economy modeling framework. Uncontrolled warming's economic effects on major cropsmore » are slightly positive—annual benefits <$4 B. These are amplified by emission reductions, but subject to diminishing returns—by 2100 reaching $17 B under moderate mitigation, but only $7 B with stringent mitigation. Costs and benefits are sensitive to irreducible uncertainty about the fertilization effects of elevated atmospheric carbon dioxide, without which unabated warming incurs net costs of up to $18 B, generating benefits to moderate (stringent) mitigation as large as $26 B ($20 B).« less

  9. US major crops’ uncertain climate change risks and greenhouse gas mitigation benefits

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wing, Ian Sue; Monier, Erwan; Stern, Ari

    In this study, we estimate the costs of climate change to US agriculture, and associated potential benefits of abating greenhouse gas emissions. Five major crops' yield responses to climatic variation are modeled empirically, and the results combined with climate projections for a no-policy, high-warming future, as well as moderate and stringent mitigation scenarios. Unabated warming reduces yields of wheat and soybeans by 2050, and cotton by 2100, but moderate warming increases yields of all crops except wheat. Yield changes are monetized using the results of economic simulations within an integrated climate-economy modeling framework. Uncontrolled warming's economic effects on major cropsmore » are slightly positive—annual benefits <$4 B. These are amplified by emission reductions, but subject to diminishing returns—by 2100 reaching $17 B under moderate mitigation, but only $7 B with stringent mitigation. Costs and benefits are sensitive to irreducible uncertainty about the fertilization effects of elevated atmospheric carbon dioxide, without which unabated warming incurs net costs of up to $18 B, generating benefits to moderate (stringent) mitigation as large as $26 B ($20 B).« less

  10. Natural Hazards Observer. Volume 32, Number 2, November 2007

    DTIC Science & Technology

    2007-11-01

    global warming plan that proposed an obligatory, market -based, cap-and-trade pro- gram that would reverse the worst-case effects of climate change by... market penetration for flood insurance, building Report (under Goal 4: "Lofty Targets"). and elevation requirements, hazard mitigation grants, The Report...reinsurance markets in subsequent years. With an unbiased perspective of all catastrophe model- 8th Pacific Conference on Earthquake Engineering-Sin- ing

  11. Environmental Adult Education for Mitigating the Impacts of Climate Change on Crop Production and Fish Farming in Rivers State of Nigeria

    ERIC Educational Resources Information Center

    Eheazu, Caroline L.; Ezeala, Joy I.

    2017-01-01

    The threats of climate change to human society and natural ecosystems have become a devastating environmental problem for crop production and fish farming in Nigeria. This is partly because farmers and fisher folk are known to adopt age-old methods that do not counter current global warming and climate change effects. The purpose of this study was…

  12. Escalating heat-stress mortality risk due to global warming in the Middle East and North Africa (MENA).

    PubMed

    Ahmadalipour, Ali; Moradkhani, Hamid

    2018-08-01

    Climate change will substantially exacerbate extreme temperature and heatwaves. The impacts will be more intense across the Middle East and North Africa (MENA), a region mostly characterized by hot and arid climate, already intolerable for human beings in many parts. In this study, daily climate data from 17 fine-resolution Regional Climate Models (RCMs) are acquired to calculate wet-bulb temperature and investigate the mortality risk for people aged over 65 years caused by excessive heat stress across the MENA region. Spatially adaptive temperature thresholds are implemented for quantifying the mortality risk, and the analysis is conducted for the historical period of 1951-2005 and two future scenarios of RCP4.5 and RCP8.5 during the 2006-2100 period. Results show that the mortality risk will increase in distant future to 8-20 times higher than that of the historical period if no climate change mitigation is implemented. The coastal regions of the Red sea, Persian Gulf, and Mediterranean Sea indicate substantial increase in mortality risk. Nonetheless, the risk ratio will be limited to 3-7 times if global warming is limited to 2 °C. Climate change planning and adaptation is imperative for mitigating heat-related mortality risk across the region. Copyright © 2018 Elsevier Ltd. All rights reserved.

  13. Susceptibility to a metal under global warming is shaped by thermal adaptation along a latitudinal gradient.

    PubMed

    Dinh Van, Khuong; Janssens, Lizanne; Debecker, Sara; De Jonge, Maarten; Lambret, Philippe; Nilsson-Örtman, Viktor; Bervoets, Lieven; Stoks, Robby

    2013-09-01

    Global warming and contamination represent two major threats to biodiversity that have the potential to interact synergistically. There is the potential for gradual local thermal adaptation and dispersal to higher latitudes to mitigate the susceptibility of organisms to contaminants and global warming at high latitudes. Here, we applied a space-for-time substitution approach to study the thermal dependence of the susceptibility of Ischnura elegans damselfly larvae to zinc in a common garden warming experiment (20 and 24 °C) with replicated populations from three latitudes spanning >1500 km in Europe. We observed a striking latitude-specific effect of temperature on the zinc-induced mortality pattern; local thermal adaptation along the latitudinal gradient made Swedish, but not French, damselfly larvae more susceptible to zinc at 24 °C. Latitude- and temperature-specific differences in zinc susceptibility may be related to the amount of energy available to defend against and repair damage since Swedish larvae showed a much stronger zinc-induced reduction of food intake at 24 °C. The pattern of local thermal adaptation indicates that the predicted temperature increase of 4 °C by 2100 will strongly magnify the impact of a contaminant such as zinc at higher latitudes unless there is thermal evolution and/or migration of lower latitude genotypes. Our results underscore the critical importance of studying the susceptibility to contaminants under realistic warming scenarios taking into account local thermal adaptation across natural temperature gradients. © 2013 John Wiley & Sons Ltd.

  14. Global warming

    NASA Astrophysics Data System (ADS)

    Houghton, John

    2005-06-01

    'Global warming' is a phrase that refers to the effect on the climate of human activities, in particular the burning of fossil fuels (coal, oil and gas) and large-scale deforestation, which cause emissions to the atmosphere of large amounts of 'greenhouse gases', of which the most important is carbon dioxide. Such gases absorb infrared radiation emitted by the Earth's surface and act as blankets over the surface keeping it warmer than it would otherwise be. Associated with this warming are changes of climate. The basic science of the 'greenhouse effect' that leads to the warming is well understood. More detailed understanding relies on numerical models of the climate that integrate the basic dynamical and physical equations describing the complete climate system. Many of the likely characteristics of the resulting changes in climate (such as more frequent heat waves, increases in rainfall, increase in frequency and intensity of many extreme climate events) can be identified. Substantial uncertainties remain in knowledge of some of the feedbacks within the climate system (that affect the overall magnitude of change) and in much of the detail of likely regional change. Because of its negative impacts on human communities (including for instance substantial sea-level rise) and on ecosystems, global warming is the most important environmental problem the world faces. Adaptation to the inevitable impacts and mitigation to reduce their magnitude are both necessary. International action is being taken by the world's scientific and political communities. Because of the need for urgent action, the greatest challenge is to move rapidly to much increased energy efficiency and to non-fossil-fuel energy sources.

  15. Greenhouse-gas emission targets for limiting global warming to 2 degrees C.

    PubMed

    Meinshausen, Malte; Meinshausen, Nicolai; Hare, William; Raper, Sarah C B; Frieler, Katja; Knutti, Reto; Frame, David J; Allen, Myles R

    2009-04-30

    More than 100 countries have adopted a global warming limit of 2 degrees C or below (relative to pre-industrial levels) as a guiding principle for mitigation efforts to reduce climate change risks, impacts and damages. However, the greenhouse gas (GHG) emissions corresponding to a specified maximum warming are poorly known owing to uncertainties in the carbon cycle and the climate response. Here we provide a comprehensive probabilistic analysis aimed at quantifying GHG emission budgets for the 2000-50 period that would limit warming throughout the twenty-first century to below 2 degrees C, based on a combination of published distributions of climate system properties and observational constraints. We show that, for the chosen class of emission scenarios, both cumulative emissions up to 2050 and emission levels in 2050 are robust indicators of the probability that twenty-first century warming will not exceed 2 degrees C relative to pre-industrial temperatures. Limiting cumulative CO(2) emissions over 2000-50 to 1,000 Gt CO(2) yields a 25% probability of warming exceeding 2 degrees C-and a limit of 1,440 Gt CO(2) yields a 50% probability-given a representative estimate of the distribution of climate system properties. As known 2000-06 CO(2) emissions were approximately 234 Gt CO(2), less than half the proven economically recoverable oil, gas and coal reserves can still be emitted up to 2050 to achieve such a goal. Recent G8 Communiqués envisage halved global GHG emissions by 2050, for which we estimate a 12-45% probability of exceeding 2 degrees C-assuming 1990 as emission base year and a range of published climate sensitivity distributions. Emissions levels in 2020 are a less robust indicator, but for the scenarios considered, the probability of exceeding 2 degrees C rises to 53-87% if global GHG emissions are still more than 25% above 2000 levels in 2020.

  16. Simultaneously Mitigating Near-Term Climate Change and Improving Human Health and Food Security

    NASA Astrophysics Data System (ADS)

    Shindell, Drew; Kuylenstierna, Johan C. I.; Vignati, Elisabetta; van Dingenen, Rita; Amann, Markus; Klimont, Zbigniew; Anenberg, Susan C.; Muller, Nicholas; Janssens-Maenhout, Greet; Raes, Frank; Schwartz, Joel; Faluvegi, Greg; Pozzoli, Luca; Kupiainen, Kaarle; Höglund-Isaksson, Lena; Emberson, Lisa; Streets, David; Ramanathan, V.; Hicks, Kevin; Oanh, N. T. Kim; Milly, George; Williams, Martin; Demkine, Volodymyr; Fowler, David

    2012-01-01

    Tropospheric ozone and black carbon (BC) contribute to both degraded air quality and global warming. We considered ~400 emission control measures to reduce these pollutants by using current technology and experience. We identified 14 measures targeting methane and BC emissions that reduce projected global mean warming ~0.5°C by 2050. This strategy avoids 0.7 to 4.7 million annual premature deaths from outdoor air pollution and increases annual crop yields by 30 to 135 million metric tons due to ozone reductions in 2030 and beyond. Benefits of methane emissions reductions are valued at $700 to $5000 per metric ton, which is well above typical marginal abatement costs (less than $250). The selected controls target different sources and influence climate on shorter time scales than those of carbon dioxide-reduction measures. Implementing both substantially reduces the risks of crossing the 2°C threshold.

  17. Global water resources affected by human interventions and climate change.

    PubMed

    Haddeland, Ingjerd; Heinke, Jens; Biemans, Hester; Eisner, Stephanie; Flörke, Martina; Hanasaki, Naota; Konzmann, Markus; Ludwig, Fulco; Masaki, Yoshimitsu; Schewe, Jacob; Stacke, Tobias; Tessler, Zachary D; Wada, Yoshihide; Wisser, Dominik

    2014-03-04

    Humans directly change the dynamics of the water cycle through dams constructed for water storage, and through water withdrawals for industrial, agricultural, or domestic purposes. Climate change is expected to additionally affect water supply and demand. Here, analyses of climate change and direct human impacts on the terrestrial water cycle are presented and compared using a multimodel approach. Seven global hydrological models have been forced with multiple climate projections, and with and without taking into account impacts of human interventions such as dams and water withdrawals on the hydrological cycle. Model results are analyzed for different levels of global warming, allowing for analyses in line with temperature targets for climate change mitigation. The results indicate that direct human impacts on the water cycle in some regions, e.g., parts of Asia and in the western United States, are of the same order of magnitude, or even exceed impacts to be expected for moderate levels of global warming (+2 K). Despite some spread in model projections, irrigation water consumption is generally projected to increase with higher global mean temperatures. Irrigation water scarcity is particularly large in parts of southern and eastern Asia, and is expected to become even larger in the future.

  18. Global water resources affected by human interventions and climate change

    PubMed Central

    Haddeland, Ingjerd; Heinke, Jens; Biemans, Hester; Eisner, Stephanie; Flörke, Martina; Hanasaki, Naota; Konzmann, Markus; Ludwig, Fulco; Masaki, Yoshimitsu; Schewe, Jacob; Stacke, Tobias; Tessler, Zachary D.; Wada, Yoshihide; Wisser, Dominik

    2014-01-01

    Humans directly change the dynamics of the water cycle through dams constructed for water storage, and through water withdrawals for industrial, agricultural, or domestic purposes. Climate change is expected to additionally affect water supply and demand. Here, analyses of climate change and direct human impacts on the terrestrial water cycle are presented and compared using a multimodel approach. Seven global hydrological models have been forced with multiple climate projections, and with and without taking into account impacts of human interventions such as dams and water withdrawals on the hydrological cycle. Model results are analyzed for different levels of global warming, allowing for analyses in line with temperature targets for climate change mitigation. The results indicate that direct human impacts on the water cycle in some regions, e.g., parts of Asia and in the western United States, are of the same order of magnitude, or even exceed impacts to be expected for moderate levels of global warming (+2 K). Despite some spread in model projections, irrigation water consumption is generally projected to increase with higher global mean temperatures. Irrigation water scarcity is particularly large in parts of southern and eastern Asia, and is expected to become even larger in the future. PMID:24344275

  19. Allocating a 2 °C cumulative carbon budget to countries

    NASA Astrophysics Data System (ADS)

    Gignac, Renaud; Damon Matthews, H.

    2015-07-01

    Recent estimates of the global carbon budget, or allowable cumulative CO2 emissions consistent with a given level of climate warming, have the potential to inform climate mitigation policy discussions aimed at maintaining global temperatures below 2 °C. This raises difficult questions, however, about how best to share this carbon budget amongst nations in a way that both respects the need for a finite cap on total allowable emissions, and also addresses the fundamental disparities amongst nations with respect to their historical and potential future emissions. Here we show how the contraction and convergence (C&C) framework can be applied to the division of a global carbon budget among nations, in a manner that both maintains total emissions below a level consistent with 2 °C, and also adheres to the principle of attaining equal per capita CO2 emissions within the coming decades. We show further that historical differences in responsibility for climate warming can be quantified via a cumulative carbon debt (or credit), which represents the amount by which a given country’s historical emissions have exceeded (or fallen short of) the emissions that would have been consistent with their share of world population over time. This carbon debt/credit calculation enhances the potential utility of C&C, therefore providing a simple method to frame national climate mitigation targets in a way that both accounts for historical responsibility, and also respects the principle of international equity in determining future emissions allowances.

  20. What is the potential of cropland albedo management in the fight against global warming? A case study based on the use of cover crops

    NASA Astrophysics Data System (ADS)

    Carrer, Dominique; Pique, Gaétan; Ferlicoq, Morgan; Ceamanos, Xavier; Ceschia, Eric

    2018-04-01

    Land cover management in agricultural areas is a powerful tool that could play a role in the mitigation of climate change and the counterbalance of global warming. First, we attempted to quantify the radiative forcing that would increase the surface albedo of croplands in Europe following the inclusion of cover crops during the fallow period. This is possible since the albedo of bare soil in many areas of Europe is lower than the albedo of vegetation. By using satellite data, we demonstrated that the introduction of cover crops into the crop rotation during the fallow period would increase the albedo over 4.17% of Europe’s surface. According to our study, the effect resulting from this increase in the albedo of the croplands would be equivalent to a mitigation of 3.16 MtCO2-eq.year‑1 over a 100 year time horizon. This is equivalent to a mitigation potential per surface unit (m2) of introduced cover crop over Europe of 15.91 gCO2-eq.year‑1.m‑2. This value, obtained at the European scale, is consistent with previous estimates. We show that this mitigation potential could be increased by 27% if the cover crop is maintained for a longer period than 3 months and reduced by 28% in the case of no irrigation. In the second part of this work, based on recent studies estimating the impact of cover crops on soil carbon sequestration and the use of fertilizer, we added the albedo effect to those estimates, and we argued that, by considering areas favourable to their introduction, cover crops in Europe could mitigate human-induced agricultural greenhouse gas emissions by up to 7% per year, using 2011 as a reference. The impact of the albedo change per year would be between 10% and 13% of this total impact. The countries showing the greatest mitigation potentials are France, Bulgaria, Romania, and Germany.

  1. Litters of photosynthetically divergent grasses exhibit differential metabolic responses to warming and elevated CO2

    USDA-ARS?s Scientific Manuscript database

    Climatic stress induced by warming can alter plant metabolism, leading to changes in litter chemistry that can affect soil carbon cycling. Elevated CO2 could partly mitigate warming induced moisture stress, and the degree of this mitigation may vary with plant functional types. We hypothesized that,...

  2. Pathways for balancing CO2 emissions and sinks.

    PubMed

    Walsh, Brian; Ciais, Philippe; Janssens, Ivan A; Peñuelas, Josep; Riahi, Keywan; Rydzak, Felicjan; van Vuuren, Detlef P; Obersteiner, Michael

    2017-04-13

    In December 2015 in Paris, leaders committed to achieve global, net decarbonization of human activities before 2100. This achievement would halt and even reverse anthropogenic climate change through the net removal of carbon from the atmosphere. However, the Paris documents contain few specific prescriptions for emissions mitigation, leaving various countries to pursue their own agendas. In this analysis, we project energy and land-use emissions mitigation pathways through 2100, subject to best-available parameterization of carbon-climate feedbacks and interdependencies. We find that, barring unforeseen and transformative technological advancement, anthropogenic emissions need to peak within the next 10 years, to maintain realistic pathways to meeting the COP21 emissions and warming targets. Fossil fuel consumption will probably need to be reduced below a quarter of primary energy supply by 2100 and the allowable consumption rate drops even further if negative emissions technologies remain technologically or economically unfeasible at the global scale.

  3. Pathways for balancing CO2 emissions and sinks

    PubMed Central

    Walsh, Brian; Ciais, Philippe; Janssens, Ivan A.; Peñuelas, Josep; Riahi, Keywan; Rydzak, Felicjan; van Vuuren, Detlef P.; Obersteiner, Michael

    2017-01-01

    In December 2015 in Paris, leaders committed to achieve global, net decarbonization of human activities before 2100. This achievement would halt and even reverse anthropogenic climate change through the net removal of carbon from the atmosphere. However, the Paris documents contain few specific prescriptions for emissions mitigation, leaving various countries to pursue their own agendas. In this analysis, we project energy and land-use emissions mitigation pathways through 2100, subject to best-available parameterization of carbon-climate feedbacks and interdependencies. We find that, barring unforeseen and transformative technological advancement, anthropogenic emissions need to peak within the next 10 years, to maintain realistic pathways to meeting the COP21 emissions and warming targets. Fossil fuel consumption will probably need to be reduced below a quarter of primary energy supply by 2100 and the allowable consumption rate drops even further if negative emissions technologies remain technologically or economically unfeasible at the global scale. PMID:28406154

  4. Inclusion of climate change strategies in municipal Integrated Development Plans: A case from seven municipalities in Limpopo Province, South Africa

    PubMed Central

    2016-01-01

    The Intergovernmental Panel on Climate Change (IPCC) has made it clear that anthropogenic greenhouse gasses are the main cause of observed global warming that leads to climate change. Climate change is now a global reality. In the South African political set-up, local municipalities are the structures that are in direct contact with communities and they draw up Integrated Development Plans (IDPs), which are reviewed and upgraded annually. The article seeks to investigate the extent to which climate change adaptation and mitigation strategies are embedded IDPs in seven vulnerable municipalities in the Limpopo Province. The article conducted an in-depth content analysis of the IDPs of the seven municipalities and the results have revealed that these municipalities have not included adaptation and mitigation strategies adequately in their IDPs despite being the most vulnerable municipalities in the province. The article concludes that these municipalities have not as yet institutionalised climate change in their daily operations, planning and decision making. To this end, the paper recommends that local municipalities should include climate change adaptation and mitigation strategies in their IDPs.

  5. A guide to potential soil carbon sequestration; land-use management for mitigation of greenhouse gas emissions

    USGS Publications Warehouse

    Markewich, H.W.; Buell, G.R.

    2001-01-01

    Terrestrial carbon sequestration has a potential role in reducing the recent increase in atmospheric carbon dioxide (CO2) that is, in part, contributing to global warming. Because the most stable long-term surface reservoir for carbon is the soil, changes in agriculture and forestry can potentially reduce atmospheric CO2 through increased soil-carbon storage. If local governments and regional planning agencies are to effect changes in land-use management that could mitigate the impacts of increased greenhouse gas (GHG) emissions, it is essential to know how carbon is cycled and distributed on the landscape. Only then can a cost/benefit analysis be applied to carbon sequestration as a potential land-use management tool for mitigation of GHG emissions. For the past several years, the U.S. Geological Survey (USGS) has been researching the role of terrestrial carbon in the global carbon cycle. Data from these investigations now allow the USGS to begin to (1) 'map' carbon at national, regional, and local scales; (2) calculate present carbon storage at land surface; and (3) identify those areas having the greatest potential to sequester carbon.

  6. Climate targets and cost-effective climate stabilization pathways

    NASA Astrophysics Data System (ADS)

    Held, H.

    2015-08-01

    Climate economics has developed two main tools to derive an economically adequate response to the climate problem. Cost benefit analysis weighs in any available information on mitigation costs and benefits and thereby derives an "optimal" global mean temperature. Quite the contrary, cost effectiveness analysis allows deriving costs of potential policy targets and the corresponding cost- minimizing investment paths. The article highlights pros and cons of both approaches and then focusses on the implications of a policy that strives at limiting global warming to 2 °C compared to pre-industrial values. The related mitigation costs and changes in the energy sector are summarized according to the IPCC report of 2014. The article then points to conceptual difficulties when internalizing uncertainty in these types of analyses and suggests pragmatic solutions. Key statements on mitigation economics remain valid under uncertainty when being given the adequate interpretation. Furthermore, the expected economic value of perfect climate information is found to be on the order of hundreds of billions of Euro per year if a 2°-policy were requested. Finally, the prospects of climate policy are sketched.

  7. CMIP5 projected changes in spring and summer drought and wet conditions over North America

    NASA Astrophysics Data System (ADS)

    Swain, Sharmistha; Hayhoe, Katharine

    2015-05-01

    Climate change is expected to alter the mean and variability of future spring and summer drought and wet conditions during the twenty-first century across North America, as characterized by the Standardized Precipitation Index (SPI). Based on Coupled Model Intercomparison Project phase 5 simulations, statistically significant increases are projected in mean spring SPI over the northern part of the continent, and drier conditions across the southwest. Dry conditions in summer also increase, particularly throughout the central Great Plains. By end of century, greater changes are projected under a higher radiative forcing scenario (RCP 8.5) as compared to moderate (RCP 6.0) and lower (RCP 4.5). Analysis of projected changes standardized to a range of global warming thresholds from +1 to +4 °C reveals a consistent spatial pattern of wetter conditions in the northern and drier conditions in the southwestern part of the continent in spring that intensifies under increased warming, suggesting that the magnitude of projected changes in wetness and drought may scale with global temperature. For many regions, SPI interannual variability is also projected to increase (even for regions that are projected to become drier), indicating that climate may become more extreme under greater warming, with increased frequency of both extreme dry and wet seasons. Quantifying the direction and magnitude of projected future trends from global warming is key to informing strategies to mitigate human influence on climate and help natural and managed resources adapt.

  8. Assessing the impacts of 1.5 °C global warming - simulation protocol of the Inter-Sectoral Impact Model Intercomparison Project (ISIMIP2b)

    NASA Astrophysics Data System (ADS)

    Frieler, Katja; Lange, Stefan; Piontek, Franziska; Reyer, Christopher P. O.; Schewe, Jacob; Warszawski, Lila; Zhao, Fang; Chini, Louise; Denvil, Sebastien; Emanuel, Kerry; Geiger, Tobias; Halladay, Kate; Hurtt, George; Mengel, Matthias; Murakami, Daisuke; Ostberg, Sebastian; Popp, Alexander; Riva, Riccardo; Stevanovic, Miodrag; Suzuki, Tatsuo; Volkholz, Jan; Burke, Eleanor; Ciais, Philippe; Ebi, Kristie; Eddy, Tyler D.; Elliott, Joshua; Galbraith, Eric; Gosling, Simon N.; Hattermann, Fred; Hickler, Thomas; Hinkel, Jochen; Hof, Christian; Huber, Veronika; Jägermeyr, Jonas; Krysanova, Valentina; Marcé, Rafael; Müller Schmied, Hannes; Mouratiadou, Ioanna; Pierson, Don; Tittensor, Derek P.; Vautard, Robert; van Vliet, Michelle; Biber, Matthias F.; Betts, Richard A.; Bodirsky, Benjamin Leon; Deryng, Delphine; Frolking, Steve; Jones, Chris D.; Lotze, Heike K.; Lotze-Campen, Hermann; Sahajpal, Ritvik; Thonicke, Kirsten; Tian, Hanqin; Yamagata, Yoshiki

    2017-11-01

    In Paris, France, December 2015, the Conference of the Parties (COP) to the United Nations Framework Convention on Climate Change (UNFCCC) invited the Intergovernmental Panel on Climate Change (IPCC) to provide a special report in 2018 on the impacts of global warming of 1.5 °C above pre-industrial levels and related global greenhouse gas emission pathways. In Nairobi, Kenya, April 2016, the IPCC panel accepted the invitation. Here we describe the response devised within the Inter-Sectoral Impact Model Intercomparison Project (ISIMIP) to provide tailored, cross-sectorally consistent impact projections to broaden the scientific basis for the report. The simulation protocol is designed to allow for (1) separation of the impacts of historical warming starting from pre-industrial conditions from impacts of other drivers such as historical land-use changes (based on pre-industrial and historical impact model simulations); (2) quantification of the impacts of additional warming up to 1.5 °C, including a potential overshoot and long-term impacts up to 2299, and comparison to higher levels of global mean temperature change (based on the low-emissions Representative Concentration Pathway RCP2.6 and a no-mitigation pathway RCP6.0) with socio-economic conditions fixed at 2005 levels; and (3) assessment of the climate effects based on the same climate scenarios while accounting for simultaneous changes in socio-economic conditions following the middle-of-the-road Shared Socioeconomic Pathway (SSP2, Fricko et al., 2016) and in particular differential bioenergy requirements associated with the transformation of the energy system to comply with RCP2.6 compared to RCP6.0. With the aim of providing the scientific basis for an aggregation of impacts across sectors and analysis of cross-sectoral interactions that may dampen or amplify sectoral impacts, the protocol is designed to facilitate consistent impact projections from a range of impact models across different sectors (global and regional hydrology, lakes, global crops, global vegetation, regional forests, global and regional marine ecosystems and fisheries, global and regional coastal infrastructure, energy supply and demand, temperature-related mortality, and global terrestrial biodiversity).

  9. Is the World in a State of Climate Change Planetary Emergency?

    NASA Astrophysics Data System (ADS)

    Carter, Peter

    2013-04-01

    Leading climate change experts have made public statements that the world is beyond dangerous interference with the climate system, committed to a warming of 3-5°C, facing a risk of global climate catastrophe, and in a state of planetary emergency, but these conclusions are not informing climate change policy. The evidence for these statements is examined and presented in this paper. The main parameters considered are world food security and carbon feedback "runaway" or rapid global warming. 2012 was a record year for Arctic albedo loss, which amplifies Arctic warming and drives Arctic methane feedback emissions. Since 2007, atmospheric methane is experiencing a renewed, sustained increase due to feedback emissions. All potentially large positive Arctic feedbacks are operant. These include albedo loss from disappearing snow and summer sea ice; methane released from peatlands, thawing permafrost and sea floor methane hydrates; and nitrous oxide from cryoperturbed permafrost. Increasing extreme weather events have caused regional crop productivity losses on many continents since 2000. The loss of Arctic albedo might be driving extreme heat and drought in the northern hemisphere. Today the formal national pledges for emissions reductions filed with the UN, combined, commit humanity to a warming of 4.4°C (Climate Interactive) by 2100, which is more than 8°C eventually after 2100, and there are no initiatives to change this. The International Energy Agency warns that the current global economy is on track for a warming of 6°C by 2100. A simple yet novel summation approach of all unavoidable sources of warming estimates the committed unavoidable warming to be 3°C by 2100. What are the implications of these future commitments for world food security and the risk of runaway climate change? The paper considers how these commitments and the policy-relevant research findings can inform policy making with respect to an appropriate science-based mitigation response.

  10. Geoengineering to Avoid Overshoot: An Uncertainty Analysis

    NASA Astrophysics Data System (ADS)

    Tanaka, K.

    2009-04-01

    Geoengineering (or climate engineering) using stratospheric sulfur injections (Crutzen, 2006) has been called for research in case of an urgent need for stopping global warming when other mitigation efforts were exhausted. Although there are a number of concerns over this idea (e.g. Robock, 2008), it is still useful to consider geoengineering as a possible method to limit warming caused by overshoot. Overshoot is a feature accompanied by low stabilizations scenarios aiming for a stringent target (Rao et al., 2008) in which total radiative forcing temporarily exceeds the target before reaching there. Scenarios achieving a 50% emission reduction by 2050 produces overshoot. Overshoot could cause sustained warming for decades due to the inertia of the climate system. If stratospheric sulfur injections were to be used as a "last resort" to avoid overshoot, what would be the suitable start-year and injection profile of such an intervention? Wigley (2006) examined climate response to combined mitigation/geoengineering scenarios with the intent to avert overshoot. Wigley's analysis demonstrated a basic potential of such a combined mitigation/geoengineering approach to avoid temperature overshoot - however it considered only simplistic sulfur injection profiles (all started in 2010), just one mitigation scenario, and did not examine the sensitivity of the climate response to any underlying uncertainties. This study builds upon Wigley's premise of the combined mitigation/geoengineering approach and brings associated uncertainty into the analysis. First, this study addresses the question as to how much geoengineering intervention would be needed to avoid overshoot by considering associated uncertainty? Then, would a geoengineering intervention of such a magnitude including uncertainty be permissible in considering all the other side effects? This study begins from the supposition that geoengineering could be employed to cap warming at 2.0°C since preindustrial. A few mitigation scenarios having overshoot are formulated. Optimal injection profiles (start-year and magnitude) for capping temperature rise at 2.0°C are calculated for each mitigation scenario. The sensitivity of such results to the uncertain parameters (climate sensitivity, tropospheric aerosol forcing, and ocean diffusivity) is then examined - in particular, I account for the inter-dependency of the estimates of these parameters such that they are consistent with historical observations (e.g. temperature records) by using an inverse estimation approach. I use the simple climate model ACC2 (Tanaka and Kriegler et al., 2007; Tanaka, 2008) - which (unlike Wigley's MAGICC model (Wigley and Raper, 2001)) includes an inversion setup that allows for the exploration of parameter inter-dependency based on historical observational constraints. References Crutzen, P. J. (2006) Albedo enhancement by stratospheric sulfur injections: a contribution to resolve a policy dilemma? Climatic Change, 77, 211-219. Rao, S., K. Riahi, E. Stehfest, D. van Vuuren, C. Cho, M. den Elzen, M. Isaac, J. van Vliet (2008) IMAGE and MESSAGE scenarios limiting GHG concentration to low levels. Interim Report at International Institute for Applied Systems Analysis (IIASA) IR-08-020. 57 pp. http://www.iiasa.ac.at/Admin/PUB/Documents/IR-08-020.pdf Robock, A. (2008) 20 reasons why geoengineering may be a bad idea. Bulletin of the Atomic Scientists, 64, 14-18. Tanaka, K., E. Kriegler, T. Bruckner, G. Hooss, W. Knorr, T. Raddatz (2007) Aggregated Carbon Cycle, Atmospheric Chemistry, and Climate Model (ACC2): description of the forward and inverse modes. Reports on Earth System Science No. 40. Max Planck Institute for Meteorology, Hamburg, Germany. 188 pp. http://www.mpimet.mpg.de/wissenschaft/publikationen/erdsystemforschung.html Tanaka, K. (2008) Inverse estimation for the simple Earth system model ACC2 and its applications. Ph.D. dissertation. Hamburg, Germany: Hamburg Universität, International Max Planck Research School on Earth System Modelling, 296 pp. http://www.sub.uni-hamburg.de/opus/volltexte/2008/3654/ Wigley, T. M. L., S. C. B. Raper (2001) Interpretation of high projections for global-mean warming. Science, 293, 451-454. Wigley, T. M. L. (2006) A combined mitigation/geoengineering approach to climate stabilization. Science, 314, 452-454.

  11. Evaluation of additional biogeochemical impacts on mitigation pathways in an energy sytem integrated assessment model.

    NASA Astrophysics Data System (ADS)

    Dessens, O.

    2017-12-01

    Within the last IPCC AR5 a large and systematic sensitivity study around available technologies and timing of policies applied in IAMs to achieve the 2°C target has been conducted. However the simple climate representations included in IAMs are generally tuned to the results of ensemble means. This may result in hiding within the ensemble mean results possible challenging mitigation pathways for the economy or the technology future scenarios. This work provides new insights on the sensitivity of the socio-economic response to different climate factors under a 2°C climate change target in order to help guide future efforts to reduce uncertainty in the climate mitigation decisions. The main objective is to understand and bring new insights on how future global warming will affect the natural biochemical feedbacks on the climate system and what could be the consequences of these feedbacks on the anthropogenic emission pathways with a specific focus on the energy-economy system. It specifically focuses on three issues of the climate representation affecting the energy system transformation and GHG emissions pathways: 1- Impacts of the climate sensitivity (or TCR); 2- Impacts of warming on the radiative forcing (cloudiness,...); 3- Impacts of warming on the carbon cycle (carbon cycle feedback). We use the integrated assessment model TIAM-UCL to examine the mitigation pathways compatible with the 2C target depending on assumptions regarding the 3 issues of the climate representation introduced above. The following key conclusions drawn from this study are that mitigation to 2°C is still possible under strong climate sensitivity (TCR), strong carbon cycle amplification or positive radiative forcing feedback. However, this level of climate mitigation will require a significant transformation in the way we produce and consume energy. Carbon capture and sequestration on electricity generation, industry and biomass is part of the technology pool needed to achieve this level of decarbonisation. In extreme condition (positive correlation between the 3 issues discussed) the integrated assessment model TIAM-UCL creates pathways requiring additional negative emission technologies at the end of this century to keep temperature change well below 2°C.

  12. Microbial physiology and soil CO2 efflux after 9 years of soil warming in a temperate forest - no indications for thermal adaptations.

    PubMed

    Schindlbacher, Andreas; Schnecker, Jörg; Takriti, Mounir; Borken, Werner; Wanek, Wolfgang

    2015-11-01

    Thermal adaptations of soil microorganisms could mitigate or facilitate global warming effects on soil organic matter (SOM) decomposition and soil CO2 efflux. We incubated soil from warmed and control subplots of a forest soil warming experiment to assess whether 9 years of soil warming affected the rates and the temperature sensitivity of the soil CO2 efflux, extracellular enzyme activities, microbial efficiency, and gross N mineralization. Mineral soil (0-10 cm depth) was incubated at temperatures ranging from 3 to 23 °C. No adaptations to long-term warming were observed regarding the heterotrophic soil CO2 efflux (R10 warmed: 2.31 ± 0.15 μmol m(-2)  s(-1) , control: 2.34 ± 0.29 μmol m(-2)  s(-1) ; Q10 warmed: 2.45 ± 0.06, control: 2.45 ± 0.04). Potential enzyme activities increased with incubation temperature, but the temperature sensitivity of the enzymes did not differ between the warmed and the control soils. The ratio of C : N acquiring enzyme activities was significantly higher in the warmed soil. Microbial biomass-specific respiration rates increased with incubation temperature, but the rates and the temperature sensitivity (Q10 warmed: 2.54 ± 0.23, control 2.75 ± 0.17) did not differ between warmed and control soils. Microbial substrate use efficiency (SUE) declined with increasing incubation temperature in both, warmed and control, soils. SUE and its temperature sensitivity (Q10 warmed: 0.84 ± 0.03, control: 0.88 ± 0.01) did not differ between warmed and control soils either. Gross N mineralization was invariant to incubation temperature and was not affected by long-term soil warming. Our results indicate that thermal adaptations of the microbial decomposer community are unlikely to occur in C-rich calcareous temperate forest soils. © 2015 The Authors. Global Change Biology published by John Wiley & Sons Ltd.

  13. Water conservation benefits of urban heat mitigation: can cooling strategies reduce water consumption in California?

    NASA Astrophysics Data System (ADS)

    Vahmani, P.; Jones, A. D.

    2017-12-01

    Urban areas are at the forefront of climate mitigation and adaptation efforts given their high concentration of people, industry, and infrastructure. Many cities globally are seeking strategies to counter the consequences of both a hotter and drier climate. While urban heat mitigation strategies have been shown to have beneficial effects on health, energy consumption, and greenhouse gas emissions, their implications for water conservation have not been widely examined. Here we show that broad implementation of cool roofs, an urban heat mitigation strategy, not only results in significant cooling of air temperature, but also meaningfully decreases outdoor water consumption by reducing evaporative and irrigation water demands. Based on a suite of satellite-supported, multiyear regional climate simulations, we find that cool roof adoption has the potential to reduce outdoor water consumption across the major metropolitan areas in California by up to 9%. Irrigation water savings per capita, induced by cool roofs, range from 1.8 to 15.4 gallons per day across 18 counties examined. Total water savings in Los Angeles county alone is about 83 million gallons per day. While this effect is robust across the 15 years examined (2001-2015), including both drought and non-drought years, we find that cool roofs are most effective during the hottest days of the year, indicating that they could play an even greater role in reducing outdoor water use in a hotter future climate. We further show that this synergistic relationship between heat mitigation and water conservation is asymmetrical - policies that encourage direct reductions in irrigation water use can lead to substantial regional warming, potentially conflicting with heat mitigation efforts designed to counter the effects of the projected warming climate.

  14. The Impacts of Climate Change Mitigation Strategies on Animal Welfare

    PubMed Central

    Shields, Sara; Orme-Evans, Geoffrey

    2015-01-01

    Simple Summary Climate change is probably the most important environmental issue of our time. Raising animals for food contributes to the production of greenhouse gases implicated in the global warming that is causing climate change. To combat this ecological disaster, a number of mitigation strategies involving changes to agricultural practices have been proposed. However, some of these changes will impact the welfare of farmed animals. This paper reviews selected climate change mitigation strategies and explains how different approaches could have negative or positive effects. Abstract The objective of this review is to point out that the global dialog on reducing greenhouse gas emissions in animal agriculture has, thus far, not adequately considered animal welfare in proposed climate change mitigation strategies. Many suggested approaches for reducing emissions, most of which could generally be described as calls for the intensification of production, can have substantial effects on the animals. Given the growing world-wide awareness and concern for animal welfare, many of these approaches are not socially sustainable. This review identifies the main emission abatement strategies in the climate change literature that would negatively affect animal welfare and details the associated problems. Alternative strategies are also identified as possible solutions for animal welfare and climate change, and it is suggested that more attention be focused on these types of options when allocating resources, researching mitigation strategies, and making policy decisions on reducing emissions from animal agriculture. PMID:26479240

  15. The potential of land management to decrease global warming from climate change

    NASA Astrophysics Data System (ADS)

    Mayer, A.; Hausfather, Z.; Jones, A. D.; Silver, W. L.

    2016-12-01

    Recent evidence suggests that negative emissions (i.e. sequestration) is critical to slow climate change (IPCC, 2013; Gasser et al, 2015). Agricultural (crop and grazing) lands have the potential to act as a significant carbon sink. These ecosystems cover a significant proportion of the global land surface, and are largely degraded with regard to soil carbon due to previous management practices (Bai et al, 2008). However, few studies have examined the required scale of land management interventions that would be required to make a significant contribution to a portfolio of efforts aimed at limiting anthropogenic influences on global mean temperature. To address this, we modelled the quantitative effect of a range of soil carbon sequestration rates on global temperature to 2100. Results showed that by assuming a baseline emissions scenario outlined in RCP 2.6, the sequestration of an additional 0.7 Pg C per year through improved agricultural land management practices would produce a reduction of 0.1 degrees C from predicted global temperatures by the year 2100. We also compiled previous estimates of global carbon sequestration potential of agricultural soils to compare with our theoretical prediction to determine whether carbon sequestration through existing land management practices has potential to significantly reduce global temperatures. Assuming long-term soil carbon uptake, the combined potential of agricultural land management-based mitigation approaches exceeded 0.25 degrees C warming reduction by the year 2100. However, results were highly sensitive to potential carbon saturation, defined as the maximum threshold for carbon storage in soil. Our results suggest that current land management technologies and available land area exist and could make a measureable impact on warming reduction. Results also highlighted potential carbon saturation as a key gap in knowledge.

  16. Changes in crop yields and their variability at different levels of global warming

    NASA Astrophysics Data System (ADS)

    Ostberg, Sebastian; Schewe, Jacob; Childers, Katelin; Frieler, Katja

    2018-05-01

    An assessment of climate change impacts at different levels of global warming is crucial to inform the policy discussion about mitigation targets, as well as for the economic evaluation of climate change impacts. Integrated assessment models often use global mean temperature change (ΔGMT) as a sole measure of climate change and, therefore, need to describe impacts as a function of ΔGMT. There is already a well-established framework for the scalability of regional temperature and precipitation changes with ΔGMT. It is less clear to what extent more complex biological or physiological impacts such as crop yield changes can also be described in terms of ΔGMT, even though such impacts may often be more directly relevant for human livelihoods than changes in the physical climate. Here we show that crop yield projections can indeed be described in terms of ΔGMT to a large extent, allowing for a fast estimation of crop yield changes for emissions scenarios not originally covered by climate and crop model projections. We use an ensemble of global gridded crop model simulations for the four major staple crops to show that the scenario dependence is a minor component of the overall variance of projected yield changes at different levels of ΔGMT. In contrast, the variance is dominated by the spread across crop models. Varying CO2 concentrations are shown to explain only a minor component of crop yield variability at different levels of global warming. In addition, we find that the variability in crop yields is expected to increase with increasing warming in many world regions. We provide, for each crop model, geographical patterns of mean yield changes that allow for a simplified description of yield changes under arbitrary pathways of global mean temperature and CO2 changes, without the need for additional climate and crop model simulations.

  17. Hydropower's Biogenic Carbon Footprint

    PubMed Central

    Pfister, Stephan

    2016-01-01

    Global warming is accelerating and the world urgently needs a shift to clean and renewable energy. Hydropower is currently the largest renewable source of electricity, but its contribution to climate change mitigation is not yet fully understood. Hydroelectric reservoirs are a source of biogenic greenhouse gases and in individual cases can reach the same emission rates as thermal power plants. Little is known about the severity of their emissions at the global scale. Here we show that the carbon footprint of hydropower is far higher than previously assumed, with a global average of 173 kg CO2 and 2.95 kg CH4 emitted per MWh of electricity produced. This results in a combined average carbon footprint of 273 kg CO2e/MWh when using the global warming potential over a time horizon of 100 years (GWP100). Nonetheless, this is still below that of fossil energy sources without the use of carbon capture and sequestration technologies. We identified the dams most promising for capturing methane for use as alternative energy source. The spread among the ~1500 hydropower plants analysed in this study is large and highlights the importance of case-by-case examinations. PMID:27626943

  18. Constraints on global temperature target overshoot.

    PubMed

    Ricke, K L; Millar, R J; MacMartin, D G

    2017-11-07

    In the aftermath of the Paris Agreement, the climate science and policy communities are beginning to assess the feasibility and potential benefits of limiting global warming to 1.5 °C or 2 °C above preindustrial. Understanding the dependence of the magnitude and duration of possible temporary exceedance (i.e., "overshoot") of temperature targets on sustainable energy decarbonization futures and carbon dioxide (CO 2 ) removal rates will be an important contribution to this policy discussion. Drawing upon results from the mitigation literature and the IPCC Working Group 3 (WG3) scenario database, we examine the global mean temperature implications of differing, independent pathways for the decarbonization of global energy supply and the implementation of negative emissions technologies. We find that within the scope of scenarios broadly-consistent with the WG3 database, the magnitude of temperature overshoot is more sensitive to the rate of decarbonization. However, limiting the duration of overshoot to less than two centuries requires ambitious deployment of both decarbonization and negative emissions technology. The dependencies of temperature target overshoot's properties upon currently untested negative emissions technologies suggests that it will be important to consider how climate impacts depend on both the magnitude and duration of overshoot, not just long term residual warming.

  19. Black carbon reduction will weaken the aerosol net cooling effect

    NASA Astrophysics Data System (ADS)

    Wang, Z. L.; Zhang, H.; Zhang, X. Y.

    2014-12-01

    Black carbon (BC), a distinct type of carbonaceous material formed from the incomplete combustion of fossil and biomass based fuels under certain conditions, can interact with solar radiation and clouds through its strong light-absorption ability, thereby warming the Earth's climate system. Some studies have even suggested that global warming could be slowed down in a short term by eliminating BC emission due to its short lifetime. In this study, we estimate the influence of removing some sources of BC and other co-emitted species on the aerosol radiative effect by using an aerosol-climate coupled model BCC_AGCM2.0.1_CUACE/Aero, in combination with the aerosol emissions from the Representative Concentration Pathways (RCPs) scenarios. We find that the global annual mean aerosol net cooling effect at the top of the atmosphere (TOA) will be enhanced by 0.12 W m-2 compared with present-day conditions if the BC emission is reduced exclusively to the level projected for 2100 based on the RCP2.6 scenario. This will be beneficial for the mitigation of global warming. However, the global annual mean aerosol net cooling effect at the TOA will be weakened by 1.7-2.0 W m-2 relative to present-day conditions if emissions of BC and co-emitted sulfur dioxide and organic carbon are simultaneously reduced as the most close conditions to the actual situation to the level projected for 2100 in different ways based on the RCP2.6, RCP4.5, and RCP8.5 scenarios. Because there are no effective ways to remove the BC exclusively without influencing the other co-emitted components, our results therefore indicate that a reduction in BC emission can lead to an unexpected warming on the Earth's climate system in the future.

  20. Cumulative carbon emissions, emissions floors and short-term rates of warming: implications for policy.

    PubMed

    Bowerman, Niel H A; Frame, David J; Huntingford, Chris; Lowe, Jason A; Allen, Myles R

    2011-01-13

    A number of recent studies have found a strong link between peak human-induced global warming and cumulative carbon emissions from the start of the industrial revolution, while the link to emissions over shorter periods or in the years 2020 or 2050 is generally weaker. However, cumulative targets appear to conflict with the concept of a 'floor' in emissions caused by sectors such as food production. Here, we show that the introduction of emissions floors does not reduce the importance of cumulative emissions, but may make some warming targets unachievable. For pathways that give a most likely warming up to about 4°C, cumulative emissions from pre-industrial times to year 2200 correlate strongly with most likely resultant peak warming regardless of the shape of emissions floors used, providing a more natural long-term policy horizon than 2050 or 2100. The maximum rate of CO(2)-induced warming, which will affect the feasibility and cost of adapting to climate change, is not determined by cumulative emissions but is tightly aligned with peak rates of emissions. Hence, cumulative carbon emissions to 2200 and peak emission rates could provide a clear and simple framework for CO(2) mitigation policy.

  1. Anthropogenic warming exacerbates European soil moisture droughts

    NASA Astrophysics Data System (ADS)

    Samaniego, L.; Thober, S.; Kumar, R.; Wanders, N.; Rakovec, O.; Pan, M.; Zink, M.; Sheffield, J.; Wood, E. F.; Marx, A.

    2018-05-01

    Anthropogenic warming is anticipated to increase soil moisture drought in the future. However, projections are accompanied by large uncertainty due to varying estimates of future warming. Here, using an ensemble of hydrological and land-surface models, forced with bias-corrected downscaled general circulation model output, we estimate the impacts of 1-3 K global mean temperature increases on soil moisture droughts in Europe. Compared to the 1.5 K Paris target, an increase of 3 K—which represents current projected temperature change—is found to increase drought area by 40% (±24%), affecting up to 42% (±22%) more of the population. Furthermore, an event similar to the 2003 drought is shown to become twice as frequent; thus, due to their increased occurrence, events of this magnitude will no longer be classified as extreme. In the absence of effective mitigation, Europe will therefore face unprecedented increases in soil moisture drought, presenting new challenges for adaptation across the continent.

  2. Impacts of second-generation biofuel feedstock production in the central U.S. on the hydrologic cycle and global warming mitigation potential

    NASA Astrophysics Data System (ADS)

    Harding, K. J.; Twine, T. E.; VanLoocke, A.; Bagley, J. E.; Hill, J.

    2016-10-01

    Biofuel feedstocks provide a renewable energy source that can reduce fossil fuel emissions; however, if produced on a large scale they can also impact local to regional water and carbon budgets. Simulation results for 2005-2014 from a regional weather model adapted to simulate the growth of two perennial grass biofuel feedstocks suggest that replacing at least half the current annual cropland with these grasses would increase water use efficiency and drive greater rainfall downwind of perturbed grid cells, but increased evapotranspiration (ET) might switch the Mississippi River basin from having a net warm-season surplus of water (precipitation minus ET) to a net deficit. While this scenario reduces land required for biofuel feedstock production relative to current use for maize grain ethanol production, it only offsets approximately one decade of projected anthropogenic warming and increased water vapor results in greater atmospheric heat content.

  3. Impacts of global warming of 1.5 °C and 2.0 °C on precipitation patterns in China by regional climate model (COSMO-CLM)

    NASA Astrophysics Data System (ADS)

    Sun, Hemin; Wang, Anqian; Zhai, Jianqing; Huang, Jinlong; Wang, Yanjun; Wen, Shanshan; Zeng, Xiaofan; Su, Buda

    2018-05-01

    Regional precipitation patterns may change in a warmer climate, thereby increasing flood and drought risks. In this paper, annual, annual maximum, intense, heavy, moderate, light, and trace precipitation are employed as indicators to assess changes in precipitation patterns under two scenarios in which the global mean temperature increases by 1.5 °C and 2.0 °C relative to pre-industrial levels using the regional climate model COSMO-CLM (CCLM). The results show that annual precipitation in China will be approximately 2.5% higher under 1.5 °C warming relative to the present-day baseline (1980-2009), although it will decrease by approximately 4.0% under an additional 0.5 °C increase in global mean temperature. This trend is spatially consistent for regions with annual precipitation of 400-800 mm, which has experienced a drying trend during the past half century; thus, limiting global warming to 1.5 °C may mitigate these drying conditions. The annual maximum precipitation continues to increase from present day levels to the 2.0 °C warming scenario. Relative to the baseline period, the frequency of trace and light precipitation days exhibits a negative trend, while that of moderate, heavy, and intense precipitation days has a positive trend under the 1.5 °C warming scenario. For the 2.0 °C warming world, the frequency of days is projected to decrease for all precipitation categories, although the intensity of intense precipitation increases. Spatially, a decrease in the number of precipitation days is expected to continue in central and northern China, where a drying trend has persisted over the past half century. Southeastern China, which already suffers greatly from flooding, is expected to face more heavy and intense precipitation with an additional 0.5 °C increase in global mean temperature. Meanwhile, the intensity of intense precipitation is expected to increase in northern China, and the contribution of light and moderate precipitation to the annual precipitation is expected to decrease in southeastern China. Therefore, flood risk in northern China and drought risk in southern China should draw more attention for a global air temperature increase from 1.5 °C to 2.0 °C.

  4. Role of vegetation change in future climate under the A1B scenario and a climate stabilisation scenario, using the HadCM3C earth system model

    NASA Astrophysics Data System (ADS)

    Falloon, P. D.; Dankers, R.; Betts, R. A.; Jones, C. D.; Booth, B. B. B.; Lambert, F. H.

    2012-06-01

    The aim of our study was to use the coupled climate-carbon cycle model HadCM3C to quantify climate impact of ecosystem changes over recent decades and under future scenarios, due to changes in both atmospheric CO2 and surface albedo. We use two future scenarios - the IPCC SRES A1B scenario, and a climate stabilisation scenario (2C20), allowing us to assess the impact of climate mitigation on results. We performed a pair of simulations under each scenario - one in which vegetation was fixed at the initial state and one in which vegetation changes dynamically in response to climate change, as determined by the interactive vegetation model within HadCM3C. In our simulations with interactive vegetation, relatively small changes in global vegetation coverage were found, mainly dominated by increases in scrub and needleleaf trees at high latitudes and losses of broadleaf trees and grasses across the Amazon. Globally this led to a loss of terrestrial carbon, mainly from the soil. Global changes in carbon storage were related to the regional losses from the Amazon and gains at high latitude. Regional differences in carbon storage between the two scenarios were largely driven by the balance between warming-enhanced decomposition and altered vegetation growth. Globally, interactive vegetation reduced albedo acting to enhance albedo changes due to climate change. This was mainly related to the darker land surface over high latitudes (due to vegetation expansion, particularly during winter and spring); small increases in albedo occurred over the Amazon. As a result, there was a relatively small impact of vegetation change on most global annual mean climate variables, which was generally greater under A1B than 2C20, with markedly stronger local-to-regional and seasonal impacts. Globally, vegetation change amplified future annual temperature increases by 0.24 and 0.15 K (under A1B and 2C20, respectively) and increased global precipitation, with reductions in precipitation over the Amazon and increases over high latitudes. In general, changes were stronger over land - for example, global temperature changes due to interactive vegetation of 0.43 and 0.28 K under A1B and 2C20, respectively. Regionally, the warming influence of future vegetation change in our simulations was driven by the balance between driving factors. For instance, reduced tree cover over the Amazon reduced evaporation (particularly during summer), outweighing the cooling influence of any small albedo changes. In contrast, at high latitudes the warming impact of reduced albedo (particularly during winter and spring) due to increased vegetation cover appears to have offset any cooling due to small evaporation increases. Climate mitigation generally reduced the impact of vegetation change on future global and regional climate in our simulations. Our study therefore suggests that there is a need to consider both biogeochemical and biophysical effects in climate adaptation and mitigation decision making.

  5. Role of vegetation change in future climate under the A1B scenario and a climate stabilisation scenario, using the HadCM3C Earth system model

    NASA Astrophysics Data System (ADS)

    Falloon, P. D.; Dankers, R.; Betts, R. A.; Jones, C. D.; Booth, B. B. B.; Lambert, F. H.

    2012-11-01

    The aim of our study was to use the coupled climate-carbon cycle model HadCM3C to quantify climate impact of ecosystem changes over recent decades and under future scenarios, due to changes in both atmospheric CO2 and surface albedo. We use two future scenarios - the IPCC SRES A1B scenario, and a climate stabilisation scenario (2C20), allowing us to assess the impact of climate mitigation on results. We performed a pair of simulations under each scenario - one in which vegetation was fixed at the initial state and one in which vegetation changes dynamically in response to climate change, as determined by the interactive vegetation model within HadCM3C. In our simulations with interactive vegetation, relatively small changes in global vegetation coverage were found, mainly dominated by increases in shrub and needleleaf trees at high latitudes and losses of broadleaf trees and grasses across the Amazon. Globally this led to a loss of terrestrial carbon, mainly from the soil. Global changes in carbon storage were related to the regional losses from the Amazon and gains at high latitude. Regional differences in carbon storage between the two scenarios were largely driven by the balance between warming-enhanced decomposition and altered vegetation growth. Globally, interactive vegetation reduced albedo acting to enhance albedo changes due to climate change. This was mainly related to the darker land surface over high latitudes (due to vegetation expansion, particularly during December-January and March-May); small increases in albedo occurred over the Amazon. As a result, there was a relatively small impact of vegetation change on most global annual mean climate variables, which was generally greater under A1B than 2C20, with markedly stronger local-to-regional and seasonal impacts. Globally, vegetation change amplified future annual temperature increases by 0.24 and 0.15 K (under A1B and 2C20, respectively) and increased global precipitation, with reductions in precipitation over the Amazon and increases over high latitudes. In general, changes were stronger over land - for example, global temperature changes due to interactive vegetation of 0.43 and 0.28 K under A1B and 2C20, respectively. Regionally, the warming influence of future vegetation change in our simulations was driven by the balance between driving factors. For instance, reduced tree cover over the Amazon reduced evaporation (particularly during June-August), outweighing the cooling influence of any small albedo changes. In contrast, at high latitudes the warming impact of reduced albedo (particularly during December-February and March-May) due to increased vegetation cover appears to have offset any cooling due to small evaporation increases. Climate mitigation generally reduced the impact of vegetation change on future global and regional climate in our simulations. Our study therefore suggests that there is a need to consider both biogeochemical and biophysical effects in climate adaptation and mitigation decision making.

  6. [Response of phytolith in Leymus chinensis to the simulation of global warming and nitrogen deposition on Songnen grassland, China].

    PubMed

    Jie, Dong-meir; Ge, Yong; Guo, Ji-xun; Liu, Hong-mei

    2010-08-01

    Using infrared radiator and applying nitrogen on Leymus chinensis community on Songnen grassland to simulate global warming and nitrogen deposition, phytolith was extracted from L. chinensis, the morphology and content of phytolith were analyzed. Phytolith in L. chinensis were classified into 4 main classes and 12 subclasses, as well as some small phytolith fragments. Of all the phytolith types, the hat-shaped take as much as 70%. The hat-shaped with spire and hat-shaped with flat peak may have different growth mechanisms from the echinate hat-shaped, and the point-shaped phytolith is more sensitive to N deposition. Compared with control check (CK), the warming treatment seemed to promote the growth of phytolith (increased the length and width 0.1-2.6 microm), while the N deposition treatment had an effect of inhibition on the growth of phytolith (decreased the length and width 0.1-1.4 microm), and when warming and N deposition mixed, in this treatment the effect of inhibition caused by N deposition declined. Hollow elongate (46% of elongate) was observed only in N deposition treatment, and the content of other types (elongate, point-shaped, hat-shaped excluded) increased to 10%, it was supposed, as L. chinensis is the dominant species in Songnen grassland, the effect of N deposition might be more significant than warming on such grassland, and warming could mitigate the affection of N deposition. Phytolith was sensitive to the change of environmental factors, this study provided an experimental evidence for phytolith as a reliable proxy indicator for paleo-environment.

  7. An assessment of global meteorological droughts based on HAPPI experiments

    NASA Astrophysics Data System (ADS)

    Liu, Wenbin; Sun, Fubao; Lim, Wee Ho; Zhang, Jie

    2017-04-01

    Droughts caused water shortages could lead to serious consequences on the socioeconomic and environmental well-being. In the context of changing climate, droughts monitoring, attributions and impact assessments have been performed using observations (e.g., Sun et al., 2012; Zhang et al., 2016) and climate model projections (e.g., Liu et al., 2016, 2017); with expectation that such scientific knowledge would feed into long-term adaptation and mitigation plans to tackle potentially unfavorable future drought impacts in a warming world. Inspired by the 2015 Paris Agreement, the HAPPI (Half a degree Additional warming, Projections, Prognosis and Impacts) experiments were set up to better inform international policymakers about the socioeconomic and environmental impacts under less severe global warming conditions. This study aims to understand the potential shift in meteorological droughts from the past into the future on a global scale. Based on the HAPPI data, we evaluate the change in drought related indices (i.e., PET/P, PDSI) from the past to the future scenarios (1.5 and 2 degrees Celsius warming). Here we present some early results (MIROC5 as demonstration) on identified hotspots and discuss the differences in severity of droughts between these warming worlds and associated consequences. References: Liu W, and Sun F, 2017. Projecting and attributing future changes of evaporative demand over China in CMIP5 climate models, Journal of Hydrometeorology, doi: 10.1175/JHM-D-16-0204.1 Liu W, and Sun F, 2016. Assessing estimates of evaporative demand in climate models using observed pan evaporation over China. Journal of Geophysical Research-Atmosphere 121, 8329-8349 Zhang J, Sun F, Xu J, Chen Y, Sang Y, -F, and Liu C, 2016. Dependence of trends in and sensitivity of drought over China (1961-2013) on potential evaporation model. Geophysical Research Letters 43, 206-213 Sun F, Roderick M, Farquhar G, 2012. Changes in the variability of global land precipitation. Geophysical Research Letters 39, L19402

  8. Climate change hotspots in the CMIP5 global climate model ensemble.

    PubMed

    Diffenbaugh, Noah S; Giorgi, Filippo

    2012-01-10

    We use a statistical metric of multi-dimensional climate change to quantify the emergence of global climate change hotspots in the CMIP5 climate model ensemble. Our hotspot metric extends previous work through the inclusion of extreme seasonal temperature and precipitation, which exert critical influence on climate change impacts. The results identify areas of the Amazon, the Sahel and tropical West Africa, Indonesia, and the Tibetan Plateau as persistent regional climate change hotspots throughout the 21 st century of the RCP8.5 and RCP4.5 forcing pathways. In addition, areas of southern Africa, the Mediterranean, the Arctic, and Central America/western North America also emerge as prominent regional climate change hotspots in response to intermediate and high levels of forcing. Comparisons of different periods of the two forcing pathways suggest that the pattern of aggregate change is fairly robust to the level of global warming below approximately 2°C of global warming (relative to the late-20 th -century baseline), but not at the higher levels of global warming that occur in the late-21 st -century period of the RCP8.5 pathway, with areas of southern Africa, the Mediterranean, and the Arctic exhibiting particular intensification of relative aggregate climate change in response to high levels of forcing. Although specific impacts will clearly be shaped by the interaction of climate change with human and biological vulnerabilities, our identification of climate change hotspots can help to inform mitigation and adaptation decisions by quantifying the rate, magnitude and causes of the aggregate climate response in different parts of the world.

  9. Response of Arctic Temperature to Changes in Emissions of Short-Lived Climate Forcers

    NASA Astrophysics Data System (ADS)

    Sand, M.; Berntsen, T.; von Salzen, K.; Flanner, M.; Langner, J.; Victor, D. G.

    2015-12-01

    There is growing scientific and political interest in the impacts of climate change and anthropogenic emissions on the Arctic. Over recent decades temperatures in the Arctic have increased twice the global rate, largely due to ice albedo and temperature feedbacks. While deep cuts in global CO2 emissions are required to slow this warming, there is also growing interest in the potential for reducing short lived climate forcers (SLCFs). Politically, action on SLCFs may be particularly promising because the benefits of mitigation appear promptly and there are large co-benefits in terms of improved air quality. This study is the first to systematically quantify the Arctic climate impact of regional SLCF emissions, taking into account BC, sulphur dioxide (SO2), nitrogen oxides (NOx), volatile hydrocarbons (VOC), organic carbon (OC) and tropospheric ozone, their transport processes and transformations in the atmosphere. Using several chemical transport models we perform detailed radiative forcing calculations from emissions of these species. Geographically we separate emissions into seven source regions that correspond with the national groupings of the Arctic Council, the leading body organizing international policy in the region (the United States, Canada, the Nordic countries, the rest of Europe, Russia, East and South Asia, and the rest of the world). We look at six main sectors known to account for [nearly all] of these emissions: households (domestic), energy/industry/waste, transport, agricultural fires, grass/forest fires, and gas flaring. We find that the largest Arctic warming source is from emissions within the Asian nations. However, the Arctic is most sensitive, per unit mass emitted, to SLCFs emissions from a small number of activities within the Arctic nations themselves. A stringent, but technically feasible SLCFs mitigation scenario, phased in from 2015 through 2030, can cut warming by 0.2 K in 2050.

  10. Response of Arctic Temperature to Changes in Emissions of Short-Lived Climate Forcers

    NASA Astrophysics Data System (ADS)

    Sand, M.; Berntsen, T.; von Salzen, K.; Flanner, M.; Langner, J.; Victor, D. G.

    2014-12-01

    There is growing scientific and political interest in the impacts of climate change and anthropogenic emissions on the Arctic. Over recent decades temperatures in the Arctic have increased twice the global rate, largely due to ice albedo and temperature feedbacks. While deep cuts in global CO2 emissions are required to slow this warming, there is also growing interest in the potential for reducing short lived climate forcers (SLCFs). Politically, action on SLCFs may be particularly promising because the benefits of mitigation appear promptly and there are large co-benefits in terms of improved air quality. This study is the first to systematically quantify the Arctic climate impact of regional SLCF emissions, taking into account BC, sulphur dioxide (SO2), nitrogen oxides (NOx), volatile hydrocarbons (VOC), organic carbon (OC) and tropospheric ozone, their transport processes and transformations in the atmosphere. Using several chemical transport models we perform detailed radiative forcing calculations from emissions of these species. Geographically we separate emissions into seven source regions that correspond with the national groupings of the Arctic Council, the leading body organizing international policy in the region (the United States, Canada, the Nordic countries, the rest of Europe, Russia, East and South Asia, and the rest of the world). We look at six main sectors known to account for [nearly all] of these emissions: households (domestic), energy/industry/waste, transport, agricultural fires, grass/forest fires, and gas flaring. We find that the largest Arctic warming source is from emissions within the Asian nations. However, the Arctic is most sensitive, per unit mass emitted, to SLCFs emissions from a small number of activities within the Arctic nations themselves. A stringent, but technically feasible SLCFs mitigation scenario, phased in from 2015 through 2030, can cut warming by 0.2 K in 2050.

  11. Long-term prospects for the environmental profile of advanced sugar cane ethanol.

    PubMed

    da Silva, Cinthia R U; Franco, Henrique Coutinho Junqueira; Junqueira, Tassia Lopes; van Oers, Lauran; van der Voet, Ester; Seabra, Joaquim E A

    2014-10-21

    This work assessed the environmental impacts of the production and use of 1 MJ of hydrous ethanol (E100) in Brazil in prospective scenarios (2020-2030), considering the deployment of technologies currently under development and better agricultural practices. The life cycle assessment technique was employed using the CML method for the life cycle impact assessment and the Monte Carlo method for the uncertainty analysis. Abiotic depletion, global warming, human toxicity, ecotoxicity, photochemical oxidation, acidification, and eutrophication were the environmental impacts categories analyzed. Results indicate that the proposed improvements (especially no-til farming-scenarios s2 and s4) would lead to environmental benefits in prospective scenarios compared to the current ethanol production (scenario s0). Combined first and second generation ethanol production (scenarios s3 and s4) would require less agricultural land but would not perform better than the projected first generation ethanol, although the uncertainties are relatively high. The best use of 1 ha of sugar cane was also assessed, considering the displacement of the conventional products by ethanol and electricity. No-til practices combined with the production of first generation ethanol and electricity (scenario s2) would lead to the largest mitigation effects for global warming and abiotic depletion. For the remaining categories, emissions would not be mitigated with the utilization of the sugar cane products. However, this conclusion is sensitive to the displaced electricity sources.

  12. Land-use protection for climate change mitigation

    NASA Astrophysics Data System (ADS)

    Popp, Alexander; Humpenöder, Florian; Weindl, Isabelle; Bodirsky, Benjamin Leon; Bonsch, Markus; Lotze-Campen, Hermann; Müller, Christoph; Biewald, Anne; Rolinski, Susanne; Stevanovic, Miodrag; Dietrich, Jan Philipp

    2014-12-01

    Land-use change, mainly the conversion of tropical forests to agricultural land, is a massive source of carbon emissions and contributes substantially to global warming. Therefore, mechanisms that aim to reduce carbon emissions from deforestation are widely discussed. A central challenge is the avoidance of international carbon leakage if forest conservation is not implemented globally. Here, we show that forest conservation schemes, even if implemented globally, could lead to another type of carbon leakage by driving cropland expansion in non-forested areas that are not subject to forest conservation schemes (non-forest leakage). These areas have a smaller, but still considerable potential to store carbon. We show that a global forest policy could reduce carbon emissions by 77 Gt CO2, but would still allow for decreases in carbon stocks of non-forest land by 96 Gt CO2 until 2100 due to non-forest leakage effects. Furthermore, abandonment of agricultural land and associated carbon uptake through vegetation regrowth is hampered. Effective mitigation measures thus require financing structures and conservation investments that cover the full range of carbon-rich ecosystems. However, our analysis indicates that greater agricultural productivity increases would be needed to compensate for such restrictions on agricultural expansion.

  13. Committed CO2 Emissions of China's Coal-fired Power Plants

    NASA Astrophysics Data System (ADS)

    Suqin, J.

    2016-12-01

    The extent of global warming is determined by the cumulative effects of CO2 in the atmosphere. Coal-fired power plants, the largest anthropogenic source of CO2 emissions, produce large amount of CO2 emissions during their lifetimes of operation (committed emissions), which thus influence the future carbon emission space under specific targets on mitigating climate change (e.g., the 2 degree warming limit relative to pre-industrial levels). Comprehensive understanding of committed CO2 emissions for coal-fired power generators is urgently needed in mitigating global climate change, especially in China, the largest global CO2emitter. We calculated China's committed CO2 emissions from coal-fired power generators installed during 1993-2013 and evaluated their impact on future emission spaces at the provincial level, by using local specific data on the newly installed capacities. The committed CO2 emissions are calculated as the product of the annual coal consumption from newly installed capacities, emission factors (CO2emissions per unit crude coal consumption) and expected lifetimes. The sensitivities about generators lifetimes and the drivers on provincial committed emissions are also analyzed. Our results show that these relatively recently installed coal-fired power generators will lead to 106 Gt of CO2 emissions over the course of their lifetimes, which is more than three times the global CO2 emissions from fossil fuels in 2010. More than 80% (85 Gt) of their total committed CO2 will be emitted after 2013, which are referred to as the remaining emissions. Due to the uncertainties of generators lifetime, these remaining emissions would increase by 45 Gt if the lifetimes of China's coal-fired power generators were prolonged by 15 years. Furthermore, the remaining emissions are very different among various provinces owing to local developments and policy disparities. Provinces with large amounts of secondary industry and abundant coal reserves have higher committed emissions. The national and provincial CO2 emission mitigation objectives might be greatly restricted by existing and planned power plants in China. The policy implications of our results have also been discussed.

  14. Review of Mitigation Costs for Stabilizing Greenhouse Gas Concentrations

    NASA Astrophysics Data System (ADS)

    van Ruijven, B. J.; O'Neill, B. C.

    2014-12-01

    Mitigation of greenhouse gas emissions to avoid future climate change comes at a cost, because low-emission technologies are more expensive than GHG-emitting technology options. The increase in mitigation cost is not linearly related to the stabilization level, though: the first emission reductions are relatively cheap, but deeper emission reductions become more expensive. Therefore, emission reduction to medium levels of GHG concentrations , such as 4.5 or 6 W/m2, is considerably cheaper than emission reduction to low levels of GHG concentrations, such as 2.6 or 3.7 W/m2. Moreover, mitigation costs are influenced by many other aspects than the targeted mitigation level alone, such as whether or not certain technologies are available or societally acceptable (Kriegler et al., 2014); the rate of technological progress and cost reduction of low-emission technologies; the level of final energy demand (Riahi et al., 2011), and the level of global cooperation and trade in emission allowances (den Elzen and Höhne, 2010). This paper reviews the existing literature on greenhouse gas mitigation costs. We analyze the available data on mitigation costs and draw conclusions on how these change for different stabilization levels of GHG concentrations. We will take into account the aspects of technology, energy demand, and cooperation in distinguishing differences between scenarios and stabilization levels. References: den Elzen, M., Höhne, N., 2010. Sharing the reduction effort to limit global warming to 2C. Climate Policy 10, 247-260. Kriegler, E., Weyant, J., Blanford, G., Krey, V., Clarke, L., Edmonds, J., Fawcett, A., Luderer, G., Riahi, K., Richels, R., Rose, S., Tavoni, M., Vuuren, D., 2014. The role of technology for achieving climate policy objectives: overview of the EMF 27 study on global technology and climate policy strategies. Climatic Change, 1-15. Riahi, K., Dentener, F., Gielen, D., Grubler, A., Jewell, J., Klimont, Z., Krey, V., McCollum, D., Pachauri, S., Rao, S., van Ruijven, B., van Vuuren, D.P., Wilson, C., 2011. Energy Pathways for Sustainable Development, The Global Energy Assessment: Toward a More Sustainable Future. IIASA, Laxenburg, Austria and Cambridge University Press, Cambridge, UK.

  15. [Effects of biochar application three-years ago on global warming potentials of CH4 and N2O in a rice-wheat rotation system.

    PubMed

    Wu, Zhen; Dong, Yu Bing; Xiong, Zheng Qin

    2018-01-01

    To evaluate the long-term effects of biochar amendment on greenhouse gas emissions (GHGs), a field experiment was conducted to examine the effects of 3-year field-aged biochar (B 3 ) and fresh biochar (B 0 ) on global warming potential (GWP) and greenhouse gas intensity (GHGI) of methane (CH 4 ) and nitrous oxide (N 2 O) in a typical rice-wheat rotation system. Four treatments were established as control without nitrogen fertilizer (CK), urea without biochar (N), urea with fresh biochar amended in 2015 (NB 0 ), and urea with 3-year field-aged biochar amended in 2012 (NB 3 ). Results showed that both the NB 0 and NB 3 treatments obviously increased soil pH, soil organic carbon (SOC), total nitrogen (TN) and influenced the potential activity of functional microorganisms related to GHGs compared to the N treatment. Relative to the N treatment, the NB 3 treatment significantly improved crop yield by 14.1% while reduced the CH 4 and N 2 O emissions by 9.0% and 34.0%, respectively. In addition, the NB 0 treatment significantly improved crop yield by 9.3%, while reduced the N 2 O emission by 38.6% though increased the CH 4 emissions by 4.7% relative to the N treatment. Moreover, both the NB 0 and NB 3 treatments could significantly reduce both GWP and GHGI, with NB 3 being more effective in simultaneously mitigating the GHGs emissions and enhancing crop yield. Since field-aged biochar showed obvious effects on GHGs mitigation and carbon sequestration after 3 years, biochar incorporations had long-term effect on GHGs mitigation and crop production in the rice-wheat rotation system.

  16. A Dramatic Regime Shift in Rainfall Predictability Related to the Ningaloo Niño/Niña in the Late 1990s

    NASA Astrophysics Data System (ADS)

    Doi, T.; Behera, S. K.; Yamagata, T.

    2014-12-01

    The global warming and the Interdecadal Pacific Oscillation (IPO) started influencing the coastal ocean off Western Australia, leading to a dramatic change in the regional climate predictability. The warmed ocean started driving rainfall regionally there after the late 1990s. Because of this, rainfall predictability off Western Australia on a seasonal time scale was drastically enhanced in the late 1990s; it is significantly predictable 5 months ahead after the late 1990s. The high prediction skill of the rainfall in recent decades encourages development of an early warning system of Ningaloo Niño/Niña events to mitigate possible societal as well as agricultural impacts in the granary.

  17. Future emissions pathways consistent with limiting warming to 1.5°C

    NASA Astrophysics Data System (ADS)

    Millar, R.; Fuglestvedt, J. S.; Grubb, M.; Rogelj, J.; Skeie, R. B.; Friedlingstein, P.; Forster, P.; Frame, D. J.; Pierrehumbert, R.; Allen, M. R.

    2016-12-01

    The stated aim of the 2015 UNFCCC Paris Agreement is `holding the increase in global average temperature to well below 2°C above pre-industrial levels and to pursue efforts to limit temperature increases to 1.5°C'. We show that emissions reductions proportional to those achieved in an ambitious mitigation scenario, RCP2.6, but beginning in 2017, give a median estimated peak warming of 1.5°C, with a likely (66% probability) range of uncertainty of 1.2-2.0°C. Such a scenario would be approximately consistent with the most ambitious interpretation of the 2030 emissions pledges, but requires reduction rates exceeding 0.3GtC/yr/yr after 2030. A steady reduction at less than half this rate would achieve the same temperature outcome if initiated in 2020. Limiting total CO2 emissions after 2015 to 200GtC would limit future warming to likely less than 0.6°C above present, consistent with 1.5°C above pre-industrial, based on the distribution of responses of the CMIP5 Earth System, but the CMIP5 simulations do not correspond to scenarios that aim to limit warming to such low levels. If future CO2 emissions are successfully adapted to the emerging climate response so as to limit warming in 2100 to 0.6°C above present, and non-CO2 emissions follow the ambitious RCP2.6 scenario, then we estimate that resulting CO2 emissions will unlikely be restricted to less than 250GtC given current uncertainties in climate system response, although still-poorly-modelled carbon cycle feedbacks, such as release from permafrost, may encroach on this budget. Even under a perfectly successful adaptive mitigation regime, emissions consistent with limiting warming to 0.6°C above present are unlikely to be greater than 500GtC.These estimates suggest the 1.5°C goal may not yet be geophysically insurmountable but will nevertheless require, at minimum, the full implementation of the most ambitious interpretation of the Paris pledges followed by accelerated and more fundamental changes in our global energy system. More ambitious reductions over 2020-2030 reduce the risk of unsustainable rates of decarbonisation being required after 2030.

  18. The interaction of climate change and methane hydrates

    USGS Publications Warehouse

    Ruppel, Carolyn D.; Kessler, John D.

    2017-01-01

    Gas hydrate, a frozen, naturally-occurring, and highly-concentrated form of methane, sequesters significant carbon in the global system and is stable only over a range of low-temperature and moderate-pressure conditions. Gas hydrate is widespread in the sediments of marine continental margins and permafrost areas, locations where ocean and atmospheric warming may perturb the hydrate stability field and lead to release of the sequestered methane into the overlying sediments and soils. Methane and methane-derived carbon that escape from sediments and soils and reach the atmosphere could exacerbate greenhouse warming. The synergy between warming climate and gas hydrate dissociation feeds a popular perception that global warming could drive catastrophic methane releases from the contemporary gas hydrate reservoir. Appropriate evaluation of the two sides of the climate-methane hydrate synergy requires assessing direct and indirect observational data related to gas hydrate dissociation phenomena and numerical models that track the interaction of gas hydrates/methane with the ocean and/or atmosphere. Methane hydrate is likely undergoing dissociation now on global upper continental slopes and on continental shelves that ring the Arctic Ocean. Many factors—the depth of the gas hydrates in sediments, strong sediment and water column sinks, and the inability of bubbles emitted at the seafloor to deliver methane to the sea-air interface in most cases—mitigate the impact of gas hydrate dissociation on atmospheric greenhouse gas concentrations though. There is no conclusive proof that hydrate-derived methane is reaching the atmosphere now, but more observational data and improved numerical models will better characterize the climate-hydrate synergy in the future.

  19. The interaction of climate change and methane hydrates

    NASA Astrophysics Data System (ADS)

    Ruppel, Carolyn D.; Kessler, John D.

    2017-03-01

    Gas hydrate, a frozen, naturally-occurring, and highly-concentrated form of methane, sequesters significant carbon in the global system and is stable only over a range of low-temperature and moderate-pressure conditions. Gas hydrate is widespread in the sediments of marine continental margins and permafrost areas, locations where ocean and atmospheric warming may perturb the hydrate stability field and lead to release of the sequestered methane into the overlying sediments and soils. Methane and methane-derived carbon that escape from sediments and soils and reach the atmosphere could exacerbate greenhouse warming. The synergy between warming climate and gas hydrate dissociation feeds a popular perception that global warming could drive catastrophic methane releases from the contemporary gas hydrate reservoir. Appropriate evaluation of the two sides of the climate-methane hydrate synergy requires assessing direct and indirect observational data related to gas hydrate dissociation phenomena and numerical models that track the interaction of gas hydrates/methane with the ocean and/or atmosphere. Methane hydrate is likely undergoing dissociation now on global upper continental slopes and on continental shelves that ring the Arctic Ocean. Many factors—the depth of the gas hydrates in sediments, strong sediment and water column sinks, and the inability of bubbles emitted at the seafloor to deliver methane to the sea-air interface in most cases—mitigate the impact of gas hydrate dissociation on atmospheric greenhouse gas concentrations though. There is no conclusive proof that hydrate-derived methane is reaching the atmosphere now, but more observational data and improved numerical models will better characterize the climate-hydrate synergy in the future.

  20. Climate Impacts in Europe Under +1.5°C Global Warming

    NASA Astrophysics Data System (ADS)

    Jacob, Daniela; Kotova, Lola; Teichmann, Claas; Sobolowski, Stefan P.; Vautard, Robert; Donnelly, Chantal; Koutroulis, Aristeidis G.; Grillakis, Manolis G.; Tsanis, Ioannis K.; Damm, Andrea; Sakalli, Abdulla; van Vliet, Michelle T. H.

    2018-02-01

    The Paris Agreement of the United Nations Framework Convention on Climate Change aims not only at avoiding +2°C warming (and even limit the temperature increase further to +1.5°C), but also sets long-term goals to guide mitigation. Therefore, the best available science is required to inform policymakers on the importance of and the adaptation needs in a +1.5°C warmer world. Seven research institutes from Europe and Turkey integrated their competencies to provide a cross-sectoral assessment of the potential impacts at a pan-European scale. The initial findings of this initiative are presented and key messages communicated. The approach is to select periods based on global warming thresholds rather than the more typical approach of selecting time periods (e.g., end of century). The results indicate that the world is likely to pass the +1.5°C threshold in the coming decades. Cross-sectoral dimensions are taken into account to show the impacts of global warming that occur in parallel in more than one sector. Also, impacts differ across sectors and regions. Alongside the negative impacts for certain sectors and regions, some positive impacts are projected. Summer tourism in parts of Western Europe may be favored by climate change; electricity demand decreases outweigh increases over most of Europe and catchment yields in hydropower regions will increase. However, such positive findings should be interpreted carefully as we do not take into account exogenous factors that can and will influence Europe such as migration patterns, food production, and economic and political instability.

  1. The interaction of climate change and methane hydrates

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ruppel, Carolyn D.; Kessler, John D.

    Gas hydrate, a frozen, naturally-occurring, and highly-concentrated form of methane, sequesters significant carbon in the global system and is stable only over a range of low-temperature and moderate-pressure conditions. Gas hydrate is widespread in the sediments of marine continental margins and permafrost areas, locations where ocean and atmospheric warming may perturb the hydrate stability field and lead to release of the sequestered methane into the overlying sediments and soils. Methane and methane-derived carbon that escape from sediments and soils and reach the atmosphere could exacerbate greenhouse warming. The synergy between warming climate and gas hydrate dissociation feeds a popular perceptionmore » that global warming could drive catastrophic methane releases from the contemporary gas hydrate reservoir. Appropriate evaluation of the two sides of the climate-methane hydrate synergy requires assessing direct and indirect observational data related to gas hydrate dissociation phenomena and numerical models that track the interaction of gas hydrates/methane with the ocean and/or atmosphere. Methane hydrate is likely undergoing dissociation now on global upper continental slopes and on continental shelves that ring the Arctic Ocean. Many factors—the depth of the gas hydrates in sediments, strong sediment and water column sinks, and the inability of bubbles emitted at the seafloor to deliver methane to the sea-air interface in most cases—mitigate the impact of gas hydrate dissociation on atmospheric greenhouse gas concentrations though. There is no conclusive proof that hydrate-derived methane is reaching the atmosphere now, but more observational data and improved numerical models will better characterize the climate-hydrate synergy in the future.« less

  2. The interaction of climate change and methane hydrates

    DOE PAGES

    Ruppel, Carolyn D.; Kessler, John D.

    2016-12-14

    Gas hydrate, a frozen, naturally-occurring, and highly-concentrated form of methane, sequesters significant carbon in the global system and is stable only over a range of low-temperature and moderate-pressure conditions. Gas hydrate is widespread in the sediments of marine continental margins and permafrost areas, locations where ocean and atmospheric warming may perturb the hydrate stability field and lead to release of the sequestered methane into the overlying sediments and soils. Methane and methane-derived carbon that escape from sediments and soils and reach the atmosphere could exacerbate greenhouse warming. The synergy between warming climate and gas hydrate dissociation feeds a popular perceptionmore » that global warming could drive catastrophic methane releases from the contemporary gas hydrate reservoir. Appropriate evaluation of the two sides of the climate-methane hydrate synergy requires assessing direct and indirect observational data related to gas hydrate dissociation phenomena and numerical models that track the interaction of gas hydrates/methane with the ocean and/or atmosphere. Methane hydrate is likely undergoing dissociation now on global upper continental slopes and on continental shelves that ring the Arctic Ocean. Many factors—the depth of the gas hydrates in sediments, strong sediment and water column sinks, and the inability of bubbles emitted at the seafloor to deliver methane to the sea-air interface in most cases—mitigate the impact of gas hydrate dissociation on atmospheric greenhouse gas concentrations though. There is no conclusive proof that hydrate-derived methane is reaching the atmosphere now, but more observational data and improved numerical models will better characterize the climate-hydrate synergy in the future.« less

  3. Impacts of 1.5 versus 2.0 °C on cereal yields in the West African Sudan Savanna

    NASA Astrophysics Data System (ADS)

    Faye, Babacar; Webber, Heidi; Naab, Jesse B.; MacCarthy, Dilys S.; Adam, Myriam; Ewert, Frank; Lamers, John P. A.; Schleussner, Carl-Friedrich; Ruane, Alex; Gessner, Ursula; Hoogenboom, Gerrit; Boote, Ken; Shelia, Vakhtang; Saeed, Fahad; Wisser, Dominik; Hadir, Sofia; Laux, Patrick; Gaiser, Thomas

    2018-03-01

    To reduce the risks of climate change, governments agreed in the Paris Agreement to limit global temperature rise to less than 2.0 °C above pre-industrial levels, with the ambition to keep warming to 1.5 °C. Charting appropriate mitigation responses requires information on the costs of mitigating versus associated damages for the two levels of warming. In this assessment, a critical consideration is the impact on crop yields and yield variability in regions currently challenged by food insecurity. The current study assessed impacts of 1.5 °C versus 2.0 °C on yields of maize, pearl millet and sorghum in the West African Sudan Savanna using two crop models that were calibrated with common varieties from experiments in the region with management reflecting a range of typical sowing windows. As sustainable intensification is promoted in the region for improving food security, simulations were conducted for both current fertilizer use and for an intensification case (fertility not limiting). With current fertilizer use, results indicated 2% units higher losses for maize and sorghum with 2.0 °C compared to 1.5 °C warming, with no change in millet yields for either scenario. In the intensification case, yield losses due to climate change were larger than with current fertilizer levels. However, despite the larger losses, yields were always two to three times higher with intensification, irrespective of the warming scenario. Though yield variability increased with intensification, there was no interaction with warming scenario. Risk and market analysis are needed to extend these results to understand implications for food security.

  4. Perspective has a strong effect on the calculation of historical contributions to global warming

    NASA Astrophysics Data System (ADS)

    Skeie, Ragnhild B.; Fuglestvedt, Jan; Berntsen, Terje; Peters, Glen P.; Andrew, Robbie; Allen, Myles; Kallbekken, Steffen

    2017-02-01

    The politically contentious issue of calculating countries’ contributions to climate change is strongly dependent on methodological choices. Different principles can be applied for distributing efforts for reducing human-induced global warming. According to the ‘Brazilian Proposal’, industrialized countries would reduce emissions proportional to their historical contributions to warming. This proposal was based on the assumption that the political process would lead to a global top-down agreement. The Paris Agreement changed the role of historical responsibilities. Whereas the agreement refers to equity principles, differentiation of mitigation efforts is delegated to each country, as countries will submit new national contributions every five years without any international negotiation. It is likely that considerations of historical contributions and distributive fairness will continue to play a key role, but increasingly so in a national setting. Contributions to warming can be used as a background for negotiations to inform and justify positions, and may also be useful for countries’ own assessment of what constitutes reasonable and fair contributions to limiting warming. Despite the fact that the decision from COP21 explicitly rules out compensation in the context of loss and damage, it is likely that considerations of historical responsibility will also play a role in future discussions. However, methodological choices have substantial impacts on calculated contributions to warming, including rank-ordering of contributions, and thus support the view that there is no single correct answer to the question of how much each country has contributed. There are fundamental value-related and ethical questions that cannot be answered through a single set of calculated contributions. Thus, analyses of historical contributions should not present just one set of results, but rather present a spectrum of results showing how the calculated contributions vary with a broad set of choices. Our results clearly expose some of the core issues related to climate responsibility.

  5. Countering Ice Ages: Re-directing Public Concern from Global Warming (GW) to Global Cooling (GC)

    NASA Astrophysics Data System (ADS)

    Singer, S. F.

    2016-02-01

    I present here three arguments in favor of such a drastic shift - which involves also a shift in current policies, such as mitigation of the greenhouse (GH) gas carbon dioxide. 1. Historical evidence shows that cooling, even on a regional or local scale, is much more damaging than warming. The key threat is to agriculture, leading to failure of harvests, followed by famine, starvation, disease, and mass deaths. 2. Also, GC is reasonably sure, while GW is iffy. The evidence from deep-sea sediment cores and ice cores shows some 17 (Milankovitch-style) glaciations in the past 2 million years, each typically lasting 100,000 years, interrupted by warm inter-glacials, typically around 10,000-yr duration. The most recent glaciation ended rather suddenly about 12,000 years ago. We are now in the warm Holocene, which is expected to end soon. Most of humanity may not survive the next, inevitable glaciation. We need to consider also the warming-cooling (Dansgaard-Oeschger-Bond - DOB) cycles, which seem solar-controlled and have a period of approx 1000-1500 years; its most recent cooling phase, the "Little Ice Age" (LIA), ended about 200 years ago. For details, see Unstoppable Global Warming: Every 1500 years by Singer &Avery [2007]. 3. Available technology seems adequate to assure human survival - at least in industrialized nations. The main threat is warfare, driven by competition for food and other essential resources. With nuclear weapons and delivery systems widely dispersed, the outcome of future wars is difficult to predict. Using geo-engineering to overcome a future cooling looks promising for both types of ice ages - with relatively low cost and low risk to the physical and biological environment. I will describe how to neutralize the "trigger" of major glaciations, and propose a particular greenhouse scheme that may counter the cooling phase of DOB cycles.

  6. Transgenerational plasticity mitigates the impact of global warming to offspring sex ratios.

    PubMed

    Donelson, Jennifer M; Munday, Philip L

    2015-08-01

    Global warming poses a threat to organisms with temperature-dependent sex determination because it can affect operational sex ratios. Using a multigenerational experiment with a marine fish, we provide the first evidence that parents developing from early life at elevated temperatures can adjust their offspring gender through nongenetic and nonbehavioural means. However, this adjustment was not possible when parents reproduced, but did not develop, at elevated temperatures. Complete restoration of the offspring sex ratio occurred when parents developed at 1.5 °C above the present-day average temperature for one generation. However, only partial improvement in the sex ratio occurred at 3.0 °C above average conditions, even after two generations, suggesting a limitation to transgenerational plasticity when developmental temperature is substantially increased. This study highlights the potential for transgenerational plasticity to ameliorate some impacts of climate change and that development from early life may be essential for expression of transgenerational plasticity in some traits. © 2015 John Wiley & Sons Ltd.

  7. Performance characteristics and modeling of carbon dioxide absorption by amines in a packed column

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lin, S.H.; Shyu, C.T.

    1999-01-01

    Carbon dioxide (CO[sub 2]) is widely recognized as a major greenhouse gas contributing to global warming. To mitigate the global warming problem, removal of CO[sub 2] from the industrial flue gases is necessary. Absorption of carbon dioxide by amines in a packed column was experimentally investigated. The amines employed in the present study were the primary mono-ethanolamine (MEA) and tertiary N-methyldiethanolamine (MDEA), two very popular amines widely used in the industries for gas purification. The CO[sub 2] absorption characteristics by these two amines were experimentally examined under various operating conditions. A theoretical model was developed for describing the CO[sub 2]more » absorption behavior. Test data have revealed that the model predictions and the observed CO[sub 2] absorption breakthrough curves agree very well, validating the proposed model. Preliminary regeneration tests of exhausted amine solution were also conducted. The results indicated that the tertiary amine is easier to regenerate with less loss of absorption capacity than the primary one.« less

  8. [Effects of biochar and nitrification inhibitor incorporation on global warming potential of a vegetable field in Nanjing, China].

    PubMed

    Li, Bo; Li, Qiao-Ling; Fan, Chang-Hua; Sun, Li-Ying; Xiong, Zheng-Qin

    2014-09-01

    The influences of biochar and nitrification inhibitor incorporation on global warming potential (GWP) of a vegetable field were studied using the static chamber and gas chromatography method. Compared with the treatments without biochar addition, the annual GWP of N2O and CH4 and vegetable yield were increased by 8.7%-12.4% and 16.1%-52.5%, respectively, whereas the greenhouse gas intensity (GHGI) were decreased by 5.4%-28.7% following biochar amendment. Nitrification inhibitor significantly reduced the N2O emission while had little influence on CH4 emission, decreased GWP by 17.5%-20.6%, increased vegetable yield by 21.2%-40.1%, and decreased the GHGI significantly. The combined application of biochar and nitrification inhibitor significantly increased both vegetable yield and GWP, but to a greater extent for vegetable yield. Therefore, nitrification inhibitor incorporation could be served as an appropriate practice for increasing vegetable yield and mitigating GHG emissions in vegetable field.

  9. Investigating the pace of temperature change and its implications over the twenty-first century

    NASA Astrophysics Data System (ADS)

    Chavaillaz, Y.; Joussaume, S.; Braconnot, P.; Vautard, R.

    2015-12-01

    In most studies, climate change is approached by focusing on the evolution between a fixed current baseline and the future, emphasizing stronger warming as we move further from the current climate. Under climate conditions that are continuously evolving, human systems might have to constantly adapt to a changing target. We propose here an alternative approach, and consider indicators of the pace of temperature change and its effects on temperature distributions estimated from projections of an ensemble of 18 General Circulation Models. The pace is represented by a rate defined by the difference between two subsequent 20-year periods. Under the strongest emission pathway (RCP 8.5), the warming rate strongly increases over the twenty-first century, with a maximum reached before 2080. Whilst northern high-latitudes witness the highest temperature rise, all other latitudes highlight at least a doubling in the warming rate compared to the current period. The spatial extent of significant shifts in annual temperature distributions between two subsequent 20-year periods is projected to be at least four times larger than in the current period. They are mainly located in tropical areas, such as West Africa and South-East Asia. The fraction of the world population exposed to these shifts grows from 8% to 60% from around 2060 onwards, i.e. reaching 6 billions people. In contrast, low mitigation measures (RCP 6.0) are sufficient to keep the warming rate similar to current values. Under the medium mitigation pathway (RCP 4.5), population exposure to significant shifts drops to negligible values by the end of the century. Strong mitigation measures (RCP 2.6) are the only option that generates a global return to historical conditions regarding our indicators. Considering the pace of change can bring an alternative way to interact with climate impacts and adaptation communities.

  10. Climate change mitigation: the potential of agriculture as a renewable energy source in Nigeria.

    PubMed

    Elum, Z A; Modise, D M; Nhamo, G

    2017-02-01

    Energy is pivotal to the economic development of every nation. However, its production and utilization leads to undesirable carbon emissions that aggravate global warming which results in climate change. The agriculture sector is a significant user of energy. However, it has the potential to be a major contributor to Nigeria's energy supply mix in meeting its energy deficit. More so, in the light of current and impending adverse effects of climate change, there is a need to contain GHG's emissions. This paper focuses on bioenergy utilization as a climate change mitigation strategy and one that can, through effective waste management, enhance sustainable economic development in Nigeria. The paper employed a critical discourse analysis to examine the potential of the agricultural sector to provide biofuels from energy crops and other biomass sources. We conclude that Nigeria can reduce its GHG emissions and greatly contribute to global climate change mitigation while also alleviating its energy supply deficit if the agricultural and municipal wastes readily available in its towns and cities are converted to bioenergy. Such engagements will not only promote a clean and healthy environment but also create jobs for economic empowerment and a better standard of living for the people.

  11. Bio- and chemocatalysis cascades as a bridge between biology and chemistry for green polymer synthesis.

    PubMed

    Marszałek-Harych, Aleksandra; Jędrzkiewicz, Dawid; Ejfler, Jolanta

    2017-01-01

    The development and integration of bio- and chemocatalytic processes to convert renewable or biomass feedstocks into polymers is a vibrant field of research with enormous potential for environmental protection and the mitigation of global warming. Here, we review the biotechnological and chemical synthetic strategies for producing platform monomers from bio-based sources and transforming them into eco-polymers. We also discuss their advanced bio-application using the example of polylactide (PLA), the most valuable green polymer on the market.

  12. Towards the IPCC Special Report on Global Warming of 1.5°C

    NASA Astrophysics Data System (ADS)

    Masson-Delmotte, Valérie

    2017-04-01

    The Intergovernemental Panel on Climate Change (IPCC) has accepted the invitation from the Paris Agreement to prepare a special report on the impacts of global warming of 1.5 °C above pre-industrial levels and related global greenhouse gas emission pathways, in the context of strengthening the global response to the threat of climate change, sustainable development, and efforts to eradicate poverty. This special report is prepared under the scientific leadership of the co-chairs of the IPCC Working Groups I, II and III, and with operational support from the Technical Support Unit of Working Group I. It will consist of 5 chapters, providing (i) framing and context, (ii) exploring mitigation pathways compatible with 1.5°C in the context of sustainable development, (iii) assessing impacts of 1.5°C global warming on natural and human systems, and (iv) options for strengthening and implementing the global response to the threat of climate change, with a final chapter on sustainable development, poverty eradication and reducing inequalities. The timeline of preparation of the report is extremely short, with four lead author meetings taking place from March 2017 to April 2018, and an approval session scheduled in September 2018. It is crucial that new knowledge is being produced and submitted / published in the literature in time for contributing new material to be assessed by the authors of the report (with deadlines in late fall 2017 and spring 2018). With respect to the additional impacts expected for 1.5°C warming compared to present-day, and impacts avoided with respect to larger warming, new research is expected to build on existing CMIP5 projections, including new information on regional change, methods to provide knowledge for the most vulnerable ecosystems and regions, but also information from ongoing projects aiming to produce large ensembles of simulations, and new simulations driven by low carbon pathways. This is important for identifying climate change signals from climate variability (e.g. changes in water cycle, extremes...), for assessing strengths and limitations of methodologies using high end climate scenarios versus true stabilisation pathways, and for exploring long term risks beyond transient response, with consideration for overshoots and the full timescale of Earth system feedbacks. Lessons learnt from past warm climatic phases may also provide insights complementary to projections, albeit without the perspective of rates of changes that is specific to the issue of 1.5°C global warming. This special report is also designed to be complementary from the other reports in preparation for the IPCC Sixth Assessment cycle (AR6), including the special reports on the ocean and the cryosphere, on land use issues, both scheduled for 2019, and the Working Group main assessment reports, scheduled for 2021-2022.

  13. Climate change adaptation strategies and mitigation policies

    NASA Astrophysics Data System (ADS)

    García Fernández, Cristina

    2015-04-01

    The pace of climate change and the consequent warming of the Earth's surface is increasing vulnerability and decreasing adaptive capacity. Achieving a successful adaptation depends on the development of technology, institutional organization, financing availability and the exchange of information. Populations living in arid and semi-arid zones, low-lying coastal areas, land with water shortages or at risk of overflow or small islands are particularly vulnerable to climate change. Due to increasing population density in sensitive areas, some regions have become more vulnerable to events such as storms, floods and droughts, like the river basins and coastal plains. Human activities have fragmented and increased the vulnerability of ecosystems, which limit both, their natural adaptation and the effectiveness of the measures adopted. Adaptation means to carry out the necessary modifications for society to adapt to new climatic conditions in order to reduce their vulnerability to climate change. Adaptive capacity is the ability of a system to adjust to climate change (including climate variability and extremes) and to moderate potential damages, to take advantage of opportunities or face the consequences. Adaptation reduces the adverse impacts of climate change and enhance beneficial impacts, but will not prevent substantial cost that are produced by all damages. The performances require adaptation actions. These are defined and implemented at national, regional or local levels since many of the impacts and vulnerabilities depend on the particular economic, geographic and social circumstances of each country or region. We will present some adaptation strategies at national and local level and revise some cases of its implementation in several vulnerable areas. However, adaptation to climate change must be closely related to mitigation policies because the degree of change planned in different climatic variables is a function of the concentration levels that are achieved by greenhouse gases in the atmosphere. Mitigation and adaptation are therefore complementary actions. In the long term, climate change without mitigation measures will likely exceed the adaptive capacity of natural, managed and human systems. Early adoption of mitigation measures would break the dependence on carbon-intensive infrastructures and reduce adaptation needs to climate change. It also can save on adaptation cost. Therefore mitigation is the key objective of the global warming problem but little is being done in this field. We will present some proposals of "preventive economically efficient" policies at a global and regional level which will constitute the complement to the adaptation aspect.

  14. Unprecedented rates of land-use transformation in modeled climate change mitigation pathways

    NASA Astrophysics Data System (ADS)

    Turner, P. A.; Field, C. B.; Lobell, D. B.; Sanchez, D.; Mach, K. J.

    2017-12-01

    Integrated assessment models (IAMs) generate climate change mitigation scenarios consistent with global temperature targets. To limit warming to 2°, stylized cost-effective mitigation pathways rely on extensive deployments of carbon dioxide (CO2) removal (CDR) technologies, including multi-gigatonne yearly carbon removal from the atmosphere through bioenergy with carbon capture and storage (BECCS) and afforestation/reforestation. These assumed CDR deployments keep ambitious temperature limits in reach, but associated rates of land-use transformation have not been evaluated. For IAM scenarios from the IPCC Fifth Assessment Report, we compare rates of modeled land-use conversion to recent observed commodity crop expansions. In scenarios with a likely chance of limiting warming to 2° in 2100, the rate of energy cropland expansion supporting BECCS exceeds past commodity crop rates by several fold. In some cases, mitigation scenarios include abrupt reversal of deforestation, paired with massive afforestation/reforestation. Specifically, energy cropland in <2° scenarios expands, on average, by 8.2 Mha yr-1 and 11.7% p.a. across scenarios. This rate exceeds, by more than 3-fold, the observed expansion of soybean, the most rapidly expanding commodity crop. If energy cropland instead increases at rates equal to recent soybean and oil palm expansions, the scale of CO2 removal possible with BECCS is 2.6 to 10-times lower, respectively, than the deployments <2° IAM scenarios rely upon in 2100. IAM mitigation pathways may favor multi-gigatonne biomass-based CDR given undervalued sociopolitical and techno-economic deployment barriers. Heroic modeled rates for land-use transformation imply that large-scale biomass-based CDR is not an easy solution to the climate challenge.

  15. An Alternative View of the Climate Warming Mitigation Potential of U.S. Temperate Forests

    EPA Science Inventory

    Many U.S. federal and non-governmental agencies promote forestation as a means to mitigate climate warming because of the carbon sequestration potential of forests. This biogeochemical-oriented carbon sequestration policy is somewhat inconsistent with a decade or more of researc...

  16. Mitigation of global cooling by stratospheric chemistry feedbacks in a simulation of the Last Glacial Maximum

    NASA Astrophysics Data System (ADS)

    Noda, S.; Kodera, K.; Deushi, M.; Kitoh, A.; Mizuta, R.; Yoshida, K.; Murakami, S.; Adachi, Y.; Yoden, S.

    2017-12-01

    A series of numerical simulations of the Last Glacial Maximum (21 kyr B.P.) climate are performed by using an Earth System Model of the Meteorological Research Institute of the Japan Meteorological Agency to investigate the impact of stratospheric ozone profile on the surface climate with decreased CO2 condition and different orbital parameters. The contribution of the interactive ozone chemistry reveals a significant anomaly of +0.5 K (approximately 20 %) in the tropics and up to +1.5 K in high-latitudes for the annual mean zonal mean surface air temperature compared with those of the corresponding experiments with a prescribed ozone profile for preindustrial simulation of the fifth Coupled Model Intercomparison Project (CMIP5). In the tropics, this mitigation of global cooling is related to longwave radiative feedbacks associated with circulation-driven increases in lower stratospheric ozone and related increase in stratospheric water vapor and related decrease in cirrus cloud. The relations are opposite signs to and consistent with those of a global warming simulation. In high-latitudes, the polar amplification of mitigation of cooling associated with the change of sea ice area that is the same sign to and consistent with our previous paleoclimate simulation in the mid-Holocene (6 kyr B.P.). We recommend that climate models include sea ice and ozone profile that are consistent with CO2 concentration.

  17. Experimental warming decreases arbuscular mycorrhizal fungal colonization in prairie plants along a Mediterranean climate gradient.

    PubMed

    Wilson, Hannah; Johnson, Bart R; Bohannan, Brendan; Pfeifer-Meister, Laurel; Mueller, Rebecca; Bridgham, Scott D

    2016-01-01

    Arbuscular mycorrhizal fungi (AMF) provide numerous services to their plant symbionts. Understanding climate change effects on AMF, and the resulting plant responses, is crucial for predicting ecosystem responses at regional and global scales. We investigated how the effects of climate change on AMF-plant symbioses are mediated by soil water availability, soil nutrient availability, and vegetation dynamics. We used a combination of a greenhouse experiment and a manipulative climate change experiment embedded within a Mediterranean climate gradient in the Pacific Northwest, USA to examine this question. Structural equation modeling (SEM) was used to determine the direct and indirect effects of experimental warming on AMF colonization. Warming directly decreased AMF colonization across plant species and across the climate gradient of the study region. Other positive and negative indirect effects of warming, mediated by soil water availability, soil nutrient availability, and vegetation dynamics, canceled each other out. A warming-induced decrease in AMF colonization would likely have substantial consequences for plant communities and ecosystem function. Moreover, predicted increases in more intense droughts and heavier rains for this region could shift the balance among indirect causal pathways, and either exacerbate or mitigate the negative, direct effect of increased temperature on AMF colonization.

  18. Using land to mitigate climate change: hitting the target, recognizing the trade-offs.

    PubMed

    Reilly, John; Melillo, Jerry; Cai, Yongxia; Kicklighter, David; Gurgel, Angelo; Paltsev, Sergey; Cronin, Timothy; Sokolov, Andrei; Schlosser, Adam

    2012-06-05

    Land can be used in several ways to mitigate climate change, but especially under changing environmental conditions there may be implications for food prices. Using an integrated global system model, we explore the roles that these land-use options can play in a global mitigation strategy to stabilize Earth's average temperature within 2 °C of the preindustrial level and their impacts on agriculture. We show that an ambitious global Energy-Only climate policy that includes biofuels would likely not achieve the 2 °C target. A thought-experiment where the world ideally prices land carbon fluxes combined with biofuels (Energy+Land policy) gets the world much closer. Land could become a large net carbon sink of about 178 Pg C over the 21st century with price incentives in the Energy+Land scenario. With land carbon pricing but without biofuels (a No-Biofuel scenario) the carbon sink is nearly identical to the case with biofuels, but emissions from energy are somewhat higher, thereby results in more warming. Absent such incentives, land is either a much smaller net carbon sink (+37 Pg C - Energy-Only policy) or a net source (-21 Pg C - No-Policy). The significant trade-off with this integrated land-use approach is that prices for agricultural products rise substantially because of mitigation costs borne by the sector and higher land prices. Share of income spent on food for wealthier regions continues to fall, but for the poorest regions, higher food prices lead to a rising share of income spent on food.

  19. Has anthropogenic land-cover change been a significant climate forcing in the past? - An assessment for the Baltic Sea catchment area based on a literature review

    NASA Astrophysics Data System (ADS)

    Gaillard, Marie-Jose; Kaplan, Jed O.; Kleinen, Thomas; Brigitte Nielsen, Anne; Poska, Anneli; Samuelsson, Patrick; Strandberg, Gustav; Trondman, Anna-Kari

    2015-04-01

    We reviewed the recent published scientific literature on land cover-climate interactions at the global and regional spatial scales with the aim to assess whether it is convincingly demonstrated that anthropogenic land-cover change (ALCC) has been (over the last centuries and millennia) a significant climate forcing at the global scale, and more specifically at the scale of the Baltic Sea catchment area. The conclusions from this review are as follows: i) anthropogenic land-cover change (ALCC) is one of the few climate forcings for which the net direction of the climate response in the past is still not known. The uncertainty is due to the often counteracting temperature responses to the many biogeophysical effects, and to the biogeochemical vs biogeophysical effects; ii) there is no indication that deforestation in the Baltic Sea area since AD 1850 would have been a major cause of the recent climate warming in the region through a positive biogeochemical feedback; iii) several model studies suggest that boreal reforestation might not be an effective climate warming mitigation tool as it might lead to increased warming through biogeophysical processes; iv) palaeoecological studies indicate a major transformation of the landscape by anthropogenic activities in the southern zone of the study region occurring between 6000 and 3000/2500 calendar years before present (cal. BP) (1) ; v) the only modelling study so far of the biogeophysical effects of past ALCCs on regional climate in Europe suggests that a deforestation of the magnitude of that reconstructed for the past (between 6000 and 200 cal BP) can produce changes in winter and summer temperatures of +/- 1°, the sign of the change depending on the season and the region (2). Thus, if ALCC and their biogeophysical effects did matter in the past, they should matter today and in the future. A still prevailing idea is that planting trees will mitigate climate warming through biogeochemical effects. Therefore, there is still an urgent need to better understand the biogeophysical effects on regional and continental climate of afforestation in the hemiboreal and boreal regions, and their significance in relation to the biogeochemical effects. (1) Trondman, A.-K. et al. (2014) Global Change Biology (2014), doi: 10.1111/gcb.12737 (2) Strandberg, G. et al. (2014) Climate of the Past 10, 661-680.

  20. Impacts of ocean acidification on sea urchin growth across the juvenile to mature adult life-stage transition is mitigated by warming.

    PubMed

    Dworjanyn, Symon A; Byrne, Maria

    2018-04-11

    Understanding how growth trajectories of calcifying invertebrates are affected by changing climate requires acclimation experiments that follow development across life-history transitions. In a long-term acclimation study, the effects of increased acidification and temperature on survival and growth of the tropical sea urchin Tripneustes gratilla from the early juvenile (5 mm test diameter-TD) through the developmental transition to the mature adult (60 mm TD) were investigated. Juveniles were reared in a combination of three temperature and three pH/ p CO 2 treatments, including treatments commensurate with global change projections. Elevated temperature and p CO 2 /pH both affected growth, but there was no interaction between these factors. The urchins grew more slowly at pH 7.6, but not at pH 7.8. Slow growth may be influenced by the inability to compensate coelomic fluid acid-base balance at pH 7.6. Growth was faster at +3 and +6°C compared to that in ambient temperature. Acidification and warming had strong and interactive effects on reproductive potential. Warming increased the gonad index, but acidification decreased it. At pH 7.6 there were virtually no gonads in any urchins regardless of temperature. The T. gratilla were larger at maturity under combined near-future warming and acidification scenarios (+3°C/pH 7.8). Although the juveniles grew and survived in near-future warming and acidification conditions, chronic exposure to these stressors from an early stage altered allocation to somatic and gonad growth. In the absence of phenotypic adjustment, the interactive effects of warming and acidification on the benthic life phases of sea urchins may compromise reproductive fitness and population maintenance as global climatic change unfolds. © 2018 The Author(s).

  1. Assessing the climatic benefits of black carbon mitigation.

    PubMed

    Kopp, Robert E; Mauzerall, Denise L

    2010-06-29

    To limit mean global warming to 2 degrees C, a goal supported by more than 100 countries, it will likely be necessary to reduce emissions not only of greenhouse gases but also of air pollutants with high radiative forcing (RF), particularly black carbon (BC). Although several recent research papers have attempted to quantify the effects of BC on climate, not all these analyses have incorporated all the mechanisms that contribute to its RF (including the effects of BC on cloud albedo, cloud coverage, and snow and ice albedo, and the optical consequences of aerosol mixing) and have reported their results in different units and with different ranges of uncertainty. Here we attempt to reconcile their results and present them in uniform units that include the same forcing factors. We use the best estimate of effective RF obtained from these results to analyze the benefits of mitigating BC emissions for achieving a specific equilibrium temperature target. For a 500 ppm CO(2)e (3.1 W m(-2)) effective RF target in 2100, which would offer about a 50% chance of limiting equilibrium warming to 2.5 degrees C above preindustrial temperatures, we estimate that failing to reduce carbonaceous aerosol emissions from contained combustion would require CO(2) emission cuts about 8 years (range of 1-15 years) earlier than would be necessary with full mitigation of these emissions.

  2. Global Warming Denial: The Human Brain on Extremes

    NASA Astrophysics Data System (ADS)

    Marrouch, N.; Johnson, B. T.; Slawinska, J. M.

    2016-12-01

    Future assessments of climate change rely on multi-model intercomparisons, and projections of the extreme events frequency are of particular interest as associated with significant economic costs and social threats. Notably, systematically simulated increases in the number of extreme weather events agree well with observational data over the last decade. At the same time, as the climate grows more volatile, widespread denial of climate change and its anthropocentric causes continues to proliferate (based on nationally representative U.S. polls). Simultaneous increases in both high-impact exposure and its denial is in stark contrast with our knowledge of socio-natural dynamics and its models. Disentangling this paradox requires an understanding of the origins of global warming denial at an individual level, and how subsequently it propagates across social networks of many scales, shaping global policies. However, as the real world and its dynamical models are complex (high-dimensional and coupled), separating the particular feedback of interest remains a challenge. Here, we demonstrate this feedback in a controlled experiment, where increasing unpredictability using helplessness-training paradigms induces changes in global warming denial, and the endorsement of conservative ideology. We explain these results in the context of evolutionary theory framing self-deception and denial as remnants of evolutionary processes that shaped and facilitated the survival of the human species. Further we link these findings to changes in neural and higher-level cognitive processes in response to unpredictable stimuli. We argue that climate change denial is an example of an extreme belief system that carries the potential to threaten the wellbeing of both humans and other species alike. It is therefore crucial to better quantify climate denial using social informatics tools that provide the means to improve its representations in coupled socio-geophysical models to mitigate its effects on global and local policies.

  3. Increased future ice discharge from Antarctica owing to higher snowfall.

    PubMed

    Winkelmann, R; Levermann, A; Martin, M A; Frieler, K

    2012-12-13

    Anthropogenic climate change is likely to cause continuing global sea level rise, but some processes within the Earth system may mitigate the magnitude of the projected effect. Regional and global climate models simulate enhanced snowfall over Antarctica, which would provide a direct offset of the future contribution to global sea level rise from cryospheric mass loss and ocean expansion. Uncertainties exist in modelled snowfall, but even larger uncertainties exist in the potential changes of dynamic ice discharge from Antarctica and thus in the ultimate fate of the precipitation-deposited ice mass. Here we show that snowfall and discharge are not independent, but that future ice discharge will increase by up to three times as a result of additional snowfall under global warming. Our results, based on an ice-sheet model forced by climate simulations through to the end of 2500 (ref. 8), show that the enhanced discharge effect exceeds the effect of surface warming as well as that of basal ice-shelf melting, and is due to the difference in surface elevation change caused by snowfall on grounded versus floating ice. Although different underlying forcings drive ice loss from basal melting versus increased snowfall, similar ice dynamical processes are nonetheless at work in both; therefore results are relatively independent of the specific representation of the transition zone. In an ensemble of simulations designed to capture ice-physics uncertainty, the additional dynamic ice loss along the coastline compensates between 30 and 65 per cent of the ice gain due to enhanced snowfall over the entire continent. This results in a dynamic ice loss of up to 1.25 metres in the year 2500 for the strongest warming scenario. The reported effect thus strongly counters a potential negative contribution to global sea level by the Antarctic Ice Sheet.

  4. Increased future ice discharge from Antarctica owing to higher snowfall

    NASA Astrophysics Data System (ADS)

    Winkelmann, Ricarda; Levermann, Anders; Martin, Maria A.; Frieler, Katja

    2013-04-01

    Anthropogenic climate change is likely to cause continuing global sea-level rise, but some processes within the Earth system may mitigate the magnitude of the projected effect. Regional and global climate models simulate enhanced snowfall over Antarctica, which would provide a direct offset of the future contribution to global sea level rise from cryospheric mass loss and ocean expansion. Uncertainties exist in modelled snowfall, but even larger uncertainties exist in the potential changes of dynamic ice discharge from Antarctica. Here we show that snowfall and discharge are not independent, but that future ice discharge will increase by up to three times as a result of additional snowfall under global warming. Our results, based on an ice-sheet model forced by climate simulations through to the end of 2500, show that the enhanced discharge effect exceeds the effect of surface warming as well as that of basal ice-shelf melting, and is due to the difference in surface elevation change caused by snowfall on grounded versus floating ice. Although different underlying forcings drive ice loss from basal melting versus increased snowfall, similar ice dynamical processes are nonetheless at work in both; therefore results are relatively independent of the specific representation of the transition zone. In an ensemble of simulations designed to capture ice-physics uncertainty, the additional dynamic ice loss along the coastline compensates between 30 and 65 per cent of the ice gain due to enhanced snowfall over the entire continent. This results in a dynamic ice loss of up to 1.25 metres in the year 2500 for the strongest warming scenario.

  5. Ocean warming and spread of pathogenic vibrios in the aquatic environment.

    PubMed

    Vezzulli, Luigi; Colwell, Rita R; Pruzzo, Carla

    2013-05-01

    Vibrios are among the most common bacteria that inhabit surface waters throughout the world and are responsible for a number of severe infections both in humans and animals. Several reports recently showed that human Vibrio illnesses are increasing worldwide including fatal acute diarrheal diseases, such as cholera, gastroenteritis, wound infections, and septicemia. Many scientists believe this increase may be associated with global warming and rise in sea surface temperature (SST), although not enough evidence is available to support a causal link between emergence of Vibrio infections and climate warming. The effect of increased SST in promoting spread of vibrios in coastal and brackish waters is considered a causal factor explaining this trend. Field and laboratory studies carried out over the past 40 years supported this hypothesis, clearly showing temperature promotes Vibrio growth and persistence in the aquatic environment. Most recently, a long-term retrospective microbiological study carried out in the coastal waters of the southern North Sea provided the first experimental evidence for a positive and significant relationship between SST and Vibrio occurrence over a multidecadal time scale. As a future challenge, macroecological studies of the effects of ocean warming on Vibrio persistence and spread in the aquatic environment over large spatial and temporal scales would conclusively support evidence acquired to date combined with studies of the impact of global warming on epidemiologically relevant variables, such as host susceptibility and exposure. Assessing a causal link between ongoing climate change and enhanced growth and spread of vibrios and related illness is expected to improve forecast and mitigate future outbreaks associated with these pathogens.

  6. Biomass production in experimental grasslands of different species richness during three years of climate warming

    NASA Astrophysics Data System (ADS)

    de Boeck, H. J.; Lemmens, C. M. H. M.; Gielen, B.; Malchair, S.; Carnol, M.; Merckx, R.; van den Berge, J.; Ceulemans, R.; Nijs, I.

    2007-12-01

    Here we report on the single and combined impacts of climate warming and species richness on the biomass production in experimental grassland communities. Projections of a future warmer climate have stimulated studies on the response of terrestrial ecosystems to this global change. Experiments have likewise addressed the importance of species numbers for ecosystem functioning. There is, however, little knowledge on the interplay between warming and species richness. During three years, we grew experimental plant communities containing one, three or nine grassland species in 12 sunlit, climate-controlled chambers in Wilrijk, Belgium. Half of these chambers were exposed to ambient air temperatures (unheated), while the other half were warmed by 3°C (heated). Equal amounts of water were added to heated and unheated communities, so that warming would imply drier soils if evapotranspiration was higher. Biomass production was decreased due to warming, both aboveground (-29%) and belowground (-25%), as negative impacts of increased heat and drought stress in summer prevailed. Increased resource partitioning, likely mostly through spatial complementarity, led to higher shoot and root biomass in multi-species communities, regardless of the induced warming. Surprisingly, warming suppressed productivity the most in 9-species communities, which may be attributed to negative impacts of intense interspecific competition for resources under conditions of high abiotic stress. Our results suggest that warming and the associated soil drying could reduce primary production in many temperate grasslands, and that this will not necessarily be mitigated by efforts to maintain or increase species richness.

  7. Mid-latitude afforestation shifts general circulation and tropical precipitation.

    PubMed

    Swann, Abigail L S; Fung, Inez Y; Chiang, John C H

    2012-01-17

    We show in climate model experiments that large-scale afforestation in northern mid-latitudes warms the Northern Hemisphere and alters global circulation patterns. An expansion of dark forests increases the absorption of solar energy and increases surface temperature, particularly in regions where the land surface is unable to compensate with latent heat flux due to water limitation. Atmospheric circulation redistributes the anomalous energy absorbed in the northern hemisphere, in particular toward the south, through altering the Hadley circulation, resulting in the northward displacement of the tropical rain bands. Precipitation decreases over parts of the Amazon basin affecting productivity and increases over the Sahel and Sahara regions in Africa. We find that the response of climate to afforestation in mid-latitudes is determined by the amount of soil moisture available to plants with the greatest warming found in water-limited regions. Mid-latitude afforestation is found to have a small impact on modeled global temperatures and on global CO(2), but regional heating from the increase in forest cover is capable of driving unintended changes in circulation and precipitation. The ability of vegetation to affect remote circulation has implications for strategies for climate mitigation.

  8. Importance of biophysical effects on climate warming mitigation potential of biofuel crops over the conterminous United States

    USDA-ARS?s Scientific Manuscript database

    Current quantification of Climate Warming Mitigation Potential (CWMP) of biomass-derived energy has focused primarily on its biogeochemical effects. This study used site-level observations of carbon, water, and energy fluxes of biofuel crops to parameterize and evaluate the Community Land Model (CLM...

  9. Response of greenhouse gas emissions from three types of wetland soils to simulated temperature change on the Qinghai-Tibetan Plateau

    NASA Astrophysics Data System (ADS)

    Liu, Yi; Liu, Guihua; Xiong, Ziqian; Liu, Wenzhi

    2017-12-01

    Wetlands emit a large quantity of greenhouse gases into the atmosphere and contribute significantly to global warming. The Qinghai-Tibetan Plateau, known as the ;Third Pole; of the earth, contains abundant and diverse wetlands. Due to increasing human-induced pressures such as reclamation, overgrazing and climate change, many plateau wetlands have been degraded or destroyed. Until now, the response of soil greenhouse gas emissions to extreme summer temperatures in the plateau wetlands remains unknown. In this study, we collected 36 soil samples from riverine, lacustrine and palustrine wetlands on the Qinghai-Tibetan Plateau. We compared the carbon dioxide (CO2), methane (CH4) and nitrous oxide (N2O) emissions from soils incubated aerobically at 7, 12, and 19 °C. The results showed that the emissions of CH4 and N2O but not CO2 were significantly affected by the simulated temperature change. The N2O emission rate was considerably higher in palustrine wetlands compared with lacustrine and riverine wetlands. However, the CO2 and CH4 emissions did not differ significantly among the three wetland types. The ratio of CO2 to CH4 production increased with increasing incubation temperatures. The global warming potential of greenhouse gases at 19 °C was approximately 1.18 and 2.12 times greater than that at 12 and 7 °C, respectively. Our findings suggest that temperature change has a strong effect on soil greenhouse gas emissions and global warming potential of wetlands on the Qinghai-Tibetan Plateau, especially palustrine wetlands. Therefore, targeted strategies should be developed to mitigate the potential impacts of climate warming on the plateau.

  10. Warming Climate and Changing Societies - a Challenge or an Opportunity for Reindeer Herding?

    NASA Astrophysics Data System (ADS)

    Käyhkö, J.; Horstkotte, T.; Kivinen, S.; Vehmas, J.; Oksanen, L.; Forbes, B. C.; Johansen, B.; Jepsen, J. U.; Markkola, A.; Pulliainen, J.; Olofsson, J.; Oksanen, T.; Utsi, T. A.; Korpimäki, E.; Menard, C.; Ericson, L.

    2015-12-01

    The Arctic region will warm more rapidly than the global mean, influencing dramatically the northern ecosystems. Simultaneously, our societies transform towards urbanized, highly educated, service-based culture, where a decreasing population will gain its livelihood from primary production. We study various ecosystem interactions in a changing climate and integrate these with reindeer husbandry and the indigenous Sámi culture dependent on it1. Potential climate impacts include the transformation of arctic-alpine tundra to dense scrubland with conceivable consequences to reindeer husbandry, but also global warming due to decreasing albedo. The social-ecological system (SES) of reindeer husbandry includes administrative and ecological processes that do not always correspond (Figure 1). Consequently, management priorities and administration may conflict with local social and ecological processes, bringing about risks of environmental degradation, loss of biodiversity and defeat of traditional livelihoods. We hypothesize the plausibility to support the indigenous reindeer herding livelihood against rapid external changes by utilizing the migratory reindeer grazing system of the Sámi as a management tool for sustaining the high-albedo tundra and mitigating global warming. Our first-of-a-kind satellite-based high resolution vegetation map covering Northern Fennoscandia allows detailed management plans. Our ecological research demonstrates the important role of herbivory on arctic vegetation communities. Interactive workshops with reindeer herders offer indigenous knowledge of state and changes of the ecosystems, and reflect the threats and expectations of the herders. We are currently building models of the complex social-ecological system of Northern Fennoscandia and will report the first findings of the exercise. 1 www.ncoetundra.utu.fi Figure 1. The scales of administrative and ecological processes do not always coincide. This may bring about challenges in managing the social-ecological systems.

  11. Climate change and allergic disease.

    PubMed

    Shea, Katherine M; Truckner, Robert T; Weber, Richard W; Peden, David B

    2008-09-01

    Climate change is potentially the largest global threat to human health ever encountered. The earth is warming, the warming is accelerating, and human actions are largely responsible. If current emissions and land use trends continue unchecked, the next generations will face more injury, disease, and death related to natural disasters and heat waves, higher rates of climate-related infections, and wide-spread malnutrition, as well as more allergic and air pollution-related morbidity and mortality. This review highlights links between global climate change and anticipated increases in prevalence and severity of asthma and related allergic disease mediated through worsening ambient air pollution and altered local and regional pollen production. The pattern of change will vary regionally depending on latitude, altitude, rainfall and storms, land-use patterns, urbanization, transportation, and energy production. The magnitude of climate change and related increases in allergic disease will be affected by how aggressively greenhouse gas mitigation strategies are pursued, but at best an average warming of 1 to 2 degrees C is certain this century. Thus, anticipation of a higher allergic disease burden will affect clinical practice as well as public health planning. A number of practical primary and secondary prevention strategies are suggested at the end of the review to assist in meeting this unprecedented public health challenge.

  12. GLIMPSE: a rapid decision framework for energy and environmental policy.

    PubMed

    Akhtar, Farhan H; Pinder, Robert W; Loughlin, Daniel H; Henze, Daven K

    2013-01-01

    Over the coming decades, new energy production technologies and the policies that oversee them will affect human health, the vitality of our ecosystems, and the stability of the global climate. The GLIMPSE decision model framework provides insights about the implications of technology and policy decisions on these outcomes. Using GLIMPSE, decision makers can identify alternative techno-policy futures, examining their air quality, health, and short- and long-term climate impacts. Ultimately, GLIMPSE will support the identification of cost-effective strategies for simultaneously achieving performance goals for these metrics. Here, we demonstrate the utility of GLIMPSE by analyzing several future energy scenarios under existing air quality regulations and potential CO2 emission reduction policies. We find opportunities for substantial cobenefits in setting both climate change mitigation and health-benefit based air quality improvement targets. Though current policies which prioritize public health protection increase near-term warming, establishing policies that also reduce greenhouse gas emissions may offset warming in the near-term and lead to significant reductions in long-term warming.

  13. The Impact of Transported Pollution on Arctic Climate

    NASA Astrophysics Data System (ADS)

    Quinn, P.; Stohl, A.; Arneth, A.; Berntsen, T.; Burkhart, J. F.; Flanner, M. G.; Kupiainen, K.; Shepherd, M.; Shevchenko, V. P.; Skov, H.; Vestreng, V.

    2011-12-01

    Arctic temperatures have increased at almost twice the global average rate over the past 100 years. Warming in the Arctic has been accompanied by an earlier onset of spring melt, a lengthening of the melt season, changes in the mass balance of the Greenland ice sheet, and a decrease in sea ice extent. Short-lived, climate warming pollutants such as black carbon (BC) have recently gained attention as a target for immediate mitigation of Arctic warming in addition to reductions in long lived greenhouse gases. Model calculations indicate that BC increases surface temperatures within the Arctic primarily through deposition on snow and ice surfaces with a resulting decrease in surface albedo and increase in absorbed solar radiation. In 2009, the Arctic Monitoring and Assessment Program (AMAP) established an Expert Group on BC with the goal of identifying source regions and energy sectors that have the largest impact on Arctic climate. Here we present the results of this work and investigate links between mid-latitude pollutants and Arctic climate.

  14. Climate Change: Integrating Science and Economics

    NASA Astrophysics Data System (ADS)

    Prinn, R. G.

    2008-12-01

    The world is facing an ever-growing conflict between environment and development. Climate change is a century-scale threat requiring a century-long effort in science, technology and policy analysis, and institutions that can sustain this effort over generations. To inform policy development and implementation there is urgent need for better integration of the diverse components of the problem. Motivated by this challenge, we have developed the Integrated Global System Model (IGSM) at MIT. It comprises coupled sub- models of economic development, atmospheric chemistry, climate dynamics and ecosystems. The results of a recent uncertainty analysis involving hundreds of runs of the IGSM imply that, without mitigation policies, the global average surface temperature may rise much faster than previously estimated. Polar temperatures are projected to rise even faster than the average rate with obvious great risks for high latitude ecosystems and ice sheets at the high end of this range. Analysis of policies for climate mitigation, show that the greatest effect of these policies is to lower the probability of extreme changes as opposed to lowering the medians. Faced with the above estimated impacts, the long lifetimes of most greenhouse gases in the atmosphere, the long delay in ultimate warming due to ocean heat uptake, and the capital-intensive global energy infrastructure, the case is strong for concerted action now. Results of runs of the IGSM indicate the need for transformation of the global energy industry on a very large scale to mitigate climate change. Carbon sequestration, renewable energy sources, and nuclear present new economic, technological, and environmental challenges when implemented at the needed scales. Economic analyses using the IGSM indicate that global implementation of efficient policies could allow the needed transformations at bearable costs.

  15. Heat wave exposure in India in current, 1.5 °C, and 2.0 °C worlds

    NASA Astrophysics Data System (ADS)

    Mishra, Vimal; Mukherjee, Sourav; Kumar, Rohini; Stone, Dáithí A.

    2017-12-01

    Heatwaves with large impacts have increased in the recent past and will continue to increase under future warming. However, the implication for population exposure to severe heatwaves remains unexplored. Here, we characterize maximum potential human exposure (without passive/active reduction measures) to severe heatwaves in India. We show that if the global mean temperature is limited to 2.0 °C above pre-industrial conditions, the frequency of severe heatwaves will rise by 30 times the current climate by the end-21st century. In contrast, the frequency is projected to be about 2.5 times more (than the low-warming scenario of 2 °C) under conditions expected if the RCP8.5 ‘business-as-usual’ emissions scenario is followed. Under the 2.0 °C low-warming target, population exposure to severe heatwaves is projected to increase by about 15 and 92 times the current level by the mid and end-21st century respectively. Strategies to reduce population growth in India during the 21st century may provide only limited mitigation of heatwave exposure mostly late in the century. Limiting global temperatures to 1.5 °C above preindustrial would reduce the exposure by half relative to RCP8.5 by the mid-21st century. If global temperatures are to exceed 1.5 °C then substantial measures will be required to offset the large increase in exposure to severe heatwaves in India.

  16. Multisectoral climate impact hotspots in a warming world.

    PubMed

    Piontek, Franziska; Müller, Christoph; Pugh, Thomas A M; Clark, Douglas B; Deryng, Delphine; Elliott, Joshua; Colón González, Felipe de Jesus; Flörke, Martina; Folberth, Christian; Franssen, Wietse; Frieler, Katja; Friend, Andrew D; Gosling, Simon N; Hemming, Deborah; Khabarov, Nikolay; Kim, Hyungjun; Lomas, Mark R; Masaki, Yoshimitsu; Mengel, Matthias; Morse, Andrew; Neumann, Kathleen; Nishina, Kazuya; Ostberg, Sebastian; Pavlick, Ryan; Ruane, Alex C; Schewe, Jacob; Schmid, Erwin; Stacke, Tobias; Tang, Qiuhong; Tessler, Zachary D; Tompkins, Adrian M; Warszawski, Lila; Wisser, Dominik; Schellnhuber, Hans Joachim

    2014-03-04

    The impacts of global climate change on different aspects of humanity's diverse life-support systems are complex and often difficult to predict. To facilitate policy decisions on mitigation and adaptation strategies, it is necessary to understand, quantify, and synthesize these climate-change impacts, taking into account their uncertainties. Crucial to these decisions is an understanding of how impacts in different sectors overlap, as overlapping impacts increase exposure, lead to interactions of impacts, and are likely to raise adaptation pressure. As a first step we develop herein a framework to study coinciding impacts and identify regional exposure hotspots. This framework can then be used as a starting point for regional case studies on vulnerability and multifaceted adaptation strategies. We consider impacts related to water, agriculture, ecosystems, and malaria at different levels of global warming. Multisectoral overlap starts to be seen robustly at a mean global warming of 3 °C above the 1980-2010 mean, with 11% of the world population subject to severe impacts in at least two of the four impact sectors at 4 °C. Despite these general conclusions, we find that uncertainty arising from the impact models is considerable, and larger than that from the climate models. In a low probability-high impact worst-case assessment, almost the whole inhabited world is at risk for multisectoral pressures. Hence, there is a pressing need for an increased research effort to develop a more comprehensive understanding of impacts, as well as for the development of policy measures under existing uncertainty.

  17. Dangerous Climate Velocities from Geoengineering Termination: Potential Biodiversity Impacts

    NASA Astrophysics Data System (ADS)

    Trisos, C.; Gurevitch, J.; Zambri, B.; Xia, L.; Amatulli, G.; Robock, A.

    2016-12-01

    Geoengineering has been suggested as a potential societal response to the impacts of ongoing global warming. If ongoing mitigation and adaptation measures do not prevent the most dangerous consequences of climate change, it is important to study whether solar radiation management would make the world less dangerous. While impacts of albedo modification on temperature, precipitation, and agriculture have been studied before, here for the first time we investigate its potential ecological impacts. We estimate the speeds marine and terrestrial ecosystems will need to move to remain in their current climate conditions (i.e., climate velocities) in response to the implementation and subsequent termination of geoengineering. We take advantage of climate model simulations conducted using the G4 scenario of the Geoengineering Model Intercomparison Project, in which increased radiative forcing from the RCP4.5 scenario is balanced by a stratospheric aerosol cloud produced by an injection of 5 Tg of SO2 per year into the lower stratosphere for 50 years, and then stopped. The termination of geoengineering is projected to produce a very rapid warming of the climate, resulting in climate velocities much faster than those that will be produced from anthropogenic global warming. Should ongoing geoengineering be terminated abruptly due to society losing the means or will to continue, the resulting ecological impacts, as measured by climate velocities, could be severe for many terrestrial and marine biodiversity hotspots. Thus, the implementation of solar geoengineering represents a potential danger not just to humans, but also to biodiversity globally.

  18. Multisectoral Climate Impact Hotspots in a Warming World

    NASA Technical Reports Server (NTRS)

    Piontek, Franziska; Mueller, Christoph; Pugh, Thomas A. M.; Clark, Douglas B.; Deryng, Delphine; Elliott, Joshua; deJesusColonGonzalez, Felipe; Floerke, Martina; Folberth, Christian; Franssen, Wietse; hide

    2014-01-01

    The impacts of global climate change on different aspects of humanity's diverse life-support systems are complex and often difficult to predict. To facilitate policy decisions on mitigation and adaptation strategies, it is necessary to understand, quantify, and synthesize these climate-change impacts, taking into account their uncertainties. Crucial to these decisions is an understanding of how impacts in different sectors overlap, as overlapping impacts increase exposure, lead to interactions of impacts, and are likely to raise adaptation pressure. As a first step we develop herein a framework to study coinciding impacts and identify regional exposure hotspots. This framework can then be used as a starting point for regional case studies on vulnerability and multifaceted adaptation strategies. We consider impacts related to water, agriculture, ecosystems, and malaria at different levels of global warming. Multisectoral overlap starts to be seen robustly at a mean global warming of 3 degC above the 1980-2010 mean, with 11% of the world population subject to severe impacts in at least two of the four impact sectors at 4 degC. Despite these general conclusions, we find that uncertainty arising from the impact models is considerable, and larger than that from the climate models. In a low probability-high impact worst-case assessment, almost the whole inhabited world is at risk for multisectoral pressures. Hence, there is a pressing need for an increased research effort to develop a more comprehensive understanding of impacts, as well as for the development of policy measures under existing uncertainty.

  19. Net global warming potential and greenhouse gas intensity of conventional and conservation agriculture system in rainfed semi arid tropics of India

    NASA Astrophysics Data System (ADS)

    Pratibha, G.; Srinivas, I.; Rao, K. V.; Shanker, Arun K.; Raju, B. M. K.; Choudhary, Deepak K.; Srinivas Rao, K.; Srinivasarao, Ch.; Maheswari, M.

    2016-11-01

    Agriculture has been considered as one of the contributors to greenhouse gas (GHG) emissions and it continues to increase with increase in crop production. Hence development of sustainable agro techniques with maximum crop production, and low global warming potential is need of the hour. Quantifying net global warming potential (NGWP) and greenhouse gas intensity (GHGI) of an agricultural activity is a method to assess the mitigation potential of the activity. But there is dearth of information on NGWP of conservation agriculture under rainfed conditions. Hence in this study two methods such as crop based (NGWPcrop) and soil based (NGWPsoil) were estimated from the data of the experiment initiated in 2009 in rainfed semiarid regions of Hyderabad, India with different tillage practices like conventional tillage (CT), reduced tillage (RT), zero tillage (ZT) and residue retention levels by harvesting at different heights which includes 0, 10 and 30 cm anchored residue in pigeonpea-castor systems. The results of the study revealed that under rainfed conditions CT recorded 24% higher yields over ZT, but CT and RT were on par with each other. However, the yield gap between the tillage treatments is narrowing down over 5 years of study. ZT and RT recorded 26 and 11% lower indirect GHG emissions (emissions from farm operations and input use) over CT, respectively. The percent contribution of CO2 eq. N2O emission is higher to total GHG emissions in both the crops. Both NGWPcrop, NGWPsoil, GHGIcrop, and GHGIsoil based were influenced by tillage and residue treatments. Further, castor grown on pigeonpea residue recorded 20% higher GHG emissions over pigeonpea grown on castor residues. The fuel consumption in ZT was reduced by 58% and 81% as compared to CT in pigeonpea and castor, respectively. Lower NGWP and GHGI based on crop and soil was observed with increase in crop residues and decrease in tillage intensity in both the crops. The results of the study indicate that, there is scope to reduce the NGWP emissions by reducing one tillage operation as in RT and increase in crop residue by harvesting at 10 and 30 cm height with minimal impact on the crop yields. However, the trade-off between higher yield and soil health versus GHG emissions should be considered while promoting conservation agriculture. The NGWPcrop estimation method indicated considerable benefits of residues to the soil and higher potential of GHG mitigation than by the NGWPsoil method and may overestimate the potential of GHG mitigation in agriculture system.

  20. The Path Forward from Paris: the Challenge for Tropical Countries

    NASA Astrophysics Data System (ADS)

    Nobre, C.

    2016-12-01

    The pledges of emissions reductions put forth at the COP21 in Paris fall short of ensuring the desired guardrail of 2 C warming, let alone the more stringent, but necessary, goal of 1.5 C warming if we want to minimize the increasing risks of climate change over both the short term of decades and the long term of centuries. Decarbonization of the global economy is mandatory, which implies a gargantuan challenge of decarbonizing the energy system. Given the likelihood of decreasing strength of the natural sinks in the global oceans and land biota as warming progresses, it may be necessary to reach nearly zero net emissions by midcentury and even negative net emissions by the end of the century. In addition to massive and rapid implementation of renewable energy systems, desirable mitigation trajectories involve large-scale reforestation and ecosystem restoration and also bioenergy capture and storage systems (BECCS). Tropical countries can play an important role to meet both goals as long as they are able to implement sustainable agriculture at the large scale that is nearly carbon-neutral and resilient to unavoidable climate change. And reaching sustainability in the agricultural sector—remembering that agricultural direct emissions and indirect emissions due to deforestation account for almost one quarter of global emissions—is under the constraint to meet food security for all, that is, food production has to grow 70% by midcentury, with concomitant reduction of waste in the food chain. I will take the example of mitigation options for Brazil—a large tropical country with per capita emissions of about 7.5 ton CO2-eq—to illustrate sustainable development trajectories of reaching carbon neutrality by midcentury. That will imply developing a modern, more productive carbon-neutral agriculture within the next two decades, reducing tropical deforestation to nearly zero within a decade, restoring ecosystems and increasing renewable energy use to over 80% of its total energy consumption by 2050. It will be shown that such ambitious goals are within the realm of reality if some basic conditions are met: a faster cycle of knowledge to policy implementation and technology to practice, and innovative financing mechanisms.

  1. The utility of the historical record in assessing future carbon budgets

    NASA Astrophysics Data System (ADS)

    Millar, R.; Friedlingstein, P.; Allen, M. R.

    2017-12-01

    It has long been known that the cumulative emissions of carbon dioxide (CO2) is the most physically relevant determiner of long-lived anthropogenic climate change, with an approximately linear relationship between CO2-induced global mean surface warming and cumulative emissions. The historical observational record offers a way to constrain the relationship between cumulative carbon dioxide emission and global mean warming using observations to date. Here we show that simple regression analysis indicates that the 1.5°C carbon budget would be exhausted after nearly three decades of current emissions, substantially in excess of many estimates from Earth System Models. However, there are many reasons to be cautious about carbon budget assessments from the historical record alone. Accounting for the uncertainty in non-CO2 radiative forcing using a simple climate model and a standard optimal fingerprinting detection attribution technique gives substantial uncertainty in the contribution of CO2 warming to date, and hence the transient climate response to cumulative emissions. Additionally, the existing balance between CO2 and non-CO2 forcing may change in the future under ambitious mitigation scenarios as non-CO2 emissions become more (or less) important to global mean temperature changes. Natural unforced variability can also have a substantial impact on estimates of remaining carbon budgets. By examining all warmings of a given magnitude in both the historical record and past and future ESM simulations we quantify the impact unforced climate variability may have on estimates of remaining carbon budgets, derived as a function of estimated non-CO2 warming and future emission scenario. In summary, whilst the historical record can act as a useful test of climate models, uncertainties in the response to future cumulative emissions remain large and extrapolations of future carbon budgets from the historical record alone should be treated with caution.

  2. Quantifying historical carbon and climate debts among nations

    NASA Astrophysics Data System (ADS)

    Matthews, H. Damon

    2016-01-01

    Contributions to historical climate change have varied substantially among nations. These differences reflect underlying inequalities in wealth and development, and pose a fundamental challenge to the implementation of a globally equitable climate mitigation strategy. This Letter presents a new way to quantify historical inequalities among nations using carbon and climate debts, defined as the amount by which national climate contributions have exceeded a hypothetical equal per-capita share over time. Considering only national CO2 emissions from fossil fuel combustion, accumulated carbon debts across all nations from 1990 to 2013 total 250 billion tonnes of CO2, representing 40% of cumulative world emissions since 1990. Expanding this to reflect the temperature response to a range of emissions, historical climate debts accrued between 1990 and 2010 total 0.11 °C, close to a third of observed warming over that period. Large fractions of this debt are carried by industrialized countries, but also by countries with high levels of deforestation and agriculture. These calculations could contribute to discussions of climate responsibility by providing a tangible way to quantify historical inequalities, which could then inform the funding of mitigation, adaptation and the costs of loss and damages in those countries that have contributed less to historical warming.

  3. Global warming and obesity: a systematic review.

    PubMed

    An, R; Ji, M; Zhang, S

    2018-02-01

    Global warming and the obesity epidemic are two unprecedented challenges mankind faces today. A literature search was conducted in the PubMed, Web of Science, EBSCO and Scopus for articles published until July 2017 that reported findings on the relationship between global warming and the obesity epidemic. Fifty studies were identified. Topic-wise, articles were classified into four relationships - global warming and the obesity epidemic are correlated because of common drivers (n = 21); global warming influences the obesity epidemic (n = 13); the obesity epidemic influences global warming (n = 13); and global warming and the obesity epidemic influence each other (n = 3). We constructed a conceptual model linking global warming and the obesity epidemic - the fossil fuel economy, population growth and industrialization impact land use and urbanization, motorized transportation and agricultural productivity and consequently influences global warming by excess greenhouse gas emission and the obesity epidemic by nutrition transition and physical inactivity; global warming also directly impacts obesity by food supply/price shock and adaptive thermogenesis, and the obesity epidemic impacts global warming by the elevated energy consumption. Policies that endorse deployment of clean and sustainable energy sources, and urban designs that promote active lifestyles, are likely to alleviate the societal burden of global warming and obesity. © 2017 World Obesity Federation.

  4. Simultaneous reductions in emissions of black carbon and co-emitted species will weaken the aerosol net cooling effect

    NASA Astrophysics Data System (ADS)

    Wang, Z. L.; Zhang, H.; Zhang, X. Y.

    2015-04-01

    Black carbon (BC), a distinct type of carbonaceous material formed from the incomplete combustion of fossil and biomass based fuels under certain conditions, can interact with solar radiation and clouds through its strong light-absorption ability, thereby warming the Earth's climate system. Some studies have even suggested that global warming could be slowed down in the short term by eliminating BC emission due to its short lifetime. In this study, we estimate the influence of removing some sources of BC and other co-emitted species on the aerosol radiative effect by using an aerosol-climate atmosphere-only model BCC_AGCM2.0.1_CUACE/Aero with prescribed sea surface temperature and sea ice cover, in combination with the aerosol emissions from the Representative Concentration Pathways (RCPs) scenarios. We find that the global annual mean aerosol net cooling effect at the top of the atmosphere (TOA) will be enhanced by 0.12 W m-2 compared with recent past year 2000 levels if the emissions of only BC are reduced to the level projected for 2100 based on the RCP2.6 scenario. This will be beneficial~for the mitigation of global warming. However, both aerosol negative direct and indirect radiative effects are weakened when BC and its co-emitted species (sulfur dioxide and organic carbon) are simultaneously reduced. Relative to year 2000 levels, the global annual mean aerosol net cooling effect at the TOA will be weakened by 1.7-2.0 W m-2 if the emissions of all these aerosols are decreased to the levels projected for 2100 in different ways based on the RCP2.6, RCP4.5, and RCP8.5 scenarios. Because there are no effective ways to remove the BC exclusively without influencing the other co-emitted components, our results therefore indicate that a reduction in BC emission can lead to an unexpected warming on the Earth's climate system in the future.

  5. How much would five trillion tonnes of carbon warm the climate?

    NASA Astrophysics Data System (ADS)

    Tokarska, Katarzyna Kasia; Gillett, Nathan P.; Weaver, Andrew J.; Arora, Vivek K.

    2016-04-01

    While estimates of fossil fuel reserves and resources are very uncertain, and the amount which could ultimately be burnt under a business as usual scenario would depend on prevailing economic and technological conditions, an amount of five trillion tonnes of carbon (5 EgC), corresponding to the lower end of the range of estimates of the total fossil fuel resource, is often cited as an estimate of total cumulative emissions in the absence of mitigation actions. The IPCC Fifth Assessment Report indicates that an approximately linear relationship between warming and cumulative carbon emissions holds only up to around 2 EgC emissions. It is typically assumed that at higher cumulative emissions the warming would tend to be less than that predicted by such a linear relationship, with the radiative saturation effect dominating the effects of positive carbon-climate feedbacks at high emissions, as predicted by simple carbon-climate models. We analyze simulations from four state-of-the-art Earth System Models (ESMs) from the Coupled Model Intercomparison Project Phase 5 (CMIP5) and seven Earth System Models of Intermediate Complexity (EMICs), driven by the Representative Concentration Pathway 8.5 Extension scenario (RCP 8.5 Ext), which represents a very high emission scenario of increasing greenhouse gas concentrations in absence of climate mitigation policies. Our results demonstrate that while terrestrial and ocean carbon storage varies between the models, the CO2-induced warming continues to increase approximately linearly with cumulative carbon emissions even for higher levels of cumulative emissions, in all four ESMs. Five of the seven EMICs considered simulate a similarly linear response, while two exhibit less warming at higher cumulative emissions for reasons we discuss. The ESMs simulate global mean warming of 6.6-11.0°C, mean Arctic warming of 15.3-19.7°C, and mean regional precipitation increases and decreases by more than a factor of four, in response to 5EgC, with smaller forcing contributions from other greenhouse gases. These results indicate that the unregulated exploitation of the fossil fuel resource would ultimately result in considerably more profound climate changes than previously suggested.

  6. Frequency of Deep Convective Clouds and Global Warming

    NASA Technical Reports Server (NTRS)

    Aumann, Hartmut H.; Teixeira, Joao

    2008-01-01

    This slide presentation reviews the effect of global warming on the formation of Deep Convective Clouds (DCC). It concludes that nature responds to global warming with an increase in strong convective activity. The frequency of DCC increases with global warming at the rate of 6%/decade. The increased frequency of DCC with global warming alone increases precipitation by 1.7%/decade. It compares the state of the art climate models' response to global warming, and concludes that the parametrization of climate models need to be tuned to more closely emulate the way nature responds to global warming.

  7. Observations of Urban Heat Island Mitigation in California Coastal Cities due to a Sea Breeze Induced Coastal-Cooling ``REVERSE-REACTION'' to Global Warming

    NASA Astrophysics Data System (ADS)

    Bornstein, R. D.; Lebassi, B.; Gonzalez, J.

    2010-12-01

    The study evaluated long-term (1948-2005) air temperatures at over 300 urban and rural sites in California (CA) during summer (June-August, JJA). The aggregate CA results showed asymmetric warming, as daily min temperatures increased faster than daily max temperatures. The spatial distributions of daily max temperatures in the heavily urbanized South Coast and San Francisco Bay Area air basins, however, exhibited a complex pattern, with cooling at low-elevation (mainly urban) coastal-areas and warming at (mainly rural) inland areas. Previous studies have suggested that cooling summer max temperatures in CA were due to increased irrigation, coastal upwelling, or cloud cover. The current hypothesis, however, is that this temperature pattern arises from a “reverse-reaction” to greenhouse gas (GHG) induced global-warming. In this hypothesis, the global warming of inland areas resulted in an increased (cooling) sea breeze activity in coastal areas. That daytime summer coastal cooling was seen in coastal urban areas implies that urban heat island (UHI) warming was weaker than the reverse-reaction sea breeze cooling; if there was no UHI effect, then the cooling would have been even stronger. Analysis of daytime summer max temperatures at four adjacent pairs of urban and rural sites near the inland cooling-warming boundary, however, showed that the rural sites experienced cooling, while the urban sites showed warming due to UHI development. The rate of heat island growth was estimated as the sum of each urban warming rate and the absolute magnitude of the concurrent adjacent rural cooling rate. Values ranged from 0.12 to 0.55 K decade-1, and were proportional to changes in urban population and urban extent. As Sacramento, Modesto, Stockton, and San José have grown in aerial extent (21 to 59%) and population (40 to 118%), part of the observed increased JJA max values could be due to increased daytime UHI-intensity. Without UHI effects, the currently observed JJA SFBA coastal-cooling area might have expanded to include these sites, as the first three are adjacent to rural airport sites that showed cooling max-values due to increased marine influences. In addition, all urbanized sites with decreasing max-values would probably show even larger cooling rates if UHI effects could be removed. Significant societal impacts may result from this observed reverse-reaction to GHG-warming. Possible beneficial effects (especially during periods of UHI growth) include decreased maximum: O3 levels, per-capita energy requirements for cooling, and human thermal-stress levels.

  8. Systems and economic analysis of microalgae ponds for conversion of CO{sub 2} to biomass. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Benemann, J.R.; Oswald, W.J.

    There is growing evidence that global warming could become a major global environmental threat during the 21st century. The precautionary principle commands preventive action, at both national and international levels, to minimize this potential threat. Many near-term, relatively inexpensive, mitigation options are available. In addition, long-term research is required to evaluate and develop advanced, possibly more expensive, countermeasures, in the eventuality that they may be required. The utilization of power plant CO{sub 2} and its recycling into fossil fuel substitutes by microalgae cultures could be one such long-term technology. Microalgae production is an expanding industry in the U.S., with threemore » commercial systems (of approximately 10 hectare each) producing nutriceuticals, specifically beta-carotene, extracted from Dunaliella, and Spirulina biomass. Microalgae are also used in wastewater treatment. Currently production costs are high, about $10,000/ton of algal biomass, almost two orders of magnitude higher than acceptable for greenhouse gas mitigation. This report reviews the current state-of-the-art, including algal cultivation and harvesting-processing, and outlines a technique for achieving very high productivities. Costs of CO{sub 2} mitigation with microalgae production of oils ({open_quotes}biodiesel{close_quotes}) are estimated and future R&D needs outlined.« less

  9. Carbon Capture and Sequestration- A Review

    NASA Astrophysics Data System (ADS)

    Sood, Akash; Vyas, Savita

    2017-08-01

    The Drastic increase of CO2 emission in the last 30 years is due to the combustion of fossil fuels and it causes a major change in the environment such as global warming. In India, the emission of fossil fuels is developed in the recent years. The alternate energy sources are not sufficient to meet the values of this emission reduction and the framework of climate change demands the emission reduction, the CCS technology can be used as a mitigation tool which evaluates the feasibility for implementation of this technology in India. CCS is a process to capture the carbon dioxide from large sources like fossil fuel station to avoid the entrance of CO2 in the atmosphere. IPCC accredited this technology and its path for mitigation for the developing countries. In this paper, we present the technologies of CCS with its development and external factors. The main goal of this process is to avoid the release the CO2 into the atmosphere and also investigates the sequestration and mitigation technologies of carbon.

  10. Raising Public Awareness: The Role of the Household Sector in Mitigating Climate Change

    PubMed Central

    Lin, Shis-Ping

    2015-01-01

    In addition to greenhouse gas emissions from the industrial, transportation and commercial sectors, emissions from the household sector also contribute to global warming. By examining residents of Taiwan (N = 236), this study aims to reveal the factors that influence households’ intention to purchase energy-efficient appliances. The assessment in this study is based on the theory of planned behavior (TPB), and perceived benefit or cost (BOC) is introduced as an independent variable in the proposed efficiency action toward climate change (ECC) model. According to structural equation modeling, most of the indicators presented a good fit to the corresponding ECC model constructs. The analysis indicated that BOC is a good complementary variable to the TPB, as the ECC model explained 61.9% of the variation in intention to purchase energy-efficient appliances, which was higher than that explained by the TPB (58.4%). This result indicates that the ECC model is superior to the TPB. Thus, the strategy of promoting energy-efficient appliances in the household sector should emphasize global warming and include the concept of BOC. PMID:26492262

  11. Solar Radiation Management and Olivine Dissolution Methods in Climate Engineering

    NASA Astrophysics Data System (ADS)

    Kone, S.

    2014-12-01

    An overview of solar radiation management and olivine dissolution methods allows to discuss, comparatively, the benefits and consequences of these two geoengineering techniques. The combination of those two techniques allows to concomitantly act on the two main agents intervening in global warming: solar radiation and carbon dioxide. The earth surface temperature increases due mainly to carbon dioxide (a greenhouse gas) that keeps the solar radiation and causes the global warming. Two complementary methods to mitigate climate change are overviewed: SRM method, which uses injected aerosols, aims to reduce the amount of the inbound solar radiation in atmosphere; and olivine dissolution in water, a key chemical reaction envisaged in climate engineering , aiming to reduce the amount of the carbon dioxide in extracting it from atmosphere. The SRM method works on scenarios of solar radiation decrease and the olivine dissolution method works as a carbon dioxide sequestration method. Olivine dissolution in water impacts negatively on the pH of rivers but positively in counteracting ocean acidification and in transporting the silica in ocean, which has benefits for diatom shell formation.

  12. Chemical engineering challenges and investment opportunities in sustainable energy.

    PubMed

    Heller, Adam

    2008-01-01

    The chemical and energy industries are transforming as they adjust to the new era of high-priced petroleum and severe global warming. As a result of the transformation, engineering challenges and investment opportunities abound. Rapid evolution and fast growth are expected in cathode and anode materials as well as polymeric electrolytes for vehicular batteries and in high-performance polymer-ceramic composites for wind turbines, fuel-efficient aircraft, and lighter and safer cars. Unique process-engineering opportunities exist in sand-oil, coal, and possibly also shale liquefaction to produce transportation fuel; and also in genetic engineering of photosynthesizing plants and other organisms for their processing into high-performance biodegradable polymers and high-value-added environmentally friendly chemicals. Also, research on the feasibility of mitigation of global warming through enhancement of CO(2) uptake by the southern oceans by fertilization with trace amounts of iron is progressing. Because chemical engineers are uniquely well trained in mathematical modeling of mass transport, flow, and mixing, and also in cost analysis, they are likely to join the oceanographers and marine biologists in this important endeavor.

  13. Raising Public Awareness: The Role of the Household Sector in Mitigating Climate Change.

    PubMed

    Lin, Shis-Ping

    2015-10-20

    In addition to greenhouse gas emissions from the industrial, transportation and commercial sectors, emissions from the household sector also contribute to global warming. By examining residents of Taiwan (N = 236), this study aims to reveal the factors that influence households' intention to purchase energy-efficient appliances. The assessment in this study is based on the theory of planned behavior (TPB), and perceived benefit or cost (BOC) is introduced as an independent variable in the proposed efficiency action toward climate change (ECC) model. According to structural equation modeling, most of the indicators presented a good fit to the corresponding ECC model constructs. The analysis indicated that BOC is a good complementary variable to the TPB, as the ECC model explained 61.9% of the variation in intention to purchase energy-efficient appliances, which was higher than that explained by the TPB (58.4%). This result indicates that the ECC model is superior to the TPB. Thus, the strategy of promoting energy-efficient appliances in the household sector should emphasize global warming and include the concept of BOC.

  14. An isoline separating relatively warm from relatively cool wintertime forest surface temperatures for the southeastern United States

    NASA Astrophysics Data System (ADS)

    Wickham, J.; Wade, T. G.; Riitters, K. H.

    2014-09-01

    Forest-oriented climate mitigation policies promote forestation as a means to increase uptake of atmospheric carbon to counteract global warming. Some have pointed out that a carbon-centric forest policy may be overstated because it discounts biophysical aspects of the influence of forests on climate. In extra-tropical regions, many climate models have shown that forests tend to be warmer than grasslands and croplands because forest albedos tend to be lower than non-forest albedos. A lower forest albedo results in higher absorption of solar radiation and increased sensible warming that is not offset by the cooling effects of carbon uptake in extra-tropical regions. However, comparison of forest warming potential in the context of climate models is based on a coarse classification system of tropical, temperate, and boreal. There is considerable variation in climate within the broad latitudinal zonation of tropical, temperate, and boreal, and the relationship between biophysical (albedo) and biogeochemical (carbon uptake) mechanisms may not be constant within these broad zones. We compared wintertime forest and non-forest surface temperatures for the southeastern United States and found that forest surface temperatures shifted from being warmer than non-forest surface temperatures north of approximately 36°N to cooler south of 36°N. Our results suggest that the biophysical aspects of forests' influence on climate reinforce the biogeochemical aspects of forests' influence on climate south of 36°N. South of 36°N, both biophysical and biogeochemical properties of forests appear to support forestation as a climate mitigation policy. We also provide some quantitative evidence that evergreen forests tend to have cooler wintertime surface temperatures than deciduous forests that may be attributable to greater evapotranspiration rates.

  15. Thai Youths and Global Warming: Media Information, Awareness, and Lifestyle Activities

    ERIC Educational Resources Information Center

    Chokriensukchai, Kanchana; Tamang, Ritendra

    2010-01-01

    This study examines the exposure of Thai youths to media information on global warming, the relationship between exposure to global warming information and awareness of global warming, and the relationship between that awareness and lifestyle activities that contribute to global warming. A focus group of eight Thai youths provided information that…

  16. Global Warming in Schools: An Inquiry about the Competing Conceptions of High School Social Studies and Science Curricula and Teachers

    NASA Astrophysics Data System (ADS)

    Meehan, Casey R.

    Despite the scientific consensus supporting the theory of anthropogenic (human-induced) global warming, whether global warming is a serious problem, whether human activity is the primary cause of it, and whether scientific consensus exists at all are controversial questions among the U.S. lay-public. The cultural theory of risk perception (Schwarz and Thompson, 1990) serves as the theoretical framework for this qualitative analysis in which I ask the question how do U.S. secondary school curricula and teachers deal with the disparity between the overwhelming scientific consensus and the lay-public's skepticism regarding global warming? I analyzed nine widely used social studies and science textbooks, eight sets of supplemental materials about global warming produced by a range of not-for-profit and governmental organizations, and interviewed fourteen high school teachers who had experience teaching formal lessons about global warming in their content area. Findings suggest: 1) the range of global warming content within social studies and science textbooks and supplemental curricula reflects the spectrum of conceptualizations found among members of the U.S. public; 2) global warming curricula communicate only a narrow range of strategies for dealing with global warming and its associated threats; and 3) social studies and science teachers report taking a range of stances about global warming in their classroom, but sometimes the stance they put forth to their students does not align with their personal beliefs about global warming. The findings pose a troubling conundrum. Some of the global warming curricula treat the cause of global warming--a question that is not scientifically controversial--as a question with multiple and competing "right" answers. At the same time, much of curricula position how we should address global warming--a question that is legitimately controversial--as a question with one correct answer despite there being many reasonable responses. Finally, I present the implications this conundrum has for teaching about global warming in a politically polarized atmosphere.

  17. Satellites reveal contrasting responses of regional climate to the widespread greening of Earth.

    PubMed

    Forzieri, Giovanni; Alkama, Ramdane; Miralles, Diego G; Cescatti, Alessandro

    2017-06-16

    Changes in vegetation cover associated with the observed greening may affect several biophysical processes, whose net effects on climate are unclear. We analyzed remotely sensed dynamics in leaf area index (LAI) and energy fluxes in order to explore the associated variation in local climate. We show that the increasing trend in LAI contributed to the warming of boreal zones through a reduction of surface albedo and to an evaporation-driven cooling in arid regions. The interplay between LAI and surface biophysics is amplified up to five times under extreme warm-dry and cold-wet years. Altogether, these signals reveal that the recent dynamics in global vegetation have had relevant biophysical impacts on the local climates and should be considered in the design of local mitigation and adaptation plans. Copyright © 2017, American Association for the Advancement of Science.

  18. Spatial-temporal changes in runoff and terrestrial ecosystem water retention under 1.5 and 2 °C warming scenarios across China

    NASA Astrophysics Data System (ADS)

    Zhai, Ran; Tao, Fulu; Xu, Zhihui

    2018-06-01

    The Paris Agreement set a long-term temperature goal of holding the global average temperature increase to below 2.0 °C above pre-industrial levels, pursuing efforts to limit this to 1.5 °C; it is therefore important to understand the impacts of climate change under 1.5 and 2.0 °C warming scenarios for climate adaptation and mitigation. Here, climate scenarios from four global circulation models (GCMs) for the baseline (2006-2015), 1.5, and 2.0 °C warming scenarios (2106-2115) were used to drive the validated Variable Infiltration Capacity (VIC) hydrological model to investigate the impacts of global warming on runoff and terrestrial ecosystem water retention (TEWR) across China at a spatial resolution of 0.5°. This study applied ensemble projections from multiple GCMs to provide more comprehensive and robust results. The trends in annual mean temperature, precipitation, runoff, and TEWR were analyzed at the grid and basin scale. Results showed that median change in runoff ranged from 3.61 to 13.86 %, 4.20 to 17.89 %, and median change in TEWR ranged from -0.45 to 6.71 and -3.48 to 4.40 % in the 10 main basins in China under 1.5 and 2.0 °C warming scenarios, respectively, across all four GCMs. The interannual variability of runoff increased notably in areas where it was projected to increase, and the interannual variability increased notably from the 1.5 to the 2.0 °C warming scenario. In contrast, TEWR would remain relatively stable, the median change in standard deviation (SD) of TEWR ranged from -10 to 10 % in about 90 % grids under 1.5 and 2.0 °C warming scenarios, across all four GCMs. Both low and high runoff would increase under the two warming scenarios in most areas across China, with high runoff increasing more. The risks of low and high runoff events would be higher under the 2.0 than under the 1.5 °C warming scenario in terms of both extent and intensity. Runoff was significantly positively correlated to precipitation, while increase in maximum temperature would generally cause runoff to decrease through increasing evapotranspiration. Likewise, precipitation also played a dominant role in affecting TEWR. Our results were supported by previous studies. However, there existed large uncertainties in climate scenarios from different GCMs, which led to large uncertainties in impact assessment. The differences among the four GCMs were larger than differences between the two warming scenarios. Our findings on the spatiotemporal patterns of climate impacts and their shifts from the 1.5 to the 2.0 °C warming scenario are useful for water resource management under different warming scenarios.

  19. Biomass production in experimental grasslands of different species richness during three years of climate warming

    NASA Astrophysics Data System (ADS)

    de Boeck, H. J.; Lemmens, C. M. H. M.; Zavalloni, C.; Gielen, B.; Malchair, S.; Carnol, M.; Merckx, R.; van den Berge, J.; Ceulemans, R.; Nijs, I.

    2008-04-01

    Here we report on the single and combined impacts of climate warming and species richness on the biomass production in experimental grassland communities. Projections of a future warmer climate have stimulated studies on the response of terrestrial ecosystems to this global change. Experiments have likewise addressed the importance of species numbers for ecosystem functioning. There is, however, little knowledge on the interplay between warming and species richness. During three years, we grew experimental plant communities containing one, three or nine grassland species in 12 sunlit, climate-controlled chambers in Wilrijk, Belgium. Half of these chambers were exposed to ambient air temperatures (unheated), while the other half were warmed by 3°C (heated). Equal amounts of water were added to heated and unheated communities, so that warming would imply drier soils if evapotranspiration was higher. Biomass production was decreased due to warming, both aboveground (-29%) and belowground (-25%), as negative impacts of increased heat and drought stress in summer prevailed. Complementarity effects, likely mostly through both increased aboveground spatial complementarity and facilitative effects of legumes, led to higher shoot and root biomass in multi-species communities, regardless of the induced warming. Surprisingly, warming suppressed productivity the most in 9-species communities, which may be attributed to negative impacts of intense interspecific competition for resources under conditions of high abiotic stress. Our results suggest that warming and the associated soil drying could reduce primary production in many temperate grasslands, and that this will not necessarily be mitigated by efforts to maintain or increase species richness.

  20. Climate change affects winter chill for temperate fruit and nut trees.

    PubMed

    Luedeling, Eike; Girvetz, Evan H; Semenov, Mikhail A; Brown, Patrick H

    2011-01-01

    Temperate fruit and nut trees require adequate winter chill to produce economically viable yields. Global warming has the potential to reduce available winter chill and greatly impact crop yields. We estimated winter chill for two past (1975 and 2000) and 18 future scenarios (mid and end 21st century; 3 Global Climate Models [GCMs]; 3 greenhouse gas emissions [GHG] scenarios). For 4,293 weather stations around the world and GCM projections, Safe Winter Chill (SWC), the amount of winter chill that is exceeded in 90% of all years, was estimated for all scenarios using the "Dynamic Model" and interpolated globally. We found that SWC ranged between 0 and about 170 Chill Portions (CP) for all climate scenarios, but that the global distribution varied across scenarios. Warm regions are likely to experience severe reductions in available winter chill, potentially threatening production there. In contrast, SWC in most temperate growing regions is likely to remain relatively unchanged, and cold regions may even see an increase in SWC. Climate change impacts on SWC differed quantitatively among GCMs and GHG scenarios, with the highest GHG leading to losses up to 40 CP in warm regions, compared to 20 CP for the lowest GHG. The extent of projected changes in winter chill in many major growing regions of fruits and nuts indicates that growers of these commodities will likely experience problems in the future. Mitigation of climate change through reductions in greenhouse gas emissions can help reduce the impacts, however, adaption to changes will have to occur. To better prepare for likely impacts of climate change, efforts should be undertaken to breed tree cultivars for lower chilling requirements, to develop tools to cope with insufficient winter chill, and to better understand the temperature responses of tree crops.

  1. Did 250 years of forest management in Europe cool the climate?

    NASA Astrophysics Data System (ADS)

    Naudts, Kim; Chen, Yiying; McGrath, Matthew; Ryder, James; Valade, Aude; Otto, Juliane; Luyssaert, Sebastiaan

    2016-04-01

    Over the past two centuries European forest has evolved from being an over-exploited source of timber to a sustainably managed provider of diverse ecosystem services. Although this transition is often perceived as exemplary in resources management, the loss of unmanaged forest, the progressive shift from traditional coppice forestry to the current production-oriented management and the massive conversion of broadleaved to coniferous species are typically overlooked when assessing the impact of land-use change on climate. Here we present a study that addressed this gap by: (1) developing and reparameterizing the ORCHIDEE land surface model to simulate the biogeochemical and biophysical effects of forest management, (2) reconstructing the land-use history of Europe, accounting for changes in forest management and land cover. The model was coupled to the atmospheric model LMDz in a factorial simulation experiment to attribute climate change to global anthropogenic greenhouse gas emission and European land-use change since 1750 (i.e., afforestation, wood extraction and species conversion). We find that, despite considerable afforestation, Europe's forests failed to realize a net removal of CO2 from the atmosphere due to wood extraction. Moreover, biophysical changes due to the conversion of deciduous forest into coniferous forest have offset mitigation through the carbon cycle. Thus, two and a half centuries of forest management in Europe did not mitigate climate warming (Naudts et al., 2016). Naudts, K., Chen, Y., McGrath, M.J., Ryder, J., Valade, A., Otto, J., Luyssaert, S, Europe's forest management did not mitigate climate warming, Science, Accepted.

  2. Climate Benefits of Potential Avoided Emissions from Forest Conversion Diminished by Albedo Warming: Comprehensive, Data-Driven Assessment for the US and Beyond

    NASA Astrophysics Data System (ADS)

    Williams, C. A.; Gu, H.; Jiao, T.

    2017-12-01

    Avoided deforestation is a leading pathway for climate change mitigation, featuring prominently in many country's Intended Nationally Determined Contributions, but its climate benefits remain contested, in part because of reports of large offsetting effects in some regions of the world. It is well known that avoiding forest to non-forest conversion prevents forest carbon release, and sustains forest carbon uptake, but also increases albedo thus diminishing the potency of this mitigation strategy. While the mechanisms are known, their relative importance and the resulting climate benefit remain unclear. This is in part due to a lack of quantitative assessments documenting geographic variation in rates of forest conversion, associated carbon emissions, resulting radiative forcing, and the magnitude of simultaneous albedo offsets. This study (i) quantifies the current rate of forest conversion and carbon release in the United States with Landsat remote sensing and a carbon assessment framework, and (ii) compares this to quantitative estimates of the radiative forcing from the corresponding albedo change. Albedo radiative forcing is assessed with a recently-generated, global atlas of land-cover-specific albedos derived from a fusion of MODIS and Landsat reflectances, combined with snow cover and solar radiation datasets. We document the degree to which albedo warming offsets carbon cooling from contemporary forest conversions taking place in different regions of the United States and identify the underlying drivers of spatial variability. We then extend this to other regions of the world where forests are under threat and where avoided deforestation is viewed as a primary tool for climate mitigation. Results shed light on the, at times contentious, debate about the efficacy of forest protection as a mitigation mechanism.

  3. Climate adaptation

    NASA Astrophysics Data System (ADS)

    Kinzig, Ann P.

    2015-03-01

    This paper is intended as a brief introduction to climate adaptation in a conference devoted otherwise to the physics of sustainable energy. Whereas mitigation involves measures to reduce the probability of a potential event, such as climate change, adaptation refers to actions that lessen the impact of climate change. Mitigation and adaptation differ in other ways as well. Adaptation does not necessarily have to be implemented immediately to be effective; it only needs to be in place before the threat arrives. Also, adaptation does not necessarily require global, coordinated action; many effective adaptation actions can be local. Some urban communities, because of land-use change and the urban heat-island effect, currently face changes similar to some expected under climate change, such as changes in water availability, heat-related morbidity, or changes in disease patterns. Concern over those impacts might motivate the implementation of measures that would also help in climate adaptation, despite skepticism among some policy makers about anthropogenic global warming. Studies of ancient civilizations in the southwestern US lends some insight into factors that may or may not be important to successful adaptation.

  4. Persistence of climate changes due to a range of greenhouse gases.

    PubMed

    Solomon, Susan; Daniel, John S; Sanford, Todd J; Murphy, Daniel M; Plattner, Gian-Kasper; Knutti, Reto; Friedlingstein, Pierre

    2010-10-26

    Emissions of a broad range of greenhouse gases of varying lifetimes contribute to global climate change. Carbon dioxide displays exceptional persistence that renders its warming nearly irreversible for more than 1,000 y. Here we show that the warming due to non-CO(2) greenhouse gases, although not irreversible, persists notably longer than the anthropogenic changes in the greenhouse gas concentrations themselves. We explore why the persistence of warming depends not just on the decay of a given greenhouse gas concentration but also on climate system behavior, particularly the timescales of heat transfer linked to the ocean. For carbon dioxide and methane, nonlinear optical absorption effects also play a smaller but significant role in prolonging the warming. In effect, dampening factors that slow temperature increase during periods of increasing concentration also slow the loss of energy from the Earth's climate system if radiative forcing is reduced. Approaches to climate change mitigation options through reduction of greenhouse gas or aerosol emissions therefore should not be expected to decrease climate change impacts as rapidly as the gas or aerosol lifetime, even for short-lived species; such actions can have their greatest effect if undertaken soon enough to avoid transfer of heat to the deep ocean.

  5. Integrated rice-duck farming mitigates the global warming potential in rice season.

    PubMed

    Xu, Guochun; Liu, Xin; Wang, Qiangsheng; Yu, Xichen; Hang, Yuhao

    2017-01-01

    Integrated rice-duck farming (IRDF), as a mode of ecological agriculture, is an important way to realize sustainable development of agriculture. A 2-year split-plot field experiment was performed to evaluate the effects of IRDF on methane (CH 4 ) and nitrous oxide (N 2 O) emissions and its ecological mechanism in rice season. This experiment was conducted with two rice farming systems (FS) of IRDF and conventional farming (CF) under four paddy-upland rotation systems (PUR): rice-fallow (RF), annual straw incorporating in rice-wheat rotation system (RWS), annual straw-based biogas residues incorporating in rice-wheat rotation system (RWB), and rice-green manure (RGM). During the rice growing seasons, IRDF decreased the CH 4 emission by 8.80-16.68%, while increased the N 2 O emission by 4.23-15.20%, when compared to CF. Given that CH 4 emission contributed to 85.83-96.22% of global warming potential (GWP), the strong reduction in CH 4 emission led to a significantly lower GWP of IRDF as compared to CF. The reason for this trend was because IRDF has significant effect on dissolved oxygen (DO) and soil redox potential (Eh), which were two pivotal factors for CH 4 and N 2 O emissions in this study. The IRDF not only mitigates the GWP, but also increases the rice yield by 0.76-2.43% compared to CF. Moreover, compared to RWS system, RF, RWB and RGM systems significantly reduced CH 4 emission by 50.17%, 44.89% and 39.51%, respectively, while increased N 2 O emission by 10.58%, 14.60% and 23.90%, respectively. And RWS system had the highest GWP. These findings suggest that mitigating GWP and improving rice yield could be simultaneously achieved by the IRDF, and employing suitable PUR would benefit for relieving greenhouse effect. Copyright © 2016 Elsevier B.V. All rights reserved.

  6. 40 CFR Table A-1 to Subpart A of... - Global Warming Potentials

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 22 2013-07-01 2013-07-01 false Global Warming Potentials A Table A-1... A-1 to Subpart A of Part 98—Global Warming Potentials Global Warming Potentials [100-Year Time Horizon] Name CAS No. Chemical formula Global warming potential(100 yr.) Carbon dioxide 124-38-9 CO2 1...

  7. 40 CFR Table A-1 to Subpart A of... - Global Warming Potentials

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 21 2014-07-01 2014-07-01 false Global Warming Potentials A Table A-1... A-1 to Subpart A of Part 98—Global Warming Potentials Global Warming Potentials [100-Year Time Horizon] Name CAS No. Chemical formula Global warming potential(100 yr.) Carbon dioxide 124-38-9 CO2 1...

  8. Personal efficacy, the information environment, and attitudes toward global warming and climate change in the United States.

    PubMed

    Kellstedt, Paul M; Zahran, Sammy; Vedlitz, Arnold

    2008-02-01

    Despite the growing scientific consensus about the risks of global warming and climate change, the mass media frequently portray the subject as one of great scientific controversy and debate. And yet previous studies of the mass public's subjective assessments of the risks of global warming and climate change have not sufficiently examined public informedness, public confidence in climate scientists, and the role of personal efficacy in affecting global warming outcomes. By examining the results of a survey on an original and representative sample of Americans, we find that these three forces-informedness, confidence in scientists, and personal efficacy-are related in interesting and unexpected ways, and exert significant influence on risk assessments of global warming and climate change. In particular, more informed respondents both feel less personally responsible for global warming, and also show less concern for global warming. We also find that confidence in scientists has unexpected effects: respondents with high confidence in scientists feel less responsible for global warming, and also show less concern for global warming. These results have substantial implications for the interaction between scientists and the public in general, and for the public discussion of global warming and climate change in particular.

  9. Military Implications of Global Warming.

    DTIC Science & Technology

    1999-05-20

    U.S. environmental issues also have important global implications. This paper analyzes current U.S. Policy as it pertains to global warming and climate...for military involvement to reduce global warming . Global warming and other environmental issues are important to the U.S. military. As the United

  10. A Review of Economic Factors Influencing Voluntary Carbon Disclosure in the Property Sector of Developing Economies

    NASA Astrophysics Data System (ADS)

    Kalu, J. U.; Aliagha, G. U.; Buang, A.

    2016-02-01

    Global warming has consequences on the environment and economy; this led to the establishment of United Nation Framework Convention on Climate Change (UNFCCC) and the Kyoto Protocol. These two agreements were to reduce greenhouse gases (GHG) emissions which are responsible for climate change and global warming. Developing countries under the protocol are not obligated to reduce or disclosure GHG emission, so their participation in the protocol is on voluntary mitigation bases. This study intends to examine economic factors that influence voluntary carbon disclosure in the property sub-sector of developing countries based on annual report of listed property companies in Malaysia. Signaling theory addresses the problem of information asymmetry in the society. Disclosure is an effective tool to overcome information imbalance among different market participants. The study hypothesizes that the economic factors that influence voluntary carbon information disclosure in developing countries are: [1] the company's size; this is because a large-sized company have more resources to cover the cost of reducing pollution. [2] The company's gearing status; where there is no sufficient information disclosure in a highly geared company will result to an increased agency cost. [3] Profitability; profits grants companies a pool of resources for mitigation activities and environmental reporting. Also, carbon disclosure acts as a means for achieving public confidence and legitimacy. [4] Liquidity: Companies that are highly liquid will disclosure more information to distinguish themselves from other companies that are less liquidity. This is correlated to environmental disclosure. [5] Financial slack affects companies’ ability to participate in green technology projects that enable a reduction in emission.

  11. Economic and Time-Sensitive Issues Surrounding CCS: A Policy Analysis.

    PubMed

    Maddali, Vijay; Tularam, Gurudeo Anand; Glynn, Patrick

    2015-08-04

    Are the existing global policies on combating global warming via the carbon capture and storage (CCS) method significant enough to curtail the temperature rise on time? We argue that it is already too late to have any reliance on CCS. The current status of CCS is that it is plagued by technical uncertainties, infrastructure, financial, and regulatory issues. The technology is far from maturity and, hence, commercialization. Simulations conducted in this work suggest that the relevance of CCS is completely defied if the annual emission growth rate is in excess of 2% between the years of 2015 and 2040. At such a growth rate, the annual emissions reduction between 2040 and 2100 will need to be in the vicinity of 5.5% by the year 2100. Considering an average annual emissions growth rate of 2.5% over the past decade, it seems unlikely that the emissions could be contained to a 2% growth level. CCS in its current shape and form is at odds with the economics of its implementation and the time in hand with which to play a significant role in a carbon mitigation strategy. There is an urgent need to rethink policies and strategies to combat global warming to at least some degree.

  12. Plasticity in thermal tolerance has limited potential to buffer ectotherms from global warming.

    PubMed

    Gunderson, Alex R; Stillman, Jonathon H

    2015-06-07

    Global warming is increasing the overheating risk for many organisms, though the potential for plasticity in thermal tolerance to mitigate this risk is largely unknown. In part, this shortcoming stems from a lack of knowledge about global and taxonomic patterns of variation in tolerance plasticity. To address this critical issue, we test leading hypotheses for broad-scale variation in ectotherm tolerance plasticity using a dataset that includes vertebrate and invertebrate taxa from terrestrial, freshwater and marine habitats. Contrary to expectation, plasticity in heat tolerance was unrelated to latitude or thermal seasonality. However, plasticity in cold tolerance is associated with thermal seasonality in some habitat types. In addition, aquatic taxa have approximately twice the plasticity of terrestrial taxa. Based on the observed patterns of variation in tolerance plasticity, we propose that limited potential for behavioural plasticity (i.e. behavioural thermoregulation) favours the evolution of greater plasticity in physiological traits, consistent with the 'Bogert effect'. Finally, we find that all ectotherms have relatively low acclimation in thermal tolerance and demonstrate that overheating risk will be minimally reduced by acclimation in even the most plastic groups. Our analysis indicates that behavioural and evolutionary mechanisms will be critical in allowing ectotherms to buffer themselves from extreme temperatures. © 2015 The Author(s) Published by the Royal Society. All rights reserved.

  13. Nitrogen oxides and methane treatment by non-thermal plasma

    NASA Astrophysics Data System (ADS)

    Alva, E.; Pacheco, M.; Colín, A.; Sánchez, V.; Pacheco, J.; Valdivia, R.; Soria, G.

    2015-03-01

    Non thermal plasma was used to treat nitrogen oxides (NOx) and methane (CH4), since they are important constituents of hydrocarbon combustion emissions processes and, both gases, play a key role in the formation of tropospheric ozone. These gases are involved in environmental problems like acid rain and some diseases such as bronchitis and pneumonia. In the case of methane is widely known its importance in the global climate change, and currently accounts for 30% of global warming. There is a growing concern for methane leaks, associated with a rapid expansion of unconventional oil and gas extraction techniques as well as a large-scale methane release from Arctic because of ice melting and the subsequent methane production of decaying organic matter. Therefore, methane mitigation is a key to avoid dangerous levels of global warming. The research, here reported, deals about the generation of non-thermal plasma with a double dielectric barrier (2DBD) at atmospheric pressure with alternating current (AC) for NOx and CH4 treatment. The degradation efficiencies and their respective power consumption for different reactor configurations (cylindrical and planar) are also reported. Qualitative and quantitative analysis of gases degradation are reported before and after treatment with cold plasma. Experimental and theoretical results are compared obtaining good removal efficiencies, superior to 90% and to 20% respectively for NOx and CH4.

  14. Plasticity in thermal tolerance has limited potential to buffer ectotherms from global warming

    PubMed Central

    Gunderson, Alex R.; Stillman, Jonathon H.

    2015-01-01

    Global warming is increasing the overheating risk for many organisms, though the potential for plasticity in thermal tolerance to mitigate this risk is largely unknown. In part, this shortcoming stems from a lack of knowledge about global and taxonomic patterns of variation in tolerance plasticity. To address this critical issue, we test leading hypotheses for broad-scale variation in ectotherm tolerance plasticity using a dataset that includes vertebrate and invertebrate taxa from terrestrial, freshwater and marine habitats. Contrary to expectation, plasticity in heat tolerance was unrelated to latitude or thermal seasonality. However, plasticity in cold tolerance is associated with thermal seasonality in some habitat types. In addition, aquatic taxa have approximately twice the plasticity of terrestrial taxa. Based on the observed patterns of variation in tolerance plasticity, we propose that limited potential for behavioural plasticity (i.e. behavioural thermoregulation) favours the evolution of greater plasticity in physiological traits, consistent with the ‘Bogert effect’. Finally, we find that all ectotherms have relatively low acclimation in thermal tolerance and demonstrate that overheating risk will be minimally reduced by acclimation in even the most plastic groups. Our analysis indicates that behavioural and evolutionary mechanisms will be critical in allowing ectotherms to buffer themselves from extreme temperatures. PMID:25994676

  15. Air pollution radiative forcing from specific emissions sectors at 2030

    NASA Astrophysics Data System (ADS)

    Unger, Nadine; Shindell, Drew T.; Koch, Dorothy M.; Streets, David G.

    2008-01-01

    Reduction of short-lived air pollutants can contribute to mitigate global warming in the near-term with ancillary benefits to human health. However, the radiative forcings of short-lived air pollutants depend on the location and source type of the precursor emissions. We apply the Goddard Institute for Space Studies atmospheric composition-climate model to quantify near-future (2030 A1B) global annual mean radiative forcing by ozone (O3) and sulfate from six emissions sectors in seven geographic regions. At 2030 the net forcings from O3, sulfate, black and organic carbon, and indirect CH4 effects for each emission sector are (in mWm-2) biomass burning, +95; domestic, +68; transportation, +67; industry, -131; and power, -224. Biomass burning emissions in East Asia and central and southern Africa, domestic biofuel emissions in East Asia, south Asia, and central and southern Africa, and transportation emissions in Europe and North America have large net positive forcings and are therefore attractive targets to counter global warming. Power and industry emissions from East Asia, south Asia, and north Africa and the Middle East have large net negative forcings. Therefore air quality control measures that affect these regional sectors require offsetting climate measures to avoid a warming impact. Linear relationships exist between O3 forcing and biomass burning and domestic biofuel CO precursor emissions independent of region with sensitivity of +0.2 mWm-2/TgCO. Similarly, linear relationships exist between sulfate forcing and SO2 precursor emissions that depend upon region but are independent of sector with sensitivities ranging from -3 to -12 mWm-2/TgS.

  16. Short Lived Climate Pollutants cause a Long Lived Effect on Sea-level Rise: Analyzing climate metrics for sea-level rise

    NASA Astrophysics Data System (ADS)

    Sterner, E.; Johansson, D. J.

    2013-12-01

    Climate change depends on the increase of several different atmospheric pollutants. While long term global warming will be determined mainly by carbon dioxide, warming in the next few decades will depend to a large extent on short lived climate pollutants (SLCP). Reducing emissions of SLCPs could contribute to lower the global mean surface temperature by 0.5 °C already by 2050 (Shindell et al. 2012). Furthermore, the warming effect of one of the most potent SLCPs, black carbon (BC), may have been underestimated in the past. Bond et al. (2013) presents a new best estimate of the total BC radiative forcing (RF) of 1.1 W/m2 (90 % uncertainty bounds of 0.17 to 2.1 W/m2) since the beginning of the industrial era. BC is however never emitted alone and cooling aerosols from the same sources offset a majority of this RF. In the wake of calls for mitigation of SLCPs it is important to study other aspects of the climate effect of SLCPs. One key impact of climate change is sea-level rise (SLR). In a recent study, the effect of SLCP mitigation scenarios on SLR is examined. Hu et al (2013) find a substantial effect on SLR from mitigating SLCPs sharply, reducing SLR by 22-42% by 2100. We choose a different approach focusing on emission pulses and analyse a metric based on sea level rise so as to further enlighten the SLR consequences of SLCPs. We want in particular to understand the time dynamics of SLR impacts caused by SLCPs compared to other greenhouse gases. The most commonly used physical based metrics are GWP and GTP. We propose and evaluate an additional metric: The global sea-level rise potential (GSP). The GSP is defined as the sea level rise after a time horizon caused by an emissions pulse of a forcer to the sea level rise after a time horizon caused by an emissions pulse of a CO2. GSP is evaluated and compared to GWP and GTP using a set of climate forcers chosen to cover the whole scale of atmospheric perturbation life times (BC, CH4, N2O, CO2 and SF6). The study utilizes an upwelling diffusion energy balance model and focuses on the thermosteric part of sea-level rise. Example GSP results are 244, 15 and 278 for BC, CH4 and N2O for a time horizon of 100 years. Compare GWP and GTP values of 405, 24 and 288 as well as 62, 4.5 and 252. The main result of the study is that no climate forcer is in any absolute sense short lived when it comes to Sea Level impacts. All of the examined climate forcers have considerable influence on the thermosteric SLR, and the closely linked ocean heat content, on the time scale of centuries. The reason for this is that heat, once it has been induced by the climate drivers and warmed the surface ocean, is transported down into the slowly mixing oceans. References: Shindell, D. et al. Simultaneously mitigating near-term climate change and improving human health and food security. Science 335, 183-189 (2012). Bond, T. C. et al. Bounding the role of black carbon in the climate system: A scientific assessment. Journal of Geophysical Research: Atmospheres 118 5380-5552 (2013). Hu, A., Xu, Y., Tebaldi, C., Washington, W. M. & Ramanathan, V. Mitigation of short-lived climate pollutants slows sea-level rise. Nature Climate Change 3, 730-734 (2013).

  17. Climate impact of beef: an analysis considering multiple time scales and production methods without use of global warming potentials

    NASA Astrophysics Data System (ADS)

    Pierrehumbert, R. T.; Eshel, G.

    2015-08-01

    An analysis of the climate impact of various forms of beef production is carried out, with a particular eye to the comparison between systems relying primarily on grasses grown in pasture (‘grass-fed’ or ‘pastured’ beef) and systems involving substantial use of manufactured feed requiring significant external inputs in the form of synthetic fertilizer and mechanized agriculture (‘feedlot’ beef). The climate impact is evaluated without employing metrics such as {{CO}}2{{e}} or global warming potentials. The analysis evaluates the impact at all time scales out to 1000 years. It is concluded that certain forms of pastured beef production have substantially lower climate impact than feedlot systems. However, pastured systems that require significant synthetic fertilization, inputs from supplemental feed, or deforestation to create pasture, have substantially greater climate impact at all time scales than the feedlot and dairy-associated systems analyzed. Even the best pastured system analyzed has enough climate impact to justify efforts to limit future growth of beef production, which in any event would be necessary if climate and other ecological concerns were met by a transition to primarily pasture-based systems. Alternate mitigation options are discussed, but barring unforseen technological breakthroughs worldwide consumption at current North American per capita rates appears incompatible with a 2 °C warming target.

  18. Investigating warming trends and spatial patterns of Land Surface Temperatures over the Greater Los Angeles Area using new MODIS and VIIRS LST products

    NASA Astrophysics Data System (ADS)

    Malakar, N. K.; Hulley, G. C.

    2016-12-01

    The Los Angeles (LA) metropolitan area is one of the fastest growing urban centers in the United States, and home to roughly 18 million people. Understanding the trends and impacts of warming temperatures in urban environments is an increasingly important issue in our changing climate. We used thermal infrared data from Moderate Resolution Imaging Spectroradiometer (MODIS), and Visible Infrared Imaging Radiometer Suite (VIIRS) sensors to retrieve Land Surface Temperature using a new Temperature Emissivity Separation algorithm adapted for these sensors. We analyzed day and night LST retrievals to study the warming trends of LST for the greater LA region from 2002-2015. The average warming trend over LA for summer days and nights over this period for MODIS Aqua data was 1.1 °C per decade, while a more rapid warming is observed for the years 2012-2016 for both MODIS and VIIRS observations. We have also found that inland LA regions are warming more rapidly than the other regions. We further investigate the underlying cause of the warming by looking into the physical factors such as changes in net radiation, cloud cover, and evapotranspiration. The results will help to understand how indicators of climate change are evolving in the beginning of the 21st century, and how they compare with global climate model projections. Identification of potential impacts, and underlying causes of warming trends in various LA regions will help decision makers to develop policies to help mitigate the effects of rising temperatures.

  19. Mitigation of methane emission from an old unlined landfill in Klintholm, Denmark using a passive biocover system.

    PubMed

    Scheutz, Charlotte; Pedersen, Rasmus Broe; Petersen, Per Haugsted; Jørgensen, Jørgen Henrik Bjerre; Ucendo, Inmaculada Maria Buendia; Mønster, Jacob G; Samuelsson, Jerker; Kjeldsen, Peter

    2014-07-01

    Methane generated at landfills contributes to global warming and can be mitigated by biocover systems relying on microbial methane oxidation. As part of a closure plan for an old unlined landfill without any gas management measures, an innovative biocover system was established. The system was designed based on a conceptual model of the gas emission patterns established through an initial baseline study. The study included construction of gas collection trenches along the slopes of the landfill where the majority of the methane emissions occurred. Local compost materials were tested as to their usefulness as bioactive methane oxidizing material and a suitable compost mixture was selected. Whole site methane emission quantifications based on combined tracer release and downwind measurements in combination with several local experimental activities (gas composition within biocover layers, flux chamber based emission measurements and logging of compost temperatures) proved that the biocover system had an average mitigation efficiency of approximately 80%. The study showed that the system also had a high efficiency during winter periods with temperatures below freezing. An economic analysis indicated that the mitigation costs of the biocover system were competitive to other existing greenhouse gas mitigation options. Copyright © 2014 Elsevier Ltd. All rights reserved.

  20. Impact of greenhouse gas metrics on the quantification of agricultural emissions and farm-scale mitigation strategies: a New Zealand case study

    NASA Astrophysics Data System (ADS)

    Reisinger, Andy; Ledgard, Stewart

    2013-06-01

    Agriculture emits a range of greenhouse gases. Greenhouse gas metrics allow emissions of different gases to be reported in a common unit called CO2-equivalent. This enables comparisons of the efficiency of different farms and production systems and of alternative mitigation strategies across all gases. The standard metric is the 100 year global warming potential (GWP), but alternative metrics have been proposed and could result in very different CO2-equivalent emissions, particularly for CH4. While significant effort has been made to reduce uncertainties in emissions estimates of individual gases, little effort has been spent on evaluating the implications of alternative metrics on overall agricultural emissions profiles and mitigation strategies. Here we assess, for a selection of New Zealand dairy farms, the effect of two alternative metrics (100 yr GWP and global temperature change potentials, GTP) on farm-scale emissions and apparent efficiency and cost effectiveness of alternative mitigation strategies. We find that alternative metrics significantly change the balance between CH4 and N2O; in some cases, alternative metrics even determine whether a specific management option would reduce or increase net farm-level emissions or emissions intensity. However, the relative ranking of different farms by profitability or emissions intensity, and the ranking of the most cost-effective mitigation options for each farm, are relatively unaffected by the metric. We conclude that alternative metrics would change the perceived significance of individual gases from agriculture and the overall cost to farmers if a price were applied to agricultural emissions, but the economically most effective response strategies are unaffected by the choice of metric.

  1. Don't shoot the messenger: re-framing climate policy to respond to evolving science (Invited)

    NASA Astrophysics Data System (ADS)

    Allen, M. R.; Otto, F. E.; Otto, A.; Rayner, S.

    2013-12-01

    Lack of progress in mitigation policy, as atmospheric CO2 concentrations climb apparently inexorably past 400ppm, is often blamed on a failure to 'communicate the climate change message' effectively. A small but increasing number of commentators is arguing that the problem is not communication, but the way in which climate policy choices are framed. In particular, the overt politicization of climate science, with so-called 'belief in climate change' being invoked as automatically implying support for a global carbon price or cap-and-trade regime, or even as an argument for voting for specific parties, makes it increasingly difficult to discuss policy options in the light of evolving science. At the heart of the problem is the interpretation of the 'precautionary principle', which is widely invoked in climate policy as a response to scientific uncertainty: policies, it is argued, should be designed to be robust to the range of possible future climates, or to deliver the ';best' possible probability-weighted outcome. The problem with this approach is that it very often makes policy contingent on worst-case scenarios - such as the risk of high climate sensitivity or rapid non-linear climate change - which are often the most uncertain aspects of climate science and hence subject to frequent revision. To be relevant to policies that are based on mitigating worst-case risks, the scientific community is also required to focus on establishing what these risks are, leaving it open, unjustly but understandably, to the accusation of alarmism. Focusing on worst-case scenarios can also give the impression that the mitigation problem is unachievable, and the only option is short-term adaptation followed by geo-engineering. One way of reducing the politicization of climate science is to make policy explicitly contingent on the climate response, such that a high (or low) rate of anthropogenic warming over the coming decades is automatically met with an aggressive (or moderate) mitigation effort. In the short term, such 'adaptive' policy responses take two forms: either investing in technologies to ensure they are available if and when aggressive mitigation is necessary; or devising policies that respond explicitly to climate change, such as a carbon tax linked to global temperature. Neither of these approaches has gained much traction in the mitigation debate because they are both seen as 'kicking the can down the road', or placing the burden of tough mitigation decisions on future politicians. We will propose that a climate policy that is explicitly contingent on the climate response should otherwise be as inflexible as possible. Ideally, the only unpredictable element of the policy should be the rate of warming attributable to rising greenhouse gas concentrations over the coming decades. Those affected by the policy should be able take a clean position on what that rate is likely to be, unaffected by speculation on what future politicians are likely to do. On this measure, relying on a carbon price or subsidizing technology development are both too flexible, however attractive they might be assuming perfectly rational implementation, because their impact depends as much or more on future decisions on taxes and subsidies as it does on future climate. We will describe a possible alternative, upstream mandatory sequestration (or 'SAFE carbon') explicitly linked to attributable warming, and discuss how it might be implemented.

  2. HCFC-142b emissions in China: An inventory for 2000 to 2050 basing on bottom-up and top-down methods

    NASA Astrophysics Data System (ADS)

    Han, Jiarui; Li, Li; Su, Shenshen; Hu, Jianxin; Wu, Jing; Wu, Yusheng; Fang, Xuekun

    2014-05-01

    1-Chloro-1,1-difluoroethane (HCFC-142b) is both ozone depleting substance included in the Montreal Protocol on Substances that Deplete the Ozone Layer (Montreal Protocol) and potent greenhouse gas with high global warming potential. As one of the major HCFC-142b consumption and production countries in the world, China's control action will contribute to both mitigating climate change and protecting ozone layer. Estimating China's HCFC-142b emission is a crucial step for understanding its emission status, drawing up phasing-out plan and evaluating mitigation effect. Both the bottom-up and top-down method were adopted in this research to estimate HCFC-142b emissions from China. Results basing on different methods were compared to test the effectiveness of two methods and validate inventory's reliability. Firstly, a national bottom-up emission inventory of HCFC-142b for China during 2000-2012 was established based on the 2006 IPCC Guidelines for National Greenhouse Gas Inventories and the Montreal Protocol, showing that in contrast to the downward trend revealed by existing results, HCFC-142b emissions kept increasing from 0.1 kt/yr in 2000 to the peak of 14.4 kt/yr in 2012. Meanwhile a top-down emission estimation was also developed using interspecies correlation method. By correlating atmospheric mixing ratio data of HCFC-142b and reference substance HCFC-22 sampled from four representative cities (Beijing, Hangzhou, Lanzhou and Guangzhou, for northern, eastern, western and southern China, respectively), China's HCFC-142b emission in 2012 was calculated. It was 16.24(13.90-18.58) kt, equivalent to 1.06 kt ODP and 37 Tg CO2-eq, taking up 9.78% (ODP) of total HCFCs emission in China or 30.5% of global HCFC-142b emission. This result was 12.7% higher than that in bottom-up inventory. Possible explanations were discussed. The consistency of two results lend credit to methods effectiveness and results reliability. Finally, future HCFC-142b emission was projected to 2050. Emission might experience a continuous increase from 14.9 kt/yr to 97.2 kt/yr under business-as-usual (BAU) scenario, while a 90% reduction would be obtained by fulfilling the Montreal Protocol, namely an accumulative mitigation of 1578 kt from 2013 to 2050, equal to 103 kt ODP, and 3504 Tg CO2 emissions. Therefore, China will contribute tremendously to the worldwide ozone protection and global warming mitigation by successfully phasing out HCFC-142b according to the Montreal Protocol schedule.

  3. A human-scale perspective on global warming: Zero emission year and personal quotas

    PubMed Central

    Rojas, Maisa; Mac Lean, Claudia

    2017-01-01

    This article builds on the premise that human consumption of goods, food and transport are the ultimate drivers of climate change. However, the nature of the climate change problem (well described as a tragedy of the commons) makes it difficult for individuals to recognise their personal duty to implement behavioural changes to reduce greenhouse gas emissions. Consequently, this article aims to analyse the climate change issue from a human-scale perspective, in which each of us has a clearly defined personal quota of CO2 emissions that limits our activity and there is a finite time during which CO2 emissions must be eliminated to achieve the “well below 2°C” warming limit set by the Paris Agreement of 2015 (COP21). Thus, this work’s primary contribution is to connect an equal per capita fairness approach to a global carbon budget, linking personal levels with planetary levels. Here, we show that a personal quota of 5.0 tons of CO2 yr-1 p-1 is a representative value for both past and future emissions; for this level of a constant per-capita emissions and without considering any mitigation, the global accumulated emissions compatible with the “well below 2°C” and 2°C targets will be exhausted by 2030 and 2050, respectively. These are references years that provide an order of magnitude of the time that is left to reverse the global warming trend. More realistic scenarios that consider a smooth transition toward a zero-emission world show that the global accumulated emissions compatible with the “well below 2°C” and 2°C targets will be exhausted by 2040 and 2080, respectively. Implications of this paper include a return to personal responsibility following equity principles among individuals, and a definition of boundaries to the personal emissions of CO2. PMID:28628676

  4. A human-scale perspective on global warming: Zero emission year and personal quotas.

    PubMed

    de la Fuente, Alberto; Rojas, Maisa; Mac Lean, Claudia

    2017-01-01

    This article builds on the premise that human consumption of goods, food and transport are the ultimate drivers of climate change. However, the nature of the climate change problem (well described as a tragedy of the commons) makes it difficult for individuals to recognise their personal duty to implement behavioural changes to reduce greenhouse gas emissions. Consequently, this article aims to analyse the climate change issue from a human-scale perspective, in which each of us has a clearly defined personal quota of CO2 emissions that limits our activity and there is a finite time during which CO2 emissions must be eliminated to achieve the "well below 2°C" warming limit set by the Paris Agreement of 2015 (COP21). Thus, this work's primary contribution is to connect an equal per capita fairness approach to a global carbon budget, linking personal levels with planetary levels. Here, we show that a personal quota of 5.0 tons of CO2 yr-1 p-1 is a representative value for both past and future emissions; for this level of a constant per-capita emissions and without considering any mitigation, the global accumulated emissions compatible with the "well below 2°C" and 2°C targets will be exhausted by 2030 and 2050, respectively. These are references years that provide an order of magnitude of the time that is left to reverse the global warming trend. More realistic scenarios that consider a smooth transition toward a zero-emission world show that the global accumulated emissions compatible with the "well below 2°C" and 2°C targets will be exhausted by 2040 and 2080, respectively. Implications of this paper include a return to personal responsibility following equity principles among individuals, and a definition of boundaries to the personal emissions of CO2.

  5. Mesocosms Reveal Ecological Surprises from Climate Change.

    PubMed

    Fordham, Damien A

    2015-12-01

    Understanding, predicting, and mitigating the impacts of climate change on biodiversity poses one of the most crucial challenges this century. Currently, we know more about how future climates are likely to shift across the globe than about how species will respond to these changes. Two recent studies show how mesocosm experiments can hasten understanding of the ecological consequences of climate change on species' extinction risk, community structure, and ecosystem functions. Using a large-scale terrestrial warming experiment, Bestion et al. provide the first direct evidence that future global warming can increase extinction risk for temperate ectotherms. Using aquatic mesocosms, Yvon-Durocher et al. show that human-induced climate change could, in some cases, actually enhance the diversity of local communities, increasing productivity. Blending these theoretical and empirical results with computational models will improve forecasts of biodiversity loss and altered ecosystem processes due to climate change.

  6. Receptive Audiences for Climate Change Education: Understanding Attitudes and Barriers

    NASA Astrophysics Data System (ADS)

    Kelly, L. D.; Luebke, J. F.; Clayton, S.; Saunders, C. D.; Matiasek, J.; Grajal, A.

    2012-12-01

    Much effort has been devoted to finding ways to explain climate change to uninterested audiences and encourage mitigation behaviors among dismissive audiences. Most approaches have focused on conveying information about climate change processes or threats. Here we report the results of a national survey designed to characterize the readiness of zoo and aquarium visitors to engage with the issue of climate change. Two survey forms, one focused primarily on attitudes (N=3,594) and another on behaviors (N=3,588), were administered concurrently in summer 2011 at 15 Association of Zoos and Aquariums accredited institutions. The attitudes survey used Global Warming's Six Americas segmentation protocols (climatechangecommunication.org) to compare climate change attitudes of zoo and aquarium visitors with the American public (Leiserowitz et al., 2011). Our results reveal that visitors are receptive audiences for climate change education and want to do more to address climate change. Even these favorable audiences, however, perceive barriers to engaging in the issue, signifying the importance of meeting the learning needs of those who acknowledge anthropogenic climate change, and not only of climate change 'deniers.' While 39% of the general public is 'concerned' or 'alarmed' about global warming, 64% of zoo and aquarium visitors fall into these two "Six Americas" segments. Visitors also differ from the national sample in key attitudinal characteristics related to global warming. For example, nearly two-thirds believe human actions are related to global warming, versus less than one-half of the general public; and approximately 60% think global warming will harm them personally, moderately or a great deal, versus less than 30% of the general public. Moreover, 69% of visitors would like to do more to address climate change. Despite zoo and aquarium visitors' awareness of climate change and motivation to address it, survey results indicate they experience barriers to engagement including (1) pessimism—50% of visitors are uncertain whether people will do what is needed to address global warming, and 30% think it is unlikely; (2) low self-efficacy—almost one-half of visitors believe they can personally have little to no impact on addressing climate change; and (3) perceived obstacles—when asked what is standing in their way of doing more to address climate change, over 90% of visitors reported at least one obstacle. The most frequently selected obstacles were lack of knowledge about which actions would be effective and concern about the cost of actions. Nevertheless, zoo visitors are slightly more optimistic about humans' capability to reduce global warming than the general public. Importantly, results also indicate that visitors' concern about climate change and participation in behaviors to address it vary with their sense of connection with animals and nature. Thus, this study offers guidance for the development of educational resources that meet visitors' needs while building on their emotional connections with animals. Our data suggest these resources will be more effective if they support social interactions that reinforce a person's inclination to address climate change, demonstrate the collective impact of individual actions, and aid informed decision-making about effective actions to address climate change.

  7. Impact of agronomy practices on the effects of reduced tillage systems on CH4 and N2O emissions from agricultural fields: A global meta-analysis

    PubMed Central

    Zhou, Xiyue; Xu, Chunchun; Ji, Long; Chen, Zhongdu

    2018-01-01

    The effect of no- and reduced tillage (NT/RT) on greenhouse gas (GHG) emission was highly variable and may depend on other agronomy practices. However, how the other practices affect the effect of NT/RT on GHG emission remains elusive. Therefore, we conducted a global meta-analysis (including 49 papers with 196 comparisons) to assess the effect of five options (i.e. cropping system, crop residue management, split application of N fertilizer, irrigation, and tillage duration) on the effect of NT/RT on CH4 and N2O emissions from agricultural fields. The results showed that NT/RT significantly mitigated the overall global warming potential (GWP) of CH4 and N2O emissions by 6.6% as compared with conventional tillage (CT). Rotation cropping systems and crop straw remove facilitated no-tillage (NT) to reduce the CH4, N2O, or overall GWP both in upland and paddy field. NT significantly mitigated the overall GWP when the percentage of basal N fertilizer (PBN) >50%, when tillage duration > 10 years or rainfed in upland, while when PBN <50%, when duration between 5 and 10 years, or with continuous flooding in paddy field. RT significantly reduced the overall GWP under single crop monoculture system in upland. These results suggested that assessing the effectiveness of NT/RT on the mitigation of GHG emission should consider the interaction of NT/RT with other agronomy practices and land use type. PMID:29782525

  8. Impact of agronomy practices on the effects of reduced tillage systems on CH4 and N2O emissions from agricultural fields: A global meta-analysis.

    PubMed

    Feng, Jinfei; Li, Fengbo; Zhou, Xiyue; Xu, Chunchun; Ji, Long; Chen, Zhongdu; Fang, Fuping

    2018-01-01

    The effect of no- and reduced tillage (NT/RT) on greenhouse gas (GHG) emission was highly variable and may depend on other agronomy practices. However, how the other practices affect the effect of NT/RT on GHG emission remains elusive. Therefore, we conducted a global meta-analysis (including 49 papers with 196 comparisons) to assess the effect of five options (i.e. cropping system, crop residue management, split application of N fertilizer, irrigation, and tillage duration) on the effect of NT/RT on CH4 and N2O emissions from agricultural fields. The results showed that NT/RT significantly mitigated the overall global warming potential (GWP) of CH4 and N2O emissions by 6.6% as compared with conventional tillage (CT). Rotation cropping systems and crop straw remove facilitated no-tillage (NT) to reduce the CH4, N2O, or overall GWP both in upland and paddy field. NT significantly mitigated the overall GWP when the percentage of basal N fertilizer (PBN) >50%, when tillage duration > 10 years or rainfed in upland, while when PBN <50%, when duration between 5 and 10 years, or with continuous flooding in paddy field. RT significantly reduced the overall GWP under single crop monoculture system in upland. These results suggested that assessing the effectiveness of NT/RT on the mitigation of GHG emission should consider the interaction of NT/RT with other agronomy practices and land use type.

  9. Impacts of Low-Flow and Stream-Temperature Changes on Endangered Atlantic Salmon - Current Research

    USGS Publications Warehouse

    Dudley, Robert W.; Hodgkins, Glenn A.; Letcher, Benjamin H.

    2008-01-01

    Recent climate studies in New England and the northeastern United States have shown evidence of physical changes over time, including trends toward earlier snowmelt runoff, decreasing river ice, and increasing spring water temperatures. A U.S. Geological Survey (USGS) study funded by the National Global Warming and Wildlife Science Center will be investigating changes in summer low streamflows and stream temperatures and the potential effects of those changes on endangered Atlantic salmon populations. The study also will evaluate management options that would be most likely to mitigate the effects of any changes in streamflow and temperature.

  10. [Progress of research in relation to the impact of climate change on children's health status].

    PubMed

    Gao, J H; Li, L P; Wang, J; Liu, X B; Wu, H X; Li, J; Li, J; Liu, Q Y

    2017-06-10

    Along with global warming, climate change has become one of the biggest public health challenges. The unique metabolism, behavior, physiology and development in children, will make them suffer more from the climate change. In the present review, we summarized the progress and situation of studies on the associations between climate change and children's health also trying to provide adaptation and mitigation strategies. The purpose of this study was to offer scientific evidence for prevention and control on the adverse effects as injuries, diseases and deaths among children that resulted from the changes of climate.

  11. Global Warming: Its Implications for U.S. National Security Policy

    DTIC Science & Technology

    2009-03-19

    The approach to this topic will be to look at the science behind anthropogenic global warming . Is man largely responsible for causing global warming due...paper will then investigate the nexus between global warming and U.S. national security policy. It will address the challenges facing U.S. leaders and...policy makers as they tackle the issue of global warming and its implications for U.S. policy. Finally it will conclude with recommendations for those

  12. 78 FR 20632 - Mandatory Reporting of Greenhouse Gases: Notice of Data Availability Regarding Global Warming...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-04-05

    ... Greenhouse Gases: Notice of Data Availability Regarding Global Warming Potential Values for Certain... the availability of estimated global warming potentials, as well as data and analysis submitted in... global warming potentials and the data and analysis supporting them. We are also requesting comment on...

  13. Harvesting river water through small dams promote positive environmental impact.

    PubMed

    Agoramoorthy, Govindasamy; Chaudhary, Sunita; Chinnasamy, Pennan; Hsu, Minna J

    2016-11-01

    While deliberations relating to negative consequences of large dams on the environment continue to dominate world attention, positive benefits provided by small dams, also known as check dams, go unobserved. Besides, little is known about the potential of check dams in mitigating global warming impacts due to less data availability. Small dams are usually commissioned to private contractors who do not have clear mandate from their employers to post their work online for public scrutiny. As a result, statistics on the design, cost, and materials used to build check dams are not available in public domain. However, this review paper presents data for the first time on the often ignored potential of check dams mitigating climate-induced hydrological threats. We hope that the scientific analysis presented in this paper will promote further research on check dams worldwide to better comprehend their eco-friendly significance serving society.

  14. Sound management may sequester methane in grazed rangeland ecosystems

    PubMed Central

    Wang, Chengjie; Han, Guodong; Wang, Shiping; Zhai, Xiajie; Brown, Joel; Havstad, Kris M.; Ma, Xiuzhi; Wilkes, Andreas; Zhao, Mengli; Tang, Shiming; Zhou, Pei; Jiang, Yuanyuan; Lu, Tingting; Wang, Zhongwu; Li, Zhiguo

    2014-01-01

    Considering their contribution to global warming, the sources and sinks of methane (CH4) should be accounted when undertaking a greenhouse gas inventory for grazed rangeland ecosystems. The aim of this study was to evaluate the mitigation potential of current ecological management programs implemented in the main rangeland regions of China. The influences of rangeland improvement, utilization and livestock production on CH4 flux/emission were assessed to estimate CH4 reduction potential. Results indicate that the grazed rangeland ecosystem is currently a net source of atmospheric CH4. However, there is potential to convert the ecosystem to a net sink by improving management practices. Previous assessments of capacity for CH4 uptake in grazed rangeland ecosystems have not considered improved livestock management practices and thus underestimated potential for CH4 uptake. Optimal fertilization, rest and light grazing, and intensification of livestock management contribute mitigation potential significantly. PMID:24658176

  15. Mitigating the Impacts of Climate Nonstationarity on Seasonal Streamflow Predictability in the U.S. Southwest

    NASA Astrophysics Data System (ADS)

    Lehner, Flavio; Wood, Andrew W.; Llewellyn, Dagmar; Blatchford, Douglas B.; Goodbody, Angus G.; Pappenberger, Florian

    2017-12-01

    Seasonal streamflow predictions provide a critical management tool for water managers in the American Southwest. In recent decades, persistent prediction errors for spring and summer runoff volumes have been observed in a number of watersheds in the American Southwest. While mostly driven by decadal precipitation trends, these errors also relate to the influence of increasing temperature on streamflow in these basins. Here we show that incorporating seasonal temperature forecasts from operational global climate prediction models into streamflow forecasting models adds prediction skill for watersheds in the headwaters of the Colorado and Rio Grande River basins. Current dynamical seasonal temperature forecasts now show sufficient skill to reduce streamflow forecast errors in snowmelt-driven regions. Such predictions can increase the resilience of streamflow forecasting and water management systems in the face of continuing warming as well as decadal-scale temperature variability and thus help to mitigate the impacts of climate nonstationarity on streamflow predictability.

  16. Sound management may sequester methane in grazed rangeland ecosystems.

    PubMed

    Wang, Chengjie; Han, Guodong; Wang, Shiping; Zhai, Xiajie; Brown, Joel; Havstad, Kris M; Ma, Xiuzhi; Wilkes, Andreas; Zhao, Mengli; Tang, Shiming; Zhou, Pei; Jiang, Yuanyuan; Lu, Tingting; Wang, Zhongwu; Li, Zhiguo

    2014-03-24

    Considering their contribution to global warming, the sources and sinks of methane (CH4) should be accounted when undertaking a greenhouse gas inventory for grazed rangeland ecosystems. The aim of this study was to evaluate the mitigation potential of current ecological management programs implemented in the main rangeland regions of China. The influences of rangeland improvement, utilization and livestock production on CH4 flux/emission were assessed to estimate CH4 reduction potential. Results indicate that the grazed rangeland ecosystem is currently a net source of atmospheric CH4. However, there is potential to convert the ecosystem to a net sink by improving management practices. Previous assessments of capacity for CH4 uptake in grazed rangeland ecosystems have not considered improved livestock management practices and thus underestimated potential for CH4 uptake. Optimal fertilization, rest and light grazing, and intensification of livestock management contribute mitigation potential significantly.

  17. The contribution of transport policies to the mitigation potential and cost of 2 °C and 1.5 °C goals

    NASA Astrophysics Data System (ADS)

    Zhang, Runsen; Fujimori, Shinichiro; Hanaoka, Tatsuya

    2018-05-01

    The transport sector contributes around a quarter of global CO2 emissions; thus, low-carbon transport policies are required to achieve the 2 °C and 1.5 °C targets. In this paper, representative transport policy scenarios are structured with the aim of achieving a better understanding of the interaction between the transport sector and the macroeconomy. To accomplish this, the Asia–Pacific Integrated Model/Transport (AIM/Transport) model, coupled with a computable general equilibrium model (AIM/CGE), is used to simulate the potential for different transport policy interventions to reduce emissions and cost over the period 2005–2100. The results show that deep decarbonization in the transport sector can be achieved by implementing transport policies such as energy efficiency improvements, vehicle technology innovations particularly the deployment of electric vehicles, public transport developments, and increasing the car occupancy rate. Technological transformations such as vehicle technological innovations and energy efficiency improvements provide the most significant reduction potential. The key finding is that low-carbon transport policies can reduce the carbon price, gross domestic product loss rate, and welfare loss rate generated by climate mitigation policies to limit global warming to 2 °C and 1.5 °C. Interestingly, the contribution of transport policies is more effective for stringent climate change targets in the 1.5 °C scenario, which implies that the stronger the mitigation intensity, the more transport specific policy is required. The transport sector requires attention to achieve the goal of stringent climate change mitigation.

  18. Communicating the Urgency of Climate Change to Local Government Policy Makers

    NASA Astrophysics Data System (ADS)

    Young, A.

    2004-12-01

    What are the challenges and obstacles in conveying scientific research and uncertainties about climate change to local government policy makers? What information do scientists need from local government practitioners to guide research efforts into producing more relevant information for the local government audience? What works and what doesn't in terms of communicating climate change science to non-technical audiences? Based on over a decade of experience working with local governments around the world on greenhouse gas mitigation, ICLEI - Local Governments for Sustainability has developed a unique perspective and valuable insight into effective communication on climate science that motivates policy action. In the United States practical actions necessary to mitigate global climate change occur largely at the local level. As the level of government closest to individual energy consumers, local governments play a large role in determining the energy intensity of communities. How can local governments be persuaded to make greenhouse gas mitigation a policy priority over the long-term? Access to relevant information is critical to achieving that commitment. Information that will persuade local officials to pursue climate protection commitments includes specific impacts of global warming to communities, the costs of adaptation versus mitigation, and the potential benefits of implementing greenhouse gas-reducing initiatives. The manner in which information is conveyed is also critically important. The scientific community is loath to advocate for specific policies, or to make determinate statements on topics for which research is ongoing. These communication hurdles can be overcome if the needs of local policy practitioners can be understood by the scientific community, and research goals can be cooperatively defined.

  19. Experimental fire increases soil carbon dioxide efflux in a grassland long-term multifactor global change experiment.

    PubMed

    Strong, Aaron L; Johnson, Tera P; Chiariello, Nona R; Field, Christopher B

    2017-05-01

    Numerous studies have demonstrated that soil respiration rates increase under experimental warming, although the long-term, multiyear dynamics of this feedback are not well constrained. Less is known about the effects of single, punctuated events in combination with other longer-duration anthropogenic influences on the dynamics of soil carbon (C) loss. In 2012 and 2013, we assessed the effects of decadal-scale anthropogenic global change - warming, increased nitrogen (N) deposition, elevated carbon dioxide (CO 2 ), and increased precipitation - on soil respiration rates in an annual-dominated Mediterranean grassland. We also investigated how controlled fire and an artificial wet-up event, in combination with exposure to the longer-duration anthropogenic global change factors, influenced the dynamics of C cycling in this system. Decade-duration surface soil warming (1-2 °C) had no effect on soil respiration rates, while +N addition and elevated CO 2 concentrations increased growing-season soil CO 2 efflux rates by increasing annual aboveground net primary production (NPP) and belowground fine root production, respectively. Low-intensity experimental fire significantly elevated soil CO 2 efflux rates in the next growing season. Based on mixed-effects modeling and structural equation modeling, low-intensity fire increased growing-season soil respiration rates through a combination of three mechanisms: large increases in soil temperature (3-5 °C), significant increases in fine root production, and elevated aboveground NPP. Our study shows that in ecosystems where soil respiration has acclimated to moderate warming, further increases in soil temperature can stimulate greater soil CO 2 efflux. We also demonstrate that punctuated short-duration events such as fire can influence soil C dynamics with implications for both the parameterization of earth system models (ESMs) and the implementation of climate change mitigation policies that involve land-sector C accounting. © 2016 John Wiley & Sons Ltd.

  20. Communicating the Science of Global Warming — the Role of Astronomers

    NASA Astrophysics Data System (ADS)

    Bennett, Jeffrey

    2018-06-01

    Global Warming is one of the most important and issues of our times, yet it is widely misunderstood among the general public (and politicians!). The American Astronomical Society has already joined many other scientific organizations in advocating for action on global warming (by supporting the AGU statement on global warming), but we as astronomers can do much more. The high public profile of astronomy gives us a unique platform — and credibility as scientists — for doing our part to educate the public about the underlying science of global warming. And while astronomers are not climate scientists, we use the same basic physics, and many aspects of global warming science come directly from astronomy, including the ways in which we measure the heat-absorbing potential of carbon dioxide and the hard evidence of greenhouse warming provided by studies of Venus. In this session, I will briefly introduce a few methods for communicating about global warming that I believe you will find effective in your own education efforts.

  1. Crop yield changes induced by emissions of individual climate-altering pollutants

    NASA Astrophysics Data System (ADS)

    Shindell, Drew T.

    2016-08-01

    Climate change damages agriculture, causing deteriorating food security and increased malnutrition. Many studies have examined the role of distinct physical processes, but impacts have not been previously attributed to individual pollutants. Using a simple model incorporating process-level results from detailed models, here I show that although carbon dioxide (CO2) is the largest driver of climate change, other drivers appear to dominate agricultural yield changes. I calculate that anthropogenic emissions to date have decreased global agricultural yields by 9.5 ± 3.0%, with roughly 93% stemming from non-CO2 emissions, including methane (-5.2 ± 1.7%) and halocarbons (-1.4 ± 0.4%). The differing impacts stem from atmospheric composition responses: CO2 fertilizes crops, offsetting much of the loss induced by warming; halocarbons do not fertilize; methane leads to minimal fertilization but increases surface ozone which augments warming-induced losses. By the end of the century, strong CO2 mitigation improves agricultural yields by ˜3 ± 5%. In contrast, strong methane and hydrofluorocarbon mitigation improve yields by ˜16 ± 5% and ˜5 ± 4%, respectively. These are the first quantitative analyses to include climate, CO2 and ozone simultaneously, and hence, additional studies would be valuable. Nonetheless, as policy makers have leverage over pollutant emissions rather than isolated processes, the perspective presented here may be more useful for decision making than that in the prior work upon which this study builds. The results suggest that policies should target a broad portfolio of pollutant emissions in order to optimize mitigation of societal damages.

  2. Climate, Health, Agricultural and Economic Impacts of Tighter Vehicle-Emission Standards

    NASA Technical Reports Server (NTRS)

    Shindell, Drew; Faluvegi, Greg; Walsh, Michael; Anenberg, Susan C.; VanDingen, Rita; Muller, Nicholas Z.; Austin, Jeff; Koch, Dorothy; Milly, George

    2011-01-01

    Non-CO2 air pollutants from motor vehicles have traditionally been controlled to protect air quality and health, but also affect climate. We use global composition climate modelling to examine the integrated impacts of adopting stringent European on-road vehicle-emission standards for these pollutants in 2015 in many developing countries. Relative to no extra controls, the tight standards lead to annual benefits in 2030 and beyond of 120,000-280,000 avoided premature air pollution-related deaths, 6.1-19.7 million metric tons of avoided ozone-related yield losses of major food crops, $US0.6-2.4 trillion avoided health damage and $US1.1-4.3 billion avoided agricultural damage, and mitigation of 0.20 (+0.14/-0.17) C of Northern Hemisphere extratropical warming during 2040-2070. Tighter vehicle-emission standards are thus extremely likely to mitigate short-term climate change in most cases, in addition to providing large improvements in human health and food security. These standards will not reduce CO2 emissions, however, which is required to mitigate long-term climate change.

  3. Quantification of physical and economic impacts of climate change on public infrastructure in Alaska and benefits of global greenhouse gas mitigation

    NASA Astrophysics Data System (ADS)

    Melvin, A. M.; Larsen, P.; Boehlert, B.; Martinich, J.; Neumann, J.; Chinowsky, P.; Schweikert, A.; Strzepek, K.

    2015-12-01

    Climate change poses many risks and challenges for the Arctic and sub-Arctic, including threats to infrastructure. The safety and stability of infrastructure in this region can be impacted by many factors including increased thawing of permafrost soils, reduced coastline protection due to declining arctic sea ice, and changes in inland flooding. The U.S. Environmental Protection Agency (EPA) is coordinating an effort to quantify physical and economic impacts of climate change on public infrastructure across the state of Alaska and estimate how global greenhouse gas (GHG) mitigation may avoid or reduce these impacts. This research builds on the Climate Change Impacts and Risk Analysis (CIRA) project developed for the contiguous U.S., which is described in an EPA report released in June 2015. We are using a multi-model analysis focused primarily on the impacts of changing permafrost, coastal erosion, and inland flooding on a range of infrastructure types, including transportation (e.g. roads, airports), buildings and harbors, energy sources and transmission, sewer and water systems, and others. This analysis considers multiple global GHG emission scenarios ranging from a business as usual future to significant global action. These scenarios drive climate projections through 2100 spanning a range of outcomes to capture variability amongst climate models. Projections are being combined with a recently developed public infrastructure database and integrated into a version of the Infrastructure Planning Support System (IPSS) we are modifying for use in the Arctic and sub-Arctic region. The IPSS tool allows for consideration of both adaptation and reactive responses to climate change. Results of this work will address a gap in our understanding of climate change impacts in Alaska, provide estimates of the physical and economic damages we may expect with and without global GHG mitigation, and produce important insights about infrastructure vulnerabilities in response to warming at northern latitudes.

  4. Food waste conversion options in Singapore: environmental impacts based on an LCA perspective.

    PubMed

    Khoo, Hsien H; Lim, Teik Z; Tan, Reginald B H

    2010-02-15

    Proper management and recycling of huge volumes of food waste is one of the challenges faced by Singapore. Semakau island - the only offshore landfill of the nation - only accepts inert, inorganic solid waste and therefore a large bulk of food waste is directed to incinerators. A remaining small percent is sent for recycling via anaerobic digestion (AD), followed by composting of the digestate material. This article investigates the environmental performance of four food waste conversion scenarios - based on a life cycle assessment perspective - taking into account air emissions, useful energy from the incinerators and AD process, as well as carbon dioxide mitigation from the compost products derived from the digestate material and a proposed aerobic composting system. The life cycle impact results were generated for global warming, acidification, eutrophication, photochemical oxidation and energy use. The total normalized results showed that a small-scale proposed aerobic composting system is more environmentally favorable than incinerators, but less ideal compared to the AD process. By making full use of the AD's Recycling Phase II process alone, the Singapore Green Plan's 2012 aim to increase the recycling of food waste to 30% can easily be achieved, along with reduced global warming impacts.

  5. Protection and consolidation of stone heritage by self-inoculation with indigenous carbonatogenic bacterial communities.

    PubMed

    Jroundi, Fadwa; Schiro, Mara; Ruiz-Agudo, Encarnación; Elert, Kerstin; Martín-Sánchez, Inés; González-Muñoz, María Teresa; Rodriguez-Navarro, Carlos

    2017-08-17

    Enhanced salt weathering resulting from global warming and increasing environmental pollution is endangering the survival of stone monuments and artworks. To mitigate the effects of these deleterious processes, numerous conservation treatments have been applied that, however, show limited efficacy. Here we present a novel, environmentally friendly, bacterial self-inoculation approach for the conservation of stone, based on the isolation of an indigenous community of carbonatogenic bacteria from salt damaged stone, followed by their culture and re-application back onto the same stone. This method results in an effective consolidation and protection due to the formation of an abundant and exceptionally strong hybrid cement consisting of nanostructured bacterial CaCO 3 and bacterially derived organics, and the passivating effect of bacterial exopolymeric substances (EPS) covering the substrate. The fact that the isolated and identified bacterial community is common to many stone artworks may enable worldwide application of this novel conservation methodology.Salt weathering enhanced by global warming and environmental pollution is increasingly threatening stone monuments and artworks. Here, the authors present a bacterial self-inoculation approach with indigenous carbonatogenic bacteria and find that this technique consolidates and protects salt damaged stone.

  6. Efficient 1.6 Micron Laser Source for Methane DIAL

    NASA Technical Reports Server (NTRS)

    Shuman, Timothy; Burnham, Ralph; Nehrir, Amin R.; Ismail, Syed; Hair, Johnathan W.

    2013-01-01

    Methane is a potent greenhouse gas and on a per molecule basis has a warming influence 72 times that of carbon dioxide over a 20 year horizon. Therefore, it is important to look at near term radiative effects due to methane to develop mitigation strategies to counteract global warming trends via ground and airborne based measurements systems. These systems require the development of a time-resolved DIAL capability using a narrow-line laser source allowing observation of atmospheric methane on local, regional and global scales. In this work, a demonstrated and efficient nonlinear conversion scheme meeting the performance requirements of a deployable methane DIAL system is presented. By combining a single frequency 1064 nm pump source and a seeded KTP OPO more than 5 mJ of 1.6 µm pulse energy is generated with conversion efficiencies in excess of 20%. Even without active cavity control instrument limited linewidths (50 pm) were achieved with an estimated spectral purity of 95%. Tunable operation over 400 pm (limited by the tuning range of the seed laser) was also demonstrated. This source demonstrated the critical needs for a methane DIAL system motivating additional development of the technology.

  7. The effects of rape residue mulching on net global warming potential and greenhouse gas intensity from no-tillage paddy fields.

    PubMed

    Zhang, Zhi-Sheng; Cao, Cou-Gui; Guo, Li-Jin; Li, Cheng-Fang

    2014-01-01

    A field experiment was conducted to provide a complete greenhouse gas (GHG) accounting for global warming potential (GWP), net GWP, and greenhouse gas intensity (GHGI) from no-tillage (NT) paddy fields with different amounts of oilseed rape residue mulch (0, 3000, 4000, and 6000 kg dry matter (DM) ha(-1)) during a rice-growing season after 3 years of oilseed rape-rice cultivation. Residue mulching treatments showed significantly more organic carbon (C) density for the 0-20 cm soil layer at harvesting than no residue treatment. During a rice-growing season, residue mulching treatments sequestered significantly more organic C from 687 kg C ha(-1) season(-1) to 1654 kg C ha(-1) season(-1) than no residue treatment. Residue mulching significantly increased emissions of CO2 and N2O but decreased CH4 emissions. Residue mulching treatments significantly increased GWP by 9-30% but significantly decreased net GWP by 33-71% and GHGI by 35-72% relative to no residue treatment. These results suggest that agricultural economic viability and GHG mitigation can be achieved simultaneously by residue mulching on NT paddy fields in central China.

  8. Assessing energy efficiencies, economy, and global warming potential (GWP) effects of major crop production systems in Iran: a case study in East Azerbaijan province.

    PubMed

    Mohammadzadeh, Arash; Mahdavi Damghani, Abdolmajid; Vafabakhsh, Javad; Deihimfard, Reza

    2017-07-01

    Efficient use of energy in farming systems is one of the most important implications for decreasing greenhouse gas (GHG) emissions and mitigating global warming (GW). This paper describes the energy use patterns, analyze the economics, and report global warming potential effects of major crop production systems in East Azerbaijan province, Iran. For this purpose, 110 farmers whose main activity was major crop production in the region, including wheat, barley, carrot, tomato, onion, potato, alfalfa, corn silage, canola, and saffron, were surveyed. Some other data was obtained from the Ministry of Agriculture Jihad of Iran. Results showed that, in terms of total energy input, onion (87,556 Mj ha -1 ) and potato (80,869 Mj ha -1 ) production systems were more energy-intensive than other crops. Among the studied crops, the highest values of net return (6563.8 $ ha -1 ) and benefit/cost ratio (1.95) were related to carrot and corn silage production systems, respectively. Studies have also shown that onion and saffron production systems emit the highest (5332.6 kg CO2eq ha -1 ) and lowest (646.24 kg CO 2 eq ha -1 ) CO 2 eq. emission, respectively. When it was averaged across crops, diesel fuel accounted for the greatest GHG contribution with 43% of the total, followed by electric power (28%) and nitrogen fertilizer (21%). In the present study, eco-efficiency was calculated as a ratio of the gross production value and global warming potential effect for the studied crops. Out of all the studied crops, the highest values of eco-efficiency were calculated to be 8.65 $ kg CO 2 eq -1 for the saffron production system followed by the carrot (3.65 $ kg CO 2 eq -1 ) production. Generally, from the aspect of energy balance and use efficiency, the alfalfa production system was the best; however, from an economical point of view, the carrot production system was better than the other crops.

  9. Spatial stabilization and intensification of moistening and drying rate patterns under future climate change

    NASA Astrophysics Data System (ADS)

    Chavaillaz, Y.; Joussaume, S.; Bony, S.; Braconnot, P.

    2015-12-01

    Most climate studies characterize the future climate change by considering the evolution between a fixed current baseline and the future. It emphasizes an increase of future precipitation changes with global warming. Here we use an alternative approach that considers rate of change indicators related to precipitation using projections of an ensemble of General Circulation Models. The rate is defined by the difference between two subsequent 20-year periods. This approach can be relevant to impacts affecting upcoming generations, and to their continuous adaptation towards a changing target. Under the strongest emission pathway (RCP8.5), moistening and drying rates strongly increase at the global scale. As we move further over the twenty-first century, more and more regions exhibit substantial rates. These regions are modified over time due to spatial variability of precipitation. However, we show that they tend to become more geographically stationary through the century, leading to persisting trends at several places over the globe. Whilst global warming is accelerating, this spatial stabilization is due to the decreasing relative influence of global circulation in precipitation changes compared to thermodynamic processes. In specific regions, the combination of intensification and persistence of such substantial rates should be considered in the framework of future impact studies (i.e. the Mediterranean Sea, Central America, South Asia and the Arctic). These trends are already visible in the current period, but could almost disappear if strong mitigation policies (RCP2.6) were quickly implemented.

  10. A new climate dataset for systematic assessments of climate change impacts as a function of global warming

    NASA Astrophysics Data System (ADS)

    Heinke, J.; Ostberg, S.; Schaphoff, S.; Frieler, K.; Müller, C.; Gerten, D.; Meinshausen, M.; Lucht, W.

    2013-10-01

    In the ongoing political debate on climate change, global mean temperature change (ΔTglob) has become the yardstick by which mitigation costs, impacts from unavoided climate change, and adaptation requirements are discussed. For a scientifically informed discourse along these lines, systematic assessments of climate change impacts as a function of ΔTglob are required. The current availability of climate change scenarios constrains this type of assessment to a narrow range of temperature change and/or a reduced ensemble of climate models. Here, a newly composed dataset of climate change scenarios is presented that addresses the specific requirements for global assessments of climate change impacts as a function of ΔTglob. A pattern-scaling approach is applied to extract generalised patterns of spatially explicit change in temperature, precipitation and cloudiness from 19 Atmosphere-Ocean General Circulation Models (AOGCMs). The patterns are combined with scenarios of global mean temperature increase obtained from the reduced-complexity climate model MAGICC6 to create climate scenarios covering warming levels from 1.5 to 5 degrees above pre-industrial levels around the year 2100. The patterns are shown to sufficiently maintain the original AOGCMs' climate change properties, even though they, necessarily, utilise a simplified relationships between ΔTglob and changes in local climate properties. The dataset (made available online upon final publication of this paper) facilitates systematic analyses of climate change impacts as it covers a wider and finer-spaced range of climate change scenarios than the original AOGCM simulations.

  11. A new dataset for systematic assessments of climate change impacts as a function of global warming

    NASA Astrophysics Data System (ADS)

    Heinke, J.; Ostberg, S.; Schaphoff, S.; Frieler, K.; M{ü}ller, C.; Gerten, D.; Meinshausen, M.; Lucht, W.

    2012-11-01

    In the ongoing political debate on climate change, global mean temperature change (ΔTglob) has become the yardstick by which mitigation costs, impacts from unavoided climate change, and adaptation requirements are discussed. For a scientifically informed discourse along these lines systematic assessments of climate change impacts as a function of ΔTglob are required. The current availability of climate change scenarios constrains this type of assessment to a~narrow range of temperature change and/or a reduced ensemble of climate models. Here, a newly composed dataset of climate change scenarios is presented that addresses the specific requirements for global assessments of climate change impacts as a function of ΔTglob. A pattern-scaling approach is applied to extract generalized patterns of spatially explicit change in temperature, precipitation and cloudiness from 19 AOGCMs. The patterns are combined with scenarios of global mean temperature increase obtained from the reduced-complexity climate model MAGICC6 to create climate scenarios covering warming levels from 1.5 to 5 degrees above pre-industrial levels around the year 2100. The patterns are shown to sufficiently maintain the original AOGCMs' climate change properties, even though they, necessarily, utilize a simplified relationships betweenΔTglob and changes in local climate properties. The dataset (made available online upon final publication of this paper) facilitates systematic analyses of climate change impacts as it covers a wider and finer-spaced range of climate change scenarios than the original AOGCM simulations.

  12. Potentiel des méthodes de séparation et stockage du CO2 dans la lutte contre l'effet de serreThe role of CO2 capture and sequestration in mitigation of climate change

    NASA Astrophysics Data System (ADS)

    Jean-Baptiste, Philippe; Ducroux, René

    2003-06-01

    Increasing atmospheric level of greenhouse gases are causing global warming and putting at risk the global climate system. The main anthropogenic greenhouse gas is CO 2. Technical solutions exist to reduce CO 2 emission and stabilise atmospheric CO 2 concentration, including energy saving and energy efficiency, switch to lower carbon content fuels like natural gas and to energy sources that operate with zero CO 2 emissions such as renewable or nuclear energy, enhance the natural sinks for CO 2 (forests, soils, etc.), and last but not least, sequester CO 2 from fossil fuels combustion. The purpose of this paper is to provide an overview of the technology and cost for capture and storage of CO 2. Some of the factors that will influence application, including environmental impact, cost and efficiency, are also discussed. Capturing CO 2 and storing it in underground geological reservoirs appears as the best environmentally acceptable option. It can be done with existing technology; however, substantial R&D is needed to improve available technology and to lower the cost. Applicable to large CO 2 emitting industrial facilities such as power plants, cement factories, steel industry, etc., which amount to more than 30% of the global anthropogenic CO 2 emission, it represents a valuable tool in the battle against global warming. To cite this article: P. Jean-Baptiste, R. Ducroux, C. R. Geoscience 335 (2003).

  13. Is the zero emission requirement aligned with 2.0°C and 1.5°C stabilization targets?

    NASA Astrophysics Data System (ADS)

    Tanaka, K.; O'Neill, B. C.

    2016-12-01

    The Paris Agreement stipulates that the global warming be stabilized at well below 2°C and eventually 1.5°C above pre-industrial levels. While the landmark agreement has led to a wide range of associated analyses, less attention has been paid to another mitigation target in Paris: cut the net greenhouse gas emissions to zero during the second half of this century. This study explores how such an emission target may guide us to achieve the temperature target. We found that, if the emission target is met by 2060, the most likely outcome is that the warming will peak at slightly above 2°C and decline below 1.5°C by the early 22nd century. This corresponds roughly to the temperature target; however, it is important to realize that the warming inevitably exceeds 1.5°C temporarily. On the contrary, if delayed by 2100, the warming reaches as high as 4°C until it starts to fall. Furthermore, net negative CO2 emissions are implicitly required for the emission target, the intensity of which depends on unabatable anthropogenic non-CO2 greenhouse gas emissions as well as the emission metric used to equate greenhouse gas emissions on the basis of CO2.

  14. Scaling future tropical cyclone damage with global mean temperature

    NASA Astrophysics Data System (ADS)

    Geiger, T.; Bresch, D.; Frieler, K.

    2017-12-01

    Tropical cyclones (TC) are one of the most damaging natural hazards and severely affectmany countries around the globe each year. Their nominal impact is projected to increasesubstantially as the exposed coastal population grows, per capita income increases, andanthropogenic climate change manifests. The magnitude of this increase, however, variesacross regions and is obscured by the stochastic behaviour of TCs, so far impeding arigorous quantification of trends in TC damage with global mean temperature (GMT) rise. Here, we build on the large sample of spatially explicit TCs simulations generated withinISIMIP(2b) for 1) pre-industrial conditions, 2) the historical period, and 3) future projectionsunder RCP2.6 and RCP6.0 to estimate future TC damage assuming fixed present-daysocio-economic conditions or SSP-based future projections of population patterns andincome. Damage estimates will be based on region-specific empirical damage modelsderived from reported damages and accounting for regional characteristics of vulnerability.Different combinations of 1) socio-economic drivers with pre-industrial climate or 2) changingclimate with fixed socio-economic conditions will be used to derive functional relationshipsbetween regionally aggregated changes in damages on one hand and global meantemperature and socio-economic predictors on the other hand. The obtained region-specific scaling of future TC damage with GMT provides valuable inputfor IPCC's special report on the impacts of global warming of 1.5°C by quantifying theincremental changes in impact with global warming. The approach allows for an update ofdamage functions used in integrated assessment models, and contributes to assessing theadequateness of climate mitigation and adaptation strategies.

  15. 40 CFR 52.223 - Approval status.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... pollutant GHGs, by the gas's associated global warming potential published at Table A-1 to subpart A of 40 CFR part 98—Global Warming Potentials. (B) Sum the resultant value from paragraph (b)(4)(ii)(A) of... associated global warming potential published at Table A-1 to subpart A of 40 CFR part 98—Global Warming...

  16. 40 CFR 52.1634 - Significant deterioration of air quality.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... gases in the pollutant GHGs, by the gas's associated global warming potential published at Table A-1 to subpart A of 40 CFR part 98—Global Warming Potentials. (B) Sum the resultant value from paragraph (b)(4... associated global warming potential published at Table A-1 to subpart A of 40 CFR part 98—Global Warming...

  17. 40 CFR 52.223 - Approval status.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... pollutant GHGs, by the gas's associated global warming potential published at Table A-1 to subpart A of 40 CFR part 98—Global Warming Potentials. (B) Sum the resultant value from paragraph (b)(4)(ii)(A) of... associated global warming potential published at Table A-1 to subpart A of 40 CFR part 98—Global Warming...

  18. 40 CFR 52.223 - Approval status.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... pollutant GHGs, by the gas's associated global warming potential published at Table A-1 to subpart A of 40 CFR part 98—Global Warming Potentials. (B) Sum the resultant value from paragraph (b)(4)(ii)(A) of... associated global warming potential published at Table A-1 to subpart A of 40 CFR part 98—Global Warming...

  19. 40 CFR 52.223 - Approval status.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... pollutant GHGs, by the gas's associated global warming potential published at Table A-1 to subpart A of 40 CFR part 98—Global Warming Potentials. (B) Sum the resultant value from paragraph (b)(4)(ii)(A) of... associated global warming potential published at Table A-1 to subpart A of 40 CFR part 98—Global Warming...

  20. Apocalypse soon? Dire messages reduce belief in global warming by contradicting just-world beliefs.

    PubMed

    Feinberg, Matthew; Willer, Robb

    2011-01-01

    Though scientific evidence for the existence of global warming continues to mount, in the United States and other countries belief in global warming has stagnated or even decreased in recent years. One possible explanation for this pattern is that information about the potentially dire consequences of global warming threatens deeply held beliefs that the world is just, orderly, and stable. Individuals overcome this threat by denying or discounting the existence of global warming, and this process ultimately results in decreased willingness to counteract climate change. Two experiments provide support for this explanation of the dynamics of belief in global warming, suggesting that less dire messaging could be more effective for promoting public understanding of climate-change research.

  1. Environmental impact assessment of the incineration of municipal solid waste with auxiliary coal in China.

    PubMed

    Zhao, Yan; Xing, Wei; Lu, Wenjing; Zhang, Xu; Christensen, Thomas H

    2012-10-01

    The environmental impacts of waste incineration with auxiliary coal were investigated using the life-cycle-based software, EASEWASTE, based on the municipal solid waste (MSW) management system in Shuozhou City. In the current system, MSW is collected, transported, and incinerated with 250 kg of coal per ton of waste. Based on observed environmental impacts of incineration, fossil CO(2) and heavy metals were primary contributors to global warming and ecotoxicity in soil, respectively. Compared with incinerators using excess coal, incineration with adequate coal presents significant benefits in mitigating global warming, whereas incineration with a mass of coal can avoid more impacts to acidification, photochemical ozone and nutrient enrichment because of increased electricity substitution and reduced emission from coal power plants. The "Emission standard of air pollutants for thermal power plants (GB13223-2011)" implemented in 2012 introduced stricter policies on controlling SO(2) and NO(x) emissions from coal power plants. Thus, increased use of auxiliary coal during incineration yields fewer avoided impacts on acidification and nutrient enrichment. When two-thirds of ash is source-separated and landfilled, the incineration of rest-waste presents better results on global warming, acidification, nutrient enrichment, and even ecotoxicity in soil. This process is considered a promising solution for MSW management in Shuozhou City. Weighted normalized environmental impacts were assessed based on Chinese political reduction targets. Results indicate that heavy metal and acidic gas emissions should be given more attention in waste incineration. This study provides scientific support for the management of MSW systems dominated by incineration with auxiliary coal in China. Copyright © 2012 Elsevier Ltd. All rights reserved.

  2. Challenges for the geosciences after the Paris agreement

    NASA Astrophysics Data System (ADS)

    Knutti, R.; Sedlacek, J.; Rogelj, J.; Fischer, E. M.

    2016-12-01

    The world's governments agreed to limit global mean temperature change to below 2 °C or 1.5°C compared with pre-industrial levels in Paris. These warming targets are often perceived by the public as a universally accepted goal, identified by scientists as a safe limit that avoids dangerous climate change. This perception is incorrect: no scientific assessment has clearly justified or defended 2°C as a safe level of warming, and indeed, this is not a problem that science alone can address. We argue that global temperature is the best climate target quantity, but it is unclear what level can be considered safe. However, irrespective of the target, the concept of cumulative carbon implies that substantial and sustained emission reductions are required to limit climate change to temperature levels that are currently being considered safe. The Paris agreement poses many open questions to the geoscience community: the impacts of a temperature overshoot, the limits of negative emissions, and the role of radiative forcings other than carbon dioxide need to be better understood. Treating uncertainties, incorporating risk, and linking local impacts and development objectives to global climate goals also remain major open issues that need to be tackled in a continued dialogue with science communities. The negotiations up to Paris and the 2 °C target have been useful for anchoring discussions, but ineffective in triggering the required emission reductions; the debates on considering different targets are strongly at odds with the current real-world level of action. These debates are moot, however, as the decisions that need to be taken now to limit warming to 1.5 or 2 °C are very similar. We need to agree how to start, not where to end mitigation.

  3. Environmental impacts of food waste: Learnings and challenges from a case study on UK.

    PubMed

    Tonini, Davide; Albizzati, Paola Federica; Astrup, Thomas Fruergaard

    2018-06-01

    Food waste, particularly when avoidable, incurs loss of resources and considerable environmental impacts due to the multiple processes involved in the life cycle. This study applies a bottom-up life cycle assessment method to quantify the environmental impacts of the avoidable food waste generated by four sectors of the food supply chain in United Kingdom, namely processing, wholesale and retail, food service, and households. The impacts were quantified for ten environmental impact categories, from Global Warming to Water Depletion, including indirect land use change impacts due to demand for land. The Global Warming impact of the avoidable food waste was quantified between 2000 and 3600 kg CO 2 -eq. t -1 . The range reflected the different compositions of the waste in each sector. Prominent contributors to the impact, across all the environmental categories assessed, were land use changes and food production. Food preparation, for households and food service sectors, also provided an important contribution to the Global Warming impacts, while waste management partly mitigated the overall impacts by incurring significant savings when landfilling was replaced with anaerobic digestion and incineration. To further improve these results, it is recommended to focus future efforts on providing improved data regarding the breakdown of specific food products within the mixed waste, indirect land use change effects, and the share of food waste undergoing cooking. Learning from this and previous studies, we highlight the challenges related to modelling and methodological choices. Particularly, food production datasets should be chosen and used carefully, to avoid double counting and overestimation of the final impacts. Copyright © 2018 The Authors. Published by Elsevier Ltd.. All rights reserved.

  4. Competition between global warming and an abrupt collapse of the AMOC in Earth's energy imbalance.

    PubMed

    Drijfhout, Sybren

    2015-10-06

    A collapse of the Atlantic Meridional Overturning Circulation (AMOC) leads to global cooling through fast feedbacks that selectively amplify the response in the Northern Hemisphere (NH). How such cooling competes with global warming has long been a topic for speculation, but was never addressed using a climate model. Here it is shown that global cooling due to a collapsing AMOC obliterates global warming for a period of 15-20 years. Thereafter, the global mean temperature trend is reversed and becomes similar to a simulation without an AMOC collapse. The resulting surface warming hiatus lasts for 40-50 years. Global warming and AMOC-induced NH cooling are governed by similar feedbacks, giving rise to a global net radiative imbalance of similar sign, although the former is associated with surface warming, the latter with cooling. Their footprints in outgoing longwave and absorbed shortwave radiation are very distinct, making attribution possible.

  5. Synergy of rising nitrogen depositions and atmospheric CO2 on land carbon uptake moderately offsets global warming

    NASA Astrophysics Data System (ADS)

    Churkina, Galina; Brovkin, Victor; von Bloh, Werner; Trusilova, Kristina; Jung, Martin; Dentener, Frank

    2009-12-01

    Increased carbon uptake of land in response to elevated atmospheric CO2 concentration and nitrogen deposition could slow down the rate of CO2 increase and facilitate climate change mitigation. Using a coupled model of climate, ocean, and land biogeochemistry, we show that atmospheric nitrogen deposition and atmospheric CO2 have a strong synergistic effect on the carbon uptake of land. Our best estimate of the global land carbon uptake in the 1990s is 1.34 PgC/yr. The synergistic effect could explain 47% of this carbon uptake, which is higher than either the effect of increasing nitrogen deposition (29%) or CO2 fertilization (24%). By 2030, rising carbon uptake on land has a potential to reduce atmospheric CO2 concentration by about 41 ppm out of which 16 ppm reduction would come from the synergetic response of land to the CO2 and nitrogen fertilization effects. The strength of the synergy depends largely on the cooccurrence of high nitrogen deposition regions with nonagricultural ecosystems. Our study suggests that reforestation and sensible ecosystem management in industrialized regions may have larger potential for climate change mitigation than anticipated.

  6. A global economic assessment of city policies to reduce climate change impacts

    NASA Astrophysics Data System (ADS)

    Estrada, Francisco; Botzen, W. J. Wouter; Tol, Richard S. J.

    2017-06-01

    Climate change impacts can be especially large in cities. Several large cities are taking climate change into account in long-term strategies, for which it is important to have information on the costs and benefits of adaptation. Studies on climate change impacts in cities mostly focus on a limited set of countries and risks, for example sea-level rise, health and water resources. Most of these studies are qualitative, except for the costs of sea-level rise in cities. These impact estimates do not take into account that large cities will experience additional warming due to the urban heat island effect, that is, the change of local climate patterns caused by urbanization. Here we provide a quantitative assessment of the economic costs of the joint impacts of local and global climate change for all main cities around the world. Cost-benefit analyses are presented of urban heat island mitigation options, including green and cool roofs and cool pavements. It is shown that local actions can be a climate risk-reduction instrument. Furthermore, limiting the urban heat island through city adaptation plans can significantly amplify the benefits of international mitigation efforts.

  7. Buffering and Amplifying Interactions among OAW (Ocean Acidification & Warming) and Nutrient Enrichment on Early Life-Stage Fucus vesiculosus L. (Phaeophyceae) and Their Carry Over Effects to Hypoxia Impact.

    PubMed

    Al-Janabi, Balsam; Kruse, Inken; Graiff, Angelika; Winde, Vera; Lenz, Mark; Wahl, Martin

    2016-01-01

    Ocean acidification and warming (OAW) are occurring globally. Additionally, at a more local scale the spreading of hypoxic conditions is promoted by eutrophication and warming. In the semi-enclosed brackish Baltic Sea, occasional upwelling in late summer and autumn may expose even shallow-water communities including the macroalga Fucus vesiculosus to particularly acidified, nutrient-rich and oxygen-poor water bodies. During summer 2014 (July-September) sibling groups of early life-stage F. vesiculosus were exposed to OAW in the presence and absence of enhanced nutrient levels and, subsequently to a single upwelling event in a near-natural scenario which included all environmental fluctuations in the Kiel Fjord, southwestern Baltic Sea, Germany (54°27 ´N, 10°11 ´W). We strove to elucidate the single and combined impacts of these potential stressors, and how stress sensitivity varies among genetically different sibling groups. Enhanced by a circumstantial natural heat wave, warming and acidification increased mortalities and reduced growth in F. vesiculosus germlings. This impact, however, was mitigated by enhanced nutrient conditions. Survival under OAW conditions strongly varied among sibling groups hinting at a substantial adaptive potential of the natural Fucus populations in the Western Baltic. A three-day experimental upwelling caused severe mortality of Fucus germlings, which was substantially more severe in those sibling groups which previously had been exposed to OAW. Our results show that global (OAW), regional (nutrient enrichment) and local pressures (upwelling), both alone and co-occurring may have synergistic and antagonistic effects on survival and/or growth of Fucus germlings. This result emphasizes the need to consider combined stress effects.

  8. Contribution of air conditioning adoption to future energy use under global warming.

    PubMed

    Davis, Lucas W; Gertler, Paul J

    2015-05-12

    As household incomes rise around the world and global temperatures go up, the use of air conditioning is poised to increase dramatically. Air conditioning growth is expected to be particularly strong in middle-income countries, but direct empirical evidence is scarce. In this paper we use high-quality microdata from Mexico to describe the relationship between temperature, income, and air conditioning. We describe both how electricity consumption increases with temperature given current levels of air conditioning, and how climate and income drive air conditioning adoption decisions. We then combine these estimates with predicted end-of-century temperature changes to forecast future energy consumption. Under conservative assumptions about household income, our model predicts near-universal saturation of air conditioning in all warm areas within just a few decades. Temperature increases contribute to this surge in adoption, but income growth by itself explains most of the increase. What this will mean for electricity consumption and carbon dioxide emissions depends on the pace of technological change. Continued advances in energy efficiency or the development of new cooling technologies could reduce the energy consumption impacts. Similarly, growth in low-carbon electricity generation could mitigate the increases in carbon dioxide emissions. However, the paper illustrates the enormous potential impacts in this sector, highlighting the importance of future research on adaptation and underscoring the urgent need for global action on climate change.

  9. Contribution of air conditioning adoption to future energy use under global warming

    PubMed Central

    Davis, Lucas W.; Gertler, Paul J.

    2015-01-01

    As household incomes rise around the world and global temperatures go up, the use of air conditioning is poised to increase dramatically. Air conditioning growth is expected to be particularly strong in middle-income countries, but direct empirical evidence is scarce. In this paper we use high-quality microdata from Mexico to describe the relationship between temperature, income, and air conditioning. We describe both how electricity consumption increases with temperature given current levels of air conditioning, and how climate and income drive air conditioning adoption decisions. We then combine these estimates with predicted end-of-century temperature changes to forecast future energy consumption. Under conservative assumptions about household income, our model predicts near-universal saturation of air conditioning in all warm areas within just a few decades. Temperature increases contribute to this surge in adoption, but income growth by itself explains most of the increase. What this will mean for electricity consumption and carbon dioxide emissions depends on the pace of technological change. Continued advances in energy efficiency or the development of new cooling technologies could reduce the energy consumption impacts. Similarly, growth in low-carbon electricity generation could mitigate the increases in carbon dioxide emissions. However, the paper illustrates the enormous potential impacts in this sector, highlighting the importance of future research on adaptation and underscoring the urgent need for global action on climate change. PMID:25918391

  10. Fighting global warming by greenhouse gas removal: destroying atmospheric nitrous oxide thanks to synergies between two breakthrough technologies.

    PubMed

    Ming, Tingzhen; de Richter, Renaud; Shen, Sheng; Caillol, Sylvain

    2016-04-01

    Even if humans stop discharging CO2 into the atmosphere, the average global temperature will still increase during this century. A lot of research has been devoted to prevent and reduce the amount of carbon dioxide (CO2) emissions in the atmosphere, in order to mitigate the effects of climate change. Carbon capture and sequestration (CCS) is one of the technologies that might help to limit emissions. In complement, direct CO2 removal from the atmosphere has been proposed after the emissions have occurred. But, the removal of all the excess anthropogenic atmospheric CO2 will not be enough, due to the fact that CO2 outgases from the ocean as its solubility is dependent of its atmospheric partial pressure. Bringing back the Earth average surface temperature to pre-industrial levels would require the removal of all previously emitted CO2. Thus, the atmospheric removal of other greenhouse gases is necessary. This article proposes a combination of disrupting techniques to transform nitrous oxide (N2O), the third most important greenhouse gas (GHG) in terms of current radiative forcing, which is harmful for the ozone layer and possesses quite high global warming potential. Although several scientific publications cite "greenhouse gas removal," to our knowledge, it is the first time innovative solutions are proposed to effectively remove N2O or other GHGs from the atmosphere other than CO2.

  11. Comparing extraction rates of fossil fuel producers against global climate goals

    NASA Astrophysics Data System (ADS)

    Rekker, Saphira A. C.; O'Brien, Katherine R.; Humphrey, Jacquelyn E.; Pascale, Andrew C.

    2018-06-01

    Meeting global and national climate goals requires action and cooperation from a multitude of actors1,2. Current methods to define greenhouse gas emission targets for companies fail to acknowledge the unique influence of fossil fuel producers: combustion of reported fossil fuel reserves has the potential to push global warming above 2 °C by 2050, regardless of other efforts to mitigate climate change3. Here, we introduce a method to compare the extraction rates of individual fossil fuel producers against global climate targets, using two different approaches to quantify a burnable fossil fuel allowance (BFFA). BFFAs are calculated and compared with cumulative extraction since 2010 for the world's ten largest investor-owned companies and ten largest state-owned entities (SOEs), for oil and for gas, which together account for the majority of global oil and gas reserves and production. The results are strongly influenced by how BFFAs are quantified; allocating based on reserves favours SOEs over investor-owned companies, while allocating based on production would require most reduction to come from SOEs. Future research could refine the BFFA to account for equity, cost-effectiveness and emissions intensity.

  12. Local warming: daily temperature change influences belief in global warming.

    PubMed

    Li, Ye; Johnson, Eric J; Zaval, Lisa

    2011-04-01

    Although people are quite aware of global warming, their beliefs about it may be malleable; specifically, their beliefs may be constructed in response to questions about global warming. Beliefs may reflect irrelevant but salient information, such as the current day's temperature. This replacement of a more complex, less easily accessed judgment with a simple, more accessible one is known as attribute substitution. In three studies, we asked residents of the United States and Australia to report their opinions about global warming and whether the temperature on the day of the study was warmer or cooler than usual. Respondents who thought that day was warmer than usual believed more in and had greater concern about global warming than did respondents who thought that day was colder than usual. They also donated more money to a global-warming charity if they thought that day seemed warmer than usual. We used instrumental variable regression to rule out some alternative explanations.

  13. Impact of Geoengineering Schemes on the Global Hydrological Cycle

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bala, G; Duffy, P; Taylor, K

    2007-12-07

    The rapidly rising CO{sub 2} level in the atmosphere has led to proposals of climate stabilization via 'Geoengineering' schemes that would mitigate climate change by intentionally reducing the solar radiation incident on earth's surface. In this paper, we address the impact of these climate stabilization schemes on the global hydrological cycle, using equilibrium simulations from an atmospheric general circulation model coupled to a slab ocean model. We show that insolation reductions sufficient to offset global-scale temperature increases lead to a decrease in the intensity of the global hydrologic cycle. This occurs because solar forcing is more effective in driving changesmore » in global mean evaporation than is CO{sub 2} forcing of a similar magnitude. In the model used here, the hydrologic sensitivity, defined as the percentage change in global mean precipitation per degree warming, is 2.4% for solar forcing, but only 1.5% for CO{sub 2} forcing. Although other models and the climate system itself may differ quantitatively from this result, the conclusion can be understood based on simple considerations of the surface energy budget and thus is likely to be robust. Compared to changing temperature by altering greenhouse gas concentrations, changing temperature by varying insolation results in larger changes in net radiative fluxes at the surface; these are compensated by larger changes in latent and sensible heat fluxes. Hence the hydrological cycle is more sensitive to temperature adjustment via changes in insolation than changes in greenhouse gases. This implies that an alteration in solar forcing might offset temperature changes or hydrological changes from greenhouse warming, but could not cancel both at once.« less

  14. Planetary engineering

    NASA Technical Reports Server (NTRS)

    Pollack, James B.; Sagan, Carl

    1991-01-01

    Assuming commercial fusion power, heavy lift vehicles and major advances in genetic engineering, the authors survey possible late-21st century methods of working major transformations in planetary environments. Much more Earthlike climates may be produced on Mars by generating low freezing point greenhouse gases from indigenous materials; on Venus by biological conversion of CO2 to graphite, by canceling the greenhouse effect with high-altitude absorbing fine particles, or by a sunshield at the first Lagrangian point; and on Titan by greenhouses and/or fusion warming. However, in our present state of ignorance we cannot guarantee a stable endstate or exclude unanticipated climatic feedbacks or other unintended consequences. Moreover, as the authors illustrate by several examples, many conceivable modes of planetary engineering are so wasteful of scarce solar system resources and so destructive of important scientific information as to raise profound ethical issues, even if they were economically feasible, which they are not. Global warming on Earth may lead to calls for mitigation by planetary engineering, e.g., emplacement and replenishment of anti-greenhouse layers at high altitudes, or sunshields in space. But here especially we must be concerned about precision, stability, and inadvertent side-effects. The safest and most cost-effective means of countering global warming - beyond, e.g., improved energy efficiency, CFC bans and alternative energy sources - is the continuing reforestation of approximately 2 times 107 sq km of the Earth's surface. This can be accomplished with present technology and probably at the least cost.

  15. Projected changes over western Canada using convection-permitting regional climate model and the pseudo-global warming method

    NASA Astrophysics Data System (ADS)

    Li, Y.; Kurkute, S.; Chen, L.

    2017-12-01

    Results from the General Circulation Models (GCMs) suggest more frequent and more severe extreme rain events in a climate warmer than the present. However, current GCMs cannot accurately simulate extreme rainfall events of short duration due to their coarse model resolutions and parameterizations. This limitation makes it difficult to provide the detailed quantitative information for the development of regional adaptation and mitigation strategies. Dynamical downscaling using nested Regional Climate Models (RCMs) are able to capture key regional and local climate processes with an affordable computational cost. Recent studies have demonstrated that the downscaling of GCM results with weather-permitting mesoscale models, such as the pseudo-global warming (PGW) technique, could be a viable and economical approach of obtaining valuable climate change information on regional scales. We have conducted a regional climate 4-km Weather Research and Forecast Model (WRF) simulation with one domain covering the whole western Canada, for a historic run (2000-2015) and a 15-year future run to 2100 and beyond with the PGW forcing. The 4-km resolution allows direct use of microphysics and resolves the convection explicitly, thus providing very convincing spatial detail. With this high-resolution simulation, we are able to study the convective mechanisms, specifically the control of convections over the Prairies, the projected changes of rainfall regimes, and the shift of the convective mechanisms in a warming climate, which has never been examined before numerically at such large scale with such high resolution.

  16. Global Warming: Understanding and Teaching the Forecast.

    ERIC Educational Resources Information Center

    Andrews, Bill

    1995-01-01

    A resource for teaching about the consequences of global warming. Discusses feedback from the temperature increase, changes in the global precipitation pattern, effects on agriculture, weather extremes, effects on forests, effects on biodiversity, effects on sea levels, and actions which will help the global community cope with global warming. (LZ)

  17. Trends in global warming and evolution of nucleoproteins from influenza A viruses since 1918.

    PubMed

    Yan, S; Wu, G

    2010-12-01

    Global warming affects not only the environment where we live, but also all living species to different degree, including influenza A virus. We recently conducted several studies on the possible impact of global warming on the protein families of influenza A virus. More studies are needed in order to have a full picture of the impact of global warming on living organisms, especially its effect on viruses. In this study, we correlate trends in global warming with evolution of the nucleoprotein from influenza A virus and then analyse the trends with respect to northern/southern hemispheres, virus subtypes and sampling species. The results suggest that global warming may have an impact on the evolution of the nucleoprotein from influenza A virus. © 2010 Blackwell Verlag GmbH.

  18. Post Paris and November 8, 2016

    NASA Astrophysics Data System (ADS)

    Busalacchi, A. J.

    2016-12-01

    COP 21 in Paris, as historic as it was, established the necessary, but not the sufficient. The signatories to the landmark Paris accord are a coalition of the willing, but their pledges are only as good as the sustained will of individual countries to adhere to their commitments. The U.S. presidential election has demonstrated how easily uncertainty can be added. Even if all countries abide by the Paris climate agreement, capping global mean temperatures to 2oC will likely require net zero greenhouse gas emissions by 2085 and substantial negative emissions over the long term. Before the Paris agreement was finished, it was clear that the pledged emission cuts by 2030 would not be sufficient in and of themselves, to stay under 2oC. Given the accumulation of greenhouse gases to date, limiting warming to a maximum of 2oC would require bending the curve of global emissions by 2020, i.e., over the next four years. If the past is a prologue, without even taking into account an emergence from the global recession, we stand a realistic chance of blowing right past the 2oC target. What, then, are the challenges going forward? Is 2oC a real goal that is attainable, or is it a stretch goal? Meeting a 2oC target is a function of when mitigation begins in earnest, the rate of mitigation, and the rate and amount of carbon sequestration. What are the implications of this trade space? While much effort has been put into designing a climate observing system from a science perspective, relatively little thought has been put into determining what observations are needed to support policy decisions, mitigation, and verify the Intended Nationally Determined Contributions that resulted from the Paris Agreement. If 2oC is a stretch goal, intellectual honesty requires that we consider mitigation and adaptation in tandem, and not as either/or. Similarly, even with all its attendant ethical dilemmas, it is important to thoroughly study geoengineering so that policy makers have a robust understanding of what it can — and cannot do — should adaptation and mitigation efforts fall short.

  19. Population risk perceptions of global warming in Australia.

    PubMed

    Agho, Kingsley; Stevens, Garry; Taylor, Mel; Barr, Margo; Raphael, Beverley

    2010-11-01

    According to the World Health Organisation (WHO), global warming has the potential to dramatically disrupt some of life's essential requirements for health, water, air and food. Understanding how Australians perceive the risk of global warming is essential for climate change policy and planning. The aim of this study was to determine the prevalence of, and socio-demographic factors associated with, high levels of perceived likelihood that global warming would worsen, concern for self and family and reported behaviour changes. A module of questions on global warming was incorporated into the New South Wales Population Health Survey in the second quarter of 2007. This Computer Assisted Telephone Interview (CATI) was completed by a representative sample of 2004 adults. The weighted sample was comparable to the Australian population. Bivariate and multivariate statistical analyses were conducted to examine the socio-demographic and general health factors. Overall 62.1% perceived that global warming was likely to worsen; 56.3% were very or extremely concerned that they or their family would be directly affected by global warming; and 77.6% stated that they had made some level of change to the way they lived their lives, because of the possibility of global warming. After controlling for confounding factors, multivariate analyses revealed that those with high levels of psychological distress were 2.17 (Adjusted Odds Ratio (AOR)=2.17; CI: 1.16-4.03; P=0.015) times more likely to be concerned about global warming than those with low psychological distress levels. Those with a University degree or equivalent and those who lived in urban areas were significantly more likely to think that global warming would worsen compared to those without a University degree or equivalent and those who lived in the rural areas. Females were significantly (AOR=1.69; CI: 1.23-2.33; P=0.001) more likely to report they had made changes to the way they lived their lives due to the risk of global warming. A high proportion of respondents reported that they perceived that global warming would worsen, were concerned that it would affect them and their families and had already made changes in their lives because of it. These findings support a readiness in the population to deal with global warming. Future research and programs are needed to investigate population-level strategies for future action. Crown Copyright © 2010. Published by Elsevier Inc. All rights reserved.

  20. 40 CFR Table A-1 to Subpart A of... - Global Warming Potentials

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 20 2010-07-01 2010-07-01 false Global Warming Potentials A Table A-1... A-1 to Subpart A of Part 98—Global Warming Potentials [100-Year Time Horizon] Name CAS No. Chemical formula Global warming potential(100 yr.) Carbon dioxide 124-38-9 CO2 1 Methane 74-82-8 CH4 21 Nitrous...

  1. 40 CFR Table A-1 to Subpart A of... - Global Warming Potentials

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 21 2011-07-01 2011-07-01 false Global Warming Potentials A Table A-1... A-1 to Subpart A of Part 98—Global Warming Potentials [100-Year Time Horizon] Name CAS No. Chemical formula Global warming potential(100 yr.) Carbon dioxide 124-38-9 CO2 1 Methane 74-82-8 CH4 21 Nitrous...

  2. 40 CFR Table A-1 to Subpart A of... - Global Warming Potentials

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 22 2012-07-01 2012-07-01 false Global Warming Potentials A Table A-1... A-1 to Subpart A of Part 98—Global Warming Potentials [100-Year Time Horizon] Name CAS No. Chemical formula Global warming potential(100 yr.) Carbon dioxide 124-38-9 CO2 1 Methane 74-82-8 CH4 21 Nitrous...

  3. NEOTEC: Negative-CO2-Emissions Marine Energy With Direct Mitigation of Global Warming, Sea-Level Rise and Ocean Acidification

    NASA Astrophysics Data System (ADS)

    Rau, G. H.; Baird, J.; Noland, G.

    2016-12-01

    The vertical thermal energy potential in the ocean is a massive renewable energy resource that is growing due to anthropogenic warming of the surface and near-surface ocean. The conversion of this thermal energy to useful forms via Ocean Thermal Energy Conversion (OTEC) has been demonstrated over the past century, albeit at small scales. Because OTEC removes heat from the surface ocean, this could help directly counter ongoing, deleterious ocean/atmosphere warming. The only other climate intervention that could do this is solar radiation "geoengineering". Conventional OTEC requires energy intensive, vertical movement of seawater resulting in ocean and atmospheric chemistry alteration, but this can be avoided via more energy efficient, vertical closed-cycle heating and cooling of working fluid like CO2 or NH3. An energy carrier such as H2 is required to transport energy optimally extracted far offshore, and methods of electrochemically generating H2 while also consuming CO2 and converting it to ocean alkalinity have been demonstrated. The addition of such alkalinity to the ocean would provide vast, stable, carbon storage, while also helping chemically counter the effects of ocean acidification. The process might currently be profitable given the >$100/tonne CO2 credit offered by California's Low Carbon Fuel Standard for transportation fuels like H2. Negative-Emissions OTEC, NEOTEC, thus can potentially provide constant, cost effective, high capacity, negative-emissions energy while: a) reducing surface ocean heat load, b) reducing thermal ocean expansion and sea-level rise, c) utilizing a very large, natural marine carbon storage reservoir, and d) helping mitigate ocean acidification. The technology also avoids the biophysical and land use limitations posed by negative emissions methods that rely on terrestrial biology, such as afforestation and BECCS. NEOTEC and other marine-based, renewable energy and CO2 removal approaches could therefore greatly increase the likelihood of satisfying growing global energy demand while helping to stabilize or reduce atmospheric CO2 and its impacts. Policies supporting the search and evaluation of renewable energy and negative emissions options beyond biotic- and land-based methods are needed.

  4. Warming up, turning sour, losing breath: ocean biogeochemistry under global change.

    PubMed

    Gruber, Nicolas

    2011-05-28

    In the coming decades and centuries, the ocean's biogeochemical cycles and ecosystems will become increasingly stressed by at least three independent factors. Rising temperatures, ocean acidification and ocean deoxygenation will cause substantial changes in the physical, chemical and biological environment, which will then affect the ocean's biogeochemical cycles and ecosystems in ways that we are only beginning to fathom. Ocean warming will not only affect organisms and biogeochemical cycles directly, but will also increase upper ocean stratification. The changes in the ocean's carbonate chemistry induced by the uptake of anthropogenic carbon dioxide (CO(2)) (i.e. ocean acidification) will probably affect many organisms and processes, although in ways that are currently not well understood. Ocean deoxygenation, i.e. the loss of dissolved oxygen (O(2)) from the ocean, is bound to occur in a warming and more stratified ocean, causing stress to macro-organisms that critically depend on sufficient levels of oxygen. These three stressors-warming, acidification and deoxygenation-will tend to operate globally, although with distinct regional differences. The impacts of ocean acidification tend to be strongest in the high latitudes, whereas the low-oxygen regions of the low latitudes are most vulnerable to ocean deoxygenation. Specific regions, such as the eastern boundary upwelling systems, will be strongly affected by all three stressors, making them potential hotspots for change. Of additional concern are synergistic effects, such as ocean acidification-induced changes in the type and magnitude of the organic matter exported to the ocean's interior, which then might cause substantial changes in the oxygen concentration there. Ocean warming, acidification and deoxygenation are essentially irreversible on centennial time scales, i.e. once these changes have occurred, it will take centuries for the ocean to recover. With the emission of CO(2) being the primary driver behind all three stressors, the primary mitigation strategy is to reduce these emissions. © 2011 The Royal Society

  5. Greenhouse Gas Mitigation Options Database and Tool - Data ...

    EPA Pesticide Factsheets

    Industry and electricity production facilities generate over 50 percent of greenhouse gas (GHG) emissions in the United States. There is a growing consensus among scientists that the primary cause of climate change is anthropogenic greenhouse gas (GHG) emissions. Reducing GHG emissions from these sources is a key part of the United States’ strategy to reduce the impacts of these global-warming emissions. As a result of the recent focus on GHG emissions, the U.S. Environmental Protection Agency (EPA) and state agencies are implementing policies and programs to quantify and regulate GHG emissions from key emitting sources in the United States. These policies and programs have generated a need for a reliable source of information regarding GHG mitigation options for both industry and regulators. In response to this need, EPA developed a comprehensive GHG mitigation options database (GMOD) that was compiled based on information from industry, government research agencies, and academia. The GMOD and Tool (GMODT) is a comprehensive data repository and analytical tool being developed by EPA to evaluate alternative GHG mitigation options for several high-emitting industry sectors, including electric power plants, cement plants, refineries, landfills and other industrial sources of GHGs. The data is collected from credible sources including peer-reviewed journals, reports, and others government and academia data sources which include performance, applicability, develop

  6. Mitigation of methane emission from an old unlined landfill in Klintholm, Denmark using a passive biocover system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Scheutz, Charlotte; Pedersen, Rasmus Broe; Petersen, Per Haugsted

    Highlights: • An innovative biocover system was constructed on a landfill cell to mitigate the methane emission. • The biocover system had a mitigation efficiently of typically 80%. • The system also worked efficiently at ambient temperatures below freezing. • A whole landfill emission measurement tool was required to document the biocover system efficiency. - Abstract: Methane generated at landfills contributes to global warming and can be mitigated by biocover systems relying on microbial methane oxidation. As part of a closure plan for an old unlined landfill without any gas management measures, an innovative biocover system was established. The systemmore » was designed based on a conceptual model of the gas emission patterns established through an initial baseline study. The study included construction of gas collection trenches along the slopes of the landfill where the majority of the methane emissions occurred. Local compost materials were tested as to their usefulness as bioactive methane oxidizing material and a suitable compost mixture was selected. Whole site methane emission quantifications based on combined tracer release and downwind measurements in combination with several local experimental activities (gas composition within biocover layers, flux chamber based emission measurements and logging of compost temperatures) proved that the biocover system had an average mitigation efficiency of approximately 80%. The study showed that the system also had a high efficiency during winter periods with temperatures below freezing. An economic analysis indicated that the mitigation costs of the biocover system were competitive to other existing greenhouse gas mitigation options.« less

  7. Climate Change Affects Winter Chill for Temperate Fruit and Nut Trees

    PubMed Central

    Luedeling, Eike; Girvetz, Evan H.; Semenov, Mikhail A.; Brown, Patrick H.

    2011-01-01

    Background Temperate fruit and nut trees require adequate winter chill to produce economically viable yields. Global warming has the potential to reduce available winter chill and greatly impact crop yields. Methodology/Principal Findings We estimated winter chill for two past (1975 and 2000) and 18 future scenarios (mid and end 21st century; 3 Global Climate Models [GCMs]; 3 greenhouse gas emissions [GHG] scenarios). For 4,293 weather stations around the world and GCM projections, Safe Winter Chill (SWC), the amount of winter chill that is exceeded in 90% of all years, was estimated for all scenarios using the “Dynamic Model” and interpolated globally. We found that SWC ranged between 0 and about 170 Chill Portions (CP) for all climate scenarios, but that the global distribution varied across scenarios. Warm regions are likely to experience severe reductions in available winter chill, potentially threatening production there. In contrast, SWC in most temperate growing regions is likely to remain relatively unchanged, and cold regions may even see an increase in SWC. Climate change impacts on SWC differed quantitatively among GCMs and GHG scenarios, with the highest GHG leading to losses up to 40 CP in warm regions, compared to 20 CP for the lowest GHG. Conclusions/Significance The extent of projected changes in winter chill in many major growing regions of fruits and nuts indicates that growers of these commodities will likely experience problems in the future. Mitigation of climate change through reductions in greenhouse gas emissions can help reduce the impacts, however, adaption to changes will have to occur. To better prepare for likely impacts of climate change, efforts should be undertaken to breed tree cultivars for lower chilling requirements, to develop tools to cope with insufficient winter chill, and to better understand the temperature responses of tree crops. PMID:21629649

  8. Arctic marine fishes and their fisheries in light of global change.

    PubMed

    Christiansen, Jørgen S; Mecklenburg, Catherine W; Karamushko, Oleg V

    2014-02-01

    In light of ocean warming and loss of Arctic sea ice, harvested marine fishes of boreal origin (and their fisheries) move poleward into yet unexploited parts of the Arctic seas. Industrial fisheries, already in place on many Arctic shelves, will radically affect the local fish species as they turn up as unprecedented bycatch. Arctic marine fishes are indispensable to ecosystem structuring and functioning, but they are still beyond credible assessment due to lack of basic biological data. The time for conservation actions is now, and precautionary management practices by the Arctic coastal states are needed to mitigate the impact of industrial fisheries in Arctic waters. We outline four possible conservation actions: scientific credibility, 'green technology', legitimate management and overarching coordination. © 2013 The Authors Global Change Biology Published by John Wiley & Sons Ltd.

  9. Application of wavelet analysis in determining the periodicity of global warming

    NASA Astrophysics Data System (ADS)

    Feng, Xiao

    2018-04-01

    In the last two decades of the last century, the global average temperature has risen by 0.48 ° C over 100 years ago. Since then, global warming has become a hot topic. Global warming will have complex and potential impacts on humans and the Earth. However, the negative impacts far outweigh the positive impacts. The most obvious external manifestation of global warming is temperature. Therefore, this study uses wavelet analysis study the characteristics of temperature time series, solve the periodicity of the sequence, find out the trend of temperature change and predict the extent of global warming in the future, so as to take the necessary precautionary measures.

  10. Emerging role of wetland methane emissions in driving 21st century climate change.

    PubMed

    Zhang, Zhen; Zimmermann, Niklaus E; Stenke, Andrea; Li, Xin; Hodson, Elke L; Zhu, Gaofeng; Huang, Chunlin; Poulter, Benjamin

    2017-09-05

    Wetland methane (CH 4 ) emissions are the largest natural source in the global CH 4 budget, contributing to roughly one third of total natural and anthropogenic emissions. As the second most important anthropogenic greenhouse gas in the atmosphere after CO 2 , CH 4 is strongly associated with climate feedbacks. However, due to the paucity of data, wetland CH 4 feedbacks were not fully assessed in the Intergovernmental Panel on Climate Change Fifth Assessment Report. The degree to which future expansion of wetlands and CH 4 emissions will evolve and consequently drive climate feedbacks is thus a question of major concern. Here we present an ensemble estimate of wetland CH 4 emissions driven by 38 general circulation models for the 21st century. We find that climate change-induced increases in boreal wetland extent and temperature-driven increases in tropical CH 4 emissions will dominate anthropogenic CH 4 emissions by 38 to 56% toward the end of the 21st century under the Representative Concentration Pathway (RCP2.6). Depending on scenarios, wetland CH 4 feedbacks translate to an increase in additional global mean radiative forcing of 0.04 W·m -2 to 0.19 W·m -2 by the end of the 21st century. Under the "worst-case" RCP8.5 scenario, with no climate mitigation, boreal CH 4 emissions are enhanced by 18.05 Tg to 41.69 Tg, due to thawing of inundated areas during the cold season (December to May) and rising temperature, while tropical CH 4 emissions accelerate with a total increment of 48.36 Tg to 87.37 Tg by 2099. Our results suggest that climate mitigation policies must consider mitigation of wetland CH 4 feedbacks to maintain average global warming below 2 °C.

  11. Emerging role of wetland methane emissions in driving 21st century climate change

    PubMed Central

    Zimmermann, Niklaus E.; Stenke, Andrea; Li, Xin; Hodson, Elke L.; Zhu, Gaofeng; Huang, Chunlin; Poulter, Benjamin

    2017-01-01

    Wetland methane (CH4) emissions are the largest natural source in the global CH4 budget, contributing to roughly one third of total natural and anthropogenic emissions. As the second most important anthropogenic greenhouse gas in the atmosphere after CO2, CH4 is strongly associated with climate feedbacks. However, due to the paucity of data, wetland CH4 feedbacks were not fully assessed in the Intergovernmental Panel on Climate Change Fifth Assessment Report. The degree to which future expansion of wetlands and CH4 emissions will evolve and consequently drive climate feedbacks is thus a question of major concern. Here we present an ensemble estimate of wetland CH4 emissions driven by 38 general circulation models for the 21st century. We find that climate change-induced increases in boreal wetland extent and temperature-driven increases in tropical CH4 emissions will dominate anthropogenic CH4 emissions by 38 to 56% toward the end of the 21st century under the Representative Concentration Pathway (RCP2.6). Depending on scenarios, wetland CH4 feedbacks translate to an increase in additional global mean radiative forcing of 0.04 W·m−2 to 0.19 W·m−2 by the end of the 21st century. Under the “worst-case” RCP8.5 scenario, with no climate mitigation, boreal CH4 emissions are enhanced by 18.05 Tg to 41.69 Tg, due to thawing of inundated areas during the cold season (December to May) and rising temperature, while tropical CH4 emissions accelerate with a total increment of 48.36 Tg to 87.37 Tg by 2099. Our results suggest that climate mitigation policies must consider mitigation of wetland CH4 feedbacks to maintain average global warming below 2 °C. PMID:28827347

  12. Global warming and the possible globalization of vector-borne diseases: a call for increased awareness and action.

    PubMed

    Balogun, Emmanuel O; Nok, Andrew J; Kita, Kiyoshi

    2016-01-01

    Human activities such as burning of fossil fuels play a role in upsetting a previously more balanced and harmonious ecosystem. Climate change-a significant variation in the usual pattern of Earth's average weather conditions is a product of this ecosystem imbalance, and the rise in the Earth's average temperature (global warming) is a prominent evidence. There is a correlation between global warming and the ease of transmission of infectious diseases. Therefore, with global health in focus, we herein opine a stepping-up of research activities regarding global warming and infectious diseases globally.

  13. Global Warming: Understanding and Teaching the Forecast. Part A The Greenhouse Effect.

    ERIC Educational Resources Information Center

    Andrews, Bill

    1993-01-01

    Provides information necessary for an interdisciplinary analysis of the greenhouse effect, enhanced greenhouse effect, global warming, global climate change, greenhouse gases, carbon dioxide, and scientific study of global warming for students grades 4-12. Several activity ideas accompany the information. (LZ)

  14. Competition between global warming and an abrupt collapse of the AMOC in Earth’s energy imbalance

    PubMed Central

    Drijfhout, Sybren

    2015-01-01

    A collapse of the Atlantic Meridional Overturning Circulation (AMOC) leads to global cooling through fast feedbacks that selectively amplify the response in the Northern Hemisphere (NH). How such cooling competes with global warming has long been a topic for speculation, but was never addressed using a climate model. Here it is shown that global cooling due to a collapsing AMOC obliterates global warming for a period of 15–20 years. Thereafter, the global mean temperature trend is reversed and becomes similar to a simulation without an AMOC collapse. The resulting surface warming hiatus lasts for 40–50 years. Global warming and AMOC-induced NH cooling are governed by similar feedbacks, giving rise to a global net radiative imbalance of similar sign, although the former is associated with surface warming, the latter with cooling. Their footprints in outgoing longwave and absorbed shortwave radiation are very distinct, making attribution possible. PMID:26437599

  15. Planning for Climate Change: What Should the Air Force Do

    DTIC Science & Technology

    2011-06-26

    cap that contains a patch depicting the world with a melting ice cube and the words ― Global Warming - It‘s Not Cool‖ embroidered on it. As I have...important to distinguish between these terms and the often used term ‗ global warming .‘ In a strict sense, global warming is defined as ―an average...longer).‖ 10 In common usage and popular discussion the terms ‗ global warming ‘ and ‗ global climate change‘ are often used interchangeably. The

  16. 40 CFR Appendix I to Subpart A of... - Global Warming Potentials (Mass Basis), Referenced to the Absolute GWP for the Adopted Carbon...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 17 2011-07-01 2011-07-01 false Global Warming Potentials (Mass Basis..., App. I Appendix I to Subpart A of Part 82—Global Warming Potentials (Mass Basis), Referenced to the... formula Global warming potential (time horizon) 20 years 100 years 500 years CFC-11 CFCl3 5000 4000 1400...

  17. 40 CFR Appendix I to Subpart A of... - Global Warming Potentials (Mass Basis), Referenced to the Absolute GWP for the Adopted Carbon...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 18 2014-07-01 2014-07-01 false Global Warming Potentials (Mass Basis..., App. I Appendix I to Subpart A of Part 82—Global Warming Potentials (Mass Basis), Referenced to the... formula Global warming potential (time horizon) 20 years 100 years 500 years CFC-11 CFCl3 5000 4000 1400...

  18. 40 CFR Appendix I to Subpart A of... - Global Warming Potentials (Mass Basis), Referenced to the Absolute GWP for the Adopted Carbon...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 18 2012-07-01 2012-07-01 false Global Warming Potentials (Mass Basis..., App. I Appendix I to Subpart A of Part 82—Global Warming Potentials (Mass Basis), Referenced to the... formula Global warming potential (time horizon) 20 years 100 years 500 years CFC-11 CFCl3 5000 4000 1400...

  19. 40 CFR Appendix I to Subpart A of... - Global Warming Potentials (Mass Basis), Referenced to the Absolute GWP for the Adopted Carbon...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 18 2013-07-01 2013-07-01 false Global Warming Potentials (Mass Basis..., App. I Appendix I to Subpart A of Part 82—Global Warming Potentials (Mass Basis), Referenced to the... formula Global warming potential (time horizon) 20 years 100 years 500 years CFC-11 CFCl3 5000 4000 1400...

  20. Grade 7 students' normative decision making in science learning about global warming through science technology and society (STS) approach

    NASA Astrophysics Data System (ADS)

    Luengam, Piyanuch; Tupsai, Jiraporn; Yuenyong, Chokchai

    2018-01-01

    This study reported Grade 7 students' normative decision making in teaching and learning about global warming through science technology and society (STS) approach. The participants were 43 Grade 7 students in Sungkom, Nongkhai, Thailand. The teaching and learning about global warming through STS approach had carried out for 5 weeks. The global warming unit through STS approach was developed based on framework of Yuenyong (2006) that consisted of five stages including (1) identification of social issues, (2) identification of potential solutions, (3) need for knowledge, (4) decision-making, and (5) socialization stage. Students' normative decision making was collected during their learning by questionnaire, participant observation, and students' tasks. Students' normative decision making were analyzed from both pre-and post-intervention and students' ideas during the intervention. The aspects of normative include influences of global warming on technology and society; influences of values, culture, and society on global warming; and influences of technology on global warming. The findings revealed that students have chance to learn science concerning with the relationship between science, technology, and society through their giving reasons about issues related to global warming. The paper will discuss implications of these for science teaching and learning through STS in Thailand.

  1. Saving Humanity from Catastrophic Cooling with Geo-Engineering

    NASA Astrophysics Data System (ADS)

    Haapala, K.; Singer, S. F.

    2016-02-01

    There are two kinds of ice ages; they are fundamentally different and therefore require different methods of mitigation: (i) Major (Milankovitch-style) glaciations occur on a 100,000-year time-scale and are controlled astronomically. (ii) "Little" ice ages were discovered in ice cores; they have been occurring on an approx. 1000-1500-yr cycle and are likely controlled by the Sun [Ref: Singer & Avery 2007. Unstoppable Global Warming: Every 1500 years]. The current cycle's cooling phase may be imminent - hence there may be urgent need for action. To stop onset of a major (Milankovitch) glaciation 1. Locate a "trigger" - a growing perennial snow/ice field - using satellites 2. Spread soot, to lower the albedo, and use Sun to melt 3. How much soot? How to apply soot? Learn by experimentation To lessen (regional, intermittent) cooling of DOB (Dansgaard-Oeschger-Bond) cycles1. Use greenhouse effect of manmade cirrus (ice particles) [Ref: Singer 1988. Meteorology and Atmospheric Physics 38:228 - 239]2. Inject water droplets (mist) near tropopause 3. Trace dispersion of cirrus cloud by satellite and observe warming at surface 4. How much water; over what area? How often to inject? Learn by experimentation Many scientific questions remain. While certainly interesting and important, there is really no need to delay the crucial and urgent tests of geo-engineering, designed to validate schemes of mitigation. Such proposed tests involve only minor costs and present negligible risks to the environment.

  2. Impacts of Dams and Global Warming on Fish Biodiversity in the Indo-Burma Hotspot

    PubMed Central

    Nam, So; Samejima, Hiromitsu; Watanabe, Katsutoshi; Grudpan, Chaiwut; Grudpan, Jarungjit; Magtoon, Wichan; Musikasinthorn, Prachya; Nguyen, Phuong Thanh; Praxaysonbath, Bounthob; Sato, Tomoyuki; Shimatani, Yukihiro; Suvarnaraksha, Apinun; Tanaka, Wataru; Thach, Phanara; Tran, Dac Dinh; Yamashita, Tomomi

    2016-01-01

    Both hydropower dams and global warming pose threats to freshwater fish diversity. While the extent of global warming may be reduced by a shift towards energy generation by large dams in order to reduce fossil-fuel use, such dams profoundly modify riverine habitats. Furthermore, the threats posed by dams and global warming will interact: for example, dams constrain range adjustments by fishes that might compensate for warming temperatures. Evaluation of their combined or synergistic effects is thus essential for adequate assessment of the consequences of planned water-resource developments. We made projections of the responses of 363 fish species within the Indo-Burma global biodiversity hotspot to the separate and joint impacts of dams and global warming. The hotspot encompasses the Lower Mekong Basin, which is the world’s largest freshwater capture fishery. Projections for 81 dam-building scenarios revealed progressive impacts upon projected species richness, habitable area, and the proportion of threatened species as generating capacity increased. Projections from 126 global-warming scenarios included a rise in species richness, a reduction in habitable area, and an increase in the proportion of threatened species; however, there was substantial variation in the extent of these changes among warming projections. Projections from scenarios that combined the effects of dams and global warming were derived either by simply adding the two threats, or by combining them in a synergistic manner that took account of the likelihood that habitat shifts under global warming would be constrained by river fragmentation. Impacts on fish diversity under the synergistic projections were 10–20% higher than those attributable to additive scenarios, and were exacerbated as generating capacity increased—particularly if CO2 emissions remained high. The impacts of dams, especially those on river mainstreams, are likely to be greater, more predictable and more immediately pressing for fishes than the consequences of global warming. Limits upon dam construction should therefore be a priority action for conserving fish biodiversity in the Indo-Burma hotspot. This would minimize synergistic impacts attributable to dams plus global warming, and help ensure the continued provision of ecosystem services represented by the Lower Mekong fishery. PMID:27532150

  3. Impacts of Dams and Global Warming on Fish Biodiversity in the Indo-Burma Hotspot.

    PubMed

    Kano, Yuichi; Dudgeon, David; Nam, So; Samejima, Hiromitsu; Watanabe, Katsutoshi; Grudpan, Chaiwut; Grudpan, Jarungjit; Magtoon, Wichan; Musikasinthorn, Prachya; Nguyen, Phuong Thanh; Praxaysonbath, Bounthob; Sato, Tomoyuki; Shibukawa, Koichi; Shimatani, Yukihiro; Suvarnaraksha, Apinun; Tanaka, Wataru; Thach, Phanara; Tran, Dac Dinh; Yamashita, Tomomi; Utsugi, Kenzo

    2016-01-01

    Both hydropower dams and global warming pose threats to freshwater fish diversity. While the extent of global warming may be reduced by a shift towards energy generation by large dams in order to reduce fossil-fuel use, such dams profoundly modify riverine habitats. Furthermore, the threats posed by dams and global warming will interact: for example, dams constrain range adjustments by fishes that might compensate for warming temperatures. Evaluation of their combined or synergistic effects is thus essential for adequate assessment of the consequences of planned water-resource developments. We made projections of the responses of 363 fish species within the Indo-Burma global biodiversity hotspot to the separate and joint impacts of dams and global warming. The hotspot encompasses the Lower Mekong Basin, which is the world's largest freshwater capture fishery. Projections for 81 dam-building scenarios revealed progressive impacts upon projected species richness, habitable area, and the proportion of threatened species as generating capacity increased. Projections from 126 global-warming scenarios included a rise in species richness, a reduction in habitable area, and an increase in the proportion of threatened species; however, there was substantial variation in the extent of these changes among warming projections. Projections from scenarios that combined the effects of dams and global warming were derived either by simply adding the two threats, or by combining them in a synergistic manner that took account of the likelihood that habitat shifts under global warming would be constrained by river fragmentation. Impacts on fish diversity under the synergistic projections were 10-20% higher than those attributable to additive scenarios, and were exacerbated as generating capacity increased-particularly if CO2 emissions remained high. The impacts of dams, especially those on river mainstreams, are likely to be greater, more predictable and more immediately pressing for fishes than the consequences of global warming. Limits upon dam construction should therefore be a priority action for conserving fish biodiversity in the Indo-Burma hotspot. This would minimize synergistic impacts attributable to dams plus global warming, and help ensure the continued provision of ecosystem services represented by the Lower Mekong fishery.

  4. Observational determination of albedo decrease caused by vanishing Arctic sea ice.

    PubMed

    Pistone, Kristina; Eisenman, Ian; Ramanathan, V

    2014-03-04

    The decline of Arctic sea ice has been documented in over 30 y of satellite passive microwave observations. The resulting darkening of the Arctic and its amplification of global warming was hypothesized almost 50 y ago but has yet to be verified with direct observations. This study uses satellite radiation budget measurements along with satellite microwave sea ice data to document the Arctic-wide decrease in planetary albedo and its amplifying effect on the warming. The analysis reveals a striking relationship between planetary albedo and sea ice cover, quantities inferred from two independent satellite instruments. We find that the Arctic planetary albedo has decreased from 0.52 to 0.48 between 1979 and 2011, corresponding to an additional 6.4 ± 0.9 W/m(2) of solar energy input into the Arctic Ocean region since 1979. Averaged over the globe, this albedo decrease corresponds to a forcing that is 25% as large as that due to the change in CO2 during this period, considerably larger than expectations from models and other less direct recent estimates. Changes in cloudiness appear to play a negligible role in observed Arctic darkening, thus reducing the possibility of Arctic cloud albedo feedbacks mitigating future Arctic warming.

  5. The Climate Impact of the Household Sector in China

    NASA Astrophysics Data System (ADS)

    Aunan, K.; Berntsen, T. K.; Rypdal, K.; Streets, D. G.; Woo, J.; Smith, K. R.

    2005-05-01

    If it ever enters into force the impact of the Kyoto Protocol on climate change is likely to be small. The USA and Australia have not ratified the Protocol and the initial emission reduction target was only 5.2 per cent. There is an increasing call for post-Kyoto climate treaties, whether they be global or regional, to widen the scope to take into account the impacts that air pollutants as tropospheric ozone and aerosols may have on climate. There are two main reasons for this. First and foremost, there is increasing evidence that these air pollutants play an important role in the climate system. Secondly, it is suggested that including radiative forcing components that also have adverse impacts on human health and environment may increase participation, which will be a prerequisite for future treaties to be effective. China's approval of the Kyoto Protocol in 2002 suggests that it is considering a more active role in the global effort to mitigate global warming. Given its many other priorities, however, China needs to understand what national policies would reduce its contribution to global warming in the most cost-efficient way and at the same time contribute the most to economic and social development in the country. The objective of the present study is to contribute knowledge that is helpful to Chinese policy makers dealing with this question. We do this by addressing emissions that according to the World Health Organisation are among the leading health risks to people in the developing world, China included, i.e. smoke from solid fuels burned in peoples' homes. In China, about 72 per cent of the population lives in rural or peri-urban areas where use of simple, low-efficiency household stoves for coal or biomass is common. Even though the residential sector stands for no more than 11 per cent of the primary energy consumption (biomass included), the sector contributes to, e.g., more than 70 per cent of Chinese emissions of black carbon, about a third of its methane emissions, and more than 40 per cent of the nmVOC emissions (which contributes to global warming through tropospheric ozone production). Thus, policies addressing these sources may be important in the context of global warming in addition to substantially improving living conditions for many people. The question we ask in the present paper is how important are they? Two global models are applied to estimate the climate impact on a global scale of emissions from the Chinese residential sector. To estimate the impact on the development of the global climate in terms of radiative forcing and global mean temperature of a possible reduction in these emissions we use a simple climate model. A global, three-dimensional photochemical tracer/transport model of the troposphere is used to model the changes in concentration of air pollutants that have a radiative forcing. Estimates for Chinese household sector emissions are taken from previous work on emission inventories in Asia.

  6. Weather it's Climate Change?

    NASA Astrophysics Data System (ADS)

    Bostrom, A.; Lashof, D.

    2004-12-01

    For almost two decades both national polls and in-depth studies of global warming perceptions have shown that people commonly conflate weather and global climate change. Not only are current weather events such as anecdotal heat waves, droughts or cold spells treated as evidence for or against global warming, but weather changes such as warmer weather and increased storm intensity and frequency are the consequences most likely to come to mind. Distinguishing weather from climate remains a challenge for many. This weather 'framing' of global warming may inhibit behavioral and policy change in several ways. Weather is understood as natural, on an immense scale that makes controlling it difficult to conceive. Further, these attributes contribute to perceptions that global warming, like weather, is uncontrollable. This talk presents an analysis of data from public opinion polls, focus groups, and cognitive studies regarding people's mental models of and 'frames' for global warming and climate change, and the role weather plays in these. This research suggests that priming people with a model of global warming as being caused by a "thickening blanket of carbon dioxide" that "traps heat" in the atmosphere solves some of these communications problems and makes it more likely that people will support policies to address global warming.

  7. Global probabilistic projections of extreme sea levels show intensification of coastal flood hazard.

    PubMed

    Vousdoukas, Michalis I; Mentaschi, Lorenzo; Voukouvalas, Evangelos; Verlaan, Martin; Jevrejeva, Svetlana; Jackson, Luke P; Feyen, Luc

    2018-06-18

    Global warming is expected to drive increasing extreme sea levels (ESLs) and flood risk along the world's coastlines. In this work we present probabilistic projections of ESLs for the present century taking into consideration changes in mean sea level, tides, wind-waves, and storm surges. Between the year 2000 and 2100 we project a very likely increase of the global average 100-year ESL of 34-76 cm under a moderate-emission-mitigation-policy scenario and of 58-172 cm under a business as usual scenario. Rising ESLs are mostly driven by thermal expansion, followed by contributions from ice mass-loss from glaciers, and ice-sheets in Greenland and Antarctica. Under these scenarios ESL rise would render a large part of the tropics exposed annually to the present-day 100-year event from 2050. By the end of this century this applies to most coastlines around the world, implying unprecedented flood risk levels unless timely adaptation measures are taken.

  8. Global sea-level rise is recognised, but flooding from anthropogenic land subsidence is ignored around northern Manila Bay, Philippines.

    PubMed

    Rodolfo, Kelvin S; Siringan, Fernando P

    2006-03-01

    Land subsidence resulting from excessive extraction of groundwater is particularly acute in East Asian countries. Some Philippine government sectors have begun to recognise that the sea-level rise of one to three millimetres per year due to global warming is a cause of worsening floods around Manila Bay, but are oblivious to, or ignore, the principal reason: excessive groundwater extraction is lowering the land surface by several centimetres to more than a decimetre per year. Such ignorance allows the government to treat flooding as a lesser problem that can be mitigated through large infrastructural projects that are both ineffective and vulnerable to corruption. Money would be better spent on preventing the subsidence by reducing groundwater pumping and moderating population growth and land use, but these approaches are politically and psychologically unacceptable. Even if groundwater use is greatly reduced and enlightened land-use practices are initiated, natural deltaic subsidence and global sea-level rise will continue to aggravate flooding, although at substantially lower rates.

  9. Decadal evolution of the surface energy budget during the fast warming and global warming hiatus periods in the ERA-interim

    NASA Astrophysics Data System (ADS)

    Hu, Xiaoming; Sejas, Sergio A.; Cai, Ming; Taylor, Patrick C.; Deng, Yi; Yang, Song

    2018-05-01

    The global-mean surface temperature has experienced a rapid warming from the 1980s to early-2000s but a muted warming since, referred to as the global warming hiatus in the literature. Decadal changes in deep ocean heat uptake are thought to primarily account for the rapid warming and subsequent slowdown. Here, we examine the role of ocean heat uptake in establishing the fast warming and warming hiatus periods in the ERA-Interim through a decomposition of the global-mean surface energy budget. We find the increase of carbon dioxide alone yields a nearly steady increase of the downward longwave radiation at the surface from the 1980s to the present, but neither accounts for the fast warming nor warming hiatus periods. During the global warming hiatus period, the transfer of latent heat energy from the ocean to atmosphere increases and the total downward radiative energy flux to the surface decreases due to a reduction of solar absorption caused primarily by an increase of clouds. The reduction of radiative energy into the ocean and the surface latent heat flux increase cause the ocean heat uptake to decrease and thus contribute to the slowdown of the global-mean surface warming. Our analysis also finds that in addition to a reduction of deep ocean heat uptake, the fast warming period is also driven by enhanced solar absorption due predominantly to a decrease of clouds and by enhanced longwave absorption mainly attributed to the air temperature feedback.

  10. Contribution of anthropogenic warming to California drought during 2012-2015

    NASA Astrophysics Data System (ADS)

    Williams, P.; Seager, R.; Abatzoglou, J. T.; Cook, B.; Smerdon, J. E.; Cook, E. R.

    2015-12-01

    California is currently in its fourth year of a drought that has caused record-breaking rates of ground-water extraction, fallowed agricultural fields, changes to water-use policy, dangrously low lake levels, and ecological disturbances such as large wildfires and bark-beetle outbreaks. A common and important question is: to what degree can the severity of this drought in California, or of any drought globally, be blamed on human-caused global warming? Here we present the most comprehensive accounting of the natural and anthropogenic contributions to drought variability to date, and we provide an in-depth evaluation of the recent extreme drought in California. A suite of climate datasets and multiple representations of atmospheric moisture demand are used to calculate many estimates of the self-calibrated Palmer Drought Severity Index, a proxy for near-surface soil moisture, across California from 1901-2014 at high spatial resolution. Based on the ensemble of calculations, California drought conditions were record-breaking in 2014, but probably not record-breaking in 2012-2014, contrary to prior findings. Regionally, the 2012-2014 drought was record-breaking in the agriculturally important southern Central Valley and highly populated coastal areas. Contributions of individual climate variables to recent drought are also examined, including the temperature component associated with anthropogenic warming. Precipitation is the primary driver of drought variability but anthropogenic warming is estimated to have accounted for 8-27% of the observed drought anomaly in 2012-2014 and 5-18% in 2014. Analyses will be updated through 2015 for this presentation. Although natural climate variability has often masked the background effects of warming on drought, the background effect is becoming increasingly detectable and important, particularly by increased the overall likelihood of extreme California droughts. The dramatic effects of the current drought in California, combined with knowledge that the background warming-driven drought trend will continue to intensify amidst a high degree of natural climate variability, highlight the critical need for a long-term outlook on drought resilience even though wet conditions are likely to soon mitigate the current drought event.

  11. Global warming without global mean precipitation increase?

    PubMed Central

    Salzmann, Marc

    2016-01-01

    Global climate models simulate a robust increase of global mean precipitation of about 1.5 to 2% per kelvin surface warming in response to greenhouse gas (GHG) forcing. Here, it is shown that the sensitivity to aerosol cooling is robust as well, albeit roughly twice as large. This larger sensitivity is consistent with energy budget arguments. At the same time, it is still considerably lower than the 6.5 to 7% K−1 decrease of the water vapor concentration with cooling from anthropogenic aerosol because the water vapor radiative feedback lowers the hydrological sensitivity to anthropogenic forcings. When GHG and aerosol forcings are combined, the climate models with a realistic 20th century warming indicate that the global mean precipitation increase due to GHG warming has, until recently, been completely masked by aerosol drying. This explains the apparent lack of sensitivity of the global mean precipitation to the net global warming recently found in observations. As the importance of GHG warming increases in the future, a clear signal will emerge. PMID:27386558

  12. Global warming without global mean precipitation increase?

    PubMed

    Salzmann, Marc

    2016-06-01

    Global climate models simulate a robust increase of global mean precipitation of about 1.5 to 2% per kelvin surface warming in response to greenhouse gas (GHG) forcing. Here, it is shown that the sensitivity to aerosol cooling is robust as well, albeit roughly twice as large. This larger sensitivity is consistent with energy budget arguments. At the same time, it is still considerably lower than the 6.5 to 7% K(-1) decrease of the water vapor concentration with cooling from anthropogenic aerosol because the water vapor radiative feedback lowers the hydrological sensitivity to anthropogenic forcings. When GHG and aerosol forcings are combined, the climate models with a realistic 20th century warming indicate that the global mean precipitation increase due to GHG warming has, until recently, been completely masked by aerosol drying. This explains the apparent lack of sensitivity of the global mean precipitation to the net global warming recently found in observations. As the importance of GHG warming increases in the future, a clear signal will emerge.

  13. The Effect of Land Use (Deforestation) on Global Changing and its consequences in Turkey

    NASA Astrophysics Data System (ADS)

    Onursal Denli, G.; Denli, H. H.

    2015-12-01

    Land use has generally been considered as a local environmental issue, but it is becoming a force of global importance. Global changes to forests, farmlands, waterways, and air are being driven by the need to provide food, water and shelter to more than six billion people. Global croplands, pastures, plantations and urban areas have expanded in recent decades, accompanied by large increases in energy, water and fertilizer consumption, along with considerable losses of biodiversity. Especially the forests influence climate through physical, chemical and biological processes that affect planetary energetics, the hydrologic cycle, and atmospheric composition. Such changes in land use have enabled humans to appropriate an increasing share of the planet's resources, but they also potentially undermine the capacity of ecosystems to sustain food production, maintain freshwater and forest resources, regulate climate and air quality. Global Warming and Climate Change are the two main fundamental problems facing Turkey as well as the World. The expedition and size of this change is becoming noticeably conspicuous now. According to the International Union for Conservation of Nature (IUCN), the global temperature has been increased of about 0.74 degree Celsius since the Industrial Revolution. Interdisciplinary science that integrates knowledge of the many interacting climate services of forests with the impacts of global change is necessary to identify and understand as yet unexplored feedbacks in the Earth system and the potential of forests to mitigate climate change. The general scientific opinions on the climate change states that in the past 50 years, global warming has effected the human life resulting with very obvious influences. High rates of deforestation within a country are most commonly linked to population growth and poverty. In Turkey, the forests are destroyed for various reasons resulting to a change in the climate. This study examines the causes of deforestation and its consequences on the climate change in Turkey. Suggestions on preventing negative effects are also given.

  14. An aftereffect of global warming on tropical Pacific decadal variability

    NASA Astrophysics Data System (ADS)

    Zheng, Jian; Liu, Qinyu; Wang, Chuanyang

    2018-03-01

    Studies have shown that global warming over the past six decades can weaken the tropical Pacific Walker circulation and maintain the positive phase of the Interdecadal Pacific Oscillation (IPO). Based on observations and model simulations, another aftereffect of global warming on IPO is found. After removing linear trends (global warming signals) from observations, however, the tropical Pacific climate still exhibited some obvious differences between two IPO negative phases. The boreal winter (DJF) equatorial central-eastern Pacific sea surface temperature (SST) was colder during the 1999-2014 period (P2) than that during 1961-1976 (P1). This difference may have been a result of global warming nonlinear modulation of precipitation; i.e., in the climatological rainy region, the core area of the tropical Indo-western Pacific warm pool receives more precipitation through the "wet-get-wetter" mechanism. Positive precipitation anomalies in the warm pool during P2 are much stronger than those during P1, even after subtracting the linear trend. Corresponding to the differences of precipitation, the Pacific Walker circulation is stronger in P2 than in P1. Consequent easterly winds over the equatorial Pacific led to a colder equatorial eastern-central Pacific during P2. Therefore, tropical Pacific climate differences between the two negative IPO phases are aftereffects of global warming. These aftereffects are supported by the results of coupled climate model experiments, with and without global warming.

  15. How much might additional half a degree from a global warming of 1.5°C affects the extreme precipitation change in China?

    NASA Astrophysics Data System (ADS)

    Li, W.; Jiang, Z.

    2017-12-01

    In order to strengthen the global respond to the dangerous of global warming, Paris Agreement sets out two long-term warming goals: limiting global warming to well below 2˚C and purse effort to below 1.5˚C above pre-industrial levels. However, future climate change risks in those two warming targets show significant regional differences. This article aims to study the intensity and frequency of extreme precipitation change over China under those two global warming targets by using CMIP5 models under RCP4.5 and RCP8.5 scenario. Focus is put on the effects of the additional half degree in changing the extreme precipitation. Results show that the changes of extreme precipitation are independent of the RCP scenarios when global warming reaches the same threshold. Intensity of extreme precipitation averaged over China increase by around 6% and 11% when global warming reaches 1.5˚C and 2˚C, respectively. The additional half a degree increase makes the intensity of extreme precipitation averaged over China to increase by 4.5%, which translates to an increase close to the Clausius-Clapeyron scaling. Return period decreases by 5 years for the extra half degree warming when the 20-year return values are considered at the reference level.

  16. Global Warming: How Much and Why?

    ERIC Educational Resources Information Center

    Lanouette, William

    1990-01-01

    Summarizes the history of the study of global warming and includes a discussion of the role of gases, like carbon dioxide, methane, and chlorofluorocarbon (CFC). Discusses modern research on the global warming, including computer modelling and the super-greenhouse effect. (YP)

  17. Historical Pattern and Future Trajectories of Terrestrial N2O Emission driven by Multi-factor Global Changes

    NASA Astrophysics Data System (ADS)

    Lu, C.; Tian, H.; Yang, J.; Zhang, B.; Xu, R.

    2015-12-01

    Nitrous oxide (N2O) is among the most important greenhouse gases only next to carbon dioxide (CO2) and methane (CH4) due to its long life time and high radiative forcing (with a global warming potential 265 times as much as CO2 at 100-year time horizon). The Atmospheric concentration of N2O has increased by 20% since pre-industrial era, and this increase plays a significant role in shaping anthropogenic climate change. However, compared to CO2- and CH4-related research, fewer studies have been performed in assessing and predicting the spatiotemporal patterns of N2O emission from natural and agricultural soils. Here we used a coupled biogeochemical model, DLEM, to quantify the historical and future changes in global terrestrial N2O emissions resulting from natural and anthropogenic perturbations including climate variability, atmospheric CO2 concentration, nitrogen deposition, land use and land cover changes, and agricultural land management practices (i.e., synthetic nitrogen fertilizer use, manure application, and irrigation etc.) over the period 1900-2099. We focused on inter-annual variation and long-term trend of terrestrial N2O emission driven by individual and combined environmental changes during historical and future periods. The sensitivity of N2O emission to climate, atmospheric composition, and human activities has been examined at biome-, latitudinal, continental and global scales. Future projections were conducted to identify the hot spots and hot time periods of global N2O emission under two emission scenarios (RCP2.6 and RCP8.5). It provides a modeling perspective for understanding human-induced N2O emission growth and developing potential management strategies to mitigate further atmospheric N2O increase and climate warming.

  18. Climate change and trace gases.

    PubMed

    Hansen, James; Sato, Makiko; Kharecha, Pushker; Russell, Gary; Lea, David W; Siddall, Mark

    2007-07-15

    Palaeoclimate data show that the Earth's climate is remarkably sensitive to global forcings. Positive feedbacks predominate. This allows the entire planet to be whipsawed between climate states. One feedback, the 'albedo flip' property of ice/water, provides a powerful trigger mechanism. A climate forcing that 'flips' the albedo of a sufficient portion of an ice sheet can spark a cataclysm. Inertia of ice sheet and ocean provides only moderate delay to ice sheet disintegration and a burst of added global warming. Recent greenhouse gas (GHG) emissions place the Earth perilously close to dramatic climate change that could run out of our control, with great dangers for humans and other creatures. Carbon dioxide (CO2) is the largest human-made climate forcing, but other trace constituents are also important. Only intense simultaneous efforts to slow CO2 emissions and reduce non-CO2 forcings can keep climate within or near the range of the past million years. The most important of the non-CO2 forcings is methane (CH4), as it causes the second largest human-made GHG climate forcing and is the principal cause of increased tropospheric ozone (O3), which is the third largest GHG forcing. Nitrous oxide (N2O) should also be a focus of climate mitigation efforts. Black carbon ('black soot') has a high global warming potential (approx. 2000, 500 and 200 for 20, 100 and 500 years, respectively) and deserves greater attention. Some forcings are especially effective at high latitudes, so concerted efforts to reduce their emissions could preserve Arctic ice, while also having major benefits for human health, agricultural productivity and the global environment.

  19. The tropical Pacific as a key pacemaker of the variable rates of global warming

    NASA Astrophysics Data System (ADS)

    Kosaka, Yu; Xie, Shang-Ping

    2016-09-01

    Global mean surface temperature change over the past 120 years resembles a rising staircase: the overall warming trend was interrupted by the mid-twentieth-century big hiatus and the warming slowdown since about 1998. The Interdecadal Pacific Oscillation has been implicated in modulations of global mean surface temperatures, but which part of the mode drives the variability in warming rates is unclear. Here we present a successful simulation of the global warming staircase since 1900 with a global ocean-atmosphere coupled model where tropical Pacific sea surface temperatures are forced to follow the observed evolution. Without prescribed tropical Pacific variability, the same model, on average, produces a continual warming trend that accelerates after the 1960s. We identify four events where the tropical Pacific decadal cooling markedly slowed down the warming trend. Matching the observed spatial and seasonal fingerprints we identify the tropical Pacific as a key pacemaker of the warming staircase, with radiative forcing driving the overall warming trend. Specifically, tropical Pacific variability amplifies the first warming epoch of the 1910s-1940s and determines the timing when the big hiatus starts and ends. Our method of removing internal variability from the observed record can be used for real-time monitoring of anthropogenic warming.

  20. Relationships Between Global Warming and Tropical Cyclone Activity in the Western North Pacific

    DTIC Science & Technology

    2007-09-01

    In this work, we investigate the relationships between global warming and tropical cyclone activity in the Western North Pacific (WNP). Our...hypothesis is that global warming impacts on TC activity occur through changes in the large scale environmental factors (LSEFs) known to be important in...averages. Using a least squares fit, we identify global warming signals in both the SST and vertical wind shear data across the WNP. These signals vary

  1. Policy on global warming: fiddling while the globe burns?

    PubMed

    Weston, Del

    2009-08-01

    To assess the extent that the health consequences of global warming and the responses to it take due account of its impact on poverty and inequality. Reviewing the relevant literature on global warming, proposed solutions and the impact. To date, too little attention has been paid to the health consequences arising from the increased poverty and inequality that global warming will bring. When these are combined with issues arising from the economic melt-down, food shortages, peak oil, etc. we are heading for a global public health crisis of immeasurable magnitude. Solutions lie in rethinking the global economic system that we have relied upon over the past several decades and the global institutions that have led and fed off that global system - the IMF, the World Bank and so on. Public health practitioners need to look and act globally more often. They need to better recognise the links between global warming and the global financial crisis. How the latter is dealt with will determine whether the former can be resolved. It is in this global political economy arena that future action in public health lies.

  2. Impacts of Seed Dispersal on Future Vegetation Structure under Changing Climates

    NASA Astrophysics Data System (ADS)

    Lee, E.; Schlosser, C. A.; Gao, X.; Prinn, R. G.

    2011-12-01

    As the impacts between land cover change, future climates and ecosystems are expected to be substantial, there are growing needs for improving the capability of simulating the global vegetation structure and landscape as realistically as possible. Current DGVMs assume ubiquitous availability of seeds and do not consider any seed dispersal mechanisms in plant migration process, which may influence the assessment of impacts to the ecosystem that rely on the vegetation structure changes (i.e., change in albedo, runoff, and terrestrial carbon sequestration capacity). This study incorporates time-varying wind-driven seed dispersal (i.e., the SEED configuration) as a dynamic constraint to the migration process of natural vegetation in the Community Land Model (CLM)-DGVM. The SEED configuration is validated using a satellite-derived tree cover dataset. Then the configuration is applied to project future vegetation structures and their implications for carbon fluxes, albedo, and hydrology under two climate mitigation scenarios (No-policy vs. 450ppm CO2 stabilization) for the 21st century. Our results show that regional changes of vegetation structure under changing climates are expected to be significant. For example, Alaska and Siberia are expected to experience substantial shifts of forestry structure, characterized by expansion of needle-leaf boreal forest and shrinkage of C3 grass Arctic. A suggested vulnerability assessment shows that vegetation structures in Alaska, Greenland, Central America, southern South America, East Africa and East Asia are susceptible to changing climates, regardless of the two climate mitigation scenarios. Regions such as Greenland, Tibet, South Asia and Northern Australia, however, may substantially alleviate their risks of rapid change in vegetation structure, given a robust greenhouse gas stabilization target. Proliferation of boreal forests in the high latitudes is expected to amplify the warming trend (i.e., a positive feedback to climate), if no mitigation policy is implemented. In contrast, under the 450ppm scenario, vegetation structure may buffer the warming trend, which is a negative feedback to climate. Moreover, runoff changes due to vegetation shifts may offset or complement runoff changes under anthropogenic climate warming.

  3. Drylands face potential threat under 2 °C global warming target

    NASA Astrophysics Data System (ADS)

    Huang, Jianping; Yu, Haipeng; Dai, Aiguo; Wei, Yun; Kang, Litai

    2017-06-01

    The Paris Agreement aims to limit global mean surface warming to less than 2 °C relative to pre-industrial levels. However, we show this target is acceptable only for humid lands, whereas drylands will bear greater warming risks. Over the past century, surface warming over global drylands (1.2-1.3 °C) has been 20-40% higher than that over humid lands (0.8-1.0 °C), while anthropogenic CO2 emissions generated from drylands (~230 Gt) have been only ~30% of those generated from humid lands (~750 Gt). For the twenty-first century, warming of 3.2-4.0 °C (2.4-2.6 °C) over drylands (humid lands) could occur when global warming reaches 2.0 °C, indicating ~44% more warming over drylands than humid lands. Decreased maize yields and runoff, increased long-lasting drought and more favourable conditions for malaria transmission are greatest over drylands if global warming were to rise from 1.5 °C to 2.0 °C. Our analyses indicate that ~38% of the world's population living in drylands would suffer the effects of climate change due to emissions primarily from humid lands. If the 1.5 °C warming limit were attained, the mean warming over drylands could be within 3.0 °C therefore it is necessary to keep global warming within 1.5 °C to prevent disastrous effects over drylands.

  4. Determinants of voluntary carbon disclosure in the corporate real estate sector of Malaysia.

    PubMed

    Kalu, Joseph Ufere; Buang, Alias; Aliagha, Godwin Uche

    2016-11-01

    Corporate real estate management holds the tent that risk which is not understood cannot be measured or managed. The effect of global warming on real estate investment and need for climate change mitigation through disclosures by companies of carbon emission information has becomes a sine-qua-non for the management of companies' carbon footprint and reducing its overall effect on global warming. This study applied the structural equation modeling technique to determine the determinants influencing Carbon Disclosure in Real Estate Companies in a developing economy. The analysis was based on 2013 annual reports of 126 property sector companies listed in Malaysia stock exchange market. The model was validated through convergent validity, discriminant validity, composite reliability and goodness of fit. The result reveals that social and financial market were critical determinant factors for carbon disclosure while the economic and institutional factors did not achieve significant effect on voluntary carbon disclosure. The result is consistent with legitimacy theory and agency theories. The implication of this finding is that increase in public education and awareness will enhance community demand for disclosure from companies and they will increase level of disclosure; also as financial institutions consider sustainability practice as a viable investment and term for credit financing, companies will be motivated to increase disclosure. Copyright © 2016 Elsevier Ltd. All rights reserved.

  5. Dicyandiamide and 3,4-dimethyl pyrazole phosphate decrease N2O emissions from grassland but dicyandiamide produces deleterious effects in clover.

    PubMed

    Macadam, Xana Melissa Belastegui; del Prado, Agustin; Merino, Pilar; Estavillo, José María; Pinto, Miriam; González-Murua, Carmen

    2003-12-01

    The application of nitrogen fertilisers leads to different ecological problems such as nitrate leaching and the release of nitrogenous gases. N2O is a gas involved in global warming, therefore, agricultural soils can be regarded as a source of global warming. Soil N2O production comes from both the nitrification and denitrification processes. From an ecological viewpoint, using nitrification inhibitors with ammonium based fertilisers may be a potential management strategy to lower the fluxes of N2O, thus decreasing its undesirable effect. In this study, the nitrification inhibitors (NIs) dicyandiamide (DCD) and 3,4-dimethyl pyrazole phosphate (DMPP) have been evaluated as management tools to mitigate N2O emissions from mineral fertilisation and slurry application in grassland systems (experiments 1 and 2), and to assess the phytotoxic effect of these inhibitors per se on clover (experiment 3). Both nitrification inhibitors acted in maintaining soil nitrogen (N) in ammonium form, decreasing cumulative N2O emissions. DCD, but not DMPP, produced phytotoxic effects and yield reduction in white clover. A nutrient imbalance, which led to a senescence process visually observed as chlorosis and necrosis at the border of the leaves, was noted.

  6. Less than 2 °C warming by 2100 unlikely

    NASA Astrophysics Data System (ADS)

    Raftery, Adrian E.; Zimmer, Alec; Frierson, Dargan M. W.; Startz, Richard; Liu, Peiran

    2017-09-01

    The recently published Intergovernmental Panel on Climate Change (IPCC) projections to 2100 give likely ranges of global temperature increase in four scenarios for population, economic growth and carbon use. However, these projections are not based on a fully statistical approach. Here we use a country-specific version of Kaya's identity to develop a statistically based probabilistic forecast of CO2 emissions and temperature change to 2100. Using data for 1960-2010, including the UN's probabilistic population projections for all countries, we develop a joint Bayesian hierarchical model for Gross Domestic Product (GDP) per capita and carbon intensity. We find that the 90% interval for cumulative CO2 emissions includes the IPCC's two middle scenarios but not the extreme ones. The likely range of global temperature increase is 2.0-4.9 °C, with median 3.2 °C and a 5% (1%) chance that it will be less than 2 °C (1.5 °C). Population growth is not a major contributing factor. Our model is not a `business as usual' scenario, but rather is based on data which already show the effect of emission mitigation policies. Achieving the goal of less than 1.5 °C warming will require carbon intensity to decline much faster than in the recent past.

  7. Arctic Sea Ice in a 1.5°C Warmer World

    NASA Astrophysics Data System (ADS)

    Niederdrenk, Anne Laura; Notz, Dirk

    2018-02-01

    We examine the seasonal cycle of Arctic sea ice in scenarios with limited future global warming. To do so, we analyze two sets of observational records that cover the observational uncertainty of Arctic sea ice loss per degree of global warming. The observations are combined with 100 simulations of historical and future climate evolution from the Max Planck Institute Earth System Model Grand Ensemble. Based on the high-sensitivity observations, we find that Arctic September sea ice is lost with low probability (P≈ 10%) for global warming of +1.5°C above preindustrial levels and with very high probability (P> 99%) for global warming of +2°C above preindustrial levels. For the low-sensitivity observations, September sea ice is extremely unlikely to disappear for +1.5°C warming (P≪ 1%) and has low likelihood (P≈ 10%) to disappear even for +2°C global warming. For March, both observational records suggest a loss of 15% to 20% of Arctic sea ice area for 1.5°C to 2°C global warming.

  8. Stochastic Modeling and Global Warming Trend Extraction For Ocean Acoustic Travel Times.

    DTIC Science & Technology

    1995-01-06

    consideration and that these models can not currently be relied upon by themselves to predict global warming . Experimental data is most certainly needed, not...only to measure global warming itself, but to help improve the ocean model themselves. (AN)

  9. Accounting for radiative forcing from albedo change in future global land-use scenarios

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jones, Andrew D.; Calvin, Katherine V.; Collins, William D.

    2015-08-01

    We demonstrate the effectiveness of a new method for quantifying radiative forcing from land use and land cover change (LULCC) within an integrated assessment model, the Global Change Assessment Model (GCAM). The method relies on geographically differentiated estimates of radiative forcing from albedo change associated with major land cover transitions derived from the Community Earth System Model. We find that conversion of 1 km² of woody vegetation (forest and shrublands) to non-woody vegetation (crops and grassland) yields between 0 and –0.71 nW/m² of globally averaged radiative forcing determined by the vegetation characteristics, snow dynamics, and atmospheric radiation environment characteristic withinmore » each of 151 regions we consider globally. Across a set of scenarios designed to span a range of potential future LULCC, we find LULCC forcing ranging from –0.06 to –0.29 W/m² by 2070 depending on assumptions regarding future crop yield growth and whether climate policy favors afforestation or bioenergy crops. Inclusion of this previously uncounted forcing in the policy targets driving future climate mitigation efforts leads to changes in fossil fuel emissions on the order of 1.5 PgC/yr by 2070 for a climate forcing limit of 4.5 Wm –2, corresponding to a 12–67 % change in fossil fuel emissions depending on the scenario. Scenarios with significant afforestation must compensate for albedo-induced warming through additional emissions reductions, and scenarios with significant deforestation need not mitigate as aggressively due to albedo-induced cooling. In all scenarios considered, inclusion of albedo forcing in policy targets increases forest and shrub cover globally.« less

  10. Impacts of artificial ocean alkalinization on the carbon cycle and climate in Earth system simulations

    NASA Astrophysics Data System (ADS)

    González, Miriam Ferrer; Ilyina, Tatiana

    2016-06-01

    Using the state-of-the-art emissions-driven Max Planck Institute Earth system model, we explore the impacts of artificial ocean alkalinization (AOA) with a scenario based on the Representative Concentration Pathway (RCP) framework. Addition of 114 Pmol of alkalinity to the surface ocean stabilizes atmospheric CO2 concentration to RCP4.5 levels under RCP8.5 emissions. This scenario removes 940 GtC from the atmosphere and mitigates 1.5 K of global warming within this century. The climate adjusts to the lower CO2 concentration preventing the loss of sea ice and high sea level rise. Seawater pH and the carbonate saturation state (Ω) rise substantially above levels of the current decade. Pronounced differences in regional sensitivities to AOA are projected, with the Arctic Ocean and tropical oceans emerging as hot spots for biogeochemical changes induced by AOA. Thus, the CO2 mitigation potential of AOA comes at a price of an unprecedented ocean biogeochemistry perturbation with unknown ecological consequences.

  11. Tropical coral reef habitat in a geoengineered, high-CO2 world

    NASA Astrophysics Data System (ADS)

    Couce, E.; Irvine, P. J.; Gregorie, L. J.; Ridgwell, A.; Hendy, E. J.

    2013-05-01

    Continued anthropogenic CO2 emissions are expected to impact tropical coral reefs by further raising sea surface temperatures (SST) and intensifying ocean acidification (OA). Although geoengineering by means of solar radiation management (SRM) may mitigate temperature increases, OA will persist, raising important questions regarding the impact of different stressor combinations. We apply statistical Bioclimatic Envelope Models to project changes in shallow water tropical coral reef habitat as a single niche (without resolving biodiversity or community composition) under various representative concentration pathway and SRM scenarios, until 2070. We predict substantial reductions in habitat suitability centered on the Indo-Pacific Warm Pool under net anthropogenic radiative forcing of ≥3.0 W/m2. The near-term dominant risk to coral reefs is increasing SSTs; below 3 W/m2 reasonably favorable conditions are maintained, even when achieved by SRM with persisting OA. "Optimal" mitigation occurs at 1.5 W/m2 because tropical SSTs overcool in a fully geoengineered (i.e., preindustrial global mean temperature) world.

  12. A dataset mapping the potential biophysical effects of vegetation cover change

    NASA Astrophysics Data System (ADS)

    Duveiller, Gregory; Hooker, Josh; Cescatti, Alessandro

    2018-02-01

    Changing the vegetation cover of the Earth has impacts on the biophysical properties of the surface and ultimately on the local climate. Depending on the specific type of vegetation change and on the background climate, the resulting competing biophysical processes can have a net warming or cooling effect, which can further vary both spatially and seasonally. Due to uncertain climate impacts and the lack of robust observations, biophysical effects are not yet considered in land-based climate policies. Here we present a dataset based on satellite remote sensing observations that provides the potential changes i) of the full surface energy balance, ii) at global scale, and iii) for multiple vegetation transitions, as would now be required for the comprehensive evaluation of land based mitigation plans. We anticipate that this dataset will provide valuable information to benchmark Earth system models, to assess future scenarios of land cover change and to develop the monitoring, reporting and verification guidelines required for the implementation of mitigation plans that account for biophysical land processes.

  13. Carbon sequestration to mitigate climate change

    USGS Publications Warehouse

    Sundquist, Eric; Burruss, Robert; Faulkner, Stephen; Gleason, Robert; Harden, Jennifer; Kharaka, Yousif; Tieszen, Larry; Waldrop, Mark

    2008-01-01

    Human activities, especially the burning of fossil fuels such as coal, oil, and gas, have caused a substantial increase in the concentration of carbon dioxide (CO2) in the atmosphere. This increase in atmospheric CO2 - from about 280 to more than 380 parts per million (ppm) over the last 250 years - is causing measurable global warming. Potential adverse impacts include sea-level rise; increased frequency and intensity of wildfires, floods, droughts, and tropical storms; changes in the amount, timing, and distribution of rain, snow, and runoff; and disturbance of coastal marine and other ecosystems. Rising atmospheric CO2 is also increasing the absorption of CO2 by seawater, causing the ocean to become more acidic, with potentially disruptive effects on marine plankton and coral reefs. Technically and economically feasible strategies are needed to mitigate the consequences of increased atmospheric CO2. The United States needs scientific information to develop ways to reduce human-caused CO2 emissions and to remove CO2 from the atmosphere.

  14. A dataset mapping the potential biophysical effects of vegetation cover change

    PubMed Central

    Duveiller, Gregory; Hooker, Josh; Cescatti, Alessandro

    2018-01-01

    Changing the vegetation cover of the Earth has impacts on the biophysical properties of the surface and ultimately on the local climate. Depending on the specific type of vegetation change and on the background climate, the resulting competing biophysical processes can have a net warming or cooling effect, which can further vary both spatially and seasonally. Due to uncertain climate impacts and the lack of robust observations, biophysical effects are not yet considered in land-based climate policies. Here we present a dataset based on satellite remote sensing observations that provides the potential changes i) of the full surface energy balance, ii) at global scale, and iii) for multiple vegetation transitions, as would now be required for the comprehensive evaluation of land based mitigation plans. We anticipate that this dataset will provide valuable information to benchmark Earth system models, to assess future scenarios of land cover change and to develop the monitoring, reporting and verification guidelines required for the implementation of mitigation plans that account for biophysical land processes. PMID:29461538

  15. A Deterministic Model to Quantify Risk and Guide Mitigation Strategies to Reduce Bluetongue Virus Transmission in California Dairy Cattle

    PubMed Central

    Mayo, Christie; Shelley, Courtney; MacLachlan, N. James; Gardner, Ian; Hartley, David; Barker, Christopher

    2016-01-01

    The global distribution of bluetongue virus (BTV) has been changing recently, perhaps as a result of climate change. To evaluate the risk of BTV infection and transmission in a BTV-endemic region of California, sentinel dairy cows were evaluated for BTV infection, and populations of Culicoides vectors were collected at different sites using carbon dioxide. A deterministic model was developed to quantify risk and guide future mitigation strategies to reduce BTV infection in California dairy cattle. The greatest risk of BTV transmission was predicted within the warm Central Valley of California that contains the highest density of dairy cattle in the United States. Temperature and parameters associated with Culicoides vectors (transmission probabilities, carrying capacity, and survivorship) had the greatest effect on BTV’s basic reproduction number, R0. Based on these analyses, optimal control strategies for reducing BTV infection risk in dairy cattle will be highly reliant upon early efforts to reduce vector abundance during the months prior to peak transmission. PMID:27812161

  16. Potential impacts of global warming on the diversity and distribution of stream insects in South Korea.

    PubMed

    Li, Fengqing; Kwon, Yong-Su; Bae, Mi-Jung; Chung, Namil; Kwon, Tae-Sung; Park, Young-Seuk

    2014-04-01

    Globally, the East Asian monsoon region is one of the richest environments in terms of biodiversity. The region is undergoing rapid human development, yet its river ecosystems have not been well studied. Global warming represents a major challenge to the survival of species in this region and makes it necessary to assess and reduce the potential consequences of warming on species of conservation concern. We projected the effects of global warming on stream insect (Ephemeroptera, Odonata, Plecoptera, and Trichoptera [EOPT]) diversity and predicted the changes of geographical ranges for 121 species throughout South Korea. Plecoptera was the most sensitive (decrease of 71.4% in number of species from the 2000s through the 2080s) order, whereas Odonata benefited (increase of 66.7% in number of species from the 2000s through the 2080s) from the effects of global warming. The impact of global warming on stream insects was predicted to be minimal prior to the 2060s; however, by the 2080s, species extirpation of up to 20% in the highland areas and 2% in the lowland areas were predicted. The projected responses of stream insects under global warming indicated that species occupying specific habitats could undergo major reductions in habitat. Nevertheless, habitat of 33% of EOPT (including two-thirds of Odonata and one-third of Ephemeroptera, Plecoptera, and Trichoptera) was predicted to increase due to global warming. The community compositions predicted by generalized additive models varied over this century, and a large difference in community structure in the highland areas was predicted between the 2000s and the 2080s. However, stream insect communities, especially Odonata, Plecoptera, and Trichoptera, were predicted to become more homogenous under global warming. © 2013 Society for Conservation Biology.

  17. Global change - Geoengineering and space exploration

    NASA Technical Reports Server (NTRS)

    Jenkins, Lyle M.

    1992-01-01

    Geoengineering options and alternatives are proposed for mitigating the effects of global climate change and depletion of the ozone layer. Geoengineering options were discussed by the National Academy of Science Panel on the Policy Implications of Greenhouse Warming. Several of the ideas conveyed in their published report are space-based or depend on space systems for implementation. Among the geoengineering options using space that are discussed include the use of space power systems as an alternative to fossil fuels for generating electricity, the use of lunar He-3 to aid in the development of fusion energy, and the establishment of a lunar power system for solar energy conversion and electric power beaming back to earth. Other geoengineering options are discussed. They include the space-based modulation of hurricane forces and two space-based approaches in dealing with ozone layer depletion. The engineering challenges and policy implementation issues are discussed for these geongineering options.

  18. Mode, load, and specific climate impact from passenger trips.

    PubMed

    Borken-Kleefeld, Jens; Fuglestvedt, Jan; Berntsen, Terje

    2013-07-16

    The climate impact from a long-distance trip can easily vary by a factor of 10 per passenger depending on mode choice, vehicle efficiency, and occupancy. In this paper we compare the specific climate impact of long-distance car travel with coach, train, or air trips. We account for both, CO2 emissions and short-lived climate forcers. This particularly affects the ranking of aircraft's climate impact relative to other modes. We calculate the specific impact for the Global Warming Potential and the Global Temperature Change Potential, considering time horizons between 20 and 100 years, and compare with results accounting only for CO2 emissions. The car's fuel efficiency and occupancy are central whether the impact from a trip is as high as from air travel or as low as from train travel. These results can be used for carbon-offsetting schemes, mode choice and transportation planning for climate mitigation.

  19. Automobiles and global warming: Alternative fuels and other options for carbon dioxide emissions reduction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sagar, A.D.

    Automobiles are a source of considerable pollution at the global level, including a significant fraction of the total greenhouse gas emissions. Alternative fuels have received some attention as potential options to curtail the carbon dioxide emissions from motor vehicles. This article discusses the feasibility and desirability (from a technical as well as a broader environmental perspective) of the large-scale production and use of alternative fuels as a strategy to mitigate automotive carbon dioxide emissions. Other options such as improving vehicle efficiency and switching to more efficient modes of passenger transportation are also discussed. These latter options offer an effective andmore » immediate way to tackle the greenhouse and other pollutant emission from automobiles, especially as the limitations of currently available alternative fuels and the technological and other constraints for potential future alternatives are revealed.« less

  20. Simulated Effect of Carbon Cycle Feedback on Climate Response to Solar Geoengineering

    NASA Astrophysics Data System (ADS)

    Cao, Long; Jiang, Jiu

    2017-12-01

    Most modeling studies investigate climate effects of solar geoengineering under prescribed atmospheric CO2, thereby neglecting potential climate feedbacks from the carbon cycle. Here we use an Earth system model to investigate interactive feedbacks between solar geoengineering, global carbon cycle, and climate change. We design idealized sunshade geoengineering simulations to prevent global warming from exceeding 2°C above preindustrial under a CO2 emission scenario with emission mitigation starting from middle of century. By year 2100, solar geoengineering reduces the burden of atmospheric CO2 by 47 PgC with enhanced carbon storage in the terrestrial biosphere. As a result of reduced atmospheric CO2, consideration of the carbon cycle feedback reduces required insolation reduction in 2100 from 2.0 to 1.7 W m-2. With higher climate sensitivity the effect from carbon cycle feedback becomes more important. Our study demonstrates the importance of carbon cycle feedback in climate response to solar geoengineering.

  1. Impacts of climate extremes on gross primary productivity of terrestrial ecosystems in conterminous USA

    NASA Astrophysics Data System (ADS)

    Wu, X.; Xiao, X.; Zhang, Y.; Zhang, G.

    2016-12-01

    By offsetting one-third of anthropogenic carbon emissions, terrestrial carbon uptake mitigates atmospheric CO2 concentration and consequent global warming. However, the current global warming trend is inducing more climate extremes, which in turn cause large changes in terrestrial carbon uptake. Here we report the seasonal and regional anomalies of gross primary productivity (GPP) across the conterminous USA (CONUS) in response to two contrasting climate extremes: the cool and wet 2009 versus the warm and dry 2012. We used the Vegetation Photosynthesis Model (VPM, Xiao et al., 2006), MODIS images and NCEP/NARR climate data to estimate GPP from 2009-2014, and evaluated the VPM-predicted GPP with the estimated GPP from the CO2 eddy flux tower sites (24 sites). We analyze the correlation between the anomalies of the continental GPP and the anomalies of temperature and precipitation. The results show a substantial, negative GPP anomaly in 2009, in addition to the positive GPP anomaly in 2012, which was already reported in a previous study (Wolf et al., 2016). We also found that GPP anomalies of different climate regions in four seasons are controlled by either temperature or precipitation. Our study shows the robustness of the VPM to simulate GPP under the condition of climate extremes, and highlights the need of investigating the impacts of cooling events on the terrestrial carbon cycle. Our finding also suggests that there is no uniform pattern for terrestrial ecosystems responding to climate extremes, and that climate extremes should be studied in a case-by-case, location-based approach.

  2. Biogeophysical Impacts of Land-Use Change on Climate Extremes in Low-Emission Scenarios: Results From HAPPI-Land

    NASA Astrophysics Data System (ADS)

    Hirsch, Annette L.; Guillod, Benoit P.; Seneviratne, Sonia I.; Beyerle, Urs; Boysen, Lena R.; Brovkin, Victor; Davin, Edouard L.; Doelman, Jonathan C.; Kim, Hyungjun; Mitchell, Daniel M.; Nitta, Tomoko; Shiogama, Hideo; Sparrow, Sarah; Stehfest, Elke; van Vuuren, Detlef P.; Wilson, Simon

    2018-03-01

    The impacts of land use have been shown to have considerable influence on regional climate. With the recent international commitment to limit global warming to well below 2°C, emission reductions need to be ambitious and could involve major land-use change (LUC). Land-based mitigation efforts to curb emissions growth include increasing terrestrial carbon sequestration through reforestation, or the adoption of bioenergy crops. These activities influence local climate through biogeophysical feedbacks, however, it is uncertain how important they are for a 1.5° climate target. This was the motivation for HAPPI-Land: the half a degree additional warming, prognosis, and projected impacts—land-use scenario experiment. Using four Earth system models, we present the first multimodel results from HAPPI-Land and demonstrate the critical role of land use for understanding the characteristics of regional climate extremes in low-emission scenarios. In particular, our results show that changes in temperature extremes due to LUC are comparable in magnitude to changes arising from half a degree of global warming. We also demonstrate that LUC contributes to more than 20% of the change in temperature extremes for large land areas concentrated over the Northern Hemisphere. However, we also identify sources of uncertainty that influence the multimodel consensus of our results including how LUC is implemented and the corresponding biogeophysical feedbacks that perturb climate. Therefore, our results highlight the urgent need to resolve the challenges in implementing LUC across models to quantify the impacts and consider how LUC contributes to regional changes in extremes associated with sustainable development pathways.

  3. Biogeophysical Impacts of Land‐Use Change on Climate Extremes in Low‐Emission Scenarios: Results From HAPPI‐Land

    PubMed Central

    Seneviratne, Sonia I.; Beyerle, Urs; Boysen, Lena R.; Brovkin, Victor; Davin, Edouard L.; Doelman, Jonathan C.; Kim, Hyungjun; Mitchell, Daniel M.; Nitta, Tomoko; Shiogama, Hideo; Sparrow, Sarah; Stehfest, Elke; van Vuuren, Detlef P.; Wilson, Simon

    2018-01-01

    Abstract The impacts of land use have been shown to have considerable influence on regional climate. With the recent international commitment to limit global warming to well below 2°C, emission reductions need to be ambitious and could involve major land‐use change (LUC). Land‐based mitigation efforts to curb emissions growth include increasing terrestrial carbon sequestration through reforestation, or the adoption of bioenergy crops. These activities influence local climate through biogeophysical feedbacks, however, it is uncertain how important they are for a 1.5° climate target. This was the motivation for HAPPI‐Land: the half a degree additional warming, prognosis, and projected impacts—land‐use scenario experiment. Using four Earth system models, we present the first multimodel results from HAPPI‐Land and demonstrate the critical role of land use for understanding the characteristics of regional climate extremes in low‐emission scenarios. In particular, our results show that changes in temperature extremes due to LUC are comparable in magnitude to changes arising from half a degree of global warming. We also demonstrate that LUC contributes to more than 20% of the change in temperature extremes for large land areas concentrated over the Northern Hemisphere. However, we also identify sources of uncertainty that influence the multimodel consensus of our results including how LUC is implemented and the corresponding biogeophysical feedbacks that perturb climate. Therefore, our results highlight the urgent need to resolve the challenges in implementing LUC across models to quantify the impacts and consider how LUC contributes to regional changes in extremes associated with sustainable development pathways.

  4. Drought causes reduced growth of trembling aspen in western Canada.

    PubMed

    Chen, Lei; Huang, Jian-Guo; Alam, Syed Ashraful; Zhai, Lihong; Dawson, Andria; Stadt, Kenneth J; Comeau, Philip G

    2017-07-01

    Adequate and advance knowledge of the response of forest ecosystems to temperature-induced drought is critical for a comprehensive understanding of the impacts of global climate change on forest ecosystem structure and function. Recent massive decline in aspen-dominated forests and an increased aspen mortality in boreal forests have been associated with global warming, but it is still uncertain whether the decline and mortality are driven by drought. We used a series of ring-width chronologies from 40 trembling aspen (Populus tremuloides Michx.) sites along a latitudinal gradient (from 52° to 58°N) in western Canada, in an attempt to clarify the impacts of drought on aspen growth by using Standardized Precipitation Index (SPI) and Standardized Precipitation Evapotranspiration Index (SPEI). Results indicated that prolonged and large-scale droughts had a strong negative impact on trembling aspen growth. Furthermore, the spatiotemporal variability of drought indices is useful for explaining the spatial heterogeneity in the radial growth of trembling aspen. Due to ongoing global warming and rising temperatures, it is likely that severer droughts with a higher frequency will occur in western Canada. As trembling aspen is sensitive to drought, we suggest that drought indices could be applied to monitor the potential effects of increased drought stress on aspen trees growth, achieve classification of eco-regions and develop effective mitigation strategies to maintain western Canadian boreal forests. © 2017 John Wiley & Sons Ltd.

  5. Thermodynamic and dynamic responses of the hydrological cycle to solar dimming

    NASA Astrophysics Data System (ADS)

    Smyth, Jane E.; Russotto, Rick D.; Storelvmo, Trude

    2017-05-01

    The fundamental role of the hydrological cycle in the global climate system motivates a thorough evaluation of its responses to climate change and mitigation. The Geoengineering Model Intercomparison Project (GeoMIP) is a coordinated international effort to assess the climate impacts of solar geoengineering, a proposal to counteract global warming with a reduction in incoming solar radiation. We assess the mechanisms underlying the rainfall response to a simplified simulation of such solar dimming (G1) in the suite of GeoMIP models and identify robust features. While solar geoengineering nearly restores preindustrial temperatures, the global hydrology is altered. Tropical precipitation changes dominate the response across the model suite, and these are driven primarily by shifts of the Hadley circulation cells. We report a damping of the seasonal migration of the Intertropical Convergence Zone (ITCZ) in G1, associated with preferential cooling of the summer hemisphere, and annual mean ITCZ shifts in some models that are correlated with the warming of one hemisphere relative to the other. Dynamical changes better explain the varying tropical rainfall anomalies between models than changes in relative humidity or the Clausius-Clapeyron scaling of precipitation minus evaporation (P - E), given that the relative humidity and temperature responses are robust across the suite. Strong reductions in relative humidity over vegetated land regions are likely related to the CO2 physiological response in plants. The uncertainty in the spatial distribution of tropical P - E changes highlights the need for cautious consideration and continued study before any implementation of solar geoengineering.

  6. National Security Implications of Global Warming Policy

    DTIC Science & Technology

    2010-03-01

    Although numerous historical examples demonstrate how actual climate change has contributed to the rise and fall of powers, global warming , in and of...become convinced that global warming is universally bad and humans are the primary cause, political leaders may develop ill-advised policies restricting

  7. An attack on science? Media use, trust in scientists, and perceptions of global warming.

    PubMed

    Hmielowski, Jay D; Feldman, Lauren; Myers, Teresa A; Leiserowitz, Anthony; Maibach, Edward

    2014-10-01

    There is a growing divide in how conservatives and liberals in the USA understand the issue of global warming. Prior research suggests that the American public's reliance on partisan media contributes to this gap. However, researchers have yet to identify intervening variables to explain the relationship between media use and public opinion about global warming. Several studies have shown that trust in scientists is an important heuristic many people use when reporting their opinions on science-related topics. Using within-subject panel data from a nationally representative sample of Americans, this study finds that trust in scientists mediates the effect of news media use on perceptions of global warming. Results demonstrate that conservative media use decreases trust in scientists which, in turn, decreases certainty that global warming is happening. By contrast, use of non-conservative media increases trust in scientists, which, in turn, increases certainty that global warming is happening. © The Author(s) 2013.

  8. Increasing occurrence of cold and warm extremes during the recent global warming slowdown.

    PubMed

    Johnson, Nathaniel C; Xie, Shang-Ping; Kosaka, Yu; Li, Xichen

    2018-04-30

    The recent levelling of global mean temperatures after the late 1990s, the so-called global warming hiatus or slowdown, ignited a surge of scientific interest into natural global mean surface temperature variability, observed temperature biases, and climate communication, but many questions remain about how these findings relate to variations in more societally relevant temperature extremes. Here we show that both summertime warm and wintertime cold extreme occurrences increased over land during the so-called hiatus period, and that these increases occurred for distinct reasons. The increase in cold extremes is associated with an atmospheric circulation pattern resembling the warm Arctic-cold continents pattern, whereas the increase in warm extremes is tied to a pattern of sea surface temperatures resembling the Atlantic Multidecadal Oscillation. These findings indicate that large-scale factors responsible for the most societally relevant temperature variations over continents are distinct from those of global mean surface temperature.

  9. Reduced interdecadal variability of Atlantic Meridional Overturning Circulation under global warming.

    PubMed

    Cheng, Jun; Liu, Zhengyu; Zhang, Shaoqing; Liu, Wei; Dong, Lina; Liu, Peng; Li, Hongli

    2016-03-22

    Interdecadal variability of the Atlantic Meridional Overturning Circulation (AMOC-IV) plays an important role in climate variation and has significant societal impacts. Past climate reconstruction indicates that AMOC-IV has likely undergone significant changes. Despite some previous studies, responses of AMOC-IV to global warming remain unclear, in particular regarding its amplitude and time scale. In this study, we analyze the responses of AMOC-IV under various scenarios of future global warming in multiple models and find that AMOC-IV becomes weaker and shorter with enhanced global warming. From the present climate condition to the strongest future warming scenario, on average, the major period of AMOC-IV is shortened from ∼50 y to ∼20 y, and the amplitude is reduced by ∼60%. These reductions in period and amplitude of AMOC-IV are suggested to be associated with increased oceanic stratification under global warming and, in turn, the speedup of oceanic baroclinic Rossby waves.

  10. When will we be committed to crossing 1.5 and 2 °C temperature thresholds?

    NASA Astrophysics Data System (ADS)

    Armour, K.; Proistosescu, C.; Roe, G.; Huybers, P. J.

    2017-12-01

    The zero-emissions climate commitment is a key metric for science and policy. It is the future warming we face given only to-date emissions, independent of future human influence on climate. Following a cessation of emissions, future global temperature change depends on (i) the atmospheric lifetimes of aerosols and greenhouse gases (GHGs), and (ii) the physical climate response to radiative forcing (Armour and Roe 2011). The cooling effect of aerosols diminishes within weeks; GHG concentrations get drawn down on timescales ranging from months to millennia; and ocean heat uptake diminishes as climate equilibrates with the residual CO2 forcing. Whether global temperature increases, stays stable, or declines following emission cessation depends on these competing factors. There is substantial uncertainty in the zero-emissions commitment due to a combination of (i) correlated uncertainties in aerosol radiative forcing and climate sensitivity, (ii) uncertainty in the atmospheric lifetime of CO2, and (iii) uncertainty in how climate sensitivity will evolve in the future. Here we quantify climate commitment in a Bayesian framework of an idealized model constrained by observations of global warming and energy imbalance, combined with estimates of global radiative forcing. At present, our committed warming is 1.2°C (median), with a 25% chance that it already exceeds 1.5°C and a 5% chance that it exceeds 2°C; the range comes primarily from uncertainty in the degree to which aerosols currently mask GHG forcing. We further quantify how climate commitment, and its uncertainty, changes with emissions scenario and over time. Under high emissions (RCP8.5), we will reach a >50% risk of a 2°C zero-emission climate commitment by the year 2035, about two decades before that temperature would be reached if emissions continued unabated. Committed warming is substantially reduced for lower-emissions scenarios, depending on the mix of aerosol and GHG mitigation. For the next few decades the primary uncertainty in climate commitment comes from correlated uncertainties in aerosol forcing and climate sensitivity; later in the century it comes from uncertainties in the carbon cycle (setting the lifetime and residual concentration of CO2) and in how climate sensitivity changes over time.

  11. Land radiative management as contributor to regional-scale climate adaptation and mitigation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Seneviratne, Sonia I.; Phipps, Steven J.; Pitman, Andrew J.

    The urgency to reduce greenhouse gas emissions has been recognized, but the goal of limiting global temperature rise “well below 2 degrees” and possibly down to 1.5°C remains highly challenging, despite the large regional consequences. Slow progress in the reduction of CO2 emissions have led to the discussion of climate engineering schemes,, which remain controversial within the climate research communityIn particular, the reduction of global mean temperature via solar radiation management (SRMglob) could lead to strong regional disparities. Here we show, based on a literature review and climate model simulations, that regional land radiative management (LRMreg), a generally little-considered optionmore » in assessments of climate engineering could help reduce warming (and in particular hot extremes) in densely populated and major agricultural land regions. Several ethical issues would remain with the application of LRMreg, and its efficacy would also be limited in time and space related to crop growing periods and constraints on agricultural management. However, through its regional focus and reliance on tested techniques, LRMreg avoids main shortcomings associated with SRMglob. We argue therefore that albedo-related climate benefits of land management should be considered when assessing ecosystem services and integrated in scenarios of regional-scale climate adaptation and mitigation.« less

  12. Projected climate over the Greater Horn of Africa under 1.5 °C and 2 °C global warming

    NASA Astrophysics Data System (ADS)

    Osima, Sarah; Indasi, Victor S.; Zaroug, Modathir; Seid Endris, Hussen; Gudoshava, Masilin; Misiani, Herbert O.; Nimusiima, Alex; Anyah, Richard O.; Otieno, George; Ogwang, Bob A.; Jain, Suman; Kondowe, Alfred L.; Mwangi, Emmah; Lennard, Chris; Nikulin, Grigory; Dosio, Alessandro

    2018-06-01

    We analyze the potential effect of global warming levels (GWLs) of 1.5 °C and 2 °C above pre-industrial levels (1861‑1890) on mean temperature and precipitation as well as intra-seasonal precipitation extremes over the Greater Horn of Africa. We used a large, 25-member regional climate model ensemble from the Coordinated Regional Downscaling Experiment and show that, compared to the control period of 1971‑2000, annual mean near-surface temperature is projected to increase by more than 1 °C and 1.5 °C over most parts of the Greater Horn of Africa, under GWLs of 1.5 °C and 2 °C respectively. The highest temperature increases are projected in the northern region, covering most parts of Sudan and northern parts of Ethiopia, and the lowest temperature increases are projected over the coastal belt of Tanzania. However, the projected mean surface temperature difference between 2 °C and 1. 5 °C GWLs is higher than 0.5 °C over nearly all land points, reaching 0.8 °C over Sudan and northern Ethiopia. This implies that the Greater Horn of Africa will warm faster than the global mean. While projected changes in precipitation are mostly uncertain across the Greater Horn of Africa, there is a substantial decrease over the central and northern parts of Ethiopia. Additionally, the length of dry and wet spells is projected to increase and decrease respectively. The combined effect of a reduction in rainfall and the changes in the wet and dry spells will likely impact negatively on the livelihoods of people within the coastal cities, lake regions, highlands as well as arid and semi-arid lands of Kenya, Tanzania, Somalia, Ethiopia and Sudan. The probable impacts of these changes on key sectors such as agriculture, water, energy and health sectors, will likely call for formulation of actionable policies geared towards adaptation and mitigation of the impacts of 1.5 °C and 2 °C warming.

  13. Improving the sustainability of global meat and milk production.

    PubMed

    Salter, Andrew M

    2017-02-01

    Global demand for meat and dairy products has increased dramatically in recent decades and, through a combination of global population growth, increased lifespan and improved economic prosperity in the developing world will inevitably continue to increase. The predicted increases in livestock production will put a potentially unsustainable burden on global resources, including land for production of crops required for animal feed and fresh water. Furthermore, animal production itself is associated with greenhouse gas production, which may speed up global warming and thereby impact on our ability to produce food. There is, therefore, an urgent need to find methods to improve the sustainability of livestock production. This review will consider various options for improving the sustainability of livestock production with particular emphasis on finding ways to replace conventional crops as sources of animal feeds. Alternatives, such as currently underutilised crops (grown on a marginal land) and insects, reared on substrates not suitable for direct consumption by farm animals, represent possible solutions. Coupled with a moderation of excessive meat consumption in wealthier countries, such strategies may secure the long-term sustainability of meat and milk production and mitigate against the adverse health effects of excessive intake.

  14. 40 CFR 82.178 - Information required to be submitted.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... chemicals. The submitter must also provide supporting documentation or references. (6) Global warming impacts. Data on the total global warming potential of the substitute, including information on the GWP index and the indirect contributions to global warming caused by the production or use of the substitute...

  15. 40 CFR 82.178 - Information required to be submitted.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... chemicals. The submitter must also provide supporting documentation or references. (6) Global warming impacts. Data on the total global warming potential of the substitute, including information on the GWP index and the indirect contributions to global warming caused by the production or use of the substitute...

  16. Arbuscular mycorrhizal symbiosis can mitigate the negative effects of night warming on physiological traits of Medicago truncatula L.

    PubMed

    Hu, Yajun; Wu, Songlin; Sun, Yuqing; Li, Tao; Zhang, Xin; Chen, Caiyan; Lin, Ge; Chen, Baodong

    2015-02-01

    Elevated night temperature, one of the main climate warming scenarios, can have profound effects on plant growth and metabolism. However, little attention has been paid to the potential role of mycorrhizal associations in plant responses to night warming, although it is well known that symbiotic fungi can protect host plants against various environmental stresses. In the present study, physiological traits of Medicago truncatula L. in association with the arbuscular mycorrhizal (AM) fungus Rhizophagus irregularis were investigated under simulated night warming. A constant increase in night temperature of 1.53 °C significantly reduced plant shoot and root biomass, flower and seed number, leaf sugar concentration, and shoot Zn and root P concentrations. However, the AM association essentially mitigated these negative effects of night warming by improving plant growth, especially through increased root biomass, root to shoot ratio, and shoot Zn and root P concentrations. A significant interaction was observed between R. irregularis inoculation and night warming in influencing both root sucrose concentration and expression of sucrose synthase (SusS) genes, suggesting that AM symbiosis and increased night temperature jointly regulated plant sugar metabolism. Night warming stimulated AM fungal colonization but did not influence arbuscule abundance, symbiosis-related plant or fungal gene expression, or growth of extraradical mycelium, indicating little effect of night warming on the development or functioning of AM symbiosis. These findings highlight the importance of mycorrhizal symbiosis in assisting plant resilience to climate warming.

  17. The role technology must play to mitigate climate change

    EPA Science Inventory

    The presentation provides a succinct integration of the projected warming the earth is likely to experience in the decades ahead, the emission reductions that may be needed to constrain this warming, and the technologies needed to help achieve these emission reduction. Population...

  18. Arctic Security in a Warming World

    DTIC Science & Technology

    2010-03-01

    2009). 3 Map based on: “Northwest Passage - Map of Arctic Sea Ice: Global Warming is Opening Canada’s Arctic” http://geology.com/articles/northwest...War College, February 17, 2009) 3. 5 Scott G. Borgerson, “Arctic Meltdown: the Economic and Security Implications of Global Warming ”, Foreign Affairs...april/kirkpatrick.pdf (accessed February 10, 2010). 45 Thomas R. McCarthy, Jr., Global Warming Threatens National Interests in the Arctic, Strategy

  19. Predicting interactions among fishing, ocean warming, and ocean acidification in a marine system with whole-ecosystem models.

    PubMed

    Griffith, Gary P; Fulton, Elizabeth A; Gorton, Rebecca; Richardson, Anthony J

    2012-12-01

    An important challenge for conservation is a quantitative understanding of how multiple human stressors will interact to mitigate or exacerbate global environmental change at a community or ecosystem level. We explored the interaction effects of fishing, ocean warming, and ocean acidification over time on 60 functional groups of species in the southeastern Australian marine ecosystem. We tracked changes in relative biomass within a coupled dynamic whole-ecosystem modeling framework that included the biophysical system, human effects, socioeconomics, and management evaluation. We estimated the individual, additive, and interactive effects on the ecosystem and for five community groups (top predators, fishes, benthic invertebrates, plankton, and primary producers). We calculated the size and direction of interaction effects with an additive null model and interpreted results as synergistic (amplified stress), additive (no additional stress), or antagonistic (reduced stress). Individually, only ocean acidification had a negative effect on total biomass. Fishing and ocean warming and ocean warming with ocean acidification had an additive effect on biomass. Adding fishing to ocean warming and ocean acidification significantly changed the direction and magnitude of the interaction effect to a synergistic response on biomass. The interaction effect depended on the response level examined (ecosystem vs. community). For communities, the size, direction, and type of interaction effect varied depending on the combination of stressors. Top predator and fish biomass had a synergistic response to the interaction of all three stressors, whereas biomass of benthic invertebrates responded antagonistically. With our approach, we were able to identify the regional effects of fishing on the size and direction of the interacting effects of ocean warming and ocean acidification. ©2012 Society for Conservation Biology.

  20. Climate warming and agricultural stressors interact to determine stream periphyton community composition.

    PubMed

    Piggott, Jeremy J; Salis, Romana K; Lear, Gavin; Townsend, Colin R; Matthaei, Christoph D

    2015-01-01

    Lack of knowledge about how the various drivers of global climate change will interact with multiple stressors already affecting ecosystems is the basis for great uncertainty in projections of future biological change. Despite concerns about the impacts of changes in land use, eutrophication and climate warming in running waters, the interactive effects of these stressors on stream periphyton are largely unknown. We manipulated nutrients (simulating agricultural runoff), deposited fine sediment (simulating agricultural erosion) (two levels each) and water temperature (eight levels, 0-6 °C above ambient) simultaneously in 128 streamside mesocosms. Our aim was to determine the individual and combined effects of the three stressors on the algal and bacterial constituents of the periphyton. All three stressors had pervasive individual effects, but in combination frequently produced synergisms at the population level and antagonisms at the community level. Depending on sediment and nutrient conditions, the effect of raised temperature frequently produced contrasting response patterns, with stronger or opposing effects when one or both stressors were augmented. Thus, warming tended to interact negatively with nutrients or sediment by weakening or reversing positive temperature effects or strengthening negative ones. Five classes of algal growth morphology were all affected in complex ways by raised temperature, suggesting that these measures may prove unreliable in biomonitoring programs in a warming climate. The evenness and diversity of the most abundant bacterial taxa increased with temperature at ambient but not with enriched nutrient levels, indicating that warming coupled with nutrient limitation may lead to a more evenly distributed bacterial community as temperatures rise. Freshwater management decisions that seek to avoid or mitigate the negative effects of agricultural land use on stream periphyton should be informed by knowledge of the interactive effects of multiple stressors in a warming climate. © 2014 John Wiley & Sons Ltd.

  1. Exotic Spartina alterniflora invasion alters ecosystem-atmosphere exchange of CH4 and N2O and carbon sequestration in a coastal salt marsh in China.

    PubMed

    Yuan, Junji; Ding, Weixin; Liu, Deyan; Kang, Hojeong; Freeman, Chris; Xiang, Jian; Lin, Yongxin

    2015-04-01

    Coastal salt marshes are sensitive to global climate change and may play an important role in mitigating global warming. To evaluate the impacts of Spartina alterniflora invasion on global warming potential (GWP) in Chinese coastal areas, we measured CH4 and N2O fluxes and soil organic carbon sequestration rates along a transect of coastal wetlands in Jiangsu province, China, including open water; bare tidal flat; and invasive S. alterniflora, native Suaeda salsa, and Phragmites australis marshes. Annual CH4 emissions were estimated as 2.81, 4.16, 4.88, 10.79, and 16.98 kg CH4 ha(-1) for open water, bare tidal flat, and P. australis, S. salsa, and S. alterniflora marshes, respectively, indicating that S. alterniflora invasion increased CH4 emissions by 57-505%. In contrast, negative N2O fluxes were found to be significantly and negatively correlated (P < 0.001) with net ecosystem CO2 exchange during the growing season in S. alterniflora and P. australis marshes. Annual N2O emissions were 0.24, 0.38, and 0.56 kg N2O ha(-1) in open water, bare tidal flat and S. salsa marsh, respectively, compared with -0.51 kg N2O ha(-1) for S. alterniflora marsh and -0.25 kg N2O ha(-1) for P. australis marsh. The carbon sequestration rate of S. alterniflora marsh amounted to 3.16 Mg C ha(-1) yr(-1) in the top 100 cm soil profile, a value that was 2.63- to 8.78-fold higher than in native plant marshes. The estimated GWP was 1.78, -0.60, -4.09, and -1.14 Mg CO2 eq ha(-1) yr(-1) in open water, bare tidal flat, P. australis marsh and S. salsa marsh, respectively, but dropped to -11.30 Mg CO2 eq ha(-1) yr(-1) in S. alterniflora marsh. Our results indicate that although S. alterniflora invasion stimulates CH4 emissions, it can efficiently mitigate increases in atmospheric CO2 and N2O along the coast of China. © 2014 John Wiley & Sons Ltd.

  2. Climate Indicators of Pace and Perception of Projected Changes Using CMIP5 Simulations

    NASA Astrophysics Data System (ADS)

    Chavaillaz, Y.; Joussaume, S.; Braconnot, P.; Vautard, R.

    2014-12-01

    In most studies, climate change is approached by focusing on the evolution between a fixed current baseline and a future period, emphasizing stronger warming as me move further from the current climate. This long-term vision is used in order to characterize quantitatively the magnitude and expected effects of mitigation policies across the globe, but is not well suited to discuss coming generations' experience. In this study, we propose an alternative approach that considers indicators of pace and perception of changes using projections of a Global Climate Model ensemble. First, it consists in tracking changes with a running baseline over periods of 20 years, defining the time evolution of the rate at which climate changes. Then, distributions of the following and previous 20 years are compared for each year. A 20-year baseline also enables to estimate the memory that a generation can have. We are mainly interested on mean and variability of surface air temperature and daily precipitation amounts. Under the strongest emission scenario (RCP8.5), pace and perception will become far stronger over the 21st century, with a maximum reached around 2060. While northern high-latitudes will witness a higher temperature rise, southern mid-latitudes will witness the largest warming rate increase resulting in a tripling by the end of the 21st century. They will also show a 45%-increase of drying rate by that time. In the tropics, a 64%-increase of moistening rate is displayed and indicators of perception are at their highest value, especially in West Africa and South-East Asia. Drying regions being globally fewer than moistening ones and drying rate being weaker than moistening one, a continuous modification of the hydrological cycle is confirmed. Besides, their spatial fraction over the globe appears to remain unchanged (about 60% of regions are moistening). Only the strongest mitigation scenario (RCP2.6) leads to a global return to historical regime. This approach shows that, under strong emissions, one should be prepared for higher adaptation rates in the coming decades.

  3. Comparing the Climate Agendas of the Parties to the UN Framework Convention on Climate Change

    NASA Astrophysics Data System (ADS)

    Stephenson, S. R.; Oculi, N.

    2016-12-01

    Effective mitigation of and adaptation to climate change requires multilateral coordination of numerous political and scientific activities and priorities. Since its inception in 1992, the UN Framework Convention on Climate Change (UNFCCC) has sought a comprehensive international response to the climate threat, culminating most recently in December 2015 at COP 21. The Paris Agreement was lauded as a landmark step toward global climate action as it represented a consensus of 196 countries to limit global warming to 2° C above pre-industrial levels with an additional stated goal to "pursue efforts" to limit the increase to 1.5° C. However, taken in a vacuum, the global Agreement masks important differences among its signatory countries in capabilities and priorities for tackling climate change, and obscures pathways for place-specific scientific research and intervention. Here we present a quantitative content analysis of official UNFCCC documents including COP transcripts, meeting agendas, and mitigation commitments outlined in pledged Intended Nationally Determined Contributions (INDC) to reveal areas of alignment and divergence among UNFCCC stakeholders. Textual cluster analysis illustrates the relative salience of key climate-related discourses (e.g. vulnerability; loss and damage; decarbonization; technology transfer) in the agendas of negotiating parties, and the degree to which the interests of some parties are over- or under-represented in the final "consensus" agreement. Understanding these disparities, and their potential to promote cooperation and/or disagreement among stakeholders, will be critical to scientists' efforts to develop equitable and sustainable long-term climate solutions.

  4. Estimating the potential of energy saving and carbon emission mitigation of cassava-based fuel ethanol using life cycle assessment coupled with a biogeochemical process model.

    PubMed

    Jiang, Dong; Hao, Mengmeng; Fu, Jingying; Tian, Guangjin; Ding, Fangyu

    2017-09-14

    Global warming and increasing concentration of atmospheric greenhouse gas (GHG) have prompted considerable interest in the potential role of energy plant biomass. Cassava-based fuel ethanol is one of the most important bioenergy and has attracted much attention in both developed and developing countries. However, the development of cassava-based fuel ethanol is still faced with many uncertainties, including raw material supply, net energy potential, and carbon emission mitigation potential. Thus, an accurate estimation of these issues is urgently needed. This study provides an approach to estimate energy saving and carbon emission mitigation potentials of cassava-based fuel ethanol through LCA (life cycle assessment) coupled with a biogeochemical process model-GEPIC (GIS-based environmental policy integrated climate) model. The results indicate that the total potential of cassava yield on marginal land in China is 52.51 million t; the energy ratio value varies from 0.07 to 1.44, and the net energy surplus of cassava-based fuel ethanol in China is 92,920.58 million MJ. The total carbon emission mitigation from cassava-based fuel ethanol in China is 4593.89 million kgC. Guangxi, Guangdong, and Fujian are identified as target regions for large-scale development of cassava-based fuel ethanol industry. These results can provide an operational approach and fundamental data for scientific research and energy planning.

  5. Increased importance of methane reduction for a 1.5 degree target

    NASA Astrophysics Data System (ADS)

    Collins, William J.; Webber, Christopher P.; Cox, Peter M.; Huntingford, Chris; Lowe, Jason; Sitch, Stephen; Chadburn, Sarah E.; Comyn-Platt, Edward; Harper, Anna B.; Hayman, Garry; Powell, Tom

    2018-04-01

    To understand the importance of methane on the levels of carbon emission reductions required to achieve temperature goals, a processed-based approach is necessary rather than reliance on the transient climate response to emissions. We show that plausible levels of methane (CH4) mitigation can make a substantial difference to the feasibility of achieving the Paris climate targets through increasing the allowable carbon emissions. This benefit is enhanced by the indirect effects of CH4 on ozone (O3). Here the differing effects of CH4 and CO2 on land carbon storage, including the effects of surface O3, lead to an additional increase in the allowable carbon emissions with CH4 mitigation. We find a simple robust relationship between the change in the 2100 CH4 concentration and the extra allowable cumulative carbon emissions between now and 2100 (0.27 ± 0.05 GtC per ppb CH4). This relationship is independent of modelled climate sensitivity and precise temperature target, although later mitigation of CH4 reduces its value and thus methane reduction effectiveness. Up to 12% of this increase in allowable emissions is due to the effect of surface ozone. We conclude early mitigation of CH4 emissions would significantly increase the feasibility of stabilising global warming below 1.5 °C, alongside having co-benefits for human and ecosystem health.

  6. Estimating the potential of energy saving and carbon emission mitigation of cassava-based fuel ethanol using life cycle assessment coupled with a biogeochemical process model

    NASA Astrophysics Data System (ADS)

    Jiang, Dong; Hao, Mengmeng; Fu, Jingying; Tian, Guangjin; Ding, Fangyu

    2017-09-01

    Global warming and increasing concentration of atmospheric greenhouse gas (GHG) have prompted considerable interest in the potential role of energy plant biomass. Cassava-based fuel ethanol is one of the most important bioenergy and has attracted much attention in both developed and developing countries. However, the development of cassava-based fuel ethanol is still faced with many uncertainties, including raw material supply, net energy potential, and carbon emission mitigation potential. Thus, an accurate estimation of these issues is urgently needed. This study provides an approach to estimate energy saving and carbon emission mitigation potentials of cassava-based fuel ethanol through LCA (life cycle assessment) coupled with a biogeochemical process model—GEPIC (GIS-based environmental policy integrated climate) model. The results indicate that the total potential of cassava yield on marginal land in China is 52.51 million t; the energy ratio value varies from 0.07 to 1.44, and the net energy surplus of cassava-based fuel ethanol in China is 92,920.58 million MJ. The total carbon emission mitigation from cassava-based fuel ethanol in China is 4593.89 million kgC. Guangxi, Guangdong, and Fujian are identified as target regions for large-scale development of cassava-based fuel ethanol industry. These results can provide an operational approach and fundamental data for scientific research and energy planning.

  7. A wedge strategy for mitigation of urban warming in future climate scenarios

    NASA Astrophysics Data System (ADS)

    Zhao, Lei; Lee, Xuhui; Schultz, Natalie M.

    2017-07-01

    Heat stress is one of the most severe climate threats to human society in a future warmer world. The situation is further exacerbated in urban areas by urban heat islands (UHIs). Because the majority of world's population is projected to live in cities, there is a pressing need to find effective solutions for the heat stress problem. We use a climate model to investigate the effectiveness of various urban heat mitigation strategies: cool roofs, street vegetation, green roofs, and reflective pavement. Our results show that by adopting highly reflective roofs, almost all the cities in the United States and southern Canada are transformed into white oases - cold islands caused by cool roofs at midday, with an average oasis effect of -3.4 K in the summer for the period 2071-2100, which offsets approximately 80 % of the greenhouse gas (GHG) warming projected for the same period under the RCP4.5 scenario. A UHI mitigation wedge consisting of cool roofs, street vegetation, and reflective pavement has the potential to eliminate the daytime UHI plus the GHG warming.

  8. Global Warming.

    ERIC Educational Resources Information Center

    Hileman, Bette

    1989-01-01

    States the foundations of the theory of global warming. Describes methodologies used to measure the changes in the atmosphere. Discusses steps currently being taken in the United States and the world to slow the warming trend. Recognizes many sources for the warming and the possible effects on the earth. (MVL)

  9. Turkish Students' Ideas about Global Warming

    ERIC Educational Resources Information Center

    Kilinc, Ahmet; Stanisstreet, Martin; Boyes, Edward

    2008-01-01

    A questionnaire was used to explore the prevalence of ideas about global warming in Year 10 (age 15-16 years) school students in Turkey. The frequencies of individual scientific ideas and misconceptions about the causes, consequences and "cures" of global warming were identified. In addition, several general findings emerged from this…

  10. Exploring the Sociopolitical Dimensions of Global Warming

    ERIC Educational Resources Information Center

    Sadler, Troy D.; Klosterman, Michelle L.

    2009-01-01

    The authors present an activity to help high school students conceptualize the sociopolitical complexity of global warming through an exploration of varied perspectives on the issue. They argue that socioscientific issues such as global warming present important contexts for learning science and that the social and political dimensions of these…

  11. 78 FR 21871 - Protection of Stratospheric Ozone: Revision of the Venting Prohibition for Specific Refrigerant...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-04-12

    ... Register GWP--Global warming potential HCFC-22--the chemical chlorodifluoromethane, CAS Reg No. 75-45-6... global warming potential. Second, EPA determines whether and to what extent such venting, release, or... discussed four types of environmental risks: ozone depletion potential, global warming potential, volatile...

  12. Global Warming Threatens National Interests in the Arctic

    DTIC Science & Technology

    2009-03-26

    Global warming has impacted the Arctic Ocean by significantly reducing the extent of the summer ice cover allowing greater access to the region...increased operations in the Arctic region, and DoD must continue to research and develop new and alternate energy sources for its forces. Global warming is

  13. The Army’s Carbon Bootprint

    DTIC Science & Technology

    2009-05-06

    GWP relative to CO2 • GWP is determined by stability of the chemical in the atmosphere and its capacity to influence global warming Global Warming Potential...GWP) Mr. Larry Webber/(410)436-1231/ Lawrence.webber.us.army.mil 06MAY2009 The Army’s Carbon Bootprint Greenhouse Gas (GHG) Global Warming Potential

  14. Situational Influences upon Children's Beliefs about Global Warming and Energy

    ERIC Educational Resources Information Center

    Devine-Wright, Patrick; Devine-Wright, Hannah; Fleming, Paul

    2004-01-01

    This paper explores children's beliefs about global warming and energy sources from a psychological perspective, focusing upon situational influences upon subjective beliefs, including perceived self-efficacy. The context of the research is one of growing concern at the potential impacts of global warming, yet demonstrably low levels of…

  15. 40 CFR 1037.115 - Other requirements.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... rate by multiplying it by the global warming potential of your refrigerant and dividing the product by 1430 (which is the global warming potential of HFC-134a). Apply this adjustment before comparing your leakage rate to the standard. Determine global warming potentials consistent with 40 CFR 86.1866. Note...

  16. 40 CFR 1037.115 - Other requirements.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... rate by multiplying it by the global warming potential of your refrigerant and dividing the product by 1430 (which is the global warming potential of HFC-134a). Apply this adjustment before comparing your leakage rate to the standard. Determine global warming potentials consistent with 40 CFR 86.1866. Note...

  17. Why Popper can't resolve the debate over global warming: Problems with the uses of philosophy of science in the media and public framing of the science of global warming.

    PubMed

    Mercer, David

    2018-02-01

    A notable feature in the public framing of debates involving the science of Anthropogenic Global Warming are appeals to uncritical 'positivist' images of the ideal scientific method. Versions of Sir Karl Popper's philosophy of falsification appear most frequently, featuring in many Web sites and broader media. This use of pop philosophy of science forms part of strategies used by critics, mainly from conservative political backgrounds, to manufacture doubt, by setting unrealistic standards for sound science, in the veracity of science of Anthropogenic Global Warming. It will be shown, nevertheless, that prominent supporters of Anthropogenic Global Warming science also often use similar references to Popper to support their claims. It will also be suggested that this pattern reflects longer traditions of the use of Popperian philosophy of science in controversial settings, particularly in the United States, where appeals to the authority of science to legitimize policy have been most common. It will be concluded that studies of the science of Anthropogenic Global Warming debate would benefit from taking greater interest in questions raised by un-reflexive and politically expedient public understanding(s) of the philosophy of science of both critics and supporters of the science of Anthropogenic Global Warming.

  18. 1.5 °C ? - Solutions for avoiding catastrophic climate change in this century

    NASA Astrophysics Data System (ADS)

    Xu, Y.

    2017-12-01

    The historic Paris Agreement calls for limiting global temperature rise to "well below 2 °C." Because of uncertainties in emission scenarios, climate, and carbon cycle feedback, we interpret the Paris Agreement in terms of three climate risk categories and bring in considerations of low-probability (5%) high impact (LPHI) warming in addition to the central (˜50% probability) value. The current risk category of dangerous warming is extended to more categories, which are defined by us here as follows: >1.5 °C as dangerous; >3 °C as catastrophic; and >5 °C as unknown, implying beyond catastrophic, including existential threats. With unchecked emissions, the central warming can reach the dangerous level within three decades, with the LPHI warming becoming catastrophic by 2050. We outline a three-lever strategy to limit the central warming below the dangerous level and the LPHI below the catastrophic level, both in the near term (<2050) and in the long term (2100): the carbon neutral (CN) lever to achieve zero net emissions of CO2, the super pollutant (SP) lever to mitigate short-lived climate pollutants, and the carbon extraction and sequestration (CES) lever to thin the atmospheric CO2 blanket. Pulling on both CN and SP levers and bending the emissions curve by 2020 can keep the central warming below dangerous levels. To limit the LPHI warming below dangerous levels, the CES lever must be pulled as well to extract as much as 1 trillion tons of CO2 before 2100 to both limit the preindustrial to 2100 cumulative net CO2 emissions to 2.2 trillion tons and bend the warming curve to a cooling trend. In addition to present the analysis above, I will also share (1) perspective on developed and developing world actions and interactions on climate solutions; (2) Prof V. Ramanathan's interactions with the Pontifical Academy of Sciences and other religious groups which are highly valuable to the interdisciplinary audience.

  19. Unabated global surface temperature warming: evaluating the evidence

    NASA Astrophysics Data System (ADS)

    Karl, T. R.; Arguez, A.

    2015-12-01

    New insights related to time-dependent bias corrections in global surface temperatures have led to higher rates of warming over the past few decades than previously reported in the IPCC Fifth Assessment Report (2014). Record high global temperatures in the past few years have also contributed to larger trends. The combination of these factors and new analyses of the rate of temperature change show unabated global warming since at least the mid-Twentieth Century. New time-dependent bias corrections account for: (1) differences in temperatures measured from ships and drifting buoys; (2) improved corrections to ship measured temperatures; and (3) the larger rates of warming in polar regions (particularly the Arctic). Since 1951, the period over which IPCC (2014) attributes over half of the observed global warming to human causes, it is shown that there has been a remarkably robust and sustained warming, punctuated with inter-annual and decadal variability. This finding is confirmed through simple trend analysis and Empirical Mode Decomposition (EMD). Trend analysis however, especially for decadal trends, is sensitive to selection bias of beginning and ending dates. EMD has no selection bias. Additionally, it can highlight both short- and long-term processes affecting the global temperature times series since it addresses both non-linear and non-stationary processes. For the new NOAA global temperature data set, our analyses do not support the notion of a hiatus or slowing of long-term global warming. However, sub-decadal periods of little (or no warming) and rapid warming can also be found, clearly showing the impact of inter-annual and decadal variability that previously has been attributed to both natural and human-induced non-greenhouse forcings.

  20. Early benefits of mitigation in risk of regional climate extremes

    NASA Astrophysics Data System (ADS)

    Ciavarella, Andrew; Stott, Peter; Lowe, Jason

    2017-04-01

    Large differences in climate outcomes are projected by the end of this century depending on whether greenhouse gas emissions continue to increase or are reduced sufficiently to limit total warming to below 2 °C (ref. ). However, it is generally thought that benefits of mitigation are hidden by internal climate variability until later in the century. Here we show that if the likelihood of extremely hot seasons is considered, the benefits of mitigation emerge more quickly than previously thought. It takes less than 20 years of emissions reductions in many regions for the likelihood of extreme seasonal warmth to reduce by more than half following initiation of mitigation. Additionally we show that the latest possible date at which the probability of extreme seasonal temperatures will be halved through emissions reductions consistent with the 2 °C target is in the 2040s. Exposure to climate risk is therefore reduced markedly and rapidly with substantial reductions of greenhouse gas emissions, demonstrating that the early mitigation needed to limit eventual warming below potentially dangerous levels benefits societies in the nearer term not just in the longer-term future.

Top