Sample records for mitochondrial base excision

  1. Ntg1p, the base excision repair protein, generates mutagenic intermediates in yeast mitochondrial DNA.

    PubMed

    Phadnis, Naina; Mehta, Reema; Meednu, Nida; Sia, Elaine A

    2006-07-13

    Mitochondrial DNA is predicted to be highly prone to oxidative damage due to its proximity to free radicals generated by oxidative phosphorylation. Base excision repair (BER) is the primary repair pathway responsible for repairing oxidative damage in nuclear and mitochondrial genomes. In yeast mitochondria, three N-glycosylases have been identified so far, Ntg1p, Ogg1p and Ung1p. Ntg1p, a broad specificity N-glycosylase, takes part in catalyzing the first step of BER that involves the removal of the damaged base. In this study, we examined the role of Ntg1p in maintaining yeast mitochondrial genome integrity. Using genetic reporters and assays to assess mitochondrial mutations, we found that loss of Ntg1p suppresses mitochondrial point mutation rates, frameshifts and recombination rates. We also observed a suppression of respiration loss in the ntg1-Delta cells in response to ultraviolet light exposure implying an overlap between BER and UV-induced damage in the yeast mitochondrial compartment. Over-expression of the BER AP endonuclease, Apn1p, did not significantly affect the mitochondrial mutation rate in the presence of Ntg1p, whereas Apn1p over-expression in an ntg1-Delta background increased the frequency of mitochondrial mutations. In addition, loss of Apn1p also suppressed mitochondrial point mutations. Our work suggests that both Ntg1p and Apn1p generate mutagenic intermediates in the yeast mitochondrial genome.

  2. Overexpression of DNA ligase III in mitochondria protects cells against oxidative stress and improves mitochondrial DNA base excision repair.

    PubMed

    Akbari, Mansour; Keijzers, Guido; Maynard, Scott; Scheibye-Knudsen, Morten; Desler, Claus; Hickson, Ian D; Bohr, Vilhelm A

    2014-04-01

    Base excision repair (BER) is the most prominent DNA repair pathway in human mitochondria. BER also results in a temporary generation of AP-sites, single-strand breaks and nucleotide gaps. Thus, incomplete BER can result in the generation of DNA repair intermediates that can disrupt mitochondrial DNA replication and transcription and generate mutations. We carried out BER analysis in highly purified mitochondrial extracts from human cell lines U2OS and HeLa, and mouse brain using a circular DNA substrate containing a lesion at a specific position. We found that DNA ligation is significantly slower than the preceding mitochondrial BER steps. Overexpression of DNA ligase III in mitochondria improved the rate of overall BER, increased cell survival after menadione induced oxidative stress and reduced autophagy following the inhibition of the mitochondrial electron transport chain complex I by rotenone. Our results suggest that the amount of DNA ligase III in mitochondria may be critical for cell survival following prolonged oxidative stress, and demonstrate a functional link between mitochondrial DNA damage and repair, cell survival upon oxidative stress, and removal of dysfunctional mitochondria by autophagy. Copyright © 2014. Published by Elsevier B.V.

  3. Mitochondrial DNA diagnosis for taeniasis and cysticercosis.

    PubMed

    Yamasaki, Hiroshi; Nakao, Minoru; Sako, Yasuhito; Nakaya, Kazuhiro; Sato, Marcello Otake; Ito, Akira

    2006-01-01

    Molecular diagnosis for taeniasis and cysticercosis in humans on the basis of mitochondrial DNA analysis was reviewed. Development and application of three different methods, including restriction fragment length polymorphism analysis, base excision sequence scanning thymine-base analysis and multiplex PCR, were described. Moreover, molecular diagnosis of cysticerci found in specimens submitted for histopathology and the molecular detection of taeniasis using copro-DNA were discussed.

  4. DNA repair in mammalian mitochondria: Much more than we thought?

    PubMed

    Liu, Pingfang; Demple, Bruce

    2010-06-01

    For many years, the repair of most damage in mitochondrial DNA (mtDNA) was thought limited to short-patch base excision repair (SP-BER), which replaces a single nucleotide by the sequential action of DNA glycosylases, an apurinic/apyrimidinic (AP) endonuclease, the mitochondrial DNA polymerase gamma, an abasic lyase activity, and mitochondrial DNA ligase. However, the likely array of lesions inflicted on mtDNA by oxygen radicals and the possibility of replication errors and disruptions indicated that such a restricted repair repertoire would be inadequate. Recent studies have considerably expanded our knowledge of mtDNA repair to include long-patch base excision repair (LP-BER), mismatch repair, and homologous recombination and nonhomologous end-joining. In addition, elimination of mutagenic 8-oxodeoxyguanosine triphosphate (8-oxodGTP) helps prevent cell death due to the accumulation of this oxidation product in mtDNA. Although it was suspected for many years that irreparably damaged mtDNA might be targeted for degradation, only recently was clear evidence provided for this hypothesis. Therefore, multiple DNA repair pathways and controlled degradation of mtDNA function together to maintain the integrity of mitochondrial genome.

  5. Base Excision Repair and Lesion-Dependent Subpathways for Repair of Oxidative DNA Damage

    PubMed Central

    Svilar, David; Goellner, Eva M.; Almeida, Karen H.

    2011-01-01

    Abstract Nuclear and mitochondrial genomes are under continuous assault by a combination of environmentally and endogenously derived reactive oxygen species, inducing the formation and accumulation of mutagenic, toxic, and/or genome-destabilizing DNA lesions. Failure to resolve these lesions through one or more DNA-repair processes is associated with genome instability, mitochondrial dysfunction, neurodegeneration, inflammation, aging, and cancer, emphasizing the importance of characterizing the pathways and proteins involved in the repair of oxidative DNA damage. This review focuses on the repair of oxidative damage–induced lesions in nuclear and mitochondrial DNA mediated by the base excision repair (BER) pathway in mammalian cells. We discuss the multiple BER subpathways that are initiated by one of 11 different DNA glycosylases of three subtypes: (a) bifunctional with an associated β-lyase activity; (b) monofunctional; and (c) bifunctional with an associated β,δ-lyase activity. These three subtypes of DNA glycosylases all initiate BER but yield different chemical intermediates and hence different BER complexes to complete repair. Additionally, we briefly summarize alternate repair events mediated by BER proteins and the role of BER in the repair of mitochondrial DNA damage induced by ROS. Finally, we discuss the relation of BER and oxidative DNA damage in the onset of human disease. Antioxid. Redox Signal. 14, 2491–2507. PMID:20649466

  6. Mitochondrial dysfunction due to oxidative mitochondrial DNA damage is reduced through cooperative actions of diverse proteins.

    PubMed

    O'Rourke, Thomas W; Doudican, Nicole A; Mackereth, Melinda D; Doetsch, Paul W; Shadel, Gerald S

    2002-06-01

    The mitochondrial genome is a significant target of exogenous and endogenous genotoxic agents; however, the determinants that govern this susceptibility and the pathways available to resist mitochondrial DNA (mtDNA) damage are not well characterized. Here we report that oxidative mtDNA damage is elevated in strains lacking Ntg1p, providing the first direct functional evidence that this mitochondrion-localized, base excision repair enzyme functions to protect mtDNA. However, ntg1 null strains did not exhibit a mitochondrial respiration-deficient (petite) phenotype, suggesting that mtDNA damage is negotiated by the cooperative actions of multiple damage resistance pathways. Null mutations in ABF2 or PIF1, two genes implicated in mtDNA maintenance and recombination, exhibit a synthetic-petite phenotype in combination with ntg1 null mutations that is accompanied by enhanced mtDNA point mutagenesis in the corresponding double-mutant strains. This phenotype was partially rescued by malonic acid, indicating that reactive oxygen species generated by the electron transport chain contribute to mitochondrial dysfunction in abf2 Delta strains. In contrast, when two other genes involved in mtDNA recombination, CCE1 and NUC1, were inactivated a strong synthetic-petite phenotype was not observed, suggesting that the effects mediated by Abf2p and Pif1p are due to novel activities of these proteins other than recombination. These results document the existence of recombination-independent mechanisms in addition to base excision repair to cope with oxidative mtDNA damage in Saccharomyces cerevisiae. Such systems are likely relevant to those operating in human cells where mtDNA recombination is less prevalent, validating yeast as a model system in which to study these important issues.

  7. Mitochondrial DNA repair and damage tolerance.

    PubMed

    Stein, Alexis; Sia, Elaine A

    2017-01-01

    The accurate maintenance of mitochondrial DNA (mtDNA) is required in order for eukaryotic cells to assemble a functional electron transport chain. This independently-maintained genome relies on nuclear-encoded proteins that are imported into the mitochondria to carry out replication and repair processes. Decades of research has made clear that mitochondria employ robust and varied mtDNA repair and damage tolerance mechanisms in order to ensure the proper maintenance of the mitochondrial genome. This review focuses on our current understanding of mtDNA repair and damage tolerance pathways including base excision repair, mismatch repair, homologous recombination, non-homologous end joining, translesion synthesis and mtDNA degradation in both yeast and mammalian systems.

  8. A mutation in yeast mitochondrial DNA results in a precise excision of the terminal intron of the cytochrome b gene.

    PubMed

    Hill, J; McGraw, P; Tzagoloff, A

    1985-03-25

    The yeast nuclear gene CBP2 was previously proposed to code for a protein necessary for processing of the terminal intron in the cytochrome b pre-mRNA (McGraw, P., and Tzagoloff, A. (1983) J. Biol. Chem. 258, 9459-9468). In the present study we describe a mitochondrial mutation capable of suppressing the respiratory deficiency of cbp2 mutants. The mitochondrial suppressor mutation has been shown to be the result of a precise excision of the last intervening sequence from the cytochrome b gene. Strains with the altered mitochondrial DNA have normal levels of mature cytochrome b mRNA and of cytochrome b and exhibit wild type growth on glycerol. These results confirm that CBP2 codes for a protein specifically required for splicing of the cytochrome b intron and further suggest that absence of the intervening sequence does not noticeably affect the expression of respiratory function in mitochondria.

  9. An Analysis of Enzyme Kinetics Data for Mitochondrial DNA Strand Termination by Nucleoside Reverse Transcription Inhibitors

    PubMed Central

    Wendelsdorf, Katherine V.; Song, Zhuo; Cao, Yang; Samuels, David C.

    2009-01-01

    Nucleoside analogs used in antiretroviral treatment have been associated with mitochondrial toxicity. The polymerase-γ hypothesis states that this toxicity stems from the analogs' inhibition of the mitochondrial DNA polymerase (polymerase-γ) leading to mitochondrial DNA (mtDNA) depletion. We have constructed a computational model of the interaction of polymerase-γ with activated nucleoside and nucleotide analog drugs, based on experimentally measured reaction rates and base excision rates, together with the mtDNA genome size, the human mtDNA sequence, and mitochondrial dNTP concentrations. The model predicts an approximately 1000-fold difference in the activated drug concentration required for a 50% probability of mtDNA strand termination between the activated di-deoxy analogs d4T, ddC, and ddI (activated to ddA) and the activated forms of the analogs 3TC, TDF, AZT, FTC, and ABC. These predictions are supported by experimental and clinical data showing significantly greater mtDNA depletion in cell culture and patient samples caused by the di-deoxy analog drugs. For zidovudine (AZT) we calculated a very low mtDNA replication termination probability, in contrast to its reported mitochondrial toxicity in vitro and clinically. Therefore AZT mitochondrial toxicity is likely due to a mechanism that does not involve strand termination of mtDNA replication. PMID:19132079

  10. Mitochondrial base excision repair in mouse synaptosomes during normal aging and in a model of Alzheimer’s disease

    PubMed Central

    Gredilla, Ricardo; Weissman, Lior; Yang, Jenq-Lin; Bohr, Vilhelm A.; Stevnsner, Tinna

    2010-01-01

    Brain aging is associated with synaptic decline and cognitive impairment. Increased levels of oxidative DNA base damage and accumulation of mitochondrial DNA (mtDNA) mutations or deletions lead to mitochondrial dysfunction, playing an important role in the aging process and the pathogenesis of neurodegenerative diseases such as Alzheimer’s disease (AD). In mitochondria, base excision repair (BER) is the main DNA repair pathway for base modifications such as deamination and oxidation, and constitutes an important mechanism to avoid accumulation of mtDNA mutations. Synaptic function is highly dependent on mitochondria, and in the current study we have investigated BER in synaptosomes of mouse brain during normal aging and in an AD model. Synaptosomes are isolated synapses in membranous structures produced by subcellular fractionation of brain tissue. They include the whole presynaptic terminal as well as portions of the postsynaptic terminal. Synaptosomes contain the molecular machinery necessary for uptake, storage, and release of neurotransmitters, including synaptic vesicles and mitochondria. BER activities were measured in synaptosomal fractions from young and old mice and from pre-symptomatic and symptomatic AD mice harboring mutated APP, Tau and PS1 (3xTgAD). During normal aging, a reduction in the BER capacity was observed in the synaptosomal fraction, which was associated with a decrease in the level of BER proteins. However, we did not observe changes between the synaptosomal BER activities of pre-symptomatic and symptomatic AD mice. Our findings suggest that the age-related reduction in BER capacity in the synaptosomal fraction might contribute to mitochondrial and synaptic dysfunction during aging. The development of AD-like pathology in the 3xTgAD mouse model was, however, not associated with deficiencies of the BER mechanisms in the synaptosomal fraction when the whole brain was analyzed. PMID:20708822

  11. DNA Damage Related Crosstalk Between the Nucleus and Mitochondria

    PubMed Central

    Saki, Mohammad; Prakash, Aishwarya

    2017-01-01

    The electron transport chain is the primary pathway by which a cell generates energy in the form of ATP. Byproducts of this process produce reactive oxygen species that can cause damage to mitochondrial DNA. If not properly repaired, the accumulation of DNA damage can lead to mitochondrial dysfunction linked to several human disorders including neurodegenerative diseases and cancer. Mitochondria are able to combat oxidative DNA damage via repair mechanisms that are analogous to those found in the nucleus. Of the repair pathways currently reported in the mitochondria, the base excision repair pathway is the most comprehensively described. Proteins that are involved with the maintenance of mtDNA are encoded by nuclear genes and translocate to the mitochondria making signaling between the nucleus and mitochondria imperative. In this review, we discuss the current understanding of mitochondrial DNA repair mechanisms and also highlight the sensors and signaling pathways that mediate crosstalk between the nucleus and mitochondria in the event of mitochondrial stress. PMID:27915046

  12. Evidence for a Role of FEN1 in Maintaining Mitochondrial DNA Integrity

    PubMed Central

    Kalifa, Lidza; Beutner, Gisela; Phadnis, Naina; Sheu, Shey-Shing; Sia, Elaine A.

    2009-01-01

    Although the nuclear processes responsible for genomic DNA replication and repair are well characterized, the pathways involved in mitochondrial DNA (mtDNA) replication and repair remain unclear. DNA repair has been identified as being particularly important within the mitochondrial compartment due to the organelle’s high propensity to accumulate oxidative DNA damage. It has been postulated that continual accumulation of mtDNA damage and subsequent mutagenesis may function in cellular aging. Mitochondrial base excision repair (mtBER) plays a major role in combating mtDNA oxidative damage; however, the proteins involved in mtBER have yet to be fully characterized. It has been established that during nuclear long-patch (LP) BER, FEN1 is responsible for cleavage of 5′ flap structures generated during DNA synthesis. Furthermore, removal of 5′ flaps has been observed in mitochondrial extracts of mammalian cell lines; yet, the mitochondrial localization of FEN1 has not been clearly demonstrated. In this study, we analyzed the effects of deleting the yeast FEN1 homolog, RAD27, on mtDNA stability in Saccharomyces cerevisiae. Our findings demonstrate that Rad27p/FEN1 is localized in the mitochondrial compartment of both yeast and mice and that Rad27p has a significant role in maintaining mtDNA integrity. PMID:19699691

  13. Repair of Oxidative DNA Damage in Saccharomyces cerevisiae.

    PubMed

    Chalissery, Jisha; Jalal, Deena; Al-Natour, Zeina; Hassan, Ahmed H

    2017-03-01

    Malfunction of enzymes that detoxify reactive oxygen species leads to oxidative attack on biomolecules including DNA and consequently activates various DNA repair pathways. The nature of DNA damage and the cell cycle stage at which DNA damage occurs determine the appropriate repair pathway to rectify the damage. Oxidized DNA bases are primarily repaired by base excision repair and nucleotide incision repair. Nucleotide excision repair acts on lesions that distort DNA helix, mismatch repair on mispaired bases, and homologous recombination and non-homologous end joining on double stranded breaks. Post-replication repair that overcomes replication blocks caused by DNA damage also plays a crucial role in protecting the cell from the deleterious effects of oxidative DNA damage. Mitochondrial DNA is also prone to oxidative damage and is efficiently repaired by the cellular DNA repair machinery. In this review, we discuss the DNA repair pathways in relation to the nature of oxidative DNA damage in Saccharomyces cerevisiae. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. Genome-wide analysis of signal transducers and regulators of mitochondrial dysfunction in Saccharomyces cerevisiae.

    PubMed

    Singh, Keshav K; Rasmussen, Anne Karin; Rasmussen, Lene Juel

    2004-04-01

    Mitochondrial dysfunction is a hallmark of cancer cells. However, genetic response to mitochondrial dysfunction during carcinogenesis is unknown. To elucidate genetic response to mitochondrial dysfunction we used Saccharomyces cerevisiae as a model system. We analyzed genome-wide expression of nuclear genes involved in signal transduction and transcriptional regulation in a wild-type yeast and a yeast strain lacking the mitochondrial genome (rho(0)). Our analysis revealed that the gene encoding cAMP-dependent protein kinase subunit 3 (PKA3) was upregulated. However, the gene encoding cAMP-dependent protein kinase subunit 2 (PKA2) and the VTC1, PTK2, TFS1, CMK1, and CMK2 genes, involved in signal transduction, were downregulated. Among the known transcriptional factors, OPI1, MIG2, INO2, and ROX1 belonged to the upregulated genes, whereas MSN4, MBR1, ZMS1, ZAP1, TFC3, GAT1, ADR1, CAT8, and YAP4 including RFA1 were downregulated. RFA1 regulates DNA repair genes at the transcriptional level. RFA is also involved directly in DNA recombination, DNA replication, and DNA base excision repair. Downregulation of RFA1 in rho(0) cells is consistent with our finding that mitochondrial dysfunction leads to instability of the nuclear genome. Together, our data suggest that gene(s) involved in mitochondria-to-nucleus communication play a role in mutagenesis and may be implicated in carcinogenesis.

  15. DNA Repair Deficiency in Neurodegeneration

    PubMed Central

    Jeppesen, Dennis Kjølhede; Bohr, Vilhelm A.; Stevnsner, Tinna

    2011-01-01

    Deficiency in repair of nuclear and mitochondrial DNA damage has been linked to several neurodegenerative disorders. Many recent experimental results indicate that the post-mitotic neurons are particularly prone to accumulation of unrepaired DNA lesions potentially leading to progressive neurodegeneration. Nucleotide excision repair is the cellular pathway responsible for removing helix-distorting DNA damage and deficiency in such repair is found in a number of diseases with neurodegenerative phenotypes, including Xeroderma Pigmentosum and Cockayne syndrome. The main pathway for repairing oxidative base lesions is base excision repair, and such repair is crucial for neurons given their high rates of oxygen metabolism. Mismatch repair corrects base mispairs generated during replication and evidence indicates that oxidative DNA damage can cause this pathway to expand trinucleotide repeats, thereby causing Huntington’s disease. Single-strand breaks are common DNA lesions and are associated with the neurodegenerative diseases, ataxia-oculomotor apraxia-1 and spinocerebellar ataxia with axonal neuropathy-1. DNA double-strand breaks are toxic lesions and two main pathways exist for their repair: homologous recombination and non-homologous end-joining. Ataxia telangiectasia and related disorders with defects in these pathways illustrate that such defects can lead to early childhood neurodegeneration. Aging is a risk factor for neurodegeneration and accumulation of oxidative mitochondrial DNA damage may be linked with the age-associated neurodegenerative disorders Alzheimer’s disease, Parkinson’s disease and amyotrophic lateral sclerosis. Mutation in the WRN protein leads to the premature aging disease Werner syndrome, a disorder that features neurodegeneration. In this article we review the evidence linking deficiencies in the DNA repair pathways with neurodegeneration. PMID:21550379

  16. Effects of methyl and inorganic mercury exposure on genome homeostasis and mitochondrial function in Caenorhabditis elegans.

    PubMed

    Wyatt, Lauren H; Luz, Anthony L; Cao, Xiou; Maurer, Laura L; Blawas, Ashley M; Aballay, Alejandro; Pan, William K Y; Meyer, Joel N

    2017-04-01

    Mercury toxicity mechanisms have the potential to induce DNA damage and disrupt cellular processes, like mitochondrial function. Proper mitochondrial function is important for cellular bioenergetics and immune signaling and function. Reported impacts of mercury on the nuclear genome (nDNA) are conflicting and inconclusive, and mitochondrial DNA (mtDNA) impacts are relatively unknown. In this study, we assessed genotoxic (mtDNA and nDNA), metabolic, and innate immune impacts of inorganic and organic mercury exposure in Caenorhabditis elegans. Genotoxic outcomes measured included DNA damage, DNA damage repair (nucleotide excision repair, NER; base excision repair, BER), and genomic copy number following MeHg and HgCl 2 exposure alone and in combination with known DNA damage-inducing agents ultraviolet C radiation (UVC) and hydrogen peroxide (H 2 O 2 ), which cause bulky DNA lesions and oxidative DNA damage, respectively. Following exposure to both MeHg and HgCl 2 , low-level DNA damage (∼0.25 lesions/10kb mtDNA and nDNA) was observed. Unexpectedly, a higher MeHg concentration reduced damage in both genomes compared to controls. However, this observation was likely the result of developmental delay. In co-exposure treatments, both mercury compounds increased initial DNA damage (mtDNA and nDNA) in combination with H 2 O 2 exposure, but had no impact in combination with UVC exposure. Mercury exposure both increased and decreased DNA damage removal via BER. DNA repair after H 2 O 2 exposure in mercury-exposed nematodes resulted in damage levels lower than measured in controls. Impacts to NER were not detected. mtDNA copy number was significantly decreased in the MeHg-UVC and MeHg-H 2 O 2 co-exposure treatments. Mercury exposure had metabolic impacts (steady-state ATP levels) that differed between the compounds; HgCl 2 exposure decreased these levels, while MeHg slightly increased levels or had no impact. Both mercury species reduced mRNA levels for immune signaling-related genes, but had mild or no effects on survival on pathogenic bacteria. Overall, mercury exposure disrupted mitochondrial endpoints in a mercury-compound dependent fashion. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. Effects of methyl and inorganic mercury exposure on genome homeostasis and mitochondrial function in Caenorhabditis elegans

    PubMed Central

    Wyatt, Lauren H.; Luz, Anthony L.; Cao, Xiou; Maurer, Laura L.; Blawas, Ashley M.; Aballay, Alejandro; Pan, William K.; Meyer, Joel N.

    2017-01-01

    Mercury toxicity mechanisms have the potential to induce DNA damage and disrupt cellular processes, like mitochondrial function. Proper mitochondrial function is important for cellular bioenergetics and immune signaling and function. Impacts of mercury on the nuclear genome (nDNA) are conflicting and inconclusive, and mitochondrial DNA (mtDNA) impacts are relatively unknown. In this study, we assessed genotoxic (mtDNA and nDNA), metabolic, and innate immune impacts of inorganic and organic mercury exposure in Caenorhabditis elegans. Genotoxic outcomes measured included DNA damage, DNA damage repair (nucleotide excision repair, NER; base excision repair, BER), and genomic copy number following MeHg and HgCl2 exposure alone and in combination with known DNA damage-inducing agents ultraviolet C radiation (UVC) and hydrogen peroxide (H2O2), which cause bulky DNA lesions and oxidative DNA damage, respectively. Following exposure to both MeHg and HgCl2, low-level DNA damage (~0.25 lesions/10 kb mtDNA and nDNA) was observed. Unexpectedly, a higher MeHg concentration reduced damage in both genomes compared to controls. However, this observation was likely the result of developmental delay. In co-exposure treatments, both mercury compounds increased initial DNA damage (mtDNA and nDNA) in combination with H2O2 exposure, but had no impact in combination with UVC exposure. Mercury exposure both increased and decreased DNA damage removal via BER. DNA repair after H2O2 exposure in mercury-exposed nematodes resulted in damage levels lower than measured in controls. Impacts to NER were not detected. mtDNA copy number was significantly decreased in the MeHg-UVC and MeHg-H2O2 co-exposure treatments. Mercury exposure had metabolic impacts (steady-state ATP levels) that differed between the compounds; HgCl2 exposure decreased these levels, while MeHg slightly increased levels or had no impact. Both mercury species reduced mRNA levels for immune signaling-related genes, but had mild or no effects on survival on pathogenic bacteria. Overall, mercury exposure disrupted mitochondrial endpoints in a mercury-compound dependent fashion. PMID:28242054

  18. Endonuclease G promotes mitochondrial genome cleavage and replication

    PubMed Central

    Wiehe, Rahel Stefanie; Gole, Boris; Chatre, Laurent; Walther, Paul; Calzia, Enrico; Ricchetti, Miria; Wiesmüller, Lisa

    2018-01-01

    Endonuclease G (EndoG) is a nuclear-encoded endonuclease, mostly localised in mitochondria. In the nucleus EndoG participates in site-specific cleavage during replication stress and genome-wide DNA degradation during apoptosis. However, the impact of EndoG on mitochondrial DNA (mtDNA) metabolism is poorly understood. Here, we investigated whether EndoG is involved in the regulation of mtDNA replication and removal of aberrant copies. We applied the single-cell mitochondrial Transcription and Replication Imaging Protocol (mTRIP) and PCR-based strategies on human cells after knockdown/knockout and re-expression of EndoG. Our analysis revealed that EndoG stimulates both mtDNA replication initiation and mtDNA depletion, the two events being interlinked and dependent on EndoG's nuclease activity. Stimulation of mtDNA replication by EndoG was independent of 7S DNA processing at the replication origin. Importantly, both mtDNA-directed activities of EndoG were promoted by oxidative stress. Inhibition of base excision repair (BER) that repairs oxidative stress-induced DNA damage unveiled a pronounced effect of EndoG on mtDNA removal, reminiscent of recently discovered links between EndoG and BER in the nucleus. Altogether with the downstream effects on mitochondrial transcription, protein expression, redox status and morphology, this study demonstrates that removal of damaged mtDNA by EndoG and compensatory replication play a critical role in mitochondria homeostasis. PMID:29719607

  19. Attempting to Compensate for Reduced Neuronal Nitric Oxide Synthase Protein with Nitrate Supplementation Cannot Overcome Metabolic Dysfunction but Rather Has Detrimental Effects in Dystrophin-Deficient mdx Muscle.

    PubMed

    Timpani, Cara A; Trewin, Adam J; Stojanovska, Vanesa; Robinson, Ainsley; Goodman, Craig A; Nurgali, Kulmira; Betik, Andrew C; Stepto, Nigel; Hayes, Alan; McConell, Glenn K; Rybalka, Emma

    2017-04-01

    Duchenne muscular dystrophy arises from the loss of dystrophin and is characterized by calcium dysregulation, muscular atrophy, and metabolic dysfunction. The secondary reduction of neuronal nitric oxide synthase (nNOS) from the sarcolemma reduces NO production and bioavailability. As NO modulates glucose uptake, metabolism, and mitochondrial bioenergetics, we investigated whether an 8-week nitrate supplementation regimen could overcome metabolic dysfunction in the mdx mouse. Dystrophin-positive control (C57BL/10) and dystrophin-deficient mdx mice were supplemented with sodium nitrate (85 mg/l) in drinking water. Following the supplementation period, extensor digitorum longus and soleus were excised and radioactive glucose uptake was measured at rest (basal) and during contraction. Gastrocnemius was excised and mitochondrial respiration was measured using the Oroboros Oxygraph. Tibialis anterior was analyzed immunohistochemically for the presence of dystrophin, nNOS, nitrotyrosine, IgG and CD45+ cells, and histologically to assess areas of damage and regeneration. Glucose uptake in the basal and contracting states was normal in unsupplemented mdx muscles but was reduced following nitrate supplementation in mdx muscles only. The mitochondrial utilization of substrates was also impaired in mdx gastrocnemius during phosphorylating and maximal uncoupled respiration, and nitrate could not improve respiration in mdx muscle. Although nitrate supplementation reduced mitochondrial hydrogen peroxide emission, it induced mitochondrial uncoupling in red gastrocnemius, increased muscle fiber peroxynitrite (nitrotyrosine), and promoted skeletal muscle damage. Our novel data suggest that despite lower nNOS protein expression and likely lower NO production in mdx muscle, enhancing NO production with nitrate supplementation in these mice has detrimental effects on skeletal muscle. This may have important relevance for those with DMD.

  20. The use of next generation sequencing technology to study the effect of radiation therapy on mitochondrial DNA mutation.

    PubMed

    Guo, Yan; Cai, Qiuyin; Samuels, David C; Ye, Fei; Long, Jirong; Li, Chung-I; Winther, Jeanette F; Tawn, E Janet; Stovall, Marilyn; Lähteenmäki, Päivi; Malila, Nea; Levy, Shawn; Shaffer, Christian; Shyr, Yu; Shu, Xiao-Ou; Boice, John D

    2012-05-15

    The human mitochondrial genome has an exclusively maternal mode of inheritance. Mitochondrial DNA (mtDNA) is particularly vulnerable to environmental insults due in part to an underdeveloped DNA repair system, limited to base excision and homologous recombination repair. Radiation exposure to the ovaries may cause mtDNA mutations in oocytes, which may in turn be transmitted to offspring. We hypothesized that the children of female cancer survivors who received radiation therapy may have an increased rate of mtDNA heteroplasmy mutations, which conceivably could increase their risk of developing cancer and other diseases. We evaluated 44 DNA blood samples from 17 Danish and 1 Finnish families (18 mothers and 26 children). All mothers had been treated for cancer as children and radiation doses to their ovaries were determined based on medical records and computational models. DNA samples were sequenced for the entire mitochondrial genome using the Illumina GAII system. Mother's age at sample collection was positively correlated with mtDNA heteroplasmy mutations. There was evidence of heteroplasmy inheritance in that 9 of the 18 families had at least one child who inherited at least one heteroplasmy site from his or her mother. No significant difference in single nucleotide polymorphisms between mother and offspring, however, was observed. Radiation therapy dose to ovaries also was not significantly associated with the heteroplasmy mutation rate among mothers and children. No evidence was found that radiotherapy for pediatric cancer is associated with the mitochondrial genome mutation rate in female cancer survivors and their children. Copyright © 2012 Elsevier B.V. All rights reserved.

  1. Increased postischemic brain injury in mice deficient in uracil-DNA glycosylase

    PubMed Central

    Endres, Matthias; Biniszkiewicz, Detlev; Sobol, Robert W.; Harms, Christoph; Ahmadi, Michael; Lipski, Andreas; Katchanov, Juri; Mergenthaler, Philipp; Dirnagl, Ulrich; Wilson, Samuel H.; Meisel, Andreas; Jaenisch, Rudolf

    2004-01-01

    Uracil-DNA glycosylase (UNG) is involved in base excision repair of aberrant uracil residues in nuclear and mitochondrial DNA. Ung knockout mice generated by gene targeting are viable, fertile, and phenotypically normal and have regular mutation rates. However, when exposed to a nitric oxide donor, Ung–/– fibroblasts show an increase in the uracil/cytosine ratio in the genome and augmented cell death. After combined oxygen-glucose deprivation, Ung–/– primary cortical neurons have increased vulnerability to cell death, which is associated with early mitochondrial dysfunction. In vivo, UNG expression and activity are low in brains of naive WT mice but increase significantly after reversible middle cerebral artery occlusion and reperfusion. Moreover, major increases in infarct size are observed in Ung–/– mice compared with littermate control mice. In conclusion, our results provide compelling evidence that UNG is of major importance for tissue repair after brain ischemia. PMID:15199406

  2. The Influence of Hepatitis C Virus Therapy on the DNA Base Excision Repair System of Peripheral Blood Mononuclear Cells.

    PubMed

    Czarny, Piotr; Merecz-Sadowska, Anna; Majchrzak, Kinga; Jabłkowski, Maciej; Szemraj, Janusz; Śliwiński, Tomasz; Karwowski, Bolesław

    2017-07-01

    Hepatitis C virus (HCV) can infect extrahepatic tissues, including lymphocytes, creating reservoir of the virus. Moreover, HCV proteins can interact with DNA damage response proteins of infected cells. In this article we investigated the influence of the virus infection and a new ombitasvir/paritaprevir/ritonavir ± dasabuvir ± ribavirin (OBV/PTV/r ± DSV ± RBV) anti-HCV therapy on the PBMCs (peripheral blood mononuclear cells, mainly lymphocytes) DNA base excision repair (BER) system. BER protein activity was analyzed in the nuclear and mitochondrial extracts (NE and ME) of PBMC isolated from patients before and after therapy, and from subjects without HCV, using modeled double-strand DNA, with 2'-deoxyuridine substitution as the DNA damage. The NE and ME obtained from patients before therapy demonstrated lower efficacy of 2'-deoxyuridine removal and DNA repair polymerization than those of the control group or patients after therapy. Moreover, the extracts from the patients after therapy had similar activity to those from the control group. However, the efficacy of apurinic/apyrimidinic site excision in NE did not differ between the studied groups. We postulate that infection of lymphocytes by the HCV can lead to a decrease in the activity of BER enzymes. However, the use of novel therapy results in the improvement of glycosylase activity as well as the regeneration of endonuclease and other crucial repair enzymes.

  3. Cold ischemia contributes to the development of chronic rejection and mitochondrial injury after cardiac transplantation.

    PubMed

    Schneeberger, Stefan; Amberger, Albert; Mandl, Julia; Hautz, Theresa; Renz, Oliver; Obrist, Peter; Meusburger, Hugo; Brandacher, Gerald; Mark, Walter; Strobl, Daniela; Troppmair, Jakob; Pratschke, Johann; Margreiter, Raimund; Kuznetsov, Andrey V

    2010-12-01

    Chronic rejection (CR) remains an unsolved hurdle for long-term heart transplant survival. The effect of cold ischemia (CI) on progression of CR and the mechanisms resulting in functional deficit were investigated by studying gene expression, mitochondrial function, and enzymatic activity. Allogeneic (Lew→F344) and syngeneic (Lew→Lew) heart transplantations were performed with or without 10 h of CI. After evaluation of myocardial contraction, hearts were excised at 2, 10, 40, and 60 days for investigation of vasculopathy, gene expression, enzymatic activities, and mitochondrial respiration. Gene expression studies identified a gene cluster coding for subunits of the mitochondrial electron transport chain regulated in response to CI and CR. Myocardial performance, mitochondrial function, and mitochondrial marker enzyme activities declined in all allografts with time after transplantation. These declines were more rapid and severe in CI allografts (CR-CI) and correlated well with progression of vasculopathy and fibrosis. Mitochondria related gene expression and mitochondrial function are substantially compromised with the progression of CR and show that CI impacts on progression, gene profile, and mitochondrial function of CR. Monitoring mitochondrial function and enzyme activity might allow for earlier detection of CR and cardiac allograft dysfunction. © 2010 The Authors. Journal compilation © 2010 European Society for Organ Transplantation.

  4. Cockayne syndrome: Clinical features, model systems and pathways

    PubMed Central

    Karikkineth, Ajoy C.; Scheibye-Knudsen, Morten; Fivenson, Elayne; Croteau, Deborah L.; Bohr, Vilhelm A.

    2016-01-01

    Cockayne syndrome (CS) is a disorder characterized by a variety of clinical features including cachectic dwarfism, severe neurological manifestations including microcephaly and cognitive deficits, pigmentary retinopathy, cataracts, sensorineural deafness, and ambulatory and feeding difficulties, leading to death by 12 years of age on average. It is an autosomal recessive disorder, with a prevalence of approximately 2.5 per million. There are several phenotypes (1, 2 and 3) and complementation groups (CSA and CSB), and overlaps with xeroderma pigmentosum (XP). It has been considered a progeria, and many of the clinical features resemble accelerated aging. As such, the study of CS affords an opportunity to better understand the underlying mechanisms of aging. The molecular basis of CS has traditionally been considered to be due to defects in transcription and transcription-coupled nucleotide excision repair (TC-NER). However, recent work suggests that defects in base excision DNA repair and mitochondrial functions may also play key roles. This opens up the possibility of molecular interventions in CS, and by extrapolation, possibly in aging. PMID:27507608

  5. Xeroderma pigmentosum and other diseases of human premature aging and DNA repair: Molecules to patients

    PubMed Central

    Niedernhofer, Laura J.; Bohr, Vilhelm A.; Sander, Miriam; Kraemer, Kenneth H.

    2012-01-01

    A workshop1 to share, consider and discuss the latest developments in understanding xeroderma pigmentosum and other human diseases caused by defects in nucleotide excision repair (NER) of DNA damage was held on September 21–24, 2010 in Virginia. It was attended by approximately 100 researchers and clinicians, as well as several patients and representatives of patient support groups. This was the third in a series of workshops with similar design and goals: to emphasize discussion and interaction among participants as well as open exchange of information and ideas. The participation of patients, their parents and physicians was an important feature of this and the preceding two workshops. Topics discussed included the natural history and clinical features of the diseases, clinical and laboratory diagnosis of these rare diseases, therapeutic strategies, mouse models of neurodegeneration, molecular analysis of accelerated aging, impact of transcriptional defects and mitochondrial dysfunction on neurodegeneration, and biochemical insights into mechanisms of NER and base excision repair. PMID:21708183

  6. Crosstalk between mitochondrial stress signals regulates yeast chronological lifespan.

    PubMed

    Schroeder, Elizabeth A; Shadel, Gerald S

    2014-01-01

    Mitochondrial DNA (mtDNA) exists in multiple copies per cell and is essential for oxidative phosphorylation. Depleted or mutated mtDNA promotes numerous human diseases and may contribute to aging. Reduced TORC1 signaling in the budding yeast, Saccharomyces cerevisiae, extends chronological lifespan (CLS) in part by generating a mitochondrial ROS (mtROS) signal that epigenetically alters nuclear gene expression. To address the potential requirement for mtDNA maintenance in this response, we analyzed strains lacking the mitochondrial base-excision repair enzyme Ntg1p. Extension of CLS by mtROS signaling and reduced TORC1 activity, but not caloric restriction, was abrogated in ntg1Δ strains that exhibited mtDNA depletion without defects in respiration. The DNA damage response (DDR) kinase Rad53p, which transduces pro-longevity mtROS signals, is also activated in ntg1Δ strains. Restoring mtDNA copy number alleviated Rad53p activation and re-established CLS extension following mtROS signaling, indicating that Rad53p senses mtDNA depletion directly. Finally, DDR kinases regulate nucleus-mitochondria localization dynamics of Ntg1p. From these results, we conclude that the DDR pathway senses and may regulate Ntg1p-dependent mtDNA stability. Furthermore, Rad53p senses multiple mitochondrial stresses in a hierarchical manner to elicit specific physiological outcomes, exemplified by mtDNA depletion overriding the ability of Rad53p to transduce an adaptive mtROS longevity signal. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  7. Low intensity infrared laser affects expression of oxidative DNA repair genes in mitochondria and nucleus

    NASA Astrophysics Data System (ADS)

    Fonseca, A. S.; Magalhães, L. A. G.; Mencalha, A. L.; Geller, M.; Paoli, F.

    2014-11-01

    Practical properties and physical characteristics of low intensity lasers have made possible their application to treat soft tissue diseases. Excitation of intracellular chromophores by red and infrared radiation at low energy fluences with increase of mitochondrial metabolism is the basis of the biostimulation effect but free radicals can be produced. DNA lesions induced by free radicals are repaired by the base excision repair pathway. In this work, we evaluate the expression of POLγ and APEX2 genes related to repair of mitochondrial and nuclear DNA, respectively. Skin and muscle tissue of Wistar rats were exposed to low intensity infrared laser at different fluences. One hour and 24 hours after laser exposure, tissue samples were withdrawn for total RNA extraction, cDNA synthesis, and evaluation of POLγ and APEX2 mRNA expression by real time quantitative polymerase chain reaction. Skin and muscle tissue of Wistar rats exposed to laser radiation show different expression of POLγ and APEX2 mRNA depending of the fluence and time after exposure. Our study suggests that a low intensity infrared laser affects expression of genes involved in repair of oxidative lesions in mitochondrial and nuclear DNA.

  8. Msh1p counteracts oxidative lesion-induced instability of mtDNA and stimulates mitochondrial recombination in Saccharomyces cerevisiae.

    PubMed

    Kaniak, Aneta; Dzierzbicki, Piotr; Rogowska, Agata T; Malc, Ewa; Fikus, Marta; Ciesla, Zygmunt

    2009-03-01

    The proximity of the mitochondrial genome to the respiratory chain, a major source of ROS (radical oxygen species), makes mtDNA more vulnerable to oxidative damage than nuclear DNA. Mitochondrial BER (base excision repair) is generally considered to be the main pathway involved in the prevention of oxidative lesion-induced mutations in mtDNA. However, we previously demonstrated that the increased frequency of mitochondrial Oli(r) mutants in an ogg1Delta strain, lacking the activity of a crucial mtBER glycosylase, is reduced in the presence of plasmids encoding Msh1p, the mitochondrial homologue of the bacterial mismatch protein MutS. This finding suggested that Msh1p might be involved in the prevention of mitochondrial mutagenesis induced by oxidative stress. Here we show that a double mutant carrying the msh1-R813W allele, encoding a variant of the protein defective in the ATP hydrolysis activity, combined with deletion of SOD2, encoding the mitochondrial superoxide dismutase, displays a synergistic effect on the frequency of Oli(r) mutants, indicating that Msh1p prevents generation of oxidative lesion-induced mitochondrial mutations. We also show that double mutants carrying the msh1-R813W allele, combined with deletion of either OGG1 or APN1, the latter resulting in deficiency of the Apn1 endonuclease, exhibit a synergistic effect on the frequency of respiration-defective mutants having gross rearrangements of the mitochondrial genome. This suggests that Msh1p, Ogg1p and Apn1p play overlapping functions in maintaining the stability of mtDNA. In addition, we demonstrate, using a novel ARG8(m) recombination assay, that a surplus of Msh1p results in enhanced mitochondrial recombination. Interestingly, the mutant forms of the protein, msh1p-R813W and msh1p-G776D, fail to stimulate recombination. We postulate that the Msh1p-enhanced homologous recombination may play an important role in the prevention of oxidative lesion-induced rearrangements of the mitochondrial genome.

  9. Enhanced Mitochondrial DNA Repair of the Common Disease-Associated Variant, Ser326Cys, of hOGG1 through Small Molecule Intervention.

    PubMed

    Baptiste, Beverly A; Katchur, Steven R; Fivenson, Elayne M; Croteau, Deborah L; Rumsey, William L; Bohr, Vilhelm A

    2018-06-04

    The common oxidatively generated lesion, 8-oxo-7,8-dihydroguanine (8-oxoGua), is removed from DNA by base excision repair. The glycosylase primarily charged with recognition and removal of this lesion is 8-oxoGuaDNA glycosylase 1 (OGG1). When left unrepaired, 8-oxodG alters transcription and is mutagenic. Individuals homozygous for the less active OGG1 allele, Ser326Cys, have increased risk of several cancers. Here, small molecule enhancers of OGG1 were identified and tested for their ability to stimulate DNA repair and protect cells from the environmental hazard paraquat (PQ). PQ-induced mtDNA damage was inversely proportional to the levels of OGG1 expression whereas stimulation of OGG1, in some cases, entirely abolished its cellular effects. The PQ-mediated decline of mitochondrial membrane potential or nuclear condensation were prevented by the OGG1 activators. In addition, in Ogg1 -/- mouse embryonic fibroblasts complemented with hOGG1 S326C , there was increased cellular and mitochondrial reactive oxygen species compared to their wild type counterparts. Mitochondrial extracts from cells expressing hOGG1 S326C were deficient in mitochondrial 8-oxodG incision activity, which was rescued by the OGG1 activators. These data demonstrate that small molecules can stimulate OGG1 activity with consequent cellular protection. Thus, OGG1-activating compounds may be useful in select humans to mitigate the deleterious effects of environmental oxidants and mutagens. Copyright © 2018 Elsevier Inc. All rights reserved.

  10. Mitochondrial Gene Expression Profiles and Metabolic Pathways in the Amygdala Associated with Exaggerated Fear in an Animal Model of PTSD.

    PubMed

    Li, He; Li, Xin; Smerin, Stanley E; Zhang, Lei; Jia, Min; Xing, Guoqiang; Su, Yan A; Wen, Jillian; Benedek, David; Ursano, Robert

    2014-01-01

    The metabolic mechanisms underlying the development of exaggerated fear in post-traumatic stress disorder (PTSD) are not well defined. In the present study, alteration in the expression of genes associated with mitochondrial function in the amygdala of an animal model of PTSD was determined. Amygdala tissue samples were excised from 10 non-stressed control rats and 10 stressed rats, 14 days post-stress treatment. Total RNA was isolated, cDNA was synthesized, and gene expression levels were determined using a cDNA microarray. During the development of the exaggerated fear associated with PTSD, 48 genes were found to be significantly upregulated and 37 were significantly downregulated in the amygdala complex based on stringent criteria (p < 0.01). Ingenuity pathway analysis revealed up- or downregulation in the amygdala complex of four signaling networks - one associated with inflammatory and apoptotic pathways, one with immune mediators and metabolism, one with transcriptional factors, and one with chromatin remodeling. Thus, informatics of a neuronal gene array allowed us to determine the expression profile of mitochondrial genes in the amygdala complex of an animal model of PTSD. The result is a further understanding of the metabolic and neuronal signaling mechanisms associated with delayed and exaggerated fear.

  11. XPD localizes in mitochondria and protects the mitochondrial genome from oxidative DNA damage.

    PubMed

    Liu, Jing; Fang, Hongbo; Chi, Zhenfen; Wu, Zan; Wei, Di; Mo, Dongliang; Niu, Kaifeng; Balajee, Adayabalam S; Hei, Tom K; Nie, Linghu; Zhao, Yongliang

    2015-06-23

    Xeroderma pigmentosum group D (XPD/ERCC2) encodes an ATP-dependent helicase that plays essential roles in both transcription and nucleotide excision repair of nuclear DNA, however, whether or not XPD exerts similar functions in mitochondria remains elusive. In this study, we provide the first evidence that XPD is localized in the inner membrane of mitochondria, and cells under oxidative stress showed an enhanced recruitment of XPD into mitochondrial compartment. Furthermore, mitochondrial reactive oxygen species production and levels of oxidative stress-induced mitochondrial DNA (mtDNA) common deletion were significantly elevated, whereas capacity for oxidative damage repair of mtDNA was markedly reduced in both XPD-suppressed human osteosarcoma (U2OS) cells and XPD-deficient human fibroblasts. Immunoprecipitation-mass spectrometry analysis was used to identify interacting factor(s) with XPD and TUFM, a mitochondrial Tu translation elongation factor was detected to be physically interacted with XPD. Similar to the findings in XPD-deficient cells, mitochondrial common deletion and oxidative damage repair capacity in U2OS cells were found to be significantly altered after TUFM knock-down. Our findings clearly demonstrate that XPD plays crucial role(s) in protecting mitochondrial genome stability by facilitating an efficient repair of oxidative DNA damage in mitochondria. © The Author(s) 2015. Published by Oxford University Press on behalf of Nucleic Acids Research.

  12. Regions flanking ori sequences affect the replication efficiency of the mitochondrial genome of ori+ petite mutants from yeast.

    PubMed

    Rayko, E; Goursot, R; Cherif-Zahar, B; Melis, R; Bernardi, G

    1988-03-31

    The mitochondrial genomes of progenies from 26 crosses between 17 cytoplasmic, spontaneous, suppressive, ori+ petite mutants of Saccharomyces cerevisiae have been studied by electrophoresis of restriction fragments. Only parental genomes (or occasionally, genomes derived from them by secondary excisions) were found in the progenies of the almost 500 diploids investigated; no evidence for illegitimate, site-specific mitochondrial recombination was detected. One of the parental genomes was always found to be predominate over the other one, although to different extents in different crosses. This predominance appears to be due to a higher replication efficiency, which is correlated with a greater density of ori sequences on the mitochondrial genome (and with a shorter repeat unit size of the latter). Exceptions to the 'repeat-unit-size rule' were found, however, even when the parental mitochondrial genomes carried the same ori sequence. This indicates that noncoding, intergenic sequences outside ori sequences also play a role in modulating replication efficiency. Since in different petites such sequences differ in primary structure, size, and position relative to ori sequences, this modulation is likely to take place through an indirect effect on DNA and nucleoid structure.

  13. Naringin Ameliorates HIV-1 Nucleoside Reverse Transcriptase Inhibitors- Induced Mitochondrial Toxicity.

    PubMed

    Oluwafeyisetan, Adebiyi; Olubunmi, Adebiyi; Peter, Owira

    2016-01-01

    Mitochondrial reactive oxygen species (ROS) generation and defective oxidative phosphorylation (OXPHOS) have been proposed as possible mechanisms underlying the development of nucleoside reverse transcriptase inhibitors (NRTIs)-induced mitochondrial toxicities. Available options in managing these complications have, so far, produced controversial results, thus necessitating further research into newer agents with promise. Antioxidant and free-radical scavenging effects of naringin, a plant-derived flavonoid, have previously been demonstrated. This study was designed to investigate the effects of naringin on NRTIs-induced mitochondrial toxicity. Wistar rats were randomly divided into Zidovudine (AZT)-only (100 mg/kg body weight BW); AZT+Naringin (100+50 mg/kg BW); AZT+Vitamin E (100+100 mg/kg BW); Stavudine (d4T)- only (50 mg/kg BW); d4T+Naringin (50+50 mg/kg BW); d4T+Vitamin E (50+100 mg/kg BW) and Vehicle (3.0 mL/kg BW)-treated groups, respectively. After 56 days of oral daily dosing, rats were euthanized by halothane overdose, blood collected by cardiac puncture and livers promptly excised for further biochemical and ultrastructural analyses. </p> Results: AZT- or d4T-only caused significant mitochondrial dysfunction and mitochondrial ultrastructural damage compared to controls, while either naringin or vitamin E reversed indices of mitochondrial dysfunction evidenced by significantly reduced mitochondrial malondialdehyde (MDA) and blood lactate concentrations, increased liver manganese superoxide dismutase (MnSOD) activity and upregulate expression of mitochondrial-encoded subunit of electron transport chain (ETC) complex IV protein compared to AZT- or d4T-only treated rats. Furthermore, naringin or vitamin E, respectively, ameliorated mitochondrial damage observed in AZT- or d4T-only treated rats. Naringin ameliorated oxidative stress and NRTI-induced mitochondrial damage and might, therefore, be beneficial in managing toxicities and complications arising from NRTI use.

  14. Modulation of mitochondrial biomarkers by intermittent hypobaric hypoxia and aerobic exercise after eccentric exercise in trained rats.

    PubMed

    Rizo-Roca, David; Ríos-Kristjánsson, Juan Gabriel; Núñez-Espinosa, Cristian; Santos-Alves, Estela; Magalhães, José; Ascensão, António; Pagès, Teresa; Viscor, Ginés; Torrella, Joan Ramon

    2017-07-01

    Unaccustomed eccentric contractions induce muscle damage, calcium homeostasis disruption, and mitochondrial alterations. Since exercise and hypoxia are known to modulate mitochondrial function, we aimed to analyze the effects on eccentric exercise-induced muscle damage (EEIMD) in trained rats using 2 recovery protocols based on: (i) intermittent hypobaric hypoxia (IHH) and (ii) IHH followed by exercise. The expression of biomarkers related to mitochondrial biogenesis, dynamics, oxidative stress, and bioenergetics was evaluated. Soleus muscles were excised before (CTRL) and 1, 3, 7, and 14 days after an EEIMD protocol. The following treatments were applied 1 day after the EEIMD: passive normobaric recovery (PNR), 4 h daily exposure to passive IHH at 4000 m (PHR) or IHH exposure followed by aerobic exercise (AHR). Citrate synthase activity was reduced at 7 and 14 days after application of the EEIMD protocol. However, this reduction was attenuated in AHR rats at day 14. PGC-1α and Sirt3 and TOM20 levels had decreased after 1 and 3 days, but the AHR group exhibited increased expression of these proteins, as well as of Tfam, by the end of the protocol. Mfn2 greatly reduced during the first 72 h, but returned to basal levels passively. At day 14, AHR rats had higher levels of Mfn2, OPA1, and Drp1 than PNR animals. Both groups exposed to IHH showed a lower p66shc(ser 36 )/p66shc ratio than PNR animals, as well as higher complex IV subunit I and ANT levels. These results suggest that IHH positively modulates key mitochondrial aspects after EEIMD, especially when combined with aerobic exercise.

  15. Nucleotide pools dictate the identity and frequency of ribonucleotide incorporation in mitochondrial DNA.

    PubMed

    Berglund, Anna-Karin; Navarrete, Clara; Engqvist, Martin K M; Hoberg, Emily; Szilagyi, Zsolt; Taylor, Robert W; Gustafsson, Claes M; Falkenberg, Maria; Clausen, Anders R

    2017-02-01

    Previous work has demonstrated the presence of ribonucleotides in human mitochondrial DNA (mtDNA) and in the present study we use a genome-wide approach to precisely map the location of these. We find that ribonucleotides are distributed evenly between the heavy- and light-strand of mtDNA. The relative levels of incorporated ribonucleotides reflect that DNA polymerase γ discriminates the four ribonucleotides differentially during DNA synthesis. The observed pattern is also dependent on the mitochondrial deoxyribonucleotide (dNTP) pools and disease-causing mutations that change these pools alter both the absolute and relative levels of incorporated ribonucleotides. Our analyses strongly suggest that DNA polymerase γ-dependent incorporation is the main source of ribonucleotides in mtDNA and argues against the existence of a mitochondrial ribonucleotide excision repair pathway in human cells. Furthermore, we clearly demonstrate that when dNTP pools are limiting, ribonucleotides serve as a source of building blocks to maintain DNA replication. Increased levels of embedded ribonucleotides in patient cells with disturbed nucleotide pools may contribute to a pathogenic mechanism that affects mtDNA stability and impair new rounds of mtDNA replication.

  16. [Respiration of wheat root cells under simultaneous inhibition of parts I and III of the electron transport chain of mitochondria by rotenone and antimycine A].

    PubMed

    Rakhmatullina, D F; Gordon, L Kh; Ogorodnikova, T I

    2005-01-01

    Respiration of excised roots of 5 day old wheat seedlings with blocked mitochondrial oxidation under simultaneous action of rotenone and antimycine A was studied. A reduced rate of oxygen uptake was observed within the first hour of root treatment inhibitors. However, after a 5 h exposure there was an increase in oxygen uptake, which was prevented by KCN but amplified by malate and ascorbate. The application of inhibitors caused a considerable increase in the respiratory coefficient (RC) up to 2.1, that suggests a significant CO2 release, when the initial sites of mitochondrial electron transport chain were inhibited. RC did not raise, when ascorbate was added in the presence of inhibitors. We assume that inhibition of mitochondrial oxidation at I and III sites of electron transport chain facilitates switching on the alternative paths of reductant translocation to oxygen. Participation of ATPases and redox system of plasma membrane in the response reactions of respiration directed to the restoration of ion, particularly, proton homeostasis in conditions of inhibited mitochondrial oxidation is discussed.

  17. Purification and characterization of human mitochondrial transcription factor 1.

    PubMed Central

    Fisher, R P; Clayton, D A

    1988-01-01

    We purified to near homogeneity a transcription factor from human KB cell mitochondria. This factor, designated mitochondrial transcription factor 1 (mtTF1), is required for the in vitro recognition of both major promoters of human mitochondrial DNA by the homologous mitochondrial RNA polymerase. Furthermore, it has been shown to bind upstream regulatory elements of the two major promoters. After separation from RNA polymerase by phosphocellulose chromatography, mtTF1 was chromatographed on a MonoQ anion-exchange fast-performance liquid chromatography column. Analysis of mtTF1-containing fractions by sodium dodecyl sulfate-polyacrylamide gel electrophoresis revealed a single major polypeptide with an Mr of approximately 25,000. Centrifugation in analytical glycerol gradients indicated a sedimentation coefficient of approximately 2.5 S, consistent with a monomeric 25-kilodalton protein. Finally, when the 25-kilodalton polypeptide was excised from a stained sodium dodecyl sulfate-polyacrylamide gel and allowed to renature, it regained DNA-binding and transcriptional stimulatory activities at both promoters. Although mtTF1 is the only mitochondrial DNA-binding transcription factor to be purified and characterized, its properties, such as a high affinity for random DNA and a weak specificity for one of its target sequences, may typify this class of regulatory proteins. Images PMID:3211148

  18. The fate of mitochondrial loci in rho minus mutants induced by ultraviolet irradiation of Saccharomyces cerevisiae: effects of different post-irradiation treatments.

    PubMed

    Heude, M; Moustacchi, E

    1979-09-01

    Three main features regarding the loss of mitochondrial genetic markers among rho- mutants induced by ultraviolet irradiation are reported: (a) the frequency of loss of six loci examined increases with UV dose; (b) preferential loss of one region of the mitochondrial genome observed in spontaneous rho- mutants is enhanced by UV; and (c) the loss of each marker results from large deletions. Marker loss in rho- mutants was also investigated under conditions that modulate rho- induction. Liquid holding of irradiated exponential or stationary phase cells, as well as a split-dose regime applied to stationary phase cells, results in rho- mutants in which the loss of markers is correlated with rho- induction: the more sensitive the cells are to rho- induction, the more frequent are the marker losses among rho- clones derived from these cells. This correlation is not found in exponential-phase cells submitted to a split-dose treatment, suggesting that a different mechanism is involved in the latter case. It is known that UV-induced pyrimidine dimers are not excised in a controlled manner in mitochondrial DNA. However, our studies indicate that an accurate repair mechanism (of the recombinational type ?) can lead to the restoration of mitochondrial genetic information in growing cells.

  19. Nucleotide pools dictate the identity and frequency of ribonucleotide incorporation in mitochondrial DNA

    PubMed Central

    Hoberg, Emily; Szilagyi, Zsolt; Taylor, Robert W.; Gustafsson, Claes M.; Falkenberg, Maria

    2017-01-01

    Previous work has demonstrated the presence of ribonucleotides in human mitochondrial DNA (mtDNA) and in the present study we use a genome-wide approach to precisely map the location of these. We find that ribonucleotides are distributed evenly between the heavy- and light-strand of mtDNA. The relative levels of incorporated ribonucleotides reflect that DNA polymerase γ discriminates the four ribonucleotides differentially during DNA synthesis. The observed pattern is also dependent on the mitochondrial deoxyribonucleotide (dNTP) pools and disease-causing mutations that change these pools alter both the absolute and relative levels of incorporated ribonucleotides. Our analyses strongly suggest that DNA polymerase γ-dependent incorporation is the main source of ribonucleotides in mtDNA and argues against the existence of a mitochondrial ribonucleotide excision repair pathway in human cells. Furthermore, we clearly demonstrate that when dNTP pools are limiting, ribonucleotides serve as a source of building blocks to maintain DNA replication. Increased levels of embedded ribonucleotides in patient cells with disturbed nucleotide pools may contribute to a pathogenic mechanism that affects mtDNA stability and impair new rounds of mtDNA replication. PMID:28207748

  20. Resistance to Nucleotide Excision Repair of Bulky Guanine Adducts Opposite Abasic Sites in DNA Duplexes and Relationships between Structure and Function

    PubMed Central

    Liu, Zhi; Ding, Shuang; Kropachev, Konstantin; Lei, Jia; Amin, Shantu; Broyde, Suse; Geacintov, Nicholas E.

    2015-01-01

    The nucleotide excision repair of certain bulky DNA lesions is abrogated in some specific non-canonical DNA base sequence contexts, while the removal of the same lesions by the nucleotide excision repair mechanism is efficient in duplexes in which all base pairs are complementary. Here we show that the nucleotide excision repair activity in human cell extracts is moderate-to-high in the case of two stereoisomeric DNA lesions derived from the pro-carcinogen benzo[a]pyrene (cis- and trans-B[a]P-N 2-dG adducts) in a normal DNA duplex. By contrast, the nucleotide excision repair activity is completely abrogated when the canonical cytosine base opposite the B[a]P-dG adducts is replaced by an abasic site in duplex DNA. However, base excision repair of the abasic site persists. In order to understand the structural origins of these striking phenomena, we used NMR and molecular spectroscopy techniques to evaluate the conformational features of 11mer DNA duplexes containing these B[a]P-dG lesions opposite abasic sites. Our results show that in these duplexes containing the clustered lesions, both B[a]P-dG adducts adopt base-displaced intercalated conformations, with the B[a]P aromatic rings intercalated into the DNA helix. To explain the persistence of base excision repair in the face of the opposed bulky B[a]P ring system, molecular modeling results suggest how the APE1 base excision repair endonuclease, that excises abasic lesions, can bind productively even with the trans-B[a]P-dG positioned opposite the abasic site. We hypothesize that the nucleotide excision repair resistance is fostered by local B[a]P residue—DNA base stacking interactions at the abasic sites, that are facilitated by the absence of the cytosine partner base in the complementary strand. More broadly, this study sets the stage for elucidating the interplay between base excision and nucleotide excision repair in processing different types of clustered DNA lesions that are substrates of nucleotide excision repair or base excision repair mechanisms. PMID:26340000

  1. DNA repair pathways and mitochondrial DNA mutations in gastrointestinal carcinogenesis.

    PubMed

    Basso, Daniela; Navaglia, Filippo; Fogar, Paola; Zambon, Carlo-Federico; Greco, Eliana; Schiavon, Stefania; Fasolo, Michela; Stranges, Alessia; Falda, Alessandra; Padoan, Andrea; Fadi, Elisa; Pedrazzoli, Sergio; Plebani, Mario

    2007-05-01

    This work focuses on the main DNA repair pathways, highlighting their role in gastrointestinal carcinogenesis and the role of mitochondrial DNA (mtDNA), mutations being described in several tumor types, including those of the gastrointestinal tract. The mismatch repair (MMR) system is inherently altered in patients with hereditary non-polyposis colorectal cancer, and plays a role in carcinogenesis in a subset of sporadic colorectal, gastric and esophageal cancers. Alterations in homologous recombination (HR) and non-homologous end-joining (NHEJ) also contribute to the development of pancreatic cancer. Gene polymorphisms of some X-ray cross-complementing (XRCCs), cofactor proteins involved in the base excision repair pathway, have been investigated in relation to gastric, colorectal and pancreatic cancer. Yet only one polymorphism, XRCC1 Arg194Trp, appears to be involved in smoking-related cancers and in early onset pancreatic cancer. Although evidence in the literature indicates that mtDNA somatic mutations play a role in gastric and colorectal carcinogenesis, no sound conclusions have yet been drawn regarding this issue in pancreatic cancer, although an mtDNA variant at 16519 is believed to worsen the outcome of pancreatic cancer patients, possibly because it is involved in altering cellular metabolism.

  2. Alar base reduction: the boomerang-shaped excision.

    PubMed

    Foda, Hossam M T

    2011-04-01

    A boomerang-shaped alar base excision is described to narrow the nasal base and correct the excessive alar flare. The boomerang excision combined the external alar wedge resection with an internal vestibular floor excision. The internal excision was inclined 30 to 45 degrees laterally to form the inner limb of the boomerang. The study included 46 patients presenting with wide nasal base and excessive alar flaring. All cases were followed for a mean period of 18 months (range, 8 to 36 months). The laterally oriented vestibular floor excision allowed for maximum preservation of the natural curvature of the alar rim where it meets the nostril floor and upon its closure resulted in a considerable medialization of alar lobule, which significantly reduced the amount of alar flare and the amount of external alar excision needed. This external alar excision measured, on average, 3.8 mm (range, 2 to 8 mm), which is significantly less than that needed when a standard vertical internal excision was used ( P < 0.0001). Such conservative external excisions eliminated the risk of obliterating the natural alar-facial crease, which did not occur in any of our cases. No cases of postoperative bleeding, infection, or vestibular stenosis were encountered. Keloid or hypertrophic scar formation was not encountered; however, dermabrasion of the scars was needed in three (6.5%) cases to eliminate apparent suture track marks. The boomerang alar base excision proved to be a safe and effective technique for narrowing the nasal base and elimination of the excessive flaring and resulted in a natural, well-proportioned nasal base with no obvious scarring. © Thieme Medical Publishers.

  3. Mitochondrial genetics in Bakers' yeast: a molecular mechanism for recombinational polarity and suppressiveness.

    PubMed

    Perlman, P S; Birky, C W

    1974-11-01

    Recombinational polarity and suppressiveness are two well-known but puzzling cytoplasmic genetic phenomena in bakers' yeast, Saccharomyces cerevisiae. Little progress has been made in characterizing the underlying molecular mechanisms of these phenomena. In this paper we describe a molecular model for recombinational polarity that is compatible with the available genetic evidence. The model stresses the role of small deletions and excision/repair processes in otherwise canonical recombinational events. According to the model, both phenomena require recombination and may share mechanistic elements.

  4. Proteomics Analysis of Tissue Samples Reveals Changes in Mitochondrial Protein Levels in Parathyroid Hyperplasia over Adenoma

    PubMed Central

    AKPINAR, GURLER; KASAP, MURAT; CANTURK, NUH ZAFER; ZULFIGAROVA, MEHIN; ISLEK, EYLÜL ECE; GULER, SERTAC ATA; SIMSEK, TURGAY; CANTURK, ZEYNEP

    2017-01-01

    Background/Aim: To unveil the pathophysiology of primary hyperparathyroidism, molecular details of parathyroid hyperplasia and adenoma have to be revealed. Such details will provide the tools necessary for differentiation of these two look-alike diseases. Therefore, in the present study, a comparative proteomic study using postoperative tissue samples from the parathyroid adenoma and parathyroid hyperplasia patients was performed. Materials and Methods: Protein extracts were prepared from tissue samples (n=8 per group). Protein pools were created for each group and subjected to DIGE and conventional 2DE. Following image analysis, spots representing the differentially regulated proteins were excised from the and used for identification via MALDI-TOF/TOF analysis. Results: The identities of 40 differentially-expressed proteins were revealed. Fourteen of these proteins were over-expressed in the hyperplasia while 26 of them were over-expressed in the adenoma. Conclusion: Most proteins found to be over-expressed in the hyperplasia samples were mitochondrial, underlying the importance of the mitochondrial activity as a potential biomarker for differentiation of parathyroid hyperplasia from adenoma. PMID:28446534

  5. Base excision repair: a critical player in many games.

    PubMed

    Wallace, Susan S

    2014-07-01

    This perspective reviews the many dimensions of base excision repair from a 10,000 foot vantage point and provides one person's view on where the field is headed. Enzyme function is considered under the lens of X-ray diffraction and single molecule studies. Base excision repair in chromatin and telomeres, regulation of expression and the role of posttranslational modifications are also discussed in the context of enzyme activities, cellular localization and interacting partners. The specialized roles that base excision repair play in transcriptional activation by active demethylation and targeted oxidation as well as how base excision repair functions in the immune processes of somatic hypermutation and class switch recombination and its possible involvement in retroviral infection are also discussed. Finally the complexities of oxidative damage and its repair and its link to neurodegenerative disorders, as well as the role of base excision repair as a tumor suppressor are examined in the context of damage, repair and aging. By outlining the many base excision repair-related mysteries that have yet to be unraveled, hopefully this perspective will stimulate further interest in the field. Copyright © 2014 Elsevier B.V. All rights reserved.

  6. The first genetically confirmed case of Dioctophyme renale (Nematoda: Dioctophymatida) in a patient with a subcutaneous nodule.

    PubMed

    Tokiwa, Toshihiro; Ueda, Wataru; Takatsuka, Satoshi; Okawa, Kiyotaka; Onodera, Masayuki; Ohta, Nobuo; Akao, Nobuaki

    2014-02-01

    We describe a nematode larva in a subcutaneous nodule excised from a 44-year-old Chinese male who had been living in Japan for 15 years. Morphological features suggested that the worm was a dioctophimatid nematode. PCR amplification and sequencing of small subunit ribosomal DNA and mitochondrial cytochrome subunit c oxidase genes allowed us to identify the larva as the giant kidney worm, Dioctophyme renale (Goeze, 1972). This is the first molecularly confirmed human case of a dermal D. renale infection. © 2013.

  7. Ultrastructural aspects of autoschizis: a new cancer cell death induced by the synergistic action of ascorbate/menadione on human bladder carcinoma cells.

    PubMed

    Gilloteaux, J; Jamison, J M; Arnold, D; Taper, H S; Summers, J L

    2001-01-01

    Scanning and transmission electron microscopy were employed to further characterize the cytotoxic effects of a ascorbic acid/menadione (or vitamin C/vitamin K3) combination on a human bladder carcinoma T24 cell line. Following 1-h treatment T24 cells display membrane and mitochondrial defects as well as excision of cytoplasmic fragments that contain no organelles. These continuous self-excisions reduce the cell size. Concomitant, nuclear changes, chromatin disassembly, nucleolar condensation and fragmentation, and decreased nuclear volume lead to cell death via a process similar to karyorrhexis and karyolysis. Because this cell death is achieved through a progressive loss of cytoplasm due to self-morsellation, the authors named this mode of cell death autoschizis (from the Greek autos, self, and schizein, to split, as defined in Scanning. 1998; 20: 564-575). This morphological characterization of autoschizic cell death confirms and extends the authors previous reports and demonstrates that this cell death is distinct from apoptosis.

  8. ALDH2 restores exhaustive exercise-induced mitochondrial dysfunction in skeletal muscle

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Qiuping; Zheng, Jianheng; Qiu, Jun

    Background: Mitochondrial aldehyde dehydrogenase 2 (ALDH2) is highly expressed in heart and skeletal muscles, and is the major enzyme that metabolizes acetaldehyde and toxic aldehydes. The cardioprotective effects of ALDH2 during cardiac ischemia/reperfusion injury have been recognized. However, less is known about the function of ALDH2 in skeletal muscle. This study was designed to evaluate the effect of ALDH2 on exhaustive exercise-induced skeletal muscle injury. Methods: We created transgenic mice expressing ALDH2 in skeletal muscles. Male wild-type C57/BL6 (WT) and ALDH2 transgenic mice (ALDH2-Tg), 8-weeks old, were challenged with exhaustive exercise for 1 week to induce skeletal muscle injury. Animalsmore » were sacrificed 24 h post-exercise and muscle tissue was excised. Results: ALDH2-Tg mice displayed significantly increased treadmill exercise capacity compared to WT mice. Exhaustive exercise caused an increase in mRNA levels of the muscle atrophy markers, Atrogin-1 and MuRF1, and reduced mitochondrial biogenesis and fusion in WT skeletal muscles; these effects were attenuated in ALDH2-Tg mice. Exhaustive exercise also enhanced mitochondrial autophagy pathway activity, including increased conversion of LC3-I to LC3-II and greater expression of Beclin1 and Bnip3; the effects of which were mitigated by ALDH2 overexpression. In addition, ALDH2-Tg reversed the increase of an oxidative stress biomarker (4-hydroxynonenal) and decreased levels of mitochondrial antioxidant proteins, including manganese superoxide dismutase and NAD(P)H:quinone oxidoreductase 1, in skeletal muscle induced by exhaustive exercise. Conclusion: ALDH2 may reverse skeletal muscle mitochondrial dysfunction due to exhaustive exercise by regulating mitochondria dynamic remodeling and enhancing the quality of mitochondria. - Highlights: • Skeletal muscle ALDH2 expression and activity declines during exhaustive exercise. • ALDH2 overexpression enhances physical performance and restores muscle atrophy. • ALDH2 overexpression attenuates exercise-induced mitochondrial oxidative stress.« less

  9. Apn1 AP-endonuclease is essential for the repair of oxidatively damaged DNA bases in yeast frataxin-deficient cells.

    PubMed

    Lefevre, Sophie; Brossas, Caroline; Auchère, Françoise; Boggetto, Nicole; Camadro, Jean-Michel; Santos, Renata

    2012-09-15

    Frataxin deficiency results in mitochondrial dysfunction and oxidative stress and it is the cause of the hereditary neurodegenerative disease Friedreich ataxia (FA). Here, we present evidence that one of the pleiotropic effects of oxidative stress in frataxin-deficient yeast cells (Δyfh1 mutant) is damage to nuclear DNA and that repair requires the Apn1 AP-endonuclease of the base excision repair pathway. Major phenotypes of Δyfh1 cells are respiratory deficit, disturbed iron homeostasis and sensitivity to oxidants. These phenotypes are weak or absent under anaerobiosis. We show here that exposure of anaerobically grown Δyfh1 cells to oxygen leads to down-regulation of antioxidant defenses, increase in reactive oxygen species, delay in G1- and S-phases of the cell cycle and damage to mitochondrial and nuclear DNA. Nuclear DNA lesions in Δyfh1 cells are primarily caused by oxidized bases and single-strand breaks that can be detected 15-30 min after oxygen exposition. The Apn1 enzyme is essential for the repair of the DNA lesions in Δyfh1 cells. Compared with Δyfh1, the double Δyfh1Δapn1 mutant shows growth impairment, increased mutagenesis and extreme sensitivity to H(2)O(2). On the contrary, overexpression of the APN1 gene in Δyfh1 cells decreases spontaneous and induced mutagenesis. Our results show that frataxin deficiency in yeast cells leads to increased DNA base oxidation and requirement of Apn1 for repair, suggesting that DNA damage and repair could be important features in FA disease progression.

  10. Replication fork collapse is a major cause of the high mutation frequency at three-base lesion clusters

    PubMed Central

    Sedletska, Yuliya; Radicella, J. Pablo; Sage, Evelyne

    2013-01-01

    Unresolved repair of clustered DNA lesions can lead to the formation of deleterious double strand breaks (DSB) or to mutation induction. Here, we investigated the outcome of clusters composed of base lesions for which base excision repair enzymes have different kinetics of excision/incision. We designed multiply damaged sites (MDS) composed of a rapidly excised uracil (U) and two oxidized bases, 5-hydroxyuracil (hU) and 8-oxoguanine (oG), excised more slowly. Plasmids harboring these U-oG/hU MDS-carrying duplexes were introduced into Escherichia coli cells either wild type or deficient for DNA n-glycosylases. Induction of DSB was estimated from plasmid survival and mutagenesis determined by sequencing of surviving clones. We show that a large majority of MDS is converted to DSB, whereas almost all surviving clones are mutated at hU. We demonstrate that mutagenesis at hU is correlated with excision of the U placed on the opposite strand. We propose that excision of U by Ung initiates the loss of U-oG-carrying strand, resulting in enhanced mutagenesis at the lesion present on the opposite strand. Our results highlight the importance of the kinetics of excision by base excision repair DNA n-glycosylases in the processing and fate of MDS and provide evidence for the role of strand loss/replication fork collapse during the processing of MDS on their mutational consequences. PMID:23945941

  11. Gene expression profiling for human iPS-derived motor neurons from sporadic ALS patients reveals a strong association between mitochondrial functions and neurodegeneration

    PubMed Central

    Alves, Chrystian J.; Dariolli, Rafael; Jorge, Frederico M.; Monteiro, Matheus R.; Maximino, Jessica R.; Martins, Roberto S.; Strauss, Bryan E.; Krieger, José E.; Callegaro, Dagoberto; Chadi, Gerson

    2015-01-01

    Amyotrophic Lateral Sclerosis (ALS) is a fatal neurodegenerative disease that leads to widespread motor neuron death, general palsy and respiratory failure. The most prevalent sporadic ALS form is not genetically inherited. Attempts to translate therapeutic strategies have failed because the described mechanisms of disease are based on animal models carrying specific gene mutations and thus do not address sporadic ALS. In order to achieve a better approach to study the human disease, human induced pluripotent stem cell (hiPSC)-differentiated motor neurons were obtained from motor nerve fibroblasts of sporadic ALS and non-ALS subjects using the STEMCCA Cre-Excisable Constitutive Polycistronic Lentivirus system and submitted to microarray analyses using a whole human genome platform. DAVID analyses of differentially expressed genes identified molecular function and biological process-related genes through Gene Ontology. REVIGO highlighted the related functions mRNA and DNA binding, GTP binding, transcription (co)-repressor activity, lipoprotein receptor binding, synapse organization, intracellular transport, mitotic cell cycle and cell death. KEGG showed pathways associated with Parkinson's disease and oxidative phosphorylation, highlighting iron homeostasis, neurotrophic functions, endosomal trafficking and ERK signaling. The analysis of most dysregulated genes and those representative of the majority of categorized genes indicates a strong association between mitochondrial function and cellular processes possibly related to motor neuron degeneration. In conclusion, iPSC-derived motor neurons from motor nerve fibroblasts of sporadic ALS patients may recapitulate key mechanisms of neurodegeneration and may offer an opportunity for translational investigation of sporadic ALS. Large gene profiling of differentiated motor neurons from sporadic ALS patients highlights mitochondrial participation in the establishment of autonomous mechanisms associated with sporadic ALS. PMID:26300727

  12. A history of the DNA repair and mutagenesis field: The discovery of base excision repair.

    PubMed

    Friedberg, Errol C

    2016-01-01

    This article reviews the early history of the discovery of an DNA repair pathway designated as base excision repair (BER), since in contrast to the enzyme-catalyzed removal of damaged bases from DNA as nucleotides [called nucleotide excision repair (NER)], BER involves the removal of damaged or inappropriate bases, such as the presence of uracil instead of thymine, from DNA as free bases. Copyright © 2015. Published by Elsevier B.V.

  13. A domain in human EXOG converts apoptotic endonuclease to DNA-repair exonuclease

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Szymanski, Michal R.; Yu, Wangsheng; Gmyrek, Aleksandra M.

    Human EXOG (hEXOG) is a 5'-exonuclease that is crucial for mitochondrial DNA repair; the enzyme belongs to a nonspecific nuclease family that includes the apoptotic endonuclease EndoG. Here we report biochemical and structural studies of hEXOG, including structures in its apo form and in a complex with DNA at 1.81 and 1.85 Å resolution, respectively. A Wing domain, absent in other ββα-Me members, suppresses endonuclease activity, but confers on hEXOG a strong 5'-dsDNA exonuclease activity that precisely excises a dinucleotide using an intrinsic ‘tape-measure’. The symmetrical apo hEXOG homodimer becomes asymmetrical upon binding to DNA, providing a structural basis formore » how substrate DNA bound to one active site allosterically regulates the activity of the other. These properties of hEXOG suggest a pathway for mitochondrial BER that provides an optimal substrate for subsequent gap-filling synthesis by DNA polymerase γ.« less

  14. DNA repair deficiency sensitizes lung cancer cells to NAD+ biosynthesis blockade.

    PubMed

    Touat, Mehdi; Sourisseau, Tony; Dorvault, Nicolas; Chabanon, Roman M; Garrido, Marlène; Morel, Daphné; Krastev, Dragomir B; Bigot, Ludovic; Adam, Julien; Frankum, Jessica R; Durand, Sylvère; Pontoizeau, Clement; Souquère, Sylvie; Kuo, Mei-Shiue; Sauvaigo, Sylvie; Mardakheh, Faraz; Sarasin, Alain; Olaussen, Ken A; Friboulet, Luc; Bouillaud, Frédéric; Pierron, Gérard; Ashworth, Alan; Lombès, Anne; Lord, Christopher J; Soria, Jean-Charles; Postel-Vinay, Sophie

    2018-04-02

    Synthetic lethality is an efficient mechanism-based approach to selectively target DNA repair defects. Excision repair cross-complementation group 1 (ERCC1) deficiency is frequently found in non-small-cell lung cancer (NSCLC), making this DNA repair protein an attractive target for exploiting synthetic lethal approaches in the disease. Using unbiased proteomic and metabolic high-throughput profiling on a unique in-house-generated isogenic model of ERCC1 deficiency, we found marked metabolic rewiring of ERCC1-deficient populations, including decreased levels of the metabolite NAD+ and reduced expression of the rate-limiting NAD+ biosynthetic enzyme nicotinamide phosphoribosyltransferase (NAMPT). We also found reduced NAMPT expression in NSCLC samples with low levels of ERCC1. These metabolic alterations were a primary effect of ERCC1 deficiency, and caused selective exquisite sensitivity to small-molecule NAMPT inhibitors, both in vitro - ERCC1-deficient cells being approximately 1,000 times more sensitive than ERCC1-WT cells - and in vivo. Using transmission electronic microscopy and functional metabolic studies, we found that ERCC1-deficient cells harbor mitochondrial defects. We propose a model where NAD+ acts as a regulator of ERCC1-deficient NSCLC cell fitness. These findings open therapeutic opportunities that exploit a yet-undescribed nuclear-mitochondrial synthetic lethal relationship in NSCLC models, and highlight the potential for targeting DNA repair/metabolic crosstalks for cancer therapy.

  15. The DNA glycosylase AlkD uses a non-base-flipping mechanism to excise bulky lesions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mullins, Elwood A.; Shi, Rongxin; Parsons, Zachary D.

    Threats to genomic integrity arising from DNA damage are mitigated by DNA glycosylases, which initiate the base excision repair pathway by locating and excising aberrant nucleobases. How these enzymes find small modifications within the genome is a current area of intensive research. A hallmark of these and other DNA repair enzymes is their use of base flipping to sequester modified nucleotides from the DNA helix and into an active site pocket. Consequently, base flipping is generally regarded as an essential aspect of lesion recognition and a necessary precursor to base excision. In this paper, we present the first, to ourmore » knowledge, DNA glycosylase mechanism that does not require base flipping for either binding or catalysis. Using the DNA glycosylase AlkD from Bacillus cereus, we crystallographically monitored excision of an alkylpurine substrate as a function of time, and reconstructed the steps along the reaction coordinate through structures representing substrate, intermediate and product complexes. Instead of directly interacting with the damaged nucleobase, AlkD recognizes aberrant base pairs through interactions with the phosphoribose backbone, while the lesion remains stacked in the DNA duplex. Quantum mechanical calculations revealed that these contacts include catalytic charge–dipole and CH–π interactions that preferentially stabilize the transition state. We show in vitro and in vivo how this unique means of recognition and catalysis enables AlkD to repair large adducts formed by yatakemycin, a member of the duocarmycin family of antimicrobial natural products exploited in bacterial warfare and chemotherapeutic trials. Bulky adducts of this or any type are not excised by DNA glycosylases that use a traditional base-flipping mechanism. Finally and hence, these findings represent a new model for DNA repair and provide insights into catalysis of base excision.« less

  16. The DNA glycosylase AlkD uses a non-base-flipping mechanism to excise bulky lesions

    DOE PAGES

    Mullins, Elwood A.; Shi, Rongxin; Parsons, Zachary D.; ...

    2015-10-28

    Threats to genomic integrity arising from DNA damage are mitigated by DNA glycosylases, which initiate the base excision repair pathway by locating and excising aberrant nucleobases. How these enzymes find small modifications within the genome is a current area of intensive research. A hallmark of these and other DNA repair enzymes is their use of base flipping to sequester modified nucleotides from the DNA helix and into an active site pocket. Consequently, base flipping is generally regarded as an essential aspect of lesion recognition and a necessary precursor to base excision. In this paper, we present the first, to ourmore » knowledge, DNA glycosylase mechanism that does not require base flipping for either binding or catalysis. Using the DNA glycosylase AlkD from Bacillus cereus, we crystallographically monitored excision of an alkylpurine substrate as a function of time, and reconstructed the steps along the reaction coordinate through structures representing substrate, intermediate and product complexes. Instead of directly interacting with the damaged nucleobase, AlkD recognizes aberrant base pairs through interactions with the phosphoribose backbone, while the lesion remains stacked in the DNA duplex. Quantum mechanical calculations revealed that these contacts include catalytic charge–dipole and CH–π interactions that preferentially stabilize the transition state. We show in vitro and in vivo how this unique means of recognition and catalysis enables AlkD to repair large adducts formed by yatakemycin, a member of the duocarmycin family of antimicrobial natural products exploited in bacterial warfare and chemotherapeutic trials. Bulky adducts of this or any type are not excised by DNA glycosylases that use a traditional base-flipping mechanism. Finally and hence, these findings represent a new model for DNA repair and provide insights into catalysis of base excision.« less

  17. The Congested-like Tracheae Gene of Drosophila Melanogaster Encodes a Member of the Mitochondrial Carrier Family Required for Gas-Filling of the Tracheal System and Expansion of the Wings after Eclosion

    PubMed Central

    Hartenstein, K.; Sinha, P.; Mishra, A.; Schenkel, H.; Torok, I.; Mechler, B. M.

    1997-01-01

    A recessive semi-lethal mutation resulting from the insertion of a P-lacW transposon at the cytological position 23A on the polytene chromosomes of Drosophila melanogaster was found to affect the unfolding and expansion of the wings resulting in a loss of venation and a marked decrease in their size. Lethality was polyphasic with numerous animals dying during early larval development and displaying apparently collapsed tracheal trees. The gene was therefore designated as congested-like tracheae, or colt. The colt mutation resulted from the insertion of a P-lacW transposon within the coding region of a 1.4-kb transcript. Wild-type function was restored by inducing a precise excision of the P-lacW transposon, while a deletion of the colt locus, produced by imprecise excision of the P element, showed a phenotype similar to that of the original P insert. The colt gene consists of a single exon and encodes a protein of 306 amino acids made of three tandem repeats, each characterized by two predicted transmembrane segments and a loop domain. The COLT protein shares extensive homology with proteins in the mitochondrial carrier family and particularly with the DIF-1 protein of Caenorhabditis elegans, which has been shown to be maternally required for embryonic tissue differentiation. Our analysis revealed that zygotic colt function is dispensable for normal embryonic morphogenesis but is required for gas-filling of the tracheal system at hatching time of the embryo and for normal epithelial morphogenesis of the wings. PMID:9409834

  18. Xenon preconditioning: the role of prosurvival signaling, mitochondrial permeability transition and bioenergetics in rats.

    PubMed

    Mio, Yasushi; Shim, Yon Hee; Richards, Ebony; Bosnjak, Zeljko J; Pagel, Paul S; Bienengraeber, Martin

    2009-03-01

    Similar to volatile anesthetics, the anesthetic noble gas xenon protects the heart from ischemia/reperfusion injury, but the mechanisms responsible for this phenomenon are not fully understood. We tested the hypothesis that xenon-induced cardioprotection is mediated by prosurvival signaling kinases that target mitochondria. Male Wistar rats instrumented for hemodynamic measurements were subjected to a 30 min left anterior descending coronary artery occlusion and 2 h reperfusion. Rats were randomly assigned to receive 70% nitrogen/30% oxygen (control) or three 5-min cycles of 70% xenon/30% oxygen interspersed with the oxygen/nitrogen mixture administered for 5 min followed by a 15 min memory period. Myocardial infarct size was measured using triphenyltetrazolium staining. Additional hearts from control and xenon-pretreated rats were excised for Western blotting of Akt and glycogen synthase kinase 3 beta (GSK-3beta) phosphorylation and isolation of mitochondria. Mitochondrial oxygen consumption before and after hypoxia/reoxygenation and mitochondrial permeability transition pore opening were determined. Xenon significantly (P < 0.05) reduced myocardial infarct size compared with control (32 +/- 4 and 59% +/- 4% of the left ventricular area at risk; mean +/- sd) and enhanced phosphorylation of Akt and GSK-3beta. Xenon pretreatment preserved state 3 respiration of isolated mitochondria compared with the results obtained in the absence of the gas. The Ca(2+) concentration required to induce mitochondrial membrane depolarization was larger in the presence compared with the absence of xenon pretreatment (78 +/- 17 and 56 +/- 17 microM, respectively). The phosphoinositol-3-kinase-kinase inhibitor wortmannin blocked the effect of xenon on infarct size and respiration. These results indicate that xenon preconditioning reduces myocardial infarct size, phosphorylates Akt, and GSK-3beta, preserves mitochondrial function, and inhibits Ca(2+)-induced mitochondrial permeability transition pore opening. These data suggest that xenon-induced cardioprotection occurs because of activation of prosurvival signaling that targets mitochondria and renders them less vulnerable to ischemia-reperfusion injury.

  19. Autophagy and skeletal muscles in sepsis.

    PubMed

    Mofarrahi, Mahroo; Sigala, Ioanna; Guo, Yeting; Godin, Richard; Davis, Elaine C; Petrof, Basil; Sandri, Marco; Burelle, Yan; Hussain, Sabah N A

    2012-01-01

    Mitochondrial injury develops in skeletal muscles during the course of severe sepsis. Autophagy is a protein and organelle recycling pathway which functions to degrade or recycle unnecessary, redundant, or inefficient cellular components. No information is available regarding the degree of sepsis-induced mitochondrial injury and autophagy in the ventilatory and locomotor muscles. This study tests the hypotheses that the locomotor muscles are more prone to sepsis-induced mitochondrial injury, depressed biogenesis and autophagy induction compared with the ventilatory muscles. Adult male C57/Bl6 mice were injected with i.p. phosphate buffered saline (PBS) or E. coli lipopolysaccharide (LPS, 20 mg/kg) and sacrificed 24 h later. The tibialis anterior (TA), soleus (SOLD) and diaphragm (DIA) muscles were quickly excised and examined for mitochondrial morphological injury, Ca(++) retention capacity and biogenesis. Autophagy was detected with electron microscopy, lipidation of Lc3b proteins and by measuring gene expression of several autophagy-related genes. Electron microscopy revealed ultrastructural injuries in the mitochondria of each muscle, however, injuries were more severe in the TA and SOL muscles than they were in the DIA. Gene expressions of nuclear and mitochondrial DNA transcription factors and co-activators (indicators of biogenesis) were significantly depressed in all treated muscles, although to a greater extent in the TA and SOL muscles. Significant autophagosome formation, Lc3b protein lipidation and upregulation of autophagy-related proteins were detected to a greater extent in the TA and SOL muscles and less so in the DIA. Lipidation of Lc3b and the degree of induction of autophagy-related proteins were significantly blunted in mice expressing a muscle-specific IκBα superrepresor. We conclude that locomotor muscles are more prone to sepsis-induced mitochondrial injury, decreased biogenesis and increased autophagy compared with the ventilatory muscles and that autophagy in skeletal muscles during sepsis is regulated in part through the NFκB transcription factor.

  20. Autophagy and Skeletal Muscles in Sepsis

    PubMed Central

    Mofarrahi, Mahroo; Sigala, Ioanna; Guo, Yeting; Godin, Richard; Davis, Elaine C.; Petrof, Basil; Sandri, Marco

    2012-01-01

    Background Mitochondrial injury develops in skeletal muscles during the course of severe sepsis. Autophagy is a protein and organelle recycling pathway which functions to degrade or recycle unnecessary, redundant, or inefficient cellular components. No information is available regarding the degree of sepsis-induced mitochondrial injury and autophagy in the ventilatory and locomotor muscles. This study tests the hypotheses that the locomotor muscles are more prone to sepsis-induced mitochondrial injury, depressed biogenesis and autophagy induction compared with the ventilatory muscles. Methodology/Principal Findings Adult male C57/Bl6 mice were injected with i.p. phosphate buffered saline (PBS) or E. coli lipopolysaccharide (LPS, 20 mg/kg) and sacrificed 24 h later. The tibialis anterior (TA), soleus (SOLD) and diaphragm (DIA) muscles were quickly excised and examined for mitochondrial morphological injury, Ca++ retention capacity and biogenesis. Autophagy was detected with electron microscopy, lipidation of Lc3b proteins and by measuring gene expression of several autophagy-related genes. Electron microscopy revealed ultrastructural injuries in the mitochondria of each muscle, however, injuries were more severe in the TA and SOL muscles than they were in the DIA. Gene expressions of nuclear and mitochondrial DNA transcription factors and co-activators (indicators of biogenesis) were significantly depressed in all treated muscles, although to a greater extent in the TA and SOL muscles. Significant autophagosome formation, Lc3b protein lipidation and upregulation of autophagy-related proteins were detected to a greater extent in the TA and SOL muscles and less so in the DIA. Lipidation of Lc3b and the degree of induction of autophagy-related proteins were significantly blunted in mice expressing a muscle-specific IκBα superrepresor. Conclusion/Significance We conclude that locomotor muscles are more prone to sepsis-induced mitochondrial injury, decreased biogenesis and increased autophagy compared with the ventilatory muscles and that autophagy in skeletal muscles during sepsis is regulated in part through the NFκB transcription factor. PMID:23056618

  1. Regulation of DNA repair in serum-stimulated xeroderma pigmentosum cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gupta, P.K.; Sirover, M.A.

    1984-10-01

    The regulation of DNA repair during serum stimulation of quiescent cells was examined in normal human cells, in fibroblasts from three xeroderma pigmentosum complementation groups (A, C, and D), in xeroderma pigmentosum variant cells, and in ataxia telangiectasia cells. The regulation of nucleotide excision repair was examined by exposing cells to ultraviolet irradiation at discrete intervals after cell stimulation. Similarly, base excision repair was quantitated after exposure to methylmethane sulfonate. WI-38 normal human diploid fibroblasts, xeroderma pigmentosum variant cells, as well as ataxia telangiectasia cells enhanced their capacity for both nucleotide excision repair and for base excision repair prior tomore » their enhancement of DNA synthesis. Further, in each cell strain, the base excision repair enzyme uracil DNA glycosylase was increased prior to the induction of DNA polymerase using the identical cells to quantitate each activity. In contrast, each of the three xeroderma complementation groups that were examined failed to increase their capacity for nucleotide excision repair above basal levels at any interval examined. This result was observed using either unscheduled DNA synthesis in the presence of 10 mM hydroxyurea or using repair replication in the absence of hydroxyurea to quantitate DNA repair. However, each of the three complementation groups normally regulated the enhancement of base excision repair after methylmethane sulfonate exposure and each induced the uracil DNA glycosylase prior to DNA synthesis. 62 references, 3 figures, 2 tables.« less

  2. Selective base excision repair of DNA damage by the non-base-flipping DNA glycosylase AlkC

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shi, Rongxin; Mullins, Elwood A.; Shen, Xing‐Xing

    DNA glycosylases preserve genome integrity and define the specificity of the base excision repair pathway for discreet, detrimental modifications, and thus, the mechanisms by which glycosylases locate DNA damage are of particular interest. Bacterial AlkC and AlkD are specific for cationic alkylated nucleobases and have a distinctive HEAT-like repeat (HLR) fold. AlkD uses a unique non-base-flipping mechanism that enables excision of bulky lesions more commonly associated with nucleotide excision repair. In contrast, AlkC has a much narrower specificity for small lesions, principally N3-methyladenine (3mA). Here, we describe how AlkC selects for and excises 3mA using a non-base-flipping strategy distinct frommore » that of AlkD. A crystal structure resembling a catalytic intermediate complex shows how AlkC uses unique HLR and immunoglobulin-like domains to induce a sharp kink in the DNA, exposing the damaged nucleobase to active site residues that project into the DNA. This active site can accommodate and excise N3-methylcytosine (3mC) and N1-methyladenine (1mA), which are also repaired by AlkB-catalyzed oxidative demethylation, providing a potential alternative mechanism for repair of these lesions in bacteria.« less

  3. Evaluation of nanoparticle delivered cisplatin in beagles

    NASA Astrophysics Data System (ADS)

    Feldhaeusser, Brittany; Platt, Simon R.; Marrache, Sean; Kolishetti, Nagesh; Pathak, Rakesh K.; Montgomery, David J.; Reno, Lisa R.; Howerth, Elizabeth; Dhar, Shanta

    2015-08-01

    Intracranial neoplasia is a significant cause of morbidity and mortality in both human and veterinary patients, and is difficult to treat with traditional therapeutic methods. Cisplatin is a platinum (Pt)-containing chemotherapeutic agent approved by the Food and Drug Administration; however, substantial limitations exist for its application in canine brain tumor treatment due to the difficulty in crossing the blood-brain barrier (BBB), development of resistance, and toxicity. A modified Pt(iv)-prodrug of cisplatin, Platin-M, was recently shown to be deliverable to the brain via a biocompatible mitochondria-targeted lipophilic polymeric nanoparticle (NP) that carries the drug across the BBB and to the mitochondria. NP mediated controlled release of Platin-M and subsequent reduction of this prodrug to cisplatin allowed cross-links to be formed with the mitochondrial DNA, which have no nucleotide excision repair system, forcing the overactive cancer cells to undergo apoptosis. Here, we report in vitro effects of targeted Platin-M NPs (T-Platin-M-NPs) in canine glioma and glioblastoma cell lines with results indicating that this targeted NP formulation is more effective than cisplatin. In both the cell lines, T-Platin-M-NP was significantly more efficacious compared to carboplatin, another Pt-based chemotherapy, which is used in the settings of recurrent high-grade glioblastoma. Mitochondrial stress analysis indicated that T-Platin-M-NP is more effective in disrupting the mitochondrial bioenergetics in both the cell types. A 14-day distribution study in healthy adult beagles using a single intravenous injection at 0.5 mg kg-1 (with respect to Platin-M) of T-Platin-M-NPs showed high levels of Pt accumulation in the brain, with negligible amounts in the other analyzed organs. Safety studies in the beagles monitoring physical, hematological, and serum chemistry evaluations were within the normal limits on days 1, 7, and 14 after injection of either 0.5 mg kg-1 or 2 mg kg-1 or 2.2 mg kg-1 (with respect to Platin-M) of T-Platin-M-NPs. At all doses over the 14-day period, no neurotoxicity was observed based upon periodic neurological examinations and cerebrospinal fluid analysis. These studies demonstrated the translational nature of T-Platin-M-NPs for applications in the treatment of brain tumors.Intracranial neoplasia is a significant cause of morbidity and mortality in both human and veterinary patients, and is difficult to treat with traditional therapeutic methods. Cisplatin is a platinum (Pt)-containing chemotherapeutic agent approved by the Food and Drug Administration; however, substantial limitations exist for its application in canine brain tumor treatment due to the difficulty in crossing the blood-brain barrier (BBB), development of resistance, and toxicity. A modified Pt(iv)-prodrug of cisplatin, Platin-M, was recently shown to be deliverable to the brain via a biocompatible mitochondria-targeted lipophilic polymeric nanoparticle (NP) that carries the drug across the BBB and to the mitochondria. NP mediated controlled release of Platin-M and subsequent reduction of this prodrug to cisplatin allowed cross-links to be formed with the mitochondrial DNA, which have no nucleotide excision repair system, forcing the overactive cancer cells to undergo apoptosis. Here, we report in vitro effects of targeted Platin-M NPs (T-Platin-M-NPs) in canine glioma and glioblastoma cell lines with results indicating that this targeted NP formulation is more effective than cisplatin. In both the cell lines, T-Platin-M-NP was significantly more efficacious compared to carboplatin, another Pt-based chemotherapy, which is used in the settings of recurrent high-grade glioblastoma. Mitochondrial stress analysis indicated that T-Platin-M-NP is more effective in disrupting the mitochondrial bioenergetics in both the cell types. A 14-day distribution study in healthy adult beagles using a single intravenous injection at 0.5 mg kg-1 (with respect to Platin-M) of T-Platin-M-NPs showed high levels of Pt accumulation in the brain, with negligible amounts in the other analyzed organs. Safety studies in the beagles monitoring physical, hematological, and serum chemistry evaluations were within the normal limits on days 1, 7, and 14 after injection of either 0.5 mg kg-1 or 2 mg kg-1 or 2.2 mg kg-1 (with respect to Platin-M) of T-Platin-M-NPs. At all doses over the 14-day period, no neurotoxicity was observed based upon periodic neurological examinations and cerebrospinal fluid analysis. These studies demonstrated the translational nature of T-Platin-M-NPs for applications in the treatment of brain tumors. Electronic supplementary information (ESI) available. See DOI: 10.1039/C5NR03447G

  4. Effect of LKB1 deficiency on mitochondrial content, fiber type, and muscle performance in the mouse diaphragm

    PubMed Central

    Brown, Jacob D.; Hancock, Chad R.; Mongillo, Anthony D.; Barton, J. Benjamin; DiGiovanni, Ryan A.; Parcell, Allen C.; Winder, William W.; Thomson, David M.

    2010-01-01

    Aim The Liver Kinase B1 (LKB1)/AMP-Activated Protein Kinase (AMPK) signaling pathway is a major regulator of skeletal muscle metabolic processes. During exercise, LKB1-mediated phosphorylation of AMPK leads to its activation, promoting mitochondrial biogenesis and glucose transport, among other effects. The roles of LKB1 and AMPK have not been fully characterized in the diaphragm. Methods Two methods of AMPK activation were used to characterize LKB1/AMPK signaling in diaphragms from muscle-specific LKB1 knockout (KO) and littermate control mice: (1) acute injection of 5-aminoimidazole-4-carboxamide ribonucleoside (AICAR) and (2) 5-min direct electrical stimulation of the diaphragm. Diaphragms were excised 60 minutes post-AICAR injection and immediately after electrical stimulation. Results AMPK phosphorylation increased with AICAR and electrical stimulation in control but not KO mice. Acetyl CoA carboxylase phosphorylation increased with AICAR in control but not KO mice, but increased in both genotypes with electrical stimulation. While the majority of mitochondrial protein levels were lower in KO diaphragms, uncoupling protein 3, complex I, and cytochrome oxidase IV protein levels were not different between genotypes. KO diaphragms have a lower percentage of IIx fibers and an elevated percentage of IIb fibers when compared to control diaphragms. While in vitro peak force generation was similar between genotypes, KO diaphragms fatigued more quickly and had an impaired ability to recover. Conclusion LKB1 regulates AMPK phosphorylation, mitochondrial protein expression, fiber type distribution, as well as recovery of the diaphragm from fatigue. PMID:21073663

  5. Amplification of unscheduled DNA synthesis signal enables fluorescence-based single cell quantification of transcription-coupled nucleotide excision repair

    PubMed Central

    Wienholz, Franziska; Vermeulen, Wim

    2017-01-01

    Abstract Nucleotide excision repair (NER) comprises two damage recognition pathways: global genome NER (GG-NER) and transcription-coupled NER (TC-NER), which remove a wide variety of helix-distorting lesions including UV-induced damage. During NER, a short stretch of single-stranded DNA containing damage is excised and the resulting gap is filled by DNA synthesis in a process called unscheduled DNA synthesis (UDS). UDS is measured by quantifying the incorporation of nucleotide analogues into repair patches to provide a measure of NER activity. However, this assay is unable to quantitatively determine TC-NER activity due to the low contribution of TC-NER to the overall NER activity. Therefore, we developed a user-friendly, fluorescence-based single-cell assay to measure TC-NER activity. We combined the UDS assay with tyramide-based signal amplification to greatly increase the UDS signal, thereby allowing UDS to be quantified at low UV doses, as well as DNA-repair synthesis of other excision-based repair mechanisms such as base excision repair and mismatch repair. Importantly, we demonstrated that the amplified UDS is sufficiently sensitive to quantify TC-NER-derived repair synthesis in GG-NER-deficient cells. This assay is important as a diagnostic tool for NER-related disorders and as a research tool for obtaining new insights into the mechanism and regulation of excision repair. PMID:28088761

  6. Updated evidence-based clinical practice guidelines for the diagnosis and management of melanoma: definitive excision margins for primary cutaneous melanoma.

    PubMed

    Sladden, Michael J; Nieweg, Omgo E; Howle, Julie; Coventry, Brendon J; Thompson, John F

    2018-02-19

    Definitive management of primary cutaneous melanoma consists of surgical excision of the melanoma with the aim of curing the patient. The melanoma is widely excised together with a safety margin of surrounding skin and subcutaneous tissue, after the diagnosis and Breslow thickness have been established by histological assessment of the initial excision biopsy specimen. Sentinel lymph node biopsy should be discussed for melanomas ≥ 1 mm thickness (≥ 0.8 mm if other high risk features) in which case lymphoscintigraphy must be performed before wider excision of the primary melanoma site. The 2008 evidence-based clinical practice guidelines for the management of melanoma (http://www.cancer.org.au/content/pdf/HealthProfessionals/ClinicalGuidelines/ClinicalPracticeGuidelines-ManagementofMelanoma.pdf) are currently being revised and updated in a staged process by a multidisciplinary working party established by Cancer Council Australia. The guidelines for definitive excision margins for primary melanomas have been revised as part of this process. Main recommendations: The recommendations for definitive wide local excision of primary cutaneous melanoma are: melanoma in situ: 5-10 mm margins invasive melanoma (pT1) ≤ 1.0 mm thick: 1 cm margins invasive melanoma (pT2) 1.01-2.00 mm thick: 1-2 cm margins invasive melanoma (pT3) 2.01-4.00 mm thick: 1-2 cm margins invasive melanoma (pT4) > 4.0 mm thick: 2 cm margins Changes in management as a result of the guideline: Based on currently available evidence, excision margins for invasive melanoma have been left unchanged compared with the 2008 guidelines. However, melanoma in situ should be excised with 5-10 mm margins, with the aim of achieving complete histological clearance. Minimum clearances from all margins should be assessed and stated. Consideration should be given to further excision if necessary; positive or close histological margins are unacceptable.

  7. Human cells contain a factor that facilitates the DNA glycosylase-mediated excision of oxidized bases from occluded sites in nucleosomes.

    PubMed

    Maher, R L; Marsden, C G; Averill, A M; Wallace, S S; Sweasy, J B; Pederson, D S

    2017-09-01

    Reactive oxygen species generate some 20,000 base lesions per human cell per day. The vast majority of these potentially mutagenic or cytotoxic lesions are subject to base excision repair (BER). Although chromatin remodelers have been shown to enhance the excision of oxidized bases from nucleosomes in vitro, it is not clear that they are recruited to and act at sites of BER in vivo. To test the hypothesis that cells possess factors that enhance BER in chromatin, we assessed the capacity of nuclear extracts from human cells to excise thymine glycol (Tg) lesions from exogenously added, model nucleosomes. The DNA glycosylase NTHL1 in these extracts was able to excise Tg from both naked DNA and sites in nucleosomes that earlier studies had shown to be sterically accessible. However, the same extracts were able to excise lesions from sterically-occluded sites in nucleosomes only after the addition of Mg 2+ /ATP. Gel mobility shift assays indicated that nucleosomes remain largely intact following the Mg 2+ /ATP -dependent excision reaction. Size exclusion chromatography indicated that the NTHL1-stimulating activity has a relatively low molecular weight, close to that of NTHL1 and other BER glycosylases; column fractions that contained the very large chromatin remodeling complexes did not exhibit this same stimulatory activity. These results indicate that cells possess a factor(s) that promotes the initiation of BER in chromatin, but differs from most known chromatin remodeling complexes. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. Extra-dimensional Demons: a method for incorporating missing tissue in deformable image registration.

    PubMed

    Nithiananthan, Sajendra; Schafer, Sebastian; Mirota, Daniel J; Stayman, J Webster; Zbijewski, Wojciech; Reh, Douglas D; Gallia, Gary L; Siewerdsen, Jeffrey H

    2012-09-01

    A deformable registration method capable of accounting for missing tissue (e.g., excision) is reported for application in cone-beam CT (CBCT)-guided surgical procedures. Excisions are identified by a segmentation step performed simultaneous to the registration process. Tissue excision is explicitly modeled by increasing the dimensionality of the deformation field to allow motion beyond the dimensionality of the image. The accuracy of the model is tested in phantom, simulations, and cadaver models. A variant of the Demons deformable registration algorithm is modified to include excision segmentation and modeling. Segmentation is performed iteratively during the registration process, with initial implementation using a threshold-based approach to identify voxels corresponding to "tissue" in the moving image and "air" in the fixed image. With each iteration of the Demons process, every voxel is assigned a probability of excision. Excisions are modeled explicitly during registration by increasing the dimensionality of the deformation field so that both deformations and excisions can be accounted for by in- and out-of-volume deformations, respectively. The out-of-volume (i.e., fourth) component of the deformation field at each voxel carries a magnitude proportional to the excision probability computed in the excision segmentation step. The registration accuracy of the proposed "extra-dimensional" Demons (XDD) and conventional Demons methods was tested in the presence of missing tissue in phantom models, simulations investigating the effect of excision size on registration accuracy, and cadaver studies emulating realistic deformations and tissue excisions imparted in CBCT-guided endoscopic skull base surgery. Phantom experiments showed the normalized mutual information (NMI) in regions local to the excision to improve from 1.10 for the conventional Demons approach to 1.16 for XDD, and qualitative examination of the resulting images revealed major differences: the conventional Demons approach imparted unrealistic distortions in areas around tissue excision, whereas XDD provided accurate "ejection" of voxels within the excision site and maintained the registration accuracy throughout the rest of the image. Registration accuracy in areas far from the excision site (e.g., > ∼5 mm) was identical for the two approaches. Quantitation of the effect was consistent in analysis of NMI, normalized cross-correlation (NCC), target registration error (TRE), and accuracy of voxels ejected from the volume (true-positive and false-positive analysis). The registration accuracy for conventional Demons was found to degrade steeply as a function of excision size, whereas XDD was robust in this regard. Cadaver studies involving realistic excision of the clivus, vidian canal, and ethmoid sinuses demonstrated similar results, with unrealistic distortion of anatomy imparted by conventional Demons and accurate ejection and deformation for XDD. Adaptation of the Demons deformable registration process to include segmentation (i.e., identification of excised tissue) and an extra dimension in the deformation field provided a means to accurately accommodate missing tissue between image acquisitions. The extra-dimensional approach yielded accurate "ejection" of voxels local to the excision site while preserving the registration accuracy (typically subvoxel) of the conventional Demons approach throughout the rest of the image. The ability to accommodate missing tissue volumes is important to application of CBCT for surgical guidance (e.g., skull base drillout) and may have application in other areas of CBCT guidance.

  9. Extra-dimensional Demons: A method for incorporating missing tissue in deformable image registration

    PubMed Central

    Nithiananthan, Sajendra; Schafer, Sebastian; Mirota, Daniel J.; Stayman, J. Webster; Zbijewski, Wojciech; Reh, Douglas D.; Gallia, Gary L.; Siewerdsen, Jeffrey H.

    2012-01-01

    Purpose: A deformable registration method capable of accounting for missing tissue (e.g., excision) is reported for application in cone-beam CT (CBCT)-guided surgical procedures. Excisions are identified by a segmentation step performed simultaneous to the registration process. Tissue excision is explicitly modeled by increasing the dimensionality of the deformation field to allow motion beyond the dimensionality of the image. The accuracy of the model is tested in phantom, simulations, and cadaver models. Methods: A variant of the Demons deformable registration algorithm is modified to include excision segmentation and modeling. Segmentation is performed iteratively during the registration process, with initial implementation using a threshold-based approach to identify voxels corresponding to “tissue” in the moving image and “air” in the fixed image. With each iteration of the Demons process, every voxel is assigned a probability of excision. Excisions are modeled explicitly during registration by increasing the dimensionality of the deformation field so that both deformations and excisions can be accounted for by in- and out-of-volume deformations, respectively. The out-of-volume (i.e., fourth) component of the deformation field at each voxel carries a magnitude proportional to the excision probability computed in the excision segmentation step. The registration accuracy of the proposed “extra-dimensional” Demons (XDD) and conventional Demons methods was tested in the presence of missing tissue in phantom models, simulations investigating the effect of excision size on registration accuracy, and cadaver studies emulating realistic deformations and tissue excisions imparted in CBCT-guided endoscopic skull base surgery. Results: Phantom experiments showed the normalized mutual information (NMI) in regions local to the excision to improve from 1.10 for the conventional Demons approach to 1.16 for XDD, and qualitative examination of the resulting images revealed major differences: the conventional Demons approach imparted unrealistic distortions in areas around tissue excision, whereas XDD provided accurate “ejection” of voxels within the excision site and maintained the registration accuracy throughout the rest of the image. Registration accuracy in areas far from the excision site (e.g., > ∼5 mm) was identical for the two approaches. Quantitation of the effect was consistent in analysis of NMI, normalized cross-correlation (NCC), target registration error (TRE), and accuracy of voxels ejected from the volume (true-positive and false-positive analysis). The registration accuracy for conventional Demons was found to degrade steeply as a function of excision size, whereas XDD was robust in this regard. Cadaver studies involving realistic excision of the clivus, vidian canal, and ethmoid sinuses demonstrated similar results, with unrealistic distortion of anatomy imparted by conventional Demons and accurate ejection and deformation for XDD. Conclusions: Adaptation of the Demons deformable registration process to include segmentation (i.e., identification of excised tissue) and an extra dimension in the deformation field provided a means to accurately accommodate missing tissue between image acquisitions. The extra-dimensional approach yielded accurate “ejection” of voxels local to the excision site while preserving the registration accuracy (typically subvoxel) of the conventional Demons approach throughout the rest of the image. The ability to accommodate missing tissue volumes is important to application of CBCT for surgical guidance (e.g., skull base drillout) and may have application in other areas of CBCT guidance. PMID:22957637

  10. DNA Excision Repair at Telomeres

    PubMed Central

    Jia, Pingping; Her, Chengtao; Chai, Weihang

    2015-01-01

    DNA damage is caused by either endogenous cellular metabolic processes such as hydrolysis, oxidation, alkylation, and DNA base mismatches, or exogenous sources including ultraviolet (UV) light, ionizing radiation, and chemical agents. Damaged DNA that is not properly repaired can lead to genomic instability, driving tumorigenesis. To protect genomic stability, mammalian cells have evolved highly conserved DNA repair mechanisms to remove and repair DNA lesions. Telomeres are composed of long tandem TTAGGG repeats located at the ends of chromosomes. Maintenance of functional telomeres is critical for preventing genome instability. The telomeric sequence possesses unique features that predispose telomeres to a variety of DNA damage induced by environmental genotoxins. This review briefly describes the relevance of excision repair pathways in telomere maintenance, with the focus on base excision repair (BER), nucleotide excision repair (NER), and mismatch repair (MMR). By summarizing current knowledge on excision repair of telomere damage and outlining many unanswered questions, it is our hope to stimulate further interest in a better understanding of excision repair processes at telomeres and in how these processes contribute to telomere maintenance. PMID:26422132

  11. Is excision biopsy of fibroadenomas based solely on size criteria warranted?

    PubMed

    Neville, Grace; Neill, Cathleen O'; Murphy, Rosemary; Corrigan, Mark; Redmond, Paul H; Feeley, Linda; Bennett, Michael W; O'Connell, Fionnuala; Browne, Tara Jane

    2018-05-25

    Fibroadenomas (FA) are the most common benign tumor in the female breast. Most are managed conservatively provided there is clinical, radiologic, and pathologic concordance. However, surgical excision is typically recommended for cellular fibroepithelial lesions or those lesions with clinical, radiologic, or pathologic features concerning for phyllodes tumor (PT). Some studies have suggested surgical excision in all FA >30 mm to reduce core needle biopsy (CNB) sampling errors. The aim of our study was to evaluate, in the absence of any other concerning clinicopathologic features, whether surgical excision of FA was warranted based on size criteria alone. Cork University Hospital is a large academic center in Southern Ireland. Its breast cancer center provides both a screening and symptomatic service and diagnoses approximately 600 cancers per year. The breast histopathological data base was reviewed for all CNBs from January 1, 2010, to June 30, 2015, with a diagnosis of FA that went on to have excision at our institution. We excluded all cellular fibroepithelial lesions and those cases with co-existent lobular neoplasia, ductal carcinoma in situ, invasive carcinoma, atypical ductal hyperplasia, or lesions which would require excision in their own right. Cases in which the radiologic targeted mass was discordant with a diagnosis of FA were also excluded. Patient demographics and preoperative radiologic size and the radiologic target were recorded in each case. All radiology was reviewed by a breast radiologist prior to inclusion in the study, and there was histologic radiologic concordance with a diagnosis of FA in all cases. A total of 12,109 consecutive radiologically guided CNB were performed January 2010-June 2015; 3438 with a diagnosis of FA were identified of which 290 cases went on to have surgical excision. Of those 290 cases; 98.28% (n = 285) were confirmed as FA on excision. The remaining 1.72% (n = 5) had atypical features-FA with LCIS (n = 1), benign PT (n = 3), and invasive ductal carcinoma (n = 1). Our study suggests that, excision based solely on size is not warranted in clinical and radiologically concordant cases with a diagnosis of FA on CNB. © 2018 Wiley Periodicals, Inc.

  12. The role of sodium hydrosulfide in attenuating the aging process via PI3K/AKT and CaMKKβ/AMPK pathways.

    PubMed

    Chen, Xubo; Zhao, Xueyan; Cai, Hua; Sun, Haiying; Hu, Yujuan; Huang, Xiang; Kong, Wen; Kong, Weijia

    2017-08-01

    Age-related dysfunction of the central auditory system, known as central presbycusis, is characterized by defects in speech perception and sound localization. It is important to determine the pathogenesis of central presbycusis in order to explore a feasible and effective intervention method. Recent work has provided fascinating insight into the beneficial function of H 2 S on oxidative stress and stress-related disease. In this study, we investigated the pathogenesis of central presbycusis and tried to explore the mechanism of H 2 S action on different aspects of aging by utilizing a mimetic aging rat and senescent cellular model. Our results indicate that NaHS decreased oxidative stress and apoptosis levels in an aging model via CaMKKβ and PI3K/AKT signaling pathways. Moreover, we found that NaHS restored the decreased activity of antioxidants such as GSH, SOD and CAT in the aging model in vivo and in vitro by regulating CaMKKβ and PI3K/AKT. Mitochondria function was preserved by NaHS, as indicated by the following: DNA POLG and OGG-1, the base excision repair enzymes in mitochondrial, were upregulated; OXPHOS activity was downregulated; mitochondrial membrane potential was restored; ATP production was increased; and mtDNA damage, indicated by the common deletion (CD), declined. These effects were also achieved by activating CaMKKβ/AMPK and PI3K/AKT signaling pathways. Lastly, protein homeostasis, indicated by HSP90 alpha, was strengthened by NaHS via CaMKKβ and PI3K/AKT. Our findings demonstrate that the ability to resist oxidative stress and mitochondria function are both decreased as aging developed; however, NaHS, a novel free radical scavenger and mitochondrial protective agent, precludes the process of oxidative damage by activating CaMKKβ and PI3K/AKT. This study might provide a therapeutic target for aging and age-related disease. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.

  13. Direct inhibition of excision/synthesis DNA repair activities by cadmium: analysis on dedicated biochips.

    PubMed

    Candéias, S; Pons, B; Viau, M; Caillat, S; Sauvaigo, S

    2010-12-10

    The well established toxicity of cadmium and cadmium compounds results from their additive effects on several key cellular processes, including DNA repair. Mammalian cells have evolved several biochemical pathways to repair DNA lesions and maintain genomic integrity. By interfering with the homeostasis of redox metals and antioxidant systems, cadmium promotes the development of an intracellular environment that results in oxidative DNA damage which can be mutagenic if unrepaired. Small base lesions are recognised by specialized glycosylases and excised from the DNA molecule. The resulting abasic sites are incised, and the correct sequences restored by DNA polymerases using the opposite strands as template. Bulky lesions are recognised by a different set of proteins and excised from DNA as part of an oligonucleotide. As in base repair, the resulting gaps are filled by DNA polymerases using the opposite strands as template. Thus, these two repair pathways consist in excision of the lesion followed by DNA synthesis. In this study, we analysed in vitro the direct effects of cadmium exposure on the functionality of base and nucleotide DNA repair pathways. To this end, we used recently described dedicated microarrays that allow the parallel monitoring in cell extracts of the repair activities directed against several model base and/or nucleotide lesions. Both base and nucleotide excision/repair pathways are inhibited by CdCl₂, with different sensitivities. The inhibitory effects of cadmium affect mainly the recognition and excision stages of these processes. Furthermore, our data indicate that the repair activities directed against different damaged bases also exhibit distinct sensitivities, and the direct comparison of cadmium effects on the excision of uracile in different sequences even allows us to propose a hierarchy of cadmium sensibility within the glycosylases removing U from DNA. These results indicate that, in our experimental conditions, cadmium is a very potent DNA repair poison. Copyright © 2010 Elsevier B.V. All rights reserved.

  14. Patient-Reported Roles, Preferences, and Expectations Regarding Treatment of Stage I Rectal Cancer in the Cancer Care Outcomes Research and Surveillance Consortium.

    PubMed

    Tyler Ellis, C; Charlton, Mary E; Stitzenberg, Karyn B

    2016-10-01

    Historically, stage I rectal cancer was treated with total mesorectal excision. However, there has been growing use of local excision, with and without adjuvant therapy, to treat these early rectal cancers. Little is known about how patients and providers choose among the various treatment approaches. The purpose of this study was to identify patient roles, preferences, and expectations as they relate to treatment decision making for patients with stage I rectal cancer. This is a population-based study. The study included a geographically diverse population and health-system-based cohort. A total of 154 adults with newly diagnosed and surgically treated stage I rectal cancer between 2003 and 2005 were included. We compared patients by surgical treatment groups, including total mesorectal excision and local excision. Clinical, sociodemographic, and health-system factors were assessed for association with patient decision-making preferences and expectations. A total of 80% of patients who underwent total mesorectal excision versus 63% of patients who underwent local excision expected that surgery would be curative (p = 0.04). The total mesorectal excision group was less likely to report that radiation would cure their cancer compared with the local excision group (27% vs 63%; p = 0.004). When asked about their preferred role in decision making, 28% of patients who underwent total mesorectal excision preferred patient-controlled decision making compared with 48% of patients who underwent local excision (p = 0.046). However, with regard to the treatment actually received, 38% of the total mesorectal excision group reported making their own surgical decision compared with 25% of the local excision group (p = 0.18). The study was limited by its sample size. The preferred decision-making role for patients did not match the actual decision-making process. Future efforts should focus on bridging the gap between the decision-making process and patient preferences regarding various treatment approaches. This will be particularly important as newer innovative procedures play a more prominent role in the rectal cancer treatment paradigm.

  15. Repair of DNA-polypeptide crosslinks by human excision nuclease

    NASA Astrophysics Data System (ADS)

    Reardon, Joyce T.; Sancar, Aziz

    2006-03-01

    DNA-protein crosslinks are relatively common DNA lesions that form during the physiological processing of DNA by replication and recombination proteins, by side reactions of base excision repair enzymes, and by cellular exposure to bifunctional DNA-damaging agents such as platinum compounds. The mechanism by which pathological DNA-protein crosslinks are repaired in humans is not known. In this study, we investigated the mechanism of recognition and repair of protein-DNA and oligopeptide-DNA crosslinks by the human excision nuclease. Under our assay conditions, the human nucleotide excision repair system did not remove a 16-kDa protein crosslinked to DNA at a detectable level. However, 4- and 12-aa-long oligopeptides crosslinked to the DNA backbone were recognized by some of the damage recognition factors of the human excision nuclease with moderate selectivity and were excised from DNA at relatively efficient rates. Our data suggest that, if coupled with proteolytic degradation of the crosslinked protein, the human excision nuclease may be the major enzyme system for eliminating protein-DNA crosslinks from the genome. damage recognition | nucleotide excision repair

  16. Base Excision Repair of Oxidative DNA Damage

    PubMed Central

    David, Sheila S.; O’Shea, Valerie L.; Kundu, Sucharita

    2010-01-01

    Base excision repair plays an important role in preventing mutations associated with the common product of oxidative damage, 8-oxoguanine. Recent structural studies have shown that 8-oxoguanine glycosylases use an intricate series of steps to efficiently search and locate 8-oxoguanine lesions within the multitude of undamaged bases. The importance of prevention of mutations associated with 8-oxoguanine has also been illustrated by direct connections between defects in the BER glycosylase MUTYH and colorectal cancer. In addition, the properties of other guanine oxidation products and the BER glycosylases that remove them are being uncovered. This work is providing surprising and intriguing new insights into the process of base excision repair. PMID:17581577

  17. A simulation model to predict the fiscal and public health impact of a change in cigarette excise taxes.

    PubMed

    van Walbeek, Corné

    2010-02-01

    (1) To present a model that predicts changes in cigarette consumption and excise revenue in response to excise tax changes, and (2) to demonstrate that, if the industry has market power, increases in specific taxes have better tobacco control consequences than increases in ad valorem taxes. All model parameters are user-determined. The model calculates likely changes in cigarette consumption, smoking prevalence and excise tax revenues due to an excise tax change. The model is applicable to countries that levy excise tax as specific or ad valorem taxes. For a representative low-income or middle-income country a 20% excise tax increase decreases cigarette consumption and industry revenue by 5% and increases excise tax revenues by 14%, if there is no change in the net-of-tax price. If the excise tax is levied as a specific tax, the industry has an incentive to raise the net-of-tax price, enhancing the consumption-reducing impact of the tax increase. If the excise tax is levied as an ad valorem tax, the industry has no such incentive. The industry has an incentive to reduce the net-of-tax price in response to an ad valorem excise tax increase, undermining the public health and fiscal benefits of the tax increase. This paper presents a simple web-based tool that allows policy makers and tobacco control advocates to estimate the likely consumption, fiscal and mortality impacts of a change in the cigarette excise tax. If a country wishes to reduce cigarette consumption by increasing the excise tax, a specific tax structure is better than an ad valorem tax structure.

  18. Transcriptional regulation of the human mitochondrial peptide deformylase (PDF).

    PubMed

    Pereira-Castro, Isabel; Costa, Luís Teixeira da; Amorim, António; Azevedo, Luisa

    2012-05-18

    The last years of research have been particularly dynamic in establishing the importance of peptide deformylase (PDF), a protein of the N-terminal methionine excision (NME) pathway that removes formyl-methionine from mitochondrial-encoded proteins. The genomic sequence of the human PDF gene is shared with the COG8 gene, which encodes a component of the oligomeric golgi complex, a very unusual case in Eukaryotic genomes. Since PDF is crucial in maintaining mitochondrial function and given the atypical short distance between the end of COG8 coding sequence and the PDF initiation codon, we investigated whether the regulation of the human PDF is affected by the COG8 overlapping partner. Our data reveals that PDF has several transcription start sites, the most important of which only 18 bp from the initiation codon. Furthermore, luciferase-activation assays using differently-sized fragments defined a 97 bp minimal promoter region for human PDF, which is capable of very strong transcriptional activity. This fragment contains a potential Sp1 binding site highly conserved in mammalian species. We show that this binding site, whose mutation significantly reduces transcription activation, is a target for the Sp1 transcription factor, and possibly of other members of the Sp family. Importantly, the entire minimal promoter region is located after the end of COG8's coding region, strongly suggesting that the human PDF preserves an independent regulation from its overlapping partner. Copyright © 2012 Elsevier Inc. All rights reserved.

  19. Reductions in mitochondrial O(2) consumption and preservation of high-energy phosphate levels after simulated ischemia in chronic hibernating myocardium.

    PubMed

    Hu, Qingsong; Suzuki, Gen; Young, Rebeccah F; Page, Brian J; Fallavollita, James A; Canty, John M

    2009-07-01

    We performed the present study to determine whether hibernating myocardium is chronically protected from ischemia. Myocardial tissue was rapidly excised from hibernating left anterior descending coronary regions (systolic wall thickening = 2.8 +/- 0.2 vs. 5.4 +/- 0.3 mm in remote myocardium), and high-energy phosphates were quantified by HPLC during simulated ischemia in vitro (37 degrees C). At baseline, ATP (20.1 +/- 1.0 vs. 26.7 +/- 2.1 micromol/g dry wt, P < 0.05), ADP (8.1 +/- 0.4 vs. 10.3 +/- 0.8 micromol/g, P < 0.05), and total adenine nucleotides (31.2 +/- 1.3 vs. 40.1 +/- 2.9 micromol/g, P < 0.05) were depressed compared with normal myocardium, whereas total creatine, creatine phosphate, and ATP-to-ADP ratios were unchanged. During simulated ischemia, there was a marked attenuation of ATP depletion (5.6 +/- 0.9 vs. 13.7 +/- 1.7 micromol/g at 20 min in control, P < 0.05) and mitochondrial respiration [145 +/- 13 vs. 187 +/- 11 ng atoms O(2).mg protein(-1).min(-1) in control (state 3), P < 0.05], whereas lactate accumulation was unaffected. These in vitro changes were accompanied by protection of the hibernating heart from acute stunning during demand-induced ischemia. Thus, despite contractile dysfunction at rest, hibernating myocardium is ischemia tolerant, with reduced mitochondrial respiration and slowing of ATP depletion during simulated ischemia, which may maintain myocyte viability.

  20. Supplementation with α-Lipoic Acid, CoQ10, and Vitamin E Augments Running Performance and Mitochondrial Function in Female Mice

    PubMed Central

    Abadi, Arkan; Crane, Justin D.; Ogborn, Daniel; Hettinga, Bart; Akhtar, Mahmood; Stokl, Andrew; MacNeil, Lauren; Safdar, Adeel; Tarnopolsky, Mark

    2013-01-01

    Antioxidant supplements are widely consumed by the general public; however, their effects of on exercise performance are controversial. The aim of this study was to examine the effects of an antioxidant cocktail (α-lipoic acid, vitamin E and coenzyme Q10) on exercise performance, muscle function and training adaptations in mice. C57Bl/J6 mice were placed on antioxidant supplement or placebo-control diets (n = 36/group) and divided into trained (8 wks treadmill running) (n = 12/group) and untrained groups (n = 24/group). Antioxidant supplementation had no effect on the running performance of trained mice nor did it affect training adaptations; however, untrained female mice that received antioxidants performed significantly better than placebo-control mice (p ≤ 0.05). Furthermore, antioxidant-supplemented females (untrained) showed elevated respiratory capacity in freshly excised muscle fibers (quadriceps femoris) (p ≤ 0.05), reduced oxidative damage to muscle proteins (p ≤ 0.05), and increased expression of mitochondrial proteins (p ≤ 0.05) compared to placebo-controls. These changes were attributed to increased expression of proliferator-activated receptor gamma coactivator 1α (PGC-1α) (p ≤ 0.05) via activation of AMP-activated protein kinase (AMPK) (p ≤ 0.05) by antioxidant supplementation. Overall, these results indicate that this antioxidant supplement exerts gender specific effects; augmenting performance and mitochondrial function in untrained females, but does not attenuate training adaptations. PMID:23565271

  1. Margins in breast conserving surgery: The financial cost & potential savings associated with the new margin guidelines.

    PubMed

    Singer, Lauren; Brown, Eric; Lanni, Thomas

    2016-08-01

    In this study, we compare the indications for re-excision, the findings of additional tumor in the re-excision specimen as they relate to margin status, and costs associated with re-excision based on recent new consensus statements. A retrospective analysis was performed on 462 patients with invasive breast carcinoma who underwent at least one lumpectomy between January 2011 and December 2013. Postoperative data was analyzed based on where additional disease was found, as it relates to the margin status of the initial lumpectomy and the additional direct costs associated with additional procedures. Of the 462 patients sampled, 149 underwent a re-excision surgery (32.2%). Four patients underwent mastectomy as their second operation. In the 40 patients with additional disease found on re-excision, 36 (90.0%) of them had a positive margin on their initial lumpectomy. None of the four mastectomy patients had residual disease. The mean cost of the initial lumpectomy for all 462 patients was $2118.01 plus an additional $1801.92 for those who underwent re-excision. A positive margin was most predictive of finding residual tumor on re-excision as would be expected. Using old criteria only 0.07% (4/61) of patients who had undergone re-excision with a 'clear' margin, had additional tumor found, at a total cost of $106,354.11. Thus, the new consensus guidelines will lead to less overall cost, at no clinical risk to patients while reducing a patient's surgical risk and essentially eliminating delays in adjuvant care. Copyright © 2016 Elsevier Ltd. All rights reserved.

  2. DNA recombination-initiation plays a role in the extremely biased inheritance of yeast [rho-] mitochondrial DNA that contains the replication origin ori5.

    PubMed

    Ling, Feng; Hori, Akiko; Shibata, Takehiko

    2007-02-01

    Hypersuppressiveness, as observed in Saccharomyces cerevisiae, is an extremely biased inheritance of a small mitochondrial DNA (mtDNA) fragment that contains a replication origin (HS [rho(-)] mtDNA). Our previous studies showed that concatemers (linear head-to-tail multimers) are obligatory intermediates for mtDNA partitioning and are primarily formed by rolling-circle replication mediated by Mhr1, a protein required for homologous mtDNA recombination. In this study, we found that Mhr1 is required for the hypersuppressiveness of HS [ori5] [rho(-)] mtDNA harboring ori5, one of the replication origins of normal ([rho(+)]) mtDNA. In addition, we detected an Ntg1-stimulated double-strand break at the ori5 locus. Purified Ntg1, a base excision repair enzyme, introduced a double-stranded break by itself into HS [ori5] [rho(-)] mtDNA at ori5 isolated from yeast cells. Both hypersuppressiveness and concatemer formation of HS [ori5] [rho(-)] mtDNA are simultaneously suppressed by the ntg1 null mutation. These results support a model in which, like homologous recombination, rolling-circle HS [ori5] [rho(-)] mtDNA replication is initiated by double-stranded breakage in ori5, followed by Mhr1-mediated homologous pairing of the processed nascent DNA ends with circular mtDNA. The hypersuppressiveness of HS [ori5] [rho(-)] mtDNA depends on a replication advantage furnished by the higher density of ori5 sequences and on a segregation advantage furnished by the higher genome copy number on transmitted concatemers.

  3. Excision of Sleeping Beauty transposons: parameters and applications to gene therapy

    PubMed Central

    Liu, Geyi; Aronovich, Elena L.; Cui, Zongbin; Whitley, Chester B.; Hackett, Perry B.

    2007-01-01

    A major problem in gene therapy is the determination of the rates at which gene transfer has occurred. Our work has focused on applications of the Sleeping Beauty (SB) transposon system as a non-viral vector for gene therapy. Excision of a transposon from a donor molecule and its integration into a cellular chromosome are catalyzed by SB transposase. In this study, we used a plasmid-based excision assay to study the excision step of transposition. We used the excision assay to evaluate the importance of various sequences that border the sites of excision inside and outside the transposon in order to determine the most active sequences for transposition from a donor plasmid. These findings together with our previous results in transposase binding to the terminal repeats suggest that the sequences in the transposon-junction of SB are involved in steps subsequent to DNA binding but before excision, and that they may have a role in transposase–transposon interaction. We found that SB transposons leave characteristically different footprints at excision sites in different cell types, suggesting that alternative repair machineries operate in concert with transposition. Most importantly, we found that the rates of excision correlate with the rates of transposition. We used this finding to assess transposition in livers of mice that were injected with the SB transposon and transposase. The excision assay appears to be a relatively quick and easy method to optimize protocols for delivery of genes in SB transposons to mammalian chromosomes in living animals. PMID:15133768

  4. Psoralen-induced DNA adducts are substrates for the base excision repair pathway in human cells

    PubMed Central

    Couvé-Privat, Sophie; Macé, Gaëtane; Saparbaev, Murat K.

    2007-01-01

    Interstrand cross-link (ICL) is a covalent modification of both strands of DNA, which prevents DNA strand separation during transcription and replication. Upon photoactivation 8-methoxypsoralen (8-MOP+UVA) alkylates both strands of DNA duplex at the 5,6-double bond of thymidines, generating monoadducts (MAs) and ICLs. It was thought that bulky DNA lesions such as MAs are eliminated only in the nucleotide excision repair pathway. Instead, non-bulky DNA lesions are substrates for DNA glycosylases and AP endonucleases which initiate the base excision repair (BER) pathway. Here we examined whether BER might be involved in the removal of psoralen–DNA photoadducts. The results show that in human cells DNA glycosylase NEIL1 excises the MAs in duplex DNA, subsequently the apurinic/apyrimidinic endonuclease 1, APE1, removes the 3′-phosphate residue at single-strand break generated by NEIL1. The apparent kinetic parameters suggest that NEIL1 excises MAs with high efficiency. Consistent with these results HeLa cells lacking APE1 and/or NEIL1 become hypersensitive to 8-MOP+UVA exposure. Furthermore, we demonstrate that bacterial homologues of NEIL1, the Fpg and Nei proteins, also excise MAs. New substrate specificity of the Fpg/Nei protein family provides an alternative repair pathway for ICLs and bulky DNA damage. PMID:17715144

  5. Mitochondrial Gene Therapy: Advances in Mitochondrial Gene Cloning, Plasmid Production, and Nanosystems Targeted to Mitochondria.

    PubMed

    Coutinho, Eduarda; Batista, Cátia; Sousa, Fani; Queiroz, João; Costa, Diana

    2017-03-06

    Mitochondrial gene therapy seems to be a valuable and promising strategy to treat mitochondrial disorders. The use of a therapeutic vector based on mitochondrial DNA, along with its affinity to the site of mitochondria, can be considered a powerful tool in the reestablishment of normal mitochondrial function. In line with this and for the first time, we successfully cloned the mitochondrial gene ND1 that was stably maintained in multicopy pCAG-GFP plasmid, which is used to transform E. coli. This mitochondrial-gene-based plasmid was encapsulated into nanoparticles. Furthermore, the functionalization of nanoparticles with polymers, such as cellulose or gelatin, enhances their overall properties and performance for gene therapy. The fluorescence arising from rhodamine nanoparticles in mitochondria and a fluorescence microscopy study show pCAG-GFP-ND1-based nanoparticles' cell internalization and mitochondria targeting. The quantification of GFP expression strongly supports this finding. This work highlights the viability of gene therapy based on mitochondrial DNA instigating further in vitro research and clinical translation.

  6. Genomic stability and telomere regulation in skeletal muscle tissue.

    PubMed

    Trajano, Larissa Alexsandra da Silva Neto; Trajano, Eduardo Tavares Lima; Silva, Marco Aurélio Dos Santos; Stumbo, Ana Carolina; Mencalha, Andre Luiz; Fonseca, Adenilson de Souza da

    2018-02-01

    Muscle injuries are common, especially in sports and cumulative trauma disorder, and their repair is influenced by free radical formation, which causes damages in lipids, proteins and DNA. Oxidative DNA damages are repaired by base excision repair and nucleotide excision repair, ensuring telomeric and genomic stability. There are few studies on this topic in skeletal muscle cells. This review focuses on base excision repair and nucleotide excision repair, telomere regulation and how telomeric stabilization influences healthy muscle, injured muscle, exercise, and its relationship with aging. In skeletal muscle, genomic stabilization and telomere regulation seem to play an important role in tissue health, influencing muscle injury repair. Thus, therapies targeting mechanisms of DNA repair and telomeric regulation could be new approaches for improving repair and prevention of skeletal muscle injuries in young and old people. Copyright © 2018 Elsevier Masson SAS. All rights reserved.

  7. Teaching elliptical excision skills to novice medical students: a randomized controlled study comparing low- and high-fidelity bench models.

    PubMed

    Denadai, Rafael; Oshiiwa, Marie; Saad-Hossne, Rogério

    2014-03-01

    The search for alternative and effective forms of training simulation is needed due to ethical and medico-legal aspects involved in training surgical skills on living patients, human cadavers and living animals. To evaluate if the bench model fidelity interferes in the acquisition of elliptical excision skills by novice medical students. Forty novice medical students were randomly assigned to 5 practice conditions with instructor-directed elliptical excision skills' training (n = 8): didactic materials (control); organic bench model (low-fidelity); ethylene-vinyl acetate bench model (low-fidelity); chicken legs' skin bench model (high-fidelity); or pig foot skin bench model (high-fidelity). Pre- and post-tests were applied. Global rating scale, effect size, and self-perceived confidence based on Likert scale were used to evaluate all elliptical excision performances. The analysis showed that after training, the students practicing on bench models had better performance based on Global rating scale (all P < 0.0000) and felt more confident to perform elliptical excision skills (all P < 0.0000) when compared to the control. There was no significant difference (all P > 0.05) between the groups that trained on bench models. The magnitude of the effect (basic cutaneous surgery skills' training) was considered large (>0.80) in all measurements. The acquisition of elliptical excision skills after instructor-directed training on low-fidelity bench models was similar to the training on high-fidelity bench models; and there was a more substantial increase in elliptical excision performances of students that trained on all simulators compared to the learning on didactic materials.

  8. Erosion of State Alcohol Excise Taxes in the United States.

    PubMed

    Naimi, Timothy S; Blanchette, Jason G; Xuan, Ziming; Chaloupka, Francis J

    2018-01-01

    In the United States, excessive alcohol consumption is responsible for 88,000 deaths annually and cost $249 billion, or $2.05 per drink, in 2010. Specific excise taxes, the predominant form of alcohol taxation in the United States, are based on the volume of alcohol sold rather than a percentage of price and can thus degrade over time because of inflation. The objective of this study was to describe changes in inflation-adjusted state alcohol excise taxes on a beverage-specific basis. State-level data on specific excise taxes were obtained from the Alcohol Policy Information System and the Tax Foundation. Excise tax rates were converted into the tax per standard U.S. drink (14 g of ethanol) for beer, wine, and distilled spirits, and converted into 2015 dollars using annual Consumer Price Index data. Across U.S. states, the average state alcohol excise tax per drink in 2015 was $0.03 for beer, $0.05 for distilled spirits, and $0.03 for wine. From 1991 to 2015, the average inflation-adjusted (in 2015 dollars) state alcohol excise tax rate declined 30% for beer, 32% for distilled spirits, and 27% for wine. Percentage declines in state excise taxes since their inception were more than twice as large as those from 1991 to 2015. In 2015, average state specific excise taxes were $0.05 or less per standard drink across all beverage types and have experienced substantial inflation-adjusted declines.

  9. Presurgical mapping of basal cell carcinoma or squamous cell carcinoma by confocal laser endomicroscopy compared to traditional micrographic surgery: a single-centre prospective feasibility study.

    PubMed

    Schulz, Alexandra; Daali, Samira; Javed, Mehreen; Fuchs, Paul Christian; Brockmann, Michael; Igressa, Alhadi; Charalampaki, Patra

    2016-12-01

    At present, no ideal diagnostic tools exist in the market to excise cancer tissue with the required safety margins and to achieve optimal aesthetic results using tissue-conserving techniques. In this prospective study, confocal laser endomicroscopy (CLE) and the traditional gold standard of magnifying glasses (MG) were compared regarding the boundaries of in vivo basal cell carcinoma and squamous cell carcinoma. Tumour diameters defined by both methods were measured and compared with those determined by histopathological examination. Nineteen patients were included in the study. The CLE technique was found to be superior to excisional margins based on MG only. Re-excision was required in 68% of the cases following excision based on MG evaluation, but only in 27% of the cases for whom excision margins were based on CLE. Our results are promising regarding the distinction between tumour and healthy surrounding tissue, and indicate that presurgical mapping of basal cell carcinoma and squamous cell carcinoma is possible. The tool itself should be developed further with special attention to early detection of skin cancer.

  10. The mitochondrial metabolic reprogramming agent trimetazidine as an ‘exercise mimetic’ in cachectic C26‐bearing mice

    PubMed Central

    Molinari, Francesca; Pin, Fabrizio; Gorini, Stefania; Chiandotto, Sergio; Pontecorvo, Laura; Penna, Fabio; Rizzuto, Emanuele; Pisu, Simona; Musarò, Antonio; Costelli, Paola

    2017-01-01

    Abstract Background Cancer cachexia is characterized by muscle depletion and exercise intolerance caused by an imbalance between protein synthesis and degradation and by impaired myogenesis. Myofibre metabolic efficiency is crucial so as to assure optimal muscle function. Some drugs are able to reprogram cell metabolism and, in some cases, to enhance metabolic efficiency. Based on these premises, we chose to investigate the ability of the metabolic modulator trimetazidine (TMZ) to counteract skeletal muscle dysfunctions and wasting occurring in cancer cachexia. Methods For this purpose, we used mice bearing the C26 colon carcinoma as a model of cancer cachexia. Mice received 5 mg/kg TMZ (i.p.) once a day for 12 consecutive days. A forelimb grip strength test was performed and tibialis anterior, and gastrocnemius muscles were excised for analysis. Ex vivo measurement of skeletal muscle contractile properties was also performed. Results Our data showed that TMZ induces some effects typically achieved through exercise, among which is grip strength increase, an enhanced fast‐to slow myofibre phenotype shift, reduced glycaemia, PGC1α up‐regulation, oxidative metabolism, and mitochondrial biogenesis. TMZ also partially restores the myofibre cross‐sectional area in C26‐bearing mice, while modulation of autophagy and apoptosis were excluded as mediators of TMZ effects. Conclusions In conclusion, our data show that TMZ acts like an ‘exercise mimetic’ and is able to enhance some mechanisms of adaptation to stress in cancer cachexia. This makes the modulation of the metabolism, and in particular TMZ, a suitable candidate for a therapeutic rehabilitative protocol design, particularly considering that TMZ has already been approved for clinical use. PMID:29130633

  11. Requirement of the Saccharomyces cerevisiae APN1 Gene for the Repair of Mitochondrial DNA Alkylation Damage

    PubMed Central

    Acevedo-Torres, Karina; Fonseca-Williams, Sharon; Ayala-Torres, Sylvette; Torres-Ramos, Carlos A.

    2010-01-01

    The Saccharomyces cerevisiae APN1 gene that participates in base excision repair has been localized both in the nucleus and the mitochondria. APN1 deficient cells (apn1Δ) show increased mutation frequencies in mitochondrial DNA (mtDNA) suggesting that APN1 is also important for mtDNA stability. To understand APN1-dependent mtDNA repair processes we studied the formation and repair of mtDNA lesions in cells exposed to methyl methanesulfonate (MMS). We show that MMS induces mtDNA damage in a dose-dependent fashion and that deletion of the APN1 gene enhances the susceptibility of mtDNA to MMS. Repair kinetic experiments demonstrate that in wild-type cells (WT) it takes 4 hr to repair the damage induced by 0.1% MMS, whereas in the apn1Δ strain there is a lag in mtDNA repair that results in significant differences in the repair capacity between the two yeast strains. Analysis of lesions in nuclear DNA (nDNA) after treatment with 0.1% MMS shows a significant difference in the amount of nDNA lesions between WT and apn1Δ cells. Interestingly, comparisons between nDNA and mtDNA damage show that nDNA is more sensitive to the effects of MMS treatment. However, both strains are able to repair the nDNA lesions, contrary to mtDNA repair, which is compromised in the apn1Δ mutant strain. Therefore, although nDNA is more sensitive than mtDNA to the effects of MMS, deletion of APN1 has a stronger phenotype in mtDNA repair than in nDNA. These results highlight the prominent role of APN1 in the repair of environmentally induced mtDNA damage. PMID:19197988

  12. Dual CRISPR-Cas9 Cleavage Mediated Gene Excision and Targeted Integration in Yarrowia lipolytica.

    PubMed

    Gao, Difeng; Smith, Spencer; Spagnuolo, Michael; Rodriguez, Gabriel; Blenner, Mark

    2018-05-29

    CRISPR-Cas9 technology has been successfully applied in Yarrowia lipolytica for targeted genomic editing including gene disruption and integration; however, disruptions by existing methods typically result from small frameshift mutations caused by indels within the coding region, which usually resulted in unnatural protein. In this study, a dual cleavage strategy directed by paired sgRNAs is developed for gene knockout. This method allows fast and robust gene excision, demonstrated on six genes of interest. The targeted regions for excision vary in length from 0.3 kb up to 3.5 kb and contain both non-coding and coding regions. The majority of the gene excisions are repaired by perfect nonhomologous end-joining without indel. Based on this dual cleavage system, two targeted markerless integration methods are developed by providing repair templates. While both strategies are effective, homology mediated end joining (HMEJ) based method are twice as efficient as homology recombination (HR) based method. In both cases, dual cleavage leads to similar or improved gene integration efficiencies compared to gene excision without integration. This dual cleavage strategy will be useful for not only generating more predictable and robust gene knockout, but also for efficient targeted markerless integration, and simultaneous knockout and integration in Y. lipolytica. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Differential involvement of the related DNA helicases Pif1p and Rrm3p in mtDNA point mutagenesis and stability.

    PubMed

    O'Rourke, Thomas W; Doudican, Nicole A; Zhang, Hong; Eaton, Jana S; Doetsch, Paul W; Shadel, Gerald S

    2005-07-18

    With the exception of base excision repair, conserved pathways and mechanisms that maintain mitochondrial genome stability have remained largely undelineated. In the budding yeast, Saccharomyces cerevisiae, Pif1p is a unique DNA helicase that is localized both to the nucleus and mitochondria, where it is involved in maintaining DNA integrity. We previously elucidated a role for Pif1p in oxidative mtDNA damage resistance that appears to be distinct from its postulated function in mtDNA recombination. Strains lacking Pif1p (pif1Delta) exhibit an increased rate of formation of petite mutants (an indicator of mtDNA instability) and elevated mtDNA point mutagenesis. Here we show that deletion of the RRM3 gene, which encodes a DNA helicase closely related to Pif1p, significantly rescues the petite-induction phenotype of a pif1Delta strain. However, suppression of this phenotype was not accompanied by a corresponding decrease in mtDNA point mutagenesis. Instead, deletion of RRM3 alone resulted in an increase in mtDNA point mutagenesis that was synergistic with that caused by a pif1Delta mutation. In addition, we found that over-expression of RNR1, encoding a large subunit of ribonucleotide reductase (RNR), rescued the petite-induction phenotype of a pif1Delta mutation to a similar extent as deletion of RRM3. This, coupled to our finding that the Rad53p protein kinase is phosphorylated in the rrm3Delta pif1Delta double-mutant strain, leads us to conclude that one mechanism whereby deletion of RRM3 influences mtDNA stability is by modulating mitochondrial deoxynucleoside triphosphate pools. We propose that this is accomplished by signaling through the conserved Mec1/Rad53, S-phase checkpoint pathway to induce the expression and activity of RNR. Altogether, our results define a novel role for Rrm3p in mitochondrial function and indicate that Pif1p and Rrm3p influence a common process (or processes) involved in mtDNA replication, repair, or stability.

  14. Teaching Elliptical Excision Skills to Novice Medical Students: A Randomized Controlled Study Comparing Low- and High-Fidelity Bench Models

    PubMed Central

    Denadai, Rafael; Oshiiwa, Marie; Saad-Hossne, Rogério

    2014-01-01

    Background: The search for alternative and effective forms of training simulation is needed due to ethical and medico-legal aspects involved in training surgical skills on living patients, human cadavers and living animals. Aims: To evaluate if the bench model fidelity interferes in the acquisition of elliptical excision skills by novice medical students. Materials and Methods: Forty novice medical students were randomly assigned to 5 practice conditions with instructor-directed elliptical excision skills’ training (n = 8): didactic materials (control); organic bench model (low-fidelity); ethylene-vinyl acetate bench model (low-fidelity); chicken legs’ skin bench model (high-fidelity); or pig foot skin bench model (high-fidelity). Pre- and post-tests were applied. Global rating scale, effect size, and self-perceived confidence based on Likert scale were used to evaluate all elliptical excision performances. Results: The analysis showed that after training, the students practicing on bench models had better performance based on Global rating scale (all P < 0.0000) and felt more confident to perform elliptical excision skills (all P < 0.0000) when compared to the control. There was no significant difference (all P > 0.05) between the groups that trained on bench models. The magnitude of the effect (basic cutaneous surgery skills’ training) was considered large (>0.80) in all measurements. Conclusion: The acquisition of elliptical excision skills after instructor-directed training on low-fidelity bench models was similar to the training on high-fidelity bench models; and there was a more substantial increase in elliptical excision performances of students that trained on all simulators compared to the learning on didactic materials. PMID:24700937

  15. An Automated Energy Detection Algorithm Based on Kurtosis-Histogram Excision

    DTIC Science & Technology

    2018-01-01

    ARL-TR-8269 ● JAN 2018 US Army Research Laboratory An Automated Energy Detection Algorithm Based on Kurtosis-Histogram Excision...needed. Do not return it to the originator. ARL-TR-8269 ● JAN 2018 US Army Research Laboratory An Automated Energy Detection...collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources

  16. Unnatural substrates reveal the importance of 8-oxoguanine for in vivo mismatch repair by MutY

    PubMed Central

    Livingston, Alison L.; O’Shea, Valerie L.; Kim, Taewoo; Kool, Eric T.; David, Sheila S.

    2009-01-01

    Escherchia coli MutY plays an important role in preventing mutations associated with the oxidative lesion 7,8-dihydro-8-oxo-2′-deoxyguanosine (OG) in DNA by excising adenines from OG:A mismatches as the first step of base excision repair. To determine the importance of specific steps in the base pair recognition and base removal process of MutY, we have evaluated the effects of modifications of the OG:A substrate on the kinetics of base removal, mismatch affinity and repair to G:C in an Escherchia coli-based assay. Surprisingly, adenine modification was tolerated in the cellular assay, while modification of OG results in minimal cellular repair. High affinity for the mismatch and efficient base removal require the presence of OG. Taken together, these results suggest that the presence of OG is a critical feature for MutY to locate OG:A mismatches and select the appropriate adenines for excision to initiate repair in vivo prior to replication. PMID:18026095

  17. The complete mitochondrial genome of the three-spot seahorse, Hippocampus trimaculatus (Teleostei, Syngnathidae).

    PubMed

    Chang, Chia-Hao; Shao, Kwang-Tsao; Lin, Yeong-Shin; Liao, Yun-Chih

    2013-12-01

    The complete mitochondrial genome of the three-spot seahorse was sequenced using a polymerase chain reaction-based method. The total length of mitochondrial DNA is 16,535 bp and includes 13 protein-coding genes, 2 ribosomal RNA genes, 22 transfer RNA genes, and a control region. The mitochondrial gene order of the three-spot seahorse also conforms to the distinctive vertebrate mitochondrial gene order. The base composition of the genome is A (32.7%), T (29.3%), C (23.4%), and G (14.6%) with an A + T-rich hallmark as that of other vertebrate mitochondrial genomes.

  18. [Transanal total mesorectal excision for rectal cancer - just a fashion trend?].

    PubMed

    Kala, Z; Skrovina, M; Procházka, V; Grolich, T; Klos, K

    2014-12-01

    Transanal total mesorectal excision performed using equipment for transanal minimally invasive surgery is an innovative surgical technique introduced to facilitate this procedure and to reach better oncosurgical outcomes in patients with low rectal cancer. This article presents a brief summary of guidelines for treatment of patients with low rectal carcinoma. Up-to-date information about the principles of this new method, its modifications and contemporary indications is presented. Based on their own experience and literature resources, the authors inform about the advantages, limitations and unresolved issues of minimally invasive transanal mesorectal excision.

  19. Planning the breast tumor bed boost: Changes in the excision cavity volume and surgical scar location after breast-conserving surgery and whole-breast irradiation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Oh, Kevin S.; Kong, F.-M.; Griffith, Kent A.

    2006-11-01

    Purpose: The aims of this study were to determine the changes in breast and excision cavity volumes after whole-breast irradiation and the adequacy of using the surgical scar to guide boost planning. Methods and Materials: A total of 30 women consecutively treated for 31 breast cancers were included in this study. Simulation CT scans were performed before and after whole-breast irradiation. CT breast volumes were delineated using clinically defined borders. Excision cavity volumes were contoured based on surgical clips, the presence of a hematoma, and/or other surgical changes. Hypothetical electron boost plans were generated using the surgical scar with amore » 3-cm margin and analyzed for coverage. Results: The mean CT breast volumes were 774 and 761 cc (p = 0.22), and the excision cavity volumes were 32.1 and 25.1 cc (p < 0.0001), before and after 40 Gy (39-42 Gy) of whole-breast irradiation, respectively. The volume reduction in the excision cavity was inversely correlated with time elapsed since surgery (R = 0.46, p < 0.01) and body weight (R = 0.50, p < 0.01). The scar-guided hypothetical plans failed to cover the excision cavity adequately in 62% and 53.8% of cases using the pretreatment and postradiation CTs, respectively. Per the hypothetical plans, the minimum dose to the excision cavity was significantly lower for tumors located in the inner vs. outer quadrants (p = 0.02) and for cavities >20 cc vs. <20 cc (p = 0.01). Conclusions: This study demonstrates a significant reduction in the volume of the excision cavity during whole-breast irradiation. Scar-guided boost plans provide inadequate coverage of the excision cavity in the majority of cases.« less

  20. Is surgical excision necessary for the treatment of Granulomatous lobular mastitis?

    PubMed

    Shin, Young Duck; Park, Sung Su; Song, Young Jin; Son, Seung-Myoung; Choi, Young Jin

    2017-07-24

    We aimed to investigate the role of surgical excision in treating granulomatous lobular mastitis. We performed a retrospective chart review of patients with granulomatous lobular mastitis treated from March 2008 to March 2014. We analyzed clinical features and therapeutic modalities and compared the patient outcomes based on treatment. During the study period, a total of 34 patients were diagnosed with granulomatous lobular mastitis and treated. Initial treatments included wide excision (18), oral steroids after incision and drainage (14), and antibiotic therapy (2). The patients receiving only antibiotic therapy showed no improvement after 1 month and wide excision was then performed. Wide excision resulted in nine case of delayed wound healing with fistula. These patients were treated with oral steroids for 1.5-5 months, with subsequent improvement. Overall, 11 out of 20 patients who had underwent wide excision showed improvement without additional treatment. Fourteen patients who had initially received oral steroids for 1 to 6 months (average, 2.8 months) after incision and drainage showed complete remission. During the median follow-up period with 45.5 months (range, 22-98 months), six patients (17.6%) experienced recurrence. Wide excision group experienced recurrence in five (25%) and steroid and drainage group experienced recurrence in one (7.1%). All six recurrences responded to additional steroid therapy for average 3.5 months. Most wide excision group left extensive breast scarring with deformation that was not in steroid and drainage group. Wide excision resulted high recurrence than steroid and drainage group and left extensive scarring. Steroid therapy with or without abscess drainage may be the first choice of treatment for majority cases with granulomatous lobular mastitis.

  1. Evaluation of the efficacy of twelve mitochondrial protein-coding genes as barcodes for mollusk DNA barcoding.

    PubMed

    Yu, Hong; Kong, Lingfeng; Li, Qi

    2016-01-01

    In this study, we evaluated the efficacy of 12 mitochondrial protein-coding genes from 238 mitochondrial genomes of 140 molluscan species as potential DNA barcodes for mollusks. Three barcoding methods (distance, monophyly and character-based methods) were used in species identification. The species recovery rates based on genetic distances for the 12 genes ranged from 70.83 to 83.33%. There were no significant differences in intra- or interspecific variability among the 12 genes. The monophyly and character-based methods provided higher resolution than the distance-based method in species delimitation. Especially in closely related taxa, the character-based method showed some advantages. The results suggested that besides the standard COI barcode, other 11 mitochondrial protein-coding genes could also be potentially used as a molecular diagnostic for molluscan species discrimination. Our results also showed that the combination of mitochondrial genes did not enhance the efficacy for species identification and a single mitochondrial gene would be fully competent.

  2. Minimally invasive endoscope-assisted trans-oral excision of huge parapharyngeal space tumors.

    PubMed

    Li, Shang-Yi; Hsu, Ching-Hui; Chen, Mu-Kuan

    2015-04-01

    Parapharyngeal space tumors are rare head and neck neoplasms, and most are benign lesions. Complete excision of these tumors is difficult because of the complexity of the surrounding anatomic structures. The algorithm for excision of these tumors is typically based on the tumor's characteristics; excision is performed via approaches such as the trans-oral route, the trans-cervical route, and even a combination of the trans-parotid route and mandibulotomy. However, each of these approaches is associated with some complications. Endoscope-assisted minimally invasive surgery is being increasingly employed for surgeries in the head and neck regions. It has the advantage of leaving no facial scars, and ensures better patient comfort after the operation. Here, we report the use of endoscope-assisted trans-oral surgery for excision of parapharyngeal space tumors. The technique yields an excellent outcome and should be a feasible, safe, and economic method for these patients. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  3. Mitochondrial Telomeres as Molecular Markers for Identification of the Opportunistic Yeast Pathogen Candida parapsilosis

    PubMed Central

    Nosek, Jozef; Tomáška, L'ubomír; Ryčovská, Adriana; Fukuhara, Hiroshi

    2002-01-01

    Recent studies have demonstrated that a large number of organisms carry linear mitochondrial DNA molecules possessing specialized telomeric structures at their ends. Based on this specific structural feature of linear mitochondrial genomes, we have developed an approach for identification of the opportunistic yeast pathogen Candida parapsilosis. The strategy for identification of C. parapsilosis strains is based on PCR amplification of specific DNA sequences derived from the mitochondrial telomere region. This assay is complemented by immunodetection of a protein component of mitochondrial telomeres. The results demonstrate that mitochondrial telomeres represent specific molecular markers with potential applications in yeast diagnostics and taxonomy. PMID:11923346

  4. Is initial excision of cutaneous melanoma by General Practitioners (GPs) dangerous? Comparing patient outcomes following excision of melanoma by GPs or in hospital using national datasets and meta-analysis.

    PubMed

    Murchie, Peter; Amalraj Raja, Edwin; Brewster, David H; Iversen, Lisa; Lee, Amanda J

    2017-11-01

    Melanomas are initially excised in primary care, and rates vary internationally. Until now, there has been no strong evidence one way or the other that excising melanomas in primary care is safe or unsafe. European guidelines make no recommendations, and the United Kingdom (UK) melanoma guidelines require all suspicious skin lesions to be initially treated in secondary care based on an expert consensus, which lacks supporting evidence, that primary care excision represents substandard care. Despite this, studies have found that up to 20% of melanomas in the UK are excised by general practitioners (GPs). Patients receiving primary care melanoma excision may fear that their care is substandard and their long-term survival threatened, neither of which may be justified. Scottish cancer registry data from 9367 people diagnosed with melanoma in Scotland between 2005 and 2013 were linked to pathology records, hospital data and death records. A Cox proportional hazards regression analysis, adjusting for key confounders, explored the association between morbidity and mortality and setting of primary melanoma excision (primary versus secondary care). A pooled estimate of the relative hazard of death of having a melanoma excised in primary versus secondary care including 7116 patients from a similar Irish study was also performed. The adjusted hazard ratio (95% CI) of death from melanoma for those having primary care excision was 0.82 (0.61-1.10). Those receiving primary care excision had a median (IQR) of 8 (3-14) out-patient attendances compared to 10 (4-17) for the secondary care group with an adjusted relative risk (RR) (95% CI) of 0.98 (0.96-1.01). Both groups had a median of 1 (0-2) hospital admissions with an adjusted rate ratio of 1.05 (0.98-1.13). In the meta-analysis, with primary care as the reference, the pooled adjusted hazard ratio (HR, 95% CI) was 1.26 (1.07-1.50) indicating a significantly higher all-cause mortality among those with excision in secondary care. The results of the Scottish and pooled analyses suggest that those receiving an initial excision for melanoma in primary care do not have poorer survival or increased morbidity compared to those being initially treated in secondary care. A randomised controlled trial to inform a greater role for GPs in the initial excision of melanoma is justified in the light of these results. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. Inter- and intraspecific mitochondrial DNA variation in North American bears (Ursus)

    USGS Publications Warehouse

    Cronin, Matthew A.; Amstrup, Steven C.; Garner, Gerald W.; Vyse, Ernest R.

    1991-01-01

    We assessed mitochondrial DNA variation in North American black bears (Ursus americanus), brown bears (Ursus arctos), and polar bears (Ursus maritimus). Divergent mitochondrial DNA haplotypes (0.05 base substitutions per nucleotide) were identified in populations of black bears from Montana and Oregon. In contrast, very similar haplotypes occur in black bears across North America. This discordance of haplotype phylogeny and geographic distribution indicates that there has been maintenance of polymorphism and considerable gene flow throughout the history of the species. Intraspecific mitochondrial DNA sequence divergence in brown bears and polar bears is lower than in black bears. The two morphological forms of U. arctos, grizzly and coastal brown bears, are not in distinct mtDNA lineages. Interspecific comparisons indicate that brown bears and polar bears share similar mitochondrial DNA (0.023 base substitutions per nucleotide) which is quite divergent (0.078 base substitutions per nucleotide) from that of black bears. High mitochondrial DNA divergence within black bears and paraphyletic relationships of brown and polar bear mitochondrial DNA indicate that intraspecific variation across species' ranges should be considered in phylogenetic analyses of mitochondrial DNA.

  6. An Automated Energy Detection Algorithm Based on Consecutive Mean Excision

    DTIC Science & Technology

    2018-01-01

    present in the RF spectrum. 15. SUBJECT TERMS RF spectrum, detection threshold algorithm, consecutive mean excision, rank order filter , statistical...Median 4 3.1.9 Rank Order Filter (ROF) 4 3.1.10 Crest Factor (CF) 5 3.2 Statistical Summary 6 4. Algorithm 7 5. Conclusion 8 6. References 9...energy detection algorithm based on morphological filter processing with a semi- disk structure. Adelphi (MD): Army Research Laboratory (US); 2018 Jan

  7. Efficacy of doxorubicin-based chemotherapy for non-resectable canine subcutaneous haemangiosarcoma.

    PubMed

    Wiley, J L; Rook, K A; Clifford, C A; Gregor, T P; Sorenmo, K U

    2010-09-01

    Eighteen dogs with measurable subcutaneous haemangiosarcoma (SQHSA) were treated with doxorubicin-based chemotherapy. Response assessment was evaluated and compared using World Health Organization (WHO), Response Evaluation Criteria in Solid Tumours (RECIST) and tumour volume criteria. The overall response rate for all dogs was 38.8% using WHO criteria, 38.8% using RECIST criteria and 44% using tumour volume criteria. One dog had a complete response. The median response duration for all dogs was 53 days (range 13-190 days). Four dogs had complete surgical excision after neoadjuvant chemotherapy. The median progression-free interval for dogs with complete surgical excision after neoadjuvant chemotherapy was significantly longer than those not having surgical excision (207 days versus 83 days, respectively) (P = 0.003). No significant difference in metastasis-free interval or survival time was found between the groups. Doxorubicin-based chemotherapy appears to be effective for non-resectable canine SQHSA, although the response duration is relatively short.

  8. Pharmacodynamic Assay Panel for Monitoring Phospho-Signaling Networks | Office of Cancer Clinical Proteomics Research

    Cancer.gov

    The DNA damage response (DDR) is a highly regulated signal transduction network that orchestrates the temporal and spatial organization of protein complexes required to repair (or tolerate) DNA damage (e.g., nucleotide excision repair, base excision repair, homologous recombination, non-homologous end joining, post-replication repair).

  9. The impact of use of an intraoperative margin assessment device on re-excision rates.

    PubMed

    Sebastian, Molly; Akbari, Stephanie; Anglin, Beth; Lin, Erin H; Police, Alice M

    2015-01-01

    Historically there has been a high rate of surgical interventions to obtain clear margins for breast cancer patients undergoing breast conserving local therapy. An intraoperative margin assessment tool (MarginProbe) has been approved for use in the US since 2013. This study is the first compilation of data from routine use of the device, to assess the impact of device utilization on re-excision rates. We present a retrospective, observational, review from groups of consecutive patients, before and after the implementation of intraoperative use of the device during lumpectomy procedures. Lesions were localized by standard methods. The intraoperative margin assessment device was used on all circumferential margins of the main specimen, but not on any additional shavings. A positive reading by the device led to an additional shaving of the corresponding cavity location. Specimens were also, when feasible, imaged intra-operatively by X-ray, and additional shavings were taken if needed based on clinical assessment. For each surgeon, historical re-excision rates were established based on a consecutive set of patients from a time period proximal to initiation of use of the device. From March 2013 to April 2014 the device was routinely used by 4 surgeons in 3 centers. In total, 165 cases lumpectomy cases were performed. Positive margins resulted in additional re-excision procedures in 9.7% (16/165) of the cases. The corresponding historical set from 2012 and 2013 consisted of 186 Lumpectomy cases, in which additional re-excision procedures were performed in 25.8% (48/186) of the cases. The reduction in the rate of re-excision procedures was significant 62% (P < 0.0001). Use of an intraoperative margin assessment device contributes to achieving clear margins and reducing re-excision procedures. As in some cases positive margins were found on shavings, future studies of interest may include an analysis of the effect of using the device on the shavings intra-operatively.

  10. Histologic processing and reporting of cutaneous pigmented lesions: recommendations based on a survey of 94 dermatopathologists.

    PubMed

    Kolman, Olga; Hoang, Mai P; Piris, Adriano; Mihm, Martin C; Duncan, Lyn M

    2010-10-01

    Standard operating procedures for laboratory processing and reporting of margins of cutaneous pigmented lesions do not exist. We conducted a survey of 94 dermatopathologists to evaluate these practices. We sought to: (1) identify dominant practices among dermatopathologists; (2) determine the impact of the procedure, intent to excise, and histologic diagnosis on the process of margin evaluation; and (3) propose guidelines based on these findings. The survey consisted of 44 questions focused on the impact of procedure (punch, shave, or ellipse), intent (excision or biopsy), and histologic diagnosis (common nevus, congenital nevus, atypical nevus, melanoma) on processing and margin reporting. For ellipses, or specimens indicated as excisions, the majority practice (76%-98%) was to ink the specimens. Although more than 90% of observers report the margins on all melanomas and atypical nevi, fewer than 50% of respondents report margins on all nonatypical nevi. The study consists of a survey sample of dermatopathologists and does not represent the practices of those who did not respond to the survey. Based on the results of this survey we have arrived at the following recommendations: (1) ink all specimens that are ellipses or designated as excisions; (2) tips should be evaluated separately if the specimen is an ellipse; (3) obtain levels in cases with tumor in the tip but not at ink if the specimen is an ellipse or excision and the diagnosis is atypical nevus or melanoma; and (4) report margins on all atypical nevi and melanomas. Copyright © 2009 American Academy of Dermatology, Inc. Published by Mosby, Inc. All rights reserved.

  11. Structure of a DNA glycosylase that unhooks interstrand cross-links

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mullins, Elwood A.; Warren, Garrett M.; Bradley, Noah P.

    DNA glycosylases are important editing enzymes that protect genomic stability by excising chemically modified nucleobases that alter normal DNA metabolism. These enzymes have been known only to initiate base excision repair of small adducts by extrusion from the DNA helix. However, recent reports have described both vertebrate and microbial DNA glycosylases capable of unhooking highly toxic interstrand cross-links (ICLs) and bulky minor groove adducts normally recognized by Fanconi anemia and nucleotide excision repair machinery, although the mechanisms of these activities are unknown. Here we report the crystal structure of Streptomyces sahachiroi AlkZ (previously Orf1), a bacterial DNA glycosylase that protectsmore » its host by excising ICLs derived from azinomycin B (AZB), a potent antimicrobial and antitumor genotoxin. AlkZ adopts a unique fold in which three tandem winged helix-turn-helix motifs scaffold a positively charged concave surface perfectly shaped for duplex DNA. Through mutational analysis, we identified two glutamine residues and a β-hairpin within this putative DNA-binding cleft that are essential for catalytic activity. Additionally, we present a molecular docking model for how this active site can unhook either or both sides of an AZB ICL, providing a basis for understanding the mechanisms of base excision repair of ICLs. Given the prevalence of this protein fold in pathogenic bacteria, this work also lays the foundation for an emerging role of DNA repair in bacteria-host pathogenesis.« less

  12. Pharmacological approaches to restore mitochondrial function

    PubMed Central

    Andreux, Pénélope A.; Houtkooper, Riekelt H.; Auwerx, Johan

    2014-01-01

    Mitochondrial dysfunction is not only a hallmark of rare inherited mitochondrial disorders, but is also implicated in age-related diseases, including those that affect the metabolic and nervous system, such as type 2 diabetes and Parkinson’s disease. Numerous pathways maintain and/or restore proper mitochondrial function, including mitochondrial biogenesis, mitochondrial dynamics, mitophagy, and the mitochondrial unfolded protein response. New and powerful phenotypic assays in cell-based models, as well as multicellular organisms, have been developed to explore these different aspects of mitochondrial function. Modulating mitochondrial function has therefore emerged as an attractive therapeutic strategy for a range of diseases, which has spurred active drug discovery efforts in this area. PMID:23666487

  13. The complete mitochondrial genome of the tiger tail seahorse, Hippocampus comes (Teleostei, Syngnathidae).

    PubMed

    Chang, Chia-Hao; Lin, Han-Yang; Jang-Liaw, Nian-Hong; Shao, Kwang-Tsao; Lin, Yeong-Shin; Ho, Hsuan-Ching

    2013-06-01

    The complete mitochondrial genome of the tiger tail seahorse was sequenced using a polymerase chain reaction-based method. The total length of mitochondrial DNA is 16,525 bp and includes 13 protein-coding genes, 2 ribosomal RNA, 22 transfer RNA genes, and a control region. The mitochondrial gene arrangement of the tiger tail seahorse is also matching the one observed in the most vertebrate creatures. Base composition of the genome is A (32.8%), T (29.8%), C (23.0%), and G (14.4%) with an A+T-rich hallmark as that of other vertebrate mitochondrial genomes.

  14. The incidence and multiplicity rates of keratinocyte cancers in Australia.

    PubMed

    Pandeya, Nirmala; Olsen, Catherine M; Whiteman, David C

    2017-10-16

    To assess the incidence and multiplicity of keratinocyte cancers (basal cell carcinoma [BCC] and squamous cell carcinoma [SCC]) excised in Australia, and to examine variations by age, sex, state, and prior skin cancer history. Analysis of individual-level Medicare data for keratinocyte cancer treatments (identified by eight specific MBS item codes) during 2011-2014. Histological data from the QSkin prospective cohort study were analysed to estimate BCC and SCC incidence. A 10% systematic random sample of all people registered with Medicare during 1997-2014. People aged at least 20 years in 2011 who made at least one claim for any MBS medical service during 2011-2014 (1 704 193 individuals). Age-standardised incidence rates (ASRs) and standardised incidence ratios (SIRs). The person-based incidence of keratinocyte cancer excisions in Australia was 1531 per 100 000 person-years; incidence increased with age, and was higher for men than women (SIR, 1.43; 95% CI, 1.42-1.45). Lesion-based incidence was 3154 per 100 000 person-years. The estimated ASRs for BCC and SCC were 770 per 100 000 and 270 per 100 000 person-years respectively. During 2011-2014, 3.9% of Australians had one keratinocyte cancer excised, 2.7% had more than one excised; 74% of skin cancers were excised from patients who had two or more lesions removed. Multiplicity was strongly correlated with age; most male patients over 70 were treated for multiple lesions. Keratinocyte cancer incidence was eight times as high among people with a prior history of excisions as among those without. The incidence and multiplicity of keratinocyte cancer in Australia are very high, causing a large disease burden that has not previously been quantified.

  15. POLYMORPHISMS IN THE DNA BASE EXCISION REPAIR GENES APEX1 AND XRCC1 AND LUNG CANCER RISK IN XUAN WEI, CHINA

    EPA Science Inventory

    The lung cancer mortality rate in Xuan Wei County is among the highest in China and has been attributed to exposure to indoor smoky coal emissions that contain very high levels of polycyclic aromatic hydrocarbons (PAHs). Nucleotide excision repair (NER) plays a key role in revers...

  16. Cutaneous squamous cell carcinoma in an African pygmy hedgehog (Atelerix albiventris).

    PubMed

    Couture, Émilie L; Langlois, Isabelle; Santamaria-Bouvier, Ariane; Benoit-Biancamano, Marie-Odile

    2015-12-01

    A cutaneous mass was surgically excised in a 4-year-old African pygmy hedgehog (Atelerix albiventris). A squamous cell carcinoma was diagnosed based on histopathological examination and local recurrence following excision is strongly suspected. To the authors' knowledge, this is the first well-documented report of a cutaneous squamous cell carcinoma in this species.

  17. Cutaneous squamous cell carcinoma in an African pygmy hedgehog (Atelerix albiventris)

    PubMed Central

    Couture, Émilie L.; Langlois, Isabelle; Santamaria-Bouvier, Ariane; Benoit-Biancamano, Marie-Odile

    2015-01-01

    A cutaneous mass was surgically excised in a 4-year-old African pygmy hedgehog (Atelerix albiventris). A squamous cell carcinoma was diagnosed based on histopathological examination and local recurrence following excision is strongly suspected. To the authors’ knowledge, this is the first well-documented report of a cutaneous squamous cell carcinoma in this species. PMID:26663924

  18. Comparison of electric and growth responses to excision in cucumber and pea seedlings. II. Long-distance effects are caused by the release of xylem pressure

    NASA Technical Reports Server (NTRS)

    Stahlberg, R.; Cosgrove, D. J.

    1995-01-01

    Excision of a growing stem causes local wound responses, such as membrane depolarization and growth inhibition, as well as effects at larger distances from the cut. In this study, cucumber hypocotyls were excised 100 mm below the hook, so that the growing region was beyond the reach of the wound-induced depolarization (up to 40 mm). Even at such a distance, the cut still caused a considerable and rapid drop in the hypocotyl growth rate. This growth response is not a direct wound response because it does not result from the cut-induced depolarization and because it can be simulated by root pressure manipulation (using a pressure chamber). The results indicate that the growth response resulted from the rapid release of the xylem pressure upon excision. To test this conclusion we measured the xylem pressure by connecting a pressure probe to the cut surface of the stem. Xylem pressure (Px) was found to be +10 to +40 kPa in cucumber hypocotyls and -5 to -10 kPa or lower in pea epicotyls. Excision of the cucumber hypocotyl base led to a rapid drop in Px to negative values, whereas excision in pea led to a rapid rise in Px to ambient (zero) pressure. These fast and opposite Px changes parallel the excision-induced changes in growth rate (GR): a decrease in cucumber and a rise in pea. The sign of the endogenous xylem pressure also determined whether excision induced a propagating depolarization in the form of a slow wave potential (SWP). Under normal circumstances pea seedlings generated an SWP upon excision whereas cucumber seedlings failed to do so. When the Px in cucumber hypocotyls was experimentally inverted to negative values by incubating the cumber roots in solutions of NaCN or n-ethylmaleimide, excision caused a propagating depolarization (SWP). The experiment shows that only hydraulic signals in the form of positive Px steps are converted into propagating electric SWP signals. These propagating depolarizations might be causally linked to systemic 'wound' responses, which occur independently of the short-distance or direct wound responses.

  19. A cell death assay for assessing the mitochondrial targeting of proteins.

    PubMed

    Camara Teixeira, Daniel; Cordonier, Elizabeth L; Wijeratne, Subhashinee S K; Huebbe, Patricia; Jamin, Augusta; Jarecke, Sarah; Wiebe, Matthew; Zempleni, Janos

    2018-06-01

    The mitochondrial proteome comprises 1000 to 1500 proteins, in addition to proteins for which the mitochondrial localization is uncertain. About 800 diseases have been linked with mutations in mitochondrial proteins. We devised a cell survival assay for assessing the mitochondrial localization in a high-throughput format. This protocol allows us to assess the mitochondrial localization of proteins and their mutants, and to identify drugs and nutrients that modulate the mitochondrial targeting of proteins. The assay works equally well for proteins directed to the outer mitochondrial membrane, inner mitochondrial membrane mitochondrial and mitochondrial matrix, as demonstrated by assessing the mitochondrial targeting of the following proteins: carnitine palmitoyl transferase 1 (consensus sequence and R123C mutant), acetyl-CoA carboxylase 2, uncoupling protein 1 and holocarboxylase synthetase. Our screen may be useful for linking the mitochondrial proteome with rare diseases and for devising drug- and nutrition-based strategies for altering the mitochondrial targeting of proteins. Copyright © 2018 Elsevier Inc. All rights reserved.

  20. Optimized expression in Pichia pastoris eliminates common protein contaminants from subsequent His-tag purification.

    PubMed

    Chen, Yong; Li, Yang; Liu, Peng; Sun, Qun; Liu, Zhu

    2014-04-01

    A weakness of using immobilized metal affinity chromatography (IMAC) to purify recombinant proteins expressed in Pichia pastoris is the co-purification of native proteins that exhibit high affinities for Ni-IMAC. We have determined the elution profiles of P. pastoris proteins and have examined the native proteins that co-purify when eluting with 100 mM imidazole. Four major contaminants were identified: mitochondrial alcohol dehydrogenase isozyme III (mADH), nucleotide excision repair endonuclease, and the hypothetical proteins TPHA_0L01390 and TDEL_0B02190 which are homologous proteins derived from Tetrapisispora phaffii and Torulaspora delbrueckii, respectively. A new P. pastoris expression strain was engineered that eliminated the predominant contaminant, mADH, by gene disruption. The total amount of protein contaminants was reduced by 55 % without effecting cell growth. The present study demonstrates the feasibility of using a proteomic approach to facilitate bioprocess optimization.

  1. Molecular diversification of Trichuris spp. from Sigmodontinae (Cricetidae) rodents from Argentina based on mitochondrial DNA sequences.

    PubMed

    Callejón, Rocío; Robles, María Del Rosario; Panei, Carlos Javier; Cutillas, Cristina

    2016-08-01

    A molecular phylogenetic hypothesis is presented for the genus Trichuris based on sequence data from mitochondrial cytochrome c oxidase 1 (cox1) and cytochrome b (cob). The taxa consisted of nine populations of whipworm from five species of Sigmodontinae rodents from Argentina. Bayesian Inference, Maximum Parsimony, and Maximum Likelihood methods were used to infer phylogenies for each gene separately but also for the combined mitochondrial data and the combined mitochondrial and nuclear dataset. Phylogenetic results based on cox1 and cob mitochondrial DNA (mtDNA) revealed three clades strongly resolved corresponding to three different species (Trichuris navonae, Trichuris bainae, and Trichuris pardinasi) showing phylogeographic variation, but relationships among Trichuris species were poorly resolved. Phylogenetic reconstruction based on concatenated sequences had greater phylogenetic resolution for delimiting species and populations intra-specific of Trichuris than those based on partitioned genes. Thus, populations of T. bainae and T. pardinasi could be affected by geographical factors and co-divergence parasite-host.

  2. Early use of negative pressure therapy in combination with silver dressings in a difficult breast abscess.

    PubMed

    Richards, Alastair J; Hagelstein, Sue M; Patel, Girish K; Ivins, Nicola M; Sweetland, Helen M; Harding, Keith G

    2011-12-01

    Combining silver-based dressings with negative pressure therapy after radical excision of chronically infected breast disease is a novel application of two technologies. One patient with complex, chronic, infected breast disease underwent radical excision of the affected area and was treated early with a combination of silver-based dressings and topical negative pressure therapy. The wound was then assessed sequentially using clinical measurements of wound area and depth, pain severity scores and level of exudation. It is possible to combine accepted techniques with modern dressing technologies that result in a positive outcome. In this case, the combination of a silver-based dressing with negative pressure therapy following radical excision proved safe and was well tolerated by the patient. Full epithelisation of the wound was achieved and there was no recurrence of the infection for the duration of the treatment. © 2011 The Authors. © 2011 Blackwell Publishing Ltd and Medicalhelplines.com Inc.

  3. Perforator Flaps after Excision of Large Epidermal Cysts in the Buttocks

    PubMed Central

    Kim, Sang Wha; Yang, Seong Hyeok; Kim, Jeong Tae

    2014-01-01

    Background Epidermal cysts are commonly occurring masses usually less than 5 cm in diameter, but in predisposed patients, epidermal cysts can grow relatively large due to chronic infection. Methods From June 2002 to July 2010, 17 patients received 19 regional perforator-based island flaps to cover defects due to the excision of large epidermal cysts (diameter >5 cm) in the buttocks. Eight patients had diabetes, and seven had rheumatoid arthritis. The pedicles were not fully isolated to prevent spasms or twisting. Results All the flaps survived completely, except for one case with partial necrosis of the flap, which necessitated another perforator-based island flap for coverage. There were two cases of wound dehiscence, which were re-closed after meticulous debridement. There were no recurrences of the masses during follow-up periods of 8.1 months (range, 6-12 months). Conclusions In patients with large epidermal cysts and underlying medical disorders, regional perforator-based island flaps can be the solution to coverage of the defects after excision. PMID:24665422

  4. Chloroethyinitrosourea-derived ethano cytosine and adenine adducts are substrates for escherichia coli glycosylases excising analogous etheno adducts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Guliaev, Anton B.; Singer, B.; Hang, Bo

    2004-05-05

    Exocyclic ethano DNA adducts are saturated etheno ring derivatives formed mainly by therapeutic chloroethylnitrosoureas (CNUs), which are also mutagenic and carcinogenic. In this work, we report that two of the ethano adducts, 3,N{sup 4}-ethanocytosine (EC) and 1,N{sup 6}-ethanoadenine (EA), are novel substrates for the Escherichia coli mismatch-specific uracil-DNA glycosylase (Mug) and 3-methyladenine DNA glycosylase II (AlkA), respectively. It has been shown previously that Mug excises 3,N{sup 4}-ethenocytosine ({var_epsilon}C) and AlkA releases 1,N{sup 6}-ethenoadenine ({var_epsilon}A). Using synthetic oligonucleotides containing a single ethano or etheno adduct, we found that both glycosylases had a {approx}20-fold lower excision activity toward EC or EA thanmore » that toward their structurally analogous {var_epsilon}C or {var_epsilon}A adduct. Both enzymes were capable of excising the ethano base paired with any of the four natural bases, but with varying efficiencies. The Mug activity toward EC could be stimulated by E. coli endonuclease IV and, more efficiently, by exonuclease III. Molecular dynamics (MD) simulations showed similar structural features of the etheno and ethano derivatives when present in DNA duplexes. However, also as shown by MD, the stacking interaction between the EC base and Phe 30 in the Mug active site is reduced as compared to the {var_epsilon}C base, which could account for the lower EC activity observed in this study.« less

  5. Mitochondrial matrix delivery using MITO-Porter, a liposome-based carrier that specifies fusion with mitochondrial membranes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yasuzaki, Yukari; Yamada, Yuma; Harashima, Hideyoshi, E-mail: harasima@pharm.hokudai.ac.jp

    2010-06-25

    Mitochondria are the principal producers of energy in cells of higher organisms. It was recently reported that mutations and defects in mitochondrial DNA (mtDNA) are associated with various mitochondrial diseases including a variety of neurodegenerative and neuromuscular diseases. Therefore, an effective mitochondrial gene therapy and diagnosis would be expected to have great medical benefits. To achieve this, therapeutic agents need to be delivered into the innermost mitochondrial space (mitochondrial matrix), which contains the mtDNA pool. We previously reported on the development of MITO-Porter, a liposome-based carrier that introduces macromolecular cargos into mitochondria via membrane fusion. In this study, we providemore » a demonstration of mitochondrial matrix delivery and the visualization of mitochondrial genes (mtDNA) in living cells using the MITO-Porter. We first prepared MITO-Porter containing encapsulated propidium iodide (PI), a fluorescent dye used to stain nucleic acids to detect mtDNA. We then confirmed the emission of red-fluorescence from PI by conjugation with mtDNA, when the carriers were incubated in the presence of isolated rat liver mitochondria. Finally, intracellular observation by confocal laser scanning microscopy clearly verified that the MITO-Porter delivered PI to the mitochondrial matrix.« less

  6. Flat epithelial atypia on core needle biopsy, must we surgically excise?

    PubMed

    Acott, A A; Mancino, A T

    2016-12-01

    Breast flat epithelial atypia (FEA) often coexists with more aggressive pathology and excision is currently recommended when diagnosed by core needle biopsy (CNB). Recent studies suggest isolated FEA has a low association with carcinoma and may warrant close surveillance. A radiology database containing 2189 breast CNB was reviewed for isolated FEA or FEA in combination with atypical pathology. 79 patients had FEA. There were 48/79 with isolated FEA and 31/79 concomitant FEA with ADH, ALH, or LCIS. 46 subsequent excisional biopsies of isolated FEA resulted: benign 38/46, ADH 5/46, LCIS 2/46, DCIS 1/46. Concomitant FEA + ADH/ALH/LCIS group resulted: benign 26/31, DCIS 3/31, DCIS and LCIS 1/31, tubular carcinoma 1/31. DCIS/invasive cancer on excision in the FEA + ADH group is 5/31 versus 1/46 for isolated FEA (p 0.0489). Findings support literature suggesting isolated FEA has a low association with carcinoma. These patients may not require surgical excision, but instead have close surveillance. Based on the higher cancer incidence in FEA combined with ADH, ALH, LCIS, or residual microcalcifications, we still recommend surgical excision. Breast flat epithelial atypia (FEA) often coexists with more aggressive pathology and surgical excision is currently recommended when diagnosed by core needle biopsy. Recent studies have suggested isolated FEA has a low association with carcinoma and these patients may warrant close surveillance. Isolated FEA has a low association with carcinoma in our series. These patients may not require surgical excision, but instead have close surveillance. Published by Elsevier Inc.

  7. Awake craniotomy for excision of arteriovenous malformations? A qualitative comparison study with stereotactic radiosurgery.

    PubMed

    Chan, David Yuen Chung; Chan, Danny Tat Ming; Zhu, Cannon Xian Lun; Kan, Patricia Kwok Yee; Ng, Amelia Yikjin; Hsieh, Yi-Pin Sonia; Abrigo, Jill; Poon, Wai Sang; Wong, George Kwok Chu

    2018-05-01

    Treatment of arteriovenous malformations (AVM) located at the eloquent area has been a challenge. Awake brain mapping allows identification of a non-eloquent gyrus for intervention and can potentially facilitate resection with preservation of functions. An alternative treatment option is stereotactic radiosurgery (SRS). The objective of this study was to perform a qualitative comparison of the treatment outcome of awake AVM excision versus SRS. We conducted a 13-year retrospective review of AVM excision under awake craniotomy performed at Prince of Wales Hospital, Hong Kong, from 2003 to 2016. Patients' presentation, Spetzler-Martin (SM) grading, rate of obliteration and complication were reviewed and analyzed with the modified radiosurgery-based AVM score (RS score). Six patients had excision of AVM under awake mapping during this period of time. Two were SM Grade II and four were SM Grade III. Five located at the peri-rolandic region while one at the temporal language area. None had failed mapping. Five out of six achieved complete obliteration (83.3%). Qualitative comparative analysis had revealed better treatment outcome with awake AVM excision as compared to SRS with the obliteration rate of 100% versus 96% for RS score ≤1.00, 100% versus 78% for RS score 1.01-1.50, and 66% versus 50% for RS score >2.00 respectively. In conclusion, awake mapping and excision of AVMs at the eloquent area is feasible. Qualitative comparative analysis had revealed higher obliteration rate with awake AVM excision as compared to SRS. Copyright © 2018 Elsevier Ltd. All rights reserved.

  8. The management of non-tuberculous cervicofacial lymphadenitis in children: A systematic review and meta-analysis.

    PubMed

    Zimmermann, Petra; Tebruegge, Marc; Curtis, Nigel; Ritz, Nicole

    2015-07-01

    Cervicofacial lymphadenitis is the most common manifestation of infection with non-tuberculous mycobacteria (NTM) in immunocompetent children. Although complete excision is considered standard management, the optimal treatment remains controversial. This study reviews the evidence for different management options for NTM lymphadenitis. A systematic literature review and meta-analysis were performed including 1951 children from sixty publications. Generalised linear mixed model regressions were used to compare treatment modalities. The adjusted mean cure rate was 98% (95% CI 97.0-99.5%) for complete excision, 73.1% (95% CI 49.6-88.3%) for anti-mycobacterial antibiotics, and 70.4% (95% CI 49.6-88.3%) for 'no intervention'. Compared to 'no intervention', only complete excision was significantly associated with cure (OR 33.1; 95% CI 10.8-102.9; p < 0.001). Complete excision was associated with a 10% risk of facial nerve palsy (2% permanent). 'No intervention' was associated with delayed resolution. Complete excision is associated with the highest cure rate in NTM cervicofacial lymphadenitis, but also had the highest risk of facial nerve palsy. In the absence of large, well-designed RCTs, the choice between surgical excision, anti-mycobacterial antibiotics and 'no intervention' should be based on the location and extent of the disease, and acceptability of prolonged time to resolution. Copyright © 2015 The British Infection Association. Published by Elsevier Ltd. All rights reserved.

  9. EVIDENCE FOR BASE EXCISION REPAIR PROCESSING OF DNA INTERSTRAND CROSSLINKS

    PubMed Central

    Kothandapani, Anbarasi; Patrick, Steve M

    2013-01-01

    Many bifunctional alkylating agents and anticancer drugs exert their cytotoxicity by producing cross links between the two complementary strands of DNA, termed interstrand crosslinks (ICLs). This blocks the strand separating processes during DNA replication and transcription, which can lead to cell cycle arrest and apoptosis. Cells use multiple DNA repair systems to eliminate the ICLs. Concerted action of repair proteins involved in Nucleotide Excision Repair and Homologous Recombination pathways are suggested to play a key role in the ICL repair. However, recent studies indicate a possible role for Base Excision Repair (BER) in mediating the cytotoxicity of ICL inducing agents in mammalian cells. Elucidating the mechanism of BER mediated modulation of ICL repair would help in understanding the recognition and removal of ICLs and aid in the development of potential therapeutic agents. In this review, the influence of BER proteins on ICL DNA repair and the possible mechanisms of action are discussed. PMID:23219605

  10. Surgical risk factors for recurrence of inverted papilloma.

    PubMed

    Healy, David Y; Chhabra, Nipun; Metson, Ralph; Holbrook, Eric H; Gray, Stacey T

    2016-04-01

    To identify variations in surgical technique that impact the recurrence of inverted papilloma following endoscopic excision. Retrospective cohort. Data from 127 consecutive patients who underwent endoscopic excision of inverted papilloma and oncocytic papilloma at a tertiary care medical center from 1998 to 2011 were reviewed. Patient demographics, comorbidities, tumor stage, and intraoperative details, including tumor location and management of the base, were evaluated to identify factors associated with tumor recurrence. Recurrence of papilloma occurred in 16 patients (12.6%). Mean time to recurrence was 31.0 months (range, 5.2-110.0 months). Mucosal stripping alone was associated with a recurrence rate of 52.2% (12/23 patients), compared to 4.9% (3/61 patients) when the tumor base was drilled, 4.7% (1/21 patients) when it was cauterized, and 0.0% (0/22 patients) when it was completely excised (P = .001). Increased recurrence rate was associated with tumors located in the maxillary sinus (P = .03), as well as the performance of endoscopic medial maxillectomy (P = .001) and external frontal approaches (P = .02). Drilling, cauterizing, or completely excising the bone underlying the tumor base during endoscopic resection reduces the recurrence rate of inverted and oncocytic papilloma, when compared to mucosal stripping alone. Surgeons who perform endoscopic resection of these tumors should consider utilization of these techniques when possible. 4. © 2015 The American Laryngological, Rhinological and Otological Society, Inc.

  11. Both base excision repair and nucleotide excision repair in humans are influenced by nutritional factors.

    PubMed

    Brevik, Asgeir; Karlsen, Anette; Azqueta, Amaya; Tirado, Anna Estaban; Blomhoff, Rune; Collins, Andrew

    2011-01-01

    Lack of reliable assays for DNA repair has largely prevented measurements of DNA repair from being included in human biomonitoring studies. Using newly developed modifications of the comet assay we tested whether a fruit- and antioxidant-rich plant-based intervention could affect base excision repair (BER) and nucleotide excision repair (NER) in a group of 102 male volunteers. BER and NER repair capacities were measured in lymphocytes before and after a dietary intervention lasting 8 weeks. The study had one control group, one group consuming three kiwifruits per day and one group consuming a variety of antioxidant-rich fruits and plant products in addition to their normal diet. DNA strand breaks were reduced following consumption of both kiwifruits (13%, p = 0.05) and antioxidant-rich plant products (20%, p = 0.02). Increased BER (55%, p = 0.01) and reduced NER (-39%, p < 0.01) were observed in the group consuming a wide variety of plant products. Reduced NER was also observed in the kiwifruit group (-38%, p = 0.05), but BER was not affected in this group. Here we have demonstrated that DNA repair is affected by diet and that modified versions of the comet assay can be used to assess activity of different DNA repair pathways in human biomonitoring studies. Copyright © 2010 John Wiley & Sons, Ltd.

  12. A revised timescale for human evolution based on ancient mitochondrial genomes

    PubMed Central

    Johnson, Philip L.F.; Bos, Kirsten; Lari, Martina; Bollongino, Ruth; Sun, Chengkai; Giemsch, Liane; Schmitz, Ralf; Burger, Joachim; Ronchitelli, Anna Maria; Martini, Fabio; Cremonesi, Renata G.; Svoboda, Jiří; Bauer, Peter; Caramelli, David; Castellano, Sergi; Reich, David; Pääbo, Svante; Krause, Johannes

    2016-01-01

    Summary Background Recent analyses of de novo DNA mutations in modern humans have suggested a nuclear substitution rate that is approximately half that of previous estimates based on fossil calibration. This result has led to suggestions that major events in human evolution occurred far earlier than previously thought. Result Here we use mitochondrial genome sequences from 10 securely dated ancient modern humans spanning 40,000 years as calibration points for the mitochondrial clock, thus yielding a direct estimate of the mitochondrial substitution rate. Our clock yields mitochondrial divergence times that are in agreement with earlier estimates based on calibration points derived from either fossils or archaeological material. In particular, our results imply a separation of non-Africans from the most closely related sub-Saharan African mitochondrial DNAs (haplogroup L3) of less than 62,000-95,000 years ago. Conclusion Though single loci like mitochondrial DNA (mtDNA) can only provide biased estimates of population split times, they can provide valid upper bounds; our results exclude most of the older dates for African and non-African split times recently suggested by de novo mutation rate estimates in the nuclear genome. PMID:23523248

  13. A revised timescale for human evolution based on ancient mitochondrial genomes.

    PubMed

    Fu, Qiaomei; Mittnik, Alissa; Johnson, Philip L F; Bos, Kirsten; Lari, Martina; Bollongino, Ruth; Sun, Chengkai; Giemsch, Liane; Schmitz, Ralf; Burger, Joachim; Ronchitelli, Anna Maria; Martini, Fabio; Cremonesi, Renata G; Svoboda, Jiří; Bauer, Peter; Caramelli, David; Castellano, Sergi; Reich, David; Pääbo, Svante; Krause, Johannes

    2013-04-08

    Recent analyses of de novo DNA mutations in modern humans have suggested a nuclear substitution rate that is approximately half that of previous estimates based on fossil calibration. This result has led to suggestions that major events in human evolution occurred far earlier than previously thought. Here, we use mitochondrial genome sequences from ten securely dated ancient modern humans spanning 40,000 years as calibration points for the mitochondrial clock, thus yielding a direct estimate of the mitochondrial substitution rate. Our clock yields mitochondrial divergence times that are in agreement with earlier estimates based on calibration points derived from either fossils or archaeological material. In particular, our results imply a separation of non-Africans from the most closely related sub-Saharan African mitochondrial DNAs (haplogroup L3) that occurred less than 62-95 kya. Though single loci like mitochondrial DNA (mtDNA) can only provide biased estimates of population divergence times, they can provide valid upper bounds. Our results exclude most of the older dates for African and non-African population divergences recently suggested by de novo mutation rate estimates in the nuclear genome. Copyright © 2013 Elsevier Ltd. All rights reserved.

  14. A novel diagnostic tool reveals mitochondrial pathology in human diseases and aging.

    PubMed

    Scheibye-Knudsen, Morten; Scheibye-Alsing, Karsten; Canugovi, Chandrika; Croteau, Deborah L; Bohr, Vilhelm A

    2013-03-01

    The inherent complex and pleiotropic phenotype of mitochondrial diseases poses a significant diagnostic challenge for clinicians as well as an analytical barrier for scientists. To overcome these obstacles we compiled a novel database, www.mitodb.com, containing the clinical features of primary mitochondrial diseases. Based on this we developed a number of qualitative and quantitative measures, enabling us to determine whether a disorder can be characterized as mitochondrial. These included a clustering algorithm, a disease network, a mitochondrial barcode and two scoring algorithms. Using these tools we detected mitochondrial involvement in a number of diseases not previously recorded as mitochondrial. As a proof of principle Cockayne syndrome, ataxia with oculomotor apraxia 1 (AOA1), spinocerebellar ataxia with axonal neuropathy 1 (SCAN1) and ataxia-telangiectasia have recently been shown to have mitochondrial dysfunction and those diseases showed strong association with mitochondrial disorders. We next evaluated mitochondrial involvement in aging and detected two distinct categories of accelerated aging disorders, one of them being associated with mitochondrial dysfunction. Normal aging seemed to associate stronger with the mitochondrial diseases than the non-mitochondrial partially supporting a mitochondrial theory of aging.

  15. Nuclear DNA polymerase beta from Leishmania infantum. Cloning, molecular analysis and developmental regulation

    PubMed Central

    Taladriz, Soraya; Hanke, Tobias; Ramiro, María J.; García-Díaz, Miguel; Lacoba, Mario García de; Blanco, Luis; Larraga, Vicente

    2001-01-01

    We have identified a novel polymerase beta (Pol β)-like enzyme from Leishmania infantum, a parasite protozoon causing disease in humans. This protein, named Li Pol β, shows a nuclear localization that contrasts with the mitochondrial localization of Pol β from Crithidia fasciculata, a closely related parasite, the only polymerase β described so far in Trypanosomatidae. Li Pol β, that belongs to the DNA polymerase X family, displays an evolutionarily conserved Pol β-type DNA polymerase core, in which most of the key residues involved in DNA binding, nucleotide binding, dRPase and polymerization catalysis are conserved. In agreement with this, Li Pol β, overproduced in Escherichia coli, displayed intrinsic DNA polymerase activity. Cell synchronization experiments showed a correlation between both Li Pol β mRNA and protein levels along the parasite cell cycle. Analysis of these parameters at the different growth phases of the parasite, from the proliferative (non-infective) logarithmic phase to the non-dividing (highly infectious) stationary phase, showed high levels of Li Pol β at the infective phase of the parasite. The data suggest a role of Li Pol β in base excision repair in L.infantum, a parasite usually affected by oxygen stress environments into the macrophage host cells. PMID:11557814

  16. Constriction of the mitochondrial inner compartment is a priming event for mitochondrial division

    PubMed Central

    Cho, Bongki; Cho, Hyo Min; Jo, Youhwa; Kim, Hee Dae; Song, Myungjae; Moon, Cheil; Kim, Hyongbum; Kim, Kyungjin; Sesaki, Hiromi; Rhyu, Im Joo; Kim, Hyun; Sun, Woong

    2017-01-01

    Mitochondrial division is critical for the maintenance and regulation of mitochondrial function, quality and distribution. This process is controlled by cytosolic actin-based constriction machinery and dynamin-related protein 1 (Drp1) on mitochondrial outer membrane (OMM). Although mitochondrial physiology, including oxidative phosphorylation, is also important for efficient mitochondrial division, morphological alterations of the mitochondrial inner-membrane (IMM) have not been clearly elucidated. Here we report spontaneous and repetitive constriction of mitochondrial inner compartment (CoMIC) associated with subsequent division in neurons. Although CoMIC is potentiated by inhibition of Drp1 and occurs at the potential division spots contacting the endoplasmic reticulum, it appears on IMM independently of OMM. Intra-mitochondrial influx of Ca2+ induces and potentiates CoMIC, and leads to K+-mediated mitochondrial bulging and depolarization. Synergistically, optic atrophy 1 (Opa1) also regulates CoMIC via controlling Mic60-mediated OMM–IMM tethering. Therefore, we propose that CoMIC is a priming event for efficient mitochondrial division. PMID:28598422

  17. [Evaluation of the results of surgical treatment of granuloma teleangiectodes].

    PubMed

    Bogdanowski, T; Rubisz-Brzezińska, J; Macura-Gina, M; Misiewicz, D

    1990-01-01

    In the clinic of dermatological surgery, I Department of Dermatology Silesian Medical Academy in Katowice 328 patients were treated surgically for granuloma teleangiectodes in the years 1973-1988. Two methods were used: excision of the lesion and curettage with electrocoagulation of the base of the lesion. After excision the wound was closed by approximation of its margins or local plastic procedure (285 cases) and by covering it with a free full-thickness skin graft (3 cases). Curettage and electrocoagulation was used in 43 cases, mainly due to the location of the lesion (in 90% on fingers). After granuloma excision no recurrences were observed, while after curettage and electrocoagulation recurrences developed in 20% of cases.

  18. Endoscopic colloid cyst excision: surgical techniques and nuances.

    PubMed

    Azab, Waleed Abdelfattah; Najibullah, Mustafa; Yosef, Waleed

    2017-06-01

    Endoscopic excision of colloid cysts is currently well established as a minimally invasive and highly effective technique that is associated with less morbidity in comparison to microsurgical resection. Operative charts and videos of patients undergoing endoscopic colloid cyst excision were retrieved from the senior author's database of endoscopic procedures and reviewed. This revealed nine trans-foraminal and three trans-septal procedures. Description of the surgical techniques was then formulated. Variation of the technique is based on the specific patho-anatomical features of the colloid cyst being resected. For the trans-foraminal approach, we think that the rotational technique is associated with a more complete removal of the cyst wall and consequently lower recurrence rate.

  19. Analyses of Mitochondrial Calcium Influx in Isolated Mitochondria and Cultured Cells.

    PubMed

    Maxwell, Joshua T; Tsai, Chin-Hsien; Mohiuddin, Tahmina A; Kwong, Jennifer Q

    2018-04-27

    Ca 2+ handling by mitochondria is a critical function regulating both physiological and pathophysiological processes in a broad spectrum of cells. The ability to accurately measure the influx and efflux of Ca 2+ from mitochondria is important for determining the role of mitochondrial Ca 2+ handling in these processes. In this report, we present two methods for the measurement of mitochondrial Ca 2+ handling in both isolated mitochondria and cultured cells. We first detail a plate reader-based platform for measuring mitochondrial Ca 2+ uptake using the Ca 2+ sensitive dye calcium green-5N. The plate reader-based format circumvents the need for specialized equipment, and the calcium green-5N dye is ideally suited for measuring Ca 2+ from isolated tissue mitochondria. For our application, we describe the measurement of mitochondrial Ca 2+ uptake in mitochondria isolated from mouse heart tissue; however, this procedure can be applied to measure mitochondrial Ca 2+ uptake in mitochondria isolated from other tissues such as liver, skeletal muscle, and brain. Secondly, we describe a confocal microscopy-based assay for measurement of mitochondrial Ca 2+ in permeabilized cells using the Ca 2+ sensitive dye Rhod-2/AM and imaging using 2-dimensional laser-scanning microscopy. This permeabilization protocol eliminates cytosolic dye contamination, allowing for specific recording of changes in mitochondrial Ca 2+ . Moreover, laser-scanning microscopy allows for high frame rates to capture rapid changes in mitochondrial Ca 2+ in response to various drugs or reagents applied in the external solution. This protocol can be applied to measure mitochondrial Ca 2+ uptake in many cell types including primary cells such as cardiac myocytes and neurons, and immortalized cell lines.

  20. Assessment of mitochondrial dysfunction-related, drug-induced hepatotoxicity in primary rat hepatocytes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Cong; Sekine, Shuichi, E-mail: ssekine@facult

    Evidence that mitochondrial dysfunction plays a central role in drug-induced liver injury is rapidly accumulating. In contrast to physiological conditions, in which almost all adenosine triphosphate (ATP) in hepatocytes is generated in mitochondria via aerobic respiration, the high glucose content and limited oxygen supply of conventional culture systems force primary hepatocytes to generate most ATP via cytosolic glycolysis. Thus, such anaerobically poised cells are resistant to xenobiotics that impair mitochondrial function, and are not suitable to identify drugs with mitochondrial liabilities. In this study, primary rat hepatocytes were cultured in galactose-based medium, instead of the conventional glucose-based medium, and inmore » hyperoxia to improve the reliance of energy generation on aerobic respiration. Activation of mitochondria was verified by diminished cellular lactate release and increased oxygen consumption. These conditions improved sensitivity to the mitochondrial complex I inhibitor rotenone. Since oxidative stress is also a general cause of mitochondrial impairment, cells were exposed to test compounds in the presence of transferrin to increase the generation of reactive oxygen species via increased uptake of iron. Finally, 14 compounds with reported mitochondrial liabilities were tested to validate this new drug-induced mitochondrial toxicity assay. Overall, the culture of primary rat hepatocytes in galactose, hyperoxia and transferrin is a useful model for the identification of mitochondrial dysfunction-related drug-induced hepatotoxicity. - Highlights: • Drug-induced mitochondrial toxicity was evaluated using primary rat hepatocytes. • Galactose and hyperoxia could activate OXPHOS in primary rat hepatocytes. • Cells with enhanced OXPHOS exhibit improved sensitivity to mitochondrial toxins. • Transferrin potentiate mitochondrial toxicity via increased ROS production.« less

  1. Quality Saving Mechanisms of Mitochondria during Aging in a Fully Time-Dependent Computational Biophysical Model

    PubMed Central

    Mellem, Daniel; Fischer, Frank; Jaspers, Sören; Wenck, Horst; Rübhausen, Michael

    2016-01-01

    Mitochondria are essential for the energy production of eukaryotic cells. During aging mitochondria run through various processes which change their quality in terms of activity, health and metabolic supply. In recent years, many of these processes such as fission and fusion of mitochondria, mitophagy, mitochondrial biogenesis and energy consumption have been subject of research. Based on numerous experimental insights, it was possible to qualify mitochondrial behaviour in computational simulations. Here, we present a new biophysical model based on the approach of Figge et al. in 2012. We introduce exponential decay and growth laws for each mitochondrial process to derive its time-dependent probability during the aging of cells. All mitochondrial processes of the original model are mathematically and biophysically redefined and additional processes are implemented: Mitochondrial fission and fusion is separated into a metabolic outer-membrane part and a protein-related inner-membrane part, a quality-dependent threshold for mitophagy and mitochondrial biogenesis is introduced and processes for activity-dependent internal oxidative stress as well as mitochondrial repair mechanisms are newly included. Our findings reveal a decrease of mitochondrial quality and a fragmentation of the mitochondrial network during aging. Additionally, the model discloses a quality increasing mechanism due to the interplay of the mitophagy and biogenesis cycle and the fission and fusion cycle of mitochondria. It is revealed that decreased mitochondrial repair can be a quality saving process in aged cells. Furthermore, the model finds strategies to sustain the quality of the mitochondrial network in cells with high production rates of reactive oxygen species due to large energy demands. Hence, the model adds new insights to biophysical mechanisms of mitochondrial aging and provides novel understandings of the interdependency of mitochondrial processes. PMID:26771181

  2. Helix Unwinding and Base Flipping Enable Human MTERF1 to Terminate Mitochondrial Transcription

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yakubovskaya, E.; Mejia, E; Byrnes, J

    2010-01-01

    Defects in mitochondrial gene expression are associated with aging and disease. Mterf proteins have been implicated in modulating transcription, replication and protein synthesis. We have solved the structure of a member of this family, the human mitochondrial transcriptional terminator MTERF1, bound to dsDNA containing the termination sequence. The structure indicates that upon sequence recognition MTERF1 unwinds the DNA molecule, promoting eversion of three nucleotides. Base flipping is critical for stable binding and transcriptional termination. Additional structural and biochemical results provide insight into the DNA binding mechanism and explain how MTERF1 recognizes its target sequence. Finally, we have demonstrated that themore » mitochondrial pathogenic G3249A and G3244A mutations interfere with key interactions for sequence recognition, eliminating termination. Our results provide insight into the role of mterf proteins and suggest a link between mitochondrial disease and the regulation of mitochondrial transcription.« less

  3. The spectrum of skin biopsies and excisions in a pediatric skin center.

    PubMed

    Theiler, Martin; Neuhaus, Kathrin; Kerl, Katrin; Weibel, Lisa

    2017-12-01

    Little is known about the spectrum of pediatric skin disorders requiring biopsy/excision, their indication, impact on further management, and the accuracy of clinical diagnosis. We aimed to address these questions in the patient population seen at our Swiss University referral center for Pediatric Dermatology and Plastic Surgery. All skin biopsies/excisions performed in patients aged ≤ 16 years over a period of 2 years were retrospectively analyzed. A total of 506 samples were included. The majority of biopsies/excisions (n = 413, 82%) was performed for tumors, cysts, and hamartomas and 18% for other skin conditions. Malignant tumors were found in 12 samples (2%) from four patients. In 121 (24%) patients, the histopathology had an important impact on patient management. In 80 (16%) cases, the pathology did not match with the clinical diagnosis. In 382 (75%) cases, excision was the treatment of choice. Of these, the indication for surgery was based on patient's request in 181 (47%) cases. Surgical interventions for pediatric skin disorders are performed for diagnostic and therapeutic reasons. In this cohort, histopathology was essential for treatment in one quarter of cases. Skin tumors, cysts, and hamartomas often require excision during childhood, with families' request and esthetic considerations playing an important role. What is Known: • The spectrum of pediatric skin conditions has been studied in outpatient, inpatient, and emergency settings. • In contrast, no data exist on the spectrum of pediatric skin disorders undergoing biopsy/excision specifically. What is New: • We analyze biopsies/excisions in children, focusing on diagnosis, indication, and impact on patient management. • Surgical interventions for skin disorders in children are often performed for tumors and hamartomas with esthetic considerations playing a relevant role. If used for diagnostic purposes, they are often performed to confirm or rule out severe skin disease.

  4. Management of flat epithelial atypia on breast core biopsy may be individualized based on correlation with imaging studies.

    PubMed

    Calhoun, Benjamin C; Sobel, Amy; White, Richard L; Gromet, Matt; Flippo, Teresa; Sarantou, Terry; Livasy, Chad A

    2015-05-01

    Flat epithelial atypia of the breast commonly co-exists with atypical ductal hyperplasia, lobular neoplasia, and indolent forms of invasive carcinomas such as tubular carcinoma. Most patients with pure flat epithelial atypia on core biopsy undergo surgical excision to evaluate for carcinoma in the adjacent breast tissue. Studies to date have reported varying upgrade rates with most recommending follow-up excision. These studies have often lacked detailed radiographic correlation, central review by breast pathologists and information regarding the biology of the carcinomas identified upon excision. In this study, we report the frequency of upgrade to invasive carcinoma or ductal carcinoma in situ in excision specimens following a diagnosis of pure flat epithelial atypia on core biopsy. Radiographic correlation is performed for each case and grade/receptor status of detected carcinomas is reported. Seventy-three (73) core biopsies containing pure flat epithelial atypia were identified from our files, meeting inclusion criteria for the study. In the subsequent excision biopsies, five (7%) cases contained invasive carcinoma or ductal carcinoma in situ and seventeen (23%) contained atypical ductal hyperplasia or lobular neoplasia. All of the ductal carcinoma in situ cases with estrogen receptor results were estrogen receptor positive and intermediate grade. The invasive tumors were small (pT1a) hormone receptor-positive, HER2-negative, low-grade invasive ductal or tubular carcinomas with negative sentinel lymph-node biopsies. No upgrades were identified in the 14 patients who had all of their calcifications removed by the stereotactic core biopsy. Our rate of upgrade to carcinoma, once cases with discordant imaging are excluded, is at the lower end of the range reported in the literature. Given the low upgrade rate and indolent nature of the carcinomas associated with flat epithelial atypia, case management may be individualized based on clinical and radiographic findings. Excision may not be necessary for patients without remaining calcifications following core biopsy.

  5. Mitochondrial Genomics and Northwestern Atlantic Population Genetics of Marine Annelids

    DTIC Science & Technology

    2005-09-01

    surfclams , Spisula solidissima, in the western North Atlantic based on mitochondrial and nuclear DNA sequences. Marine Biology, 146: 707-716. Hayden BP...Science 1930 and Engineering DOCTORAL DISSERTATION Mitochondrial Genomics and Northwestern Atlantic Population Genetics of Marine Annelids by Robert M...Jennings September 2005 MITIWHOI 2005-15 Mitochondrial Genomics and Northwestern Atlantic Population Genetics of Marine Annelids by Robert M. Jennings

  6. Design and application of a new series of gallbladder endoscopes that facilitate gallstone removal without gallbladder excision

    NASA Astrophysics Data System (ADS)

    Qiao, Tie; Huang, Wan-Chao; Luo, Xiao-Bing; Zhang, Yang-De

    2012-01-01

    In recent years, some Chinese doctors have proposed a new concept, gallstone removal without gallbladder excision, along with transition of the medical model. As there is no specialized endoscope for gallstone removal without gallbladder excision, we designed and produced a new series of gallbladder endoscopes and accessories that have already been given a Chinese invention patent (No. ZL200810199041.2). The design of these gallbladder endoscopes was based on the anatomy and physiology of the gallbladder, characteristics of gallbladder disease, ergonomics, and industrial design. This series of gallbladder endoscopes underwent clinical trials in two hospitals appointed by the State Administration of Traditional Chinese Medicine. The clinical trials showed that surgeries of gallstones, gallbladder polyps, and cystic duct calculus could be smoothly performed with these products. In summary, this series of gallbladder endoscopes is safe, reliable, and effective for gallstone removal without gallbladder excision. This note comprehensively introduces the research and design of this series of gallbladder endoscopes.

  7. Proton MR spectroscopy in the diagnostic evaluation of suspected mitochondrial disease.

    PubMed

    Lin, Doris D M; Crawford, Thomas O; Barker, Peter B

    2003-01-01

    Mitochondrial diseases are a group of inherited disorders caused by a derangement of mitochondrial respiration. The clinical manifestations are heterogeneous, and the diagnosis is often based on information acquired from multiple levels of inquiry. MR spectroscopy has previously been shown to help detect an abnormal accumulation of lactate in brain parenchyma and CSF in association with mitochondrial disorders, but the frequency of detection is largely unknown. We sought to examine the frequency of detectable elevations of CNS lactate by proton MR spectroscopy in a population of children and young adults with suspected mitochondrial disease. MR spectroscopy data evaluated for the presence or absence of abnormal brain or CSF lactate were compared with other clinical indicators of mitochondrial dysfunction for 29 patients with suspected mitochondrial disease during the years 1990 to 2000. Based on an independent review of the final diagnoses, the patients were divided into groups based on the probability of mitochondrial disorder. A total of 32 scans from 29 patients were reviewed. Of eight patients thought to have a definitive mitochondrial disorder on the basis of genetic, biochemical, or pathologic features, five were found to have abnormal brain or CSF lactate levels revealed by MR spectroscopy (for one patient in whom two images were acquired, one was negative and the other positive). Among the studies conducted using a multisection spectroscopic imaging technique, five of six showed elevated lactate in the brain parenchyma, six of six showed elevated lactate in the CSF, and five of six showed elevated lactate in both brain and CSF. Of 16 patients who were highly suspected of having mitochondrial disorders on the basis of clinical grounds alone but who were lacking genetic, biochemical, or pathologic confirmation, four had abnormal lactate levels shown by MR spectroscopy. Mitochondrial disorder was excluded for five patients, none of whom had CNS lactate shown by MR spectroscopy. Detection of CNS lactate by MR spectroscopy is useful in the diagnosis of mitochondrial disease. In our series of patients with confirmed mitochondrial disease, a high level of lactate shown by MR spectroscopy correlated well with other markers of mitochondrial disease. As with all other means used to diagnose mitochondrial disorders, MR spectroscopy does not depict elevated lactate in all cases. Abnormal CNS concentrations of lactate may be undetected by MR spectroscopy because of differences in the type of mitochondrial disorder, timing, severity, or location of the affected tissues and the site of interrogation.

  8. Surgical excision of skin cancer: the importance of training.

    PubMed

    Salmon, P; Mortimer, N; Rademaker, M; Adams, L; Stanway, A; Hill, S

    2010-01-01

    Background Skin cancers are the most common malignancy in New Zealand and their treatment imparts a huge burden on the healthcare system both in terms of the cost of surgical intervention and in treatment delivery (estimates are in excess of NZ$33 million per annum for the year 2000). Currently in New Zealand, skin cancers are excised by dermatologists, general practitioners (GPs), GPs with a special interest in skin surgery (GPSIs) and specialist surgeons with diverse training backgrounds including ear, nose and throat, ophthalmic and general surgeons. To date there is scant literature evaluating complete excision rates following surgical treatment of skin cancer between these vocational groups. Objectives To review retrospectively pathology reports from all skin excisions sent to one private pathology laboratory over three consecutive months. The aim was to investigate the margins of excision and completeness of skin cancer surgery performed by each vocational group. Methods A retrospective analysis of skin pathology reports was undertaken for a 3-month period between April and June 2007. Raw data obtained from the pathology reports included diagnosis, completeness of excision, size of specimens, body site and vocational group of the medical practitioner performing the surgery. Results In total, 1532 lesions were excised: 432 benign and 1100 malignant. Six hundred and seven were from the head and neck. Dermatologists excised 276 lesions of which 93% were malignant, 55% were from the head and neck, and 0% were incompletely excised. GPs excised 633 lesions: 63% malignant, 30% head and neck, 23% incomplete excision of malignant lesions. GPSIs excised 368 lesions: 71% malignant, 35% head and neck, 21.5% incomplete malignant excision. Specialist surgeons excised 255 lesions: 72% malignant, 53% head and neck, 20% incomplete malignant excision. Conclusion GPs and GPSIs excised more benign lesions and had higher incomplete excision rates of skin cancer surgery than dermatologists. Incomplete excision rates for the vocational groups ranged from 0% to 45% depending on site and pathology.

  9. SK2 channels regulate mitochondrial respiration and mitochondrial Ca2+ uptake.

    PubMed

    Honrath, Birgit; Matschke, Lina; Meyer, Tammo; Magerhans, Lena; Perocchi, Fabiana; Ganjam, Goutham K; Zischka, Hans; Krasel, Cornelius; Gerding, Albert; Bakker, Barbara M; Bünemann, Moritz; Strack, Stefan; Decher, Niels; Culmsee, Carsten; Dolga, Amalia M

    2017-05-01

    Mitochondrial calcium ([Ca 2+ ] m ) overload and changes in mitochondrial metabolism are key players in neuronal death. Small conductance calcium-activated potassium (SK) channels provide protection in different paradigms of neuronal cell death. Recently, SK channels were identified at the inner mitochondrial membrane, however, their particular role in the observed neuroprotection remains unclear. Here, we show a potential neuroprotective mechanism that involves attenuation of [Ca 2+ ] m uptake upon SK channel activation as detected by time lapse mitochondrial Ca 2+ measurements with the Ca 2+ -binding mitochondria-targeted aequorin and FRET-based [Ca 2+ ] m probes. High-resolution respirometry revealed a reduction in mitochondrial respiration and complex I activity upon pharmacological activation and overexpression of mitochondrial SK2 channels resulting in reduced mitochondrial ROS formation. Overexpression of mitochondria-targeted SK2 channels enhanced mitochondrial resilience against neuronal death, and this effect was inhibited by overexpression of a mitochondria-targeted dominant-negative SK2 channel. These findings suggest that SK channels provide neuroprotection by reducing [Ca 2+ ] m uptake and mitochondrial respiration in conditions, where sustained mitochondrial damage determines progressive neuronal death.

  10. SK2 channels regulate mitochondrial respiration and mitochondrial Ca2+ uptake

    PubMed Central

    Honrath, Birgit; Matschke, Lina; Meyer, Tammo; Magerhans, Lena; Perocchi, Fabiana; Ganjam, Goutham K; Zischka, Hans; Krasel, Cornelius; Gerding, Albert; Bakker, Barbara M; Bünemann, Moritz; Strack, Stefan; Decher, Niels; Culmsee, Carsten; Dolga, Amalia M

    2017-01-01

    Mitochondrial calcium ([Ca2+]m) overload and changes in mitochondrial metabolism are key players in neuronal death. Small conductance calcium-activated potassium (SK) channels provide protection in different paradigms of neuronal cell death. Recently, SK channels were identified at the inner mitochondrial membrane, however, their particular role in the observed neuroprotection remains unclear. Here, we show a potential neuroprotective mechanism that involves attenuation of [Ca2+]m uptake upon SK channel activation as detected by time lapse mitochondrial Ca2+ measurements with the Ca2+-binding mitochondria-targeted aequorin and FRET-based [Ca2+]m probes. High-resolution respirometry revealed a reduction in mitochondrial respiration and complex I activity upon pharmacological activation and overexpression of mitochondrial SK2 channels resulting in reduced mitochondrial ROS formation. Overexpression of mitochondria-targeted SK2 channels enhanced mitochondrial resilience against neuronal death, and this effect was inhibited by overexpression of a mitochondria-targeted dominant-negative SK2 channel. These findings suggest that SK channels provide neuroprotection by reducing [Ca2+]m uptake and mitochondrial respiration in conditions, where sustained mitochondrial damage determines progressive neuronal death. PMID:28282037

  11. Trigeminocardiac reflex during endoscopic juvenile nasopharyngeal angiofibroma surgery: an appraisal.

    PubMed

    Sharma, Shilpee Bhatia; Janakiram, Trichy Narayanan; Baxi, Hina; Chinnasamy, Balamurugan

    2017-07-01

    Juvenile nasopharyngeal angiofibroma is a locally aggressive benign tumour which has propensity to erode the skull base. The tumour spreads along the pathways of least resistance and is in close proximity to the extracranial part of trigeminal nerve. Advancements in expanded approaches for endoscopic excision of tumours in infratemporal fossa and pterygopalatine fossa increase the vulnerability for the trigeminocardiac reflex. The manipulation of nerve and its branches during tumour dissection can lead to sensory stimulation and thus inciting the reflex. The aim of our study is to report the occurrence of trigeminocardiac reflex in endoscopic excision of juvenile nasopharyngeal angiofibroma. To describe the occurence of trigeminocardiac reflex during endoscopic endonasal excision of juvenile nasopharyngeal angiofibroma. We studied the occurrence of TCR in 15 patients (out of 242 primary cases and 52 revision cases) operated for endoscopic endonasal excision of JNA. The drop in mean arterial blood pressure and heart rate were observed and measured. To the best of our knowledge of English literature, this is the first case series reporting TCR as complication in endoscopic excision of JNA. occurence of this reflex has been mentioned in various occular, maxillofacial surgeries but its occurence during endoscopic excision of JNA has never been reported before. Manifestation of trigeminocardiac reflex during surgery can alter the course of the surgery and is a potential threat to life. It is essential for the anesthetist and surgeons to be familiar with the presentations, preventive measures and management protocols.

  12. Mitochondrial nucleoid interacting proteins support mitochondrial protein synthesis.

    PubMed

    He, J; Cooper, H M; Reyes, A; Di Re, M; Sembongi, H; Litwin, T R; Gao, J; Neuman, K C; Fearnley, I M; Spinazzola, A; Walker, J E; Holt, I J

    2012-07-01

    Mitochondrial ribosomes and translation factors co-purify with mitochondrial nucleoids of human cells, based on affinity protein purification of tagged mitochondrial DNA binding proteins. Among the most frequently identified proteins were ATAD3 and prohibitin, which have been identified previously as nucleoid components, using a variety of methods. Both proteins are demonstrated to be required for mitochondrial protein synthesis in human cultured cells, and the major binding partner of ATAD3 is the mitochondrial ribosome. Altered ATAD3 expression also perturbs mtDNA maintenance and replication. These findings suggest an intimate association between nucleoids and the machinery of protein synthesis in mitochondria. ATAD3 and prohibitin are tightly associated with the mitochondrial membranes and so we propose that they support nucleic acid complexes at the inner membrane of the mitochondrion.

  13. Reactive oxygen species regulate DNA copy number in isolated yeast mitochondria by triggering recombination-mediated replication.

    PubMed

    Hori, Akiko; Yoshida, Minoru; Shibata, Takehiko; Ling, Feng

    2009-02-01

    Mitochondrial DNA (mtDNA) encodes proteins that are essential for cellular ATP production. Reactive oxygen species (ROS) are respiratory byproducts that damage mtDNA and other cellular components. In Saccharomyces cerevisiae, the oxidized base excision-repair enzyme Ntg1 introduces a double-stranded break (DSB) at the mtDNA replication origin ori5; this DSB initiates the rolling-circle mtDNA replication mediated by the homologous DNA pairing protein Mhr1. Thus, ROS may play a role in the regulation of mtDNA copy number. Here, we show that the treatment of isolated mitochondria with low concentrations of hydrogen peroxide increased mtDNA copy number in an Ntg1- and Mhr1-dependent manner. This treatment elevated the DSB levels at ori5 of hypersuppressive [rho(-)] mtDNA only if Ntg1 was active. In vitro Ntg1-treatment of hypersuppressive [rho(-)] mtDNA extracted from hydrogen peroxide-treated mitochondria revealed increased oxidative modifications at ori5 loci. We also observed that purified Ntg1 created breaks in single-stranded DNA harboring oxidized bases, and that ori5 loci have single-stranded character. Furthermore, chronic low levels of hydrogen peroxide increased in vivo mtDNA copy number. We therefore propose that ROS act as a regulator of mtDNA copy number, acting through the Mhr1-dependent initiation of rolling-circle replication promoted by Ntg1-induced DSB in the single-stranded regions at ori5.

  14. Presence of a mitochondrial-type 70-kDa heat shock protein in Trichomonas vaginalis suggests a very early mitochondrial endosymbiosis in eukaryotes

    PubMed Central

    Germot, Agnès; Philippe, Hervé; Le Guyader, Hervé

    1996-01-01

    Molecular phylogenetic analyses, based mainly on ribosomal RNA, show that three amitochondriate protist lineages, diplomonads, microsporidia, and trichomonads, emerge consistently at the base of the eukaryotic tree before groups having mitochondria. This suggests that these groups could have diverged before the mitochondrial endosymbiosis. Nevertheless, since all these organisms live in anaerobic environments, the absence of mitochondria might be due to secondary loss, as demonstrated for the later emerging eukaryote Entamoeba histolytica. We have now isolated from Trichomonas vaginalis a gene encoding a chaperone protein (HSP70) that in other lineages is addressed to the mitochondrial compartment. The phylogenetic reconstruction unambiguously located this HSP70 within a large set of mitochondrial sequences, itself a sister-group of α-purple bacteria. In addition, the T. vaginalis protein exhibits the GDAWV sequence signature, so far exclusively found in mitochondrial HSP70 and in proteobacterial dnaK. Thus mitochondrial endosymbiosis could have occurred earlier than previously assumed. The trichomonad double membrane-bounded organelles, the hydrogenosomes, could have evolved from mitochondria. PMID:8962101

  15. Presence of a mitochondrial-type 70-kDa heat shock protein in Trichomonas vaginalis suggests a very early mitochondrial endosymbiosis in eukaryotes.

    PubMed

    Germot, A; Philippe, H; Le Guyader, H

    1996-12-10

    Molecular phylogenetic analyses, based mainly on ribosomal RNA, show that three amitochondriate protist lineages, diplomonads, microsporidia, and trichomonads, emerge consistently at the base of the eukaryotic tree before groups having mitochondria. This suggests that these groups could have diverged before the mitochondrial endosymbiosis. Nevertheless, since all these organisms live in anaerobic environments, the absence of mitochondria might be due to secondary loss, as demonstrated for the later emerging eukaryote Entamoeba histolytica. We have now isolated from Trichomonas vaginalis a gene encoding a chaperone protein (HSP70) that in other lineages is addressed to the mitochondrial compartment. The phylogenetic reconstruction unambiguously located this HSP70 within a large set of mitochondrial sequences, itself a sister-group of alpha-purple bacteria. In addition, the T. vaginalis protein exhibits the GDAWV sequence signature, so far exclusively found in mitochondrial HSP70 and in proteobacterial dnaK. Thus mitochondrial endosymbiosis could have occurred earlier than previously assumed. The trichomonad double membrane-bounded organelles, the hydrogenosomes, could have evolved from mitochondria.

  16. The ability of human nuclear DNA to cause false positive low-abundance heteroplasmy calls varies across the mitochondrial genome.

    PubMed

    Albayrak, Levent; Khanipov, Kamil; Pimenova, Maria; Golovko, George; Rojas, Mark; Pavlidis, Ioannis; Chumakov, Sergei; Aguilar, Gerardo; Chávez, Arturo; Widger, William R; Fofanov, Yuriy

    2016-12-12

    Low-abundance mutations in mitochondrial populations (mutations with minor allele frequency ≤ 1%), are associated with cancer, aging, and neurodegenerative disorders. While recent progress in high-throughput sequencing technology has significantly improved the heteroplasmy identification process, the ability of this technology to detect low-abundance mutations can be affected by the presence of similar sequences originating from nuclear DNA (nDNA). To determine to what extent nDNA can cause false positive low-abundance heteroplasmy calls, we have identified mitochondrial locations of all subsequences that are common or similar (one mismatch allowed) between nDNA and mitochondrial DNA (mtDNA). Performed analysis revealed up to a 25-fold variation in the lengths of longest common and longest similar (one mismatch allowed) subsequences across the mitochondrial genome. The size of the longest subsequences shared between nDNA and mtDNA in several regions of the mitochondrial genome were found to be as low as 11 bases, which not only allows using these regions to design new, very specific PCR primers, but also supports the hypothesis of the non-random introduction of mtDNA into the human nuclear DNA. Analysis of the mitochondrial locations of the subsequences shared between nDNA and mtDNA suggested that even very short (36 bases) single-end sequencing reads can be used to identify low-abundance variation in 20.4% of the mitochondrial genome. For longer (76 and 150 bases) reads, the proportion of the mitochondrial genome where nDNA presence will not interfere found to be 44.5 and 67.9%, when low-abundance mutations at 100% of locations can be identified using 417 bases long single reads. This observation suggests that the analysis of low-abundance variations in mitochondria population can be extended to a variety of large data collections such as NCBI Sequence Read Archive, European Nucleotide Archive, The Cancer Genome Atlas, and International Cancer Genome Consortium.

  17. The maize pentatricopeptide repeat gene empty pericarp4 (emp4) is required for proper cellular development in vegetative tissues.

    PubMed

    Gabotti, Damiano; Caporali, Elisabetta; Manzotti, Priscilla; Persico, Martina; Vigani, Gianpiero; Consonni, Gabriella

    2014-06-01

    The empty pericarp4 (emp4) gene encodes a mitochondrion-targeted pentatricopeptide repeat (ppr) protein that is involved in the regulation of mitochondrial gene expression and is required for seed development. In homozygous mutant emp4-1 kernels the endosperm is drastically reduced and the embryo is retarded in its development and unable to germinate. With the aim of investigating the role of emp4 during post-germinative development, homozygous mutant seedlings were obtained by cultivation of excised immature embryos on a synthetic medium. In the mutants both germination frequency as well as the proportion of seedlings reaching the first and second leaf stages were reduced. The anatomy of the leaf blades and the root cortex was not affected by the mutation, however severe alterations such as the presence of empty cells or cells containing poorly organized organelles, were observed. Moreover both mitochondria and chloroplast functionality was impaired in the mutants. Our hypothesis is that mitochondrial impairment, the primary effect of the mutation, causes secondary effects on the development of other cellular organelles. Ultra-structural features of mutant leaf blade mesophyll cells are reminiscent of cells undergoing senescence. Interestingly, both structural and functional damage was less severe in seedlings grown in total darkness compared with those exposed to light, thus suggesting that the effects of the mutation are enhanced by the presence of light. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  18. Flat epithelial atypia of the breast on core needle biopsy: an indication for surgical excision.

    PubMed

    Sohn, Vance; Porta, Rees; Brown, Tommy

    2011-11-01

    Flat epithelial atypia (FEA) is an increasingly diagnosed breast lesion yet there remains a paucity of data regarding these findings and their clinical significance. By determining the pathologic concordance rate, we sought to evaluate the indications for surgical intervention for FEAs diagnosed on core needle biopsy (CNB). Using a retrospective review of an international pathology referral center database, we included all breast CNB specimens with FEA as the most advanced diagnosis that underwent surgical excision. Patient demographics, caliber of biopsy needle, and pathology results were then analyzed. Between 2000 and 2009, 463 FEAs were diagnosed among 15,000 specimens referred for expert opinion. Twenty-four lesions (5%) met inclusion criteria. Sampling ranged from 8- to 18-guage needles. Two lesions (8.4%) were upgraded after surgical excision; one patient was found to have infiltrating ductal carcinoma and another with tubular carcinoma. Twelve patients who were diagnosed with FEA did not undergo surgical excision but had no immediate evidence of malignancy. Based on the 8.4% upgrade rate, FEA diagnosed on CNB requires follow-up surgical excision. Regardless of CNB caliber, the risk of sampling error precludes nonoperative management and FEA should be considered an at-risk lesion until more studies and pooled analysis prove otherwise.

  19. Low-grade central osteosarcoma of distal femur, resembling fibrous dysplasia

    PubMed Central

    Vasiliadis, Haris S; Arnaoutoglou, Christina; Plakoutsis, Sotiris; Doukas, Michalis; Batistatou, Anna; Xenakis, Theodoros A

    2013-01-01

    We report a case of a 32 year-old male, admitted for a lytic lesion of the distal femur. One month after the first X-ray, clinical and imaging deterioration was evident. Open biopsy revealed fibrous dysplasia. Three months later, the lytic lesion had spread to the whole distal third of the femur reaching the articular cartilage. The malignant clinical and imaging features necessitated excision of the lesion and reconstruction with a custom-made total knee arthroplasty. Intra-operatively, no obvious soft tissue infiltration was evident. Nevertheless, an excision of the distal 15.5 cm of the femur including 3.0 cm of the surrounding muscles was finally performed. The histological examination of the excised specimen revealed central low-grade osteosarcoma. Based on the morphological features of the excised tumor, allied to the clinical findings, the diagnosis of low-grade central osteosarcoma was finally made although characters of a fibrous dysplasia were apparent. Central low-grade osteosarcoma is a rare, well-differentiated sub-type of osteosarcoma, with clinical, imaging, and histological features similar to benign tumours. Thus, initial misdiagnosis is usual with the condition commonly mistaken for fibrous dysplasia. Central low-grade osteosarcoma is usually treated with surgery alone, with rare cases of distal metastases. However, regional recurrence is quite frequent after close margin excision. PMID:24147271

  20. Improvement of a yeast self-excising integrative vector by prevention of expression leakage of the intronated Cre recombinase gene during plasmid maintenance in Escherichia coli.

    PubMed

    Agaphonov, Michael O

    2017-12-01

    The use of plasmids possessing a regulatable gene coding for a site-specific recombinase together with its recognition sequences significantly facilitates genome manipulations since it allows self-excision of the portion of the genetic construct integrated into the host genome. Stable maintenance of such plasmids in Escherichia coli, which is used for plasmid preparation, requires prevention of recombinase synthesis in this host, which can be achieved by interrupting the recombinase gene with an intron. Based on this approach, Saccharomyces cerevisiae and Hansenula polymorpha self-excising vectors possessing intronated gene for Cre recombinase and its recognition sites (LoxP) were previously constructed. However, this work shows instability of the H. polymorpha vectors during plasmid maintenance in E. coli cells. This could be due to recombination between the loxP sites caused by residual expression of the cre gene. Prevention of translation reinitiation on an internal methionine codon completely solved this problem. A similar modification was made in a self-excising vector designed for S. cerevisiae. Apart from substantial improvement of yeast self-excising vectors, the obtained results also narrow down the essential part of Cre sequence. © FEMS 2017. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  1. Analysis of regional brain mitochondrial bioenergetics and susceptibility to mitochondrial inhibition utilizing a microplate based system

    PubMed Central

    Sauerbeck, Andrew; Pandya, Jignesh; Singh, Indrapal; Bittman, Kevin; Readnower, Ryan; Bing, Guoying; Sullivan, Patrick

    2012-01-01

    The analysis of mitochondrial bioenergetic function typically has required 50–100 μg of protein per sample and at least 15 min per run when utilizing a Clark-type oxygen electrode. In the present work we describe a method utilizing the Seahorse Biosciences XF24 Flux Analyzer for measuring mitochondrial oxygen consumption simultaneously from multiple samples and utilizing only 5 μg of protein per sample. Utilizing this method we have investigated whether regionally based differences exist in mitochondria isolated from the cortex, striatum, hippocampus, and cerebellum. Analysis of basal mitochondrial bioenergetics revealed that minimal differences exist between the cortex, striatum, and hippocampus. However, the cerebellum exhibited significantly slower basal rates of Complex I and Complex II dependent oxygen consumption (p < 0.05). Mitochondrial inhibitors affected enzyme activity proportionally across all samples tested and only small differences existed in the effect of inhibitors on oxygen consumption. Investigation of the effect of rotenone administration on Complex I dependent oxygen consumption revealed that exposure to 10 pM rotenone led to a clear time dependent decrease in oxygen consumption beginning 12 min after administration (p < 0.05). These studies show that the utilization of this microplate based method for analysis of mitochondrial bioenergetics is effective at quantifying oxygen consumption simultaneously from multiple samples. Additionally, these studies indicate that minimal regional differences exist in mitochondria isolated from the cortex, striatum, or hippocampus. Furthermore, utilization of the mitochondrial inhibitors suggests that previous work indicating regionally specific deficits following systemic mitochondrial toxin exposure may not be the result of differences in the individual mitochondria from the affected regions. PMID:21402103

  2. Perspectives of drug-based neuroprotection targeting mitochondria.

    PubMed

    Procaccio, V; Bris, C; Chao de la Barca, J M; Oca, F; Chevrollier, A; Amati-Bonneau, P; Bonneau, D; Reynier, P

    2014-05-01

    Mitochondrial dysfunction has been reported in most neurodegenerative diseases. These anomalies include bioenergetic defect, respiratory chain-induced oxidative stress, defects of mitochondrial dynamics, increase sensitivity to apoptosis, and accumulation of damaged mitochondria with instable mitochondrial DNA. Significant progress has been made in our understanding of the pathophysiology of inherited mitochondrial disorders but most have no effective therapies. The development of new metabolic treatments will be useful not only for rare mitochondrial disorders but also for the wide spectrum of common age-related neurodegenerative diseases shown to be associated with mitochondrial dysfunction. A better understanding of the mitochondrial regulating pathways raised several promising perspectives of neuroprotection. This review focuses on the pharmacological approaches to modulate mitochondrial biogenesis, the removal of damaged mitochondria through mitophagy, scavenging free radicals and also dietary measures such as ketogenic diet. Copyright © 2014 Elsevier Masson SAS. All rights reserved.

  3. Flexible CO2 laser and submucosal gel injection for safe endoluminal resection in the intestines.

    PubMed

    Au, Joyce T; Mittra, Arjun; Wong, Joyce; Carpenter, Susanne; Carson, Joshua; Haddad, Dana; Monette, Sebastien; Ezell, Paula; Patel, Snehal; Fong, Yuman

    2012-01-01

    The CO(2) laser's unique wavelength of 10.6 μm has the advantage of being readily absorbed by water but historically limited it to line-of-sight procedures. Through recent technological advances, a flexible CO(2) laser fiber has been developed and holds promise for endoluminal surgery. We examined whether this laser, along with injection of a water-based gel in the submucosal space, will allow safe dissection of the intestines and enhance the potential of this tool for minimally invasive surgery. Using an ex vivo model with porcine intestines, spot ablation was performed with the flexible CO(2) laser at different power settings until transmural perforation. Additionally, excisions of mucosal patches were performed by submucosal dissection with and without submucosal injection of a water-based gel. With spot ablation at 5 W, none of the specimens was perforated by 5 min, which was the maximum recorded time. The time to perforation was significantly shorter with increased laser power, and gel pretreatment protected the intestines against spot ablation, increasing the time to perforation from 6 to 37 s at 10 W and from 1 to 7 s at 15 W. During excision of mucosal patches, 56 and 83% of untreated intestines perforated at 5 and 10 W, respectively. Gel pretreatment prior to excision protected all intestines against perforation. These specimens were verified to be intact by inflation with air to over 100 mmHg. Furthermore, excision of the mucosal patch was complete in gel-pretreated specimens, whereas 22% of untreated specimens had residual islands of mucosa after excision. The flexible CO(2) laser holds promise as a precise dissection and cutting tool for endoluminal surgery of the intestines. Pretreatment with a submucosal injection of a water-based gel protects the intestines from perforation during ablation and mucosal dissection.

  4. Flexible CO2 laser and submucosal gel injection for safe endoluminal resection in the intestines

    PubMed Central

    Au, Joyce T.; Mittra, Arjun; Wong, Joyce; Carpenter, Susanne; Carson, Joshua; Haddad, Dana; Monette, Sebastien; Ezell, Paula; Patel, Snehal

    2012-01-01

    Background The CO2 laser’s unique wavelength of 10.6 µm has the advantage of being readily absorbed by water but historically limited it to line-of-sight procedures. Through recent technological advances, a flexible CO2 laser fiber has been developed and holds promise for endoluminal surgery. We examined whether this laser, along with injection of a water-based gel in the submucosal space, will allow safe dissection of the intestines and enhance the potential of this tool for minimally invasive surgery. Methods Using an ex vivo model with porcine intestines, spot ablation was performed with the flexible CO2 laser at different power settings until transmural perforation. Additionally, excisions of mucosal patches were performed by submucosal dissection with and without submucosal injection of a water-based gel. Results With spot ablation at 5 W, none of the specimens was perforated by 5 min, which was the maximum recorded time. The time to perforation was significantly shorter with increased laser power, and gel pretreatment protected the intestines against spot ablation, increasing the time to perforation from 6 to 37 s at 10 W and from 1 to 7 s at 15 W. During excision of mucosal patches, 56 and 83% of untreated intestines perforated at 5 and 10 W, respectively. Gel pretreatment prior to excision protected all intestines against perforation. These specimens were verified to be intact by inflation with air to over 100 mmHg. Furthermore, excision of the mucosal patch was complete in gel-pretreated specimens, whereas 22% of untreated specimens had residual islands of mucosa after excision. Conclusion The flexible CO2 laser holds promise as a precise dissection and cutting tool for endoluminal surgery of the intestines. Pretreatment with a submucosal injection of a water-based gel protects the intestines from perforation during ablation and mucosal dissection. PMID:21898027

  5. Model-based confirmation of alternative substrates of mitochondrial electron transport chain.

    PubMed

    Kleessen, Sabrina; Araújo, Wagner L; Fernie, Alisdair R; Nikoloski, Zoran

    2012-03-30

    Discrimination of metabolic models based on high throughput metabolomics data, reflecting various internal and external perturbations, is essential for identifying the components that contribute to the emerging behavior of metabolic processes. Here, we investigate 12 different models of the mitochondrial electron transport chain (ETC) in Arabidopsis thaliana during dark-induced senescence in order to elucidate the alternative substrates to this metabolic pathway. Our findings demonstrate that the coupling of the proposed computational approach, based on dynamic flux balance analysis, with time-resolved metabolomics data results in model-based confirmations of the hypotheses that, during dark-induced senescence in Arabidopsis, (i) under conditions where the main substrate for the ETC are not fully available, isovaleryl-CoA dehydrogenase and 2-hydroxyglutarate dehydrogenase are able to donate electrons to the ETC, (ii) phytanoyl-CoA does not act even as an indirect substrate of the electron transfer flavoprotein/electron-transfer flavoprotein:ubiquinone oxidoreductase complex, and (iii) the mitochondrial γ-aminobutyric acid transporter has functional significance in maintaining mitochondrial metabolism. Our study provides a basic framework for future in silico studies of alternative pathways in mitochondrial metabolism under extended darkness whereby the role of its components can be computationally discriminated based on available molecular profile data.

  6. Species trees for the tree swallows (Genus Tachycineta): an alternative phylogenetic hypothesis to the mitochondrial gene tree.

    PubMed

    Dor, Roi; Carling, Matthew D; Lovette, Irby J; Sheldon, Frederick H; Winkler, David W

    2012-10-01

    The New World swallow genus Tachycineta comprises nine species that collectively have a wide geographic distribution and remarkable variation both within- and among-species in ecologically important traits. Existing phylogenetic hypotheses for Tachycineta are based on mitochondrial DNA sequences, thus they provide estimates of a single gene tree. In this study we sequenced multiple individuals from each species at 16 nuclear intron loci. We used gene concatenated approaches (Bayesian and maximum likelihood) as well as coalescent-based species tree inference to reconstruct phylogenetic relationships of the genus. We examined the concordance and conflict between the nuclear and mitochondrial trees and between concatenated and coalescent-based inferences. Our results provide an alternative phylogenetic hypothesis to the existing mitochondrial DNA estimate of phylogeny. This new hypothesis provides a more accurate framework in which to explore trait evolution and examine the evolution of the mitochondrial genome in this group. Copyright © 2012 Elsevier Inc. All rights reserved.

  7. Spontaneous germline excision of Tol1, a DNA-based transposable element naturally occurring in the medaka fish genome.

    PubMed

    Watanabe, Kohei; Koga, Hajime; Nakamura, Kodai; Fujita, Akiko; Hattori, Akimasa; Matsuda, Masaru; Koga, Akihiko

    2014-04-01

    DNA-based transposable elements are ubiquitous constituents of eukaryotic genomes. Vertebrates are, however, exceptional in that most of their DNA-based elements appear to be inactivated. The Tol1 element of the medaka fish, Oryzias latipes, is one of the few elements for which copies containing an undamaged gene have been found. Spontaneous transposition of this element in somatic cells has previously been demonstrated, but there is only indirect evidence for its germline transposition. Here, we show direct evidence of spontaneous excision in the germline. Tyrosinase is the key enzyme in melanin biosynthesis. In an albino laboratory strain of medaka fish, which is homozygous for a mutant tyrosinase gene in which a Tol1 copy is inserted, we identified de novo reversion mutations related to melanin pigmentation. The gamete-based reversion rate was as high as 0.4%. The revertant fish carried the tyrosinase gene from which the Tol1 copy had been excised. We previously reported the germline transposition of Tol2, another DNA-based element that is thought to be a recent invader of the medaka fish genome. Tol1 is an ancient resident of the genome. Our results indicate that even an old element can contribute to genetic variation in the host genome as a natural mutator.

  8. Bridging two scholarly islands enriches both: COI DNA barcodes for species identification versus human mitochondrial variation for the study of migrations and pathologies.

    PubMed

    Thaler, David S; Stoeckle, Mark Y

    2016-10-01

    DNA barcodes for species identification and the analysis of human mitochondrial variation have developed as independent fields even though both are based on sequences from animal mitochondria. This study finds questions within each field that can be addressed by reference to the other. DNA barcodes are based on a 648-bp segment of the mitochondrially encoded cytochrome oxidase I. From most species, this segment is the only sequence available. It is impossible to know whether it fairly represents overall mitochondrial variation. For modern humans, the entire mitochondrial genome is available from thousands of healthy individuals. SNPs in the human mitochondrial genome are evenly distributed across all protein-encoding regions arguing that COI DNA barcode is representative. Barcode variation among related species is largely based on synonymous codons. Data on human mitochondrial variation support the interpretation that most - possibly all - synonymous substitutions in mitochondria are selectively neutral. DNA barcodes confirm reports of a low variance in modern humans compared to nonhuman primates. In addition, DNA barcodes allow the comparison of modern human variance to many other extant animal species. Birds are a well-curated group in which DNA barcodes are coupled with census and geographic data. Putting modern human variation in the context of intraspecies variation among birds shows humans to be a single breeding population of average variance.

  9. Agent-Based Modeling of Mitochondria Links Sub-Cellular Dynamics to Cellular Homeostasis and Heterogeneity.

    PubMed

    Dalmasso, Giovanni; Marin Zapata, Paula Andrea; Brady, Nathan Ryan; Hamacher-Brady, Anne

    2017-01-01

    Mitochondria are semi-autonomous organelles that supply energy for cellular biochemistry through oxidative phosphorylation. Within a cell, hundreds of mobile mitochondria undergo fusion and fission events to form a dynamic network. These morphological and mobility dynamics are essential for maintaining mitochondrial functional homeostasis, and alterations both impact and reflect cellular stress states. Mitochondrial homeostasis is further dependent on production (biogenesis) and the removal of damaged mitochondria by selective autophagy (mitophagy). While mitochondrial function, dynamics, biogenesis and mitophagy are highly-integrated processes, it is not fully understood how systemic control in the cell is established to maintain homeostasis, or respond to bioenergetic demands. Here we used agent-based modeling (ABM) to integrate molecular and imaging knowledge sets, and simulate population dynamics of mitochondria and their response to environmental energy demand. Using high-dimensional parameter searches we integrated experimentally-measured rates of mitochondrial biogenesis and mitophagy, and using sensitivity analysis we identified parameter influences on population homeostasis. By studying the dynamics of cellular subpopulations with distinct mitochondrial masses, our approach uncovered system properties of mitochondrial populations: (1) mitochondrial fusion and fission activities rapidly establish mitochondrial sub-population homeostasis, and total cellular levels of mitochondria alter fusion and fission activities and subpopulation distributions; (2) restricting the directionality of mitochondrial mobility does not alter morphology subpopulation distributions, but increases network transmission dynamics; and (3) maintaining mitochondrial mass homeostasis and responding to bioenergetic stress requires the integration of mitochondrial dynamics with the cellular bioenergetic state. Finally, (4) our model suggests sources of, and stress conditions amplifying, cell-to-cell variability of mitochondrial morphology and energetic stress states. Overall, our modeling approach integrates biochemical and imaging knowledge, and presents a novel open-modeling approach to investigate how spatial and temporal mitochondrial dynamics contribute to functional homeostasis, and how subcellular organelle heterogeneity contributes to the emergence of cell heterogeneity.

  10. Agent-Based Modeling of Mitochondria Links Sub-Cellular Dynamics to Cellular Homeostasis and Heterogeneity

    PubMed Central

    Dalmasso, Giovanni; Marin Zapata, Paula Andrea; Brady, Nathan Ryan; Hamacher-Brady, Anne

    2017-01-01

    Mitochondria are semi-autonomous organelles that supply energy for cellular biochemistry through oxidative phosphorylation. Within a cell, hundreds of mobile mitochondria undergo fusion and fission events to form a dynamic network. These morphological and mobility dynamics are essential for maintaining mitochondrial functional homeostasis, and alterations both impact and reflect cellular stress states. Mitochondrial homeostasis is further dependent on production (biogenesis) and the removal of damaged mitochondria by selective autophagy (mitophagy). While mitochondrial function, dynamics, biogenesis and mitophagy are highly-integrated processes, it is not fully understood how systemic control in the cell is established to maintain homeostasis, or respond to bioenergetic demands. Here we used agent-based modeling (ABM) to integrate molecular and imaging knowledge sets, and simulate population dynamics of mitochondria and their response to environmental energy demand. Using high-dimensional parameter searches we integrated experimentally-measured rates of mitochondrial biogenesis and mitophagy, and using sensitivity analysis we identified parameter influences on population homeostasis. By studying the dynamics of cellular subpopulations with distinct mitochondrial masses, our approach uncovered system properties of mitochondrial populations: (1) mitochondrial fusion and fission activities rapidly establish mitochondrial sub-population homeostasis, and total cellular levels of mitochondria alter fusion and fission activities and subpopulation distributions; (2) restricting the directionality of mitochondrial mobility does not alter morphology subpopulation distributions, but increases network transmission dynamics; and (3) maintaining mitochondrial mass homeostasis and responding to bioenergetic stress requires the integration of mitochondrial dynamics with the cellular bioenergetic state. Finally, (4) our model suggests sources of, and stress conditions amplifying, cell-to-cell variability of mitochondrial morphology and energetic stress states. Overall, our modeling approach integrates biochemical and imaging knowledge, and presents a novel open-modeling approach to investigate how spatial and temporal mitochondrial dynamics contribute to functional homeostasis, and how subcellular organelle heterogeneity contributes to the emergence of cell heterogeneity. PMID:28060865

  11. Breast surgery techniques: preoperative bracketing wire localization by surgeons.

    PubMed

    Burkholder, Hans C; Witherspoon, Laura E; Burns, R Phillip; Horn, Jeffrey S; Biderman, Michael D

    2007-06-01

    With the development of expertise in image guidance for breast surgery, many surgeons now perform preoperative wire localization themselves. Use of a single wire versus multiple wires to bracket a radiographic breast abnormality has previously been described, although benefits of this technique based on clinical outcomes such as margin status, tissue volume removed, and re-excision rates have not been established. This study is a retrospective analysis of wire-localized breast biopsies performed by 14 surgeons over 29 months; stereotactic and ultrasound guidance were used. During this time, 489 wire localizations were done, of which 159 used multiple wires. Two hundred eleven of these biopsies were done for malignant disease, 86 using multiple wires. After controlling for tumor node metastases stage, single and multiple wire placements were compared using endpoints of margin status, need for re-excision, and total volume of tissue removed. Neither margin status nor re-excision was related to the number of wires placed. However, the number of wires placed was significantly related to the total volume of tissue removed. Use of more than one localizing wire was associated with greater volume of tissue removal (measured in centimeters cubed) in benign disease (46 vs 25, P < 0.001), equivalent volumes in stage 0 disease (73 vs 67), less volume in stage 1 disease (113 vs 164), and less volume in stages 2 through 4 (158 vs 207, P = 0.03). Outcomes based on surgeon case volume during the study period demonstrated that low- (1-40), medium- (41-80), and high-volume (>80) surgeons did not differ in the type or stage of breast pathology treated. Surgeons with high case volumes were more likely to place multiple localizing wires (P < 0.001) and were more likely to do a breast-conserving procedure if re-excision was performed (P < 0.018). Surgeons with low case volumes were more likely to perform a re-excision (P < 0.025). Surgeon experience has a positive impact on quality outcome measures such as performance of a definitive procedure at the time of initial surgery and use of breast-conserving procedures at the time of re-excision. Multiple wire localization can be used to significantly reduce the volume of breast tissue removed in malignant disease without sacrificing margin status or increasing the need for future re-excision.

  12. Extralevator Abdominoperineal Excision for Low Rectal Cancer—Extensive Surgery to Be Used With Discretion Based on 3-Year Local Recurrence Results

    PubMed Central

    Prytz, Mattias; Angenete, Eva; Bock, David; Haglind, Eva

    2016-01-01

    Objectives: The aim of this prospective registry-based population study was to investigate the efficacy of extralevator abdominoperineal excision (ELAPE) regarding local recurrence rates within 3 years after surgery. Background: Local recurrence of rectal cancer is more common after abdominoperineal excision (APE) than after anterior resection. Extralevator abdominoperineal excision was introduced to address this problem. No large-scale studies with long-term oncological outcomes have been published. Methods: All Swedish patients operated on with an APE and registered in the Swedish ColoRectal Cancer Registry 2007 to 2009 were included (n = 1397) and analyzed with emphasis on the perineal part of the operation. Local recurrence at 3 years was collected from the registry. Results: The local recurrence rates at 3 years [median follow-up, 3.43 years (APE, 3.37 years; ELAPE, 3.41 years; not stated: 3.43 years)] were significantly higher for ELAPE compared with APE (relative risk, 4.91). Perioperative perforation was also associated with an increased risk of local recurrence (relative risk, 3.62). There was no difference in 3-year overall survival between APE and ELAPE. In the subgroup of patients with very low tumors (≤4 cm from the anal verge), no significant difference in the local recurrence rate could be observed. Conclusions: Extralevator abdominoperineal excision results in a significantly increased 3-year local recurrence rate as compared with standard APE. Intraoperative perforation seems to be an important risk factor for local recurrence. In addition to significantly increased 3-year local recurrence rates, the significantly increased incidence of wound complications leads to the conclusion that ELAPE should only be considered in selected patients at risk of intraoperative perforation. PMID:25906414

  13. Olfactory groove meningioma: discussion of clinical presentation and surgical outcomes following excision via the subcranial approach.

    PubMed

    Pepper, Jon-Paul; Hecht, Sarah L; Gebarski, Stephen S; Lin, Erin M; Sullivan, Stephen E; Marentette, Lawrence J

    2011-11-01

    To describe surgical outcomes and radiographic features of olfactory groove meningiomas treated by excision through the subcranial approach. Special emphasis is placed on paranasal sinus and orbit involvement. Retrospective review of a series of patients. Nineteen patients underwent excision of olfactory groove meningioma (OGM) via the transglabellar/subcranial approach between December 1995 and November 2009. Nine patients had previously undergone prior resection at outside institutions, and four had prior radiotherapy in addition to a prior excision. Transglabellar/subcranial surgical approach to the anterior skull base was performed. Tumor histology included three World Health Organization (WHO) grade III lesions, one WHO grade II lesion, and 15 WHO grade I lesions. Fourteen patients had evidence of extension into the paranasal sinuses, with the ethmoid sinus being most commonly involved. Kaplan-Meier estimates of mean overall and disease-free survival were 121.45 months and 93.03 months, respectively. The mean follow-up interval was 41.0 months, and at the time of data analysis three patients had recurrent tumors. Seven (36.8%) patients experienced a major complication in the perioperative period; there were no perioperative mortalities. Orbit invasion was observed in four patients, with optic nerve impingement in 11 patients. Of these, three patients had long-term diplopia. No patients experienced worsening of preoperative visual acuity. Olfactory groove meningiomas demonstrate a propensity to spread into the paranasal sinuses, particularly in recurrent cases. Given a tendency for infiltrative recurrence along the skull base, this disease represents an important area of collaboration between neurosurgery and otolaryngology. The subcranial approach offers excellent surgical access for excision, particularly for recurrences that involve the paranasal sinuses and optic apparatus. Copyright © 2011 The American Laryngological, Rhinological, and Otological Society, Inc.

  14. Transcriptional mapping of the ribosomal RNA region of mouse L-cell mitochondrial DNA.

    PubMed Central

    Nagley, P; Clayton, D A

    1980-01-01

    The map positions in mouse mitochondrial DNA of the two ribosomal RNA genes and adjacent genes coding several small transcripts have been determined precisely by application of a procedure in which DNA-RNA hybrids have been subjected to digestion by S1 nuclease under conditions of varying severity. Digestion of the DNA-RNA hybrids with S1 nuclease yielded a series of species which were shown to contain ribosomal RNA molecules together with adjacent transcripts hybridized conjointly to a continuous segment of mitochondrial DNA. There is one small transcript about 60 bases long whose gene adjoins the sequences coding the 5'-end of the small ribosomal RNA (950 bases) and which lies approximately 200 nucleotides from the D-loop origin of heavy strand mitochondrial DNA synthesis. An 80-base transcript lies between the small and large ribosomal RNA genes, and genes for two further short transcript (each about 80 bases in length) abut the sequences coding the 3'-end of the large ribosomal RNA (approximately 1500 bases). The ability to isolate a discrete DNA-RNA hybrid species approximately 2700 base pairs in length containing all these transcripts suggests that there can be few nucleotides in this region of mouse mitochondrial DNA which are not represented as stable RNA species. Images PMID:6253898

  15. Mucosal excision and suturing for obesity and GERD.

    PubMed

    Légner, András; Tsuboi, Kazuto; Stadlhuber, Rudolf; Yano, Fumiaki; Halvax, Peter; Hunt, Brandon; Penka, Wayne; Filipi, Charles J

    2013-12-01

    Suture and staple-based endoluminal devices for gastroesophageal reflux disease (GERD) and obesity have failed to demonstrate long-term efficacy. To demonstrate the feasibility of mucosal excision and full-thickness suture apposition of the excision beds to create sufficient scar tissue formation at the gastroesophageal junction for the intraluminal treatment of GERD or obesity. Survival animal experiments. Seven mongrel dogs. Interventions. Under general endotracheal anesthesia, a Barostat test was performed on 4 dogs. A mucosal excision device was introduced through the esophagus into the proximal stomach. Two to 4 mucosal excisions were performed on all dogs at or just below the gastroesophageal junction and the mucosal pieces were removed. After hemostasis, an intraluminal suturing instrument was introduced and either 2 or 4 sutures were placed through the excision beds to bring them into apposition. These were tied and the suture strands cut. All dogs were survived for 2 months. End-term endoscopies were performed, and a repeat Barostat procedure was performed on the animals undergoing an antireflux procedure. After euthanasia the stomachs were explanted, examined, photographed, and sectioned for histologic examination. All dogs survived without complication. In the 4 GERD dogs, the Barostat studies demonstrated a significant decrease in gastroesophageal junction compliance. In the 3 dogs undergoing the obesity procedure, the gastric outlet apposition to a 6-mm endoscope was satisfactory with full insufflation and the desired scarring was seen on histologic examination. It is possible to create adequate gastroesophageal junction scarring for the treatment of GERD and obesity. A clinical pilot study will be initiated.

  16. Mitochondrial network complexity emerges from fission/fusion dynamics.

    PubMed

    Zamponi, Nahuel; Zamponi, Emiliano; Cannas, Sergio A; Billoni, Orlando V; Helguera, Pablo R; Chialvo, Dante R

    2018-01-10

    Mitochondrial networks exhibit a variety of complex behaviors, including coordinated cell-wide oscillations of energy states as well as a phase transition (depolarization) in response to oxidative stress. Since functional and structural properties are often interwinded, here we characterized the structure of mitochondrial networks in mouse embryonic fibroblasts using network tools and percolation theory. Subsequently we perturbed the system either by promoting the fusion of mitochondrial segments or by inducing mitochondrial fission. Quantitative analysis of mitochondrial clusters revealed that structural parameters of healthy mitochondria laid in between the extremes of highly fragmented and completely fusioned networks. We confirmed our results by contrasting our empirical findings with the predictions of a recently described computational model of mitochondrial network emergence based on fission-fusion kinetics. Altogether these results offer not only an objective methodology to parametrize the complexity of this organelle but also support the idea that mitochondrial networks behave as critical systems and undergo structural phase transitions.

  17. Integrative Identification of Arabidopsis Mitochondrial Proteome and Its Function Exploitation through Protein Interaction Network

    PubMed Central

    Cui, Jian; Liu, Jinghua; Li, Yuhua; Shi, Tieliu

    2011-01-01

    Mitochondria are major players on the production of energy, and host several key reactions involved in basic metabolism and biosynthesis of essential molecules. Currently, the majority of nucleus-encoded mitochondrial proteins are unknown even for model plant Arabidopsis. We reported a computational framework for predicting Arabidopsis mitochondrial proteins based on a probabilistic model, called Naive Bayesian Network, which integrates disparate genomic data generated from eight bioinformatics tools, multiple orthologous mappings, protein domain properties and co-expression patterns using 1,027 microarray profiles. Through this approach, we predicted 2,311 candidate mitochondrial proteins with 84.67% accuracy and 2.53% FPR performances. Together with those experimental confirmed proteins, 2,585 mitochondria proteins (named CoreMitoP) were identified, we explored those proteins with unknown functions based on protein-protein interaction network (PIN) and annotated novel functions for 26.65% CoreMitoP proteins. Moreover, we found newly predicted mitochondrial proteins embedded in particular subnetworks of the PIN, mainly functioning in response to diverse environmental stresses, like salt, draught, cold, and wound etc. Candidate mitochondrial proteins involved in those physiological acitivites provide useful targets for further investigation. Assigned functions also provide comprehensive information for Arabidopsis mitochondrial proteome. PMID:21297957

  18. Expression of DNA repair genes in burned skin exposed to low-level red laser.

    PubMed

    Trajano, Eduardo Tavares Lima; Mencalha, Andre Luiz; Monte-Alto-Costa, Andréa; Pôrto, Luís Cristóvão; de Souza da Fonseca, Adenilson

    2014-11-01

    Although red laser lights lie in the region of non-ionizing radiations in the electromagnetic spectrum, there are doubts whether absorption of these radiations causes lesions in the DNA molecule. Our aim was to investigate the expression of the genes involved with base excision and nucleotide excision repair pathways in skin tissue submitted to burn injury and exposed to low-level red laser. Wistar rats were divided as follows: control group-rats burned and not irradiated, laser group-rats burned and irradiated 1 day after injury for five consecutive days, and later laser group-rats injured and treated 4 days after injury for five consecutive days. Irradiation was performed according to a clinical protocol (20 J/cm(2), 100 mW, continuous wave emission mode). The animals were sacrificed on day 10, and scarred tissue samples were withdrawn for total RNA extraction, complementary DNA (cDNA) synthesis, and evaluation of gene expression by quantitative polymerase chain reaction. Low-level red laser exposure (1) reduces the expression of APE1 messenger (mRNA), (2) increases the expression of OGG1 mRNA, (3) reduces the expression of XPC mRNA, and (4) increases the expression of XPA mRNA both in laser and later laser groups. Red laser exposure at therapeutic fluences alters the expression of genes related to base excision and nucleotide excision pathways of DNA repair during wound healing of burned skin.

  19. Distinct Pathways Mediate the Sorting of Tail-anchored Mitochondrial Outer Membrane Proteins

    USDA-ARS?s Scientific Manuscript database

    Little is known about the biogenesis of tail-anchored (TA) proteins localized to the mitochondrial outer membrane in plant cells. To address this issue, we screened all of the (>500) known and predicted TA proteins in Arabidopsis for those annotated, based on Gene Ontology, to possess mitochondrial...

  20. Mitochondrial threshold effects.

    PubMed Central

    Rossignol, Rodrigue; Faustin, Benjamin; Rocher, Christophe; Malgat, Monique; Mazat, Jean-Pierre; Letellier, Thierry

    2003-01-01

    The study of mitochondrial diseases has revealed dramatic variability in the phenotypic presentation of mitochondrial genetic defects. To attempt to understand this variability, different authors have studied energy metabolism in transmitochondrial cell lines carrying different proportions of various pathogenic mutations in their mitochondrial DNA. The same kinds of experiments have been performed on isolated mitochondria and on tissue biopsies taken from patients with mitochondrial diseases. The results have shown that, in most cases, phenotypic manifestation of the genetic defect occurs only when a threshold level is exceeded, and this phenomenon has been named the 'phenotypic threshold effect'. Subsequently, several authors showed that it was possible to inhibit considerably the activity of a respiratory chain complex, up to a critical value, without affecting the rate of mitochondrial respiration or ATP synthesis. This phenomenon was called the 'biochemical threshold effect'. More recently, quantitative analysis of the effects of various mutations in mitochondrial DNA on the rate of mitochondrial protein synthesis has revealed the existence of a 'translational threshold effect'. In this review these different mitochondrial threshold effects are discussed, along with their molecular bases and the roles that they play in the presentation of mitochondrial diseases. PMID:12467494

  1. Combined effects of cotyledon excision and nursery fertilization on root growth, nutrient status and outplanting performance of Quercus variabilis container seedlings

    PubMed Central

    Shi, Wenhui; Bloomberg, Mark; Li, Guolei; Su, Shuchai; Jia, Liming

    2017-01-01

    Artificial excision of the distal part of acorns in order to promote germination is well researched in oak seedling cultivation studies. However, studies of combined effects of cotyledon excision and nursery fertilization on container seedlings are lacking, especially for seedling root growth and outplanting performance. This study aimed to explore the main effects of cotyledon excision on Quercus variabilis seedling emergence characteristics and demonstrated the combined effects of cotyledon excision and nursery fertilization on seedling quality to improve Quercus variabilis seedling outplanting performance. Four cotyledon excision treatments and two classes of nursery fertilization were implemented. Seedling emergence was noted every week after sowing. Seedling dry mass, morphology, and nutrient status were assessed at the end of the nursery season. After the first outplanting season, the aforementioned measurements along with seedling survival were determined once again. The results showed that cotyledon excision generally induced greater and more rapid seedling emergence, but did not affect shoot emergence synchronicity. The highest total emergence and emergence rate occurred with Intermediate excision (1/2 of the distal end of acorn was excised). Effects of nutrient loss due to cotyledon excision on seedling quality and outplanting performance were somewhat compensated by nursery fertilization. Nursery fertilization promoted dry mass increment (the net increment from T0 to T2 for dry mass) for excised seedlings after outplanting, resulting in better performance for Slight (1/3 of the distal end of acorn was excised) and Intermediate excision treatments in the field. Thus we conclude Intermediate excision combined with reasonable nursery fertilization can be recommended for production of nursery grown seedlings for afforestation. PMID:28545103

  2. Combined effects of cotyledon excision and nursery fertilization on root growth, nutrient status and outplanting performance of Quercus variabilis container seedlings.

    PubMed

    Shi, Wenhui; Bloomberg, Mark; Li, Guolei; Su, Shuchai; Jia, Liming

    2017-01-01

    Artificial excision of the distal part of acorns in order to promote germination is well researched in oak seedling cultivation studies. However, studies of combined effects of cotyledon excision and nursery fertilization on container seedlings are lacking, especially for seedling root growth and outplanting performance. This study aimed to explore the main effects of cotyledon excision on Quercus variabilis seedling emergence characteristics and demonstrated the combined effects of cotyledon excision and nursery fertilization on seedling quality to improve Quercus variabilis seedling outplanting performance. Four cotyledon excision treatments and two classes of nursery fertilization were implemented. Seedling emergence was noted every week after sowing. Seedling dry mass, morphology, and nutrient status were assessed at the end of the nursery season. After the first outplanting season, the aforementioned measurements along with seedling survival were determined once again. The results showed that cotyledon excision generally induced greater and more rapid seedling emergence, but did not affect shoot emergence synchronicity. The highest total emergence and emergence rate occurred with Intermediate excision (1/2 of the distal end of acorn was excised). Effects of nutrient loss due to cotyledon excision on seedling quality and outplanting performance were somewhat compensated by nursery fertilization. Nursery fertilization promoted dry mass increment (the net increment from T0 to T2 for dry mass) for excised seedlings after outplanting, resulting in better performance for Slight (1/3 of the distal end of acorn was excised) and Intermediate excision treatments in the field. Thus we conclude Intermediate excision combined with reasonable nursery fertilization can be recommended for production of nursery grown seedlings for afforestation.

  3. Experience of treatment of patients with granulomatous lobular mastitis.

    PubMed

    Hur, Sung Mo; Cho, Dong Hui; Lee, Se Kyung; Choi, Min-Young; Bae, Soo Youn; Koo, Min Young; Kim, Sangmin; Choe, Jun-Ho; Kim, Jung-Han; Kim, Jee Soo; Nam, Seok-Jin; Yang, Jung-Hyun; Lee, Jeong Eon

    2013-07-01

    To present the author's experience with various treatment methods of granulomatous lobular mastitis (GLM) and to determine effective treatment methods of GLM. Fifty patients who were diagnosed with GLM were classified into five groups based on the initial treatment methods they underwent, which included observation (n = 8), antibiotics (n = 3), steroid (n = 13), drainage (n = 14), and surgical excision (n = 12). The treatment processes in each group were examined and their clinical characteristics, treatment processes, and results were analyzed respectively. Success rates with each initial treatment were observation, 87.5%; antibiotics, 33.3%; steroids, 30.8%; drainage, 28.6%; and surgical excision, 91.7%. In most cases of observation, the lesions were small and the symptoms were mild. A total of 23 patients underwent surgical excision during treatment. Surgical excision showed particularly fast recovery, high success rate (90.3%) and low recurrence rate (8.7%). The clinical course of GLM is complex and the outcome of each treatment type are variable. Surgery may play an important role when a lesion is determined to be mass-forming or appears localized as an abscess pocket during breast examination or imaging study.

  4. The Effects of Postoperative Intralesional Corticosteroids in the Prevention of Recurrent Earlobe Keloids: A Multispecialty Retrospective Review.

    PubMed

    Gold, Daniel A; Sheinin, Renee; Jacobsen, Gordon; Jones, Lamont R; Ozog, David M

    2018-06-01

    Effective treatment of keloids is challenging because the recurrence rate after surgical excision is high. Data on the best treatment practices are lacking. To investigate the recurrence rate after surgical excision of earlobe keloids based on a postoperative intralesional corticosteroid injection protocol. Retrospective chart review was performed from January 1, 2005, to March 31, 2016, of patients who had excision of ear keloids within the departments of dermatology, otorhinolaryngology, and plastic surgery. The number of postoperative injections was recorded, recurrence was reported by the patient, and the efficacy of an injection protocol was evaluated. There were 277 charts reviewed. Appropriate data were available for 184 patients. A statistically significant difference was found with recurrence associated with a lower number of injections (p < .001). Keloids were more likely to recur if they were not treated with a planned serial injection protocol (p < .001) or if they were treated outside the department of dermatology (p < .001). Intralesional corticosteroid injection after surgical excision of earlobe keloids statistically minimizes the risk of recurrence.

  5. Comparison of Three Surgical Methods in Treatment of Patients with Pilonidal Sinus: Modified Excision and Repair/Wide Excision/Wide Excision and Flap in RASOUL, OMID and SADR Hospitals( 2004-2007).

    PubMed

    Hosseini, Mostafa; Heidari, Afshin; Jafarnejad, Babak

    2013-10-01

    This study is a comparison between three methods that are frequently used for the surgical treatment of pilonidal disease all over the world: modified excision and repair, wide excision and secondary repair, and wide excision and flap. The first technique is done by our group for the first time, and has not been described previously in the literature. This is an interventional study performed at Omid, Sadr, and Rasoul Akram hospitals on patients who had undergone operation because of pilonidal sinus disease and met the inclusion criteria between 2004 and 2007. Exclusion criteria were (1) acute pilonidal sinus diseases, (2) history of pilonidal sinus surgery, (3) history of systemic diseases (DM, malignancy, etc.), and (4) pilonidal abscess. Essential information was extracted from complete medical archives. Any data not available in files or during follow-up visits (all patients supposed to be followed at least for 1 year) were gathered by a telephone interview. A total of 194 patients met the criteria and had complete archived files. Longer duration of hospital stay was found in the "wide excision and closing with flap" method comparing with two other methods (P < 0.05). Length of incapacity for work was not different between the "wide excision and modified repair" and "wide excision" (P > 0.5) methods, but longer for "wide excision and flap" in comparison with two others (P < 0.05). Healing time was significantly longer in the "wide excision" method in comparison with two other methods (P < 0.05). However, "wide excision and modified repair" method had the least healing time between all above techniques, except for length of leaving the office. All the three recurrences (1.5 %) occurred in the wide excision and flap method (P < 0.05). The frequency of postoperative complications was 2 (3.3 %) in wide excision and modified repair, 15 (18.5 %) in wide excision, and 17 (32.7 %) in wide excision and flap closure; these differences in complications were statistically significant (P < 0.05). Our results show that the wide excision and modified repair technique, which has been described for the first time, is an acceptable method due to a low recurrence rate and better wound outcomes comparing with wide excision alone and wide excision and flap techniques for the surgical treatment of pilonidal sinus disease.

  6. The disordered C-terminal domain of human DNA glycosylase NEIL1 contributes to its stability via intramolecular interactions.

    PubMed

    Hegde, Muralidhar L; Tsutakawa, Susan E; Hegde, Pavana M; Holthauzen, Luis Marcelo F; Li, Jing; Oezguen, Numan; Hilser, Vincent J; Tainer, John A; Mitra, Sankar

    2013-07-10

    NEIL1 [Nei (endonuclease VIII)-like protein 1], one of the five mammalian DNA glycosylases that excise oxidized DNA base lesions in the human genome to initiate base excision repair, contains an intrinsically disordered C-terminal domain (CTD; ~100 residues), not conserved in its Escherichia coli prototype Nei. Although dispensable for NEIL1's lesion excision and AP lyase activities, this segment is required for efficient in vivo enzymatic activity and may provide an interaction interface for many of NEIL1's interactions with other base excision repair proteins. Here, we show that the CTD interacts with the folded domain in native NEIL1 containing 389 residues. The CTD is poised for local folding in an ordered structure that is induced in the purified fragment by osmolytes. Furthermore, deletion of the disordered tail lacking both Tyr and Trp residues causes a red shift in NEIL1's intrinsic Trp-specific fluorescence, indicating a more solvent-exposed environment for the Trp residues in the truncated protein, which also exhibits reduced stability compared to the native enzyme. These observations are consistent with stabilization of the native NEIL1 structure via intramolecular, mostly electrostatic, interactions that were disrupted by mutating a positively charged (Lys-rich) cluster of residues (amino acids 355-360) near the C-terminus. Small-angle X-ray scattering (SAXS) analysis confirms the flexibility and dynamic nature of NEIL1's CTD, a feature that may be critical to providing specificity for NEIL1's multiple, functional interactions. Copyright © 2013 Elsevier Ltd. All rights reserved.

  7. Inefficient DNA Repair Is an Aging-Related Modifier of Parkinson's Disease.

    PubMed

    Sepe, Sara; Milanese, Chiara; Gabriels, Sylvia; Derks, Kasper W J; Payan-Gomez, Cesar; van IJcken, Wilfred F J; Rijksen, Yvonne M A; Nigg, Alex L; Moreno, Sandra; Cerri, Silvia; Blandini, Fabio; Hoeijmakers, Jan H J; Mastroberardino, Pier G

    2016-05-31

    The underlying relation between Parkinson's disease (PD) etiopathology and its major risk factor, aging, is largely unknown. In light of the causative link between genome stability and aging, we investigate a possible nexus between DNA damage accumulation, aging, and PD by assessing aging-related DNA repair pathways in laboratory animal models and humans. We demonstrate that dermal fibroblasts from PD patients display flawed nucleotide excision repair (NER) capacity and that Ercc1 mutant mice with mildly compromised NER exhibit typical PD-like pathological alterations, including decreased striatal dopaminergic innervation, increased phospho-synuclein levels, and defects in mitochondrial respiration. Ercc1 mouse mutants are also more sensitive to the prototypical PD toxin MPTP, and their transcriptomic landscape shares important similarities with that of PD patients. Our results demonstrate that specific defects in DNA repair impact the dopaminergic system and are associated with human PD pathology and might therefore constitute an age-related risk factor for PD. Copyright © 2016 The Author(s). Published by Elsevier Inc. All rights reserved.

  8. The substrate binding interface of alkylpurine DNA glycosylase AlkD.

    PubMed

    Mullins, Elwood A; Rubinson, Emily H; Eichman, Brandt F

    2014-01-01

    Tandem helical repeats have emerged as an important DNA binding architecture. DNA glycosylase AlkD, which excises N3- and N7-alkylated nucleobases, uses repeating helical motifs to bind duplex DNA and to selectively pause at non-Watson-Crick base pairs. Remodeling of the DNA backbone promotes nucleotide flipping of the lesion and the complementary base into the solvent and toward the protein surface, respectively. The important features of this new DNA binding architecture that allow AlkD to distinguish between damaged and normal DNA without contacting the lesion are poorly understood. Here, we show through extensive mutational analysis that DNA binding and N3-methyladenine (3mA) and N7-methylguanine (7mG) excision are dependent upon each residue lining the DNA binding interface. Disrupting electrostatic or hydrophobic interactions with the DNA backbone substantially reduced binding affinity and catalytic activity. These results demonstrate that residues seemingly only involved in general DNA binding are important for catalytic activity and imply that base excision is driven by binding energy provided by the entire substrate interface of this novel DNA binding architecture. Copyright © 2013 Elsevier B.V. All rights reserved.

  9. Model-based Confirmation of Alternative Substrates of Mitochondrial Electron Transport Chain

    PubMed Central

    Kleessen, Sabrina; Araújo, Wagner L.; Fernie, Alisdair R.; Nikoloski, Zoran

    2012-01-01

    Discrimination of metabolic models based on high throughput metabolomics data, reflecting various internal and external perturbations, is essential for identifying the components that contribute to the emerging behavior of metabolic processes. Here, we investigate 12 different models of the mitochondrial electron transport chain (ETC) in Arabidopsis thaliana during dark-induced senescence in order to elucidate the alternative substrates to this metabolic pathway. Our findings demonstrate that the coupling of the proposed computational approach, based on dynamic flux balance analysis, with time-resolved metabolomics data results in model-based confirmations of the hypotheses that, during dark-induced senescence in Arabidopsis, (i) under conditions where the main substrate for the ETC are not fully available, isovaleryl-CoA dehydrogenase and 2-hydroxyglutarate dehydrogenase are able to donate electrons to the ETC, (ii) phytanoyl-CoA does not act even as an indirect substrate of the electron transfer flavoprotein/electron-transfer flavoprotein:ubiquinone oxidoreductase complex, and (iii) the mitochondrial γ-aminobutyric acid transporter has functional significance in maintaining mitochondrial metabolism. Our study provides a basic framework for future in silico studies of alternative pathways in mitochondrial metabolism under extended darkness whereby the role of its components can be computationally discriminated based on available molecular profile data. PMID:22334689

  10. 26 CFR 55.4981-2 - Imposition of excise tax with respect to certain undistributed income of real estate investment...

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... certain undistributed income of real estate investment trusts; calendar years beginning after December 31... (CONTINUED) MISCELLANEOUS EXCISE TAXES (CONTINUED) EXCISE TAX ON REAL ESTATE INVESTMENT TRUSTS AND REGULATED INVESTMENT COMPANIES Excise Tax on Real Estate Investment Trusts § 55.4981-2 Imposition of excise tax with...

  11. 26 CFR 55.4981-1 - Imposition of excise tax on certain real estate investment trust taxable income not distributed...

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... TREASURY (CONTINUED) MISCELLANEOUS EXCISE TAXES (CONTINUED) EXCISE TAX ON REAL ESTATE INVESTMENT TRUSTS AND REGULATED INVESTMENT COMPANIES Excise Tax on Real Estate Investment Trusts § 55.4981-1 Imposition of excise tax on certain real estate investment trust taxable income not distributed during the taxable year...

  12. 26 CFR 55.4981-1 - Imposition of excise tax on certain real estate investment trust taxable income not distributed...

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... TREASURY (CONTINUED) MISCELLANEOUS EXCISE TAXES (CONTINUED) EXCISE TAX ON REAL ESTATE INVESTMENT TRUSTS AND REGULATED INVESTMENT COMPANIES Excise Tax on Real Estate Investment Trusts § 55.4981-1 Imposition of excise tax on certain real estate investment trust taxable income not distributed during the taxable year...

  13. 26 CFR 55.4981-2 - Imposition of excise tax with respect to certain undistributed income of real estate investment...

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... certain undistributed income of real estate investment trusts; calendar years beginning after December 31... (CONTINUED) MISCELLANEOUS EXCISE TAXES (CONTINUED) EXCISE TAX ON REAL ESTATE INVESTMENT TRUSTS AND REGULATED INVESTMENT COMPANIES Excise Tax on Real Estate Investment Trusts § 55.4981-2 Imposition of excise tax with...

  14. 26 CFR 55.4981-1 - Imposition of excise tax on certain real estate investment trust taxable income not distributed...

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... TREASURY (CONTINUED) MISCELLANEOUS EXCISE TAXES (CONTINUED) EXCISE TAX ON REAL ESTATE INVESTMENT TRUSTS AND REGULATED INVESTMENT COMPANIES Excise Tax on Real Estate Investment Trusts § 55.4981-1 Imposition of excise tax on certain real estate investment trust taxable income not distributed during the taxable year...

  15. 26 CFR 55.4981-2 - Imposition of excise tax with respect to certain undistributed income of real estate investment...

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... certain undistributed income of real estate investment trusts; calendar years beginning after December 31... (CONTINUED) MISCELLANEOUS EXCISE TAXES (CONTINUED) EXCISE TAX ON REAL ESTATE INVESTMENT TRUSTS AND REGULATED INVESTMENT COMPANIES Excise Tax on Real Estate Investment Trusts § 55.4981-2 Imposition of excise tax with...

  16. 26 CFR 55.4981-2 - Imposition of excise tax with respect to certain undistributed income of real estate investment...

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... certain undistributed income of real estate investment trusts; calendar years beginning after December 31... (CONTINUED) MISCELLANEOUS EXCISE TAXES (CONTINUED) EXCISE TAX ON REAL ESTATE INVESTMENT TRUSTS AND REGULATED INVESTMENT COMPANIES Excise Tax on Real Estate Investment Trusts § 55.4981-2 Imposition of excise tax with...

  17. 26 CFR 55.4981-1 - Imposition of excise tax on certain real estate investment trust taxable income not distributed...

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... TREASURY (CONTINUED) MISCELLANEOUS EXCISE TAXES (CONTINUED) EXCISE TAX ON REAL ESTATE INVESTMENT TRUSTS AND REGULATED INVESTMENT COMPANIES Excise Tax on Real Estate Investment Trusts § 55.4981-1 Imposition of excise tax on certain real estate investment trust taxable income not distributed during the taxable year...

  18. 26 CFR 55.4981-2 - Imposition of excise tax with respect to certain undistributed income of real estate investment...

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... certain undistributed income of real estate investment trusts; calendar years beginning after December 31... (CONTINUED) MISCELLANEOUS EXCISE TAXES (CONTINUED) EXCISE TAX ON REAL ESTATE INVESTMENT TRUSTS AND REGULATED INVESTMENT COMPANIES Excise Tax on Real Estate Investment Trusts § 55.4981-2 Imposition of excise tax with...

  19. 26 CFR 55.4981-1 - Imposition of excise tax on certain real estate investment trust taxable income not distributed...

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... TREASURY (CONTINUED) MISCELLANEOUS EXCISE TAXES (CONTINUED) EXCISE TAX ON REAL ESTATE INVESTMENT TRUSTS AND REGULATED INVESTMENT COMPANIES Excise Tax on Real Estate Investment Trusts § 55.4981-1 Imposition of excise tax on certain real estate investment trust taxable income not distributed during the taxable year...

  20. 29 CFR 779.262 - Excise taxes at the retail level.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Coverage Excise Taxes § 779.262 Excise taxes at the retail level. (a) Federal excise taxes are imposed at.... Such excise taxes are levied at the retail level on any liquid fuel sold for use, or used in a diesel... levied at the retail level, and thus excludable when separately stated, depends, of course, upon the law...

  1. Problem-based test: replication of mitochondrial DNA during the cell cycle.

    PubMed

    Sétáló, György

    2013-01-01

    Terms to be familiar with before you start to solve the test: cell cycle, generation time, S-phase, cell culture synchronization, isotopic pulse-chase labeling, density labeling, equilibrium density-gradient centrifugation, buoyant density, rate-zonal centrifugation, nucleoside, nucleotide, kinase enzymes, polymerization of nucleic acids, re-replication block, cell fractionation, Svedberg (sedimentation constant = [ S]), nuclear DNA, mitochondrial DNA, heavy and light mitochondrial DNA chains, heteroplasmy, mitochondrial diseases Copyright © 2013 Wiley Periodicals, Inc.

  2. Association of cultured myotubes and fasting plasma metabolite profiles with mitochondrial dysfunction in type 2 diabetes subjects.

    PubMed

    Abu Bakar, Mohamad Hafizi; Sarmidi, Mohamad Roji

    2017-08-22

    Accumulating evidence implicates mitochondrial dysfunction-induced insulin resistance in skeletal muscle as the root cause for the greatest hallmarks of type 2 diabetes (T2D). However, the identification of specific metabolite-based markers linked to mitochondrial dysfunction in T2D has not been adequately addressed. Therefore, we sought to identify the markers-based metabolomics for mitochondrial dysfunction associated with T2D. First, a cellular disease model was established using human myotubes treated with antimycin A, an oxidative phosphorylation inhibitor. Non-targeted metabolomic profiling of intracellular-defined metabolites on the cultured myotubes with mitochondrial dysfunction was then determined. Further, a targeted MS-based metabolic profiling of fasting blood plasma from normal (n = 32) and T2D (n = 37) subjects in a cross-sectional study was verified. Multinomial logical regression analyses for defining the top 5% of the metabolites within a 95% group were employed to determine the differentiating metabolites. The myotubes with mitochondrial dysfunction exhibited insulin resistance, oxidative stress and inflammation with impaired insulin signalling activities. Four metabolic pathways were found to be strongly associated with mitochondrial dysfunction in the cultured myotubes. Metabolites derived from these pathways were validated in an independent pilot investigation of the fasting blood plasma of healthy and diseased subjects. Targeted metabolic analysis of the fasting blood plasma with specific baseline adjustment revealed 245 significant features based on orthogonal partial least square discriminant analysis (PLS-DA) with a p-value < 0.05. Among these features, 20 significant metabolites comprised primarily of branched chain and aromatic amino acids, glutamine, aminobutyric acid, hydroxyisobutyric acid, pyroglutamic acid, acylcarnitine species (acetylcarnitine, propionylcarnitine, dodecenoylcarnitine, tetradecenoylcarnitine hexadecadienoylcarnitine and oleylcarnitine), free fatty acids (palmitate, arachidonate, stearate and linoleate) and sphingomyelin (d18:2/16:0) were identified as predictive markers for mitochondrial dysfunction in T2D subjects. The current study illustrates how cellular metabolites provide potential signatures associated with the biochemical changes in the dysregulated body metabolism of diseased subjects. Our finding yields additional insights into the identification of robust biomarkers for T2D associated with mitochondrial dysfunction in cultured myotubes.

  3. Mitochondrial genome sequences illuminate maternal lineages of conservation concern in a rare carnivore

    Treesearch

    Brian J. Knaus; Richard Cronn; Aaron Liston; Kristine Pilgrim; Michael K. Schwartz

    2011-01-01

    Science-based wildlife management relies on genetic information to infer population connectivity and identify conservation units. The most commonly used genetic marker for characterizing animal biodiversity and identifying maternal lineages is the mitochondrial genome. Mitochondrial genotyping figures prominently in conservation and management plans, with much of the...

  4. Alignment-based and alignment-free methods converge with experimental data on amino acids coded by stop codons at split between nuclear and mitochondrial genetic codes.

    PubMed

    Seligmann, Hervé

    2018-05-01

    Genetic codes mainly evolve by reassigning punctuation codons, starts and stops. Previous analyses assuming that undefined amino acids translate stops showed greater divergence between nuclear and mitochondrial genetic codes. Here, three independent methods converge on which amino acids translated stops at split between nuclear and mitochondrial genetic codes: (a) alignment-free genetic code comparisons inserting different amino acids at stops; (b) alignment-based blast analyses of hypothetical peptides translated from non-coding mitochondrial sequences, inserting different amino acids at stops; (c) biases in amino acid insertions at stops in proteomic data. Hence short-term protein evolution models reconstruct long-term genetic code evolution. Mitochondria reassign stops to amino acids otherwise inserted at stops by codon-anticodon mismatches (near-cognate tRNAs). Hence dual function (translation termination and translation by codon-anticodon mismatch) precedes mitochondrial reassignments of stops to amino acids. Stop ambiguity increases coded information, compensates endocellular mitogenome reduction. Mitochondrial codon reassignments might prevent viral infections. Copyright © 2018 Elsevier B.V. All rights reserved.

  5. An MRM-based workflow for quantifying cardiac mitochondrial protein phosphorylation in murine and human tissue.

    PubMed

    Lam, Maggie P Y; Scruggs, Sarah B; Kim, Tae-Young; Zong, Chenggong; Lau, Edward; Wang, Ding; Ryan, Christopher M; Faull, Kym F; Ping, Peipei

    2012-08-03

    The regulation of mitochondrial function is essential for cardiomyocyte adaptation to cellular stress. While it has long been understood that phosphorylation regulates flux through metabolic pathways, novel phosphorylation sites are continually being discovered in all functionally distinct areas of the mitochondrial proteome. Extracting biologically meaningful information from these phosphorylation sites requires an adaptable, sensitive, specific and robust method for their quantification. Here we report a multiple reaction monitoring-based mass spectrometric workflow for quantifying site-specific phosphorylation of mitochondrial proteins. Specifically, chromatographic and mass spectrometric conditions for 68 transitions derived from 23 murine and human phosphopeptides, and their corresponding unmodified peptides, were optimized. These methods enabled the quantification of endogenous phosphopeptides from the outer mitochondrial membrane protein VDAC, and the inner membrane proteins ANT and ETC complexes I, III and V. The development of this quantitative workflow is a pivotal step for advancing our knowledge and understanding of the regulatory effects of mitochondrial protein phosphorylation in cardiac physiology and pathophysiology. This article is part of a Special Issue entitled: Translational Proteomics. Copyright © 2012 Elsevier B.V. All rights reserved.

  6. Structure-activity relationship analysis of mitochondrial toxicity caused by antiviral ribonucleoside analogs.

    PubMed

    Jin, Zhinan; Kinkade, April; Behera, Ishani; Chaudhuri, Shuvam; Tucker, Kathryn; Dyatkina, Natalia; Rajwanshi, Vivek K; Wang, Guangyi; Jekle, Andreas; Smith, David B; Beigelman, Leo; Symons, Julian A; Deval, Jerome

    2017-07-01

    Recent cases of severe toxicity during clinical trials have been associated with antiviral ribonucleoside analogs (e.g. INX-08189 and balapiravir). Some have hypothesized that the active metabolites of toxic ribonucleoside analogs, the triphosphate forms, inadvertently target human mitochondrial RNA polymerase (POLRMT), thus inhibiting mitochondrial RNA transcription and protein synthesis. Others have proposed that the prodrug moiety released from the ribonucleoside analogs might instead cause toxicity. Here, we report the mitochondrial effects of several clinically relevant and structurally diverse ribonucleoside analogs including NITD-008, T-705 (favipiravir), R1479 (parent nucleoside of balapiravir), PSI-7851 (sofosbuvir), and INX-08189 (BMS-986094). We found that efficient substrates and chain terminators of POLRMT, such as the nucleoside triphosphate forms of R1479, NITD-008, and INX-08189, are likely to cause mitochondrial toxicity in cells, while weaker chain terminators and inhibitors of POLRMT such as T-705 ribonucleoside triphosphate do not elicit strong in vitro mitochondrial effects. Within a fixed 3'-deoxy or 2'-C-methyl ribose scaffold, changing the base moiety of nucleotides did not strongly affect their inhibition constant (K i ) against POLRMT. By swapping the nucleoside and prodrug moieties of PSI-7851 and INX-08189, we demonstrated that the cell-based toxicity of INX-08189 is mainly caused by the nucleoside component of the molecule. Taken together, these results show that diverse 2' or 4' mono-substituted ribonucleoside scaffolds cause mitochondrial toxicity. Given the unpredictable structure-activity relationship of this ribonucleoside liability, we propose a rapid and systematic in vitro screen combining cell-based and biochemical assays to identify the early potential for mitochondrial toxicity. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.

  7. Evidence-Based Medicine: Options for Dupuytren's Contracture: Incise, Excise, and Dissolve.

    PubMed

    Denkler, Keith A; Vaughn, Carolyn J; Dolan, Estelle L; Hansen, Scott L

    2017-01-01

    After studying this article, the participant should be able to: 1. Understand updates in the basic science, epidemiology, and treatment of Dupuytren's disease. 2. Understand treatment with needle aponeurotomy, collagenase, and fasciectomy. 3. Understand advanced needle techniques for Dupuytren's contracture. 4. Understand the safety and effectiveness of a new treatment, collagenase. The literature on Dupuytren's disease encompasses many specialties. Its treatment is generally by perforating, excising, or dissolving the affected tissues. This article reviews the changing understanding of this disease and treatment options.

  8. 26 CFR 54.4979-1 - Excise tax on certain excess contributions and excess aggregate contributions.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 26 Internal Revenue 17 2010-04-01 2010-04-01 false Excise tax on certain excess contributions and excess aggregate contributions. 54.4979-1 Section 54.4979-1 Internal Revenue INTERNAL REVENUE SERVICE, DEPARTMENT OF THE TREASURY (CONTINUED) MISCELLANEOUS EXCISE TAXES (CONTINUED) PENSION EXCISE TAXES § 54.4979-1 Excise tax on certain excess...

  9. 29 CFR 779.262 - Excise taxes at the retail level.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 29 Labor 3 2011-07-01 2011-07-01 false Excise taxes at the retail level. 779.262 Section 779.262... Coverage Excise Taxes § 779.262 Excise taxes at the retail level. (a) Federal excise taxes are imposed at the retail level on highway vehicle fuels other than gasoline under the provisions of 26 U.S.C. 4041...

  10. 29 CFR 779.262 - Excise taxes at the retail level.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 29 Labor 3 2013-07-01 2013-07-01 false Excise taxes at the retail level. 779.262 Section 779.262... Coverage Excise Taxes § 779.262 Excise taxes at the retail level. (a) Federal excise taxes are imposed at the retail level on highway vehicle fuels other than gasoline under the provisions of 26 U.S.C. 4041...

  11. 29 CFR 779.262 - Excise taxes at the retail level.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 29 Labor 3 2012-07-01 2012-07-01 false Excise taxes at the retail level. 779.262 Section 779.262... Coverage Excise Taxes § 779.262 Excise taxes at the retail level. (a) Federal excise taxes are imposed at the retail level on highway vehicle fuels other than gasoline under the provisions of 26 U.S.C. 4041...

  12. 29 CFR 779.262 - Excise taxes at the retail level.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 29 Labor 3 2014-07-01 2014-07-01 false Excise taxes at the retail level. 779.262 Section 779.262... Coverage Excise Taxes § 779.262 Excise taxes at the retail level. (a) Federal excise taxes are imposed at the retail level on highway vehicle fuels other than gasoline under the provisions of 26 U.S.C. 4041...

  13. Predictors of Residual Disease after Unplanned Excision of Soft Tissue Sarcomas

    PubMed Central

    Gingrich, Alicia A.; Elias, Alexandra; Michael Lee, Chia-Yuan; Nakache, Yves-Paul N.; Li, Chin-Shang; Shah, Dhruvil R.; Boutin, Robert D.; Canter, Robert J.

    2016-01-01

    Background Unplanned excision of soft tissue sarcomas (STS) is an important quality of care issue given the morbidity related to tumor bed excision. Since not all patients harbor residual disease at the time of re-excision, we sought to determine predictors of residual STS following unplanned excision. Methods We identified 76 patients from a prospective database (1/1/2008 – 9/30/2014) who received a diagnosis of primary STS following unplanned excision on the trunk or extremities. We used univariable and multivariable analyses to evaluate predictors of residual STS as the primary endpoint. We calculated the sensitivity/specificity and accuracy of interval magnetic resonance imaging (MRI) to predict residual sarcoma at re-excision. Results Mean age was 52 years, and 63.2% were male. 50% had fragmented unplanned excision. Among patients undergoing re-excision, residual STS was identified in 70%. On univariable analysis, MRI showing gross disease and fragmented excision were significant predictors of residual STS (OR 10.59, 95% CI 2.14–52.49, P=0.004 and OR 3.61, 95% CI 1.09–11.94, P=0.035, respectively). On multivariable analysis, tumor size predicted distant recurrence and overall survival. When we combined equivocal and positive MRI, the sensitivity and specificity of MRI for predicting residual STS were 86.7% (95% CI 73.2–95.0%) and 57.9% (95% CI 33.5–79.8%), with an overall accuracy of 78.1% (95% CI 66.0–87.5%). Conclusions 70% of patients undergoing repeat excision after unplanned excision of STS harbor residual sarcoma. Although interval MRI and fragmented excision appear to be the most significant predictors of residual STS, the accuracy of MRI remains modest, especially given the incidence of equivocal MRI. PMID:27993214

  14. Assessment of ankle and hindfoot stability and joint pressures using a human cadaveric model of a large lateral talar process excision: a biomechanical study.

    PubMed

    Sands, Andrew; White, Charles; Blankstein, Michael; Zderic, Ivan; Wahl, Dieter; Ernst, Manuela; Windolf, Markus; Hagen, Jennifer E; Richards, R Geoff; Stoffel, Karl; Gueorguiev, Boyko

    2015-03-01

    Lateral talar process fragment excision may be followed by hindfoot instability and altered biomechanics. There is controversy regarding the ideal fragment size for internal fixation versus excision and a concern that excision of a large fragment may lead to significant instability. The aim of this study was to assess the effect of a simulated large lateral talar process excision on ankle and subtalar joint stability.A custom-made seesaw rig was designed to apply inversion/eversion stress loading on 7 fresh-frozen human cadaveric lower legs and investigate them in pre-excision, 5 cm and 10 cm lateral talar process fragment excision states. Anteroposterior radiographs were taken to assess ankle and subtalar joint tilt and calculate angular change from neutral hindfoot alignment to 10-kg forced inversion/eversion. Ankle joint pressures and contact areas were measured under 30-kg axial load in neutral hindfoot alignment.In comparison to the pre-excision state, no significantly different mediolateral angular change was observed in the subtalar joint after 5 and 10 cm lateral talar process fragment excision in inversion and eversion. With respect to the ankle joint, 10-cm fragment excision produced significantly bigger inversion tibiotalar tilt compared with the pre-excision state, P = .04. No significant change of the ankle joint pressure and contact area was detected after 5 and 10-cm excision in comparison with the pre-excison state.An excision of up to 10 cm of the lateral talar process does not cause a significant instability at the level of the subtalar joint but might be a destabilizing factor at the ankle joint under inversion stress. The latter could be related to extensive soft tissue dissection required for resection.

  15. Clinical and Radiologic Follow-up Study for Biopsy Diagnosis of Radial Scar/Radial Sclerosing Lesion without Other Atypia.

    PubMed

    Kalife, Elizabeth Tágide; Lourenco, Ana P; Baird, Grayson L; Wang, Yihong

    2016-11-01

    To determine the incidence of malignancy for radial scars (RS)/radial sclerosing lesions (RSL) without associated atypia or malignancy identified at needle biopsy. Retrospective review of the pathology data base from January 2004 to July 2013 yielded 100 needle biopsies diagnosed as RS/RSL without associated atypia/malignancy. The RS/RSL was considered "incidental" if the target was calcifications and "targeted" if imaging revealed a mass, architectural distortion, or suspicious magnetic resonance imaging enhancement. The electronic medical record was used to identify surgical pathology, follow-up imaging, and clinical course; all pathology slides and imaging were reviewed by a board-certified pathologist and radiologist, respectively. Patient age, laterality, RS/RSL size, microcalcifications, and associated benign lesions were recorded. Among 100 cases, 54 were "incidental" and 46 were "targeted." In the incidental group, 14 underwent excision, 30 had imaging follow-up, and 10 were lost to follow-up. In the targeted group, 27 underwent excision, 11 had imaging follow-up, and 8 were lost to follow-up. Atypia was identified in four excisions: three from the incidental group and one from the targeted group. Among these, three had negative imaging follow-up (mean 45 months; range 15-60 months); the fourth patient (one of the incidental group) underwent excision alone. One of the 27 "targeted" patients who underwent excision developed ductal carcinoma in situ of the contralateral breast at 96 months. There have been no ipsilateral malignancies. We found no evidence of associated malignancy at excision for either incidental or targeted biopsies of RS/RSL without atypia. Our study suggests that close imaging follow-up is adequate for patients with RS/RSL without associated atypia/malignancy on needle biopsy. © 2016 Wiley Periodicals, Inc.

  16. Outcome after surgical or conservative management of cerebral cavernous malformations.

    PubMed

    Moultrie, Fiona; Horne, Margaret A; Josephson, Colin B; Hall, Julie M; Counsell, Carl E; Bhattacharya, Jo J; Papanastassiou, Vakis; Sellar, Robin J; Warlow, Charles P; Murray, Gordon D; Al-Shahi Salman, Rustam

    2014-08-12

    There have been few comparative studies of microsurgical excision vs conservative management of cerebral cavernous malformations (CCM) and none of them has reliably demonstrated a statistically and clinically significant difference. We conducted a prospective, population-based study to identify and independently validate definite CCM diagnoses first made in 1999-2003 in Scottish adult residents. We used multiple sources of prospective follow-up to assess adults' dependence and to identify and independently validate outcome events. We used univariate and multivariable survival analyses to test the influence of CCM excision on outcome, adjusted for prognostic factors and baseline imbalances. Of 134 adults, 25 underwent CCM excision; these adults were younger (34 vs 43 years at diagnosis, p = 0.004) and more likely to present with symptomatic intracranial hemorrhage or focal neurologic deficit than adults managed conservatively (48% vs 26%; odds ratio 2.7, 95% confidence interval [CI] 1.1-6.5). During 5 years of follow-up, CCM excision was associated with a deterioration to an Oxford Handicap Scale score 2-6 sustained over at least 2 successive years (adjusted hazard ratio [HR] 2.2, 95% CI 1.1-4.3) and the occurrence of symptomatic intracranial hemorrhage or new focal neurologic deficit (adjusted HR 3.6, 95% CI 1.3-10.0). CCM excision was associated with worse outcomes over 5 years compared to conservative management. Long-term follow-up will determine whether this difference is sustained over patients' lifetimes. Meanwhile, a randomized controlled trial appears justified. This study provides Class III evidence that CCM excision worsens short-term disability scores and increases the risk of symptomatic intracranial hemorrhage and new focal neurologic deficits. © 2014 American Academy of Neurology.

  17. UK national survey of management of breast lobular carcinoma in situ.

    PubMed

    Chester, R; Bokinni, O; Ahmed, I; Kasem, A

    2015-11-01

    There is no national standard treatment for patients with breast lobular carcinoma in situ (LCIS). Association of Breast Surgery guidelines for the management of breast cancer suggest that lesions containing LCIS should be excised for definitive diagnosis and recommend close surveillance after excision biopsy. The aim of this study was to form a picture of the current management of LCIS by UK breast surgeons. A questionnaire about the management of LCIS was sent to 490 UK breast surgeons. Of 490 questionnaires sent out, 173 (35%) were returned. When LCIS is present in a core biopsy, 61% of breast surgeons perform surgical excision, 22% would not excise but would continue follow-up and the remainder perform neither or set no clear management plan. Over half (54%) follow patients up with five years of annual mammography. If classic LCIS were found at the margins of wide local excision, 92% would not re-excise. Conversely, if pleomorphic LCIS were found, 71% would achieve clear margins. Respondents were split evenly regarding management of classic LCIS with a family history as 54% would not alter management whereas 43% would treat the disease more aggressively. Our survey has shown that in cases where LCIS is found at core biopsy, most surgeons follow Association of Breast Surgery guidance, obtaining further histological samples to exclude pleomorphic LCIS, ductal carcinoma in situ or invasive cancer, whereas others opt for annual surveillance and some discharge the patient. This study highlighted the huge variability in LCIS management, and the need for randomised controlled trials and input into national audits such as the Sloane Project to establish evidence-based national standard guidelines.

  18. [Deep infiltrating endometriosis surgical management and pelvic nerves injury].

    PubMed

    Fermaut, M; Nyangoh Timoh, K; Lebacle, C; Moszkowicz, D; Benoit, G; Bessede, T

    2016-05-01

    Deep pelvic endometriosis surgery may need substantial excisions, which in turn expose to risks of injury to the pelvic nerves. To limit functional complications, nerve-sparing surgical techniques have been developed but should be adapted to the specific multifocal character of endometriotic lesions. The objective was to identify the anatomical areas where the pelvic nerves are most at risk of injury during endometriotic excisions. The Medline and Embase databases have been searched for available literature using the keywords "hypogastric nerve or hypogastric plexus [Mesh] or autonomic pathway [Mesh], anatomy, endometriosis, surgery [Mesh]". All relevant French and English publications, selected based on their available abstracts, have been reviewed. Five female adult fresh cadavers have been dissected to localize the key anatomical areas where the pelvic nerves are most at risk of injury. Six anatomical areas of high risk for pelvic nerves have been identified, analysed and described. Pelvic nerves can be damaged during the dissection of retrorectal space and the anterolateral rectal excision. Furthermore, before an uterosacral ligament excision, a parametrial excision, a colpectomy or a dissection of the vesico-uterine ligament, the hypogastric nerves, splanchnic nerves, inferior hypogastric plexus and its efferent pathways must be mapped out to avoid injury. The distance between the deep uterin vein and the pelvic splanchnic nerves were measured on four cadavers and varied from 2.5cm to 4cm. Six key anatomical pitfalls must be known in order to limit the functional complications of the endometriotic surgical excision. Applying nerve-sparing surgical techniques for endometriosis would lead to less urinary functional complications and a better short-term postoperative satisfaction. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  19. Base Excision Repair

    PubMed Central

    Krokan, Hans E.; Bjørås, Magnar

    2013-01-01

    Base excision repair (BER) corrects DNA damage from oxidation, deamination and alkylation. Such base lesions cause little distortion to the DNA helix structure. BER is initiated by a DNA glycosylase that recognizes and removes the damaged base, leaving an abasic site that is further processed by short-patch repair or long-patch repair that largely uses different proteins to complete BER. At least 11 distinct mammalian DNA glycosylases are known, each recognizing a few related lesions, frequently with some overlap in specificities. Impressively, the damaged bases are rapidly identified in a vast excess of normal bases, without a supply of energy. BER protects against cancer, aging, and neurodegeneration and takes place both in nuclei and mitochondria. More recently, an important role of uracil-DNA glycosylase UNG2 in adaptive immunity was revealed. Furthermore, other DNA glycosylases may have important roles in epigenetics, thus expanding the repertoire of BER proteins. PMID:23545420

  20. Frequent somatic transfer of mitochondrial DNA into the nuclear genome of human cancer cells.

    PubMed

    Ju, Young Seok; Tubio, Jose M C; Mifsud, William; Fu, Beiyuan; Davies, Helen R; Ramakrishna, Manasa; Li, Yilong; Yates, Lucy; Gundem, Gunes; Tarpey, Patrick S; Behjati, Sam; Papaemmanuil, Elli; Martin, Sancha; Fullam, Anthony; Gerstung, Moritz; Nangalia, Jyoti; Green, Anthony R; Caldas, Carlos; Borg, Åke; Tutt, Andrew; Lee, Ming Ta Michael; van't Veer, Laura J; Tan, Benita K T; Aparicio, Samuel; Span, Paul N; Martens, John W M; Knappskog, Stian; Vincent-Salomon, Anne; Børresen-Dale, Anne-Lise; Eyfjörd, Jórunn Erla; Myklebost, Ola; Flanagan, Adrienne M; Foster, Christopher; Neal, David E; Cooper, Colin; Eeles, Rosalind; Bova, Steven G; Lakhani, Sunil R; Desmedt, Christine; Thomas, Gilles; Richardson, Andrea L; Purdie, Colin A; Thompson, Alastair M; McDermott, Ultan; Yang, Fengtang; Nik-Zainal, Serena; Campbell, Peter J; Stratton, Michael R

    2015-06-01

    Mitochondrial genomes are separated from the nuclear genome for most of the cell cycle by the nuclear double membrane, intervening cytoplasm, and the mitochondrial double membrane. Despite these physical barriers, we show that somatically acquired mitochondrial-nuclear genome fusion sequences are present in cancer cells. Most occur in conjunction with intranuclear genomic rearrangements, and the features of the fusion fragments indicate that nonhomologous end joining and/or replication-dependent DNA double-strand break repair are the dominant mechanisms involved. Remarkably, mitochondrial-nuclear genome fusions occur at a similar rate per base pair of DNA as interchromosomal nuclear rearrangements, indicating the presence of a high frequency of contact between mitochondrial and nuclear DNA in some somatic cells. Transmission of mitochondrial DNA to the nuclear genome occurs in neoplastically transformed cells, but we do not exclude the possibility that some mitochondrial-nuclear DNA fusions observed in cancer occurred years earlier in normal somatic cells. © 2015 Ju et al.; Published by Cold Spring Harbor Laboratory Press.

  1. Frequent somatic transfer of mitochondrial DNA into the nuclear genome of human cancer cells

    PubMed Central

    Ju, Young Seok; Tubio, Jose M.C.; Mifsud, William; Fu, Beiyuan; Davies, Helen R.; Ramakrishna, Manasa; Li, Yilong; Yates, Lucy; Gundem, Gunes; Tarpey, Patrick S.; Behjati, Sam; Papaemmanuil, Elli; Martin, Sancha; Fullam, Anthony; Gerstung, Moritz; Nangalia, Jyoti; Green, Anthony R.; Caldas, Carlos; Borg, Åke; Tutt, Andrew; Lee, Ming Ta Michael; van't Veer, Laura J.; Tan, Benita K.T.; Aparicio, Samuel; Span, Paul N.; Martens, John W.M.; Knappskog, Stian; Vincent-Salomon, Anne; Børresen-Dale, Anne-Lise; Eyfjörd, Jórunn Erla; Flanagan, Adrienne M.; Foster, Christopher; Neal, David E.; Cooper, Colin; Eeles, Rosalind; Lakhani, Sunil R.; Desmedt, Christine; Thomas, Gilles; Richardson, Andrea L.; Purdie, Colin A.; Thompson, Alastair M.; McDermott, Ultan; Yang, Fengtang; Nik-Zainal, Serena; Campbell, Peter J.; Stratton, Michael R.

    2015-01-01

    Mitochondrial genomes are separated from the nuclear genome for most of the cell cycle by the nuclear double membrane, intervening cytoplasm, and the mitochondrial double membrane. Despite these physical barriers, we show that somatically acquired mitochondrial-nuclear genome fusion sequences are present in cancer cells. Most occur in conjunction with intranuclear genomic rearrangements, and the features of the fusion fragments indicate that nonhomologous end joining and/or replication-dependent DNA double-strand break repair are the dominant mechanisms involved. Remarkably, mitochondrial-nuclear genome fusions occur at a similar rate per base pair of DNA as interchromosomal nuclear rearrangements, indicating the presence of a high frequency of contact between mitochondrial and nuclear DNA in some somatic cells. Transmission of mitochondrial DNA to the nuclear genome occurs in neoplastically transformed cells, but we do not exclude the possibility that some mitochondrial-nuclear DNA fusions observed in cancer occurred years earlier in normal somatic cells. PMID:25963125

  2. 26 CFR 54.4979-0 - Excise tax on certain excess contributions and excess aggregate contributions; table of contents.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 26 Internal Revenue 17 2010-04-01 2010-04-01 false Excise tax on certain excess contributions and excess aggregate contributions; table of contents. 54.4979-0 Section 54.4979-0 Internal Revenue INTERNAL REVENUE SERVICE, DEPARTMENT OF THE TREASURY (CONTINUED) MISCELLANEOUS EXCISE TAXES (CONTINUED) PENSION EXCISE TAXES § 54.4979-0 Excise tax on...

  3. DNA Sequences Proximal to Human Mitochondrial DNA Deletion Breakpoints Prevalent in Human Disease Form G-quadruplexes, a Class of DNA Structures Inefficiently Unwound by the Mitochondrial Replicative Twinkle Helicase*

    PubMed Central

    Bharti, Sanjay Kumar; Sommers, Joshua A.; Zhou, Jun; Kaplan, Daniel L.; Spelbrink, Johannes N.; Mergny, Jean-Louis; Brosh, Robert M.

    2014-01-01

    Mitochondrial DNA deletions are prominent in human genetic disorders, cancer, and aging. It is thought that stalling of the mitochondrial replication machinery during DNA synthesis is a prominent source of mitochondrial genome instability; however, the precise molecular determinants of defective mitochondrial replication are not well understood. In this work, we performed a computational analysis of the human mitochondrial genome using the “Pattern Finder” G-quadruplex (G4) predictor algorithm to assess whether G4-forming sequences reside in close proximity (within 20 base pairs) to known mitochondrial DNA deletion breakpoints. We then used this information to map G4P sequences with deletions characteristic of representative mitochondrial genetic disorders and also those identified in various cancers and aging. Circular dichroism and UV spectral analysis demonstrated that mitochondrial G-rich sequences near deletion breakpoints prevalent in human disease form G-quadruplex DNA structures. A biochemical analysis of purified recombinant human Twinkle protein (gene product of c10orf2) showed that the mitochondrial replicative helicase inefficiently unwinds well characterized intermolecular and intramolecular G-quadruplex DNA substrates, as well as a unimolecular G4 substrate derived from a mitochondrial sequence that nests a deletion breakpoint described in human renal cell carcinoma. Although G4 has been implicated in the initiation of mitochondrial DNA replication, our current findings suggest that mitochondrial G-quadruplexes are also likely to be a source of instability for the mitochondrial genome by perturbing the normal progression of the mitochondrial replication machinery, including DNA unwinding by Twinkle helicase. PMID:25193669

  4. Concise Review: Heteroplasmic Mitochondrial DNA Mutations and Mitochondrial Diseases: Toward iPSC-Based Disease Modeling, Drug Discovery, and Regenerative Therapeutics.

    PubMed

    Hatakeyama, Hideyuki; Goto, Yu-Ichi

    2016-04-01

    Mitochondria contain multiple copies of their own genome (mitochondrial DNA; mtDNA). Once mitochondria are damaged by mutant mtDNA, mitochondrial dysfunction is strongly induced, followed by symptomatic appearance of mitochondrial diseases. Major genetic causes of mitochondrial diseases are defects in mtDNA, and the others are defects of mitochondria-associating genes that are encoded in nuclear DNA (nDNA). Numerous pathogenic mutations responsible for various types of mitochondrial diseases have been identified in mtDNA; however, it remains uncertain why mitochondrial diseases present a wide variety of clinical spectrum even among patients carrying the same mtDNA mutations (e.g., variations in age of onset, in affected tissues and organs, or in disease progression and phenotypic severity). Disease-relevant induced pluripotent stem cells (iPSCs) derived from mitochondrial disease patients have therefore opened new avenues for understanding the definitive genotype-phenotype relationship of affected tissues and organs in various types of mitochondrial diseases triggered by mtDNA mutations. In this concise review, we briefly summarize several recent approaches using patient-derived iPSCs and their derivatives carrying various mtDNA mutations for applications in human mitochondrial disease modeling, drug discovery, and future regenerative therapeutics. © 2016 AlphaMed Press.

  5. Applying the tuple space-based approach to the simulation of the caspases, an essential signalling pathway.

    PubMed

    Cárdenas-García, Maura; González-Pérez, Pedro Pablo

    2013-04-11

    Apoptotic cell death plays a crucial role in development and homeostasis. This process is driven by mitochondrial permeabilization and activation of caspases. In this paper we adopt a tuple spaces-based modelling and simulation approach, and show how it can be applied to the simulation of this intracellular signalling pathway. Specifically, we are working to explore and to understand the complex interaction patterns of the caspases apoptotic and the mitochondrial role. As a first approximation, using the tuple spaces-based in silico approach, we model and simulate both the extrinsic and intrinsic apoptotic signalling pathways and the interactions between them. During apoptosis, mitochondrial proteins, released from mitochondria to cytosol are decisively involved in the process. If the decision is to die, from this point there is normally no return, cancer cells offer resistance to the mitochondrial induction.

  6. The Role of Transanal Surgery in the Management of T1 Rectal Cancers.

    PubMed

    Hassan, Imran; Wise, Paul E; Margolin, David A; Fleshman, James W

    2015-09-01

    The management of T1 rectal cancers is based on finding the balance between optimal oncologic outcomes and acceptable functional results for the patient. While radical resection involving a proctectomy is considered the most oncologically adequate option, its adverse effects on patient reported outcomes makes this a less than ideal choice in certain circumstances. While local excision can circumvent some of the adverse functional outcomes, its inadequacy in assessing metastatic lymph node disease and the subsequent negative impact of untreated positive lymph nodes on patient prognosis is a cause for concern. As a result, the therapeutic strategy has to be based on patient and disease-related factors in order to identify the best treatment choice that maximizes survival benefit and preserves health-related quality of life. After adequate preoperative staging work up, in selected patients with favorable pathological features, local excision can be considered. These cancers can be removed by transanal local excision or transanal endoscopic microsurgery, depending on the location of the cancer and expertise available. While perioperative morbidity is minimal, close postoperative follow-up is essential.

  7. Import of desired nucleic acid sequences using addressing motif of mitochondrial ribosomal 5S-rRNA for fluorescent in vivo hybridization of mitochondrial DNA and RNA.

    PubMed

    Zelenka, Jaroslav; Alán, Lukáš; Jabůrek, Martin; Ježek, Petr

    2014-04-01

    Based on the matrix-addressing sequence of mitochondrial ribosomal 5S-rRNA (termed MAM), which is naturally imported into mitochondria, we have constructed an import system for in vivo targeting of mitochondrial DNA (mtDNA) or mt-mRNA, in order to provide fluorescence hybridization of the desired sequences. Thus DNA oligonucleotides were constructed, containing the 5'-flanked T7 RNA polymerase promoter. After in vitro transcription and fluorescent labeling with Alexa Fluor(®) 488 or 647 dye, we obtained the fluorescent "L-ND5 probe" containing MAM and exemplar cargo, i.e., annealing sequence to a short portion of ND5 mRNA and to the light-strand mtDNA complementary to the heavy strand nd5 mt gene (5'-end 21 base pair sequence). For mitochondrial in vivo fluorescent hybridization, HepG2 cells were treated with dequalinium micelles, containing the fluorescent probes, bringing the probes proximally to the mitochondrial outer membrane and to the natural import system. A verification of import into the mitochondrial matrix of cultured HepG2 cells was provided by confocal microscopy colocalizations. Transfections using lipofectamine or probes without 5S-rRNA addressing MAM sequence or with MAM only were ineffective. Alternatively, the same DNA oligonucleotides with 5'-CACC overhang (substituting T7 promoter) were transcribed from the tetracycline-inducible pENTRH1/TO vector in human embryonic kidney T-REx®-293 cells, while mitochondrial matrix localization after import of the resulting unlabeled RNA was detected by PCR. The MAM-containing probe was then enriched by three-order of magnitude over the natural ND5 mRNA in the mitochondrial matrix. In conclusion, we present a proof-of-principle for mitochondrial in vivo hybridization and mitochondrial nucleic acid import.

  8. Multi-Parametric Analysis and Modeling of Relationships between Mitochondrial Morphology and Apoptosis

    PubMed Central

    Reis, Yara; Wolf, Thomas; Brors, Benedikt; Hamacher-Brady, Anne; Eils, Roland; Brady, Nathan R.

    2012-01-01

    Mitochondria exist as a network of interconnected organelles undergoing constant fission and fusion. Current approaches to study mitochondrial morphology are limited by low data sampling coupled with manual identification and classification of complex morphological phenotypes. Here we propose an integrated mechanistic and data-driven modeling approach to analyze heterogeneous, quantified datasets and infer relations between mitochondrial morphology and apoptotic events. We initially performed high-content, multi-parametric measurements of mitochondrial morphological, apoptotic, and energetic states by high-resolution imaging of human breast carcinoma MCF-7 cells. Subsequently, decision tree-based analysis was used to automatically classify networked, fragmented, and swollen mitochondrial subpopulations, at the single-cell level and within cell populations. Our results revealed subtle but significant differences in morphology class distributions in response to various apoptotic stimuli. Furthermore, key mitochondrial functional parameters including mitochondrial membrane potential and Bax activation, were measured under matched conditions. Data-driven fuzzy logic modeling was used to explore the non-linear relationships between mitochondrial morphology and apoptotic signaling, combining morphological and functional data as a single model. Modeling results are in accordance with previous studies, where Bax regulates mitochondrial fragmentation, and mitochondrial morphology influences mitochondrial membrane potential. In summary, we established and validated a platform for mitochondrial morphological and functional analysis that can be readily extended with additional datasets. We further discuss the benefits of a flexible systematic approach for elucidating specific and general relationships between mitochondrial morphology and apoptosis. PMID:22272225

  9. The complete mitochondrial genome of the armored catfish, Hypostomus plecostomus (Siluriformes: Loricariidae).

    PubMed

    Liu, Shikai; Zhang, Jiaren; Yao, Jun; Liu, Zhanjiang

    2016-05-01

    The complete mitochondrial genome of the armored catfish, Hypostomus plecostomus, was determined by next generation sequencing of genomic DNA without prior sample processing or primer design. Bioinformatics analysis resulted in the entire mitochondrial genome sequence with length of 16,523 bp. The H. plecostomus mitochondrial genome is consisted of 13 protein-coding genes, 22 tRNA genes, 2 rRNA genes, and 1 control region, showing typical circular molecule structure of mitochondrial genome as in other vertebrates. The whole genome base composition was estimated to be 31.8% A, 27.0% T, 14.6% G, and 26.6% C, with A/T bias of 58.8%. This work provided the H. plecostomus mitochondrial genome sequence which should be valuable for species identification, phylogenetic analysis and conservation genetics studies in catfishes.

  10. Poly(ADP-ribose) Contributes to an Association between Poly(ADP-ribose) Polymerase-1 and Xeroderma Pigmentosum Complementation Group A in Nucleotide Excision Repair*

    PubMed Central

    King, Brenee S.; Cooper, Karen L.; Liu, Ke Jian; Hudson, Laurie G.

    2012-01-01

    Exposure to ultraviolet radiation (UVR) promotes the formation of UVR-induced, DNA helix distorting photolesions such as (6-4) pyrimidine-pyrimidone photoproducts and cyclobutane pyrimidine dimers. Effective repair of such lesions by the nucleotide excision repair (NER) pathway is required to prevent DNA mutations and chromosome aberrations. Poly(ADP-ribose) polymerase-1 (PARP-1) is a zinc finger protein with well documented involvement in base excision repair. PARP-1 is activated in response to DNA damage and catalyzes the formation of poly(ADP-ribose) subunits that assist in the assembly of DNA repair proteins at sites of damage. In this study, we present evidence for PARP-1 contributions to NER, extending the knowledge of PARP-1 function in DNA repair beyond the established role in base excision repair. Silencing the PARP-1 protein or inhibiting PARP activity leads to retention of UVR-induced photolesions. PARP activation following UVR exposure promotes association between PARP-1 and XPA, a central protein in NER. Administration of PARP inhibitors confirms that poly(ADP-ribose) facilitates PARP-1 association with XPA in whole cell extracts, in isolated chromatin complexes, and in vitro. Furthermore, inhibition of PARP activity decreases UVR-stimulated XPA chromatin association, illustrating that these relationships occur in a meaningful context for NER. These results provide a mechanistic link for PARP activity in the repair of UVR-induced photoproducts. PMID:23038248

  11. Dynamin-Related Protein 1 and Mitochondrial Fragmentation in Neurodegenerative Diseases

    PubMed Central

    Reddy, P. Hemachandra; Reddy, Tejaswini P.; Manczak, Maria; Calkins, Marcus J.; Shirendeb, Ulziibat; Mao, Peizhong

    2010-01-01

    The purpose of this article is to review the recent developments of abnormal mitochondrial dynamics, mitochondrial fragmentation, and neuronal damage in neurodegenerative diseases, including Alzheimer’s, Parkinson’s, Huntington’s, and amyotrophic lateral sclerosis. The GTPase family of proteins, including fission proteins, dynamin related protein 1 (Drp1), mitochondrial fission 1 (Fis1), and fusion proteins (Mfn1, Mfn2 and Opa1) are essential to maintain mitochondrial fission and fusion balance, and to provide necessary adenosine triphosphate to neurons. Among these, Drp1 is involved in several important aspects of mitochondria, including shape, size, distribution, remodeling, and maintenance of X in mammalian cells. In addition, recent advancements in molecular, cellular, electron microscopy, and confocal imaging studies revealed that Drp1 is associated with several cellular functions, including mitochondrial and peroxisomal fragmentation, phosphorylation, SUMOylation, ubiquitination, and cell death. In the last two decades, tremendous progress has been made in researching mitochondrial dynamics, in yeast, worms, and mammalian cells; and this research has provided evidence linking Drp1 to neurodegenerative diseases. Researchers in the neurodegenerative disease field are beginning to recognize the possible involvement of Drp1 in causing mitochondrial fragmentation and abnormal mitochondrial dynamics in neurodegenerative diseases. This article summarizes research findings relating Drp1 to mitochondrial fission and fusion, in yeast, worms, and mammals. Based on findings from the Reddy laboratory and others’, we propose that mutant proteins of neurodegenerative diseases, including AD, PD, HD, and ALS, interact with Drp1, activate mitochondrial fission machinery, fragment mitochondria excessively, and impair mitochondrial transport and mitochondrial dynamics, ultimately causing mitochondrial dysfunction and neuronal damage. PMID:21145355

  12. New insights into mitogenomic phylogeny and copy number in eight indigenous sheep populations based on the ATP synthase and cytochrome c oxidase genes.

    PubMed

    Xiao, P; Niu, L L; Zhao, Q J; Chen, X Y; Wang, L J; Li, L; Zhang, H P; Guo, J Z; Xu, H Y; Zhong, T

    2017-11-16

    The origins and phylogeny of different sheep breeds has been widely studied using polymorphisms within the mitochondrial hypervariable region. However, little is known about the mitochondrial DNA (mtDNA) content and phylogeny based on mtDNA protein-coding genes. In this study, we assessed the phylogeny and copy number of the mtDNA in eight indigenous (population size, n=184) and three introduced (n=66) sheep breeds in China based on five mitochondrial coding genes (COX1, COX2, ATP8, ATP6 and COX3). The mean haplotype and nucleotide diversities were 0.944 and 0.00322, respectively. We identified a correlation between the lineages distribution and the genetic distance, whereby Valley-type Tibetan sheep had a closer genetic relationship with introduced breeds (Dorper, Poll Dorset and Suffolk) than with other indigenous breeds. Similarly, the Median-joining profile of haplotypes revealed the distribution of clusters according to genetic differences. Moreover, copy number analysis based on the five mitochondrial coding genes was affected by the genetic distance combining with genetic phylogeny; we also identified obvious non-synonymous mutations in ATP6 between the different levels of copy number expressions. These results imply that differences in mitogenomic compositions resulting from geographical separation lead to differences in mitochondrial function.

  13. Mitochondrial respiratory chain complexes as sources and targets of thiol-based redox-regulation.

    PubMed

    Dröse, Stefan; Brandt, Ulrich; Wittig, Ilka

    2014-08-01

    The respiratory chain of the inner mitochondrial membrane is a unique assembly of protein complexes that transfers the electrons of reducing equivalents extracted from foodstuff to molecular oxygen to generate a proton-motive force as the primary energy source for cellular ATP-synthesis. Recent evidence indicates that redox reactions are also involved in regulating mitochondrial function via redox-modification of specific cysteine-thiol groups in subunits of respiratory chain complexes. Vice versa the generation of reactive oxygen species (ROS) by respiratory chain complexes may have an impact on the mitochondrial redox balance through reversible and irreversible thiol-modification of specific target proteins involved in redox signaling, but also pathophysiological processes. Recent evidence indicates that thiol-based redox regulation of the respiratory chain activity and especially S-nitrosylation of complex I could be a strategy to prevent elevated ROS production, oxidative damage and tissue necrosis during ischemia-reperfusion injury. This review focuses on the thiol-based redox processes involving the respiratory chain as a source as well as a target, including a general overview on mitochondria as highly compartmentalized redox organelles and on methods to investigate the redox state of mitochondrial proteins. This article is part of a Special Issue entitled: Thiol-Based Redox Processes. Copyright © 2014 Elsevier B.V. All rights reserved.

  14. Evidence for Natural Selection in Nucleotide Content Relationships Based on Complete Mitochondrial Genomes: Strong Effect of Guanine Content on Separation between Terrestrial and Aquatic Vertebrates.

    PubMed

    Sorimachi, Kenji; Okayasu, Teiji

    2015-01-01

    The complete vertebrate mitochondrial genome consists of 13 coding genes. We used this genome to investigate the existence of natural selection in vertebrate evolution. From the complete mitochondrial genomes, we predicted nucleotide contents and then separated these values into coding and non-coding regions. When nucleotide contents of a coding or non-coding region were plotted against the nucleotide content of the complete mitochondrial genomes, we obtained linear regression lines only between homonucleotides and their analogs. On every plot using G or A content purine, G content in aquatic vertebrates was higher than that in terrestrial vertebrates, while A content in aquatic vertebrates was lower than that in terrestrial vertebrates. Based on these relationships, vertebrates were separated into two groups, terrestrial and aquatic. However, using C or T content pyrimidine, clear separation between these two groups was not obtained. The hagfish (Eptatretus burgeri) was further separated from both terrestrial and aquatic vertebrates. Based on these results, nucleotide content relationships predicted from the complete vertebrate mitochondrial genomes reveal the existence of natural selection based on evolutionary separation between terrestrial and aquatic vertebrate groups. In addition, we propose that separation of the two groups might be linked to ammonia detoxification based on high G and low A contents, which encode Glu rich and Lys poor proteins.

  15. Communication: Site-selective bond excision of adenine upon electron transfer

    NASA Astrophysics Data System (ADS)

    Cunha, T.; Mendes, M.; Ferreira da Silva, F.; Eden, S.; García, G.; Limão-Vieira, P.

    2018-01-01

    This work demonstrates that selective excision of hydrogen atoms at a particular site of the DNA base adenine can be achieved in collisions with electronegative atoms by controlling the impact energy. The result is based on analysing the time-of-flight mass spectra yields of potassium collisions with a series of labeled adenine derivatives. The production of dehydrogenated parent anions is consistent with neutral H loss either from selective breaking of C-H or N-H bonds. These unprecedented results open up a new methodology in charge transfer collisions that can initiate selective reactivity as a key process in chemical reactions that are dominant in different areas of science and technology.

  16. The complete mitochondrial genome of the Aluterus monoceros.

    PubMed

    Li, Wenshen; Zhang, Guoqing; Wen, Xin; Wang, Qian; Chen, Guohua

    2016-07-01

    The complete mitochondrial genome of Aluterus monoceros (A. monoceros) has been sequenced. The mitochondrial genome of A. monoceros is 16,429 bp in length, consisting of 22 tRNA genes, 2 rRNA genes, 13 protein-coding genes and a D-loop region (Gen Bank accession number KP637022). The base A + T of the mitochondrial genome is 63.25%, including 33.16% of A, 30.09% of T and 20.74% of C. Twelve protein-coding genes start with a standard ATG as the initiation codon, expect for the COXI, which begins with GTG. Some of the termination codons are incomplete T or TA, except for the ND1, COXI, ATP8, ND4L1, ND5 and ND6, which stop with TAA. Construction of phylogenetic trees based on the entire mitochondrial genome sequence of 14 Tetrodontiformes species constructed has suggested that A. monoceros has closer relationship with Acreichthys tomentosus and Monacanthus chinensis, and they constitute a sister group.

  17. Mitochondrial targeting of electron scavenging antioxidants: Regulation of selective oxidation vs random chain reactions

    PubMed Central

    Kagan, Valerian E.; Wipf, Peter; Stoyanovsky, Detcho; Greenberger, Joel S.; Borisenko, Grigory; Belikova, Natalia A.; Yanamala, Naveena; Samhan Arias, Alejandro K.; Tungekar, Muhammad A.; Jiang, Jianfei; Tyurina, Yulia Y.; Ji, Jing; Klein-Seetharaman, Judith; Pitt, Bruce R.; Shvedova, Anna A; Bayır, Hülya

    2009-01-01

    Effective regulation of highly compartmentalized production of reactive oxygen species and peroxidation reactions in mitochondria requires targeting of small molecule antioxidants and antioxidant enzymes into the organelles. This review describes recently developed approaches to mitochondrial targeting of small biologically active molecules based on: (i) preferential accumulation in mitochondria because of their hydrophobicity and positive charge (hydrophobic cations), (ii) binding with high affinity to an intra-mitochondrial constituent, and (iii) metabolic conversions by specific mitochondrial enzymes to reveal an active entity. In addition, targeted delivery of antioxidant enzymes via expression of leader-sequences directing the proteins into mitochondria is considered. Examples of successful antioxidant and anti-apoptotic protection based on the ability of targeted cargoes to inhibit cytochrome c-catalyzed peroxidation of a mitochondria-specific phospholipid cardiolipin, in vitro and in vivo are presented. Particular emphasis is placed on the employment of triphenylphosphonium- and hemi-gramicidin S-moieties as two effective vehicles for mitochondrial delivery of antioxidants. PMID:19716396

  18. Mitochondria: Targeting mitochondrial reactive oxygen species with mitochondriotropic polyphenolic-based antioxidants.

    PubMed

    Teixeira, José; Deus, Cláudia M; Borges, Fernanda; Oliveira, Paulo J

    2018-04-01

    Mitochondrial function and regulation of redox balance is fundamental in controlling cellular life and death pathways. Antioxidants have been used to counteract disruption of redox networks, normally associated with progressive loss of cell homeostasis and disease pathophysiology, although therapeutic success is limited mainly due to pharmacokinetic drawbacks. Attempts to improve mitochondrial function in a range of diseases spurred active drug discovery efforts. Currently, the most effective strategy to deliver drugs to mitochondria is the covalent link of lipophilic cations to the bioactive compound. Although targeting mitochondrial oxidative stress with antioxidants has been demonstrated, clinical use has been hampered by several challenges, with no FDA-approved drug so far. Development of new mitochondriotropic antioxidant agents based on dietary polyphenols has recently gained momentum. Due to their nature, mitochondria-targeted multi-functional antioxidants can trigger stress responses and contribute to tissue protection through hormesis mechanisms, inhibiting excessive mitochondrial ROS production and associated diseases. Copyright © 2018 Elsevier Ltd. All rights reserved.

  19. Experience of treatment of patients with granulomatous lobular mastitis

    PubMed Central

    Hur, Sung Mo; Cho, Dong Hui; Lee, Se Kyung; Choi, Min-Young; Bae, Soo Youn; Koo, Min Young; Kim, Sangmin; Choe, Jun-Ho; Kim, Jung-Han; Kim, Jee Soo; Nam, Seok-Jin; Yang, Jung-Hyun

    2013-01-01

    Purpose To present the author's experience with various treatment methods of granulomatous lobular mastitis (GLM) and to determine effective treatment methods of GLM. Methods Fifty patients who were diagnosed with GLM were classified into five groups based on the initial treatment methods they underwent, which included observation (n = 8), antibiotics (n = 3), steroid (n = 13), drainage (n = 14), and surgical excision (n = 12). The treatment processes in each group were examined and their clinical characteristics, treatment processes, and results were analyzed respectively. Results Success rates with each initial treatment were observation, 87.5%; antibiotics, 33.3%; steroids, 30.8%; drainage, 28.6%; and surgical excision, 91.7%. In most cases of observation, the lesions were small and the symptoms were mild. A total of 23 patients underwent surgical excision during treatment. Surgical excision showed particularly fast recovery, high success rate (90.3%) and low recurrence rate (8.7%). Conclusion The clinical course of GLM is complex and the outcome of each treatment type are variable. Surgery may play an important role when a lesion is determined to be mass-forming or appears localized as an abscess pocket during breast examination or imaging study. PMID:23833753

  20. Psychrometric Field Measurement of Water Potential Changes following Leaf Excision.

    PubMed

    Savage, M J; Cass, A

    1984-01-01

    In situ measurement of sudden leaf water potential changes has not been performed under field conditions. A laboratory investigation involving the measurement of leaf water potential prior to and 2 to 200 minutes after excision of citrus leaves (Citrus jambhiri) showed good linear correlation (r = 0.99) between in situ leaf psychrometer and Scholander pressure chamber measurements. Following this, a field investigation was conducted which involved psychrometric measurement prior to petiole excision and 1 minute after excision. Simultaneous pressure chamber measurements were performed on neighboring leaves prior to the time of excision and then on the psychrometer leaf about 2 minutes after excision. These data indicate that within the first 2 minutes after excision, psychrometer and pressure chamber measurements were linearly correlated (r = 0.97). Under high evaporative demand conditions, the rate of water potential decrease was between 250 and 700 kilopascals in the first minute after excision. These results show that the thermocouple psychrometer can be used as a dynamic and nondestructive field technique for monitoring leaf water potential.

  1. Psychrometric Field Measurement of Water Potential Changes following Leaf Excision 1

    PubMed Central

    Savage, Michael J.; Cass, Alfred

    1984-01-01

    In situ measurement of sudden leaf water potential changes has not been performed under field conditions. A laboratory investigation involving the measurement of leaf water potential prior to and 2 to 200 minutes after excision of citrus leaves (Citrus jambhiri) showed good linear correlation (r = 0.99) between in situ leaf psychrometer and Scholander pressure chamber measurements. Following this, a field investigation was conducted which involved psychrometric measurement prior to petiole excision and 1 minute after excision. Simultaneous pressure chamber measurements were performed on neighboring leaves prior to the time of excision and then on the psychrometer leaf about 2 minutes after excision. These data indicate that within the first 2 minutes after excision, psychrometer and pressure chamber measurements were linearly correlated (r = 0.97). Under high evaporative demand conditions, the rate of water potential decrease was between 250 and 700 kilopascals in the first minute after excision. These results show that the thermocouple psychrometer can be used as a dynamic and nondestructive field technique for monitoring leaf water potential. PMID:16663394

  2. Nobiletin attenuates neurotoxic mitochondrial calcium overload through K+ influx and ΔΨm across mitochondrial inner membrane.

    PubMed

    Lee, Ji Hyung; Amarsanaa, Khulan; Wu, Jinji; Jeon, Sang-Chan; Cui, Yanji; Jung, Sung-Cherl; Park, Deok-Bae; Kim, Se-Jae; Han, Sang-Heon; Kim, Hyun-Wook; Rhyu, Im Joo; Eun, Su-Yong

    2018-05-01

    Mitochondrial calcium overload is a crucial event in determining the fate of neuronal cell survival and death, implicated in pathogenesis of neurodegenerative diseases. One of the driving forces of calcium influx into mitochondria is mitochondria membrane potential (ΔΨ m ). Therefore, pharmacological manipulation of ΔΨ m can be a promising strategy to prevent neuronal cell death against brain insults. Based on these issues, we investigated here whether nobiletin, a Citrus polymethoxylated flavone, prevents neurotoxic neuronal calcium overload and cell death via regulating basal ΔΨ m against neuronal insult in primary cortical neurons and pure brain mitochondria isolated from rat cortices. Results demonstrated that nobiletin treatment significantly increased cell viability against glutamate toxicity (100 µM, 20 min) in primary cortical neurons. Real-time imaging-based fluorometry data reveal that nobiletin evokes partial mitochondrial depolarization in these neurons. Nobiletin markedly attenuated mitochondrial calcium overload and reactive oxygen species (ROS) generation in glutamate (100 µM)-stimulated cortical neurons and isolated pure mitochondria exposed to high concentration of Ca 2+ (5 µM). Nobiletin-induced partial mitochondrial depolarization in intact neurons was confirmed in isolated brain mitochondria using a fluorescence microplate reader. Nobiletin effects on basal ΔΨ m were completely abolished in K + -free medium on pure isolated mitochondria. Taken together, results demonstrate that K + influx into mitochondria is critically involved in partial mitochondrial depolarization-related neuroprotective effect of nobiletin. Nobiletin-induced mitochondrial K + influx is probably mediated, at least in part, by activation of mitochondrial K + channels. However, further detailed studies should be conducted to determine exact molecular targets of nobiletin in mitochondria.

  3. New insights about excisable pathogenicity islands in Salmonella and their contribution to virulence.

    PubMed

    Nieto, Pamela A; Pardo-Roa, Catalina; Salazar-Echegarai, Francisco J; Tobar, Hugo E; Coronado-Arrázola, Irenice; Riedel, Claudia A; Kalergis, Alexis M; Bueno, Susan M

    2016-05-01

    Pathogenicity islands (PAIs) are regions of the chromosome of pathogenic bacteria that harbor virulence genes, which were probably acquired by lateral gene transfer. Several PAIs can excise from the bacterial chromosome by site-specific recombination and in this review have been denominated "excisable PAIs". Here, the characteristic of some of the excisable PAIs from Salmonella enterica and the possible role and impact of the excision process on bacterial virulence is discussed. Understanding the role of PAI excision could provide important insights relative to the emergence, evolution and virulence of pathogenic enterobacteria. Copyright © 2016 Institut Pasteur. Published by Elsevier Masson SAS. All rights reserved.

  4. Arthroscopic excision of ganglion cysts.

    PubMed

    Bontempo, Nicholas A; Weiss, Arnold-Peter C

    2014-02-01

    Arthroscopy is an advancing field in orthopedics, the applications of which have been expanding over time. Traditionally, excision of ganglion cysts has been done in an open fashion. However, more recently, studies show outcomes following arthroscopic excision to be as good as open excision. Cosmetically, the incisions are smaller and heal faster following arthroscopy. In addition, there is the suggested benefit that patients will regain function and return to work faster following arthroscopic excision. More prospective studies comparing open and arthroscopic excision of ganglion cysts need to be done in order to delineate if there is a true functional benefit. Copyright © 2014 Elsevier Inc. All rights reserved.

  5. Staged margin-controlled excision (SMEX) for lentigo maligna melanoma in situ.

    PubMed

    Beveridge, Julie; Taher, Muba; Zhu, Jay; Mahmood, Muhammad N; Salopek, Thomas G

    2018-06-24

    No consensus exists regarding the best surgical strategy to achieve clear surgical margins while minimizing tissue excision when definitely excising lentigo maligna melanoma in situ (LM). The staged margin controlled excision (SMEX) technique is a modification of the spaghetti technique that allows surgeons to minimize margins and ensure complete excision of LM. Our objectives were twofold: a) to evaluate the effectiveness of SMEX for treatment of LM and b) detail the SMEX technique. A retrospective chart review of adult patients who underwent the SMEX technique for treatment of LM from 2011 to 2016 was conducted. Twenty-four patients were identified with predominantly facial lesions. The mean defect size was 12.1 cm 2 . A mean number of two SMEX procedures, with an average margin of 9 mm, were required to obtain complete excision of the LM. Using SMEX, we achieved 100% clearance of LM over a median follow up period of 18 months, with a range of 1-63 months. SMEX offers a reliable surgical excision method that ensures complete excision of LM in a cosmetically sensitive manner. The recurrence outcomes of SMEX are comparable, if not better, than those of alternative excision techniques in the literature. © 2018 Wiley Periodicals, Inc.

  6. 75 FR 9359 - Drawback of Internal Revenue Excise Tax

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-03-02

    ... Drawback of Internal Revenue Excise Tax AGENCY: Customs and Border Protection, Department of Homeland... substitution drawback claim for internal revenue excise tax paid on imported merchandise in situations where no excise tax was paid upon the substituted merchandise or where the substituted merchandise is the subject...

  7. 77 FR 43157 - Disregarded Entities and the Indoor Tanning Services Excise Tax; Correction

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-07-24

    ... Disregarded Entities and the Indoor Tanning Services Excise Tax; Correction AGENCY: Internal Revenue Service... disregarded entities (including qualified subchapter S subsidiaries) and the indoor tanning services excise... with respect to the indoor tanning services excise tax--(A) In general. Notwithstanding any other...

  8. Who pays the most cigarette tax in Turkey.

    PubMed

    Önder, Zeynep; Yürekli, Ayda A

    2016-01-01

    Although higher taxation of tobacco products is considered the most cost-effective tobacco control policy, its negative impact on low-income groups is one of the arguments used against it. To investigate the impact of current excise taxes and the increases of excise taxes on tobacco and household expenditures by expenditure tertiles, and examine who pays excise taxes in general. Impacts of excise taxes on cigarettes are examined with a budgetary approach. We first estimate the price elasticity of cigarettes by expenditure tertiles using data from the 2003 Turkish Household Expenditure Survey, the most recent data set covering detailed tobacco product information relevant to our analysis. We then conduct a number of simulation analyses by increasing the excise taxes per pack of cigarettes and examine the impacts of these increases on household expenditures. Finally, as excise tax increases, we predict the total excise tax paid by households in different expenditure tertiles and compare the concentration curve of excise tax spending with the Lorenz curve showing the cumulative share of total household expenditures by expenditure tertiles. We estimate the progressivity coefficient that measures the area between the Lorenz and concentration curves. The low-income group is found to be the most sensitive to tax and price increases. It spends a relatively higher share of the household expenditure on cigarettes compared with higher income groups. However, the results suggest a different outcome as excise tax increases; the share of household expenditures spent on cigarettes declines for all household tertiles but a significant reduction occurs on the lowest expenditure tertile, suggesting that increases in excise taxes are progressive. Furthermore, the highest expenditure tertile pays the highest excise tax among expenditure tertiles, and their share in total excise revenue increases as the excise tax per pack of cigarettes increases. The poor smoking households benefit the most from increases in excise taxes; from a budgetary perspective, as they reduce their smoking consumption significantly, the share of their excise payment in total household expenditures declines. From a health perspective, they are likely to have more health benefits as their consumption reduces. Government revenues are also predicted to increase with increased excise taxes, and the government can allocate a part of these revenue increases on implementing and enforcing other tobacco control measures including cessation support and smoke-free environments. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/

  9. Adaptation of Microplate-based Respirometry for Hippocampal Slices and Analysis of Respiratory Capacity

    PubMed Central

    Schuh, Rosemary A.; Clerc, Pascaline; Hwang, Hyehyun; Mehrabian, Zara; Bittman, Kevin; Chen, Hegang; Polster, Brian M.

    2011-01-01

    Multiple neurodegenerative disorders are associated with altered mitochondrial bioenergetics. Although mitochondrial O2 consumption is frequently measured in isolated mitochondria, isolated synaptic nerve terminals (synaptosomes), or cultured cells, the absence of mature brain circuitry is a remaining limitation. Here we describe the development of a method that adapts the Seahorse Extracellular Flux Analyzer (XF24) for the microplate-based measurement of hippocampal slice O2 consumption. As a first evaluation of the technique, we compared whole slice bioenergetics to previous measurements made with synaptosomes or cultured neurons. We found that mitochondrial respiratory capacity and O2 consumption coupled to ATP synthesis could be estimated in cultured or acute hippocampal slices with preserved neural architecture. Mouse organotypic hippocampal slices oxidizing glucose displayed mitochondrial O2 consumption that was well-coupled, as determined by the sensitivity to the ATP synthase inhibitor oligomycin. However stimulation of respiration by uncoupler was modest (<120% of basal respiration) compared to previous measurements in cells or synaptosomes, although enhanced slightly (to ~150% of basal respiration) by the acute addition of the mitochondrial complex I-linked substrate pyruvate. These findings suggest a high basal utilization of respiratory capacity in slices and a limitation of glucose-derived substrate for maximal respiration. The improved throughput of microplate-based hippocampal respirometry over traditional O2 electrode-based methods is conducive to neuroprotective drug screening. When coupled with cell type-specific pharmacology or genetic manipulations, the ability to efficiently measure O2 consumption from whole slices should advance our understanding of mitochondrial roles in physiology and neuropathology. PMID:21520220

  10. Clinical mitochondrial genetics

    PubMed Central

    Chinnery, P.; Howell, N.; Andrews, R.; Turnbull, D.

    1999-01-01

    The last decade has been an age of enlightenment as far as mitochondrial pathology is concerned. Well established nuclear genetic diseases, such as Friedreich's ataxia,12 Wilson disease,3 and autosomal recessive hereditary spastic paraplegia,4 have been shown to have a mitochondrial basis, and we are just starting to unravel the complex nuclear genetic disorders which directly cause mitochondrial dysfunction (table 1). However, in addition to the 3 billion base pair nuclear genome, each human cell typically contains thousands of copies of a small, 16.5 kb circular molecule of double stranded DNA (fig 1). Mitochondrial DNA (mtDNA) accounts for only 1% of the total cellular nucleic acid content. It encodes for 13 polypeptides which are essential for aerobic metabolism and defects of the mitochondrial genome are an important cause of human disease.9293 Since the characterisation of the first pathogenic mtDNA defects in 1988,513 over 50 point mutations and well over 100 rearrangements of the mitochondrial genome have been associated with human disease9495 (http://www.gen.emory.edu/mitomap.html). These disorders form the focus of this article.


Keywords: mitochondrial DNA; mitochondrial disease; heteroplasmy; genetic counselling PMID:10874629

  11. Optimizing the measurement of mitochondrial protein synthesis in human skeletal muscle.

    PubMed

    Burd, Nicholas A; Tardif, Nicolas; Rooyackers, Olav; van Loon, Luc J C

    2015-01-01

    The measurement of mitochondrial protein synthesis after food ingestion, contractile activity, and/or disease is often used to provide insight into skeletal muscle adaptations that occur in the longer term. Studies have shown that protein ingestion stimulates mitochondrial protein synthesis in human skeletal muscle. Minor differences in the stimulation of mitochondrial protein synthesis occur after a single bout of resistance or endurance exercise. There appear to be no measurable differences in mitochondrial protein synthesis between critically ill patients and aged-matched controls. However, the mitochondrial protein synthetic response is reduced at a more advanced age. In this paper, we discuss the challenges involved in the measurement of human skeletal muscle mitochondrial protein synthesis rates based on stable isotope amino acid tracer methods. Practical guidelines are discussed to improve the reliability of the measurement of mitochondrial protein synthesis rates. The value of the measurement of mitochondrial protein synthesis after a single meal or exercise bout on the prediction of the longer term skeletal muscle mass and performance outcomes in both the healthy and disease populations requires more work, but we emphasize that the measurements need to be reliable to be of any value to the field.

  12. Overexpression of the base excision repair NTHL1 glycosylase causes genomic instability and early cellular hallmarks of cancer

    PubMed Central

    Limpose, Kristin L; Trego, Kelly S; Li, Zhentian; Leung, Sara W; Sarker, Altaf H; Shah, Jason A; Ramalingam, Suresh S; Werner, Erica M; Dynan, William S; Cooper, Priscilla K; Corbett, Anita H; Doetsch, Paul W

    2018-01-01

    Abstract Base excision repair (BER), which is initiated by DNA N-glycosylase proteins, is the frontline for repairing potentially mutagenic DNA base damage. The NTHL1 glycosylase, which excises DNA base damage caused by reactive oxygen species, is thought to be a tumor suppressor. However, in addition to NTHL1 loss-of-function mutations, our analysis of cancer genomic datasets reveals that NTHL1 frequently undergoes amplification or upregulation in some cancers. Whether NTHL1 overexpression could contribute to cancer phenotypes has not yet been explored. To address the functional consequences of NTHL1 overexpression, we employed transient overexpression. Both NTHL1 and a catalytically-dead NTHL1 (CATmut) induce DNA damage and genomic instability in non-transformed human bronchial epithelial cells (HBEC) when overexpressed. Strikingly, overexpression of either NTHL1 or CATmut causes replication stress signaling and a decrease in homologous recombination (HR). HBEC cells that overexpress NTHL1 or CATmut acquire the ability to grow in soft agar and exhibit loss of contact inhibition, suggesting that a mechanism independent of NTHL1 catalytic activity contributes to acquisition of cancer-related cellular phenotypes. We provide evidence that NTHL1 interacts with the multifunctional DNA repair protein XPG suggesting that interference with HR is a possible mechanism that contributes to acquisition of early cellular hallmarks of cancer. PMID:29522130

  13. Mobilization of the rectum: anatomic concepts and the bookshelf revisited.

    PubMed

    Chapuis, Pierre; Bokey, Les; Fahrer, Marius; Sinclair, Gael; Bogduk, Nikolai

    2002-01-01

    Sound surgical technique is based on accurate anatomic knowledge. In surgery for cancer, the anatomy of the perirectal fascia and the retrorectal plane is the basis for correct mobilization of the rectum to ensure clear surgical margins and to minimize the risk of local recurrence. This review of the literature on the perirectal fascia is based on a translation of the original description by Thoma Jonnesco and a later account by Wilhelm Waldeyer. The Jonnesco description, first published in 1896 in French, is compared with the German account of 1899. These were critically analyzed in the context of our own and other techniques of mobilizing the rectum. Mobilization of the rectum for cancer can be performed along anatomic planes with minimal blood loss, preservation of the pelvic autonomic nerves and a low prevalence of local recurrence. Different techniques including total mesorectal excision are based on the same anatomic principles, however, popular words have been used to replace accepted, established terminology. In particular, the description of total mesorectal excision has been confusing because of its emphasis on the words "total" and "mesorectum." The use of the word "mesorectum" anatomically is inaccurate and the implication that total excision of all the perirectal fat contained within the perirectal fascia "en bloc" in all patients with rectal cancer will minimize local recurrence remains contentious.

  14. Mitochondrial dysfunction in blood cells from amyotrophic lateral sclerosis patients.

    PubMed

    Ehinger, Johannes K; Morota, Saori; Hansson, Magnus J; Paul, Gesine; Elmér, Eskil

    2015-06-01

    Mitochondrial dysfunction is implicated in amyotrophic lateral sclerosis, where the progressive degeneration of motor neurons results in muscle atrophy, paralysis and death. Abnormalities in both central nervous system and muscle mitochondria have previously been demonstrated in patient samples, indicating systemic disease. In this case-control study, venous blood samples were acquired from 24 amyotrophic lateral sclerosis patients and 21 age-matched controls. Platelets and peripheral blood mononuclear cells were isolated and mitochondrial oxygen consumption measured in intact and permeabilized cells with additions of mitochondrial substrates, inhibitors and titration of an uncoupler. Respiratory values were normalized to cell count and for two markers of cellular mitochondrial content, citrate synthase activity and mitochondrial DNA, respectively. Mitochondrial function was correlated with clinical staging of disease severity. Complex IV (cytochrome c-oxidase)-activity normalized to mitochondrial content was decreased in platelets from amyotrophic lateral sclerosis patients both when normalized to citrate synthase activity and mitochondrial DNA copy number. In mononuclear cells, complex IV-activity was decreased when normalized to citrate synthase activity. Mitochondrial content was increased in amyotrophic lateral sclerosis patient platelets. In mononuclear cells, complex I activity declined and mitochondrial content increased progressively with advancing disease stage. The findings are, however, based on small subsets of patients and need to be confirmed. We conclude that when normalized to mitochondria-specific content, complex IV-activity is reduced in blood cells from amyotrophic lateral sclerosis patients and that there is an apparent compensatory increase in cellular mitochondrial content. This supports systemic involvement in amyotrophic lateral sclerosis and suggests further study of mitochondrial function in blood cells as a future biomarker for the disease.

  15. Historical introgression drives pervasive mitochondrial admixture between two species of pelagic sharks.

    PubMed

    Corrigan, Shannon; Maisano Delser, Pierpaolo; Eddy, Corey; Duffy, Clinton; Yang, Lei; Li, Chenhong; Bazinet, Adam L; Mona, Stefano; Naylor, Gavin J P

    2017-05-01

    We use a genomic sampling of both nuclear and mitochondrial DNA markers to examine a pattern of genetic admixture between Carcharhinus galapagensis (Galapagos sharks) and Carcharhinus obscurus (dusky sharks), two well-known and closely related sharks that have been recognized as valid species for more than 100years. We describe widespread mitochondrial-nuclear discordance in which these species are readily distinguishable based on 2152 nuclear single nucleotide polymorphisms from 910 independent autosomal regions, but show pervasive mitochondrial admixture. The species are superficially morphologically cryptic as adults but show marked differences in internal anatomy, as well as niche separation. There was no indication of ongoing hybridization between the species. We conclude that the observed mitochondrial-nuclear discordance is likely due to historical mitochondrial introgression following a range expansion. Copyright © 2017 Elsevier Inc. All rights reserved.

  16. Substrate- and isoform-specific proteome stability in normal and stressed cardiac mitochondria.

    PubMed

    Lau, Edward; Wang, Ding; Zhang, Jun; Yu, Hongxiu; Lam, Maggie P Y; Liang, Xiangbo; Zong, Nobel; Kim, Tae-Young; Ping, Peipei

    2012-04-27

    Mitochondrial protein homeostasis is an essential component of the functions and oxidative stress responses of the heart. To determine the specificity and efficiency of proteome turnover of the cardiac mitochondria by endogenous and exogenous proteolytic mechanisms. Proteolytic degradation of the murine cardiac mitochondria was assessed by 2-dimensional differential gel electrophoresis and liquid chromatography-tandem mass spectrometry. Mitochondrial proteases demonstrated a substrate preference for basic protein variants, which indicates a possible recognition mechanism based on protein modifications. Endogenous mitochondrial proteases and the cytosolic 20S proteasome exhibited different substrate specificities. The cardiac mitochondrial proteome contains low amounts of proteases and is remarkably stable in isolation. Oxidative damage lowers the proteolytic capacity of cardiac mitochondria and reduces substrate availability for mitochondrial proteases. The 20S proteasome preferentially degrades specific substrates in the mitochondria and may contribute to cardiac mitochondrial proteostasis.

  17. A fiber optic sensor for ophthalmic refractive diagnostics

    NASA Technical Reports Server (NTRS)

    Ansari, Rafat R.; Dhadwal, Harbans S.; Campbell, Melanie C. W.; Dellavecchia, Michael A.

    1992-01-01

    This paper demonstrates the application of a lensless fiber optic spectrometer (sensor) to study the onset of cataracts. This new miniaturized and rugged fiber optic probe is based upon dynamic light scattering (DLS) principles. It has no moving parts, no apertures, and requires no optical alignment. It is flexible and easy to use. Results are presented for cold-induced cataract in excised bovine eye lenses, and aging effects in excised human eye lenses. The device can be easily incorporated into a slit-lamp apparatus (ophthalmoscope) for complete eye diagnostics.

  18. 26 CFR 53.4955-1 - Tax on political expenditures.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 26 Internal Revenue 17 2010-04-01 2010-04-01 false Tax on political expenditures. 53.4955-1...) MISCELLANEOUS EXCISE TAXES (CONTINUED) FOUNDATION AND SIMILAR EXCISE TAXES Second Tier Excise Taxes § 53.4955-1 Tax on political expenditures. (a) Relationship between section 4955 excise taxes and substantive...

  19. 26 CFR 55.4982-1 - Imposition of excise tax on undistributed income of regulated investment companies.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... income of regulated investment companies. 55.4982-1 Section 55.4982-1 Internal Revenue INTERNAL REVENUE SERVICE, DEPARTMENT OF THE TREASURY (CONTINUED) MISCELLANEOUS EXCISE TAXES (CONTINUED) EXCISE TAX ON REAL ESTATE INVESTMENT TRUSTS AND REGULATED INVESTMENT COMPANIES Excise Tax on Regulated Investment Companies...

  20. 26 CFR 55.4982-1 - Imposition of excise tax on undistributed income of regulated investment companies.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... income of regulated investment companies. 55.4982-1 Section 55.4982-1 Internal Revenue INTERNAL REVENUE SERVICE, DEPARTMENT OF THE TREASURY (CONTINUED) MISCELLANEOUS EXCISE TAXES (CONTINUED) EXCISE TAX ON REAL ESTATE INVESTMENT TRUSTS AND REGULATED INVESTMENT COMPANIES Excise Tax on Regulated Investment Companies...

  1. 26 CFR 55.4982-1 - Imposition of excise tax on undistributed income of regulated investment companies.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... income of regulated investment companies. 55.4982-1 Section 55.4982-1 Internal Revenue INTERNAL REVENUE SERVICE, DEPARTMENT OF THE TREASURY (CONTINUED) MISCELLANEOUS EXCISE TAXES (CONTINUED) EXCISE TAX ON REAL ESTATE INVESTMENT TRUSTS AND REGULATED INVESTMENT COMPANIES Excise Tax on Regulated Investment Companies...

  2. 26 CFR 55.4982-1 - Imposition of excise tax on undistributed income of regulated investment companies.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... income of regulated investment companies. 55.4982-1 Section 55.4982-1 Internal Revenue INTERNAL REVENUE SERVICE, DEPARTMENT OF THE TREASURY (CONTINUED) MISCELLANEOUS EXCISE TAXES (CONTINUED) EXCISE TAX ON REAL ESTATE INVESTMENT TRUSTS AND REGULATED INVESTMENT COMPANIES Excise Tax on Regulated Investment Companies...

  3. 26 CFR 55.4982-1 - Imposition of excise tax on undistributed income of regulated investment companies.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... income of regulated investment companies. 55.4982-1 Section 55.4982-1 Internal Revenue INTERNAL REVENUE SERVICE, DEPARTMENT OF THE TREASURY (CONTINUED) MISCELLANEOUS EXCISE TAXES (CONTINUED) EXCISE TAX ON REAL ESTATE INVESTMENT TRUSTS AND REGULATED INVESTMENT COMPANIES Excise Tax on Regulated Investment Companies...

  4. 77 FR 37838 - Disregarded Entities and the Indoor Tanning Services Excise Tax

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-06-25

    ... 1545-BK38 Disregarded Entities and the Indoor Tanning Services Excise Tax AGENCY: Internal Revenue... the indoor tanning services excise tax. These regulations affect disregarded entities responsible for collecting the indoor tanning services excise tax and owners of those disregarded entities. The text of the...

  5. Abnormal permeability of inner and outer mitochondrial membranes contributes independently to mitochondrial dysfunction in the liver during acute endotoxemia.

    PubMed

    Crouser, Elliott D; Julian, Mark W; Huff, Jennifer E; Joshi, Mandar S; Bauer, John A; Gadd, Martha E; Wewers, Mark D; Pfeiffer, Douglas R

    2004-02-01

    This study was designed to determine the role played by the mitochondrial permeability transition in the pathogenesis of mitochondrial damage and dysfunction in a representative systemic organ during the acute phase of endotoxemia. A well-established, normotensive feline model was employed to determine whether pretreatment with cyclosporine A, a potent inhibitor of the mitochondrial permeability transition, normalizes mitochondrial ultrastructural injury and dysfunction in the liver during acute endotoxemia. The Ohio State University Medical Center research laboratory. Random source, adult, male conditioned cats. Hemodynamic resuscitation and maintenance of acid-base balance and tissue oxygen availability were provided, as needed, to minimize the potentially confounding effects of tissue hypoxia and/or acidosis on the experimental results. Treatment groups received isotonic saline vehicle (control; n = 6), lipopolysaccharide (3.0 mg/kg, intravenously; n = 8), or cyclosporine A (6.0 mg/kg, intravenously; n = 6) or tacrolimus (FK506, 0.1 mg/kg, intravenously; n = 4) followed in 30 mins by lipopolysaccharide (3.0 mg/kg, intravenously). Liver samples were obtained 4 hrs posttreatment, and mitochondrial ultrastructure, function, and cytochrome c, Bax, and ceramide contents were assessed. As expected, significant mitochondrial injury was apparent in the liver 4 hrs after lipopolysaccharide treatment, despite maintenance of regional tissue oxygen availability. Namely, mitochondria demonstrated high-amplitude swelling and exhibited altered respiratory function. Cyclosporine A pretreatment attenuated lipopolysaccharide-induced mitochondrial ultrastructural abnormalities and normalized mitochondrial respiratory control, reflecting protection against inner mitochondrial membrane damage. However, an abnormal permeability of outer mitochondrial membranes to cytochrome c was observed in all lipopolysaccharide-treated groups and was associated with increased mitochondrial concentrations of Bax and ceramide. These studies confirm that liver mitochondria are early targets of injury during endotoxemia and that inner and outer mitochondrial membrane damage occurs through different mechanisms. Inner mitochondrial membrane damage appears to relate to the mitochondrial permeability transition, whereas outer mitochondrial membrane damage can occur independent of the mitochondrial permeability transition. Preliminary evidence suggests that Bax may participate in lipopolysaccharide-induced outer mitochondrial membrane damage, but further investigations are needed to confirm this.

  6. Oxidatively-induced DNA damage and base excision repair in euthymic patients with bipolar disorder.

    PubMed

    Ceylan, Deniz; Tuna, Gamze; Kirkali, Güldal; Tunca, Zeliha; Can, Güneş; Arat, Hidayet Ece; Kant, Melis; Dizdaroglu, Miral; Özerdem, Ayşegül

    2018-05-01

    Oxidatively-induced DNA damage has previously been associated with bipolar disorder. More recently, impairments in DNA repair mechanisms have also been reported. We aimed to investigate oxidatively-induced DNA lesions and expression of DNA glycosylases involved in base excision repair in euthymic patients with bipolar disorder compared to healthy individuals. DNA base lesions including both base and nucleoside modifications were measured using gas chromatography-tandem mass spectrometry and liquid chromatography-tandem mass spectrometry with isotope-dilution in DNA samples isolated from leukocytes of euthymic patients with bipolar disorder (n = 32) and healthy individuals (n = 51). The expression of DNA repair enzymes OGG1 and NEIL1 were measured using quantitative real-time polymerase chain reaction. The levels of malondialdehyde were measured using high performance liquid chromatography. Seven DNA base lesions in DNA of leukocytes of patients and healthy individuals were identified and quantified. Three of them had significantly elevated levels in bipolar patients when compared to healthy individuals. No elevation of lipid peroxidation marker malondialdehyde was observed. The level of OGG1 expression was significantly reduced in bipolar patients compared to healthy individuals, whereas the two groups exhibited similar levels of NEIL1 expression. Our results suggest that oxidatively-induced DNA damage occurs and base excision repair capacity may be decreased in bipolar patients when compared to healthy individuals. Measurement of oxidatively-induced DNA base lesions and the expression of DNA repair enzymes may be of great importance for large scale basic research and clinical studies of bipolar disorder. Copyright © 2018 Elsevier B.V. All rights reserved.

  7. Resolution of vitiligo following excision of halo congenital melanocytic nevus: a rare case report.

    PubMed

    Wang, Kai; Wang, Zhi; Huang, Weiqing

    2016-05-01

    Halo congenital melanocytic nevus (CMN) associated with vitiligo is rare, especially with regard to CMN excision. Only two reports of excision of halo CMN following repigmentation of vitiligo are found in the literature. We present a case of a girl with halo CMN and periorbital vitiligo. The halo CMN was excised and followed by spontaneous improvement of vitiligo. The result suggests excision of the inciting lesion may be a promising way to control vitiligo. © 2015 Wiley Periodicals, Inc.

  8. Differential expression of the nuclear-encoded mitochondrial transcriptome in pediatric septic shock.

    PubMed

    Weiss, Scott L; Cvijanovich, Natalie Z; Allen, Geoffrey L; Thomas, Neal J; Freishtat, Robert J; Anas, Nick; Meyer, Keith; Checchia, Paul A; Shanley, Thomas P; Bigham, Michael T; Fitzgerald, Julie; Banschbach, Sharon; Beckman, Eileen; Howard, Kelli; Frank, Erin; Harmon, Kelli; Wong, Hector R

    2014-11-19

    Increasing evidence supports a role for mitochondrial dysfunction in organ injury and immune dysregulation in sepsis. Although differential expression of mitochondrial genes in blood cells has been reported for several diseases in which bioenergetic failure is a postulated mechanism, there are no data about the blood cell mitochondrial transcriptome in pediatric sepsis. We conducted a focused analysis using a multicenter genome-wide expression database of 180 children ≤ 10 years of age with septic shock and 53 healthy controls. Using total RNA isolated from whole blood within 24 hours of PICU admission for septic shock, we evaluated 296 nuclear-encoded mitochondrial genes using a false discovery rate of 1%. A series of bioinformatic approaches were applied to compare differentially expressed genes across previously validated gene expression-based subclasses (groups A, B, and C) of pediatric septic shock. In total, 118 genes were differentially regulated in subjects with septic shock compared to healthy controls, including 48 genes that were upregulated and 70 that were downregulated. The top scoring canonical pathway was oxidative phosphorylation, with general downregulation of the 51 genes corresponding to the electron transport system (ETS). The top two gene networks were composed primarily of mitochondrial ribosomal proteins highly connected to ETS complex I, and genes encoding for ETS complexes I, II, and IV that were highly connected to the peroxisome proliferator activated receptor (PPAR) family. There were 162 mitochondrial genes differentially regulated between groups A, B, and C. Group A, which had the highest maximum number of organ failures and mortality, exhibited a greater downregulation of mitochondrial genes compared to groups B and C. Based on a focused analysis of a pediatric septic shock transcriptomic database, nuclear-encoded mitochondrial genes were differentially regulated early in pediatric septic shock compared to healthy controls, as well as across genotypic and phenotypic distinct pediatric septic shock subclasses. The nuclear genome may be an important mechanism contributing to alterations in mitochondrial bioenergetic function and outcomes in pediatric sepsis.

  9. Quantifying small molecule phenotypic effects using mitochondrial morpho-functional fingerprinting and machine learning.

    PubMed

    Blanchet, Lionel; Smeitink, Jan A M; van Emst-de Vries, Sjenet E; Vogels, Caroline; Pellegrini, Mina; Jonckheere, An I; Rodenburg, Richard J T; Buydens, Lutgarde M C; Beyrath, Julien; Willems, Peter H G M; Koopman, Werner J H

    2015-01-26

    In primary fibroblasts from Leigh Syndrome (LS) patients, isolated mitochondrial complex I deficiency is associated with increased reactive oxygen species levels and mitochondrial morpho-functional changes. Empirical evidence suggests these aberrations constitute linked therapeutic targets for small chemical molecules. However, the latter generally induce multiple subtle effects, meaning that in vitro potency analysis or single-parameter high-throughput cell screening are of limited use to identify these molecules. We combine automated image quantification and artificial intelligence to discriminate between primary fibroblasts of a healthy individual and a LS patient based upon their mitochondrial morpho-functional phenotype. We then evaluate the effects of newly developed Trolox variants in LS patient cells. This revealed that Trolox ornithylamide hydrochloride best counterbalanced mitochondrial morpho-functional aberrations, effectively scavenged ROS and increased the maximal activity of mitochondrial complexes I, IV and citrate synthase. Our results suggest that Trolox-derived antioxidants are promising candidates in therapy development for human mitochondrial disorders.

  10. Multi-focal control of mitochondrial gene expression by oncogenic MYC provides potential therapeutic targets in cancer

    PubMed Central

    Oran, Amanda R.; Adams, Clare M.; Zhang, Xiao-yong; Gennaro, Victoria J.; Pfeiffer, Harla K.; Mellert, Hestia S.; Seidel, Hans E.; Mascioli, Kirsten; Kaplan, Jordan; Gaballa, Mahmoud R.; Shen, Chen; Rigoutsos, Isidore; King, Michael P.; Cotney, Justin L.; Arnold, Jamie J.; Sharma, Suresh D.; Martinez, Ubaldo E.; Vakoc, Christopher R.; Chodosh, Lewis A.; Thompson, James E.; Bradner, James E.; Cameron, Craig E.; Shadel, Gerald S.; Eischen, Christine M.; McMahon, Steven B.

    2016-01-01

    Despite ubiquitous activation in human cancer, essential downstream effector pathways of the MYC transcription factor have been difficult to define and target. Using a structure/function-based approach, we identified the mitochondrial RNA polymerase (POLRMT) locus as a critical downstream target of MYC. The multifunctional POLRMT enzyme controls mitochondrial gene expression, a process required both for mitochondrial function and mitochondrial biogenesis. We further demonstrate that inhibition of this newly defined MYC effector pathway causes robust and selective tumor cell apoptosis, via an acute, checkpoint-like mechanism linked to aberrant electron transport chain complex assembly and mitochondrial reactive oxygen species (ROS) production. Fortuitously, MYC-dependent tumor cell death can be induced by inhibiting the mitochondrial gene expression pathway using a variety of strategies, including treatment with FDA-approved antibiotics. In vivo studies using a mouse model of Burkitt's Lymphoma provide pre-clinical evidence that these antibiotics can successfully block progression of MYC-dependent tumors. PMID:27590350

  11. Multi-focal control of mitochondrial gene expression by oncogenic MYC provides potential therapeutic targets in cancer.

    PubMed

    Oran, Amanda R; Adams, Clare M; Zhang, Xiao-Yong; Gennaro, Victoria J; Pfeiffer, Harla K; Mellert, Hestia S; Seidel, Hans E; Mascioli, Kirsten; Kaplan, Jordan; Gaballa, Mahmoud R; Shen, Chen; Rigoutsos, Isidore; King, Michael P; Cotney, Justin L; Arnold, Jamie J; Sharma, Suresh D; Martinez-Outschoorn, Ubaldo E; Vakoc, Christopher R; Chodosh, Lewis A; Thompson, James E; Bradner, James E; Cameron, Craig E; Shadel, Gerald S; Eischen, Christine M; McMahon, Steven B

    2016-11-08

    Despite ubiquitous activation in human cancer, essential downstream effector pathways of the MYC transcription factor have been difficult to define and target. Using a structure/function-based approach, we identified the mitochondrial RNA polymerase (POLRMT) locus as a critical downstream target of MYC. The multifunctional POLRMT enzyme controls mitochondrial gene expression, a process required both for mitochondrial function and mitochondrial biogenesis. We further demonstrate that inhibition of this newly defined MYC effector pathway causes robust and selective tumor cell apoptosis, via an acute, checkpoint-like mechanism linked to aberrant electron transport chain complex assembly and mitochondrial reactive oxygen species (ROS) production. Fortuitously, MYC-dependent tumor cell death can be induced by inhibiting the mitochondrial gene expression pathway using a variety of strategies, including treatment with FDA-approved antibiotics. In vivo studies using a mouse model of Burkitt's Lymphoma provide pre-clinical evidence that these antibiotics can successfully block progression of MYC-dependent tumors.

  12. Quantifying small molecule phenotypic effects using mitochondrial morpho-functional fingerprinting and machine learning

    NASA Astrophysics Data System (ADS)

    Blanchet, Lionel; Smeitink, Jan A. M.; van Emst-de Vries, Sjenet E.; Vogels, Caroline; Pellegrini, Mina; Jonckheere, An I.; Rodenburg, Richard J. T.; Buydens, Lutgarde M. C.; Beyrath, Julien; Willems, Peter H. G. M.; Koopman, Werner J. H.

    2015-01-01

    In primary fibroblasts from Leigh Syndrome (LS) patients, isolated mitochondrial complex I deficiency is associated with increased reactive oxygen species levels and mitochondrial morpho-functional changes. Empirical evidence suggests these aberrations constitute linked therapeutic targets for small chemical molecules. However, the latter generally induce multiple subtle effects, meaning that in vitro potency analysis or single-parameter high-throughput cell screening are of limited use to identify these molecules. We combine automated image quantification and artificial intelligence to discriminate between primary fibroblasts of a healthy individual and a LS patient based upon their mitochondrial morpho-functional phenotype. We then evaluate the effects of newly developed Trolox variants in LS patient cells. This revealed that Trolox ornithylamide hydrochloride best counterbalanced mitochondrial morpho-functional aberrations, effectively scavenged ROS and increased the maximal activity of mitochondrial complexes I, IV and citrate synthase. Our results suggest that Trolox-derived antioxidants are promising candidates in therapy development for human mitochondrial disorders.

  13. A novel motif in the yeast mitochondrial dynamin Dnm1 is essential for adaptor binding and membrane recruitment

    PubMed Central

    Bui, Huyen T.; Karren, Mary A.; Bhar, Debjani

    2012-01-01

    To initiate mitochondrial fission, dynamin-related proteins (DRPs) must bind specific adaptors on the outer mitochondrial membrane. The structural features underlying this interaction are poorly understood. Using yeast as a model, we show that the Insert B domain of the Dnm1 guanosine triphosphatase (a DRP) contains a novel motif required for association with the mitochondrial adaptor Mdv1. Mutation of this conserved motif specifically disrupted Dnm1–Mdv1 interactions, blocking Dnm1 recruitment and mitochondrial fission. Suppressor mutations in Mdv1 that restored Dnm1–Mdv1 interactions and fission identified potential protein-binding interfaces on the Mdv1 β-propeller domain. These results define the first known function for Insert B in DRP–adaptor interactions. Based on the variability of Insert B sequences and adaptor proteins, we propose that Insert B domains and mitochondrial adaptors have coevolved to meet the unique requirements for mitochondrial fission of different organisms. PMID:23148233

  14. The rice mitochondrial iron transporter is essential for plant growth

    PubMed Central

    Bashir, Khurram; Ishimaru, Yasuhiro; Shimo, Hugo; Nagasaka, Seiji; Fujimoto, Masaru; Takanashi, Hideki; Tsutsumi, Nobuhiro; An, Gynheung; Nakanishi, Hiromi; Nishizawa, Naoko K.

    2011-01-01

    In plants, iron (Fe) is essential for mitochondrial electron transport, heme, and Fe-Sulphur (Fe-S) cluster synthesis; however, plant mitochondrial Fe transporters have not been identified. Here we show, identify and characterize the rice mitochondrial Fe transporter (MIT). Based on a transfer DNA library screen, we identified a rice line showing symptoms of Fe deficiency while accumulating high shoot levels of Fe. Homozygous knockout of MIT in this line resulted in a lethal phenotype. MIT localized to the mitochondria and complemented the growth of Δmrs3Δmrs4 yeast defective in mitochondrial Fe transport. The growth of MIT-knockdown (mit-2) plants was also significantly impaired despite abundant Fe accumulation. Further, the decrease in the activity of the mitochondrial and cytosolic Fe-S enzyme, aconitase, indicated that Fe-S cluster synthesis is affected in mit-2 plants. These results indicate that MIT is a mitochondrial Fe transporter essential for rice growth and development. PMID:21610725

  15. State-Specific Liquor Excise Taxes and Retail Prices in Eight U.S. States, 2012

    PubMed Central

    Siegel, Michael; Grundman, Jody; DeJong, William; Naimi, Timothy S.; King, Charles; Albers, Alison B.; Williams, Rebecca S.; Jernigan, David H.

    2013-01-01

    We investigated the relationship between state excise taxes and liquor prices in eight states, using 2012 data for 45 brands. We made 6,042 price observations among 177 liquor stores with online prices. Using a hierarchical model, we examined the relationship between excise taxes and product prices. State excise taxes were significantly related to liquor prices, with an estimated pass-through rate of 0.93. The proportion of price accounted for by excise taxes averaged 7.0%. We find that excise taxes do increase the price of alcohol, but states are not taking advantage of this opportunity to reduce alcohol-related morbidity and mortality. PMID:24159914

  16. State-specific liquor excise taxes and retail prices in 8 US states, 2012.

    PubMed

    Siegel, Michael; Grundman, Jody; DeJong, William; Naimi, Timothy S; King, Charles; Albers, Alison B; Williams, Rebecca S; Jernigan, David H

    2013-01-01

    The authors investigated the relationship between state excise taxes and liquor prices in 8 states, using 2012 data for 45 brands. The authors made 6042 price observations among 177 liquor stores with online prices. Using a hierarchical model, the authors examined the relationship between excise taxes and product prices. State excise taxes were significantly related to liquor prices, with an estimated pass-through rate of 0.93. The proportion of price accounted for by excise taxes averaged 7.0%. The authors find that excise taxes do increase the price of alcohol, but states are not taking advantage of this opportunity to reduce alcohol-related morbidity and mortality.

  17. Mitochondrial Disease Sequence Data Resource (MSeqDR): a global grass-roots consortium to facilitate deposition, curation, annotation, and integrated analysis of genomic data for the mitochondrial disease clinical and research communities.

    PubMed

    Falk, Marni J; Shen, Lishuang; Gonzalez, Michael; Leipzig, Jeremy; Lott, Marie T; Stassen, Alphons P M; Diroma, Maria Angela; Navarro-Gomez, Daniel; Yeske, Philip; Bai, Renkui; Boles, Richard G; Brilhante, Virginia; Ralph, David; DaRe, Jeana T; Shelton, Robert; Terry, Sharon F; Zhang, Zhe; Copeland, William C; van Oven, Mannis; Prokisch, Holger; Wallace, Douglas C; Attimonelli, Marcella; Krotoski, Danuta; Zuchner, Stephan; Gai, Xiaowu

    2015-03-01

    Success rates for genomic analyses of highly heterogeneous disorders can be greatly improved if a large cohort of patient data is assembled to enhance collective capabilities for accurate sequence variant annotation, analysis, and interpretation. Indeed, molecular diagnostics requires the establishment of robust data resources to enable data sharing that informs accurate understanding of genes, variants, and phenotypes. The "Mitochondrial Disease Sequence Data Resource (MSeqDR) Consortium" is a grass-roots effort facilitated by the United Mitochondrial Disease Foundation to identify and prioritize specific genomic data analysis needs of the global mitochondrial disease clinical and research community. A central Web portal (https://mseqdr.org) facilitates the coherent compilation, organization, annotation, and analysis of sequence data from both nuclear and mitochondrial genomes of individuals and families with suspected mitochondrial disease. This Web portal provides users with a flexible and expandable suite of resources to enable variant-, gene-, and exome-level sequence analysis in a secure, Web-based, and user-friendly fashion. Users can also elect to share data with other MSeqDR Consortium members, or even the general public, either by custom annotation tracks or through the use of a convenient distributed annotation system (DAS) mechanism. A range of data visualization and analysis tools are provided to facilitate user interrogation and understanding of genomic, and ultimately phenotypic, data of relevance to mitochondrial biology and disease. Currently available tools for nuclear and mitochondrial gene analyses include an MSeqDR GBrowse instance that hosts optimized mitochondrial disease and mitochondrial DNA (mtDNA) specific annotation tracks, as well as an MSeqDR locus-specific database (LSDB) that curates variant data on more than 1300 genes that have been implicated in mitochondrial disease and/or encode mitochondria-localized proteins. MSeqDR is integrated with a diverse array of mtDNA data analysis tools that are both freestanding and incorporated into an online exome-level dataset curation and analysis resource (GEM.app) that is being optimized to support needs of the MSeqDR community. In addition, MSeqDR supports mitochondrial disease phenotyping and ontology tools, and provides variant pathogenicity assessment features that enable community review, feedback, and integration with the public ClinVar variant annotation resource. A centralized Web-based informed consent process is being developed, with implementation of a Global Unique Identifier (GUID) system to integrate data deposited on a given individual from different sources. Community-based data deposition into MSeqDR has already begun. Future efforts will enhance capabilities to incorporate phenotypic data that enhance genomic data analyses. MSeqDR will fill the existing void in bioinformatics tools and centralized knowledge that are necessary to enable efficient nuclear and mtDNA genomic data interpretation by a range of shareholders across both clinical diagnostic and research settings. Ultimately, MSeqDR is focused on empowering the global mitochondrial disease community to better define and explore mitochondrial diseases. Copyright © 2014 Elsevier Inc. All rights reserved.

  18. Mitochondrial Disease Sequence Data Resource (MSeqDR): A global grass-roots consortium to facilitate deposition, curation, annotation, and integrated analysis of genomic data for the mitochondrial disease clinical and research communities

    PubMed Central

    Falk, Marni J.; Shen, Lishuang; Gonzalez, Michael; Leipzig, Jeremy; Lott, Marie T.; Stassen, Alphons P.M.; Diroma, Maria Angela; Navarro-Gomez, Daniel; Yeske, Philip; Bai, Renkui; Boles, Richard G.; Brilhante, Virginia; Ralph, David; DaRe, Jeana T.; Shelton, Robert; Terry, Sharon; Zhang, Zhe; Copeland, William C.; van Oven, Mannis; Prokisch, Holger; Wallace, Douglas C.; Attimonelli, Marcella; Krotoski, Danuta; Zuchner, Stephan; Gai, Xiaowu

    2014-01-01

    Success rates for genomic analyses of highly heterogeneous disorders can be greatly improved if a large cohort of patient data is assembled to enhance collective capabilities for accurate sequence variant annotation, analysis, and interpretation. Indeed, molecular diagnostics requires the establishment of robust data resources to enable data sharing that informs accurate understanding of genes, variants, and phenotypes. The “Mitochondrial Disease Sequence Data Resource (MSeqDR) Consortium” is a grass-roots effort facilitated by the United Mitochondrial Disease Foundation to identify and prioritize specific genomic data analysis needs of the global mitochondrial disease clinical and research community. A central Web portal (https://mseqdr.org) facilitates the coherent compilation, organization, annotation, and analysis of sequence data from both nuclear and mitochondrial genomes of individuals and families with suspected mitochondrial disease. This Web portal provides users with a flexible and expandable suite of resources to enable variant-, gene-, and exome-level sequence analysis in a secure, Web-based, and user-friendly fashion. Users can also elect to share data with other MSeqDR Consortium members, or even the general public, either by custom annotation tracks or through use of a convenient distributed annotation system (DAS) mechanism. A range of data visualization and analysis tools are provided to facilitate user interrogation and understanding of genomic, and ultimately phenotypic, data of relevance to mitochondrial biology and disease. Currently available tools for nuclear and mitochondrial gene analyses include an MSeqDR GBrowse instance that hosts optimized mitochondrial disease and mitochondrial DNA (mtDNA) specific annotation tracks, as well as an MSeqDR locus-specific database (LSDB) that curates variant data on more than 1,300 genes that have been implicated in mitochondrial disease and/or encode mitochondria-localized proteins. MSeqDR is integrated with a diverse array of mtDNA data analysis tools that are both freestanding and incorporated into an online exome-level dataset curation and analysis resource (GEM.app) that is being optimized to support needs of the MSeqDR community. In addition, MSeqDR supports mitochondrial disease phenotyping and ontology tools, and provides variant pathogenicity assessment features that enable community review, feedback, and integration with the public ClinVar variant annotation resource. A centralized Web-based informed consent process is being developed, with implementation of a Global Unique Identifier (GUID) system to integrate data deposited on a given individual from different sources. Community-based data deposition into MSeqDR has already begun. Future efforts will enhance capabilities to incorporate phenotypic data that enhance genomic data analyses. MSeqDR will fill the existing void in bioinformatics tools and centralized knowledge that are necessary to enable efficient nuclear and mtDNA genomic data interpretation by a range of shareholders across both clinical diagnostic and research settings. Ultimately, MSeqDR is focused on empowering the global mitochondrial disease community to better define and explore mitochondrial disease. PMID:25542617

  19. Analyzing Population Genetics Using the Mitochondrial Control Region and Bioinformatics

    ERIC Educational Resources Information Center

    Sato, Takumi; Phillips, Bonnie; Latourelle, Sandra M.; Elwess, Nancy L.

    2010-01-01

    The 14-base pair hypervariable region in mitochondrial DNA (mtDNA) of Asian populations, specifically Japanese and Chinese students at Plattsburgh State University, was examined. Previous research on this 14-base pair region showed it to be susceptible to mutations and as a result indicated direct correlation with specific ethnic populations.…

  20. Additional support for Afrotheria and Paenungulata, the performance of mitochondrial versus nuclear genes, and the impact of data partitions with heterogeneous base composition.

    PubMed

    Springer, M S; Amrine, H M; Burk, A; Stanhope, M J

    1999-03-01

    We concatenated sequences for four mitochondrial genes (12S rRNA, tRNA valine, 16S rRNA, cytochrome b) and four nuclear genes [aquaporin, alpha 2B adrenergic receptor (A2AB), interphotoreceptor retinoid-binding protein (IRBP), von Willebrand factor (vWF)] into a multigene data set representing 11 eutherian orders (Artiodactyla, Hyracoidea, Insectivora, Lagomorpha, Macroscelidea, Perissodactyla, Primates, Proboscidea, Rodentia, Sirenia, Tubulidentata). Within this data set, we recognized nine mitochondrial partitions (both stems and loops, for each of 12S rRNA, tRNA valine, and 16S rRNA; and first, second, and third codon positions of cytochrome b) and 12 nuclear partitions (first, second, and third codon positions, respectively, of each of the four nuclear genes). Four of the 21 partitions (third positions of cytochrome b, A2AB, IRBP, and vWF) showed significant heterogeneity in base composition across taxa. Phylogenetic analyses (parsimony, minimum evolution, maximum likelihood) based on sequences for all 21 partitions provide 99-100% bootstrap support for Afrotheria and Paenungulata. With the elimination of the four partitions exhibiting heterogeneity in base composition, there is also high bootstrap support (89-100%) for cow + horse. Statistical tests reject Altungulata, Anagalida, and Ungulata. Data set heterogeneity between mitochondrial and nuclear genes is most evident when all partitions are included in the phylogenetic analyses. Mitochondrial-gene trees associate cow with horse, whereas nuclear-gene trees associate cow with hedgehog and these two with horse. However, after eliminating third positions of A2AB, IRBP, and vWF, nuclear data agree with mitochondrial data in supporting cow + horse. Nuclear genes provide stronger support for both Afrotheria and Paenungulata. Removal of third positions of cytochrome b results in improved performance for the mitochondrial genes in recovering these clades.

  1. 26 CFR 53.4958-1 - Taxes on excess benefit transactions.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 26 Internal Revenue 17 2010-04-01 2010-04-01 false Taxes on excess benefit transactions. 53.4958-1...) MISCELLANEOUS EXCISE TAXES (CONTINUED) FOUNDATION AND SIMILAR EXCISE TAXES Second Tier Excise Taxes § 53.4958-1 Taxes on excess benefit transactions. (a) In general. Section 4958 imposes excise taxes on each excess...

  2. 76 FR 52862 - Time for Payment of Certain Excise Taxes, and Quarterly Excise Tax Payments for Small Alcohol...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-08-24

    ... 40 Cigars and cigarettes, Claims, Electronic fund transfers, Excise taxes, Labeling, Packaging and... that are not required to pay taxes through electronic funds transfer (EFT), this first payment period..., Electronic funds transfers, Excise taxes, Exports, Food additives, Fruit juices, Labeling, Liquors, Packaging...

  3. Dysplastic nevi with severe atypia: Long-term outcomes in patients with and without re-excision.

    PubMed

    Engeln, Kathleen; Peters, Kaitlin; Ho, Jonhan; Jedrych, Jaroslaw; Winger, Daniel; Ferris, Laura Korb; Patton, Timothy

    2017-02-01

    Dysplastic nevi with severe atypia (severely dysplastic nevi [SDN]) are frequently re-excised because of the concern that these lesions may in fact represent early melanoma. Data on long-term follow-up of these patients are limited. We sought to determine the rate of subsequent melanoma development in patients with SDN who underwent re-excision versus those who did not and to determine factors associated with decision to re-excise. A retrospective single institutional study was conducted with 451 adult patients (mean age 41.3 years) with SDN biopsied between November 1994 and November 2004, with clinical follow-up of at least 5 years. In 451 patients with SDN, re-excision was performed on 36.6%. Two melanomas were diagnosed in the re-excision specimens. Subsequent metastatic melanoma developed in 7 patients, all of whom had a history of melanoma. Margin comments influenced decision to re-excise. This was a retrospective study at a single institution. Re-excision of all SDN may not be necessary. Copyright © 2016 American Academy of Dermatology, Inc. Published by Elsevier Inc. All rights reserved.

  4. Pleomorphic Adenoma of Base of Tongue: Is Midline Mandibulotomy Necessary for Approaching Benign Base Tongue Lesions?

    PubMed Central

    Bansal, Sandeep; Kalsotra, Gopika; Mohammed, Abdul Wadood; Bahl, Amanjit; Gupta, Ashok K.

    2012-01-01

    Objective. To report a rare presentation of pleomorphic adenoma, at base tongue, excised surgically by a transoral midline glossotomy technique without mandibulotomy. Case Report. Pleomorphic adenoma is a benign tumor of the salivary gland found rarely in the base of tongue. Surgery is the definitive treatment for this tumor, and different approaches have been mentioned in the literature. In our case we surgically excised the tumor by a transoral midline glossotomy technique without mandibulotomy where we combined the cosmetic advantage of transoral technique and the exposure advantage of a glossotomy technique. Discussion. We discuss the different approaches to oropharynx, their advantages and disadvantages. Primary transoral approach provides better cosmesis but less exposure whereas median labiomandibuloglossotomy approach provides more exposure but is cosmetically unacceptable. Conclusion. A transoral midline glossotomy approach without mandibulotomy provides wide exposure with acceptable cosmesis. PMID:22953125

  5. The complete mitochondrial genome of eastern lowland gorilla, Gorilla beringei graueri, and comparative mitochondrial genomics of Gorilla species.

    PubMed

    Hu, Xiao-di; Gao, Li-zhi

    2016-01-01

    In this study, we determined the complete mitochondrial (mt) genome of eastern lowland gorilla, Gorilla beringei graueri for the first time. The total genome was 16,416 bp in length. It contained a total of 13 protein-coding genes, 22 transfer RNA genes, 2 ribosomal RNA genes and 1 control region (D-loop region). The base composition was A (30.88%), G (13.10%), C (30.89%) and T (25.13%), indicating that the percentage of A+T (56.01%) was higher than G+C (43.99%). Comparisons with the other publicly available Gorilla mitogenome showed the conservation of gene order and base compositions but a bunch of nucleotide diversity. This complete mitochondrial genome sequence will provide valuable genetic information for further studies on conservation genetics of eastern lowland gorilla.

  6. Methods to Assess Mitochondrial Morphology in Mammalian Cells Mounting Autophagic or Mitophagic Responses.

    PubMed

    Marchi, S; Bonora, M; Patergnani, S; Giorgi, C; Pinton, P

    2017-01-01

    It is widely acknowledged that mitochondria are highly active structures that rapidly respond to cellular and environmental perturbations by changing their shape, number, and distribution. Mitochondrial remodeling is a key component of diverse biological processes, ranging from cell cycle progression to autophagy. In this chapter, we describe different methodologies for the morphological study of the mitochondrial network. Instructions are given for the preparation of samples for fluorescent microscopy, based on genetically encoded strategies or the employment of synthetic fluorescent dyes. We also propose detailed protocols to analyze mitochondrial morphometric parameters from both three-dimensional and bidimensional datasets. Finally, we describe a protocol for the visualization and quantification of mitochondrial structures through electron microscopy. © 2017 Elsevier Inc. All rights reserved.

  7. Transcriptional and phylogenetic analysis of five complete ambystomatid salamander mitochondrial genomes.

    PubMed

    Samuels, Amy K; Weisrock, David W; Smith, Jeramiah J; France, Katherine J; Walker, John A; Putta, Srikrishna; Voss, S Randal

    2005-04-11

    We report on a study that extended mitochondrial transcript information from a recent EST project to obtain complete mitochondrial genome sequence for 5 tiger salamander complex species (Ambystoma mexicanum, A. t. tigrinum, A. andersoni, A. californiense, and A. dumerilii). We describe, for the first time, aspects of mitochondrial transcription in a representative amphibian, and then use complete mitochondrial sequence data to examine salamander phylogeny at both deep and shallow levels of evolutionary divergence. The available mitochondrial ESTs for A. mexicanum (N=2481) and A. t. tigrinum (N=1205) provided 92% and 87% coverage of the mitochondrial genome, respectively. Complete mitochondrial sequences for all species were rapidly obtained by using long distance PCR and DNA sequencing. A number of genome structural characteristics (base pair length, base composition, gene number, gene boundaries, codon usage) were highly similar among all species and to other distantly related salamanders. Overall, mitochondrial transcription in Ambystoma approximated the pattern observed in other vertebrates. We inferred from the mapping of ESTs onto mtDNA that transcription occurs from both heavy and light strand promoters and continues around the entire length of the mtDNA, followed by post-transcriptional processing. However, the observation of many short transcripts corresponding to rRNA genes indicates that transcription may often terminate prematurely to bias transcription of rRNA genes; indeed an rRNA transcription termination signal sequence was observed immediately following the 16S rRNA gene. Phylogenetic analyses of salamander family relationships consistently grouped Ambystomatidae in a clade containing Cryptobranchidae and Hynobiidae, to the exclusion of Salamandridae. This robust result suggests a novel alternative hypothesis because previous studies have consistently identified Ambystomatidae and Salamandridae as closely related taxa. Phylogenetic analyses of tiger salamander complex species also produced robustly supported trees. The D-loop, used in previous molecular phylogenetic studies of the complex, was found to contain a relatively low level of variation and we identified mitochondrial regions with higher rates of molecular evolution that are more useful in resolving relationships among species. Our results show the benefit of using complete genome mitochondrial information in studies of recently and rapidly diverged taxa.

  8. Proteomic Profiling of Mitochondrial Enzymes during Skeletal Muscle Aging.

    PubMed

    Staunton, Lisa; O'Connell, Kathleen; Ohlendieck, Kay

    2011-03-07

    Mitochondria are of central importance for energy generation in skeletal muscles. Expression changes or functional alterations in mitochondrial enzymes play a key role during myogenesis, fibre maturation, and various neuromuscular pathologies, as well as natural fibre aging. Mass spectrometry-based proteomics suggests itself as a convenient large-scale and high-throughput approach to catalogue the mitochondrial protein complement and determine global changes during health and disease. This paper gives a brief overview of the relatively new field of mitochondrial proteomics and discusses the findings from recent proteomic surveys of mitochondrial elements in aged skeletal muscles. Changes in the abundance, biochemical activity, subcellular localization, and/or posttranslational modifications in key mitochondrial enzymes might be useful as novel biomarkers of aging. In the long term, this may advance diagnostic procedures, improve the monitoring of disease progression, help in the testing of side effects due to new drug regimes, and enhance our molecular understanding of age-related muscle degeneration.

  9. Exploring mitochondrial evolution and metabolism organization principles by comparative analysis of metabolic networks.

    PubMed

    Chang, Xiao; Wang, Zhuo; Hao, Pei; Li, Yuan-Yuan; Li, Yi-Xue

    2010-06-01

    The endosymbiotic theory proposed that mitochondrial genomes are derived from an alpha-proteobacterium-like endosymbiont, which was concluded from sequence analysis. We rebuilt the metabolic networks of mitochondria and 22 relative species, and studied the evolution of mitochondrial metabolism at the level of enzyme content and network topology. Our phylogenetic results based on network alignment and motif identification supported the endosymbiotic theory from the point of view of systems biology for the first time. It was found that the mitochondrial metabolic network were much more compact than the relative species, probably related to the higher efficiency of oxidative phosphorylation of the specialized organelle, and the network is highly clustered around the TCA cycle. Moreover, the mitochondrial metabolic network exhibited high functional specificity to the modules. This work provided insight to the understanding of mitochondria evolution, and the organization principle of mitochondrial metabolic network at the network level. Copyright 2010 Elsevier Inc. All rights reserved.

  10. Validation of the use of an artificial mitochondrial reporter DNA vector containing a Cytomegalovirus promoter for mitochondrial transgene expression.

    PubMed

    Yamada, Yuma; Ishikawa, Takuya; Harashima, Hideyoshi

    2017-08-01

    Mitochondria have their own gene expression system that is independent of the nuclear system, and control cellular functions in cooperation with the nucleus. While a number of useful technologies for achieving nuclear transgene expression have been reported, only a few have focused on mitochondria. In this study, we validated the utility of an artificial mitochondrial DNA vector with a virus promoter on mitochondrial transgene expression. We designed and constructed pCMV-mtLuc (CGG) that contains a CMV promotor derived from Cytomegalovirus and an artificial mitochondrial genome with a NanoLuc (Nluc) luciferase gene that records adjustments to the mitochondrial codon system. Nluc luciferase activity measurements showed that the pCMV-mtLuc (CGG) efficiently produced the Nluc luciferase protein in human HeLa cells. Moreover, we optimized the mitochondrial transfection of pCMV-mtLuc (CGG) using a MITO-Porter system, a liposome-based carrier for mitochondrial delivery via membrane fusion. As a result, we found that transfection of pCMV-mtLuc (CGG) by MITO-Porter modified with the KALA peptide (cationic amphipathic cell-penetrating peptide) showed a high mitochondrial transgene expression. The developed mitochondrial transgene expression system represents a potentially useful tool for the fields of nanoscience and nanotechnology for controlling the intracellular microenvironment via the regulation of mitochondrial function and promises to open additional innovative research fields of study. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Recent Advances in the Structural Mechanisms of DNA Glycosylases

    PubMed Central

    Brooks, Sonja C.; Adhikary, Suraj; Rubinson, Emily H.; Eichman, Brandt F.

    2012-01-01

    DNA glycosylases safeguard the genome by locating and excising a diverse array of aberrant nucleobases created from oxidation, alkylation, and deamination of DNA. Since the discovery 28 years ago that these enzymes employ a base flipping mechanism to trap their substrates, six different protein architectures have been identified to perform the same basic task. Work over the past several years has unraveled details for how the various DNA glycosylases survey DNA, detect damage within the duplex, select for the correct modification, and catalyze base excision. Here, we provide a broad overview of these latest advances in glycosylase mechanisms gleaned from structural enzymology, highlighting features common to all glycosylases as well as key differences that define their particular substrate specificities. PMID:23076011

  12. Reflective type objective based spectral-domain phase-sensitive optical coherence tomography for high-sensitive structural and functional imaging of cochlear microstructures through intact bone of an excised guinea pig cochlea

    NASA Astrophysics Data System (ADS)

    Subhash, Hrebesh M.; Wang, Ruikang K.; Chen, Fangyi; Nuttall, Alfred L.

    2013-03-01

    Most of the optical coherence tomographic (OCT) systems for high resolution imaging of biological specimens are based on refractive type microscope objectives, which are optimized for specific wave length of the optical source. In this study, we present the feasibility of using commercially available reflective type objective for high sensitive and high resolution structural and functional imaging of cochlear microstructures of an excised guinea pig through intact temporal bone. Unlike conventional refractive type microscopic objective, reflective objective are free from chromatic aberrations due to their all-reflecting nature and can support a broadband of spectrum with very high light collection efficiency.

  13. Historical Perspective on Mitochondrial Medicine

    PubMed Central

    DiMauro, Salvatore; Garone, Caterina

    2010-01-01

    In this review, we trace the origins and follow the development of mitochondrial medicine from the pre-molecular era (1962-1988) based on clinical clues, muscle morphology, and biochemistry into the molecular era that started in 1988 and is still advancing at a brisk pace. We have tried to stress conceptual advances, such as endosymbiosis, uniparental inheritance, intergenomic signaling and its defects, and mitochondrial dynamics. We hope that this historical review also provides an update on mitochondrial medicine, although we fully realize that the speed of progress in this area makes any such endeavor akin to writing on water. PMID:20818724

  14. Complete mitochondrial genome of freshwater shark Wallago attu (Bloch & Schneider) from Indus River Sindh, Pakistan.

    PubMed

    Laghari, Muhammad Younis; Lashari, Punhal; Xu, Peng; Zhao, Zixia; Jiang, Li; Narejo, Naeem Tariq; Xin, Baoping; Sun, Xiaowen; Zhang, Yan

    2016-01-01

    Complete mitochondrial genome of fresh water giant catfish, Wallago attu, was isolated by LA PCR (TakaRa LAtaq, Dalian, China); and sequenced by Sanger's method to obtain the complete mitochondrial genome. The complete mitogenome was 15,639 bp in length and contains 13 typical vertebrate protein-coding genes, 2 rRNA and 22 tRNA genes. The whole genome base composition was estimated to be 31.17% A, 28.15% C, 15.55% G and 25.12% T. The complete mitochondrial genome of catfish, W. attu, provides the fundamental tools for genetic breeding.

  15. Genetic instability associated with loop or stem–loop structures within transcription units can be independent of nucleotide excision repair

    PubMed Central

    Burns, John A; Chowdhury, Moinuddin A; Cartularo, Laura; Berens, Christian; Scicchitano, David A

    2018-01-01

    Abstract Simple sequence repeats (SSRs) are found throughout the genome, and under some conditions can change in length over time. Germline and somatic expansions of trinucleotide repeats are associated with a series of severely disabling illnesses, including Huntington's disease. The underlying mechanisms that effect SSR expansions and contractions have been experimentally elusive, but models suggesting a role for DNA repair have been proposed, in particular the involvement of transcription-coupled nucleotide excision repair (TCNER) that removes transcription-blocking DNA damage from the transcribed strand of actively expressed genes. If the formation of secondary DNA structures that are associated with SSRs were to block RNA polymerase progression, TCNER could be activated, resulting in the removal of the aberrant structure and a concomitant change in the region's length. To test this, TCNER activity in primary human fibroblasts was assessed on defined DNA substrates containing extrahelical DNA loops that lack discernible internal base pairs or DNA stem–loops that contain base pairs within the stem. The results show that both structures impede transcription elongation, but there is no corresponding evidence that nucleotide excision repair (NER) or TCNER operates to remove them. PMID:29474673

  16. Mitochondrial calcium ion and membrane potential transients follow the pattern of epileptiform discharges in hippocampal slice cultures.

    PubMed

    Kovács, Richard; Kardos, Julianna; Heinemann, Uwe; Kann, Oliver

    2005-04-27

    Emerging evidence suggests that mitochondrial dysfunction contributes to the pathophysiology of epilepsy. Recurrent mitochondrial Ca2+ ion load during seizures might act on mitochondrial membrane potential (DeltaPsim) and proton motive force. By using electrophysiology and confocal laser-scanning microscopy, we investigated the effects of epileptiform activity, as induced by low-Mg2+ ion perfusion in hippocampal slice cultures, on changes in DeltaPsim and in mitochondrial Ca2+ ion concentration ([Ca2+]m). The mitochondrial compartment was identified by monitoring DeltaPsim in the soma and dendrites of patched CA3 pyramidal cells using the mitochondria-specific voltage-sensitive dye rhodamine-123 (Rh-123). Interictal activity was accompanied by localized mitochondrial depolarization that was restricted to a few mitochondria in small dendrites. In contrast, robust Rh-123 release into the cytosol was observed during seizure-like events (SLEs), indicating simultaneous depolarization of mitochondria. This was critically dependent on Ca2+ ion uptake and extrusion, because inhibition of the mitochondrial Ca2+ ion uniporter by Ru360 and the mitochondrial Na+/Ca2+ ion exchanger by 7-chloro-5-(2-chlorophenyl)-1,5-dihydro-4,1-benzothiazepin-2(3H)-one but not the inhibitor of mitochondrial permeability transition pore, cyclosporin A, decreased the SLE-associated mitochondrial depolarization. The Ca2+ ion dependence of simultaneous mitochondrial depolarization suggested enhanced Ca2+ ion cycling across mitochondrial membranes during epileptiform activity. Indeed, [Ca2+]m fluctuated during interictal activity in single dendrites, and these fluctuations spread over the entire mitochondrial compartment during SLEs, as revealed using mitochondria-specific dyes (rhod-2 and rhod-ff) and spatial frequency-based image analysis. These findings strengthen the hypothesis that epileptic activity results in Ca2+ ion-dependent changes in mitochondrial function that might contribute to the neuronal injury during epilepsy.

  17. Alkylpurine glycosylase D employs DNA sculpting as a strategy to extrude and excise damaged bases.

    PubMed

    Kossmann, Bradley; Ivanov, Ivaylo

    2014-07-01

    Alkylpurine glycosylase D (AlkD) exhibits a unique base excision strategy. Instead of interacting directly with the lesion, the enzyme engages the non-lesion DNA strand. AlkD induces flipping of the alkylated and opposing base accompanied by DNA stack compression. Since this strategy leaves the alkylated base solvent exposed, the means to achieve enzymatic cleavage had remained unclear. We determined a minimum energy path for flipping out a 3-methyl adenine by AlkD and computed a potential of mean force along this path to delineate the energetics of base extrusion. We show that AlkD acts as a scaffold to stabilize three distinct DNA conformations, including the final extruded state. These states are almost equivalent in free energy and separated by low barriers. Thus, AlkD acts by sculpting the global DNA conformation to achieve lesion expulsion from DNA. N-glycosidic bond scission is then facilitated by a backbone phosphate group proximal to the alkylated base.

  18. A high throughput respirometric assay for mitochondrial biogenesis and toxicity

    PubMed Central

    Beeson, Craig C.; Beeson, Gyda C.; Schnellmann, Rick G.

    2010-01-01

    Mitochondria are a common target of toxicity for drugs and other chemicals, and results in decreased aerobic metabolism and cell death. In contrast, mitochondrial biogenesis restores cell vitality and there is a need for new agents to induce biogenesis. Current cell-based models of mitochondrial biogenesis or toxicity are inadequate because cultured cell lines are highly glycolytic with minimal aerobic metabolism and altered mitochondrial physiology. In addition, there are no high-throughput, real-time assays that assess mitochondrial function. We adapted primary cultures of renal proximal tubular cells (RPTC) that exhibit in vivo levels of aerobic metabolism, are not glycolytic, and retain higher levels of differentiated functions and used the Seahorse Biosciences analyzer to measure mitochondrial function in real time in multi-well plates. Using uncoupled respiration as a marker of electron transport chain (ETC) integrity, the nephrotoxicants cisplatin, HgCl2 and gentamicin exhibited mitochondrial toxicity prior to decreases in basal respiration and cell death. Conversely, using FCCP-uncoupled respiration as a marker of maximal ETC activity, 1-(2,5-dimethoxy-4-iodophenyl)-2-aminopropane (DOI), SRT1720, resveratrol, daidzein, and metformin produced mitochondrial biogenesis in RPTC. The merger of the RPTC model and multi-well respirometry results in a single high throughput assay to measure mitochondrial biogenesis and toxicity, and nephrotoxic potential. PMID:20465991

  19. Characteristics and phylogenetic analysis of the complete mitochondrial genome of Cheilodactylus quadricornis (Perciformes, Cheilodactylidae).

    PubMed

    Wang, Aishuai; Sun, Yuena; Wu, Changwen

    2016-11-01

    The complete mitochondrial genome of the Cheilodactylus quadricornis was firstly determined in the present study. The mitochondrial genome of C. quadricornis is 16 521 nucleotides, comprising 13 protein-coding genes and 2 ribosomal RNA genes, 22 tRNA genes and 2 main non-coding regions (the control region and the origin of the light-strand replication). The overall base composition was T, 26.3%; C, 29.6%; A, 27.8% and G, 16.3%. The gene arrangement, base composition, and tRNA structures of the complete mitochondrial genome of C. quadricornis is similar to other teleosts. Only two central conserved sequence blocks (CSB-2 and CSB-3) were identified in the control region. In addition, the conserved motif 5'-GCCGG-3' was identified in the origin of light-strand replication of C. quadricornis. The complete mitochondrial genome of C. quadricornis was used to construct phylogenetic tree, which shows that C. quadricornis and C. variegatus clustered in a clade and formed a sister relationship. This mitogenome sequence data would play an important role in population genetics and phylogenetic analysis of the Cheilodactylidae.

  20. MitBASE : a comprehensive and integrated mitochondrial DNA database. The present status

    PubMed Central

    Attimonelli, M.; Altamura, N.; Benne, R.; Brennicke, A.; Cooper, J. M.; D’Elia, D.; Montalvo, A. de; Pinto, B. de; De Robertis, M.; Golik, P.; Knoop, V.; Lanave, C.; Lazowska, J.; Licciulli, F.; Malladi, B. S.; Memeo, F.; Monnerot, M.; Pasimeni, R.; Pilbout, S.; Schapira, A. H. V.; Sloof, P.; Saccone, C.

    2000-01-01

    MitBASE is an integrated and comprehensive database of mitochondrial DNA data which collects, under a single interface, databases for Plant, Vertebrate, Invertebrate, Human, Protist and Fungal mtDNA and a Pilot database on nuclear genes involved in mitochondrial biogenesis in Saccharomyces cerevisiae. MitBASE reports all available information from different organisms and from intraspecies variants and mutants. Data have been drawn from the primary databases and from the literature; value adding information has been structured, e.g., editing information on protist mtDNA genomes, pathological information for human mtDNA variants, etc. The different databases, some of which are structured using commercial packages (Microsoft Access, File Maker Pro) while others use a flat-file format, have been integrated under ORACLE. Ad hoc retrieval systems have been devised for some of the above listed databases keeping into account their peculiarities. The database is resident at the EBI and is available at the following site: http://www3.ebi.ac.uk/Research/Mitbase/mitbase.pl . The impact of this project is intended for both basic and applied research. The study of mitochondrial genetic diseases and mitochondrial DNA intraspecies diversity are key topics in several biotechnological fields. The database has been funded within the EU Biotechnology programme. PMID:10592207

  1. Mitochondrial Genome of the Stonefly Kamimuria wangi (Plecoptera: Perlidae) and Phylogenetic Position of Plecoptera Based on Mitogenomes

    PubMed Central

    Yu-Han, Qian; Hai-Yan, Wu; Xiao-Yu, Ji; Wei-Wei, Yu; Yu-Zhou, Du

    2014-01-01

    This study determined the mitochondrial genome sequence of the stonefly, Kamimuria wangi. In order to investigate the relatedness of stonefly to other members of Neoptera, a phylogenetic analysis was undertaken based on 13 protein-coding genes of mitochondrial genomes in 13 representative insects. The mitochondrial genome of the stonefly is a circular molecule consisting of 16,179 nucleotides and contains the 37 genes typically found in other insects. A 10-bp poly-T stretch was observed in the A+T-rich region of the K. wangi mitochondrial genome. Downstream of the poly-T stretch, two regions were located with potential ability to form stem-loop structures; these were designated stem-loop 1 (positions 15848–15651) and stem-loop 2 (15965–15998). The arrangement of genes and nucleotide composition of the K. wangi mitogenome are similar to those in Pteronarcys princeps, suggesting a conserved genome evolution within the Plecoptera. Phylogenetic analysis using maximum likelihood and Bayesian inference of 13 protein-coding genes supported a novel relationship between the Plecoptera and Ephemeroptera. The results contradict the existence of a monophyletic Plectoptera and Plecoptera as sister taxa to Embiidina, and thus requires further analyses with additional mitogenome sampling at the base of the Neoptera. PMID:24466028

  2. Mitochondrial genome of the stonefly Kamimuria wangi (Plecoptera: Perlidae) and phylogenetic position of plecoptera based on mitogenomes.

    PubMed

    Yu-Han, Qian; Hai-Yan, Wu; Xiao-Yu, Ji; Wei-Wei, Yu; Yu-Zhou, Du

    2014-01-01

    This study determined the mitochondrial genome sequence of the stonefly, Kamimuria wangi. In order to investigate the relatedness of stonefly to other members of Neoptera, a phylogenetic analysis was undertaken based on 13 protein-coding genes of mitochondrial genomes in 13 representative insects. The mitochondrial genome of the stonefly is a circular molecule consisting of 16,179 nucleotides and contains the 37 genes typically found in other insects. A 10-bp poly-T stretch was observed in the A+T-rich region of the K. wangi mitochondrial genome. Downstream of the poly-T stretch, two regions were located with potential ability to form stem-loop structures; these were designated stem-loop 1 (positions 15848-15651) and stem-loop 2 (15965-15998). The arrangement of genes and nucleotide composition of the K. wangi mitogenome are similar to those in Pteronarcys princeps, suggesting a conserved genome evolution within the Plecoptera. Phylogenetic analysis using maximum likelihood and Bayesian inference of 13 protein-coding genes supported a novel relationship between the Plecoptera and Ephemeroptera. The results contradict the existence of a monophyletic Plectoptera and Plecoptera as sister taxa to Embiidina, and thus requires further analyses with additional mitogenome sampling at the base of the Neoptera.

  3. Columnar cell lesions on breast needle biopsies: is surgical excision necessary? A systematic review.

    PubMed

    Verschuur-Maes, Anoek H J; van Deurzen, Carolien H M; Monninkhof, Evelyn M; van Diest, Paul J

    2012-02-01

    This systematic review was conducted to provide treatment recommendations for patients with a diagnosis of columnar cell lesions (CCLs) in a breast core needle biopsy (CNB). CCLs are putative breast cancer precursors and are often associated with (in situ) carcinoma in excision specimens. Although several studies reported on the progression risk and underestimation rate of a CNB diagnosis of CCL, there is no consensus regarding optimal clinical management in this context. We searched MEDLINE, Embase, and Cochrane databases from 1990 to October 2010 for studies on patients with a CNB diagnosis of CCL without atypia, CCL with atypia and atypical ductal hyperplasia associated with CCL followed by surgical excision or clinical follow up. Of 1759 selected articles, 24 were included in this review. The pooled underestimation risks for (in situ) carcinoma were as follow: CCL without atypia 1.5% (95% confidence interval [CI] 0.6%-4%), CCL with atypia 9% (95% CI: 5%-14%), and atypical ductal hyperplasia associated with CCL 20% (95% CI: 13%-28%), based on the whole groups of patients with a CNB. Studies including CCLs with long-term clinical follow-up showed a trend toward a limited elevated breast cancer risk. On the basis of the (in situ) carcinoma underestimation rates of patients with a CNB diagnosis of CCL with atypia and atypical ductal hyperplasia associated with CCL, surgical excision should be considered. For CCL without atypia, more studies with a long-term follow-up are required, but so far, surgical excision biopsy does not seem to be necessary.

  4. Disparities in cigarette tax exposure by race, ethnicity, poverty status and sexual orientation, 2006-2014, USA.

    PubMed

    Golden, Shelley D; Kong, Amanda Y; Lee, Joseph G L; Ribisl, Kurt M

    2018-03-01

    Cigarette excise taxes are an effective tobacco control strategy but they vary geographically due to differences in state and local taxation. There are also pronounced sociodemographic differences in community composition, suggesting that different population groups might face vastly different cigarette excise tax rates. In this study, we examine how cigarette excise tax rates differ for population groups defined by race, ethnicity, poverty status, and sexual orientation, and how these differences have evolved over time. We constructed annual cigarette tax rates in 109 mutually exclusive jurisdictions within the United States (U.S.) between 2006 and 2014. After merging with Census sociodemographic data, we calculated annual cigarette excise tax exposures for each population group as the average of each place-based tax, weighted by the proportion of the group living there. In 2014, the average U.S. resident was required to pay $2.68 in cigarette taxes, more than 60% of which was due to state and local taxation. On average, Asian/Native Hawaiian and Other Pacific Islander populations faced the highest average tax ($2.95), which was $0.44 more than American Indian populations. Local taxes disproportionately augmented state and federal taxes for non-White populations, same-sex couples, and people living in poverty. Geographic variation in cigarette excise taxes produces sociodemographic variation in cigarette tax exposure. Raising cigarette taxes specifically in those places where groups at risk for tobacco-related disease are more likely to live, or otherwise creating geographically uniform tax levels, could reduce important disparities in cigarette smoking. Copyright © 2017. Published by Elsevier Inc.

  5. [Non-palpable breast cancer malignant on needle core biopsy and no malignancy in surgical excision: how to manage?].

    PubMed

    Cheurfa, N; Giard, S

    2015-01-01

    Despite the standard management of non-palpable breast cancer (needle core biopsy diagnostic, accurate preoperative localization), there are differences in some cases between the malignant histo-pathological finding in diagnostic biopsy results and negative histo-pathological finding after surgical excision. The aim of this study is to evaluate this incidence and classifying them under three category: failure of surgical excision after preoperative identification; removal of the tumor was already completed by percutaneous biopsy; percutaneous biopsy true false positive. We conducted a study based on prospective database, all patients included in this study had partial mastectomy for ductal carcinoma in-situ or invasive cancer which was diagnosed by needle core biopsy and normal/benign after surgery. Regarding the partial mastectomy, 1863 was performed in the last three years in our center. Thirty-seven patients (2%) correspond our study criteria. After discussion of cases in our multidisciplinary reunion, 6 patients (16%) were considered as failure of surgical excision, 26 patients (70%) as true removal of the whole lesion in the core, and 5 patients (13%) as true false-positive cores. This is the first study witch investigate all factors that influence the results of negative final histo-pathological finding of surgical excision of the tumor after malignant diagnostic needle core biopsy. This rare situation need a multidisciplinary meeting to analyse all the steps of management and to determine causes of those false results and try to find adequate management to solve this problem. Copyright © 2014 Elsevier Masson SAS. All rights reserved.

  6. Wound healing activity of extracts derived from Shorea robusta resin.

    PubMed

    Yaseen Khan, Mohammad; Ali, Saleh Abbas; Pundarikakshudu, Kilambi

    2016-01-01

    Shorea robusta Gaertn.f. (Dipterocarpaceae) resin is used for treating infected wounds and burns by tribals in India. The objective of this study was to investigate wound-healing activity of S. robusta resin extracts and essential oil in rats. Methanol extract (SRME), petroleum ether, benzene insoluble fraction of methanol extract (SRPEBIME), and essential oil (SREO) of S. robusta resin were incorporated in soft yellow paraffin (10% w/w) and applied once daily on incision and excision wounds of Wistar rats. Framycetin ointment (1.0% w/w) was applied to the standard group. Tensile strength (on the 10th day), wound contraction, and scar area (on the 14th day) were recorded. On the 15th day, granulation tissues of excision wounds were analyzed for total protein, hydroxyproline, and hexosamine contents and activities of lipid peroxidation and super oxide dismutase (SOD). Histopathology of the wounds was also studied. SRPEBIME and SREO healed incision and excision wounds faster than plain ointment base and framycetin. Tensile strength of SRPEBIME-treated incision wounds was 53% higher than that of control animals. In excision wounds, wound contraction and scar areas were found to be 99% and 7.7 mm(2) (SRPEBIME) and 71.7% and 21 mm(2) (control). Protein and hydroxyproline contents were higher in SRPEBIME (20.8 and 3.5% w/w) and SREO (17.4 and 2.8% w/w) groups as against 9.95 and 1.48% w/w in control groups. Histopathology revealed complete epithelization and new blood vessel formation in SRPEBIME groups. SRPEBIME and SREO have significant wound-healing activities on incision and excision wounds.

  7. Xer1-Mediated Site-Specific DNA Inversions and Excisions in Mycoplasma agalactiae▿ ‡

    PubMed Central

    Czurda, Stefan; Jechlinger, Wolfgang; Rosengarten, Renate; Chopra-Dewasthaly, Rohini

    2010-01-01

    Surface antigen variation in Mycoplasma agalactiae, the etiologic agent of contagious agalactia in sheep and goats, is governed by site-specific recombination within the vpma multigene locus encoding the Vpma family of variable surface lipoproteins. This high-frequency Vpma phase switching was previously shown to be mediated by a Xer1 recombinase encoded adjacent to the vpma locus. In this study, it was demonstrated in Escherichia coli that the Xer1 recombinase is responsible for catalyzing vpma gene inversions between recombination sites (RS) located in the 5′-untranslated region (UTR) in all six vpma genes, causing cleavage and strand exchange within a 21-bp conserved region that serves as a recognition sequence. It was further shown that the outcome of the site-specific recombination event depends on the orientation of the two vpma RS, as direct or inverted repeats. While recombination between inverted vpma RS led to inversions, recombination between direct repeat vpma RS led to excisions. Using a newly developed excision assay based on the lacZ reporter system, we were able to successfully demonstrate under native conditions that such Xer1-mediated excisions can indeed also occur in the M. agalactiae type strain PG2, whereas they were not observed in the control xer1-disrupted VpmaY phase-locked mutant (PLMY), which lacks Xer1 recombinase. Unless there are specific regulatory mechanisms preventing such excisions, this might be the cost that the pathogen has to render at the population level for maintaining this high-frequency phase variation machinery. PMID:20562305

  8. One-stop-shop with confocal microscopy imaging vs. standard care for surgical treatment of basal cell carcinoma: an open-label, noninferiority, randomized controlled multicentre trial.

    PubMed

    Kadouch, D J; Elshot, Y S; Zupan-Kajcovski, B; van Haersma de With, A S E; van der Wal, A C; Leeflang, M; Jóźwiak, K; Wolkerstorfer, A; Bekkenk, M W; Spuls, P I; de Rie, M A

    2017-09-01

    Routine punch biopsies are considered to be standard care for diagnosing and subtyping basal cell carcinoma (BCC) when clinically suspected. We assessed the efficacy of a one-stop-shop concept using in vivo reflectance confocal microscopy (RCM) imaging as a diagnostic tool vs. standard care for surgical treatment in patients with clinically suspected BCC. In this open-label, parallel-group, noninferiority, randomized controlled multicentre trial we enrolled patients with clinically suspected BCC at two tertiary referral centres in Amsterdam, the Netherlands. Patients were randomly assigned to the RCM one-stop-shop (diagnosing and subtyping using RCM followed by direct surgical excision) or standard care (planned excision based on the histological diagnosis and subtype of a punch biopsy). The primary outcome was the proportion of patients with tumour-free margins after surgical excision of BCC. Of the 95 patients included, 73 (77%) had a BCC histologically confirmed using a surgical excision specimen. All patients (40 of 40, 100%) in the one-stop-shop group had tumour-free margins. In the standard-care group tumour-free margins were found in all but two patients (31 of 33, 94%). The difference in the proportion of patients with tumour-free margins after BCC excision between the one-stop-shop group and the standard-care group was -0·06 (90% confidence interval -0·17-0·01), establishing noninferiority. The proposed new treatment strategy seems suitable in facilitating early diagnosis and direct treatment for patients with BCC, depending on factors such as availability of RCM, size and site of the lesion, patient preference and whether direct surgical excision is feasible. © 2017 The Authors. British Journal of Dermatology published by John Wiley & Sons Ltd on behalf of British Association of Dermatologists.

  9. Removal of N-6-methyladenine by the nucleotide excision repair pathway triggers the repair of mismatches in yeast gap-repair intermediates.

    PubMed

    Guo, Xiaoge; Jinks-Robertson, Sue

    2013-12-01

    Gap-repair assays have been an important tool for studying the genetic control of homologous recombination in yeast. Sequence analysis of recombination products derived when a gapped plasmid is diverged relative to the chromosomal repair template additionally has been used to infer structures of strand-exchange intermediates. In the absence of the canonical mismatch repair pathway, mismatches present in these intermediates are expected to persist and segregate at the next round of DNA replication. In a mismatch repair defective (mlh1Δ) background, however, we have observed that recombination-generated mismatches are often corrected to generate gene conversion or restoration events. In the analyses reported here, the source of the aberrant mismatch removal during gap repair was examined. We find that most mismatch removal is linked to the methylation status of the plasmid used in the gap-repair assay. Whereas more than half of Dam-methylated plasmids had patches of gene conversion and/or restoration interspersed with unrepaired mismatches, mismatch removal was observed in less than 10% of products obtained when un-methylated plasmids were used in transformation experiments. The methylation-linked removal of mismatches in recombination intermediates was due specifically to the nucleotide excision repair pathway, with such mismatch removal being partially counteracted by glycosylases of the base excision repair pathway. These data demonstrate that nucleotide excision repair activity is not limited to bulky, helix-distorting DNA lesions, but also targets removal of very modest perturbations in DNA structure. In addition to its effects on mismatch removal, methylation reduced the overall gap-repair efficiency, but this reduction was not affected by the status of excision repair pathways. Finally, gel purification of DNA prior to transformation reduced gap-repair efficiency four-fold in a nucleotide excision repair-defective background, indicating that the collateral introduction of UV damage can potentially compromise genetic interpretations. Copyright © 2013 Elsevier B.V. All rights reserved.

  10. Removal of N-6-methyladenine by the nucleotide excision repair pathway triggers the repair of mismatches in yeast gap-repair intermediates

    PubMed Central

    Guo, Xiaoge; Jinks-Robertson, Sue

    2013-01-01

    Gap-repair assays have been an important tool for studying the genetic control of homologous recombination in yeast. Sequence analysis of recombination products derived when a gapped plasmid is diverged relative to the chromosomal repair template additionally has been used to infer structures of strand-exchange intermediates. In the absence of the canonical mismatch repair pathway, mismatches present in these intermediates are expected to persist and segregate at the next round of DNA replication. In a mismatch repair defective (mlh1Δ) background, however, we have observed that recombination-generated mismatches are often corrected to generate gene conversion or restoration events. In the analyses reported here, the source of the aberrant mismatch removal during gap repair was examined. We find that most mismatch removal is linked to the methylation status of the plasmid used in the gap-repair assay. Whereas more than half of Dam-methylated plasmids had patches of gene conversion and/or restoration interspersed with unrepaired mismatches, mismatch removal was observed in less than 10% of products obtained when un-methylated plasmids were used in transformation experiments. The methylation-linked removal of mismatches in recombination intermediates was due specifically to the nucleotide excision repair pathway, with such mismatch removal being partially counteracted by glycosylases of the base excision repair pathway. These data demonstrate that nucleotide excision repair activity is not limited to bulky, helix-distorting DNA lesions, but also targets removal of very modest perturbations in DNA structure. In addition to its effects on mismatch removal, methylation reduced the overall gap-repair efficiency, but this reduction was not affected by the status of excision repair pathways. Finally, gel purification of DNA prior to transformation reduced gap-repair efficiency four-fold in a nucleotide excision repair-defective background, indicating that the cillateral introduction of UV damage can potentially compromise genetic interpretations. PMID:24120148

  11. Public health: tobacco taxes and Internet sales--2005. End of Year Issue Brief.

    PubMed

    McKinley, Andrew

    2005-12-31

    Raising tobacco taxes is an action that resonates with lawmakers, public health and anti-tobacco advocates, and the majority of the electorate. The relatively broad base of support for increasing excise taxes and the potential for increased tax revenue mitigate the concerns over targeting tobacco-users--23 percent of the population--to pay for state programs and the unreliability of the tobacco tax as a permanent source of revenue. Tobacco excise taxes generated $10.2 billion, or about 1.5 percent of all states' revenue. Characterized as sin taxes or user fees and viewed as an effective method to deter price-sensitive adolescents from using tobacco, excise taxes on tobacco have increased in an unprecedented number of states since November 2001. Previously, no more than three states, on average, had increased cigarette taxes in a year. The legislative action is viewed as a politically safe and relatively easy way to raise taxes and increase revenue without incurring the wrath of anti-tax voters. During this period the increases in tobacco taxes ranged from a $0.12 per pack increase in Louisiana to a $0.75 increase in Massachusetts and Michigan. Nationwide the state tax rate per pack of cigarettes ranges from a low in South Carolina of $0.07 to $2.46 in Rhode Island. The mean tobacco excise tax for the nation is approximately $0.92. With an excise tax increase, states can channel needed funds to programs favored by voters in economically strapped times. Indeed, many of the 44 states that increased their tobacco tax announced that the revenue would permit the state to restore or at least reduce proposed cuts to Medicaid and other health programs. Excise taxes also place little administrative burden on states, since the wholesaler pays the tax directly to the state and the additional cost then is passed on to the consumer.

  12. Comparative and Evolutionary Analyses of Meloidogyne spp. Based on Mitochondrial Genome Sequences

    PubMed Central

    García, Laura Evangelina; Sánchez-Puerta, M. Virginia

    2015-01-01

    Molecular taxonomy and evolution of nematodes have been recently the focus of several studies. Mitochondrial sequences were proposed as an alternative for precise identification of Meloidogyne species, to study intraspecific variability and to follow maternal lineages. We characterized the mitochondrial genomes (mtDNAs) of the root knot nematodes M. floridensis, M. hapla and M. incognita. These were AT rich (81–83%) and highly compact, encoding 12 proteins, 2 rRNAs, and 22 tRNAs. Comparisons with published mtDNAs of M. chitwoodi, M. incognita (another strain) and M. graminicola revealed that they share protein and rRNA gene order but differ in the order of tRNAs. The mtDNAs of M. floridensis and M. incognita were strikingly similar (97–100% identity for all coding regions). In contrast, M. floridensis, M. chitwoodi, M. hapla and M. graminicola showed 65–84% nucleotide identity for coding regions. Variable mitochondrial sequences are potentially useful for evolutionary and taxonomic studies. We developed a molecular taxonomic marker by sequencing a highly-variable ~2 kb mitochondrial region, nad5-cox1, from 36 populations of root-knot nematodes to elucidate relationships within the genus Meloidogyne. Isolates of five species formed monophyletic groups and showed little intraspecific variability. We also present a thorough analysis of the mitochondrial region cox2-rrnS. Phylogenies based on either mitochondrial region had good discrimination power but could not discriminate between M. arenaria, M. incognita and M. floridensis. PMID:25799071

  13. A Mitochondrial Genome of Rhyparochromidae (Hemiptera: Heteroptera) and a Comparative Analysis of Related Mitochondrial Genomes.

    PubMed

    Li, Teng; Yang, Jie; Li, Yinwan; Cui, Ying; Xie, Qiang; Bu, Wenjun; Hillis, David M

    2016-10-19

    The Rhyparochromidae, the largest family of Lygaeoidea, encompasses more than 1,850 described species, but no mitochondrial genome has been sequenced to date. Here we describe the first mitochondrial genome for Rhyparochromidae: a complete mitochondrial genome of Panaorus albomaculatus (Scott, 1874). This mitochondrial genome is comprised of 16,345 bp, and contains the expected 37 genes and control region. The majority of the control region is made up of a large tandem-repeat region, which has a novel pattern not previously observed in other insects. The tandem-repeats region of P. albomaculatus consists of 53 tandem duplications (including one partial repeat), which is the largest number of tandem repeats among all the known insect mitochondrial genomes. Slipped-strand mispairing during replication is likely to have generated this novel pattern of tandem repeats. Comparative analysis of tRNA gene families in sequenced Pentatomomorpha and Lygaeoidea species shows that the pattern of nucleotide conservation is markedly higher on the J-strand. Phylogenetic reconstruction based on mitochondrial genomes suggests that Rhyparochromidae is not the sister group to all the remaining Lygaeoidea, and supports the monophyly of Lygaeoidea.

  14. Mitochondrial distribution and activity in human mature oocytes: gonadotropin-releasing hormone agonist versus antagonist for pituitary down-regulation.

    PubMed

    Dell'Aquila, Maria Elena; Ambruosi, Barbara; De Santis, Teresa; Cho, Yoon Sung

    2009-01-01

    To analyze the effects of GnRH agonists versus antagonists on mitochondrial distribution and activity in human mature oocytes. Randomized research experimental study. Academic basic research laboratory and hospital-based fertility center. Two hundred twenty-five supernumerary mature oocytes from 44 patients. Fluorescent staining and confocal laser scanning microscopy on oocytes after the use of either GnRH agonist (group A) or GnRH antagonist (group B). Oocyte mitochondrial distribution pattern and activity using MitoTracker Orange CMTM Ros. More oocytes showing polarized mitochondrial distribution pattern were found in group A than in group B (35% vs. 14%). In group B, hCG rather than GnRH agonist, for ovulation induction, resulted in more oocytes showing heterogeneous (57% vs. 14%), in particular polarized (24% vs. 0) mitochondrial distribution. In groups A and B, fluorescence intensity did not vary according to mitochondrial distribution pattern. However, fluorescence intensity was higher in oocytes with polarized and large granules configurations in group B compared to group A. The GnRH agonist and antagonist may have different effects on oocyte mitochondrial distribution pattern and activity. The GnRH antagonist may induce mitochondrial hyperactivity, which may be detrimental to the oocyte.

  15. Measurement of Mitochondrial Mass by Flow Cytometry during Oxidative Stress.

    PubMed

    Doherty, Edward; Perl, Andras

    2017-07-01

    Properly assessing mitochondrial health is crucial to understand their role in disease. MitoTracker green (MTG) and nonylacridine orange (NAO) are fluorescent probes which have been commonly used to assess mitochondrial mass. This is based on the assumption that both MTG and NAO accumulate in mitochondria regardless of the mitochondrial transmembrane potential (ΔΨ m ). Here, we utilized flow cytometry to evaluate the performance of these probes for assessment of mitochondrial mass relative to forward (FSC) and side scatter (SSC) in human peripheral blood lymphocytes (PBL). In isolated mitochondria, two subpopulations were identified by FSC and SSC measurements which were matched to subpopulations stained by MTG and NAO. The performance of these dyes was examined under oxidative and nitrosative stress induced by rotenone and NOC-18 while N -acetylcysteine (NAC) was employed as an antioxidant. Production of reactive oxygen species (ROS) and ΔΨ m were monitored in parallel. With respect to representation of mitochondrial mass, neither MTG nor NAO was affected by ΔΨ m . However, MTG showed significant correlation with cytosolic and mitochondrial ROS production and nitrosative stress. Our data suggest that NAO may be more suitable than MTG for assessment of mitochondrial mass by flow cytometry during oxidative stress.

  16. Massive gene loss in mistletoe (Viscum, Viscaceae) mitochondria

    PubMed Central

    Petersen, G.; Cuenca, A.; Møller, I. M.; Seberg, O.

    2015-01-01

    Parasitism is a successful survival strategy across all kingdoms and has evolved repeatedly in angiosperms. Parasitic plants obtain nutrients from other plants and some are agricultural pests. Obligate parasites, which cannot complete their lifecycle without a host, may lack functional photosystems (holoparasites), or have retained photosynthesis (hemiparasites). Plastid genomes are often reduced in parasites, but complete mitochondrial genomes have not been sequenced and their mitochondrial respiratory capacities are largely unknown. The hemiparasitic European mistletoe (Viscum album), known from folklore and postulated therapeutic properties, is a pest in plantations and forestry. We compare the mitochondrial genomes of three Viscum species based on the complete mitochondrial genome of V. album, the first from a parasitic plant. We show that mitochondrial genes encoding proteins of all respiratory complexes are lacking or pseudogenized raising several questions relevant to all parasitic plants: Are any mitochondrial gene functions essential? Do any genes need to be located in the mitochondrial genome or can they all be transferred to the nucleus? Can parasitic plants survive without oxidative phosphorylation by using alternative respiratory pathways? More generally, our study is a step towards understanding how host- and self-perception, host integration and nucleic acid transfer has modified ancestral mitochondrial genomes. PMID:26625950

  17. Posterior Endoscopic Excision of Os Trigonum in Professional National Ballet Dancers.

    PubMed

    Ballal, Moez S; Roche, Andy; Brodrick, Anna; Williams, R Lloyd; Calder, James D F

    2016-01-01

    Previous studies have compared the outcomes after open and endoscopic excision of an os trigonum in patients of mixed professions. No studies have compared the differences in outcomes between the 2 procedures in elite ballet dancers. From October 2005 to February 2010, 35 professional ballet dancers underwent excision of a symptomatic os trigonum of the ankle after a failed period of nonoperative treatment. Of the 35 patients, 13 (37.1%) underwent endoscopic excision and 22 (62.9%) open excision. We compared the outcomes, complications, and time to return to dancing. The open excision group experienced a significantly greater incidence of flexor hallucis longus tendon decompression compared with the endoscopic group. The endoscopic release group returned to full dance earlier at a mean of 9.8 (range 6.5 to 16.1) weeks and those undergoing open excision returned to full dance at a mean of 14.9 (range 9 to 20) weeks (p = .001). No major complications developed in either group, such as deep infection or nerve or vessel injury. We have concluded that both techniques are safe and effective in the treatment of symptomatic os trigonum in professional ballet dancers. Endoscopic excision of the os trigonum offers a more rapid return to full dance compared with open excision. Copyright © 2016 American College of Foot and Ankle Surgeons. Published by Elsevier Inc. All rights reserved.

  18. 29 CFR 779.263 - Excise taxes not at the retail level.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... ACT AS APPLIED TO RETAILERS OF GOODS OR SERVICES Employment to Which the Act May Apply; Enterprise Coverage Excise Taxes § 779.263 Excise taxes not at the retail level. There are also a wide variety of... 29 Labor 3 2010-07-01 2010-07-01 false Excise taxes not at the retail level. 779.263 Section 779...

  19. 29 CFR 779.263 - Excise taxes not at the retail level.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 29 Labor 3 2013-07-01 2013-07-01 false Excise taxes not at the retail level. 779.263 Section 779... Coverage Excise Taxes § 779.263 Excise taxes not at the retail level. There are also a wide variety of taxes levied at the manufacturer's or distributor's level and not at the retail level. It should be...

  20. 29 CFR 779.263 - Excise taxes not at the retail level.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 29 Labor 3 2012-07-01 2012-07-01 false Excise taxes not at the retail level. 779.263 Section 779... Coverage Excise Taxes § 779.263 Excise taxes not at the retail level. There are also a wide variety of taxes levied at the manufacturer's or distributor's level and not at the retail level. It should be...

  1. 29 CFR 779.263 - Excise taxes not at the retail level.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 29 Labor 3 2011-07-01 2011-07-01 false Excise taxes not at the retail level. 779.263 Section 779... Coverage Excise Taxes § 779.263 Excise taxes not at the retail level. There are also a wide variety of taxes levied at the manufacturer's or distributor's level and not at the retail level. It should be...

  2. 29 CFR 779.263 - Excise taxes not at the retail level.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 29 Labor 3 2014-07-01 2014-07-01 false Excise taxes not at the retail level. 779.263 Section 779... Coverage Excise Taxes § 779.263 Excise taxes not at the retail level. There are also a wide variety of taxes levied at the manufacturer's or distributor's level and not at the retail level. It should be...

  3. Otoplasty: the case for skin incision by higher volume operators.

    PubMed

    Arkoulis, Nikolaos; Reid, Jenny; Neill, Conor O '; Stewart, Kenneth J

    2015-02-01

    Prominent ear correction in the paediatric population is a common and popular procedure, with demonstrable benefit in alleviating psychological distress. Posterior cartilage-sparing techniques for otoplasty have been shown to be consistently safer and better than cartilage-scoring alternatives, however excision of the posterior auricular skin during otoplasty, although a common first step, has not been shown to have any benefits over skin incision alone. In this study, we examined the association between skin excision and recurrence of ear prominence, by examining the collective surgical outcomes of five plastic surgeons, performing 118 otoplasties at the Royal Hospital for Sick Children Edinburgh, between January 2011 and December 2013. Recurrence of prominence at the first follow-up appointment (mean follow-up 3.4 months) was 10.2%. Surgeons with low case volumes had significantly higher recurrence rates than high volume operators. There was no statistically significant association between skin excision and recurrence of prominence. We still favour posterior, cartilage-sparing otoplasties, but based on our findings we do not advocate any skin excision at any stage of the procedure. Surgeons should not include paediatric otoplasty in their portfolio unless they are undertaking significant number of cases each year. Copyright © 2014 British Association of Plastic, Reconstructive and Aesthetic Surgeons. Published by Elsevier Ltd. All rights reserved.

  4. Intra-operative ultrasound-based augmented reality guidance for laparoscopic surgery.

    PubMed

    Singla, Rohit; Edgcumbe, Philip; Pratt, Philip; Nguan, Christopher; Rohling, Robert

    2017-10-01

    In laparoscopic surgery, the surgeon must operate with a limited field of view and reduced depth perception. This makes spatial understanding of critical structures difficult, such as an endophytic tumour in a partial nephrectomy. Such tumours yield a high complication rate of 47%, and excising them increases the risk of cutting into the kidney's collecting system. To overcome these challenges, an augmented reality guidance system is proposed. Using intra-operative ultrasound, a single navigation aid, and surgical instrument tracking, four augmentations of guidance information are provided during tumour excision. Qualitative and quantitative system benefits are measured in simulated robot-assisted partial nephrectomies. Robot-to-camera calibration achieved a total registration error of 1.0 ± 0.4 mm while the total system error is 2.5 ± 0.5 mm. The system significantly reduced healthy tissue excised from an average (±standard deviation) of 30.6 ± 5.5 to 17.5 ± 2.4 cm 3 ( p < 0.05) and reduced the depth from the tumor underside to cut from an average (±standard deviation) of 10.2 ± 4.1 to 3.3 ± 2.3 mm ( p < 0.05). Further evaluation is required in vivo, but the system has promising potential to reduce the amount of healthy parenchymal tissue excised.

  5. Visualization of 3D elbow kinematics using reconstructed bony surfaces

    NASA Astrophysics Data System (ADS)

    Lalone, Emily A.; McDonald, Colin P.; Ferreira, Louis M.; Peters, Terry M.; King, Graham J. W.; Johnson, James A.

    2010-02-01

    An approach for direct visualization of continuous three-dimensional elbow kinematics using reconstructed surfaces has been developed. Simulation of valgus motion was achieved in five cadaveric specimens using an upper arm simulator. Direct visualization of the motion of the ulna and humerus at the ulnohumeral joint was obtained using a contact based registration technique. Employing fiducial markers, the rendered humerus and ulna were positioned according to the simulated motion. The specific aim of this study was to investigate the effect of radial head arthroplasty on restoring elbow joint stability after radial head excision. The position of the ulna and humerus was visualized for the intact elbow and following radial head excision and replacement. Visualization of the registered humerus/ulna indicated an increase in valgus angulation of the ulna with respect to the humerus after radial head excision. This increase in valgus angulation was restored to that of an elbow with a native radial head following radial head arthroplasty. These findings were consistent with previous studies investigating elbow joint stability following radial head excision and arthroplasty. The current technique was able to visualize a change in ulnar position in a single DoF. Using this approach, the coupled motion of ulna undergoing motion in all 6 degrees-of-freedom can also be visualized.

  6. [Transfusional requirements for escharectomy in burned children].

    PubMed

    Julia, Analía R; Basílico, Hugo; Magaldi, Gustavo; Demirdjian, Graciela

    2010-02-01

    Early excision has considerably improved outcome in extensive burns, but massive resections usually mean copious bleeding that must be conveniently corrected. The purpose of this study was to measure blood component use during escharectomies in children. All pediatric patients with acute burns excised at the Burn Unit of the Hospital Garrahan during one year were included. Volume of blood component used during and immediately after surgery was analyzed and related to percent excised, time post-burn, and the coexistence of infection and autograft at the time of excision. Ninety-four surgeries in 51 children aged 0-14 years with total burned body surface areas of 5-80% who underwent resections of 3-70% were studied. Total blood use (intra + post-operatively) was 2.07 ml/kg/%excised for red blood cells (60% during surgery) and 0.7 ml/kg/% excised for plasma. Only 12% of patients required platelet transfusion. There was no significant requirement variation with the existence of infection, grafting or time post-burn. Approximately 2 ml/kg/% excised of red blood cells (2/3 for surgery) and 1 ml/kg/% excised of plasma are needed for escharectomies in children. The need for platelets must be judged considering the individual patient.

  7. High-fat diet induces an initial adaptation of mitochondrial bioenergetics in the kidney despite evident oxidative stress and mitochondrial ROS production

    PubMed Central

    Ruggiero, Christine; Ehrenshaft, Marilyn; Cleland, Ellen

    2011-01-01

    Obesity and metabolic syndrome are associated with an increased risk for several diabetic complications, including diabetic nephropathy and chronic kidney diseases. Oxidative stress and mitochondrial dysfunction are often proposed mechanisms in various organs in obesity models, but limited data are available on the kidney. Here, we fed a lard-based high-fat diet to mice to investigate structural changes, cellular and subcellular oxidative stress and redox status, and mitochondrial biogenesis and function in the kidney. The diet induced characteristic changes, including glomerular hypertrophy, fibrosis, and interstitial scarring, which were accompanied by a proinflammatory transition. We demonstrate evidence for oxidative stress in the kidney through 3-nitrotyrosine and protein radical formation on high-fat diet with a contribution from iNOS and NOX-4 as well as increased generation of mitochondrial oxidants on carbohydrate- and lipid-based substrates. The increased H2O2 emission in the mitochondria suggests altered redox balance and mitochondrial ROS generation, contributing to the overall oxidative stress. No major derailments were observed in respiratory function or biogenesis, indicating preserved and initially improved bioenergetic parameters and energy production. We suggest that, regardless of the oxidative stress events, the kidney developed an adaptation to maintain normal respiratory function as a possible response to an increased lipid overload. These findings provide new insights into the complex role of oxidative stress and mitochondrial redox status in the pathogenesis of the kidney in obesity and indicate that early oxidative stress-related changes, but not mitochondrial bioenergetic dysfunction, may contribute to the pathogenesis and development of obesity-linked chronic kidney diseases. PMID:21386058

  8. Low-concentration exposure to glyphosate-based herbicide modulates the complexes of the mitochondrial respiratory chain and induces mitochondrial hyperpolarization in the Danio rerio brain.

    PubMed

    Pereira, Aline G; Jaramillo, Michael L; Remor, Aline P; Latini, Alexandra; Davico, Carla E; da Silva, Mariana L; Müller, Yara M R; Ammar, Dib; Nazari, Evelise M

    2018-06-11

    Glyphosate (N-phosphonomethyl-glycine) (GLY) is the active ingredient of the most used herbicides in the world. GLY is applied in formulated products known as glyphosate-based herbicides (GBH), which could induce effects that are not predicted by toxicity assays with pure GLY. This herbicide is classified as organophosphorus compound, which is known to induce neurotoxic effects. Although this compound is classified as non-neurotoxic by regulatory agencies, acute exposure to GBH causes neurological symptoms in humans. However, there is no consensus in relation to neurotoxic effects of GBH. Thus, the aim of this study was to investigate the neurotoxic effects of the GBH in the zebrafish Danio rerio, focusing on acute toxicity, the activity and transcript levels of mitochondrial respiratory chain complexes, mitochondrial membrane potential, reactive species (RS) formation, and behavioral repertoire. Adult zebrafish were exposed in vivo to three concentrations of GBH Scout ® , which contained GLY in formulation (fGLY) (0.065, 1.0 and 10.0 mg L -1 fGLY) for 7 d, and an in vitro assay was performed using also pure GLY. Our results show that GBH induced in zebrafish brain a decrease in cell viability, inhibited mitochondrial complex enzymatic activity, modulated gene expression related to mitochondrial complexes, induced an increase in RS production, promoted hyperpolarization of mitochondrial membrane, and induced behavioral impairments. Together, our data contributes to the knowledge of the neurotoxic effects of GBH. Mitochondrial dysfunction has been recognized as a relevant cellular response that should not be disregarded. Moreover, this study pointed to the mitochondria as an important target of GBH. Copyright © 2018 Elsevier Ltd. All rights reserved.

  9. Dimer excision in Escherichia coli in the presence of caffeine

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rothman, R.H.

    1980-07-01

    The observation that polA1 and recL152 mutations result in both slow pyrimidine dimer excision and large repair patch size leads to the hypothesis that patch size is directly related to the rate of excision. In this study caffeine, a known inhibitor of excision repair, was used to examine the extent of correlation between excision rate and patch size by measuring patch size in the presence of several concentrations of caffeine. Both the rate of excision and the resistance to ultraviolet radiation were reduced with increasing concentrations of caffeine after irradiation. Caffeine also inhibited the rate at which incisions were mademore » and prolonged the time required to rejoin the discontinuities. Patch size, however, was unaffected by caffeine treatment.« less

  10. Preparation and Respirometric Assessment of Mitochondria Isolated from Skeletal Muscle Tissue Obtained by Percutaneous Needle Biopsy

    PubMed Central

    Bharadwaj, Manish S.; Tyrrell, Daniel J.; Lyles, Mary F.; Demons, Jamehl L.; Rogers, George W.; Molina, Anthony J. A.

    2015-01-01

    Respirometric profiling of isolated mitochondria is commonly used to investigate electron transport chain function. We describe a method for obtaining samples of human Vastus lateralis, isolating mitochondria from minimal amounts of skeletal muscle tissue, and plate based respirometric profiling using an extracellular flux (XF) analyzer. Comparison of respirometric profiles obtained using 1.0, 2.5 and 5.0 μg of mitochondria indicate that 1.0 μg is sufficient to measure respiration and that 5.0 μg provides most consistent results based on comparison of standard errors. Western blot analysis of isolated mitochondria for mitochondrial marker COX IV and non-mitochondrial tissue marker GAPDH indicate that there is limited non-mitochondrial contamination using this protocol. The ability to study mitochondrial respirometry in as little as 20 mg of muscle tissue allows users to utilize individual biopsies for multiple study endpoints in clinical research projects. PMID:25741892

  11. Applying the Tuple Space-Based Approach to the Simulation of the Caspases, an Essential Signalling Pathway.

    PubMed

    Cárdenas-García, Maura; González-Pérez, Pedro Pablo

    2013-03-01

    Apoptotic cell death plays a crucial role in development and homeostasis. This process is driven by mitochondrial permeabilization and activation of caspases. In this paper we adopt a tuple spaces-based modelling and simulation approach, and show how it can be applied to the simulation of this intracellular signalling pathway. Specifically, we are working to explore and to understand the complex interaction patterns of the caspases apoptotic and the mitochondrial role. As a first approximation, using the tuple spacesbased in silico approach, we model and simulate both the extrinsic and intrinsic apoptotic signalling pathways and the interactions between them. During apoptosis, mitochondrial proteins, released from mitochondria to cytosol are decisively involved in the process. If the decision is to die, from this point there is normally no return, cancer cells offer resistance to the mitochondrial induction.

  12. Inferring patterns in mitochondrial DNA sequences through hypercube independent spanning trees.

    PubMed

    Silva, Eduardo Sant Ana da; Pedrini, Helio

    2016-03-01

    Given a graph G, a set of spanning trees rooted at a vertex r of G is said vertex/edge independent if, for each vertex v of G, v≠r, the paths of r to v in any pair of trees are vertex/edge disjoint. Independent spanning trees (ISTs) provide a number of advantages in data broadcasting due to their fault tolerant properties. For this reason, some studies have addressed the issue by providing mechanisms for constructing independent spanning trees efficiently. In this work, we investigate how to construct independent spanning trees on hypercubes, which are generated based upon spanning binomial trees, and how to use them to predict mitochondrial DNA sequence parts through paths on the hypercube. The prediction works both for inferring mitochondrial DNA sequences comprised of six bases as well as infer anomalies that probably should not belong to the mitochondrial DNA standard. Copyright © 2016 Elsevier Ltd. All rights reserved.

  13. 3D Time-lapse Imaging and Quantification of Mitochondrial Dynamics

    NASA Astrophysics Data System (ADS)

    Sison, Miguel; Chakrabortty, Sabyasachi; Extermann, Jérôme; Nahas, Amir; James Marchand, Paul; Lopez, Antonio; Weil, Tanja; Lasser, Theo

    2017-02-01

    We present a 3D time-lapse imaging method for monitoring mitochondrial dynamics in living HeLa cells based on photothermal optical coherence microscopy and using novel surface functionalization of gold nanoparticles. The biocompatible protein-based biopolymer coating contains multiple functional groups which impart better cellular uptake and mitochondria targeting efficiency. The high stability of the gold nanoparticles allows continuous imaging over an extended time up to 3000 seconds without significant cell damage. By combining temporal autocorrelation analysis with a classical diffusion model, we quantify mitochondrial dynamics and cast these results into 3D maps showing the heterogeneity of diffusion parameters across the whole cell volume.

  14. Aggressive fibromatosis (fibrosarcoma) of the facial nerve.

    PubMed

    Pulec, J L

    1993-07-01

    Aggressive fibromatosis of the facial nerve is a very rare tumor. Three cases have been previously reported. The tumor is locally recurrent and often has a fatal outcome. This report is of a ten-year-old boy whose tumor originally developed in the parotid area with subsequent spread to the base of the skull, the neck and the cerebellopontine angle. Treatment was by wide surgical excision, radiation therapy and chemotherapy. Despite treatment, the patient died. The clinical features of this case will be described. Only wide surgical excision early in the course of the disease may offer a chance for cure.

  15. Mitochondrial-Based Therapeutics for the Treatment of Spinal Cord Injury: Mitochondrial Biogenesis as a Potential Pharmacological Target

    PubMed Central

    Scholpa, Natalie E.

    2017-01-01

    Spinal cord injury (SCI) is characterized by an initial trauma followed by a progressive cascade of damage referred to as secondary injury. A hallmark of secondary injury is vascular disruption leading to vasoconstriction and decreased oxygen delivery, which directly reduces the ability of mitochondria to maintain homeostasis and leads to loss of ATP-dependent cellular functions, calcium overload, excitotoxicity, and oxidative stress, further exacerbating injury. Restoration of mitochondria dysfunction during the acute phases of secondary injury after SCI represents a potentially effective therapeutic strategy. This review discusses the past and present pharmacological options for the treatment of SCI as well as current research on mitochondria-targeted approaches. Increased antioxidant activity, inhibition of the mitochondrial permeability transition, alternate energy sources, and manipulation of mitochondrial morphology are among the strategies under investigation. Unfortunately, many of these tactics address single aspects of mitochondrial dysfunction, ultimately proving largely ineffective. Therefore, this review also examines the unexplored therapeutic efficacy of pharmacological enhancement of mitochondrial biogenesis, which has the potential to more comprehensively improve mitochondrial function after SCI. PMID:28935700

  16. Mitochondrial-Based Therapeutics for the Treatment of Spinal Cord Injury: Mitochondrial Biogenesis as a Potential Pharmacological Target.

    PubMed

    Scholpa, Natalie E; Schnellmann, Rick G

    2017-12-01

    Spinal cord injury (SCI) is characterized by an initial trauma followed by a progressive cascade of damage referred to as secondary injury. A hallmark of secondary injury is vascular disruption leading to vasoconstriction and decreased oxygen delivery, which directly reduces the ability of mitochondria to maintain homeostasis and leads to loss of ATP-dependent cellular functions, calcium overload, excitotoxicity, and oxidative stress, further exacerbating injury. Restoration of mitochondria dysfunction during the acute phases of secondary injury after SCI represents a potentially effective therapeutic strategy. This review discusses the past and present pharmacological options for the treatment of SCI as well as current research on mitochondria-targeted approaches. Increased antioxidant activity, inhibition of the mitochondrial permeability transition, alternate energy sources, and manipulation of mitochondrial morphology are among the strategies under investigation. Unfortunately, many of these tactics address single aspects of mitochondrial dysfunction, ultimately proving largely ineffective. Therefore, this review also examines the unexplored therapeutic efficacy of pharmacological enhancement of mitochondrial biogenesis, which has the potential to more comprehensively improve mitochondrial function after SCI. U.S. Government work not protected by U.S. copyright.

  17. The Acetyl Group Buffering Action of Carnitine Acetyltransferase Offsets Macronutrient-Induced Lysine Acetylation of Mitochondrial Proteins.

    PubMed

    Davies, Michael N; Kjalarsdottir, Lilja; Thompson, J Will; Dubois, Laura G; Stevens, Robert D; Ilkayeva, Olga R; Brosnan, M Julia; Rolph, Timothy P; Grimsrud, Paul A; Muoio, Deborah M

    2016-01-12

    Lysine acetylation (AcK), a posttranslational modification wherein a two-carbon acetyl group binds covalently to a lysine residue, occurs prominently on mitochondrial proteins and has been linked to metabolic dysfunction. An emergent theory suggests mitochondrial AcK occurs via mass action rather than targeted catalysis. To test this hypothesis, we performed mass spectrometry-based acetylproteomic analyses of quadriceps muscles from mice with skeletal muscle-specific deficiency of carnitine acetyltransferase (CrAT), an enzyme that buffers the mitochondrial acetyl-CoA pool by converting short-chain acyl-CoAs to their membrane permeant acylcarnitine counterparts. CrAT deficiency increased tissue acetyl-CoA levels and susceptibility to diet-induced AcK of broad-ranging mitochondrial proteins, coincident with diminished whole body glucose control. Sub-compartment acetylproteome analyses of muscles from obese mice and humans showed remarkable overrepresentation of mitochondrial matrix proteins. These findings reveal roles for CrAT and L-carnitine in modulating the muscle acetylproteome and provide strong experimental evidence favoring the nonenzymatic carbon pressure model of mitochondrial AcK. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  18. Downregulation of Pink1 influences mitochondrial fusion–fission machinery and sensitizes to neurotoxins in dopaminergic cells

    PubMed Central

    Rojas-Charry, Liliana; Cookson, Mark R.; Niño, Andrea; Arboleda, Humberto; Arboleda, Gonzalo

    2016-01-01

    It is now well established that mitochondria are organelles that, far from being static, are subject to a constant process of change. This process, which has been called mitochondrial dynamics, includes processes of both fusion and fission. Loss of Pink1 (PTEN-induced putative kinase 1) function is associated with early onset recessive Parkinson’s disease and it has been proposed that mitochondrial dynamics might be affected by loss of the mitochondrial kinase. Here, we report the effects of silencing Pink1 on mitochondrial fusion and fission events in dopaminergic neuron cell lines. Cells lacking Pink1 were more sensitive to cell death induced by C2-Ceramide, which inhibits proliferation and induces apoptosis. In the same cell lines, mitochondrial morphology was fragmented and this was enhanced by application of forskolin, which stimulates the cAMP pathway that phosphorylates Drp1 and thereby inactivates it. Cells lacking Pink1 had lower Drp1 and Mfn2 expression. Based on these data, we propose that Pink1 may exert a neuroprotective role in part by limiting mitochondrial fission. PMID:24792327

  19. The Acetyl Group Buffering Action of Carnitine Acetyltransferase Offsets Macronutrient-induced Lysine Acetylation of Mitochondrial Proteins

    PubMed Central

    Davies, Michael N.; Kjalarsdottir, Lilja; Thompson, J. Will; Dubois, Laura G.; Stevens, Robert D.; Ilkayeva, Olga R.; Brosnan, M. Julia; Rolph, Timothy P.; Grimsrud, Paul A.; Muoio, Deborah M.

    2016-01-01

    Lysine acetylation (AcK), a posttranslational modification wherein a two-carbon acetyl group binds covalently to a lysine residue, occurs prominently on mitochondrial proteins and has been linked to metabolic dysfunction. An emergent theory suggests mitochondrial AcK occurs via mass action rather than targeted catalysis. To test this hypothesis we performed mass spectrometry-based acetylproteomic analyses of quadriceps muscles from mice with skeletal muscle-specific deficiency of carnitine acetyltransferase (CrAT), an enzyme that buffers the mitochondrial acetyl-CoA pool by converting short-chain acyl-CoAs to their membrane permeant acylcarnitine counterparts. CrAT deficiency increased tissue acetyl-CoA levels and susceptibility to diet-induced AcK of broad-ranging mitochondrial proteins, coincident with diminished whole body glucose control. Sub-compartment acetylproteome analyses of muscles from obese mice and humans showed remarkable overrepresentation of mitochondrial matrix proteins. These findings reveal roles for CrAT and L-carnitine in modulating the muscle acetylproteome and provide strong experimental evidence favoring the nonenzymatic carbon pressure model of mitochondrial AcK. PMID:26748706

  20. The formation of catalytically competent enzyme-substrate complex is not a bottleneck in lesion excision by human alkyladenine DNA glycosylase.

    PubMed

    Kuznetsov, N A; Kiryutin, A S; Kuznetsova, A A; Panov, M S; Barsukova, M O; Yurkovskaya, A V; Fedorova, O S

    2017-04-01

    Human alkyladenine DNA glycosylase (AAG) protects DNA from alkylated and deaminated purine lesions. AAG flips out the damaged nucleotide from the double helix of DNA and catalyzes the hydrolysis of the N-glycosidic bond to release the damaged base. To understand better, how the step of nucleotide eversion influences the overall catalytic process, we performed a pre-steady-state kinetic analysis of AAG interaction with specific DNA-substrates, 13-base pair duplexes containing in the 7th position 1-N6-ethenoadenine (εA), hypoxanthine (Hx), and the stable product analogue tetrahydrofuran (F). The combination of the fluorescence of tryptophan, 2-aminopurine, and 1-N6-ethenoadenine was used to record conformational changes of the enzyme and DNA during the processes of DNA lesion recognition, damaged base eversion, excision of the N-glycosidic bond, and product release. The thermal stability of the duplexes characterized by the temperature of melting, T m , and the rates of spontaneous opening of individual nucleotide base pairs were determined by NMR spectroscopy. The data show that the relative thermal stability of duplexes containing a particular base pair in position 7, (T m (F/T) < T m (εA/T) < T m (Hx/T) < T m (A/T)) correlates with the rate of reversible spontaneous opening of the base pair. However, in contrast to that, the catalytic lesion excision rate is two orders of magnitude higher for Hx-containing substrates than for substrates containing εA, proving that catalytic activity is not correlated with the stability of the damaged base pair. Our study reveals that the formation of the catalytically competent enzyme-substrate complex is not the bottleneck controlling the catalytic activity of AAG.

  1. Bisphenol A Promotes Cell Survival Following Oxidative DNA Damage in Mouse Fibroblasts

    PubMed Central

    Gassman, Natalie R.; Coskun, Erdem; Stefanick, Donna F.; Horton, Julie K.; Jaruga, Pawel; Dizdaroglu, Miral; Wilson, Samuel H.

    2015-01-01

    Bisphenol A (BPA) is a biologically active industrial chemical used in production of consumer products. BPA has become a target of intense public scrutiny following concerns about its association with human diseases such as obesity, diabetes, reproductive disorders, and cancer. Recent studies link BPA with the generation of reactive oxygen species, and base excision repair (BER) is responsible for removing oxidatively induced DNA lesions. Yet, the relationship between BPA and BER has yet to be examined. Further, the ubiquitous nature of BPA allows continuous exposure of the human genome concurrent with the normal endogenous and exogenous insults to the genome, and this co-exposure may impact the DNA damage response and repair. To determine the effect of BPA exposure on base excision repair of oxidatively induced DNA damage, cells compromised in double-strand break repair were treated with BPA alone or co-exposed with either potassium bromate (KBrO3) or laser irradiation as oxidative damaging agents. In experiments with KBrO3, co-treatment with BPA partially reversed the KBrO3-induced cytotoxicity observed in these cells, and this was coincident with an increase in guanine base lesions in genomic DNA. The improvement in cell survival and the increase in oxidatively induced DNA base lesions were reminiscent of previous results with alkyl adenine DNA glycosylase-deficient cells, suggesting that BPA may prevent initiation of repair of oxidized base lesions. With laser irradiation-induced DNA damage, treatment with BPA suppressed DNA repair as revealed by several indicators. These results are consistent with the hypothesis that BPA can induce a suppression of oxidized base lesion DNA repair by the base excision repair pathway. PMID:25693136

  2. Peroxisome Proliferator-Activated Receptor (PPAR) γ and PPARα Agonists Modulate Mitochondrial Fusion-Fission Dynamics: Relevance to Reactive Oxygen Species (ROS)-Related Neurodegenerative Disorders?

    PubMed Central

    Zolezzi, Juan M.; Silva-Alvarez, Carmen; Ordenes, Daniela; Godoy, Juan A.; Carvajal, Francisco J.; Santos, Manuel J.; Inestrosa, Nibaldo C.

    2013-01-01

    Recent studies showed that the activation of the retinoid X receptor, which dimerizes with peroxisome proliferator-activated receptors (PPARs), leads to an enhanced clearance of Aβ from the brain of transgenic mice model of Alzheimer’s disease (AD), because an increased expression of apolipoprotein E and it main transporters. However, the effects observed must involve additional underlying mechanisms that have not been yet explored. Several studies conducted in our laboratory suggest that part of the effects observed for the PPARs agonist might involves mitochondrial function and, particularly, mitochondrial dynamics. In the present study we assessed the effects of oxidative stress challenge on mitochondrial morphology and mitochondrial dynamics-related proteins in hippocampal neurons. Using immunofluorescence, we evaluated the PPARγ co-activator 1α (PGC-1α), dynamin related protein 1 (DRP1), mitochondrial fission protein 1 (FIS1), and mitochondrial length, in order to determine if PPARs agonist pre-treatment is able to protect mitochondrial population from hippocampal neurons through modulation of the mitochondrial fusion-fission events. Our results suggest that both a PPARγ agonist (ciglitazone) and a PPARα agonist (WY 14.643) are able to protect neurons by modulating mitochondrial fusion and fission, leading to a better response of neurons to oxidative stress, suggesting that a PPAR based therapy could acts simultaneously in different cellular components. Additionally, our results suggest that PGC-1α and mitochondrial dynamics should be further studied in future therapy research oriented to ameliorate neurodegenerative disorders, such as AD. PMID:23675519

  3. Sleep disorders associated with primary mitochondrial diseases.

    PubMed

    Ramezani, Ryan J; Stacpoole, Peter W

    2014-11-15

    Primary mitochondrial diseases are caused by heritable or spontaneous mutations in nuclear DNA or mitochondrial DNA. Such pathological mutations are relatively common in humans and may lead to neurological and neuromuscular complication that could compromise normal sleep behavior. To gain insight into the potential impact of primary mitochondrial disease and sleep pathology, we reviewed the relevant English language literature in which abnormal sleep was reported in association with a mitochondrial disease. We examined publication reported in Web of Science and PubMed from February 1976 through January 2014, and identified 54 patients with a proven or suspected primary mitochondrial disorder who were evaluated for sleep disturbances. Both nuclear DNA and mitochondrial DNA mutations were associated with abnormal sleep patterns. Most subjects who underwent polysomnography had central sleep apnea, and only 5 patients had obstructive sleep apnea. Twenty-four patients showed decreased ventilatory drive in response to hypoxia and/ or hyperapnea that was not considered due to weakness of the intrinsic muscles of respiration. Sleep pathology may be an underreported complication of primary mitochondrial diseases. The probable underlying mechanism is cellular energy failure causing both central neurological and peripheral neuromuscular degenerative changes that commonly present as central sleep apnea and poor ventilatory response to hyperapnea. Increased recognition of the genetics and clinical manifestations of mitochondrial diseases by sleep researchers and clinicians is important in the evaluation and treatment of all patients with sleep disturbances. Prospective population-based studies are required to determine the true prevalence of mitochondrial energy failure in subjects with sleep disorders, and conversely, of individuals with primary mitochondrial diseases and sleep pathology. © 2014 American Academy of Sleep Medicine.

  4. Assessment of ToxCast Phase II for Mitochondrial Liabilities Using a High-Throughput Respirometric Assay

    PubMed Central

    Wills, Lauren P.; Beeson, Gyda C.; Hoover, Douglas B.; Schnellmann, Rick G.; Beeson, Craig C.

    2015-01-01

    Previous high-throughput screens to identify mitochondrial toxicants used immortalized cell lines and focused on changes in mitochondrial membrane potential, which may not be sufficient and do not identify different types of mitochondrial dysfunction. Primary cultures of renal proximal tubule cells (RPTC) were examined with the Seahorse Extracellular Flux Analyzer to screen 676 compounds (5 μM; 1 h) from the ToxCast Phase II library for mitochondrial toxicants. Of the 676 compounds, 19 were classified as cytotoxicants, 376 were electron transport chain (ETC) inhibitors, and 5 were uncouplers. The remaining 276 compounds were examined after a 5-h exposure to identify slower acting mitochondrial toxicants. This experiment identified 3 cytotoxicants, 110 ETC inhibitors, and 163 compounds with no effect. A subset of the ToxCast Phase II library was also examined in immortalized human renal cells (HK2) to determine differences in susceptibility to mitochondrial toxicity. Of the 131 RPTC ETC inhibitors tested, only 14 were ETC inhibitors in HK2 cells. Of the 5 RPTC uncouplers, 1 compound was an uncoupler in HK2 cells. These results demonstrate that 73% (491/676) of the compounds in the ToxCast Phase II library compounds exhibit RPTC mitochondrial toxicity, overwhelmingly ETC inhibition. In contrast, renal HK2 cells are markedly less sensitive and only identified 6% of the compounds as mitochondrial toxicants. We suggest caution is needed when studying mitochondrial toxicity in immortalized cell lines. This information will provide mechanisms and chemical-based criteria for assessing and predicting mitochondrial liabilities of new drugs, consumer products, and environmental agents. PMID:25926417

  5. Phylogenetic analysis of the true water bugs (Insecta: Hemiptera: Heteroptera: Nepomorpha): evidence from mitochondrial genomes

    PubMed Central

    Hua, Jimeng; Li, Ming; Dong, Pengzhi; Cui, Ying; Xie, Qiang; Bu, Wenjun

    2009-01-01

    Background The true water bugs are grouped in infraorder Nepomorpha (Insecta: Hemiptera: Heteroptera) and are of great economic importance. The phylogenetic relationships within Nepomorpha and the taxonomic hierarchies of Pleoidea and Aphelocheiroidea are uncertain. Most of the previous studies were based on morphological characters without algorithmic assessment. In the latest study, the molecular markers employed in phylogenetic analyses were partial sequences of 16S rDNA and 18S rDNA with a total length about 1 kb. Up to now, no mitochondrial genome of the true water bugs has been sequenced, which is one of the largest data sets that could be compared across animal taxa. In this study we analyzed the unresolved problems in Nepomorpha using evidence from mitochondrial genomes. Results Nine mitochondrial genomes of Nepomorpha and five of other hemipterans were sequenced. These mitochondrial genomes contain the commonly found 37 genes without gene rearrangements. Based on the nucleotide sequences of mt-genomes, Pleoidea is not a member of the Nepomorpha and Aphelocheiroidea should be grouped back into Naucoroidea. Phylogenetic relationships among the superfamilies of Nepomorpha were resolved robustly. Conclusion The mt-genome is an effective data source for resolving intraordinal phylogenetic problems at the superfamily level within Heteroptera. The mitochondrial genomes of the true water bugs are typical insect mt-genomes. Based on the nucleotide sequences of the mt-genomes, we propose the Pleoidea to be a separate heteropteran infraorder. The infraorder Nepomorpha consists of five superfamilies with the relationships (Corixoidea + ((Naucoroidea + Notonectoidea) + (Ochteroidea + Nepoidea))). PMID:19523246

  6. Fiber-type differences in muscle mitochondrial profiles.

    PubMed

    Leary, S C; Lyons, C N; Rosenberger, A G; Ballantyne, J S; Stillman, J; Moyes, C D

    2003-10-01

    Although striated muscles differ in mitochondrial content, the extent of fiber-type specific mitochondrial specializations is not well known. To address this issue, we compared mitochondrial structural and functional properties in red muscle (RM), white muscle (WM), and cardiac muscle of rainbow trout. Overall preservation of the basic relationships between oxidative phosphorylation complexes among fiber types was confirmed by kinetic analyses, immunoblotting of native holoproteins, and spectroscopic measurements of cytochrome content. Fiber-type differences in mitochondrial properties were apparent when parameters were expressed per milligram mitochondrial protein. However, the differences diminished when expressed relative to cytochrome oxidase (COX), possibly a more meaningful denominator than mitochondrial protein. Expressed relative to COX, there were no differences in oxidative phosphorylation enzyme activities, pyruvate-based respiratory rates, H2O2 production, or state 4 proton leak respiration. These data suggest most mitochondrial qualitative properties are conserved across fiber types. However, there remained modest differences ( approximately 50%) in stoichiometries of selected enzymes of the Krebs cycle, beta-oxidation, and antioxidant enzymes. There were clear differences in membrane fluidity (RM > cardiac, WM) and proton conductance (H+/min/mV/U COX: WM > RM > cardiac). The pronounced differences in mitochondrial content between fiber types could be attributed to a combination of differences in myonuclear domain and modest effects on the expression of nuclear- and mitochondrially encoded respiratory genes. Collectively, these studies suggest constitutive pathways that transcend fiber types are primarily responsible for determining most quantitative and qualitative properties of mitochondria.

  7. Increased recovery rates of phosphocreatine and inorganic phosphate after isometric contraction in oxidative muscle fibers and elevated hepatic insulin resistance in homozygous carriers of the A-allele of FTO rs9939609.

    PubMed

    Grunnet, Louise G; Brøns, Charlotte; Jacobsen, Stine; Nilsson, Emma; Astrup, Arne; Hansen, Torben; Pedersen, Oluf; Poulsen, Pernille; Quistorff, Bjørn; Vaag, Allan

    2009-02-01

    Recent studies identified the rs9939609 A-allele of the FTO (fat mass and obesity associated) gene as being associated with obesity and type 2 diabetes. We studied the role of the A-allele in the regulation of peripheral organ functions involved in the pathogenesis of obesity and type 2 diabetes. Forty-six young men underwent a hyperinsulinemic euglycemic clamp with excision of skeletal muscle biopsies, an iv glucose tolerance test, 31phosphorous magnetic resonance spectroscopy, and 24-h whole body metabolism was measured in a respiratory chamber. The FTO rs9939609 A-allele was associated with elevated fasting blood glucose and plasma insulin, hepatic insulin resistance, and shorter recovery half-times of phosphocreatine and inorganic phosphate after exercise in a primarily type I muscle. These relationships--except for fasting insulin--remained significant after correction for body fat percentage. The risk allele was not associated with fat distribution, peripheral insulin sensitivity, insulin secretion, 24-h energy expenditure, or glucose and fat oxidation. The FTO genotype did not influence the mRNA expression of FTO or a set of key nuclear or mitochondrially encoded genes in skeletal muscle during rest. Increased energy efficiency--and potentially increased mitochondrial coupling--as suggested by faster recovery rates of phosphocreatine and inorganic phosphate in oxidative muscle fibers may contribute to the increased risk of obesity and type 2 diabetes in homozygous carriers of the FTO A-risk allele. Hepatic insulin resistance may represent the key metabolic defect responsible for mild elevations of fasting blood glucose associated with the FTO phenotype.

  8. Complete mitochondrial genome of Eagle Owl (Bubo bubo, Strigiformes; Strigidae) from China.

    PubMed

    Hengjiu, Tian; Jianwei, Ji; Shi, Yang; Zhiming, Zhang; Laghari, Muhammad Younis; Narejo, Naeem Tariq; Lashari, Punhal

    2016-01-01

    In the present study, the complete mitochondrial genome sequence of Bubo bubo using PCR amplification, sequencing and assembling has been obtained for the first time. The total length of the mitochondrial genome was 16,250  bp, with the base composition of 29.88% A, 34.16% C, 14.35% G, and 21.58% T. It contained 37 genes (2 ribosomal RNA genes, 13 protein-coding genes and 22 transfer RNA genes) and a major non-coding control region (D-loop region). The complete mitochondrial genome sequence of Bubo bubo provides an important data set for further investigation on the phylogenetic relationships within Strigiformes.

  9. Complete mitochondrial genome of the Freshwater Catfish Rita rita (Siluriformes, Bagridae).

    PubMed

    Lashari, Punhal; Laghari, Muhammad Younis; Xu, Peng; Zhao, Zixia; Jiang, Li; Narejo, Naeem Tariq; Deng, Yulin; Sun, Xiaowen; Zhang, Yan

    2015-01-01

    The complete mitochondrial genome of Catfish, Rita rita, was isolated by LA PCR (TakaRa LAtaq, Dalian, China); and sequenced by Sanger's method to obtain the complete mitochondrial genome, which is listed Critically Endangered and Red Listed species. The complete mitogenome was 16,449 bp in length and contains 13 typical vertebrate protein-coding genes, 2 rRNA and 22 tRNA genes. The whole genome base composition was estimated to be 33.40% A, 27.43% C, 14.26% G and 24.89% T. The complete mitochondrial genome of catfish, Rita rita provides the basis for genetic breeding and conservation studies.

  10. Lipid-induced mitochondrial stress and insulin action in muscle

    PubMed Central

    Muoio, Deborah M.; Neufer, P. Darrell

    2012-01-01

    Summary The interplay between mitochondrial energetics, lipid balance and muscle insulin sensitivity has remained a topic of intense interest and debate for decades. One popular view suggests that increased oxidative capacity benefits metabolic wellness; based on the premise that it is healthier to burn fat than glucose. Attempts to test this hypothesis using genetically-modified mouse models have produced contradictory results; and instead link muscle insulin resistance to excessive fat oxidation, acylcarnitine production and increased mitochondrial H2O2 emitting potential. Here, we consider emerging evidence that insulin action in muscle is driven principally by mitochondrial load and redox signaling rather than oxidative capacity. PMID:22560212

  11. Single incision endoscopic surgery for gynaecomastia.

    PubMed

    Jarrar, G; Peel, A; Fahmy, R; Deol, H; Salih, V; Mostafa, A

    2011-09-01

    Surgical excision has been an effective treatment for gynaecomastia. Recently, there has been a shift from the open approach to minimally invasive techniques. In this report we describe our technique which includes endoscopic excision and/or liposuction of gynaecomastia via a single lateral chest wall incision. Between May 2007 and April 2010, a total of 12 gynaecomastia patients were treated with liposuction and/or endoscopic excision. Patients were divided into 3 groups: group I; liposuction only, group II; endoscopic excision plus liposuction and group III; endoscopic excision only. One 15 mm incision was made laterally at the anterior axillary line. A vacuum assisted liposuction removing the fatty tissue was performed. Then endoscopic excision of the remaining fibroglandular tissue was done under vision through the same incision. The parynchyma was then dissected into small pieces and pulled out. Group I had liposuction only (n = 4), group II had liposuction combined with endoscopic excision (n = 7) (58%) while group III had endoscopic excision only (n = 1). The mean operative time for liposuction and endoscopic excision was 58 min for each side. Mean hospital stay was 1.4 days. Postoperative complications included infection with abscess formation and one patient had seroma. Mean follow-up was 56 weeks. Eleven out of twelve patients (92%) were satisfied with their results. Long-term follow-up showed that results were stable over time, and no revisions were necessary. Endoscopic excision of gynaecomastia through a single lateral chest wall incision is a minimally invasive effective and safe technique for the management of gynaecomastia, with excellent aesthetic results and an acceptable complication rate. Copyright © 2011 British Association of Plastic, Reconstructive and Aesthetic Surgeons. Published by Elsevier Ltd. All rights reserved.

  12. The financial burden of reexcising incompletely excised soft tissue sarcomas: a cost analysis.

    PubMed

    Alamanda, Vignesh K; Delisca, Gadini O; Mathis, Shannon L; Archer, Kristin R; Ehrenfeld, Jesse M; Miller, Mark W; Homlar, Kelly C; Halpern, Jennifer L; Schwartz, Herbert S; Holt, Ginger E

    2013-09-01

    Although survival outcomes have been evaluated between those undergoing a planned primary excision and those undergoing a reexcision following an unplanned resection, the financial implications associated with a reexcision have yet to be elucidated. A query for financial data (professional, technical, indirect charges) for soft tissue sarcoma excisions from 2005 to 2008 was performed. A total of 304 patients (200 primary excisions and 104 reexcisions) were identified. Wilcoxon rank sum tests and χ2 or Fisher's exact tests were used to compare differences in demographics and tumor characteristics. Multivariable linear regression analyses were performed with bootstrapping techniques. The average professional charge for a primary excision was $9,694 and $12,896 for a reexcision (p<.001). After adjusting for tumor size, American Society of Anesthesiologists status, grade, and site, patients undergoing reexcision saw an increase of $3,699 in professional charges more than those with a primary excision (p<.001). Although every 1-cm increase in size of the tumor results in an increase of $148 for a primary excision (p=.006), size was not an independent factor in affecting reexcision charges. The grade of the tumor was positively associated with professional charges of both groups such that higher-grade tumors resulted in higher charges compared to lower-grade tumors (p<.05). Reexcision of an incompletely excised sarcoma results in significantly higher professional charges when compared to a single, planned complete excision. Additionally, when the cost of the primary unplanned surgery is considered, the financial burden nearly doubles.

  13. Defects in Mitochondrial Fatty Acid Synthesis Result in Failure of Multiple Aspects of Mitochondrial Biogenesis in Saccharomyces cerevisiae

    PubMed Central

    Kursu, V. A. Samuli; Pietikäinen, Laura P.; Fontanesi, Flavia; Aaltonen, Mari J.; Suomi, Fumi; Nair, Remya Raghavan; Schonauer, Melissa S.; Dieckmann, Carol L.; Barrientos, Antoni; Hiltunen, J. Kalervo; Kastaniotis, Alexander J.

    2014-01-01

    Summary Mitochondrial fatty acid synthesis (mtFAS) shares acetyl-CoA with the Krebs cycle as a common substrate and is required for the production of octanoic acid (C8) precursors of lipoic acid (LA) in mitochondria. MtFAS is a conserved pathway essential for respiration. In a genetic screen in Saccharomyces cerevisiae designed to further elucidate the physiological role of mtFAS, we isolated mutants with defects in mitochondrial post-translational gene expression processes, indicating a novel link to mitochondrial gene expression and respiratory chain biogenesis. In our ensuing analysis, we show that mtFAS, but not lipoylation per se, is required for respiratory competence. We demonstrate that mtFAS is required for mRNA splicing, mitochondrial translation and respiratory complex assembly, and provide evidence that not LA per se, but fatty acids longer than C8 play a role in these processes. We also show that mtFAS- and LA-deficient strains suffer from a mild heme deficiency that may contribute to the respiratory complex assembly defect. Based on our data and previously published information, we propose a model implicating mtFAS as a sensor for mitochondrial acetyl-CoA availability and a coordinator of nuclear and mitochondrial gene expression by adapting the mitochondrial compartment to changes in the metabolic status of the cell. PMID:24102902

  14. Defects in mitochondrial fatty acid synthesis result in failure of multiple aspects of mitochondrial biogenesis in Saccharomyces cerevisiae.

    PubMed

    Kursu, V A Samuli; Pietikäinen, Laura P; Fontanesi, Flavia; Aaltonen, Mari J; Suomi, Fumi; Raghavan Nair, Remya; Schonauer, Melissa S; Dieckmann, Carol L; Barrientos, Antoni; Hiltunen, J Kalervo; Kastaniotis, Alexander J

    2013-11-01

    Mitochondrial fatty acid synthesis (mtFAS) shares acetyl-CoA with the Krebs cycle as a common substrate and is required for the production of octanoic acid (C8) precursors of lipoic acid (LA) in mitochondria. MtFAS is a conserved pathway essential for respiration. In a genetic screen in Saccharomyces cerevisiae designed to further elucidate the physiological role of mtFAS, we isolated mutants with defects in mitochondrial post-translational gene expression processes, indicating a novel link to mitochondrial gene expression and respiratory chain biogenesis. In our ensuing analysis, we show that mtFAS, but not lipoylation per se, is required for respiratory competence. We demonstrate that mtFAS is required for mRNA splicing, mitochondrial translation and respiratory complex assembly, and provide evidence that not LA per se, but fatty acids longer than C8 play a role in these processes. We also show that mtFAS- and LA-deficient strains suffer from a mild haem deficiency that may contribute to the respiratory complex assembly defect. Based on our data and previously published information, we propose a model implicating mtFAS as a sensor for mitochondrial acetyl-CoA availability and a co-ordinator of nuclear and mitochondrial gene expression by adapting the mitochondrial compartment to changes in the metabolic status of the cell. © 2013 John Wiley & Sons Ltd.

  15. Oxidized nucleotide insertion by pol β confounds ligation during base excision repair

    PubMed Central

    Çağlayan, Melike; Horton, Julie K.; Dai, Da-Peng; Stefanick, Donna F.; Wilson, Samuel H.

    2017-01-01

    Oxidative stress in cells can lead to accumulation of reactive oxygen species and oxidation of DNA precursors. Oxidized purine nucleotides can be inserted into DNA during replication and repair. The main pathway for correcting oxidized bases in DNA is base excision repair (BER), and in vertebrates DNA polymerase β (pol β) provides gap filling and tailoring functions. Here we report that the DNA ligation step of BER is compromised after pol β insertion of oxidized purine nucleotides into the BER intermediate in vitro. These results suggest the possibility that BER mediated toxic strand breaks are produced in cells under oxidative stress conditions. We observe enhanced cytotoxicity in oxidizing-agent treated pol β expressing mouse fibroblasts, suggesting formation of DNA strand breaks under these treatment conditions. Increased cytotoxicity following MTH1 knockout or treatment with MTH1 inhibitor suggests the oxidation of precursor nucleotides. PMID:28067232

  16. Using Isolated Mitochondria from Minimal Quantities of Mouse Skeletal Muscle for High throughput Microplate Respiratory Measurements.

    PubMed

    Boutagy, Nabil E; Rogers, George W; Pyne, Emily S; Ali, Mostafa M; Hulver, Matthew W; Frisard, Madlyn I

    2015-10-30

    Skeletal muscle mitochondria play a specific role in many disease pathologies. As such, the measurement of oxygen consumption as an indicator of mitochondrial function in this tissue has become more prevalent. Although many technologies and assays exist that measure mitochondrial respiratory pathways in a variety of cells, tissue and species, there is currently a void in the literature in regards to the compilation of these assays using isolated mitochondria from mouse skeletal muscle for use in microplate based technologies. Importantly, the use of microplate based respirometric assays is growing among mitochondrial biologists as it allows for high throughput measurements using minimal quantities of isolated mitochondria. Therefore, a collection of microplate based respirometric assays were developed that are able to assess mechanistic changes/adaptations in oxygen consumption in a commonly used animal model. The methods presented herein provide step-by-step instructions to perform these assays with an optimal amount of mitochondrial protein and reagents, and high precision as evidenced by the minimal variance across the dynamic range of each assay.

  17. Low-level laser irradiation alters mRNA expression from genes involved in DNA repair and genomic stabilization in myoblasts

    NASA Astrophysics Data System (ADS)

    Trajano, L. A. S. N.; Sergio, L. P. S.; Silva, C. L.; Carvalho, L.; Mencalha, A. L.; Stumbo, A. C.; Fonseca, A. S.

    2016-07-01

    Low-level lasers are used for the treatment of diseases in soft and bone tissues, but few data are available regarding their effects on genomic stability. In this study, we investigated mRNA expression from genes involved in DNA repair and genomic stabilization in myoblasts exposed to low-level infrared laser. C2C12 myoblast cultures in different fetal bovine serum concentrations were exposed to low-level infrared laser (10, 35 and 70 J cm-2), and collected for the evaluation of DNA repair gene expression. Laser exposure increased gene expression related to base excision repair (8-oxoguanine DNA glycosylase and apurinic/apyrimidinic endonuclease 1), nucleotide excision repair (excision repair cross-complementation group 1 and xeroderma pigmentosum C protein) and genomic stabilization (ATM serine/threonine kinase and tumor protein p53) in normal and low fetal bovine serum concentrations. Results suggest that genomic stability could be part of a biostimulation effect of low-level laser therapy in injured muscles.

  18. DNA Damage Induced by Alkylating Agents and Repair Pathways

    PubMed Central

    Kondo, Natsuko; Takahashi, Akihisa; Ono, Koji; Ohnishi, Takeo

    2010-01-01

    The cytotoxic effects of alkylating agents are strongly attenuated by cellular DNA repair processes, necessitating a clear understanding of the repair mechanisms. Simple methylating agents form adducts at N- and O-atoms. N-methylations are removed by base excision repair, AlkB homologues, or nucleotide excision repair (NER). O6-methylguanine (MeG), which can eventually become cytotoxic and mutagenic, is repaired by O6-methylguanine-DNA methyltransferase, and O6MeG:T mispairs are recognized by the mismatch repair system (MMR). MMR cannot repair the O6MeG/T mispairs, which eventually lead to double-strand breaks. Bifunctional alkylating agents form interstrand cross-links (ICLs) which are more complex and highly cytotoxic. ICLs are repaired by complex of NER factors (e.g., endnuclease xeroderma pigmentosum complementation group F-excision repair cross-complementing rodent repair deficiency complementation group 1), Fanconi anemia repair, and homologous recombination. A detailed understanding of how cells cope with DNA damage caused by alkylating agents is therefore potentially useful in clinical medicine. PMID:21113301

  19. Base excision repair in Archaea: back to the future in DNA repair.

    PubMed

    Grasso, Stefano; Tell, Gianluca

    2014-09-01

    Together with Bacteria and Eukarya, Archaea represents one of the three domain of life. In contrast with the morphological difference existing between Archaea and Eukarya, these two domains are closely related. Phylogenetic analyses confirm this evolutionary relationship showing that most of the proteins involved in DNA transcription and replication are highly conserved. On the contrary, information is scanty about DNA repair pathways and their mechanisms. In the present review the most important proteins involved in base excision repair, namely glycosylases, AP lyases, AP endonucleases, polymerases, sliding clamps, flap endonucleases, and ligases, will be discussed and compared with bacterial and eukaryotic ones. Finally, possible applications and future perspectives derived from studies on Archaea and their repair pathways, will be taken into account. Copyright © 2014 Elsevier B.V. All rights reserved.

  20. Preoperative immunosuppressive therapy and surgery as a treatment for anal furunculosis.

    PubMed

    Klein, Arnaud; Deneuche, Aymeric; Fayolle, Pascal; Hidalgo, Antoine; Scotti, Stefano; Zylberstein, Luca; Desbois, Christophe; Tessier, Dominique; Moissonnier, Pierre; Viateau, Véronique

    2006-12-01

    To evaluate the efficacy of combining preoperative immunosuppressive therapy with surgical excision for treatment of anal furunculosis (AF) in dogs. Retrospective study. Dogs (n=25) with stages 1-4 AF. Preoperative immunosuppressive therapy was either cyclosporine A (CyA) alone or in combination with ketoconazole (Group 1; n=18), or azathioprine combined with prednisolone (Group 2; n=7). Surgical excision of residual draining tracts, cryptectomy, and anal sacculectomy were performed. Only dogs with postoperative clinical follow-up exceeding 9 months were retained for the study. Both immunosuppressive protocols were effective in reducing progression of AF. Subsequent draining tracts excision, cryptectomy, and anal sacculectomy were bilateral (12 dogs) or unilateral (13 dogs of which 4 had bilateral anal sacculectomy). Postoperative recovery was uneventful, except for 2 dogs that had wound breakdown. Recurrence was not observed in any of the dogs that had bilateral surgical excision and or in 9 dogs that had unilateral excision. Preoperative immunosuppressive therapy, combined with bilateral surgical resection of affected tissue consistently, resulted in resolution of AF. Four dogs that had recurrence had unilateral excision despite initial bilateral involvement, suggesting that all diseased tissue should be excised. These preliminary results suggest that immunosuppressive therapy before surgical excision for AF yields minimizes recurrence in dogs.

  1. Infrequent transposition of Ac in lettuce, Lactuca sativa.

    PubMed

    Yang, C H; Ellis, J G; Michelmore, R W

    1993-08-01

    The maize transposable element Activator (Ac) is being used to develop a transposon mutagenesis system in lettuce, Lactuca sativa. Two constructs containing the complete Ac from the waxy-m7 locus of maize were introduced into lettuce and monitored for activity using Southern analysis and PCR amplification of the excision site. No transposition of Ac was detected in over 32 transgenic R1 plants, although these constructs were known to provide frequent transposition in other species. Also, no transposition was observed in later generations. In subsequent experiments, transposition was detected in lettuce calli using constructs that allowed selection for excision events. In these constructs, the neomycin phosphotransferase II gene was interrupted by either Ac or Ds. Excision was detected as the ability of callus to grow on kanamycin. Synthesis of the transposase from the cDNA of Ac expressed from the T-DNA 2' promoter resulted in more frequent excision of Ds than was observed with the wild-type Ac. No excision was observed with Ds in the absence of the transposase. The excision events were confirmed by amplification of the excision site by PCR followed by DNA sequencing. Excision and reintegration were also confirmed by Southern analysis. Ac/Ds is therefore capable of transposition in at least calli of lettuce.

  2. Identifying selectively important amino acid positions associated with alternative habitat environments in fish mitochondrial genomes.

    PubMed

    Xia, Jun Hong; Li, Hong Lian; Zhang, Yong; Meng, Zi Ning; Lin, Hao Ran

    2018-05-01

    Fish species inhabitating seawater (SW) or freshwater (FW) habitats have to develop genetic adaptations to alternative environment factors, especially salinity. Functional consequences of the protein variations associated with habitat environments in fish mitochondrial genomes have not yet received much attention. We analyzed 829 complete fish mitochondrial genomes and compared the amino acid differences of 13 mitochondrial protein families between FW and SW fish groups. We identified 47 specificity determining sites (SDS) that associated with FW or SW environments from 12 mitochondrial protein families. Thirty-two (68%) of the SDS sites are hydrophobic, 13 (28%) are neutral, and the remaining sites are acidic or basic. Seven of those SDS from ND1, ND2 and ND5 were scored as probably damaging to the protein structures. Furthermore, phylogenetic tree based Bayes Empirical Bayes analysis also detected 63 positive sites associated with alternative habitat environments across ten mtDNA proteins. These signatures could be important for studying mitochondrial genetic variation relevant to fish physiology and ecology.

  3. [MITOCHONDRIAL DYSFUNCTION: MODERN ASPECTS OF THERAPY (REVIEW)].

    PubMed

    Arveladze, G; Geladze, N; Khachapuridze, N; Bakhtadze, S; Kapanadze, N

    2015-01-01

    Mitochondrial diseases are considered as one of the major problems of modern interdisciplinary neonatology and pediatrics. Mitochondrial pathology can be revealed as refractory myoclonic or multifocal seizures, craniofacial dysostosis, dysmetabolic manifestations and respiratory disorders. Central nervous system (CNS), muscles, heart, liver and kidneys is involved in this pathological process. An important criterion for diagnosis of mitochondrial dysfunction is increases in blood lactate and pyruvate levels; the absolute criterion - molecular genetic diagnostic studies of mitochondrial DNA. Polymorphism of clinical symptoms complicates the process of early diagnostics, the lack clear recommendations complicates therapy. Modern aspects of treatment of mitochondrial dysfunction in various neurological syndromes are based primarily in improving the efficiency of the processes of oxidative phosphorylation at the system level. Dietary carbohydrate restriction, and medication (Coenzyme Q10, Idebenonum, Cofactors, drugs which reduce lactic acidosis- Dimephosphon, Dichloroacetate, Antioxidants, Anticonvulsants and Antidiabetic agents, vitamins C, E, K, hemotransfusions) is prescribed. Such complex approach allows us to achieve a reduction in lactate-acidosis, and improve the condition of patients in 70% of cases.

  4. Frequency of invasive cancer in surgically excised vulvar lesions with intraepithelial neoplasia (VIN 3).

    PubMed

    Husseinzadeh, N; Recinto, C

    1999-04-01

    The aim of this study was to determine the frequency of invasive cancer found from specimens removed by surgical excision on patients with diagnosis of VIN 3. Seventy-eight patients with biopsy-proven vulvar intraepithelial neoplasia 3 (VIN 3) were treated by surgical excision. Sixteen patients (20.5%) were found to have invasion in the excised surgical specimen. Superficial invasion was seen in 7 patients (9%), 9 were noted to have >1 mm invasion (11.5%), and 1 patient had in situ Paget's disease (1.3%). Surgical excision should be considered a preferable method in management of patients with VIN 3. Copyright 1999 Academic Press.

  5. Sex differences in the regulation of spatially distinct cardiac mitochondrial subpopulations.

    PubMed

    Ribeiro, Rogério Faustino; Ronconi, Karoline Sousa; Morra, Elis Aguiar; Do Val Lima, Patrícia Ribeiro; Porto, Marcella Leite; Vassallo, Dalton Valentim; Figueiredo, Suely Gomes; Stefanon, Ivanita

    2016-08-01

    Spatially distinct mitochondrial subpopulation may mediate myocardial pathology through permeability transition pore opening (MPTP). The goal of this study was to assess sex differences on the two spatially distinct mitochondrial subpopulations: subsarcolemmal mitochondria (SSM) and intermyofibrillar mitochondria (IFM) based on morphology, membrane potential, mitochondrial function, oxidative phosphorylation, and MPTP. Aged matched Wistar rats were used to study SSM and IFM. Mitochondrial size was larger in SSM than in IFM in both genders. However, SSM internal complexity, yield, and membrane potential were higher in male than in female. The maximal rate of mitochondrial respiration, states 3 and 4, using glutamate + malate as substrate, were higher in IFM and SSM in the male group compared to female. The respiratory control ratio (RCR-state3/state 4), was not different in both SSM and IFM with glutamate + malate. The ADP:O ratio was found higher in IFM and SSM from female compared to males. When pyruvate was used, state 3 was found unchanged in both IFM and SSM, state 4 was also greater in male IFM compared to female. The RCR increased in the SSM while IFM remained the same. State 4 was higher in male SSM while in the IFM remained the same. The IFM presented a higher Ca(2+) retention capacity compared with SSM, however, there was a greater sensitivity to Ca(2+)-induced MPTP in SSM and IFM in the male group compared to female. In conclusion, our data show that spatially distinct mitochondrial subpopulations have sex-based differences in oxidative phosphorylation, morphology, and calcium retention capacity.

  6. Mitochondrial functionality in reproduction: from gonads and gametes to embryos and embryonic stem cells.

    PubMed

    Ramalho-Santos, João; Varum, Sandra; Amaral, Sandra; Mota, Paula C; Sousa, Ana Paula; Amaral, Alexandra

    2009-01-01

    Mitochondria are multitasking organelles involved in ATP synthesis, reactive oxygen species (ROS) production, calcium signalling and apoptosis; and mitochondrial defects are known to cause physiological dysfunction, including infertility. The goal of this review was to identify and discuss common themes in mitochondrial function related to mammalian reproduction. The scientific literature was searched for studies reporting on the several aspects of mitochondrial activity in mammalian testis, sperm, oocytes, early embryos and embryonic stem cells. ATP synthesis and ROS production are the most discussed aspects of mitochondrial function. Metabolic shifts from mitochondria-produced ATP to glycolysis occur at several stages, notably during gametogenesis and early embryo development, either reflecting developmental switches or substrate availability. The exact role of sperm mitochondria is especially controversial. Mitochondria-generated ROS function in signalling but are mostly described when produced under pathological conditions. Mitochondria-based calcium signalling is primarily important in embryo activation and embryonic stem cell differentiation. Besides pathologically triggered apoptosis, mitochondria participate in apoptotic events related to the regulation of spermatogonial cell number, as well as gamete, embryo and embryonic stem cell quality. Interestingly, data from knock-out (KO) mice is not always straightforward in terms of expected phenotypes. Finally, recent data suggests that mitochondrial activity can modulate embryonic stem cell pluripotency as well as differentiation into distinct cellular fates. Mitochondria-based events regulate different aspects of reproductive function, but these are not uniform throughout the several systems reviewed. Low mitochondrial activity seems a feature of 'stemness', being described in spermatogonia, early embryo, inner cell mass cells and embryonic stem cells.

  7. Mitochondrial Impairment May Increase Cellular NAD(P)H: Resazurin Oxidoreductase Activity, Perturbing the NAD(P)H-Based Viability Assays.

    PubMed

    Aleshin, Vasily A; Artiukhov, Artem V; Oppermann, Henry; Kazantsev, Alexey V; Lukashev, Nikolay V; Bunik, Victoria I

    2015-08-21

    Cellular NAD(P)H-dependent oxidoreductase activity with artificial dyes (NAD(P)H-OR) is an indicator of viability, as the cellular redox state is important for biosynthesis and antioxidant defense. However, high NAD(P)H due to impaired mitochondrial oxidation, known as reductive stress, should increase NAD(P)H-OR yet perturb viability. To better understand this complex behavior, we assayed NAD(P)H-OR with resazurin (Alamar Blue) in glioblastoma cell lines U87 and T98G, treated with inhibitors of central metabolism, oxythiamin, and phosphonate analogs of 2-oxo acids. Targeting the thiamin diphosphate (ThDP)-dependent enzymes, the inhibitors are known to decrease the NAD(P)H production in the pentose phosphate shuttle and/or upon mitochondrial oxidation of 2-oxo acids. Nevertheless, the inhibitors elevated NAD(P)H-OR with resazurin in a time- and concentration-dependent manner, suggesting impaired NAD(P)H oxidation rather than increased viability. In particular, inhibition of the ThDP-dependent enzymes affects metabolism of malate, which mediates mitochondrial oxidation of cytosolic NAD(P)H. We showed that oxythiamin not only inhibited mitochondrial 2-oxo acid dehydrogenases, but also induced cell-specific changes in glutamate and malate dehydrogenases and/or malic enzyme. As a result, inhibition of the 2-oxo acid dehydrogenases compromises mitochondrial metabolism, with the dysregulated electron fluxes leading to increases in cellular NAD(P)H-OR. Perturbed mitochondrial oxidation of NAD(P)H may thus complicate the NAD(P)H-based viability assay.

  8. Mitochondrial Impairment May Increase Cellular NAD(P)H: Resazurin Oxidoreductase Activity, Perturbing the NAD(P)H-Based Viability Assays

    PubMed Central

    Aleshin, Vasily A.; Artiukhov, Artem V.; Oppermann, Henry; Kazantsev, Alexey V.; Lukashev, Nikolay V.; Bunik, Victoria I.

    2015-01-01

    Cellular NAD(P)H-dependent oxidoreductase activity with artificial dyes (NAD(P)H-OR) is an indicator of viability, as the cellular redox state is important for biosynthesis and antioxidant defense. However, high NAD(P)H due to impaired mitochondrial oxidation, known as reductive stress, should increase NAD(P)H-OR yet perturb viability. To better understand this complex behavior, we assayed NAD(P)H-OR with resazurin (Alamar Blue) in glioblastoma cell lines U87 and T98G, treated with inhibitors of central metabolism, oxythiamin, and phosphonate analogs of 2-oxo acids. Targeting the thiamin diphosphate (ThDP)-dependent enzymes, the inhibitors are known to decrease the NAD(P)H production in the pentose phosphate shuttle and/or upon mitochondrial oxidation of 2-oxo acids. Nevertheless, the inhibitors elevated NAD(P)H-OR with resazurin in a time- and concentration-dependent manner, suggesting impaired NAD(P)H oxidation rather than increased viability. In particular, inhibition of the ThDP-dependent enzymes affects metabolism of malate, which mediates mitochondrial oxidation of cytosolic NAD(P)H. We showed that oxythiamin not only inhibited mitochondrial 2-oxo acid dehydrogenases, but also induced cell-specific changes in glutamate and malate dehydrogenases and/or malic enzyme. As a result, inhibition of the 2-oxo acid dehydrogenases compromises mitochondrial metabolism, with the dysregulated electron fluxes leading to increases in cellular NAD(P)H-OR. Perturbed mitochondrial oxidation of NAD(P)H may thus complicate the NAD(P)H-based viability assay. PMID:26308058

  9. The complete mitochondrial genome of the great white shark, Carcharodon carcharias (Chondrichthyes, Lamnidae).

    PubMed

    Chang, Chia-Hao; Shao, Kwang-Tsao; Lin, Yeong-Shin; Fang, Yi-Chiao; Ho, Hsuan-Ching

    2014-10-01

    The complete mitochondrial genome of the great white shark having 16,744 bp and including 13 protein-coding genes, 2 ribosomal RNA, 22 transfer RNA genes, 1 replication origin region and 1 control region. The mitochondrial gene arrangement of the great white shark is the same as the one observed in the most vertebrates. Base composition of the genome is A (30.6%), T (28.7%), C (26.9%) and G (13.9%).

  10. Activity-Based Protein Profiling Reveals Mitochondrial Oxidative Enzyme Impairment and Restoration in Diet-Induced Obese Mice

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sadler, Natalie C.; Angel, Thomas E.; Lewis, Michael P.

    High-fat diet (HFD) induced obesity and concomitant development of insulin resistance (IR) and type 2 diabetes mellitus have been linked to mitochondrial dysfunction. However, it is not clear whether mitochondrial dysfunction is a direct effect of a HFD or if the mitochondrial function is reduced with increased HFD duration. We hypothesized that the function of mitochondrial oxidative and lipid metabolism functions in skeletal muscle mitochondria for HFD mice are similar or elevated relative to standard diet (SD) mice, thereby IR is neither cause nor consequence of mitochondrial dysfunction. We applied a chemical probe approach to identify functionally reactive ATPases andmore » nucleotide-binding proteins in mitochondria isolated from skeletal muscle of C57Bl/6J mice fed HFD or SD chow for 2-, 8-, or 16-weeks; feeding time points known to induce IR. A total of 293 probe-labeled proteins were identified by mass spectrometry-based proteomics, of which 54 differed in abundance between HFD and SD mice. We found proteins associated with the TCA cycle, oxidative phosphorylation (OXPHOS), and lipid metabolism were altered in function when comparing SD to HFD fed mice at 2-weeks, however by 16-weeks HFD mice had TCA cycle, β-oxidation, and respiratory chain function at levels similar to or higher than SD mice.« less

  11. Nano-Micelle of Moringa Oleifera Seed Oil Triggers Mitochondrial Cancer Cell Apoptosis

    PubMed Central

    Abd-Rabou, Ahmed A; Zoheir, Khairy M A; Kishta, Mohamed S; Shalby, Aziza B; Ezzo, Mohamed I

    2016-01-01

    Cancer, a worldwide epidemic disease with diverse origins, involves abnormal cell growth with the potential to invade other parts of the body. Globally, it is the main cause of mortality and morbidity. To overcome the drawbacks of the commercially available chemotherapies, natural products-loaded nano-composites are recommended to improve cancer targetability and decrease the harmful impact on normal cells. This study aimed at exploring the anti-cancer impacts of Moringa oleifera seed oil in its free- (MO) and nano-formulations (MOn) through studying whether it mechanistically promotes mitochondrial apoptosis-mediating cell death. Mitochondrial-based cytotoxicity and flow cytometric-based apoptosis analyses were performed on cancer HepG2, MCF7, HCT 116, and Caco-2 cell lines against normal kidney BHK-21 cell line. The present study resulted that MOn triggered colorectal cancer Caco-2 and HCT 116 cytotoxicity via mitochondrial dysfunction more powerful than its free counterpart (MO). On the other side, MOn and MO remarkably induces HCT 116 mitochondrial apoptosis, while sparing normal BHK-21 cells with minimal cytotoxic effect. The present results concluded that nano-micelle of Moringa oleifera seed oil (MOn) can provide a novel therapeutic approach for colorectal and breast cancers via mitochondrial-mediated apoptosis, while sparing normal and even liver cancer cells a bit healthy or with minimal harmful effect. Intriguingly, MOn induced breast cancer not hepatocellular carcinoma cell death. PMID:28032498

  12. The effect of alcoholic beverage excise tax on alcohol-attributable injury mortalities.

    PubMed

    Son, Chong Hwan; Topyan, Kudret

    2011-04-01

    This study examines the effect of state excise taxes on different types of alcoholic beverages (spirits, wine, and beer) on alcohol-attributable injury mortalities--deaths caused by motor vehicle accidents, suicides, homicides, and falls--in the United States between 1995 and 2004, using state-level panel data. There is evidence that injury deaths attributable to alcohol respond differently to changes in state excise taxes on alcohol-specific beverages. This study examines the direct relationship between injury deaths and excise taxes without testing the degree of the association between excise taxes and alcohol consumption. The study finds that beer taxes are negatively related to motor vehicle accident mortality, while wine taxes are negatively associated with suicides and falls. The positive coefficient of the spirit taxes on falls implies a substitution effect between spirits and wine, suggesting that an increase in spirit tax will cause spirit buyers to purchase more wine. This study finds no evidence of a relationship between homicides and state excise taxes on alcohol. Thus, the study concludes that injury deaths attributable to alcohol respond differently to the excise taxes on different types of alcoholic beverages.

  13. Re-excision rates after breast conserving surgery following the 2014 SSO-ASTRO guidelines.

    PubMed

    Heelan Gladden, Alicia A; Sams, Sharon; Gleisner, Ana; Finlayson, Christina; Kounalakis, Nicole; Hosokawa, Patrick; Brown, Regina; Chong, Tae; Mathes, David; Murphy, Colleen

    2017-12-01

    In 2014, SSO-ASTRO published guidelines which recommended "no ink on tumor" as adequate margins for patients undergoing breast conservation for invasive breast cancer. In 2016, new SSO-ASTRO-ASCO guidelines recommended 2 mm margins for DCIS. We evaluated whether these guidelines affected re-excision rates at our institution. Patients treated with breast conservation surgery from January 1, 2010-March 1, 2016 were identified. Re-excision rates, tumor characteristics, and presence of residual disease were recorded. The 2016 guidelines were retrospectively applied to the same cohort and expected re-excision rates calculated. Re-excision rates did not significantly decline before and after 2014 guideline adoption (11.9% before, 10.9% after; p = 0.65) or when the 2016 guidelines were retrospectively applied (8.4%; p = 0.10). The 2014 and 2016 guidelines had minimal impact on our re-excision rates, as most re-excisions were done for DCIS and 2016 guidelines supported our prior institutional practices of 2 mm margins for these patients. Copyright © 2017 Elsevier Inc. All rights reserved.

  14. Subtalar Coalitions: Does the Morphology of the Subtalar Joint Involvement Influence Outcomes After Coalition Excision?

    PubMed

    Mahan, Susan T; Prete, Victoria I; Spencer, Samantha A; Kasser, James R; Bixby, Sarah D

    Posteromedial subtalar (PMST) coalitions are a recently described anatomic subtype of tarsal coalitions. We compared with clinical patient-based outcomes of patients with PMST and standard middle facet (MF) coalitions who had undergone surgical excision of their coalition. The included patients had undergone surgical excision of a subtalar tarsal coalition, preoperative computed tomography (CT), and patient-based outcomes measures after surgery (including the American Orthopaedic Foot and Ankle Society [AOFAS] scale and University of California, Los Angeles [UCLA], activity score). Blinded analysis of the preoperative CT scan findings determined the presence of a standard MF versus a PMST coalition. The perioperative factors and postoperative outcomes between the MF and PMST coalitions were compared. A total of 51 feet (36 patients) were included. The mean follow-up duration was 2.6 years after surgery. Of the 51 feet, 15 (29.4%) had a PMST coalition and 36 (70.6%) had an MF coalition. No difference was found in the UCLA activity score; however, the mean AOFAS scale score was higher for patients with PMST (95.7) than for those with MF (86.5; p = .018). Of the patients with a PMST, none had foot pain limiting their activities at the final clinical follow-up visit. However, in the group with an MF subtalar coalition, 10 (27.8%) had ongoing foot pain limiting activity at the final follow-up visit (p = .024). Compared with MF subtalar tarsal coalitions, patients with PMST coalitions showed significantly improved clinical outcomes after excision. Preoperative identification of the facet morphology can improve patient counseling and expectations after surgery. Copyright © 2017 American College of Foot and Ankle Surgeons. Published by Elsevier Inc. All rights reserved.

  15. The Chromatin Remodeler Isw1 Prevents CAG Repeat Expansions During Transcription in Saccharomyces cerevisiae

    PubMed Central

    Koch, Melissa R.; House, Nealia C. M.; Cosetta, Casey M.; Jong, Robyn M.; Salomon, Christelle G.; Joyce, Cailin E.; Philips, Elliot A.; Su, Xiaofeng A.; Freudenreich, Catherine H.

    2018-01-01

    CAG/CTG trinucleotide repeats are unstable sequences that are difficult to replicate, repair, and transcribe due to their structure-forming nature. CAG repeats strongly position nucleosomes; however, little is known about the chromatin remodeling needed to prevent repeat instability. In a Saccharomyces cerevisiae model system with CAG repeats carried on a YAC, we discovered that the chromatin remodeler Isw1 is required to prevent CAG repeat expansions during transcription. CAG repeat expansions in the absence of Isw1 were dependent on both transcription-coupled repair (TCR) and base-excision repair (BER). Furthermore, isw1∆ mutants are sensitive to methyl methanesulfonate (MMS) and exhibit synergistic MMS sensitivity when combined with BER or TCR pathway mutants. We conclude that CAG expansions in the isw1∆ mutant occur during a transcription-coupled excision repair process that involves both TCR and BER pathways. We observed increased RNA polymerase II (RNAPII) occupancy at the CAG repeat when transcription of the repeat was induced, but RNAPII binding did not change in isw1∆ mutants, ruling out a role for Isw1 remodeling in RNAPII progression. However, nucleosome occupancy over a transcribed CAG tract was altered in isw1∆ mutants. Based on the known role of Isw1 in the reestablishment of nucleosomal spacing after transcription, we suggest that a defect in this function allows DNA structures to form within repetitive DNA tracts, resulting in inappropriate excision repair and repeat-length changes. These results establish a new function for Isw1 in directly maintaining the chromatin structure at the CAG repeat, thereby limiting expansions that can occur during transcription-coupled excision repair. PMID:29305386

  16. Development of a long-term ovine model of cutaneous burn and smoke inhalation injury and the effects of early excision and skin autografting

    PubMed Central

    Yamamoto, Yusuke; Enkhbaatar, Perenlei; Sakurai, Hiroyuki; Rehberg, Sebastian; Asmussen, Sven; Ito, Hiroshi; Sousse, Linda E.; Cox, Robert A.; Deyo, Donald J.; Traber, Lillian D.; Traber, Maret G.; Herndon, David N.; Traber, Daniel L.

    2013-01-01

    Smoke inhalation injury frequently increases the risk of pneumonia and mortality in burn patients. The pathophysiology of acute lung injury secondary to burn and smoke inhalation is well studied, but long-term pulmonary function, especially the process of lung tissue healing following burn and smoke inhalation, has not been fully investigated. By contrast, early burn excision has become the standard of care in the management of major burn injury. While many clinical studies and small-animal experiments support the concept of early burn wound excision, and show improved survival and infectious outcomes, we have developed a new chronic ovine model of burn and smoke inhalation injury with early excision and skin grafting that can be used to investigate lung pathophysiology over a period of 3 weeks. Materials and methods Eighteen female sheep were surgically prepared for this study under isoflurane anesthesia. The animals were divided into three groups: an Early Excision group (20% TBSA, third-degree cutaneous burn and 36 breaths of cotton smoke followed by early excision and skin autografting at 24 h after injury, n = 6), a Control group (20% TBSA, third-degree cutaneous burn and 36 breaths of cotton smoke without early excision, n = 6) and a Sham group (no injury, no early excision, n = 6). After induced injury, all sheep were placed on a ventilator and fluid-resuscitated with Lactated Ringers solution (4 mL/% TBS/kg). At 24 h post-injury, early excision was carried out to fascia, and skin grafting with meshed autografts (20/1000 in., 1:4 ratio) was performed under isoflurane anesthesia. At 48 h post-injury, weaning from ventilator was begun if PaO2/FiO2 was above 250 and sheep were monitored for 3 weeks. Results At 96 h post-injury, all animals were weaned from ventilator. There are no significant differences in PaO2/FiO2 between Early Excision and Control groups at any points. All animals were survived for 3 weeks without infectious complication in Early Excision and Sham groups, whereas two out of six animals in the Control group had abscess in lung. The percentage of the wound healed surviving area (mean ± SD) was 74.7 ± 7.8% on 17 days post-surgery in the Early Excision group. Lung wet-to-dry weight ratio (mean ± SD) was significantly increased in the Early Excision group vs. Sham group (p < 0.05). The calculated net fluid balance significantly increased in the early excision compared to those seen in the Sham and Control groups. Plasma protein, oncotic pressure, hematocrit of % baseline, hemoglobin of % baseline, white blood cell and neutrophil were significantly decreased in the Early Excision group vs. Control group. Conclusions The early excision model closely resembles practice in a clinical setting and allows long-term observations of pulmonary function following burn and smoke inhalation injury. Further studies are warranted to assess lung tissue scarring and measuring collagen deposition, lung compliance and diffusion capacity. PMID:22459154

  17. Mitochondrial metals as a potential therapeutic target in neurodegeneration

    PubMed Central

    Grubman, A; White, A R; Liddell, J R

    2014-01-01

    Transition metals are critical for enzyme function and protein folding, but in excess can mediate neurotoxic oxidative processes. As mitochondria are particularly vulnerable to oxidative damage due to radicals generated during ATP production, mitochondrial biometal homeostasis must therefore be tightly controlled to safely harness the redox potential of metal enzyme cofactors. Dysregulation of metal functions is evident in numerous neurological disorders including Alzheimer's disease, stroke, Parkinson's disease, Huntington's disease, amyotrophic lateral sclerosis and Friedrich's ataxia. This review describes the mitochondrial metal defects in these disorders and highlights novel metal-based therapeutic approaches that target mitochondrial metal homeostasis in neurological disorders. Linked Articles This article is part of a themed issue on Mitochondrial Pharmacology: Energy, Injury & Beyond. To view the other articles in this issue visit http://dx.doi.org/10.1111/bph.2014.171.issue-8 PMID:24206195

  18. Clinical and Molecular Features of POLG-Related Mitochondrial Disease

    PubMed Central

    Stumpf, Jeffrey D.; Saneto, Russell P.; Copeland, William C.

    2013-01-01

    The inability to replicate mitochondrial genomes (mtDNA) by the mitochondrial DNA polymerase (pol γ) leads to a subset of mitochondrial diseases. Many mutations in POLG, the gene that encodes pol γ, have been associated with mitochondrial diseases such as myocerebrohepatopathy spectrum (MCHS) disorders, Alpers-Huttenlocher syndrome, myoclonic epilepsy myopathy sensory ataxia (MEMSA), ataxia neuropathy spectrum (ANS), and progressive external ophthalmoplegia (PEO). This chapter explores five important topics in POLG-related disease: (1) clinical symptoms that identify and distinguish POLG-related diseases, (2) molecular characterization of defects in polymerase activity by POLG disease variants, (3) the importance of holoenzyme formation in disease presentation, (4) the role of pol γ exonuclease activity and mutagenesis in disease and aging, and (5) novel approaches to therapy and avoidance of toxicity based on primary research in pol γ replication. PMID:23545419

  19. Complete mitochondrial genome of Xingguo red carp (Cyprinus carpio var. singuonensis) and purse red carp (Cyprinus carpio var. wuyuanensis).

    PubMed

    Hu, Guang-Fu; Liu, Xiang-Jiang; Li, Zhong; Liang, Hong-Wei; Hu, Shao-Na; Zou, Gui-Wei

    2016-01-01

    The complete mitochondrial genomes of Xingguo red carp (Cyprinus carpio var. singuonensis) and purse red carp (Cyprinus carpio var. wuyuanensis) were sequenced. Comparison of these two mitochondrial genomes revealed that the mtDNAs of these two common carp varieties were remarkably similar in genome length, gene order and content, and AT content. However, size variation between these two mitochondrial genomes presented here showed 39 site differences in overall length. About 2 site differences were located in rRNAs, 3 in tRNAs, 3 in the control region, 31 in protein-coding genes. Thirty-one variable bases in the protein-coding regions between the two varieties mitochondrial sequences led to three variable amino acids, which were mainly located in the protein ND5 and ND4.

  20. Toward the Standardization of Mitochondrial Proteomics: The Italian Mitochondrial Human Proteome Project Initiative.

    PubMed

    Alberio, Tiziana; Pieroni, Luisa; Ronci, Maurizio; Banfi, Cristina; Bongarzone, Italia; Bottoni, Patrizia; Brioschi, Maura; Caterino, Marianna; Chinello, Clizia; Cormio, Antonella; Cozzolino, Flora; Cunsolo, Vincenzo; Fontana, Simona; Garavaglia, Barbara; Giusti, Laura; Greco, Viviana; Lucacchini, Antonio; Maffioli, Elisa; Magni, Fulvio; Monteleone, Francesca; Monti, Maria; Monti, Valentina; Musicco, Clara; Petrosillo, Giuseppe; Porcelli, Vito; Saletti, Rosaria; Scatena, Roberto; Soggiu, Alessio; Tedeschi, Gabriella; Zilocchi, Mara; Roncada, Paola; Urbani, Andrea; Fasano, Mauro

    2017-12-01

    The Mitochondrial Human Proteome Project aims at understanding the function of the mitochondrial proteome and its crosstalk with the proteome of other organelles. Being able to choose a suitable and validated enrichment protocol of functional mitochondria, based on the specific needs of the downstream proteomics analysis, would greatly help the researchers in the field. Mitochondrial fractions from ten model cell lines were prepared using three enrichment protocols and analyzed on seven different LC-MS/MS platforms. All data were processed using neXtProt as reference database. The data are available for the Human Proteome Project purposes through the ProteomeXchange Consortium with the identifier PXD007053. The processed data sets were analyzed using a suite of R routines to perform a statistical analysis and to retrieve subcellular and submitochondrial localizations. Although the overall number of identified total and mitochondrial proteins was not significantly dependent on the enrichment protocol, specific line to line differences were observed. Moreover, the protein lists were mapped to a network representing the functional mitochondrial proteome, encompassing mitochondrial proteins and their first interactors. More than 80% of the identified proteins resulted in nodes of this network but with a different ability in coisolating mitochondria-associated structures for each enrichment protocol/cell line pair.

  1. Mitochondrial NDUFS3 regulates the ROS-mediated onset of metabolic switch in transformed cells

    PubMed Central

    Suhane, Sonal; Kanzaki, Hirotaka; Arumugaswami, Vaithilingaraja; Murali, Ramachandran; Ramanujan, V. Krishnan

    2013-01-01

    Summary Aerobic glycolysis in transformed cells is an unique metabolic phenotype characterized by a hyperactivated glycolytic pathway even in the presence of oxygen. It is not clear if the onset of aerobic glycolysis is regulated by mitochondrial dysfunction and, if so, what the metabolic windows of opportunity available to control this metabolic switch (mitochondrial to glycolytic) landscape are in transformed cells. Here we report a genetically-defined model system based on the gene-silencing of a mitochondrial complex I subunit, NDUFS3, where we demonstrate the onset of metabolic switch in isogenic human embryonic kidney cells by differential expression of NDUFS3. By means of extensive metabolic characterization, we demonstrate that NDUFS3 gene silencing systematically introduces mitochondrial dysfunction thereby leading to the onset of aerobic glycolysis in a manner dependent on NDUFS3 protein levels. Furthermore, we show that the sustained imbalance in free radical dynamics is a necessary condition to sustain the observed metabolic switch in cell lines with the most severe NDUFS3 suppression. Together, our data reveal a novel role for mitochondrial complex I subunit NDUFS3 in regulating the degree of mitochondrial dysfunction in living cells, thereby setting a “metabolic threshold” for the observation of aerobic glycolysis phenotype within the confines of mitochondrial dysfunction. PMID:23519235

  2. Detection of damaged DNA bases by DNA glycosylase enzymes.

    PubMed

    Friedman, Joshua I; Stivers, James T

    2010-06-22

    A fundamental and shared process in all forms of life is the use of DNA glycosylase enzymes to excise rare damaged bases from genomic DNA. Without such enzymes, the highly ordered primary sequences of genes would rapidly deteriorate. Recent structural and biophysical studies are beginning to reveal a fascinating multistep mechanism for damaged base detection that begins with short-range sliding of the glycosylase along the DNA chain in a distinct conformation we call the search complex (SC). Sliding is frequently punctuated by the formation of a transient "interrogation" complex (IC) where the enzyme extrahelically inspects both normal and damaged bases in an exosite pocket that is distant from the active site. When normal bases are presented in the exosite, the IC rapidly collapses back to the SC, while a damaged base will efficiently partition forward into the active site to form the catalytically competent excision complex (EC). Here we review the unique problems associated with enzymatic detection of rare damaged DNA bases in the genome and emphasize how each complex must have specific dynamic properties that are tuned to optimize the rate and efficiency of damage site location.

  3. Current Experience in Testing Mitochondrial Nutrients in Disorders Featuring Oxidative Stress and Mitochondrial Dysfunction: Rational Design of Chemoprevention Trials

    PubMed Central

    Pagano, Giovanni; Aiello Talamanca, Annarita; Castello, Giuseppe; Cordero, Mario D.; d’Ischia, Marco; Gadaleta, Maria Nicola; Pallardó, Federico V.; Petrović, Sandra; Tiano, Luca; Zatterale, Adriana

    2014-01-01

    An extensive number of pathologies are associated with mitochondrial dysfunction (MDF) and oxidative stress (OS). Thus, mitochondrial cofactors termed “mitochondrial nutrients” (MN), such as α-lipoic acid (ALA), Coenzyme Q10 (CoQ10), and l-carnitine (CARN) (or its derivatives) have been tested in a number of clinical trials, and this review is focused on the use of MN-based clinical trials. The papers reporting on MN-based clinical trials were retrieved in MedLine up to July 2014, and evaluated for the following endpoints: (a) treated diseases; (b) dosages, number of enrolled patients and duration of treatment; (c) trial success for each MN or MN combinations as reported by authors. The reports satisfying the above endpoints included total numbers of trials and frequencies of randomized, controlled studies, i.e., 81 trials testing ALA, 107 reports testing CoQ10, and 74 reports testing CARN, while only 7 reports were retrieved testing double MN associations, while no report was found testing a triple MN combination. A total of 28 reports tested MN associations with “classical” antioxidants, such as antioxidant nutrients or drugs. Combinations of MN showed better outcomes than individual MN, suggesting forthcoming clinical studies. The criteria in study design and monitoring MN-based clinical trials are discussed. PMID:25380523

  4. Congruent Deep Relationships in the Grape Family (Vitaceae) Based on Sequences of Chloroplast Genomes and Mitochondrial Genes via Genome Skimming

    PubMed Central

    Zhang, Ning; Wen, Jun; Zimmer, Elizabeth A.

    2015-01-01

    Vitaceae is well-known for having one of the most economically important fruits, i.e., the grape (Vitis vinifera). The deep phylogeny of the grape family was not resolved until a recent phylogenomic analysis of 417 nuclear genes from transcriptome data. However, it has been reported extensively that topologies based on nuclear and organellar genes may be incongruent due to differences in their evolutionary histories. Therefore, it is important to reconstruct a backbone phylogeny of the grape family using plastomes and mitochondrial genes. In this study, next-generation sequencing data sets of 27 species were obtained using genome skimming with total DNAs from silica-gel preserved tissue samples on an Illumina HiSeq 2500 instrument. Plastomes were assembled using the combination of de novo and reference genome (of V. vinifera) methods. Sixteen mitochondrial genes were also obtained via genome skimming using the reference genome of V. vinifera. Extensive phylogenetic analyses were performed using maximum likelihood and Bayesian methods. The topology based on either plastome data or mitochondrial genes is congruent with the one using hundreds of nuclear genes, indicating that the grape family did not exhibit significant reticulation at the deep level. The results showcase the power of genome skimming in capturing extensive phylogenetic data: especially from chloroplast and mitochondrial DNAs. PMID:26656830

  5. Congruent Deep Relationships in the Grape Family (Vitaceae) Based on Sequences of Chloroplast Genomes and Mitochondrial Genes via Genome Skimming.

    PubMed

    Zhang, Ning; Wen, Jun; Zimmer, Elizabeth A

    2015-01-01

    Vitaceae is well-known for having one of the most economically important fruits, i.e., the grape (Vitis vinifera). The deep phylogeny of the grape family was not resolved until a recent phylogenomic analysis of 417 nuclear genes from transcriptome data. However, it has been reported extensively that topologies based on nuclear and organellar genes may be incongruent due to differences in their evolutionary histories. Therefore, it is important to reconstruct a backbone phylogeny of the grape family using plastomes and mitochondrial genes. In this study,next-generation sequencing data sets of 27 species were obtained using genome skimming with total DNAs from silica-gel preserved tissue samples on an Illumina NextSeq 500 instrument [corrected]. Plastomes were assembled using the combination of de novo and reference genome (of V. vinifera) methods. Sixteen mitochondrial genes were also obtained via genome skimming using the reference genome of V. vinifera. Extensive phylogenetic analyses were performed using maximum likelihood and Bayesian methods. The topology based on either plastome data or mitochondrial genes is congruent with the one using hundreds of nuclear genes, indicating that the grape family did not exhibit significant reticulation at the deep level. The results showcase the power of genome skimming in capturing extensive phylogenetic data: especially from chloroplast and mitochondrial DNAs.

  6. Cost-effectiveness of risk stratified followup after urethral reconstruction: a decision analysis.

    PubMed

    Belsante, Michael J; Zhao, Lee C; Hudak, Steven J; Lotan, Yair; Morey, Allen F

    2013-10-01

    We propose a novel risk stratified followup protocol for use after urethroplasty and explore potential cost savings. Decision analysis was performed comparing a symptom based, risk stratified protocol for patients undergoing excision and primary anastomosis urethroplasty vs a standard regimen of close followup for urethroplasty. Model assumptions included that excision and primary anastomosis has a 94% success rate, 11% of patients with successful urethroplasty had persistent lower urinary tract symptoms requiring cystoscopic evaluation, patients in whom treatment failed undergo urethrotomy and patients with recurrence on symptom based surveillance have a delayed diagnosis requiring suprapubic tube drainage. The Nationwide Inpatient Sample from 2010 was queried to identify the number of urethroplasties performed per year in the United States. Costs were obtained based on Medicare reimbursement rates. The 5-year cost of a symptom based, risk stratified followup protocol is $430 per patient vs $2,827 per patient using standard close followup practice. An estimated 7,761 urethroplasties were performed in the United States in 2010. Assuming that 60% were excision and primary anastomosis, and with more than 5 years of followup, the risk stratified protocol was projected to yield an estimated savings of $11,165,130. Sensitivity analysis showed that the symptom based, risk stratified followup protocol was far more cost-effective than standard close followup in all settings. Less than 1% of patients would be expected to have an asymptomatic recurrence using the risk stratified followup protocol. A risk stratified, symptom based approach to urethroplasty followup would produce a significant reduction in health care costs while decreasing unnecessary followup visits, invasive testing and radiation exposure. Copyright © 2013 American Urological Association Education and Research, Inc. Published by Elsevier Inc. All rights reserved.

  7. Negative pressure wound therapy, staged excision and definitive closure with split-thickness skin graft for axillary hidradenitis suppurativa: a retrospective study.

    PubMed

    Pearce, F B; Richardson, K A

    2017-01-02

    Bilateral axillary hidradenitis is a chronic, suppurative, and scarring disease that is most effectively treated by complete excision of all hair-bearing tissues. We assessed our staged procedure for excision and placement of a split-thickness skin graft for bilateral axillary hidradenitis in terms of costs, outcomes, and timing of excision. An IRB approved retrospective case analysis was performed on patients that underwent bilateral axillary hidradenitis skin excision with eventual placement of split-thickness skin grafting using the current LSUHSC/University Health hidradenitis surgical treatment protocol. Using ICD-9 codes (705.83) and CPT codes (11041, 11042, 11451, 11600, 11601, 11602, 11603, 11604) we reviewed cases performed at our institution from 1 January 2008 to 24 Febuary 2014 and we selected patients based on bilateral axillary involvement (alone) and >1 year history of active disease. Patients were excluded if resection of tissue encompassed regions outside of the immediately adjacent axillary. A total of seven patients matching criteria for bilateral axillary hidradenitis were selected for analysis. Clinical course, cost and surgical techniques were assessed. Of the seven patients, six required admission throughout their treatment due to lack of funding making use of negative pressure wound therapy at home not possible. These patients stayed an average of 10 days with a mean hospital charge of $35,178 and a mean hospital provider charge of $10,019. No recurrence was demonstrated. All patients attained full range of motion, post grafting. No patient required a further operation due to graft failure. Split-thickness skin grafting without use of bilayer dermal regenerative templates yielded definitive results with acceptable cosmesis and functionality, without the added cost of treatments such as a bilayer dermal regenerative template.

  8. Sphincter-sparing local excision and hypofractionated radiation therapy for anorectal melanoma: a 20-year experience.

    PubMed

    Kelly, Patrick; Zagars, Gunar K; Cormier, Jancie N; Ross, Merrick I; Guadagnolo, B Ashleigh

    2011-10-15

    Anorectal melanoma is a rare disease with a poor prognosis. Because survival is determined by distant failure, many centers have adopted sphincter-sparing excision for primary tumor control. However, this approach is associated with high rates of local failure (∼50%). In this study, the authors report their 20-year experience with sphincter-sparing excision combined with radiation therapy (RT) for the treatment of localized anorectal melanoma. The authors reviewed the records of 54 patients with localized anorectal melanoma who were treated at the University of Texas MD Anderson Cancer Center from 1989 to 2008. All patients underwent definitive local excision with or without sentinel lymph node biopsy or lymph node dissection. RT (25-36 grays in 5-6 fractions) was delivered to extended fields that targeted the primary site and draining pelvic/inguinal lymphatics in 39 patients and to limited fields that targeted only the primary site in 15 patients. The 5-year rates of local control (LC), lymph node control (NC), and sphincter preservation were 82%, 88%, and 96%, respectively. However, because of the high rate of distant metastasis, the overall survival (OS) rate at 5 years was only 30%. Although there were no significant differences in LC, NC, or OS based on RT field extent, patients who received extended-field RT had higher rates of lymphedema than patients who received limited-field RT. The current results indicated that combined sphincter-sparing local excision and RT is a well tolerated approach that provides effective LC for patients with anorectal melanoma. Inclusion of the inguinal lymph node basins in the RT fields did not improve outcomes and was associated with an increased risk of lymphedema. Copyright © 2011 American Cancer Society.

  9. Excision Repair-Initiated Enzyme-Assisted Bicyclic Cascade Signal Amplification for Ultrasensitive Detection of Uracil-DNA Glycosylase.

    PubMed

    Wang, Li-Juan; Ren, Ming; Zhang, Qianyi; Tang, Bo; Zhang, Chun-Yang

    2017-04-18

    Uracil-DNA glycosylase (UDG) is an important base excision repair (BER) enzyme responsible for the repair of uracil-induced DNA lesion and the maintenance of genomic integrity, while the aberrant expression of UDG is associated with a variety of cancers. Thus, the accurate detection of UDG activity is essential to biomedical research and clinical diagnosis. Here, we develop a fluorescent method for ultrasensitive detection of UDG activity using excision repair-initiated enzyme-assisted bicyclic cascade signal amplification. This assay involves (1) UDG-actuated uracil-excision repair, (2) excision repair-initiated nicking enzyme-mediated isothermal exponential amplification, (3) ribonuclease H (RNase H)-induced hydrolysis of signal probes for generating fluorescence signal. The presence of UDG enables the removal of uracil from U·A pairs and generates an apurinic/apyrimidinic (AP) site. Endonuclease IV (Endo IV) subsequently cleaves the AP site, resulting in the break of DNA substrate. The cleaved DNA substrate functions as both a primer and a template to initiate isothermal exponential amplification, producing a large number of triggers. The resultant trigger may selectively hybridize with the signal probe which is modified with FAM and BHQ1, forming a RNA-DNA heterogeneous duplex. The subsequent hydrolysis of RNA-DNA duplex by RNase H leads to the generation of fluorescence signal. This assay exhibits ultrahigh sensitivity with a detection limit of 0.0001 U/mL, and it can even measure UDG activity at the single-cell level. Moreover, this method can be applied for the measurement of kinetic parameters and the screening of inhibitors, thereby providing a powerful tool for DNA repair enzyme-related biomedical research and clinical diagnosis.

  10. Are genes faster than crabs? Mitochondrial introgression exceeds larval dispersal during population expansion of the invasive crab Carcinus maenas.

    PubMed

    Darling, John A; Tsai, Yi-Hsin Erica; Blakeslee, April M H; Roman, Joe

    2014-10-01

    Biological invasions offer unique opportunities to investigate evolutionary dynamics at the peripheries of expanding populations. Here, we examine genetic patterns associated with admixture between two distinct invasive lineages of the European green crab, Carcinus maenas L., independently introduced to the northwest Atlantic. Previous investigations based on mitochondrial DNA sequences demonstrated that larval dispersal driven by advective currents could explain observed southward displacement of an admixture zone between the two invasions. Comparison of published mitochondrial results with new nuclear data from nine microsatellite loci, however, reveals striking discordance in their introgression patterns. Specifically, introgression of mitochondrial genomes relative to nuclear background suggests that demographic processes such as sex-biased reproductive dynamics and population size imbalances-and not solely larval dispersal-play an important role in driving the evolution of the genetic cline. In particular, the unpredicted introgression of mitochondrial alleles against the direction of mean larval dispersal in the region is consistent with recent models invoking similar demographic processes to explain movements of genes into invading populations. These observations have important implications for understanding historical shifts in C. maenas range limits, and more generally for inferences of larval dispersal based on genetic data.

  11. Are genes faster than crabs? Mitochondrial introgression exceeds larval dispersal during population expansion of the invasive crab Carcinus maenas

    PubMed Central

    Darling, John A.; Tsai, Yi-Hsin Erica; Blakeslee, April M. H.; Roman, Joe

    2014-01-01

    Biological invasions offer unique opportunities to investigate evolutionary dynamics at the peripheries of expanding populations. Here, we examine genetic patterns associated with admixture between two distinct invasive lineages of the European green crab, Carcinus maenas L., independently introduced to the northwest Atlantic. Previous investigations based on mitochondrial DNA sequences demonstrated that larval dispersal driven by advective currents could explain observed southward displacement of an admixture zone between the two invasions. Comparison of published mitochondrial results with new nuclear data from nine microsatellite loci, however, reveals striking discordance in their introgression patterns. Specifically, introgression of mitochondrial genomes relative to nuclear background suggests that demographic processes such as sex-biased reproductive dynamics and population size imbalances—and not solely larval dispersal—play an important role in driving the evolution of the genetic cline. In particular, the unpredicted introgression of mitochondrial alleles against the direction of mean larval dispersal in the region is consistent with recent models invoking similar demographic processes to explain movements of genes into invading populations. These observations have important implications for understanding historical shifts in C. maenas range limits, and more generally for inferences of larval dispersal based on genetic data. PMID:26064543

  12. Reasons for excision of skin tumors: a one-year prospective study in a tertiary skin cancer unit.

    PubMed

    Lallas, Aimilios; Longo, Caterina; Moscarella, Elvira; Lombardi, Mara; Specchio, Francesca; Raucci, Margherita; Zalaudek, Iris; Argenziano, Giuseppe

    2015-01-01

    Biopsies and surgical excisions represent routine procedures in clinical settings dealing with skin cancer. To evaluate the impact of clinical examination, dermoscopy, reflectance confocal microscopy and digital monitoring on the decision to excise or biopsy a lesion in routine practice. Patients scheduled for biopsy or excision of a skin lesion were prospectively enrolled. The expert dermatologist was asked to select the main factor that prompted him/her to excise or biopsy the lesion. The most common reason for melanoma excision was clinical and dermoscopic morphology (70.3%), followed by dermoscopy (11.4%), monitoring (8.9%) and clinical context (8.2%). Most basal and squamous cell carcinomas were recognized both clinically and dermoscopically, while 18.6 and 15.0%, respectively, could only be detected with dermoscopic examination. Each part of the clinical examination has a contributory role in the diagnosis of melanoma and other skin cancers.

  13. En bloc excision of a dermal sinus tract.

    PubMed

    Coumans, Jean-Valery; Walcott, Brian P; Redjal, Navid; Kahle, Kristopher T; Nahed, Brian V

    2011-04-01

    Dermal sinus tracts are a form of spinal dysraphism that arises from a failure of dysjunction early in embryogenesis. They are diagnosed in pediatric patients and who present with a dimple, infection, or neurologic deficit. The tract is surgically excised en bloc to avoid contamination from the tract, which harbors bacteria. However, dermal sinus tracts typically terminate intradurally, rendering their en bloc excision difficult. To avoid entering the tract, allowing for an en bloc excision, we modified the usual technique employed for accessing the spinal intradural space. An en bloc excision of the dermal sinus tract was successfully performed. The patient recovered from the procedure neurologically intact and her postoperative course was uncomplicated. We conclude that en bloc excision of a dermal sinus tract down to the intradural space is feasible with modifications to standard operative technique. Copyright © 2010 Elsevier Ltd. All rights reserved.

  14. A Comprehensive Analysis of Nuclear-Encoded Mitochondrial Genes in Schizophrenia.

    PubMed

    Gonçalves, Vanessa F; Cappi, Carolina; Hagen, Christian M; Sequeira, Adolfo; Vawter, Marquis P; Derkach, Andriy; Zai, Clement C; Hedley, Paula L; Bybjerg-Grauholm, Jonas; Pouget, Jennie G; Cuperfain, Ari B; Sullivan, Patrick F; Christiansen, Michael; Kennedy, James L; Sun, Lei

    2018-05-01

    The genetic risk factors of schizophrenia (SCZ), a severe psychiatric disorder, are not yet fully understood. Multiple lines of evidence suggest that mitochondrial dysfunction may play a role in SCZ, but comprehensive association studies are lacking. We hypothesized that variants in nuclear-encoded mitochondrial genes influence susceptibility to SCZ. We conducted gene-based and gene-set analyses using summary association results from the Psychiatric Genomics Consortium Schizophrenia Phase 2 (PGC-SCZ2) genome-wide association study comprising 35,476 cases and 46,839 control subjects. We applied the MAGMA method to three sets of nuclear-encoded mitochondrial genes: oxidative phosphorylation genes, other nuclear-encoded mitochondrial genes, and genes involved in nucleus-mitochondria crosstalk. Furthermore, we conducted a replication study using the iPSYCH SCZ sample of 2290 cases and 21,621 control subjects. In the PGC-SCZ2 sample, 1186 mitochondrial genes were analyzed, among which 159 had p values < .05 and 19 remained significant after multiple testing correction. A meta-analysis of 818 genes combining the PGC-SCZ2 and iPSYCH samples resulted in 104 nominally significant and nine significant genes, suggesting a polygenic model for the nuclear-encoded mitochondrial genes. Gene-set analysis, however, did not show significant results. In an in silico protein-protein interaction network analysis, 14 mitochondrial genes interacted directly with 158 SCZ risk genes identified in PGC-SCZ2 (permutation p = .02), and aldosterone signaling in epithelial cells and mitochondrial dysfunction pathways appeared to be overrepresented in this network of mitochondrial and SCZ risk genes. This study provides evidence that specific aspects of mitochondrial function may play a role in SCZ, but we did not observe its broad involvement even using a large sample. Copyright © 2018 Society of Biological Psychiatry. Published by Elsevier Inc. All rights reserved.

  15. CGP37157, an inhibitor of the mitochondrial Na+/Ca2+ exchanger, protects neurons from excitotoxicity by blocking voltage-gated Ca2+ channels.

    PubMed

    Ruiz, A; Alberdi, E; Matute, C

    2014-04-10

    Inhibition of the mitochondrial Na(+)/Ca(2+) exchanger (NCLX) by CGP37157 is protective in models of neuronal injury that involve disruption of intracellular Ca(2+) homeostasis. However, the Ca(2+) signaling pathways and stores underlying neuroprotection by that inhibitor are not well defined. In the present study, we analyzed how intracellular Ca(2+) levels are modulated by CGP37157 (10 μM) during NMDA insults in primary cultures of rat cortical neurons. We initially assessed the presence of NCLX in mitochondria of cultured neurons by immunolabeling, and subsequently, we analyzed the effects of CGP37157 on neuronal Ca(2+) homeostasis using cameleon-based mitochondrial Ca(2+) and cytosolic Ca(2+) ([Ca(2+)]i) live imaging. We observed that NCLX-driven mitochondrial Ca(2+) exchange occurs in cortical neurons under basal conditions as CGP37157 induced a decrease in [Ca(2)]i concomitant with a Ca(2+) accumulation inside the mitochondria. In turn, CGP37157 also inhibited mitochondrial Ca(2+) efflux after the stimulation of acetylcholine receptors. In contrast, CGP37157 strongly prevented depolarization-induced [Ca(2+)]i increase by blocking voltage-gated Ca(2+) channels (VGCCs), whereas it did not induce depletion of ER Ca(2+) stores. Moreover, mitochondrial Ca(2+) overload was reduced as a consequence of diminished Ca(2+) entry through VGCCs. The decrease in cytosolic and mitochondrial Ca(2+) overload by CGP37157 resulted in a reduction of excitotoxic mitochondrial damage, characterized here by a reduction in mitochondrial membrane depolarization, oxidative stress and calpain activation. In summary, our results provide evidence that during excitotoxicity CGP37157 modulates cytosolic and mitochondrial Ca(2+) dynamics that leads to attenuation of NMDA-induced mitochondrial dysfunction and neuronal cell death by blocking VGCCs.

  16. CGP37157, an inhibitor of the mitochondrial Na+/Ca2+ exchanger, protects neurons from excitotoxicity by blocking voltage-gated Ca2+ channels

    PubMed Central

    Ruiz, A; Alberdi, E; Matute, C

    2014-01-01

    Inhibition of the mitochondrial Na+/Ca2+ exchanger (NCLX) by CGP37157 is protective in models of neuronal injury that involve disruption of intracellular Ca2+ homeostasis. However, the Ca2+ signaling pathways and stores underlying neuroprotection by that inhibitor are not well defined. In the present study, we analyzed how intracellular Ca2+ levels are modulated by CGP37157 (10 μM) during NMDA insults in primary cultures of rat cortical neurons. We initially assessed the presence of NCLX in mitochondria of cultured neurons by immunolabeling, and subsequently, we analyzed the effects of CGP37157 on neuronal Ca2+ homeostasis using cameleon-based mitochondrial Ca2+ and cytosolic Ca2+ ([Ca2+]i) live imaging. We observed that NCLX-driven mitochondrial Ca2+ exchange occurs in cortical neurons under basal conditions as CGP37157 induced a decrease in [Ca2]i concomitant with a Ca2+ accumulation inside the mitochondria. In turn, CGP37157 also inhibited mitochondrial Ca2+ efflux after the stimulation of acetylcholine receptors. In contrast, CGP37157 strongly prevented depolarization-induced [Ca2+]i increase by blocking voltage-gated Ca2+ channels (VGCCs), whereas it did not induce depletion of ER Ca2+ stores. Moreover, mitochondrial Ca2+ overload was reduced as a consequence of diminished Ca2+ entry through VGCCs. The decrease in cytosolic and mitochondrial Ca2+ overload by CGP37157 resulted in a reduction of excitotoxic mitochondrial damage, characterized here by a reduction in mitochondrial membrane depolarization, oxidative stress and calpain activation. In summary, our results provide evidence that during excitotoxicity CGP37157 modulates cytosolic and mitochondrial Ca2+ dynamics that leads to attenuation of NMDA-induced mitochondrial dysfunction and neuronal cell death by blocking VGCCs. PMID:24722281

  17. Benign Intraductal Papilloma without Atypia on Core Needle Biopsy Has a Low Rate of Upgrading to Malignancy after Excision.

    PubMed

    Han, Song-Hee; Kim, Milim; Chung, Yul Ri; Yun, Bo La; Jang, Mijung; Kim, Sun Mi; Kang, Eunyoung; Kim, Eun-Kyu; Park, So Yeon

    2018-03-01

    The management of benign intraductal papilloma (IDP) without atypia diagnosed on core needle biopsy (CNB) remains controversial. This study was performed to evaluate the rate of upgrading to malignancy or high-risk lesions after excision and to identify factors associated with upgrading using a large series of benign IDP cases without atypia. We included patients who were diagnosed as having benign IDP without atypia on CNB and underwent surgical or vacuum-assisted excision between 2010 and 2015. We analyzed the clinical, radiologic, and histopathologic features of IDPs that were upgraded to malignancy or high-risk lesions after excision. A total of 511 benign IDPs without atypia diagnosed via CNB were identified, of which 398 cases were treated with excision. After reviewing these cases, four cases of high-risk lesions in adjacent tissue on CNB, two cases which were revealed as papilloma with atypia, and nine cases of malignancy in the same breast were excluded. In the remaining 383 cases, the rate of upgrading to malignancy and high-risk lesions after excision was 0.8% and 4.4%, respectively. The presence of concurrent contralateral breast cancer, the presence of symptoms, and multifocality were factors significantly associated with upgrading to malignancy on subsequent excision. Surgical excision rather than vacuum-assisted excision was significantly associated with upgrading to high-risk lesions or malignancy. The rate of upgrading to malignancy for benign IDP without atypia was very low, suggesting that close clinical and radiologic observation may be sufficient for patients with benign IDP without atypia on CNB under proper settings.

  18. Covalent trapping of human DNA polymerase beta by the oxidative DNA lesion 2-deoxyribonolactone.

    PubMed

    DeMott, Michael S; Beyret, Ergin; Wong, Donny; Bales, Brian C; Hwang, Jae-Taeg; Greenberg, Marc M; Demple, Bruce

    2002-03-08

    Oxidized abasic residues in DNA constitute a major class of radiation and oxidative damage. Free radical attack on the nucleotidyl C-1' carbon yields 2-deoxyribonolactone (dL) as a significant lesion. Although dL residues are efficiently incised by the main human abasic endonuclease enzyme Ape1, we show here that subsequent excision by human DNA polymerase beta is impaired at dL compared with unmodified abasic sites. This inhibition is accompanied by accumulation of a protein-DNA cross-link not observed in reactions of polymerase beta with unmodified abasic sites, although a similar form can be trapped by reduction with sodium borohydride. The formation of the stably cross-linked species with dL depends on the polymerase lysine 72 residue, which forms a Schiff base with the C-1 aldehyde during excision of an unmodified abasic site. In the case of a dL residue, attack on the lactone C-1 by lysine 72 proceeds more slowly and evidently produces an amide linkage, which resists further processing. Consequently dL residues may not be readily repaired by "short-patch" base excision repair but instead function as suicide substrates in the formation of protein-DNA cross-links that may require alternative modes of repair.

  19. Strand displacement synthesis by yeast DNA polymerase ε

    PubMed Central

    Ganai, Rais A.; Zhang, Xiao-Ping; Heyer, Wolf-Dietrich; Johansson, Erik

    2016-01-01

    DNA polymerase ε (Pol ε) is a replicative DNA polymerase with an associated 3′–5′ exonuclease activity. Here, we explored the capacity of Pol ε to perform strand displacement synthesis, a process that influences many DNA transactions in vivo. We found that Pol ε is unable to carry out extended strand displacement synthesis unless its 3′–5′ exonuclease activity is removed. However, the wild-type Pol ε holoenzyme efficiently displaced one nucleotide when encountering double-stranded DNA after filling a gap or nicked DNA. A flap, mimicking a D-loop or a hairpin structure, on the 5′ end of the blocking primer inhibited Pol ε from synthesizing DNA up to the fork junction. This inhibition was observed for Pol ε but not with Pol δ, RB69 gp43 or Pol η. Neither was Pol ε able to extend a D-loop in reconstitution experiments. Finally, we show that the observed strand displacement synthesis by exonuclease-deficient Pol ε is distributive. Our results suggest that Pol ε is unable to extend the invading strand in D-loops during homologous recombination or to add more than two nucleotides during long-patch base excision repair. Our results support the hypothesis that Pol ε participates in short-patch base excision repair and ribonucleotide excision repair. PMID:27325747

  20. Base Excision Repair Variants in Cancer

    PubMed Central

    Marsden, Carolyn G.; Dragon, Julie A.; Wallace, Susan S.; Sweasy, Joann B.

    2018-01-01

    Base excision repair (BER) is a key genome maintenance pathway that removes endogenously damaged DNA bases that arise in cells at very high levels on a daily basis. Failure to remove these damaged DNA bases leads to increased levels of mutagenesis and chromosomal instability, which have the potential to drive carcinogenesis. Next Generation sequencing efforts of the germline and tumors genomes of thousands of individuals has uncovered many rare mutations in BER genes. Given that BER is critical for genome maintenance, it is important to determine whether BER genomic variants have functional phenotypes. In this chapter we present our in silico methods for the identification and prioritization of BER variants for further study. We also provide detailed instructions and commentary on the initial cellular assays we employ to dissect potentially important phenotypes of human BER variants and highlight the strengths and weaknesses of our approaches. BER variants possessing interesting functional phenotypes can then be studied in more detail to provide important mechanistic insights regarding the role of aberrant BER in carcinogenesis. PMID:28645367

  1. Complete mitochondrial genome of Cynopterus sphinx (Pteropodidae: Cynopterus).

    PubMed

    Li, Linmiao; Li, Min; Wu, Zhengjun; Chen, Jinping

    2015-01-01

    We have characterized the complete mitochondrial genome of Cynopterus sphinx (Pteropodidae: Cynopterus) and described its organization in this study. The total length of C. sphinx complete mitochondrial genome was 16,895 bp with the base composition of 32.54% A, 14.05% G, 25.82% T and 27.59% C. The complete mitochondrial genome included 13 protein-coding genes, 22 tRNA genes, 2 rRNA genes (12S rRNA and 16S rRNA) and 1 control region (D-loop). The control region was 1435 bp long with the sequence CATACG repeat 64 times. Three protein-coding genes (ND1, COI and ND4) were ended with incomplete stop codon TA or T.

  2. Lipid-induced mitochondrial stress and insulin action in muscle.

    PubMed

    Muoio, Deborah M; Neufer, P Darrell

    2012-05-02

    The interplay between mitochondrial energetics, lipid balance, and muscle insulin sensitivity has remained a topic of intense interest and debate for decades. One popular view suggests that increased oxidative capacity benefits metabolic wellness, based on the premise that it is healthier to burn fat than glucose. Attempts to test this hypothesis using genetically modified mouse models have produced contradictory results and instead link muscle insulin resistance to excessive fat oxidation, acylcarnitine production, and increased mitochondrial H(2)O(2)-emitting potential. Here, we consider emerging evidence that insulin action in muscle is driven principally by mitochondrial load and redox signaling rather than oxidative capacity. Copyright © 2012 Elsevier Inc. All rights reserved.

  3. Primary surgical excision for pediatric orbital capillary hemangioma.

    PubMed

    Krema, Hatem

    2015-05-01

    We report the technique and outcome of surgical excision of subcutaneous orbital capillary hemangioma causing eye globe displacement in two children. Primary surgical excision was performed with blunt dissection along the tumor walls using a cotton-tipped applicator as the dissecting tool with simultaneous outward gentle traction on the tumor wall. Despite the deep and extensive orbital involvement, complete excision of the hemangiomas was achievable with this technique, which permitted excellent visualization of the surgical planes throughout the procedures. Deep and extensive pediatric orbital capillary hemangioma can be surgically excised with the suggested technique, which obviates the need for intralesional or systemic medical therapy, yielding optimal cosmetic and functional outcomes, shortly after surgery.

  4. Mitochondrial Proteome Studies in Seeds during Germination

    PubMed Central

    Czarna, Malgorzata; Kolodziejczak, Marta; Janska, Hanna

    2016-01-01

    Seed germination is considered to be one of the most critical phases in the plant life cycle, establishing the next generation of a plant species. It is an energy-demanding process that requires functioning mitochondria. One of the earliest events of seed germination is progressive development of structurally simple and metabolically quiescent promitochondria into fully active and cristae-containing mitochondria, known as mitochondrial biogenesis. This is a complex and tightly regulated process, which is accompanied by sequential and dynamic gene expression, protein synthesis, and post-translational modifications. The aim of this review is to give a comprehensive summary of seed mitochondrial proteome studies during germination of various plant model organisms. We describe different gel-based and gel-free proteomic approaches used to characterize mitochondrial proteomes of germinating seeds as well as challenges and limitations of these proteomic studies. Furthermore, the dynamic changes in the abundance of the mitochondrial proteomes of germinating seeds are illustrated, highlighting numerous mitochondrial proteins involved in respiration, tricarboxycylic acid (TCA) cycle, metabolism, import, and stress response as potentially important for seed germination. We then review seed mitochondrial protein carbonylation, phosphorylation, and S-nitrosylation as well as discuss the possible link between these post-translational modifications (PTMs) and the regulation of seed germination. PMID:28248229

  5. Respiromics - An integrative analysis linking mitochondrial bioenergetics to molecular signatures.

    PubMed

    Walheim, Ellen; Wiśniewski, Jacek R; Jastroch, Martin

    2018-03-01

    Energy metabolism is challenged upon nutrient stress, eventually leading to a variety of metabolic diseases that represent a major global health burden. Here, we combine quantitative mitochondrial respirometry (Seahorse technology) and proteomics (LC-MS/MS-based total protein approach) to understand how molecular changes translate to changes in mitochondrial energy transduction during diet-induced obesity (DIO) in the liver. The integrative analysis reveals that significantly increased palmitoyl-carnitine respiration is supported by an array of proteins enriching lipid metabolism pathways. Upstream of the respiratory chain, the increased capacity for ATP synthesis during DIO associates strongest to mitochondrial uptake of pyruvate, which is routed towards carboxylation. At the respiratory chain, robust increases of complex I are uncovered by cumulative analysis of single subunit concentrations. Specifically, nuclear-encoded accessory subunits, but not mitochondrial-encoded or core units, appear to be permissive for enhanced lipid oxidation. Our integrative analysis, that we dubbed "respiromics", represents an effective tool to link molecular changes to functional mechanisms in liver energy metabolism, and, more generally, can be applied for mitochondrial analysis in a variety of metabolic and mitochondrial disease models. Copyright © 2018 The Authors. Published by Elsevier GmbH.. All rights reserved.

  6. Idiopathic chronic fatigue in older adults is linked to impaired mitochondrial content and biogenesis signaling in skeletal muscle.

    PubMed

    Wawrzyniak, Nicholas R; Joseph, Anna-Maria; Levin, David G; Gundermann, David M; Leeuwenburgh, Christiaan; Sandesara, Bhanuprasad; Manini, Todd M; Adhihetty, Peter J

    2016-08-16

    Fatigue is a symptom of many diseases, but it can also manifest as a unique medical condition, such as idiopathic chronic fatigue (ICF). While the prevalence of ICF increases with age, mitochondrial content and function decline with age, which may contribute to ICF. The purpose of this study was to determine whether skeletal muscle mitochondrial dysregulation and oxidative stress is linked to ICF in older adults. Sedentary, old adults (n = 48, age 72.4 ± 5.3 years) were categorized into ICF and non-fatigued (NF) groups based on the FACIT-Fatigue questionnaire. ICF individuals had a FACIT score one standard deviation below the mean for non-anemic adults > 65 years and were excluded according to CDC diagnostic criteria for ICF. Vastus lateralis muscle biopsies were analyzed, showing reductions in mitochondrial content and suppression of mitochondrial regulatory proteins Sirt3, PGC-1α, NRF-1, and cytochrome c in ICF compared to NF. Additionally, mitochondrial morphology proteins, antioxidant enzymes, and lipid peroxidation were unchanged in ICF individuals. Our data suggests older adults with ICF have reduced skeletal muscle mitochondrial content and biogenesis signaling that cannot be accounted for by increased oxidative damage.

  7. In silico aided thoughts on mitochondrial vitamin C transport.

    PubMed

    Szarka, András; Balogh, Tibor

    2015-01-21

    The huge demand of mitochondria as the quantitatively most important sources of ROS in the majority of heterotrophic cells for vitamin C is indisputable. The reduced form of the vitamin, l-ascorbic acid, is imported by an active mechanism requiring two sodium-dependent vitamin C transporters (SVCT1 and SVCT2). The oxidized form, dehydroascorbate is taken up by different members of the GLUT family. Because of the controversial experimental results the picture on mitochondrial vitamin C transport became quite obscure by the spring of 2014. Thus in silico prediction tools were applied in aid of the support of in vitro and in vivo results. The role of GLUT1 as a mitochondrial dehydroascorbate transporter could be reinforced by in silico predictions however the mitochondrial presence of GLUT10 is not likely since this transport protein got far the lowest mitochondrial localization scores. Furthermore the possible roles of GLUT9 and 11 in mitochondrial vitamin C transport can be proposed leastwise on the base of their computational localization analysis. In good concordance with the newest experimental observations on SVCT2 the mitochondrial presence of this transporter could also be supported by the computational prediction tools. Copyright © 2014 Elsevier Ltd. All rights reserved.

  8. Mitochondrial-targeted drug and DNA delivery.

    PubMed

    Weissig, Volkmar

    2003-01-01

    The field of mitochondrial research is currently among the fastest growing disciplines in biomedicine. Approximately 12,000 articles on mitochondria have been published since the beginning of the new millennium. What brings mitochondria into the limelight of the scientific community? Since the end of the 1980s, a series of key discoveries has been made that have rekindled the scientific interest in this long-known cell organelle. It has become increasingly evident that mitochondrial dysfunction contributes to a variety of human disorders, ranging from neurodegenerative and neuromuscular diseases, obesity, and diabetes to ischemia-reperfusion injury and cancer. Moreover, since the middle of the 1990s, mitochondria, the "power houses" of the cell, have also become accepted as the cells' "arsenal," reflecting their increasingly acknowledged key role during apoptosis. Based on these recent developments in mitochondrial research, increased pharmacological and pharmaceutical efforts have lead to the emergence of mitochondrial medicine" as a new field of biomedical research. Targeting of biologically active molecules to mitochondria in living cells will open avenues for manipulating mitochondrial functions, which may result in the selective protection, repair, or eradication of cells. This review gives a comprehensive overview of current strategies of mitochondrial targeting and their possible therapeutic applications.

  9. Mitochondrial Based Treatments that Prevent Post-Traumatic Osteoarthritis in a Translational Large Animal Intraarticular Fracture Survival Model

    DTIC Science & Technology

    2013-09-01

    included an oxidant scavenger, (N- Acetylcysteine ), a drug that reduces mitochondrial superoxide production by blocking electron flow through complex I...selection of compounds included an oxidant scavenger, (N- Acetylcysteine ), a drug that reduces mitochondrial superoxide production by blocking...2mM N- acetylcysteine 5 3. 5mM NAC 5 4. 20mM NAC 5 5. 20µM Cytochalasin B 5 6. 10µM Nocodazole 4 7. 2.5mM Amobarbital 5 Table. Dose

  10. Pilonidal sinus disease surgery in children: the first study to compare crystallized phenol application to primary excision and closure.

    PubMed

    Ates, Ufuk; Ergun, Ergun; Gollu, Gulnur; Sozduyar, Sumeyye; Kologlu, Meltem; Cakmak, Murat; Dindar, Huseyin; Yagmurlu, Aydin

    2018-03-01

    Pilonidal sinus (PS) is an infectious and inflammatory disease of sacrococcygeal region. Current methods include; surgical excision with/without suturing the defect, rhomboid excision and flap and chemical substance application. In this study, crystallized phenol application was compared to excision and primary closure. This retrospective study included pediatric patients with PS who were treated with excision and primer closure technique and phenol application. The patients' medical data were analyzed retrospectively. This study included 117 patients with PS. There were 52 girls (44%) and 65 boys (56%). Mean age of children was 15.6 (12-20) years. Excision and primary closure were applied to 77 patients (66%) and phenol was applied to 40 patients (34%). The children in phenol group were discharged on the operation day; mean hospitalization time in the excision and primary closure group was 2.7 (1-14) days. Mean follow up was 44.6 (8-82) months for primary excision and closure group and 8.1 (1-19) months for phenol group. Although many surgical and non-surgical treatment modalities have been described for PS, the optimal one remains unknown. Limited with the retrospective nature of the data, crystallized phenol application seems a feasible minimal invasive alternative to primary closure of PS with lower recurrence and complication rates in children. Level III. Copyright © 2017 Elsevier Inc. All rights reserved.

  11. The Management Strategy of Benign Solitary Intraductal Papilloma on Breast Core Biopsy.

    PubMed

    Ko, Dayoung; Kang, Eunyoung; Park, So Yeon; Kim, Sun Mi; Jang, Mijung; Yun, Bo La; Chae, Sumin; Jang, Yerang; Kim, Hye Jin; Kim, Sung-Won; Kim, Eun-Kyu

    2017-08-01

    Intraductal papilloma (IDP) is well-known as one of the common benign breast lesions requiring excision. However, treatment of IDP without atypia is controversial. The aim of our study was to determine the proper management of solitary IDP by core needle biopsy (CNB). We retrospectively reviewed patients with solitary IDP confirmed by CNB from March 2003 to March 2015. We collected data about final pathology after excision, as well as clinical, histologic, and radiologic findings at initial diagnosis. The final pathology was categorized as benign or malignant. We evaluated the rate of upgrade to malignancy and factors associated with malignancy. We identified 405 patients who presented benign solitary IDP by CNB. The mean age was 46.1 years (range, 15-86 years). In total, 135 patients underwent surgical excision, and 211 underwent vacuum-assisted excision. Of 346 patients, malignant lesions were found in 8 patients (2.3%): 7 underwent surgical excision, and 1 underwent vacuum-assisted excision. Only the size of IDP was significantly associated with cancer upgrade (P = .003). Our study shows that overall malignancy upgrade rate of benign solitary IDP after excision is very low (2.3%). Even when the size of IDP was less than 1 cm, the upgrade rate to cancer was only 0.9%. Therefore, for patients with small solitary IDP, we recommend close follow-up with ultrasound instead of excision. Copyright © 2017 Elsevier Inc. All rights reserved.

  12. Germinal and Somatic Activity of the Maize Element Activator (Ac) in Arabidopsis

    PubMed Central

    Keller, J.; Lim, E.; James-Jr., D. W.; Dooner, H. K.

    1992-01-01

    We have investigated the germinal and somatic activity of the maize Activator (Ac) element in Arabidopsis with the objective of developing an efficient transposon-based system for gene isolation in that plant. Transposition activity was assayed with a chimeric marker that consists of the cauliflower mosaic virus 35S promoter and a bacterial streptomycin phosphotransferase gene (SPT). Somatic activity was detected in seedlings germinated on plates containing streptomycin as green-resistant sectors against a background of white-sensitive cells. Germinal excisions resulted in fully green seedlings. The transposition frequency was extremely low when a single copy of the transposon was present, but appeared to increase with an increase in Ac copy number. Plants that were selected as variegated produced an increased number of green progeny. The methylation state of the Ac elements in lines with either low or high levels of excision was assessed by restriction analysis. No difference was found between these lines, indicating that the degree of methylation did not contribute to the level of Ac activity. Germinal excision events were analyzed molecularly and shown to carry reinserted transposons in about 50% of the cases. In several instances, streptomycin-resistant siblings carried the same transposed Ac element, indicating that excision had occurred prior to meiosis in the parent. We discuss parameters that need to be considered to optimize the use of Ac as a transposon tag in Arabidopsis. PMID:1322854

  13. Comparing initial diagnostic excision biopsy of cutaneous malignant melanoma in primary versus secondary care: A study of Irish National data.

    PubMed

    Doherty, Sarah M; Jackman, Louise M; Kirwan, John F; Dunne, Deirdre; O'Connor, Kieran G; Rouse, John M

    2016-12-01

    The incidence of melanoma is rising worldwide. Current Irish guidelines from the National Cancer Control Programme state suspicious pigmented lesions should not be removed in primary care. There are conflicting guidelines and research advising who should remove possible melanomas. To determine whether initial diagnostic excision biopsy of cutaneous malignant melanoma in primary versus secondary care leads to poorer survival. Analysis of data comprising 7116 cases of cutaneous malignant melanoma from the National Cancer Registry Ireland between January 2002 and December 2011. Single predictor variables were examined by the chi-square or Mann-Whitney U test. The effects of single predictor variables on survival were examined by Cox proportionate hazards modelling and a multivariate Cox model of survival based on excision in a non-hospital setting versus hospital setting was derived with adjusted and unadjusted hazard ratios. Over a 10-year period 8.5% of melanomas in Ireland were removed in a non-hospital setting. When comparing melanoma death between the hospital and non-hospital groups, the adjusted hazard ratio was 1.56 (95%CI: 1.08-2.26); (P = .02), indicating a non-inferior outcome for the melanoma cases initially treated in the non-hospital group, after adjustment for significant covariates. This study suggests that initial excision biopsy carried out in general practice does not lead to a poorer outcome. [Box: see text].

  14. Structure and specificity of FEN-1 from Methanopyrus kandleri

    DOE PAGES

    Shah, Santosh; Dunten, Pete; Stiteler, Amanda; ...

    2014-11-18

    DNA repair is fundamental to genome stability and is found in all three domains of life. However, many archaeal species, such as Methanopyrus kandleri, contain only a subset of the eukaryotic nucleotide excision repair (NER) homologues, and those present often contain significant differences compared to their eukaryotic homologues. To clarify the role of the NER XPG-like protein Mk0566 from M. kandleri, its biochemical activity and three dimensional structure were investigated. Ultimately, we found both to be more similar to human FEN-1 than human XPG, suggesting a biological role in replication and long-patch base excision repair rather than in NER.

  15. Evidence for loss of mitochondria in Microsporidia from a mitochondrial-type HSP70 in Nosema locustae.

    PubMed

    Germot, A; Philippe, H; Le Guyader, H

    1997-08-01

    In molecular phylogenies based on ribosomal RNA, three amitochondriate protist lineages, Microsporidia, Metamonada (including diplomonads) and Parabasala (including trichomonads), are the earliest offshoots of the eukaryotic tree. As an explantation for the lack of mitochondria in these organisms, the hypothesis that they have diverged before the mitochondrial endosymbiosis is preferred to the less parsimonious hypothesis of several independent losses of the organelle. Nevertheless, if they had descended from mitochondrion-containing ancestors, it may be possible to find in their nuclear DNA genes that derive from the endosymbiont which gave rise to mitochondria. Based on similar evidence, secondary losses of mitochondria have recently been suggested for Entamoeba histolytica and for Trichomonas vaginalis. In this study, we have isolated a gene encoding a chaperone protein (HSP70, 70 kDa heat shock protein) from the microspordian Nosema locustae. In phylogenetic trees, this HSP70 was located within a group of sequences that in other lineages is targetted to the mitochondrial compartment, itself included in the proteobacterial clade. In addition, the N. locustae protein contained the GDAW(V) motif shared by mitochondrial and proteobacterial sequences, with only one conservative substitution. Moreover, microsporidia, a phylum which was assumed to emerge close to the base of the eukaryotic tree, appears as the sister-group of fungi in the HSP70 phylogeny, in agreement with some ultrastructural characters and phylogenies based on alpha- and beta-tubulins. Loss of mitochondria, now demonstrated for several amitochondriate groups, indicates that the common ancestor of all the extant eukaryotic species could have been a mitochondriate eukaryote.

  16. RNS60, a charge-stabilized nanostructure saline alters Xenopus Laevis oocyte biophysical membrane properties by enhancing mitochondrial ATP production

    PubMed Central

    Choi, Soonwook; Yu, Eunah; Kim, Duk-Soo; Sugimori, Mutsuyuki; Llinás, Rodolfo R

    2015-01-01

    We have examined the effects of RNS60, a 0.9% saline containing charge-stabilized oxygen nanobubble-based structures. RNS60 is generated by subjecting normal saline to Taylor–Couette–Poiseuille (TCP) flow under elevated oxygen pressure. This study, implemented in Xenopus laevis oocytes, addresses both the electrophysiological membrane properties and parallel biological processes in the cytoplasm. Intracellular recordings from defolliculated X. laevis oocytes were implemented in: (1) air oxygenated standard Ringer's solution, (2) RNS60-based Ringer's solution, (3) RNS10.3 (TCP-modified saline without excess oxygen)-based Ringer's, and (4) ONS60 (saline containing high pressure oxygen without TCP modification)-based Ringer's. RNS60-based Ringer's solution induced membrane hyperpolarization from the resting membrane potential. This effect was prevented by: (1) ouabain (a blocker of the sodium/potassium ATPase), (2) rotenone (a mitochondrial electron transfer chain inhibitor preventing usable ATP synthesis), and (3) oligomycin A (an inhibitor of ATP synthase) indicating that RNS60 effects intracellular ATP levels. Increased intracellular ATP levels following RNS60 treatment were directly demonstrated using luciferin/luciferase photon emission. These results indicate that RNS60 alters intrinsic the electrophysiological properties of the X. laevis oocyte membrane by increasing mitochondrial-based ATP synthesis. Ultrastructural analysis of the oocyte cytoplasm demonstrated increased mitochondrial length in the presence of RNS60-based Ringer's solution. It is concluded that the biological properties of RNS60 relate to its ability to optimize ATP synthesis. PMID:25742953

  17. The Extract of Lycium depressum Stocks Enhances Wound Healing in Streptozotocin-Induced Diabetic Rats.

    PubMed

    Naji, Siamak; Zarei, Leila; Pourjabali, Masoumeh; Mohammadi, Rahim

    2017-06-01

    In diabetes, impaired wound healing and other tissue abnormalities are considered major concerns. The aim of the present study was to assess the wound-healing activity of methanolic extracts of the extract of Lycium depressum leaves. A total of 60 healthy male Wistar diabetic rats weighing approximately 160 to 180 g and 7 weeks of age were randomized into 10 groups for incision and excision wound models: sham surgery group (SHAM), including creation of wounds and no treatment; base formulation group (FG) with creation of wounds and application of base formulation ointment; treatment group 1 (TG1) with 1 g of powder extract of the plant material in ointment; treatment group 2 (TG2) with 2 g; and treatment group 4 (TG3) with 4 g of powder extract of the plant material in ointment. A wound was induced by an excision- and incision-based wound model in male rats. The mature green leaves of L depressum were collected and authenticated. Extractions of dried leaves were carried out. For wound-healing activity, the extracts were applied topically in the form of ointment and compared with control groups. The healing of the wound was assessed based on excision, incision, hydroxyproline estimation, and biomechanical and biochemical studies. The extract of L depressum leaves enhanced wound contraction, decreased epithelialization time, increased hydroxyproline content, and improved mechanical indices and histological characteristics in treatment groups compared with SHAM and FG ( P < .05). These findings permit the conclusion the extract of L depressum benefits parameters of wound healing in a diabetes induced model.

  18. Complete mitochondrial genome of the monogonont rotifer, Brachionus koreanus (Rotifera, Brachionidae).

    PubMed

    Hwang, Dae-Sik; Suga, Koushirou; Sakakura, Yoshitaka; Park, Heum Gi; Hagiwara, Atsushi; Rhee, Jae-Sung; Lee, Jae-Seong

    2014-02-01

    The complete mitochondrial genome was obtained from the assembled genome data sequenced by next generation sequencing (NGS) technology from the monogonont rotifer Brachionus koreanus. The mitochondrial genome of B. koreanus was composed of two circular chromosomes designated as mtDNA-I (10,421 bp) and mtDNA-II (11,923 bp). The gene contents of B. koreanus were identical with previously reported B. plicatilis mitochondrial genomes. However, gene orders of B. koreanus showed one rearrangement between the two species. Of 12 protein-coding genes (PCGs), 3 genes (ATP6, ND1, and ND3) had an incomplete stop codon. The A + T base composition of B. koreanus mitochondrial genome was high (68.81%). They also showed anti-G bias (12.03% and 10.97%) on the second and third position of PCGs as well as slight anti-C bias (15.96% and 14.31%) on the first and third position of PCGs.

  19. Gemini surfactants mediate efficient mitochondrial gene delivery and expression.

    PubMed

    Cardoso, Ana M; Morais, Catarina M; Cruz, A Rita; Cardoso, Ana L; Silva, Sandra G; do Vale, M Luísa; Marques, Eduardo F; Pedroso de Lima, Maria C; Jurado, Amália S

    2015-03-02

    Gene delivery targeting mitochondria has the potential to transform the therapeutic landscape of mitochondrial genetic diseases. Taking advantage of the nonuniversal genetic code used by mitochondria, a plasmid DNA construct able to be specifically expressed in these organelles was designed by including a codon, which codes for an amino acid only if read by the mitochondrial ribosomes. In the present work, gemini surfactants were shown to successfully deliver plasmid DNA to mitochondria. Gemini surfactant-based DNA complexes were taken up by cells through a variety of routes, including endocytic pathways, and showed propensity for inducing membrane destabilization under acidic conditions, thus facilitating cytoplasmic release of DNA. Furthermore, the complexes interacted extensively with lipid membrane models mimicking the composition of the mitochondrial membrane, which predicts a favored interaction of the complexes with mitochondria in the intracellular environment. This work unravels new possibilities for gene therapy toward mitochondrial diseases.

  20. Method and device for intraoperative imaging of lumpectomy specimens to provide feedback to breast surgeon for prompt re-excision during the same procedure

    NASA Astrophysics Data System (ADS)

    Krol, Andrzej; Hemingway, Susan; Kort, Kara; de la Rosa, Gustavo; Adhikary, Ravi; Masrani, Deepa; Feiglin, David; O'Connell, Avice; Nagarajan, Mahesh; Yang, Chien-Chun; Wismüller, Axel

    2014-03-01

    Breast conserving therapy (BCT) of breast cancer is now widely accepted due to improved cosmetic outcome and improved patients' quality of life. One of the critical issues in performing breast-conserving surgery is trying to achieve microscopically clear surgical margins while maintaining excellent cosmesis. Unfortunately, unacceptably close or positive surgical margins occur in at least 20-25% of all patients undergoing BCT requiring repeat surgical excision days or weeks later, as permanent histopathology routinely takes days to complete. Our aim is to develop a better method for intraoperative imaging of non-palpable breast malignancies excised by wire or needle localization. Providing non-deformed three dimensional imaging of the excised breast tissue should allow more accurate assessment of tumor margins and consequently allow further excision at the time of initial surgery thus limiting the enormous financial and emotional burden of additional surgery. We have designed and constructed a device that allows preservation of the excised breast tissue in its natural anatomic position relative to the breast as it is imaged to assess adequate excision. We performed initial tests with needle-guided lumpectomy specimens using micro-CT and digital breast tomosynthesis (DBT). Our device consists of a plastic sphere inside a cylindrical holder. The surgeon inserts a freshly excised piece of breast tissue into the sphere and matches its anatomic orientation with the fiducial markers on the sphere. A custom-shaped foam is placed inside the sphere to prevent specimen deformation due to gravity. DBT followed by micro-CT images of the specimen were obtained. We confirmed that our device preserved spatial orientation of the excised breast tissue and that the location error was lower than 10mm and 10 degrees. The initial obtained results indicate that breast lesions containing microcalcifications allow a good 3D imaging of margins providing immediate intraoperative feedback for further excision as needed at the initial operation.

  1. Three surgical planes identified in laparoscopic complete mesocolic excision for right-sided colon cancer.

    PubMed

    Zhu, Da-Jian; Chen, Xiao-Wu; OuYang, Man-Zhao; Lu, Yan

    2016-01-12

    Complete mesocolic excision provides a correct anatomical plane for colon cancer surgery. However, manifestation of the surgical plane during laparoscopic complete mesocolic excision versus in computed tomography images remains to be examined. Patients who underwent laparoscopic complete mesocolic excision for right-sided colon cancer underwent an abdominal computed tomography scan. The spatial relationship of the intraoperative surgical planes were examined, and then computed tomography reconstruction methods were applied. The resulting images were analyzed. In 44 right-sided colon cancer patients, the surgical plane for laparoscopic complete mesocolic excision was found to be composed of three surgical planes that were identified by computed tomography imaging with cross-sectional multiplanar reconstruction, maximum intensity projection, and volume reconstruction. For the operations performed, the mean bleeding volume was 73±32.3 ml and the mean number of harvested lymph nodes was 22±9.7. The follow-up period ranged from 6-40 months (mean 21.2), and only two patients had distant metastases. The laparoscopic complete mesocolic excision surgical plane for right-sided colon cancer is composed of three surgical planes. When these surgical planes were identified, laparoscopic complete mesocolic excision was a safe and effective procedure for the resection of colon cancer.

  2. Milestones and recent discoveries on cell death mediated by mitochondria and their interactions with biologically active amines.

    PubMed

    Grancara, Silvia; Ohkubo, Shinji; Artico, Marco; Ciccariello, Mauro; Manente, Sabrina; Bragadin, Marcantonio; Toninello, Antonio; Agostinelli, Enzo

    2016-10-01

    Mitochondria represent cell "powerhouses," being involved in energy transduction from the electrochemical gradient to ATP synthesis. The morphology of their cell types may change, according to various metabolic processes or osmotic pressure. A new morphology of the inner membrane and mitochondrial cristae, significantly different from the previous one, has been proposed for the inner membrane and mitochondrial cristae, based on the technique of electron tomography. Mitochondrial Ca(2+) transport (the transporter has been isolated) generates reactive oxygen species and induces the mitochondrial permeability transition of both inner and outer mitochondrial membranes, leading to induction of necrosis and apoptosis. In the mitochondria of several cell types (liver, kidney, and heart), mitochondrial oxidative stress is an essential step in the induction of cell death, although not in brain, in which the phenomenon is caused by a different mechanism. Mitochondrial permeability transition drives both apoptosis and necrosis, whereas mitochondrial outer membrane permeability is characteristic of apoptosis. Adenine nucleotide translocase remains the most important component involved in membrane permeability, with the opening of the transition pore, although other proteins, such as ATP synthase or phosphate carriers, have been proposed. Intrinsic cell death is triggered by the release from mitochondria of proteic factors, such as cytochrome c, apoptosis inducing factor, and Smac/DIABLO, with the activation of caspases upon mitochondrial permeability transition or mitochondrial outer membrane permeability induction. Mitochondrial permeability transition induces the permeability of the inner membrane in sites in contact with the outer membrane; mitochondrial outer membrane permeability forms channels on the outer membrane by means of various stimuli involving Bcl-2 family proteins. The biologically active amines, spermine, and agmatine, have specific functions on mitochondria which distinguish them from other amines. Enzymatic oxidative deamination of spermine by amine oxidases in tumor cells may produce reactive oxygen species, leading to transition pore opening and apoptosis. This process could be exploited as a new therapeutic strategy to combat cancer.

  3. [Animal experiment comparison of the therapeutic efficacy of tumor excision with a scalpel or with a CO2 laser in subcutaneously implanted Lewis lung cancer].

    PubMed

    Mahn, H R; Nowak, C; Audring, H; Liebetruth, J; Lindenau, K F

    1982-02-01

    An animal experimental study was carried out in order to compare the therapeutical value of two different surgical methods for excising the subcutaneous implanted Lewis lung carcinoma - tumor excision with scalpel or with carbon dioxide laser. The radicalism of operation methods, the survival time, and the tumor local recurrences were performed. The therapeutic effectivity of tumor excision with the carbon dioxide laser is more favourable than the scalpel method.

  4. Robotic assisted excision of a left ventricular myxoma.

    PubMed

    Hassan, Mohammed; Smith, J Michael

    2012-01-01

    We present a rare case of left ventricular myxoma discovered incidentally in an asymptomatic 16-year old male. The patient underwent the appropriate work-up and a robotic-assisted excision of the mass. The patient had an uneventful recovery and was discharged home at postoperative day 3. To our knowledge, this is the first case of robotic-assisted left ventricular myxoma excision in the literature. Robotic-assisted surgery of left ventricular myxomas is a safe and feasible method of excision.

  5. Mapping Gene Associations in Human Mitochondria using Clinical Disease Phenotypes

    PubMed Central

    Scharfe, Curt; Lu, Henry Horng-Shing; Neuenburg, Jutta K.; Allen, Edward A.; Li, Guan-Cheng; Klopstock, Thomas; Cowan, Tina M.; Enns, Gregory M.; Davis, Ronald W.

    2009-01-01

    Nuclear genes encode most mitochondrial proteins, and their mutations cause diverse and debilitating clinical disorders. To date, 1,200 of these mitochondrial genes have been recorded, while no standardized catalog exists of the associated clinical phenotypes. Such a catalog would be useful to develop methods to analyze human phenotypic data, to determine genotype-phenotype relations among many genes and diseases, and to support the clinical diagnosis of mitochondrial disorders. Here we establish a clinical phenotype catalog of 174 mitochondrial disease genes and study associations of diseases and genes. Phenotypic features such as clinical signs and symptoms were manually annotated from full-text medical articles and classified based on the hierarchical MeSH ontology. This classification of phenotypic features of each gene allowed for the comparison of diseases between different genes. In turn, we were then able to measure the phenotypic associations of disease genes for which we calculated a quantitative value that is based on their shared phenotypic features. The results showed that genes sharing more similar phenotypes have a stronger tendency for functional interactions, proving the usefulness of phenotype similarity values in disease gene network analysis. We then constructed a functional network of mitochondrial genes and discovered a higher connectivity for non-disease than for disease genes, and a tendency of disease genes to interact with each other. Utilizing these differences, we propose 168 candidate genes that resemble the characteristic interaction patterns of mitochondrial disease genes. Through their network associations, the candidates are further prioritized for the study of specific disorders such as optic neuropathies and Parkinson disease. Most mitochondrial disease phenotypes involve several clinical categories including neurologic, metabolic, and gastrointestinal disorders, which might indicate the effects of gene defects within the mitochondrial system. The accompanying knowledgebase (http://www.mitophenome.org/) supports the study of clinical diseases and associated genes. PMID:19390613

  6. Multiple schwannomas of the digital nerves and superficial radial nerve: two unusual cases of segmental schwannomatosis.

    PubMed

    Gosk, Jerzy; Gutkowska, Olga; Kuliński, Sebastian; Urban, Maciej; Hałoń, Agnieszka

    2015-01-01

    Two cases of segmental sporadic schwannomatosis characterized by unusual location of multiple schwannomas in digital nerves (case 1) and the superficial radial nerve (case 2) are described in this paper. In the first of the described cases, 6 tumours located at the base of the middle finger and in its distal portion were excised from both digital nerves. In the second case, 3 tumours located in the proximal 1/3 and halfway down the forearm were removed from the superficial radial nerve. In both cases, symptoms such as palpable tumour mass, pain, paraesthesias, and positive Tinel-Hoffman sign resolved after operative treatment. Final diagnoses were made based on histopathological examination results. In the second of the described cases, the largest of the excised lesions had features enabling diagnosis of a rare tumour type - ancient schwannoma.

  7. Magnetic resonance imaging (MRI)-based indication for neoadjuvant treatment of rectal carcinoma and the surrogate endpoint CRM status.

    PubMed

    Strassburg, Joachim; Junginger, Theo; Trinh, Trong; Püttcher, Olaf; Oberholzer, Katja; Heald, Richard J; Hermanek, Paul

    2008-11-01

    Is it possible to reduce the frequency of neoadjuvant therapy for rectal carcinoma and nevertheless achieve a rate of more than 90% circumferential resection margin (CRM)-negative resection specimens by a novel concept of magnetic resonance imaging (MRI)-based therapy planning? One hundred eighty-one patients from Berlin and Mainz, Germany, with primary rectal carcinoma, without distant metastasis, underwent radical surgery with curative intention. Surgical procedures applied were anterior resection with total mesorectal excision (TME) or partial mesorectal excision (PME; PME for tumours of the upper rectum) or abdominoperineal excision with TME. With MRI selection of the highest-risk cases, neoadjuvant therapy was given to only 62 of 181 (34.3%). The rate of CRM-negative resection specimens on histology was 170 of 181 (93.9%) for all patients, and in Berlin, only 1 of 93 (1%) specimens was CRM-positive. Patients selected for primary surgery had CRM-negative specimens on histology in 114 of 119 (95.8%). Those selected for neoadjuvant therapy had a lower rate of clear margin: 56 of 62 (90%). By applying a MRI-based indication, the frequency of neoadjuvant treatment with its acute and late adverse effects can be reduced to 30-35% without reduction of pathologically CRM-negative resection specimens and, thus, without the danger of worsening the oncological long-term results. This concept should be confirmed in prospective multicentre observation studies with quality assurance of MRI, surgery and pathology.

  8. Direct and indirect roles of RECQL4 in modulating base excision repair capacity

    PubMed Central

    Schurman, Shepherd H.; Hedayati, Mohammad; Wang, ZhengMing; Singh, Dharmendra K.; Speina, Elzbieta; Zhang, Yongqing; Becker, Kevin; Macris, Margaret; Sung, Patrick; Wilson, David M.; Croteau, Deborah L.; Bohr, Vilhelm A.

    2009-01-01

    RECQL4 is a human RecQ helicase which is mutated in approximately two-thirds of individuals with Rothmund–Thomson syndrome (RTS), a disease characterized at the cellular level by chromosomal instability. BLM and WRN are also human RecQ helicases, which are mutated in Bloom and Werner's syndrome, respectively, and associated with chromosomal instability as well as premature aging. Here we show that primary RTS and RECQL4 siRNA knockdown human fibroblasts accumulate more H2O2-induced DNA strand breaks than control cells, suggesting that RECQL4 may stimulate repair of H2O2-induced DNA damage. RTS primary fibroblasts also accumulate more XRCC1 foci than control cells in response to endogenous or induced oxidative stress and have a high basal level of endogenous formamidopyrimidines. In cells treated with H2O2, RECQL4 co-localizes with APE1, and FEN1, key participants in base excision repair. Biochemical experiments indicate that RECQL4 specifically stimulates the apurinic endonuclease activity of APE1, the DNA strand displacement activity of DNA polymerase β, and incision of a 1- or 10-nucleotide flap DNA substrate by Flap Endonuclease I. Additionally, RTS cells display an upregulation of BER pathway genes and fail to respond like normal cells to oxidative stress. The data herein support a model in which RECQL4 regulates both directly and indirectly base excision repair capacity. PMID:19567405

  9. Effect of Amalaki rasayana on DNA damage and repair in randomized aged human individuals.

    PubMed

    Vishwanatha, Udupi; Guruprasad, Kanive P; Gopinath, Puthiya M; Acharya, Raviraj V; Prasanna, Bokkasa V; Nayak, Jayakrishna; Ganesh, Rajeshwari; Rao, Jayalaxmi; Shree, Rashmi; Anchan, Suchitra; Raghu, Kothanahalli S; Joshi, Manjunath B; Paladhi, Puspendu; Varier, Panniampilly M; Muraleedharan, Kollath; Muraleedharan, Thrikovil S; Satyamoorthy, Kapaettu

    2016-09-15

    Preparations from Phyllanthus emblica called Amalaki rasayana is used in the Indian traditional medicinal system of Ayurveda for healthy living in elderly. The biological effects and its mechanisms are not fully understood. Since the diminishing DNA repair is the hallmark of ageing, we tested the influence of Amalaki rasayana on recognized DNA repair activities in healthy aged individuals. Amalaki rasayana was prepared fresh and healthy aged randomized human volunteers were administrated with either rasayana or placebo for 45 days strictly as per the traditional text. The DNA repair was analyzed in peripheral blood mononuclear cells before and after rasayana administration and after 45 days post-rasayana treatment regimen. UVC-induced DNA strand break repair (DSBR) based on extent of DNA unwinding by fluorometric analysis, nucleotide excision repair (NER) by flow cytometry and constitutive base excision repair (BER) by gap filling method were analyzed. Amalaki rasayana administration stably maintained/enhanced the DSBR in aged individuals. There were no adverse side effects. Further, subjects with different body mass index showed differential DNA strand break repair capacity. No change in unscheduled DNA synthesis during NER and BER was observed between the groups. Intake of Amalaki rasayana by aged individuals showed stable maintenance of DNA strand break repair without toxic effects. However, there was no change in nucleotide and base excision repair activities. Results warrant further studies on the effects of Amalaki rasayana on DSBR activities. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  10. A multistep damage recognition mechanism for global genomic nucleotide excision repair

    PubMed Central

    Sugasawa, Kaoru; Okamoto, Tomoko; Shimizu, Yuichiro; Masutani, Chikahide; Iwai, Shigenori; Hanaoka, Fumio

    2001-01-01

    A mammalian nucleotide excision repair (NER) factor, the XPC–HR23B complex, can specifically bind to certain DNA lesions and initiate the cell-free repair reaction. Here we describe a detailed analysis of its binding specificity using various DNA substrates, each containing a single defined lesion. A highly sensitive gel mobility shift assay revealed that XPC–HR23B specifically binds a small bubble structure with or without damaged bases, whereas dual incision takes place only when damage is present in the bubble. This is evidence that damage recognition for NER is accomplished through at least two steps; XPC–HR23B first binds to a site that has a DNA helix distortion, and then the presence of injured bases is verified prior to dual incision. Cyclobutane pyrimidine dimers (CPDs) were hardly recognized by XPC–HR23B, suggesting that additional factors may be required for CPD recognition. Although the presence of mismatched bases opposite a CPD potentiated XPC–HR23B binding, probably due to enhancement of the helix distortion, cell-free excision of such compound lesions was much more efficient than expected from the observed affinity for XPC–HR23B. This also suggests that additional factors and steps are required for the recognition of some types of lesions. A multistep mechanism of this sort may provide a molecular basis for ensuring the high level of damage discrimination that is required for global genomic NER. PMID:11238373

  11. A multistep damage recognition mechanism for global genomic nucleotide excision repair.

    PubMed

    Sugasawa, K; Okamoto, T; Shimizu, Y; Masutani, C; Iwai, S; Hanaoka, F

    2001-03-01

    A mammalian nucleotide excision repair (NER) factor, the XPC-HR23B complex, can specifically bind to certain DNA lesions and initiate the cell-free repair reaction. Here we describe a detailed analysis of its binding specificity using various DNA substrates, each containing a single defined lesion. A highly sensitive gel mobility shift assay revealed that XPC-HR23B specifically binds a small bubble structure with or without damaged bases, whereas dual incision takes place only when damage is present in the bubble. This is evidence that damage recognition for NER is accomplished through at least two steps; XPC-HR23B first binds to a site that has a DNA helix distortion, and then the presence of injured bases is verified prior to dual incision. Cyclobutane pyrimidine dimers (CPDs) were hardly recognized by XPC-HR23B, suggesting that additional factors may be required for CPD recognition. Although the presence of mismatched bases opposite a CPD potentiated XPC-HR23B binding, probably due to enhancement of the helix distortion, cell-free excision of such compound lesions was much more efficient than expected from the observed affinity for XPC-HR23B. This also suggests that additional factors and steps are required for the recognition of some types of lesions. A multistep mechanism of this sort may provide a molecular basis for ensuring the high level of damage discrimination that is required for global genomic NER.

  12. Clinical, biomechanical and morphological assessment of anterior cruciate ligament Kevlar®-based artificial prosthesis in rabbit model.

    PubMed

    de la Garza-Castro, Santiago; González-Rivera, Carlos E; Vílchez-Cavazos, Félix; Morales-Avalos, Rodolfo; Barrera-Flores, Francisco J; Elizondo-Omaña, Rodrigo E; Soto-Dominguez, Adolfo; Acosta-Olivo, Carlos; Mendoza-Lemus, Oscar F

    2017-07-27

    The aim of this study was to evaluate the clinical, biomechanical and morphological characteristics of a Kevlar®-based prosthetic ligament as a synthetic graft of the anterior cruciate ligament (ACL) in an experimental animal model in rabbits. A total of 27 knees of rabbits randomly divided into 3 groups (control, ACL excision and ACL replacement with a Kevlar® prosthesis) were analyzed using clinical, biomechanical and morphological tests at 6, 12 and 18 weeks postprocedure. The mean displacement in mechanical testing was 0.73 ± 0.06 mm, 1.58 ± 0.19 mm and 0.94 ± 0.20 mm for the control, ACL excision and ACL replacement with synthetic prosthesis groups, respectively. The results showed an improvement in the stability of the knee with the use of the Kevlar® synthetic prosthesis in the biomechanical testing (p<0.05) compared with rabbits that underwent ACL excision, in addition to displacements that were larger but comparable to that in the control group (p>0.05), between the replacement group and the control group. The histological study revealed a good morphological adaptation of the synthetic material to the knee. This study proposes a new animal model for the placement and evaluation of Kevlar®-based synthetic ACL implants. The studied prosthesis showed promising behavior in the clinical and biomechanical tests and in the histological analysis. This study lays the foundation for further basic and clinical studies of artificial ACL prostheses using this material.

  13. Early post-operative weight loss after laparoscopic sleeve gastrectomy correlates with the volume of the excised stomach and not with that of the sleeve! Preliminary data from a multi-detector computed tomography-based study.

    PubMed

    Pawanindra, Lal; Vindal, Anubhav; Midha, Manoj; Nagpal, Prashant; Manchanda, Alpana; Chander, Jagdish

    2015-10-01

    Pre- and post-operative stomach volumes can be important determinants for effectiveness of laparoscopic sleeve gastrectomy (LSG) in causing weight loss. There is little existing data on the volumes of stomach preoperatively and that excised during LSG. This study was designed to evaluate the change in gastric volume after LSG using multi-detector CT and to correlate it with early post-operative weight loss. Twenty consecutive patients with BMI ≥ 40 kg/m(2) and medical comorbidities underwent LSG between October 2011 and October 2013 and were analysed prospectively. The pre-operative stomach volume was measured by MDCT done 1-3 days before the surgery. LSG was performed in the standard manner using a 36F bougie. The volume of excised stomach was measured by distending the specimen with saline. MDCT of the upper abdomen was repeated 3 months postoperatively to calculate the gastric sleeve volume. Weight loss and resolution of comorbidities were documented. The mean pre-operative weight of patients was 123.90 kg, and the mean pre-operative stomach volume on MDCT was 1,067 ml. The stomach volume on pre-operative MDCT correlated with pre-operative weight and BMI. The mean volume of the excised stomach was 859 ml when measured by distension of the specimen and 850 ml on MDCT. After 3 months post surgery, the mean volume of gastric sleeve on MDCT was 217 ml, and the mean weight of the patients was 101.22 kg. The volume of the excised stomach calculated by MDCT correlated with the weight loss achieved 3 months postoperatively. However, no correlation was seen between the gastric sleeve volume 3 months postoperatively and weight loss during this period. MDCT is a good method to measure gastric volume before and after LSG. Early post-operative weight loss (3 months) correlates well with the volume of the excised stomach but not with that of the gastric sleeve.

  14. All atypia diagnosed at stereotactic vacuum-assisted breast biopsy do not need surgical excision.

    PubMed

    de Mascarel, Isabelle; Brouste, Véronique; Asad-Syed, Maryam; Hurtevent, Gabrielle; Macgrogan, Gaëtan

    2011-09-01

    The necessity of excision is debatable when atypia are diagnosed at stereotactic vacuum-assisted breast biopsy (microbiopsy). Among the 287 surgical excisions performed at Institut Bergonié from 1999 to 2009, we selected a case-control study group of 151 excisions; 52 involving all the diagnosed cancers and 99 randomly selected among the 235 excisions without cancer, following atypical microbiopsy (24 flat epithelial atypia; 50 atypical ductal hyperplasia; 14 lobular neoplasia; 63 mixed lesions). Mammographical calcification (type, extension, complete removal) and histological criteria of epithelial atypia (type, number of foci, size/extension), topography and microcalcification extension at microbiopsy were compared according to the presence or absence of cancer at excision. Factors associated with cancer at excision were Breast Imaging Reporting and Data System (BI-RADS5) lesions, large and/or multiple foci of mammographical calcifications, histological type, number, size and extension of atypical foci. Flat epithelial atypia alone was never associated with cancer at excision. BI-RADS5, atypical ductal hyperplasia (alone or predominant) and >3 foci of atypia were identified as independent pejorative factors. There was never any cancer at excision when these pejorative factors were absent (n=31). Presence of one (n=59), two (n=23) or three (n=14) factors was associated with cancer in 24, 15 and 13 cases with an odds ratio=5.8 (95% CI: 3-11.2) for each additional factor. We recommend that mammographical data and histological characteristics be taken into account in the decision-making process after diagnosis of atypia on microbiopsy. With experienced senologists and strict histological criteria, some patients could be spared surgery resulting in significant patient, financial and time advantages.

  15. Benign Intraductal Papilloma without Atypia on Core Needle Biopsy Has a Low Rate of Upgrading to Malignancy after Excision

    PubMed Central

    Han, Song-Hee; Kim, Milim; Chung, Yul Ri; Yun, Bo La; Jang, Mijung; Kim, Sun Mi; Kang, Eunyoung; Kim, Eun-Kyu

    2018-01-01

    Purpose The management of benign intraductal papilloma (IDP) without atypia diagnosed on core needle biopsy (CNB) remains controversial. This study was performed to evaluate the rate of upgrading to malignancy or high-risk lesions after excision and to identify factors associated with upgrading using a large series of benign IDP cases without atypia. Methods We included patients who were diagnosed as having benign IDP without atypia on CNB and underwent surgical or vacuum-assisted excision between 2010 and 2015. We analyzed the clinical, radiologic, and histopathologic features of IDPs that were upgraded to malignancy or high-risk lesions after excision. Results A total of 511 benign IDPs without atypia diagnosed via CNB were identified, of which 398 cases were treated with excision. After reviewing these cases, four cases of high-risk lesions in adjacent tissue on CNB, two cases which were revealed as papilloma with atypia, and nine cases of malignancy in the same breast were excluded. In the remaining 383 cases, the rate of upgrading to malignancy and high-risk lesions after excision was 0.8% and 4.4%, respectively. The presence of concurrent contralateral breast cancer, the presence of symptoms, and multifocality were factors significantly associated with upgrading to malignancy on subsequent excision. Surgical excision rather than vacuum-assisted excision was significantly associated with upgrading to high-risk lesions or malignancy. Conclusion The rate of upgrading to malignancy for benign IDP without atypia was very low, suggesting that close clinical and radiologic observation may be sufficient for patients with benign IDP without atypia on CNB under proper settings. PMID:29628987

  16. Confocal reflectance microscopy of basal cell cancers ex vivo: progress toward enhancing contrast and detectability of nuclei relative to dermis

    NASA Astrophysics Data System (ADS)

    Patel, Yogesh G.; Nehal, Kishwer S.; Halpern, Allan C.; Rajadhyaksha, Milind

    2005-04-01

    Mohs surgery is a staged procedure for microscopically excising basal cell carcinomas (BCCs) while preserving the surrounding normal skin. Serial excisions are performed with each excision being guided by examination of the frozen histology. Mohs surgery is a meticulous and time-consuming (15-45 minutes per excision) procedure requiring several (2-20) excisions and frozen histology prepared for each excision. Real-time confocal reflectance microscopy may make Mohs surgery more efficient by enabling rapid detection of BCCs directly in fresh, unprocessed excisions, and thereby possibly avoiding frozen histology. As previously reported, we are developing an acetowhitening-and-cross polarized method to detect BCCs with a confocal reflectance microscope. Acetowhitening compacts the chromatin within the nucleus, increasing nuclear backscatter, and brightening the nuclei in the confocal images of the tissue. Our experiments to optimize acetowhitening, using acetic acid concentrations from 1% to 30% and treatment times from 30 seconds to 5 minutes, show that a minimum concentration of 2% with minimum washing time of 2 minutes is required for enhancing nuclear morphology. Increased depolarization is observed within the compacted chromatin relative to the surrounding collagen, and imaging in brightfield or crossed polarization brightens or darkens the cellular cytoplasm and birefringent dermis; thus, we may potentially vary nuclear/cytoplasm and nuclear/dermis contrast. Images are collected, oriented, and tiled to create mosaics and sub-mosaics to view large excisions at variable 2X - 10X magnifications. To create and display mosaics, adequate pixelation relative to resolution must be maintained and precise mechanical fixturing is necessary to control tilt, sag, flattening and stability of the excised tissue specimen.

  17. Mitochondrial tRNALeu(UUR) C3275T, tRNAGln T4363C and tRNALys A8343G mutations may be associated with PCOS and metabolic syndrome.

    PubMed

    Ding, Yu; Xia, Bo-Hou; Zhang, Cai-Juan; Zhuo, Guang-Chao

    2018-02-05

    Polycystic ovary syndrome (PCOS) is a very prevalent endocrine disease affecting reproductive women. Clinically, patients with this disorder are more vulnerable to develop type 2 diabetes mellitus (T2DM), cardiovascular events, as well as metabolic syndrome (MetS). To date, the molecular mechanism underlying PCOS remains largely unknown. Previously, we showed that mitochondrial dysfunction caused by mitochondrial DNA (mtDNA) mutation was an important cause for PCOS. In the current study, we described the clinical and biochemical features of a three-generation pedigree with maternally transmitted MetS, combined with PCOS. A total of three matrilineal relatives exhibited MetS including obesity, high triglyceride (TG) and Hemoglobin A1c (HbA1c) levels, and hypertension. Whereas one patient from the third generation manifestated PCOS. Mutational analysis of the whole mitochondrial genes from the affected individuals identified a set of genetic variations belonging to East Asia haplogroup B4b1c. Among these variants, the homoplasmic C3275T mutation disrupted a highly evolutionary conserved base-pairing (28A-46C) on the variable region of tRNA Leu(UUR) , whereas the T4363C mutation created a new base-pairing (31T-37A) in the anticodon stem of tRNA Gln , furthermore, the A8343G mutation occurred at the very conserved position of tRNA Lys and may result the failure in mitochondrial tRNAs (mt-tRNAs) metabolism. Biochemical analysis revealed the deficiency in mitochondrial functions including lower levels of mitochondrial membrane potential (MMP), ATP production and mtDNA copy number, while a significantly increased reactive oxygen species (ROS) generation was observed in polymononuclear leukocytes (PMNs) from the individuals carrying these mt-tRNA mutations, suggesting that these mutations may cause mitochondrial dysfunction that was responsible for the clinical phenotypes. Taken together, our data indicated that mt-tRNA mutations were associated with MetS and PCOS in this family, which shaded additional light into the pathophysiology of PCOS that were manifestated by mitochondrial dysfunction. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. Towards barcode markers in Fungi: an intron map of Ascomycota mitochondria.

    PubMed

    Santamaria, Monica; Vicario, Saverio; Pappadà, Graziano; Scioscia, Gaetano; Scazzocchio, Claudio; Saccone, Cecilia

    2009-06-16

    A standardized and cost-effective molecular identification system is now an urgent need for Fungi owing to their wide involvement in human life quality. In particular the potential use of mitochondrial DNA species markers has been taken in account. Unfortunately, a serious difficulty in the PCR and bioinformatic surveys is due to the presence of mobile introns in almost all the fungal mitochondrial genes. The aim of this work is to verify the incidence of this phenomenon in Ascomycota, testing, at the same time, a new bioinformatic tool for extracting and managing sequence databases annotations, in order to identify the mitochondrial gene regions where introns are missing so as to propose them as species markers. The general trend towards a large occurrence of introns in the mitochondrial genome of Fungi has been confirmed in Ascomycota by an extensive bioinformatic analysis, performed on all the entries concerning 11 mitochondrial protein coding genes and 2 mitochondrial rRNA (ribosomal RNA) specifying genes, belonging to this phylum, available in public nucleotide sequence databases. A new query approach has been developed to retrieve effectively introns information included in these entries. After comparing the new query-based approach with a blast-based procedure, with the aim of designing a faithful Ascomycota mitochondrial intron map, the first method appeared clearly the most accurate. Within this map, despite the large pervasiveness of introns, it is possible to distinguish specific regions comprised in several genes, including the full NADH dehydrogenase subunit 6 (ND6) gene, which could be considered as barcode candidates for Ascomycota due to their paucity of introns and to their length, above 400 bp, comparable to the lower end size of the length range of barcodes successfully used in animals. The development of the new query system described here would answer the pressing requirement to improve drastically the bioinformatics support to the DNA Barcode Initiative. The large scale investigation of Ascomycota mitochondrial introns performed through this tool, allowing to exclude the introns-rich sequences from the barcode candidates exploration, could be the first step towards a mitochondrial barcoding strategy for these organisms, similar to the standard approach employed in metazoans.

  19. [The Engineering of a Yarrowia lipolytica Yeast Strain Capable of Homologous Recombination of the Mitochondrial Genome].

    PubMed

    Isakova, E P; Epova, E Yu; Sekova, V Yu; Trubnikova, E V; Kudykina, Yu K; Zylkova, M V; Guseva, M A; Deryabina, Yu I

    2015-01-01

    None of the studied eukaryotic species has a natural system for homologous recombination of the mitochondrial genome. We propose an integrated genetic construct pQ-SRUS, which allows introduction of the recA gene from Bacillus subtilis into the nuclear genome of an extremophilic yeast, Yarrowia lipolytica. The targeting of recombinant RecA to the yeast mitochondria is provided by leader sequences (5'-UTR and 3'-UTR) derived from the SOD2 gene mRNA, which exhibits affinity to the outer mitochondrial membrane and thus provides cotranslational transport of RecA to the inner space of the mitochondria. The Y. lipolytica strain bearing the pQ-SRUS construct has the unique ability to integrate DNA constructs into the mitochondrial genome. This fact was confirmed using a tester construct, pQ-NIHN, intended for the introduction of the EYFP gene into the translation initiation region of the Y. lipolytica ND1 mitochondrial gene. The Y. lipolytica strain bearing pQ-SRUS makes it possible to engineer recombinant producers based on Y. lipolytica bearing transgenes in the mitochondrial genome. They are promising for the construction of a genetic system for in vivo replication and modification of the human mitochondrial genome. These strains may be used as a tool for the treatment of human mitochondrial diseases (including genetically inherited ones).

  20. Improved systematic tRNA gene annotation allows new insights into the evolution of mitochondrial tRNA structures and into the mechanisms of mitochondrial genome rearrangements

    PubMed Central

    Jühling, Frank; Pütz, Joern; Bernt, Matthias; Donath, Alexander; Middendorf, Martin; Florentz, Catherine; Stadler, Peter F.

    2012-01-01

    Transfer RNAs (tRNAs) are present in all types of cells as well as in organelles. tRNAs of animal mitochondria show a low level of primary sequence conservation and exhibit ‘bizarre’ secondary structures, lacking complete domains of the common cloverleaf. Such sequences are hard to detect and hence frequently missed in computational analyses and mitochondrial genome annotation. Here, we introduce an automatic annotation procedure for mitochondrial tRNA genes in Metazoa based on sequence and structural information in manually curated covariance models. The method, applied to re-annotate 1876 available metazoan mitochondrial RefSeq genomes, allows to distinguish between remaining functional genes and degrading ‘pseudogenes’, even at early stages of divergence. The subsequent analysis of a comprehensive set of mitochondrial tRNA genes gives new insights into the evolution of structures of mitochondrial tRNA sequences as well as into the mechanisms of genome rearrangements. We find frequent losses of tRNA genes concentrated in basal Metazoa, frequent independent losses of individual parts of tRNA genes, particularly in Arthropoda, and wide-spread conserved overlaps of tRNAs in opposite reading direction. Direct evidence for several recent Tandem Duplication-Random Loss events is gained, demonstrating that this mechanism has an impact on the appearance of new mitochondrial gene orders. PMID:22139921

  1. Increased sensitivity to mitochondrial permeability transition and myonuclear translocation of endonuclease G in atrophied muscle of physically active older humans.

    PubMed

    Gouspillou, Gilles; Sgarioto, Nicolas; Kapchinsky, Sophia; Purves-Smith, Fennigje; Norris, Brandon; Pion, Charlotte H; Barbat-Artigas, Sébastien; Lemieux, Francois; Taivassalo, Tanja; Morais, José A; Aubertin-Leheudre, Mylène; Hepple, Russell T

    2014-04-01

    Mitochondrial dysfunction is implicated in skeletal muscle atrophy and dysfunction with aging, with strong support for an increased mitochondrial-mediated apoptosis in sedentary rodent models. Whether this applies to aged human muscle is unknown, nor is it clear whether these changes are caused by sedentary behavior. Thus, we examined mitochondrial function [respiration, reactive oxygen species (ROS) emission, and calcium retention capacity (CRC)] in permeabilized myofibers obtained from vastus lateralis muscle biopsies of healthy physically active young (23.7±2.7 yr; mean±SD) and older (71.2±4.9 yr) men. Although mitochondrial ROS and maximal respiratory capacity were unaffected, the acceptor control ratio was reduced by 18% with aging, suggesting mild uncoupling of oxidative phosphorylation. CRC was reduced by 50% with aging, indicating sensitization of the mitochondrial permeability transition pore (mPTP) to apoptosis. Consistent with the mPTP sensitization, older muscles showed a 3-fold greater fraction of endonuclease G (a mitochondrial proapoptotic factor)-positive myonuclei. Aged muscles also had lower mitophagic potential, based on a 43% reduction in Parkin to the voltage-dependent anion channel (VDAC) protein ratio. Collectively, these results show that mitochondrial-mediated apoptotic signaling is increased in older human muscle and suggest that accumulation of dysfunctional mitochondria with exaggerated apoptotic sensitivity is due to impaired mitophagy.

  2. Green and non-green callus induction from excised rice (Oryza sativa) embryos: effects of exogenous plant growth regulators

    NASA Technical Reports Server (NTRS)

    Kim, D.; Brock, T. G.; Kaufman, P. B.

    1992-01-01

    Calli were induced either from excised rice embryos or from whole seeds in the presence of 1 to 5 mg l-1 NAA. After 12 days of culture, calli were induced only from excised rice embryos. We found that excised embryos accumulated NAA up to 6 times higher concentration than did whole seeds. In the presence of 1 to 5 mg l-1 NAA and 2 to 10 mg l-1 kinetin, chlorophyllous calli were induced from excised rice embryos. Chlorophyll contents in the callus tissue increased with increasing kinetin concentration while percent callus induction decreased. The total chlorophyll content was linearly correlated with the ratio of kinetin to NAA in the medium.

  3. Study on the excision and integration mediated by class 1 integron in Streptococcus pneumoniae.

    PubMed

    Lin, Qun; Xu, Pusheng; Li, Jiaowu; Huang, Jinhua; Chen, Yin; Deng, Shuhuan

    2017-10-01

    As a novel antibiotic resistance mobile element, integron was recognized as a primary source of antibiotic genes among Gram-positive organisms for its excision and integration of exogenous genes. In this study, Streptococcus pneumoniae was subjected to investigate the excision and integration of class 1 integron with eight different plasmids. As the results indicated, excision in both att site and gene cassettes were successfully observed, which was further confirmed by integration assays and PCR amplification. The observation of class 1 integron mediated excision and integration of various exogenous antibiotics resistance genes may raise the attention of integrons as novel antibiotic resistance determinant in Gram-positive bacteria, especially in Streptococcus. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Early excision and grafting versus delayed excision and grafting of deep thermal burns up to 40% total body surface area: a comparison of outcome

    PubMed Central

    Saaiq, M.; Zaib, S.; Ahmad, S.

    2012-01-01

    Summary This is a study of 120 patients of either sex and all ages who had sustained deep burns of up to 40% of the total body surface area. Half the patients underwent early excision and skin autografting (i.e., within 4-7 days of sustaining burn injury) while the rest underwent delayed excision and skin autografting (i.e., within 1-4 weeks post-burn). Significant differences were found in favour of the early excision and grafting group with regard to the various burn management outcome parameters taken into consideration, i.e. culture positivity of wounds, graft take, duration of post-graft hospitalization, and mortality. PMID:23467391

  5. Discovery of non-peptidic small molecule inhibitors of cyclophilin D as neuroprotective agents in Aβ-induced mitochondrial dysfunction

    NASA Astrophysics Data System (ADS)

    Park, Insun; Londhe, Ashwini M.; Lim, Ji Woong; Park, Beoung-Geon; Jung, Seo Yun; Lee, Jae Yeol; Lim, Sang Min; No, Kyoung Tai; Lee, Jiyoun; Pae, Ae Nim

    2017-10-01

    Cyclophilin D (CypD) is a mitochondria-specific cyclophilin that is known to play a pivotal role in the formation of the mitochondrial permeability transition pore (mPTP).The formation and opening of the mPTP disrupt mitochondrial homeostasis, cause mitochondrial dysfunction and eventually lead to cell death. Several recent studies have found that CypD promotes the formation of the mPTP upon binding to β amyloid (Aβ) peptides inside brain mitochondria, suggesting that neuronal CypD has a potential to be a promising therapeutic target for Alzheimer's disease (AD). In this study, we generated an energy-based pharmacophore model by using the crystal structure of CypD—cyclosporine A (CsA) complex and performed virtual screening of ChemDiv database, which yielded forty-five potential hit compounds with novel scaffolds. We further tested those compounds using mitochondrial functional assays in neuronal cells and identified fifteen compounds with excellent protective effects against Aβ-induced mitochondrial dysfunction. To validate whether these effects derived from binding to CypD, we performed surface plasmon resonance (SPR)—based direct binding assays with selected compounds and discovered compound 29 was found to have the equilibrium dissociation constants (KD) value of 88.2 nM. This binding affinity value and biological activity correspond well with our predicted binding mode. We believe that this study offers new insights into the rational design of small molecule CypD inhibitors, and provides a promising lead for future therapeutic development.

  6. Conflicting Evolutionary Histories of the Mitochondrial and Nuclear Genomes in New World Myotis Bats.

    PubMed

    Platt, Roy N; Faircloth, Brant C; Sullivan, Kevin A M; Kieran, Troy J; Glenn, Travis C; Vandewege, Michael W; Lee, Thomas E; Baker, Robert J; Stevens, Richard D; Ray, David A

    2018-03-01

    The rapid diversification of Myotis bats into more than 100 species is one of the most extensive mammalian radiations available for study. Efforts to understand relationships within Myotis have primarily utilized mitochondrial markers and trees inferred from nuclear markers lacked resolution. Our current understanding of relationships within Myotis is therefore biased towards a set of phylogenetic markers that may not reflect the history of the nuclear genome. To resolve this, we sequenced the full mitochondrial genomes of 37 representative Myotis, primarily from the New World, in conjunction with targeted sequencing of 3648 ultraconserved elements (UCEs). We inferred the phylogeny and explored the effects of concatenation and summary phylogenetic methods, as well as combinations of markers based on informativeness or levels of missing data, on our results. Of the 294 phylogenies generated from the nuclear UCE data, all are significantly different from phylogenies inferred using mitochondrial genomes. Even within the nuclear data, quartet frequencies indicate that around half of all UCE loci conflict with the estimated species tree. Several factors can drive such conflict, including incomplete lineage sorting, introgressive hybridization, or even phylogenetic error. Despite the degree of discordance between nuclear UCE loci and the mitochondrial genome and among UCE loci themselves, the most common nuclear topology is recovered in one quarter of all analyses with strong nodal support. Based on these results, we re-examine the evolutionary history of Myotis to better understand the phenomena driving their unique nuclear, mitochondrial, and biogeographic histories.

  7. The Role of Mitochondrial TCA Cycle Enzymes in Determining Prostate Cancer Chemosensitivity

    DTIC Science & Technology

    2012-03-01

    mitochondrial OAA measurement is performed by a commercial kit from Biovision . Briefly, whole cell lysates or mitochondria fraction were obtained from... Biovision based on the manufacturer protocols. 2) Cellular oxygen consumption and reactive oxygen (ROS) production. One of the metabolic consequences of

  8. Autophagy capacity and sub-mitochondrial heterogeneity shape Bnip3-induced mitophagy regulation of apoptosis.

    PubMed

    Choe, Sehyo Charley; Hamacher-Brady, Anne; Brady, Nathan Ryan

    2015-08-08

    Mitochondria are key regulators of apoptosis. In response to stress, BH3-only proteins activate pro-apoptotic Bcl2 family proteins Bax and Bak, which induce mitochondrial outer membrane permeabilization (MOMP). While the large-scale mitochondrial release of pro-apoptotic proteins activates caspase-dependent cell death, a limited release results in sub-lethal caspase activation which promotes tumorigenesis. Mitochondrial autophagy (mitophagy) targets dysfunctional mitochondria for degradation by lysosomes, and undergoes extensive crosstalk with apoptosis signaling, but its influence on apoptosis remains undetermined. The BH3-only protein Bnip3 integrates apoptosis and mitophagy signaling at different signaling domains. Bnip3 inhibits pro-survival Bcl2 members via its BH3 domain and activates mitophagy through its LC3 Interacting Region (LIR), which is responsible for binding to autophagosomes. Previously, we have shown that Bnip3-activated mitophagy prior to apoptosis induction can reduce mitochondrial activation of caspases, suggesting that a reduction to mitochondrial levels may be pro-survival. An outstanding question is whether organelle dynamics and/or recently discovered subcellular variations of protein levels responsible for both MOMP sensitivity and crosstalk between apoptosis and mitophagy can influence the cellular apoptosis decision event. To that end, here we undertook a systems biology analysis of mitophagy-apoptosis crosstalk at the level of cellular mitochondrial populations. Based on experimental findings, we developed a multi-scale, hybrid model with an individually adaptive mitochondrial population, whose actions are determined by protein levels, embedded in an agent-based model (ABM) for simulating subcellular dynamics and local feedback via reactive oxygen species signaling. Our model, supported by experimental evidence, identified an emergent regulatory structure within canonical apoptosis signaling. We show that the extent of mitophagy is determined by levels and spatial localization of autophagy capacity, and subcellular mitochondrial protein heterogeneities. Our model identifies mechanisms and conditions that alter the mitophagy decision within mitochondrial subpopulations to an extent sufficient to shape cellular outcome to apoptotic stimuli. Overall, our modeling approach provides means to suggest new experiments and implement findings at multiple scales in order to understand how network topologies and subcellular heterogeneities can influence signaling events at individual organelle level, and hence, determine the emergence of heterogeneity in cellular decisions due the actions of the collective intra-cellular population.

  9. The complete mitochondrial genome of the bagarius yarrelli from honghe river

    NASA Astrophysics Data System (ADS)

    Du, M.; Zhou, C. J.; Niu, B. Z.; Liu, Y. H.; Li, N.; Ai, J. L.; Xu, G. L.

    2016-08-01

    The total length of mitochondrial DNA sequence of the Bagarius yarrelli from the Honghe river of China is determined in this paper. The total length of the circular molecule is 16524 base pair which denoted a similar gene order to that of the other bony fishes, which include a non-coding control region, a replicated origin, two ribosome RNA (rRNA) genes, 22 transfer RNA (tRNA) genes as well as 13 protein-coding genes. Its whole base constitution is 31.4% for A, 26.9% for C, 15.7% for G and 26.0% for T, with an A+T bias of 57.4%. Those mitochondrial data would contribute to further study molecular evolution and population genetics of this species.

  10. Complete mitochondrial genome sequence of the hedgehog seahorse Hippocampus spinosissimus Weber, 1933 (Gasterosteiformes:Syngnathidae).

    PubMed

    Liu, Shuaishuai; Zhang, Yanhong; Wang, Changming; Lin, Qiang

    2016-07-01

    The complete mitochondrial genome sequence of the hedgehog seahorse Hippocampus spinosissimus was first determined in this article. The total length of H. spinosissimus mitogenome is 16 527 bp and consists of 13 protein-coding genes, 2 rRNA genes, 22 tRNA genes and 1 control region. The gene order and composition of H. spinosissimus were similar to those of most other vertebrates. The overall base composition of H. spinosissimus is 32.1% A, 30.3% T, 14.9% G and 22.7% C, with a slight A + T-rich feature (62.4%). Phylogenetic analyses based on complete mitochondrial genome sequence showed that H. spinosissimus has a close genetic relationship to H. ingens and H. kuda.

  11. The mitochondrial genome of Cethosia biblis (Drury) (Lepidoptera: Nymphalidae).

    PubMed

    Xin, Tianrong; Li, Lei; Yao, Chengyi; Wang, Yayu; Zou, Zhiwen; Wang, Jing; Xia, Bin

    2016-07-01

    We present the complete mitogenome of Cethosia biblis (Drury) (Lepidoptera: Nymphalidae) in this article. The mitogenome was a circle molecular consisting of 15,286 nucleotides, 37 genes, and an A + T-rich region. The order of 37 genes was typical of insect mitochondrial DNA sequences described to date. The overall base composition of the genome is A (37.41%), T (42.80%), C (11.87%), and G (7.91%) with an A + T-rich hallmark as that of other invertebrate mitochondrial genomes. The start codon was mainly ATA in most of the mitochondrial protein-coding genes such as ND2, COI, ATP8, ND3, ND5, ND4, ND6, and ND1, but COII, ATP6, COIII, ND4L, and Cob genes employing ATG. The stop codon was TAA in all the protein-coding genes. The A + T region is located between 12S rRNA and tRNA(M)(et). The phylogenetic relationships of Lepidoptera species were constructed based on the nucleotides sequences of 13 PCGs of mitogenomes using the neighbor-joining method. The molecular-based phylogeny supported the traditional morphological classification on relationships within Lepidoptera species.

  12. P element excision in drosophila melanogaster and related drosophilids

    USDA-ARS?s Scientific Manuscript database

    The frequency of P element excision and the structure of the resulting excision products were determined in three drosophilid species, Drosophila melanogaster, D. virilis, and Chymomyza procnemis. A transient P element mobility assay was conducted in the cells of developing insect embryos, but unlik...

  13. The evolution of sex: A new hypothesis based on mitochondrial mutational erosion: Mitochondrial mutational erosion in ancestral eukaryotes would favor the evolution of sex, harnessing nuclear recombination to optimize compensatory nuclear coadaptation.

    PubMed

    Havird, Justin C; Hall, Matthew D; Dowling, Damian K

    2015-09-01

    The evolution of sex in eukaryotes represents a paradox, given the "twofold" fitness cost it incurs. We hypothesize that the mutational dynamics of the mitochondrial genome would have favored the evolution of sexual reproduction. Mitochondrial DNA (mtDNA) exhibits a high-mutation rate across most eukaryote taxa, and several lines of evidence suggest that this high rate is an ancestral character. This seems inexplicable given that mtDNA-encoded genes underlie the expression of life's most salient functions, including energy conversion. We propose that negative metabolic effects linked to mitochondrial mutation accumulation would have invoked selection for sexual recombination between divergent host nuclear genomes in early eukaryote lineages. This would provide a mechanism by which recombinant host genotypes could be rapidly shuffled and screened for the presence of compensatory modifiers that offset mtDNA-induced harm. Under this hypothesis, recombination provides the genetic variation necessary for compensatory nuclear coadaptation to keep pace with mitochondrial mutation accumulation. © 2015 WILEY Periodicals, Inc.

  14. Optogenetic control of mitochondrial metabolism and Ca2+ signaling by mitochondria-targeted opsins.

    PubMed

    Tkatch, Tatiana; Greotti, Elisa; Baranauskas, Gytis; Pendin, Diana; Roy, Soumitra; Nita, Luliaoana I; Wettmarshausen, Jennifer; Prigge, Matthias; Yizhar, Ofer; Shirihai, Orian S; Fishman, Daniel; Hershfinkel, Michal; Fleidervish, Ilya A; Perocchi, Fabiana; Pozzan, Tullio; Sekler, Israel

    2017-06-27

    Key mitochondrial functions such as ATP production, Ca 2+ uptake and release, and substrate accumulation depend on the proton electrochemical gradient (ΔμH + ) across the inner membrane. Although several drugs can modulate ΔμH + , their effects are hardly reversible, and lack cellular specificity and spatial resolution. Although channelrhodopsins are widely used to modulate the plasma membrane potential of excitable cells, mitochondria have thus far eluded optogenetic control. Here we describe a toolkit of optometabolic constructs based on selective targeting of channelrhodopsins with distinct functional properties to the inner mitochondrial membrane of intact cells. We show that our strategy enables a light-dependent control of the mitochondrial membrane potential (Δψ m ) and coupled mitochondrial functions such as ATP synthesis by oxidative phosphorylation, Ca 2+ dynamics, and respiratory metabolism. By directly modulating Δψ m , the mitochondria-targeted opsins were used to control complex physiological processes such as spontaneous beats in cardiac myocytes and glucose-dependent ATP increase in pancreatic β-cells. Furthermore, our optometabolic tools allow modulation of mitochondrial functions in single cells and defined cell regions.

  15. Quantitative proteomics of synaptic and nonsynaptic mitochondria: insights for synaptic mitochondrial vulnerability.

    PubMed

    Stauch, Kelly L; Purnell, Phillip R; Fox, Howard S

    2014-05-02

    Synaptic mitochondria are essential for maintaining calcium homeostasis and producing ATP, processes vital for neuronal integrity and synaptic transmission. Synaptic mitochondria exhibit increased oxidative damage during aging and are more vulnerable to calcium insult than nonsynaptic mitochondria. Why synaptic mitochondria are specifically more susceptible to cumulative damage remains to be determined. In this study, the generation of a super-SILAC mix that served as an appropriate internal standard for mouse brain mitochondria mass spectrometry based analysis allowed for the quantification of the proteomic differences between synaptic and nonsynaptic mitochondria isolated from 10-month-old mice. We identified a total of 2260 common proteins between synaptic and nonsynaptic mitochondria of which 1629 were annotated as mitochondrial. Quantitative proteomic analysis of the proteins common between synaptic and nonsynaptic mitochondria revealed significant differential expression of 522 proteins involved in several pathways including oxidative phosphorylation, mitochondrial fission/fusion, calcium transport, and mitochondrial DNA replication and maintenance. In comparison to nonsynaptic mitochondria, synaptic mitochondria exhibited increased age-associated mitochondrial DNA deletions and decreased bioenergetic function. These findings provide insights into synaptic mitochondrial susceptibility to damage.

  16. Quantitative Proteomics of Synaptic and Nonsynaptic Mitochondria: Insights for Synaptic Mitochondrial Vulnerability

    PubMed Central

    2015-01-01

    Synaptic mitochondria are essential for maintaining calcium homeostasis and producing ATP, processes vital for neuronal integrity and synaptic transmission. Synaptic mitochondria exhibit increased oxidative damage during aging and are more vulnerable to calcium insult than nonsynaptic mitochondria. Why synaptic mitochondria are specifically more susceptible to cumulative damage remains to be determined. In this study, the generation of a super-SILAC mix that served as an appropriate internal standard for mouse brain mitochondria mass spectrometry based analysis allowed for the quantification of the proteomic differences between synaptic and nonsynaptic mitochondria isolated from 10-month-old mice. We identified a total of 2260 common proteins between synaptic and nonsynaptic mitochondria of which 1629 were annotated as mitochondrial. Quantitative proteomic analysis of the proteins common between synaptic and nonsynaptic mitochondria revealed significant differential expression of 522 proteins involved in several pathways including oxidative phosphorylation, mitochondrial fission/fusion, calcium transport, and mitochondrial DNA replication and maintenance. In comparison to nonsynaptic mitochondria, synaptic mitochondria exhibited increased age-associated mitochondrial DNA deletions and decreased bioenergetic function. These findings provide insights into synaptic mitochondrial susceptibility to damage. PMID:24708184

  17. N-acetylcysteine with apocynin prevents hyperoxaluria-induced mitochondrial protein perturbations in nephrolithiasis.

    PubMed

    Sharma, Minu; Sud, Amit; Kaur, Tanzeer; Tandon, Chanderdeep; Singla, S K

    2016-09-01

    Diminished mitochondrial activities were deemed to play an imperative role in surged oxidative damage perceived in hyperoxaluric renal tissue. Proteomics is particularly valuable to delineate the damaging effects of oxidative stress on mitochondrial proteins. The present study was designed to apply large-scale proteomics to describe systematically how mitochondrial proteins/pathways govern the renal damage and calcium oxalate crystal adhesion in hyperoxaluria. Furthermore, the potential beneficial effects of combinatorial therapy with N-acetylcysteine (NAC) and apocynin were studied to establish its credibility in the modulation of hyperoxaluria-induced alterations in mitochondrial proteins. In an experimental setup with male Wistar rats, five groups were designed for 9 d. At the end of the experiment, 24-h urine was collected and rats were euthanized. Urinary samples were analyzed for kidney injury marker and creatinine clearance. Transmission electron microscopy revealed distorted renal mitochondria in hyperoxaluria but combinatorial therapy restored the normal mitochondrial architecture. Mitochondria were isolated from renal tissue of experimental rats, and mitochondrial membrane potential was analyzed. The two-dimensional electrophoresis (2-DE) based comparative proteomic analysis was performed on proteins isolated from renal mitochondria. The results revealed eight differentially expressed mitochondrial proteins in hyperoxaluric rats, which were identified by Matrix-assisted laser desorption/ionization time of flight/time of flight (MALDI-TOF/TOF) analysis. Identified proteins including those involved in important mitochondrial processes, e.g. antioxidant defense, energy metabolism, and electron transport chain. Therapeutic administration of NAC with apocynin significantly expunged hyperoxaluria-induced discrepancy in the renal mitochondrial proteins, bringing them closer to the controls. The results provide insights to further understand the underlying mechanisms in the development of hyperoxaluria-induced nephrolithiasis and the therapeutic relevance of the combinatorial therapy.

  18. The mitochondrial myopathy encephalopathy, lactic acidosis with stroke-like episodes (MELAS) syndrome: a review of treatment options.

    PubMed

    Scaglia, Fernando; Northrop, Jennifer L

    2006-01-01

    Mitochondrial encephalomyopathies are a multisystemic group of disorders that are characterised by a wide range of biochemical and genetic mitochondrial defects and variable modes of inheritance. Among this group of disorders, the mitochondrial myopathy, encephalopathy, lactic acidosis with stroke-like episodes (MELAS) syndrome is one of the most frequently occurring, maternally inherited mitochondrial disorders. As the name implies, stroke-like episodes are the defining feature of the MELAS syndrome, often occurring before the age of 15 years. The clinical course of this disorder is highly variable, ranging from asymptomatic, with normal early development, to progressive muscle weakness, lactic acidosis, cognitive dysfunction, seizures, stroke-like episodes, encephalopathy and premature death. This syndrome is associated with a number of point mutations in the mitochondrial DNA, with over 80% of the mutations occurring in the dihydrouridine loop of the mitochondrial transfer RNA(Leu(UUR)) [tRNA(Leu)((UUR))] gene. The pathophysiology of the disease is not completely understood; however, several different mechanisms are proposed to contribute to this disease. These include decreased aminoacylation of mitochondrial tRNA, resulting in decreased mitochondrial protein synthesis; changes in calcium homeostasis; and alterations in nitric oxide metabolism. Currently, no consensus criteria exist for treating the MELAS syndrome or mitochondrial dysfunction in other diseases. Many of the therapeutic strategies used have been adopted as the result of isolated case reports or limited clinical studies that have included a heterogeneous population of patients with the MELAS syndrome, other defects in oxidative phosphorylation or lactic acidosis due to disorders of pyruvate metabolism. Current approaches to the treatment of the MELAS syndrome are based on the use of antioxidants, respiratory chain substrates and cofactors in the form of vitamins; however, no consistent benefits have been observed with these treatments.

  19. Hippocampal mutant APP and amyloid beta-induced cognitive decline, dendritic spine loss, defective autophagy, mitophagy and mitochondrial abnormalities in a mouse model of Alzheimer's disease.

    PubMed

    Manczak, Maria; Kandimalla, Ramesh; Yin, Xiangling; Reddy, P Hemachandra

    2018-04-15

    The purpose of our study was to determine the toxic effects of hippocampal mutant APP and amyloid beta (Aβ) in 12-month-old APP transgenic mice. Using rotarod and Morris water maze tests, immunoblotting and immunofluorescence, Golgi-cox staining and transmission electron microscopy, we assessed cognitive behavior, protein levels of synaptic, autophagy, mitophagy, mitochondrial dynamics, biogenesis, dendritic protein MAP2 and quantified dendritic spines and mitochondrial number and length in 12-month-old APP mice that express Swedish mutation. Mitochondrial function was assessed by measuring the levels of hydrogen peroxide, lipid peroxidation, cytochrome c oxidase activity and mitochondrial ATP. Morris water maze and rotarod tests revealed that hippocampal learning and memory and motor learning and coordination were impaired in APP mice relative to wild-type (WT) mice. Increased levels of mitochondrial fission proteins, Drp1 and Fis1 and decreased levels of fusion (Mfn1, Mfn2 and Opa1) biogenesis (PGC1α, NRF1, NRF2 and TFAM), autophagy (ATG5 and LC3BI, LC3BII), mitophagy (PINK1 and TERT), synaptic (synaptophysin and PSD95) and dendritic (MAP2) proteins were found in 12-month-old APP mice relative to age-matched non-transgenic WT mice. Golgi-cox staining analysis revealed that dendritic spines are significantly reduced. Transmission electron microscopy revealed significantly increased mitochondrial numbers and reduced mitochondrial length in APP mice. These findings suggest that hippocampal accumulation of mutant APP and Aβ is responsible for abnormal mitochondrial dynamics and defective biogenesis, reduced MAP2, autophagy, mitophagy and synaptic proteins and reduced dendritic spines and hippocampal-based learning and memory impairments, and mitochondrial structural and functional changes in 12-month-old APP mice.

  20. Potential efficacy of mitochondrial genes for animal DNA barcoding: a case study using eutherian mammals.

    PubMed

    Luo, Arong; Zhang, Aibing; Ho, Simon Yw; Xu, Weijun; Zhang, Yanzhou; Shi, Weifeng; Cameron, Stephen L; Zhu, Chaodong

    2011-01-28

    A well-informed choice of genetic locus is central to the efficacy of DNA barcoding. Current DNA barcoding in animals involves the use of the 5' half of the mitochondrial cytochrome oxidase 1 gene (CO1) to diagnose and delimit species. However, there is no compelling a priori reason for the exclusive focus on this region, and it has been shown that it performs poorly for certain animal groups. To explore alternative mitochondrial barcoding regions, we compared the efficacy of the universal CO1 barcoding region with the other mitochondrial protein-coding genes in eutherian mammals. Four criteria were used for this comparison: the number of recovered species, sequence variability within and between species, resolution to taxonomic levels above that of species, and the degree of mutational saturation. Based on 1,179 mitochondrial genomes of eutherians, we found that the universal CO1 barcoding region is a good representative of mitochondrial genes as a whole because the high species-recovery rate (> 90%) was similar to that of other mitochondrial genes, and there were no significant differences in intra- or interspecific variability among genes. However, an overlap between intra- and interspecific variability was still problematic for all mitochondrial genes. Our results also demonstrated that any choice of mitochondrial gene for DNA barcoding failed to offer significant resolution at higher taxonomic levels. We suggest that the CO1 barcoding region, the universal DNA barcode, is preferred among the mitochondrial protein-coding genes as a molecular diagnostic at least for eutherian species identification. Nevertheless, DNA barcoding with this marker may still be problematic for certain eutherian taxa and our approach can be used to test potential barcoding loci for such groups.

  1. Potential efficacy of mitochondrial genes for animal DNA barcoding: a case study using eutherian mammals

    PubMed Central

    2011-01-01

    Background A well-informed choice of genetic locus is central to the efficacy of DNA barcoding. Current DNA barcoding in animals involves the use of the 5' half of the mitochondrial cytochrome oxidase 1 gene (CO1) to diagnose and delimit species. However, there is no compelling a priori reason for the exclusive focus on this region, and it has been shown that it performs poorly for certain animal groups. To explore alternative mitochondrial barcoding regions, we compared the efficacy of the universal CO1 barcoding region with the other mitochondrial protein-coding genes in eutherian mammals. Four criteria were used for this comparison: the number of recovered species, sequence variability within and between species, resolution to taxonomic levels above that of species, and the degree of mutational saturation. Results Based on 1,179 mitochondrial genomes of eutherians, we found that the universal CO1 barcoding region is a good representative of mitochondrial genes as a whole because the high species-recovery rate (> 90%) was similar to that of other mitochondrial genes, and there were no significant differences in intra- or interspecific variability among genes. However, an overlap between intra- and interspecific variability was still problematic for all mitochondrial genes. Our results also demonstrated that any choice of mitochondrial gene for DNA barcoding failed to offer significant resolution at higher taxonomic levels. Conclusions We suggest that the CO1 barcoding region, the universal DNA barcode, is preferred among the mitochondrial protein-coding genes as a molecular diagnostic at least for eutherian species identification. Nevertheless, DNA barcoding with this marker may still be problematic for certain eutherian taxa and our approach can be used to test potential barcoding loci for such groups. PMID:21276253

  2. Altered mitochondrial acetylation profiles in a kainic acid model of temporal lobe epilepsy.

    PubMed

    Gano, Lindsey B; Liang, Li-Ping; Ryan, Kristen; Michel, Cole R; Gomez, Joe; Vassilopoulos, Athanassios; Reisdorph, Nichole; Fritz, Kristofer S; Patel, Manisha

    2018-08-01

    Impaired bioenergetics and oxidative damage in the mitochondria are implicated in the etiology of temporal lobe epilepsy, and hyperacetylation of mitochondrial proteins has recently emerged as a critical negative regulator of mitochondrial functions. However, the roles of mitochondrial acetylation and activity of the primary mitochondrial deacetylase, SIRT3, have not been explored in acquired epilepsy. We investigated changes in mitochondrial acetylation and SIRT3 activity in the development of chronic epilepsy in the kainic acid rat model of TLE. Hippocampal measurements were made at 48 h, 1 week and 12 weeks corresponding to the acute, latent and chronic stages of epileptogenesis. Assessment of hippocampal bioenergetics demonstrated a ≥ 27% decrease in the ATP/ADP ratio at all phases of epileptogenesis (p < 0.05), whereas cellular NAD+ levels were decreased by ≥ 41% in the acute and latent time points (p < 0.05), but not in chronically epileptic rats. In spontaneously epileptic rats, we found decreased protein expression of SIRT3 and a 60% increase in global mitochondrial acetylation, as well as enhanced acetylation of the known SIRT3 substrates MnSOD, Ndufa9 of Complex I and IDH2 (all p < 0.05), suggesting SIRT3 dysfunction in chronic epilepsy. Mass spectrometry-based acetylomics investigation of hippocampal mitochondria demonstrated a 79% increase in unique acetylated proteins from rats in the chronic phase vs. controls. Pathway analysis identified numerous mitochondrial bioenergetic pathways affected by mitochondrial acetylation. These results suggest SIRT3 dysfunction and aberrant protein acetylation may contribute to mitochondrial dysfunction in chronic epilepsy. Copyright © 2018 Elsevier Inc. All rights reserved.

  3. DNA Methylation-a Potential Source of Mitochondria DNA Base Mismatch in the Development of Diabetic Retinopathy.

    PubMed

    Mishra, Manish; Kowluru, Renu A

    2018-04-21

    In the development of diabetic retinopathy, retinal mitochondria are dysfunctional, and mitochondrial DNA (mtDNA) is damaged with increased base mismatches and hypermethylated cytosines. DNA methylation is also a potential source of mutation, and in diabetes, the noncoding region, the displacement loop (D-loop), experiences more methylation and base mismatches than other regions of the mtDNA. Our aim was to investigate a possible crosstalk between mtDNA methylation and base mismatches in the development of diabetic retinopathy. The effect of inhibition of Dnmts (by 5-aza-2'-deoxycytidine or Dnmt1-siRNA) on glucose-induced mtDNA base mismatches was investigated in human retinal endothelial cells by surveyor endonuclease digestion and validated by Sanger sequencing. The role of deamination factors on increased base mismatches was determined in the cells genetically modulated for mitochondrial superoxide dismutase (Sod2) or cytidine-deaminase (APOBEC3A). The results were confirmed in an in vivo model using retinal microvasculature from diabetic mice overexpressing Sod2. Inhibition of DNA methylation, or regulation of cytosine deamination, significantly inhibited an increase in base mismatches at the D-loop and prevented mitochondrial dysfunction. Overexpression of Sod2 in mice also prevented diabetes-induced D-loop hypermethylation and increase in base mismatches. The crosstalk between DNA methylation and base mismatches continued even after termination of hyperglycemia, suggesting its role in the metabolic memory phenomenon associated with the progression of diabetic retinopathy. Inhibition of DNA methylation limits the availability of methylated cytosine for deamination, suggesting a crosstalk between DNA methylation and base mismatches. Thus, regulation of DNA methylation, or its deamination, should impede the development of diabetic retinopathy by preventing formation of base mismatches and mitochondrial dysfunction.

  4. Cigarette price minimization strategies in the United States: price reductions and responsiveness to excise taxes.

    PubMed

    Pesko, Michael F; Licht, Andrea S; Kruger, Judy M

    2013-11-01

    Because cigarette price minimization strategies can provide substantial price reductions for individuals continuing their usual smoking behaviors following federal and state cigarette excise tax increases, we examined independent price reductions compensating for overlapping strategies. The possible availability of larger independent price reduction opportunities in states with higher cigarette excise taxes is explored. Regression analysis used the 2006-2007 Tobacco Use Supplement of the Current Population Survey (N = 26,826) to explore national and state-level independent price reductions that smokers obtained from purchasing cigarettes (a) by the carton, (b) in a state with a lower average after-tax cigarette price than in the state of residence, and (c) in "some other way," including online or in another country. Price reductions from these strategies are estimated jointly to compensate for known overlapping strategies. Each strategy reduced the price of cigarettes by 64-94 cents per pack. These price reductions are 9%-22% lower than conventionally estimated results not compensating for overlapping strategies. Price reductions vary substantially by state. Following cigarette excise tax increases, the price reduction available from purchasing cigarettes by cartons increased. Additionally, the price reduction from purchasing cigarettes in a state with a lower average after-tax cigarette price is positively associated with state cigarette excise tax rates and border state cigarette excise tax rate differentials. Findings from this large, nationally representative study of cigarette smokers suggest that price reductions are larger in states with higher cigarette excise taxes, and increase as cigarette excise taxes rise.

  5. The complete mitochondrial genome of the Feral Rock Pigeon (Columba livia breed feral).

    PubMed

    Li, Chun-Hong; Liu, Fang; Wang, Li

    2014-10-01

    Abstract In the present work, we report the complete mitochondrial genome sequence of feral rock pigeon for the first time. The total length of the mitogenome was 17,239 bp with the base composition of 30.3% for A, 24.0% for T, 31.9% for C, and 13.8% for G and an A-T (54.3 %)-rich feature was detected. It harbored 13 protein-coding genes, 2 ribosomal RNA genes, 22 transfer RNA genes and 1 non-coding control region (D-loop region). The arrangement of all genes was identical to the typical mitochondrial genomes of pigeon. The complete mitochondrial genome sequence of feral rock pigeon would serve as an important data set of the germplasm resources for further study.

  6. The complete mitochondrial genome of Glaucidium brodiei (Strigiformes: Strigidae).

    PubMed

    Sun, Xiaonan; Zhou, Wenliang; Sun, Zhonglou; Qian, Lifu; Zhang, Yanan; Pan, Tao; Zhang, Baowei

    2016-07-01

    In this paper, the complete mitochondrial genome of Glaucidium brodiei is sequenced and reported for the first time. The mitochondrial genome is a circular molecule of 17,318 bp in length, consisting of 13 protein-coding genes (PCGs), 22 transfer RNA genes, 2 ribosomal RNA genes and a control region. Overall base composition of the complete mitochondrial DNA is A (29.9%), G (14.1%), C (32.1%) and T (23.9%), the percentage of A and T (53.8%) is slightly higher than G and C (46.2%). All the genes in G. brodiei are distributed on the H-strand, except for the ND6 subunit gene and nine tRNA genes, which are encoded on the L-strand.

  7. Transposon based functional characterization of soybean genes

    USDA-ARS?s Scientific Manuscript database

    Type II transposable elements that use cut and paste mechanism for jumping from one genomic region to another is ideal in tagging and cloning genes. Precise excision from an insertion site in a mutant gene leads to regaining the wild-type function. Thus, function of a gene can be established based o...

  8. Failure of Lactoperoxidase to Iodinate Specifically the Plasma Membrane of Cucurbita Tissue Segments

    PubMed Central

    Quail, Peter H.; Browning, Alan

    1977-01-01

    An attempt has been made to use lactoperoxidase-catalyzed iodination of excised Cucurbita hypocotyl hooks to monitor the distribution of plasma membrane fragments relative to that of phytochrome in particulate fractions from this tissue. Upon fractionation, the iodinated tissue yields a 20,000g pellet which contains 58% of the trichloroacetic acid-precipitable 125I at a specific radioactivity 12 times that of the proteins in the supernatant. On sucrose gradients, the labeled fraction has a mean isopycnic density of 1.15 g · cm−3. The distribution profile is distinct from that of the total particulate protein and does not coincide with either mitochondrial or endoplasmic reticulum markers. These observations satisfy operational criteria commonly accepted in other systems as indices of selective labeling of the cell surface. The sucrose gradient profiles of the phytochrome and 125I in the 20,000g pellets are noncoincident. In the absence of more direct evidence, this is readily interpreted to indicate a lack of association of the pigment with the plasma membrane. Autoradiographic analysis indicates, however, that the 125I is almost exclusively associated with an amorphous film (possibly phloem-exudate protein) overlying the cut cells at the point of prelabeling excision and along the outer physical surface of the hypocotyl cuticle. No evidence of plasma membrane labeling is apparent. The observed membrane-like behavior of the iodinated material upon cell fractionation is attributed to the preferential posthomogenization association of this material with a particular membrane fraction(s). These data indicate that in addition to the well recognized potential for spurious labeling of the internal cytoplasmic proteins of leaky cells, a further source of ambiguity in surface-labeling experiments should be considered. That is, the potential for labeling extracellular proteins of nonplasma membrane origin but with a capacity to become associated with membranes upon homogenization. Images PMID:16659933

  9. 26 CFR 48.0-1 - Introduction.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... MANUFACTURERS AND RETAILERS EXCISE TAXES Introduction § 48.0-1 Introduction. The regulations in this part 48 are designated “Manufacturers and Retailers Excise Tax Regulations.” The regulations relate to the excise taxes... automobiles, highway-type tires, taxable fuel, aviation fuel, coal, certain vaccines, and sporting goods...

  10. Positioning the red deer (Cervus elaphus) hunted by the Tyrolean Iceman into a mitochondrial DNA phylogeny.

    PubMed

    Olivieri, Cristina; Marota, Isolina; Rizzi, Ermanno; Ermini, Luca; Fusco, Letizia; Pietrelli, Alessandro; De Bellis, Gianluca; Rollo, Franco; Luciani, Stefania

    2014-01-01

    In the last years several phylogeographic studies of both extant and extinct red deer populations have been conducted. Three distinct mitochondrial lineages (western, eastern and North-African/Sardinian) have been identified reflecting different glacial refugia and postglacial recolonisation processes. However, little is known about the genetics of the Alpine populations and no mitochondrial DNA sequences from Alpine archaeological specimens are available. Here we provide the first mitochondrial sequences of an Alpine Copper Age Cervus elaphus. DNA was extracted from hair shafts which were part of the remains of the clothes of the glacier mummy known as the Tyrolean Iceman or Ötzi (5,350-5,100 years before present). A 2,297 base pairs long fragment was sequenced using a mixed sequencing procedure based on PCR amplifications and 454 sequencing of pooled amplification products. We analyzed the phylogenetic relationships of the Alpine Copper Age red deer's haplotype with haplotypes of modern and ancient European red deer. The phylogenetic analyses showed that the haplotype of the Alpine Copper Age red deer falls within the western European mitochondrial lineage in contrast with the current populations from the Italian Alps belonging to the eastern lineage. We also discussed the phylogenetic relationships of the Alpine Copper Age red deer with the populations from Mesola Wood (northern Italy) and Sardinia.

  11. Teaching Mitochondrial Genetics & Disease: A GENA Project Curriculum Intervention

    ERIC Educational Resources Information Center

    Reardon, Ryan A.; Sharer, J. Daniel

    2012-01-01

    This report describes a novel, inquiry-based learning plan developed as part of the GENA educational outreach project. Focusing on mitochondrial genetics and disease, this interactive approach utilizes pedigree analysis and laboratory techniques to address non-Mendelian inheritance. The plan can be modified to fit a variety of educational goals…

  12. Studies on PGBx A Polymeric Derivative of Prostaglandin B1. I. Synthesis and Purification of PGBx.

    DTIC Science & Technology

    1978-10-30

    synthesis and purification of PGB sub x via PGB sub 1, starting with azelaic acid . In addition, details of the in vitro mitochondrial assay are reported...Purified PGB sub x exhibiting maximal reactivation of mitochondrial phosphorylation has a mean molecular weight of 2350. The yield of PGB sub x based on azelaic acid was 4% and based on PGB sub 1 was 25%. (Author)

  13. A new method for locating changes in a tree reveals distinct nucleotide polymorphism vs. divergence patterns in mouse mitochondrial control region.

    PubMed

    Galtier, N; Boursot, P

    2000-03-01

    A new, model-based method was devised to locate nucleotide changes in a given phylogenetic tree. For each site, the posterior probability of any possible change in each branch of the tree is computed. This probabilistic method is a valuable alternative to the maximum parsimony method when base composition is skewed (i.e., different from 25% A, 25% C, 25% G, 25% T): computer simulations showed that parsimony misses more rare --> common than common --> rare changes, resulting in biased inferred change matrices, whereas the new method appeared unbiased. The probabilistic method was applied to the analysis of the mutation and substitution processes in the mitochondrial control region of mouse. Distinct change patterns were found at the polymorphism (within species) and divergence (between species) levels, rejecting the hypothesis of a neutral evolution of base composition in mitochondrial DNA.

  14. Mitochondrial DNA as a non-invasive biomarker: Accurate quantification using real time quantitative PCR without co-amplification of pseudogenes and dilution bias

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Malik, Afshan N., E-mail: afshan.malik@kcl.ac.uk; Shahni, Rojeen; Rodriguez-de-Ledesma, Ana

    2011-08-19

    Highlights: {yields} Mitochondrial dysfunction is central to many diseases of oxidative stress. {yields} 95% of the mitochondrial genome is duplicated in the nuclear genome. {yields} Dilution of untreated genomic DNA leads to dilution bias. {yields} Unique primers and template pretreatment are needed to accurately measure mitochondrial DNA content. -- Abstract: Circulating mitochondrial DNA (MtDNA) is a potential non-invasive biomarker of cellular mitochondrial dysfunction, the latter known to be central to a wide range of human diseases. Changes in MtDNA are usually determined by quantification of MtDNA relative to nuclear DNA (Mt/N) using real time quantitative PCR. We propose that themore » methodology for measuring Mt/N needs to be improved and we have identified that current methods have at least one of the following three problems: (1) As much of the mitochondrial genome is duplicated in the nuclear genome, many commonly used MtDNA primers co-amplify homologous pseudogenes found in the nuclear genome; (2) use of regions from genes such as {beta}-actin and 18S rRNA which are repetitive and/or highly variable for qPCR of the nuclear genome leads to errors; and (3) the size difference of mitochondrial and nuclear genomes cause a 'dilution bias' when template DNA is diluted. We describe a PCR-based method using unique regions in the human mitochondrial genome not duplicated in the nuclear genome; unique single copy region in the nuclear genome and template treatment to remove dilution bias, to accurately quantify MtDNA from human samples.« less

  15. The Complete Moss Mitochondrial Genome in the Angiosperm Amborella Is a Chimera Derived from Two Moss Whole-Genome Transfers.

    PubMed

    Taylor, Z Nathan; Rice, Danny W; Palmer, Jeffrey D

    2015-01-01

    Sequencing of the 4-Mb mitochondrial genome of the angiosperm Amborella trichopoda has shown that it contains unprecedented amounts of foreign mitochondrial DNA, including four blocks of sequences that together correspond almost perfectly to one entire moss mitochondrial genome. This implies whole-genome transfer from a single moss donor but conflicts with phylogenetic results from an earlier, PCR-based study that suggested three different moss donors to Amborella. To resolve this conflict, we conducted an expanded set of phylogenetic analyses with respect to both moss lineages and mitochondrial loci. The moss DNA in Amborella was consistently placed in either of two positions, depending on the locus analyzed, as sister to the Ptychomniales or within the Hookeriales. This agrees with two of the three previously suggested donors, whereas the third is no longer supported. These results, combined with synteny analyses and other considerations, lead us to favor a model involving two successive moss-to-Amborella whole-genome transfers, followed by recombination that produced a single intact and chimeric moss mitochondrial genome integrated in the Amborella mitochondrial genome. Eight subsequent recombination events account for the state of fragmentation, rearrangement, duplication, and deletion of this chimeric moss mitochondrial genome as it currently exists in Amborella. Five of these events are associated with short-to-intermediate sized repeats. Two of the five probably occurred by reciprocal homologous recombination, whereas the other three probably occurred in a non-reciprocal manner via microhomology-mediated break-induced replication (MMBIR). These findings reinforce and extend recent evidence for an important role of MMBIR in plant mitochondrial DNA evolution.

  16. [Pearson syndrome. Case report].

    PubMed

    Cammarata-Scalisi, Francisco; López-Gallardo, Ester; Emperador, Sonia; Ruiz-Pesini, Eduardo; Da Silva, Gloria; Camacho, Nolis; Montoya, Julio

    2011-09-01

    Among the etiologies of anemia in the infancy, the mitochondrial cytopathies are infrequent. Pearson syndrome is diagnosed principally during the initial stages of life and it is characterized by refractory sideroblastic anemia with vacuolization of marrow progenitor cells, exocrine pancreatic dysfunction and variable neurologic, hepatic, renal and endocrine failures. We report the case of a 14 month-old girl evaluated by a multicentric study, with clinic and molecular diagnosis of Pearson syndrome, with the 4,977-base pair common deletion of mitochondrial DNA. This entity has been associated to diverse phenotypes within the broad clinical spectrum of mitochondrial disease.

  17. Novel roles for actin in mitochondrial fission

    PubMed Central

    Hatch, Anna L.; Gurel, Pinar S.; Higgs, Henry N.

    2014-01-01

    ABSTRACT Mitochondrial dynamics, including fusion, fission and translocation, are crucial to cellular homeostasis, with roles in cellular polarity, stress response and apoptosis. Mitochondrial fission has received particular attention, owing to links with several neurodegenerative diseases. A central player in fission is the cytoplasmic dynamin-related GTPase Drp1, which oligomerizes at the fission site and hydrolyzes GTP to drive membrane ingression. Drp1 recruitment to the outer mitochondrial membrane (OMM) is a key regulatory event, which appears to require a pre-constriction step in which the endoplasmic reticulum (ER) and mitochondrion interact extensively, a process termed ERMD (ER-associated mitochondrial division). It is unclear how ER–mitochondrial contact generates the force required for pre-constriction or why pre-constriction leads to Drp1 recruitment. Recent results, however, show that ERMD might be an actin-based process in mammals that requires the ER-associated formin INF2 upstream of Drp1, and that myosin II and other actin-binding proteins might be involved. In this Commentary, we present a mechanistic model for mitochondrial fission in which actin and myosin contribute in two ways; firstly, by supplying the force for pre-constriction and secondly, by serving as a coincidence detector for Drp1 binding. In addition, we discuss the possibility that multiple fission mechanisms exist in mammals. PMID:25217628

  18. Intramitochondrial Ascorbic Acid Enhances the Formation of Mitochondrial Superoxide Induced by Peroxynitrite via a Ca2+-Independent Mechanism

    PubMed Central

    Guidarelli, Andrea; Cerioni, Liana; Fiorani, Mara; Cantoni, Orazio

    2017-01-01

    Exposure of U937 cells to peroxynitrite promotes mitochondrial superoxide formation via a mechanism dependent on both inhibition of complex III and increased mitochondrial Ca2+ accumulation. Otherwise inactive concentrations of the oxidant produced the same maximal effects in the presence of either complex III inhibitors or agents mobilizing Ca2+ from the ryanodine receptor and enforcing its mitochondrial accumulation. l-Ascorbic acid (AA) produced similar enhancing effects in terms of superoxide formation, DNA strand scission and cytotoxicity. However, AA failed to enhance the intra-mitochondrial concentration of Ca2+ and the effects observed in cells supplemented with peroxinitrite, while insensitive to manipulations preventing the mobilization of Ca2+, or the mitochondrial accumulation of the cation, were also detected in human monocytes and macrophages, which do not express the ryanodine receptor. In all these cell types, mitochondrial permeability transition-dependent toxicity was detected in cells exposed to AA/peroxynitrite and, based on the above criteria, these responses also appeared Ca2+-independent. The enhancing effects of AA are therefore similar to those mediated by bona fide complex III inhibitors, although the vitamin failed to directly inhibit complex III, and in fact enhanced its sensitivity to the inhibitory effects of peroxynitrite. PMID:28767071

  19. 26 CFR 53.4965-7 - Taxes on prohibited tax shelter transactions.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 26 Internal Revenue 17 2011-04-01 2011-04-01 false Taxes on prohibited tax shelter transactions... (CONTINUED) MISCELLANEOUS EXCISE TAXES (CONTINUED) FOUNDATION AND SIMILAR EXCISE TAXES Second Tier Excise Taxes § 53.4965-7 Taxes on prohibited tax shelter transactions. (a) Entity-level taxes—(1) In general...

  20. 27 CFR 70.412 - Excise taxes.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 2 2011-04-01 2011-04-01 false Excise taxes. 70.412 Section 70.412 Alcohol, Tobacco Products and Firearms ALCOHOL AND TOBACCO TAX AND TRADE BUREAU, DEPARTMENT... Beer § 70.412 Excise taxes. (a) Collection. Taxes on distilled spirits, wines, and beer are paid by...

  1. Alternative Fuels Data Center

    Science.gov Websites

    Idle Reduction Equipment Excise Tax Exemption Qualified on-board idle reduction devices and advanced insulation are exempt from the federal excise tax imposed on the retail sale of heavy-duty highway ) SmartWay Technology Program Federal Excise Tax Exemption website. The exemption applies to equipment that

  2. A Study to Determine the Best Method of Caring for Certain Short-Stay Surgical Patients at Reynolds Army Community Hospital

    DTIC Science & Technology

    1988-09-01

    Perineoplasty Vaginal cyst, cautery Vaginal web, excision Surgical Patients 95 ORTHOPEDIC Arthrodesis of phalanges Arthroscopy Bone biopsy Bunionectomy...Manipulation of shoulder, knee, or hip Mass excision with scar revision Meniscectomy (if done through arthroscopy ) Metatarsal head, excision unilateral

  3. 76 FR 46677 - Indoor Tanning Services; Cosmetic Services Excise Taxes

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-08-03

    ... 1545-BJ40 Indoor Tanning Services; Cosmetic Services Excise Taxes AGENCY: Internal Revenue Service (IRS... of public hearing on proposed rulemaking providing guidance on the indoor tanning services excise tax... indoor tanning services. DATES: The public hearing is being held on Tuesday, October 11, 2011, at 10 a.m...

  4. Excision of an enlarging vaginal epidermal inclusion cyst during pregnancy: a case report.

    PubMed

    Pereira, Nigel; Guilfoil, Daniel S

    2012-07-01

    The study aimed to report the case of a patient with an enlarging and symptomatic epidermal inclusion cyst during pregnancy that required surgical excision. This study was a case report of a 28-year-old woman (gravida 8, para 5, aborta 2) at a gestational age of 18 weeks 5 days who reported a tender vaginal mass that had grown larger for more than a week. An enlarging symptomatic cystic mass was surgically excised. Histopathologic findings of the excised mass were consistent with an epidermal inclusion cyst with surrounding moderate chronic inflammation and cyst rupture. The patient's symptoms resolved completely by her postoperative visit. Although most epithelial inclusion cysts are asymptomatic and can be managed expectantly, cysts that enlarge or become symptomatic should be excised surgically.

  5. [Anesthetic management of the ex-utero intrapartum treatment (EXIT) procedure for giant epignathus and of the tumor excision].

    PubMed

    Aoyama, Tadashi; Nakata, Jun; Sakakibara, Michiko; Takahashi, Tetsuyuki; Hara, Masato; Yamaguchi, Shinya; Maseki, Megumi; Teramoto, Yuzo

    2008-10-01

    We report an anesthetic management of the ex-utero intrapartum treatment (EXIT) procedure performed in a fetus with giant epignathus due to laryngeal atresia at 28 weeks' gestation. Anesthesia of the mother was induced with thiamylal and vecuronium, and maintained with 4% sevoflurane in 100% oxygen before delivery. Sevoflurane provided excellent uterine relaxation. To maintain the arterial pressure, the patient received acetate Ringer and ephedrine 4mg. After hysterotomy, a pulse oxymeter and an ultrasound transducer were applied to monitor fetal Sp(O2) and heart rate. No anesthetic agents were injected into the fetus in addition to transplacental sevoflurane. Tracheostomy was performed on the fetus by pediatric surgeons on placental support. The uterine tone improved soon after discontinuing sevoflurane, intramyometrial injection of oxytocin and ergometrine infusion after delivery. Excision of the tumor was performed on day 2 of life. Pediatric surgeons tried to excise it totally, but it was hard to differentiate the tumor from the normal tissue, and partial excision was performed. After the excision, the neonate weighed 944 g and excised specimen weighed 253 g. Though the neonate was immature and the tumor was very large, no perioperative complications were associated with EXIT and the tumor excision.

  6. DNA Damage Levels Determine Cyclobutyl Pyrimidine Dimer Repair Mechanisms in Alfalfa Seedlings.

    PubMed Central

    Quaite, F. E.; Takayanagi, S.; Ruffini, J.; Sutherland, J. C.; Sutherland, B. M.

    1994-01-01

    Ultraviolet radiation in sunlight damages DNA in plants, but little is understood about the types, lesion capacity, and coordination of repair pathways. We challenged intact alfalfa seedlings with UV doses that induced different initial levels of cyclobutyl pyrimidine dimers and measured repair by excision and photoreactivation. By using alkaline gel electrophoresis of nonradioactive DNAs treated with a cyclobutyl pyrimidine dimer-specific UV endonuclease, we quantitated ethidium-stained DNA by electronic imaging and calculated lesion frequencies from the number average molecular lengths. At low initial dimer frequencies (less than ~30 dimers per million bases), the seedlings used only photoreactivation to repair dimers; excision repair was not significant. At higher damage levels, both excision and photorepair contributed significantly. This strategy would allow plants with low damage levels to use error-free repair requiring only an external light energy source, whereas seedlings subjected to higher damage frequencies could call on additional repair processes requiring cellular energy. Characterization of repair in plants thus requires an investigation of a range of conditions, including the level of initial damage. PMID:12244228

  7. In-Office Excision En Masse of a Vocal Process Granuloma Using the Potassium-Titanyl-Phosphate Laser.

    PubMed

    Mascarella, Marco A; Young, Jonathan

    2016-01-01

    In-office laryngeal surgery is taking on a more commonplace role in the treatment of laryngeal disorders. The potassium-titanyl-phosphate (KTP) laser has been a resourceful adjunct to the management of patients with mucosal lesions of the vocal cords. However, a paucity of data exists for its use in postintubation granulomas treated in-office. A 43-year-old female presented with voice hoarseness and found to have a large obstructing postintubation granuloma which was treated by in-office KTP laser and en masse excision. We report the successful case of a patient receiving in-office treatment for a large vocal process granuloma using the KTP laser with en masse excision. The combined use of the KTP laser and forceps in-office can be valuable to the surgical management of vocal process granulomas, given their numerous recurrences. New avenues in office-based surgical management of laryngeal disorders can offer accessibility and decreased morbidity to patients. Copyright © 2016 The Voice Foundation. Published by Elsevier Inc. All rights reserved.

  8. Detection of Damaged DNA Bases by DNA Glycosylase Enzymes†

    PubMed Central

    Friedman, Joshua I.; Stivers, James T.

    2010-01-01

    A fundamental and shared process in all forms of life is the use of DNA glycosylase enzymes to excise rare damaged bases from genomic DNA. Without such enzymes, the highly-ordered primary sequences of genes would rapidly deteriorate. Recent structural and biophysical studies are beginning to reveal a fascinating multistep mechanism for damaged base detection that begins with short-range sliding of the glycosylase along the DNA chain in a distinct conformation we refer to as the search complex (SC). Sliding is frequently punctuated by the formation of a transient “interrogation” complex (IC) where the enzyme extrahelically inspects both normal and damaged bases in an exosite pocket that is distant from the active site. When normal bases are presented in the exosite, the IC rapidly collapses back to the SC, while a damaged base will efficiently partition forward into the active site to form the catalytically competent excision complex (EC). Here we review the unique problems associated with enzymatic detection of rare damaged DNA bases in the genome, and emphasize how each complex must have specific dynamic properties that are tuned to optimize the rate and efficiency of damage site location. PMID:20469926

  9. Rapid frequency‐dependent changes in free mitochondrial calcium concentration in rat cardiac myocytes

    PubMed Central

    Wüst, Rob C. I.; Helmes, Michiel; Martin, Jody L.; van der Wardt, Thomas J. T.; Musters, René J. P.; van der Velden, Jolanda

    2017-01-01

    Key points Calcium ions regulate mitochondrial ATP production and contractile activity and thus play a pivotal role in matching energy supply and demand in cardiac muscle.The magnitude and kinetics of the changes in free mitochondrial calcium concentration in cardiac myocytes are largely unknown.Rapid stimulation frequency‐dependent increases but relatively slow decreases in free mitochondrial calcium concentration were observed in rat cardiac myocytes. This asymmetry caused a rise in the mitochondrial calcium concentration with stimulation frequency.These results provide insight into the mechanisms of mitochondrial calcium uptake and release that are important in healthy and diseased myocardium. Abstract Calcium ions regulate mitochondrial ATP production and contractile activity and thus play a pivotal role in matching energy supply and demand in cardiac muscle. Little is known about the magnitude and kinetics of the changes in free mitochondrial calcium concentration in cardiomyocytes. Using adenoviral infection, a ratiometric mitochondrially targeted Förster resonance energy transfer (FRET)‐based calcium indicator (4mtD3cpv, MitoCam) was expressed in cultured adult rat cardiomyocytes and the free mitochondrial calcium concentration ([Ca2+]m) was measured at different stimulation frequencies (0.1–4 Hz) and external calcium concentrations (1.8–3.6 mm) at 37°C. Cytosolic calcium concentrations were assessed under the same experimental conditions in separate experiments using Fura‐4AM. The increases in [Ca2+]m during electrical stimulation at 0.1 Hz were rapid (rise time = 49 ± 2 ms), while the decreases in [Ca2+]m occurred more slowly (decay half time = 1.17 ± 0.07 s). Model calculations confirmed that this asymmetry caused the rise in [Ca2+]m during diastole observed at elevated stimulation frequencies. Inhibition of the mitochondrial sodium–calcium exchanger (mNCE) resulted in a rise in [Ca2+]m at baseline and, paradoxically, in an acceleration of Ca2+ release. In conclusion: rapid increases in [Ca2+]m allow for fast adjustment of mitochondrial ATP production to increases in myocardial demand on a beat‐to‐beat basis and mitochondrial calcium release depends on mNCE activity and mitochondrial calcium buffering. PMID:28028811

  10. Cisplatin impairs rat liver mitochondrial functions by inducing changes on membrane ion permeability: prevention by thiol group protecting agents.

    PubMed

    Custódio, José B A; Cardoso, Carla M P; Santos, Maria S; Almeida, Leonor M; Vicente, Joaquim A F; Fernandes, Maria A S

    2009-05-02

    Cisplatin (CisPt) is the most important platinum anticancer drug widely used in the treatment of head, neck, ovarian and testicular cancers. However, the mechanisms by which CisPt induces cytotoxicity, namely hepatotoxicity, are not completely understood. The goal of this study was to investigate the influence of CisPt on rat liver mitochondrial functions (Ca(2+)-induced mitochondrial permeability transition (MPT), mitochondrial bioenergetics, and mitochondrial oxidative stress) to better understand the mechanism underlying its hepatotoxicity. The effect of thiol group protecting agents and some antioxidants against CisPt-induced mitochondrial damage was also investigated. Treatment of rat liver mitochondria with CisPt (20nmol/mg protein) induced Ca(2+)-dependent mitochondrial swelling, depolarization of membrane potential (DeltaPsi), Ca(2+) release, and NAD(P)H fluorescence intensity decay. These effects were prevented by cyclosporine A (CyA), a potent and specific inhibitor of the MPT. In the concentration range of up to 40nmol/mg protein, CisPt slightly inhibited state 3 and stimulated state 2 and state 4 respiration rates using succinate as respiratory substrate. The respiratory indexes, respiratory control ratio (RCR) and ADP/O ratios, the DeltaPsi, and the ADP phosphorylation rate were also depressed. CisPt induced mitochondrial inner membrane permeabilization to protons (proton leak) but did not induce significant changes on mitochondrial H(2)O(2) generation. All the effects induced by CisPt on rat liver mitochondria were prevented by thiol group protecting agents namely, glutathione (GSH), dithiothreitol (DTT), N-acetyl-L-cysteine (NAC) and cysteine (CYS), whereas superoxide-dismutase (SOD), catalase (CAT) and ascorbate (ASC) were without effect. In conclusion, the anticancer drug CisPt: (1) increases the sensitivity of mitochondria to Ca(2+)-induced MPT; (2) interferes with mitochondrial bioenergetics by increasing mitochondrial inner membrane permeabilization to H(+); (3) does not significantly affect H(2)O(2) generation by mitochondria; (4) its mitochondrial damaging effects are protected by thiol group protecting agents. Based on these conclusions, it is possible to hypothesise that small changes on the redox-status of thiol groups, affecting membrane permeability to cations (Ca(2+) and H(+)) underlie CisPt-induced liver mitochondrial damage, putatively responsible for its hepatotoxicity. Therefore, we propose that CisPt-induced mitochondrial damage and consequent hepatotoxicity could be prevented by using thiol group protecting agents as therapeutic adjuvants.

  11. Developing an in silico model of the modulation of base excision repair using methoxyamine for more targeted cancer therapeutics.

    PubMed

    Gurkan-Cavusoglu, Evren; Avadhani, Sriya; Liu, Lili; Kinsella, Timothy J; Loparo, Kenneth A

    2013-04-01

    Base excision repair (BER) is a major DNA repair pathway involved in the processing of exogenous non-bulky base damages from certain classes of cancer chemotherapy drugs as well as ionising radiation (IR). Methoxyamine (MX) is a small molecule chemical inhibitor of BER that is shown to enhance chemotherapy and/or IR cytotoxicity in human cancers. In this study, the authors have analysed the inhibitory effect of MX on the BER pathway kinetics using a computational model of the repair pathway. The inhibitory effect of MX depends on the BER efficiency. The authors have generated variable efficiency groups using different sets of protein concentrations generated by Latin hypercube sampling, and they have clustered simulation results into high, medium and low efficiency repair groups. From analysis of the inhibitory effect of MX on each of the three groups, it is found that the inhibition is most effective for high efficiency BER, and least effective for low efficiency repair.

  12. Microbiological sampling of swine carcasses: a comparison of data obtained by swabbing with medical gauze and data collected routinely by excision at Swedish abattoirs.

    PubMed

    Lindblad, M

    2007-09-15

    Swab sample data from a 13-month microbiological baseline study of swine carcasses at Swedish abattoirs were combined with excision sample data collected routinely at five abattoirs. The aim was to compare the numbers of total aerobic counts, Enterobacteriaceae, and Escherichia coli, recovered by swabbing four carcass sites with gauze (total area 400 cm2) with those obtained by excision at equivalent sites (total area 20 cm2). The results are considered in relation to the process hygiene criteria that are stated in Commission Regulation (EC) No 2073/2005. These criteria apply only to destructive sampling of total aerobic counts and Enterobacteriaceae, but alternative sampling schemes, as well as alternative indicator organisms such as E. coli, are allowed if equivalent guarantees of food safety can be provided. Swab sampling resulted in higher mean log numbers of total aerobic counts at four of the five abattoirs, compared with excision, and lower or equal standard deviations at all abattoirs. The percentage of swab and excision samples positive for Enterobacteriaceae at the different abattoirs ranged from 68 to 100% and 15 to 24%, respectively. Similarly, the percentages of swab samples that were positive for E. coli were higher than the percentages of positive excision samples (range 52 to 84% and 3 to 14%, respectively). Due to the low percentage of positive excision results, the mean log numbers of Enterobacteriaceae and E. coli were only compared at two and one abattoirs, respectively, using log probability regression to substitute censored observations. Higher mean log numbers of Enterobacteriaceae were recovered by swabbing compared with excision at one abattoir, whereas the numbers of Enterobacteriaceae and E. coli did not differ significantly between sampling methods at one abattoir. This study suggests that the same process hygiene criteria as those stipulated for excision can be used for swabbing with gauze without compromising food safety. For monitoring of low numbers of Enterobacteriaceae and E. coli, like those found on swine carcasses at Swedish abattoirs, the results also show that swabbing of a relatively large area is superior to excision of a smaller area.

  13. Pathogenicity Island Cross Talk Mediated by Recombination Directionality Factors Facilitates Excision from the Chromosome.

    PubMed

    Carpenter, Megan R; Rozovsky, Sharon; Boyd, E Fidelma

    2015-12-14

    Pathogenicity islands (PAIs) are mobile integrated genetic elements (MIGEs) that contain a diverse range of virulence factors and are essential in the evolution of pathogenic bacteria. PAIs are widespread among bacteria and integrate into the host genome, commonly at a tRNA locus, via integrase-mediated site-specific recombination. The excision of PAIs is the first step in the horizontal transfer of these elements and is not well understood. In this study, we examined the role of recombination directionality factors (RDFs) and their relationship with integrases in the excision of two PAIs essential for Vibrio cholerae host colonization: Vibrio pathogenicity island 1 (VPI-1) and VPI-2. VPI-1 does not contain an RDF, which allowed us to answer the question of whether RDFs are an absolute requirement for excision. We found that an RDF was required for efficient excision of VPI-2 but not VPI-1 and that RDFs can induce excision of both islands. Expression data revealed that the RDFs act as transcriptional repressors to both VPI-1- and VPI-2-encoded integrases. We demonstrated that the RDFs Vibrio excision factor A (VefA) and VefB bind at the attachment sites (overlapping the int promoter region) of VPI-1 and VPI-2, thus supporting this mode of integrase repression. In addition, V. cholerae RDFs are promiscuous due to their dual functions of promoting excision of both VPI-1 and VPI-2 and acting as negative transcriptional regulators of the integrases. This is the first demonstration of cross talk between PAIs mediated via RDFs which reveals the complex interactions that occur between separately acquired MIGEs. Deciphering the mechanisms of pathogenicity island excision is necessary for understanding the evolution and spread of these elements to their nonpathogenic counterparts. Such mechanistic insight would assist in predicting the mobility of uncharacterized genetic elements. This study identified extensive RDF-mediated cross talk between two nonhomologous VPIs and demonstrated the dual functionality of RDF proteins: (i) inducing PAI excision and (ii) acting as transcriptional regulators. Findings from this study may be implicated in determining the mobilome contribution of other bacteria with multiple MIGEs. Copyright © 2016, American Society for Microbiology. All Rights Reserved.

  14. A case of hemangiopericytoma of the soft palate with articulate disorder and dysphagia

    PubMed Central

    Michi, Yasuyuki; Suzuki, Miho; Kurohara, Kazuto; Harada, Kiyoshi

    2013-01-01

    We report a case of hemangiopericytoma of the soft palate of 60-year-old patient, who noticed a mass of the soft palate and experienced difficulty in speaking. We found a pediculate, hard, elastic mass measuring 38 mm (cross-sectional diameter). Computed tomography (CT) scans and dynamic magnetic resonance imaging (MRI) confirmed irregularly shaped mass and revealed a heterogeneous internal composition, consistent with vascular tumors. We excised the tumor under general anesthesia. Histopathological diagnosis was based on positive immunoreactivity of CD99 and vimentin and weak, positive staining of CD34. Three and half years following tumor excision, there is no recurrence or metastasis. PMID:23703709

  15. Radial scars diagnosed on breast core biopsy: Frequency of atypia and carcinoma on excision and implications for management.

    PubMed

    Donaldson, Alana R; Sieck, Leah; Booth, Christine N; Calhoun, Benjamin C

    2016-12-01

    The risk of finding carcinoma in excisions following a core needle biopsy diagnosis of radial scar is not well defined and clinical management is variable. The aim of this study is to determine the frequency of high-risk lesions, ductal carcinoma in situ, and invasive carcinoma in excisions following a core biopsy diagnosis of radial scar. Dedicated breast pathologists and radiologists correlated the histologic and radiologic findings and categorized radial scars as the target lesion or an incidental finding. High-risk lesions were defined as atypical hyperplasia or classical lobular carcinoma in situ. Of the 79 radial scars identified over a 14-year period, 22 were associated with atypia or carcinoma in the core biopsy. Thirty-seven (37) of the 57 benign radial scars underwent excision with benign findings in 30 (81%), high-risk lesions in six (16%), and flat epithelial atypia in one (3%). There were no upgrades to carcinoma. One patient with a benign radial scar developed a 3-mm focus of intermediate-grade estrogen receptor-positive ductal carcinoma in situ in the same quadrant of the ipsilateral breast 72 months after excision. One patient with an incidental un-excised benign radial scar was diagnosed with ductal carcinoma in situ at a separate site of suspicious calcifications. In this series, none of the benign radial scars was upgraded to carcinoma. Radial scar was the targeted lesion in all cases with high-risk lesions on excision. Surgical excision may not be mandatory for patients with benign incidental radial scars on core biopsy. Copyright © 2016 Elsevier Ltd. All rights reserved.

  16. Histologic effects of a high-repetition pulsed Nd:YAG laser on intraoral soft tissue

    NASA Astrophysics Data System (ADS)

    White, Joel M.; Goodis, Harold E.; Yessik, Michael J.; Myers, Terry D.

    1995-05-01

    High-repetition rate, fiberoptic-delivered Nd:YAG lasers have increased oral soft tissue laser applications. This study focused on three parameters: the temperature rise occurring in deeper tissue during excision, the histology of thermal coagulation during excision of oral tissue, and effects of accidental exposure to adjacent hard tissue. Thermocouples were placed 5.0 +/- 0.5 mm in bone below fresh bovine gingiva and at the same depth in tongue; temperatures in the underlying tissue were measured during laser excision. An Nd:YAG laser with 100 microsecond(s) pulse duration was used to excise the tissue using a 200 or 300 micrometers diameter fiber in contact with the tissue. The soft tissue was excised using constant force and rate with laser powers of 1.5, 3, 5, and 10 W, and a variety of pulse rates. The tissue was bioprepared, sectioned and stained with hematoxylin and eosin. The width and depth of the tissue removed as well as lateral and deep thermal coagulation were measured in histologic sections with a measuring microscope (10x). Multifactor randomized ANOVA showed that probe diameter and repetition rates were not significant variables (p

  17. Factors associated with the number of lesions excised for each skin cancer: a study of primary care physicians in Queensland, Australia.

    PubMed

    Baade, Peter D; Youl, Philippa H; Janda, Monika; Whiteman, David C; Del Mar, Christopher B; Aitken, Joanne F

    2008-11-01

    To assess physician, patient, and skin lesion characteristics that affect the number of benign skin lesions excised by primary care physicians for each skin cancer. Prospective study collecting clinical, patient, and histopathologic details of excisions or biopsies of skin lesions by random samples of primary care physicians. Southeast Queensland involving traditional family medicine physicians (n = 104; response rate, 53.9%) and family medicine physicians working in 27 primary care skin cancer clinics (n = 50; response rate, 75.0%). Of 28 755 skin examinations recorded during the study, 11 403 skin lesions were excised or biopsied; 97.5% of the excised lesions had clinical and histologic diagnoses recorded. Number of lesions needed to excise or biopsy (NNE) for 1 melanoma (pigmented lesions only) and NNE for 1 nonmelanoma skin cancer (nonpigmented lesions only). The NNE for nonpigmented lesions (n = 8139) was 1.5 (95% confidence interval, 1.4-1.6) and for pigmented lesions (n = 2977) was 19.6 (16.2-22.9). The NNE estimates were up to 8 times lower if the physician thought the lesion was likely to be malignant and up to 2.5 times higher if there was strong patient pressure to excise. The NNE estimates varied by other physician-, patient-, and lesion-related variables. Clinical impressions of excised skin lesions were strongly associated with NNE estimates. By focusing on pigmented skin lesions and by addressing the physician- and patient-specific factors identified, the effectiveness of future training for primary care physicians in the clinical management of skin cancer could be improved.

  18. Cigarette Price Minimization Strategies in the United States: Price Reductions and Responsiveness to Excise Taxes

    PubMed Central

    2013-01-01

    Introduction: Because cigarette price minimization strategies can provide substantial price reductions for individuals continuing their usual smoking behaviors following federal and state cigarette excise tax increases, we examined independent price reductions compensating for overlapping strategies. The possible availability of larger independent price reduction opportunities in states with higher cigarette excise taxes is explored. Methods: Regression analysis used the 2006–2007 Tobacco Use Supplement of the Current Population Survey (N = 26,826) to explore national and state-level independent price reductions that smokers obtained from purchasing cigarettes (a) by the carton, (b) in a state with a lower average after-tax cigarette price than in the state of residence, and (c) in “some other way,” including online or in another country. Price reductions from these strategies are estimated jointly to compensate for known overlapping strategies. Results: Each strategy reduced the price of cigarettes by 64–94 cents per pack. These price reductions are 9%–22% lower than conventionally estimated results not compensating for overlapping strategies. Price reductions vary substantially by state. Following cigarette excise tax increases, the price reduction available from purchasing cigarettes by cartons increased. Additionally, the price reduction from purchasing cigarettes in a state with a lower average after-tax cigarette price is positively associated with state cigarette excise tax rates and border state cigarette excise tax rate differentials. Conclusions: Findings from this large, nationally representative study of cigarette smokers suggest that price reductions are larger in states with higher cigarette excise taxes, and increase as cigarette excise taxes rise. PMID:23729501

  19. Optimization of the Ussing chamber setup with excised rat intestinal segments for dissolution/permeation experiments of poorly soluble drugs.

    PubMed

    Forner, Kristin; Roos, Carl; Dahlgren, David; Kesisoglou, Filippos; Konerding, Moritz A; Mazur, Johanna; Lennernäs, Hans; Langguth, Peter

    2017-02-01

    Prediction of the in vivo absorption of poorly soluble drugs may require simultaneous dissolution/permeation experiments. In vivo predictive media have been modified for permeation experiments with Caco-2 cells, but not for excised rat intestinal segments. The present study aimed at improving the setup of dissolution/permeation experiments with excised rat intestinal segments by assessing suitable donor and receiver media. The regional compatibility of rat intestine in Ussing chambers with modified Fasted and Fed State Simulated Intestinal Fluids (Fa/FeSSIF mod ) as donor media was evaluated via several parameters that reflect the viability of the excised intestinal segments. Receiver media that establish sink conditions were investigated for their foaming potential and toxicity. Dissolution/permeation experiments with the optimized conditions were then tested for two particle sizes of the BCS class II drug aprepitant. Fa/FeSSIF mod were toxic for excised rat ileal sheets but not duodenal sheets, the compatibility with jejunal segments depended on the bile salt concentration. A non-foaming receiver medium containing bovine serum albumin (BSA) and Antifoam B was nontoxic. With these conditions, the permeation of nanosized aprepitant was higher than of the unmilled drug formulations. The compatibility of Fa/FeSSIF mod depends on the excised intestinal region. The chosen conditions enable dissolution/permeation experiments with excised rat duodenal segments. The experiments correctly predicted the superior permeation of nanosized over unmilled aprepitant that is observed in vivo. The optimized setup uses FaSSIF mod as donor medium, excised rat duodenal sheets as permeation membrane and a receiver medium containing BSA and Antifoam B.

  20. Identification of a residue critical for the excision of 3′-blocking ends in apurinic/apyrimidinic endonucleases of the Xth family

    PubMed Central

    Castillo-Acosta, Víctor M.; Ruiz-Pérez, Luis M.; Yang, Wei; González-Pacanowska, Dolores; Vidal, Antonio E.

    2009-01-01

    DNA single-strand breaks containing 3′-blocking groups are generated from attack of the sugar backbone by reactive oxygen species or after base excision by DNA glycosylase/apurinic/apyrimidinic (AP) lyases. In human cells, APE1 excises sugar fragments that block the 3′-ends thus facilitating DNA repair synthesis. In Leishmania major, the causal agent of leishmaniasis, the APE1 homolog is the class II AP endonuclease LMAP. Expression of LMAP but not of APE1 reverts the hypersensitivity of a xth nfo repair-deficient Escherichia coli strain to the oxidative compound hydrogen peroxide (H2O2). To identify the residues specifically involved in the repair of oxidative DNA damage, we generated random mutations in the ape1 gene and selected those variants that conferred protection against H2O2. Among the resistant clones, we isolated a mutant in the nuclease domain of APE1 (D70A) with an increased capacity to remove 3′-blocking ends in vitro. D70 of APE1 aligns with A138 of LMAP and mutation of the latter to aspartate significantly reduces its 3′-phosphodiesterase activity. Kinetic analysis shows a novel role of residue D70 in the excision rate of 3′-blocking ends. The functional and structural differences between the parasite and human enzymes probably reflect a divergent molecular evolution of their DNA repair responses to oxidative damage. PMID:19181704

Top