Science.gov

Sample records for mitochondrial coi sequence

  1. Genetic identification and phylogenetic relationships of Indian clariids based on mitochondrial COI sequences.

    PubMed

    Devassy, Aneesha; Kumar, Raj; Shajitha, P P; John, Reshma; Padmakumar, K G; Basheer, V S; Gopalakrishnan, A; Mathew, Linu

    2016-09-01

    Mitochondrial cytochrome C Oxidase I (COI) sequence variation among the clariid fishes of India (Clarias magur, C. dussumieri and C. gariepinus) and their relationship with other representative clariids was studied in this work. Three species were sampled and together with 23 COI sequences from GenBank were used to reconstruct phylogenetic relationships in the family Clariidae. The study revealed two clades: one consisting of the African species with C. dussumieri, and the other of Asian species suggesting the prevalence of intra-continental diversification of catfishes. This study further revealed that the genus Clarias is monophyletic. For the COI gene, the interspecies genetic divergence ranged from 0.056 to 0.182. The mean genetic difference between C. dussumieri and other selected African species in this study is 12.1%. It was also observed that the morphological similarity of C. dussumieri and C. magur was not replicated in the genetic level. Clarias dussumieri was more close to African catfish C. gariepinus thus indicating the utility of COI phylogeny to identify the well-known African-Asian relationships within catfishes. The results also showed that C. magur and C. batrachus are genetically distinct from each other. PMID:26358817

  2. Mitochondrial COI sequences in mites: evidence for variations in base composition.

    PubMed

    Navajas, M; Fournier, D; Lagnel, J; Gutierrez, J; Boursot, P

    1996-11-01

    Studies of mitochondrial DNA sequences in a variety of animals have shown important differences between phyla, including differences in the genetic codes used, and varying constraints on base composition. In that respect, little is known of mites, an important and diversified group. We sequenced a portion (340 nt) of the cytochrome oxidase subunit I (COI) encoding gene in twenty species of phytophagous mites belonging to nine genera of the two families Tetranychidae and Tenuipalpidae. The mitochondrial genetic code used in mites appeared to be the same as in insects. As is generally also the case in insects, the mite sequences were very rich in A + T (75% on average), especially at the third codon position (94%). However, important variations of base composition were observed among mite species, one of them showing as little as 69% A + T. Variations of base composition occur mostly through synonymous transitions, and do not have detectable effects on polypeptide evolution in this group. PMID:8933179

  3. Sequencing and comparison of the mitochondrial COI gene from isolates of Arbuscular Mycorrhizal Fungi belonging to Gigasporaceae and Glomeraceae families.

    PubMed

    Borriello, Roberto; Bianciotto, Valeria; Orgiazzi, Alberto; Lumini, Erica; Bergero, Roberta

    2014-06-01

    Arbuscular Mycorrhizal Fungi (AMF) are well known for their ecological importance and their positive influence on plants. The genetics and phylogeny of this group of fungi have long been debated. Nuclear markers are the main tools used for phylogenetic analyses, but they have sometimes proved difficult to use because of their extreme variability. Therefore, the attention of researchers has been moving towards other genomic markers, in particular those from the mitochondrial DNA. In this study, 46 sequences of different AMF isolates belonging to two main clades Gigasporaceae and Glomeraceae have been obtained from the mitochondrial gene coding for the Cytochrome c Oxidase I (COI), representing the largest dataset to date of AMF COI sequences. A very low level of divergence was recorded in the COI sequences from the Gigasporaceae, which could reflect either a slow rate of evolution or a more recent evolutionary divergence of this group. On the other hand, the COI sequence divergence between Gigasporaceae and Glomeraceae was high, with synonymous divergence reaching saturated levels. This work also showed the difficulty in developing valuable mitochondrial markers able to effectively distinguish all Glomeromycota species, especially those belonging to Gigasporaceae, yet it represents a first step towards the development of a full mtDNA-based dataset which can be used for further phylogenetic investigations of this fungal phylum.

  4. The phylogeny of the social wasp subfamily Polistinae: evidence from microsatellite flanking sequences, mitochondrial COI sequence, and morphological characters

    PubMed Central

    Arévalo, Elisabeth; Zhu, Yong; Carpenter, James M; Strassmann, Joan E

    2004-01-01

    Background Social wasps in the subfamily Polistinae (Hymenoptera: Vespidae) have been important in studies of the evolution of sociality, kin selection, and within colony conflicts of interest. These studies have generally been conducted within species, because a resolved phylogeny among species is lacking. We used nuclear DNA microsatellite flanking sequences, mitochondrial COI sequence, and morphological characters to generate a phylogeny for the Polistinae (Hymenoptera) using 69 species. Results Our phylogeny is largely concordant with previous phylogenies at higher levels, and is more resolved at the species level. Our results support the monophyly of the New World subgenera of Polistini, while the Old World subgenera are a paraphyletic group. All genera for which we had more than one exemplar were supported as monophyletic except Polybia which is not resolved, and may be paraphyletic. Conclusion The combination of DNA sequences from flanks of microsatellite repeats with mtCOI sequences and morphological characters proved to be useful characters establishing relationships among the different subgenera and species of the Polistini. This is the first detailed hypothesis for the species of this important group. PMID:15070433

  5. Genetic variation analysis of Mugil cephalus in China sea based on mitochondrial COI gene sequences.

    PubMed

    Sun, Peng; Shi, Zhao-hong; Yin, Fei; Peng, Shi-ming

    2012-04-01

    In this study, genetic diversity and population genetic structure of flathead grey mullet, Mugil cephalus, among four China Sea populations were investigated by COI sequences. All the populations studied had high values of haplotype and nucleotide diversity, except for the Yellow Sea population. In the phylogenetic tree, these haplotypes clustered in two groups, one for the populations from the Bohai and East China seas, and the other from the Yellow and South China seas. Analysis of molecular variance indicated that the northern populations (Bohai and East China) had lower genetic divergence (0.0725, P > 0.05) than that of the southern population (South China) (0.4530-0.6827, P < 0.001), suggesting that two distinct genetic groups exist in Chinese waters. Tests of neutral evolution and mismatch distribution indicated that no historical demographic expansion occurred in these populations. The results provide new information for genetic assessment, fishery management, and conservation of this species.

  6. Phylogenetic relationship of the Brazilian isolates of the rat lungworm Angiostrongylus cantonensis (Nematoda: Metastrongylidae) employing mitochondrial COI gene sequence data

    PubMed Central

    2012-01-01

    Background The rat lungworm Angiostrongylus cantonensis can cause eosinophilic meningoencephalitis in humans. This nematode’s main definitive hosts are rodents and its intermediate hosts are snails. This parasite was first described in China and currently is dispersed across several Pacific islands, Asia, Australia, Africa, some Caribbean islands and most recently in the Americas. Here, we report the genetic variability among A. cantonensis isolates from different geographical locations in Brazil using mitochondrial cytochrome c oxidase subunit I (COI) gene sequences. Methods The isolates of A. cantonensis were obtained from distinct geographical locations of Brazil. Genomic DNAs were extracted, amplified by polymerase reaction, purified and sequenced. A partial sequence of COI gene was determined to assess their phylogenetic relationship. Results The sequences of A. cantonensis were monophyletic. We identified a distinct clade that included all isolates of A. cantonensis from Brazil and Asia based on eight distinct haplotypes (ac1, ac2, ac3, ac4, ac5, ac6, ac7 and ac8) from a previous study. Interestingly, the Brazilian haplotype ac5 is clustered with isolates from Japan, and the Brazilian haplotype ac8 from Rio de Janeiro, São Paulo, Pará and Pernambuco states formed a distinct clade. There is a divergent Brazilian haplotype, which we named ac9, closely related to Chinese haplotype ac6 and Japanese haplotype ac7. Conclusion The genetic variation observed among Brazilian isolates supports the hypothesis that the appearance of A. cantonensis in Brazil is likely a result of multiple introductions of parasite-carrying rats, transported on ships due to active commerce with Africa and Asia during the European colonization period. The rapid spread of the intermediate host, Achatina fulica, also seems to have contributed to the dispersion of this parasite and the infection of the definitive host in different Brazilian regions. PMID:23130987

  7. Mitochondrial DNA diversity in the acanthocephalan Prosthenorchis elegans in Colombia based on cytochrome c oxidase I (COI) gene sequence.

    PubMed

    Falla, Ana Carolina; Brieva, Claudia; Bloor, Paul

    2015-12-01

    Prosthenorchis elegans is a member of the Phylum Acanthocephala and is an important parasite affecting New World Primates in the wild in South America and in captivity around the world. It is of significant management concern due to its pathogenicity and mode of transmission through intermediate hosts. Current diagnosis of P. elegans is based on the detection of eggs by coprological examination. However, this technique lacks both specificity and sensitivity, since eggs of most members of the genus are morphologically indistinguishable and shed intermittently, making differential diagnosis difficult, and coprological examinations are often negative in animals severely infected at death. We examined sequence variation in 633 bp of mitochondrial DNA (mtDNA) cytochrome c oxidase I (COI) sequence in 37 isolates of P. elegans from New World monkeys (Saguinus leucopus and Cebus albifrons) in Colombia held in rescue centers and from the wild. Intraspecific divergence ranged from 0.0 to 1.6% and was comparable with corresponding values within other species of acanthocephalans. Furthermore, comparisons of patterns of sequence divergence within the Acanthocephala suggest that Prosthenorchis represents a separate genus within the Oligacanthorhynchida. Six distinct haplotypes were identified within P. elegans which grouped into one of two well-supported mtDNA haplogroups. No association between haplogroup/haplotype, holding facility and species was found. This information will help pave the way to the development of molecular-based diagnostic tools for the detection of P. elegans as well as furthering research into the life cycle, intermediate hosts and epidemiological aspects of the species. PMID:26759793

  8. Mitochondrial DNA diversity in the acanthocephalan Prosthenorchis elegans in Colombia based on cytochrome c oxidase I (COI) gene sequence

    PubMed Central

    Falla, Ana Carolina; Brieva, Claudia; Bloor, Paul

    2015-01-01

    Prosthenorchis elegans is a member of the Phylum Acanthocephala and is an important parasite affecting New World Primates in the wild in South America and in captivity around the world. It is of significant management concern due to its pathogenicity and mode of transmission through intermediate hosts. Current diagnosis of P. elegans is based on the detection of eggs by coprological examination. However, this technique lacks both specificity and sensitivity, since eggs of most members of the genus are morphologically indistinguishable and shed intermittently, making differential diagnosis difficult, and coprological examinations are often negative in animals severely infected at death. We examined sequence variation in 633 bp of mitochondrial DNA (mtDNA) cytochrome c oxidase I (COI) sequence in 37 isolates of P. elegans from New World monkeys (Saguinus leucopus and Cebus albifrons) in Colombia held in rescue centers and from the wild. Intraspecific divergence ranged from 0.0 to 1.6% and was comparable with corresponding values within other species of acanthocephalans. Furthermore, comparisons of patterns of sequence divergence within the Acanthocephala suggest that Prosthenorchis represents a separate genus within the Oligacanthorhynchida. Six distinct haplotypes were identified within P. elegans which grouped into one of two well-supported mtDNA haplogroups. No association between haplogroup/haplotype, holding facility and species was found. This information will help pave the way to the development of molecular-based diagnostic tools for the detection of P. elegans as well as furthering research into the life cycle, intermediate hosts and epidemiological aspects of the species. PMID:26759793

  9. Carposina sasakii (Lepidoptera: Carposinidae) in its Native Range Consists of Two Sympatric Cryptic Lineages as Revealed by Mitochondrial COI Gene Sequences.

    PubMed

    Wang, J; Yu, Y; Li, L-L; Guo, D; Tao, Y-L; Chu, D

    2015-01-01

    The genetic differentiation and genetic structure of the peach fruit moth, Carposina sasakii Matsumura (Lepidoptera: Carposinidae), was investigated in China, where the moth is native. The mitochondrial cytochrome c oxidase I (COI) gene of 180 individuals from 16 collections were sequenced and analyzed. The results showed that two sympatric and cryptic mtDNA lineages existed within C. sasakii in China. The genetic differentiation has significant correlation with the geographical distance, but has no evidence for host plant associations. Our results of haplotype distribution suggest that the C. sasakii individuals can naturally move between areas, while the movement of individuals between long-distance locations may be associated with human activities such as the transport of fruit. Finally, an mitochondrial COI gene PCR-RFLP method was developed to differentiate the two cryptic mtDNA lineages within C. sasakii, which provides rapid and reliable tool for the future research of the two lineages.

  10. Population genetic structure of Gasterophilus pecorum in the Kalamaili Nature Reserve, Xinjiang, based on mitochondrial cytochrome oxidase (COI) gene sequence.

    PubMed

    Wang, W; Zhang, D; Hu, D; Chu, H; Cao, J; Ente, M; Jiang, G; Li, K

    2014-08-01

    Gasterophilosis is a significant threat to equids in the desert steppe of Xinjiang, China, where Gasterophilus pecorum (Fabricius) (Diptera: Gasterophilidae) is the dominant botfly species. A population analysis was conducted on 195 individual G. pecorum larvae from three host species, Przewalski's horse, the domestic horse and the Asiatic wild ass. The distribution of haplotypes of the maternally inherited mitochondrial cytochrome oxidase subunit I (COI) gene was analysed to assess the population differentiation of G. pecorum. High haplotype diversity was observed among G. pecorum populations from all host species, indicating that the G. pecorum infecting one host had multiple maternal ancestors. A phylogenetic tree showed six clades, suggesting a high degree of genetic differentiation. A constructed haplotype network described both the origin of the haplotypes and the population structure. The findings indicated that G. pecorum infections within Przewalski's horses were mainly transmitted from Asiatic wild asses. Clade 1 was found to be the most primitive group and to have evolved to be highly adaptable to the desert steppe. Clade 2 originated from Clade 1, potentially as a result of the annual migration of domestic horses. Revealing the differentiation of the G. pecorum population is important for elucidating the aetiology of Gasterophilus infection in Xinjiang and for planning appropriate control measures.

  11. Genetic diversity and population structure of Eleutheronema rhadinum in the East and South China Seas revealed in mitochondrial COI sequences

    NASA Astrophysics Data System (ADS)

    Sun, Xinxu; Xu, Dongdong; Lou, Bao; Zhang, Tao; Xin, Jian; Guo, Yaoshi; Ma, Shilei

    2013-11-01

    Eleutheronema rhadinum is a potential commercial fisheries species and is subject to intense exploitation in China. Knowledge on the population structure of E. rhadinum in Chinese coastal waters, which is important for sustainable exploitation and proper resource management, is lacking. In the present study, the genetic diversity and population structure of E. rhadinum were evaluated using a 564-base pair fragment of the mitochondrial cytochrome c oxidase subunit I (COI) gene. A total of 76 specimens were collected from three localities around the East (Qidong and Zhoushan) and South China Seas (Zhuhai). Among these individuals, nine polymorphic sites were detected and 11 distinct haplotypes were defined. High levels of haplotype diversity ( h =0.759±0.035) and low levels of nucleotide diversity ( π= 0.001 98±0.003 26) were observed in these populations. Hierarchical analysis of molecular variance (AMOVA) indicated that 96.72% of the genetic variation occurred within the populations, whereas 3.28% occurred among populations. No significant genealogical branches or clusters were recognized on the neighbor-joining tree. Intra-group variation among populations was significant ( φ st=0.032 85, P<0.01). These results suggest that E. rhadinum populations in the East and South China Seas have developed divergent genetic structures. Tests of neutral evolution and mismatch distribution suggest that E. rhadinum may have experienced a population expansion. The present study provides basic information for the conservation and sustainable exploitation of this species.

  12. A group II intron in the Neurospora mitochondrial coI gene: nucleotide sequence and implications for splicing and molecular evolution.

    PubMed Central

    Field, D J; Sommerfield, A; Saville, B J; Collins, R A

    1989-01-01

    The temperature-sensitive Neurospora nuclear mutant cyt18-1 is deficient in splicing many Group I mitochondrial introns when grown at its non-permissive temperature; however, splicing of intron 1 in the coI gene of the Adiopodoume (formerly called North Africa) strain is unaffected (R.A. Collins and A.M. Lambowitz, J. Mol. Biol. 184: 413-428, 1985). Here we show that coI intron 1 is a typical Group II intron, the only one identified to date in Neurospora. The differential effect of the cyt18-1 mutation suggests that splicing of certain introns could be regulated independently of others by nuclear-encoded proteins. The intron contains a long open reading frame (ORF) resembling that of the Neurospora Mauriceville mitochondrial plasmid. The intron and plasmid ORFs share unusual features of codon usage that suggest both evolved outside of the Neurospora mitochondrial genetic system. Images PMID:2531370

  13. Southeast Asian mouth-brooding Betta fighting fish (Teleostei: Perciformes) species and their phylogenetic relationships based on mitochondrial COI and nuclear ITS1 DNA sequences and analyses.

    PubMed

    Panijpan, Bhinyo; Kowasupat, Chanon; Laosinchai, Parames; Ruenwongsa, Pintip; Phongdara, Amornrat; Senapin, Saengchan; Wanna, Warapond; Phiwsaiya, Kornsunee; Kühne, Jens; Fasquel, Frédéric

    2014-12-01

    Fighting fish species in the genus Betta are found in several Southeast Asian countries. Depending on the mode of paternal care for fertilized eggs and hatchlings, various species of the betta fish are classified as mouth brooders or nest builders whose members in turn have been grouped according to their similarities mainly in morphology. The mouth brooders as well as some nest builders involved in the present study include fishes discovered and identified subsequent to previous reports on species groupings and their positions on phylogenetic trees based on DNA sequences that differ from those used by us in this study. From the mitochondrial COI gene and nuclear ITS1 gene sequences and more accurate analyses we conclude that the following members of the mouth-brooding pairs, named differently previously, are virtually identical, viz the Betta prima-Betta pallida pair and Betta ferox-Betta apollon pair. The Betta simplex, hitherto believed to be one species, could possibly be genetically split into 2 distinct species. In addition, several other established type-locality fishes could harbor cryptic species as judged by genetic differences. Assignments of fish species to groups reported earlier may have to be altered somewhat by the present genetic findings. We propose here a new Betta fish phylogenetic tree which, albeit being similar to the previous ones, is clearly different from them. Our gene-based evidence also leads to assignments of some fishes to new species groups and alters the positions of some species on the new phylogenetic tree, thus implying different ancestral relationships.

  14. Southeast Asian mouth-brooding Betta fighting fish (Teleostei: Perciformes) species and their phylogenetic relationships based on mitochondrial COI and nuclear ITS1 DNA sequences and analyses

    PubMed Central

    Panijpan, Bhinyo; Kowasupat, Chanon; Laosinchai, Parames; Ruenwongsa, Pintip; Phongdara, Amornrat; Senapin, Saengchan; Wanna, Warapond; Phiwsaiya, Kornsunee; Kühne, Jens; Fasquel, Frédéric

    2014-01-01

    Fighting fish species in the genus Betta are found in several Southeast Asian countries. Depending on the mode of paternal care for fertilized eggs and hatchlings, various species of the betta fish are classified as mouth brooders or nest builders whose members in turn have been grouped according to their similarities mainly in morphology. The mouth brooders as well as some nest builders involved in the present study include fishes discovered and identified subsequent to previous reports on species groupings and their positions on phylogenetic trees based on DNA sequences that differ from those used by us in this study. From the mitochondrial COI gene and nuclear ITS1 gene sequences and more accurate analyses we conclude that the following members of the mouth-brooding pairs, named differently previously, are virtually identical, viz the Betta prima–Betta pallida pair and Betta ferox–Betta apollon pair. The Betta simplex, hitherto believed to be one species, could possibly be genetically split into 2 distinct species. In addition, several other established type-locality fishes could harbor cryptic species as judged by genetic differences. Assignments of fish species to groups reported earlier may have to be altered somewhat by the present genetic findings. We propose here a new Betta fish phylogenetic tree which, albeit being similar to the previous ones, is clearly different from them. Our gene-based evidence also leads to assignments of some fishes to new species groups and alters the positions of some species on the new phylogenetic tree, thus implying different ancestral relationships. PMID:25606468

  15. Southeast Asian mouth-brooding Betta fighting fish (Teleostei: Perciformes) species and their phylogenetic relationships based on mitochondrial COI and nuclear ITS1 DNA sequences and analyses.

    PubMed

    Panijpan, Bhinyo; Kowasupat, Chanon; Laosinchai, Parames; Ruenwongsa, Pintip; Phongdara, Amornrat; Senapin, Saengchan; Wanna, Warapond; Phiwsaiya, Kornsunee; Kühne, Jens; Fasquel, Frédéric

    2014-12-01

    Fighting fish species in the genus Betta are found in several Southeast Asian countries. Depending on the mode of paternal care for fertilized eggs and hatchlings, various species of the betta fish are classified as mouth brooders or nest builders whose members in turn have been grouped according to their similarities mainly in morphology. The mouth brooders as well as some nest builders involved in the present study include fishes discovered and identified subsequent to previous reports on species groupings and their positions on phylogenetic trees based on DNA sequences that differ from those used by us in this study. From the mitochondrial COI gene and nuclear ITS1 gene sequences and more accurate analyses we conclude that the following members of the mouth-brooding pairs, named differently previously, are virtually identical, viz the Betta prima-Betta pallida pair and Betta ferox-Betta apollon pair. The Betta simplex, hitherto believed to be one species, could possibly be genetically split into 2 distinct species. In addition, several other established type-locality fishes could harbor cryptic species as judged by genetic differences. Assignments of fish species to groups reported earlier may have to be altered somewhat by the present genetic findings. We propose here a new Betta fish phylogenetic tree which, albeit being similar to the previous ones, is clearly different from them. Our gene-based evidence also leads to assignments of some fishes to new species groups and alters the positions of some species on the new phylogenetic tree, thus implying different ancestral relationships. PMID:25606468

  16. Biodiversity of the Betta smaragdina (Teleostei: Perciformes) in the northeast region of Thailand as determined by mitochondrial COI and nuclear ITS1 gene sequences.

    PubMed

    Kowasupat, Chanon; Panijpan, Bhinyo; Laosinchai, Parames; Ruenwongsa, Pintip; Phongdara, Amornrat; Wanna, Warapond; Senapin, Saengchan; Phiwsaiya, Kornsunee

    2014-12-01

    In Thailand, there are currently five recognized species members of the bubble-nesting Betta genus, namely Betta splendens, B. smaragdina, B. imbellis, B. mahachaiensis and B. siamorientalis. In 2010, we indicated the possibility, based on COI barcoding evidence, that there might be two additional species, albeit cryptic, related to the type-locality B. smaragdina in some provinces in the northeast of Thailand. In the present study, after a more extensive survey of the northeast, and phylogenetic analyses based on COI and ITS1 sequences, the B. smaragdina group may be composed of at least 3 cryptic species members. The phylogenetic positions of these B. smaragdina group members in the bubble-nesting bettas' tree together with those of their congeners have been consolidated by better DNA sequence quality and phylogenetic analyses. With a better supported tree, the species statuses of B. siamorientalis and the Cambodian B. smaragdina-like fish, B. stiktos, are also confirmed.

  17. Biodiversity of the Betta smaragdina (Teleostei: Perciformes) in the northeast region of Thailand as determined by mitochondrial COI and nuclear ITS1 gene sequences.

    PubMed

    Kowasupat, Chanon; Panijpan, Bhinyo; Laosinchai, Parames; Ruenwongsa, Pintip; Phongdara, Amornrat; Wanna, Warapond; Senapin, Saengchan; Phiwsaiya, Kornsunee

    2014-12-01

    In Thailand, there are currently five recognized species members of the bubble-nesting Betta genus, namely Betta splendens, B. smaragdina, B. imbellis, B. mahachaiensis and B. siamorientalis. In 2010, we indicated the possibility, based on COI barcoding evidence, that there might be two additional species, albeit cryptic, related to the type-locality B. smaragdina in some provinces in the northeast of Thailand. In the present study, after a more extensive survey of the northeast, and phylogenetic analyses based on COI and ITS1 sequences, the B. smaragdina group may be composed of at least 3 cryptic species members. The phylogenetic positions of these B. smaragdina group members in the bubble-nesting bettas' tree together with those of their congeners have been consolidated by better DNA sequence quality and phylogenetic analyses. With a better supported tree, the species statuses of B. siamorientalis and the Cambodian B. smaragdina-like fish, B. stiktos, are also confirmed. PMID:25606392

  18. Pleistocene phylogeography and cryptic diversity of a tiger beetle, Calomera littoralis, in North-Eastern Mediterranean and Pontic regions inferred from mitochondrial COI gene sequences

    PubMed Central

    Rewicz, Tomasz; Płóciennik, Mateusz; Grabowski, Michał

    2016-01-01

    Background. Calomera littoralis is a Palearctic species, widely distributed in Europe; inhabiting predominantly its Atlantic, Mediterranean and Black Sea coastlines. Methods. Its phylogeography on the Balkan Peninsula and on the north-western Black Sea coast was inferred using a 697 bp long portion of the mitochondrial COI gene, amplified from 169 individuals collected on 43 localities. Results. The results revealed two genetically divergent groups/lineages, the southern one inhabiting both the Balkan Peninsula and the Pontic Region and the northern one found exclusively in the Pontic Region. Species delimitation based on DNA barcoding gap suggested an interspecific level of divergence between these groups. Multivariate analysis of eight male and female morphometric traits detected no difference between the groups, implying they may represent cryptic species. The Bayesian time-calibrated reconstruction of phylogeny suggested that the lineages diverged ca. 2.3 Ma, in early Pleistocene. Discussion. The presence of the two genetically divergent groups results most likely from contemporary isolation of the Pontic basin from the Mediterranean that broke the continuous strip of coastal habitats inhabited by C. littoralis. Demographic analyses indicated that both lineages have been in demographic and spatial expansion since ca. 0.15 Ma. It coincides with the terminal stage of MIS-6, i.e., Wartanian/Saalian glaciation, and beginning of MIS-5e, i.e., Eemian interglacial, during which, due to eustatic sea level rise, a wide connection between Mediterranean and the Pontic basin was re-established. This, along with re-appearance of coastal habitats could initiate north-east expansion of the southern lineage and its secondary contact with the northern one. The isolation of the Pontic basin from the Mediterranean during the Weichselian glaciation most likely did not have any effect on their phylogeography. PMID:27547517

  19. Pleistocene phylogeography and cryptic diversity of a tiger beetle, Calomera littoralis, in North-Eastern Mediterranean and Pontic regions inferred from mitochondrial COI gene sequences.

    PubMed

    Jaskuła, Radomir; Rewicz, Tomasz; Płóciennik, Mateusz; Grabowski, Michał

    2016-01-01

    Background. Calomera littoralis is a Palearctic species, widely distributed in Europe; inhabiting predominantly its Atlantic, Mediterranean and Black Sea coastlines. Methods. Its phylogeography on the Balkan Peninsula and on the north-western Black Sea coast was inferred using a 697 bp long portion of the mitochondrial COI gene, amplified from 169 individuals collected on 43 localities. Results. The results revealed two genetically divergent groups/lineages, the southern one inhabiting both the Balkan Peninsula and the Pontic Region and the northern one found exclusively in the Pontic Region. Species delimitation based on DNA barcoding gap suggested an interspecific level of divergence between these groups. Multivariate analysis of eight male and female morphometric traits detected no difference between the groups, implying they may represent cryptic species. The Bayesian time-calibrated reconstruction of phylogeny suggested that the lineages diverged ca. 2.3 Ma, in early Pleistocene. Discussion. The presence of the two genetically divergent groups results most likely from contemporary isolation of the Pontic basin from the Mediterranean that broke the continuous strip of coastal habitats inhabited by C. littoralis. Demographic analyses indicated that both lineages have been in demographic and spatial expansion since ca. 0.15 Ma. It coincides with the terminal stage of MIS-6, i.e., Wartanian/Saalian glaciation, and beginning of MIS-5e, i.e., Eemian interglacial, during which, due to eustatic sea level rise, a wide connection between Mediterranean and the Pontic basin was re-established. This, along with re-appearance of coastal habitats could initiate north-east expansion of the southern lineage and its secondary contact with the northern one. The isolation of the Pontic basin from the Mediterranean during the Weichselian glaciation most likely did not have any effect on their phylogeography. PMID:27547517

  20. Large-scale mitochondrial COI gene sequence variability reflects the complex colonization history of the invasive soft-shell clam, Mya arenaria (L.) (Bivalvia)

    NASA Astrophysics Data System (ADS)

    Lasota, Rafal; Pierscieniak, Karolina; Garcia, Pascale; Simon-Bouhet, Benoit; Wolowicz, Maciej

    2016-11-01

    The aim of the study was to determine genetic diversity in the soft-shell clam Mya arenaria on a wide geographical scale using mtDNA COI gene sequences. Low levels of genetic diversity was found, which can most likely be explained by a bottleneck effect during Pleistocene glaciations and/or selection. The geographical genetic structuring of the studied populations was also very low. The star-like phylogeny of the haplotypes indicates a relatively recent, rapid population expansion following the glaciation period and repeated expansion following the founder effect(s) after the initial introduction of the soft-shell clam to Europe. North American populations are characterized by the largest number of haplotypes, including rare ones, as expected for native populations. Because of the founder effect connected with initial and repeated expansion events, European populations have significantly lower numbers of haplotypes in comparison with those of North America. We also observed subtle differentiations among populations from the North and Baltic seas. The recently founded soft-shell clam population in the Black Sea exhibited the highest genetic similarity to Baltic populations, which confirmed the hypothesis that M. arenaria was introduced to the Gulf of Odessa from the Baltic Sea. The most enigmatic results were obtained for populations from the White Sea, which were characterized by high genetic affinity with American populations.

  1. Identification of Sphaeroma terebrans via morphology and the mitochondrial cytochrome c oxidase subunit I (COI) gene

    PubMed Central

    LI, Xiu-Feng; HAN, Chong; ZHONG, Cai-Rong; XU, Jun-Qiu; HUANG, Jian-Rong

    2016-01-01

    Sphaeroma terebrans, a wood-boring isopoda, is distributed worldwide in tropical and subtropical mangroves. The taxonomy of S. terebrans is usually based on morphological characteristics, with its molecular identification still poorly understood. The number of teeth on the uropodal exopod and the length of the propodus of the seventh pereopod are considered as the major morphological characteristics in S. terebrans, which can cause difficulty in regards to accurate identification. In this study, we identified S. terebrans via molecular and morphological data. Furthermore, the validity of the mitochondrial cytochrome c oxidase subunit I (COI) gene as a DNA barcode for the identification of genus Sphaeroma, including species S. terebrans, S. retrolaeve, and S. serratum, was examined. The mitochondrial COI gene sequences of all specimens were sequenced and analysed. The interspecific Kimura 2-parameter distances were higher than intraspecific distances and no intraspecific-interspecific distance overlaps were observed. In addition, genetic distance and nucleotide diversity (π) exhibited no differences within S. terebrans. Our results revealed that the mitochondrial COI gene can serve as a valid DNA barcode for the identification of S. terebrans. Furthermore, the number of teeth on the uropodal exopod and the length of the propodus of the seventh pereopod were found to be unreliable taxonomic characteristics for S. terebrans. PMID:27686791

  2. Identification of Sphaeroma terebrans via morphology and the mitochondrial cytochrome c oxidase subunit I (COI) gene.

    PubMed

    Li, Xiu-Feng; Han, Chong; Zhong, Cai-Rong; Xu, Jun-Qiu; Huang, Jian-Rong

    2016-09-18

    Sphaeroma terebrans, a wood-boring isopoda, is distributed worldwide in tropical and subtropical mangroves. The taxonomy of S. terebrans is usually based on morphological characteristics, with its molecular identification still poorly understood. The number of teeth on the uropodal exopod and the length of the propodus of the seventh pereopod are considered as the major morphological characteristics in S. terebrans, which can cause difficulty in regards to accurate identification. In this study, we identified S. terebrans via molecular and morphological data. Furthermore, the validity of the mitochondrial cytochrome c oxidase subunit I (COI) gene as a DNA barcode for the identification of genus Sphaeroma, including species S. terebrans, S. retrolaeve, and S. serratum, was examined. The mitochondrial COI gene sequences of all specimens were sequenced and analysed. The interspecific Kimura 2-parameter distances were higher than intraspecific distances and no intraspecific-interspecific distance overlaps were observed. In addition, genetic distance and nucleotide diversity (π) exhibited no differences within S. terebrans. Our results revealed that the mitochondrial COI gene can serve as a valid DNA barcode for the identification of S. terebrans. Furthermore, the number of teeth on the uropodal exopod and the length of the propodus of the seventh pereopod were found to be unreliable taxonomic characteristics for S. terebrans. PMID:27686791

  3. Identification of Sphaeroma terebrans via morphology and the mitochondrial cytochrome c oxidase subunit I (COI) gene.

    PubMed

    Li, Xiu-Feng; Han, Chong; Zhong, Cai-Rong; Xu, Jun-Qiu; Huang, Jian-Rong

    2016-09-18

    Sphaeroma terebrans, a wood-boring isopoda, is distributed worldwide in tropical and subtropical mangroves. The taxonomy of S. terebrans is usually based on morphological characteristics, with its molecular identification still poorly understood. The number of teeth on the uropodal exopod and the length of the propodus of the seventh pereopod are considered as the major morphological characteristics in S. terebrans, which can cause difficulty in regards to accurate identification. In this study, we identified S. terebrans via molecular and morphological data. Furthermore, the validity of the mitochondrial cytochrome c oxidase subunit I (COI) gene as a DNA barcode for the identification of genus Sphaeroma, including species S. terebrans, S. retrolaeve, and S. serratum, was examined. The mitochondrial COI gene sequences of all specimens were sequenced and analysed. The interspecific Kimura 2-parameter distances were higher than intraspecific distances and no intraspecific-interspecific distance overlaps were observed. In addition, genetic distance and nucleotide diversity (π) exhibited no differences within S. terebrans. Our results revealed that the mitochondrial COI gene can serve as a valid DNA barcode for the identification of S. terebrans. Furthermore, the number of teeth on the uropodal exopod and the length of the propodus of the seventh pereopod were found to be unreliable taxonomic characteristics for S. terebrans.

  4. Cytochrome Oxidase I (COI) sequence conservation and variation patterns in the yellowfin and longtail tunas.

    PubMed

    Kunal, Swaraj Priyaranjan; Kumar, Girish

    2013-01-01

    Tunas are commercially important fishery worldwide. There are at least 13 species of tuna belonging to three genera, out of which genus Thunnus has maximum eight species. On the basis of their availability, they can be characterised as oceanic such as Thunnus albacares (yellowfin tuna) or coastal such as Thunnus tonggol (longtail tuna). Although these two are different species, morphological differentiation can only be seen in mature individuals, hence misidentification may result in erroneous data set, which ultimately affect conservation strategies. The mitochondrial DNA cytochrome oxidase c subunit 1 (COI) gene is one of the most popular markers for population genetic and phylogeographic studies across the animal kingdom. The present study aims to study the sequence conservation and variation in mitochondrial Cytochrome Oxidase I (COI) between these two species of tuna. COI sequence analysis of yellowfin and longtail revealed the close relationship between them in Thunnus genera. The present study is the first direct comparison of mitochondrial COI sequences of these two tuna species. PMID:23649742

  5. Mitochondrial COI and nuclear RAG1 DNA sequences and analyses of specimens of the three morphologically established species in the genus Trichopsis (Perciformes: Osphronemidae) reveal new/cryptic species

    PubMed Central

    Panijpan, Bhinyo; Laosinchai, Parames; Senapin, Saengchan; Kowasupat, Chanon; Ruenwongsa, Pintip; Kühne, Jens; Phiwsaiya, Kornsunee

    2015-01-01

    Air-breathing fish species of the genus Trichopsis have been reported in Cambodia, Lao PDR, Indonesia, Malaysia, Singapore, Thailand and Vietnam. It is only in Thailand that all three recognized species (Trichopsis vittata, Trichopsis schalleri and Trichopsis pumila), as judged by distinct external features, are found. Cambodia and Lao PDR harbor two species each. The present work involves first-time DNA sequencing and analysis based on mitochondrial (COI) and nuclear (RAG1) DNA of numerous specimens of these species and specimens of a controversial Phetchaburi (Thailand) fish population with a mixed outward appearance. In addition to confirming the morphologically clear-cut taxonomic division of the three fish species, our DNA results show that whereas the T. pumila populations form one single species, there are cryptic species in the T. vittata and T. schalleri populations and possibly a new one in the latter. Members of the putative Phetchaburi fish population have been proven to be hybrids between T. pumila and T. vittata. In addition, a new the phylogenetic tree indicating ancestral relationships is also presented. This study should generate further research to find new/cryptic species of the genus Trichopsis in all countries harboring the fish. PMID:25853058

  6. The use of mitochondrial cytochrome oxidase I gene (COI) to differentiate two UK blowfly species -- Calliphora vicina and Calliphora vomitoria.

    PubMed

    Ames, Carole; Turner, Bryan; Daniel, Barbara

    2006-12-20

    Traditionally identification of forensically important insects has been carried out based upon morphological differences between species. However insect evidence found at a crime scene may on occasion be difficult to distinguish by morphological techniques and under these circumstances another method of accurate identification is required. This work utilises a cytochrome oxidase I partial mitochondrial gene region (COI) to distinguish the two of the main UK blowfly species -- Calliphora vicina (Robineau Desvoidy) and Calliphora vomitoria (Linnaeus) (Diptera:Calliphoridae). Seventeen interspecific differences in COI sequence were located. Use of the restriction enzyme SfcI on this gene region provides a simple method for distinguishing between C. vicina and C. vomitoria.

  7. A diagnostic molecular marker for zebra mussels (Dreissena polymorpha) and potentially co-occurring bivalves: mitochondrial COI.

    PubMed

    Baldwin, B S; Black, M; Sanjur, O; Gustafson, R; Lutz, R A; Vrijenhoek, R C

    1996-03-01

    We report diagnostic differences in the nucleotide sequences of a 710-bp fragment of the mitochondrial cytochrome c oxidase subunit I gene (COI) from the zebra mussel (Dreissena polymorpha) and potentially co-occurring bivalves: the quagga mussel (Dreissena bugensis); the Asiatic clam (Corbicula fluminea), the dark false mussel (Mytilopsis leucophaeata), and the wedge clam (Rangia cuneata). The COI sequence of the deep-water "profunda" phenotype of the quagga mussel was nearly identical to that of shallow-water quagga mussels. Restriction fragment length polymorphisms (RFLPs) in this portion of COI produced species-specific differences in fragment numbers and sizes that could be used as diagnostic markers to distinguish the free-living larvae produced by these bivalves.

  8. Molecular Identification of Paramecium bursaria Syngens and Studies on Geographic Distribution using Mitochondrial Cytochrome C Oxidase Subunit I (COI).

    PubMed

    Zagata, Patrycja; Greczek-Stachura, Magdalena; Tarcz, Sebastian; Rautian, Maria

    2015-01-01

    Paramecium bursaria is composed of five syngens that are morphologically indistinguishable but sexually isolated. The aim of the present study was to confirm by molecular methods (analyses of mitochondrial COI) the identification of P. bursaria syngens originating from different geographical locations. Phylograms constructed using both the neighbor-joining and maximum-likelihood methods based on a comparison of 34 sequences of P. bursaria strains and P. multimicronucleatum, P. caudatum and P.calkinsi strains used as outgroups revealed five clusters which correspond to results obtained previously by mating reaction. Our analysis shows the existence of 24 haplotypes for the COI gene sequence in the studied strains. The interspecies haplotype diversity was Hd = 0.967. We confirmed genetic differentiation between strains of P. bursaria and the occurrence of a correlation between geographical distribution and the correspondent syngen. PMID:26103689

  9. Molecular Identification of Paramecium bursaria Syngens and Studies on Geographic Distribution using Mitochondrial Cytochrome C Oxidase Subunit I (COI).

    PubMed

    Zagata, Patrycja; Greczek-Stachura, Magdalena; Tarcz, Sebastian; Rautian, Maria

    2015-01-01

    Paramecium bursaria is composed of five syngens that are morphologically indistinguishable but sexually isolated. The aim of the present study was to confirm by molecular methods (analyses of mitochondrial COI) the identification of P. bursaria syngens originating from different geographical locations. Phylograms constructed using both the neighbor-joining and maximum-likelihood methods based on a comparison of 34 sequences of P. bursaria strains and P. multimicronucleatum, P. caudatum and P.calkinsi strains used as outgroups revealed five clusters which correspond to results obtained previously by mating reaction. Our analysis shows the existence of 24 haplotypes for the COI gene sequence in the studied strains. The interspecies haplotype diversity was Hd = 0.967. We confirmed genetic differentiation between strains of P. bursaria and the occurrence of a correlation between geographical distribution and the correspondent syngen.

  10. Spider mite (Acari: Tetranychidae) mitochondrial COI phylogeny reviewed: host plant relationships, phylogeography, reproductive parasites and barcoding

    PubMed Central

    Breeuwer, Johannes A. J.

    2007-01-01

    The past 15 years have witnessed a number of molecular studies that aimed to resolve issues of species delineation and phylogeny of mites in the family Tetranychidae. The central part of the mitochondrial COI region has frequently been used for investigating intra- and interspecific variation. All these studies combined yield an extensive database of sequence information of the family Tetranychidae. We assembled this information in a single alignment and performed an overall phylogenetic analysis. The resulting phylogeny shows that important patterns have been overlooked in previous studies, whereas others disappear. It also reveals that mistakes were made in submitting the data to GenBank, which further disturbed interpretation of the data. Our total analysis clearly shows three clades that most likely correspond to the species T. urticae, T. kanzawai and T. truncatus. Intraspecific variation is very high, possibly due to selective sweeps caused by reproductive parasites. We found no evidence for host plant associations and phylogeographic patterns in T. urticae are absent. Finally we evaluate the application of DNA barcoding. PMID:17712605

  11. Examination of the Montastraea annularis Species Complex (Cnidaria: Scleractinia) Using ITS and COI Sequences.

    PubMed

    Medina; Weil; Szmant

    1999-01-01

    : The Caribbean coral Montastraea annularis has recently been proposed to be a complex of at least three sibling species. To test the validity of this proposal, we sequenced the ITS region of the nuclear ribosomal RNA gene family (ITS-1, 5.8S, and ITS-2), and a portion of the mitochondrial DNA gene cytochrome c oxidase subunit I (COI) from the three proposed species (M. annularis, M. faveolata, and M. franksi) from Florida reefs. The ITS fragment was 665 nucleotides long and had 19 variable sites, of which 6 were parsimony-informative sites. None of these sites was fixed within the proposed species. The COI fragment was 658 nucleotides long with only two sites variable in one individual. Thus, under both the biological species concept and the phylogenetic species concept, the molecular evidence gathered in this study indicates the Montastraea annularis species complex to be a single evolutionary entity as opposed to three distinct species. The three proposed Montastraea species can interbreed, ruling out prezygotic barriers to gene flow (biological species concept), and the criterion of monophyly is not satisfied if hybridization is occurring among taxa (phylogenetic species concept).

  12. Twin Mitochondrial Sequence Analysis.

    PubMed

    Bouhlal, Yosr; Martinez, Selena; Gong, Henry; Dumas, Kevin; Shieh, Joseph T C

    2013-09-01

    When applying genome-wide sequencing technologies to disease investigation, it is increasingly important to resolve sequence variation in regions of the genome that may have homologous sequences. The human mitochondrial genome challenges interpretation given the potential for heteroplasmy, somatic variation, and homologous nuclear mitochondrial sequences (numts). Identical twins share the same mitochondrial DNA (mtDNA) from early life, but whether the mitochondrial sequence remains similar is unclear. We compared an adult monozygotic twin pair using high throughput-sequencing and evaluated variants with primer extension and mitochondrial pre-enrichment. Thirty-seven variants were shared between the twin individuals, and the variants were verified on the original genomic DNA. These studies support highly identical genetic sequence in this case. Certain low-level variant calls were of high quality and homology to the mitochondrial DNA, and they were further evaluated. When we assessed calls in pre-enriched mitochondrial DNA templates, we found that these may represent numts, which can be differentiated from mtDNA variation. We conclude that twin identity extends to mitochondrial DNA, and it is critical to differentiate between numts and mtDNA in genome sequencing, particularly since significant heteroplasmy could influence genome interpretation. Further studies on mtDNA and numts will aid in understanding how variation occurs and persists. PMID:24040623

  13. The Mycetophila ruficollis Meigen (Diptera, Mycetophilidae) group in Europe: elucidating species delimitation with COI and ITS2 sequence data

    PubMed Central

    Jürgenstein, Siiri; Kurina, Olavi; Põldmaa, Kadri

    2015-01-01

    Abstract European species of the Mycetophila ruficollis group are compared on the basis of morphology and sequences of mitochondrial cytochrome oxidase subunit one (COI) and the ITS2 region of nuclear ribosomal DNA. The study represents the first evaluation of morphology-based species delimitation of closely related fungus gnat species by applying molecular information. Detailed descriptions and illustrations of the male terminalia are presented along with a key for the identification of all nine European species of the group. Phylogenetic analyses of molecular data generally supported the morphological species discrimination. The barcoding region of COI superseded ITS2 rDNA in resolving species. In the COI barcoding region interspecific differences ranged from 2.9 to 10.6% and the intraspecific distance from 0.08 to 0.8%. Only COI data distinguished between the similar and closely related Mycetophila ichneumonea and Mycetophila uninotata of which the latter was observed to include cryptic species. The host range of some species is suggested to be narrower than previously considered and to depend on the forest type. Presented evidence indicates the importance of analysing sequence data of morphologically very similar mycetophages reared from identified host fungi for elucidating species delimitation as well as their geographic and host ranges. New country records, viz. Estonia for Mycetophila evanida, Georgia for Mycetophila ichneumonea, Mycetophila idonea and Mycetophila ruficollis, and Norway for Mycetophila strobli, widen the known distribution ranges of these species. PMID:26167119

  14. Identification of meat species by PCR-RFLP of the mitochondrial COI gene.

    PubMed

    Haider, Nadia; Nabulsi, Imad; Al-Safadi, Bassam

    2012-02-01

    Meat authenticity verification is pertinent for economical, religious or public health concerns. The present study investigates the use of PCR-RFLP of a part of the mitochondrial cytochrome c oxidase subunit 1 (COI) gene for identification of species origin of raw meat samples of cow, chicken, turkey, sheep, pig, buffalo, camel and donkey. PCR yielded a 710-bp fragment in all species. The amplicons were digested with seven restriction endonucleases (Hind II, Ava II, Rsa I, Taq I, Hpa II, Tru 1I and Xba I) that were selected based on the preliminary in silico analysis. Different levels of polymorphism were detected among samples. The level of COI variation revealed using only Hpa II was sufficient to generate easily analyzable species-specific restriction profiles that could distinguish unambiguously all targeted species. Compared to previously published reports for the determination of meat origin at the molecular level, the approach developed here is much cheaper and faster for routine identification of meats in food control laboratories.

  15. A new versatile primer set targeting a short fragment of the mitochondrial COI region for metabarcoding metazoan diversity: application for characterizing coral reef fish gut contents

    PubMed Central

    2013-01-01

    Introduction The PCR-based analysis of homologous genes has become one of the most powerful approaches for species detection and identification, particularly with the recent availability of Next Generation Sequencing platforms (NGS) making it possible to identify species composition from a broad range of environmental samples. Identifying species from these samples relies on the ability to match sequences with reference barcodes for taxonomic identification. Unfortunately, most studies of environmental samples have targeted ribosomal markers, despite the fact that the mitochondrial Cytochrome c Oxidase subunit I gene (COI) is by far the most widely available sequence region in public reference libraries. This is largely because the available versatile (“universal”) COI primers target the 658 barcoding region, whose size is considered too large for many NGS applications. Moreover, traditional barcoding primers are known to be poorly conserved across some taxonomic groups. Results We first design a new PCR primer within the highly variable mitochondrial COI region, the “mlCOIintF” primer. We then show that this newly designed forward primer combined with the “jgHCO2198” reverse primer to target a 313 bp fragment performs well across metazoan diversity, with higher success rates than versatile primer sets traditionally used for DNA barcoding (i.e. LCO1490/HCO2198). Finally, we demonstrate how the shorter COI fragment coupled with an efficient bioinformatics pipeline can be used to characterize species diversity from environmental samples by pyrosequencing. We examine the gut contents of three species of planktivorous and benthivorous coral reef fish (family: Apogonidae and Holocentridae). After the removal of dubious COI sequences, we obtained a total of 334 prey Operational Taxonomic Units (OTUs) belonging to 14 phyla from 16 fish guts. Of these, 52.5% matched a reference barcode (>98% sequence similarity) and an additional 32% could be assigned to a

  16. Molecular characterization of Opisthorchis noverca (Digenea: Opisthorchiidae) based on nuclear ribosomal ITS2 and mitochondrial COI genes.

    PubMed

    Sahu, R; Biswal, D K; Roy, B; Tandon, V

    2016-09-01

    Opisthorchiasis is a public health problem in South-East Asian countries and Eastern Europe. The infection implicates mainly two species of Opisthorchis, namely O. viverrini and O. felineus, that occur mostly in fish-eating mammals and humans, although there are rare reports of human cases involving two other species, O. noverca and O. guayaquilensis. Opisthorchis noverca has been reported frequently in dogs and pigs from the Indian subcontinent, with rare reports from cattle and human subjects. With a view to supplementing morphology-based identification of this species, the present study aimed to provide molecular characterization of O. noverca, using rDNA internal transcribed spacer 2 (ITS2) and mitochondrial cytochrome oxidase I (mt COI) markers so as to determine its genetic correlation with other species of Opisthorchiidae, and also to generate a taxon-specific molecular marker based on the ITS2 region. The phylogenetic relationship between O. noverca and other species of the genus was determined using molecular sequence data. To strengthen the result, secondary structure sequence analyses of ITS2 with hemi-compensatory base changes (hCBCs), and amino acid sequence analyses, were also evaluated. Our results confirm that O. noverca is a distinct and valid species. PMID:26467395

  17. Mitochondrial COI and morphological evidence for host specificity of the black cherry aphids Myzus cerasi (Fabricius, 1775) collected from different cherry tree species in Europe (Hemiptera, Aphididae)

    PubMed Central

    Rakauskas, Rimantas; Havelka, Jekaterina; Zaremba, Audrius; Bernotienė, Rasa

    2014-01-01

    Abstract Partial sequences of the mitochondrial COI gene of forty eight European and two Turkish population samples of Myzus cerasi from different winter hosts (Prunus spp.) were subjected to phylogenetic analyses. The analysed M. cerasi samples emerged as paraphyletic relative to a Myzus borealis sample used as an out-group, and formed two major clades in neighbor joining, maximum parsimony, maximum likelihood and Bayesian inference trees, corresponding to subspecies living specifically on Prunus avium and P. cerasus. Multivariate discriminant analysis (method of canonical variates) was applied to find out if morphological variation of samples correlated with mitochondrial COI and host plant information. Mean scores on the first two canonical variables clustered samples fully in accordance with their COI haplotypes and host plants confirming the existence of two morphologically similar winter host - specific subspecies of M. cerasi in Europe. No single morphological character enabled satisfactory discrimination between apterous viviparous females of the two subspecies. A three-character linear discriminant function enabled 92.37% correct identification of apterous viviparous females of M. cerasi cerasi (n = 118) and 93.64% of M. cerasi pruniavium (n = 110). A key for the morphological identification of the two subspecies is presented and their taxonomic status is discussed. PMID:24715766

  18. Mitochondrial COI and morphological evidence for host specificity of the black cherry aphids Myzus cerasi (Fabricius, 1775) collected from different cherry tree species in Europe (Hemiptera, Aphididae).

    PubMed

    Rakauskas, Rimantas; Havelka, Jekaterina; Zaremba, Audrius; Bernotienė, Rasa

    2014-01-01

    Partial sequences of the mitochondrial COI gene of forty eight European and two Turkish population samples of Myzus cerasi from different winter hosts (Prunus spp.) were subjected to phylogenetic analyses. The analysed M. cerasi samples emerged as paraphyletic relative to a Myzus borealis sample used as an out-group, and formed two major clades in neighbor joining, maximum parsimony, maximum likelihood and Bayesian inference trees, corresponding to subspecies living specifically on Prunus avium and P. cerasus. Multivariate discriminant analysis (method of canonical variates) was applied to find out if morphological variation of samples correlated with mitochondrial COI and host plant information. Mean scores on the first two canonical variables clustered samples fully in accordance with their COI haplotypes and host plants confirming the existence of two morphologically similar winter host - specific subspecies of M. cerasi in Europe. No single morphological character enabled satisfactory discrimination between apterous viviparous females of the two subspecies. A three-character linear discriminant function enabled 92.37% correct identification of apterous viviparous females of M. cerasi cerasi (n = 118) and 93.64% of M. cerasi pruniavium (n = 110). A key for the morphological identification of the two subspecies is presented and their taxonomic status is discussed. PMID:24715766

  19. Species Authentication of Common Meat Based on PCR Analysis of the Mitochondrial COI Gene.

    PubMed

    Dai, Zhenyu; Qiao, Jiao; Yang, Siran; Hu, Shen; Zuo, Jingjing; Zhu, Weifeng; Huang, Chunhong

    2015-07-01

    Adulteration of meat products and costly animal-derived commodities with their inferior/cheaper counterparts is a grievous global problem. Species authentication is still technical challenging, especially to those deep processed products. The present study described the design of seven sets of species-specific primer based on a high heterozygous region of mitochondrial cytochrome c oxidase subunit I (COI) gene. These primers were proven to have high species specificity and no cross-reactions and unexpected products to different DNA source. Multiplex PCR assay was achieved for rapid and economical identification of four commonly consumed meats (pork, beef, chicken, and mutton). The conventional PCR assay was sensitive down to 0.001 ng of DNA template in the reactant. The developed method was also powerful in detecting as low as 0.1-mg adulterated pork (0.05 % in wt/wt) in an artificial counterfeited mutton. Validation test showed that the assay is specific, reproducible, and robust in commercial deep processed meats, leatherware, and feather commodities. This proposed method will be greatly beneficial to the consumers, food industry, leather, and feather commodity manufacture.

  20. Distinct genetic lineages of Bactrocera caudata (Insecta: Tephritidae) revealed by COI and 16S DNA sequences.

    PubMed

    Lim, Phaik-Eem; Tan, Ji; Suana, I Wayan; Eamsobhana, Praphathip; Yong, Hoi Sen

    2012-01-01

    The fruit fly Bactrocera caudata is a pest species of economic importance in Asia. Its larvae feed on the flowers of Cucurbitaceae such as Cucurbita moschata. To-date it is distinguished from related species based on morphological characters. Specimens of B. caudata from Peninsular Malaysia and Indonesia (Bali and Lombok) were analysed using the partial DNA sequences of cytochrome c oxidase subunit I (COI) and 16S rRNA genes. Both gene sequences revealed that B. caudata from Peninsular Malaysia was distinctly different from B. caudata of Bali and Lombok, without common haplotype between them. Phylogenetic analysis revealed two distinct clades, indicating distinct genetic lineage. The uncorrected 'p' distance for COI sequences between B. caudata of Malaysia-Thailand-China and B. caudata of Bali-Lombok was 5.65%, for 16S sequences from 2.76 to 2.99%, and for combined COI and 16S sequences 4.45 to 4.46%. The 'p' values are distinctly different from intraspecific 'p' distance (0-0.23%). Both the B. caudata lineages are distinctly separated from related species in the subgenus Zeugodacus - B. ascita, B. scutellata, B. ishigakiensis, B. diaphora, B. tau, B. cucurbitae, and B. depressa. Molecular phylogenetic analysis indicates that the B. caudata lineages are closely related to B. ascita sp. B, and form a clade with B. scutellata, B. ishigakiensis, B. diaphora and B. ascita sp. A. This study provides additional baseline for the phylogenetic relationships of Bactrocera fruit flies of the subgenus Zeugodacus. Both the COI and 16S genes could be useful markers for the molecular differentiation and phylogenetic analysis of tephritid fruit flies.

  1. Distinct genetic lineages of Bactrocera caudata (Insecta: Tephritidae) revealed by COI and 16S DNA sequences.

    PubMed

    Lim, Phaik-Eem; Tan, Ji; Suana, I Wayan; Eamsobhana, Praphathip; Yong, Hoi Sen

    2012-01-01

    The fruit fly Bactrocera caudata is a pest species of economic importance in Asia. Its larvae feed on the flowers of Cucurbitaceae such as Cucurbita moschata. To-date it is distinguished from related species based on morphological characters. Specimens of B. caudata from Peninsular Malaysia and Indonesia (Bali and Lombok) were analysed using the partial DNA sequences of cytochrome c oxidase subunit I (COI) and 16S rRNA genes. Both gene sequences revealed that B. caudata from Peninsular Malaysia was distinctly different from B. caudata of Bali and Lombok, without common haplotype between them. Phylogenetic analysis revealed two distinct clades, indicating distinct genetic lineage. The uncorrected 'p' distance for COI sequences between B. caudata of Malaysia-Thailand-China and B. caudata of Bali-Lombok was 5.65%, for 16S sequences from 2.76 to 2.99%, and for combined COI and 16S sequences 4.45 to 4.46%. The 'p' values are distinctly different from intraspecific 'p' distance (0-0.23%). Both the B. caudata lineages are distinctly separated from related species in the subgenus Zeugodacus - B. ascita, B. scutellata, B. ishigakiensis, B. diaphora, B. tau, B. cucurbitae, and B. depressa. Molecular phylogenetic analysis indicates that the B. caudata lineages are closely related to B. ascita sp. B, and form a clade with B. scutellata, B. ishigakiensis, B. diaphora and B. ascita sp. A. This study provides additional baseline for the phylogenetic relationships of Bactrocera fruit flies of the subgenus Zeugodacus. Both the COI and 16S genes could be useful markers for the molecular differentiation and phylogenetic analysis of tephritid fruit flies. PMID:22615962

  2. Distinct Genetic Lineages of Bactrocera caudata (Insecta: Tephritidae) Revealed by COI and 16S DNA Sequences

    PubMed Central

    Lim, Phaik-Eem; Tan, Ji; Suana, I. Wayan; Eamsobhana, Praphathip; Yong, Hoi Sen

    2012-01-01

    The fruit fly Bactrocera caudata is a pest species of economic importance in Asia. Its larvae feed on the flowers of Cucurbitaceae such as Cucurbita moschata. To-date it is distinguished from related species based on morphological characters. Specimens of B. caudata from Peninsular Malaysia and Indonesia (Bali and Lombok) were analysed using the partial DNA sequences of cytochrome c oxidase subunit I (COI) and 16S rRNA genes. Both gene sequences revealed that B. caudata from Peninsular Malaysia was distinctly different from B. caudata of Bali and Lombok, without common haplotype between them. Phylogenetic analysis revealed two distinct clades, indicating distinct genetic lineage. The uncorrected ‘p’ distance for COI sequences between B. caudata of Malaysia-Thailand-China and B. caudata of Bali-Lombok was 5.65%, for 16S sequences from 2.76 to 2.99%, and for combined COI and 16S sequences 4.45 to 4.46%. The ‘p’ values are distinctly different from intraspecific ‘p’ distance (0–0.23%). Both the B. caudata lineages are distinctly separated from related species in the subgenus Zeugodacus – B. ascita, B. scutellata, B. ishigakiensis, B. diaphora, B. tau, B. cucurbitae, and B. depressa. Molecular phylogenetic analysis indicates that the B. caudata lineages are closely related to B. ascita sp. B, and form a clade with B. scutellata, B. ishigakiensis, B. diaphora and B. ascita sp. A. This study provides additional baseline for the phylogenetic relationships of Bactrocera fruit flies of the subgenus Zeugodacus. Both the COI and 16S genes could be useful markers for the molecular differentiation and phylogenetic analysis of tephritid fruit flies. PMID:22615962

  3. Progress on resolving the Gonatocerus tuberculifemur complex: neither COI nor ITS2 sequence data alone can discriminate all the species within the complex, whereas, ISSR-PCR DNA fingerprinting can

    Technology Transfer Automated Retrieval System (TEKTRAN)

    We utilized two molecular methods to aid in resolving the Gonatocerus tuberculifemur complex, potential glassy-winged sharpshooter (GWSS) biological control candidate agents from South America. The two methods used were DNA sequencing of both the mitochondrial cytochrome oxidase subunit 1 gene (COI...

  4. Population genetic structure of the ark shell Scapharca broughtonii Schrenck from Korea, China, and Russia based on COI gene sequences.

    PubMed

    Cho, Eun-Seob; Jung, Choon-Goon; Sohn, Sang-Gyu; Kim, Chul-Won; Han, Seock-Jung

    2007-01-01

    Haplotype distribution, gene flow, and population genetic structure of the ark shell (Scapharca broughtonii) were studied using a partial sequence of a mitochondrial COI gene. The sequence analysis of 100 specimens obtained from a total of seven localities-five in Korea, one in China, and one in Russia- revealed 29 haplotypes, ranging in sequence divergence from 0.1% to 2.1%. Among these, the most frequent haplotype, SB16, was extensively distributed over study areas, especially in all Korean localities. This extensive distribution consequently resulted in the near absence of statistically significant genetic distance. Also, a high rate of gene flow was characteristic among localities in Korea. A test of genetic population structure showed that the ark shell in Korea formed a large genetic group. Moreover, an AMOVA test to determine the allocation of the genetic variance showed that most of the variance was distributed between localities, instead of within localities. However, a significant population differentiation was found between geographic populations [i.e., Jinhae (locality 6) in Korea and Sangdong (locality 5) in China and Vladivostok (locality 7) in Russia] based on geographic distance and population structure. These distinct groups may be associated with geographic characteristics and barriers. The results suggest that most of the ark shell populations in Korea caused considerable distribution to form a genetically homogeneous and intermixing structure, whereas some of the Korean and Chinese and Russian populations had a significantly different genetic structure.

  5. Application of COI barcode sequence for the identification of snake medicine (Zaocys).

    PubMed

    Cao, Shuping; Guo, Linong; Luo, Huiming; Yuan, Hang; Chen, Shuyun; Zheng, Jian; Lin, Ruichao

    2016-01-01

    Counterfeits in the medicine market make the authentication of snakes used for Chinese medicine a challenge to Chinese drug regulatory control agencies. This paper explores existing methods that can be used to quickly and accurately distinguish Zaocys (Z. dhumnades) from its counterfeits for routine identification of snake meats in food and drug control laboratories. In this research, the Cytochrome Oxidase I (COI) fragments of 51 samples from 17 species of snakes were amplified using Polymerase Chain Reaction (PCR) and sequenced. The inter- and intra-specific variations of COI sequences were analyzed and compared based on Kimura-2-parameter (K-2P) distances; the minimal interspecific K-2P distance was 0.0934, which was bigger than the maximum intraspecific K-2P distance in Z. dhumnades (0.0523), indicating that Zaocys can be separated from its counterfeits. The Neighbor-Joining (N-J) tree of the snakes was constructed and the results show that snakes of the same species cluster with 100% bootstrap values. Since the Zaocys and its counterfeits are of different species, they can be distinguished using the N-J tree method. Another 10 samples of Zaocys from markets and drug stores were identified at the species level, among which 5 samples were proven to be the counterfeits--Ptyas korros.

  6. Mitochondrial DNA COI characterization of Helicoverpa armigera (Lepidoptera: Noctuidae) from Paraguay and Uruguay.

    PubMed

    Arnemann, J A; James, W J; Walsh, T K; Guedes, J V C; Smagghe, G; Castiglioni, E; Tay, W T

    2016-04-07

    Since its detection in Brazil in 2013, the Old World cotton bollworm Helicoverpa armigera has been reported in Argentina, Paraguay, and Bolivia. Here we present evidence extending the South American range of H. armigera to Uruguay, using polymerase chain reaction and sequencing of the partial mitochondrial DNA (mtDNA) cytochrome oxidase I region. Molecular characterization of this gene region from individuals from Paraguay also supports previous morphological identification of H. armigera in Paraguay. Shared mtDNA haplotypes in H. armigera from Brazil, Uruguay, and Paraguay were identified. Additional surveying of populations in this region will be imperative to better monitor and understand factors that are underpinning its presence and successful adaptation in these South American regions. We discuss our findings with respect to the development of resistance pest management strategies of this invasive insect pest in a predominantly monoculture soybean crop landscape in the Southern Cone region.

  7. Identification of cephalopod species from the North and Baltic Seas using morphology, COI and 18S rDNA sequences

    NASA Astrophysics Data System (ADS)

    Gebhardt, Katharina; Knebelsberger, Thomas

    2015-09-01

    We morphologically analyzed 79 cephalopod specimens from the North and Baltic Seas belonging to 13 separate species. Another 29 specimens showed morphological features of either Alloteuthis mediaor Alloteuthis subulata or were found to be in between. Reliable identification features to distinguish between A. media and A. subulata are currently not available. The analysis of the DNA barcoding region of the COI gene revealed intraspecific distances (uncorrected p) ranging from 0 to 2.13 % (average 0.1 %) and interspecific distances between 3.31 and 22 % (average 15.52 %). All species formed monophyletic clusters in a neighbor-joining analysis and were supported by bootstrap values of ≥99 %. All COI haplotypes belonging to the 29 Alloteuthis specimens were grouped in one cluster. Neither COI nor 18S rDNA sequences helped to distinguish between the different Alloteuthis morphotypes. For species identification purposes, we recommend the use of COI, as it showed higher bootstrap support of species clusters and less amplification and sequencing failure compared to 18S. Our data strongly support the assumption that the genus Alloteuthis is only represented by a single species, at least in the North Sea. It remained unclear whether this species is A. subulata or A. media. All COI sequences including important metadata were uploaded to the Barcode of Life Data Systems and can be used as reference library for the molecular identification of more than 50 % of the cephalopod fauna known from the North and Baltic Seas.

  8. Dielectronic recombination rate coefficients for the CoI isoelectronic sequence

    NASA Astrophysics Data System (ADS)

    Meng, Fan-Chang; Zhou, Li; Huang, Min; Chen, Chong-Yang; Wang, Yan-Sen; Zou, Ya-Ming

    2009-05-01

    In our recent reports (2007 J. Phys. B: At. Mol. Opt. Phys. 40 4269-86 and 2008 J. Quant. Spectrosc. Radiat. Transfer 109 2000-2008), we performed detailed and large-scale ab initio calculations on the total dielectronic recombination (DR) rate coefficients for Co-like gold and tungsten. Here we extend the calculations for another eight ions (Kr9+, Mo15+, Ag20+, Xe27+, Pr32+, Dy39+, At58+ and U65+) along the CoI isoelectronic sequence in the ground state employing the flexible atomic code. The total DR rates mainly come from complex series 3d84ln'l' and 3p53d94ln'l'. The complex series 3p53d10n'l' and 3d85ln'l' also contribute significantly at low (<0.1EI, EI is the ionization energy of the corresponding Ni-like ions) and high (>1.0EI) electron temperatures, respectively. On the basis of the calculated results, a general analytic formula for the total DR rate coefficients of all the ions along the CoI isoelectronic sequence is constructed. This formula can generally reproduce the calculated DR rate coefficients to within 3% for electron temperatures above 0.1EI. Comparisons of the present results with those obtained from the commonly used Burgess-Merts (BM) semiempirical formula show that the BM formula is not adequate to predict the total DR rate coefficients at relatively low electron temperatures and for low-Z ions. In addition, the total DR rate coefficients from the first excited state are also presented.

  9. Genetic variation of the greenhouse whitefly, Trialeurodes vaporariorum (Hemiptera: Aleyrodidae), among populations from Serbia and neighbouring countries, as inferred from COI sequence variability.

    PubMed

    Prijović, M; Skaljac, M; Drobnjaković, T; Zanić, K; Perić, P; Marčić, D; Puizina, J

    2014-06-01

    The greenhouse whitefly Trialeurodes vaporariorum Westwood, 1856 (Hemiptera: Aleyrodidae) is an invasive and highly polyphagous phloem-feeding pest of vegetables and ornamentals. Trialeurodes vaporariorum causes serious damage due to direct feeding and transmits several important plant viruses. Excessive use of insecticides has resulted in significantly reduced levels of susceptibility of various T. vaporariorum populations. To determine the genetic variability within and among populations of T. vaporariorum from Serbia and to explore their genetic relatedness with other T. vaporariorum populations, we analysed the mitochondrial cytochrome c oxidase I (COI) sequences of 16 populations from Serbia and six neighbouring countries: Montenegro (three populations), Macedonia (one population) and Croatia (two populations), for a total of 198 analysed specimens. A low overall level of sequence divergence and only five variable nucleotides and six haplotypes were found. The most frequent haplotype, H1, was identified in all Serbian populations and in all specimens from distant localities in Croatia and Macedonia. The COI sequence data that was retrieved from GenBank and the data from our study indicated that H1 is the most globally widespread T. vaporariorum haplotype. A lack of spatial genetic structure among the studied T. vaporariorum populations, as well as two demographic tests that we performed (Tajima's D value and Fu's Fs statistics), indicate a recent colonisation event and population growth. Phylogenetic analyses of the COI haplotypes in this study and other T. vaporariorum haplotypes that were retrieved from GenBank were performed using Bayesian inference and median-joining (MJ) network analysis. Two major haplogroups with only a single unique nucleotide difference were found: haplogroup 1 (containing the five Serbian haplotypes and those previously identified in India, China, the Netherlands, the United Kingdom, Morocco, Reunion and the USA) and haplogroup 3

  10. Simultaneous identification and DNA barcoding of six Eimeria species infecting turkeys using PCR primers targeting the mitochondrial cytochrome c oxidase subunit I (mtCOI) locus.

    PubMed

    Hafeez, Mian A; Shivaramaiah, Srichaitanya; Dorsey, Kristi Moore; Ogedengbe, Mosun E; El-Sherry, Shiem; Whale, Julia; Cobean, Julie; Barta, John R

    2015-05-01

    Species-specific PCR primers targeting the mitochondrial cytochrome c oxidase subunit I (mtCOI) locus were generated that allow for the specific identification of the most common Eimeria species infecting turkeys (i.e., Eimeria adenoeides, Eimeria meleagrimitis, Eimeria gallopavonis, Eimeria meleagridis, Eimeria dispersa, and Eimeria innocua). PCR reaction chemistries were optimized with respect to divalent cation (MgCl2) and dNTP concentrations, as well as PCR cycling conditions (particularly anneal temperature for primers). Genomic DNA samples from single oocyst-derived lines of six Eimeria species were tested to establish specificity and sensitivity of these newly designed primer pairs. A mixed 60-ng total DNA sample containing 10 ng of each of the six Eimeria species was used as DNA template to demonstrate specific amplification of the correct product using each of the species-specific primer pairs. Ten nanograms of each of the five non-target Eimeria species was pooled to provide a non-target, control DNA sample suitable to test the specificity of each primer pair. The amplifications of the COI region with species-specific primer pairs from pooled samples yielded products of expected sizes (209 to 1,012 bp) and no amplification of non-target Eimeria sp. DNA was detected using the non-target, control DNA samples. These primer pairs specific for Eimeria spp. of turkeys did not amplify any of the seven Eimeria species infecting chickens. The newly developed PCR primers can be used as a diagnostic tool capable of specifically identifying six turkey Eimeria species; additionally, sequencing of the PCR amplification products yields sequence-based genotyping data suitable for identification and molecular phylogenetics.

  11. Phylogenetic affinities of Diplonema within the Euglenozoa as inferred from the SSU rRNA gene and partial COI protein sequences.

    PubMed

    Maslov, D A; Yasuhira, S; Simpson, L

    1999-03-01

    In order to shed light on the phylogenetic position of diplonemids within the phylum Euglenozoa, we have sequenced small subunit rRNA (SSU rRNA) genes from Diplonema (syn. Isonema) papillatum and Diplonema sp. We have also analyzed a partial sequence of the mitochondrial gene for cytochrome c oxidase subunit I from D. papillatum. With both markers, the maximum likelihood method favored a closer grouping of diplonemids with kinetoplastids, while the parsimony and distance suggested a closer relationship of diplonemids with euglenoids. In each case, the differences between the best tree and the alternative trees were small. The frequency of codon usage in the partial D. papillatum COI was different from both related groups; however, as is the case in kinetoplastids but not in Euglena, both the non-canonical UGA codon and the canonical UGG codon were used to encode tryptophan in Diplonema. PMID:10724517

  12. Evolutionary history and phylogenetic relationship between Auxis thazard and Auxis rochei inferred from COI sequences of mtDNA.

    PubMed

    Kumar, Girish; Kunal, Swaraj Priyaranjan; Shyama, S K

    2013-01-01

    Tunas of the genus Auxis are cosmopolitan species and the smallest members of the tribe Thunnini, the true tunas. In the present study, COI sequences of mtDNA were employed to examine the evolutionary history and phylogenetic relationship between A. thazard and A. rochei. A total of 29 COI sequences were retrieved from NCBI. Historic demographic analyses of sequence data showed that A. thazard has undergone sudden population expansion in the past while population size of A. rochei has been remain constant for long period. Non-significant value of Tajimas's D (P = 0.22400) and Fu's FS (P = 0.21400) test fail to reject the null hypothesis of neutral evolution for A. rochei. Phylogenetic analyses of nucleotide sequences demonstrated separate clusters for both species and are strongly supported by 98% bootstrap value. The results of the present study suggest the recent founding of A. thazard in world ocean while A. rochei represents the ancestral species. PMID:24084241

  13. An Inherited Heteroplasmic Mutation in Mitochondrial Gene COI in a Patient with Prostate Cancer Alters Reactive Oxygen, Reactive Nitrogen and Proliferation

    PubMed Central

    Arnold, Rebecca S.; Sun, Qian; Sun, Carrie Q.; Richards, Jendai C.; O'Hearn, Sean; Osunkoya, Adeboye O.; Wallace, Douglas C.; Petros, John A.

    2013-01-01

    Mitochondrial DNA (mtDNA) mutations have been found in many cancers but the physiological derangements caused by such mutations have remained elusive. Prostate cancer is associated with both inherited and somatic mutations in the cytochrome c oxidase (COI) gene. We present a prostate cancer patient-derived rare heteroplasmic mutation of this gene, part of mitochondrial respiratory complex IV. Functional studies indicate that this mutation leads to the simultaneous decrease in cytochrome oxidation, increase in reactive oxygen, and increased reactive nitrogen. These data suggest that mitochondrial DNA mutations resulting in increased reactive oxygen and reactive nitrogen generation may be involved in prostate cancer biology. PMID:23509693

  14. Unusually high genetic diversity in COI sequences of Chimarra obscura (Trichoptera: Philopotamidae)

    EPA Science Inventory

    Chimarra obscura (Walker 1852) is a philopotamid caddisfly found throughout much of North America. Using the COI DNA barcode locus, we have found unexpectedly high amounts of genetic diversity and distances within C. obscura. Of the approximately 150 specimens sampled, we have fo...

  15. Intraspecific genetic variation in Paramecium revealed by mitochondrial cytochrome C oxidase I sequences.

    PubMed

    Barth, Dana; Krenek, Sascha; Fokin, Sergei I; Berendonk, Thomas U

    2006-01-01

    Studies of intraspecific genetic diversity of ciliates, such as population genetics and biogeography, are particularly hampered by the lack of suitable DNA markers. For example, sequences of the non-coding ribosomal internal transcribed spacer (ITS) regions are often too conserved for intraspecific analyses. We have therefore identified primers for the mitochondrial cytochrome c oxidase I (COI) gene and applied them for intraspecific investigations in Paramecium caudatum and Paramecium multimicronucleatum. Furthermore, we obtained sequences of the ITS regions from the same strains and carried out comparative sequence analyses of both data sets. The mitochondrial sequences revealed substantially higher variation in both Paramecium species, with intraspecific divergences up to 7% in P. caudatum and 9.5% in P. multimicronucleatum. Moreover, an initial survey of the population structure discovered different mitochondrial haplotypes of P. caudatum in one pond, thereby demonstrating the potential of this genetic marker for population genetic analyses. Our primers successfully amplified the COI gene of other Paramecium. This is the first report of intraspecific variation in free-living protozoans based on mitochondrial sequence data. Our results show that the high variation in mitochondrial DNA makes it a suitable marker for intraspecific and population genetic studies.

  16. Identification of a group of cryptic marine limpet species, Cellana karachiensis (Mollusca: Patellogastropoda) off Veraval coast, India, using mtDNA COI sequencing.

    PubMed

    Joseph, Sneha; Poriya, Paresh; Vakani, Bhavik; Singh, S P; Kundu, Rahul

    2016-01-01

    Present communication reports the phylogenetic relationship between three groups of a marine limpet having different color banding patterns using COI sequencing. Samples were sequenced for mtDNA COI gene using universal primer. Comparative BLAST revealed that all three types were around 99.59% identical with Cellana karachiensis, first record of this species from Indian coasts. Apart from the morphological variations, the mtDNA COI gene analysis revealed around 1% nucleotide variations between these three types. The observed dissimilarity in COI sequences was possibly too little to consider these types as three different species. The derivation of amino acid positions indicated that these types could possibly be a complex of three cryptic species of C. karachiensis. The study proposes that the Oman and Indian populations of C. karachiensis might have derived by allopatric speciation due to geographical isolation. The group of these three cryptic species, sharing same habitat between themselves, possibly showed sympatric speciation.

  17. Determination of Opiinae parasitoids (Hymenoptera: Braconidae) associated with crop infesting Bactrocera spp. (Diptera: Tephritidae) using COI and Cyt b sequences

    NASA Astrophysics Data System (ADS)

    Shariff, Safiah; Yaakop, Salmah; Zain, Badrul Munir Md.

    2013-11-01

    Members of the Opiinae subfamily (Hymenoptera: Braconidae) are well known as important parasitoids of fruit fly larvae (Diptera: Tephritidae). They are widely used as biological control agents of fruit flies, especially the Bactrocera Macquart species that infest fruits. In this study, the larvae of fruit flies were collected from infested crops including star fruit, guava, wax apple and ridge gourd. The parasitized larvae were then reared under laboratory conditions until emergence of the adult parasitoids. Additionally, Malaise trap also was used to collect parasitoid species. The general concept of the multiplex PCR has been performed is to amplify two mitochondrial DNA markers, namely cytochrome oxidase subunit I (COI) and cytochrome b (Cyt b) simultaneously. Therefore, the lengthy process of reaction will be reduced. The status of the fruit fly species has also been confirmed by using COI marker on the early stage of the larvae. Maximum parsimony (MP) and Bayesian Inference (BI) were implemented to help and support the identification of Opiinae species. The result obtained from this study showed three parasitoid genera of the Opiinae viz. Fopius Wharton, Psyttalia Walker and Diachasmimorpha Viereck. Each genus has been determined by clustering together in a similar clade according to their infested crops. Therefore, accurate determination of parasitoids and the fruit fries species was highly useful and necessary for successful biological control of Bactrocera species.

  18. Deep COI sequencing of standardized benthic samples unveils overlooked diversity of Jordanian coral reefs in the northern Red Sea.

    PubMed

    Al-Rshaidat, Mamoon M D; Snider, Allison; Rosebraugh, Sydney; Devine, Amanda M; Devine, Thomas D; Plaisance, Laetitia; Knowlton, Nancy; Leray, Matthieu

    2016-09-01

    High-throughput sequencing (HTS) of DNA barcodes (metabarcoding), particularly when combined with standardized sampling protocols, is one of the most promising approaches for censusing overlooked cryptic invertebrate communities. We present biodiversity estimates based on sequencing of the cytochrome c oxidase subunit 1 (COI) gene for coral reefs of the Gulf of Aqaba, a semi-enclosed system in the northern Red Sea. Samples were obtained from standardized sampling devices (Autonomous Reef Monitoring Structures (ARMS)) deployed for 18 months. DNA barcoding of non-sessile specimens >2 mm revealed 83 OTUs in six phyla, of which only 25% matched a reference sequence in public databases. Metabarcoding of the 2 mm - 500 μm and sessile bulk fractions revealed 1197 OTUs in 15 animal phyla, of which only 4.9% matched reference barcodes. These results highlight the scarcity of COI data for cryptobenthic organisms of the Red Sea. Compared with data obtained using similar methods, our results suggest that Gulf of Aqaba reefs are less diverse than two Pacific coral reefs but much more diverse than an Atlantic oyster reef at a similar latitude. The standardized approaches used here show promise for establishing baseline data on biodiversity, monitoring the impacts of environmental change, and quantifying patterns of diversity at regional and global scales. PMID:27584940

  19. Genetic Population Structure of Thunnus albacares in the Central Pacific Ocean Based on mtDNA COI Gene Sequences.

    PubMed

    Li, Weiwen; Chen, Xinjun; Xu, Qianghua; Zhu, Jiangfeng; Dai, Xiaojie; Xu, Liuxiong

    2015-04-01

    Thunnus albacares is an important fishery species throughout the world. Polymorphisms of sequence variations in mtDNA COI genes were assessed to explore the genetic differentiations among 11 populations of T. albacares sampled from the central Pacific Ocean. Sixty-one mtDNA haplotypes and 38 variable sites were detected. Analysis of mtDNA COI sequences revealed that tuna from the 11 localities were characterized by moderately high haplotype diversity (h = 0.650 ± 0.040), while sequence divergence between haplotypes was relatively low (π = 0.00364 ± 0.00044). Analyses of molecular variance and FST analysis supported that significant genetic differentiations existed between some of the sampled populations. Tests of neutral evolution and mismatch distribution analysis suggested that T. albacares might have experienced a population expansion, which possibly occurred within the last 0.82 million years. Our study unraveled the genetic structure of the extant population of T. albacares and addressed the related fishery management issues including fishery stock identification and management. PMID:25854852

  20. Deep COI sequencing of standardized benthic samples unveils overlooked diversity of Jordanian coral reefs in the northern Red Sea.

    PubMed

    Al-Rshaidat, Mamoon M D; Snider, Allison; Rosebraugh, Sydney; Devine, Amanda M; Devine, Thomas D; Plaisance, Laetitia; Knowlton, Nancy; Leray, Matthieu

    2016-09-01

    High-throughput sequencing (HTS) of DNA barcodes (metabarcoding), particularly when combined with standardized sampling protocols, is one of the most promising approaches for censusing overlooked cryptic invertebrate communities. We present biodiversity estimates based on sequencing of the cytochrome c oxidase subunit 1 (COI) gene for coral reefs of the Gulf of Aqaba, a semi-enclosed system in the northern Red Sea. Samples were obtained from standardized sampling devices (Autonomous Reef Monitoring Structures (ARMS)) deployed for 18 months. DNA barcoding of non-sessile specimens >2 mm revealed 83 OTUs in six phyla, of which only 25% matched a reference sequence in public databases. Metabarcoding of the 2 mm - 500 μm and sessile bulk fractions revealed 1197 OTUs in 15 animal phyla, of which only 4.9% matched reference barcodes. These results highlight the scarcity of COI data for cryptobenthic organisms of the Red Sea. Compared with data obtained using similar methods, our results suggest that Gulf of Aqaba reefs are less diverse than two Pacific coral reefs but much more diverse than an Atlantic oyster reef at a similar latitude. The standardized approaches used here show promise for establishing baseline data on biodiversity, monitoring the impacts of environmental change, and quantifying patterns of diversity at regional and global scales.

  1. Molecular identification and first report of mitochondrial COI gene haplotypes in the hawksbill turtle Eretmochelys imbricata (Testudines: Cheloniidae) in the Colombian Caribbean nesting colonies.

    PubMed

    Daza-Criado, L; Hernández-Fernández, J

    2014-01-01

    Hawksbill sea turtles Eretmochelys imbricata are found extensively around the world, including the Atlantic, Pacific, and Indian Oceans; the Persian Gulf, and the Red and Mediterranean Seas. Populations of this species are affected by international trafficking of their shields, meat, and eggs, making it a critically endangered animal. We determined the haplotypes of 17 hawksbill foraging turtles of Islas del Rosario (Bolivar) and of the nesting beach Don Diego (Magdalena) in the Colombian Caribbean based on amplification and sequencing of the mitochondrial gene cytochrome oxidase c subunit I (COI). We identified 5 haplotypes, including EI-A1 previously reported in Puerto Rico, which was similar to 10 of the study samples. To our knowledge, the remaining 4 haplotypes have not been described. Samples EICOI11 and EICOI3 showed 0.2% divergence from EI-A1, by a single nucleotide change, and were classified as the EI-A2 haplotype. EICOI6, EICOI14, and EICOI12 samples showed 0.2% divergence from EI-A1 and 0.3% divergence from EI-A2 and were classified as EI-A3 haplotype. Samples EICOI16 and EICOI15 presented 5 nucleotide changes each and were classified as 2 different haplotypes, EI-A4 and EI-A5, respectively. The last 2 haplotypes had higher nucleotide diversity (K2P=1.7%) than that by the first 3 haplotypes. EI-A1 and EI-A2 occurred in nesting individuals, and EI-A2, EI-A3, EI-A4, and EI-A5 occurred in foraging individuals. The description of the haplotypes may be associated with reproductive migrations or foraging and could support the hypothesis of natal homing. Furthermore, they can be used in phylogeographic studies. PMID:24634300

  2. Genetic divergence analysis of the Common Barn Owl Tyto alba (Scopoli, 1769) and the Short-eared Owl Asio flammeus (Pontoppidan, 1763) from southern Chile using COI sequence.

    PubMed

    Colihueque, Nelson; Gantz, Alberto; Rau, Jaime Ricardo; Parraguez, Margarita

    2015-01-01

    In this paper new mitochondrial COI sequences of Common Barn Owl Tyto alba (Scopoli, 1769) and Short-eared Owl Asio flammeus (Pontoppidan, 1763) from southern Chile are reported and compared with sequences from other parts of the World. The intraspecific genetic divergence (mean p-distance) was 4.6 to 5.5% for the Common Barn Owl in comparison with specimens from northern Europe and Australasia and 3.1% for the Short-eared Owl with respect to samples from north America, northern Europe and northern Asia. Phylogenetic analyses revealed three distinctive groups for the Common Barn Owl: (i) South America (Chile and Argentina) plus Central and North America, (ii) northern Europe and (iii) Australasia, and two distinctive groups for the Short-eared Owl: (i) South America (Chile and Argentina) and (ii) north America plus northern Europe and northern Asia. The level of genetic divergence observed in both species exceeds the upper limit of intraspecific comparisons reported previously for Strigiformes. Therefore, this suggests that further research is needed to assess the taxonomic status, particularly for the Chilean populations that, to date, have been identified as belonging to these species through traditional taxonomy. PMID:26668551

  3. Genetic divergence analysis of the Common Barn Owl Tyto alba (Scopoli, 1769) and the Short-eared Owl Asio flammeus (Pontoppidan, 1763) from southern Chile using COI sequence.

    PubMed

    Colihueque, Nelson; Gantz, Alberto; Rau, Jaime Ricardo; Parraguez, Margarita

    2015-01-01

    In this paper new mitochondrial COI sequences of Common Barn Owl Tyto alba (Scopoli, 1769) and Short-eared Owl Asio flammeus (Pontoppidan, 1763) from southern Chile are reported and compared with sequences from other parts of the World. The intraspecific genetic divergence (mean p-distance) was 4.6 to 5.5% for the Common Barn Owl in comparison with specimens from northern Europe and Australasia and 3.1% for the Short-eared Owl with respect to samples from north America, northern Europe and northern Asia. Phylogenetic analyses revealed three distinctive groups for the Common Barn Owl: (i) South America (Chile and Argentina) plus Central and North America, (ii) northern Europe and (iii) Australasia, and two distinctive groups for the Short-eared Owl: (i) South America (Chile and Argentina) and (ii) north America plus northern Europe and northern Asia. The level of genetic divergence observed in both species exceeds the upper limit of intraspecific comparisons reported previously for Strigiformes. Therefore, this suggests that further research is needed to assess the taxonomic status, particularly for the Chilean populations that, to date, have been identified as belonging to these species through traditional taxonomy.

  4. Genetic divergence analysis of the Common Barn Owl Tyto alba (Scopoli, 1769) and the Short-eared Owl Asio flammeus (Pontoppidan, 1763) from southern Chile using COI sequence

    PubMed Central

    Colihueque, Nelson; Gantz, Alberto; Rau, Jaime Ricardo; Parraguez, Margarita

    2015-01-01

    Abstract In this paper new mitochondrial COI sequences of Common Barn Owl Tyto alba (Scopoli, 1769) and Short-eared Owl Asio flammeus (Pontoppidan, 1763) from southern Chile are reported and compared with sequences from other parts of the World. The intraspecific genetic divergence (mean p-distance) was 4.6 to 5.5% for the Common Barn Owl in comparison with specimens from northern Europe and Australasia and 3.1% for the Short-eared Owl with respect to samples from north America, northern Europe and northern Asia. Phylogenetic analyses revealed three distinctive groups for the Common Barn Owl: (i) South America (Chile and Argentina) plus Central and North America, (ii) northern Europe and (iii) Australasia, and two distinctive groups for the Short-eared Owl: (i) South America (Chile and Argentina) and (ii) north America plus northern Europe and northern Asia. The level of genetic divergence observed in both species exceeds the upper limit of intraspecific comparisons reported previously for Strigiformes. Therefore, this suggests that further research is needed to assess the taxonomic status, particularly for the Chilean populations that, to date, have been identified as belonging to these species through traditional taxonomy. PMID:26668551

  5. Biodiversity of the Betta smaragdina (Teleostei: Perciformes) in the northeast region of Thailand as determined by mitochondrial COI and nuclear ITS1 gene sequences☆

    PubMed Central

    Kowasupat, Chanon; Panijpan, Bhinyo; Laosinchai, Parames; Ruenwongsa, Pintip; Phongdara, Amornrat; Wanna, Warapond; Senapin, Saengchan; Phiwsaiya, Kornsunee

    2014-01-01

    In Thailand, there are currently five recognized species members of the bubble-nesting Betta genus, namely Betta splendens, B. smaragdina, B. imbellis, B. mahachaiensis and B. siamorientalis. In 2010, we indicated the possibility, based on COI barcoding evidence, that there might be two additional species, albeit cryptic, related to the type-locality B. smaragdina in some provinces in the northeast of Thailand. In the present study, after a more extensive survey of the northeast, and phylogenetic analyses based on COI and ITS1 sequences, the B. smaragdina group may be composed of at least 3 cryptic species members. The phylogenetic positions of these B. smaragdina group members in the bubble-nesting bettas' tree together with those of their congeners have been consolidated by better DNA sequence quality and phylogenetic analyses. With a better supported tree, the species statuses of B. siamorientalis and the Cambodian B. smaragdina-like fish, B. stiktos, are also confirmed. PMID:25606392

  6. The sequence and organization of complete mitochondrial genome of the yellowfin tuna, Thunnus albacares (Bonnaterre, 1788).

    PubMed

    Pang, Jiaohui; Cheng, Qiqun; Sun, Dandan; Zhang, Heng; Jin, Shaofei

    2016-09-01

    Yellowfin tuna (Thunnus albacares) is one of the most important economic fishes around the world. In the present study, we determined the complete mitochondrial DNA sequence and organization of T. albacares. The entire mitochondrial genome is a circular-molecule of 16,528 bp in length, which encodes 37 genes in all. These genes comprise 13 protein-coding genes (ATP6 and 8, COI-III, Cytb, ND1-6 and 4 L), 22 transfer RNA genes (tRNAs), and 2 ribosomal RNA genes (12S and 16S rRNAs). The complete mitochondrial genome sequence of T. albacares can provide basic information for the studies on molecular taxonomy and conservation genetics of teleost fishes. PMID:25707413

  7. Phylogenetic relationships of true butterflies (Lepidoptera: Papilionoidea) inferred from COI, 16S rRNA and EF-1α sequences.

    PubMed

    Kim, Man Il; Wan, Xinlong; Kim, Min Jee; Jeong, Heon Cheon; Ahn, Neung-Ho; Kim, Ki-Gyoung; Han, Yeon Soo; Kim, Iksoo

    2010-11-01

    The molecular phylogenetic relationships among true butterfly families (superfamily Papilionoidea) have been a matter of substantial controversy; this debate has led to several competing hypotheses. Two of the most compelling of those hypotheses involve the relationships of (Nymphalidae + Lycaenidae) + (Pieridae + Papilionidae) and (((Nymphalidae + Lycaenidae) + Pieridae) + Papilionidae). In this study, approximately 3,500 nucleotide sequences from cytochrome oxidase subunit I (COI), 16S ribosomal RNA (16S rRNA), and elongation factor-1 alpha (EF-1α) were sequenced from 83 species belonging to four true butterfly families, along with those of three outgroup species belonging to three lepidopteran superfamilies. These sequences were subjected to phylogenetic reconstruction via Bayesian Inference (BI), Maximum Likelihood (ML), and Maximum Parsimony (MP) algorithms. The monophyletic Pieridae and monophyletic Papilionidae evidenced good recovery in all analyses, but in some analyses, the monophylies of the Lycaenidae and Nymphalidae were hampered by the inclusion of single species of the lycaenid subfamily Miletinae and the nymphalid subfamily Danainae. Excluding those singletons, all phylogenetic analyses among the four true butterfly families clearly identified the Nymphalidae as the sister to the Lycaenidae and identified this group as a sister to the Pieridae, with the Papilionidae identified as the most basal linage to the true butterfly, thus supporting the hypothesis: (Papilionidae + (Pieridae + (Nymphalidae + Lycaenidae))).

  8. First report on the occurrence of the comb pen shell, Atrina pectinata (Linnaeus, 1767) (Bivalvia: Pinnidae) in Ulleungdo Island in the East Sea: Ecology and molecular identification of the species using COI gene sequence

    NASA Astrophysics Data System (ADS)

    Yang, Hyun-Sung; Kang, Hyun-Sil; Park, Heung-Sik; Noh, Choong Hwan; Jeong, Eui-Young; Choi, Kwang-Sik

    2015-12-01

    Pen shell is one of the largest marine bivalves inhabiting shallow subtidal soft bottoms in the west Pacific and Indian Oceans. In Korea, the comb pen shell Atrina pectinata fisheries has been established on the south and west coasts. Recently, a pen shell population has been discovered from a subtidal sand flat (25-30 m depth) in Ulleungdo Island located in the East Sea of Korea, suggesting a potential shellfish resource in this area. In the present study, we first surveyed the population density and size of the unique pen shell using SCUBA, and identified the pen shell to species level using mitochondrial cytochrome oxidase I gene (COI) sequence. An underwater survey carried out from July to September 2013 revealed that populations of pen shell patched on subtidal sand flat at a depth of 20-25 m. Grain size analysis indicated that sand particles accounted for 99% of the 600 × 700 m sand flat. The underwater survey also indicated that density of the pen shell ranged between 6-19 ind/m2, with a mean of 11 ind/m2. Shell height (i.e. longest axis of the shell) of the pen shell on the sand flat varied between 17.2 cm to 28.8 cm, with a mean of 25.1 cm, and the age was estimated to range between 1.5-7.5 yrs, with a mean of 5 yr. COI DNA sequence obtained from the pen shell in this study showed 98.9-99.2% similarity to Atrina pectinata (Linnaeus 1767) reported from Japan. In the cluster analysis, the COI DNA sequence of the pen shells from Ulleungdo Island was grouped with A. pectinata reported from Japan and China, indicating that the pen shell discovered in this study was A. pectinata, commonly distributed on the west and south coasts of Korea.

  9. A preliminary phylogenetic analysis of Luidia (Paxillosida: Luidiidae) from Chinese waters with cytochrome oxidase subunit I (COI) sequences

    NASA Astrophysics Data System (ADS)

    Xiao, Ning; Liu, Ruiyu; Yuan, Shuai; Sha, Zhongli

    2013-09-01

    Luidia Forbes (Paxillosida: Luidiidae) are common soft bottom sea stars with 49 described species. Because of substantial morphological diversity, the taxonomy of the genus is complex and hasn't been resolved definitely. In order to resolve general taxonomic issues, and determine species boundaries and phylogenetic relationships within the genus Luidia, the sequences of cytochrome oxidase subunit I (COI) gene from 24 specimens of Luidia, belonging to eight taxa in Chinese waters, were studied. Three sequences of two species in genus Luidia from GenBank were used to analyze the phylogenetic relationships. The molecular phylogeny exhibited three main clades, each with strong bootstrap support: Clade A including Luidia quinaria from the Sea of Japan; Clade B including seven nominal species ( L. quinaria von Martens, L. yesoensis Goto, L. changi Liu, Liao and Li, L. orientalis Fisher, L. avicularia Fisher, L. longispina Sladen and L. hardwicki Gray) from Chinese waters; and Clade C including L. maculata Müller & Troschel from Chinese waters. Our molecular phylogeny results support the morphological Quinaria-Group and Alternata-Group assigned by Döderlein. Seven nominal species we sampled do not exhibit genetic distances that are large enough to recognize them as separate species. Cryptic species may exist in' Luidia quinaria' from the Yellow Sea and the Sea of Japan. Meaningful morphological characters need further investigation in Luidia.

  10. Establishment of a mitochondrial DNA sequence database for the identification of fish species commercially available in South Africa.

    PubMed

    Cawthorn, Donna-Mareè; Steinman, Harris Andrew; Witthuhn, R Corli

    2011-11-01

    The limitations intrinsic to morphology-based identification systems have created an urgent need for reliable genetic methods that enable the unequivocal recognition of fish species, particularly those that are prone to overexploitation and/or market substitution. The aim of this study was to develop a comprehensive reference library of DNA sequence data to allow the explicit identification of 53 commercially available fish species in South Africa, most of which were locally caught marine species. Sequences of approximately 655 base pairs were generated for all species from the cytochrome c oxidase I (COI) gene, the region widely adopted for DNA barcoding. Specimens of the genus Thunnus were examined in further detail, employing additional mitochondrial DNA control region sequencing. Cumulative analysis of the sequences from the COI region revealed mean conspecific, congeneric and confamilial Kimura 2-parameter distances of 0.10%, 4.58% and 15.43%, respectively. The results showed that the vast majority (98%) of fish species examined could be readily differentiated by their COI barcodes, but that supplementary control region sequencing was more useful for the discrimination of three Thunnus species. Additionally, the analysis of COI data raised the prospect that Thyrsites atun (snoek) could constitute a species pair. The present study has established the necessary genetic information to permit the unambiguous identification of 53 commonly marketed fish species in South Africa, the applications of which hold a plethora of benefits relating to ecology research, fisheries management and control of commercial practices.

  11. Universal COI primers for DNA barcoding amphibians.

    PubMed

    Che, Jing; Chen, Hong-Man; Yang, Jun-Xiao; Jin, Jie-Qiong; Jiang, Ke; Yuan, Zhi-Yong; Murphy, Robert W; Zhang, Ya-Ping

    2012-03-01

    DNA barcoding is a proven tool for the rapid and unambiguous identification of species, which is essential for many activities including the vouchering tissue samples in the genome 10K initiative, genealogical reconstructions, forensics and biodiversity surveys, among many other applications. A large-scale effort is underway to barcode all amphibian species using the universally sequenced DNA region, a partial fragment of mitochondrial cytochrome oxidase subunit I COI. This fragment is desirable because it appears to be superior to 16S for barcoding, at least for some groups of salamanders. The barcoding of amphibians is essential in part because many species are now endangered. Unfortunately, existing primers for COI often fail to achieve this goal. Herein, we report two new pairs of primers (➀, ➁) that in combination serve to universally amplify and sequence all three orders of Chinese amphibians as represented by 36 genera. This taxonomic diversity, which includes caecilians, salamanders and frogs, suggests that the new primer pairs will universally amplify COI for the vast majority species of amphibians.

  12. Universal COI primers for DNA barcoding amphibians.

    PubMed

    Che, Jing; Chen, Hong-Man; Yang, Jun-Xiao; Jin, Jie-Qiong; Jiang, Ke; Yuan, Zhi-Yong; Murphy, Robert W; Zhang, Ya-Ping

    2012-03-01

    DNA barcoding is a proven tool for the rapid and unambiguous identification of species, which is essential for many activities including the vouchering tissue samples in the genome 10K initiative, genealogical reconstructions, forensics and biodiversity surveys, among many other applications. A large-scale effort is underway to barcode all amphibian species using the universally sequenced DNA region, a partial fragment of mitochondrial cytochrome oxidase subunit I COI. This fragment is desirable because it appears to be superior to 16S for barcoding, at least for some groups of salamanders. The barcoding of amphibians is essential in part because many species are now endangered. Unfortunately, existing primers for COI often fail to achieve this goal. Herein, we report two new pairs of primers (➀, ➁) that in combination serve to universally amplify and sequence all three orders of Chinese amphibians as represented by 36 genera. This taxonomic diversity, which includes caecilians, salamanders and frogs, suggests that the new primer pairs will universally amplify COI for the vast majority species of amphibians. PMID:22145866

  13. Relationships within aphids Cinara (Cupressobium) (Hemiptera) based on mitochondrial and nuclear DNA sequences.

    PubMed

    Durak, Roma; Lachowska-Cierlik, Dorota; Bartoszewski, Sławomir

    2014-02-01

    The relationships between Cinara (Cupressobium) aphids inhabiting woody parts and leaves of conifers belonging to Cupressaceae have been studied using a mitochondrial gene (COI) and a nuclear gene (EF1-α). Based on the COI sequences, genetic distances between species ranged from 5.6 % between Cinara (C.) tujafilina (del Guercio) and Cinara (C.) juniperi (De Geer) to 10.5 % between C. (C.) tujafilina and Cinara (C.) mordvilkoi (Pašek). Genetic distances among EF1-α sequences were lower and showed from 0.1 % between C. cupressi and C. juniperi to 2.3 % between C. tujafilina and C. mordvilkoi. Molecular phylogenetic trees were constructed using the Bayesian inference (BI) phylogenetic analysis and maximum parsimony (MP) criterion. Phylogenetic trees obtained based on COI and EF1-α marker genes created two sister clades. Our results indicate that Cinara (Cupressobium) are a monophyletic group of aphids. Phylogenetic relationships amongst Cupressobium aphids do not result from the association with the host plant, but from the feeding site on the host plant or an ability to change the microhabitat on the plant. As closely related species inhabit similar microhabitats on different host plants, it suggests that the host switching is the main mode of speciation in this subgenus.

  14. Distribution of Mosquitoes in the South East of Argentina and First Report on the Analysis Based on 18S rDNA and COI Sequences

    PubMed Central

    Díaz-Nieto, Leonardo M.; Maciá, Arnaldo; Parisi, Gustavo; Farina, Juan L.; Vidal-Domínguez, María E.; Perotti, M. Alejandra; Berón, Corina M.

    2013-01-01

    Although Mar del Plata is the most important city on the Atlantic coast of Argentina, mosquitoes inhabiting such area are almost uncharacterized. To increase our knowledge in their distribution, we sampled specimens of natural populations. After the morphological identification based on taxonomic keys, sequences of DNA from small ribosomal subunit (18S rDNA) and cytochrome c oxidase I (COI) genes were obtained from native species and the phylogenetic analysis of these sequences were done. Fourteen species from the genera Uranotaenia, Culex, Ochlerotatus and Psorophora were found and identified. Our 18S rDNA and COI-based analysis indicates the relationships among groups at the supra-species level in concordance with mosquito taxonomy. The introduction and spread of vectors and diseases carried by them are not known in Mar del Plata, but some of the species found in this study were reported as pathogen vectors. PMID:24098700

  15. High-Throughput Sequencing in Mitochondrial DNA Research

    PubMed Central

    Ye, Fei; Samuels, David C.; Clark, Travis; Guo, Yan

    2014-01-01

    Next-generation sequencing, also known as high-throughput sequencing, has greatly enhanced researchers’ ability to conduct biomedical research on all levels. Mitochondrial research has also benefitted greatly from high-throughput sequencing; sequencing technology now allows for screening of all 16569 base pairs of the mitochondrial genome simultaneously for SNPs and low level heteroplasmy and, in some cases, the estimation of mitochondrial DNA copy number. It is important to realize the full potential of high-throughput sequencing for the advancement of mitochondrial research. To this end, we review how high-throughput sequencing has impacted mitochondrial research in the categories of SNPs, low level heteroplasmy, copy number, and structural variants. We also discuss the different types of mitochondrial DNA sequencing and their pros and cons. Based on previous studies conducted by various groups, we provide strategies for processing mitochondrial DNA sequencing data, including assembly, variant calling, and quality control. PMID:24859348

  16. High-throughput sequencing in mitochondrial DNA research.

    PubMed

    Ye, Fei; Samuels, David C; Clark, Travis; Guo, Yan

    2014-07-01

    Next-generation sequencing, also known as high-throughput sequencing, has greatly enhanced researchers' ability to conduct biomedical research on all levels. Mitochondrial research has also benefitted greatly from high-throughput sequencing; sequencing technology now allows for screening of all 16,569 base pairs of the mitochondrial genome simultaneously for SNPs and low level heteroplasmy and, in some cases, the estimation of mitochondrial DNA copy number. It is important to realize the full potential of high-throughput sequencing for the advancement of mitochondrial research. To this end, we review how high-throughput sequencing has impacted mitochondrial research in the categories of SNPs, low level heteroplasmy, copy number, and structural variants. We also discuss the different types of mitochondrial DNA sequencing and their pros and cons. Based on previous studies conducted by various groups, we provide strategies for processing mitochondrial DNA sequencing data, including assembly, variant calling, and quality control.

  17. Use of Cytochrome c Oxidase Subunit I (COI) Nucleotide Sequences for Identification of the Korean Luciliinae Fly Species (Diptera: Calliphoridae) in Forensic Investigations

    PubMed Central

    Park, Seong Hwan; Zhang, Yong; Piao, Huguo; Yu, Dong Ha; Jeong, Hyun Ju; Yoo, Ga Young; Chung, Ukhee; Jo, Tae-Ho

    2009-01-01

    Blowflies, especially species belonging to the subfamily Luciliinae, are the first insects to lay eggs on corpses in Korea. Fast and accurate species identification has been a key task for forensic entomologists. Because conventional morphologic identification methods have many limitations with respect to forensic practice, molecular methods have been proposed to identify fly species of forensic importance. To this end, the authors amplified and sequenced the full length of the cytochrome c oxidase subunit I (COI) gene of the Luciliinae fly species collected in Korea. The results showed the COI sequences are instrumental in identifying Luciliinae fly species. However, when compared with previously reported data, considerable inconsistencies were noted. Hemipyrellia ligurriens data in this study differed significantly from two of the five pre-existing data. Two closely related species, Lucilia illustris and Lucilia caesar, showed an overlap of COI haplotypes due to four European sequences. The results suggest that more individuals from various geographic regions and additive nuclear DNA markers should be analyzed, and morphologic identification keys must be reconfirmed to overcome these inconsistencies. PMID:19949660

  18. Use of cytochrome c oxidase subunit i (COI) nucleotide sequences for identification of the Korean Luciliinae fly species (Diptera: Calliphoridae) in forensic investigations.

    PubMed

    Park, Seong Hwan; Zhang, Yong; Piao, Huguo; Yu, Dong Ha; Jeong, Hyun Ju; Yoo, Ga Young; Chung, Ukhee; Jo, Tae-Ho; Hwang, Juck-Joon

    2009-12-01

    Blowflies, especially species belonging to the subfamily Luciliinae, are the first insects to lay eggs on corpses in Korea. Fast and accurate species identification has been a key task for forensic entomologists. Because conventional morphologic identification methods have many limitations with respect to forensic practice, molecular methods have been proposed to identify fly species of forensic importance. To this end, the authors amplified and sequenced the full length of the cytochrome c oxidase subunit I (COI) gene of the Luciliinae fly species collected in Korea. The results showed the COI sequences are instrumental in identifying Luciliinae fly species. However, when compared with previously reported data, considerable inconsistencies were noted. Hemipyrellia ligurriens data in this study differed significantly from two of the five pre-existing data. Two closely related species, Lucilia illustris and Lucilia caesar, showed an overlap of COI haplotypes due to four European sequences. The results suggest that more individuals from various geographic regions and additive nuclear DNA markers should be analyzed, and morphologic identification keys must be reconfirmed to overcome these inconsistencies.

  19. Sequencing and comparing whole mitochondrial genomes ofanimals

    SciTech Connect

    Boore, Jeffrey L.; Macey, J. Robert; Medina, Monica

    2005-04-22

    Comparing complete animal mitochondrial genome sequences is becoming increasingly common for phylogenetic reconstruction and as a model for genome evolution. Not only are they much more informative than shorter sequences of individual genes for inferring evolutionary relatedness, but these data also provide sets of genome-level characters, such as the relative arrangements of genes, that can be especially powerful. We describe here the protocols commonly used for physically isolating mtDNA, for amplifying these by PCR or RCA, for cloning,sequencing, assembly, validation, and gene annotation, and for comparing both sequences and gene arrangements. On several topics, we offer general observations based on our experiences to date with determining and comparing complete mtDNA sequences.

  20. EST and mitochondrial DNA sequences support a distinct Pacific form of salmon louse, Lepeophtheirus salmonis.

    PubMed

    Yazawa, Ryosuke; Yasuike, Motoshige; Leong, Jong; von Schalburg, Kristian R; Cooper, Glenn A; Beetz-Sargent, Marianne; Robb, Adrienne; Davidson, William S; Jones, Simon R M; Koop, Ben F

    2008-01-01

    Nuclear deoxyribonucleic acid sequences from approximately 15,000 salmon louse expressed sequence tags (ESTs), the complete mitochondrial genome (16,148bp) of salmon louse, and 16S ribosomal ribonucleic acid (rRNA) and cytochrome oxidase subunit I (COI) genes from 68 salmon lice collected from Japan, Alaska, and western Canada support a Pacific lineage of Lepeophtheirus salmonis that is distinct from that occurring in the Atlantic Ocean. On average, nuclear genes are 3.2% different, the complete mitochondrial genome is 7.1% different, and 16S rRNA and COI genes are 4.2% and 6.1% different, respectively. Reduced genetic diversity within the Pacific form of L. salmonis is consistent with an introduction into the Pacific from the Atlantic Ocean. The level of divergence is consistent with the hypothesis that the Pacific form of L. salmonis coevolved with Pacific salmon (Onchorhynchus spp.) and the Atlantic form coevolved with Atlantic salmonids (Salmo spp.) independently for the last 2.5-11 million years. The level of genetic divergence coincides with the opportunity for migration of fish between the Atlantic and Pacific Ocean basins via the Arctic Ocean with the opening of the Bering Strait, approximately 5 million years ago. The genetic differences may help explain apparent differences in pathogenicity and environmental sensitivity documented for the Atlantic and Pacific forms of L. salmonis. PMID:18574633

  1. Mitochondrial DNA sequence variation in Drosophilid species (Diptera: Drosophilidae) along altitudinal gradient from Central Himalayan region of India.

    PubMed

    Sarswat, Manisha; Dewan, Saurabh; Fartyal, Rajendra Singh

    2016-06-01

    Central Himalayan region of India encompasses varied ecological habitats ranging from near tropics to the mid-elevation forests dominated by cool-temperate taxa. In past, we have reported several new records and novel species from Uttarakhand state of India. Here, we assessed genetic variations in three mitochondrial genes, namely, 16S rRNA, cytochrome c oxidase subunit I and cytochrome c oxidase subunit II (COI and COII) in 26 drosophilid species collected along altitudinal transect from 550 to 2700 m above mean sea level. In the present study, overall 543 sequences were generated, 82 for 16S rRNA, 238 for COI, 223 for COII with 21, 47 and 45 mitochondrial haplotypes for 16S rRNA, COI and COII genes, respectively. Almost all species were represented by 2-3 unique mitochondrial haplotypes, depicting a significant impact of environmental heterogeneity along altitudinal gradient on genetic diversity. Also for the first time, molecular data of some rare species like Drosophila mukteshwarensis, Liodrosophila nitida, Lordiphosa parantillaria, Lordiphosa ayarpathaensis, Scaptomyza himalayana, Scaptomyza tistai, Zaprionus grandis and Stegana minuta are provided to public domains through this study. PMID:27350680

  2. Complete mitochondrial genome sequence of Nectogale elegans.

    PubMed

    Huang, Ting; Yan, Chaochao; Tan, Zheng; Tu, Feiyun; Yue, Bisong; Zhang, Xiuyue

    2014-08-01

    The elegant water shrew (Nectogale elegans) belongs to the family Soricidae, and distributes in northern South Asia, central and southern China and northern Southeast Asia. In this study, the complete mitochondrial genome of N. elegans was sequenced. It was determined to be 17,460 bases, and included 13 protein-coding genes (PCGs), 22 tRNA genes, 2 ribosomal RNA genes and one non-coding region, which is similar to other mammalian mitochondrial genomes. Bayesian inference and maximum likelihood methods were used to construct phylogenetic trees based on 12 heavy-strand concatenated PCGs. Phylogenetic analyses further confirmed that Crocidurinae diverged prior to Soricinae, and Sorex unguiculatus differentiated earlier than N. elegans.

  3. Phylogeny of Thaumastodermatidae (Gastrotricha: Macrodasyida) Inferred from Nuclear and Mitochondrial Sequence Data

    PubMed Central

    Todaro, M. Antonio; Kånneby, Tobias; Dal Zotto, Matteo; Jondelius, Ulf

    2011-01-01

    Background Phylogenetic relationships within Gastrotricha are poorly known. Attempts to shed light on this subject using morphological traits have led to hypotheses lacking satisfactory statistical support; it seemed therefore that a different approach was needed. Methodology/Principal Findings In this paper we attempt to elucidate the relationships within the taxonomically vast family Thaumastodermatidae (Macrodasyida) using molecular sequence data. The study includes representatives of all the extant genera of the family and for the first time uses a multi-gene approach to infer evolutionary liaisons within Gastrotricha. The final data set comprises sequences of three genes (18S, 28S rDNA and COI mtDNA) from 41 species, including 29 thaumastodermatids, 11 non-thaumastodermatid macrodasyidans and a single chaetonotidan. Molecular data was analyzed as a combined set of 3 genes and as individual genes, using Bayesian and maximum likelihood approaches. Two different outgroups were used: Xenotrichula intermedia (Chaetonotida) and members of the putative basal Dactylopodola (Macrodasyida). Thaumastodermatidae and all other sampled macrodasyidan families were found monophyletic except for Cephalodasyidae. Within Thaumastodermatidae Diplodasyinae and Thaumastodermatinae are monophyletic and so are most genera. Oregodasys turns out to be the most basal group within Thaumastodermatinae in analyses of the concatenated data set as well as in analyses of the nuclear genes. Thaumastoderma appears as the sister taxon to the remaining species. Surprisingly, Tetranchyroderma is non-monophyletic in our analyses as one group of species clusters with Ptychostomella while another appears as the sister group of Pseudostomella. Conclusions/Significance Results in general agree with the current classification; however, a revision of the more derived thaumastodermatid taxa seems necessary. We also found that the ostensible COI sequences from several species do not conform to the general

  4. Mitochondrial DNA sequence divergence in the Melanogaster and oriental species subgroups of Drosophila.

    PubMed

    Nigro, L; Solignac, M; Sharp, P M

    1991-08-01

    The nucleotide sequence of a segment of the mitochondrial DNA from three Drosophila species (D. erecta, D. eugracilis, and D. takahashii), belonging to different subgroups of the melanogaster group has been determined. The segment encompasses three complete tRNA genes (tRNAtrp, tRNAcys, and tRNAtyr) and portions of two protein-coding genes: the subunit 2 of the NADH dehydrogenase (ND2) and the subunit 1 of the cytochrome oxidase (COI). Comparisons also involve homologous sequences already known for four other Drosophila species of the melanogaster group. Length differences were confined in the intergenic region where a long stretch of AT repeats was observed in one of the species analyzed. The three tRNA genes exhibit very different evolutionary rates, the most slowly evolving one, tRNAtyr, is adjacent to the 5' end of COI; tRNAs in similar positions have been previously shown to evolve slowly because they are probably involved in transcript processing. Although the rate of synonymous substitutions was very similar between ND2 and COI genes there were strong discrepancies between them in terms of the number of nonsynonymous substitutions. Differences have also been found in G + C content of the genes, which are likely to be linked to different selective pressures. There is a reduction in G + C content in the region where selective constraints are reduced. This suggests the existence of different levels of constraints along the sequenced segment. An overall analysis of the types of substitutions showed a decrease in A + T content during the course of evolution of the species.

  5. Molecular phylogenetic analysis of Acridoidea (Orthoptera: Caelifera) based on mitochondrial cytochrome oxidase subunit sequences.

    PubMed

    Dong, Lijun; Shi, Jianping; Zhang, Xiaohong; Zhang, Yulong; Li, Xinjiang; Yin, Hong

    2015-01-01

    Phylogenetic relationships of Acridoidea were examined using mitochondrial cytochrome oxidase subunit sequences (COI, COII and COIII, total 2970bp). Fourteen grasshopper species of thirteen genera from seven families were sequenced to obtain mitochondrial genes data, along with twenty-two grasshopper species were obtained from the GenBank nucleotide database. The purpose of this study is to infer the phylogenetic relationships among families within Acridoidea and testing the monophyly of Acridoidea and each families of it. Phylogenic trees were reconstructed using Maximum Likelihood (ML) and Maximum Parsimony (MP) methods with Tettigonioidea and Gryllotalpoidea as outgroups. The putative initiation codon for COI is CCG in thirteen studied species and ATC in Bryodema luctuosum luctuosum. The 2970 bp concatenated sequences included 1431 conserved sites, 1539 variable sites, and 1216 parsimony-informative sites, the nucleotide compositions were significantly biased toward A and T (68.8%). The resulted phylogenetic trees supported the monophyly of Acridoidea, but did not entirely agree with the traditional morphology-based taxonomic system of grasshoppers within Acridoidea. The monophyly of three families of Acrididae, Catantopidae and Arcypteridae were not supported; Gomphoceridae and Arcypteridae were recovered together as a monophyletic group because of closer phylogenetic relationships; Pyrgomorphidae and Chrotogonidae have the same closer relationships; Pneumoridae, Pyrgomorphidae and Chrotogonidae were the most basal groups; while the taxonomic status of Pamphagidae, which was revealed as a monophyletic group, was not clear in this analysis. Moreover, the results indicate that a phylogeny inferred from the combination of several genes is more reliable than that from only a single gene sequence, and the third codon positions of protein coding genes can improve the topology and node supports of the phylogenetic trees. PMID:26624048

  6. A COI Nonsynonymous Mutation as Diagnostic Tool for Intraspecific Discrimination in the European Anchovy Engraulis encrasicolus (Linnaeus)

    PubMed Central

    Pappalardo, Anna Maria; Federico, Concetta; Sabella, Giorgio; Saccone, Salvatore; Ferrito, Venera

    2015-01-01

    The European anchovy, Engraulis encrasicolus, is currently one of the principal target species for commercial fisheries in Europe. In this study, the mitochondrial Control Region (CR) and the Cytochrome Oxidase I (COI) mitochondrial gene were analyzed in 74 specimens of E. encrasicolus from four localities in the central Mediterranean. In both populations, the two markers revealed the presence of two main haplogroups, A and B, already detected in previous investigations of different classes of molecular markers. Both CR and COI markers consistently identified two haplogroups. The COI sequence analysis identified a non-synonymous transversion (T to G) at position 116 of the translated sequence, resulting in an amino acid change. All COI sequences of haplogroup A had an amino acid sequence with alanine in this position, while serine was present in the same position in haplogroup B. The two haplogroups A and B were also discriminated by the variable number of TACA elements at the 5’-end of the mitochondrial CR. The selection tests applied to the COI dataset revealed that codon 116 was not under positive selection, that seven amino acid changes were under purifying selection, and that two amino acids were under episodic positive selection. PMID:26599908

  7. Rapid and accurate taxonomic classification of insect (class Insecta) cytochrome c oxidase subunit 1 (COI) DNA barcode sequences using a naïve Bayesian classifier

    PubMed Central

    Porter, Teresita M; Gibson, Joel F; Shokralla, Shadi; Baird, Donald J; Golding, G Brian; Hajibabaei, Mehrdad

    2014-01-01

    Current methods to identify unknown insect (class Insecta) cytochrome c oxidase (COI barcode) sequences often rely on thresholds of distances that can be difficult to define, sequence similarity cut-offs, or monophyly. Some of the most commonly used metagenomic classification methods do not provide a measure of confidence for the taxonomic assignments they provide. The aim of this study was to use a naïve Bayesian classifier (Wang et al. Applied and Environmental Microbiology, 2007; 73: 5261) to automate taxonomic assignments for large batches of insect COI sequences such as data obtained from high-throughput environmental sequencing. This method provides rank-flexible taxonomic assignments with an associated bootstrap support value, and it is faster than the blast-based methods commonly used in environmental sequence surveys. We have developed and rigorously tested the performance of three different training sets using leave-one-out cross-validation, two field data sets, and targeted testing of Lepidoptera, Diptera and Mantodea sequences obtained from the Barcode of Life Data system. We found that type I error rates, incorrect taxonomic assignments with a high bootstrap support, were already relatively low but could be lowered further by ensuring that all query taxa are actually present in the reference database. Choosing bootstrap support cut-offs according to query length and summarizing taxonomic assignments to more inclusive ranks can also help to reduce error while retaining the maximum number of assignments. Additionally, we highlight gaps in the taxonomic and geographic representation of insects in public sequence databases that will require further work by taxonomists to improve the quality of assignments generated using any method.

  8. Mitochondrial DNA sequences support allozyme evidence for cryptic radiation of New Zealand Peripatoides (Onychophora).

    PubMed

    Trewick, S A

    2000-03-01

    A combination of single-strand conformation polymorphism analysis (SSCP) and sequencing were used to survey cytochrome oxidase I (COI) mitochondrial DNA (mtDNA) diversity among New Zealand ovoviviparous Onychophora. Most of the sites and individuals had previously been analysed using allozyme electrophoresis. A total of 157 peripatus collected at 54 sites throughout New Zealand were screened yielding 62 different haplotypes. Comparison of 540-bp COI sequences from Peripatoides revealed mean among-clade genetic distances of up to 11. 4% using Kimura 2-parameter (K2P) analysis or 17.5% using general time-reversible (GTR + I + Gamma) analysis. Phylogenetic analysis revealed eight well-supported clades that were consistent with the allozyme analysis. Five of the six cryptic peripatus species distinguished by allozymes were confirmed by mtDNA analysis. The sixth taxon appeared to be paraphyletic, but genetic and geographical evidence suggested recent speciation. Two additional taxa were evident from the mtDNA data but neither occurred within the areas surveyed using allozymes. Among the peripatus surveyed with both mtDNA and allozymes, only one clear instance of recent introgression was evident, even though several taxa occurred in sympatry. This suggests well-developed mate recognition despite minimal morphological variation and low overall genetic diversity.

  9. Mitochondrial COI and 16sRNA evidence for a single species hypothesis of E. vitis, J. formosana and E. onukii in East Asia.

    PubMed

    Fu, Jian-Yu; Han, Bao-Yu; Xiao, Qiang

    2014-01-01

    Tea green leafhopper is one of the most damaging tea pests in main tea production regions of East Asia. For lack of recognized morphological characters, the dominant species of tea green leafhoppers in Mainland China, Taiwan and Japan have always been named as Empoasca vitis Göthe, Jacobiasca formosana Paoli and Empoasca onukii MATSUDA, respectively. Furthermore, nothing is known about the genetic relationships among them. In this study, we collected six populations from Mainland China, four populations from Japan and one population from Taiwan, and examined the genetic distances in the COI and 16sRNA regions of mtDNA among them. The results showed that the genetic distances based on single gene or the combined sequences among eleven leafhopper populations were 0.3-1.2%, which were all less than the species boundary of 2%. Moreover, there were at least two haplotypes shared by two distinct populations from different regions. The phylogenetic analysis based on single gene or combined sets also supported that tea green leafhoppers from Mainland China, Taiwan and Japan were closely related to each other, and there were at least two specimens from different regions clustered ahead of those from the same region. Therefore, we propose that the view of recognizing the dominant species of tea green leafhoppers in three adjacent tea production regions of East Asia as different species is unreliable or questionable and suggest that they are a single species. PMID:25506929

  10. Mitochondrial DNA sequence variation in Greeks.

    PubMed

    Kouvatsi, A; Karaiskou, N; Apostolidis, A; Kirmizidis, G

    2001-12-01

    Mitochondrial DNA (mtDNA) control region sequences were determined in 54 unrelated Greeks, coming from different regions in Greece, for both segments HVR-I and HVR-II. Fifty-two different mtDNA haplotypes were revealed, one of which was shared by three individuals. A very low heterogeneity was found among Greek regions. No one cluster of lineages was specific to individuals coming from a certain region. The average pairwise difference distribution showed a value of 7.599. The data were compared with that for other European or neighbor populations (British, French, Germans, Tuscans, Bulgarians, and Turks). The genetic trees that were constructed revealed homogeneity between Europeans. Median networks revealed that most of the Greek mtDNA haplotypes are clustered to the five known haplogroups and that a number of haplotypes are shared among Greeks and other European and Near Eastern populations.

  11. Simple sequence repeats in bryophyte mitochondrial genomes.

    PubMed

    Zhao, Chao-Xian; Zhu, Rui-Liang; Liu, Yang

    2016-01-01

    Simple sequence repeats (SSRs) are thought to be common in plant mitochondrial (mt) genomes, but have yet to be fully described for bryophytes. We screened the mt genomes of two liverworts (Marchantia polymorpha and Pleurozia purpurea), two mosses (Physcomitrella patens and Anomodon rugelii) and two hornworts (Phaeoceros laevis and Nothoceros aenigmaticus), and detected 475 SSRs. Some SSRs are found conserved during the evolution, among which except one exists in both liverworts and mosses, all others are shared only by the two liverworts, mosses or hornworts. SSRs are known as DNA tracts having high mutation rates; however, according to our observations, they still can evolve slowly. The conservativeness of these SSRs suggests that they are under strong selection and could play critical roles in maintaining the gene functions.

  12. Molecular characterization of Fasciola gigantica from Mauritania based on mitochondrial and nuclear ribosomal DNA sequences.

    PubMed

    Amor, Nabil; Farjallah, Sarra; Salem, Mohamed; Lamine, Dia Mamadou; Merella, Paolo; Said, Khaled; Ben Slimane, Badreddine

    2011-10-01

    Fasciolosis caused by Fasciola hepatica and Fasciola gigantica (Platyhelminthes: Trematoda: Digenea) is considered the most important helminth infection of ruminants in tropical countries, causing considerable socioeconomic problems. From Africa, F. gigantica has been previously characterized from Burkina Faso, Senegal, Kenya, Zambia and Mali, while F. hepatica has been reported from Morocco and Tunisia, and both species have been observed from Ethiopia and Egypt on the basis of morphometric differences, while the use of molecular markers is necessary to distinguish exactly between species. Samples identified morphologically as F. gigantica (n=60) from sheep and cattle from different geographical localities of Mauritania were genetically characterized by sequences of the first (ITS-1), the 5.8S, and second (ITS-2) Internal Transcribed Spacers (ITS) of nuclear ribosomal DNA (rDNA) genes and the mitochondrial Cytochrome c Oxidase I (COI) gene. Comparison of the sequences of the Mauritanian samples with sequences of Fasciola spp. from GenBank confirmed that all samples belong to the species F. gigantica. The nucleotide sequencing of ITS rDNA of F. gigantica showed no nucleotide variation in the ITS-1, 5.8S, and ITS-2 rDNA sequences among all samples examined and those from Burkina Faso, Kenya, Egypt and Iran. The phylogenetic trees based on the ITS-1 and ITS-2 sequences showed a close relationship of the Mauritanian samples with isolates of F. gigantica from different localities of Africa and Asia. The COI genotypes of the Mauritanian specimens of F. gigantica had a high level of diversity, and they belonged to the F. gigantica phylogenically distinguishable clade. The present study is the first molecular characterization of F. gigantica in sheep and cattle from Mauritania, allowing a reliable approach for the genetic differentiation of Fasciola spp. and providing basis for further studies on liver flukes in the African countries.

  13. Phylogenetic relationships among Octopodidae species in coastal waters of China inferred from two mitochondrial DNA gene sequences.

    PubMed

    Lü, Z M; Cui, W T; Liu, L Q; Li, H M; Wu, C W

    2013-09-19

    Octopus in the family Octopodidae (Mollusca: Cephalopoda) has been generally recognized as a "catch-all" genus. The monophyly of octopus species in China's coastal waters has not yet been studied. In this paper, we inferred the phylogeny of 11 octopus species (family Octopodidae) in China's coastal waters using nucleotide sequences of two mitochondrial DNA genes: cytochrome c oxidase subunit I (COI) and 16S rRNA. Sequence analysis of both genes revealed that the 11 species of Octopodidae fell into four distinct groups, which were genetically distant from one another and exhibited identical phylogenetic resolution. The phylogenies indicated strongly that the genus Octopus in China's coastal waters is also not monophyletic, and it is therefore clear that the Octopodidae systematics in this area requires major revision. It is demonstrated that partial sequence information of both the mitochondrial genes 16S rRNA and COI could be used as diagnostic molecular markers in the identification and resolution of the taxonomic ambiguity of Octopodidae species.

  14. Diagnosis of mitochondrial disorders by concomitant next-generation sequencing of the exome and mitochondrial genome

    PubMed Central

    Dinwiddie, Darrell L.; Smith, Laurie D.; Miller, Neil A.; Atherton, Andrea M.; Farrow, Emily G.; Strenk, Meghan E.; Soden, Sarah E.; Saunders, Carol J.; Kingsmore, Stephen F.

    2015-01-01

    Mitochondrial diseases are notoriously difficult to diagnose due to extreme locus and allelic heterogeneity, with both nuclear and mitochondrial genomes potentially liable. Using exome sequencing we demonstrate the ability to rapidly and cost effectively evaluate both the nuclear and mitochondrial genomes to obtain a molecular diagnosis for four patients with three distinct mitochondrial disorders. One patient was found to have Leigh syndrome due to a mutation in MT-ATP6, two affected siblings were discovered to be compound heterozygous for mutations in the NDUFV1 gene, which causes mitochondrial complex I deficiency, and one patient was found to have coenzyme Q10 deficiency due to compound heterozygous mutations in COQ2. In all cases conventional diagnostic testing failed to identify a molecular diagnosis. We suggest that additional studies should be conducted to evaluate exome sequencing as a primary diagnostic test for mitochondrial diseases, including those due to mtDNA mutations. PMID:23631824

  15. Mitochondrial Genome Sequence of the Glass Sponge Oopsacas minuta

    PubMed Central

    Santini, Sébastien; Rocher, Caroline; Le Bivic, André

    2015-01-01

    We report the complete mitochondrial genome sequence of the Mediterranean glass sponge Oopsacas minuta. This 19-kb mitochondrial genome has 24 noncoding genes (22 tRNAs and 2 rRNAs) and 14 protein-encoding genes coding for 11 subunits of respiratory chain complexes and 3 ATP synthase subunits. PMID:26227597

  16. Complete Mitochondrial Genome Sequence of the Pezizomycete Pyronema confluens

    PubMed Central

    2016-01-01

    The complete mitochondrial genome of the ascomycete Pyronema confluens has been sequenced. The circular genome has a size of 191 kb and contains 48 protein-coding genes, 26 tRNA genes, and two rRNA genes. Of the protein-coding genes, 14 encode conserved mitochondrial proteins, and 31 encode predicted homing endonuclease genes. PMID:27174271

  17. Water buffalo (Bubalus bubalis): complete nucleotide mitochondrial genome sequence.

    PubMed

    Parma, Pietro; Erra-Pujada, Marta; Feligini, Maria; Greppi, Gianfranco; Enne, Giuseppe

    2004-01-01

    In this work, we report the whole sequence of the water buffalo (Bubalus bubalis) mitochondrial genome. The water buffalo mt molecule is 16.355 base pair length and shows a genome organization similar to those reported for other mitochondrial genome. These new data provide an useful tool for many research area, i.e. evolutionary study and identification of food origin.

  18. Mitochondrial DNA sequence variation in multiple sclerosis

    PubMed Central

    Santaniello, Adam; Caillier, Stacy J.; D'Alfonso, Sandra; Martinelli Boneschi, Filippo; Hauser, Stephen L.; Oksenberg, Jorge R.

    2015-01-01

    Objective: To assess the influence of common mitochondrial DNA (mtDNA) sequence variation on multiple sclerosis (MS) risk in cases and controls part of an international consortium. Methods: We analyzed 115 high-quality mtDNA variants and common haplogroups from a previously published genome-wide association study among 7,391 cases from the International Multiple Sclerosis Genetics Consortium and 14,568 controls from the Wellcome Trust Case Control Consortium 2 project from 7 countries. Significant single nucleotide polymorphism and haplogroup associations were replicated in 3,720 cases and 879 controls from the University of California, San Francisco. Results: An elevated risk of MS was detected among haplogroup JT carriers from 7 pooled clinic sites (odds ratio [OR] = 1.15, 95% confidence interval [CI] = 1.07–1.24, p = 0.0002) included in the discovery study. The increased risk of MS was observed for both haplogroup T (OR = 1.17, 95% CI = 1.06–1.29, p = 0.002) and haplogroup J carriers (OR = 1.11, 95% CI = 1.01–1.22, p = 0.03). These haplogroup associations with MS were not replicated in the independent sample set. An elevated risk of primary progressive (PP) MS was detected for haplogroup J participants from 3 European discovery populations (OR = 1.49, 95% CI = 1.10–2.01, p = 0.009). This elevated risk was borderline significant in the US replication population (OR = 1.43, 95% CI = 0.99–2.08, p = 0.058) and remained significant in pooled analysis of discovery and replication studies (OR = 1.43, 95% CI = 1.14–1.81, p = 0.002). No common individual mtDNA variants were associated with MS risk. Conclusions: Identification and validation of mitochondrial genetic variants associated with MS and PPMS may lead to new targets for treatment and diagnostic tests for identifying potential responders to interventions that target mitochondria. PMID:26136518

  19. The complete mitochondrial genome sequence of Hepatozoon catesbianae (Apicomplexa: Coccidia: Adeleorina), a blood parasite of the green frog, Lithobates (formerly Rana) clamitans.

    PubMed

    Leveille, Alexandre N; Ogedengbe, Mosun E; Hafeez, Mian A; Tu, Hsiang-Hsien Abby; Barta, John R

    2014-10-01

    A complete mitochondrial genome for the blood parasite Hepatozoon catesbianae (Alveolata; Apicomplexa; Coccidia; Adeleorina; Hepatozoidae) was obtained through PCR amplification and direct sequencing of resulting PCR products. The mitochondrial genome of H. catesbianae is 6,397 bp in length and contains 3 protein-coding genes (cytochrome c oxidase subunit I [COI]; cytochrome c oxidase subunit III [COIII]; and cytochrome B [CytB]). Sequence similarities to previously published mitochondrial genomes of other apicomplexan parasites permitted annotation of 23 putative rDNA fragments in the mitochondrial genome of H. catesbianae, 14 large subunit rDNA fragments, and 9 small subunit rDNA fragments. Sequences corresponding to rDNA fragments RNA5, RNA8, RNA11, and RNA19 of Plasmodium falciparum were not identified in the mitrochondrial genome sequence of H. catesbianae. Although the presence of 3 protein-coding regions and numerous putative rDNA fragments is a feature typical for apicomplexan mitochondrial genomes, the mitochondrial genome of H. catesbianae possesses a structure and gene organization that is distinct among the Apicomplexa. This is the first complete mitochondrial genome sequence obtained from any apicomplexan parasite in the suborder Adeleorina.

  20. Phylogenetic analysis of the spider mite sub-family Tetranychinae (Acari: Tetranychidae) based on the mitochondrial COI gene and the 18S and the 5' end of the 28S rRNA genes indicates that several genera are polyphyletic.

    PubMed

    Matsuda, Tomoko; Morishita, Maiko; Hinomoto, Norihide; Gotoh, Tetsuo

    2014-01-01

    The spider mite sub-family Tetranychinae includes many agricultural pests. The internal transcribed spacer (ITS) region of nuclear ribosomal RNA genes and the cytochrome c oxidase subunit I (COI) gene of mitochondrial DNA have been used for species identification and phylogenetic reconstruction within the sub-family Tetranychinae, although they have not always been successful. The 18S and 28S rRNA genes should be more suitable for resolving higher levels of phylogeny, such as tribes or genera of Tetranychinae because these genes evolve more slowly and are made up of conserved regions and divergent domains. Therefore, we used both the 18S (1,825-1,901 bp) and 28S (the 5' end of 646-743 bp) rRNA genes to infer phylogenetic relationships within the sub-family Tetranychinae with a focus on the tribe Tetranychini. Then, we compared the phylogenetic tree of the 18S and 28S genes with that of the mitochondrial COI gene (618 bp). As observed in previous studies, our phylogeny based on the COI gene was not resolved because of the low bootstrap values for most nodes of the tree. On the other hand, our phylogenetic tree of the 18S and 28S genes revealed several well-supported clades within the sub-family Tetranychinae. The 18S and 28S phylogenetic trees suggest that the tribes Bryobiini, Petrobiini and Eurytetranychini are monophyletic and that the tribe Tetranychini is polyphyletic. At the genus level, six genera for which more than two species were sampled appear to be monophyletic, while four genera (Oligonychus, Tetranychus, Schizotetranychus and Eotetranychus) appear to be polyphyletic. The topology presented here does not fully agree with the current morphology-based taxonomy, so that the diagnostic morphological characters of Tetranychinae need to be reconsidered.

  1. A novel mutation MT-COIII m.9267G>C and MT-COI m.5913G>A mutation in mitochondrial genes in a Tunisian family with maternally inherited diabetes and deafness (MIDD) associated with severe nephropathy.

    PubMed

    Tabebi, Mouna; Mkaouar-Rebai, Emna; Mnif, Mouna; Kallabi, Fakhri; Ben Mahmoud, Afif; Ben Saad, Wafa; Charfi, Nadia; Keskes-Ammar, Leila; Kamoun, Hassen; Abid, Mohamed; Fakhfakh, Faiza

    2015-04-10

    Mitochondrial diabetes (MD) is a heterogeneous disorder characterized by a chronic hyperglycemia, maternal transmission and its association with a bilateral hearing impairment. Several studies reported mutations in mitochondrial genes as potentially pathogenic for diabetes, since mitochondrial oxidative phosphorylation plays an important role in glucose-stimulated insulin secretion from beta cells. In the present report, we studied a Tunisian family with mitochondrial diabetes (MD) and deafness associated with nephropathy. The mutational analysis screening revealed the presence of a novel heteroplasmic mutation m.9276G>C in the mitochondrial COIII gene, detected in mtDNA extracted from leukocytes of a mother and her two daughters indicating that this mutation is maternally transmitted and suggest its implication in the observed phenotype. Bioinformatic tools showed that m.9267G>C mutation (p.A21P) is « deleterious » and it can modify the function and the stability of the MT-COIII protein by affecting the assembly of mitochondrial COX subunits and the translocation of protons then reducing the activity of the respective OXPHOS complexes of ATP synthesis. The nonsynonymous mutation (p.A21P) has not been reported before, it is the first mutation described in the COXIII gene which is related to insulin dependent mitochondrial diabetes and deafness and could be specific to the Tunisian population. The m.9267G>C mutation was present with a nonsynonymous inherited mitochondrial homoplasmic variation MT-COI m.5913 G>A (D4N) responsible of high blood pressure, a clinical feature detected in all explored patients.

  2. PCR Primers for Metazoan Mitochondrial 12S Ribosomal DNA Sequences

    PubMed Central

    Machida, Ryuji J.; Kweskin, Matthew; Knowlton, Nancy

    2012-01-01

    Background Assessment of the biodiversity of communities of small organisms is most readily done using PCR-based analysis of environmental samples consisting of mixtures of individuals. Known as metagenetics, this approach has transformed understanding of microbial communities and is beginning to be applied to metazoans as well. Unlike microbial studies, where analysis of the 16S ribosomal DNA sequence is standard, the best gene for metazoan metagenetics is less clear. In this study we designed a set of PCR primers for the mitochondrial 12S ribosomal DNA sequence based on 64 complete mitochondrial genomes and then tested their efficacy. Methodology/Principal Findings A total of the 64 complete mitochondrial genome sequences representing all metazoan classes available in GenBank were downloaded using the NCBI Taxonomy Browser. Alignment of sequences was performed for the excised mitochondrial 12S ribosomal DNA sequences, and conserved regions were identified for all 64 mitochondrial genomes. These regions were used to design a primer pair that flanks a more variable region in the gene. Then all of the complete metazoan mitochondrial genomes available in NCBI's Organelle Genome Resources database were used to determine the percentage of taxa that would likely be amplified using these primers. Results suggest that these primers will amplify target sequences for many metazoans. Conclusions/Significance Newly designed 12S ribosomal DNA primers have considerable potential for metazoan metagenetic analysis because of their ability to amplify sequences from many metazoans. PMID:22536450

  3. The complete mitochondrial genome sequence of Emperor Penguins (Aptenodytes forsteri).

    PubMed

    Xu, Qiwu; Xia, Yan; Dang, Xiao; Chen, Xiaoli

    2016-09-01

    The emperor penguin (Aptenodytes forsteri) is the largest living species of penguin. Herein, we first reported the complete mitochondrial genome of emperor penguin. The mitochondrial genome is a circular molecule of 17 301 bp in length, consisting of 13 protein-coding genes, 22 tRNA genes, two rRNA, and one control region. To verify the accuracy and the utility of new determined mitogenome sequences, we constructed the species phylogenetic tree of emperor penguin together with 10 other closely species. This is the second complete mitochondrial genome of penguin, and this is going to be an important data to study mitochondrial evolution of birds. PMID:26403091

  4. COI barcode versus morphological identification of Culex (Culex) (Diptera: Culicidae) species: a case study using samples from Argentina and Brazil.

    PubMed

    Laurito, Magdalena; Oliveira, Tatiane M P de; Almirón, Walter Ricardo; Sallum, Maria Anice Mureb

    2013-01-01

    Sequences of the cytochrome c oxidase subunit I (COI) mitochondrial gene from adults of 22 Culex (Culex) species from Argentina and Brazil were employed to assess species identification and to test the usefulness of COI for barcoding using the best close match (BCM) algorithm. A pairwise Kimura two-parameter distance matrix including the mean intra and interspecific distances for 71 COI barcode sequences was constructed. Of the 12 COI lineages recovered in the Neighbour-joining topology, five confirmed recognised morphological species (Cx. acharistus, Cx. chidesteri, Cx. dolosus, Cx. lygrus and Cx. saltanensis) with intraspecific divergences lower than 1.75%. Cx. bilineatus is formally resurrected from the synonymy of Cx. dolosus. Cx. maxi , Cx. surinamensis and the Coronator group species included were clustered into an unresolved lineage. The intraspecific distance of Cx. pipiens (3%) was almost twice the interspecific between it and Cx. quinquefasciatus (1.6%). Regarding the BCM criteria, the COI barcode successfully identified 69% of all species. The rest of the sequences, approximately 10%, 18% and 3%, remained as ambiguously, mis and unidentified, respectively. The COI barcode does not contain enough information to distinguish Culex (Cux.) species. PMID:24473810

  5. COI barcode versus morphological identification of Culex ( Culex ) (Diptera: Culicidae) species: a case study using samples from Argentina and Brazil

    PubMed Central

    Laurito, Magdalena; de Oliveira, Tatiane MP; Almirón, Walter Ricardo; Sallum, Maria Anice Mureb

    2013-01-01

    Sequences of the cytochrome c oxidase subunit I (COI) mitochondrial gene from adults of 22 Culex ( Culex ) species from Argentina and Brazil were employed to assess species identification and to test the usefulness of COI for barcoding using the best close match (BCM) algorithm. A pairwise Kimura two-parameter distance matrix including the mean intra and interspecific distances for 71 COI barcode sequences was constructed. Of the 12 COI lineages recovered in the Neighbour-joining topology, five confirmed recognised morphological species ( Cx. acharistus , Cx. chidesteri , Cx. dolosus , Cx. lygrus and Cx. saltanensis ) with intraspecific divergences lower than 1.75%. Cx. bilineatus is formally resurrected from the synonymy of Cx. dolosus . Cx. maxi , Cx. surinamensis and the Coronator group species included were clustered into an unresolved lineage. The intraspecific distance of Cx. pipiens (3%) was almost twice the interspecific between it and Cx. quinquefasciatus (1.6%). Regarding the BCM criteria, the COI barcode successfully identified 69% of all species. The rest of the sequences, approximately 10%, 18% and 3%, remained as ambiguously, mis and unidentified, respectively. The COI barcode does not contain enough information to distinguish Culex ( Cux. ) species. PMID:24473810

  6. Targeted exome sequencing for mitochondrial disorders reveals high genetic heterogeneity

    PubMed Central

    2013-01-01

    Background Mitochondrial disorders are difficult to diagnose due to extreme genetic and phenotypic heterogeneities. Methods We explored the utility of targeted next-generation sequencing for the diagnosis of mitochondrial disorders in 148 patients submitted for clinical testing. A panel of 447 nuclear genes encoding mitochondrial respiratory chain complexes, and other genes inducing secondary mitochondrial dysfunction or that cause diseases which mimic mitochondrial disorders were tested. Results We identified variants considered to be possibly disease-causing based on family segregation data and/or variants already known to cause disease in twelve genes in thirteen patients. Rare or novel variants of unknown significance were identified in 45 additional genes for various metabolic, genetic or neurogenetic disorders. Conclusions Primary mitochondrial defects were confirmed only in four patients indicating that majority of patients with suspected mitochondrial disorders are presumably not the result of direct impairment of energy production. Our results support that clinical and routine laboratory ascertainment for mitochondrial disorders are challenging due to significant overlapping non-specific clinical symptoms and lack of specific biomarkers. While next-generation sequencing shows promise for diagnosing suspected mitochondrial disorders, the challenges remain as the underlying genetic heterogeneity may be greater than suspected and it is further confounded by the similarity of symptoms with other conditions as we report here. PMID:24215330

  7. Complete Mitochondrial Genome Sequence of Sunflower (Helianthus annuus L.).

    PubMed

    Grassa, Christopher J; Ebert, Daniel P; Kane, Nolan C; Rieseberg, Loren H

    2016-01-01

    This is the first complete mitochondrial genome sequence for sunflower and the first complete mitochondrial genome for any member of Asteraceae, the largest plant family, which includes over 23,000 named species. The master circle is 300,945-bp long and includes 27 protein-coding sequences, 18 tRNAs, and the 26S, 5S, and 18S rRNAs. PMID:27635002

  8. Complete Mitochondrial Genome Sequence of Sunflower (Helianthus annuus L.)

    PubMed Central

    Ebert, Daniel P.; Kane, Nolan C.; Rieseberg, Loren H.

    2016-01-01

    This is the first complete mitochondrial genome sequence for sunflower and the first complete mitochondrial genome for any member of Asteraceae, the largest plant family, which includes over 23,000 named species. The master circle is 300,945-bp long and includes 27 protein-coding sequences, 18 tRNAs, and the 26S, 5S, and 18S rRNAs. PMID:27635002

  9. Complete mitochondrial DNA sequencing of Vieja synspila, a cichlid fish.

    PubMed

    Xu, Bin; Gao, Jianzhong; Wang, Xuelong; Chen, Zaizhong; Wang, Chenghui

    2016-01-01

    The Redhead cichlid (Vieja synspila) is an important aquarium fish and a useful phylogenetic organism of the Cichlidae family. In this study, we sequenced the mitochondrial genome of the Redhead cichlid for the first time. The mitogenome (16,543 bp) had the typical mitochondrial characteristics of other cichlid fish, including 13 protein-coding, 22 tRNA, two rRNA genes and one putative control region. This sequence will be helpful in studying the phylogenetic relationships between cichlid fish.

  10. Inferring the Phylogeny of Bovidae Using Mitochondrial DNA Sequences: Resolving Power of Individual Genes Relative to Complete Genomes

    PubMed Central

    Arif, Ibrahim A.; Bakir, Mohammad A.; Khan, Haseeb A.

    2012-01-01

    Molecular techniques that assess biodiversity through the analysis of a small segment of mitochondrial genome have been getting wide attention for inferring the mammalian diversity. Due to their highly conserved nature, specific mitochondrial genes offer a promising tool for phylogenetic analysis. However, there is no established criteria for selecting the typical mitochondrial DNA (mtDNA) segments to achieve a greater resolving power. We therefore chose the family Bovidae as a model and compared the tree-topologies resulting from the commonly used and phylogenetically-informative genes including 16S rRNA, 12S rRNA, COI, Cyt b and D-loop with respect to complete mitochondrial genome. The tree topologies from the whole mitochondrial genome of 12 species were not identical albeit similar with those resulting from the five individual genes mentioned above. High bootstrap values were observed for mtDNA compared with that of any single gene. The average pair-wise sequence divergence using different genetic modes was found to be: D-loop (0.229) > Cyt b (0.159) > COI or complete mtDNA (0.143) > 12S rRNA (0.094) > 16S rRNA (0.091). The tree resulting from complete mtDNA clearly separated the 12 taxa of Bovidae into 3 major clusters, one cluster each for subfamily Cervinae and Bovinae and the third cluster comprised the distinctive clades of Caprinae and Antilopinae. However, jumping clades of Antilopinae were observed while using the individual genes. This study showed that Bison bison and Bos Taurus have very close phylogenetic relationship compared to Bubalus bubalis (Bovinae), irrespective of the method used. Our findings suggest that complete mtDNA genome provides most reliable understanding of complex phylogenetic relationships while the reliability of individual gene trees should be verified with high bootstrap support. PMID:22399841

  11. Phylogenetic position of Indian termites (Isoptera: Termitidae) with their respective genera inferred from DNA sequence analysis of the mitochondrial cytochrome oxidase gene subunit I compared to subunit II.

    PubMed

    Sharma, Vijay Lakshmi; Singla, Mandakini; Sobti, Ranbir Chander

    2013-08-20

    The present work was aimed to investigate the phylogenetic analysis of different species of Indian termites belonging to the family termitidae based on mitochondrial genes COI and COII. The sequences so obtained from public database revealed grouping of termites according to their ecological distribution. The sequences of the species under investigation were characterized on the basis of frequencies of nucleotide bases and in most of the species, a significantly high percentage of A+T base composition was observed. Phylogenetic tree revealed positioning of species according to the analysis of their cytochrome oxidase subunits.

  12. Design of phylum-specific hybrid primers for DNA barcoding: addressing the need for efficient COI amplification in the Echinodermata.

    PubMed

    Hoareau, T B; Boissin, E

    2010-11-01

    Recent research has shown the usefulness of the Folmer region of the cytochrome oxidase I (COI) as a genetic barcode to assist in species delimitation of echinoderms. However, amplification of COI is often challenging in echinoderms (low success or pseudogenes). We present a method that allows the design of phylum-specific hybrid primers, and use this to develop COI primers for the Echinodermata. We aligned COI sequences from 310 echinoderm species and designed all possible primers along the consensus sequence with two methods (standard degenerate and hybrid). We found much lower degeneracy for hybrid primers (4-fold degeneracy) than for standard degenerate primers (≥48-fold degeneracy). We then designed the most conserved hybrid primers to amplify a >500-bp region within COI. These primers successfully amplified this gene region in all tested taxa (123 species across all echinoderm classes). Sequencing of 30 species among these confirmed both the quality of the sequences (>500 bp, no pseudogenes) and their utility as a DNA barcode. This method should be useful for developing primers for other mitochondrial genes and other phyla. The method will also be of interest for the development of future projects involving both community-based genetic assessments on macroorganisms and biodiversity assessment of environmental samples using high-throughput sequencing.

  13. Sequencing and phylogenetic analysis of the Pyrgilauda ruficollis (Aves,Passeridae) complete mitochondrial genome

    PubMed Central

    MA, Yong-Gui; HUANG, Yuan; LEI, Fu-Min

    2014-01-01

    In this study, both long PCR and conserved primers walking sequencing methods were used to determine the complete sequence of the of Pyrgilauda ruficollis mitochondrial genome (KC836121). The results showed that the complete mitochondrial genome of P. ruficollis is 1 6909 bp in length with 55.0% A+T content, harboring the typical 37 genes. The mitogenome had the same gene order with that of Podoces hendersoni. All protein coding genes started with ATG codon, except ND3 with GTG. For the stop codon usage, most genes terminate with codons TAA or TAG, but ND5 terminated with AGA, while ND1 and COI genes with AGG, and both the genes COIII and ND4 have an incomplete termination codon (T). The secondary structures of 22 tRNA genes were also predicted, showing that all tRNAs can form typical clover-leaf secondary structures, except for the tRNASer (AGN) which loses the DHU arm, while tRNAPhe harbor an extra nucleotide inserted in the TψC arm. The predicted secondary structures of 12S rRNA and 16S rRNA exhibit 47 helices in 4 domains and 60 helices in 6 domains respectively. The control region of P. ruficollis with the length of 1 305 bp was located between tRNAGlu and tRNAPhe, and typical domains of which could be found as other bird groups. Using the data from 13 mitochondrial protein-coding genes, results of a final phylogenetic analysis strongly supports the traditional view that P. ruficollis is closely related with Passeridae and Fringillidae. PMID:24668650

  14. The mitochondrial genome sequence of the Tasmanian tiger (Thylacinus cynocephalus)

    PubMed Central

    Miller, Webb; Drautz, Daniela I.; Janecka, Jan E.; Lesk, Arthur M.; Ratan, Aakrosh; Tomsho, Lynn P.; Packard, Mike; Zhang, Yeting; McClellan, Lindsay R.; Qi, Ji; Zhao, Fangqing; Gilbert, M. Thomas P.; Dalén, Love; Arsuaga, Juan Luis; Ericson, Per G.P.; Huson, Daniel H.; Helgen, Kristofer M.; Murphy, William J.; Götherström, Anders; Schuster, Stephan C.

    2009-01-01

    We report the first two complete mitochondrial genome sequences of the thylacine (Thylacinus cynocephalus), or so-called Tasmanian tiger, extinct since 1936. The thylacine's phylogenetic position within australidelphian marsupials has long been debated, and here we provide strong support for the thylacine's basal position in Dasyuromorphia, aided by mitochondrial genome sequence that we generated from the extant numbat (Myrmecobius fasciatus). Surprisingly, both of our thylacine sequences differ by 11%–15% from putative thylacine mitochondrial genes in GenBank, with one of our samples originating from a direct offspring of the previously sequenced individual. Our data sample each mitochondrial nucleotide an average of 50 times, thereby providing the first high-fidelity reference sequence for thylacine population genetics. Our two sequences differ in only five nucleotides out of 15,452, hinting at a very low genetic diversity shortly before extinction. Despite the samples’ heavy contamination with bacterial and human DNA and their temperate storage history, we estimate that as much as one-third of the total DNA in each sample is from the thylacine. The microbial content of the two thylacine samples was subjected to metagenomic analysis, and showed striking differences between a wild-captured individual and a born-in-captivity one. This study therefore adds to the growing evidence that extensive sequencing of museum collections is both feasible and desirable, and can yield complete genomes. PMID:19139089

  15. Complete mitochondrial genome sequence of the Tyrolean Iceman.

    PubMed

    Ermini, Luca; Olivieri, Cristina; Rizzi, Ermanno; Corti, Giorgio; Bonnal, Raoul; Soares, Pedro; Luciani, Stefania; Marota, Isolina; De Bellis, Gianluca; Richards, Martin B; Rollo, Franco

    2008-11-11

    The Tyrolean Iceman was a witness to the Neolithic-Copper Age transition in Central Europe 5350-5100 years ago, and his mummified corpse was recovered from an Alpine glacier on the Austro-Italian border in 1991 [1]. Using a mixed sequencing procedure based on PCR amplification and 454 sequencing of pooled amplification products, we have retrieved the first complete mitochondrial-genome sequence of a prehistoric European. We have then compared it with 115 related extant lineages from mitochondrial haplogroup K. We found that the Iceman belonged to a branch of mitochondrial haplogroup K1 that has not yet been identified in modern European populations. This is the oldest complete Homo sapiens mtDNA genome generated to date. The results point to the potential significance of complete-ancient-mtDNA studies in addressing questions concerning the genetic history of human populations that the phylogeography of modern lineages is unable to tackle.

  16. The complete mitochondrial genome sequence of the Daweishan Mini chicken.

    PubMed

    Yan, Ming-Li; Ding, Su-Ping; Ye, Shao-Hui; Wang, Chun-Guang; He, Bao-Li; Yuan, Zhi-Dong; Liu, Li-Li

    2016-01-01

    Daweishan Mini chicken is a valuable chicken breed in China. In this study, the complete mitochondrial genome sequence of Daweishan Mini chicken using PCR amplification, sequencing and assembling has been obtained for the first time. The total length of the mitochondrial genome was 16,785 bp, with the base composition of 30.26% A, 23.73% T, 32.51% C, 13.51% G. It contained 37 genes (2 ribosomal RNA genes, 13 protein-coding genes, 22 transfer RNA genes) and a major non-coding control region (D-loop region). The protein start codons are ATG, except for COX1 that begins with GTG. The complete mitochondrial genome sequence of Daweishan Mini chicken provides an important data set for further investigation on the phylogenetic relationships within Gallus gallus.

  17. Phylogenetic Relationships of Japanese Auritibicen Species (Hemiptera: Cicadidae: Cryptotympanini) Inferred from Mitochondrial and Nuclear Gene Sequences.

    PubMed

    Sota, Teiji; Kojima, Takanori; Lee, Young June; Lin, Chung-Ping

    2016-08-01

    We investigated the phylogenetic relationships and divergence times within the genus Auritibicen(Cicadidae: Cicadinae: Cryptotympanini), analyzing five Japanese species (A. japonicus, A. bihamatus,A. kyushyuensis, A. esakii and A. flammatus) and three species from East Asian mainland and Taiwan (A. atrofasciatus, A. intermedius and A. chujoi) using mitochondrial cytochrome oxidase subunit I (COI) and nuclear elongation factor 1-alpha (EF-1a) gene sequences. Although the EF-1a gene tree did not resolve the relationships among these Auritibicen species, the trees based on COI gene and the combined data set showed that Japanese taxa comprised three distinct lineages: the individual species A. flammatus and A. bihamatus, and the A. japonicus group, comprising A. japonicus, A. esakii and A. kyushyuensis from Japan and A. intermedius from Korea. In A. kyushyuensis, which comprises three populations in Kyushu, western Honshu and Shikoku, the specimens from western Honshu and Shikoku were closely related to each other, but not to the specimen from Kyushu; instead, they were sister to the Korean A. intermedius. The incongruence between the gene tree and species tree necessitates further population genetic and morphological studies to confirm the classification and species status of the western Honshu and Shikoku populations of A. kyushyuensis, which were originally described as two independent species. Divergence time estimation suggested that the most recent common ancestor of Auritibicen species studied dated back to the late Pliocene and that the species of the A. japonicus group diverged during the mid Pleistocene. Thus, the Pleistocene climatic fluctuation may have promoted the divergence of the Auritibicen species. PMID:27498799

  18. Mitochondrial Genome Sequences Effectively Reveal the Phylogeny of Hylobates Gibbons

    PubMed Central

    Chan, Yi-Chiao; Roos, Christian; Inoue-Murayama, Miho; Inoue, Eiji; Shih, Chih-Chin; Pei, Kurtis Jai-Chyi; Vigilant, Linda

    2010-01-01

    Background Uniquely among hominoids, gibbons exist as multiple geographically contiguous taxa exhibiting distinctive behavioral, morphological, and karyotypic characteristics. However, our understanding of the evolutionary relationships of the various gibbons, especially among Hylobates species, is still limited because previous studies used limited taxon sampling or short mitochondrial DNA (mtDNA) sequences. Here we use mtDNA genome sequences to reconstruct gibbon phylogenetic relationships and reveal the pattern and timing of divergence events in gibbon evolutionary history. Methodology/Principal Findings We sequenced the mitochondrial genomes of 51 individuals representing 11 species belonging to three genera (Hylobates, Nomascus and Symphalangus) using the high-throughput 454 sequencing system with the parallel tagged sequencing approach. Three phylogenetic analyses (maximum likelihood, Bayesian analysis and neighbor-joining) depicted the gibbon phylogenetic relationships congruently and with strong support values. Most notably, we recover a well-supported phylogeny of the Hylobates gibbons. The estimation of divergence times using Bayesian analysis with relaxed clock model suggests a much more rapid speciation process in Hylobates than in Nomascus. Conclusions/Significance Use of more than 15 kb sequences of the mitochondrial genome provided more informative and robust data than previous studies of short mitochondrial segments (e.g., control region or cytochrome b) as shown by the reliable reconstruction of divergence patterns among Hylobates gibbons. Moreover, molecular dating of the mitogenomic divergence times implied that biogeographic change during the last five million years may be a factor promoting the speciation of Sundaland animals, including Hylobates species. PMID:21203450

  19. Molecular characterization of Fasciola hepatica from Sardinia based on sequence analysis of genomic and mitochondrial gene markers.

    PubMed

    Farjallah, Sarra; Ben Slimane, Badreddine; Piras, Cristina Maria; Amor, Nabil; Garippa, Giovanni; Merella, Paolo

    2013-11-01

    The aim of the present study is to investigate for the first time the genetic diversity of samples identified morphologically as Fasciola hepatica (Platyhelminthes: Trematoda: Digenea) (n=66) from sheep and cattle from two localities of Sardinia and to compare them with available data from other localities by partial sequences of the first (ITS-1), the 5.8S, and second (ITS-2) Internal Transcribed Spacers (ITS) of nuclear ribosomal DNA (rDNA) genes, the mitochondrial cytochrome c oxidase subunit I (COI), and nicotinamide adenine dinucleotide dehydrogenase subunit I (ND1) genes. Comparison of the sequences from Sardinia with sequences of Fasciola spp. from GenBank confirmed that all samples belong to the species F. hepatica. The nucleotide sequencing of ITS rDNA showed no nucleotide variation in the ITS-1, 5.8S and ITS-2 rDNA sequences among all Sardinian samples, comparing with two ITS-2 haplotypes in standard F. hepatica, showing a substitution C/T in 20 position 859, reported previously from Tunisia, Algeria, Australia, Uruguay and Spain. The present study shows that in Sardinian sheep and cattle there is the most frequent haplotype (FhITS-H1) of F. hepatica species from South Europe. Considering NDI sequences, the phylogenetic trees showed reliable grouping among the haplotypes of F. hepatica from Sardinia and the mitochondrial lineage I, including the main N1 haplotype, observed previously from Europe (Russia, Belarus, Ukraine and Bulgaria), Armenia, West Africa (Nigeria), America (Uruguay and USA), Asia (Turkey, Japan, and China), Georgia, Turkmenistan, Azerbaijan and Australia. Furthermore, common haplotypes FhCOI-H1 and FhCOI-H2 of F. hepatica from Sardinia also corresponded mostly to the first lineage including the main C1 haplotype reported previously from Eastern European and Western Asian populations, they belonged just to a phylogenically distinguishable clade, as F. hepatica from Australia, France, Turkey, Uruguay, Russia, Armenia, Ukraine, Belarus

  20. A novel mutation MT-COIII m.9267G>C and MT-COI m.5913G>A mutation in mitochondrial genes in a Tunisian family with maternally inherited diabetes and deafness (MIDD) associated with sever nephropathy

    SciTech Connect

    Tabebi, Mouna; Mkaouar-Rebai, Emna; Mnif, Mouna; Kallabi, Fakhri; Ben Mahmoud, Afif; Ben Saad, Wafa; Charfi, Nadia; Keskes-Ammar, Leila; Kamoun, Hassen; Abid, Mohamed; Fakhfakh, Faiza

    2015-04-10

    Mitochondrial diabetes (MD) is a heterogeneous disorder characterized by a chronic hyperglycemia, maternal transmission and its association with a bilateral hearing impairment. Several studies reported mutations in mitochondrial genes as potentially pathogenic for diabetes, since mitochondrial oxidative phosphorylation plays an important role in glucose-stimulated insulin secretion from beta cells. In the present report, we studied a Tunisian family with mitochondrial diabetes (MD) and deafness associated with nephropathy. The mutational analysis screening revealed the presence of a novel heteroplasmic mutation m.9276G>C in the mitochondrial COIII gene, detected in mtDNA extracted from leukocytes of a mother and her two daughters indicating that this mutation is maternally transmitted and suggest its implication in the observed phenotype. Bioinformatic tools showed that m.9267G>C mutation (p.A21P) is « deleterious » and it can modify the function and the stability of the MT-COIII protein by affecting the assembly of mitochondrial COX subunits and the translocation of protons then reducing the activity of the respective OXPHOS complexes of ATP synthesis. The nonsynonymous mutation (p.A21P) has not been reported before, it is the first mutation described in the COXIII gene which is related to insulin dependent mitochondrial diabetes and deafness and could be specific to the Tunisian population. The m.9267G>C mutation was present with a nonsynonymous inherited mitochondrial homoplasmic variation MT-COI m.5913 G>A (D4N) responsible of high blood pressure, a clinical feature detected in all explored patients. - Highlights: • MT-COX3 m.9267G>C (p.A21P), heteroplasmic substitution, is not reported in any database. • m.9267G>C can be responsible of the MIDD associated with nephropaty. • This substitution can modify the function and the stability of the MT-CO3 protein. • This substitution can modify MT-CO3 structure (2D and 3D). • MT-COX3 m.9267G>C is associated

  1. Higher-level phylogeny of new world vireos (aves: vireonidae) based on sequences of multiple mitochondrial DNA genes.

    PubMed

    Cicero, C; Johnson, N K

    2001-07-01

    Interfamilial relationships of the New World songbird family Vireonidae are uncertain. Thus, we sequenced 3069 bp of four mitochondrial genes (cyt b, ND2, ND3, COI) from 19 taxa in five families and two outgroups, to examine higher-level alliances with proposed relatives. We also sequenced cyt b and ND2 from an additional five vireonids to examine intergeneric relationships within the Vireonidae and incorporated 14 sequences of cyt b from GenBank to test the effects of taxon sampling on gene tree resolution. Families appeared monophyletic in all analyses, and the affinity of vireonids to Old World corvoids was corroborated. However, relationships among the Vireonidae and other families were not resolved. Sequences of vireonids revealed high levels of divergence within and between genera, with either Cyclarhis or Vireolanius positioned basally, depending on the analysis. On the basis of mitochondrial DNA and biogeographic evidence, vireonids represent a deep lineage derived from an Old World ancestor that colonized the New World, most likely via Beringia, with subsequent radiation in the Middle American tropics. We hypothesize postcolonization dispersal of the ancestor into Middle America, followed by extinction of the ancestor in North America. This extinction event left the North Temperate Zone unoccupied by any vireonid until northward reinvasion by some species of Vireo. Although the closest living relative of vireonids remains unidentified, broad-scale sequencing of additional extant corvoids with multiple molecular markers should further elucidate Old World alliances. PMID:11421646

  2. DNA Barcoding the Medusozoa using mtCOI

    NASA Astrophysics Data System (ADS)

    Ortman, Brian D.; Bucklin, Ann; Pagès, Francesc; Youngbluth, Marsh

    2010-12-01

    The Medusozoa are a clade within the Cnidaria comprising the classes Hydrozoa, Scyphozoa, and Cubozoa. Identification of medusozoan species is challenging, even for taxonomic experts, due to their fragile forms and complex, morphologically-distinct life history stages. In this study 231 sequences for a portion of the mitochondrial Cytochrome Oxidase I (mtCOI) gene were obtained from 95 species of Medusozoans including; 84 hydrozoans (61 siphonophores, eight anthomedusae, four leptomedusae, seven trachymedusae, and four narcomedusae), 10 scyphozoans (three coronatae, four semaeostomae, two rhizostomae, and one stauromedusae), and one cubozoan. This region of mtCOI has been used as a DNA barcode (i.e., a molecular character for species recognition and discrimination) for a diverse array of taxa, including some Cnidaria. Kimura 2-parameter (K2P) genetic distances between sequence variants within species ranged from 0 to 0.057 (mean 0.013). Within the 13 genera for which multiple species were available, K2P distance between congeneric species ranged from 0.056 to 0.381. A cluster diagram generated by Neighbor Joining (NJ) using K2P distances reliably clustered all barcodes of the same species with ≥99% bootstrap support, ensuring accurate identification of species. Intra- and inter-specific variation of the mtCOI gene for the Medusozoa are appropriate for this gene to be used as a DNA barcode for species-level identification, but not for phylogenetic analysis or taxonomic classification of unknown sequences at higher taxonomic levels. This study provides a set of molecular tools that can be used to address questions of speciation, biodiversity, life-history, and population boundaries in the Medusozoa.

  3. The complete mitochondrial genome sequence of Diaphorina citri (Hemiptera: Psyllidae)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The first complete mitochondrial genome (mitogenome) sequence of Asian citrus psyllid, Diaphorina citri (Hemiptera: Psyllidae), from Guangzhou, China is presented. The circular mitogenome is 14,996 bp in length with an A+T content of 74.5%, and contains 13 protein-coding genes (PCGs), 22 tRNA genes ...

  4. The complete mitochondrial genome sequence of the budgerigar, Melopsittacus undulatus.

    PubMed

    Guan, Xiaojing; Xu, Jun; Smith, Edward J

    2016-01-01

    Here, we describe the budgie's mitochondrial genome sequence, a resource that can facilitate this parrot's use as a model organism as well as for determining its phylogenetic relatedness to other parrots/Psittaciformes. The estimated total length of the sequence was 18,193 bp. In addition to the to the 13 protein and tRNA and rRNA coding regions, the sequence also includes a duplicated hypervariable region, a feature unique to only a few birds. The two hypervariable regions shared a sequence identity of about 86%. PMID:24660934

  5. Complete mitochondrial genome sequence of Romanogobio tenuicorpus (Amur whitefin gudgeon).

    PubMed

    Dong, Fang; Tong, Guang-Xiang; Kuang, You-Yi; Sun, Xiao-Wen

    2015-01-01

    Amur whitefin gudgeon (Romanogobio tenuicorpus) belongs to the family Cyprinidae, it is freshwater aquaculture species in China. In the report, we determined the complete mitochondrial genome sequence of Romanogobio tenuicorpus, which is 16,600 bp long circular molecule with 13 protein-coding genes, 22 tRNA genes, 2 rRNA genes and a control region, the conserved sequence blocks, CSB1, CSB2 and CSB3 were also detected. PMID:24409923

  6. COI haplotype groups in Mesocriconema (Nematoda: Criconematidae) and their morphospecies associations.

    PubMed

    Powers, T O; Bernard, E C; Harris, T; Higgins, R; Olson, M; Lodema, M; Mullin, P; Sutton, L; Powers, K S

    2014-07-03

    Without applying an a priori bias for species boundaries, specimen identities in the plant-parasitic nematode genus Mesocriconema were evaluated by examining mitochondrial COI nucleotide sequences, morphology, and biogeography. A total of 242 specimens that morphologically conformed to the genus were individually photographed, measured, and amplified by a PCR primer set to preserve the linkage between specimen morphology and a specific DNA barcode sequence. Specimens were extracted from soil samples representing 45 locations across 23 ecoregions in North America. Dendrograms constructed by neighbor-joining, maximum likelihood, and Bayesian Inference using a 721-bp COI barcode were used to group COI haplotypes. Each tree-building approach resulted in 24 major haplotype groups within the dataset. The distinctiveness of these groups was evaluated by node support, genetic distance, absence of intermediates, and several measures of distinctiveness included in software used for the exploration of species boundaries. Five of the 24 COI haplotype groups corresponded to morphologically characterized, Linnaean species. Morphospecies conforming to M. discus, Discocriconemella inarata, M. rusticum, M. onoense, and M. kirjanovae were represented by groups composed of multiple closely related or identical COI haplotypes. In other cases, morphospecies names could be equally applied to multiple haplotype groups that were genetically distant from each other. Identification based on morphology alone resulted in M. curvatum and M. ornatum species designations applied to seven and three groups, respectively. Morphological characters typically used for species level identification were demonstrably variable within haplotype groups, suggesting caution in assigning species names based on published compendia that solely consider morphological characters. Morphospecies classified as M. xenoplax formed a monophyletic group composed of seven genetically distinct COI subgroups. The species

  7. THE PHYLOGENETIC RELATIONSHIPS OF WHALE-FALL VESICOMYID CLAMS BASED ON MITOCHONDRIAL COI DNA SEQUENCES. (U915626)

    EPA Science Inventory

    The perspectives, information and conclusions conveyed in research project abstracts, progress reports, final reports, journal abstracts and journal publications convey the viewpoints of the principal investigator and may not represent the views and policies of ORD and EPA. Concl...

  8. The complete mitochondrial genome sequence of Mustela eversmannii (Carnivora: Mustelidae).

    PubMed

    Liu, Guangshuai; Yang, Xiufeng; Zhang, Honghai; Sun, Guolei; Zhao, Chao; Dou, Huashan

    2016-09-01

    In this study, the complete mitochondrial genome of Steppe polecat, Mustela eversmannii, was sequenced for the first time using muscle tissue. The mitochondrial genome is a circular molecule of 16 463 bp in length and overall base composition is A (32.7%), T (27.3%), C (26.1%), and G (13.9%), which indicates a strong A-T bias. A phylogenetic analysis on the basis of 13 protein-coding genes and two rRNA genes of 10 Mustela species' mitochondrial genomes using maximum likelihood (ML) and Bayesian inference (BI) demonstrated that these Mustela species were clustered into two clades and M. eversmannii was close to M. putorius.

  9. Complete mitochondrial genome sequence of golden pompano Trachinotus ovatus.

    PubMed

    Sun, Liyuan; Zhang, Dianchang; Guo, Huayang; Jiang, Shigui; Zhu, Caiyan

    2016-01-01

    The complete mitochondrial genome of Trachinotus ovatus was determined by the polymerase chain reaction (PCR). The mitogenome is 16,564 bp long and has the typical vertebrate mitochondrial gene arrangement, including 13 protein-coding genes, 22 tRNA genes, 2 rRNA genes and one control region. The overall base composition of mitogenome is estimated to be 29.0% for A, 28.9% for C, 26.2% for T, 15.9% for G, respectively, with a high A + T content (55.2%). With the exception of ND6 and eight tRNA genes, all other mitochondrial genes are encoded on the heavy strand. The control region contains a dinucleotide repeat motif, (AT)5. This mitogenome sequence would play an important role in population genetics and the molecular taxonomy of T. ovatus.

  10. Comparison of the northern snakehead (Channa argus) and blotched snakehead (Channa maculata) and their reciprocal hybrids (C. maculata ♀ × C. argus ♂ and C. argus ♀ × C. maculata ♂) based on complete mitochondrial DNA sequences.

    PubMed

    Xincheng, Zhang; Xinping, Zhu; Kunci, Chen; Jian, Zhao; Qing, Luo; Xiaoyou, Hong

    2015-01-01

    The complete mitochondrial DNA of Channa argus, Channa maculata, C. maculate ♀ × C. argus ♂ and C. argus ♀ × C. maculata ♂ were sequenced to characterize and compare their mitochondrial genomes. The lengths were 16,558, 16,559, 16,558 and 16,559 bp respectively. Start codon of 13 protein-coding genes was ATG, except that COI was GTG. The control region of the mitogenome were 907, 908, 907 and 908 bp in C. argus, C. maculata and their reciprocal hybrids (C. argus ♀ × C. maculata ♂ and C. maculate ♀ × C. argus ♂), respectively. PMID:24409853

  11. Comparison of the northern snakehead (Channa argus) and blotched snakehead (Channa maculata) and their reciprocal hybrids (C. maculata ♀ × C. argus ♂ and C. argus ♀ × C. maculata ♂) based on complete mitochondrial DNA sequences.

    PubMed

    Xincheng, Zhang; Xinping, Zhu; Kunci, Chen; Jian, Zhao; Qing, Luo; Xiaoyou, Hong

    2015-01-01

    The complete mitochondrial DNA of Channa argus, Channa maculata, C. maculate ♀ × C. argus ♂ and C. argus ♀ × C. maculata ♂ were sequenced to characterize and compare their mitochondrial genomes. The lengths were 16,558, 16,559, 16,558 and 16,559 bp respectively. Start codon of 13 protein-coding genes was ATG, except that COI was GTG. The control region of the mitogenome were 907, 908, 907 and 908 bp in C. argus, C. maculata and their reciprocal hybrids (C. argus ♀ × C. maculata ♂ and C. maculate ♀ × C. argus ♂), respectively.

  12. COI Structural Analysis Presentation

    NASA Technical Reports Server (NTRS)

    Cline, Todd; Stahl, H. Philip (Technical Monitor)

    2001-01-01

    This report discusses the structural analysis of the Next Generation Space Telescope Mirror System Demonstrator (NMSD) developed by Composite Optics Incorporated (COI) in support of the Next Generation Space Telescope (NGST) project. The mirror was submitted to Marshall Space Flight Center (MSFC) for cryogenic testing and evaluation. Once at MSFC, the mirror was lowered to approximately 40 K and the optical surface distortions were measured. Alongside this experiment, an analytical model was developed and used to compare to the test results. A NASTRAN finite element model was provided by COI and a thermal model was developed from it. Using the thermal model, steady state nodal temperatures were calculated based on the predicted environment of the large cryogenic test chamber at MSFC. This temperature distribution was applied in the structural analysis to solve for the deflections of the optical surface. Finally, these deflections were submitted for optical analysis and comparison to the interferometer test data.

  13. Complete mitochondrial DNA genome sequences from the first New Zealanders

    PubMed Central

    Knapp, Michael; Horsburgh, K. Ann; Prost, Stefan; Stanton, Jo-Ann; Buckley, Hallie R.; Walter, Richard K.; Matisoo-Smith, Elizabeth A.

    2012-01-01

    The dispersal of modern humans across the globe began ∼65,000 y ago when people first left Africa and culminated with the settlement of East Polynesia, which occurred in the last 1,000 y. With the arrival of Polynesian canoes only 750 y ago, Aotearoa/New Zealand became the last major landmass to be permanently settled by humans. We present here complete mitochondrial genome sequences of the likely founding population of Aotearoa/New Zealand recovered from the archaeological site of Wairau Bar. These data represent complete mitochondrial genome sequences from ancient Polynesian voyagers and provide insights into the genetic diversity of human populations in the Pacific at the time of the settlement of East Polynesia. PMID:23091021

  14. mitoSAVE: mitochondrial sequence analysis of variants in Excel.

    PubMed

    King, Jonathan L; Sajantila, Antti; Budowle, Bruce

    2014-09-01

    The mitochondrial genome (mtGenome) contains genetic information amenable to numerous applications such as medical research, population and evolutionary studies, and human identity testing. However, inconsistent nomenclature assignment makes haplotype comparison difficult and can lead to false exclusion of potentially useful profiles. Massively Parallel Sequencing (MPS) is a platform for sequencing large datasets and potentially whole populations with relative ease. However, the data generated are not easily parsed and interpreted. With this in mind, mitoSAVE has been developed to enable fast conversion of Variant Call Format (VCF) files. mitoSAVE is an Excel-based workbook that converts data within the VCF into mtDNA haplotypes using phylogenetically-established nomenclature as well as rule-based alignments consistent with current forensic standards. mitoSAVE is formatted for human mitochondrial genome; however, it can easily be adapted to support other reasonably small genomes.

  15. Complete mitochondrial genome sequence of Aoluguya reindeer (Rangifer tarandus).

    PubMed

    Ju, Yan; Liu, Huamiao; Rong, Min; Yang, Yifeng; Wei, Haijun; Shao, Yuanchen; Chen, Xiumin; Xing, Xiumei

    2016-05-01

    The complete mitochondria genome of the reindeer, Rangifer tarandus, was determined by accurate polymerase chain reaction. The entire genome is 16,357 bp in length and contains 13 protein-coding genes, 2 rRNA genes, 22 tRNA genes and a D-loop region, all of which are arranged in a typical vertebrate manner. The overall base composition of the reindeer's mitochondrial genome is 33.7% of A, 23.1% of C, 30.1% of T and 13.2%of G. A termination associated sequence and several conserved central sequence block domains were discovered within the control region.

  16. Complete mitochondrial genome sequence of Aoluguya reindeer (Rangifer tarandus).

    PubMed

    Ju, Yan; Liu, Huamiao; Rong, Min; Yang, Yifeng; Wei, Haijun; Shao, Yuanchen; Chen, Xiumin; Xing, Xiumei

    2016-05-01

    The complete mitochondria genome of the reindeer, Rangifer tarandus, was determined by accurate polymerase chain reaction. The entire genome is 16,357 bp in length and contains 13 protein-coding genes, 2 rRNA genes, 22 tRNA genes and a D-loop region, all of which are arranged in a typical vertebrate manner. The overall base composition of the reindeer's mitochondrial genome is 33.7% of A, 23.1% of C, 30.1% of T and 13.2%of G. A termination associated sequence and several conserved central sequence block domains were discovered within the control region. PMID:25469816

  17. Phylogeny of scale-worms (Aphroditiformia, Annelida), assessed from 18SrRNA, 28SrRNA, 16SrRNA, mitochondrial cytochrome c oxidase subunit I (COI), and morphology.

    PubMed

    Norlinder, Erika; Nygren, Arne; Wiklund, Helena; Pleijel, Fredrik

    2012-11-01

    The phylogeny of scale-worms, benthic polychaetes carrying dorsal scales (elytra), including taxa from Acoetidae, Aphroditidae, Eulepethidae, Pholoidae, Pholoididae, Polynoidae and Sigalionidae (Aphroditiformia), is assessed from the nuclear markers 18SrRNA and 28SrRNA, and mitochondrial 16SrRNA and cytochrome c oxidase subunit I (COI), and 24 morphological characters. The data sets are analyzed both separately and combined, with Bayesian analyses, maximum likelihood and parsimony. In total, 56 terminal taxa are examined, including 48 taxa from all scale-worm families, and eight out-group species. The results indicate that Aphroditidae and Eulepethidae are the most basally placed families among the scale-worms. The Pholoididae and Pisionidae are positioned within and synonymized with the Sigalionidae, and Pholoidae may be part of the same group. The subfamily Iphioninae falls out as sister group to a clade consisting of Polynoidae and Acoetidae and is elevated to Iphionidae. The families now included in the Aphroditiformia are Acoetidae, Aphroditidae, Eulepethidae, Pholoidae, Polynoidae, Iphionidae and Sigalionidae, and the subfamily name Harmothoinae and Acholoinae are treated as a junior synonyms of Polynoinae.

  18. Genetic variability of Taenia saginata inferred from mitochondrial DNA sequences.

    PubMed

    Rostami, Sima; Salavati, Reza; Beech, Robin N; Babaei, Zahra; Sharbatkhori, Mitra; Harandi, Majid Fasihi

    2015-04-01

    Taenia saginata is an important tapeworm, infecting humans in many parts of the world. The present study was undertaken to identify inter- and intraspecific variation of T. saginata isolated from cattle in different parts of Iran using two mitochondrial CO1 and 12S rRNA genes. Up to 105 bovine specimens of T. saginata were collected from 20 slaughterhouses in three provinces of Iran. DNA were extracted from the metacestode Cysticercus bovis. After PCR amplification, sequencing of CO1 and 12S rRNA genes were carried out and two phylogenetic analyses of the sequence data were generated by Bayesian inference on CO1 and 12S rRNA sequences. Sequence analyses of CO1 and 12S rRNA genes showed 11 and 29 representative profiles respectively. The level of pairwise nucleotide variation between individual haplotypes of CO1 gene was 0.3-2.4% while the overall nucleotide variation among all 11 haplotypes was 4.6%. For 12S rRNA sequence data, level of pairwise nucleotide variation was 0.2-2.5% and the overall nucleotide variation was determined as 5.8% among 29 haplotypes of 12S rRNA gene. Considerable genetic diversity was found in both mitochondrial genes particularly in 12S rRNA gene. PMID:25687521

  19. The complete mitochondrial genome sequence of Trichiurus nanhaiensis (Perciformes: Trichiuridae).

    PubMed

    Liu, Xuemei; Guo, Yusong; Wang, Zhongduo; Liu, Chuwu

    2013-10-01

    The Naihai cutlassfish (Trichiurus nanhaiensis, Wang and Xu, 1992) is an important commercial fish species in South China Sea, while the taxonomy is still controversial. The 17,060 base pair mitochondrial genome sequence of T. nanhaiensis was determined, which shared the features with the other bony fishes for gene arrangement, nucleotide composition, and tRNA structures except for tRNA(pro) gene. The termination-associated sequence, central conserved sequence blocks (CSB-F, CSB-E, CSB-D), and conserved sequence blocks (CSB-1, CSB-2, CSB-3), as well as tandem repeats were detected in the control region. Phylogenetic analyses revealed that T. nanhaiensis together with T. lepturus, T. japonicus, and T. brevis formed a clade of Trichiurus based on the complete Cyt b genes and partial CO I genes; meanwhile, the closest relationship was established between T. nanhaiensis and T. lepturus.

  20. Environmental DNA COI barcoding for quantitative analysis of protists communities: A test using the Nebela collaris complex (Amoebozoa; Arcellinida; Hyalospheniidae).

    PubMed

    Kosakyan, Anush; Mulot, Matthieu; Mitchell, Edward A D; Lara, Enrique

    2015-08-01

    Environmental DNA surveys are used for screening eukaryotic diversity. However, it is unclear how quantitative this approach is and to what extent results from environmental DNA studies can be used for ecological studies requiring quantitative data. Mitochondrial cytochrome oxidase (COI) is used for species-level taxonomic studies of testate amoebae and should allow assessing the community composition from environmental samples, thus bypassing biases due to morphological identification. We tested this using a COI clone library approach and focusing on the Nebela collaris complex. Comparisons with direct microscopy counts showed that the COI clone library diversity data matched the morphologically identified taxa, and that community composition estimates using the two approaches were similar. However, this correlation was improved when microscopy counts were corrected for biovolume. Higher correlation with biovolume-corrected community data suggests that COI clone library data matches the ratio of mitochondria and that within closely-related taxa the density of mitochondria per unit biovolume is approximately constant. Further developments of this metabarcoding approach including quantifying the mitochondrial density among closely-related taxa, experiments on other taxonomic groups and using high throughput sequencing should make if possible to quantitatively estimate community composition of different groups, which would be invaluable for microbial food webs studies.

  1. Exome Sequencing Identifies Mitochondrial Alanyl-tRNA Synthetase Mutations in Infantile Mitochondrial Cardiomyopathy

    PubMed Central

    Götz, Alexandra; Tyynismaa, Henna; Euro, Liliya; Ellonen, Pekka; Hyötyläinen, Tuulia; Ojala, Tiina; Hämäläinen, Riikka H.; Tommiska, Johanna; Raivio, Taneli; Oresic, Matej; Karikoski, Riitta; Tammela, Outi; Simola, Kalle O.J.; Paetau, Anders; Tyni, Tiina; Suomalainen, Anu

    2011-01-01

    Infantile cardiomyopathies are devastating fatal disorders of the neonatal period or the first year of life. Mitochondrial dysfunction is a common cause of this group of diseases, but the underlying gene defects have been characterized in only a minority of cases, because tissue specificity of the manifestation hampers functional cloning and the heterogeneity of causative factors hinders collection of informative family materials. We sequenced the exome of a patient who died at the age of 10 months of hypertrophic mitochondrial cardiomyopathy with combined cardiac respiratory chain complex I and IV deficiency. Rigorous data analysis allowed us to identify a homozygous missense mutation in AARS2, which we showed to encode the mitochondrial alanyl-tRNA synthetase (mtAlaRS). Two siblings from another family, both of whom died perinatally of hypertrophic cardiomyopathy, had the same mutation, compound heterozygous with another missense mutation. Protein structure modeling of mtAlaRS suggested that one of the mutations affected a unique tRNA recognition site in the editing domain, leading to incorrect tRNA aminoacylation, whereas the second mutation severely disturbed the catalytic function, preventing tRNA aminoacylation. We show here that mutations in AARS2 cause perinatal or infantile cardiomyopathy with near-total combined mitochondrial respiratory chain deficiency in the heart. Our results indicate that exome sequencing is a powerful tool for identifying mutations in single patients and allows recognition of the genetic background in single-gene disorders of variable clinical manifestation and tissue-specific disease. Furthermore, we show that mitochondrial disorders extend to prenatal life and are an important cause of early infantile cardiac failure. PMID:21549344

  2. Mitochondrial DNA sequences from a 7000-year old brain.

    PubMed Central

    Pääbo, S; Gifford, J A; Wilson, A C

    1988-01-01

    Pieces of mitochondrial DNA from a 7000-year-old human brain were amplified by the polymerase chain reaction and sequenced. Albumin and high concentrations of polymerase were required to overcome a factor in the brain extract that inhibits amplification. For this and other sources of ancient DNA, we find an extreme inverse dependence of the amplification efficiency on the length of the sequence to be amplified. This property of ancient DNA distinguishes it from modern DNA and thus provides a new criterion of authenticity for use in research on ancient DNA. The brain is from an individual recently excavated from Little Salt Spring in southwestern Florida and the anthropologically informative sequences it yielded are the first obtained from archaeologically retrieved remains. The sequences show that this ancient individual belonged to a mitochondrial lineage that is rare in the Old World and not previously known to exist among Native Americans. Our finding brings to three the number of maternal lineages known to have been involved in the prehistoric colonization of the New World. Images PMID:3186445

  3. The complete mitochondrial genome sequence of Sinogastromyzon sichangensis (Cypriniformes, Balitoridae).

    PubMed

    Yu, Dan; He, Rong; Tang, Qiongying

    2015-01-01

    Sinogastromyzon sichangensis, belonging to the family Balitoridae in Cypriniformes, is endemic to the Upper Yangtze River and the Qing River. In this study, the complete mitochondrial genome of S. sichangensis was sequenced with its structure analyzed. The mitochondrial genome of S. sichangensis is similar to those of the typical vertebrates, 16,567 bp in length, including 13 protein-coding genes, two ribosomal RNA genes, 22 transfer RNA genes and one non-coding control region (D-loop). The D-loop of S. sichangensis was characterized by one termination-associated sequence and seven conserved sequence blocks (CSB-F, CSB-E, CSB-D, CSB-B and CSB I-III). The mitogenome sequence of S. sichangensis could contribute to estimate the phylogenetic relationship of the Balitoridae. Further investigations with more Sinogastromyzon species and other balitorid fishes included should be performed to better understand the evolutionary history of this unique group of fishes which can successfully adapt to mountain torrents. PMID:24409925

  4. Phylogeography of Tetrancistrum nebulosi (Monogenea, Dactylogyridae) on the host of mottled spinefoot (Siganus fuscescens) in the South China Sea, inferred from mitochondrial COI and ND2 genes.

    PubMed

    Wang, Ming; Yan, Shuai; Brown, Christopher L; Shaharom-Harrison, Faizah; Shi, Su-Fen; Yang, Ting-Bao

    2014-10-16

    Abstract To examine the phylogeographical pattern of Tetrancistrum nebulosi (Monogenea, Dactylogyridae) in the South China Sea, fragments of mitochondrial cytochrome c oxidase subunit I and NADH dehydrogenase subunit 2 genes were obtained for 220 individuals collected from 8 localities along the southeast coast of China and 1 locality in Terengganu, Malaysia. Based on these two genes, two and three distinct clades with geographic signals were revealed on the phylogenetic trees respectively. The divergence between these clades was estimated to occur in the late Pleistocene. Analysis of molecular variance and pairwise FST suggested a high rate of gene flow among individuals sampled from the Chinese coast, but with obvious genetic differentiation from the Malaysian population. Mismatch distribution and neutrality tests indicated that the T. nebulosi population experienced expansion in Pleistocene low sea level periods. Vicariance was considered to account for the genetic divergence between Chinese and Malaysian populations, while sea level fluctuations and mainland-island connections during glacial cycles were associated with the slight genetic divergence between the populations along the mainland coast of China and those off Sanya. On the contrary, oceanographic circulations and host migration could lead to genetic homogeneity of populations distributed along the mainland coast of China.

  5. The development of next-generation sequencing assays for the mitochondrial genome and 108 nuclear genes associated with mitochondrial disorders.

    PubMed

    Dames, Shale; Chou, Lan-Szu; Xiao, Ye; Wayman, Tyler; Stocks, Jennifer; Singleton, Marc; Eilbeck, Karen; Mao, Rong

    2013-07-01

    Sanger sequencing of multigenic disorders can be technically challenging, time consuming, and prohibitively expensive. High-throughput next-generation sequencing (NGS) can provide a cost-effective method for sequencing targeted genes associated with multigenic disorders. We have developed a NGS clinical targeted gene assay for the mitochondrial genome and for 108 selected nuclear genes associated with mitochondrial disorders. Mitochondrial disorders have a reported incidence of 1 in 5000 live births, encompass a broad range of phenotypes, and are attributed to mutations in the mitochondrial and nuclear genomes. Approximately 20% of mitochondrial disorders result from mutations in mtDNA, with the remaining 80% found in nuclear genes that affect mtDNA levels or mitochondrion protein assembly. In our NGS approach, the 16,569-bp mtDNA is enriched by long-range PCR and the 108 nuclear genes (which represent 1301 amplicons and 680 kb) are enriched by RainDance emulsion PCR. Sequencing is performed on Illumina HiSeq 2000 or MiSeq platforms, and bioinformatics analysis is performed using commercial and in-house developed bioinformatics pipelines. A total of 16 validation and 13 clinical samples were examined. All previously reported variants associated with mitochondrial disorders were found in validation samples, and 5 of the 13 clinical samples were found to have mutations associated with mitochondrial disorders in either the mitochondrial genome or the 108 nuclear genes. All variants were confirmed by Sanger sequencing.

  6. Comparison of mitochondrial genome sequences of pangolins (Mammalia, Pholidota).

    PubMed

    Hassanin, Alexandre; Hugot, Jean-Pierre; van Vuuren, Bettine Jansen

    2015-04-01

    The complete mitochondrial genome was sequenced for three species of pangolins, Manis javanica, Phataginus tricuspis, and Smutsia temminckii, and comparisons were made with two other species, Manis pentadactyla and Phataginus tetradactyla. The genome of Manidae contains the 37 genes found in a typical mammalian genome, and the structure of the control region is highly conserved among species. In Manis, the overall base composition differs from that found in African genera. Phylogenetic analyses support the monophyly of the genera Manis, Phataginus, and Smutsia, as well as the basal division between Maninae and Smutsiinae. Comparisons with GenBank sequences reveal that the reference genomes of M. pentadactyla and P. tetradactyla (accession numbers NC_016008 and NC_004027) were sequenced from misidentified taxa, and that a new species of tree pangolin should be described in Gabon. PMID:25746396

  7. Analysis of Mitochondrial Control Region Using Sanger Sequencing.

    PubMed

    Ballard, David

    2016-01-01

    The analysis of mitochondrial DNA (mtDNA) is an established forensic tool and has been used extensively to aid with both the identification of human remains and evidence recovered from scenes of crime. The biology of mtDNA confers both advantages and disadvantages when using it as a tool for identification. It benefits from a high copy number, which facilitates analysis from samples with highly degraded DNA or trace amounts of DNA, but the maternal mode of inheritance restricts its power of discrimination. With Next Generation Sequencing being used in research and some forensic casework laboratories the scope of mtDNA analysis in forensic casework may expand in the near future. Currently, however, most casework laboratories rely on Sanger sequencing and an established method for analyzing the hypervariable sequence regions is described. PMID:27259738

  8. Comparison of mitochondrial genome sequences of pangolins (Mammalia, Pholidota).

    PubMed

    Hassanin, Alexandre; Hugot, Jean-Pierre; van Vuuren, Bettine Jansen

    2015-04-01

    The complete mitochondrial genome was sequenced for three species of pangolins, Manis javanica, Phataginus tricuspis, and Smutsia temminckii, and comparisons were made with two other species, Manis pentadactyla and Phataginus tetradactyla. The genome of Manidae contains the 37 genes found in a typical mammalian genome, and the structure of the control region is highly conserved among species. In Manis, the overall base composition differs from that found in African genera. Phylogenetic analyses support the monophyly of the genera Manis, Phataginus, and Smutsia, as well as the basal division between Maninae and Smutsiinae. Comparisons with GenBank sequences reveal that the reference genomes of M. pentadactyla and P. tetradactyla (accession numbers NC_016008 and NC_004027) were sequenced from misidentified taxa, and that a new species of tree pangolin should be described in Gabon.

  9. The Complete Mitochondrial Genome Sequence of the Planthopper, Sivaloka damnosus

    PubMed Central

    Song, Nan; Liang, Ai-Ping; Ma, Chuan

    2010-01-01

    The complete mitochondrial genome (mitogenome) sequence was determined from the plant hopper, Sivaloka damnosus Chow and Lu (Hemiptera: Issidae), a representative of the insect family Issidae. The genome is a circular molecule of 15,287 bp with a total A+T content of 76.5%. The gene content, order, and structure are identical to that in Drosophila melanogaster, which is considered ancestral for insects. All 13 protein-coding genes of the S. damnosus mitogenome have a putative inframe ATR methionine or ATT isoleucine codons as start signals. The usual termination codons (TAA and TAG) were found in 11 protein-coding genes. However, atp6, and nad4 have incomplete termination codons. All tRNAs show stable canonical clover-leaf structures similar to other insect mitochondrial tRNAs, except for tRNASer(AGN), which has a reduced DHU arm. The A+T-rich region or putative control region includes two extensive repeat regions. The first repeat region is composed of two sets of complicated repeat units, and these repetitive sequences are arranged alternately; the second contains ten 20 bp tandemly repetitive sequences. In the phylogenetic analyses based on protein-coding genes, Cicadomorpha is a sister to Fulgoromorpha+Sternorrhyncha, and Heteroptera is a sister to all other Hemiptera. PMID:20673194

  10. The complete mitochondrial genome sequence of Shrew Gymnure, Neotetracus sinensis.

    PubMed

    Lu, Lu; Tu, Feiyun; Yan, Chaochao; Zhang, Xiuyue; Yue, Bisong; Zeng, Tao

    2013-06-01

    The Shrew Gymnure Neotetracus sinensis belongs to family Erinaceidae, and distributes in China, Myanmar, and northern Vietnam. In this study, the whole mitochondrial genome of N. sinensis was first sequenced and characterized. The genome is 16,982 bases in length. Bayesian inference and maximum likelihood methods were used to construct phylogenetic trees based on 12 concatenated protein-coding genes on the heavy strand. Phylogenetic analyses further confirm the subfamily Galericinae diverged prior to the subfamily Erinaceinae, support the species N. sinensis was in distinct genus Neotetracus rather than Hylomys, and N. sinensis diverged later than Echinosorex gymnura.

  11. Haplogrouping mitochondrial DNA sequences in Legal Medicine/Forensic Genetics.

    PubMed

    Bandelt, Hans-Jürgen; van Oven, Mannis; Salas, Antonio

    2012-11-01

    Haplogrouping refers to the classification of (partial) mitochondrial DNA (mtDNA) sequences into haplogroups using the current knowledge of the worldwide mtDNA phylogeny. Haplogroup assignment of mtDNA control-region sequences assists in the focused comparison with closely related complete mtDNA sequences and thus serves two main goals in forensic genetics: first is the a posteriori quality analysis of sequencing results and second is the prediction of relevant coding-region sites for confirmation or further refinement of haplogroup status. The latter may be important in forensic casework where discrimination power needs to be as high as possible. However, most articles published in forensic genetics perform haplogrouping only in a rudimentary or incorrect way. The present study features PhyloTree as the key tool for assigning control-region sequences to haplogroups and elaborates on additional Web-based searches for finding near-matches with complete mtDNA genomes in the databases. In contrast, none of the automated haplogrouping tools available can yet compete with manual haplogrouping using PhyloTree plus additional Web-based searches, especially when confronted with artificial recombinants still present in forensic mtDNA datasets. We review and classify the various attempts at haplogrouping by using a multiplex approach or relying on automated haplogrouping. Furthermore, we re-examine a few articles in forensic journals providing mtDNA population data where appropriate haplogrouping following PhyloTree immediately highlights several kinds of sequence errors.

  12. Nuclear and mitochondrial DNA sequences from two Denisovan individuals.

    PubMed

    Sawyer, Susanna; Renaud, Gabriel; Viola, Bence; Hublin, Jean-Jacques; Gansauge, Marie-Theres; Shunkov, Michael V; Derevianko, Anatoly P; Prüfer, Kay; Kelso, Janet; Pääbo, Svante

    2015-12-22

    Denisovans, a sister group of Neandertals, have been described on the basis of a nuclear genome sequence from a finger phalanx (Denisova 3) found in Denisova Cave in the Altai Mountains. The only other Denisovan specimen described to date is a molar (Denisova 4) found at the same site. This tooth carries a mtDNA sequence similar to that of Denisova 3. Here we present nuclear DNA sequences from Denisova 4 and a morphological description, as well as mitochondrial and nuclear DNA sequence data, from another molar (Denisova 8) found in Denisova Cave in 2010. This new molar is similar to Denisova 4 in being very large and lacking traits typical of Neandertals and modern humans. Nuclear DNA sequences from the two molars form a clade with Denisova 3. The mtDNA of Denisova 8 is more diverged and has accumulated fewer substitutions than the mtDNAs of the other two specimens, suggesting Denisovans were present in the region over an extended period. The nuclear DNA sequence diversity among the three Denisovans is comparable to that among six Neandertals, but lower than that among present-day humans.

  13. Nuclear and mitochondrial DNA sequences from two Denisovan individuals

    PubMed Central

    Sawyer, Susanna; Renaud, Gabriel; Viola, Bence; Hublin, Jean-Jacques; Gansauge, Marie-Theres; Shunkov, Michael V.; Derevianko, Anatoly P.; Prüfer, Kay; Pääbo, Svante

    2015-01-01

    Denisovans, a sister group of Neandertals, have been described on the basis of a nuclear genome sequence from a finger phalanx (Denisova 3) found in Denisova Cave in the Altai Mountains. The only other Denisovan specimen described to date is a molar (Denisova 4) found at the same site. This tooth carries a mtDNA sequence similar to that of Denisova 3. Here we present nuclear DNA sequences from Denisova 4 and a morphological description, as well as mitochondrial and nuclear DNA sequence data, from another molar (Denisova 8) found in Denisova Cave in 2010. This new molar is similar to Denisova 4 in being very large and lacking traits typical of Neandertals and modern humans. Nuclear DNA sequences from the two molars form a clade with Denisova 3. The mtDNA of Denisova 8 is more diverged and has accumulated fewer substitutions than the mtDNAs of the other two specimens, suggesting Denisovans were present in the region over an extended period. The nuclear DNA sequence diversity among the three Denisovans is comparable to that among six Neandertals, but lower than that among present-day humans. PMID:26630009

  14. Nuclear and mitochondrial DNA sequences from two Denisovan individuals.

    PubMed

    Sawyer, Susanna; Renaud, Gabriel; Viola, Bence; Hublin, Jean-Jacques; Gansauge, Marie-Theres; Shunkov, Michael V; Derevianko, Anatoly P; Prüfer, Kay; Kelso, Janet; Pääbo, Svante

    2015-12-22

    Denisovans, a sister group of Neandertals, have been described on the basis of a nuclear genome sequence from a finger phalanx (Denisova 3) found in Denisova Cave in the Altai Mountains. The only other Denisovan specimen described to date is a molar (Denisova 4) found at the same site. This tooth carries a mtDNA sequence similar to that of Denisova 3. Here we present nuclear DNA sequences from Denisova 4 and a morphological description, as well as mitochondrial and nuclear DNA sequence data, from another molar (Denisova 8) found in Denisova Cave in 2010. This new molar is similar to Denisova 4 in being very large and lacking traits typical of Neandertals and modern humans. Nuclear DNA sequences from the two molars form a clade with Denisova 3. The mtDNA of Denisova 8 is more diverged and has accumulated fewer substitutions than the mtDNAs of the other two specimens, suggesting Denisovans were present in the region over an extended period. The nuclear DNA sequence diversity among the three Denisovans is comparable to that among six Neandertals, but lower than that among present-day humans. PMID:26630009

  15. Patterns of Protein Evolution in Cytochrome c Oxidase 1 (COI) from the Class Arachnida

    PubMed Central

    Young, Monica R; Hebert, Paul D. N.

    2015-01-01

    Because sequence information is now available for the 648bp barcode region of cytochrome c oxidase 1 (COI) from more than 400,000 animal species, this gene segment can be used to probe patterns of mitochondrial evolution. The present study examines levels of amino acid substitution and the frequency of indels in COI from 4177 species of arachnids, including representatives from all 16 orders and 43% of its families (267/625). It examines divergences at three taxonomic levels—among members of each order to an outgroup, among families in each order and among BINs, a species proxy, in each family. Order Distances vary fourfold (0.10–0.39), while the mean of the Family Distances for the ten orders ranges fivefold (0.07–0.35). BIN Distances show great variation, ranging from 0.01 or less in 12 families to more than 0.25 in eight families. Patterns of amino acid substitution in COI are generally congruent with previously reported variation in nucleotide substitution rates in arachnids, but provide some new insights, such as clear rate acceleration in the Opiliones. By revealing a strong association between elevated rates of nucleotide and amino acid substitution, this study builds evidence for the selective importance of the rate variation among arachnid lineages. Moreover, it establishes that groups whose COI genes have elevated levels of amino acid substitution also regularly possess indels, a dramatic form of protein reconfiguration. Overall, this study suggests that the mitochondrial genome of some arachnid groups is dynamic with high rates of amino acid substitution and frequent indels, while it is ‘locked down’ in others. Dynamic genomes are most prevalent in arachnids with short generation times, but the possible impact of breeding system deserves investigation since many of the rapidly evolving lineages reproduce by haplodiploidy, a mode of reproduction absent in ‘locked down’ taxa. PMID:26308206

  16. Synonymy of Calyptogena solidissima with Calyptogena kawamurai (Bivalvia: Vesicomyidae) and its population structure revealed by mitochondrial DNA sequences.

    PubMed

    Kojima, Shigeaki; Tsuchida, Eiji; Numanami, Hideki; Fujikura, Katsunori; Okutani, Takashi

    2006-10-01

    Nucleotide sequences of part (1,101 bp) of the mitochondrial cytochrome oxidase c subunit I (COI) gene were determined for two specimens of Calyptogena kawamurai collected in Kashima Nada and Suruga Bay, respectively. These sequences were identical to each other and to those from many individuals of Calyptogena solidissima, i.e., 11 of 12 specimens from a seep area in Nankai Trough, two of 20 from hydrothermal-vent fields in Okinawa Trough, and one of 14 from a seep area on Kuroshima Knoll. The nucleotide sequences of the 5' part (about 700 bp) of the first internal transcribed spacer (ITS-1) also showed a close relationship between C. kawamurai and C. solidissima. The radiating threads on the shell surface that were emphasized in describing C. solidissima are not consistent throughout these local populations. Variation in cardinal dentition was confirmed to be intraspecific by observations of a series of specimens. The shell length-height and shell length-width relationships of both species all fit a single regression line. These results suggest that C. solidissima is a junior synonym of C. kawamurai. The populations of Nankai Trough, Okinawa Trough, and Kuroshima Knoll were shown to be diverging genetically from each other. Populations of Okinawa Trough and Kuroshima Knoll are suggested to have derived independently from the most common haplotype of Nankai Trough.

  17. The complete mitochondrial genome sequence of Brachirus orientalis (Pleuronectiformes: Soleidae).

    PubMed

    Shi, Wei; Gong, Li; Wang, Shu-Ying; Kong, Xiao-Yu

    2016-01-01

    The oriental sole Brachirus orientalis (Pleuronectiformes: Soleidae) is characterized by both eyes on the right side of the body and orbicular-ovate body. In this paper, the complete mitochondrial genome sequence of this sole was first determined. The total length is 16,602 bp, including 13 protein-coding genes, 22 tRNA genes, and 2 rRNA genes (12S and 16S), as well as a putative control region and a putative L-strand replication origin (OL). Gene contents, locations, and arrangements are identical to those of typical bony fishes. Overall base composition of the mitogenome is 30.4%, 28.6%, 15.3%, and 25.7% for A, C, G, and T, with a high A + T content (56.1%). The determination of B. orientalis complete mitogenome sequence could contribute to phylogenetic study on Soleidae and Pleuronectiformes.

  18. The complete mitochondrial genome sequence of Heteromycteris japonicus (Pleuronectiformes: Soleidae).

    PubMed

    Shi, Wei; Jiang, Jin-Xia; Miao, Xian-Guang; Kong, Xiao-Yu

    2014-08-01

    The bamboo sole Heteromycteris japonicus (Pleuronectiformes: Soleidae) is characterized by both eyes on the right side of the body and a rostral hook. In this article, the complete mitochondrial genome sequence of this sole was first determined. The total length is 17,111 bp, including 13 protein-coding genes, 22 tRNA genes and 2 rRNA genes (12 S and 16 S), as well as a putative control region and a putative L-strand replication origin (OL). Gene contents, locations and arrangements are identical to those of typical bony fishes. Overall base composition of the mitogenome is 29.2%, 27.5%, 16.3% and 27.1% for A, C, G and T, with a high A + T content (56.3%). The determination of H. japonicus mitogenome sequence could contribute to understanding the systematic evolution of the genus Heteromycteris and further phylogenetic study on Soleidae and Pleuronectiformes.

  19. Sequencing and annotation of mitochondrial genomes from individual parasitic helminths.

    PubMed

    Jex, Aaron R; Littlewood, D Timothy; Gasser, Robin B

    2015-01-01

    Mitochondrial (mt) genomics has significant implications in a range of fundamental areas of parasitology, including evolution, systematics, and population genetics as well as explorations of mt biochemistry, physiology, and function. Mt genomes also provide a rich source of markers to aid molecular epidemiological and ecological studies of key parasites. However, there is still a paucity of information on mt genomes for many metazoan organisms, particularly parasitic helminths, which has often related to challenges linked to sequencing from tiny amounts of material. The advent of next-generation sequencing (NGS) technologies has paved the way for low cost, high-throughput mt genomic research, but there have been obstacles, particularly in relation to post-sequencing assembly and analyses of large datasets. In this chapter, we describe protocols for the efficient amplification and sequencing of mt genomes from small portions of individual helminths, and highlight the utility of NGS platforms to expedite mt genomics. In addition, we recommend approaches for manual or semi-automated bioinformatic annotation and analyses to overcome the bioinformatic "bottleneck" to research in this area. Taken together, these approaches have demonstrated applicability to a range of parasites and provide prospects for using complete mt genomic sequence datasets for large-scale molecular systematic and epidemiological studies. In addition, these methods have broader utility and might be readily adapted to a range of other medium-sized molecular regions (i.e., 10-100 kb), including large genomic operons, and other organellar (e.g., plastid) and viral genomes.

  20. DNA primers for amplification of mitochondrial cytochrome c oxidase subunit I from diverse metazoan invertebrates.

    PubMed

    Folmer, O; Black, M; Hoeh, W; Lutz, R; Vrijenhoek, R

    1994-10-01

    We describe "universal" DNA primers for polymerase chain reaction (PCR) amplification of a 710-bp fragment of the mitochondrial cytochrome c oxidase subunit I gene (COI) from 11 invertebrate phyla: Echinodermata, Mollusca, Annelida, Pogonophora, Arthropoda, Nemertinea, Echiura, Sipuncula, Platyhelminthes, Tardigrada, and Coelenterata, as well as the putative phylum Vestimentifera. Preliminary comparisons revealed that these COI primers generate informative sequences for phylogenetic analyses at the species and higher taxonomic levels.

  1. Molecular Identification of Necrophagous Muscidae and Sarcophagidae Fly Species Collected in Korea by Mitochondrial Cytochrome c Oxidase Subunit I Nucleotide Sequences

    PubMed Central

    Ham, Chan Seon; Kim, Seong Yoon; Ko, Kwang Soo; Jo, Tae-Ho; Son, Gi Hoon

    2014-01-01

    Identification of insect species is an important task in forensic entomology. For more convenient species identification, the nucleotide sequences of cytochrome c oxidase subunit I (COI) gene have been widely utilized. We analyzed full-length COI nucleotide sequences of 10 Muscidae and 6 Sarcophagidae fly species collected in Korea. After DNA extraction from collected flies, PCR amplification and automatic sequencing of the whole COI sequence were performed. Obtained sequences were analyzed for a phylogenetic tree and a distance matrix. Our data showed very low intraspecific sequence distances and species-level monophylies. However, sequence comparison with previously reported sequences revealed a few inconsistencies or paraphylies requiring further investigation. To the best of our knowledge, this study is the first report of COI nucleotide sequences from Hydrotaea occulta, Muscina angustifrons, Muscina pascuorum, Ophyra leucostoma, Sarcophaga haemorrhoidalis, Sarcophaga harpax, and Phaonia aureola. PMID:24982938

  2. Population histories of right whales (Cetacea: Eubalaena) inferred from mitochondrial sequence diversities and divergences of their whale lice (Amphipoda: Cyamus).

    PubMed

    Kaliszewska, Zofia A; Seger, Jon; Rowntree, Victoria J; Barco, Susan G; Benegas, Rafael; Best, Peter B; Brown, Moira W; Brownell, Robert L; Carribero, Alejandro; Harcourt, Robert; Knowlton, Amy R; Marshall-Tilas, Kim; Patenaude, Nathalie J; Rivarola, Mariana; Schaeff, Catherine M; Sironi, Mariano; Smith, Wendy A; Yamada, Tadasu K

    2005-10-01

    Right whales carry large populations of three 'whale lice' (Cyamus ovalis, Cyamus gracilis, Cyamus erraticus) that have no other hosts. We used sequence variation in the mitochondrial COI gene to ask (i) whether cyamid population structures might reveal associations among right whale individuals and subpopulations, (ii) whether the divergences of the three nominally conspecific cyamid species on North Atlantic, North Pacific, and southern right whales (Eubalaena glacialis, Eubalaena japonica, Eubalaena australis) might indicate their times of separation, and (iii) whether the shapes of cyamid gene trees might contain information about changes in the population sizes of right whales. We found high levels of nucleotide diversity but almost no population structure within oceans, indicating large effective population sizes and high rates of transfer between whales and subpopulations. North Atlantic and Southern Ocean populations of all three species are reciprocally monophyletic, and North Pacific C. erraticus is well separated from North Atlantic and southern C. erraticus. Mitochondrial clock calibrations suggest that these divergences occurred around 6 million years ago (Ma), and that the Eubalaena mitochondrial clock is very slow. North Pacific C. ovalis forms a clade inside the southern C. ovalis gene tree, implying that at least one right whale has crossed the equator in the Pacific Ocean within the last 1-2 million years (Myr). Low-frequency polymorphisms are more common than expected under neutrality for populations of constant size, but there is no obvious signal of rapid, interspecifically congruent expansion of the kind that would be expected if North Atlantic or southern right whales had experienced a prolonged population bottleneck within the last 0.5 Myr.

  3. Mitochondrial DNA sequences of five squamates: phylogenetic affiliation of snakes.

    PubMed

    Kumazawa, Yoshinori

    2004-04-30

    Complete or nearly complete mitochondrial DNA sequences were determined from four lizards (Western fence lizard, Warren's spinytail lizard, Terrestrial arboreal alligator lizard, and Chinese crocodile lizard) and a snake (Texas blind snake). These genomes had a typical gene organization found in those of most mammals and fishes, except for a translocation of the glutamine tRNA gene in the blind snake and a tandem duplication of the threonine and proline tRNA genes in the spinytail lizard. Although previous work showed the existence of duplicate control regions in mitochondrial DNAs of several snakes, the blind snake did not have this characteristic. Phylogenetic analyses based on different tree-building methods consistently supported that the blind snake and a colubrid snake (akamata) make a sister clade relative to all the lizard taxa from six different families. An alternative hypothesis that snakes evolved from a lineage of varanoids was not favored and nearly statistically rejected by the Kishino-Hasegawa test. It is therefore likely that the apparent similarity of the tongue structure between snakes and varanoids independently evolved and that the duplication of the control region occurred on a snake lineage after divergence of the blind snake. PMID:15449546

  4. Identification of Sequences Encoding Symbiodinium minutum Mitochondrial Proteins

    PubMed Central

    Butterfield, Erin R.; Howe, Christopher J.; Nisbet, R. Ellen R.

    2016-01-01

    The dinoflagellates are an extremely diverse group of algae closely related to the Apicomplexa and the ciliates. Much work has previously been undertaken to determine the presence of various biochemical pathways within dinoflagellate mitochondria. However, these studies were unable to identify several key transcripts including those encoding proteins involved in the pyruvate dehydrogenase complex, iron–sulfur cluster biosynthesis, and protein import. Here, we analyze the draft nuclear genome of the dinoflagellate Symbiodinium minutum, as well as RNAseq data to identify nuclear genes encoding mitochondrial proteins. The results confirm the presence of a complete tricarboxylic acid cycle in the dinoflagellates. Results also demonstrate the difficulties in using the genome sequence for the identification of genes due to the large number of introns, but show that it is highly useful for the determination of gene duplication events. PMID:26798115

  5. Identification of Sequences Encoding Symbiodinium minutum Mitochondrial Proteins.

    PubMed

    Butterfield, Erin R; Howe, Christopher J; Nisbet, R Ellen R

    2016-01-21

    The dinoflagellates are an extremely diverse group of algae closely related to the Apicomplexa and the ciliates. Much work has previously been undertaken to determine the presence of various biochemical pathways within dinoflagellate mitochondria. However, these studies were unable to identify several key transcripts including those encoding proteins involved in the pyruvate dehydrogenase complex, iron-sulfur cluster biosynthesis, and protein import. Here, we analyze the draft nuclear genome of the dinoflagellate Symbiodinium minutum, as well as RNAseq data to identify nuclear genes encoding mitochondrial proteins. The results confirm the presence of a complete tricarboxylic acid cycle in the dinoflagellates. Results also demonstrate the difficulties in using the genome sequence for the identification of genes due to the large number of introns, but show that it is highly useful for the determination of gene duplication events.

  6. The complete mitochondrial genome sequence of Herzensteinia microcephalus (Cypriniformes: Cyprinidae).

    PubMed

    Li, Chunhua; Chen, Yifeng; Liu, Chunlong; Juan, Tao; He, Dekui

    2016-05-01

    Herzensteinia microcephalus (Herzenstein, 1891) is the highest naturally occurring cyprinid in the world, and inhabits rivers in the Tibetan Plateau at elevations of 4500-5200 m. Few studies on this species have been contributed. In this study, we got the mitochondrial genome sequences of H. microcephalus. The mitogenome of H. microcephalus is16,726 in length, which includes 13 protein-coding genes, 22 tRNA genes, two rRNA genes and two non-coding regions: control region (D-loop) and origin of light-strand replication (OL). The overall nucleotide base composition is 28.41% for A, 27.16% for T, 26.04% for C and 18.38% for G. This study can provide important molecular theory basis for carrying out the study on the genetics, phylogeny and adaptive evolution of Herzensteinia. PMID:25431822

  7. The complete mitochondrial genome sequence of the liverwort Pleurozia purpurea reveals extremely conservative mitochondrial genome evolution in liverworts.

    PubMed

    Wang, Bin; Xue, Jiayu; Li, Libo; Liu, Yang; Qiu, Yin-Long

    2009-12-01

    Plant mitochondrial genomes have been known to be highly unusual in their large sizes, frequent intra-genomic rearrangement, and generally conservative sequence evolution. Recent studies show that in early land plants the mitochondrial genomes exhibit a mixed mode of conservative yet dynamic evolution. Here, we report the completely sequenced mitochondrial genome from the liverwort Pleurozia purpurea. The circular genome has a size of 168,526 base pairs, containing 43 protein-coding genes, 3 rRNA genes, 25 tRNA genes, and 31 group I or II introns. It differs from the Marchantia polymorpha mitochondrial genome, the only other liverwort chondriome that has been sequenced, in lacking two genes (trnRucg and trnTggu) and one intron (rrn18i1065gII). The two genomes have identical gene orders and highly similar sequences in exons, introns, and intergenic spacers. Finally, a comparative analysis of duplicated trnRucu and other trnR genes from the two liverworts and several other organisms identified the recent lateral origin of trnRucg in Marchantia mtDNA through modification of a duplicated trnRucu. This study shows that the mitochondrial genomes evolve extremely slowly in liverworts, the earliest-diverging lineage of extant land plants, in stark contrast to what is known of highly dynamic evolution of mitochondrial genomes in seed plants.

  8. Identification of two homologous mitochondrial DNA sequences, which bind strongly and specifically to a mitochondrial protein of Paracentrotus lividus.

    PubMed Central

    Roberti, M; Mustich, A; Gadaleta, M N; Cantatore, P

    1991-01-01

    Using a combination of band shift and DNasel protection experiments, two Paracentrotus lividus mitochondrial sequences, able to bind tightly and selectively to a mitochondrial protein from sea urchin embryos, have been found. The two sequences, which compete with each other for binding to the protein, are located in two genome regions which are thought to contain regulatory signals for mitochondrial replication and transcription. A computer analysis suggests that the sequence TTTTRTANNTCYYATCAYA, common to the two binding regions, is the minimal recognition signal for the binding to the protein. We discuss the hypothesis that the protein binding capacity of these two sequences is involved in the control of sea urchin mtDNA replication during developmental stages. Images PMID:1956785

  9. Structural dynamics of cereal mitochondrial genomes as revealed by complete nucleotide sequencing of the wheat mitochondrial genome.

    PubMed

    Ogihara, Yasunari; Yamazaki, Yukiko; Murai, Koji; Kanno, Akira; Terachi, Toru; Shiina, Takashi; Miyashita, Naohiko; Nasuda, Shuhei; Nakamura, Chiharu; Mori, Naoki; Takumi, Shigeo; Murata, Minoru; Futo, Satoshi; Tsunewaki, Koichiro

    2005-01-01

    The application of a new gene-based strategy for sequencing the wheat mitochondrial genome shows its structure to be a 452 528 bp circular molecule, and provides nucleotide-level evidence of intra-molecular recombination. Single, reciprocal and double recombinant products, and the nucleotide sequences of the repeats that mediate their formation have been identified. The genome has 55 genes with exons, including 35 protein-coding, 3 rRNA and 17 tRNA genes. Nucleotide sequences of seven wheat genes have been determined here for the first time. Nine genes have an exon-intron structure. Gene amplification responsible for the production of multicopy mitochondrial genes, in general, is species-specific, suggesting the recent origin of these genes. About 16, 17, 15, 3.0 and 0.2% of wheat mitochondrial DNA (mtDNA) may be of genic (including introns), open reading frame, repetitive sequence, chloroplast and retro-element origin, respectively. The gene order of the wheat mitochondrial gene map shows little synteny to the rice and maize maps, indicative that thorough gene shuffling occurred during speciation. Almost all unique mtDNA sequences of wheat, as compared with rice and maize mtDNAs, are redundant DNA. Features of the gene-based strategy are discussed, and a mechanistic model of mitochondrial gene amplification is proposed. PMID:16260473

  10. Structural dynamics of cereal mitochondrial genomes as revealed by complete nucleotide sequencing of the wheat mitochondrial genome

    PubMed Central

    Ogihara, Yasunari; Yamazaki, Yukiko; Murai, Koji; Kanno, Akira; Terachi, Toru; Shiina, Takashi; Miyashita, Naohiko; Nasuda, Shuhei; Nakamura, Chiharu; Mori, Naoki; Takumi, Shigeo; Murata, Minoru; Futo, Satoshi; Tsunewaki, Koichiro

    2005-01-01

    The application of a new gene-based strategy for sequencing the wheat mitochondrial genome shows its structure to be a 452 528 bp circular molecule, and provides nucleotide-level evidence of intra-molecular recombination. Single, reciprocal and double recombinant products, and the nucleotide sequences of the repeats that mediate their formation have been identified. The genome has 55 genes with exons, including 35 protein-coding, 3 rRNA and 17 tRNA genes. Nucleotide sequences of seven wheat genes have been determined here for the first time. Nine genes have an exon–intron structure. Gene amplification responsible for the production of multicopy mitochondrial genes, in general, is species-specific, suggesting the recent origin of these genes. About 16, 17, 15, 3.0 and 0.2% of wheat mitochondrial DNA (mtDNA) may be of genic (including introns), open reading frame, repetitive sequence, chloroplast and retro-element origin, respectively. The gene order of the wheat mitochondrial gene map shows little synteny to the rice and maize maps, indicative that thorough gene shuffling occurred during speciation. Almost all unique mtDNA sequences of wheat, as compared with rice and maize mtDNAs, are redundant DNA. Features of the gene-based strategy are discussed, and a mechanistic model of mitochondrial gene amplification is proposed. PMID:16260473

  11. Variation in ribosomal and mitochondrial DNA sequences demonstrates the existence of intraspecific groups in Paramecium multimicronucleatum (Ciliophora, Oligohymenophorea).

    PubMed

    Tarcz, Sebastian; Potekhin, Alexey; Rautian, Maria; Przyboś, Ewa

    2012-05-01

    This is the first phylogenetic study of the intraspecific variability within Paramecium multimicronucleatum with the application of two-loci analysis (ITS1-5.8S-ITS2-5'LSU rDNA and COI mtDNA) carried out on numerous strains originated from different continents. The species has been shown to have a complex structure of several sibling species within taxonomic species. Our analysis revealed the existence of 10 haplotypes for the rDNA fragment and 15 haplotypes for the COI fragment in the studied material. The mean distance for all of the studied P. multimicronucleatum sequence pairs was p=0.025/0.082 (rDNA/COI). Despite the greater variation of the COI fragment, the COI-derived tree topology is similar to the tree topology constructed on the basis of the rDNA fragment. P. multimicronucleatum strains are divided into three main clades. The tree based on COI fragment analysis presents a greater resolution of the studied P. multimicronucleatum strains. Our results indicate that the strains of P. multimicronucleatum that appear in different clades on the trees could belong to different syngens.

  12. A molecular phylogeny of Hemiptera inferred from mitochondrial genome sequences.

    PubMed

    Song, Nan; Liang, Ai-Ping; Bu, Cui-Ping

    2012-01-01

    Classically, Hemiptera is comprised of two suborders: Homoptera and Heteroptera. Homoptera includes Cicadomorpha, Fulgoromorpha and Sternorrhyncha. However, according to previous molecular phylogenetic studies based on 18S rDNA, Fulgoromorpha has a closer relationship to Heteroptera than to other hemipterans, leaving Homoptera as paraphyletic. Therefore, the position of Fulgoromorpha is important for studying phylogenetic structure of Hemiptera. We inferred the evolutionary affiliations of twenty-five superfamilies of Hemiptera using mitochondrial protein-coding genes and rRNAs. We sequenced three mitogenomes, from Pyrops candelaria, Lycorma delicatula and Ricania marginalis, representing two additional families in Fulgoromorpha. Pyrops and Lycorma are representatives of an additional major family Fulgoridae in Fulgoromorpha, whereas Ricania is a second representative of the highly derived clade Ricaniidae. The organization and size of these mitogenomes are similar to those of the sequenced fulgoroid species. Our consensus phylogeny of Hemiptera largely supported the relationships (((Fulgoromorpha,Sternorrhyncha),Cicadomorpha),Heteroptera), and thus supported the classic phylogeny of Hemiptera. Selection of optimal evolutionary models (exclusion and inclusion of two rRNA genes or of third codon positions of protein-coding genes) demonstrated that rapidly evolving and saturated sites should be removed from the analyses.

  13. The Human MitoChip: a high-throughput sequencing microarray for mitochondrial mutation detection.

    PubMed

    Maitra, Anirban; Cohen, Yoram; Gillespie, Susannah E D; Mambo, Elizabeth; Fukushima, Noriyoshi; Hoque, Mohammad O; Shah, Nila; Goggins, Michael; Califano, Joseph; Sidransky, David; Chakravarti, Aravinda

    2004-05-01

    Somatic mitochondrial mutations are common in human cancers, and can be used as a tool for early detection of cancer. We have developed a mitochondrial Custom Reseq microarray as an array-based sequencing platform for rapid and high-throughput analysis of mitochondrial DNA. The MitoChip contains oligonucleotide probes synthesized using standard photolithography and solid-phase synthesis, and is able to sequence >29 kb of double-stranded DNA in a single assay. Both strands of the entire human mitochondrial coding sequence (15,451 bp) are arrayed on the MitoChip; both strands of an additional 12,935 bp (84% of coding DNA) are arrayed in duplicate. We used 300 ng of genomic DNA to amplify the mitochondrial coding sequence in three overlapping long PCR fragments. We then sequenced >2 million base pairs of mitochondrial DNA, and successfully assigned base calls at 96.0% of nucleotide positions. Replicate experiments demonstrated >99.99% reproducibility. In matched fluid samples (urine and pancreatic juice, respectively) obtained from five patients with bladder cancer and four with pancreatic cancer, the MitoChip detected at least one cancer-associated mitochondrial mutation in six (66%) of nine samples. The MitoChip is a high-throughput sequencing tool for the reliable identification of mitochondrial DNA mutations from primary tumors in clinical samples.

  14. Why barcode? High-throughput multiplex sequencing of mitochondrial genomes for molecular systematics

    PubMed Central

    Timmermans, M. J. T. N.; Dodsworth, S.; Culverwell, C. L.; Bocak, L.; Ahrens, D.; Littlewood, D. T. J.; Pons, J.; Vogler, A. P.

    2010-01-01

    Mitochondrial genome sequences are important markers for phylogenetics but taxon sampling remains sporadic because of the great effort and cost required to acquire full-length sequences. Here, we demonstrate a simple, cost-effective way to sequence the full complement of protein coding mitochondrial genes from pooled samples using the 454/Roche platform. Multiplexing was achieved without the need for expensive indexing tags (‘barcodes’). The method was trialled with a set of long-range polymerase chain reaction (PCR) fragments from 30 species of Coleoptera (beetles) sequenced in a 1/16th sector of a sequencing plate. Long contigs were produced from the pooled sequences with sequencing depths ranging from ∼10 to 100× per contig. Species identity of individual contigs was established via three ‘bait’ sequences matching disparate parts of the mitochondrial genome obtained by conventional PCR and Sanger sequencing. This proved that assembly of contigs from the sequencing pool was correct. Our study produced sequences for 21 nearly complete and seven partial sets of protein coding mitochondrial genes. Combined with existing sequences for 25 taxa, an improved estimate of basal relationships in Coleoptera was obtained. The procedure could be employed routinely for mitochondrial genome sequencing at the species level, to provide improved species ‘barcodes’ that currently use the cox1 gene only. PMID:20876691

  15. Cloning, expression and characterization of COI1 gene (AsCOI1) from Aquilaria sinensis (Lour.) Gilg.

    PubMed

    Liao, Yongcui; Wei, Jianhe; Xu, Yanhong; Zhang, Zheng

    2015-09-01

    Aquilaria sinensis, a kind of typically wounding-induced medicinal plant with a great economical value, is widely used in the production of traditional Chinese medicine, perfume and incense. Coronatine-insensitive protein 1 (COI1) acts as a receptor in jasmonate (JA) signaling pathway, and regulates the expression of JA-responsive genes in plant defense. However, little is known about the COI1 gene in A. sinensis. Here, based on the transcriptome data, a full-length cDNA sequence of COI1 (termed as AsCOI1) was firstly cloned by RT-PCR and rapid-amplification of cDNA ends (RACE) strategies. AsCOI1 is 2330 bp in length (GenBank accession No. KM189194), and contains a complete open frame (ORF) of 1839 bp. The deduced protein was composed of 612 amino acids, with a predicted molecular weight of 68.93 kDa and an isoelectric point of 6.56, and was predicted to possess F-box and LRRs domains. Combining bioinformatics prediction with subcellular localization experiment analysis, AsCOI1 was appeared to locate in nucleus. AsCOI1 gene was highly expressed in roots and stems, the major organs of agarwood formation. Methyl jasmonate (MeJA), mechanical wounding and heat stress could significantly induce the expression level of AsCOI1 gene. AsCOI1 is an early wound-responsive gene, and it likely plays some role in agarwood formation.

  16. Cloning, expression and characterization of COI1 gene (AsCOI1) from Aquilaria sinensis (Lour.) Gilg.

    PubMed

    Liao, Yongcui; Wei, Jianhe; Xu, Yanhong; Zhang, Zheng

    2015-09-01

    Aquilaria sinensis, a kind of typically wounding-induced medicinal plant with a great economical value, is widely used in the production of traditional Chinese medicine, perfume and incense. Coronatine-insensitive protein 1 (COI1) acts as a receptor in jasmonate (JA) signaling pathway, and regulates the expression of JA-responsive genes in plant defense. However, little is known about the COI1 gene in A. sinensis. Here, based on the transcriptome data, a full-length cDNA sequence of COI1 (termed as AsCOI1) was firstly cloned by RT-PCR and rapid-amplification of cDNA ends (RACE) strategies. AsCOI1 is 2330 bp in length (GenBank accession No. KM189194), and contains a complete open frame (ORF) of 1839 bp. The deduced protein was composed of 612 amino acids, with a predicted molecular weight of 68.93 kDa and an isoelectric point of 6.56, and was predicted to possess F-box and LRRs domains. Combining bioinformatics prediction with subcellular localization experiment analysis, AsCOI1 was appeared to locate in nucleus. AsCOI1 gene was highly expressed in roots and stems, the major organs of agarwood formation. Methyl jasmonate (MeJA), mechanical wounding and heat stress could significantly induce the expression level of AsCOI1 gene. AsCOI1 is an early wound-responsive gene, and it likely plays some role in agarwood formation. PMID:26579478

  17. The complete mitochondrial genome sequence of Tylototriton taliangensis (Amphibia: Caudata).

    PubMed

    Jiang, Ye; Li, Ziyuan; Liu, Jiabin; Li, Yan; Ni, Qingyong; Yao, Yongfang; Xu, Huailiang; Li, Ying; Zhang, Mingwang

    2016-07-01

    Tylototriton taliangensis was listed as a Near Threatened amphibian in IUCN red list. In this study, we sequenced the complete mitochondrial (mt) genome of this species (GenBank: KP979646) and found it contains 16,265 base pairs, which encode 13 protein-coding genes (PCGs), 22 transfer RNA genes (tRNA), 2 ribosomal RNA genes (rRNA) and 1 control region (CR). We also found that almost all PCGs and tRNA genes are located on the H-strand, except for ND6 subunit gene and eight tRNA genes, which were distributed on the L-strand. The PCGs used "ATG" and "GTG" as the start codon, while used four types of stop codons. Almost all tRNA genes were folded into typical cloverleaf secondary structures. The L-strand replication origin (OL) and a non-coding region were also found. The new mitogenomic phylogenetic tree confirms the reciprocally monophyly of the genus Tylototriton, Echinotriton and Pleurodeles with high bootstrap value. The present study will provide information for future studies on the conservation genetics and phylogeny of this species and its relatives. PMID:26024138

  18. Mitochondrial control-region sequence variation in aboriginal Australians.

    PubMed Central

    van Holst Pellekaan, S; Frommer, M; Sved, J; Boettcher, B

    1998-01-01

    The mitochondrial D-loop hypervariable segment 1 (mt HVS1) between nucleotides 15997 and 16377 has been examined in aboriginal Australian people from the Darling River region of New South Wales (riverine) and from Yuendumu in central Australia (desert). Forty-seven unique HVS1 types were identified, varying at 49 nucleotide positions. Pairwise analysis by calculation of BEPPI (between population proportion index) reveals statistically significant structure in the populations, although some identical HVS1 types are seen in the two contrasting regions. mt HVS1 types may reflect more-ancient distributions than do linguistic diversity and other culturally distinguishing attributes. Comparison with sequences from five published global studies reveals that these Australians demonstrate greatest divergence from some Africans, least from Papua New Guinea highlanders, and only slightly more from some Pacific groups (Indonesian, Asian, Samoan, and coastal Papua New Guinea), although the HVS1 types vary at different nucleotide sites. Construction of a median network, displaying three main groups, suggests that several hypervariable nucleotide sites within the HVS1 are likely to have undergone mutation independently, making phylogenetic comparison with global samples by conventional methods difficult. Specific nucleotide-site variants are major separators in median networks constructed from Australian HVS1 types alone and for one global selection. The distribution of these, requiring extended study, suggests that they may be signatures of different groups of prehistoric colonizers into Australia, for which the time of colonization remains elusive. PMID:9463317

  19. Mitochondrial control-region sequence variation in aboriginal Australians.

    PubMed

    van Holst Pellekaan, S; Frommer, M; Sved, J; Boettcher, B

    1998-02-01

    The mitochondrial D-loop hypervariable segment 1 (mt HVS1) between nucleotides 15997 and 16377 has been examined in aboriginal Australian people from the Darling River region of New South Wales (riverine) and from Yuendumu in central Australia (desert). Forty-seven unique HVS1 types were identified, varying at 49 nucleotide positions. Pairwise analysis by calculation of BEPPI (between population proportion index) reveals statistically significant structure in the populations, although some identical HVS1 types are seen in the two contrasting regions. mt HVS1 types may reflect more-ancient distributions than do linguistic diversity and other culturally distinguishing attributes. Comparison with sequences from five published global studies reveals that these Australians demonstrate greatest divergence from some Africans, least from Papua New Guinea highlanders, and only slightly more from some Pacific groups (Indonesian, Asian, Samoan, and coastal Papua New Guinea), although the HVS1 types vary at different nucleotide sites. Construction of a median network, displaying three main groups, suggests that several hypervariable nucleotide sites within the HVS1 are likely to have undergone mutation independently, making phylogenetic comparison with global samples by conventional methods difficult. Specific nucleotide-site variants are major separators in median networks constructed from Australian HVS1 types alone and for one global selection. The distribution of these, requiring extended study, suggests that they may be signatures of different groups of prehistoric colonizers into Australia, for which the time of colonization remains elusive. PMID:9463317

  20. Phylogenetic Analysis of the Spider Mite Sub-Family Tetranychinae (Acari: Tetranychidae) Based on the Mitochondrial COI Gene and the 18S and the 5′ End of the 28S rRNA Genes Indicates That Several Genera Are Polyphyletic

    PubMed Central

    Matsuda, Tomoko; Morishita, Maiko; Hinomoto, Norihide; Gotoh, Tetsuo

    2014-01-01

    The spider mite sub-family Tetranychinae includes many agricultural pests. The internal transcribed spacer (ITS) region of nuclear ribosomal RNA genes and the cytochrome c oxidase subunit I (COI) gene of mitochondrial DNA have been used for species identification and phylogenetic reconstruction within the sub-family Tetranychinae, although they have not always been successful. The 18S and 28S rRNA genes should be more suitable for resolving higher levels of phylogeny, such as tribes or genera of Tetranychinae because these genes evolve more slowly and are made up of conserved regions and divergent domains. Therefore, we used both the 18S (1,825–1,901 bp) and 28S (the 5′ end of 646–743 bp) rRNA genes to infer phylogenetic relationships within the sub-family Tetranychinae with a focus on the tribe Tetranychini. Then, we compared the phylogenetic tree of the 18S and 28S genes with that of the mitochondrial COI gene (618 bp). As observed in previous studies, our phylogeny based on the COI gene was not resolved because of the low bootstrap values for most nodes of the tree. On the other hand, our phylogenetic tree of the 18S and 28S genes revealed several well-supported clades within the sub-family Tetranychinae. The 18S and 28S phylogenetic trees suggest that the tribes Bryobiini, Petrobiini and Eurytetranychini are monophyletic and that the tribe Tetranychini is polyphyletic. At the genus level, six genera for which more than two species were sampled appear to be monophyletic, while four genera (Oligonychus, Tetranychus, Schizotetranychus and Eotetranychus) appear to be polyphyletic. The topology presented here does not fully agree with the current morphology-based taxonomy, so that the diagnostic morphological characters of Tetranychinae need to be reconsidered. PMID:25289639

  1. Aminoglycoside-induced and non-syndromic hearing loss is associated with the G7444A mutation in the mitochondrial COI/tRNA{sup Ser(UCN)} genes in two Chinese families

    SciTech Connect

    Zhu Yi; Liao Zhisu; Li Zhiyuan; Chen Jianfu; Qian Yaping; Tang Xiaowen; Wang Jindan; Yang Li; Li Ronghua; Ji Jinzhang; Choo, Daniel I. |; Lu Jianxin . E-mail: jx@mail.wz.zj.cn; Guan Minxin |||. E-mail: min-xin.guan@chmcc.org

    2006-04-14

    We report here the clinical, genetic, and molecular characterization of two Chinese families with aminoglycoside induced and non-syndromic hearing impairment. Clinical and genetic evaluations revealed the variable severity and age-of-onset in hearing impairment in these families. Strikingly, there were extremely low penetrances of hearing impairment in these Chinese families. Sequence analysis of the complete mitochondrial genomes in these pedigrees showed the distinct sets of mtDNA polymorphism, in addition to the identical G7444A mutation associated with hearing loss. Indeed, the G7444A mutation in the CO1 gene and the precursor of tRNA{sup Ser(UCN)} gene is present in homoplasmy only in the maternal lineage of those pedigrees but not other members of these families and 164 Chinese controls. Their mitochondrial genomes belong to the Eastern Asian haplogroups C5a and D4a, respectively. In fact, the occurrence of the G7444A mutation in these several genetically unrelated subjects affected by hearing impairment strongly indicates that this mutation is involved in the pathogenesis of hearing impairment. However, there was the absence of other functionally significant mtDNA mutations in two Chinese pedigrees carrying the G7444A mutation. Therefore, nuclear modifier gene(s) or aminoglycoside(s) may play a role in the phenotypic expression of the deafness-associated G7444A mutation in these Chinese pedigrees.

  2. The History of Slavs Inferred from Complete Mitochondrial Genome Sequences

    PubMed Central

    Mielnik-Sikorska, Marta; Daca, Patrycja; Malyarchuk, Boris; Derenko, Miroslava; Skonieczna, Katarzyna; Perkova, Maria; Dobosz, Tadeusz; Grzybowski, Tomasz

    2013-01-01

    To shed more light on the processes leading to crystallization of a Slavic identity, we investigated variability of complete mitochondrial genomes belonging to haplogroups H5 and H6 (63 mtDNA genomes) from the populations of Eastern and Western Slavs, including new samples of Poles, Ukrainians and Czechs presented here. Molecular dating implies formation of H5 approximately 11.5–16 thousand years ago (kya) in the areas of southern Europe. Within ancient haplogroup H6, dated at around 15–28 kya, there is a subhaplogroup H6c, which probably survived the last glaciation in Europe and has undergone expansion only 3–4 kya, together with the ancestors of some European groups, including the Slavs, because H6c has been detected in Czechs, Poles and Slovaks. Detailed analysis of complete mtDNAs allowed us to identify a number of lineages that seem specific for Central and Eastern Europe (H5a1f, H5a2, H5a1r, H5a1s, H5b4, H5e1a, H5u1, some subbranches of H5a1a and H6a1a9). Some of them could possibly be traced back to at least ∼4 kya, which indicates that some of the ancestors of today's Slavs (Poles, Czechs, Slovaks, Ukrainians and Russians) inhabited areas of Central and Eastern Europe much earlier than it was estimated on the basis of archaeological and historical data. We also sequenced entire mitochondrial genomes of several non-European lineages (A, C, D, G, L) found in contemporary populations of Poland and Ukraine. The analysis of these haplogroups confirms the presence of Siberian (C5c1, A8a1) and Ashkenazi-specific (L2a1l2a) mtDNA lineages in Slavic populations. Moreover, we were able to pinpoint some lineages which could possibly reflect the relatively recent contacts of Slavs with nomadic Altaic peoples (C4a1a, G2a, D5a2a1a1). PMID:23342138

  3. Next-generation sequencing reveals deletions in mitochondrial mutants

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Cucumber mitochondria have three unique characteristics: paternal transmission, huge genome size, and mitochondrially encoded mosaic phenotypes. The cucumber mitochondrial DNA at 1.6 Mb is one of largest among angiosperms, and is divided into three chromosomes of 1.5 Mb, 84 Kb and 45 Kb. Paternally...

  4. Sequence analysis of mitochondrial DNA hypervariable regions using infrared fluorescence detection.

    PubMed

    Steffens, D L; Roy, R

    1998-06-01

    The non-coding region of the mitochondrial genome provides an attractive target for human forensic identification studies. Two hypervariable (HV) regions, each approximately 250-350 bp in length, contain the majority of mitochondrial DNA (mtDNA) sequence variability among different individuals. Various approaches to determine mtDNA sequence were evaluated utilizing highly sensitive infrared (IR) fluorescence detection. HV regions were amplified either together or separately and cycle-sequenced using a Thermo Sequenase protocol. An M13 universal primer sequence tail covalently attached to the 5' terminus of an amplification primer facilitated electrophoretic analysis and direct sequencing of the amplification products using IR detection. PMID:9631201

  5. COI barcodes and phylogeny of doves (Columbidae family).

    PubMed

    Khan, Haseeb Ahmad; Arif, Ibrahim Abdulwahid

    2013-12-01

    Cytochrome oxidase subunit I (COI) gene has been recognized as an authentic tool for species identification. Besides its potential barcoding capacity, COI sequences have also been used for inferring the phylogeny. Phylogenetic relationships among genera of Columbidae (pigeons and doves family) have not been fully resolved because of scarce sampling of taxa and limited availability of sequence data. In this study, we have evaluated the efficiency of COI barcodes for species identification and phylogenetic analysis of various doves. We sequenced the 693 bp region of COI gene of three species of doves including Oena capensis, Streptopelia decaocto, and Streptopelia senegalensis. After retrieving the relevant sequences from the GenBank, the entire data-set of 85 sequences represented 25 dove species from 11 different genera of the family Columbidae. The COI sequences of four species including Chalcophaps indica (two specimens), Columbina inca (five specimens), Geopelia striata (three specimens), and Macropygia phasianella (three specimens) were identical. The mean intraspecific base differences ranged from 0 to 37 while the P-distances ranged between 0 and 0.058. For most of the species, the P-distances were ≤ 0.008. Phylogenetic analysis differentiated the taxa into three major clusters. One of the clusters grouped five genera including Claravis, Columbina, Gallicolumba, Geopelia, and Geotrygon. The remaining two clusters grouped three genera each including Chalcophaps, Oena, and Turtur in one cluster and Macropygia, Streptopelia, and Zenaida in another cluster. Further sub-clustering clearly separated all the genera into individual clusters except two discrepancies for the genera Streptopelia and Turtur. Species-level cladistics clearly separated all the species into distinctive clades. In conclusion, COI barcoding is a powerful tool for species identification with added information on phylogenetic inference. The finding of this study will help to understand the

  6. Complete mitochondrial genome sequence of the Asian golden cat, Catopuma temminckii.

    PubMed

    Huang, Kui-Hua; Deng, Jia-Bo; Yu, Jian-Qiu; Cai, Zhi-Gang; Liu, Yu-Liang; Peng, Rui

    2016-09-01

    In this study, the mitochondrial genome of Asian golden cat (Catopuma temminckii) is sequenced. The mitochondrial genome was 16,985 bp long, including 13 protein-coding genes, 22 transfer RNA (tRNA) genes, 2 ribosomal RNA (rRNA) genes, 1 control region and 1 origin of light-strand replication. The overall base composition of the mitochondrial genome was 32.76% A, 27.49 % T, 25.75 % C, and 13.99 % G. The complete mitochondrial genome of Catopuma temminckii could contribute to understanding taxonomic status and phylogenetic relationship of genus Catopuma. PMID:25630725

  7. Complete mitochondrial genome sequence of the thorny seahorse Hippocampus histrix (Gasterosteiformes: Syngnathidae).

    PubMed

    Song, Hayeun; Mabuchi, Kohji

    2014-02-01

    We determined the complete mitochondrial genome (mitogenome) sequence of the thorny seahorse Hippocampus histrix. The total length of H. histrix mitogenome is 16,523 bp, which consists of 13 protein coding, 22 tRNA and 2 rRNA genes and 1 control region. It has the typical vertebrate mitochondrial gene arrangement. This mitogenome sequence provides the basis for taxonomic and conservation studies of this and several closely related species.

  8. Evidence of a Native Northwest Atlantic COI Haplotype Clade in the Cryptogenic Colonial Ascidian Botryllus schlosseri.

    PubMed

    Yund, Philip O; Collins, Catherine; Johnson, Sheri L

    2015-06-01

    The colonial ascidian Botryllus schlosseri should be considered cryptogenic (i.e., not definitively classified as either native or introduced) in the Northwest Atlantic. Although all the evidence is quite circumstantial, over the last 15 years most research groups have accepted the scenario of human-mediated dispersal and classified B. schlosseri as introduced; others have continued to consider it native or cryptogenic. We address the invasion status of this species by adding 174 sequences to the growing worldwide database for the mitochondrial gene cytochrome c oxidase subunit I (COI) and analyzing 1077 sequences to compare genetic diversity of one clade of haplotypes in the Northwest Atlantic with two hypothesized source regions (the Northeast Atlantic and Mediterranean). Our results lead us to reject the prevailing view of the directionality of transport across the Atlantic. We argue that the genetic diversity patterns at COI are far more consistent with the existence of at least one haplotype clade in the Northwest Atlantic (and possibly a second) that substantially pre-dates human colonization from Europe, with this native North American clade subsequently introduced to three sites in Northeast Atlantic and Mediterranean waters. However, we agree with past researchers that some sites in the Northwest Atlantic have more recently been invaded by alien haplotypes, so that some populations are currently composed of a mixture of native and invader haplotypes. PMID:26124447

  9. Phylogenetic divisions among Collared peccaries (Pecari tajacu) detected using mitochondrial and nuclear sequences.

    PubMed

    Gongora, Jaime; Morales, Socorro; Bernal, Jaime Eduardo; Moran, Chris

    2006-10-01

    The Collared peccary (Pecari tajacu) is one of the three extant recognised species of the family Tayassuidae, living in the Americas. To understand phylogenetic relationships among Collared peccaries, the entire mitochondrial DNA control region and cytochrome b as well as partial nuclear GPIP and PRE-1 P27, PRE-1 P642 and TYR sequences from specimens from Colombia, Argentina, Bolivia, Mexico, United States and Australian zoo animals of unknown origin were analysed. Separate and combined analyses of the mitochondrial sequences provided good resolution of Collared peccary relationships. Nuclear sequences were partially informative when combined sequence analyses were performed. Maximum Likelihood analyses of mitochondrial sequences showed that Collared peccaries clustered in two major clades, representing North-Central American and South American specimens. Collared peccaries from Colombia are paraphyletic. Statistical Parsimony analysis of combined nuclear sequences showed a distribution of DNA variants consistent with mitochondrial sequence analyses. However, there is an uncoupling of nuclear and mitochondrial sequence variation in two specimens from Colombia. The present study suggests the recent contact of isolated populations within Colombia and possible mitochondrial introgression between the North/Central clade and the South clade. Pairwise genetic distances comparison of mitochondrial sequences show that divergence between the two major clades of the Collared peccary was higher and comparable respectively with that within and between the other two recognised peccary species. Divergence between the two major clades of the Collared peccary was also higher than that observed within and even between recognised species of the Suidae family. The divergence within the major clades of the Collared peccary showed comparable values with those observed within the other two species of Tayassuidae and within six species of Suidae. The results show that the geographically

  10. Linear Plasmids and the Rate of Sequence Evolution in Plant Mitochondrial Genomes.

    PubMed

    Warren, Jessica M; Simmons, Mark P; Wu, Zhiqiang; Sloan, Daniel B

    2016-01-11

    The mitochondrial genomes of flowering plants experience frequent insertions of foreign sequences, including linear plasmids that also exist in standalone forms within mitochondria, but the history and phylogenetic distribution of plasmid insertions is not well known. Taking advantage of the increased availability of plant mitochondrial genome sequences, we performed phylogenetic analyses to reconstruct the evolutionary history of these plasmids and plasmid-derived insertions. Mitochondrial genomes from multiple land plant lineages (including liverworts, lycophytes, ferns, and gymnosperms) include fragmented remnants from ancient plasmid insertions. Such insertions are much more recent and widespread in angiosperms, in which approximately 75% of sequenced mitochondrial genomes contain identifiable plasmid insertions. Although conflicts between plasmid and angiosperm phylogenies provide clear evidence of repeated horizontal transfers, we were still able to detect significant phylogenetic concordance, indicating that mitochondrial plasmids have also experienced sustained periods of (effectively) vertical transmission in angiosperms. The observed levels of sequence divergence in plasmid-derived genes suggest that nucleotide substitution rates in these plasmids, which often encode their own viral-like DNA polymerases, are orders of magnitude higher than in mitochondrial chromosomes. Based on these results, we hypothesize that the periodic incorporation of mitochondrial genes into plasmids contributes to the remarkable heterogeneity in substitution rates among genes that has recently been discovered in some angiosperm mitochondrial genomes. In support of this hypothesis, we show that the recently acquired ψtrnP-trnW gene region in a maize linear plasmid is evolving significantly faster than homologous sequences that have been retained in the mitochondrial chromosome in closely related grasses.

  11. Linear Plasmids and the Rate of Sequence Evolution in Plant Mitochondrial Genomes.

    PubMed

    Warren, Jessica M; Simmons, Mark P; Wu, Zhiqiang; Sloan, Daniel B

    2016-02-01

    The mitochondrial genomes of flowering plants experience frequent insertions of foreign sequences, including linear plasmids that also exist in standalone forms within mitochondria, but the history and phylogenetic distribution of plasmid insertions is not well known. Taking advantage of the increased availability of plant mitochondrial genome sequences, we performed phylogenetic analyses to reconstruct the evolutionary history of these plasmids and plasmid-derived insertions. Mitochondrial genomes from multiple land plant lineages (including liverworts, lycophytes, ferns, and gymnosperms) include fragmented remnants from ancient plasmid insertions. Such insertions are much more recent and widespread in angiosperms, in which approximately 75% of sequenced mitochondrial genomes contain identifiable plasmid insertions. Although conflicts between plasmid and angiosperm phylogenies provide clear evidence of repeated horizontal transfers, we were still able to detect significant phylogenetic concordance, indicating that mitochondrial plasmids have also experienced sustained periods of (effectively) vertical transmission in angiosperms. The observed levels of sequence divergence in plasmid-derived genes suggest that nucleotide substitution rates in these plasmids, which often encode their own viral-like DNA polymerases, are orders of magnitude higher than in mitochondrial chromosomes. Based on these results, we hypothesize that the periodic incorporation of mitochondrial genes into plasmids contributes to the remarkable heterogeneity in substitution rates among genes that has recently been discovered in some angiosperm mitochondrial genomes. In support of this hypothesis, we show that the recently acquired ψtrnP-trnW gene region in a maize linear plasmid is evolving significantly faster than homologous sequences that have been retained in the mitochondrial chromosome in closely related grasses. PMID:26759362

  12. Linear Plasmids and the Rate of Sequence Evolution in Plant Mitochondrial Genomes

    PubMed Central

    Warren, Jessica M.; Simmons, Mark P.; Wu, Zhiqiang; Sloan, Daniel B.

    2016-01-01

    The mitochondrial genomes of flowering plants experience frequent insertions of foreign sequences, including linear plasmids that also exist in standalone forms within mitochondria, but the history and phylogenetic distribution of plasmid insertions is not well known. Taking advantage of the increased availability of plant mitochondrial genome sequences, we performed phylogenetic analyses to reconstruct the evolutionary history of these plasmids and plasmid-derived insertions. Mitochondrial genomes from multiple land plant lineages (including liverworts, lycophytes, ferns, and gymnosperms) include fragmented remnants from ancient plasmid insertions. Such insertions are much more recent and widespread in angiosperms, in which approximately 75% of sequenced mitochondrial genomes contain identifiable plasmid insertions. Although conflicts between plasmid and angiosperm phylogenies provide clear evidence of repeated horizontal transfers, we were still able to detect significant phylogenetic concordance, indicating that mitochondrial plasmids have also experienced sustained periods of (effectively) vertical transmission in angiosperms. The observed levels of sequence divergence in plasmid-derived genes suggest that nucleotide substitution rates in these plasmids, which often encode their own viral-like DNA polymerases, are orders of magnitude higher than in mitochondrial chromosomes. Based on these results, we hypothesize that the periodic incorporation of mitochondrial genes into plasmids contributes to the remarkable heterogeneity in substitution rates among genes that has recently been discovered in some angiosperm mitochondrial genomes. In support of this hypothesis, we show that the recently acquired ψtrnP-trnW gene region in a maize linear plasmid is evolving significantly faster than homologous sequences that have been retained in the mitochondrial chromosome in closely related grasses. PMID:26759362

  13. The Large Mitochondrial Genome of Symbiodinium minutum Reveals Conserved Noncoding Sequences between Dinoflagellates and Apicomplexans.

    PubMed

    Shoguchi, Eiichi; Shinzato, Chuya; Hisata, Kanako; Satoh, Nori; Mungpakdee, Sutada

    2015-08-01

    Even though mitochondrial genomes, which characterize eukaryotic cells, were first discovered more than 50 years ago, mitochondrial genomics remains an important topic in molecular biology and genome sciences. The Phylum Alveolata comprises three major groups (ciliates, apicomplexans, and dinoflagellates), the mitochondrial genomes of which have diverged widely. Even though the gene content of dinoflagellate mitochondrial genomes is reportedly comparable to that of apicomplexans, the highly fragmented and rearranged genome structures of dinoflagellates have frustrated whole genomic analysis. Consequently, noncoding sequences and gene arrangements of dinoflagellate mitochondrial genomes have not been well characterized. Here we report that the continuous assembled genome (∼326 kb) of the dinoflagellate, Symbiodinium minutum, is AT-rich (∼64.3%) and that it contains three protein-coding genes. Based upon in silico analysis, the remaining 99% of the genome comprises transcriptomic noncoding sequences. RNA edited sites and unique, possible start and stop codons clarify conserved regions among dinoflagellates. Our massive transcriptome analysis shows that almost all regions of the genome are transcribed, including 27 possible fragmented ribosomal RNA genes and 12 uncharacterized small RNAs that are similar to mitochondrial RNA genes of the malarial parasite, Plasmodium falciparum. Gene map comparisons show that gene order is only slightly conserved between S. minutum and P. falciparum. However, small RNAs and intergenic sequences share sequence similarities with P. falciparum, suggesting that the function of noncoding sequences has been preserved despite development of very different genome structures.

  14. The Large Mitochondrial Genome of Symbiodinium minutum Reveals Conserved Noncoding Sequences between Dinoflagellates and Apicomplexans

    PubMed Central

    Shoguchi, Eiichi; Shinzato, Chuya; Hisata, Kanako; Satoh, Nori; Mungpakdee, Sutada

    2015-01-01

    Even though mitochondrial genomes, which characterize eukaryotic cells, were first discovered more than 50 years ago, mitochondrial genomics remains an important topic in molecular biology and genome sciences. The Phylum Alveolata comprises three major groups (ciliates, apicomplexans, and dinoflagellates), the mitochondrial genomes of which have diverged widely. Even though the gene content of dinoflagellate mitochondrial genomes is reportedly comparable to that of apicomplexans, the highly fragmented and rearranged genome structures of dinoflagellates have frustrated whole genomic analysis. Consequently, noncoding sequences and gene arrangements of dinoflagellate mitochondrial genomes have not been well characterized. Here we report that the continuous assembled genome (∼326 kb) of the dinoflagellate, Symbiodinium minutum, is AT-rich (∼64.3%) and that it contains three protein-coding genes. Based upon in silico analysis, the remaining 99% of the genome comprises transcriptomic noncoding sequences. RNA edited sites and unique, possible start and stop codons clarify conserved regions among dinoflagellates. Our massive transcriptome analysis shows that almost all regions of the genome are transcribed, including 27 possible fragmented ribosomal RNA genes and 12 uncharacterized small RNAs that are similar to mitochondrial RNA genes of the malarial parasite, Plasmodium falciparum. Gene map comparisons show that gene order is only slightly conserved between S. minutum and P. falciparum. However, small RNAs and intergenic sequences share sequence similarities with P. falciparum, suggesting that the function of noncoding sequences has been preserved despite development of very different genome structures. PMID:26199191

  15. Novel genetic diversity within Anopheles punctimacula s.l.: phylogenetic discrepancy between the Barcode cytochrome c oxidase I (COI) gene and the rDNA second internal transcribed spacer (ITS2).

    PubMed

    Loaiza, Jose R; Scott, Marilyn E; Bermingham, Eldredge; Sanjur, Oris I; Rovira, Jose R; Dutari, Larissa C; Linton, Yvonne-Marie; Bickersmith, Sara; Conn, Jan E

    2013-10-01

    Anopheles punctimacula s.l. is a regional malaria vector in parts of Central America, but its role in transmission is controversial due to its unresolved taxonomic status. Two cryptic species, An. malefactor and An. calderoni, have been previously confused with this taxon, and evidence for further genetic differentiation has been proposed. In the present study we collected and morphologically identified adult female mosquitoes of An. punctimacula s.l. from 10 localities across Panama and one in Costa Rica. DNA sequences from three molecular regions, the three prime end of the mitochondrial cytochrome c oxidase I gene (3' COI), the Barcode region in the five prime end of the COI (5' COI), and the rDNA second internal transcribed spacer (ITS2) were used to test the hypothesis of new molecular lineages within An. punctimacula s.l. Phylogenetic analyses using the 3' COI depicted six highly supported molecular lineages (A-F), none of which was An. malefactor. In contrast, phylogenetic inference with the 5' COI demonstrated paraphyly. Tree topologies based on the combined COI regions and ITS2 sequence data supported the same six lineages as the 3' COI alone. As a whole this evidence suggests that An. punctimacula s.l. comprises two geographically isolated lineages, but it is not clear whether these are true species. The phylogenetic structure of the An. punctimacula cluster as well as that of other unknown lineages (C type I vs C type II; D vs E) appears to be driven by geographic partition, because members of these assemblages did not overlap spatially. We report An. malefactor for the first time in Costa Rica, but our data do not support the presence of An. calderoni in Panama. PMID:23806568

  16. Complete mitochondrial genome of Otis tarda (Gruiformes: Otididae) and phylogeny of Gruiformes inferred from mitochondrial DNA sequences.

    PubMed

    Yang, Rong; Wu, Xiaobing; Yan, Peng; Su, Xia; Yang, Banghe

    2010-10-01

    The complete nucleotide sequence of mitochondrial genome of the Great bustard (Otis tarda) was determined by using polymerase chain reaction (PCR) method. The genome is 16,849 bp in size, containing 13 protein-coding, 2 ribosomal and 22 transfer RNA genes. Sequences of the tRNA genes can be folded into canonical cloverleaf secondary structure except for tRNA-Cys and tRNA-Ser (AGY), which lose "DHU" arm. Sequence analysis showed that the O. tarda mitochondrial control region (mtCR) contained many elements in common with other avian mtCRs. A microsatellite repeat was found in the 3'-peripheral domain of the O. tarda mtCR. Based on the mitochondrial DNA sequences of 12S rRNA, 16S rRNA and tRNA-Val, a phylogenetic study of Gruiformes was performed. The result showed that Otididae was a sister group to "core Gruiformes" and Charadriiformes with strong support (97% posterior probability values) in Bayesian analysis. The taxonomic status of Rhynochetidae, Mesitornithidae, Pedionomidae and Turnicidae that traditionally belonged to Gruiformes was also discussed in this paper. PMID:19823949

  17. Mitochondrial genome sequence and expression profiling for the legume pod borer Maruca vitrata (Lepidoptera: Crambidae).

    PubMed

    Margam, Venu M; Coates, Brad S; Hellmich, Richard L; Agunbiade, Tolulope; Seufferheld, Manfredo J; Sun, Weilin; Ba, Malick N; Sanon, Antoine; Binso-Dabire, Clementine L; Baoua, Ibrahim; Ishiyaku, Mohammad F; Covas, Fernando G; Srinivasan, Ramasamy; Armstrong, Joel; Murdock, Larry L; Pittendrigh, Barry R

    2011-01-01

    We report the assembly of the 14,054 bp near complete sequencing of the mitochondrial genome of the legume pod borer (LPB), Maruca vitrata (Lepidoptera: Crambidae), which we subsequently used to estimate divergence and relationships within the lepidopteran lineage. The arrangement and orientation of the 13 protein-coding, 2 rRNA, and 19 tRNA genes sequenced was typical of insect mitochondrial DNA sequences described to date. The sequence contained a high A+T content of 80.1% and a bias for the use of codons with A or T nucleotides in the 3rd position. Transcript mapping with midgut and salivary gland ESTs for mitochondrial genome annotation showed that translation from protein-coding genes initiates and terminates at standard mitochondrial codons, except for the coxI gene, which may start from an arginine CGA codon. The genomic copy of coxII terminates at a T nucleotide, and a proposed polyadenylation mechanism for completion of the TAA stop codon was confirmed by comparisons to EST data. EST contig data further showed that mature M. vitrata mitochondrial transcripts are monocistronic, except for bicistronic transcripts for overlapping genes nd4/nd4L and nd6/cytb, and a tricistronic transcript for atp8/atp6/coxIII. This processing of polycistronic mitochondrial transcripts adheres to the tRNA punctuated cleavage mechanism, whereby mature transcripts are cleaved only at intervening tRNA gene sequences. In contrast, the tricistronic atp8/atp6/coxIII in Drosophila is present as separate atp8/atp6 and coxIII transcripts despite the lack of an intervening tRNA. Our results indicate that mitochondrial processing mechanisms vary between arthropod species, and that it is crucial to use transcriptional information to obtain full annotation of mitochondrial genomes.

  18. Mitochondrial Genome Sequence and Expression Profiling for the Legume Pod Borer Maruca vitrata (Lepidoptera: Crambidae)

    PubMed Central

    Margam, Venu M.; Coates, Brad S.; Hellmich, Richard L.; Agunbiade, Tolulope; Seufferheld, Manfredo J.; Sun, Weilin; Ba, Malick N.; Sanon, Antoine; Binso-Dabire, Clementine L.; Baoua, Ibrahim; Ishiyaku, Mohammad F.; Covas, Fernando G.; Srinivasan, Ramasamy; Armstrong, Joel; Murdock, Larry L.; Pittendrigh, Barry R.

    2011-01-01

    We report the assembly of the 14,054 bp near complete sequencing of the mitochondrial genome of the legume pod borer (LPB), Maruca vitrata (Lepidoptera: Crambidae), which we subsequently used to estimate divergence and relationships within the lepidopteran lineage. The arrangement and orientation of the 13 protein-coding, 2 rRNA, and 19 tRNA genes sequenced was typical of insect mitochondrial DNA sequences described to date. The sequence contained a high A+T content of 80.1% and a bias for the use of codons with A or T nucleotides in the 3rd position. Transcript mapping with midgut and salivary gland ESTs for mitochondrial genome annotation showed that translation from protein-coding genes initiates and terminates at standard mitochondrial codons, except for the coxI gene, which may start from an arginine CGA codon. The genomic copy of coxII terminates at a T nucleotide, and a proposed polyadenylation mechanism for completion of the TAA stop codon was confirmed by comparisons to EST data. EST contig data further showed that mature M. vitrata mitochondrial transcripts are monocistronic, except for bicistronic transcripts for overlapping genes nd4/nd4L and nd6/cytb, and a tricistronic transcript for atp8/atp6/coxIII. This processing of polycistronic mitochondrial transcripts adheres to the tRNA punctuated cleavage mechanism, whereby mature transcripts are cleaved only at intervening tRNA gene sequences. In contrast, the tricistronic atp8/atp6/coxIII in Drosophila is present as separate atp8/atp6 and coxIII transcripts despite the lack of an intervening tRNA. Our results indicate that mitochondrial processing mechanisms vary between arthropod species, and that it is crucial to use transcriptional information to obtain full annotation of mitochondrial genomes. PMID:21311752

  19. The past, present and future of mitochondrial genomics: have we sequenced enough mtDNAs?

    PubMed

    Smith, David Roy

    2016-01-01

    The year 2014 saw more than a thousand new mitochondrial genome sequences deposited in GenBank-an almost 15% increase from the previous year. Hundreds of peer-reviewed articles accompanied these genomes, making mitochondrial DNAs (mtDNAs) the most sequenced and reported type of eukaryotic chromosome. These mtDNA data have advanced a wide range of scientific fields, from forensics to anthropology to medicine to molecular evolution. But for many biological lineages, mtDNAs are so well sampled that newly published genomes are arguably no longer contributing significantly to the progression of science, and in some cases they are tying up valuable resources, particularly journal editors and referees. Is it time to acknowledge that as a research community we have published enough mitochondrial genome papers? Here, I address this question, exploring the history, milestones and impacts of mitochondrial genomics, the benefits and drawbacks of continuing to publish mtDNAs at a high rate and what the future may hold for such an important and popular genetic marker. I highlight groups for which mtDNAs are still poorly sampled, thus meriting further investigation, and recommend that more energy be spent characterizing aspects of mitochondrial genomes apart from the DNA sequence, such as their chromosomal and transcriptional architectures. Ultimately, one should be mindful before writing a mitochondrial genome paper. Consider perhaps sending the sequence directly to GenBank instead, and be sure to annotate it correctly before submission.

  20. The past, present and future of mitochondrial genomics: have we sequenced enough mtDNAs?

    PubMed Central

    2016-01-01

    The year 2014 saw more than a thousand new mitochondrial genome sequences deposited in GenBank—an almost 15% increase from the previous year. Hundreds of peer-reviewed articles accompanied these genomes, making mitochondrial DNAs (mtDNAs) the most sequenced and reported type of eukaryotic chromosome. These mtDNA data have advanced a wide range of scientific fields, from forensics to anthropology to medicine to molecular evolution. But for many biological lineages, mtDNAs are so well sampled that newly published genomes are arguably no longer contributing significantly to the progression of science, and in some cases they are tying up valuable resources, particularly journal editors and referees. Is it time to acknowledge that as a research community we have published enough mitochondrial genome papers? Here, I address this question, exploring the history, milestones and impacts of mitochondrial genomics, the benefits and drawbacks of continuing to publish mtDNAs at a high rate and what the future may hold for such an important and popular genetic marker. I highlight groups for which mtDNAs are still poorly sampled, thus meriting further investigation, and recommend that more energy be spent characterizing aspects of mitochondrial genomes apart from the DNA sequence, such as their chromosomal and transcriptional architectures. Ultimately, one should be mindful before writing a mitochondrial genome paper. Consider perhaps sending the sequence directly to GenBank instead, and be sure to annotate it correctly before submission. PMID:26117139

  1. The past, present and future of mitochondrial genomics: have we sequenced enough mtDNAs?

    PubMed

    Smith, David Roy

    2016-01-01

    The year 2014 saw more than a thousand new mitochondrial genome sequences deposited in GenBank-an almost 15% increase from the previous year. Hundreds of peer-reviewed articles accompanied these genomes, making mitochondrial DNAs (mtDNAs) the most sequenced and reported type of eukaryotic chromosome. These mtDNA data have advanced a wide range of scientific fields, from forensics to anthropology to medicine to molecular evolution. But for many biological lineages, mtDNAs are so well sampled that newly published genomes are arguably no longer contributing significantly to the progression of science, and in some cases they are tying up valuable resources, particularly journal editors and referees. Is it time to acknowledge that as a research community we have published enough mitochondrial genome papers? Here, I address this question, exploring the history, milestones and impacts of mitochondrial genomics, the benefits and drawbacks of continuing to publish mtDNAs at a high rate and what the future may hold for such an important and popular genetic marker. I highlight groups for which mtDNAs are still poorly sampled, thus meriting further investigation, and recommend that more energy be spent characterizing aspects of mitochondrial genomes apart from the DNA sequence, such as their chromosomal and transcriptional architectures. Ultimately, one should be mindful before writing a mitochondrial genome paper. Consider perhaps sending the sequence directly to GenBank instead, and be sure to annotate it correctly before submission. PMID:26117139

  2. A protocol for isolating insect mitochondrial genomes: a case study of NUMT in Melipona flavolineata (Hymenoptera: Apidae).

    PubMed

    Françoso, Elaine; Gomes, Fernando; Arias, Maria Cristina

    2016-07-01

    Nuclear mitochondrial DNA insertions (NUMTs) are mitochondrial DNA sequences that have been transferred into the nucleus and are recognized by the presence of indels and stop codons. Although NUMTs have been identified in a diverse range of species, their discovery was frequently accidental. Here, our initial goal was to develop and standardize a simple method for isolating NUMTs from the nuclear genome of a single bee. Subsequently, we tested our new protocol by determining whether the indels and stop codons of the cytochrome c oxidase subunit I (COI) sequence of Melipona flavolineata are of nuclear origin. The new protocol successfully demonstrated the presence of a COI NUMT. In addition to NUMT investigations, the protocol described here will also be very useful for studying mitochondrial mutations related to diseases and for sequencing complete mitochondrial genomes with high read coverage by Next-Generation technology.

  3. Human mitochondrial DNA complete amplification and sequencing: a new validated primer set that prevents nuclear DNA sequences of mitochondrial origin co-amplification.

    PubMed

    Ramos, Amanda; Santos, Cristina; Alvarez, Luis; Nogués, Ramon; Aluja, Maria Pilar

    2009-05-01

    To date, there are no published primers to amplify the entire mitochondrial DNA (mtDNA) that completely prevent the amplification of nuclear DNA (nDNA) sequences of mitochondrial origin. The main goal of this work was to design, validate and describe a set of primers, to specifically amplify and sequence the complete human mtDNA, allowing the correct interpretation of mtDNA heteroplasmy in healthy and pathological samples. Validation was performed using two different approaches: (i) Basic Local Alignment Search Tool and (ii) amplification using isolated nDNA obtained from sperm cells by differential lyses. During the validation process, two mtDNA regions, with high similarity with nDNA, represent the major problematic areas for primer design. One of these could represent a non-published nuclear DNA sequence of mitochondrial origin. For two of the initially designed fragments, the amplification results reveal PCR artifacts that can be attributed to the poor quality of the DNA. After the validation, nine overlapping primer pairs to perform mtDNA amplification and 22 additional internal primers for mtDNA sequencing were obtained. These primers could be a useful tool in future projects that deal with mtDNA complete sequencing and heteroplasmy detection, since they represent a set of primers that have been tested for the non-amplification of nDNA.

  4. Complete genome sequence of mitochondrial DNA (mtDNA) of Chlorella sorokiniana.

    PubMed

    Orsini, Massimiliano; Costelli, Cristina; Malavasi, Veronica; Cusano, Roberto; Concas, Alessandro; Angius, Andrea; Cao, Giacomo

    2016-01-01

    The complete sequence of mitochondrial genome of the Chlorella sorokiniana strain (SAG 111-8 k) is presented in this work. Within the Chlorella genus, it represents the second species with a complete sequenced and annotated mitochondrial genome (GenBank accession no. KM241869). The genome consists of circular chromosomes of 52,528 bp and encodes a total of 31 protein coding genes, 3 rRNAs and 26 tRNAs. The overall AT contents of the C. sorokiniana mtDNA is 70.89%, while the coding sequence is of 97.4%.

  5. Complete mitochondrial DNA sequence of the endangered fish (Bahaba taipingensis): Mitogenome characterization and phylogenetic implications

    PubMed Central

    Zhao, Linlin; Gao, Tianxiang; Lu, Weihua

    2015-01-01

    Abstract To understand the systematic status of Bahaba taipingensis within Sciaenidae, the complete mitochondrial genome (mitogenome) sequence of Chinese bahaba has recently been determined by long PCR and primer walking methods. The complete mitochondrial genome is 16500 bp in length and contains 37 mitochondrial genes (13 protein-coding genes, 2 ribosomal RNA genes and 22 transfer RNA genes) as well as a control region (CR) as other bony fishes. Within the control region, we identified the extended termination associated sequence domain (ETAS), the central conserved sequence block domain (CSB-D, SCB-E and CSB-F) and the conserved sequence block domain (CSB-1, CSB-2 and CSB-3). Phylogenetic analyses revealed that Bahaba taipingensis is more closely related to Pseudosciaeniae than Argyrosominae and Sciaeninae. Additionally, Bahaba taipingensis is the sister taxon of Miichthys miiuy, and those two are sister to Collichthys plus Larimichthys. PMID:26798311

  6. Efficient newly designed primers for the amplification and sequencing of bird mitochondrial genomes.

    PubMed

    Amer, Sayed A M; Ahmed, Mohamed Mohamed; Shobrak, Mohammed

    2013-01-01

    In the present study, 27 mitochondrial genomes of diverse avian supra-orders were collected from the Genbank database and their genes were aligned separately. From the alignments, the conserved sequences were selected to design novel conserved primers for amplification and sequencing of the different mitochondrial genes. The reproducibility of these primers was tested in the amplification and sequencing of diverse avian supra-order mitochondrial genomes and was confirmed. This method helped in designing a new set of primers to accelerate both the amplification and the sequencing of bird mitogenomes. It also aids in building mitogenome markers in studying the genetic framework of endemic birds as a preliminary strategy for conservation management of them.

  7. A Cost-Effective Approach to Sequence Hundreds of Complete Mitochondrial Genomes

    PubMed Central

    Oleksiak, Marjorie F.

    2016-01-01

    We present a cost-effective approach to sequence whole mitochondrial genomes for hundreds of individuals. Our approach uses small reaction volumes and unmodified (non-phosphorylated) barcoded adaptors to minimize reagent costs. We demonstrate our approach by sequencing 383 Fundulus sp. mitochondrial genomes (192 F. heteroclitus and 191 F. majalis). Prior to sequencing, we amplified the mitochondrial genomes using 4–5 custom-made, overlapping primer pairs, and sequencing was performed on an Illumina HiSeq 2500 platform. After removing low quality and short sequences, 2.9 million and 2.8 million reads were generated for F. heteroclitus and F. majalis respectively. Individual genomes were assembled for each species by mapping barcoded reads to a reference genome. For F. majalis, the reference genome was built de novo. On average, individual consensus sequences had high coverage: 61-fold for F. heteroclitus and 57-fold for F. majalis. The approach discussed in this paper is optimized for sequencing mitochondrial genomes on an Illumina platform. However, with the proper modifications, this approach could be easily applied to other small genomes and sequencing platforms. PMID:27505419

  8. A Cost-Effective Approach to Sequence Hundreds of Complete Mitochondrial Genomes.

    PubMed

    Nunez, Joaquin C B; Oleksiak, Marjorie F

    2016-01-01

    We present a cost-effective approach to sequence whole mitochondrial genomes for hundreds of individuals. Our approach uses small reaction volumes and unmodified (non-phosphorylated) barcoded adaptors to minimize reagent costs. We demonstrate our approach by sequencing 383 Fundulus sp. mitochondrial genomes (192 F. heteroclitus and 191 F. majalis). Prior to sequencing, we amplified the mitochondrial genomes using 4-5 custom-made, overlapping primer pairs, and sequencing was performed on an Illumina HiSeq 2500 platform. After removing low quality and short sequences, 2.9 million and 2.8 million reads were generated for F. heteroclitus and F. majalis respectively. Individual genomes were assembled for each species by mapping barcoded reads to a reference genome. For F. majalis, the reference genome was built de novo. On average, individual consensus sequences had high coverage: 61-fold for F. heteroclitus and 57-fold for F. majalis. The approach discussed in this paper is optimized for sequencing mitochondrial genomes on an Illumina platform. However, with the proper modifications, this approach could be easily applied to other small genomes and sequencing platforms. PMID:27505419

  9. A Cost-Effective Approach to Sequence Hundreds of Complete Mitochondrial Genomes.

    PubMed

    Nunez, Joaquin C B; Oleksiak, Marjorie F

    2016-01-01

    We present a cost-effective approach to sequence whole mitochondrial genomes for hundreds of individuals. Our approach uses small reaction volumes and unmodified (non-phosphorylated) barcoded adaptors to minimize reagent costs. We demonstrate our approach by sequencing 383 Fundulus sp. mitochondrial genomes (192 F. heteroclitus and 191 F. majalis). Prior to sequencing, we amplified the mitochondrial genomes using 4-5 custom-made, overlapping primer pairs, and sequencing was performed on an Illumina HiSeq 2500 platform. After removing low quality and short sequences, 2.9 million and 2.8 million reads were generated for F. heteroclitus and F. majalis respectively. Individual genomes were assembled for each species by mapping barcoded reads to a reference genome. For F. majalis, the reference genome was built de novo. On average, individual consensus sequences had high coverage: 61-fold for F. heteroclitus and 57-fold for F. majalis. The approach discussed in this paper is optimized for sequencing mitochondrial genomes on an Illumina platform. However, with the proper modifications, this approach could be easily applied to other small genomes and sequencing platforms.

  10. DmTTF, a novel mitochondrial transcription termination factor that recognises two sequences of Drosophila melanogaster mitochondrial DNA

    PubMed Central

    Roberti, Marina; Polosa, Paola Loguercio; Bruni, Francesco; Musicco, Clara; Gadaleta, Maria Nicola; Cantatore, Palmiro

    2003-01-01

    Using a combination of bioinformatic and molecular biology approaches a Drosophila melanogaster protein, DmTTF, has been identified, which exhibits sequence and structural similarity with two mitochondrial transcription termination factors, mTERF (human) and mtDBP (sea urchin). Import/processing assays indicate that DmTTF is synthesised as a precursor of 410 amino acids and is imported into mitochondria, giving rise to a mature product of 366 residues. Band-shift and DNase I protection experiments show that DmTTF binds two homologous, short, non-coding sequences of Drosophila mitochondrial DNA, located at the 3′ end of blocks of genes transcribed on opposite strands. The location of the target sequences coincides with that of two of the putative transcription termination sites previously hypothesised. These results indicate that DmTTF is the termination factor of mitochondrial transcription in Drosophila. The existence of two DmTTF binding sites might serve not only to stop transcription but also to control the overlapping of a large number of transcripts generated by the peculiar transcription mechanism operating in this organism. PMID:12626700

  11. Molecular diversification of Trichuris spp. from Sigmodontinae (Cricetidae) rodents from Argentina based on mitochondrial DNA sequences.

    PubMed

    Callejón, Rocío; Robles, María Del Rosario; Panei, Carlos Javier; Cutillas, Cristina

    2016-08-01

    A molecular phylogenetic hypothesis is presented for the genus Trichuris based on sequence data from mitochondrial cytochrome c oxidase 1 (cox1) and cytochrome b (cob). The taxa consisted of nine populations of whipworm from five species of Sigmodontinae rodents from Argentina. Bayesian Inference, Maximum Parsimony, and Maximum Likelihood methods were used to infer phylogenies for each gene separately but also for the combined mitochondrial data and the combined mitochondrial and nuclear dataset. Phylogenetic results based on cox1 and cob mitochondrial DNA (mtDNA) revealed three clades strongly resolved corresponding to three different species (Trichuris navonae, Trichuris bainae, and Trichuris pardinasi) showing phylogeographic variation, but relationships among Trichuris species were poorly resolved. Phylogenetic reconstruction based on concatenated sequences had greater phylogenetic resolution for delimiting species and populations intra-specific of Trichuris than those based on partitioned genes. Thus, populations of T. bainae and T. pardinasi could be affected by geographical factors and co-divergence parasite-host. PMID:27083190

  12. One-way sequencing of multiple amplicons from tandem repetitive mitochondrial DNA control region.

    PubMed

    Xu, Jiawu; Fonseca, Dina M

    2011-10-01

    Repetitive DNA sequences not only exist abundantly in eukaryotic nuclear genomes, but also occur as tandem repeats in many animal mitochondrial DNA (mtDNA) control regions. Due to concerted evolution, these repetitive sequences are highly similar or even identical within a genome. When long repetitive regions are the targets of amplification for the purpose of sequencing, multiple amplicons may result if one primer has to be located inside the repeats. Here, we show that, without separating these amplicons by gel purification or cloning, directly sequencing the mitochondrial repeats with the primer outside repetitive region is feasible and efficient. We exemplify it by sequencing the mtDNA control region of the mosquito Aedes albopictus, which harbors typical large tandem DNA repeats. This one-way sequencing strategy is optimal for population surveys.

  13. Selective Enrichment and Sequencing of Whole Mitochondrial Genomes in the Presence of Nuclear Encoded Mitochondrial Pseudogenes (Numts)

    PubMed Central

    Wolff, Jonci N.; Shearman, Deborah C. A.; Brooks, Rob C.; Ballard, John W. O.

    2012-01-01

    Numts are an integral component of many eukaryote genomes offering a snapshot of the evolutionary process that led from the incorporation of an α-proteobacterium into a larger eukaryotic cell some 1.8 billion years ago. Although numt sequence can be harnessed as molecular marker, these sequences often remain unidentified and are mistaken for genuine mtDNA leading to erroneous interpretation of mtDNA data sets. It is therefore indispensable that during the process of amplifying and sequencing mitochondrial genes, preventive measures are taken to ensure the exclusion of numts to guarantee the recovery of genuine mtDNA. This applies to mtDNA analyses in general but especially to studies where mtDNAs are sequenced de novo as the launch pad for subsequent mtDNA-based research. By using a combination of dilution series and nested rolling circle amplification (RCA), we present a novel strategy to selectively amplify mtDNA and exclude the amplification of numt sequence. We have successfully applied this strategy to de novo sequence the mtDNA of the Black Field Cricket Teleogryllus commodus, a species known to contain numts. Aligning our assembled sequence to the reference genome of Teleogryllus emma (GenBank EU557269.1) led to the identification of a numt sequence in the reference sequence. This unexpected result further highlights the need of a reliable and accessible strategy to eliminate this source of error. PMID:22606342

  14. Complete mitochondrial genome sequence of a Hungarian red deer (Cervus elaphus hippelaphus) from high-throughput sequencing data and its phylogenetic position within the family Cervidae.

    PubMed

    Frank, Krisztián; Barta, Endre; Bana, Nóra Á; Nagy, János; Horn, Péter; Orosz, László; Stéger, Viktor

    2016-06-01

    Recently, there has been considerable interest in genetic differentiation in the Cervidae family. A common tool used to determine genetic variation in different species, breeds and populations is mitochondrial DNA analysis, which can be used to estimate phylogenetic relationships among animal taxa and for molecular phylogenetic evolution analysis. With the development of sequencing technology, more and more mitochondrial sequences have been made available in public databases, including whole mitochondrial DNA sequences. These data have been used for phylogenetic analysis of animal species, and for studies of evolutionary processes. We determined the complete mitochondrial genome of a Central European red deer, Cervus elaphus hippelaphus, from Hungary by a next generation sequencing technology. The mitochondrial genome is 16 354 bp in length and contains 13 protein-coding genes, two rRNA genes, 22 tRNA genes and a control region, all of which are arranged similar as in other vertebrates. We made phylogenetic analyses with the new sequence and 76 available mitochondrial sequences of Cervidae, using Bos taurus mitochondrial sequence as outgroup. We used 'neighbor joining' and 'maximum likelihood' methods on whole mitochondrial genome sequences; the consensus phylogenetic trees supported monophyly of the family Cervidae; it was divided into two subfamilies, Cervinae and Capreolinae, and five tribes, Cervini, Muntiacini, Alceini, Odocoileini, and Capreolini. The evolutionary structure of the family Cervidae can be reconstructed by phylogenetic analysis based on whole mitochondrial genomes; which method could be used broadly in phylogenetic evolutionary analysis of animal taxa. PMID:27165525

  15. Mitochondrial Genome Sequences of Nematocera (Lower Diptera): Evidence of Rearrangement following a Complete Genome Duplication in a Winter Crane Fly

    PubMed Central

    Beckenbach, Andrew T.

    2012-01-01

    The complete mitochondrial DNA sequences of eight representatives of lower Diptera, suborder Nematocera, along with nearly complete sequences from two other species, are presented. These taxa represent eight families not previously represented by complete mitochondrial DNA sequences. Most of the sequences retain the ancestral dipteran mitochondrial gene arrangement, while one sequence, that of the midge Arachnocampa flava (family Keroplatidae), has an inversion of the trnE gene. The most unusual result is the extensive rearrangement of the mitochondrial genome of a winter crane fly, Paracladura trichoptera (family Trichocera). The pattern of rearrangement indicates that the mechanism of rearrangement involved a tandem duplication of the entire mitochondrial genome, followed by random and nonrandom loss of one copy of each gene. Another winter crane fly retains the ancestral diperan gene arrangement. A preliminary mitochondrial phylogeny of the Diptera is also presented. PMID:22155689

  16. Determination and analysis of the complete mitochondrial genome sequence of Taoyuan chicken.

    PubMed

    Liu, Li-Li; Xie, Hong-Bing; Yu, Qi-Fang; He, Shao-Ping; He, Jian-Hua

    2016-01-01

    Taoyuan chicken is excellent native breeds in China. This study firstly determined the complete mitochondrial genome sequence of Taoyuan chicken using PCR-based amplification and Sanger sequencing. The characteristic of the entire mitochondrial genome was analyzed in detail, with the base composition of 30.26% A, 23.79% T, 32.44% C, 13.50% G in the Taoyuan chicken (16,784 bp in length). It contained 2 ribosomal RNA genes, 13 protein-coding genes, 22 transfer RNA genes and a major non-coding control region (D-loop region). The complete mitochondrial genome sequence of Taoyuan chicken will be useful for the phylogenetics of poultry, and be available as basic data for the genetics and breeding.

  17. The complete sequence of the mitochondrial genome of the African Penguin (Spheniscus demersus).

    PubMed

    Labuschagne, Christiaan; Kotzé, Antoinette; Grobler, J Paul; Dalton, Desiré L

    2014-01-15

    The complete mitochondrial genome of the African Penguin (Spheniscus demersus) was sequenced. The molecule was sequenced via next generation sequencing and primer walking. The size of the genome is 17,346 bp in length. Comparison with the mitochondrial DNA of two other penguin genomes that have so far been reported was conducted namely; Little blue penguin (Eudyptula minor) and the Rockhopper penguin (Eudyptes chrysocome). This analysis made it possible to identify common penguin mitochondrial DNA characteristics. The S. demersus mtDNA genome is very similar, both in composition and length to both the E. chrysocome and E. minor genomes. The gene content of the African penguin mitochondrial genome is typical of vertebrates and all three penguin species have the standard gene order originally identified in the chicken. The control region for S. demersus is located between tRNA-Glu and tRNA-Phe and all three species of penguins contain two sets of similar repeats with varying copy numbers towards the 3' end of the control region, accounting for the size variance. This is the first report of the complete nucleotide sequence for the mitochondrial genome of the African penguin, S. demersus. These results can be subsequently used to provide information for penguin phylogenetic studies and insights into the evolution of genomes. PMID:24157264

  18. The complete sequence of the mitochondrial genome of the African Penguin (Spheniscus demersus).

    PubMed

    Labuschagne, Christiaan; Kotzé, Antoinette; Grobler, J Paul; Dalton, Desiré L

    2014-01-15

    The complete mitochondrial genome of the African Penguin (Spheniscus demersus) was sequenced. The molecule was sequenced via next generation sequencing and primer walking. The size of the genome is 17,346 bp in length. Comparison with the mitochondrial DNA of two other penguin genomes that have so far been reported was conducted namely; Little blue penguin (Eudyptula minor) and the Rockhopper penguin (Eudyptes chrysocome). This analysis made it possible to identify common penguin mitochondrial DNA characteristics. The S. demersus mtDNA genome is very similar, both in composition and length to both the E. chrysocome and E. minor genomes. The gene content of the African penguin mitochondrial genome is typical of vertebrates and all three penguin species have the standard gene order originally identified in the chicken. The control region for S. demersus is located between tRNA-Glu and tRNA-Phe and all three species of penguins contain two sets of similar repeats with varying copy numbers towards the 3' end of the control region, accounting for the size variance. This is the first report of the complete nucleotide sequence for the mitochondrial genome of the African penguin, S. demersus. These results can be subsequently used to provide information for penguin phylogenetic studies and insights into the evolution of genomes.

  19. A molecular approach to the genus Alburnoides using COI sequences data set and the description of a new species, A. damghani, from the Damghan River system (the Dasht-e Kavir Basin, Iran) (Actinopterygii, Cyprinidae)

    PubMed Central

    Roudbar, Arash Jouladeh; Eagderi, Soheil; Esmaeili, Hamid Reza; Coad, Brian W.; Bogutskaya, Nina

    2016-01-01

    Abstract The molecular status of nine species of the genus Alburnoides from different river drainages in Iran and additionally by seven species from Europe was assessed. mtDNA COI gene sequences from freshly collected specimens and available NCBI data revealed four major phylogenetic lineages. Based on the results, a distinct taxon from the Cheshmeh Ali (Ali Spring), a Damghan River tributary in the endorheic Dasht-e Kavir basin, northern Iran, which is the closest sister to Alburnoides namaki (Namak Lake basin) + Alburnoides coadi (Nam River in the endorheic Dasht-e Kavir basin) is considered as a new species, Alburnoides damghani sp. n. It is distinguished from other Alburnoides species in Iran by a combination of character states including: a weakly-developed, variably-scaled, ventral keel from completely scaleless to completely scaled, a short snout with the tip of the mouth cleft on a level with the lower margin of the pupil or slightly lower, a small eye (eye horizontal diameter slightly to markedly less than interorbital width), commonly 8½ branched dorsal-fin rays, commonly 11−12½ branched anal-fin rays, 40−46(47) total lateral-line scales, 2.5–4.2 or 2.5–4.1 pharyngeal teeth, gill rakers short and widely spaced, 6−8 in total, 39−41 (commonly 40), total vertebrae, (19)20(21) abdominal vertebrae, 19−21 (most commonly 20) caudal vertebrae, abdominal vertebral region most commonly equal to or longer than caudal region, and most common vertebral formulae 20+20 and 21+19. PMID:27110204

  20. The First Complete Mitochondrial Genome Sequences for Stomatopod Crustaceans: Implications for Phylogeny

    SciTech Connect

    Swinstrom, Kirsten; Caldwell, Roy; Fourcade, H. Matthew; Boore, Jeffrey L.

    2005-09-07

    We report the first complete mitochondrial genome sequences of stomatopods and compare their features to each other and to those of other crustaceans. Phylogenetic analyses of the concatenated mitochondrial protein-coding sequences were used to explore relationships within the Stomatopoda, within the malacostracan crustaceans, and among crustaceans and insects. Although these analyses support the monophyly of both Malacostraca and, within it, Stomatopoda, it also confirms the view of a paraphyletic Crustacea, with Malacostraca being more closely related to insects than to the branchiopod crustaceans.

  1. Complete genome sequence of the mitochondrial DNA of the river lamprey, Lethenteron japonicum.

    PubMed

    Kawai, Yuri L; Yura, Kei; Shindo, Miyuki; Kusakabe, Rie; Hayashi, Keiko; Hata, Kenichiro; Nakabayashi, Kazuhiko; Okamura, Kohji

    2015-01-01

    Lampreys are eel-like jawless fishes evolutionarily positioned between invertebrates and vertebrates, and have been used as model organisms to explore vertebrate evolution. In this study we determined the complete genome sequence of the mitochondrial DNA of the Japanese river lamprey, Lethenteron japonicum, using next-generation sequencers. The sequence was 16,272 bp in length. The gene content and order were identical to those of the sea lamprey, Petromyzon marinus, which has been the reference among lamprey species. However, the sequence similarity was less than 90%, suggesting the need for the whole-genome sequencing of L. japonicum.

  2. Pairwise Comparisons of Mitochondrial DNA Sequences in Subdivided Populations and Implications for Early Human Evolution

    PubMed Central

    Marjoram, P.; Donnelly, P.

    1994-01-01

    We consider the effect on the distribution of pairwise differences between mitochondrial DNA sequences of the incorporation into the underlying population genetics model of two particular effects that seem realistic for human populations. The first is that the population size was roughly constant before growing to its current level. The second is that the population is geographically subdivided rather than panmictic. In each case these features tend to encourage multimodal distributions of pairwise differences, in contrast to existing, unimodal datasets. We argue that population genetics models currently used to analyze such data may thus fail to reflect important features of human mitochondrial DNA evolution. These may include selection on the mitochondrial genome, more realistic mutation mechanisms, or special population or migration dynamics. Particularly in view of the variability inherent in the single available human mitochondrial genealogy, it is argued that until these effects are better understood, inferences from such data should be rather cautious. PMID:8150290

  3. Complete nucleotide sequence of the mitochondrial genome of a salamander, Mertensiella luschani.

    PubMed

    Zardoya, Rafael; Malaga-Trillo, Edward; Veith, Michael; Meyer, Axel

    2003-10-23

    The complete nucleotide sequence (16,650 bp) of the mitochondrial genome of the salamander Mertensiella luschani (Caudata, Amphibia) was determined. This molecule conforms to the consensus vertebrate mitochondrial gene order. However, it is characterized by a long non-coding intervening sequence with two 124-bp repeats between the tRNA(Thr) and tRNA(Pro) genes. The new sequence data were used to reconstruct a phylogeny of jawed vertebrates. Phylogenetic analyses of all mitochondrial protein-coding genes at the amino acid level recovered a robust vertebrate tree in which lungfishes are the closest living relatives of tetrapods, salamanders and frogs are grouped together to the exclusion of caecilians (the Batrachia hypothesis) in a monophyletic amphibian clade, turtles show diapsid affinities and are placed as sister group of crocodiles+birds, and the marsupials are grouped together with monotremes and basal to placental mammals. The deduced phylogeny was used to characterize the molecular evolution of vertebrate mitochondrial proteins. Amino acid frequencies were analyzed across the main lineages of jawed vertebrates, and leucine and cysteine were found to be the most and least abundant amino acids in mitochondrial proteins, respectively. Patterns of amino acid replacements were conserved among vertebrates. Overall, cartilaginous fishes showed the least variation in amino acid frequencies and replacements. Constancy of rates of evolution among the main lineages of jawed vertebrates was rejected.

  4. Complete nucleotide sequence of the mitochondrial genome of a salamander, Mertensiella luschani.

    PubMed

    Zardoya, Rafael; Malaga-Trillo, Edward; Veith, Michael; Meyer, Axel

    2003-10-23

    The complete nucleotide sequence (16,650 bp) of the mitochondrial genome of the salamander Mertensiella luschani (Caudata, Amphibia) was determined. This molecule conforms to the consensus vertebrate mitochondrial gene order. However, it is characterized by a long non-coding intervening sequence with two 124-bp repeats between the tRNA(Thr) and tRNA(Pro) genes. The new sequence data were used to reconstruct a phylogeny of jawed vertebrates. Phylogenetic analyses of all mitochondrial protein-coding genes at the amino acid level recovered a robust vertebrate tree in which lungfishes are the closest living relatives of tetrapods, salamanders and frogs are grouped together to the exclusion of caecilians (the Batrachia hypothesis) in a monophyletic amphibian clade, turtles show diapsid affinities and are placed as sister group of crocodiles+birds, and the marsupials are grouped together with monotremes and basal to placental mammals. The deduced phylogeny was used to characterize the molecular evolution of vertebrate mitochondrial proteins. Amino acid frequencies were analyzed across the main lineages of jawed vertebrates, and leucine and cysteine were found to be the most and least abundant amino acids in mitochondrial proteins, respectively. Patterns of amino acid replacements were conserved among vertebrates. Overall, cartilaginous fishes showed the least variation in amino acid frequencies and replacements. Constancy of rates of evolution among the main lineages of jawed vertebrates was rejected. PMID:14604788

  5. The complete mitochondrial genome sequence of Symphysodon discus Heckel (1840).

    PubMed

    Yu, Yongliang; Chen, Zaizhong; Li, Zhongpu; Wang, Lei; Luo, Xiaoxi; Gao, Jianzhong

    2016-07-01

    The complete mitochondrial genome of Symphysodon discus Heckel was 16 544 bp in length, consisting of 22 tRNA genes, 13 protein-coding genes, 2 ribosomal rRNA genes, and a control region or displacement loop (D-loop). With the exception of 8 tRNAs and ND6 genes, the others were encoded on H-strand. The base composition on H-strand was 30.04% C, 28.39% A, 26.49% T and 15.07% G, exhibiting an A + T rich pattern. The codon usage was consistent with the other vertebrate mitochondrial pattern, i.e. start codon is ATG or GTG and stop codons are TAA, TAG or T- -. Stop codon TAG was only found in the ND6. There were 8 regions of gene overlapped with the length of 26 bp in total and 12 intergenic spacer regions (99 bp in total).

  6. Interspecific Comparison and annotation of two complete mitochondrial genome sequences from the plant pathogenic fungus Mycosphaerella graminicola

    SciTech Connect

    Millenbaugh, Bonnie A; Pangilinan, Jasmyn L.; Torriani, Stefano F.F.; Goodwin, Stephen B.; Kema, Gert H.J.; McDonald, Bruce A.

    2007-12-07

    The mitochondrial genomes of two isolates of the wheat pathogen Mycosphaerella graminicola were sequenced completely and compared to identify polymorphic regions. This organism is of interest because it is phylogenetically distant from other fungi with sequenced mitochondrial genomes and it has shown discordant patterns of nuclear and mitochondrial diversity. The mitochondrial genome of M. graminicola is a circular molecule of approximately 43,960 bp containing the typical genes coding for 14 proteins related to oxidative phosphorylation, one RNA polymerase, two rRNA genes and a set of 27 tRNAs. The mitochondrial DNA of M. graminicola lacks the gene encoding the putative ribosomal protein (rps5-like), commonly found in fungal mitochondrial genomes. Most of the tRNA genes were clustered with a gene order conserved with many other ascomycetes. A sample of thirty-five additional strains representing the known global mt diversity was partially sequenced to measure overall mitochondrial variability within the species. Little variation was found, confirming previous RFLP-based findings of low mitochondrial diversity. The mitochondrial sequence of M. graminicola is the first reported from the family Mycosphaerellaceae or the order Capnodiales. The sequence also provides a tool to better understand the development of fungicide resistance and the conflicting pattern of high nuclear and low mitochondrial diversity in global populations of this fungus.

  7. Developing diagnostic SNP panels for the identification of true fruit flies (Diptera: Tephritidae) within the limits of COI-based species delimitation

    PubMed Central

    2013-01-01

    Background Rapid and reliable identification of quarantine pests is essential for plant inspection services to prevent introduction of invasive species. For insects, this may be a serious problem when dealing with morphologically similar cryptic species complexes and early developmental stages that lack distinctive characters useful for taxonomic identification. DNA based barcoding could solve many of these problems. The standard barcode fragment, an approx. 650 base pairs long sequence of the 5′end of the mitochondrial cytochrome oxidase I (COI), enables differentiation of a very wide range of arthropods. However, problems remain in some taxa, such as Tephritidae, where recent genetic differentiation among some of the described species hinders accurate molecular discrimination. Results In order to explore the full species discrimination potential of COI, we sequenced the barcoding region of the COI gene of a range of economically important Tephritid species and complemented these data with all GenBank and BOLD entries for the systematic group available as of January 2012. We explored the limits of species delimitation of this barcode fragment among 193 putative Tephritid species and established operational taxonomic units (OTUs), between which discrimination is reliably possible. Furthermore, to enable future development of rapid diagnostic assays based on this sequence information, we characterized all single nucleotide polymorphisms (SNPs) and established “near-minimal” sets of SNPs that differentiate among all included OTUs with at least three and four SNPs, respectively. Conclusions We found that although several species cannot be differentiated based on the genetic diversity observed in COI and hence form composite OTUs, 85% of all OTUs correspond to described species. Because our SNP panels are developed based on all currently available sequence information and rely on a minimal pairwise difference of three SNPs, they are highly reliable and hence

  8. Sequencing and analysis of the whole mitochondrial genome of a variegated racerunner from Taklamakan Desert.

    PubMed

    Zhou, Tianhe; Wan, Xiaoqin; Guo, Xianguang

    2016-07-01

    The whole mitochondrial genome of a variegated racerunner (Eremias vermiculata) from the Taklamakan Desert was determined using polymerase chain reaction and directly sequenced with a primer walking method. The mitogenome sequence was 19 796 bp in size, containing 13 protein-coding genes, 22 tRNA genes, 2 rRNA genes, and a control region (D-loop), which is similar to the typical mtDNA of vertebrates. Mitochondrial genomes analyses using maximum parsimony and Bayesian analyses yielded identical phylogenetic trees, indicating a close phylogenetic affinity of the seven Eremias species. Monophyly of the genus Eremias and E. vermiculata was recovered. The mitogenome presented here will contribute to the examination of genetic differentiation for E. vermiculata and understanding of the mitochondrial DNA evolution in Eremias.

  9. Extraction and annotation of human mitochondrial genomes from 1000 Genomes Whole Exome Sequencing data

    PubMed Central

    2014-01-01

    Background Whole Exome Sequencing (WES) is one of the most used and cost-effective next generation technologies that allows sequencing of all nuclear exons. Off-target regions may be captured if they present high sequence similarity with baits. Bioinformatics tools have been optimized to retrieve a large amount of WES off-target mitochondrial DNA (mtDNA), by exploiting the aspecificity of probes, partially overlapping to Nuclear mitochondrial Sequences (NumtS). The 1000 Genomes project represents one of the widest resources to extract mtDNA sequences from WES data, considering the large effort the scientific community is undertaking to reconstruct human population history using mtDNA as marker, and the involvement of mtDNA in pathology. Results A previously published pipeline aimed at assembling mitochondrial genomes from off-target WES reads and further improved to detect insertions and deletions (indels) and heteroplasmy in a dataset of 1242 samples from the 1000 Genomes project, enabled to obtain a nearly complete mitochondrial genome from 943 samples (76% analyzed exomes). The robustness of our computational strategy was highlighted by the reduction of reads amount recognized as mitochondrial in the original annotation produced by the Consortium, due to NumtS filtering. An accurate survey was carried out on 1242 individuals. 215 indels, mostly heteroplasmic, and 3407 single base variants were mapped. A homogeneous mismatches distribution was observed along the whole mitochondrial genome, while a lower frequency of indels was found within protein-coding regions, where frameshift mutations may be deleterious. The majority of indels and mismatches found were not previously annotated in mitochondrial databases since conventional sequencing methods were limited to homoplasmy or quasi-homoplasmy detection. Intriguingly, upon filtering out non haplogroup-defining variants, we detected a widespread population occurrence of rare events predicted to be damaging

  10. Complete mitochondrial genome sequence of the Chinese scrub vole (Neodon irene).

    PubMed

    Fan, Longqing; Fan, Zhenxin; Yue, Hao; Zhang, Xiuyue; Liu, Yang; Sun, Zhiyu; Liu, Shaoying; Yue, Bisong

    2011-06-01

    The Chinese scrub vole (Neodon irene) belongs to the subfamily Arvicolinae, which is restricted to mountain areas at high altitudes (2800-4000). In this study, we sequenced the complete mitochondrial genome of N. irene. It was determined to be 16,367 bases. The nucleotide sequence data of 12 heavy-strand protein-coding genes of N. irene and other 22 rodents were used for phylogenetic analysis. Bayesian inference (BI) and maximum likelihood (ML) were used. Both the BI and ML trees demonstrated that Microtus rossiaemeridionalis and Microtus kikuchii did not cluster together with each other. On the contrary, M. rossiaemeridionalis showed close relationship with N. irene. In the present study, only one sequence from Neodon and two sequences from Microtus were included in the phylogenetic analysis which should contribute to the unusual relationship. Therefore, in order to better understand the phylogenetic relationship within Rodentia, more rodents' complete mitochondrial genomes are required.

  11. Next Generation Sequencing to Characterize Mitochondrial Genomic DNA Heteroplasmy

    PubMed Central

    Huang, Taosheng

    2015-01-01

    This protocol is to describe the methodology to characterize mitochondria DNA (mtDNA) heteroplasmy with parallel sequencing. Mitochondria play a very important role in important cellular functions. Each eukaryotic cell contains hundreds of mitochondria with hundreds of mitochondria genomes. The mutant mtDNA and the wild type may co-exist as heteroplasmy, and cause human disease. The purpose of this methodology is to simultaneously determine mtDNA sequence and to quantify the heteroplasmy level. The protocol includes two-fragment mitochondria genome DNA PCR amplification. The PCR product is then mixed at an equimolar ratio. The samples will be barcoded and sequenced with high-throughput next-generation sequencing technology. We found that this technology is highly sensitive, specific, and accurate in determining mtDNA mutations and the degree of heteroplasmic level. PMID:21975941

  12. High-Throughput Sequencing of Complete Mitochondrial Genomes.

    PubMed

    Briscoe, Andrew George; Hopkins, Kevin Peter; Waeschenbach, Andrea

    2016-01-01

    Next-generation sequencing has revolutionized mitogenomics, turning a cottage industry into a high throughput process. This chapter outlines methodologies used to sequence, assemble, and annotate mitogenomes of non-model organisms using Illumina sequencing technology, utilizing either long-range PCR amplicons or gDNA as starting template. Instructions are given on how to extract DNA, conduct long-range PCR amplifications, generate short Sanger barcode tag sequences, prepare equimolar sample pools, construct and assess quality library preparations, assemble Illumina reads using either seeded reference mapping or de novo assembly, and annotate mitogenomes in the absence of an automated pipeline. Notes and recommendations, derived from our own experience, are given throughout this chapter. PMID:27460369

  13. Mitochondrial genome sequence and expression profiling for the legume pod borer Maruca vitrata (Lepidoptera: Crambidae)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    We report on the assembly of the 14,146 base pairs (bp) near complete mitochondrial sequencing of the legume pod borer (LPB), Maruca vitrata (Lepidoptera: Crambidae), which was used to estimate divergence and relationships within the lepidopteran lineage. Arrangement and orientation of 13 protein c...

  14. Pervasive Mitochondrial Sequence Heteroplasmy in Natural Populations of Wild Carrot, Daucus carota spp. carota L.

    PubMed

    Mandel, Jennifer R; McCauley, David E

    2015-01-01

    Exceptions to the generally accepted rules that plant mitochondrial genomes are strictly maternally inherited and that within-individual sequence diversity in those genomes, i.e., heteroplasmy, should be minimal are becoming increasingly apparent especially with regard to sequence-level heteroplasmy. These findings raise questions about the potential significance of such heteroplasmy for plant mitochondrial genome evolution. Still studies quantifying the amount and consequences of sequence heteroplasmy in natural populations are rare. In this study, we report pervasive sequence heteroplasmy in natural populations of wild carrot, a close relative of the cultivated crop. In order to assay directly for this heteroplasmy, we implemented a quantitative PCR assay that can detect and quantify intra-individual SNP variation in two mitochondrial genes (Cox1 and Atp9). We found heteroplasmy in > 60% of all wild carrot populations surveyed and in > 30% of the 140 component individuals that were genotyped. Heteroplasmy ranged from a very small proportion of the total genotype (e.g., 0.995:0.005) to near even mixtures (e.g., 0.590:0.410) in some individuals. These results have important implications for the role of intra-genomic recombination in the generation of plant mitochondrial genome genotypic novelty. The consequences of such recombination are evident in the results of this study through analysis of the degree of linkage disequilibrium (LD) between the SNP sites at the two genes studied.

  15. Spatial and temporal continuity of kangaroo rat populations shown by sequencing mitochondrial DNA from museum specimens.

    PubMed

    Thomas, W K; Pääbo, S; Villablanca, F X; Wilson, A C

    1990-08-01

    The advent of direct sequencing via the polymerase chain reaction (PCR) has opened up the possibility of molecular studies on museum specimens. Here we analyze genetic variation in populations over time by applying PCR to DNA extracted from museum specimens sampled from populations of one species over the last 78 years. Included in this study were 43 museum specimens of the Panamint kangaroo rat Dipodomys panamintinus from localities representing each of three geographically distinct subspecies. These specimens were originally collected and prepared as dried skins in 1911, 1917, or 1937. For each specimen, a 225-bp segment of the mitochondrial genome was sequenced. These mitochondrial DNA sequences were compared to those of 63 specimens collected at the same localities in 1988. The three subspecies were nearly completely distinct. Only 2 of the 106 individuals shared mitochondrial types between subspecies. For all three localities, the diversity levels were maintained between the two temporal samples. The concordance observed between the two temporally separate phylogenies supports the use of museum specimens for phylogenetic inference. This study demonstrates the accuracy and routine nature of the use of museum specimens in the analysis of mitochondrial sequence variation in natural populations and, importantly, that a temporal aspect can now be added to such studies.

  16. Mitochondrial Genome Sequence of the Galápagos Endemic Land Snail Naesiotus nux

    PubMed Central

    Hunter, Samuel S.; Settles, Matthew L.; New, Daniel D.; Parent, Christine E.

    2016-01-01

    We report herein the draft mitochondrial genome sequence of Naesiotus nux, a Galápagos endemic land snail species of the genus Naesiotus. The circular genome is 15 kb and encodes 13 protein-coding genes, 2 rRNA genes, and 21 tRNA genes. PMID:26798085

  17. Draft Plastid and Mitochondrial Genome Sequences from Antarctic Alga Prasiola crispa

    PubMed Central

    Carvalho, Evelise Leis; Wallau, Gabriel da Luz; Rangel, Darlene Lopes; Machado, Laís Ceschini; da Silva, Alexandre Freitas; da Silva, Luiz Fernando Duarte; Macedo, Pablo Echeverria; Pereira, Antonio Batista; Victoria, Filipe de Carvalho; Boldo, Juliano Tomazzoni; Dal Belo, Cháriston André

    2015-01-01

    The organelle genomes of the Antarctic alga Prasiola crispa (Lightfoot) Kützing have been sequenced. The plastid and mitochondrial genomes have a total length of 196,502 bp and 89,819 bp, respectively. These genomes have 19 putative photosynthesis-related genes and 17 oxidative metabolism-related genes, respectively. PMID:26450727

  18. The complete mitochondrial genomes sequences of Asio flammeus and Asio otus and comparative analysis.

    PubMed

    Sun, Yi; Ma, Fei; Xiao, Bing; Zheng, Junjie; Yuan, Xiaodong; Tang, Minqian; Wang, Li; Yu, Yefei; Li, Qingwei

    2004-12-01

    The complete mitochondrial genomes of Asio flammeus and Asio otus were sequenced and found to span 18858 bp and 18493 bp, respectively. It is surprising to find the former to be the largest among all avian mitochondrial genomes sequenced so far. The two genomes have very similar gene order with that of Gallus gallus, neither contains the pseudo control region, but both have a single extra base, namely Cytidine, at position 174 in ND3 gene. The control regions of Asio flammeus and Asio otus' mitochondrial genomes span 3288 bp and 2926 bp respectively, which are the longest among vertebrates except for Myxine glutinosa and contribute to the large size of two genomes. The 3' end of the control region of Asio flammeus and Asio otus contains many tandemly repeated sequences, which are highly similar to a putative control element, i.e. Mt5, and may form stable stem-loop secondary structures. Such repeated sequences probably play an important role in regulating transcription and replication of mitochondrial genome. Our results may provide important clues for uncovering the origin and evolution mechanisms of mitochondrion genome.

  19. Complete mitochondrial genome sequence of a phytophagous ladybird beetle, Henosepilachna pusillanima (Mulsant) (Coleoptera: Coccinellidae).

    PubMed

    Behere, G T; Firake, D M; Tay, W T; Azad Thakur, N S; Ngachan, S V

    2016-01-01

    Ladybird beetles are generally considered as agriculturally beneficial insects, but the ladybird beetles in the coleopteran subfamily Epilachninae are phytophagous and major plant feeding pest species which causes severe economic losses to cucurbitaceous and solanaceous crops. Henosepilachna pusillanima (Mulsant) is one of the important pest species of ladybird beetle. In this report, we sequenced and characterized the complete mitochondrial genome of H. pusillanima. For sequencing of the complete mitochondrial genome, we used the Ion Torrent sequencing platform. The complete circular mitochondrial genome of the H. pusillanima was determined to be 16,216 bp long. There were totally 13 protein coding genes, 22 transfer RNA, 2 ribosomal RNA and a control (A + T-rich) region estimated to be 1690 bp. The gene arrangement and orientations of assembled mitogenome were identical to the reported predatory ladybird beetle Coccinella septempunctata L. This is the first completely sequenced coleopteran mitochondrial genome from the beetle subfamily Epilachninae from India. Data generated in this study will benefit future comparative genomics studies for understanding the evolutionary relationships between predatory and phytophagous coccinellid beetles. PMID:24617459

  20. Complete mitochondrial genome sequence of a phytophagous ladybird beetle, Henosepilachna pusillanima (Mulsant) (Coleoptera: Coccinellidae).

    PubMed

    Behere, G T; Firake, D M; Tay, W T; Azad Thakur, N S; Ngachan, S V

    2016-01-01

    Ladybird beetles are generally considered as agriculturally beneficial insects, but the ladybird beetles in the coleopteran subfamily Epilachninae are phytophagous and major plant feeding pest species which causes severe economic losses to cucurbitaceous and solanaceous crops. Henosepilachna pusillanima (Mulsant) is one of the important pest species of ladybird beetle. In this report, we sequenced and characterized the complete mitochondrial genome of H. pusillanima. For sequencing of the complete mitochondrial genome, we used the Ion Torrent sequencing platform. The complete circular mitochondrial genome of the H. pusillanima was determined to be 16,216 bp long. There were totally 13 protein coding genes, 22 transfer RNA, 2 ribosomal RNA and a control (A + T-rich) region estimated to be 1690 bp. The gene arrangement and orientations of assembled mitogenome were identical to the reported predatory ladybird beetle Coccinella septempunctata L. This is the first completely sequenced coleopteran mitochondrial genome from the beetle subfamily Epilachninae from India. Data generated in this study will benefit future comparative genomics studies for understanding the evolutionary relationships between predatory and phytophagous coccinellid beetles.

  1. Draft Plastid and Mitochondrial Genome Sequences from Antarctic Alga Prasiola crispa.

    PubMed

    Carvalho, Evelise Leis; Wallau, Gabriel da Luz; Rangel, Darlene Lopes; Machado, Laís Ceschini; da Silva, Alexandre Freitas; da Silva, Luiz Fernando Duarte; Macedo, Pablo Echeverria; Pereira, Antonio Batista; Victoria, Filipe de Carvalho; Boldo, Juliano Tomazzoni; Dal Belo, Cháriston André; Pinto, Paulo Marcos

    2015-01-01

    The organelle genomes of the Antarctic alga Prasiola crispa (Lightfoot) Kützing have been sequenced. The plastid and mitochondrial genomes have a total length of 196,502 bp and 89,819 bp, respectively. These genomes have 19 putative photosynthesis-related genes and 17 oxidative metabolism-related genes, respectively. PMID:26450727

  2. Pervasive Mitochondrial Sequence Heteroplasmy in Natural Populations of Wild Carrot, Daucus carota spp. carota L.

    PubMed

    Mandel, Jennifer R; McCauley, David E

    2015-01-01

    Exceptions to the generally accepted rules that plant mitochondrial genomes are strictly maternally inherited and that within-individual sequence diversity in those genomes, i.e., heteroplasmy, should be minimal are becoming increasingly apparent especially with regard to sequence-level heteroplasmy. These findings raise questions about the potential significance of such heteroplasmy for plant mitochondrial genome evolution. Still studies quantifying the amount and consequences of sequence heteroplasmy in natural populations are rare. In this study, we report pervasive sequence heteroplasmy in natural populations of wild carrot, a close relative of the cultivated crop. In order to assay directly for this heteroplasmy, we implemented a quantitative PCR assay that can detect and quantify intra-individual SNP variation in two mitochondrial genes (Cox1 and Atp9). We found heteroplasmy in > 60% of all wild carrot populations surveyed and in > 30% of the 140 component individuals that were genotyped. Heteroplasmy ranged from a very small proportion of the total genotype (e.g., 0.995:0.005) to near even mixtures (e.g., 0.590:0.410) in some individuals. These results have important implications for the role of intra-genomic recombination in the generation of plant mitochondrial genome genotypic novelty. The consequences of such recombination are evident in the results of this study through analysis of the degree of linkage disequilibrium (LD) between the SNP sites at the two genes studied. PMID:26295342

  3. Mitochondrial genome sequences reveal evolutionary relationships of the Phytophthora 1c clade species.

    PubMed

    Lassiter, Erica S; Russ, Carsten; Nusbaum, Chad; Zeng, Qiandong; Saville, Amanda C; Olarte, Rodrigo A; Carbone, Ignazio; Hu, Chia-Hui; Seguin-Orlando, Andaine; Samaniego, Jose A; Thorne, Jeffrey L; Ristaino, Jean B

    2015-11-01

    Phytophthora infestans is one of the most destructive plant pathogens of potato and tomato globally. The pathogen is closely related to four other Phytophthora species in the 1c clade including P. phaseoli, P. ipomoeae, P. mirabilis and P. andina that are important pathogens of other wild and domesticated hosts. P. andina is an interspecific hybrid between P. infestans and an unknown Phytophthora species. We have sequenced mitochondrial genomes of the sister species of P. infestans and examined the evolutionary relationships within the clade. Phylogenetic analysis indicates that the P. phaseoli mitochondrial lineage is basal within the clade. P. mirabilis and P. ipomoeae are sister lineages and share a common ancestor with the Ic mitochondrial lineage of P. andina. These lineages in turn are sister to the P. infestans and P. andina Ia mitochondrial lineages. The P. andina Ic lineage diverged much earlier than the P. andina Ia mitochondrial lineage and P. infestans. The presence of two mitochondrial lineages in P. andina supports the hybrid nature of this species. The ancestral state of the P. andina Ic lineage in the tree and its occurrence only in the Andean regions of Ecuador, Colombia and Peru suggests that the origin of this species hybrid in nature may occur there.

  4. Complete mitochondrial genome sequence of the polychaete annelidPlatynereis dumerilii

    SciTech Connect

    Boore, Jeffrey L.

    2004-08-15

    Complete mitochondrial genome sequences are now available for 126 metazoans (see Boore 1999; Mitochondrial Genomics link at http://www.jgi.doe.gov), but the taxonomic representation is highly biased. For example, 80 are from a single phylum, Chordata, and show little variation for many molecular features. Arthropoda is represented by 16 taxa, Mollusca by eight, and Echinodermata by five, with only 17 others from the remaining {approx}30 metazoan phyla. With few exceptions (see Wolstenholme 1992 and Boore 1999) these are circular DNA molecules, about 16 kb in size, and encode the same set of 37 genes. A variety of non-standard names are sometimes used for animal mitochondrial genes; see Boore (1999) for gene nomenclature and a table of synonyms. Mitochondrial genome comparisons serve as a model of genome evolution. In this system, much smaller and simpler than that of the nucleus, are all of the same factors of genome evolution, where one may find tractable the changes in tRNA structure, base composition, genetic code, gene arrangement, etc. Further, patterns of mitochondrial gene rearrangements are an exceptionally reliable indicator of phylogenetic relationships (Smith et al.1993; Boore et al. 1995; Boore, Lavrov, and Brown 1998; Boore and Brown 1998, 2000; Dowton 1999; Stechmann and Schlegel 1999; Kurabayashi and Ueshima 2000). To these ends, we are sampling further the variation among major animal groups in features of their mitochondrial genomes.

  5. Highly conserved D-loop-like nuclear mitochondrial sequences (Numts) in tiger (Panthera tigris).

    PubMed

    Zhang, Wenping; Zhang, Zhihe; Shen, Fujun; Hou, Rong; Lv, Xiaoping; Yue, Bisong

    2006-08-01

    Using oligonucleotide primers designed to match hypervariable segments I (HVS-1) of Panthera tigris mitochondrial DNA (mtDNA), we amplified two different PCR products (500 bp and 287 bp) in the tiger (Panthera tigris), but got only one PCR product (287 bp) in the leopard (Panthera pardus). Sequence analyses indicated that the sequence of 287 bp was a D-loop-like nuclear mitochondrial sequence (Numts), indicating a nuclear transfer that occurred approximately 4.8-17 million years ago in the tiger and 4.6-16 million years ago in the leopard. Although the mtDNA D-loop sequence has a rapid rate of evolution, the 287-bp Numts are highly conserved; they are nearly identical in tiger subspecies and only 1.742% different between tiger and leopard. Thus, such sequences represent molecular 'fossils' that can shed light on evolution of the mitochondrial genome and may be the most appropriate outgroup for phylogenetic analysis. This is also proved by comparing the phylogenetic trees reconstructed using the D-loop sequence of snow leopard and the 287-bp Numts as outgroup.

  6. Highly conserved D-loop-like nuclear mitochondrial sequences (Numts) in tiger (Panthera tigris).

    PubMed

    Zhang, Wenping; Zhang, Zhihe; Shen, Fujun; Hou, Rong; Lv, Xiaoping; Yue, Bisong

    2006-08-01

    Using oligonucleotide primers designed to match hypervariable segments I (HVS-1) of Panthera tigris mitochondrial DNA (mtDNA), we amplified two different PCR products (500 bp and 287 bp) in the tiger (Panthera tigris), but got only one PCR product (287 bp) in the leopard (Panthera pardus). Sequence analyses indicated that the sequence of 287 bp was a D-loop-like nuclear mitochondrial sequence (Numts), indicating a nuclear transfer that occurred approximately 4.8-17 million years ago in the tiger and 4.6-16 million years ago in the leopard. Although the mtDNA D-loop sequence has a rapid rate of evolution, the 287-bp Numts are highly conserved; they are nearly identical in tiger subspecies and only 1.742% different between tiger and leopard. Thus, such sequences represent molecular 'fossils' that can shed light on evolution of the mitochondrial genome and may be the most appropriate outgroup for phylogenetic analysis. This is also proved by comparing the phylogenetic trees reconstructed using the D-loop sequence of snow leopard and the 287-bp Numts as outgroup. PMID:17072079

  7. Mitochondrial Genome Sequences of Spirometra erinaceieuropaei and S. decipiens (Cestoidea: Diphyllobothriidae)

    PubMed Central

    Eom, Keeseon S.; Park, Hansol; Lee, Dongmin; Choe, Seongjun; Kim, Kyu-Heon; Jeon, Hyeong-Kyu

    2015-01-01

    The present study was performed to compare the mitochondrial genomes between 2 Spirometra tapeworms, Spirometra erinaceieuropaei and Spirometra decipiens (Cestoidea: Diphyllobothriidae), which larval stages are important etiological agents of sparganosis in humans. For each species, the full mitochondrial genome was amplified in 8 overlapping fragments using total genomic DNA purified from a single worm as the template. The mitochondrial genomes were 13,643 bp (S. erinaceieuropaei) and 13,641 bp (S. decipiens) in length and contained 36 genes; 12 protein-coding genes, 2 ribosomal RNA (rRNA, small and large subunits), and 22 transfer RNAs (tRNAs). The 12 protein-coding genes constituted 10,083 bp (S. erinaceieuropaei) and 10,086 bp (S. decipiens) of their respective mitochondrial genomes. The tRNA genes, ranging in length from 56 to 70 bp, were identified based on putative secondary structures such as the typical cloverleaf shape. A total of 23 intergenic sequences, varying from 1 to 204 bp in size, were interspersed in S. erinaceieuropaei (total, 504 bp) and S. decipiens (total, 496 bp) mtDNA. The 12 protein-coding genes of S. erinaceieuropaei and S. decipiens differed by 12.4%, whereas the overall difference in mtDNA sequence between S. erinaceieuropaei and S. decipiens was 12.9%. Thus, from the standpoint of the mitochondrial genome, S. decipiens represents a valid species that can be distinguished from S. erinaceieuropaei. PMID:26323844

  8. Pronounced population genetic differentiation in the rock bream Oplegnathus fasciatus inferred from mitochondrial DNA sequences.

    PubMed

    Xiao, Yongshuang; Li, Jun; Ren, Guijing; Ma, Daoyuan; Wang, Yanfeng; Xiao, ZhiZhong; Xu, Shihong

    2016-05-01

    The population genetic structure of the rock bream (Oplegnathus fasciatus) along the coastal waters of China was estimated based on three mtDNA fragments (D-loop, COI, and Cytb). A total of 112 polymorphic sites were checked, which defined 63 haplotypes. A pattern with high levels of haplotype diversity (hCOI = 0.886 ± 0.034, hCytb = 0.874 ± 0.023) and low levels of nucleotide diversity (лCOI = 0.009 ± 0.005, лCytb = 0.006 ± 0.003) was detected based on the COI and Cytb fragments, and high levels of genetic diversity (hD-loop = 0.995 ± 0.007, лD-loop = 0.021 ± 0.011) were detected from the mtDNA D-loop. The population genetic diversity of O. fasciatus in south China was significantly higher than those of north China. Three genealogical clades were checked in the O. fasciatus populations based on the NJ and MST analyses of mtDNA COI gene sequence, and the genetic distances among the clades ranged from 0.018 to 0.025. Significant population genetic differentiation was also checked based on the Fst (0.331, p = 0.000) and exact p (0.000) test analyses. No significant population differentiations were checked based on mtDNA D-loop and Cytb fragments. Using a variety of phylogenetic methods, coalescent reasoning, and molecular dating interpreted in conjunction with paleoclimatic and physiographic evidences, we inferred that the genetic make-up of extant populations of O. fasciatus was shaped by Pleistocene environmental impacts on the historical demography of this species. Coalescent analyses (neutrality tests, mismatch distribution analysis, and Bayesian skyline analyses) showed that the species along coastline of China has experienced population expansions originated in its most recent history at about 169-175 kya before present.

  9. Morphological identification and COI barcodes of adult flies help determine species identities of chironomid larvae (Diptera, Chironomidae)

    USGS Publications Warehouse

    Failla, Andrew Joseph; Vasquez, Adrian Amelio; Hudson, Patrick L.; Fujimoto, Masanori; Ram, Jeffrey L.

    2016-01-01

    Establishing reliable methods for the identification of benthic chironomid communities is important due to their significant contribution to biomass, ecology and the aquatic food web. Immature larval specimens are more difficult to identify to species level by traditional morphological methods than their fully developed adult counterparts, and few keys are available to identify the larval species. In order to develop molecular criteria to identify species of chironomid larvae, larval and adult chironomids from Western Lake Erie were subjected to both molecular and morphological taxonomic analysis. Mitochondrial cytochrome c oxidase I (COI) barcode sequences of 33 adults that were identified to species level by morphological methods were grouped with COI sequences of 189 larvae in a neighbor-joining taxon-ID tree. Most of these larvae could be identified only to genus level by morphological taxonomy (only 22 of the 189 sequenced larvae could be identified to species level). The taxon-ID tree of larval sequences had 45 operational taxonomic units (OTUs, defined as clusters with >97% identity or individual sequences differing from nearest neighbors by >3%; supported by analysis of all larval pairwise differences), of which seven could be identified to species or ‘species group’ level by larval morphology. Reference sequences from the GenBank and BOLD databases assigned six larval OTUs with presumptive species level identifications and confirmed one previously assigned species level identification. Sequences from morphologically identified adults in the present study grouped with and further classified the identity of 13 larval OTUs. The use of morphological identification and subsequent DNA barcoding of adult chironomids proved to be beneficial in revealing possible species level identifications of larval specimens. Sequence data from this study also contribute to currently inadequate public databases relevant to the Great Lakes region, while the neighbor

  10. Morphological identification and COI barcodes of adult flies help determine species identities of chironomid larvae (Diptera, Chironomidae).

    PubMed

    Failla, A J; Vasquez, A A; Hudson, P; Fujimoto, M; Ram, J L

    2016-02-01

    Establishing reliable methods for the identification of benthic chironomid communities is important due to their significant contribution to biomass, ecology and the aquatic food web. Immature larval specimens are more difficult to identify to species level by traditional morphological methods than their fully developed adult counterparts, and few keys are available to identify the larval species. In order to develop molecular criteria to identify species of chironomid larvae, larval and adult chironomids from Western Lake Erie were subjected to both molecular and morphological taxonomic analysis. Mitochondrial cytochrome c oxidase I (COI) barcode sequences of 33 adults that were identified to species level by morphological methods were grouped with COI sequences of 189 larvae in a neighbor-joining taxon-ID tree. Most of these larvae could be identified only to genus level by morphological taxonomy (only 22 of the 189 sequenced larvae could be identified to species level). The taxon-ID tree of larval sequences had 45 operational taxonomic units (OTUs, defined as clusters with >97% identity or individual sequences differing from nearest neighbors by >3%; supported by analysis of all larval pairwise differences), of which seven could be identified to species or 'species group' level by larval morphology. Reference sequences from the GenBank and BOLD databases assigned six larval OTUs with presumptive species level identifications and confirmed one previously assigned species level identification. Sequences from morphologically identified adults in the present study grouped with and further classified the identity of 13 larval OTUs. The use of morphological identification and subsequent DNA barcoding of adult chironomids proved to be beneficial in revealing possible species level identifications of larval specimens. Sequence data from this study also contribute to currently inadequate public databases relevant to the Great Lakes region, while the neighbor

  11. Homogeneity in mitochondrial DNA control region sequences in Swedish subpopulations.

    PubMed

    Tillmar, Andreas O; Coble, Michael D; Wallerström, Thomas; Holmlund, Gunilla

    2010-03-01

    In order to promote mitochondrial DNA (mtDNA) testing in Sweden we have typed 296 Swedish males, which will serve as a Swedish mtDNA frequency database. The tested males were taken from seven geographically different regions representing the contemporary Swedish population. The complete mtDNA control region was typed and the Swedish population was shown to have high haplotype diversity with a random match probability of 0.5%. Almost 47% of the tested samples belonged to haplogroup H and further haplogroup comparison with worldwide populations clustered the Swedish mtDNA data together with other European populations. AMOVA analysis of the seven Swedish subregions displayed no significant maternal substructure in Sweden (F (ST) = 0.002). Our conclusion from this study is that the typed Swedish individuals serve as good representatives for a Swedish forensic mtDNA database. Some caution should, however, be taken for individuals from the northernmost part of Sweden (provinces of Norrbotten and Lapland) due to specific demographic conditions. Furthermore, our analysis of a small sample set of a Swedish Saami population confirmed earlier findings that the Swedish Saami population is an outlier among European populations.

  12. Complete mitochondrial genome sequence of the Barbour's seahorse Hippocampus barbouri Jordan & Richardson, 1908 (Gasterosteiformes: Syngnathidae).

    PubMed

    Wang, Bo; Zhang, Yanhong; Zhang, Huixian; Lin, Qiang

    2015-01-01

    The complete mitochondrial genome sequence of the Barbour's seahorse Hippocampus barbouri was first determined in this paper. The total length of H. barbouri mitogenome is 16,526 bp, which consists of 13 protein-coding genes, 22 tRNA and 2 rRNA genes and 1 control region. The features of the H. barbouri mitochondrial genome were similar to the typical vertebrates. The overall base composition of H. barbouri is 32.68% A, 29.75% T, 22.91% C and 14.66% G, with an AT content of 62.43%.

  13. Complete mitochondrial genome sequence of the lined seahorse Hippocampus erectus Perry, 1810 (Gasterosteiformes: Syngnathidae).

    PubMed

    Zhang, Yanhong; Zhang, Huixian; Lin, Qiang; Huang, Liangmin

    2015-01-01

    The complete mitochondrial genome sequence of the lined seahorse Hippocampus erectus was first determined in this article. The total length of H. erectus mitogenome is 16,529 bp, which consists of 13 protein-coding genes, 22 tRNA and 2 rRNA genes and 1 control region. The features of the H. erectus mitochondrial genome were similar to the typical vertebrates. The overall base composition of H. erectus is 31.8% A, 28.6% T, 24.3% C and 15.3% G, with a slight A + T rich feature (60.4%).

  14. Resolution of the African hominoid trichotomy by use of a mitochondrial gene sequence

    SciTech Connect

    Ruvolo, M.; Disotell, T.R.; Allard, M.W. ); Brown, W.M. ); Honeycutt, R.L. )

    1991-02-15

    Mitochondrial DNA sequences encoding the cytochrome oxidase subunit II gene have been determined for five primate species, siamang (Hylobates syndactylus), lowland gorilla (Gorilla gorilla), pygmy chimpanzee (Pan paniscus), crab-eating macaque (Macaca fascicularis), and green monkey (Cercopithecus aethiops), and compared with published sequences of other primate and nonprimate species. Comparisons of cytochrome oxidase subunit II gene sequences provide clear-cut evidence from the mitochondrial genome for the separation of the African ape trichotomy into two evolutionary lineages, one leading to gorillas and the other to humans and chimpanzees. Several different tree-building methods support this same phylogenetic tree topology. The comparisons also yield trees in which a substantial length separates the divergence point of gorillas from that of humans and chimpanzees, suggesting that the lineage most immediately ancestral to humans and chimpanzees may have been in existence for a relatively long time.

  15. Sequencing and analysis of the complete mitochondrial genome of tundra shrew (Sorex tundrensis) from China.

    PubMed

    Xu, Chunzhu; Zhao, Shuai; Wu, Hualin; Wu, Shengyang; Zhang, Zhongwen; Wang, Bo; Dou, Huashan

    2016-07-01

    The complete mitogenome sequence of tundra shrew (Sorex tundrensis) was determined using long PCR. The genome was 17,444 bp in length and contained 13 protein-coding genes, 2 ribosomal RNA genes, 23 transfer RNA genes, 1 origin of L strand replication and 1 control region. The overall base composition of the heavy strand is A (32.9%), C (24.8%), T (29.0%), and G (13.3%). The base compositions present clearly the A-T skew, which is most obviously in the control region and protein-coding genes. The extended termination-associated sequence domain, the central conserved domain and the conserved sequence block domain are defined in the mitochondrial genome control region of tundra shrew. Mitochondrial genome analyses based on MP, ML, NJ and Bayesian analyses yielded identical phylogenetic trees. The three Sorex species formed a monophyletic group with the high bootstrap value (100 %) in all examinations.

  16. Vertebrate MitBASE: a specialised database on vertebrate mitochondrial DNA sequences.

    PubMed

    Carone, A; Malladi, S B; Attimonelli, M; Saccone, C

    1999-01-01

    Vertebrate MitBASE is a specialized database where all the vertebrate mitochondrial DNA entries from primary databases are collected, revised and integrated with new information emerging from the literature. Variant sequences are also analyzed, aligned and linked to reference sequences. Data related to the same species and fragment can be viewed over the WWW. The database has a flexible interface and a retrieval system to help non-expert users and contains information not currently available in the primary databases. Vertebrate MitBASE is now available through the MitBASE home page at URL: http://www.ebi.ac.uk/htbin/Mitbase/mitb ase.pl. This work is part of a larger project, MitBASE which is a network of databases covering the full panorama of knowledge on mitochondrial DNA from protists to human sequences.

  17. Complete mitochondrial genome sequences of three bats species and whole genome mitochondrial analyses reveal patterns of codon bias and lend support to a basal split in Chiroptera.

    PubMed

    Meganathan, P R; Pagan, Heidi J T; McCulloch, Eve S; Stevens, Richard D; Ray, David A

    2012-01-15

    Order Chiroptera is a unique group of mammals whose members have attained self-powered flight as their main mode of locomotion. Much speculation persists regarding bat evolution; however, lack of sufficient molecular data hampers evolutionary and conservation studies. Of ~1200 species, complete mitochondrial genome sequences are available for only eleven. Additional sequences should be generated if we are to resolve many questions concerning these fascinating mammals. Herein, we describe the complete mitochondrial genomes of three bats: Corynorhinus rafinesquii, Lasiurus borealis and Artibeus lituratus. We also compare the currently available mitochondrial genomes and analyze codon usage in Chiroptera. C. rafinesquii, L. borealis and A. lituratus mitochondrial genomes are 16438 bp, 17048 bp and 16709 bp, respectively. Genome organization and gene arrangements are similar to other bats. Phylogenetic analyses using complete mitochondrial genome sequences support previously established phylogenetic relationships and suggest utility in future studies focusing on the evolutionary aspects of these species. Comprehensive analyses of available bat mitochondrial genomes reveal distinct nucleotide patterns and synonymous codon preferences corresponding to different chiropteran families. These patterns suggest that mutational and selection forces are acting to different extents within Chiroptera and shape their mitochondrial genomes.

  18. [Mitochondrial DNA sequence variations of Keriyan in the Taklamakan desert].

    PubMed

    Duan, Ran-Hui; Cui, Yin-Qiu; Zhou, Hui; Zhu, Hong

    2003-05-01

    The Keriyans live in the center of the Taklamakan desert of Xinjiang Province and they have never married with outsiders. Nobody knows clearly how they immigrated here and who was their origin. The mtDNA hypervariable segment I sequences were sequenced in 75 Keriyans. Seventy-one unique HVS I types were identified, varying at 68 nucleotide positions. Nucleotide diversity and the mean pairwise differences of Keriyan are intermediate between those reported for Eastern and Western populations. Keriyan's low Tajima's D statistics and bell-shaped pairwise-difference distributions can be interpreted as the hallmark of an ancient population expansion. Phylogenetic analysis shows Central Asian populations occupy a position intermediate between the Eastern and Western populations, moreover, the Keriyan presents shorter genetic distances to Xinjiang Uighur and Uighur in other places than to other populations.

  19. Molecular Phylogeny of a tick, Ixodes granulatus (Acari: Ixodidae) based on cytochrome oxidase subunit I (COI) marker

    NASA Astrophysics Data System (ADS)

    Lah, Ernieenor Faraliana Che; Yaakop, Salmah; Ahamad, Mariana; George, Ernna; Nor, Shukor Md

    2014-09-01

    Identification of a local species of tick, Ixodes granulatus from the family Ixodidae is essential because it has potential to be vector for spotted fever group (SFG) rickettsia and tick thypus. The aim of this study is to portray the relationships among several populations of I. granulatus collected from different species of animal hosts and localities in Peninsular Malaysia. Polymerase Chain Reaction was conducted by amplifying mitochondrial DNA marker, namely cytochrome oxidase subunit I (COI) sequences from 15 individual ticks that attached to five different hosts caught from three different localities. Confirmation of the species identity was accomplished using BLAST program. Neighbor-joining (NJ) and Maximum Parsimony (MP) tree based on COI sequences were constructed by using PAUP 4.0b10 to identify the relationship among species. The result of this study showed a high genetic heterogeneity between I. granulatus and other species of the same genus (7.2-23.7%). Furthermore, a low intraspecific variation was observed among the species of I. granulatus collected from different localities (0-3.7%). This study produced the first establishment of molecular marker for clarifying genetic species variation and diversity of local I. granulatus tick which contribute to the control of tick-borne infections.

  20. Differentiating between monozygotic twins through next-generation mitochondrial genome sequencing.

    PubMed

    Wang, Zheng; Zhu, Ruxin; Zhang, Suhua; Bian, Yinnan; Lu, Daru; Li, Chengtao

    2015-12-01

    Monozygotic (MZ) twins, considered to be genetically identical, cannot be distinguished from one another by standard forensic DNA testing. A recent study employed whole genome sequencing to identify extremely rare mutations and reported that mutation analysis could be used to differentiate between MZ twins. Compared with nuclear DNA, mitochondrial DNA (mtDNA) has higher mutation rates; therefore, minor differences theoretically exist in MZ twins' mitochondrial genome (mtGenome). However, conventional Sanger-type sequencing (STS) is neither amenable to, nor feasible for, the detection of low-level sequence variants. The recent introduction of massively parallel sequencing (MPS) has the capability to sequence many targeted regions of multiple samples simultaneously with desirable depth of coverage. Thus, the aim of this study was to assess whether full mtGenome sequencing analysis can be used to differentiate between MZ twins. Ten sets of MZ twins provided blood samples that underwent extraction, quantification, mtDNA enrichment, library preparation, and ultra-deep sequencing. Point heteroplasmies were observed in eight sets of MZ twins, and a single nucleotide variant (nt15301) was detected in five sets of MZ twins. Thus, this study demonstrates that ultra-deep mtGenome sequencing could be used to differentiate between MZ twins. PMID:26327617

  1. Phylogeny, species limits, and biogeography of the Brazilian lizards of the genus Eurolophosaurus (Squamata: Tropiduridae) as inferred from mitochondrial DNA sequences.

    PubMed

    Passoni, José Carlos; Benozzati, Maria Lúcia; Rodrigues, Miguel Trefaut

    2008-02-01

    Phylogenetic relationships and divergence times for 10 populations of the three recognized "species" of Brazilian lizards of genus Eurolophosaurus were estimated from 1229bp of cyt b, COI, 12S, and 16S rRNA mitochondrial gene segments. Eurolophosaurus is monophyletic and the basal split within the genus separates E. divaricatus from a clade comprising E. amathites and E. nanuzae. Three populations of E. divaricatus, which occurs along the western bank of Rio São Francisco, were consistently grouped together. On the east bank of the river, E. amathites and E. nanuzae from state of Bahia were recovered as the sister group of E. nanuzae populations from state of Minas Gerais. The paraphyly of E. nanuzae and the high divergence levels among populations of E. divaricatus strongly suggest that species limits in Eurolophosaurus should be revised. Even considering an extreme evolutionary rate of 2.8% sequence divergence per million years for the four gene segments analyzed together, E. divaricatus would have separated from the two other species by at least 5.5my ago, and E. amathites from E. nanuzae populations from Bahia and Minas Gerais, respectively, by 1.5 and 3.5my. The paleolacustrine hypothesis and changes in the course of the river potentially explain faunal divergence in the area, but divergences are much older than previously admitted. PMID:18082430

  2. Increased Inter-Colony Fusion Rates Are Associated with Reduced COI Haplotype Diversity in an Invasive Colonial Ascidian Didemnum vexillum

    PubMed Central

    Smith, Kirsty F.; Stefaniak, Lauren; Saito, Yasunori; Gemmill, Chrissen E. C.; Cary, S. Craig; Fidler, Andrew E.

    2012-01-01

    Considerable progress in our understanding of the population genetic changes associated with biological invasions has been made over the past decade. Using selectively neutral loci, it has been established that reductions in genetic diversity, reflecting founder effects, have occurred during the establishment of some invasive populations. However, some colonial organisms may actually gain an ecological advantage from reduced genetic diversity because of the associated reduction in inter-colony conflict. Here we report population genetic analyses, along with colony fusion experiments, for a highly invasive colonial ascidian, Didemnum vexillum. Analyses based on mitochondrial cytochrome oxidase I (COI) partial coding sequences revealed two distinct D. vexillum clades. One COI clade appears to be restricted to the probable native region (i.e., north-west Pacific Ocean), while the other clade is present in widely dispersed temperate coastal waters around the world. This clade structure was supported by 18S ribosomal DNA (rDNA) sequence data, which revealed a one base-pair difference between the two clades. Recently established populations of D. vexillum in New Zealand displayed greatly reduced COI genetic diversity when compared with D. vexillum in Japan. In association with this reduction in genetic diversity was a significantly higher inter-colony fusion rate between randomly paired New Zealand D. vexillum colonies (80%, standard deviation ±18%) when compared with colonies found in Japan (27%, standard deviation ±15%). The results of this study add to growing evidence that for colonial organisms reductions in population level genetic diversity may alter colony interaction dynamics and enhance the invasive potential of newly colonizing species. PMID:22303442

  3. MITOMASTER: a bioinformatics tool for the analysis of mitochondrial DNA sequences.

    PubMed

    Brandon, Marty C; Ruiz-Pesini, Eduardo; Mishmar, Dan; Procaccio, Vincent; Lott, Marie T; Nguyen, Kevin Cuong; Spolim, Syawal; Patil, Upen; Baldi, Pierre; Wallace, Douglas C

    2009-01-01

    We have developed a computer system, MITOMASTER, to make analysis of human mitochondrial DNA (mtDNA) sequences efficient, accurate, and easily available. From imported sequences, the system identifies nucleotide variants, determines the haplogroup, rules out possible pseudogene contamination, identifies novel DNA sequence variants, and evaluates the potential biological significance of each variant. This system should be beneficial for mtDNA analyses of biomedical physicians and investigators, population biologists and forensic scientists. MITOMASTER can be accessed at http://mammag.web.uci.edu/twiki/bin/view/Mitomaster.

  4. The complete mitochondrial genome sequence of Oceanic whitetip shark, Carcharhinus longimanus (Carcharhiniformes: Carcharhinidae).

    PubMed

    Li, Weiwen; Dai, Xiaojie; Xu, Qianghua; Wu, Feng; Gao, Chunxia; Zhang, Yanbo

    2016-05-01

    The complete mitochondrial DNA sequence of Carcharhinus longimanus was determined and analyzed. The complete mtDNA genome sequence of C. longimanus was 16,706 bp in length. It contained 22 tRNA genes, 2 rRNA genes, 13 protein-coding genes and 2 non-conding regions: control region (D-loop) and origin of light-strand replication (OL). The complete mitogenome sequence information of C. longimanus can provide a useful data for further studies on molecular systematics, stock evaluation, taxonomic status and conservation genetics. PMID:25264845

  5. The complete mitochondrial genome of Haliotis laevigata (Gastropoda: Haliotidae) using MiSeq and HiSeq sequencing.

    PubMed

    Robinson, Nick A; Hall, Nathan E; Ross, Elizabeth M; Cooke, Ira R; Shiel, Brett P; Robinson, Andrew J; Strugnell, Jan M

    2016-01-01

    The mitochondrial genome of greenlip abalone, Haliotis laevigata, is reported. MiSeq and HiSeq sequencing of one individual was assembled to yield a single 16,545 bp contig. The sequence shares 92% identity to the H. rubra mitochondrial genome (a closely related species that hybridize with H. laevigata in the wild). The sequence will be useful for determining the maternal contribution to hybrid populations, for investigating population structure and stock-enhancement effectiveness.

  6. Characterization of the mitochondrial genome of the threatened alpine butterfly, Parnassius nomion (Lepidoptera: Papilionidae).

    PubMed

    Dong, Wan-Wei; Jiang, Guo-Fang

    2016-01-01

    The sequenced mitochondrial genome of the threatened alpine butterfly Parnassius nomion includes 13 protein-coding genes (ND1-6, COI-III, ATP6, ATP8, ND4, ND4L, CTYB), 2 ribosomal RNAs (12 S and 16 S), 22 transfer RNAs, which is 14,547 bp in length. Its gene order and orientation are identical to the common type found in most of other completely sequenced lepidopteran mitogenomes. All protein-coding genes are initiated by ATN codons, except for COI, which uses CGA as its start codon. Eleven PCGs use the standard TAA as their termination codon, and COI, COII use the incomplete termination codon T.

  7. New complete mitochondrial DNA sequence of the lancelet Branchiostoma lanceolatum (Cephalochordata) and the identity of this species' sequences.

    PubMed

    Nohara, Masahiro; Nishida, Mutsumi; Nishikawa, Teruaki

    2005-06-01

    Three mitochondrial (mt) genes were sequenced for two Atlantic lancelet species, Branchiostoma lanceolatum and B. floridae, to examine a serious discrepancy among previously published results of molecular studies: substantial sequence difference in a nuclear gene vs. virtual identity in the mt genome sequence. The results revealed that three mt genes of B. lanceolatum, collected from Helgoland in the North Sea and Naples in the Mediterranean, were quite diverged from those of B. floridae, collected from Tampa Bay, Florida. Therefore, the previously recognized identity in the mt genome between the two species is attributable to misidentification of materials used. To correct this misleading information, the complete mtDNA sequence of B. lanceolatum was determined for an individual from Helgoland.

  8. Species identification using genetic tools: the value of nuclear and mitochondrial gene sequences in whale conservation.

    PubMed

    Palumbi, S R; Cipriano, F

    1998-01-01

    DNA sequence analysis is a powerful tool for identifying the source of samples thought to be derived from threatened or endangered species. Analysis of mitochondrial DNA (mtDNA) from retail whale meat markets has shown consistently that the expected baleen whale in these markets, the minke whale, makes up only about half the products analyzed. The other products are either unregulated small toothed whales like dolphins or are protected baleen whales such as humpback, Bryde's, fin, or blue whales. Independent verification of such mtDNA identifications requires analysis of nuclear genetic loci, but this is technically more difficult than standard mtDNA sequencing. In addition, evolution of species-specific sequences (i.e., fixation of sequence differences to produce reciprocally monophyletic gene trees) is slower in nuclear than in mitochondrial genes primarily because genetic drift is slower at nuclear loci. When will use of nuclear sequences allow forensic DNA identification? Comparison of neutral theories of coalescence of mitochondrial and nuclear loci suggests a simple rule of thumb. The "three-times rule" suggests that phylogenetic sorting at nuclear loci is likely to produce species-specific sequences when mitochondrial alleles are reciprocally monophyletic and the branches leading to the mtDNA sequences of a species are three times longer than the average difference observed within species. A preliminary test of the three-times rule, which depends on many assumptions about the species and genes involved, suggests that blue and fin whales should have species-specific sequences at most neutral nuclear loci, whereas humpback and fin whales should show species-specific sequences at fewer nuclear loci. Partial sequences of actin introns from these species confirm the predictions of the three-times rule and show that blue and fin whales are reciprocally monophyletic at this locus. These intron sequences are thus good tools for the identification of these species

  9. A mitochondrial DNA sequence is associated with abnormal pollen development in cytoplasmic male sterile bean plants.

    PubMed Central

    Johns, C; Lu, M; Lyznik, A; Mackenzie, S

    1992-01-01

    Cytoplasmic male sterility (CMS) in common bean is associated with the presence of a 3-kb unique mitochondrial sequence designated pvs. The pvs sequence encodes at least two open reading frames (297 and 720 bp in length) with portions derived from the chloroplast genome. Fertility restoration by the nuclear restorer gene Fr results in the loss of this transcriptionally active unique region. We examined the effect of CMS (pvs present) and fertility restoration by Fr (pvs absent) on the pattern of pollen development in bean. In the CMS line, pollen aborted in the tetrad stage late in microgametogenesis. Microspores maintained cytoplasmic connections throughout pollen development, indicating aberrant or incomplete cytokinesis. Pollen-specific events associated with pollen abortion and fertility restoration imply that a gametophytic factor or event may be involved in CMS. In situ hybridization experiments suggested that significant reduction or complete loss of the mitochondrial sterility-associated sequence occurred in fertile pollen of F2 populations segregating for fertility. These observations support a model of fertility restoration by the loss of a mitochondrial DNA sequence prior to or during microsporogenesis/gametogenesis. PMID:1498602

  10. Dog mitochondrial genome sequencing to enhance dog mtDNA discrimination power in forensic casework.

    PubMed

    Verscheure, Sophie; Backeljau, Thierry; Desmyter, Stijn

    2014-09-01

    A Belgian dog population sample and several population studies worldwide have confirmed that only a limited number of mtDNA control region haplotypes is observed in the majority of dogs. The high population frequency of these haplotypes negatively impacts both the exclusion probability of dog mtDNA analysis and the evidential value of a match with one of these haplotypes in casework. Variation within the mtDNA coding region was explored to improve the discrimination power of dog mtDNA analysis. In the current study, the entire mitochondrial genome of 161 dogs was sequenced applying a quality assured strategy and resulted in a total of 119 different mitochondrial genome sequences. Our research was focused on those dogs with the six most common control region haplotypes from a previous Belgian population study. We identified 33 informative SNPs that successfully divide the six most common control region haplotypes into 32 clusters of mitochondrial genome sequences. Determining the identity of these 33 polymorphic sites in addition to control region sequencing in case of a match with one of these 6 control region haplotypes could augment the exclusion probability of forensic dog mtDNA analysis from 92.5% to 97.5%.

  11. Sequencing and characterization of the Monocellicampa pruni (Hymenoptera: Tenthredinidae) mitochondrial genome.

    PubMed

    Wei, Shu-Jun; Wu, Qiu-Ling; Liu, Wei

    2015-02-01

    The mitochondrial genome of the Monocellicampa pruni (Hymenoptera: Tenthredinidae) (GenBank accession No. JX566509) has been reported in this study. This is the first sequenced mitochondrial genome from the family Tenthredinidae of the order Hymenoptera. The sequenced region of this mitochondrial genome is 15,169 bp with an A + T content of 77.21%, including 13 protein-coding, 2 rRNA and 19 tRNA genes, and a partial region of the A + T-rich region. Three tRNA genes, i.e. trnI. trnQ and trnM, between the A + T-rich region and the nad2 gene were failed to sequence because of the present of PolyAT structure. The gene arrangement of the sequenced region was similar to the pupative ancestral arrangement of insects. There are two large non-coding regions located between trnC and trnY. trnF and nad5 with a length of 107 and 177 bp, respectively. All protein-coding genes start with ATN start codon. Eleven protein-coding genes stop with termination codon TAA, whereas one protein-coding gene uses incomplete stop codon TA and one uses T. All of the 22 tRNA genes have a typical cloverleaf structure except for the trnS1, in which, the D-stem pairings in the DHU arm are absent.

  12. Molecular Phylogenetics of the Genus Trichosporon Inferred from Mitochondrial Cytochrome b Gene Sequences

    PubMed Central

    Biswas, Swarajit Kumar; Wang, Li; Yokoyama, Koji; Nishimura, Kazuko

    2005-01-01

    Mitochondrial cytochrome b (cyt b) genes of 42 strains representing 23 species of the genus Trichosporon were partially sequenced to determine their molecular phylogenetic relationships. Almost half of the 22 strains investigated (from 11 different species) contained introns in their sequences. Analysis of a 396-bp coding sequence from each strain of Trichosporon under investigation showed a total of 141 (35.6%) variable nucleotide sites. A phylogenetic tree based on the cyt b gene sequences revealed that all species of Trichosporon except Trichosporon domesticum and Trichosporon montevideense had species-specific cyt b genes. Trichosporon sp. strain CBS 5581 was identified as Trichosporon pullulans, and one clinical isolate, IFM 48794, was identified as Trichosporon faecale. Analysis of 132-bp deduced amino acid sequences showed a total of 34 (25.75%) variable amino acid sites. T. domesticum and T. montevideense, Trichosporon asahii and Trichosporon asteroides, and Trichosporon gracile and Trichosporon guehoae had identical amino acid sequences. A phylogenetic tree constructed with the ascomycetes Saccharomyces douglasii and Candida glabrata taken as outgroup species and including representative species from closely related genera species of Trichosporon clustered with other basidiomycetous yeasts that contain xylose in their cell wall compositions. These results indicate the effectiveness of mitochondrial cyt b gene sequences for both species identification and the phylogenetic analysis of Trichosporon species. PMID:16207980

  13. Complete Mitochondrial Genome Sequence of the Eastern Gorilla (Gorilla beringei) and Implications for African Ape Biogeography

    PubMed Central

    Das, Ranajit; Hergenrother, Scott D.; Soto-Calderón, Iván D.; Dew, J. Larry; Anthony, Nicola M.

    2014-01-01

    The Western and Eastern species of gorillas (Gorilla gorilla and Gorilla beringei) began diverging in the mid-Pleistocene, but in a complex pattern with ongoing gene flow following their initial split. We sequenced the complete mitochondrial genomes of 1 Eastern and 1 Western gorilla to provide the most accurate date for their mitochondrial divergence, and to analyze patterns of nucleotide substitutions. The most recent common ancestor of these genomes existed about 1.9 million years ago, slightly more recent than that of chimpanzee and bonobo. We in turn use this date as a calibration to reanalyze sequences from the Eastern lowland and mountain gorilla subspecies to estimate their mitochondrial divergence at approximately 380000 years ago. These dates help frame a hypothesis whereby populations became isolated nearly 2 million years ago with restricted maternal gene flow, followed by ongoing male migration until the recent past. This process of divergence with prolonged hybridization occurred against the backdrop of the African Pleistocene, characterized by intense fluctuations in temperature and aridity, while at the same time experiencing tectonic uplifting and consequent shifts in the drainage of major river systems. Interestingly, this same pattern of introgression following divergence and discrepancies between mitochondrial and nuclear loci is seen in fossil hominins from Eurasia, suggesting that such processes may be common in hominids and that living gorillas may provide a useful model for understanding isolation and migration in our extinct relatives. PMID:25189777

  14. Sequence and phylogenetic analysis of the complete mitochondrial genome of Lasiopodomys mandarinus mandarinus (Arvicolinae, Rodentia).

    PubMed

    Li, Yangwei; Shi, Yuhua; Lu, Jiqi; Ji, Weihong; Wang, Zhenlong

    2016-11-30

    Mandarin vole (Lasiopodomys mandarinus) is a subterranean rodent that is often used as a model for studying subterranean hypoxic stress in mammals. However the taxonomy of this species is still in dispute. Mitochondrial DNA (mtDNA) has long been used for phylogenetic reconstruction and, in this study, the complete mitochondrial genome of L. mandarinus mandarinus was sequenced. Our results showed that the mitochondrial genome of L. m. mandarinus is a circular molecule of 16,367bp, which contains 13 protein-coding genes, 22 tRNA and 2 rRNA genes. Except for the 8 tRNA and ND6 genes, all other mitochondrial genes are encoded on the heavy strand. We also analyzed the phylogenetic position of L. mandarinus in respect to the tribe Arvicolini using the sequence of complete Cytb gene, 2rRNA genes and 12 protein-coding genes, and maximum likelihood and Bayesian methods. Our results gave further support to the species status of L. mandarinus and the generic status of Lasiopodomys. PMID:27562081

  15. Complete mitochondrial genome sequence of the Eastern gorilla (Gorilla beringei) and implications for african ape biogeography.

    PubMed

    Das, Ranajit; Hergenrother, Scott D; Soto-Calderón, Iván D; Dew, J Larry; Anthony, Nicola M; Jensen-Seaman, Michael I

    2014-01-01

    The Western and Eastern species of gorillas (Gorilla gorilla and Gorilla beringei) began diverging in the mid-Pleistocene, but in a complex pattern with ongoing gene flow following their initial split. We sequenced the complete mitochondrial genomes of 1 Eastern and 1 Western gorilla to provide the most accurate date for their mitochondrial divergence, and to analyze patterns of nucleotide substitutions. The most recent common ancestor of these genomes existed about 1.9 million years ago, slightly more recent than that of chimpanzee and bonobo. We in turn use this date as a calibration to reanalyze sequences from the Eastern lowland and mountain gorilla subspecies to estimate their mitochondrial divergence at approximately 380000 years ago. These dates help frame a hypothesis whereby populations became isolated nearly 2 million years ago with restricted maternal gene flow, followed by ongoing male migration until the recent past. This process of divergence with prolonged hybridization occurred against the backdrop of the African Pleistocene, characterized by intense fluctuations in temperature and aridity, while at the same time experiencing tectonic uplifting and consequent shifts in the drainage of major river systems. Interestingly, this same pattern of introgression following divergence and discrepancies between mitochondrial and nuclear loci is seen in fossil hominins from Eurasia, suggesting that such processes may be common in hominids and that living gorillas may provide a useful model for understanding isolation and migration in our extinct relatives.

  16. Complete mitochondrial genome sequence of the Eastern gorilla (Gorilla beringei) and implications for african ape biogeography.

    PubMed

    Das, Ranajit; Hergenrother, Scott D; Soto-Calderón, Iván D; Dew, J Larry; Anthony, Nicola M; Jensen-Seaman, Michael I

    2014-01-01

    The Western and Eastern species of gorillas (Gorilla gorilla and Gorilla beringei) began diverging in the mid-Pleistocene, but in a complex pattern with ongoing gene flow following their initial split. We sequenced the complete mitochondrial genomes of 1 Eastern and 1 Western gorilla to provide the most accurate date for their mitochondrial divergence, and to analyze patterns of nucleotide substitutions. The most recent common ancestor of these genomes existed about 1.9 million years ago, slightly more recent than that of chimpanzee and bonobo. We in turn use this date as a calibration to reanalyze sequences from the Eastern lowland and mountain gorilla subspecies to estimate their mitochondrial divergence at approximately 380000 years ago. These dates help frame a hypothesis whereby populations became isolated nearly 2 million years ago with restricted maternal gene flow, followed by ongoing male migration until the recent past. This process of divergence with prolonged hybridization occurred against the backdrop of the African Pleistocene, characterized by intense fluctuations in temperature and aridity, while at the same time experiencing tectonic uplifting and consequent shifts in the drainage of major river systems. Interestingly, this same pattern of introgression following divergence and discrepancies between mitochondrial and nuclear loci is seen in fossil hominins from Eurasia, suggesting that such processes may be common in hominids and that living gorillas may provide a useful model for understanding isolation and migration in our extinct relatives. PMID:25189777

  17. Sequence and phylogenetic analysis of the complete mitochondrial genome of Lasiopodomys mandarinus mandarinus (Arvicolinae, Rodentia).

    PubMed

    Li, Yangwei; Shi, Yuhua; Lu, Jiqi; Ji, Weihong; Wang, Zhenlong

    2016-11-30

    Mandarin vole (Lasiopodomys mandarinus) is a subterranean rodent that is often used as a model for studying subterranean hypoxic stress in mammals. However the taxonomy of this species is still in dispute. Mitochondrial DNA (mtDNA) has long been used for phylogenetic reconstruction and, in this study, the complete mitochondrial genome of L. mandarinus mandarinus was sequenced. Our results showed that the mitochondrial genome of L. m. mandarinus is a circular molecule of 16,367bp, which contains 13 protein-coding genes, 22 tRNA and 2 rRNA genes. Except for the 8 tRNA and ND6 genes, all other mitochondrial genes are encoded on the heavy strand. We also analyzed the phylogenetic position of L. mandarinus in respect to the tribe Arvicolini using the sequence of complete Cytb gene, 2rRNA genes and 12 protein-coding genes, and maximum likelihood and Bayesian methods. Our results gave further support to the species status of L. mandarinus and the generic status of Lasiopodomys.

  18. Genetic polymorphisms of Echinococcus tapeworms in China as determined by mitochondrial and nuclear DNA sequences

    PubMed Central

    Nakao, Minoru; Li, Tiaoying; Han, Xiumin; Ma, Xiumin; Xiao, Ning; Qiu, Jiamin; Wang, Hu; Yanagida, Tetsuya; Mamuti, Wulamu; Wen, Hao; Moro, Pedro L.; Giraudoux, Patrick; Craig, Philip S.; Ito, Akira

    2009-01-01

    The genetic polymorphisms of Echinococcus spp. in the eastern Tibetan Plateau and the Xinjiang Uyghur Autonomous Region were evaluated by DNA sequencing analyses of genes for mitochondrial cytochrome c oxidase subunit 1 (cox1) and nuclear elongation factor-1 alpha (ef1a). We collected 68 isolates of Echinococcus granulosus sensu stricto (s.s.) from Xinjiang and 113 isolates of E. granulosus s. s., 49 isolates of Echinococcus multilocularis and 34 isolates of Echinococcus shiquicus from the Tibetan Plateau. The results of molecular identification by mitochondrial and nuclear markers were identical, suggesting the infrequency of introgressive hybridization. A considerable intraspecific variation was detected in mitochondrial cox1 sequences. The parsimonious network of cox1 haplotypes showed star-like features in E. granulosus s. s. and E. multilocularis, but a divergent feature in E. shiquicus. The cox1 neutrality indexes computed by Tajima's D and Fu's Fs tests showed high negative values in E. granulosus s. s. and E. multilocularis, indicating significant deviations from neutrality. In contrast, the low positive values of both tests were obtained in E. shiquicus. These results suggest the following hypotheses: (i) recent founder effects arose in E. granulosus and E. multilocularis after introducing particular individuals into the endemic areas by anthropogenic movement or natural migration of host mammals, and (ii) the ancestor of E. shiquicus was segregated into the Tibetan Plateau by colonizing alpine mammals and its mitochondrial locus has evolved without bottleneck effects. PMID:19800346

  19. The complete mitochondrial genome sequence of Neovison vison (Carnivora: Mustelidae).

    PubMed

    Sun, Wei-Li; Wang, Shao-Jing; Wang, Zhuo; Liu, Han-Lu; Zhong, Wei; Yang, Ya-Han; Li, Guang-Yu

    2016-05-01

    The phylogenetic and taxonomic position of the American mink Neovison vison have long been unclear. In this paper, the complete mitogenome of N. vison was sequenced and characterized. The total length was 16,594 bp and typically consists of 37 genes, including 13 protein-coding genes, 2 rRNAs, 22 tRNA, a large control region (CR) and a light-strand replication origin (OL). Gene contents, locations, and arrangements were identical to those of typical vertebrate. The overall base composition is 33.6%, 25.4%, 27.8% and 13.3% for A, C, T and G, respectively, with a moderate bias on AT content (61.4%). This result is expected to provide useful molecular data and contribute to further taxonomic and phylogenetic studies of Mustelidae and Carnivora.

  20. The complete mitochondrial genome sequence of Aesopia cornuta (Pleuronectiformes: Soleidae).

    PubMed

    Wang, Shu-Ying; Shi, Wei; Wang, Zhong-Ming; Gong, Li; Kong, Xiao-Yu

    2015-02-01

    Aesopia cornuta belongs to the family Soleidae of Pleuronectiformes, and the morphological characters are much similar to those of Zebrias. In this article, we sequenced, characterized, and compared the complete mitogenome of A. cornuta for the first time. The genome is 16,737 base pairs in length, and is typically consist of 37 genes, including 13 protein-coding genes, two ribosomal RNA, 22 transfer RNA, as well as a putative L-strand replication origin and a putative control region. The gene organization is identical to that of typical bony fishes. The overall base composition is 29.1, 28.3, 26.8 and 15.8% for C, A, T and G, respectively, with a slight AT bias of 55.1%. This result is expected to contribute to understanding the systematic evolution of the genus Aesopia and further taxonomic and phylogenetic studies of Soleidae and Pleuronectiformes.

  1. High mitochondrial sequence diversity in linguistic isolates of the Alps.

    PubMed Central

    Stenico, M.; Nigro, L.; Bertorelle, G.; Calafell, F.; Capitanio, M.; Corrain, C.; Barbujani, G.

    1996-01-01

    Segment I of the control region of mtDNA (360 bases) was sequenced in seven samples, each of 10 individuals inhabiting villages in the eastern Italian Alps (South Tyrol and Trentino). Three linguistic groups, German, Italian, and Ladin, were represented by two samples each; the seventh sample comes from an isolated group of German origin, the Mocheni, who are linguistically distinct and geographically separated from the bulk of the German speakers. Seventy-four polymorphic sites were identified, defining 63 different haplotypes. Mocheni and Ladin speakers tend to form two clusters in the evolutionary trees inferred from sequences. Analysis of molecular variance shows significant differentiation within samples, among them, and among linguistic groups. Genetic differences between the Ladins and the other groups are not much smaller than between Europeans and some Africans; variation is large within groups, as well, with the exception of only the Mocheni. In the evolutionary trees where the four alpine groups are compared with other European populations, Mocheni and especially Ladins appear as clear outliers. Romansch-speaking Swiss, who are linguistically related to Ladins, are not genetically similar to them, for this segment of DNA. Because the time elapsed since colonization of the Alps (< or = 12,000 years) is short in mutational terms, the only model accounting for the observed relationships between mtDNA variation and linguistic identity seems one in which a population ancestral to Ladin speakers was already differentiated long before the Alps were settled and the current linguistic affiliations were established. For the Mocheni, the results are consistent with a simpler episode of allele loss, from an original genetic pool common to the ancestors of the current German speakers. PMID:8940282

  2. A specific isoform of poly(ADP-ribose) glycohydrolase is targeted to the mitochondrial matrix by a N-terminal mitochondrial targeting sequence

    SciTech Connect

    Whatcott, Clifford J.; Meyer-Ficca, Mirella L.; Meyer, Ralph G.; Jacobson, Myron K.

    2009-12-10

    Poly(ADP-ribose) polymerases (PARPs) convert NAD to polymers of ADP-ribose that are converted to free ADP-ribose by poly(ADP-ribose) glycohydrolase (PARG). The activation of the nuclear enzyme PARP-1 following genotoxic stress has been linked to release of apoptosis inducing factor from the mitochondria, but the mechanisms by which signals are transmitted between nuclear and mitochondrial compartments are not well understood. The study reported here has examined the relationship between PARG and mitochondria in HeLa cells. Endogenous PARG associated with the mitochondrial fraction migrated in the range of 60 kDa. Transient transfection of cells with PARG expression constructs with amino acids encoded by exon 4 at the N-terminus was targeted to the mitochondria as demonstrated by subcellular fractionation and immunofluorescence microscopy of whole cells. Deletion and missense mutants allowed identification of a canonical N-terminal mitochondrial targeting sequence consisting of the first 16 amino acids encoded by PARG exon 4. Sub-mitochondrial localization experiments indicate that this mitochondrial PARG isoform is targeted to the mitochondrial matrix. The identification of a PARG isoform as a component of the mitochondrial matrix raises several interesting possibilities concerning mechanisms of nuclear-mitochondrial cross talk involved in regulation of cell death pathways.

  3. Isolated respiratory chain enzyme deficiency in patients with a mitochondrial (encephalo-) myopathy: Sequence analysis of the mitochondrial complex and IV genes

    SciTech Connect

    Vries, D. de; Coo, I. de; Buddiger, P.

    1994-09-01

    The mitochondrial respiratory chain consists of four enzyme complexes. Deficiencies of complex I (NADH dehydrogenase) and complex IV (cytochrome c oxidase) are frequently found in muscle biopsies from patients with a mitochondrial (encephalo-)myopathy. Mutations in the mitochondrial-encoded subunits have been observed in a number of different mitochondrial (encephalo-)myophathies. We screened eight mitochondrial (encephalo-)myopathy patients with an isolated complex I deficiency for mutations in the ND genes by direct sequencing. No abnormality was detected. We also studied 9 mitochondrial (encephalo-)myopathy patients and an isolated complex IV deficiency. In the muscle biopsy of one patient a novel heteroplasmic mutation (T {r_arrow} C) at nucleotide position 6681 was found in the mitochondrial COX I gene. This mutation led to the substitution of a conserved Tyr for His. As this mutation changed the secondary structure of the protein and was not found in the healthy mother, we consider it likely that this mutation is pathological. In the other patients no abnormality was detected. Therefore, mutations in the mitochondrially-encoded subunits are not a frequent cause of isolated respiratory chain enzyme deficiency.

  4. Limpets of the genus Cellana (Patellogastropoda) from Pakistan, North Arabian Sea: species identification based on DNA sequencing.

    PubMed

    Zafar, Fatima Hayat Shaheen; Ayub, Zarrien; Begum, Samar; Siddiqui, Ghazala; Roberts, David

    2016-07-01

    The true limpets are found in the intertidal zone of the rocky shores of Pakistan, North Arabian Sea. Partial sequence of the mitochondrial cytochrome oxidase I was used to estimate the degree of genetic differentiation among the morphological forms of Cellana, which were considered as three separate species earlier in Pakistan. The study revealed that the three morphs of Cellana on COI sequence generated a single haplotype and matched with the COI sequence of Cellana karachiensis. This point out the phenotypic plasticity between the proposed species.

  5. Limpets of the genus Cellana (Patellogastropoda) from Pakistan, North Arabian Sea: species identification based on DNA sequencing.

    PubMed

    Zafar, Fatima Hayat Shaheen; Ayub, Zarrien; Begum, Samar; Siddiqui, Ghazala; Roberts, David

    2016-07-01

    The true limpets are found in the intertidal zone of the rocky shores of Pakistan, North Arabian Sea. Partial sequence of the mitochondrial cytochrome oxidase I was used to estimate the degree of genetic differentiation among the morphological forms of Cellana, which were considered as three separate species earlier in Pakistan. The study revealed that the three morphs of Cellana on COI sequence generated a single haplotype and matched with the COI sequence of Cellana karachiensis. This point out the phenotypic plasticity between the proposed species. PMID:26065851

  6. Complete mitochondrial DNA sequence analysis of Bison bison and bison-cattle hybrids: function and phylogeny.

    PubMed

    Douglas, Kory C; Halbert, Natalie D; Kolenda, Claire; Childers, Christopher; Hunter, David L; Derr, James N

    2011-01-01

    Complete mitochondrial DNA (mtDNA) genomes from 43 bison and bison-cattle hybrids were sequenced and compared with other bovids. Selected animals reflect the historical range and current taxonomic structure of bison. This study identified regions of potential nuclear-mitochondrial incompatibilities in hybrids, provided a complete mtDNA phylogenetic tree for this species, and uncovered evidence of bison population substructure. Seventeen bison haplotypes defined by 66 polymorphic sites were discovered, whereas 728 fixed differences and 86 non-synonymous mutations were identified between bison and bison-cattle hybrid sequences. The potential roles of the mtDNA genome in the function of hybrid animals and bison taxonomy are discussed.

  7. Complete mitochondrial genome sequence of the hedgehog seahorse Hippocampus spinosissimus Weber, 1933 (Gasterosteiformes:Syngnathidae).

    PubMed

    Liu, Shuaishuai; Zhang, Yanhong; Wang, Changming; Lin, Qiang

    2016-07-01

    The complete mitochondrial genome sequence of the hedgehog seahorse Hippocampus spinosissimus was first determined in this article. The total length of H. spinosissimus mitogenome is 16 527 bp and consists of 13 protein-coding genes, 2 rRNA genes, 22 tRNA genes and 1 control region. The gene order and composition of H. spinosissimus were similar to those of most other vertebrates. The overall base composition of H. spinosissimus is 32.1% A, 30.3% T, 14.9% G and 22.7% C, with a slight A + T-rich feature (62.4%). Phylogenetic analyses based on complete mitochondrial genome sequence showed that H. spinosissimus has a close genetic relationship to H. ingens and H. kuda.

  8. Mitochondrial genome sequence of Egyptian swift Rock Pigeon (Columba livia breed Egyptian swift).

    PubMed

    Li, Chun-Hong; Shi, Wei; Shi, Wan-Yu

    2015-06-01

    The Egyptian swift Rock Pigeon is a breed of fancy pigeon developed over many years of selective breeding. In this work, we report the complete mitochondrial genome sequence of Egyptian swift Rock Pigeon. The total length of the mitogenome was 17,239 bp and its overall base composition was estimated to be 30.2% for A, 24.0% for T, 31.9% for C and 13.9% for G, indicating an A-T (54.2%)-rich feature in the mitogenome. It contained the typical structure of 13 protein-coding genes, 2 ribosomal RNA genes, 22 transfer RNA genes and a non-coding control region (D-loop region). The complete mitochondrial genome sequence of Egyptian swift Rock Pigeon would serve as an important data set of the germplasm resources for further study.

  9. The complete mitochondrial genome sequence of the tubeworm Lamellibrachia satsuma and structural conservation in the mitochondrial genome control regions of Order Sabellida.

    PubMed

    Patra, Ajit Kumar; Kwon, Yong Min; Kang, Sung Gyun; Fujiwara, Yoshihiro; Kim, Sang-Jin

    2016-04-01

    The control region of the mitochondrial genomes shows high variation in conserved sequence organizations, which follow distinct evolutionary patterns in different species or taxa. In this study, we sequenced the complete mitochondrial genome of Lamellibrachia satsuma from the cold-seep region of Kagoshima Bay, as a part of whole genome study and extensively studied the structural features and patterns of the control region sequences. We obtained 15,037 bp of mitochondrial genome using Illumina sequencing and identified the non-coding AT-rich region or control region (354 bp, AT=83.9%) located between trnH and trnR. We found 7 conserved sequence blocks (CSB), scattered throughout the control region of L. satsuma and other taxa of Annelida. The poly-TA stretches, which commonly form the stem of multiple stem-loop structures, are most conserved in the CSB-I and CSB-II regions. The mitochondrial genome of L. satsuma encodes a unique repetitive sequence in the control region, which forms a unique secondary structure in comparison to Lamellibrachia luymesi. Phylogenetic analyses of all protein-coding genes indicate that L. satsuma forms a monophyletic clade with L. luymesi along with other tubeworms found in cold-seep regions (genera: Lamellibrachia, Escarpia, and Seepiophila). In general, the control region sequences of Annelida could be aligned with certainty within each genus, and to some extent within the family, but with a higher rate of variation in conserved regions. PMID:26776396

  10. Mitochondrial genome sequences illuminate maternal lineages of conservation concern in a rare carnivore

    PubMed Central

    2011-01-01

    Background Science-based wildlife management relies on genetic information to infer population connectivity and identify conservation units. The most commonly used genetic marker for characterizing animal biodiversity and identifying maternal lineages is the mitochondrial genome. Mitochondrial genotyping figures prominently in conservation and management plans, with much of the attention focused on the non-coding displacement ("D") loop. We used massively parallel multiplexed sequencing to sequence complete mitochondrial genomes from 40 fishers, a threatened carnivore that possesses low mitogenomic diversity. This allowed us to test a key assumption of conservation genetics, specifically, that the D-loop accurately reflects genealogical relationships and variation of the larger mitochondrial genome. Results Overall mitogenomic divergence in fishers is exceedingly low, with 66 segregating sites and an average pairwise distance between genomes of 0.00088 across their aligned length (16,290 bp). Estimates of variation and genealogical relationships from the displacement (D) loop region (299 bp) are contradicted by the complete mitochondrial genome, as well as the protein coding fraction of the mitochondrial genome. The sources of this contradiction trace primarily to the near-absence of mutations marking the D-loop region of one of the most divergent lineages, and secondarily to independent (recurrent) mutations at two nucleotide position in the D-loop amplicon. Conclusions Our study has two important implications. First, inferred genealogical reconstructions based on the fisher D-loop region contradict inferences based on the entire mitogenome to the point that the populations of greatest conservation concern cannot be accurately resolved. Whole-genome analysis identifies Californian haplotypes from the northern-most populations as highly distinctive, with a significant excess of amino acid changes that may be indicative of molecular adaptation; D-loop sequences fail

  11. Complete mitochondrial genome sequence of Melipona scutellaris, a Brazilian stingless bee.

    PubMed

    Pereira, Ulisses de Padua; Bonetti, Ana Maria; Goulart, Luiz Ricardo; Santos, Anderson Rodrigues Dos; Oliveira, Guilherme Correa de; Cuadros-Orellana, Sara; Ueira-Vieira, Carlos

    2016-09-01

    Melipona scutellaris is a Brazilian stingless bee species and a highly important native pollinator besides its use in rational rearing for honey production. In this study, we present the whole mitochondrial DNA sequence of M. scutellaris from a haploid male. The mitogenome has a size of 14,862 bp and harbors 13 protein-coding genes (PCGs), 2 rRNA genes and 21 tRNA genes.

  12. The complete nucleotide sequence and RNA editing content of the mitochondrial genome of rapeseed (Brassica napus L.): comparative analysis of the mitochondrial genomes of rapeseed and Arabidopsis thaliana.

    PubMed

    Handa, Hirokazu

    2003-10-15

    The entire mitochondrial genome of rapeseed (Brassica napus L.) was sequenced and compared with that of Arabidopsis thaliana. The 221 853 bp genome contains 34 protein-coding genes, three rRNA genes and 17 tRNA genes. This gene content is almost identical to that of Arabidopsis: However the rps14 gene, which is a pseudo-gene in Arabidopsis, is intact in rapeseed. On the other hand, five tRNA genes are missing in rapeseed compared to Arabidopsis, although the set of mitochondrially encoded tRNA species is identical in the two Cruciferae. RNA editing events were systematically investigated on the basis of the sequence of the rapeseed mitochondrial genome. A total of 427 C to U conversions were identified in ORFs, which is nearly identical to the number in Arabidopsis (441 sites). The gene sequences and intron structures are mostly conserved (more than 99% similarity for protein-coding regions); however, only 358 editing sites (83% of total editings) are shared by rapeseed and Arabidopsis: Non-coding regions are mostly divergent between the two plants. One-third (about 78.7 kb) and two-thirds (about 223.8 kb) of the rapeseed and Arabidopsis mitochondrial genomes, respectively, cannot be aligned with each other and most of these regions do not show any homology to sequences registered in the DNA databases. The results of the comparative analysis between the rapeseed and Arabidopsis mitochondrial genomes suggest that higher plant mitochondria are extremely conservative with respect to coding sequences and somewhat conservative with respect to RNA editing, but that non-coding parts of plant mitochondrial DNA are extraordinarily dynamic with respect to structural changes, sequence acquisition and/or sequence loss.

  13. Determination of the melon chloroplast and mitochondrial genome sequences reveals that the largest reported mitochondrial genome in plants contains a significant amount of DNA having a nuclear origin

    PubMed Central

    2011-01-01

    Background The melon belongs to the Cucurbitaceae family, whose economic importance among vegetable crops is second only to Solanaceae. The melon has a small genome size (454 Mb), which makes it suitable for molecular and genetic studies. Despite similar nuclear and chloroplast genome sizes, cucurbits show great variation when their mitochondrial genomes are compared. The melon possesses the largest plant mitochondrial genome, as much as eight times larger than that of other cucurbits. Results The nucleotide sequences of the melon chloroplast and mitochondrial genomes were determined. The chloroplast genome (156,017 bp) included 132 genes, with 98 single-copy genes dispersed between the small (SSC) and large (LSC) single-copy regions and 17 duplicated genes in the inverted repeat regions (IRa and IRb). A comparison of the cucumber and melon chloroplast genomes showed differences in only approximately 5% of nucleotides, mainly due to short indels and SNPs. Additionally, 2.74 Mb of mitochondrial sequence, accounting for 95% of the estimated mitochondrial genome size, were assembled into five scaffolds and four additional unscaffolded contigs. An 84% of the mitochondrial genome is contained in a single scaffold. The gene-coding region accounted for 1.7% (45,926 bp) of the total sequence, including 51 protein-coding genes, 4 conserved ORFs, 3 rRNA genes and 24 tRNA genes. Despite the differences observed in the mitochondrial genome sizes of cucurbit species, Citrullus lanatus (379 kb), Cucurbita pepo (983 kb) and Cucumis melo (2,740 kb) share 120 kb of sequence, including the predicted protein-coding regions. Nevertheless, melon contained a high number of repetitive sequences and a high content of DNA of nuclear origin, which represented 42% and 47% of the total sequence, respectively. Conclusions Whereas the size and gene organisation of chloroplast genomes are similar among the cucurbit species, mitochondrial genomes show a wide variety of sizes, with a non

  14. The phylogenetic status of Paxillosida (Asteroidea) based on complete mitochondrial DNA sequences.

    PubMed

    Matsubara, Mioko; Komatsu, Miéko; Araki, Takeyoshi; Asakawa, Shuichi; Yokobori, Shin-ichi; Watanabe, Kimitsuna; Wada, Hiroshi

    2005-09-01

    One of the most important issues in asteroid phylogeny is the phylogenetic status of Paxillosida. This group lacks an anus and suckers on the tube feet in adults and does not develop the brachiolaria stage in early development. Two controversial hypotheses have been proposed for the phylogenetic status of Paxillosida, i.e., Paxillosida is primitive or rather specialized in asteroids. In this study, we determined the complete mitochondrial DNA nucleotide sequences from two paxillosidans (Astropecten polyacanthus and Luidia quinaria) and one forcipulatidan (Asterias amurensis). The mitochondrial genomes of the three asteroids were identical with respect to gene order and transcription direction, and were identical to the previously reported mitochondrial genomes of Asterina pectinifera (Valvatida) and Pisaster ochraceus (Forcipulatida) in this respect. Therefore, the comparison of genome structures was uninformative for the purposes of asteroid phylogeny. However, molecular phylogenetic analyses based on the amino acid sequences and the nucleotide sequences from the five asteroids supported the monophyly of the clade that included the two paxillosidans and Asterina. This suggests that the paxillosidan characters are secondarily derived ones.

  15. The architecture and complete sequence of mitochondrial genome of an assassin bug Agriosphodrus dohrni (Hemiptera: Reduviidae).

    PubMed

    Li, Hu; Gao, Jianyu; Liu, Haiyu; Liu, Hui; Liang, Aiping; Zhou, Xuguo; Cai, Wanzhi

    2011-01-01

    The 16, 470 bp nucleotide sequence of the mitochondrial genome (mitogenome) of an assassin bug from the reduviid subfamily Harpactorinae, Agriosphodrus dohrni, has been revealed. The entire genome encodes for two ribosomal RNA genes (rrnL and rrnS), 22 transfer RNA (tRNA) genes, 13 protein-coding genes, and a control region. The nucleotide composition is biased toward adenine and thymine (A+T = 72.2%). Comparative analysis with two other reduviid species Triatoma dimidiata and Valentia hoffmanni, exhibited highly conserved genome architectures including genome contents, gene order, nucleotide composition, codon usage, amino acid composition, as well as genome asymmetry. All protein-coding genes use standard mitochondrial initiation codons (methionine and isoleucine), except that nad1 starts with GTG. All tRNAs have the classic clover-leaf structure, except that the dihydrouridine (DHU) arm of tRNA(Ser(AGN)) forms a simple loop. Secondary structure comparisons of the two mitochondrial ribosomal subunits among sequenced assassin bugs show that the sequence and structure of rrnL is more conservative than that of rrnS. The presence of structural elements in the control region is also discussed, with emphasis on their implications in the regulation of replication and/or transcription of the reduviid mitogenome. The phylogenetic analyses indicated that within Reduviidae, Harpactorinae is a sister group to the Salyavatinae + Triatominae clade. PMID:21750648

  16. Complete sequence of the yak (Bos grunniens) mitochondrial genome and its evolutionary relationship with other ruminants.

    PubMed

    Gu, Zhiliang; Zhao, Xingbo; Li, Ning; Wu, Changxing

    2007-01-01

    The yak (Bos grunniens) is the most important domesticated species in the Qinhai-Tibetan Plateau. In present study, the complete sequence of the yak mitochondrial genome was determined. Sequence analysis revealed that there are no differences with cattle in the yak mitochondrial genome organization. Interestingly, within the D-loop, the conserved sequence blocks are less conserved than surrounding regions. Neighbor-Joining (NJ) trees based on single genes, gene sets and concatenated genes of mitochondrial genome were constructed. The analysis identified the yak as a sister group of a cattle/zebu clade. Based on substitutions in 22 tRNA genes, 12S rRNA gene and 16S rRNA gene, the dating of divergence between yak and cattle/zebu, and yak and water buffalo, was proposed to have occurred 4.38-5.32 and 10.54-13.85 million years before present, respectively. This is consistent with the paleontologyical data. Yak and sheep/goat divergent dating predicts that their divergence occurred at 13.14-27.99 million years before the present day.

  17. DNA sequences proximal to human mitochondrial DNA deletion breakpoints prevalent in human disease form G-quadruplexes, a class of DNA structures inefficiently unwound by the mitochondrial replicative Twinkle helicase.

    PubMed

    Bharti, Sanjay Kumar; Sommers, Joshua A; Zhou, Jun; Kaplan, Daniel L; Spelbrink, Johannes N; Mergny, Jean-Louis; Brosh, Robert M

    2014-10-24

    Mitochondrial DNA deletions are prominent in human genetic disorders, cancer, and aging. It is thought that stalling of the mitochondrial replication machinery during DNA synthesis is a prominent source of mitochondrial genome instability; however, the precise molecular determinants of defective mitochondrial replication are not well understood. In this work, we performed a computational analysis of the human mitochondrial genome using the "Pattern Finder" G-quadruplex (G4) predictor algorithm to assess whether G4-forming sequences reside in close proximity (within 20 base pairs) to known mitochondrial DNA deletion breakpoints. We then used this information to map G4P sequences with deletions characteristic of representative mitochondrial genetic disorders and also those identified in various cancers and aging. Circular dichroism and UV spectral analysis demonstrated that mitochondrial G-rich sequences near deletion breakpoints prevalent in human disease form G-quadruplex DNA structures. A biochemical analysis of purified recombinant human Twinkle protein (gene product of c10orf2) showed that the mitochondrial replicative helicase inefficiently unwinds well characterized intermolecular and intramolecular G-quadruplex DNA substrates, as well as a unimolecular G4 substrate derived from a mitochondrial sequence that nests a deletion breakpoint described in human renal cell carcinoma. Although G4 has been implicated in the initiation of mitochondrial DNA replication, our current findings suggest that mitochondrial G-quadruplexes are also likely to be a source of instability for the mitochondrial genome by perturbing the normal progression of the mitochondrial replication machinery, including DNA unwinding by Twinkle helicase.

  18. Sequence Homology at the Breakpoint and Clinical Phenotype of Mitochondrial DNA Deletion Syndromes

    PubMed Central

    Sadikovic, Bekim; Wang, Jing; El-Hattab, Ayman; Landsverk, Megan; Douglas, Ganka; Brundage, Ellen K.; Craigen, William J.; Schmitt, Eric S.; Wong, Lee-Jun C.

    2010-01-01

    Mitochondrial DNA (mtDNA) deletions are a common cause of mitochondrial disorders. Large mtDNA deletions can lead to a broad spectrum of clinical features with different age of onset, ranging from mild mitochondrial myopathies (MM), progressive external ophthalmoplegia (PEO), and Kearns-Sayre syndrome (KSS), to severe Pearson syndrome. The aim of this study is to investigate the molecular signatures surrounding the deletion breakpoints and their association with the clinical phenotype and age at onset. MtDNA deletions in 67 patients were characterized using array comparative genomic hybridization (aCGH) followed by PCR-sequencing of the deletion junctions. Sequence homology including both perfect and imperfect short repeats flanking the deletion regions were analyzed and correlated with clinical features and patients' age group. In all age groups, there was a significant increase in sequence homology flanking the deletion compared to mtDNA background. The youngest patient group (<6 years old) showed a diffused pattern of deletion distribution in size and locations, with a significantly lower sequence homology flanking the deletion, and the highest percentage of deletion mutant heteroplasmy. The older age groups showed rather discrete pattern of deletions with 44% of all patients over 6 years old carrying the most common 5 kb mtDNA deletion, which was found mostly in muscle specimens (22/41). Only 15% (3/20) of the young patients (<6 years old) carry the 5 kb common deletion, which is usually present in blood rather than muscle. This group of patients predominantly (16 out of 17) exhibit multisystem disorder and/or Pearson syndrome, while older patients had predominantly neuromuscular manifestations including KSS, PEO, and MM. In conclusion, sequence homology at the deletion flanking regions is a consistent feature of mtDNA deletions. Decreased levels of sequence homology and increased levels of deletion mutant heteroplasmy appear to correlate with earlier onset and

  19. Complete mitochondrial DNA sequence of the ark shell Scapharca broughtonii: an ultra-large metazoan mitochondrial genome.

    PubMed

    Liu, Yun-Guo; Kurokawa, Tadahide; Sekino, Masashi; Tanabe, Toru; Watanabe, Kazuhito

    2013-03-01

    The complete mitochondrial (mt) genome of the ark shell Scapharca broughtonii was determined using long PCR and a genome walking sequencing strategy with genus-specific primers. The S. broughtonii mt genome (GenBank accession number AB729113) contained 12 protein-coding genes (the atp8 gene is missing, as in most bivalves), 2 ribosomal RNA genes, and 42 transfer tRNA genes, in a length of 46,985 nucleotides for the size of mtDNA with only one copy of the heteroplasmic tandem repeat (HTR) unit. Moreover the S. broughtonii mt genome shows size variation; these genomes ranged in size from about 47 kb to about 50 kb because of variation in the number of repeat sequences in the non-coding region. The mt-genome of S. broughtonii is, to date, the longest reported metazoan mtDNA sequence. Sequence duplication in non-coding region and the formation of HTR arrays were two of the factors responsible for the ultra-large size of this mt genome. All the tRNA genes were found within the S. broughtonii mt genome, unlike the other bivalves usually lacking one or more tRNA genes. Twelve additional specimens were used to analyze the patterns of tandem repeat arrays by PCR amplification and agarose electrophoresis. Each of the 12 specimens displayed extensive heteroplasmy and had 8-10 length variants. The motifs of the HTR arrays are about 353-362 bp and the number of repeats ranges from 1 to 11. PMID:23291309

  20. Complete mitochondrial DNA sequence of the ark shell Scapharca broughtonii: an ultra-large metazoan mitochondrial genome.

    PubMed

    Liu, Yun-Guo; Kurokawa, Tadahide; Sekino, Masashi; Tanabe, Toru; Watanabe, Kazuhito

    2013-03-01

    The complete mitochondrial (mt) genome of the ark shell Scapharca broughtonii was determined using long PCR and a genome walking sequencing strategy with genus-specific primers. The S. broughtonii mt genome (GenBank accession number AB729113) contained 12 protein-coding genes (the atp8 gene is missing, as in most bivalves), 2 ribosomal RNA genes, and 42 transfer tRNA genes, in a length of 46,985 nucleotides for the size of mtDNA with only one copy of the heteroplasmic tandem repeat (HTR) unit. Moreover the S. broughtonii mt genome shows size variation; these genomes ranged in size from about 47 kb to about 50 kb because of variation in the number of repeat sequences in the non-coding region. The mt-genome of S. broughtonii is, to date, the longest reported metazoan mtDNA sequence. Sequence duplication in non-coding region and the formation of HTR arrays were two of the factors responsible for the ultra-large size of this mt genome. All the tRNA genes were found within the S. broughtonii mt genome, unlike the other bivalves usually lacking one or more tRNA genes. Twelve additional specimens were used to analyze the patterns of tandem repeat arrays by PCR amplification and agarose electrophoresis. Each of the 12 specimens displayed extensive heteroplasmy and had 8-10 length variants. The motifs of the HTR arrays are about 353-362 bp and the number of repeats ranges from 1 to 11.

  1. Drosophila melanogaster mitochondrial DNA: completion of the nucleotide sequence and evolutionary comparisons.

    PubMed

    Lewis, D L; Farr, C L; Kaguni, L S

    1995-11-01

    The nucleotide sequence of the regions flanking the A+T region of Drosophila melanogaster mitochondrial DNA (mtDNA) has been determined. Included are the genes encoding the transfer RNAs for valine, isoleucine, glutamine and methionine, the small ribosomal RNA and the 5'-coding sequences of the large ribosomal RNA and NADH dehydrogenase subunit II. This completes the nucleotide sequence of the D. melanogaster mitochondrial genome. The circular mtDNA of D. melanogaster varies in size among different populations largely due to length differences in the control region (Fauron & Wolstenholme, 1976; Fauron & Wolstenholme, 1980a, b); the mtDNA region we have sequenced, combined with those sequenced by others, yields a composite genome that is 19,517 bp in length as compared to 16,019 bp for the mtDNA of D. yakuba. D. melanogaster mtDNA exhibits an extreme bias in base composition; it comprises 82.2% deoxyadenylate and thymidylate residues as compared to 78.6% in D. yakuba mtDNA. All genes encoded in the mtDNA of both species are in identical locations and orientations. Nucleotide substitution analysis reveals that tRNA and rRNA genes evolve at less than half the rate of protein coding genes.

  2. Complete mitochondrial genome sequence of Marmota himalayana (Rodentia: Sciuridae) and phylogenetic analysis within Rodentia.

    PubMed

    Chao, Q J; Li, Y D; Geng, X X; Zhang, L; Dai, X; Zhang, X; Li, J; Zhang, H J

    2014-04-14

    This is the first report of a complete mitochondrial genome sequence from Himalayan marmot (Marmota himalayana, class Marmota). We determined the M. himalayana mitochondrial (mt) genome sequence by using long-PCR methods and a primer-walking sequencing strategy with genus-specific primers. The complete mt genome of M. himalayana was 16,443 bp in length and comprised 13 protein-coding genes, 2 ribosomal RNA (rRNA) genes, 22 transfer RNA (tRNA) genes, and a typical control region (CR). Gene order and orientation were identical to those in mt genomes of most vertebrates. The heavy strand showed an overall A+T content of 63.49%. AT and GC skews for the mt genome of the M. himalayana were 0.012 and -0.300, respectively, indicating a nucleotide bias against T and G. The control region was 997 bp in size and displayed some unusual features, including absence of repeated motifs and two conserved sequence blocks (CSB2 and CSB3), which is consistent with observations from two other rodent species, Sciurus vulgaris and Myoxus glis. Phylogenetic analysis of complete mt DNA sequences without the control region including 30 taxa of Rodentia was performed with Maximum-Likelihood (ML) and Bayesian Inference (BI) methods and provided strong support for Sciurognathi polyphyly and Hystricognathi monophyly. This analysis also provided evidence that M. himalayana mt DNA was closely related to that from Sciurus vulgaris (Sciuridae) and was similar to mt DNA from Myoxus glis.

  3. Amino acid sequence of a new mitochondrially synthesized proteolipid of the ATP synthase of Saccharomyces cerevisiae.

    PubMed Central

    Velours, J; Esparza, M; Hoppe, J; Sebald, W; Guerin, B

    1984-01-01

    The purification and the amino acid sequence of a proteolipid translated on ribosomes in yeast mitochondria is reported. This protein, which is a subunit of the ATP synthase, was purified by extraction with chloroform/methanol (2/1) and subsequent chromatography on phosphocellulose and reverse phase h.p.l.c. A mol. wt. of 5500 was estimated by chromatography on Bio-Gel P-30 in 80% formic acid. The complete amino acid sequence of this protein was determined by automated solid phase Edman degradation of the whole protein and of fragments obtained after cleavage with cyanogen bromide. The sequence analysis indicates a length of 48 amino acid residues. The calculated mol. wt. of 5870 corresponds to the value found by gel chromatography. This polypeptide contains three basic residues and no negatively charged side chain. The three basic residues are clustered at the C terminus. The primary structure of this protein is in full agreement with the predicted amino acid sequence of the putative polypeptide encoded by the mitochondrial aap1 gene recently discovered in Saccharomyces cerevisiae. Moreover, this protein shows 50% homology with the amino acid sequence of a putative polypeptide encoded by an unidentified reading frame also discovered near the mitochondrial ATPase subunit 6 gene in Aspergillus nidulans. Images Fig. 2. PMID:6323165

  4. Mitochondrial DNA sequence and gene organization in the [corrected] Australian blacklip [corrected] abalone Haliotis rubra (leach).

    PubMed

    Maynard, Ben T; Kerr, Lyndal J; McKiernan, Joanne M; Jansen, Eliza S; Hanna, Peter J

    2005-01-01

    The complete mitochondrial DNA of the blacklip abalone Haliotis rubra (Gastropoda: Mollusca) was cloned and 16,907 base pairs were sequenced. The sequence represents an estimated 99.85% of the mitochondrial genome, and contains 2 ribosomal RNA, 22 transfer RNA, and 13 protein-coding genes found in other metazoan mtDNA. An AT tandem repeat and a possible C-rich domain within the putative control region could not be fully sequenced. The H. rubra mtDNA gene order is novel for mollusks, separated from the black chiton Katharina tunicata by the individual translocations of 3 tRNAs. Compared with other mtDNA regions, sequences from the ATP8, NAD2, NAD4L, NAD6, and 12S rRNA genes, as well as the control region, are the most variable among representatives from Mollusca, Arthropoda, and Rhynchonelliformea, with similar mtDNA arrangements to H. rubra. These sequences are being evaluated as genetic markers within commercially important Haliotis species, and some applications and considerations for their use are discussed. PMID:16206015

  5. The complete DNA sequence of the mitochondrial genome of a "living fossil," the coelacanth (Latimeria chalumnae).

    PubMed

    Zardoya, R; Meyer, A

    1997-07-01

    The complete nucleotide sequence of the 16,407-bp mitochondrial genome of the coelacanth (Latimeria chalumnae) was determined. The coelacanth mitochondrial genome order is identical to the consensus vertebrate gene order which is also found in all ray-finned fishes, the lungfish, and most tetrapods. Base composition and codon usage also conform to typical vertebrate patterns. The entire mitochondrial genome was PCR-amplified with 24 sets of primers that are expected to amplify homologous regions in other related vertebrate species. Analyses of the control region of the coelacanth mitochondrial genome revealed the existence of four 22-bp tandem repeats close to its 3' end. The phylogenetic analyses of a large data set combining genes coding for rRNAs, tRNAs, and proteins (16,140 characters) confirmed the phylogenetic position of the coelacanth as a lobe-finned fish; it is more closely related to tetrapods than to ray-finned fishes. However, different phylogenetic methods applied to this largest available molecular data set were unable to resolve unambiguously the relationship of the coelacanth to the two other groups of extant lobe-finned fishes, the lungfishes and the tetrapods. Maximum parsimony favored a lungfish/coelacanth or a lungfish/tetrapod sistergroup relationship depending on which transversion:transition weighting is assumed. Neighbor-joining and maximum likelihood supported a lungfish/tetrapod sistergroup relationship.

  6. The Complete DNA Sequence of the Mitochondrial Genome of a ``living Fossil,'' the Coelacanth (Latimeria Chalumnae)

    PubMed Central

    Zardoya, R.; Meyer, A.

    1997-01-01

    The complete nucleotide sequence of the 16,407-bp mitochondrial genome of the coelacanth (Latimeria chalumnae) was determined. The coelacanth mitochondrial genome order is identical to the consensus vertebrate gene order which is also found in all ray-finned fishes, the lungfish, and most tetrapods. Base composition and codon usage also conform to typical vertebrate patterns. The entire mitochondrial genome was PCR-amplified with 24 sets of primers that are expected to amplify homologous regions in other related vertebrate species. Analyses of the control region of the coelacanth mitochondrial genome revealed the existence of four 22-bp tandem repeats close to its 3' end. The phylogenetic analyses of a large data set combining genes coding for rRNAs, tRNAs, and proteins (16,140 characters) confirmed the phylogenetic position of the coelacanth as a lobe-finned fish; it is more closely related to tetrapods than to ray-finned fishes. However, different phylogenetic methods applied to this largest available molecular data set were unable to resolve unambiguously the relationship of the coelacanth to the two other groups of extant lobe-finned fishes, the lungfishes and the tetrapods. Maximum parsimony favored a lungfish/coelacanth or a lungfish/tetrapod sistergroup relationship depending on which transversion:transition weighting is assumed. Neighbor-joining and maximum likelihood supported a lungfish/tetrapod sistergroup relationship. PMID:9215903

  7. Statistical validation of the identification of tuna species: bootstrap analysis of mitochondrial DNA sequences.

    PubMed

    Terol, Javier; Mascarell, Rosario; Fernandez-Pedrosa, Victoria; Pérez-Alonso, Manuel

    2002-02-27

    Sequencing of the mitochondrial cytochrome b gene has been used to differentiate three tuna species: Thunnus albacares (yellowfin tuna), Thunnus obesus (bigeye tuna), and Katsuwonus pelamis (skipjack). A PCR amplified 528 bp fragment from 30 frozen samples and a 171 bp fragment from 26 canned samples of the three species were analyzed to determine the intraspecific variation and the positions with diagnostic value. Polymorphic sites between the species that did not present intraspecific variation were given a diagnostic value. The genetic distance between the sequences was calculated, and a phylogenetic tree was constructed, showing that the sequences belonging to the same species clustered together. The bootstrap test of confidence was used to determine the statistical validation of the species assignation, allowing for the first time a quantification of the certainty of the species assignation. The bootstrap values obtained from these results indicate that the sequencing of the cytochrome b fragments allows a correct species assignation with a probability > or =95%. PMID:11853465

  8. The mitochondrial genome sequence and molecular phylogeny of the turkey, Meleagris gallopavo.

    PubMed

    Guan, X; Silva, P; Gyenai, K B; Xu, J; Geng, T; Tu, Z; Samuels, D C; Smith, E J

    2009-04-01

    The mitochondrial genome (mtGenome) has been little studied in the turkey (Meleagris gallopavo), a species for which there is no publicly available mtGenome sequence. Here, we used PCR-based methods with 19 pairs of primers designed from the chicken and other species to develop a complete turkey mtGenome sequence. The entire sequence (16,717 bp) of the turkey mtGenome was obtained, and it exhibited 85% similarity to the chicken mtGenome sequence. Thirteen genes and 24 RNAs (22 tRNAs and 2 rRNAs) were annotated. An mtGenome-based phylogenetic analysis indicated that the turkey is most closely related to the chicken, Gallus gallus, and quail, Corturnix japonica. Given the importance of the mtGenome, the present work adds to the growing genomic resources needed to define the genetic mechanisms that underlie some economically significant traits in the turkey.

  9. Establishing the pangolin mitochondrial D-loop sequences from the confiscated scales.

    PubMed

    Hsieh, Hsing-Mei; Lee, James Chun-I; Wu, Jane-Hong; Chen, Chao-An; Chen, Yen-Jean; Wang, Guan-Bang; Chin, Shih-Chien; Wang, Lih-Chiann; Linacre, Adrian; Tsai, Li-Chin

    2011-08-01

    Pangolin scales are encountered in traditional East Asian medicines (TEAM) and the ever increasing demand for these scales has escalated the decline in the numbers of these mammals. The identification of protected pangolin species is necessary to enforce international and national legislation as well as assist with conservation measures. There is limited morphological feature on a pangolin scale thus requiring DNA analysis as a means of identification. We report on the isolation of DNA from pangolin scales and a strategy for obtaining the full length of the mitochondrial D-loop, being 1159 bp. Primer sets creating five overlapping amplicons were designed to amplify sections of this mitochondrial DNA locus. DNA from the blood stain of nineteen Formosan pangolins (Manis pentadactyla pentadactyla) along with 145 scale samples that were suspected to have come from pangolins, was amplified and sequenced; leading to a total of 91 D-loop sequences being obtained. The 19 Formosan pangolin sequences produced 5 haplotypes and 72 of the 145 seized scales provided useable sequence classified as a further 38 haplotypes. The D-loop sequences from those scales suspected to be from a pangolin had a higher similarity to any of the 19 samples taken from M. p. pentadactyla compared to a D-loop sequence from Manis tetradactyla (the only pangolin D-loop sequence in GenBank, NC_004027). These 43 haplotypes were used to establish a local database for the D-loop sequence of pangolins and add to the data of Manis sp. held on GenBank. The PCR amplification strategy development in this study could be used in forensic DNA identification of scales suspected to be from protected pangolin species. PMID:20638354

  10. Establishing the pangolin mitochondrial D-loop sequences from the confiscated scales.

    PubMed

    Hsieh, Hsing-Mei; Lee, James Chun-I; Wu, Jane-Hong; Chen, Chao-An; Chen, Yen-Jean; Wang, Guan-Bang; Chin, Shih-Chien; Wang, Lih-Chiann; Linacre, Adrian; Tsai, Li-Chin

    2011-08-01

    Pangolin scales are encountered in traditional East Asian medicines (TEAM) and the ever increasing demand for these scales has escalated the decline in the numbers of these mammals. The identification of protected pangolin species is necessary to enforce international and national legislation as well as assist with conservation measures. There is limited morphological feature on a pangolin scale thus requiring DNA analysis as a means of identification. We report on the isolation of DNA from pangolin scales and a strategy for obtaining the full length of the mitochondrial D-loop, being 1159 bp. Primer sets creating five overlapping amplicons were designed to amplify sections of this mitochondrial DNA locus. DNA from the blood stain of nineteen Formosan pangolins (Manis pentadactyla pentadactyla) along with 145 scale samples that were suspected to have come from pangolins, was amplified and sequenced; leading to a total of 91 D-loop sequences being obtained. The 19 Formosan pangolin sequences produced 5 haplotypes and 72 of the 145 seized scales provided useable sequence classified as a further 38 haplotypes. The D-loop sequences from those scales suspected to be from a pangolin had a higher similarity to any of the 19 samples taken from M. p. pentadactyla compared to a D-loop sequence from Manis tetradactyla (the only pangolin D-loop sequence in GenBank, NC_004027). These 43 haplotypes were used to establish a local database for the D-loop sequence of pangolins and add to the data of Manis sp. held on GenBank. The PCR amplification strategy development in this study could be used in forensic DNA identification of scales suspected to be from protected pangolin species.

  11. Reconstructing mitochondrial genomes directly from genomic next-generation sequencing reads—a baiting and iterative mapping approach

    PubMed Central

    Hahn, Christoph; Bachmann, Lutz; Chevreux, Bastien

    2013-01-01

    We present an in silico approach for the reconstruction of complete mitochondrial genomes of non-model organisms directly from next-generation sequencing (NGS) data—mitochondrial baiting and iterative mapping (MITObim). The method is straightforward even if only (i) distantly related mitochondrial genomes or (ii) mitochondrial barcode sequences are available as starting-reference sequences or seeds, respectively. We demonstrate the efficiency of the approach in case studies using real NGS data sets of the two monogenean ectoparasites species Gyrodactylus thymalli and Gyrodactylus derjavinoides including their respective teleost hosts European grayling (Thymallus thymallus) and Rainbow trout (Oncorhynchus mykiss). MITObim appeared superior to existing tools in terms of accuracy, runtime and memory requirements and fully automatically recovered mitochondrial genomes exceeding 99.5% accuracy from total genomic DNA derived NGS data sets in <24 h using a standard desktop computer. The approach overcomes the limitations of traditional strategies for obtaining mitochondrial genomes for species with little or no mitochondrial sequence information at hand and represents a fast and highly efficient in silico alternative to laborious conventional strategies relying on initial long-range PCR. We furthermore demonstrate the applicability of MITObim for metagenomic/pooled data sets using simulated data. MITObim is an easy to use tool even for biologists with modest bioinformatics experience. The software is made available as open source pipeline under the MIT license at https://github.com/chrishah/MITObim. PMID:23661685

  12. [Sequencing and analysis of the complete mitochondrial genome of the King Cobra, Ophiophagus hannah (Serpents: Elapidae)].

    PubMed

    Chen, Nian; Lai, Xiao-Ping

    2010-07-01

    We obtained the complete mitochondrial genome of King Cobra(GenBank accession number: EU_921899) by Ex Taq-PCR, TA-cloning and primer-walking methods. This genome is very similar to other vertebrate, which is 17 267 bp in length and encodes 38 genes (including 13 protein-coding, 2 ribosomal RNA and 23 transfer RNA genes) and two long non-coding regions. The duplication of tRNA-Ile gene forms a new mitochondrial gene rearrangement model. Eight tRNA genes and one protein genes were transcribed from L strand, and the other genes were transcribed genes from H strand. Genes on the H strand show a fairly similar content of Adenosine and Thymine respectively, whereas those on the L strand have higher proportion of A than T. Combined rDNA sequence data (12S+16S rRNA) were used to reconstruct the phylogeny of 21 snake species for which complete mitochondrial genome sequences were available in the public databases. This large data set and an appropriate range of outgroup taxa demonstrated that Elapidae is more closely related to colubridae than viperidae, which supports the traditional viewpoints. PMID:20650853

  13. [Sequencing and analysis of the complete mitochondrial genome of the King Cobra, Ophiophagus hannah (Serpents: Elapidae)].

    PubMed

    Chen, Nian; Lai, Xiao-Ping

    2010-07-01

    We obtained the complete mitochondrial genome of King Cobra(GenBank accession number: EU_921899) by Ex Taq-PCR, TA-cloning and primer-walking methods. This genome is very similar to other vertebrate, which is 17 267 bp in length and encodes 38 genes (including 13 protein-coding, 2 ribosomal RNA and 23 transfer RNA genes) and two long non-coding regions. The duplication of tRNA-Ile gene forms a new mitochondrial gene rearrangement model. Eight tRNA genes and one protein genes were transcribed from L strand, and the other genes were transcribed genes from H strand. Genes on the H strand show a fairly similar content of Adenosine and Thymine respectively, whereas those on the L strand have higher proportion of A than T. Combined rDNA sequence data (12S+16S rRNA) were used to reconstruct the phylogeny of 21 snake species for which complete mitochondrial genome sequences were available in the public databases. This large data set and an appropriate range of outgroup taxa demonstrated that Elapidae is more closely related to colubridae than viperidae, which supports the traditional viewpoints.

  14. Determination and analysis of the complete mitochondrial genome sequence of Wugangtong grey goose.

    PubMed

    Lin, Qian; Jiang, Gui-Tao; Cao, Rong; Yun, Long; Li, Guo-Jun; Dai, Qiu-Zhong; Zhang, Shi-Rui; Hou, De-Xing; He, Xi

    2016-01-01

    Mitochondrial DNA plays an important role in living organisms. In this study, the complete mitochondrial genome sequence of the Wugangtong grey goose was reported in Human Province first, which was determined through PCR-based method. The total length of the mitogenome is 16,740 bp. It contains the typical structure, including 2 ribosomal RNA genes, 22 transfer RNA genes, 13 protein-coding genes and 1 non-coding control region (D-loop region) as that of most other vertebrates. The overall composition of the mitogenome was estimated to be 30.22% for A, 22.67% for T, 32.05% for C and 15.07% for G. All the protein initiation codons are ATG, except for COX1, COX2 and ND5 are GTG, ND6 is CTA. The complete mitochondrial genome sequence of the Wugangtong grey goose will provides an important data set for the study in genetic mechanism of goose in Hunan province.

  15. Combined mitochondrial and nuclear sequences support the monophyly of forcipulatacean sea stars.

    PubMed

    Foltz, D W; Bolton, M T; Kelley, S P; Kelley, B D; Nguyen, A T

    2007-05-01

    Previous molecular phylogenetic analyses of forcipulatacean sea stars (Echinodermata: Asteroidea) have reconstructed a non-monophyletic order Forcipulatida, provided that two or more forcipulate families are included. This result could mean that one or more assumptions of the reconstruction method was violated, or else the traditional classification could be erroneous. The present molecular phylogenetic analysis included 12 non-forcipulatacean and 39 forcipulatacean sea stars, with multiple representatives of all but one of the forcipulate families and/or subfamilies. Bayesian analysis of approximately 4.2kb of sequence data representing seven partitions (nuclear 18S rRNA and 28S rRNA, mitochondrial 12S rRNA, 16S rRNA, 5 tRNAs and cytochrome oxidase I with first and second codon positions analyzed separately from third codon positions) recovered a consensus tree with three well-supported clades (78%-100% bootstrap support) that corresponded at least approximately to traditional taxonomic ranks: the superorder Forcipulatacea (Forcipulatida + Brisingida) + Pteraster, the Brisingida/Brisingidae and Asteriidae + Rathbunaster + Pycnopodia. When a molecular clock was enforced, the partitioned Bayesian analysis recovered the traditional Forcipulatacea. Five of six genera represented by two or more species were monophyletic with 100% bootstrap support. Most of the traditional subfamilial and familial groupings within the Forcipulatida were either unresolved or non-monophyletic. The separate partitions differed considerably in estimates of model parameters, mainly between nuclear sequences (with high GC content, low rates of sequence substitution and high transition/transversion rate ratios) and mitochondrial sequences.

  16. A specific indel marker for the Philippines Schistosoma japonicum revealed by analysis of mitochondrial genome sequences.

    PubMed

    Li, Juan; Chen, Fen; Sugiyama, Hiromu; Blair, David; Lin, Rui-Qing; Zhu, Xing-Quan

    2015-07-01

    In the present study, near-complete mitochondrial (mt) genome sequences for Schistosoma japonicum from different regions in the Philippines and Japan were amplified and sequenced. Comparisons among S. japonicum from the Philippines, Japan, and China revealed a geographically based length difference in mt genomes, but the mt genomic organization and gene arrangement were the same. Sequence differences among samples from the Philippines and all samples from the three endemic areas were 0.57-2.12 and 0.76-3.85 %, respectively. The most variable part of the mt genome was the non-coding region. In the coding portion of the genome, protein-coding genes varied more than rRNA genes and tRNAs. The near-complete mt genome sequences for Philippine specimens were identical in length (14,091 bp) which was 4 bp longer than those of S. japonicum samples from Japan and China. This indel provides a unique genetic marker for S. japonicum samples from the Philippines. Phylogenetic analyses based on the concatenated amino acids of 12 protein-coding genes showed that samples of S. japonicum clustered according to their geographical origins. The identified mitochondrial indel marker will be useful for tracing the source of S. japonicum infection in humans and animals in Southeast Asia.

  17. How did pygmy shrews colonize Ireland? Clues from a phylogenetic analysis of mitochondrial cytochrome b sequences.

    PubMed Central

    Mascheretti, Silvia; Rogatcheva, Margarita B; Gündüz, Islam; Fredga, Karl; Searle, Jeremy B

    2003-01-01

    There is a long-standing debate as to how Ireland attained its present fauna; we help to inform this debate with a molecular study of one species. A 1110 base pair fragment of the mitochondrial cytochrome b gene was sequenced in 74 specimens of the pygmy shrew, Sorex minutus, collected from throughout its western Palaearctic range. Phylogenetic analysis of these sequences revealed several well-supported lineages. Most of the 65 haplotypes belonged to a northern lineage, which ranged from Britain in the west to Lake Baikal in the east. The other lineages were largely limited to Iberia, Italy and the Balkans. One exception, however, was a lineage found in both Ireland and Andorra. This affinity, and the large difference between the mitochondrial sequences of Irish and British individuals, suggest that pygmy shrews did not colonize Ireland via a land connection from Britain, as has been previously supposed, but instead were introduced by boat from southwest continental Europe. All the Irish pygmy shrews analysed were identical or very similar in cytochrome b sequence, suggesting an extreme founding event. PMID:12908980

  18. Mitochondrial large ribosomal subunit sequences are homogeneous within isolates of Glomus (arbuscular mycorrhizal fungi, Glomeromycota).

    PubMed

    Raab, Philipp A; Brennwald, Annemarie; Redecker, Dirk

    2005-12-01

    Partial sequences of the mtLSU rDNA were obtained from the arbuscular mycorrhizal (AM) fungi Glomus proliferum (isolate DAOM 226389) and G. intraradices (isolates JJ291 and BEG75). The exon sequences of the two species showed regions of strong divergence. There was no evidence of intra-isolate sequence heterogeneity as it is found in variable regions of nuclear ribosomal genes of Glomeromycota. In G. intraradices JJ291, two introns were found in the partial LSU sequence. One of the introns contained an ORF for a putative site-specific homing endonuclease of the LAGLIDADG family. In G. intraradices BEG75, one of the introns was missing and the other had a DNA sequence distinct from JJ291. G. proliferum had no introns in the region sequenced. A PCR primer was designed to amplify the fragment of the mtLSU of a different, distinguishable G. intraradices genotype from colonized roots of a field sample. These mitochondrial gene sequences are the first reported from the phylum Glomeromycota. Our findings indicate that the intra-individual sequence heterogeneity of the Glomeromycota may be a peculiar feature of the nuclear genes. Therefore, mtLSU and its introns have the potential to be highly sensitive genetic markers for these fungi in the future.

  19. A mitochondrial genome sequence of a hominin from Sima de los Huesos.

    PubMed

    Meyer, Matthias; Fu, Qiaomei; Aximu-Petri, Ayinuer; Glocke, Isabelle; Nickel, Birgit; Arsuaga, Juan-Luis; Martínez, Ignacio; Gracia, Ana; de Castro, José María Bermúdez; Carbonell, Eudald; Pääbo, Svante

    2014-01-16

    Excavations of a complex of caves in the Sierra de Atapuerca in northern Spain have unearthed hominin fossils that range in age from the early Pleistocene to the Holocene. One of these sites, the 'Sima de los Huesos' ('pit of bones'), has yielded the world's largest assemblage of Middle Pleistocene hominin fossils, consisting of at least 28 individuals dated to over 300,000 years ago. The skeletal remains share a number of morphological features with fossils classified as Homo heidelbergensis and also display distinct Neanderthal-derived traits. Here we determine an almost complete mitochondrial genome sequence of a hominin from Sima de los Huesos and show that it is closely related to the lineage leading to mitochondrial genomes of Denisovans, an eastern Eurasian sister group to Neanderthals. Our results pave the way for DNA research on hominins from the Middle Pleistocene.

  20. [Complete sequence and gene organization of the Tibetan chicken mitochondrial genome].

    PubMed

    Tong, Xiao-Mei; Liang, Yu; Wang, Wei; Xu, Shu-Qing; Zheng, Xiao-Guang; Wang, Jian; Yu, Jun

    2006-07-01

    Using PCR amplification, sequencing and assembling, we obtained the complete mitochondrial genome of Tibetan chicken. The complete mitochondrial genome was 16 783 bp in length. It contained 37 genes (13 protein coding genes, 2 rRNA, 22 tRNA) and a control region. The deduced restriction map revealed a unique pattern of Dra I restriction in Tibetan chicken. Phylogenetic trees based on the D-loop locus and the 13 protein coding genes by Neighbor-joining and Maximum Parsimony analysis indicated that the red junglefowl was the direct ancestor of Tibetan chicken and Tibetan chicken was closest to white leghorn and white plymouth rock, although the evolution of Tibetan chicken appeared to be relatively independent from them. A possible explanation is that the ancestor of Tibetan chicken lived in a relatively isolated environment after entering into the high altitude area and developed unique genetic characters. PMID:16825161

  1. A mitochondrial genome sequence of a hominin from Sima de los Huesos.

    PubMed

    Meyer, Matthias; Fu, Qiaomei; Aximu-Petri, Ayinuer; Glocke, Isabelle; Nickel, Birgit; Arsuaga, Juan-Luis; Martínez, Ignacio; Gracia, Ana; de Castro, José María Bermúdez; Carbonell, Eudald; Pääbo, Svante

    2014-01-16

    Excavations of a complex of caves in the Sierra de Atapuerca in northern Spain have unearthed hominin fossils that range in age from the early Pleistocene to the Holocene. One of these sites, the 'Sima de los Huesos' ('pit of bones'), has yielded the world's largest assemblage of Middle Pleistocene hominin fossils, consisting of at least 28 individuals dated to over 300,000 years ago. The skeletal remains share a number of morphological features with fossils classified as Homo heidelbergensis and also display distinct Neanderthal-derived traits. Here we determine an almost complete mitochondrial genome sequence of a hominin from Sima de los Huesos and show that it is closely related to the lineage leading to mitochondrial genomes of Denisovans, an eastern Eurasian sister group to Neanderthals. Our results pave the way for DNA research on hominins from the Middle Pleistocene. PMID:24305051

  2. MITOCHONDRIAL GENE SEQUENCES AMONG DIFFERENT GEOGRAPHICAL ISOLATES OF SCHISTOSOMA JAPONICUM IN YUNNAN PROVINCE, CHINA.

    PubMed

    Jia, Xue-Mei; Li, Cui-Ying; Li, Mei; Zeng, Jin; Zheng, Su-Yue; Li, Fei

    2016-05-01

    In order to evaluate differentiate genetic differences among Schistosoma japonicum isolates from Dali Ancient City, Xizhou and Yongsheng County, Yunnan Province, China, mitochondrial col, cytb, nd1, nd6, and nd4l were PCR amplified and sequenced, revealing nucleotide difference(s) among these strains of 8, 1, 5, 4, and 0, respectively. Phylogenetic analysis showed that S. japonicum from the three different geographical locations of Yunnan Province were clustered genetically together and were more similar to S. malayensis and S. mekongi than S. haematobium or S. mansoni. For intra-species differentiation purposes, Schistosoma mitochondrial col, nd1, and nd6 are better genetic markers than cytb and nd41. PMID:27405120

  3. Characterization of the complete mitochondrial genomes from Polycladida (Platyhelminthes) using next-generation sequencing.

    PubMed

    Aguado, M Teresa; Grande, Cristina; Gerth, Michael; Bleidorn, Christoph; Noreña, Carolina

    2016-01-10

    The complete mitochondrial genomes of three polycladids, the acotylean Hoploplana elisabelloi and the cotyleans Enchiridium sp. and Prosthiostomum siphunculus have been assembled with high coverage from Illumina sequencing data. The mt genomes contain 36 genes including 12 of the 13 protein-coding genes characteristic for metazoan mitochondrial genomes, two ribosomal RNA genes, and 22 transfer RNA genes. Gene annotation, gene order, genetic code, start and stop codons and codon bias have been identified. In comparison with the well investigated parasitic Neodermata, our analysis reveals a great diversity of gene orders within Polycladida and Platyhelminthes in general. By analyzing representative genomes of the main groups of Platyhelminthes we explored the phylogenetic relationships of this group. The phylogenetic analyses strongly supported the monophyly of Polycladida, and based on a small taxon sampling suggest the monophyly of Acotylea and Cotylea.

  4. Complete sequence and gene organization of the mitochondrial genome of Asio flammeus (Strigiformes, strigidae).

    PubMed

    Zhang, Yanan; Song, Tao; Pan, Tao; Sun, Xiaonan; Sun, Zhonglou; Qian, Lifu; Zhang, Baowei

    2016-07-01

    The complete sequence of the mitochondrial genome was determined for Asio flammeus, which is distributed widely in geography. The length of the complete mitochondrial genome was 18,966 bp, containing 2 rRNA genes, 22 tRNA genes, 13 protein-coding genes (PCGs), and 1 non-coding region (D-loop). All the genes were distributed on the H-strand, except for the ND6 subunit gene and eight tRNA genes which were encoded on the L-strand. The D-loop of A. flammeus contained many tandem repeats of varying lengths and repeat numbers. The molecular-based phylogeny showed that our species acted as the sister group to A. capensis and the supported Asio was the monophyletic group.

  5. The complete nucleotide sequence of Malabar grouper (Epinephelus malabaricus) mitochondrial genome.

    PubMed

    Zhu, Kecheng; Huang, Guiju; Zhang, Dongling; Guo, Yihui; Yu, Dahui

    2016-05-01

    In this study, we reported the complete mitochondrial DNA sequence of the Epinephelus malabaricus. The full-length of the mitochondrial genome consisted of a 16,423 bp fragment, with the base composition of A (28.70%), T (26.55%), G (15.92%) and C (28.83%). It contained 2 rRNA genes, 13 protein-coding genes, 22 tRNA genes and a major non-coding control region (D-loop region). The composition and order of these genes were identical to most of other vertebrates. All the protein initiation codons were ATG, except that COX1 began with GTG, ATP-6 and ND6 was not determined, respectively. The complete mitogenome of the Epinephelus malabaricus provided an important data set for the study in genetic mechanism of the hybridization.

  6. Mitochondrial genome of the Komodo dragon: efficient sequencing method with reptile-oriented primers and novel gene rearrangements.

    PubMed

    Kumazawa, Yoshinori; Endo, Hideki

    2004-04-30

    The mitochondrial genome of the Komodo dragon (Varanus komodoensis) was nearly completely sequenced, except for two highly repetitive noncoding regions. An efficient sequencing method for squamate mitochondrial genomes was established by combining the long polymerase chain reaction (PCR) technology and a set of reptile-oriented primers designed for nested PCR amplifications. It was found that the mitochondrial genome had novel gene arrangements in which genes from NADH dehydrogenase subunit 6 to proline tRNA were extensively shuffled with duplicate control regions. These control regions had 99% sequence similarity over 700 bp. Although snake mitochondrial genomes are also known to possess duplicate control regions with nearly identical sequences, the location of the second control region suggested independent occurrence of the duplication on lineages leading to snakes and the Komodo dragon. Another feature of the mitochondrial genome of the Komodo dragon was the considerable number of tandem repeats, including sequences with a strong secondary structure, as a possible site for the slipped-strand mispairing in replication. These observations are consistent with hypotheses that tandem duplications via the slipped-strand mispairing may induce mitochondrial gene rearrangements and may serve to maintain similar copies of the control region.

  7. Mitochondrial genome of the Komodo dragon: efficient sequencing method with reptile-oriented primers and novel gene rearrangements.

    PubMed

    Kumazawa, Yoshinori; Endo, Hideki

    2004-04-30

    The mitochondrial genome of the Komodo dragon (Varanus komodoensis) was nearly completely sequenced, except for two highly repetitive noncoding regions. An efficient sequencing method for squamate mitochondrial genomes was established by combining the long polymerase chain reaction (PCR) technology and a set of reptile-oriented primers designed for nested PCR amplifications. It was found that the mitochondrial genome had novel gene arrangements in which genes from NADH dehydrogenase subunit 6 to proline tRNA were extensively shuffled with duplicate control regions. These control regions had 99% sequence similarity over 700 bp. Although snake mitochondrial genomes are also known to possess duplicate control regions with nearly identical sequences, the location of the second control region suggested independent occurrence of the duplication on lineages leading to snakes and the Komodo dragon. Another feature of the mitochondrial genome of the Komodo dragon was the considerable number of tandem repeats, including sequences with a strong secondary structure, as a possible site for the slipped-strand mispairing in replication. These observations are consistent with hypotheses that tandem duplications via the slipped-strand mispairing may induce mitochondrial gene rearrangements and may serve to maintain similar copies of the control region. PMID:15449544

  8. The Mitochondrial Genomes of Aquila fasciata and Buteo lagopus (Aves, Accipitriformes): Sequence, Structure and Phylogenetic Analyses

    PubMed Central

    Jiang, Lan; Chen, Juan; Wang, Ping; Ren, Qiongqiong; Yuan, Jian; Qian, Chaoju; Hua, Xinghong; Guo, Zhichun; Zhang, Lei; Yang, Jianke; Wang, Ying; Zhang, Qin; Ding, Hengwu; Bi, De; Zhang, Zongmeng; Wang, Qingqing; Chen, Dongsheng; Kan, Xianzhao

    2015-01-01

    The family Accipitridae is one of the largest groups of non-passerine birds, including 68 genera and 243 species globally distributed. In the present study, we determined the complete mitochondrial sequences of two species of accipitrid, namely Aquila fasciata and Buteo lagopus, and conducted a comparative mitogenome analysis across the family. The mitogenome length of A. fasciata and B. lagopus are 18,513 and 18,559 bp with an A + T content of 54.2% and 55.0%, respectively. For both the two accipitrid birds mtDNAs, obvious positive AT-skew and negative GC-skew biases were detected for all 12 PCGs encoded by the H strand, whereas the reverse was found in MT-ND6 encoded by the L strand. One extra nucleotide‘C’is present at the position 174 of MT-ND3 gene of A. fasciata, which is not observed at that of B. lagopus. Six conserved sequence boxes in the Domain II, named boxes F, E, D, C, CSBa, and CSBb, respectively, were recognized in the CRs of A. fasciata and B. lagopus. Rates and patterns of mitochondrial gene evolution within Accipitridae were also estimated. The highest dN/dS was detected for the MT-ATP8 gene (0.32493) among Accipitridae, while the lowest for the MT-CO1 gene (0.01415). Mitophylogenetic analysis supported the robust monophyly of Accipitriformes, and Cathartidae was basal to the balance of the order. Moreover, we performed phylogenetic analyses using two other data sets (two mitochondrial loci, and combined nuclear and mitochondrial loci). Our results indicate that the subfamily Aquilinae and all currently polytypic genera of this subfamily are monophyletic. These two novel mtDNA data will be useful in refining the phylogenetic relationships and evolutionary processes of Accipitriformes. PMID:26295156

  9. Whole mitochondrial genome sequencing of domestic horses reveals incorporation of extensive wild horse diversity during domestication

    PubMed Central

    2011-01-01

    Background DNA target enrichment by micro-array capture combined with high throughput sequencing technologies provides the possibility to obtain large amounts of sequence data (e.g. whole mitochondrial DNA genomes) from multiple individuals at relatively low costs. Previously, whole mitochondrial genome data for domestic horses (Equus caballus) were limited to only a few specimens and only short parts of the mtDNA genome (especially the hypervariable region) were investigated for larger sample sets. Results In this study we investigated whole mitochondrial genomes of 59 domestic horses from 44 breeds and a single Przewalski horse (Equus przewalski) using a recently described multiplex micro-array capture approach. We found 473 variable positions within the domestic horses, 292 of which are parsimony-informative, providing a well resolved phylogenetic tree. Our divergence time estimate suggests that the mitochondrial genomes of modern horse breeds shared a common ancestor around 93,000 years ago and no later than 38,000 years ago. A Bayesian skyline plot (BSP) reveals a significant population expansion beginning 6,000-8,000 years ago with an ongoing exponential growth until the present, similar to other domestic animal species. Our data further suggest that a large sample of wild horse diversity was incorporated into the domestic population; specifically, at least 46 of the mtDNA lineages observed in domestic horses (73%) already existed before the beginning of domestication about 5,000 years ago. Conclusions Our study provides a window into the maternal origins of extant domestic horses and confirms that modern domestic breeds present a wide sample of the mtDNA diversity found in ancestral, now extinct, wild horse populations. The data obtained allow us to detect a population expansion event coinciding with the beginning of domestication and to estimate both the minimum number of female horses incorporated into the domestic gene pool and the time depth of the

  10. Heteroplasmic substitutions in the entire mitochondrial genomes of human colon cells detected by ultra-deep 454 sequencing.

    PubMed

    Skonieczna, Katarzyna; Malyarchuk, Boris; Jawień, Arkadiusz; Marszałek, Andrzej; Banaszkiewicz, Zbigniew; Jarmocik, Paweł; Borcz, Marcelina; Bała, Piotr; Grzybowski, Tomasz

    2015-03-01

    Mitochondrial DNA (mtDNA) heteroplasmy has been widely described from clinical, evolutionary and analytical points of view. Historically, the majority of studies have been based on Sanger sequencing. However, next-generation sequencing technologies are now being used for heteroplasmy analysis. Ultra-deep sequencing approaches provide increased sensitivity for detecting minority variants. However, a phylogenetic a posteriori analysis revealed that most of the next-generation sequencing data published to date suffers from shortcomings. Because implementation of new technologies in clinical, population, or forensic studies requires proper verification, in this paper we present a direct comparison of ultra-deep 454 and Sanger sequencing for the detection of heteroplasmy in complete mitochondrial genomes of normal colon cells. The spectrum of heteroplasmic mutations is discussed against the background of mitochondrial DNA variability in human populations.

  11. Phylogenetic study and barcoding of the blood cockle, Tegillarca granosa, found on the west coast of peninsular Malaysia using the COI gene.

    PubMed

    Chee, S Y; Devakie, M N; Siti Azizah, M N

    2011-06-28

    Blood cockles are among the most economically important brackish water invertebrates found in Malaysia. However, our knowledge of blood cockle phylogeny and systematics is rudimentary, especially for the species Tegillarca granosa. It is unclear, for instance, whether the cockles occurring on the west coast of peninsular Malaysia constitute a single species, or multiple, phylogenetically distinct species. We performed the first DNA molecular phylogenetic analysis of T. granosa to distinguish it from other related species found in other parts of the world and to create a DNA database for the species. An approximately 585-nucleotide fragment of the mitochondrial DNA (cytochrome oxidase I, COI) was sequenced for 150 individual cockles, representing 10 populations: three from the north, four from the central part and three from the southern part of peninsular Malaysia. Phylogenetic analyses of the resulting dataset yielded tree topologies that not only showed the relationship between T. granosa and its closest relatives but its position in the evolutionary tree. Three mitochondrial clades were evident, each containing an individual genus. Using the mutation rate of the COI gene, the divergence time between T. granosa and its closest related species was estimated to be 460 thousand years ago. This study provides a phylogenetic framework for this ecologically prominent and commercially important cockle species.

  12. Phylogenetic study and barcoding of the blood cockle, Tegillarca granosa, found on the west coast of peninsular Malaysia using the COI gene.

    PubMed

    Chee, S Y; Devakie, M N; Siti Azizah, M N

    2011-01-01

    Blood cockles are among the most economically important brackish water invertebrates found in Malaysia. However, our knowledge of blood cockle phylogeny and systematics is rudimentary, especially for the species Tegillarca granosa. It is unclear, for instance, whether the cockles occurring on the west coast of peninsular Malaysia constitute a single species, or multiple, phylogenetically distinct species. We performed the first DNA molecular phylogenetic analysis of T. granosa to distinguish it from other related species found in other parts of the world and to create a DNA database for the species. An approximately 585-nucleotide fragment of the mitochondrial DNA (cytochrome oxidase I, COI) was sequenced for 150 individual cockles, representing 10 populations: three from the north, four from the central part and three from the southern part of peninsular Malaysia. Phylogenetic analyses of the resulting dataset yielded tree topologies that not only showed the relationship between T. granosa and its closest relatives but its position in the evolutionary tree. Three mitochondrial clades were evident, each containing an individual genus. Using the mutation rate of the COI gene, the divergence time between T. granosa and its closest related species was estimated to be 460 thousand years ago. This study provides a phylogenetic framework for this ecologically prominent and commercially important cockle species. PMID:21732288

  13. Phylogeny and genetic diversity of Bridgeoporus nobilissimus inferred using mitochondrial and nuclear rDNA sequences

    USGS Publications Warehouse

    Redberg, G.L.; Hibbett, D.S.; Ammirati, J.F.; Rodriguez, R.J.

    2003-01-01

    The genetic diversity and phylogeny of Bridgeoporus nobilissimus have been analyzed. DNA was extracted from spores collected from individual fruiting bodies representing six geographically distinct populations in Oregon and Washington. Spore samples collected contained low levels of bacteria, yeast and a filamentous fungal species. Using taxon-specific PCR primers, it was possible to discriminate among rDNA from bacteria, yeast, a filamentous associate and B. nobilissimus. Nuclear rDNA internal transcribed spacer (ITS) region sequences of B. nobilissimus were compared among individuals representing six populations and were found to have less than 2% variation. These sequences also were used to design dual and nested PCR primers for B. nobilissimus-specific amplification. Mitochondrial small-subunit rDNA sequences were used in a phylogenetic analysis that placed B. nobilissimus in the hymenochaetoid clade, where it was associated with Oxyporus and Schizopora.

  14. The complete mitochondrial genome sequence of Southwellina hispida supports monophyly of Palaeacanthocephala (Acanthocephala: Polymorphida).

    PubMed

    Gazi, Mohiuddin; Kim, Jiyeon; Park, Joong-Ki

    2015-08-01

    Acanthocephala is a relatively small, but distinct obligate parasitic group that includes 4 classes: Archiacanthocephala, Palaeacanthocephala, Polyacanthocephala, and Eoacanthocephala. The phylogenetic relationships of acanthocephalans are mainly based on nuclear ribosomal genes. In this study, we determined the complete mitochondrial genome sequence of Southwellina hispida (Palaeacanthocephala: Polymorphida), and used this genome sequence along with other platyzoan species (including syndermatan groups) to assess its phylogenetic position within Acanthocephala. The S. hispida mtDNA is a 14,742 bp circular molecule that contains 36 genes (lacking atp8) encoded in the same direction. Phylogenetic analyses of amino acid sequences for 12 protein-coding genes suggested palaeacanthocephalan species to be monophyletic, and this group to be sister to Eoacanthocephala. These results confirm other morphological and molecular data supporting palaeacanthocephalan monophyly. PMID:25656507

  15. Sequence and secondary structure of the mitochondrial 16S ribosomal RNA gene of Ixodes scapularis.

    PubMed

    Krakowetz, Chantel N; Chilton, Neil B

    2015-02-01

    The complete DNA sequences and secondary structure of the mitochondrial (mt) 16S ribosomal (r) RNA gene were determined for six Ixodes scapularis adults. There were 44 variable nucleotide positions in the 1252 bp sequence alignment. Most (95%) nucleotide alterations did not affect the integrity of the secondary structure of the gene because they either occurred at unpaired positions or represented compensatory changes that maintained the base pairing in helices. A large proportion (75%) of the intraspecific variation in DNA sequence occurred within Domains I, II and VI of the 16S gene. Therefore, several regions within this gene may be highly informative for studies of the population genetics and phylogeography of I. scapularis, a major vector of pathogens of humans and domestic animals in North America.

  16. The complete mitochondrial genome sequence of Southwellina hispida supports monophyly of Palaeacanthocephala (Acanthocephala: Polymorphida).

    PubMed

    Gazi, Mohiuddin; Kim, Jiyeon; Park, Joong-Ki

    2015-08-01

    Acanthocephala is a relatively small, but distinct obligate parasitic group that includes 4 classes: Archiacanthocephala, Palaeacanthocephala, Polyacanthocephala, and Eoacanthocephala. The phylogenetic relationships of acanthocephalans are mainly based on nuclear ribosomal genes. In this study, we determined the complete mitochondrial genome sequence of Southwellina hispida (Palaeacanthocephala: Polymorphida), and used this genome sequence along with other platyzoan species (including syndermatan groups) to assess its phylogenetic position within Acanthocephala. The S. hispida mtDNA is a 14,742 bp circular molecule that contains 36 genes (lacking atp8) encoded in the same direction. Phylogenetic analyses of amino acid sequences for 12 protein-coding genes suggested palaeacanthocephalan species to be monophyletic, and this group to be sister to Eoacanthocephala. These results confirm other morphological and molecular data supporting palaeacanthocephalan monophyly.

  17. mit-o-matic: a comprehensive computational pipeline for clinical evaluation of mitochondrial variations from next-generation sequencing datasets.

    PubMed

    Vellarikkal, Shamsudheen Karuthedath; Dhiman, Heena; Joshi, Kandarp; Hasija, Yasha; Sivasubbu, Sridhar; Scaria, Vinod

    2015-04-01

    The human mitochondrial genome has been reported to have a very high mutation rate as compared with the nuclear genome. A large number of mitochondrial mutations show significant phenotypic association and are involved in a broad spectrum of diseases. In recent years, there has been a remarkable progress in the understanding of mitochondrial genetics. The availability of next-generation sequencing (NGS) technologies have not only reduced sequencing cost by orders of magnitude but has also provided us good quality mitochondrial genome sequences with high coverage, thereby enabling decoding of a number of human mitochondrial diseases. In this study, we report a computational and experimental pipeline to decipher the human mitochondrial DNA variations and examine them for their clinical correlation. As a proof of principle, we also present a clinical study of a patient with Leigh disease and confirmed maternal inheritance of the causative allele. The pipeline is made available as a user-friendly online tool to annotate variants and find haplogroup, disease association, and heteroplasmic sites. The "mit-o-matic" computational pipeline represents a comprehensive cloud-based tool for clinical evaluation of mitochondrial genomic variations from NGS datasets. The tool is freely available at http://genome.igib.res.in/mitomatic/.

  18. A functional test of Neandertal and modern human mitochondrial targeting sequences

    SciTech Connect

    Gralle, Matthias; Schaefer, Ingo; Seibel, Peter; Paeaebo, Svante

    2010-11-26

    Research highlights: {yields} Two mutations in mitochondrial targeting peptides occurred during human evolution, possibly after Neandertals split off from modern human lineage. {yields} The ancestral and modern human versions of these two targeting peptides were tested functionally for their effects on localization and cleavage rate. {yields} In spite of recent evolution, and to the contrary of other mutations in targeting peptides, these mutations had no visible effects. -- Abstract: Targeting of nuclear-encoded proteins to different organelles, such as mitochondria, is a process that can result in the redeployment of proteins to new intracellular destinations during evolution. With the sequencing of the Neandertal genome, it has become possible to identify amino acid substitutions that occurred on the modern human lineage since its separation from the Neandertal lineage. Here we analyze the function of two substitutions in mitochondrial targeting sequences that occurred and rose to high frequency recently during recent human evolution. The ancestral and modern versions of the two targeting sequences do not differ in the efficiency with which they direct a protein to the mitochondria, an observation compatible with the neutral theory of molecular evolution.

  19. The Origins of African Plasmodium vivax; Insights from Mitochondrial Genome Sequencing

    PubMed Central

    Culleton, Richard; Coban, Cevayir; Zeyrek, Fadile Yildiz; Cravo, Pedro; Kaneko, Akira; Randrianarivelojosia, Milijaona; Andrianaranjaka, Voahangy; Kano, Shigeyuki; Farnert, Anna; Arez, Ana Paula; Sharp, Paul M.; Carter, Richard; Tanabe, Kazuyuki

    2011-01-01

    Plasmodium vivax, the second most prevalent of the human malaria parasites, is estimated to affect 75 million people annually. It is very rare, however, in west and central Africa, due to the high prevalence of the Duffy negative phenotype in the human population. Due to its rarity in Africa, previous studies on the phylogeny of world-wide P. vivax have suffered from insufficient samples of African parasites. Here we compare the mitochondrial sequence diversity of parasites from Africa with those from other areas of the world, in order to investigate the origin of present-day African P. vivax. Mitochondrial genome sequencing revealed relatively little polymorphism within the African population compared to parasites from the rest of the world. This, combined with sequence similarity with parasites from India, suggests that the present day African P. vivax population in humans may have been introduced relatively recently from the Indian subcontinent. Haplotype network analysis also raises the possibility that parasites currently found in Africa and South America may be the closest extant relatives of the ancestors of the current world population. Lines of evidence are adduced that this ancestral population may be from an ancient stock of P. vivax in Africa. PMID:22195007

  20. Tracking the origins of the cave bear (Ursus spelaeus) by mitochondrial DNA sequencing.

    PubMed Central

    Hänni, C; Laudet, V; Stehelin, D; Taberlet, P

    1994-01-01

    The different European populations of Ursus arctos, the brown bear, were recently studied for mitochondrial DNA polymorphism. Two clearly distinct lineages (eastern and western) were found, which may have diverged approximately 850,000 years ago. In this context, it was interesting to study the cave bear, Ursus spelaeus, a species which became extinct 20,000 years ago. In this study, we have amplified and sequenced a fragment of 139-bp in the mitochondrial DNA control region of a 40,000-year-old specimen of U. spelaeus. Phylogenetic reconstructions using this sequence and the European brown bear sequences already published suggest that U. spelaeus diverged from an early offshoot of U. arctos--i.e., approximately at the same time as the divergence of the two main lineages of U. arctos. This divergence probably took place at the earliest glaciation, likely due to geographic separation during the earlier Quaternary cold periods. This result is in agreement with the paleontological data available and suggests a good correspondence between molecular and morphological data. Images PMID:7991628

  1. Mitochondrial DNA heteroplasmy in the emerging field of massively parallel sequencing.

    PubMed

    Just, Rebecca S; Irwin, Jodi A; Parson, Walther

    2015-09-01

    Long an important and useful tool in forensic genetic investigations, mitochondrial DNA (mtDNA) typing continues to mature. Research in the last few years has demonstrated both that data from the entire molecule will have practical benefits in forensic DNA casework, and that massively parallel sequencing (MPS) methods will make full mitochondrial genome (mtGenome) sequencing of forensic specimens feasible and cost-effective. A spate of recent studies has employed these new technologies to assess intraindividual mtDNA variation. However, in several instances, contamination and other sources of mixed mtDNA data have been erroneously identified as heteroplasmy. Well vetted mtGenome datasets based on both Sanger and MPS sequences have found authentic point heteroplasmy in approximately 25% of individuals when minor component detection thresholds are in the range of 10-20%, along with positional distribution patterns in the coding region that differ from patterns of point heteroplasmy in the well-studied control region. A few recent studies that examined very low-level heteroplasmy are concordant with these observations when the data are examined at a common level of resolution. In this review we provide an overview of considerations related to the use of MPS technologies to detect mtDNA heteroplasmy. In addition, we examine published reports on point heteroplasmy to characterize features of the data that will assist in the evaluation of future mtGenome data developed by any typing method. PMID:26009256

  2. Mitochondrial DNA heteroplasmy in the emerging field of massively parallel sequencing

    PubMed Central

    Just, Rebecca S.; Irwin, Jodi A.; Parson, Walther

    2015-01-01

    Long an important and useful tool in forensic genetic investigations, mitochondrial DNA (mtDNA) typing continues to mature. Research in the last few years has demonstrated both that data from the entire molecule will have practical benefits in forensic DNA casework, and that massively parallel sequencing (MPS) methods will make full mitochondrial genome (mtGenome) sequencing of forensic specimens feasible and cost-effective. A spate of recent studies has employed these new technologies to assess intraindividual mtDNA variation. However, in several instances, contamination and other sources of mixed mtDNA data have been erroneously identified as heteroplasmy. Well vetted mtGenome datasets based on both Sanger and MPS sequences have found authentic point heteroplasmy in approximately 25% of individuals when minor component detection thresholds are in the range of 10–20%, along with positional distribution patterns in the coding region that differ from patterns of point heteroplasmy in the well-studied control region. A few recent studies that examined very low-level heteroplasmy are concordant with these observations when the data are examined at a common level of resolution. In this review we provide an overview of considerations related to the use of MPS technologies to detect mtDNA heteroplasmy. In addition, we examine published reports on point heteroplasmy to characterize features of the data that will assist in the evaluation of future mtGenome data developed by any typing method. PMID:26009256

  3. Complete Sequence and Analysis of Coconut Palm (Cocos nucifera) Mitochondrial Genome

    PubMed Central

    Zhao, Yuhui; Zeng, Jingyao; Alamer, Ali; Alanazi, Ibrahim O.; Alawad, Abdullah O.; Al-Sadi, Abdullah M.; Hu, Songnian; Yu, Jun

    2016-01-01

    Coconut (Cocos nucifera L.), a member of the palm family (Arecaceae), is one of the most economically important crops in tropics, serving as an important source of food, drink, fuel, medicine, and construction material. Here we report an assembly of the coconut (C. nucifera, Oman local Tall cultivar) mitochondrial (mt) genome based on next-generation sequencing data. This genome, 678,653bp in length and 45.5% in GC content, encodes 72 proteins, 9 pseudogenes, 23 tRNAs, and 3 ribosomal RNAs. Within the assembly, we find that the chloroplast (cp) derived regions account for 5.07% of the total assembly length, including 13 proteins, 2 pseudogenes, and 11 tRNAs. The mt genome has a relatively large fraction of repeat content (17.26%), including both forward (tandem) and inverted (palindromic) repeats. Sequence variation analysis shows that the Ti/Tv ratio of the mt genome is lower as compared to that of the nuclear genome and neutral expectation. By combining public RNA-Seq data for coconut, we identify 734 RNA editing sites supported by at least two datasets. In summary, our data provides the second complete mt genome sequence in the family Arecaceae, essential for further investigations on mitochondrial biology of seed plants. PMID:27736909

  4. The sequences of the coenzyme-binding peptide in the cytoplasmic and the mitochondrial aspartate aminotransferases from sheep liver.

    PubMed Central

    Campos-Cavieres, M; Milstein, C P

    1975-01-01

    The sequences of the coenzyme-binding peptide of both cytoplasmic and mitochondrial aspartate aminotransferases from sheep liver were determined. The holoenzymes were treated with NaBH4 and digested with chymotrypsin; peptides containing bound pyridoxal phosphate were then isolated. One phosphopyridoxyl peptide was obtained from sheep liver cytoplasmic aspartate aminotransferase. Its sequence was Ser-Ne-(phosphopyridoxyl)-Lys-Asn-Phe. This sequence is identical with that reported for the homologous peptide from pig heart cytoplasmic aspartate aminotransferase. Two phosphopyridoxyl peptides with different RF values were isolated from the sheep liver mitochondrial isoenzyme. They had the same N-terminal amino acid and similar amino acid composition. The mitochondrial phosphopyridoxyl peptide of highest yield and purity had the sequence Ala-Ne-(phosphopyridoxyl)-Lys-Asx-Met-Gly-Leu-Tyr. The sequence of the first four amino acids is identical with that already reported for the phosphopyridoxyl tetrapeptide from the pig heart mitochondrial isoenzyme. The heptapeptide found for the sheep liver mitochondrial isoenzyme closely resembles the corresponding sequence taken from the primary structure of the pig heart cytoplasmic aspartate aminotransferase. PMID:1180894

  5. The complete sequence and gene organization of the mitochondrial genome of the gadilid scaphopod Siphonondentalium lobatum (Mollusca).

    PubMed

    Dreyer, Hermann; Steiner, Gerhard

    2004-05-01

    Comparisons of mitochondrial gene sequences and gene arrangements can be informative for reconstructing high-level phylogenetic relationships. We determined the complete sequence of the mitochondrial genome of Siphonodentalium lobatum, (Mollusca, Scaphopoda). With only 13,932 bases, it is the shortest molluscan mitochondrial genome reported so far. The genome contains the usual 13 protein-coding genes, two rRNA and 22 tRNA genes. The ATPase subunit 8 gene is exceptionally short. Several transfer RNAs show truncated TpsiC arms or DHU arms. The gene arrangement of S. lobatum is markedly different from all other known molluscan mitochondrial genomes and shows low similarity even to an unpublished gene order of a dentaliid scaphopod. Phylogenetic analyses of all available complete molluscan mitochondrial genomes based on amino acid sequences of 11 protein-coding genes yield trees with low support for the basal branches. None of the traditionally accepted molluscan taxa and phylogenies are recovered in all analyses, except for the euthyneuran Gastropoda. S. lobatum appears as the sister taxon to two of the three bivalve species. We conclude that the deep molluscan phylogeny is probably beyond the resolution of mitochondrial protein sequences. Moreover, assessing the phylogenetic signal in gene order data requires a much larger taxon sample than is currently available, given the exceptional diversity of this character set in the Mollusca.

  6. Multiple origins of advanced eusociality in bees inferred from mitochondrial DNA sequences.

    PubMed

    Cameron, S A

    1993-09-15

    The remarkably high level of colony organization found in the honey bees and stingless bees (family Apidae) is extremely rare among animals. Yet there is controversy over whether these two groups independently evolved advanced eusocial behavior or inherited it from a common ancestor. Phylogenetic analyses of DNA sequence information from the mitochondrial genome (large-subunit ribosomal RNA gene) of representative apid bees suggest that advanced eusocial behavior evolved twice independently within this assemblage. These results depart from previous hypotheses of apid relationships by indicating a close phylogenetic relationship between the primitively eusocial bumble bees and the stingless bees.

  7. Variations of mitochondrial DNA sequence in three breeds of rabbit (Oryctolagus cuniculus).

    PubMed

    Terrance, Diamond G C; Thangamani, A; Srivastava, Varsha

    2007-07-01

    Sequencing of the 300 bp region of the mitochondrial cytochrome b gene was done. Genetic analysis was carried out for the first time in three exotic breeds (Giant White, Soviet Chinchilla, and German Angora) of European rabbit (Oryctolagus cuniculus) to determine intra- and interspecific variability and to measure the genetic distance. The frequencies of types of mutations (transition, transversion, deletion, and insertion) were also determined. This study throws light on matrilineage of breeds that arise due to interbreed crosses and the genetic management of a stocked rabbit breeding population. PMID:17630855

  8. Complete mitochondrial genome sequence of the longsnout seahorse Hippocampus reidi (Ginsburg, 1933; Gasterosteiformes: Syngnathidae).

    PubMed

    Wang, Xin; Zhang, Yanhong; Zhang, Huixian; Meng, Tan; Lin, Qiang

    2016-01-01

    The complete mitochondrial genome sequence of the longsnout seahorse Hippocampus reidi was fisrt determined in this article. The total length of H. reidi mitogenome is 16,529 bp and consists of 13 protein-coding genes, 2 rRNA genes, 22 tRNA genes and 1 control region. The gene order and composition of H. reidi were similar to those of most other vertebrates. The overall base composition of H. reidi is 32.47% A, 29.41% T, 14.75% G and 23.37% C, with a slight A + T rich feature (61.88%).

  9. Phylogenetic analysis of oryx species using partial sequences of mitochondrial rRNA genes.

    PubMed

    Khan, H A; Arif, I A; Al Farhan, A H; Al Homaidan, A A

    2008-01-01

    We conducted a comparative evaluation of 12S rRNA and 16S rRNA genes of the mitochondrial genome for molecular differentiation among three oryx species (Oryx leucoryx, Oryx dammah and Oryx gazella) with respect to two closely related outgroups, addax and roan. Our findings showed the failure of 12S rRNA gene to differentiate between the genus Oryx and addax, whereas a 342-bp partial sequence of 16S rRNA accurately grouped all five taxa studied, suggesting the utility of 16S rRNA segment for molecular phylogeny of oryx at the genus and possibly species levels. PMID:19048493

  10. Population genetic structure and historical demography of Oratosquilla oratoria revealed by mitochondrial DNA sequences.

    PubMed

    Zhang, D; Ding, Ge; Ge, B; Zhang, H; Tang, B

    2012-12-01

    Genetic diversity, population genetic structure and molecular phylogeographic pattern of mantis shrimp Oratosquilla oratoria in Bohai Sea and South China Sea were analyzed by mitochondrial DNA sequences. Nucleotide and haplotype diversities were 0.00409-0.00669 and 0.894-0.953 respectively. Neighbor-Joining phylogenetic tree clustered two distinct lineages. Both phylogenetic tree and median-joining network showed the consistent genetic structure corresponding to geographical distribution. Mismatch distributions, negative neutral test and "star-like" network supported a sudden population expansion event. And the time was estimated about 44000 and 50000 years ago. PMID:23516902

  11. Carboxyl-terminal sequences influence the import of mitochondrial protein precursors in vivo

    SciTech Connect

    Ness, S.A.; Weiss, R.L.

    1987-10-01

    The large subunit of carbamoyl phosphate synthase A from Neurospora crassa is encoded by a nuclear gene but is localized in the mitochondrial matrix. The authors have utilized N. crassa strains that produce both normal and carboxyl-terminal-truncated forms of carbamoyl phosphate synthase A to ask whether the carboxyl terminus affects import of the carbamoyl phosphate synthase A precursor. They found that carboxyl-terminal-truncated precursors were directed to mitochondria but that they were imported less efficiently than full-length proteins that were synthesized in the same cytoplasm. The results suggest that effective import of proteins into mitochondria requires appropriate combinations of targeting sequences and three-dimensional structure.

  12. Population genetic structure and historical demography of Oratosquilla oratoria revealed by mitochondrial DNA sequences.

    PubMed

    Zhang, D; Ding, Ge; Ge, B; Zhang, H; Tang, B

    2012-12-01

    Genetic diversity, population genetic structure and molecular phylogeographic pattern of mantis shrimp Oratosquilla oratoria in Bohai Sea and South China Sea were analyzed by mitochondrial DNA sequences. Nucleotide and haplotype diversities were 0.00409-0.00669 and 0.894-0.953 respectively. Neighbor-Joining phylogenetic tree clustered two distinct lineages. Both phylogenetic tree and median-joining network showed the consistent genetic structure corresponding to geographical distribution. Mismatch distributions, negative neutral test and "star-like" network supported a sudden population expansion event. And the time was estimated about 44000 and 50000 years ago.

  13. Large sequence divergence among mitochondrial DNA genotypes within populations of eastern African black-backed jackals.

    PubMed

    Wayne, R K; Meyer, A; Lehman, N; Van Valkenburgh, B; Kat, P W; Fuller, T K; Girman, D; O'Brien, S J

    1990-03-01

    In discussions about the relative rate of molecular evolution, intraspecific variability in rate is rarely considered. An underlying assumption is that intraspecific sequence differences are small, and thus variations in rate would be difficult to detect or would not affect comparisons among distantly related taxa. However, several studies on mammalian mitochondrial DNA (mtDNA) have revealed considerable intraspecific sequence divergence. In this report, we test for differences in the rate of intraspecific evolution by comparing mtDNA sequences, as inferred from restriction site polymorphisms and direct sequencing, between mtDNA genotypes of the eastern African black-backed jackal, Canis mesomelas elongae, and those of two other sympatric jackal species. Our results are unusual for several reasons. First, mtDNA sequence divergence within several contiguous black-backed jackal populations is large (8.0%). Previous intraspecific studies of terrestrial mammals have generally found values of less than 5% within a single population, with larger divergence values most often occurring among mtDNA genotypes from geographically distant or isolated localities. Second, only 4 mtDNA genotypes were present in our sample of 64 jackals. The large sequence divergence observed among these mtDNA genotypes suggests there should be many more genotypes of intermediate sequence divergence if they had evolved in sympatry. Finally, estimates of the rate of mtDNA sequence evolution differ by approximately 2- to 4-fold among black-backed jackal mtDNA genotypes, thus indicating a substantial heterogeneity in the rate of sequence evolution. The results are difficult to reconcile with ideas of a constant molecular clock based on random fixation of selectively neutral or nearly neutral mtDNA sequence mutations.

  14. Complete Sequence of the Mitochondrial DNA of the Annelid Worm Lumbricus Terrestris

    PubMed Central

    Boore, J. L.; Brown, W. M.

    1995-01-01

    We have determined the complete nucleotide (nt) sequence of the mitochondrial genome of an oligochaete annelid, the earthworm Lumbricus terrestris. This genome contains the 37 genes typical of metazoan mitochondrial DNA (mtDNA), including ATPase8, which is missing from some invertebrate mtDNAs. ATPase8 is not immediately upstream of ATPase6, a condition found previously only in the mtDNA of snails. All genes are transcribed from the same DNA strand. The largest noncoding region is 384 nt and is characterized by several homopolymer runs, a tract of alternating TA pairs, and potential secondary structures. All protein-encoding genes either overlap the adjacent downstream gene or end at an abbreviated stop codon. In Lumbricus mitochondria, the variation of the genetic code that is typical of most invertebrate mitochondrial genomes is used. Only the codon ATG is used for translation initiation. Lumbricus mtDNA is A + T rich, which appears to affect the codon usage pattern. The DHU arm appears to be unpaired not only in tRNA(ser(AGN)), as is typical for metazoans, but perhaps also in tRNA(ser(UCN)), a condition found previously only in a chiton and among nematodes. Relating the Lumbricus gene organization to those of other major protostome groups requires numerous rearrangements. PMID:8536978

  15. Underlying Data for Sequencing the Mitochondrial Genome with the Massively Parallel Sequencing Platform Ion Torrent™ PGM™

    PubMed Central

    2015-01-01

    Background Massively parallel sequencing (MPS) technologies have the capacity to sequence targeted regions or whole genomes of multiple nucleic acid samples with high coverage by sequencing millions of DNA fragments simultaneously. Compared with Sanger sequencing, MPS also can reduce labor and cost on a per nucleotide basis and indeed on a per sample basis. In this study, whole genomes of human mitochondria (mtGenome) were sequenced on the Personal Genome Machine (PGMTM) (Life Technologies, San Francisco, CA), the out data were assessed, and the results were compared with data previously generated on the MiSeqTM (Illumina, San Diego, CA). The objectives of this paper were to determine the feasibility, accuracy, and reliability of sequence data obtained from the PGM. Results 24 samples were multiplexed (in groups of six) and sequenced on the at least 10 megabase throughput 314 chip. The depth of coverage pattern was similar among all 24 samples; however the coverage across the genome varied. For strand bias, the average ratio of coverage between the forward and reverse strands at each nucleotide position indicated that two-thirds of the positions of the genome had ratios that were greater than 0.5. A few sites had more extreme strand bias. Another observation was that 156 positions had a false deletion rate greater than 0.15 in one or more individuals. There were 31-98 (SNP) mtGenome variants observed per sample for the 24 samples analyzed. The total 1237 (SNP) variants were concordant between the results from the PGM and MiSeq. The quality scores for haplogroup assignment for all 24 samples ranged between 88.8%-100%. Conclusions In this study, mtDNA sequence data generated from the PGM were analyzed and the output evaluated. Depth of coverage variation and strand bias were identified but generally were infrequent and did not impact reliability of variant calls. Multiplexing of samples was demonstrated which can improve throughput and reduce cost per sample analyzed

  16. Sequencing the hypervariable regions of human mitochondrial DNA using massively parallel sequencing: Enhanced data acquisition for DNA samples encountered in forensic testing.

    PubMed

    Davis, Carey; Peters, Dixie; Warshauer, David; King, Jonathan; Budowle, Bruce

    2015-03-01

    Mitochondrial DNA testing is a useful tool in the analysis of forensic biological evidence. In cases where nuclear DNA is damaged or limited in quantity, the higher copy number of mitochondrial genomes available in a sample can provide information about the source of a sample. Currently, Sanger-type sequencing (STS) is the primary method to develop mitochondrial DNA profiles. This method is laborious and time consuming. Massively parallel sequencing (MPS) can increase the amount of information obtained from mitochondrial DNA samples while improving turnaround time by decreasing the numbers of manipulations and more so by exploiting high throughput analyses to obtain interpretable results. In this study 18 buccal swabs, three different tissue samples from five individuals, and four bones samples from casework were sequenced at hypervariable regions I and II using STS and MPS. Sample enrichment for STS and MPS was PCR-based. Library preparation for MPS was performed using Nextera® XT DNA Sample Preparation Kit and sequencing was performed on the MiSeq™ (Illumina, Inc.). MPS yielded full concordance of base calls with STS results, and the newer methodology was able to resolve length heteroplasmy in homopolymeric regions. This study demonstrates short amplicon MPS of mitochondrial DNA is feasible, can provide information not possible with STS, and lays the groundwork for development of a whole genome sequencing strategy for degraded samples.

  17. Repetitive sequences in Eurasian lynx (Lynx lynx L.) mitochondrial DNA control region.

    PubMed

    Sindičić, Magda; Gomerčić, Tomislav; Galov, Ana; Polanc, Primož; Huber, Duro; Slavica, Alen

    2012-06-01

    Mitochondrial DNA (mtDNA) control region (CR) of numerous species is known to include up to five different repetitive sequences (RS1-RS5) that are found at various locations, involving motifs of different length and extensive length heteroplasmy. Two repetitive sequences (RS2 and RS3) on opposite sides of mtDNA central conserved region have been described in domestic cat (Felis catus) and some other felid species. However, the presence of repetitive sequence RS3 has not been detected in Eurasian lynx (Lynx lynx) yet. We analyzed mtDNA CR of 35 Eurasian lynx (L. lynx L.) samples to characterize repetitive sequences and to compare them with those found in other felid species. We confirmed the presence of 80 base pairs (bp) repetitive sequence (RS2) at the 5' end of the Eurasian lynx mtDNA CR L strand and for the first time we described RS3 repetitive sequence at its 3' end, consisting of an array of tandem repeats five to ten bp long. We found that felid species share similar RS3 repetitive pattern and fundamental repeat motif TACAC.

  18. Collection of mitochondrial cytochrome oxidase I gene sequences from Rhipicephalus ticks from various geographic locations around the world

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Determining the origin of the cattle tick, Rhipicephalus microplus, will be helpful to the effort to find biological control agents. Molecular phylogenetics can assist in this determination. Thus, we sequenced and assembled partial gene sequences from the mitochondrial cytochrome oxidase I coding r...

  19. Mitochondrial DNA Sequence and Lack of Response to Anoxia in the Annual Killifish Austrofundulus limnaeus

    PubMed Central

    Wagner, Josiah T.; Herrejon Chavez, Florisela; Podrabsky, Jason E.

    2016-01-01

    The annual killifish Austrofundulus limnaeus inhabits ephemeral ponds in regions of Venezuela, South America. Permanent populations of A. limnaeus are maintained by production of stress-tolerant embryos that are able to persist in the desiccated sediment. Previous work has demonstrated that A. limnaeus have a remarkable ability to tolerate extended periods of anoxia and desiccating conditions. After considering temperature, A. limnaeus embryos have the highest known tolerance to anoxia when compared to any other vertebrate yet studied. Oxygen is completely essential for the process of oxidative phosphorylation by mitochondria, the intracellular organelle responsible for the majority of adenosine triphosphate production. Thus, understanding the unique properties of A. limnaeus mitochondria is of great interest. In this work, we describe the first complete mitochondrial genome (mtgenome) sequence of a single adult A. limnaeus individual and compare both coding and non-coding regions to several other closely related fish mtgenomes. Mitochondrial features were predicted using MitoAnnotator and polyadenylation sites were predicted using RNAseq mapping. To estimate the responsiveness of A. limnaeus mitochondria to anoxia treatment, we measure relative mitochondrial DNA copy number and total citrate synthase activity in both relatively anoxia-tolerant and anoxia-sensitive embryonic stages. Our cross-species comparative approach identifies unique features of ND1, ND5, ND6, and ATPase-6 that may facilitate the unique phenotype of A. limnaeus embryos. Additionally, we do not find evidence for mitochondrial degradation or biogenesis during anoxia/reoxygenation treatment in A. limnaeus embryos, suggesting that anoxia-tolerant mitochondria do not respond to anoxia in a manner similar to anoxia-sensitive mitochondria.

  20. Mitochondrial DNA Sequence and Lack of Response to Anoxia in the Annual Killifish Austrofundulus limnaeus

    PubMed Central

    Wagner, Josiah T.; Herrejon Chavez, Florisela; Podrabsky, Jason E.

    2016-01-01

    The annual killifish Austrofundulus limnaeus inhabits ephemeral ponds in regions of Venezuela, South America. Permanent populations of A. limnaeus are maintained by production of stress-tolerant embryos that are able to persist in the desiccated sediment. Previous work has demonstrated that A. limnaeus have a remarkable ability to tolerate extended periods of anoxia and desiccating conditions. After considering temperature, A. limnaeus embryos have the highest known tolerance to anoxia when compared to any other vertebrate yet studied. Oxygen is completely essential for the process of oxidative phosphorylation by mitochondria, the intracellular organelle responsible for the majority of adenosine triphosphate production. Thus, understanding the unique properties of A. limnaeus mitochondria is of great interest. In this work, we describe the first complete mitochondrial genome (mtgenome) sequence of a single adult A. limnaeus individual and compare both coding and non-coding regions to several other closely related fish mtgenomes. Mitochondrial features were predicted using MitoAnnotator and polyadenylation sites were predicted using RNAseq mapping. To estimate the responsiveness of A. limnaeus mitochondria to anoxia treatment, we measure relative mitochondrial DNA copy number and total citrate synthase activity in both relatively anoxia-tolerant and anoxia-sensitive embryonic stages. Our cross-species comparative approach identifies unique features of ND1, ND5, ND6, and ATPase-6 that may facilitate the unique phenotype of A. limnaeus embryos. Additionally, we do not find evidence for mitochondrial degradation or biogenesis during anoxia/reoxygenation treatment in A. limnaeus embryos, suggesting that anoxia-tolerant mitochondria do not respond to anoxia in a manner similar to anoxia-sensitive mitochondria. PMID:27630577

  1. Mitochondrial DNA Sequence and Lack of Response to Anoxia in the Annual Killifish Austrofundulus limnaeus.

    PubMed

    Wagner, Josiah T; Herrejon Chavez, Florisela; Podrabsky, Jason E

    2016-01-01

    The annual killifish Austrofundulus limnaeus inhabits ephemeral ponds in regions of Venezuela, South America. Permanent populations of A. limnaeus are maintained by production of stress-tolerant embryos that are able to persist in the desiccated sediment. Previous work has demonstrated that A. limnaeus have a remarkable ability to tolerate extended periods of anoxia and desiccating conditions. After considering temperature, A. limnaeus embryos have the highest known tolerance to anoxia when compared to any other vertebrate yet studied. Oxygen is completely essential for the process of oxidative phosphorylation by mitochondria, the intracellular organelle responsible for the majority of adenosine triphosphate production. Thus, understanding the unique properties of A. limnaeus mitochondria is of great interest. In this work, we describe the first complete mitochondrial genome (mtgenome) sequence of a single adult A. limnaeus individual and compare both coding and non-coding regions to several other closely related fish mtgenomes. Mitochondrial features were predicted using MitoAnnotator and polyadenylation sites were predicted using RNAseq mapping. To estimate the responsiveness of A. limnaeus mitochondria to anoxia treatment, we measure relative mitochondrial DNA copy number and total citrate synthase activity in both relatively anoxia-tolerant and anoxia-sensitive embryonic stages. Our cross-species comparative approach identifies unique features of ND1, ND5, ND6, and ATPase-6 that may facilitate the unique phenotype of A. limnaeus embryos. Additionally, we do not find evidence for mitochondrial degradation or biogenesis during anoxia/reoxygenation treatment in A. limnaeus embryos, suggesting that anoxia-tolerant mitochondria do not respond to anoxia in a manner similar to anoxia-sensitive mitochondria. PMID:27630577

  2. Phylogenetic relationships among onychophora from Australasia inferred from the mitochondrial cytochrome oxidase subunit I gene.

    PubMed

    Gleeson, D M; Rowell, D M; Tait, N N; Briscoe, D A; Higgins, A V

    1998-10-01

    Nucleotide sequence variation in a region of the mitochondrial cytochrome oxidase subunit I (COI) gene (456 bp) was examined for 26 onychophorans representing 15 genera of the family Peripatopsidae from Australasia. Sequence analysis revealed high intergeneric COI sequence divergence (up to 20.6% corrected) but low amino acid substitution rates, with high levels of transitional saturation evident. Among unambiguously alignable sequences, parsimony and distance analyses revealed a broadly congruent tree topology, robust to various algorithms and statistical analysis. There are two major groupings. One, largely unresolved, consists entirely of Australian mainland taxa. The other, for which there is convincing support, includes all of the New Zealand and Tasmanian taxa together with one mainland Australian species. In respect of the two major groupings, this topology is consistent with previous morphologically based phylogenies and provides further evidence for an ancient radiation within the mainland Australian Onychophora. The biogeographic implications of the close affinities revealed between the Tasmanian and New Zealand taxa are discussed.

  3. DNA barcoding of Oryx leucoryx using the mitochondrial cytochrome C oxidase gene.

    PubMed

    Elmeer, K; Almalki, A; Mohran, K A; Al-Qahtani, K N; Almarri, M

    2012-01-01

    The massive destruction and deterioration of the habitat of Oryx leucoryx and illegal hunting have decimated Oryx populations significantly, and now these animals are almost extinct in the wild. Molecular analyses can significantly contribute to captive breeding and reintroduction strategies for the conservation of this endangered animal. A representative 32 identical sequences used for species identification through BOLD and GenBank/NCBI showed maximum homology 96.06% with O. dammah, which is a species of Oryx from Northern Africa, the next closest species 94.33% was O. gazella, the African antelope. DNA barcode sequences of the mitochondrial cytochrome C oxidase (COI) gene were determined for O. leucoryx; identification through BOLD could only recognize the genus correctly, whereas the species could not be identified. This was due to a lack of sequence data for O. leucoryx on BOLD. Similarly, BLAST analysis of the NCBI data base also revealed no COI sequence data for the genus Oryx. PMID:22535389

  4. Phylogenetic relationships among amphisbaenian reptiles based on complete mitochondrial genomic sequences.

    PubMed

    Macey, J Robert; Papenfuss, Theodore J; Kuehl, Jennifer V; Fourcade, H Mathew; Boore, Jeffrey L

    2004-10-01

    Complete mitochondrial genomic sequences are reported from 12 members in the four families of the reptile group Amphisbaenia. Analysis of 11,946 aligned nucleotide positions (5797 informative) produces a robust phylogenetic hypothesis. The family Rhineuridae is basal and Bipedidae is the sister taxon to the Amphisbaenidae plus Trogonophidae. Amphisbaenian reptiles are surprisingly old, predating the breakup of Pangaea 200 million years before present, because successive basal taxa (Rhineuridae and Bipedidae) are situated in tectonic regions of Laurasia and nested taxa (Amphisbaenidae and Trogonophidae) are found in Gondwanan regions. Thorough sampling within the Bipedidae shows that it is not tectonic movement of Baja California away from the Mexican mainland that is primary in isolating Bipes species, but rather that primary vicariance occurred between northern and southern groups. Amphisbaenian families show parallel reduction in number of limbs and Bipes species exhibit parallel reduction in number of digits. A measure is developed for comparing the phylogenetic information content of various genes. A synapomorphic trait defining the Bipedidae is a shift from the typical vertebrate mitochondrial gene arrangement to the derived state of trnE and nad6. In addition, a tandem duplication of trnT and trnP is observed in Bipes biporus with a pattern of pseudogene formation that varies among populations. The first case of convergent rearrangement of the mitochondrial genome among animals demonstrated by complete genomic sequences is reported. Relative to most vertebrates, the Rhineuridae has the block nad6, trnE switched in order with the block cob, trnT, trnP, as they are in birds.

  5. Phylogenetic relationships among amphisbaenian reptiles based on complete mitochondrial genomic sequences

    SciTech Connect

    Macey, J. Robert; Papenfuss, Theodore J.; Kuehl, Jennifer V.; Fourcade, H. Matthew; Boore, Jeffrey L.

    2004-05-19

    Complete mitochondrial genomic sequences are reported from 12 members in the four families of the reptile group Amphisbaenia. Analysis of 11,946 aligned nucleotide positions (5,797 informative) produces a robust phylogenetic hypothesis. The family Rhineuridae is basal and Bipedidae is the sister taxon to the Amphisbaenidae plus Trogonophidae. Amphisbaenian reptiles are surprisingly old, predating the breakup of Pangaea 200 million years before present, because successive basal taxa (Rhineuridae and Bipedidae) are situated in tectonic regions of Laurasia and nested taxa (Amphisbaenidae and Trogonophidae) are found in Gondwanan regions. Thorough sampling within the Bipedidae shows that it is not tectonic movement of Baja California away from the Mexican mainland that is primary in isolating Bipes species, but rather that primary vicariance occurred between northern and southern groups. Amphisbaenian families show parallel reduction in number of limbs and Bipes species exhibit parallel reduction in number of digits. A measure is developed for comparing the phylogenetic information content of various genes. A synapomorphic trait defining the Bipedidae is a shift from the typical vertebrate mitochondrial gene arrangement to the derived state of trnE and nad6. In addition, a tandem duplication of trnT and trnP is observed in B. biporus with a pattern of pseudogene formation that varies among populations. The first case of convergent rearrangement of the mitochondrial genome among animals demonstrated by complete genomic sequences is reported. Relative to most vertebrates, the Rhineuridae has the block nad6, trnE switched in order with cob, trnT, trnP, as they are in birds.

  6. Phylogenetic Relationships among Asian species of Petaurista (Rodentia, Sciuridae), Inferred from Mitochondrial Cytochrome b Gene Sequences.

    PubMed

    Oshida, T; Lin, L K; Masuda, R; Yoshida, M C

    2000-01-01

    To elucidate the phylogenetic relationships among four species belonging to the genus Petaurista (P. alborufus castaneus, P. alborufus lena, P. leucogenys leucogenys, P. leucogenys nikkonis, P. petaurista melanotus, and P. philippensis grandis), we investigated the partial sequences (1,068 bp) of the mitochondrial cytochrome b gene for these giant flying squirrels. Phylogenetic trees (NJ, MP, and ML trees) constructed from cytochrome b sequences indicated that P. leucogenys was grouped independently with other species, and that P. philippensis was most closely related to P. petaurista with 99-100% bootstrap values. In addition, two subspecies of P. alborufus did not form a single clade: P. alborufus castaneus from China was most distantly related to the other species, whereas P. alborufus lena from Taiwan was closely related to P. petaurista and P. philippensis with 82-90% bootstrap values. This result suggests that it is reasonable to regard P. alborufus lena as a distinct species from P. alborufus castaneus. PMID:18494567

  7. Using mitochondrial nucleotide sequences to investigate diversity and genealogical relationships within common carp (Cyprinus carpio L.).

    PubMed

    Thai, B T; Burridge, C P; Pham, T A; Austin, C M

    2005-02-01

    Direct sequencing of mitochondrial DNA (mtDNA) D-loop (745 bp) and MTATPase6/MTATPase8 (857 bp) regions was used to investigate genetic variation within common carp and develop a global genealogy of common carp strains. The D-loop region was more variable than the MTATPase6/MTATPase8 region, but given the wide distribution of carp the overall levels of sequence divergence were low. Levels of haplotype diversity varied widely among countries with Chinese, Indonesian and Vietnamese carp showing the greatest diversity whereas Japanese Koi and European carp had undetectable nucleotide variation. A genealogical analysis supports a close relationship between Vietnamese, Koi and Chinese Color carp strains and to a lesser extent, European carp. Chinese and Indonesian carp strains were the most divergent, and their relationships do not support the evolution of independent Asian and European lineages and current taxonomic treatments.

  8. Sequence and organization of complete mitochondrial genome of the firefly, Aquatica leii (Coleoptera: Lampyridae).

    PubMed

    Jiao, Hengwu; Ding, Minghui; Zhao, Huabin

    2015-01-01

    The firefly Aquatica leii (Coleoptera: Lampyridae) is widely distributed in China. In this study, we sequenced and characterized the first complete mitochondrial genome of the firefly from the subfamily Luciolinae. The circular genome of 16,856 bp in length contains 13 protein-coding genes, 22 transfer RNA genes, 2 ribosomal RNA genes and a non-coding AT-rich region. Overall base composition of the genome is 42.28% A, 34.80% T, 13.91% C and 9.01% G, with an AT bias of 77.08%. All protein-coding genes start with an ATN codon, and terminate with the typical stop codon TAA, TAG or a single T. The non-coding AT-rich region is unusually long (2239 bp), containing six 113 bp tandem repeats and a microsatellite-like (TA)7 element. The genome sequence is useful for studying the evolution of sexual signaling and many ecological specializations in fireflies.

  9. Taxonomy of 5 S ribosomal RNA by the linguistic technique: probing with mitochondrial and mammalian sequences.

    PubMed

    Guimarães, R C; Trifonov, E N; Lagunez-Otero, J

    1997-09-01

    Linguistic similarities and dissimilarities between 5 S rRNA sequences allowed taxonomical separation of species and classes. Comparisons with the molecule from mammals distinguished fungi and plants from protists and animals. Similarities to mammalians progressively increased from protists to invertebrates and to somatic-type molecules of the vertebrates lineage. In this, deviations were detected in avian, oocyte type, and pseudogene sequences. Among bacteria, actinobacteria were most similar to the mammalians, which could be related to the high frequency of associations among members of these groups. Some archaebacterial species most similar to the mammalians belonged to the Thermoproteales and Halobacteria groups. Comparisons with the soybean mitochondrial molecule revealed high internal homogeneity among plant mitochondria. The eubacterial groups most similar to it were Thermus and Rhodobacteria gamma-1 and alpha-2. Other procedures have already indicated similarities of Rhodobacteria alpha to mitochondria but the linguistic similarities were on the average higher with the first two groups.

  10. Coptotermes gestroi (Isoptera: Rhinotermitidae) in Brazil: possible origins inferred by mitochondrial cytochrome oxidase II gene sequences.

    PubMed

    Martins, C; Fontes, L R; Bueno, O C; Martins, V G

    2010-09-01

    The Asian subterranean termite, Coptotermes gestroi, originally from northeast India through Burma, Thailand, Malaysia, and the Indonesian archipelago, is a major termite pest introduced in several countries around the world, including Brazil. We sequenced the mitochondrial COII gene from individuals representing 23 populations. Phylogenetic analysis of COII gene sequences from this and other studies resulted in two main groups: (1) populations of Cleveland (USA) and four populations of Malaysia and (2) populations of Brazil, four populations of Malaysia, and one population from each of Thailand, Puerto Rico, and Key West (USA). Three new localities are reported here, considerably enlarging the distribution of C. gestroi in Brazil: Campo Grande (state of Mato Grosso do Sul), Itajaí (state of Santa Catarina), and Porto Alegre (state of Rio Grande do Sul).

  11. A unique junctional palindromic sequence in mitochondrial DNA from a patient with progressive external ophthalmoplegia.

    PubMed

    Saiwaki, T; Shiga, K; Fukuyama, R; Tsutsumi, Y; Fushiki, S

    2000-12-01

    A polymerase chain reaction (PCR) based procedure was modified to determine the deletion of mitochondrial DNA (mtDNA). The protocol consists of coamplification both of deleted and wild-type segments of mtDNA using a long PCR technique; evaluation of the deleted portion within the amplified DNA segments by restriction enzyme digestion followed by densitometrical analysis; and direct subcloning into a plasmid vector for DNA sequencing. The procedure revealed a 5.3 kb deletion of mtDNA in the biopsied muscle tissue obtained from a patient clinically diagnosed with progressive external ophthalmoplegia. The 5' and 3' sequences at both sides of the breakpoint comprise a 17 bp palindrome and 5 bp tandem repeats, suggesting that the deletion might occur through slipped mispairing and other novel mechanisms. This improved procedure has the potential to detect deletions occurring in the entire length of mtDNA, and mighty be useful for clinical screening of progressive external ophthalmoplegia.

  12. All 37 Mitochondrial Genes of Aphid Aphis craccivora Obtained from Transcriptome Sequencing: Implications for the Evolution of Aphids.

    PubMed

    Song, Nan; Zhang, Hao; Li, Hu; Cai, Wanzhi

    2016-01-01

    The availability of mitochondrial genome data for Aphididae, one of the economically important insect pest families, in public databases is limited. The advent of next generation sequencing technology provides the potential to generate mitochondrial genome data for many species timely and cost-effectively. In this report, we used transcriptome sequencing technology to determine all the 37 mitochondrial genes of the cowpea aphid, Aphis craccivora. This method avoids the necessity of finding suitable primers for long PCRs or primer-walking amplicons, and is proved to be effective in obtaining the whole set of mitochondrial gene data for insects with difficulty in sequencing mitochondrial genome by PCR-based strategies. Phylogenetic analyses of aphid mitochondrial genome data show clustering based on tribe level, and strongly support the monophyly of the family Aphididae. Within the monophyletic Aphidini, three samples from Aphis grouped together. In another major clade of Aphididae, Pterocomma pilosum was recovered as a potential sister-group of Cavariella salicicola, as part of Macrosiphini. PMID:27314587

  13. Mitochondrial genome sequence and gene order of Sipunculus nudus give additional support for an inclusion of Sipuncula into Annelida

    PubMed Central

    Mwinyi, Adina; Meyer, Achim; Bleidorn, Christoph; Lieb, Bernhard; Bartolomaeus, Thomas; Podsiadlowski, Lars

    2009-01-01

    Background Mitochondrial genomes are a valuable source of data for analysing phylogenetic relationships. Besides sequence information, mitochondrial gene order may add phylogenetically useful information, too. Sipuncula are unsegmented marine worms, traditionally placed in their own phylum. Recent molecular and morphological findings suggest a close affinity to the segmented Annelida. Results The first complete mitochondrial genome of a member of Sipuncula, Sipunculus nudus, is presented. All 37 genes characteristic for metazoan mtDNA were detected and are encoded on the same strand. The mitochondrial gene order (protein-coding and ribosomal RNA genes) resembles that of annelids, but shows several derivations so far found only in Sipuncula. Sequence based phylogenetic analysis of mitochondrial protein-coding genes results in significant bootstrap support for Annelida sensu lato, combining Annelida together with Sipuncula, Echiura, Pogonophora and Myzostomida. Conclusion The mitochondrial sequence data support a close relationship of Annelida and Sipuncula. Also the most parsimonious explanation of changes in gene order favours a derivation from the annelid gene order. These results complement findings from recent phylogenetic analyses of nuclear encoded genes as well as a report of a segmental neural patterning in Sipuncula. PMID:19149868

  14. All 37 Mitochondrial Genes of Aphid Aphis craccivora Obtained from Transcriptome Sequencing: Implications for the Evolution of Aphids

    PubMed Central

    Li, Hu; Cai, Wanzhi

    2016-01-01

    The availability of mitochondrial genome data for Aphididae, one of the economically important insect pest families, in public databases is limited. The advent of next generation sequencing technology provides the potential to generate mitochondrial genome data for many species timely and cost-effectively. In this report, we used transcriptome sequencing technology to determine all the 37 mitochondrial genes of the cowpea aphid, Aphis craccivora. This method avoids the necessity of finding suitable primers for long PCRs or primer-walking amplicons, and is proved to be effective in obtaining the whole set of mitochondrial gene data for insects with difficulty in sequencing mitochondrial genome by PCR-based strategies. Phylogenetic analyses of aphid mitochondrial genome data show clustering based on tribe level, and strongly support the monophyly of the family Aphididae. Within the monophyletic Aphidini, three samples from Aphis grouped together. In another major clade of Aphididae, Pterocomma pilosum was recovered as a potential sister-group of Cavariella salicicola, as part of Macrosiphini. PMID:27314587

  15. Whole mitochondrial DNA sequencing in Alpine populations and the genetic history of the Neolithic Tyrolean Iceman

    PubMed Central

    Coia, V.; Cipollini, G.; Anagnostou, P.; Maixner, F.; Battaggia, C.; Brisighelli, F.; Gómez-Carballa, A; Destro Bisol, G.; Salas, A.; Zink, A.

    2016-01-01

    The Tyrolean Iceman is an extraordinarily well-preserved natural mummy that lived south of the Alpine ridge ~5,200 years before present (ybp), during the Copper Age. Despite studies that have investigated his genetic profile, the relation of the Iceman´s maternal lineage with present-day mitochondrial variation remains elusive. Studies of the Iceman have shown that his mitochondrial DNA (mtDNA) belongs to a novel lineage of haplogroup K1 (K1f) not found in extant populations. We analyzed the complete mtDNA sequences of 42 haplogroup K bearing individuals from populations of the Eastern Italian Alps – putatively in genetic continuity with the Tyrolean Iceman—and compared his mitogenome with a large dataset of worldwide K1 sequences. Our results allow a re-definition of the K1 phylogeny, and indicate that the K1f haplogroup is absent or rare in present-day populations. We suggest that mtDNA Iceman´s lineage could have disappeared during demographic events starting in Europe from ~5,000 ybp. Based on the comparison of our results with published data, we propose a scenario that could explain the apparent contrast between the phylogeographic features of maternal and paternal lineages of the Tyrolean Iceman within the context of the demographic dynamics happening in Europe from 8,000 ybp. PMID:26764605

  16. Sequencing and analysis of complete mitochondrial genome of Apodemus draco (Rodentia: Arvicolinae).

    PubMed

    Wei, Haixue; Jia, Qiang; Li, Fengjun; Liu, Yongcheng; Chen, Shunde; Yong, Bin

    2016-07-01

    The genus Apodemus are the most common small rodents in fields. They are also one of the best species for biogeographic study and understanding the environmental changes. In this study, the complete mitochondrial genome sequence of Apodemus draco is determined. The mitogenome is 16 220 bp in length and contains 13 protein-coding genes, 2 ribosomal RNA genes, 22 transfer RNA genes and a control region, with a base composition of 35.1% A, 29.0% T, 23.8% C and 12.1% G. The nucleotide sequence data of 12 heavy-strand protein-coding genes of Apodemus draco and other 23 rodents were used for mitochondrial genome phylogenetic analyses. The monophyly of the genus Apodemus was well supported with sister to the genus Mus. Bayesian analysis also suggested that Apodemus draco was a sister to Apodemus latronum. The present study may facilitate further investigation of the molecular evolution and biogeographic study of the genus Apodemus.

  17. Complete Sequence and Gene Organization of the Mitochondrial Genome of the Land Snail Albinaria Coerulea

    PubMed Central

    Hatzoglou, E.; Rodakis, G. C.; Lecanidou, R.

    1995-01-01

    The complete sequence (14,130 bp) of the mitochondrial DNA (mtDNA) of the land snail Albinaria coerulea was determined. It contains 13 protein, two rRNA and 22 tRNA genes. Twenty-four of these genes are encoded by one and 13 genes by the other strand. The gene arrangement shares almost no similarities with that of two other molluscs for which the complete gene content and arrangement are known, the bivalve Mytilus edulis and the chiton Katharina tunicata; the protein and rRNA gene order is similar to that of another terrestrial gastropod, Cepaea nemoralis. Unusual features include the following: (1) the absence of lengthy noncoding regions (there are only 141 intergenic nucleotides interspersed at different gene borders, the longest intergenic sequence being 42 nucleotides), (2) the presence of several overlapping genes (mostly tRNAs), (3) the presence of tRNA-like structures and other stem and loop structures within genes. An RNA editing system acting on tRNAs must necessarily be invoked for posttranscriptional extension of the overlapping tRNAs. Due to these features, and also because of the small size of its genes (e.g., it contains the smallest rRNA genes among the known coelomates), it is one of the most compact mitochondrial genomes known to date. PMID:7498775

  18. Whole mitochondrial DNA sequencing in Alpine populations and the genetic history of the Neolithic Tyrolean Iceman.

    PubMed

    Coia, V; Cipollini, G; Anagnostou, P; Maixner, F; Battaggia, C; Brisighelli, F; Gómez-Carballa, A; Destro Bisol, G; Salas, A; Zink, A

    2016-01-01

    The Tyrolean Iceman is an extraordinarily well-preserved natural mummy that lived south of the Alpine ridge ~5,200 years before present (ybp), during the Copper Age. Despite studies that have investigated his genetic profile, the relation of the Iceman´s maternal lineage with present-day mitochondrial variation remains elusive. Studies of the Iceman have shown that his mitochondrial DNA (mtDNA) belongs to a novel lineage of haplogroup K1 (K1f) not found in extant populations. We analyzed the complete mtDNA sequences of 42 haplogroup K bearing individuals from populations of the Eastern Italian Alps - putatively in genetic continuity with the Tyrolean Iceman-and compared his mitogenome with a large dataset of worldwide K1 sequences. Our results allow a re-definition of the K1 phylogeny, and indicate that the K1f haplogroup is absent or rare in present-day populations. We suggest that mtDNA Iceman´s lineage could have disappeared during demographic events starting in Europe from ~5,000 ybp. Based on the comparison of our results with published data, we propose a scenario that could explain the apparent contrast between the phylogeographic features of maternal and paternal lineages of the Tyrolean Iceman within the context of the demographic dynamics happening in Europe from 8,000 ybp. PMID:26764605

  19. Heteroplasmy in the mitochondrial genomes of human lice and ticks revealed by high throughput sequencing.

    PubMed

    Xiong, Haoyu; Barker, Stephen C; Burger, Thomas D; Raoult, Didier; Shao, Renfu

    2013-01-01

    The typical mitochondrial (mt) genomes of bilateral animals consist of 37 genes on a single circular chromosome. The mt genomes of the human body louse, Pediculus humanus, and the human head louse, Pediculus capitis, however, are extensively fragmented and contain 20 minichromosomes, with one to three genes on each minichromosome. Heteroplasmy, i.e. nucleotide polymorphisms in the mt genome within individuals, has been shown to be significantly higher in the mt cox1 gene of human lice than in humans and other animals that have the typical mt genomes. To understand whether the extent of heteroplasmy in human lice is associated with mt genome fragmentation, we sequenced the entire coding regions of all of the mt minichromosomes of six human body lice and six human head lice from Ethiopia, China and France with an Illumina HiSeq platform. For comparison, we also sequenced the entire coding regions of the mt genomes of seven species of ticks, which have the typical mitochondrial genome organization of bilateral animals. We found that the level of heteroplasmy varies significantly both among the human lice and among the ticks. The human lice from Ethiopia have significantly higher level of heteroplasmy than those from China and France (Pt<0.05). The tick, Amblyomma cajennense, has significantly higher level of heteroplasmy than other ticks (Pt<0.05). Our results indicate that heteroplasmy level can be substantially variable within a species and among closely related species, and does not appear to be determined by single factors such as genome fragmentation.

  20. Algae or protozoa: phylogenetic position of euglenophytes and dinoflagellates as inferred from mitochondrial sequences.

    PubMed

    Inagaki, Y; Hayashi-Ishimaru, Y; Ehara, M; Igarashi, I; Ohama, T

    1997-09-01

    The chloroplasts of euglenophytes and dinoflagellates have been suggested to be the vestiges of endosymbiotic algae acquired during the process of evolution. However, the evolutionary positions of these organisms are still inconclusive, and they have been tentatively classified as both algae and protozoa. A representative gene of the mitochondrial genome, cytochrome oxidase subunit I (coxI), was chosen and sequenced to clarify the phylogenetic positions of four dinoflagellates, two euglenophytes and one apicomplexan protist. This is the first report of mitochondrial DNA sequences for dinoflagellates and euglenophytes. Our COXI tree shows clearly that dinoflagellates are closely linked to apicomplexan parasites but not with algae. Euglenophytes and algae appear to be only remotely related, with euglenophytes sharing a possible evolutionary link with kinetoplastids. The COXI tree is in general agreement with the tree based on the nuclear encoded small subunit of ribosomal RNA (SSU rRNA) genes, but conflicts with that based on plastid genes. These results support the interpretation that chloroplasts present in euglenophytes and dinoflagellates were captured from algae through endosymbioses, while their mitochondria were inherited from the host cell. We suggest that dinoflagellates and euglenophytes were originally heterotrophic protists and that their chloroplasts are remnants of endosymbiotic algae.

  1. Whole mitochondrial DNA sequencing in Alpine populations and the genetic history of the Neolithic Tyrolean Iceman.

    PubMed

    Coia, V; Cipollini, G; Anagnostou, P; Maixner, F; Battaggia, C; Brisighelli, F; Gómez-Carballa, A; Destro Bisol, G; Salas, A; Zink, A

    2016-01-14

    The Tyrolean Iceman is an extraordinarily well-preserved natural mummy that lived south of the Alpine ridge ~5,200 years before present (ybp), during the Copper Age. Despite studies that have investigated his genetic profile, the relation of the Iceman´s maternal lineage with present-day mitochondrial variation remains elusive. Studies of the Iceman have shown that his mitochondrial DNA (mtDNA) belongs to a novel lineage of haplogroup K1 (K1f) not found in extant populations. We analyzed the complete mtDNA sequences of 42 haplogroup K bearing individuals from populations of the Eastern Italian Alps - putatively in genetic continuity with the Tyrolean Iceman-and compared his mitogenome with a large dataset of worldwide K1 sequences. Our results allow a re-definition of the K1 phylogeny, and indicate that the K1f haplogroup is absent or rare in present-day populations. We suggest that mtDNA Iceman´s lineage could have disappeared during demographic events starting in Europe from ~5,000 ybp. Based on the comparison of our results with published data, we propose a scenario that could explain the apparent contrast between the phylogeographic features of maternal and paternal lineages of the Tyrolean Iceman within the context of the demographic dynamics happening in Europe from 8,000 ybp.

  2. A plant mitochondrial sequence transcribed in transgenic tobacco chloroplasts is not edited

    SciTech Connect

    Sutton, C.A.; Hanson, M.R.; Zoubenko, O.V.; Maliga, P.

    1995-03-01

    RNA editing occurs in two higher-plant organelles, chloroplasts, and mitochondria. Because chloroplasts and mitochondria exhibit some similarity in editing site selection, we investigated whether mitochondrial RNA sequences could be edited in chloroplasts. We produced transgenic tobacco plants that contained chimeric genes in which the second exon of a Petunia hybrida mitochondrial coxII gene was under the control of chloroplast gene regulatory sequences. coxII transcripts accumulated to low or high levels in transgenic chloroplasts containing chimeric genes with the plastid ribosomal protein gene rps16 or the rRNA operon promoter, respectively. Exon 2 of coxII was chosen because it carries seven editing sites and is edited in petunia mitochondria even when located in an abnormal context in an aberrant recombined gene. When editing of the coxII transcripts in transgenic chloroplasts was examined, no RNA editing at any of the usual sites was detected, nor was there any novel editing at any other sites. These results indicate that the RNA editing mechanisms of chloroplasts and mitochondria are not identical but must have at least some organelle-specific components. 33 refs., 5 figs.

  3. Massively parallel sequencing of complete mitochondrial genomes from hair shaft samples.

    PubMed

    Parson, Walther; Huber, Gabriela; Moreno, Lilliana; Madel, Maria-Bernadette; Brandhagen, Michael D; Nagl, Simone; Xavier, Catarina; Eduardoff, Mayra; Callaghan, Thomas C; Irwin, Jodi A

    2015-03-01

    Though shed hairs are one of the most commonly encountered evidence types, they are among the most limited in terms of DNA quantity and quality. As a result, DNA testing has historically focused on the recovery of just about 600 base pairs of the mitochondrial DNA control region. Here, we describe our success in recovering complete mitochondrial genome (mtGenome) data (∼16,569bp) from single shed hairs. By employing massively parallel sequencing (MPS), we demonstrate that particular hair samples yield DNA sufficient in quantity and quality to produce 2-3kb mtGenome amplicons and that entire mtGenome data can be recovered from hair extracts even without PCR enrichment. Most importantly, we describe a small amplicon multiplex assay comprised of sixty-two primer sets that can be routinely applied to the compromised hair samples typically encountered in forensic casework. In all samples tested here, the MPS data recovered using any one of the three methods were consistent with the control Sanger sequence data developed from high quality known specimens. Given the recently demonstrated value of complete mtGenome data in terms of discrimination power among randomly sampled individuals, the possibility of recovering mtGenome data from the most compromised and limited evidentiary material is likely to vastly increase the utility of mtDNA testing for hair evidence. PMID:25438934

  4. Direct sequencing of mitochondrial DNA detects highly divergent haplotypes in blue marlin (Makaira nigricans).

    PubMed

    Finnerty, J R; Block, B A

    1992-06-01

    We were able to differentiate between species of billfish (Istiophoridae family) and to detect considerable intraspecific variation in the blue marlin (Makaira nigricans) by directly sequencing a polymerase chain reaction (PCR)-amplified, 612-bp fragment of the mitochondrial cytochrome b gene. Thirteen variable nucleotide sites separated blue marlin (n = 26) into 7 genotypes. On average, these genotypes differed by 5.7 base substitutions. A smaller sample of swordfish from an equally broad geographic distribution displayed relatively little intraspecific variation, with an average of 1.3 substitutions separating different genotypes. A cladistic analysis of blue marlin cytochrome b variants indicates two major divergent evolutionary lines within the species. The frequencies of these two major evolutionary lines differ significantly between Atlantic and Pacific ocean basins. This finding is important given that the Atlantic stocks of blue marlin are considered endangered. Migration from the Pacific can help replenish the numbers of blue marlin in the Atlantic, but the loss of certain mitochondrial DNA haplotypes in the Atlantic due to overfishing probably could not be remedied by an influx of Pacific fish because of their absence in the Pacific population. Fishery management strategies should attempt to preserve the genetic diversity within the species. The detection of DNA sequence polymorphism indicates the utility of PCR technology in pelagic fishery genetics.

  5. Complete mitochondrial DNA sequences of Saccostrea mordax and Saccostrea cucullata: genome organization and phylogeny analysis.

    PubMed

    Volatiana, Josie Ancella; Fang, Shasha; Kinaro, Zachary Omambia; Liu, Xiao

    2016-07-01

    Classified in the phylum mollusks, oysters are bivalves which are found in estuaries and coastal zones. Because of their plastic shell, mitochondrial DNA analysis of this species becomes an interesting field, necessary to investigate their phylogenetic and evolution of relations. In our study, two oyster species: Saccostrea mordax and Saccostrea cucullata from Indian Ocean (Madagascar) were investigated. The complete sequence of Saccostrea mordax (16 512 bp) and Saccostrea cucullata (16 396 bp) were described and determined, with their mitogenomes deposited in the GenBank with accession number KP769562 and KP967577 respectively. Both mitochondrial genome sequences contained 12 protein-coding genes, 23 tRNAs, and two rRNAs, all encoded in the same heavy strand. High levels of similarity in the gene arrangement of the two Saccostrea species were evident. The phylogenetic analysis shows a closer relationship between the two Saccostrea species and confirms the strong relationship within Saccostrea, Crassostrea and Ostrea genus in taxonomy of Ostreidae family. PMID:26226596

  6. Sequencing and analysis of complete mitochondrial genome of Apodemus draco (Rodentia: Arvicolinae).

    PubMed

    Wei, Haixue; Jia, Qiang; Li, Fengjun; Liu, Yongcheng; Chen, Shunde; Yong, Bin

    2016-07-01

    The genus Apodemus are the most common small rodents in fields. They are also one of the best species for biogeographic study and understanding the environmental changes. In this study, the complete mitochondrial genome sequence of Apodemus draco is determined. The mitogenome is 16 220 bp in length and contains 13 protein-coding genes, 2 ribosomal RNA genes, 22 transfer RNA genes and a control region, with a base composition of 35.1% A, 29.0% T, 23.8% C and 12.1% G. The nucleotide sequence data of 12 heavy-strand protein-coding genes of Apodemus draco and other 23 rodents were used for mitochondrial genome phylogenetic analyses. The monophyly of the genus Apodemus was well supported with sister to the genus Mus. Bayesian analysis also suggested that Apodemus draco was a sister to Apodemus latronum. The present study may facilitate further investigation of the molecular evolution and biogeographic study of the genus Apodemus. PMID:27158789

  7. The complete mitochondrial genome sequence of the Xizang Plateau frog, Nanorana parkeri (Anura: Dicroglossidae).

    PubMed

    Jiang, Lichun; Ruan, Qiping; Chen, Wei

    2016-09-01

    The Xizang Plateau frog (Nanorana parkeri) belongs to the family Dicroglossidae, which distributes in southern and eastern Xizang, southern-most Qinghai in China, high elevations of north-central Nepal, Himalayan Bhutan, northeastern Kashmir and India. In this study, the complete mitochondrial genome of N. parkeri was sequenced. The mitogenome was 17,837 bp in length, consisting of 13 protein-coding genes, 22 transfer RNA (tRNA) genes, two ribosomal RNA genes, and a non-coding control region (CR). As in other vertebrates, most mitochondrial genes are encoded on the heavy strand, except for ND6 and eight tRNA genes, which are encoded on the light strand. The overall base composition of the N. parkeri is A: 27.7 % A, T: 30.1 % T, C: 26.6% and G: 15.6%. The alignment of the Nanorana species CRs exhibited high genetic variability and rich A + T content. In comparison with the mtDNA sequences typical of vertebrates, a tandem duplication of the tRNA(Met) gene and a rearrangement of the tRNA(Thr), tRNA(Pro) and tRNA(Leu) (CUN) genes were found. The complete mitogenome of N. parkeri can provided an important data for the studies on phylogenetic relationship and population genetics to further explore the taxonomic status of this species.

  8. A complete mitochondrial genome sequence of Asian black bear Sichuan subspecies (Ursus thibetanus mupinensis)

    PubMed Central

    Hou, Wan-ru; Chen, Yu; Wu, Xia; Hu, Jin-chu; Peng, Zheng-song; Yang, Jung; Tang, Zong-xiang; Zhou, Cai-Quan; Li, Yu-ming; Yang, Shi-kui; Du, Yu-jie; Kong, Ling-lu; Ren, Zheng-long; Zhang, Huai-yu; Shuai, Su-rong

    2007-01-01

    We obtained the complete mitochondrial genome of U.thibetanus mupinensis by DNA sequencing based on the PCR fragments of 18 primers we designed. The results indicate that the mtDNA is 16 868 bp in size, encodes 13 protein genes, 22 tRNA genes, and 2 rRNA genes, with an overall H-strand base composition of 31.2% A, 25.4% C, 15.5% G and 27.9% T. The sequence of the control region (CR) located between tRNA-Pro and tRNA-Phe is 1422 bp in size, consists of 8.43% of the whole genome, GC content is 51.9% and has a 6bp tandem repeat and two 10bp tandem repeats identified by using the Tandem Repeats Finder. U. thibetanus mupinensis mitochondrial genome shares high similarity with those of three other Ursidae: U. americanus (91.46%), U. arctos (89.25%) and U. maritimus (87.66%). PMID:17205108

  9. Extensive mitochondrial genome rearrangements between Cerithioidea and Hypsogastropoda (Mollusca; Caenogastropoda) as determined from the partial nucleotide sequences of the mitochondrial DNA of Cerithidea djadjariensis and Batillaria cumingi.

    PubMed

    Kojima, Shigeaki

    2010-06-01

    Partial nucleotide sequences ( approximately 8000 bp) of the mitochondrial DNA of two cerithioidean gastropod species-Cerithidea djadjariensis and Batillaria cumingi-were determined. The order of mitochondrial genes (eight protein genes, two ribosomal RNA genes, and nine transfer RNA genes) was identical between these two species. and remarkably different from the previously reported order in other gastropods. The results indicate that the genome structure of the common ancestor of Cerithioidea and its sister group, Hypsogastropoda, is almost identical to that of the common ancestor of Gastropoda; moreover, independent mitochondrial genome rearrangements were identified between the lineages of Cerithioidea and Hypsogastropoda. The rearrangements within Cerithioidea can be explained by the inversion of a single tRNA gene, two translocations of a single tRNA gene, and three translocations of a genome fragment containing a tRNA gene and protein-coding gene(s).

  10. Improved DNA barcoding method for Bemisia tabaci and related Aleyrodidae: development of universal and Bemisia tabaci biotype-specific mitochondrial cytochrome c oxidase I polymerase chain reaction primers.

    PubMed

    Shatters, Robert G; Powell, Charles A; Boykin, Laura M; Liansheng, He; McKenzie, C L

    2009-04-01

    Whiteflies, heteropterans in the family Aleyrodidae, are globally distributed and severe agricultural pests. The mitochondrial cytochrome c oxidase I (mtCOI) sequence has been used extensively in whitefly phylogenetic comparisons and in biotype identification of the agriculturally important Bemisia tabaci (Gennadius) whitefly. Because of the economic importance of several whitefly genera, and the invasive nature of the B and the Q biotypes of Bemisia tabaci, mtCOI sequence data are continually generated from sampled populations worldwide. Routine phylogenetic comparisons and biotype identification is done through amplification and sequencing of an approximately 800-bp mtCOI DNA fragment. Despite its routine use, published primers for amplification of this region are often inefficient for some B. tabaci biotypes and especially across whitefly species. Through new sequence generation and comparison to available whitefly mtCOI sequence data, a set of polymerase chain reaction (PCR) amplification primers (Btab-Uni primers) were identified that are more efficient at amplifying approximately 748 bp of the approximately 800-bp fragment currently used. These universal primers amplify an mtCOI fragment from numerous B. tabaci biotypes and whitefly genera by using a single amplification profile. Furthermore, mtCOI PCR primers specific for the B, Q, and New World biotypes of B. tabaci were designed that allow rapid discrimination among these biotypes. These primers produce a 478-, 405-, and 303-bp mtCOI fragment for the B, New World, and Q biotypes, respectively. By combining these primers and using rapid PCR and electrophoretic techniques, biotype determination can be made within 3 h for up to 96 samples at a time.

  11. mtDNAprofiler: a Web application for the nomenclature and comparison of human mitochondrial DNA sequences.

    PubMed

    Yang, In Seok; Lee, Hwan Young; Yang, Woo Ick; Shin, Kyoung-Jin

    2013-07-01

    Mitochondrial DNA (mtDNA) is a valuable tool in the fields of forensic, population, and medical genetics. However, recording and comparing mtDNA control region or entire genome sequences would be difficult if researchers are not familiar with mtDNA nomenclature conventions. Therefore, mtDNAprofiler, a Web application, was designed for the analysis and comparison of mtDNA sequences in a string format or as a list of mtDNA single-nucleotide polymorphisms (mtSNPs). mtDNAprofiler which comprises four mtDNA sequence-analysis tools (mtDNA nomenclature, mtDNA assembly, mtSNP conversion, and mtSNP concordance-check) supports not only the accurate analysis of mtDNA sequences via an automated nomenclature function, but also consistent management of mtSNP data via direct comparison and validity-check functions. Since mtDNAprofiler consists of four tools that are associated with key steps of mtDNA sequence analysis, mtDNAprofiler will be helpful for researchers working with mtDNA. mtDNAprofiler is freely available at http://mtprofiler.yonsei.ac.kr. PMID:23682804

  12. Complete mitochondrial DNA sequences of six snakes: phylogenetic relationships and molecular evolution of genomic features.

    PubMed

    Dong, Songyu; Kumazawa, Yoshinori

    2005-07-01

    Complete mitochondrial DNA (mtDNA) sequences were determined for representative species from six snake families: the acrochordid little file snake, the bold boa constrictor, the cylindrophiid red pipe snake, the viperid himehabu, the pythonid ball python, and the xenopeltid sunbeam snake. Thirteen protein-coding genes, 22 tRNA genes, 2 rRNA genes, and 2 control regions were identified in these mtDNAs. Duplication of the control region and translocation of the tRNALeu gene were two notable features of the snake mtDNAs. The duplicate control regions had nearly identical nucleotide sequences within species but they were divergent among species, suggesting concerted sequence evolution of the two control regions. In addition, the duplicate control regions appear to have facilitated an interchange of some flanking tRNA genes in the viperid lineage. Phylogenetic analyses were conducted using a large number of sites (9570 sites in total) derived from the complete mtDNA sequences. Our data strongly suggested a new phylogenetic relationship among the major families of snakes: ((((Viperidae, Colubridae), Acrochordidae), (((Pythonidae, Xenopeltidae), Cylindrophiidae), Boidae)), Leptotyphlopidae). This conclusion was distinct from a widely accepted view based on morphological characters in denying the sister-group relationship of boids and pythonids, as well as the basal divergence of nonmacrostomatan cylindrophiids. These results imply the significance to reconstruct the snake phylogeny with ample molecular data, such as those from complete mtDNA sequences.

  13. Mitochondrial genome sequences and comparative genomics ofPhytophthora ramorum and P. sojae

    SciTech Connect

    Martin, Frank N.; Douda, Bensasson; Tyler, Brett M.; Boore,Jeffrey L.

    2007-01-01

    The complete sequences of the mitochondrial genomes of theoomycetes of Phytophthora ramorum and P. sojae were determined during thecourse of their complete nuclear genome sequencing (Tyler, et al. 2006).Both are circular, with sizes of 39,314 bp for P. ramorum and 42,975 bpfor P. sojae. Each contains a total of 37 identifiable protein-encodinggenes, 25 or 26 tRNAs (P. sojae and P. ramorum, respectively)specifying19 amino acids, and a variable number of ORFs (7 for P. ramorum and 12for P. sojae) which are potentially additional functional genes.Non-coding regions comprise approximately 11.5 percent and 18.4 percentof the genomes of P. ramorum and P. sojae, respectively. Relative to P.sojae, there is an inverted repeat of 1,150 bp in P. ramorum thatincludes an unassigned unique ORF, a tRNA gene, and adjacent non-codingsequences, but otherwise the gene order in both species is identical.Comparisons of these genomes with published sequences of the P. infestansmitochondrial genome reveals a number of similarities, but the gene orderin P. infestans differs in two adjacent locations due to inversions.Sequence alignments of the three genomes indicated sequence conservationranging from 75 to 85 percent and that specific regions were morevariable than others.

  14. From Asia to Europe: mitochondrial DNA sequence variability in Bulgarians and Turks.

    PubMed

    Calafell, F; Underhill, P; Tolun, A; Angelicheva, D; Kalaydjieva, L

    1996-01-01

    Two hypervariable sequence segments in the control region of mitochondrial DNA were determined in samples of Bulgarians and Turks. The Turkish sample presented a higher degree of internal diversity, in terms of total number of variable nucleotides, as well as in the average pairwise nucleotide difference. Pairwise difference distributions were built for both samples, yielding smooth bell shapes in agreement with the Rogers and Harpending model. The Bulgarian and Turkish data were compared with several European and W. Asian Caucasoid populations (Basques, Tuscans, Sardinians, British, Middle Easterners and Indians). Mean pairwise differences suggest that a demographic expansion occurred sequentially in the Middle East, through Turkey, to the rest of Europe (Bulgaria included). Current mutation rate estimates date this expansion in times ranging between 50,000 and 100,000 years ago and, thus, would correspond to the arrival of anatomically modern humans in Europe. Sequence trees for segment I show that European and Middle Eastern sequences derived from the reference sequence. Coalescence times for segment I sequences agree with those predicted by pairwise distributions. Genetic trees were constructed between populations and revealed an extreme homogeneity between European samples.

  15. Primer effect in the detection of mitochondrial DNA point heteroplasmy by automated sequencing.

    PubMed

    Calatayud, Marta; Ramos, Amanda; Santos, Cristina; Aluja, Maria Pilar

    2013-06-01

    The correct detection of mitochondrial DNA (mtDNA) heteroplasmy by automated sequencing presents methodological constraints. The main goals of this study are to investigate the effect of sense and distance of primers in heteroplasmy detection and to test if there are differences in the accurate determination of heteroplasmy involving transitions or transversions. A gradient of the heteroplasmy levels was generated for mtDNA positions 9477 (transition G/A) and 15,452 (transversion C/A). Amplification and subsequent sequencing with forward and reverse primers, situated at 550 and 150 bp from the heteroplasmic positions, were performed. Our data provide evidence that there is a significant difference between the use of forward and reverse primers. The forward primer is the primer that seems to give a better approximation to the real proportion of the variants. No significant differences were found concerning the distance at which the sequencing primers were placed neither between the analysis of transitions and transversions. The data collected in this study are a starting point that allows to glimpse the importance of the sequencing primers in the accurate detection of point heteroplasmy, providing additional insight into the overall automated sequencing strategy.

  16. Sequence preservation of osteocalcin protein and mitochondrial DNA in bison bones older than 55 ka

    NASA Astrophysics Data System (ADS)

    Nielsen-Marsh, Christina M.; Ostrom, Peggy H.; Gandhi, Hasand; Shapiro, Beth; Cooper, Alan; Hauschka, Peter V.; Collins, Matthew J.

    2002-12-01

    We report the first complete sequences of the protein osteocalcin from small amounts (20 mg) of two bison bone (Bison priscus) dated to older than 55.6 ka and older than 58.9 ka. Osteocalcin was purified using new gravity columns (never exposed to protein) followed by microbore reversed-phase high-performance liquid chromatography. Sequencing of osteocalcin employed two methods of matrix-assisted laser desorption ionization mass spectrometry (MALDI-MS): peptide mass mapping (PMM) and post-source decay (PSD). The PMM shows that ancient and modern bison osteocalcin have the same mass to charge (m/z) distribution, indicating an identical protein sequence and absence of diagenetic products. This was confirmed by PSD of the m/z 2066 tryptic peptide (residues 1 19); the mass spectra from ancient and modern peptides were identical. The 129 mass unit difference in the molecular ion between cow (Bos taurus) and bison is caused by a single amino-acid substitution between the taxa (Trp in cow is replaced by Gly in bison at residue 5). Bison mitochondrial control region DNA sequences were obtained from the older than 55.6 ka fossil. These results suggest that DNA and protein sequences can be used to directly investigate molecular phylogenies over a considerable time period, the absolute limit of which is yet to be determined.

  17. Analysis of mixtures using next generation sequencing of mitochondrial DNA hypervariable regions

    PubMed Central

    Kim, Hanna; Erlich, Henry A.; Calloway, Cassandra D.

    2015-01-01

    Aim To apply massively parallel and clonal sequencing (next generation sequencing or NGS) to the analysis of forensic mixed samples. Methods A duplex polymerase chain reaction (PCR) assay targeting the mitochondrial DNA (mtDNA) hypervariable regions I/II (HVI/HVII) was developed for NGS analysis on the Roche 454 GS Junior instrument. Eight sets of multiplex identifier-tagged 454 fusion primers were used in a combinatorial approach for amplification and deep sequencing of up to 64 samples in parallel. Results This assay was shown to be highly sensitive for sequencing limited DNA amounts ( ~ 100 mtDNA copies) and analyzing contrived and biological mixtures with low level variants ( ~ 1%) as well as “complex” mixtures (≥3 contributors). PCR artifact “hybrid” sequences generated by jumping PCR or template switching were observed at a low level (<2%) in the analysis of mixed samples but could be eliminated by reducing the PCR cycle number. Conclusion This study demonstrates the power of NGS technologies targeting the mtDNA HVI/HVII regions for analysis of challenging forensic samples, such as mixtures and specimens with limited DNA. PMID:26088845

  18. Complete DNA Sequence of the Mitochondrial Genome of the Black Chiton, Katharina Tunicata

    PubMed Central

    Boore, J. L.; Brown, W. M.

    1994-01-01

    The DNA sequence of the 15,532-base pair (bp) mitochondrial DNA (mtDNA) of the chiton Katharina tunicata has been determined. The 37 genes typical of metazoan mtDNA are present: 13 for protein subunits involved in oxidative phosphorylation, 2 for rRNAs and 22 for tRNAs. The gene arrangement resembles those of arthropods much more than that of another mollusc, the bivalve Mytilus edulis. Most genes abut directly or overlap, and abbreviated stop codons are inferred for four genes. Four junctions between adjacent pairs of protein genes lack intervening tRNA genes; however, at each of these junctions there is a sequence immediately adjacent to the start codon of the downstream gene that is capable of forming a stem-and-loop structure. Analysis of the tRNA gene sequences suggests that the D arm is unpaired in tRNA(ser(AGN)), which is typical of metazoan mtDNAs, and also in tRNA(ser(UCN)), a condition found previously only in nematode mtDNAs. There are two additional sequences in Katharina mtDNA that can be folded into structures resembling tRNAs; whether these are functional genes is unknown. All possible codons except the stop codons TAA and TAG are used in the protein-encoding genes, and Katharina mtDNA appears to use the same variation of the mitochondrial genetic code that is used in Drosophila and Mytilus. Translation initiates at the codons ATG, ATA and GTG. A + T richness appears to have affected codon usage patterns and, perhaps, the amino acid composition of the encoded proteins. A 142-bp non-coding region between tRNA(glu) and CO3 contains a 72-bp tract of alternating A and T. PMID:7828825

  19. Complete DNA sequence of the mitochondrial genome of the black chiton, Katharina tunicata.

    PubMed

    Boore, J L; Brown, W M

    1994-10-01

    The DNA sequence of the 15,532-base pair (bp) mitochondrial DNA (mtDNA) of the chiton Katharina tunicata has been determined. The 37 genes typical of metazoan mtDNA are present: 13 for protein subunits involved in oxidative phosphorylation, 2 for rRNAs and 22 for tRNAs. The gene arrangement resembles those of arthropods much more than that of another mollusc, the bivalve Mytilus edulis. Most genes abut directly or overlap, and abbreviated stop codons are inferred for four genes. Four junctions between adjacent pairs of protein genes lack intervening tRNA genes; however, at each of these junctions there is a sequence immediately adjacent to the start codon of the downstream gene that is capable of forming a stem-and-loop structure. Analysis of the tRNA gene sequences suggests that the D arm is unpaired in tRNA(ser)(AGN), which is typical of metazoan mtDNAs, and also in tRNA(ser)(UCN), a condition found previously only in nematode mtDNAs. There are two additional sequences in Katharina mtDNA that can be folded into structures resembling tRNAs; whether these are functional genes is unknown. All possible codons except the stop codons TAA and TAG are used in the protein-encoding genes, and Katharina mtDNA appears to use the same variation of the mitochondrial genetic code that is used in Drosophila and Mytilus. Translation initiates at the codons ATG, ATA and GTG. A + T richness appears to have affected codon usage patterns and, perhaps, the amino acid composition of the encoded proteins. A 142-bp non-coding region between tRNA(glu) and CO3 contains a 72-bp tract of alternating A and T.

  20. The phylogeny of Mediterranean tortoises and their close relativesbased on complete mitochondrial genome sequences from museumspecimens

    SciTech Connect

    Parham, James F.; Macey, J. Robert; Papenfuss, Theodore J.; Feldman, Chris R.; Turkozan, Oguz; Polymeni, Rosa; Boore, Jeffrey

    2005-04-29

    As part of an ongoing project to generate a mitochondrial database for terrestrial tortoises based on museum specimens, the complete mitochondrial genome sequences of 10 species and a {approx}14 kb sequence from an eleventh species are reported. The sampling of the present study emphasizes Mediterranean tortoises (genus Testudo and their close relatives). Our new sequences are aligned, along with those of two testudinoid turtles from GenBank, Chrysemys picta and Mauremys reevesii, yielding an alignment of 14,858 positions, of which 3,238 are parsimony informative. We develop a phylogenetic taxonomy for Testudo and related species based on well-supported, diagnosable clades. Several well-supported nodes are recovered, including the monophyly of a restricted Testudo, T. kleinmanni + T. marginata (the Chersus clade), and the placement of the enigmatic African pancake tortoise (Malacochersustornieri) within the predominantly Palearctic greater Testudo group (Testudona tax. nov.). Despite the large amount of sequence reported, there is low statistical support for some nodes within Testudona and Sowe do not propose names for those groups. A preliminary and conservative estimation of divergence times implies a late Miocene diversification for the testudonan clade (6-12 million years ago), matching their first appearance in the fossil record. The multi-continental distribution of testudonan turtles can be explained by the establishment of permanent connections between Europe, Africa, and Asia at this time. The arrival of testudonan turtles to Africa occurred after one or more initial tortoise invasions gave rise to the diverse (>25 species) 'Geochelone complex.'Two unusual genomic features are reported for the mtDNA of one tortoise, M. tornieri: (1) nad4 has a shift of reading frame that we suggest is resolved by translational frameshifting of the mRNA on the ribosome during protein synthesis and (2) there are two copies of the control region and trnF, with the latter

  1. The complete mitochondrial genome sequence of the spider habronattus oregonensis reveals rearranged and extremely truncated tRNAs

    SciTech Connect

    Masta, Susan E.; Boore, Jeffrey L.

    2004-01-31

    We sequenced the entire mitochondrial genome of the jumping spider Habronattus oregonensis of the arachnid order Araneae (Arthropoda: Chelicerata). A number of unusual features distinguish this genome from other chelicerate and arthropod mitochondrial genomes. Most of the transfer RNA gene sequences are greatly reduced in size and cannot be folded into typical cloverleaf-shaped secondary structures. At least nine of the tRNA sequences lack the potential to form TYC arm stem pairings, and instead are inferred to have TV-replacement loops. Furthermore, sequences that could encode the 3' aminoacyl acceptor stems in at least 10 tRNAs appear to be lacking, because fully paired acceptor stems are not possible and because the downstream sequences instead encode adjacent genes. Hence, these appear to be among the smallest known tRNA genes. We postulate that an RNA editing mechanism must exist to restore the 3' aminoacyl acceptor stems in order to allow the tRNAs to function. At least seven tRN As are rearranged with respect to the chelicerate Limulus polyphemus, although the arrangement of the protein-coding genes is identical. Most mitochondrial protein-coding genes of H. oregonensis have ATN as initiation codons, as commonly found in arthropod mtDNAs, but cytochrome oxidase subunit 2 and 3 genes apparently use UUG as an initiation codon. Finally, many of the gene sequences overlap one another and are truncated. This 14,381 bp genome, the first mitochondrial genome of a spider yet sequenced, is one of the smallest arthropod mitochondrial genomes known. We suggest that post transcriptional RNA editing can likely maintain function of the tRNAs while permitting the accumulation of mutations that would otherwise be deleterious. Such mechanisms may have allowed for the minimization of the spider mitochondrial genome.

  2. The use of transcriptomic next-generation sequencing data to assemble mitochondrial genomes of Ancistrus spp. (Loricariidae).

    PubMed

    Moreira, Daniel A; Furtado, Carolina; Parente, Thiago E

    2015-11-15

    Mitochondrial genes and genomes have long been applied in phylogenetics. Current protocols to sequence mitochondrial genomes rely almost exclusively on long range PCR or on the direct sequencing. While long range PCR includes unnecessary biases, the purification of mtDNA for direct sequencing is not straightforward. We used total RNA extracted from liver and Illumina HiSeq technology to sequence mitochondrial transcripts from three fish (Ancistrus spp.) and assemble their mitogenomes. Based on the mtDNA sequence of a close related species, we estimate to have sequenced 92%, 95% and 99% of the mitogenomes. Taken the sequences together, we sequenced all the 13 protein-coding genes, two ribosomal RNAs, 22 tRNAs and the D-loop known in vertebrate mitogenomes. The use of transcriptomic data allowed the observation of the punctuation pattern of mtRNA maturation, to analyze the transcriptional profile, and to detect heteroplasmic sites. The assembly of mtDNA from transcriptomic data is complementary to other approaches and overcomes some limitations of traditional strategies for sequencing mitogenomes. Moreover, this approach is faster than traditional methods and allows a clear identification of genes, in particular for tRNAs and rRNAs.

  3. The use of transcriptomic next-generation sequencing data to assemble mitochondrial genomes of Ancistrus spp. (Loricariidae).

    PubMed

    Moreira, Daniel A; Furtado, Carolina; Parente, Thiago E

    2015-11-15

    Mitochondrial genes and genomes have long been applied in phylogenetics. Current protocols to sequence mitochondrial genomes rely almost exclusively on long range PCR or on the direct sequencing. While long range PCR includes unnecessary biases, the purification of mtDNA for direct sequencing is not straightforward. We used total RNA extracted from liver and Illumina HiSeq technology to sequence mitochondrial transcripts from three fish (Ancistrus spp.) and assemble their mitogenomes. Based on the mtDNA sequence of a close related species, we estimate to have sequenced 92%, 95% and 99% of the mitogenomes. Taken the sequences together, we sequenced all the 13 protein-coding genes, two ribosomal RNAs, 22 tRNAs and the D-loop known in vertebrate mitogenomes. The use of transcriptomic data allowed the observation of the punctuation pattern of mtRNA maturation, to analyze the transcriptional profile, and to detect heteroplasmic sites. The assembly of mtDNA from transcriptomic data is complementary to other approaches and overcomes some limitations of traditional strategies for sequencing mitogenomes. Moreover, this approach is faster than traditional methods and allows a clear identification of genes, in particular for tRNAs and rRNAs. PMID:26344710

  4. Complete sequence and characterization of the Silurus lanzhouensis (Siluriformes: Siluridae) mitochondrial genome.

    PubMed

    Lian, Zong-Qiang; Wu, Xu-Dong; Xiao, Wei; Sai, Qing-Yun; Gun, Shuang-Bao

    2016-07-01

    The complete mitochondrial DNA (mtDNA) sequence of Silurus lanzhouensis was constructed from whole-genome Illumina sequencing data. The 16 523 bp circular genome comprises typical mtDNA components. All 13 protein-coding genes (PCGs) are initiated by an ATG except for COX1, which uses GTG. Some PCGs harbor TAG (ND2 and ND3) or an incomplete stop codon T (COX2, ND4, and CYTB), while others use TAA as their stop codon. 12S rRNA and 16S rRNA secondary structures are composed of four domains with 45 helices and six domains with 54 helices, respectively. All tRNAs are predicted to fold into the expected typical cloverleaf secondary structure except tRNA-Ser((AGN)). The largest intergenic spacer sequence was predicted to be the origin of light-strand replication. Eight conserved sequences were identified in the control region (CR). This complete S. lanzhouensis mitogenome provides useful data for further studies on molecular systematics, taxonomic status, stock evaluation, and conservation genetics.

  5. A pedigree-based study of mitochondrial D-loop DNA sequence variation among Arabian horses.

    PubMed

    Bowling, A T; Del Valle, A; Bowling, M

    2000-02-01

    Through DNA sequence comparisons of a mitochondrial D-loop hypervariable region, we investigated matrilineal diversity for Arabian horses in the United States. Sixty-two horses were tested. From published pedigrees they traced in the maternal line to 34 mares acquired primarily in the mid to late 19th century from nomadic Bedouin tribes. Compared with the reference sequence (GenBank X79547), these samples showed 27 haplotypes with altogether 31 base substitution sites within 397 bp of sequence. Based on examination of pedigrees from a random sampling of 200 horses in current studbooks of the Arabian Horse Registry of America, we estimated that this study defined the expected mtDNA haplotypes for at least 89% of Arabian horses registered in the US. The reliability of the studbook recorded maternal lineages of Arabian pedigrees was demonstrated by haplotype concordance among multiple samplings in 14 lines. Single base differences observed within two maternal lines were interpreted as representing alternative fixations of past heteroplasmy. The study also demonstrated the utility of mtDNA sequence studies to resolve historical maternity questions without access to biological material from the horses whose relationship was in question, provided that representatives of the relevant female lines were available for comparison. The data call into question the traditional assumption that Arabian horses of the same strain necessarily share a common maternal ancestry.

  6. Complete mitochondrial genome sequence of a Middle Pleistocene cave bear reconstructed from ultrashort DNA fragments

    PubMed Central

    Dabney, Jesse; Knapp, Michael; Glocke, Isabelle; Gansauge, Marie-Theres; Weihmann, Antje; Nickel, Birgit; Valdiosera, Cristina; García, Nuria; Pääbo, Svante; Arsuaga, Juan-Luis; Meyer, Matthias

    2013-01-01

    Although an inverse relationship is expected in ancient DNA samples between the number of surviving DNA fragments and their length, ancient DNA sequencing libraries are strikingly deficient in molecules shorter than 40 bp. We find that a loss of short molecules can occur during DNA extraction and present an improved silica-based extraction protocol that enables their efficient retrieval. In combination with single-stranded DNA library preparation, this method enabled us to reconstruct the mitochondrial genome sequence from a Middle Pleistocene cave bear (Ursus deningeri) bone excavated at Sima de los Huesos in the Sierra de Atapuerca, Spain. Phylogenetic reconstructions indicate that the U. deningeri sequence forms an early diverging sister lineage to all Western European Late Pleistocene cave bears. Our results prove that authentic ancient DNA can be preserved for hundreds of thousand years outside of permafrost. Moreover, the techniques presented enable the retrieval of phylogenetically informative sequences from samples in which virtually all DNA is diminished to fragments shorter than 50 bp. PMID:24019490

  7. Fast mitochondrial DNA isolation from mammalian cells for next-generation sequencing.

    PubMed

    Quispe-Tintaya, Wilber; White, Ryan R; Popov, Vasily N; Vijg, Jan; Maslov, Alexander Y

    2013-09-01

    Standard methods for mitochondrial DNA (mtDNA) extraction do not provide the level of enrichment for mtDNA sufficient for direct sequencing and must be followed by long-range-PCR amplification, which can bias the sequencing results. Here, we describe a fast, cost-effective, and reliable method for preparation of mtDNA enriched samples from eukaryotic cells ready for direct sequencing. Our protocol utilizes a conventional miniprep kit, paramagnetic bead-based purification, and an optional, limited PCR amplification of mtDNA. The first two steps alone provide more than 2000-fold enrichment for mtDNA when compared with total cellular DNA (~200-fold in comparison with current commercially available kits) as demonstrated by real-time PCR. The percentage of sequencing reads aligned to mtDNA was about 22% for non-amplified samples and greater than 99% for samples subjected to 10 cycles of long-range-PCR with mtDNA specific primers.

  8. Population subdivision in Europe's great bustard inferred from mitochondrial and nuclear DNA sequence variation.

    PubMed

    Pitra, C; Lieckfeldt, D; Alonso, J C

    2000-08-01

    A continent-wide survey of sequence variation in mitochondrial (mt) and nuclear (n) DNA of the endangered great bustard (Otis tarda) was conducted to assess the extent of phylogeographic structure in a morphologically monotypic bird. DNA sequence variation in a combined 809 bp segment of the mtDNA genome from 66 individuals from the last six breeding regions showed relatively low levels of intraspecific sequence diversity (n = 0.32%) but significant differences in the regional distribution of 11 haplotypes (phiST = 0.49). Despite their exceptional potential for dispersal, a complete and long-term historical separation between the populations from the Iberian Peninsula (Spain) and mainland Europe (Hungary, Slovakia, Germany, and Russia) was demonstrated. Divergence between populations based on a 3-bp insertion-deletion polymorphism within the intron region of the nuclear CHD-Z gene was geographically concordant with the primary subdivision identified within the mtDNA sequences. Inferred aspects of phylogeography were used to formulate conservation recommendations for this endangered species.

  9. Genetic variability of Echinococcus granulosus from the Tibetan plateau inferred by mitochondrial DNA sequences.

    PubMed

    Yan, Ning; Nie, Hua-Ming; Jiang, Zhong-Rong; Yang, Ai-Guo; Deng, Shi-Jin; Guo, Li; Yu, Hua; Yan, Yu-Bao; Tsering, Dawa; Kong, Wei-Shu; Wang, Ning; Wang, Jia-Hai; Xie, Yue; Fu, Yan; Yang, De-Ying; Wang, Shu-Xian; Gu, Xiao-Bin; Peng, Xue-Rong; Yang, Guang-You

    2013-09-01

    To analyse genetic variability and population structure, 84 isolates of Echinococcus granulosus (Cestoda: Taeniidae) collected from various host species at different sites of the Tibetan plateau in China were sequenced for the whole mitochondrial nad1 (894 bp) and atp6 (513 bp) genes. The vast majority were classified as G1 genotype (n=82), and two samples from human patients in Sichuan province were identified as G3 genotype. Based on the concatenated sequences of nad1+atp6, 28 different haplotypes (NA1-NA28) were identified. A parsimonious network of the concatenated sequence haplotypes showed star-like features in the overall population, with NA1 as the major haplotype in the population networks. By AMOVA it was shown that variation of E. granulosus within the overall population was the main pattern of the total genetic variability. Neutrality indexes of the concatenated sequence (nad1+atp6) were computed by Tajima's D and Fu's Fs tests and showed high negative values for E. granulosus, indicating significant deviations from neutrality. FST and Nm values suggested that the populations were not genetically differentiated.

  10. Sequence variability in three mitochondrial genes among four roundworm species from wild animals in China.

    PubMed

    Chang, Qiao-Cheng; Gao, Jun-Feng; Sheng, Zhong-Hua; Lou, Yan; Zheng, Xu; Wang, Chun-Ren

    2015-02-01

    Sequence variability in three mitochondrial DNA (mtDNA) regions, namely portions of cytochrome c oxidase subunit 1 (pcox1), NADH dehydrogenase subunit 1 (pnad1) and NADH dehydrogenase subunit 4 (pnad4), for Toxocara canis. Baylisacaris transfuga. Ascaris suum and Parascaris equorum from Canis lupus. Ursus thibetanus. Sus scrofa and Equus burchelli in China were examined. The lengths of the sequences of pcox1, pnad1 and pnad4 were 711 bp, 648 bp and 666 bp, respectively. No intra-species differences were detected in pcox1 for the four examined ascarid species, in pnad1 for T. canis. A. suum and P. equorum, and in pnad4 for B. transfuga and P. equorum. Sequence differences in pnad4 for six roundworm samples of T. canis and P. equorum were 0-0.1% and 0-0.3%, respectively, and were 0-0.3% in pnad1 for six roundworm samples isolate of B. transfuga. The inter-specific sequence differences among four species were 8.7-12.4% for pcox1, 13.9-17.7% for pnad1, and 14.0-25.7% for pnad4. Phylogenetic analyses suggested that the three mtDNA fragments could be used to identify ascarid species in families Ascaridiae and Toxocaridae.

  11. Complete sequence analysis of mitochondrial DNA and telomere length in aplastic anemia.

    PubMed

    Cui, Xing; Wang, Junqiang; Cai, Zhiguo; Wang, Jingyi; Liu, Kui; Cui, Siyuan; Zhang, Jie; Luo, Yaqin; Wang, Xin; Li, Weiwei; Jing, Jingyan

    2014-11-01

    The present study was primarily undertaken to examine the hypothesis that mitochondrial DNA (mtDNA) mutations and telomere length may be associated with aplastic anemia (AA). Our study included a single institution analysis of 40 patients presenting with AA first diagnosed at the Affiliated Hospital of Shandong, University of Traditional Chinese Medicine between 2010 and 2013. Bone marrow and oral epithelial samples were collected from patients with AA (n=40) for mtDNA mutation and telomere length determinations. Bone marrow specimens were collected from 40 healthy volunteers as controls for the examination of telomere length. The mitochondrial genome was amplified by polymerase chain reaction (PCR), and the products were used for sequencing and analysis. We detected 146 heteroplasmic mutations in 18 genes from 40 patients with AA, including 39 silent mutations and 28 frameshift mutations. We used the gamma globin gene (HBG) as the control gene in real-time PCR to survey the relative telomere length measurements of the patients with AA and the healthy volunteers. Telomere length was expressed as the relative T/S value. We observed a negative correlation between the mtDNA non-silent mutation and the white blood cell (WBC) count, hemoglobin and platelet count. Of note, there was a positive correlation between the relative T/S value and WBC count, hemoglobin and platelet count, and a negative correlation between the non-silent mutation and the relative T/S value. We conclude that the functional impairment of the mitochondrial respiratory chain induced by mutation and telomere length shortening may play an important role in the process of hematopoietic failure in patients with AA. Additionally, mtDNA mutations and telomere length shortening influenced each other.

  12. The Complete Sequence of the Mitochondrial Genome of the Chamberednautilus (Mollusca: Cephalopoda)

    SciTech Connect

    Boore, Jeffrey L.

    2005-12-01

    Background: Mitochondria contain small genomes that arephysically separate from those of nuclei. Their comparison serves as amodel system for understanding the processes of genome evolution.Although complete mitochondrial genome sequences have been reported formore than 600 animals, the taxonomic sampling is highly biased towardvertebrates and arthropods, leaving much of the diversity yetuncharacterized. Results: The mitochondrial genome of a cephalopodmollusk, the Chambered Nautilus, is 16,258 nts in length and 59.5 percentA+T, both values that are typical of animal mitochondrial genomes. Itcontains the 37 genes that are typical for animal mtDNAs, with 15 on oneDNA strand and 22 on the other. The arrangement of these genes can bederived from that of the distantly related Katharina tunicata (Mollusca:Polyplacophora) by a switch in position of two large blocks of genes andtranspositions of four tRNA genes. There is strong skew in thedistribution of nucleotides between the two strands. There are an unusualnumber of non-coding regions and their function, if any, is not known;however, several of these demark abrupt shifts in nucleotide skew,suggesting that they may play roles in transcription and/or replication.One of the non-coding regions contains multiple repeats of a tRNA-likesequence. Some of the tRNA genes appear to overlap on the same strand,but this could be resolved if the polycistron were cleaved at thebeginning of the downstream gene, followed by polyadenylation of theproduct of the upstream gene to form a fully paired structure.Conclusions: Nautilus sp. mtDNA contains an expected gene content thathas experienced few rearrangements since the evolutionary split betweencephalopods and polyplacophorans. It contains an unusual number ofnon-coding regions, especially considering that these otherwise often aregenerated by the same processes that produce gene rearrangements. Thisappears to be yet another case where polyadenylation of mitochondrialtRNAs restores

  13. Complete mitochondrial genome sequence from an endangered Indian snake, Python molurus molurus (Serpentes, Pythonidae).

    PubMed

    Dubey, Bhawna; Meganathan, P R; Haque, Ikramul

    2012-07-01

    This paper reports the complete mitochondrial genome sequence of an endangered Indian snake, Python molurus molurus (Indian Rock Python). A typical snake mitochondrial (mt) genome of 17258 bp length comprising of 37 genes including the 13 protein coding genes, 22 tRNA genes, and 2 ribosomal RNA genes along with duplicate control regions is described herein. The P. molurus molurus mt. genome is relatively similar to other snake mt. genomes with respect to gene arrangement, composition, tRNA structures and skews of AT/GC bases. The nucleotide composition of the genome shows that there are more A-C % than T-G% on the positive strand as revealed by positive AT and CG skews. Comparison of individual protein coding genes, with other snake genomes suggests that ATP8 and NADH3 genes have high divergence rates. Codon usage analysis reveals a preference of NNC codons over NNG codons in the mt. genome of P. molurus. Also, the synonymous and non-synonymous substitution rates (ka/ks) suggest that most of the protein coding genes are under purifying selection pressure. The phylogenetic analyses involving the concatenated 13 protein coding genes of P. molurus molurus conformed to the previously established snake phylogeny.

  14. The N-terminus of survivin is a mitochondrial-targeting sequence and Src regulator

    PubMed Central

    Dunajová, Lucia; Cash, Emily; Markus, Robert; Rochette, Sophie; Townley, Amelia R.

    2016-01-01

    ABSTRACT Survivin (also known as BIRC5) is a cancer-associated protein that exists in several locations in the cell. Its cytoplasmic residence in interphase cells is governed by CRM1 (also known as XPO1)-mediated nuclear exportation, and its localisation during mitosis to the centromeres and midzone microtubules is that of a canonical chromosomal passenger protein. In addition to these well-established locations, survivin is also a mitochondrial protein, but how it gets there and its function therein is presently unclear. Here, we show that the first ten amino acids at the N-terminus of survivin are sufficient to target GFP to the mitochondria in vivo, and ectopic expression of this decapeptide decreases cell adhesion and accelerates proliferation. The data support a signalling mechanism in which this decapeptide regulates the tyrosine kinase Src, leading to reduced focal adhesion plaques and disruption of F-actin organisation. This strongly suggests that the N-terminus of survivin is a mitochondrial-targeting sequence that regulates Src, and that survivin acts in concert with Src to promote tumorigenesis. PMID:27246243

  15. Phylogenetic relationships between Hapalemur species and subspecies based on mitochondrial DNA sequences

    PubMed Central

    Fausser, Jean-Luc; Prosper, Prosper; Donati, Giuseppe; Ramanamanjato, Jean-Baptiste; Rumpler, Yves

    2002-01-01

    Background Phylogenetic relationships of the genus Hapalemur remains controversial, particularly within the Hapalemur griseus species group. In order to obtain more information on the taxonomic status within this genus, and particularly in the cytogenetic distinct subspecies group of Hapalemur griseus, 357 bp sequence of cytochrome b and 438 bp of 12S mitochondrial DNAs were analyzed on a sample of animals captured in areas extending from the north to the south-east of Madagascar. This sample covers all cytogenetically defined types recognized of the genus Hapalemur. Results Phylogenetic trees and distances analyses demonstrate a first emergence of Hapalemur simus followed by H. aureus which is the sister clade of the H. griseus subspecies. Hapalemur griseus is composed of 4 subspecies separated into two clades. The first contains H. g. griseus, H. g. alaotrensis and H. g. occidentalis. The second consists of H. g. meridionalis. A new chromosomal polymorphic variant from the region of Ranomafana, H. griseus ssp, has been analysed and was found in both clades. Conclusions Our results support the raising of H. g. meridionalis to the specific rank H. meridionalis, while neither cytogenetic nor molecular evidences support the raising of H. g. alaotrensis to a species rank despite its morphological characteristics. The new cytotype H. g. ssp which has been previously characterized by cytogenetic studies contains animals clustering either with the group of Hapalemur griseus griseus or with that of Hapalemur meridionalis. This suggests the existence of an ancestral polymorphism or an introgression of mitochondrial DNA between subspecies. PMID:11914128

  16. The complete mitochondrial genome of Lithobates catesbeianus (Anura: Ranidae).

    PubMed

    Lin, Yubo; Tao, Bofang; Fang, Xindong; Wang, Tingting; Zhang, Jiayong

    2014-12-01

    The complete mitochondrial genome of Lithobates catesbeianus (Anura: Ranidae) is sequenced to analyze the gene arrangement. It is a circular molecule of 18,241 bp in length including 37 genes typically found in other frogs. The AT content of the overall base composition of L. catesbeianus is 59.9%. The length of control region is 2783 bp with 66.0% AT content. Protein-coding genes begin with ATG as start codon except except ND1 and ATP6 began with ATA, COI and ND4L with GTG, and ND2 with ATT. COI end with AGG as stop codon, COII and ND6 end with AGA, ND2 end with TAG, ATP8. ND4L. ND5 and Cytb end with TAA, and the other five PCGs end with a incomplete stop codon (a single stop nucleotide T).

  17. Insights into the evolution of mitochondrial genome size from complete sequences of Citrullus lanatus and Cucurbita pepo (Cucurbitaceae).

    PubMed

    Alverson, Andrew J; Wei, XiaoXin; Rice, Danny W; Stern, David B; Barry, Kerrie; Palmer, Jeffrey D

    2010-06-01

    The mitochondrial genomes of seed plants are unusually large and vary in size by at least an order of magnitude. Much of this variation occurs within a single family, the Cucurbitaceae, whose genomes range from an estimated 390 to 2,900 kb in size. We sequenced the mitochondrial genomes of Citrullus lanatus (watermelon: 379,236 nt) and Cucurbita pepo (zucchini: 982,833 nt)--the two smallest characterized cucurbit mitochondrial genomes--and determined their RNA editing content. The relatively compact Citrullus mitochondrial genome actually contains more and longer genes and introns, longer segmental duplications, and more discernibly nuclear-derived DNA. The large size of the Cucurbita mitochondrial genome reflects the accumulation of unprecedented amounts of both chloroplast sequences (>113 kb) and short repeated sequences (>370 kb). A low mutation rate has been hypothesized to underlie increases in both genome size and RNA editing frequency in plant mitochondria. However, despite its much larger genome, Cucurbita has a significantly higher synonymous substitution rate (and presumably mutation rate) than Citrullus but comparable levels of RNA editing. The evolution of mutation rate, genome size, and RNA editing are apparently decoupled in Cucurbitaceae, reflecting either simple stochastic variation or governance by different factors.

  18. Arthropod Phylogenetics in Light of Three Novel Millipede (Myriapoda: Diplopoda) Mitochondrial Genomes with Comments on the Appropriateness of Mitochondrial Genome Sequence Data for Inferring Deep Level Relationships

    PubMed Central

    Brewer, Michael S.; Swafford, Lynn; Spruill, Chad L.; Bond, Jason E.

    2013-01-01

    Background Arthropods are the most diverse group of eukaryotic organisms, but their phylogenetic relationships are poorly understood. Herein, we describe three mitochondrial genomes representing orders of millipedes for which complete genomes had not been characterized. Newly sequenced genomes are combined with existing data to characterize the protein coding regions of myriapods and to attempt to reconstruct the evolutionary relationships within the Myriapoda and Arthropoda. Results The newly sequenced genomes are similar to previously characterized millipede sequences in terms of synteny and length. Unique translocations occurred within the newly sequenced taxa, including one half of the Appalachioria falcifera genome, which is inverted with respect to other millipede genomes. Across myriapods, amino acid conservation levels are highly dependent on the gene region. Additionally, individual loci varied in the level of amino acid conservation. Overall, most gene regions showed low levels of conservation at many sites. Attempts to reconstruct the evolutionary relationships suffered from questionable relationships and low support values. Analyses of phylogenetic informativeness show the lack of signal deep in the trees (i.e., genes evolve too quickly). As a result, the myriapod tree resembles previously published results but lacks convincing support, and, within the arthropod tree, well established groups were recovered as polyphyletic. Conclusions The novel genome sequences described herein provide useful genomic information concerning millipede groups that had not been investigated. Taken together with existing sequences, the variety of compositions and evolution of myriapod mitochondrial genomes are shown to be more complex than previously thought. Unfortunately, the use of mitochondrial protein-coding regions in deep arthropod phylogenetics appears problematic, a result consistent with previously published studies. Lack of phylogenetic signal renders the

  19. Mitochondrial genomes of two Sinochlora species (Orthoptera): novel genome rearrangements and recognition sequence of replication origin

    PubMed Central

    2013-01-01

    Background Orthoptera, the largest polyneopteran insect order, contains 2 suborders and 235 subfamilies. Orthoptera mitochondrial genomes (mitogenomes) follow the ancestral insect gene order, with the exception of a trnD-trnK rearrangement in Acridomorphs and rare tRNA inversions. A question still remains regarding whether a long thymine-nucleotide stretch (T-stretch) involved in the recognition of the replication origin exists in the control region (CR) of Orthoptera mitochondrial DNA (mtDNA). Herein, we completed the sequencing of whole mitogenomes of two congeners (Sinochlora longifissa and S. retrolateralis), which possess overlapping distribution areas. Additionally, we performed comparative mitogenomic analysis to depict evolutionary trends of Orthoptera mitogenomes. Results Both Sinochlora mitogenomes possess 37 genes and one CR, a common gene orientation, normal structures of transfer RNA and ribosomal RNA genes, rather low A+T bias, and significant C skew in the majority strand (J-strand), resembling all the other sequenced ensiferans. Both mitogenomes are characterized by (1) a large size resulting from multiple copies of an approximately 175 bp GC-rich tandem repeat within CR; (2) a novel gene order (rrnS-trnI-trnM-nad2-CR-trnQ-trnW), compared to the ancestral order (rrnS-CR-trnI-trnQ-trnM-nad2-trnW); and (3) redundant trnS(UCN) pseudogenes located between trnS(UCN) and nad1. Multiple independent duplication events followed by random and/or non-random loss occurred during Sinochlora mtDNA evolution. The Orthoptera mtDNA recognition sequence of the replication origin may be one of two kinds: a long T-stretch situated in or adjacent to a possible stem-loop structure or a variant of a long T-stretch located within a potential stem-loop structure. Conclusions The unique Sinochlora mitogenomes reveal that the mtDNA architecture within Orthoptera is more variable than previously thought, enriching our knowledge on mitogenomic genetic diversities. The novel

  20. Phylogenetic relationships of extant zokors (Myospalacinae) (Rodentia, Spalacidae) inferred from mitochondrial DNA sequences.

    PubMed

    Su, Junhu; Ji, Weihong; Wang, Jing; Gleeson, Dianne M; Zhou, Janwei; Hua, Limin; Wei, Yanming

    2014-04-01

    In this study, we use three mitochondrial markers, cytochrome b gene (Cyt b), NADH dehydrogenase subunit 4 (ND4) and control region (D-loop) to investigate the phylogenetic relationships of extant zokor species in Mysopalacinae. The phylogenetic tree constructed based on Cyt b strongly supports the monophyly genera Eospalax and Myospalax with E. fontanierii being the most ancient species in Eospalax. Further phylogenetic analyses of four species of Eospalax based on ND4 and D-loop sequences revealed two clades that correspond to two geographical distributions. The basal clade includes E. cansus which is mainly found on Loess Plateau (LP) and another clade including E. baileyi, E. smithii and E. rufescens that inhabits areas above 2000 m on Qinghai-Tibetan Plateau (QTP) and Qinling Mountains. Geographical events of QTP and LP may have played a major role in the diversification and evolution of Mysopalacinae.

  1. Does behavior reflect phylogeny in swiftlets (Aves: Apodidae)? A test using cytochrome b mitochondrial DNA sequences.

    PubMed Central

    Lee, P L; Clayton, D H; Griffiths, R; Page, R D

    1996-01-01

    Swiftlets are small insectivorous birds, many of which nest in caves and are known to echolocate. Due to a lack of distinguishing morphological characters, the taxonomy of swiftlets is primarily based on the presence or absence of echolocating ability, together with nest characters. To test the reliability of these behavioral characters, we constructed an independent phylogeny using cytochrome b mitochondrial DNA sequences from swiftlets and their relatives. This phylogeny is broadly consistent with the higher classification of swifts but does not support the monophyly of swiftlets. Echolocating swiftlets (Aerodramus) and the nonecholocating "giant swiftlet" (Hydrochous gigas) group together, but the remaining nonecholocating swiftlets belonging to Collocalia are not sister taxa to these swiftlets. While echolocation may be a synapomorphy of Aerodramus (perhaps secondarily lost in Hydrochous), no character of Aerodramus nests showed a statistically significant fit to the molecular phylogeny, indicating that nest characters are not phylogenetically reliable in this group. Images Fig. 1 PMID:8692950

  2. Mitochondrial DNA sequence diversity in two groups of Italian Veneto speakers from Veneto.

    PubMed

    Mogentale-Profizi, N; Chollet, L; Stévanovitch, A; Dubut, V; Poggi, C; Pradié, M P; Spadoni, J L; Gilles, A; Béraud-Colomb, E

    2001-03-01

    Although frequencies of mitochondrial DNA (mtDNA) haplogroups in the different European populations are rather homogenous, there are a few European populations or linguistic isolates that show different mtDNA haplogroup distributions; examples are the Saami and Ladin speakers from the eastern Italian Alps. MtDNA sequence diversity was analysed from subjects from two villages in Veneto. The first, Posina, is situated in the Venetian Alps near Vicenza. The second, Barco di Pravisdomini is a village on the plains near Venice. In spite of their common Veneto dialect, the two group populations have not preserved a genetic homogeneity; particularly, they show differences in T and J haplogroups frequencies. MtDNA diversity in these two groups seems to depend more on their geographic situation.

  3. Phylogeny of the owlet-nightjars (Aves: Aegothelidae) based on mitochondrial DNA sequence

    USGS Publications Warehouse

    Dumbacher, J.P.; Pratt, T.K.; Fleischer, R.C.

    2003-01-01

    The avian family Aegothelidae (Owlet-nightjars) comprises nine extant species and one extinct species, all of which are currently classified in a single genus, Aegotheles. Owlet-nightjars are secretive nocturnal birds of the South Pacific. They are relatively poorly studied and some species are known from only a few specimens. Furthermore, their confusing morphological variation has made it difficult to cluster existing specimens unambiguously into hierarchical taxonomic units. Here we sample all extant owlet-nightjar species and all but three currently recognized subspecies. We use DNA extracted primarily from museum specimens to obtain mitochondrial gene sequences and construct a molecular phylogeny. Our phylogeny suggests that most species are reciprocally monophyletic, however A. albertisi appears paraphyletic. Our data also suggest splitting A. bennettii into two species and splitting A. insignis and A. tatei as suggested in another recent paper. ?? 2003 Elsevier Science (USA). All rights reserved.

  4. The complete mitochondrial genome sequence of Wenxian Knobby Newt Tylototriton wenxianensis (Amphibia: Caudata).

    PubMed

    Han, Fuyao; Jiang, Ye; Zhang, Mingwang

    2016-07-01

    We newly sequenced the mitochondrial genome of Tylototriton wenxianensis. The total length of the T. wenxianensis mitogenome is 16 265 bp, with GenBank accession number KR733683. It consists of 13 protein-coding genes (PCGs), two ribosomal RNA genes (rRNA), 22 transfer RNA genes (tRNA), and one control region (CR). Most of the genes are encoded on the H-strand, except for eight tRNA and ND6, which are encoded on the L-strand. Our mitogenomic phylogenetic tree showed that the relationships among the genera Tylototriton, Echinotriton, and Pleurodeles were well supported, and which is consistent with the previous molecular phylogeny. PMID:26114322

  5. Complete DNA sequence of the mitochondrial genome of the ascidian Halocynthia roretzi (Chordata, Urochordata).

    PubMed

    Yokobori, S i; Ueda, T; Feldmaier-Fuchs, G; Pääbo, S; Ueshima, R; Kondow, A; Nishikawa, K; Watanabe, K

    1999-12-01

    The complete nucleotide sequence of the 14,771-bp-long mitochondrial (mt) DNA of a urochordate (Chordata)-the ascidian Halocynthia roretzi-was determined. All the Halocynthia mt-genes were found to be located on a single strand, which is rich in T and G rather than in A and C. Like nematode and Mytilus edulis mtDNAs, that of Halocynthia encodes no ATP synthetase subunit 8 gene. However, it does encode an additional tRNA gene for glycine (anticodon TCT) that enables Halocynthia mitochondria to use AGA and AGG codons for glycine. The mtDNA carries an unusual tRNA(Met) gene with a TAT anticodon instead of the usual tRNA(Met)(CAT) gene. As in other metazoan mtDNAs, there is not any long noncoding region. The gene order of Halocynthia mtDNA is completely different from that of vertebrate mtDNAs except for tRNA(His)-tRNA(Ser)(GCU), suggesting that evolutionary change in the mt-gene structure is much accelerated in the urochordate line compared with that in vertebrates. The amino acid sequences of Halocynthia mt-proteins deduced from their gene sequences are quite different from those in other metazoans, indicating that the substitution rate in Halocynthia mt-protein genes is also accelerated.

  6. HaploGrep 2: mitochondrial haplogroup classification in the era of high-throughput sequencing.

    PubMed

    Weissensteiner, Hansi; Pacher, Dominic; Kloss-Brandstätter, Anita; Forer, Lukas; Specht, Günther; Bandelt, Hans-Jürgen; Kronenberg, Florian; Salas, Antonio; Schönherr, Sebastian

    2016-07-01

    Mitochondrial DNA (mtDNA) profiles can be classified into phylogenetic clusters (haplogroups), which is of great relevance for evolutionary, forensic and medical genetics. With the extensive growth of the underlying phylogenetic tree summarizing the published mtDNA sequences, the manual process of haplogroup classification would be too time-consuming. The previously published classification tool HaploGrep provided an automatic way to address this issue. Here, we present the completely updated version HaploGrep 2 offering several advanced features, including a generic rule-based system for immediate quality control (QC). This allows detecting artificial recombinants and missing variants as well as annotating rare and phantom mutations. Furthermore, the handling of high-throughput data in form of VCF files is now directly supported. For data output, several graphical reports are generated in real time, such as a multiple sequence alignment format, a VCF format and extended haplogroup QC reports, all viewable directly within the application. In addition, HaploGrep 2 generates a publication-ready phylogenetic tree of all input samples encoded relative to the revised Cambridge Reference Sequence. Finally, new distance measures and optimizations of the algorithm increase accuracy and speed-up the application. HaploGrep 2 can be accessed freely and without any registration at http://haplogrep.uibk.ac.at.

  7. Phylogenetic relationships of Indian caecilians (Amphibia: Gymnophiona) inferred from mitochondrial rRNA gene sequences.

    PubMed

    Wilkinson, Mark; A Sheps, Jonathan; Oommen, Oommen V; Cohen, Bernard L

    2002-06-01

    India has a diverse caecilian fauna, including representatives of three of the six currently recognized families, the Caeciliidae, Ichthyophiidae, the endemic Uraeotyphlidae, but previous molecular phylogenetic studies of caecilians have not included sequences for any Indian caecilians. Partial 12S and 16S mitochondrial gene sequences were obtained for a single representative of each of the caecilian families found in India and aligned against previously reported sequences for 13 caecilian species. The resulting alignment (16 taxa, 1200 sites, of which 288 cannot be aligned unambiguously) was analyzed using parsimony, maximum-likelihood, and distance methods. As judged by bootstrap proportions, decay indices, and leaf stabilities, well-supported relationships of the Indian caecilians are recovered from the alignment. The data (1) corroborate the hypothesis, based on morphology, that the Uraeotyphlidae and Ichthyophiidae are sister taxa, (2) recover a monophyletic Ichthyophiidae, including Indian and South East Asian representatives, and (3) place the Indian caeciliid Gegeneophis ramaswamii as the sister group of the caeciliid caecilians of the Seychelles. Rough estimates of divergence times suggest an origin of the Uraeotyphlidae and Ichthyophiidae while India was isolated from Laurasia and Africa and are most consistent with an Indian origin of these families and subsequent dispersal of ichthyophiids into South East Asia.

  8. HaploGrep 2: mitochondrial haplogroup classification in the era of high-throughput sequencing.

    PubMed

    Weissensteiner, Hansi; Pacher, Dominic; Kloss-Brandstätter, Anita; Forer, Lukas; Specht, Günther; Bandelt, Hans-Jürgen; Kronenberg, Florian; Salas, Antonio; Schönherr, Sebastian

    2016-07-01

    Mitochondrial DNA (mtDNA) profiles can be classified into phylogenetic clusters (haplogroups), which is of great relevance for evolutionary, forensic and medical genetics. With the extensive growth of the underlying phylogenetic tree summarizing the published mtDNA sequences, the manual process of haplogroup classification would be too time-consuming. The previously published classification tool HaploGrep provided an automatic way to address this issue. Here, we present the completely updated version HaploGrep 2 offering several advanced features, including a generic rule-based system for immediate quality control (QC). This allows detecting artificial recombinants and missing variants as well as annotating rare and phantom mutations. Furthermore, the handling of high-throughput data in form of VCF files is now directly supported. For data output, several graphical reports are generated in real time, such as a multiple sequence alignment format, a VCF format and extended haplogroup QC reports, all viewable directly within the application. In addition, HaploGrep 2 generates a publication-ready phylogenetic tree of all input samples encoded relative to the revised Cambridge Reference Sequence. Finally, new distance measures and optimizations of the algorithm increase accuracy and speed-up the application. HaploGrep 2 can be accessed freely and without any registration at http://haplogrep.uibk.ac.at. PMID:27084951

  9. HaploGrep 2: mitochondrial haplogroup classification in the era of high-throughput sequencing

    PubMed Central

    Weissensteiner, Hansi; Pacher, Dominic; Kloss-Brandstätter, Anita; Forer, Lukas; Specht, Günther; Bandelt, Hans-Jürgen; Kronenberg, Florian; Salas, Antonio; Schönherr, Sebastian

    2016-01-01

    Mitochondrial DNA (mtDNA) profiles can be classified into phylogenetic clusters (haplogroups), which is of great relevance for evolutionary, forensic and medical genetics. With the extensive growth of the underlying phylogenetic tree summarizing the published mtDNA sequences, the manual process of haplogroup classification would be too time-consuming. The previously published classification tool HaploGrep provided an automatic way to address this issue. Here, we present the completely updated version HaploGrep 2 offering several advanced features, including a generic rule-based system for immediate quality control (QC). This allows detecting artificial recombinants and missing variants as well as annotating rare and phantom mutations. Furthermore, the handling of high-throughput data in form of VCF files is now directly supported. For data output, several graphical reports are generated in real time, such as a multiple sequence alignment format, a VCF format and extended haplogroup QC reports, all viewable directly within the application. In addition, HaploGrep 2 generates a publication-ready phylogenetic tree of all input samples encoded relative to the revised Cambridge Reference Sequence. Finally, new distance measures and optimizations of the algorithm increase accuracy and speed-up the application. HaploGrep 2 can be accessed freely and without any registration at http://haplogrep.uibk.ac.at. PMID:27084951

  10. Mitochondrial DNA sequence analysis of four Alzheimer`s and Parkinson`s disease patients

    SciTech Connect

    Brown, M.D.; Shoffner, J.M.; Wallace, D.C.

    1996-01-22

    The mitochondrial DNA (mtDNA) sequence was determined on 3 patients with Alzheimer`s disease (AD) exhibiting AD plus Parkinson`s disease (PD) neuropathologic changes and one patient with PD. Patient mtDNA sequences were compared to the standard Cambridge sequence to identify base changes. In the first AD + PD patient, 2 of the 15 nucleotide substitutions may contribute to the neuropathology, a nucleotide pair (np) 4336 transition in the tRNA{sup Gln} gene found 7.4 times more frequently in patients than in controls, and a unique np 721 transition in the 12S rRNA gene which was not found in 70 other patients or 905 controls. In the second AD + PD patient, 27 nucleotide substitutions were detected, including an np 3397 transition in the ND1 gene which converts a conserved methionine to a valine. In the third AD + PD patient, 2 polymorphic base substitutions frequently found at increased frequency in Leber`s hereditary optic neuropathy patients were observed, an np 4216 transition in ND1 and an np 13708 transition in the ND5 gene. For the PD patient, 2 novel variants were observed among 25 base substitutions, an np 1709 substitution in the 16S rRNA gene and an np 15851 missense mutation in the cytb gene. Further studies will be required to demonstrate a casual role for these base substitutions in neurodegenerative disease. 68 refs., 2 tabs.

  11. Accelerated molecular evolution in Microtus (Rodentia) as assessed via complete mitochondrial genome sequences.

    PubMed

    Triant, Deborah A; Dewoody, J Andrew

    2006-01-01

    Microtus is one of the most taxonomically diverse mammalian genera, including over 60 extant species. These rodents have evolved rapidly, as the genus originated less than 2 million years ago. If these numbers are taken at face value, then an average of 30 microtine speciation events have occurred every million years. One explanation for the rapid rate of cladogenesis in Microtus could be the karyotypic differentiation exhibited across the genus: diploid numbers range from 17 to 64. Despite the striking chromosomal variability within Microtus, phenotypic variation is unremarkable. To determine whether nucleotide substitution rates are also elevated in voles, we sequenced the entire mitochondrial DNA (mtDNA) genome of the Eurasian sibling vole (Microtus rossiaemeridionalis). We compared this genome to another previously sequenced vole mtDNA genome (Microtus kikuchii) and performed pairwise sequence comparisons with the mtDNA genomes of ten additional mammalian genera. We found that microtine mtDNA genomes are evolving more rapidly than any other mammalian lineage we sampled, as gauged by the rate of nucleotide substitution across the entire mtDNA genome as well as at each individual protein-coding gene. Additionally, we compared substitution rates within the cytochrome b gene to seven other rodent genera and found that Microtus mtDNA is evolving fastest. The root cause of accelerated evolution in Microtus remains uncertain, but merits further investigation.

  12. Application of mitochondrial genes sequences for measuring the genetic diversity of Arabian oryx.

    PubMed

    Khan, Haseeb A; Arif, Ibrahim A; Shobrak, Mohammad; Homaidan, Ali A Al; Farhan, Ahmad H Al; Sadoon, Mohammad Al

    2011-01-01

    Arabian oryx (Oryx leucoryx) had faced extinction in the wild more than three decades ago and was saved by the prudent efforts of captive breeding programs. A clear understanding of the molecular diversity of contemporary Arabian oryx population is important for the long term success of captive breeding and reintroduction of this potentially endangered species. We have sequenced the segments of mitochondrial DNA including12S rRNA, 16S rRNA, cytochrome b (Cyt-b) and control region (CR) genes of 24 captive-bred and reintroduced animals. Although the sequences of 12S rRNA, 16S rRNA and Cyt-b were found to be identical for all the samples, typical sequence variations in the CR gene were observed in the form of 7 haplotypes. One of these haplotypes has been reported earlier while the remaining 6 haplotypes are novel and represent different lineages from the founders. The haplotype and nucleotide diversities were found to be 0.789 and 0.009 respectively. The genetic distances among the 7 mtDNA haplotypes varied from 0.001 to 0.017. These findings are of potential relevance to the management of captive breeding programs for the conservation of Arabian oryx. PMID:21498924

  13. Sequence evolution in and around the mitochondrial control region in birds.

    PubMed

    Quinn, T W; Wilson, A C

    1993-10-01

    By cloning and sequencing 3.4 kilobases of snow goose mtDNA we found that the ND5 gene is followed by the genes for cytochrome b, tRNA(Thr), tRNA(Pro), ND6, tRNA(Glu), the control region, tRNA(Phe), and srRNA. This order is identical to that of chicken, quail, and duck mtDNA but differs from that of mammals and a frog (Xenopus). The mean extent of difference due to base substitution between goose and chicken is generally closer to the same comparison between rat and mouse but less than that between human and cow. For one of the nine regions compared (tRNA(Glu)), the bird differences appear to be anomalous, possibly implicating altered functional constraints. Within the control region, several short sequences common to mammals are also conserved in the birds. Comparison of the goose control region with that of quail and chicken suggests that a sequence element with similarity to CSB-1 duplicated once prior to the divergence of goose and chicken and again on the lineage leading to chicken. Between goose (or duck) and chicken there are four times more transversions at the third positions of fourfold-degenerate codons in mitochondrial than in nuclear genes. PMID:8308909

  14. Rapid evolution of a heteroplasmic repetitive sequence in the mitochondrial DNA control region of carnivores.

    PubMed

    Hoelzel, A R; Lopez, J V; Dover, G A; O'Brien, S J

    1994-08-01

    We describe a repetitive DNA region at the 3' end of the mitochondrial DNA (mtDNA) control region and compare it in 21 carnivore species representing eight carnivore families. The sequence and organization of the repetitive motifs can differ extensively between arrays; however, all motifs appear to be derived from the core motif "ACGT." Sequence data and Southern blot analysis demonstrate extensive heteroplasmy. The general form of the array is similar between heteroplasmic variants within an individual and between individuals within a species (varying primarily in the length of the array, though two clones from the northern elephant seal are exceptional). Within certain families, notably ursids, the array structure is also similar between species. Similarity between species was not apparent in other carnivore families, such as the mustelids, suggesting rapid changes in the organization and sequence of some arrays. The pattern of change seen within and between species suggests that a dominant mechanism involved in the evolution of these arrays is DNA slippage. A comparative analysis shows that the motifs that are being reiterated or deleted vary within and between arrays, suggesting a varying rate of DNA turnover. We discuss the evolutionary implications of the observed patterns of variation and extreme levels of heteroplasmy. PMID:7932782

  15. Systematic position of Pseudocorynosoma and Andracantha (Acanthocephala, Polymorphidae) based on nuclear and mitochondrial gene sequences.

    PubMed

    García-Varela, Martín; Pérez-Ponce de León, Gerardo; Aznar, Francisco J; Nadler, Steven A

    2009-02-01

    Species of Pseudocorynosoma are North and South American acanthocephalans that use waterfowl as definitive hosts and amphipods as intermediate hosts, whereas species of Andracantha occur in fish-eating birds with a worldwide distribution. Pseudocorynosoma and Andracantha were originally described as Corynosoma (now restricted to endoparasites of marine mammals). Morphologically, Andracantha is distinct from other genera of Polymorphidae in possessing 2 fields of spines on the trunk, whereas Corynosoma and Pseudocorynosoma have a single field. A recent phylogenetic hypothesis based on morphological characters suggested that Andracantha is closely related to Corynosoma, whereas Pseudocorynosoma was of uncertain phylogenetic position within the Polymorphidae. To test the systematic affinities of these 3 genera, we sequenced 2 nuclear genes (SSU and LSU ribosomal DNA) and 1 mitochondrial gene (cytochrome c oxidase subunit 1; cox 1) of species representing Corynosoma, Andracantha, and Pseudocorynosoma and analyzed the data, including available sequences of other polymorphids. Maximum parsimony (MP), maximum likelihood (ML), and Bayesian analyses of the combined (SSU + LSU) sequences and the concatenated data of 3 genes (SSU + LSU + cox 1) placed Andracantha as the sister taxon to Corynosoma with robust support values. All analyses also showed that Pseudocorynosoma is an independent lineage that does not share a common ancestry with Andracantha and Corynosoma. These phylogenetic hypotheses suggest that birds were the ancestral hosts of polymorphids and that the association of Corynosoma with marine mammals represents a subsequent episode of colonization.

  16. Phylogenetic relationships of Indian caecilians (Amphibia: Gymnophiona) inferred from mitochondrial rRNA gene sequences.

    PubMed

    Wilkinson, Mark; A Sheps, Jonathan; Oommen, Oommen V; Cohen, Bernard L

    2002-06-01

    India has a diverse caecilian fauna, including representatives of three of the six currently recognized families, the Caeciliidae, Ichthyophiidae, the endemic Uraeotyphlidae, but previous molecular phylogenetic studies of caecilians have not included sequences for any Indian caecilians. Partial 12S and 16S mitochondrial gene sequences were obtained for a single representative of each of the caecilian families found in India and aligned against previously reported sequences for 13 caecilian species. The resulting alignment (16 taxa, 1200 sites, of which 288 cannot be aligned unambiguously) was analyzed using parsimony, maximum-likelihood, and distance methods. As judged by bootstrap proportions, decay indices, and leaf stabilities, well-supported relationships of the Indian caecilians are recovered from the alignment. The data (1) corroborate the hypothesis, based on morphology, that the Uraeotyphlidae and Ichthyophiidae are sister taxa, (2) recover a monophyletic Ichthyophiidae, including Indian and South East Asian representatives, and (3) place the Indian caeciliid Gegeneophis ramaswamii as the sister group of the caeciliid caecilians of the Seychelles. Rough estimates of divergence times suggest an origin of the Uraeotyphlidae and Ichthyophiidae while India was isolated from Laurasia and Africa and are most consistent with an Indian origin of these families and subsequent dispersal of ichthyophiids into South East Asia. PMID:12099794

  17. Lack of geographic structure in mitochondrial DNA sequences of Bering Sea walleye pollock, Theragra chalcogramma.

    PubMed

    Shields, G F; Gust, J R

    1995-03-01

    We compared 511 nucleotides of mitochondrial DNA from 162 walleye pollock from 32 locations in the Bering Sea, the Shelikof Strait, and the Gulf of Alaska to learn about population structuring in this economically important species. Specifically, we tested for evidence of genetic heterogeneity among three sequence data sets: a 76-bp spacer, the control region, and spacers and control regions combined among six geographic regions: southwest Bering Sea, northern Bering Sea, western Aleutians, eastern Aleutians, the Donut Hole, and the Gulf of Alaska. No significant genetic heterogeneity was detected among spacer sequences or control regions, or spacers and control regions combined among areas of the Bering Sea. Slight genetic heterogeneity was detected when a "Western Bering" sample (southwest Bering and northern Bering) and an "Eastern Bering" sample (western Aleutians and eastern Aleutians) were compared. Presence of an abundant and widespread haplotype suggests recent establishment of the walleye pollock population in the Bering Sea. However, the ratio of nucleotide transitions to transversions in these pollock is extremely low, suggesting that the population may be old. Presence of a widespread and abundant haplotype, together with numerous rare ones, suggests a high variance in reproductive success for relatively few females, which may be disproportionately contributing to the survival of individual haplotypes. Sequencing of control regions in pollock may be less informative than conventional analysis of restriction fragment length polymorphisms or RFLP analysis of amplified variable sites. PMID:7749468

  18. Heteroplasmy in the mitochondrial genomes of human lice and ticks revealed by high throughput sequencing.

    PubMed

    Xiong, Haoyu; Barker, Stephen C; Burger, Thomas D; Raoult, Didier; Shao, Renfu

    2013-01-01

    The typical mitochondrial (mt) genomes of bilateral animals consist of 37 genes on a single circular chromosome. The mt genomes of the human body louse, Pediculus humanus, and the human head louse, Pediculus capitis, however, are extensively fragmented and contain 20 minichromosomes, with one to three genes on each minichromosome. Heteroplasmy, i.e. nucleotide polymorphisms in the mt genome within individuals, has been shown to be significantly higher in the mt cox1 gene of human lice than in humans and other animals that have the typical mt genomes. To understand whether the extent of heteroplasmy in human lice is associated with mt genome fragmentation, we sequenced the entire coding regions of all of the mt minichromosomes of six human body lice and six human head lice from Ethiopia, China and France with an Illumina HiSeq platform. For comparison, we also sequenced the entire coding regions of the mt genomes of seven species of ticks, which have the typical mitochondrial genome organization of bilateral animals. We found that the level of heteroplasmy varies significantly both among the human lice and among the ticks. The human lice from Ethiopia have significantly higher level of heteroplasmy than those from China and France (Pt<0.05). The tick, Amblyomma cajennense, has significantly higher level of heteroplasmy than other ticks (Pt<0.05). Our results indicate that heteroplasmy level can be substantially variable within a species and among closely related species, and does not appear to be determined by single factors such as genome fragmentation. PMID:24058467

  19. A new phylogeny for the genus Picea from plastid, mitochondrial, and nuclear sequences.

    PubMed

    Lockwood, Jared D; Aleksić, Jelena M; Zou, Jiabin; Wang, Jing; Liu, Jianquan; Renner, Susanne S

    2013-12-01

    Studies over the past ten years have shown that the crown groups of most conifer genera are only about 15-25 Ma old. The genus Picea (spruces, Pinaceae), with around 35 species, appears to be no exception. In addition, molecular studies of co-existing spruce species have demonstrated frequent introgression. Perhaps not surprisingly therefore previous phylogenetic studies of species relationships in Picea, based mostly on plastid sequences, suffered from poor statistical support. We therefore generated mitochondrial, nuclear, and further plastid DNA sequences from carefully sourced material, striking a balance between alignability with outgroups and phylogenetic signal content. Motif duplications in mitochondrial introns were treated as characters in a stochastic Dollo model; molecular clock models were calibrated with fossils; and ancestral ranges were inferred under maximum likelihood. In agreement with previous findings, Picea diverged from its sister clade 180 million years ago (Ma), and the most recent common ancestor of today's spruces dates to 28 Ma. Different from previous analyses though, we find a large Asian clade, an American clade, and a Eurasian clade. Two expansions occurred from Asia to North America and several between Asia and Europe. Chinese P. brachytyla, American P. engelmannii, and Norway spruce, P. abies, are not monophyletic, and North America has ten, not eight species. Divergence times imply that Pleistocene refugia are unlikely to be the full explanation for the relationships between the European species and their East Asian relatives. Thus, northern Norway spruce may be part of an Asian species complex that diverged from the southern Norway spruce lineage in the Upper Miocene, some 6 Ma, which can explain the deep genetic gap noted in phylogeographic studies of Norway spruce. The large effective population sizes of spruces, and incomplete lineage sorting during speciation, mean that the interspecific relationships within each of the

  20. Heteroplasmy in the Mitochondrial Genomes of Human Lice and Ticks Revealed by High Throughput Sequencing

    PubMed Central

    Xiong, Haoyu; Barker, Stephen C.; Burger, Thomas D.; Raoult, Didier; Shao, Renfu

    2013-01-01

    The typical mitochondrial (mt) genomes of bilateral animals consist of 37 genes on a single circular chromosome. The mt genomes of the human body louse, Pediculus humanus, and the human head louse, Pediculus capitis, however, are extensively fragmented and contain 20 minichromosomes, with one to three genes on each minichromosome. Heteroplasmy, i.e. nucleotide polymorphisms in the mt genome within individuals, has been shown to be significantly higher in the mt cox1 gene of human lice than in humans and other animals that have the typical mt genomes. To understand whether the extent of heteroplasmy in human lice is associated with mt genome fragmentation, we sequenced the entire coding regions of all of the mt minichromosomes of six human body lice and six human head lice from Ethiopia, China and France with an Illumina HiSeq platform. For comparison, we also sequenced the entire coding regions of the mt genomes of seven species of ticks, which have the typical mitochondrial genome organization of bilateral animals. We found that the level of heteroplasmy varies significantly both among the human lice and among the ticks. The human lice from Ethiopia have significantly higher level of heteroplasmy than those from China and France (Pt<0.05). The tick, Amblyomma cajennense, has significantly higher level of heteroplasmy than other ticks (Pt<0.05). Our results indicate that heteroplasmy level can be substantially variable within a species and among closely related species, and does not appear to be determined by single factors such as genome fragmentation. PMID:24058467

  1. Combined mitochondrial and nuclear DNA sequences resolve the interrelations of the major Australasian marsupial radiations.

    PubMed

    Phillips, Matthew J; McLenachan, Patricia A; Down, Christin; Gibb, Gillian C; Penny, David

    2006-02-01

    Australasian marsupials include three major radiations, the insectivorous/carnivorous Dasyuromorphia, the omnivorous bandicoots (Peramelemorphia), and the largely herbivorous diprotodontians. Morphologists have generally considered the bandicoots and diprotodontians to be closely related, most prominently because they are both syndactylous (with the 2nd and 3rd pedal digits being fused). Molecular studies have been unable to confirm or reject this Syndactyla hypothesis. Here we present new mitochondrial (mt) genomes from a spiny bandicoot (Echymipera rufescens) and two dasyurids, a fat-tailed dunnart (Sminthopsis crassicaudata) and a northern quoll (Dasyurus hallucatus). By comparing trees derived from pairwise base-frequency differences between taxa with standard (absolute, uncorrected) distance trees, we infer that composition bias among mt protein-coding and RNA sequences is sufficient to mislead tree reconstruction. This can explain incongruence between trees obtained from mt and nuclear data sets. However, after excluding major sources of compositional heterogeneity, both the "reduced-bias" mt and nuclear data sets clearly favor a bandicoot plus dasyuromorphian association, as well as a grouping of kangaroos and possums (Phalangeriformes) among diprotodontians. Notably, alternatives to these groupings could only be confidently rejected by combining the mt and nuclear data. Elsewhere on the tree, Dromiciops appears to be sister to the monophyletic Australasian marsupials, whereas the placement of the marsupial mole (Notoryctes) remains problematic. More generally, we contend that it is desirable to combine mt genome and nuclear sequences for inferring vertebrate phylogeny, but as separately modeled process partitions. This strategy depends on detecting and excluding (or accounting for) major sources of non-historical signal, such as from compositional non-stationarity. [Base composition; combined data; marsupial; mitochondrial genome; phylogeny.].

  2. Combined mitochondrial and nuclear DNA sequences resolve the interrelations of the major Australasian marsupial radiations.

    PubMed

    Phillips, Matthew J; McLenachan, Patricia A; Down, Christin; Gibb, Gillian C; Penny, David

    2006-02-01

    Australasian marsupials include three major radiations, the insectivorous/carnivorous Dasyuromorphia, the omnivorous bandicoots (Peramelemorphia), and the largely herbivorous diprotodontians. Morphologists have generally considered the bandicoots and diprotodontians to be closely related, most prominently because they are both syndactylous (with the 2nd and 3rd pedal digits being fused). Molecular studies have been unable to confirm or reject this Syndactyla hypothesis. Here we present new mitochondrial (mt) genomes from a spiny bandicoot (Echymipera rufescens) and two dasyurids, a fat-tailed dunnart (Sminthopsis crassicaudata) and a northern quoll (Dasyurus hallucatus). By comparing trees derived from pairwise base-frequency differences between taxa with standard (absolute, uncorrected) distance trees, we infer that composition bias among mt protein-coding and RNA sequences is sufficient to mislead tree reconstruction. This can explain incongruence between trees obtained from mt and nuclear data sets. However, after excluding major sources of compositional heterogeneity, both the "reduced-bias" mt and nuclear data sets clearly favor a bandicoot plus dasyuromorphian association, as well as a grouping of kangaroos and possums (Phalangeriformes) among diprotodontians. Notably, alternatives to these groupings could only be confidently rejected by combining the mt and nuclear data. Elsewhere on the tree, Dromiciops appears to be sister to the monophyletic Australasian marsupials, whereas the placement of the marsupial mole (Notoryctes) remains problematic. More generally, we contend that it is desirable to combine mt genome and nuclear sequences for inferring vertebrate phylogeny, but as separately modeled process partitions. This strategy depends on detecting and excluding (or accounting for) major sources of non-historical signal, such as from compositional non-stationarity. [Base composition; combined data; marsupial; mitochondrial genome; phylogeny.]. PMID:16507529

  3. Cetacean mitochondrial DNA control region: sequences of all extant baleen whales and two sperm whale species.

    PubMed

    Arnason, U; Gullberg, A; Widegren, B

    1993-09-01

    The sequence of the mitochondrial control region was determined in all 10 extant species commonly assigned to the suborder Mysticeti (baleen or whalebone whales) and to two odontocete (toothed whale) species (the sperm and the pygmy sperm whale). In the mysticetes, both the length and the sequence of the control region were very similar, with differences occurring primarily in the first approximately 160 bp of the 5' end of the L-strand of the region. There were marked differences between the mysticete and sperm whale sequences and also between the two sperm whales. The control region, less its variable portion, was used in a comparison including the 10 mysticete sequences plus the same region of an Antarctic minke whale specimen and the two sperm whales. The difference between the minke whales from the North Atlantic and the Antarctic was greater than that between any acknowledged species belonging to the same genus (Balaenoptera). The difference was similar to that between the families Balaenopteridae (rorquals) and Eschrichtiidae (gray whales). The findings suggest that the Antarctic minke whale should have a full species status, B. bonaerensis. Parsimony analysis separated the bowhead and the right whale (family Balaenidae) from all remaining mysticetes, including the pygmy right whale. The pygmy right whale is usually included in family Balaenidae. The analysis revealed a close relationship between the gray whale (family Eschrichtiidae) sequence and those of the rorquals (family Balaenopteridae). The gray whale was included in a clade together with the sei, Bryde's, fin, blue, and humpback whales. This clade was separated from the two minke whale types, which branched together.

  4. The Complete Mitochondrial Genome Sequence of Bactericera cockerelli and Comparison with Three Other Psylloidea Species

    PubMed Central

    Wu, Fengnian; Cen, Yijing; Wallis, Christopher M.; Trumble, John T.; Prager, Sean; Yokomi, Ray; Zheng, Zheng; Deng, Xiaoling; Chen, Jianchi; Liang, Guangwen

    2016-01-01

    Potato psyllid (Bactericera cockerelli) is an important pest of potato, tomato and pepper. Not only could a toxin secreted by nymphs results in serious phytotoxemia in some host plants, but also over the past few years B. cockerelli was shown to transmit “Candidatus Liberibacter solanacearum”, the putative bacterial pathogen of potato zebra chip (ZC) disease, to potato and tomato. ZC has caused devastating losses to potato production in the western U.S., Mexico, and elsewhere. New knowledge of the genetic diversity of the B. cockerelli is needed to develop improved strategies to manage pest populations. Mitochondrial genome (mitogenome) sequencing provides important knowledge about insect evolution and diversity in and among populations. This report provides the first complete B. cockerelli mitogenome sequence as determined by next generation sequencing technology (Illumina MiSeq). The circular B. cockerelli mitogenome had a size of 15,220 bp with 13 protein-coding gene (PCGs), 2 ribosomal RNA genes (rRNAs), 22 transfer RNA genes (tRNAs), and a non-coding region of 975 bp. The overall gene order of the B. cockerelli mitogenome is identical to three other published Psylloidea mitogenomes: one species from the Triozidae, Paratrioza sinica; and two species from the Psyllidae, Cacopsylla coccinea and Pachypsylla venusta. This suggests all of these species share a common ancestral mitogenome. However, sequence analyses revealed differences between and among the insect families, in particular a unique region that can be folded into three stem-loop secondary structures present only within the B. cockerelli mitogenome. A phylogenetic tree based on the 13 PCGs matched an existing taxonomy scheme that was based on morphological characteristics. The available complete mitogenome sequence makes it accessible to all genes for future population diversity evaluation of B. cockerelli. PMID:27227976

  5. The Complete Mitochondrial Genome Sequence of Bactericera cockerelli and Comparison with Three Other Psylloidea Species.

    PubMed

    Wu, Fengnian; Cen, Yijing; Wallis, Christopher M; Trumble, John T; Prager, Sean; Yokomi, Ray; Zheng, Zheng; Deng, Xiaoling; Chen, Jianchi; Liang, Guangwen

    2016-01-01

    Potato psyllid (Bactericera cockerelli) is an important pest of potato, tomato and pepper. Not only could a toxin secreted by nymphs results in serious phytotoxemia in some host plants, but also over the past few years B. cockerelli was shown to transmit "Candidatus Liberibacter solanacearum", the putative bacterial pathogen of potato zebra chip (ZC) disease, to potato and tomato. ZC has caused devastating losses to potato production in the western U.S., Mexico, and elsewhere. New knowledge of the genetic diversity of the B. cockerelli is needed to develop improved strategies to manage pest populations. Mitochondrial genome (mitogenome) sequencing provides important knowledge about insect evolution and diversity in and among populations. This report provides the first complete B. cockerelli mitogenome sequence as determined by next generation sequencing technology (Illumina MiSeq). The circular B. cockerelli mitogenome had a size of 15,220 bp with 13 protein-coding gene (PCGs), 2 ribosomal RNA genes (rRNAs), 22 transfer RNA genes (tRNAs), and a non-coding region of 975 bp. The overall gene order of the B. cockerelli mitogenome is identical to three other published Psylloidea mitogenomes: one species from the Triozidae, Paratrioza sinica; and two species from the Psyllidae, Cacopsylla coccinea and Pachypsylla venusta. This suggests all of these species share a common ancestral mitogenome. However, sequence analyses revealed differences between and among the insect families, in particular a unique region that can be folded into three stem-loop secondary structures present only within the B. cockerelli mitogenome. A phylogenetic tree based on the 13 PCGs matched an existing taxonomy scheme that was based on morphological characteristics. The available complete mitogenome sequence makes it accessible to all genes for future population diversity evaluation of B. cockerelli. PMID:27227976

  6. The complete sequence of the mitochondrial genome of Butomus umbellatus--a member of an early branching lineage of monocotyledons.

    PubMed

    Cuenca, Argelia; Petersen, Gitte; Seberg, Ole

    2013-01-01

    In order to study the evolution of mitochondrial genomes in the early branching lineages of the monocotyledons, i.e., the Acorales and Alismatales, we are sequencing complete genomes from a suite of key taxa. As a starting point the present paper describes the mitochondrial genome of Butomus umbellatus (Butomaceae) based on next-generation sequencing data. The genome was assembled into a circular molecule, 450,826 bp in length. Coding sequences cover only 8.2% of the genome and include 28 protein coding genes, four rRNA genes, and 12 tRNA genes. Some of the tRNA genes and a 16S rRNA gene are transferred from the plastid genome. However, the total amount of recognized plastid sequences in the mitochondrial genome is only 1.5% and the amount of DNA transferred from the nucleus is also low. RNA editing is abundant and a total of 557 edited sites are predicted in the protein coding genes. Compared to the 40 angiosperm mitochondrial genomes sequenced to date, the GC content of the Butomus genome is uniquely high (49.1%). The overall similarity between the mitochondrial genomes of Butomus and Spirodela (Araceae), the closest relative yet sequenced, is low (less than 20%), and the two genomes differ in size by a factor 2. Gene order is also largely unconserved. However, based on its phylogenetic position within the core alismatids Butomus will serve as a good reference point for subsequent studies in the early branching lineages of the monocotyledons.

  7. Complete mitochondrial genome sequences for Crown-of-thorns starfish Acanthaster planci and Acanthaster brevispinus

    PubMed Central

    Yasuda, Nina; Hamaguchi, Masami; Sasaki, Miho; Nagai, Satoshi; Saba, Masaki; Nadaoka, Kazuo

    2006-01-01

    Background The crown-of-thorns starfish, Acanthaster planci (L.), has been blamed for coral mortality in a large number of coral reef systems situated in the Indo-Pacific region. Because of its high fecundity and the long duration of the pelagic larval stage, the mechanism of outbreaks may be related to its meta-population dynamics, which should be examined by larval sampling and population genetic analysis. However, A. planci larvae have undistinguished morphological features compared with other asteroid larvae, hence it has been difficult to discriminate A. planci larvae in plankton samples without species-specific markers. Also, no tools are available to reveal the dispersal pathway of A. planci larvae. Therefore the development of highly polymorphic genetic markers has the potential to overcome these difficulties. To obtain genomic information for these purposes, the complete nucleotide sequences of the mitochondrial genome of A. planci and its putative sibling species, A. brevispinus were determined and their characteristics discussed. Results The complete mtDNA of A. planci and A. brevispinus are 16,234 bp and 16,254 bp in size, respectively. These values fall within the length variation range reported for other metazoan mitochondrial genomes. They contain 13 proteins, 2 rRNA, and 22 tRNA genes and the putative control region in the same order as the asteroid, Asterina pectinifera. The A + T contents of A. planci and A. brevispinus on their L strands that encode the majority of protein-coding genes are 56.3% and 56.4% respectively and are lower than that of A. pectinifera (61.2%). The percent similarity of nucleotide sequences between A. planci and A. brevispinus is found to be highest in the CO2 and CO3 regions (both 90.6%) and lowest in ND2 gene (84.2%) among the 13 protein-coding genes. In the deduced putative amino acid sequences, CO1 is highly conserved (99.2%), and ATP8 apparently evolves faster any of the other protein-coding gene (85.2%). Conclusion

  8. Full Mitochondrial Genome Sequence of the Sugar Beet Wireworm Limonius californicus (Coleoptera: Elateridae), a Common Agricultural Pest

    PubMed Central

    New, Daniel D.; Robison, Barrie D.; Rashed, Arash; Hohenlohe, Paul; Forney, Larry; Rashidi, Mahnaz; Wilson, Cathy M.; Settles, Matthew L.

    2016-01-01

    We report here the full mitochondrial genome sequence of Limonius californicus, a species of click beetle that is an agricultural pest in its larval form. The circular genome is 16.5 kb and contains 13 protein-coding genes, 2 rRNA genes, and 22 tRNA genes. PMID:26798113

  9. Low-coverage MiSeq next generation sequencing reveals the mitochondrial genome of the Eastern Rock Lobster, Sagmariasus verreauxi.

    PubMed

    Doyle, Stephen R; Griffith, Ian S; Murphy, Nick P; Strugnell, Jan M

    2015-01-01

    The complete mitochondrial genome of the Eastern Rock lobster, Sagmariasus verreauxi, is reported for the first time. Using low-coverage, long read MiSeq next generation sequencing, we constructed and determined the mtDNA genome organization of the 15,470 bp sequence from two isolates from Eastern Tasmania, Australia and Northern New Zealand, and identified 46 polymorphic nucleotides between the two sequences. This genome sequence and its genetic polymorphisms will likely be useful in understanding the distribution and population connectivity of the Eastern Rock Lobster, and in the fisheries management of this commercially important species.

  10. Jasmonate perception by inositol-phosphate-potentiated COI1-JAZ co-receptor

    SciTech Connect

    Sheard, Laura B; Tan, Xu; Mao, Haibin; Withers, John; Ben-Nissan, Gili; Hinds, Thomas R; Kobayashi, Yuichi; Hsu, Fong-Fu; Sharon, Michal; Browse, John; He, Sheng Yang; Rizo, Josep; Howe, Gregg A; Zheng, Ning

    2011-11-07

    Jasmonates are a family of plant hormones that regulate plant growth, development and responses to stress. The F-box protein CORONATINE INSENSITIVE 1 (COI1) mediates jasmonate signalling by promoting hormone-dependent ubiquitylation and degradation of transcriptional repressor JAZ proteins. Despite its importance, the mechanism of jasmonate perception remains unclear. Here we present structural and pharmacological data to show that the true Arabidopsis jasmonate receptor is a complex of both COI1 and JAZ. COI1 contains an open pocket that recognizes the bioactive hormone (3R,7S)-jasmonoyl-l-isoleucine (JA-Ile) with high specificity. High-affinity hormone binding requires a bipartite JAZ degron sequence consisting of a conserved {alpha}-helix for COI1 docking and a loop region to trap the hormone in its binding pocket. In addition, we identify a third critical component of the jasmonate co-receptor complex, inositol pentakisphosphate, which interacts with both COI1 and JAZ adjacent to the ligand. Our results unravel the mechanism of jasmonate perception and highlight the ability of F-box proteins to evolve as multi-component signalling hubs.

  11. Complete mitochondrial genome of Cynopterus sphinx (Pteropodidae: Cynopterus).

    PubMed

    Li, Linmiao; Li, Min; Wu, Zhengjun; Chen, Jinping

    2015-01-01

    We have characterized the complete mitochondrial genome of Cynopterus sphinx (Pteropodidae: Cynopterus) and described its organization in this study. The total length of C. sphinx complete mitochondrial genome was 16,895 bp with the base composition of 32.54% A, 14.05% G, 25.82% T and 27.59% C. The complete mitochondrial genome included 13 protein-coding genes, 22 tRNA genes, 2 rRNA genes (12S rRNA and 16S rRNA) and 1 control region (D-loop). The control region was 1435 bp long with the sequence CATACG repeat 64 times. Three protein-coding genes (ND1, COI and ND4) were ended with incomplete stop codon TA or T. PMID:24409875

  12. Sequencing of the mitochondrial genome of the avocado lace bug Pseudacysta perseae (Heteroptera, Tingidae) using a genome skimming approach.

    PubMed

    Kocher, Arthur; Guilbert, Éric; Lhuillier, Émeline; Murienne, Jerôme

    2015-03-01

    Lace bugs (Tingidae) are a family of phytophagous heteropterans, some of which are important agricultural and forestry pests. They currently comprise around 2500 species distributed worldwide, for which only one mitochondrial genome has been described so far. We sequenced the complete mitochondrial genome and the nuclear ribosomal gene segment of the avocado lace bug Pseudacysta perseae using a genome skimming approach on an Illumina Hiseq 2000 platform. Fifty-four additional heteropteran mitogenomes, including the one of the sycamore lace bug Corythucha ciliata, were retrieved to allow for comparisons and phylogenetic analyses. P. perseae mitochondrial genome was determined to be 15,850 bp long, and presented the typical organisation of insect mitogenomes. The phylogenetic analysis placed P. perseae as a sister to C. ciliata but did not confirm the monophyly of Miroidae including Tingidae. Our results contradicted widely accepted phylogenetic hypothesis, which highlights the limits of analyses based on mitochondrial data only. Shotgun sequencing approaches should provide substantial improvements in harmonizing mitochondrial and nuclear databases.

  13. The complete mitochondrial genome sequence of Oncicola luehei (Acanthocephala: Archiacanthocephala) and its phylogenetic position within Syndermata.

    PubMed

    Gazi, Mohiuddin; Sultana, Tahera; Min, Gi-Sik; Park, Yung Chul; García-Varela, Martín; Nadler, Steven A; Park, Joong-Ki

    2012-06-01

    In the present study, we determined the complete mitochondrial genome sequence of Oncicola luehei (14,281bp), the first archiacanthocephalan representative and the second complete sequence from the phylum Acanthocephala. The complete genome contains 36 genes including 12 protein coding genes, 22 transfer RNA (tRNA) genes and 2 ribosomal RNA genes (rrnL and rrnS) as reported for other syndermatan species. All genes are encoded on the same strand. The overall nucleotide composition of O. luehei mtDNA is 37.7% T, 29.6% G, 22.5% A, and 10.2% C. The overall A+T content (60.2%) is much lower, compared to other syndermatan species reported so far, due to the high frequency (18.3%) of valine encoded by GTN in its protein-coding genes. Results from phylogenetic analyses of amino acid sequences for 10 protein-coding genes from 41 representatives of major metazoan groups including O. luehei supported monophyly of the phylum Acanthocephala and of the clade Syndermata (Acanthocephala+Rotifera), and the paraphyly of the clade Eurotatoria (classes Bdelloidea+Monogononta from phylum Rotifera). Considering the position of the acanthocephalan species within Syndermata, it is inferred that obligatory parasitism characteristic of acanthocephalans was acquired after the common ancestor of acanthocephalans diverged from its sister group, Bdelloidea. Additional comparison of complete mtDNA sequences from unsampled acanthocephalan lineages, especially classes Polyacanthocephala and Eoacanthocephala, is required to test if mtDNA provides reliable information for the evolutionary relationships and pattern of life history diversification found in the syndermatan groups.

  14. Validated primer set that prevents nuclear DNA sequences of mitochondrial origin co-amplification: a revision based on the New Human Genome Reference Sequence (GRCh37).

    PubMed

    Ramos, Amanda; Santos, Cristina; Barbena, Elena; Mateiu, Ligia; Alvarez, Luis; Nogués, Ramon; Aluja, Maria Pilar

    2011-03-01

    A new human genome reference sequence--GRCh37--was recently generated and made available by the Genome Reference Consortium. Since the prior disposable human reference sequence--hg18--was previously used for the mitochondrial DNA primer BLAST validation, a revision of those previously published primer pairs is required. Thus, the aim of this Short Communication is to perform an in silico BLAST test of the published disposable nine primer pairs using the new human reference sequence and to report the pertinent modifications. The new analysis showed that one of the tested primer pairs requires a revision. Therefore, a new validated primer pair, which specifically amplifies the mitochondrial region located between positions 6520 and 9184, is presented.

  15. TOWARD A MOLECULAR PHYLOGENY FOR PEROMYSCUS: EVIDENCE FROM MITOCHONDRIAL CYTOCHROME-b SEQUENCES

    PubMed Central

    Bradley, Robert D.; Durish, Nevin D.; Rogers, Duke S.; Miller, Jacqueline R.; Engstrom, Mark D.; Kilpatrick, C. William

    2009-01-01

    One hundred DNA sequences from the mitochondrial cytochrome-b gene of 44 species of deer mice (Peromyscus (sensu stricto), 1 of Habromys, 1 of Isthmomys, 2 of Megadontomys, and the monotypic genera Neotomodon, Osgoodomys, and Podomys were used to develop a molecular phylogeny for Peromyscus. Phylogenetic analyses (maximum parsimony, maximum likelihood, and Bayesian inference) were conducted to evaluate alternative hypotheses concerning taxonomic arrangements (sensu stricto versus sensu lato) of the genus. In all analyses, monophyletic clades were obtained that corresponded to species groups proposed by previous authors; however, relationships among species groups generally were poorly resolved. The concept of the genus Peromyscus based on molecular data differed significantly from the most current taxonomic arrangement. Maximum-likelihood and Bayesian trees depicted strong support for a clade placing Habromys, Megadontomys, Neotomodon, Osgoodomys, and Podomys within Peromyscus. If Habromys, Megadontomys, Neotomodon, Osgoodomys, and Podomys are regarded as genera, then several species groups within Peromyscus (sensu stricto) should be elevated to generic rank. Isthmomys was associated with the genus Reithrodontomys; in turn this clade was sister to Baiomys, indicating a distant relationship of Isthmomys to Peromyscus. A formal taxonomic revision awaits synthesis of additional sequence data from nuclear markers together with inclusion of available allozymic and karyotypic data. PMID:19924266

  16. Phylogenetic relationships of fig wasps pollinating functionally dioecious Ficus based on mitochondrial DNA sequences and morphology.

    PubMed

    Weiblen, G D

    2001-04-01

    The obligate mutualism between pollinating fig wasps in the family Agaonidae (Hymenoptera: Chalcidoidea) and Ficus species (Moraceae) is often regarded as an example of co-evolution but little is known about the history of the interaction, and understanding the origin of functionally dioecious fig pollination has been especially difficult. The phylogenetic relationships of fig wasps pollinating functionally dioecious Ficus were inferred from mitochondrial cytochrome oxidase gene sequences (mtDNA) and morphology. Separate and combined analyses indicated that the pollinators of functionally dioecious figs are not monophyletic. However, pollinator relationships were generally congruent with host phylogeny and support a revised classification of Ficus. Ancestral changes in pollinator ovipositor length also correlated with changes in fig breeding systems. In particular, the relative elongation of the ovipositor was associated with the repeated loss of functionally dioecious pollination. The concerted evolution of interacting morphologies may bias estimates of phylogeny based on female head characters, but homoplasy is not so strong in other morphological traits. The lesser phylogenetic utility of morphology than of mtDNA is not due to rampant convergence in morphology but rather to the greater number of potentially informative characters in DNA sequence data; patterns of nucleotide substitution also limit the utility of mtDNA findings. Nonetheless, inferring the ancestral associations of fig pollinators from the best-supported phylogeny provided strong evidence of host conservatism in this highly specialized mutualism.

  17. Mitochondrial DNA sequences in ancient Australians: Implications for modern human origins

    PubMed Central

    Adcock, Gregory J.; Dennis, Elizabeth S.; Easteal, Simon; Huttley, Gavin A.; Jermiin, Lars S.; Peacock, W. James; Thorne, Alan

    2001-01-01

    DNA from ancient human remains provides perspectives on the origin of our species and the relationship between molecular and morphological variation. We report analysis of mtDNA from the remains of 10 ancient Australians. These include the morphologically gracile Lake Mungo 3 [≈60 thousand years (ka) before present] and three other gracile individuals from Holocene deposits at Willandra Lakes (<10 ka), all within the skeletal range of living Australians, and six Pleistocene/early Holocene individuals (15 to <8 ka) from Kow Swamp with robust morphologies outside the skeletal range of contemporary indigenous Australians. Lake Mungo 3 is the oldest (Pleistocene) “anatomically modern” human from whom DNA has been recovered. His mtDNA belonged to a lineage that only survives as a segment inserted into chromosome 11 of the nuclear genome, which is now widespread among human populations. This lineage probably diverged before the most recent common ancestor of contemporary human mitochondrial genomes. This timing of divergence implies that the deepest known mtDNA lineage from an anatomically modern human occurred in Australia; analysis restricted to living humans places the deepest branches in East Africa. The other ancient Australian individuals we examined have mtDNA sequences descended from the most recent common ancestor of living humans. Our results indicate that anatomically modern humans were present in Australia before the complete fixation of the mtDNA lineage now found in all living people. Sequences from additional ancient humans may further challenge current concepts of modern human origins. PMID:11209053

  18. Genetic structure of Florida green turtle rookeries as indicated by mitochondrial DNA control region sequences

    USGS Publications Warehouse

    Shamblin, Brian M.; Bagley, Dean A.; Ehrhart, Llewellyn M.; Desjardin, Nicole A.; Martin, R. Erik; Hart, Kristen M.; Naro-Maciel, Eugenia; Rusenko, Kirt; Stiner, John C.; Sobel, Debra; Johnson, Chris; Wilmers, Thomas; Wright, Laura J.; Nairn, Campbell J.

    2014-01-01

    Green turtle (Chelonia mydas) nesting has increased dramatically in Florida over the past two decades, ranking the Florida nesting aggregation among the largest in the Greater Caribbean region. Individual beaches that comprise several hundred kilometers of Florida’s east coast and Keys support tens to thousands of nests annually. These beaches encompass natural to highly developed habitats, and the degree of demographic partitioning among rookeries was previously unresolved. We characterized the genetic structure of ten Florida rookeries from Cape Canaveral to the Dry Tortugas through analysis of 817 base pair mitochondrial DNA (mtDNA) control region sequences from 485 nesting turtles. Two common haplotypes, CM-A1.1 and CM-A3.1, accounted for 87 % of samples, and the haplotype frequencies were strongly partitioned by latitude along Florida’s Atlantic coast. Most genetic structure occurred between rookeries on either side of an apparent genetic break in the vicinity of the St. Lucie Inlet that separates Hutchinson Island and Jupiter Island, representing the finest scale at which mtDNA structure has been documented in marine turtle rookeries. Florida and Caribbean scale analyses of population structure support recognition of at least two management units: central eastern Florida and southern Florida. More thorough sampling and deeper sequencing are necessary to better characterize connectivity among Florida green turtle rookeries as well as between the Florida nesting aggregation and others in the Greater Caribbean region.

  19. Higher-level phylogeny of paraneopteran insects inferred from mitochondrial genome sequences

    PubMed Central

    Li, Hu; Shao, Renfu; Song, Nan; Song, Fan; Jiang, Pei; Li, Zhihong; Cai, Wanzhi

    2015-01-01

    Mitochondrial (mt) genome data have been proven to be informative for animal phylogenetic studies but may also suffer from systematic errors, due to the effects of accelerated substitution rate and compositional heterogeneity. We analyzed the mt genomes of 25 insect species from the four paraneopteran orders, aiming to better understand how accelerated substitution rate and compositional heterogeneity affect the inferences of the higher-level phylogeny of this diverse group of hemimetabolous insects. We found substantial heterogeneity in base composition and contrasting rates in nucleotide substitution among these paraneopteran insects, which complicate the inference of higher-level phylogeny. The phylogenies inferred with concatenated sequences of mt genes using maximum likelihood and Bayesian methods and homogeneous models failed to recover Psocodea and Hemiptera as monophyletic groups but grouped, instead, the taxa that had accelerated substitution rates together, including Sternorrhyncha (a suborder of Hemiptera), Thysanoptera, Phthiraptera and Liposcelididae (a family of Psocoptera). Bayesian inference with nucleotide sequences and heterogeneous models (CAT and CAT + GTR), however, recovered Psocodea, Thysanoptera and Hemiptera each as a monophyletic group. Within Psocodea, Liposcelididae is more closely related to Phthiraptera than to other species of Psocoptera. Furthermore, Thysanoptera was recovered as the sister group to Hemiptera. PMID:25704094

  20. Higher-level phylogeny of paraneopteran insects inferred from mitochondrial genome sequences.

    PubMed

    Li, Hu; Shao, Renfu; Song, Nan; Song, Fan; Jiang, Pei; Li, Zhihong; Cai, Wanzhi

    2015-02-23

    Mitochondrial (mt) genome data have been proven to be informative for animal phylogenetic studies but may also suffer from systematic errors, due to the effects of accelerated substitution rate and compositional heterogeneity. We analyzed the mt genomes of 25 insect species from the four paraneopteran orders, aiming to better understand how accelerated substitution rate and compositional heterogeneity affect the inferences of the higher-level phylogeny of this diverse group of hemimetabolous insects. We found substantial heterogeneity in base composition and contrasting rates in nucleotide substitution among these paraneopteran insects, which complicate the inference of higher-level phylogeny. The phylogenies inferred with concatenated sequences of mt genes using maximum likelihood and Bayesian methods and homogeneous models failed to recover Psocodea and Hemiptera as monophyletic groups but grouped, instead, the taxa that had accelerated substitution rates together, including Sternorrhyncha (a suborder of Hemiptera), Thysanoptera, Phthiraptera and Liposcelididae (a family of Psocoptera). Bayesian inference with nucleotide sequences and heterogeneous models (CAT and CAT + GTR), however, recovered Psocodea, Thysanoptera and Hemiptera each as a monophyletic group. Within Psocodea, Liposcelididae is more closely related to Phthiraptera than to other species of Psocoptera. Furthermore, Thysanoptera was recovered as the sister group to Hemiptera.

  1. Evolutionary Relations of Hexanchiformes Deep-Sea Sharks Elucidated by Whole Mitochondrial Genome Sequences

    PubMed Central

    Tanaka, Keiko; Tomita, Taketeru; Suzuki, Shingo; Hosomichi, Kazuyoshi; Sano, Kazumi; Doi, Hiroyuki; Kono, Azumi; Inoko, Hidetoshi; Kulski, Jerzy K.; Tanaka, Sho

    2013-01-01

    Hexanchiformes is regarded as a monophyletic taxon, but the morphological and genetic relationships between the five extant species within the order are still uncertain. In this study, we determined the whole mitochondrial DNA (mtDNA) sequences of seven sharks including representatives of the five Hexanchiformes, one squaliform, and one carcharhiniform and inferred the phylogenetic relationships among those species and 12 other Chondrichthyes (cartilaginous fishes) species for which the complete mitogenome is available. The monophyly of Hexanchiformes and its close relation with all other Squaliformes sharks were strongly supported by likelihood and Bayesian phylogenetic analysis of 13,749 aligned nucleotides of 13 protein coding genes and two rRNA genes that were derived from the whole mDNA sequences of the 19 species. The phylogeny suggested that Hexanchiformes is in the superorder Squalomorphi, Chlamydoselachus anguineus (frilled shark) is the sister species to all other Hexanchiformes, and the relations within Hexanchiformes are well resolved as Chlamydoselachus, (Notorynchus, (Heptranchias, (Hexanchus griseus, H. nakamurai))). Based on our phylogeny, we discussed evolutionary scenarios of the jaw suspension mechanism and gill slit numbers that are significant features in the sharks. PMID:24089661

  2. Tinamous and moa flock together: mitochondrial genome sequence analysis reveals independent losses of flight among ratites.

    PubMed

    Phillips, Matthew J; Gibb, Gillian C; Crimp, Elizabeth A; Penny, David

    2010-01-01

    Ratites are large, flightless birds and include the ostrich, rheas, kiwi, emu, and cassowaries, along with extinct members, such as moa and elephant birds. Previous phylogenetic analyses of complete mitochondrial genome sequences have reinforced the traditional belief that ratites are monophyletic and tinamous are their sister group. However, in these studies ratite monophyly was enforced in the analyses that modeled rate heterogeneity among variable sites. Relaxing this topological constraint results in strong support for the tinamous (which fly) nesting within ratites. Furthermore, upon reducing base compositional bias and partitioning models of sequence evolution among protein codon positions and RNA structures, the tinamou-moa clade grouped with kiwi, emu, and cassowaries to the exclusion of the successively more divergent rheas and ostrich. These relationships are consistent with recent results from a large nuclear data set, whereas our strongly supported finding of a tinamou-moa grouping further resolves palaeognath phylogeny. We infer flight to have been lost among ratites multiple times in temporally close association with the Cretaceous-Tertiary extinction event. This circumvents requirements for transient microcontinents and island chains to explain discordance between ratite phylogeny and patterns of continental breakup. Ostriches may have dispersed to Africa from Eurasia, putting in question the status of ratites as an iconic Gondwanan relict taxon. PMID:20525622

  3. Molecular phylogenetic and dating analyses using mitochondrial DNA sequences of eyelid geckos (Squamata: Eublepharidae).

    PubMed

    Jonniaux, Pierre; Kumazawa, Yoshinori

    2008-01-15

    Mitochondrial DNA sequences of approximately 2.3 kbp including the complete NADH dehydrogenase subunit 2 gene and its flanking genes, as well as parts of 12S and 16S rRNA genes were determined from major species of the eyelid gecko family Eublepharidae sensu [Kluge, A.G. 1987. Cladistic relationships in the Gekkonoidea (Squamata, Sauria). Misc. Publ. Mus. Zool. Univ. Michigan 173, 1-54.]. In contrast to previous morphological studies, phylogenetic analyses based on these sequences supported that Eublepharidae and Gekkonidae form a sister group with Pygopodidae, raising the possibility of homoplasious character change in some key features of geckos, such as reduction of movable eyelids and innovation of climbing toe pads. The phylogenetic analyses also provided a well-resolved tree for relationships between the eublepharid species. The Bayesian estimation of divergence times without assuming the molecular clock suggested the Jurassic divergence of Eublepharidae from Gekkonidae and radiations of most eublepharid genera around the Cretaceous. These dating results appeared to be robust against some conditional changes for time estimation, such as gene regions used, taxon representation, and data partitioning. Taken together with geological evidence, these results support the vicariant divergence of Eublepharidae and Gekkonidae by the breakup of Pangea into Laurasia and Gondwanaland, and recent dispersal of two African eublepharid genera from Eurasia to Africa after these landmasses were connected in the Early Miocene.

  4. Molecular phylogenetic and dating analyses using mitochondrial DNA sequences of eyelid geckos (Squamata: Eublepharidae).

    PubMed

    Jonniaux, Pierre; Kumazawa, Yoshinori

    2008-01-15

    Mitochondrial DNA sequences of approximately 2.3 kbp including the complete NADH dehydrogenase subunit 2 gene and its flanking genes, as well as parts of 12S and 16S rRNA genes were determined from major species of the eyelid gecko family Eublepharidae sensu [Kluge, A.G. 1987. Cladistic relationships in the Gekkonoidea (Squamata, Sauria). Misc. Publ. Mus. Zool. Univ. Michigan 173, 1-54.]. In contrast to previous morphological studies, phylogenetic analyses based on these sequences supported that Eublepharidae and Gekkonidae form a sister group with Pygopodidae, raising the possibility of homoplasious character change in some key features of geckos, such as reduction of movable eyelids and innovation of climbing toe pads. The phylogenetic analyses also provided a well-resolved tree for relationships between the eublepharid species. The Bayesian estimation of divergence times without assuming the molecular clock suggested the Jurassic divergence of Eublepharidae from Gekkonidae and radiations of most eublepharid genera around the Cretaceous. These dating results appeared to be robust against some conditional changes for time estimation, such as gene regions used, taxon representation, and data partitioning. Taken together with geological evidence, these results support the vicariant divergence of Eublepharidae and Gekkonidae by the breakup of Pangea into Laurasia and Gondwanaland, and recent dispersal of two African eublepharid genera from Eurasia to Africa after these landmasses were connected in the Early Miocene. PMID:18029117

  5. MitoBamAnnotator: A web-based tool for detecting and annotating heteroplasmy in human mitochondrial DNA sequences.

    PubMed

    Zhidkov, Ilia; Nagar, Tal; Mishmar, Dan; Rubin, Eitan

    2011-11-01

    The use of Next-Generation Sequencing of mitochondrial DNA is becoming widespread in biological and clinical research. This, in turn, creates a need for a convenient tool that detects and analyzes heteroplasmy. Here we present MitoBamAnnotator, a user friendly web-based tool that allows maximum flexibility and control in heteroplasmy research. MitoBamAnnotator provides the user with a comprehensively annotated overview of mitochondrial genetic variation, allowing for an in-depth analysis with no prior knowledge in programming.

  6. Molecular systematics of pikas (genus Ochotona) inferred from mitochondrial DNA sequences.

    PubMed

    Yu, N; Zheng, C; Zhang, Y P; Li, W H

    2000-07-01

    The phylogenetic relationships among worldwide species of genus Ochotona were investigated by sequencing mitochondrial cytochrome b and ND4 genes. Parsimony and neighbor-joining analyses of the sequence data yielded congruent results that strongly indicated three major clusters: the shrub-steppe group, the northern group, and the mountain group. The subgeneric classification of Ochotona species needs to be revised because each of the two subgenera in the present classification contains species from the mountain group. To solve this taxonomic problem so that each taxon is monophyletic, i.e. , represents a natural clade, Ochotona could be divided into three subgenera, one for the shrub-steppe species, a second for the northern species, and a third for the mountain species. The inferred tree suggests that the differentiation of this genus in the Palearctic Region was closely related to the gradual uplifting of the Tibet (Qinghai-Xizang) Plateau, as hypothesized previously, and that vicariance might have played a major role in the differentiation of this genus on the Plateau. On the other hand, the North American species, O. princeps, is most likely a dispersal event, which might have happened during the Pliocene through the opening of the Bering Strait. The phylogenetic relationships within the shrub-steppe group are worth noting in that instead of a monophyletic shrub-dwelling group, shrub dwellers and steppe dwellers are intermingled with each other. Moreover, the sequence divergence within the sister taxa of one steppe dweller and one shrub dweller is very low. These findings support the hypothesis that pikas have entered the steppe environment several times and that morphological similarities within steppe dwellers were due to convergent evolution. PMID:10877942

  7. Analysis of complete mitochondrial DNA sequences of three members of the Montastraea annularis coral species complex (Cnidaria, Anthozoa, Scleractinia)

    NASA Astrophysics Data System (ADS)

    Fukami, Hironobu; Knowlton, Nancy

    2005-11-01

    Complete mitochondrial nucleotide sequences of two individuals each of Montastraea annularis, Montastraea faveolata, and Montastraea franksi were determined. Gene composition and order differed substantially from the sea anemone Metridium senile, but were identical to that of the phylogenetically distant coral genus Acropora. However, characteristics of the non-coding regions differed between the two scleractinian genera. Among members of the M. annularis complex, only 25 of 16,134 base pair positions were variable. Sixteen of these occurred in one colony of M. franksi, which (together with additional data) indicates the existence of multiple divergent mitochondrial lineages in this species. Overall, rates of evolution for these mitochondrial genomes were extremely slow (0.03 0.04% per million years based on the fossil record of the M. annularis complex). At higher taxonomic levels, patterns of genetic divergence and synonymous/nonsynonymous substitutions suggest non-neutral and unequal rates of evolution between the two lineages to which Montastraea and Acropora belong.

  8. Simultaneous detection of human mitochondrial DNA and nuclear-inserted mitochondrial-origin sequences (NumtS) using forensic mtDNA amplification strategies and pyrosequencing technology.

    PubMed

    Bintz, Brittania J; Dixon, Groves B; Wilson, Mark R

    2014-07-01

    Next-generation sequencing technologies enable the identification of minor mitochondrial DNA variants with higher sensitivity than Sanger methods, allowing for enhanced identification of minor variants. In this study, mixtures of human mtDNA control region amplicons were subjected to pyrosequencing to determine the detection threshold of the Roche GS Junior(®) instrument (Roche Applied Science, Indianapolis, IN). In addition to expected variants, a set of reproducible variants was consistently found in reads from one particular amplicon. A BLASTn search of the variant sequence revealed identity to a segment of a 611-bp nuclear insertion of the mitochondrial control region (NumtS) spanning the primer-binding sites of this amplicon (Nature 1995;378:489). Primers (Hum Genet 2012;131:757; Hum Biol 1996;68:847) flanking the insertion were used to confirm the presence or absence of the NumtS in buccal DNA extracts from twenty donors. These results further our understanding of human mtDNA variation and are expected to have a positive impact on the interpretation of mtDNA profiles using deep-sequencing methods in casework.

  9. Complete mitochondrial genome sequences of the South american and the Australian lungfish: testing of the phylogenetic performance of mitochondrial data sets for phylogenetic problems in tetrapod relationships.

    PubMed

    Brinkmann, Henner; Denk, Angelika; Zitzler, Jürgen; Joss, Jean J; Meyer, Axel

    2004-12-01

    We determined the complete nucleotide sequences (16403 and 16572 base pairs, respectively) of the mitochondrial genomes of the South American lungfish, Lepidosiren paradoxa, and the Australian lungfish, Neoceratodus forsteri (Sarcopterygii, Dipnoi). The mitochondrial DNA sequences were established in an effort to resolve the debated evolutionary positions of the lungfish and the coelacanth relative to land vertebrates. Previous molecular phylogenetic studies based on complete mtDNA sequences, including only the African lungfish, Protopterus dolloi, sequence were able to strongly reject the traditional textbook hypothesis that coelacanths are the closest relatives of land vertebrates. However, these studies were unable to statistically significantly distinguish between the two remaining scenarios: lungfish as the closest relatives to land vertebrates and lungfish and coelacanths jointly as their sister group (Cao et al. 1998; Zardoya et al. 1998; Zardoya and Meyer 1997a). Lungfish, coelacanths, and the fish ancestors of the tetrapod lineage all originated within a short time window of about 20 million years, back in the early Devonian (about 380 to 400 million years ago). This short divergence time makes the determination of the phylogenetic relationships among these three lineages difficult. In this study, we attempted to break the long evolutionary branch of lungfish, in an effort to better resolve the phylogenetic relationships among the three extant sarcopterygian lineages. The gene order of the mitochondrial genomes of the South American and Australian lungfish conforms to the consensus gene order among gnathostome vertebrates. The phylogenetic analyses of the complete set of mitochondrial proteins (without ND6) suggest that the lungfish are the closest relatives of the tetrapods, although the support in favor of this scenario is not statistically significant. The two other smaller data sets (tRNA and rRNA genes) give inconsistent results depending on the

  10. A close phylogenetic relationship between Sipuncula and Annelida evidenced from the complete mitochondrial genome sequence of Phascolosoma esculenta

    PubMed Central

    Shen, Xin; Ma, Xiaoyin; Ren, Jianfeng; Zhao, Fangqing

    2009-01-01

    Background There are many advantages to the application of complete mitochondrial (mt) genomes in the accurate reconstruction of phylogenetic relationships in Metazoa. Although over one thousand metazoan genomes have been sequenced, the taxonomic sampling is highly biased, left with many phyla without a single representative of complete mitochondrial genome. Sipuncula (peanut worms or star worms) is a small taxon of worm-like marine organisms with an uncertain phylogenetic position. In this report, we present the mitochondrial genome sequence of Phascolosoma esculenta, the first complete mitochondrial genome of the phylum. Results The mitochondrial genome of P.esculenta is 15,494 bp in length. The coding strand consists of 32.1% A, 21.5% C, 13.0% G, and 33.4% T bases (AT = 65.5%; AT skew = -0.019; GC skew = -0.248). It contains thirteen protein-coding genes (PCGs) with 3,709 codons in total, twenty-two transfer RNA genes, two ribosomal RNA genes and a non-coding AT-rich region (AT = 74.2%). All of the 37 identified genes are transcribed from the same DNA strand. Compared with the typical set of metazoan mt genomes, sipunculid lacks trnR but has an additional trnM. Maximum Likelihood and Bayesian analyses of the protein sequences show that Myzostomida, Sipuncula and Annelida (including echiurans and pogonophorans) form a monophyletic group, which supports a closer relationship between Sipuncula and Annelida than with Mollusca, Brachiopoda, and some other lophotrochozoan groups. Conclusion This is the first report of a complete mitochondrial genome as a representative within the phylum Sipuncula. It shares many more similar features with the four known annelid and one echiuran mtDNAs. Firstly, sipunculans and annelids share quite similar gene order in the mitochondrial genome, with all 37 genes located on the same strand; secondly, phylogenetic analyses based on the concatenated protein sequences also strongly support the sipunculan + annelid clade (including

  11. Alpha helical structures in the leader sequence of human GLUD2 glutamate dehydrogenase responsible for mitochondrial import.

    PubMed

    Kotzamani, Dimitra; Plaitakis, Andreas

    2012-09-01

    Human glutamate dehydrogenase (hGDH) exists in two highly homologous isoforms with a distinct regulatory and tissue expression profile: a housekeeping hGDH1 isoprotein encoded by the GLUD1 gene and an hGDH2 isoenzyme encoded by the GLUD2 gene. There is evidence that both isoenzymes are synthesized as pro-enzymes containing a 53 amino acid long N-terminal leader peptide that is cleaved upon translocation into the mitochondria. However, this GDH signal peptide is substantially larger than that of most nuclear DNA-encoded mitochondrial proteins, the leader sequence of which typically contains 17-35 amino acids and they often form a single amphipathic α-helix. To decode the structural elements that are essential for the mitochondrial targeting of human GDHs, we performed secondary structure analyses of their leader sequence. These analyses predicted, with 82% accuracy, that both leader peptides are positively charged and that they form two to three α-helices, separated by intermediate loops. The first α-helix of hGDH2 is strongly amphipathic, displaying both a positively charged surface and a hydrophobic plane. We then constructed GLUD2-EGFP deletion mutants and used them to transfect three mammalian cell lines (HEK293, COS 7 and SHSY-5Y). Confocal laser scanning microscopy, following co-transfection with pDsRed2-Mito mitochondrial targeting vector, revealed that deletion of the entire leader sequence prevented the enzyme from entering the mitochondria, resulting in its retention in the cytoplasm. Deletion of the first strongly amphipathic α-helix only was also sufficient to prevent the mitochondrial localization of the truncated protein. Moreover, truncated leader sequences, retaining the second and/or the third putative α-helix, failed to restore the mitochondrial import of hGDH2. As such, the first N-terminal alpha helical structure is crucial for the mitochondrial import of hGDH2 and these findings may have implications in understanding the evolutionary

  12. The complete mitochondrial DNA sequences of Nephroselmis olivacea and Pedinomonas minor. Two radically different evolutionary patterns within green algae.

    PubMed

    Turmel, M; Lemieux, C; Burger, G; Lang, B F; Otis, C; Plante, I; Gray, M W

    1999-09-01

    Green plants appear to comprise two sister lineages, Chlorophyta (classes Chlorophyceae, Ulvophyceae, Trebouxiophyceae, and Prasinophyceae) and Streptophyta (Charophyceae and Embryophyta, or land plants). To gain insight into the nature of the ancestral green plant mitochondrial genome, we have sequenced the mitochondrial DNAs (mtDNAs) of Nephroselmis olivacea and Pedinomonas minor. These two green algae are presumptive members of the Prasinophyceae. This class is thought to include descendants of the earliest diverging green algae. We find that Nephroselmis and Pedinomonas mtDNAs differ markedly in size, gene content, and gene organization. Of the green algal mtDNAs sequenced so far, that of Nephroselmis (45,223 bp) is the most ancestral (minimally diverged) and occupies the phylogenetically most basal position within the Chlorophyta. Its repertoire of 69 genes closely resembles that in the mtDNA of Prototheca wickerhamii, a later diverging trebouxiophycean green alga. Three of the Nephroselmis genes (nad10, rpl14, and rnpB) have not been identified in previously sequenced mtDNAs of green algae and land plants. In contrast, the 25,137-bp Pedinomonas mtDNA contains only 22 genes and retains few recognizably ancestral features. In several respects, including gene content and rate of sequence divergence, Pedinomonas mtDNA resembles the reduced mtDNAs of chlamydomonad algae, with which it is robustly affiliated in phylogenetic analyses. Our results confirm the existence of two radically different patterns of mitochondrial genome evolution within the green algae.

  13. A Phylogenetic Analysis of Greek Isolates of Aspergillus Species Based on Morphology and Nuclear and Mitochondrial Gene Sequences

    PubMed Central

    Krimitzas, Antonios; Kouvelis, Vassili N.; Kapsanaki-Gotsi, Evangelia; Typas, Milton A.

    2013-01-01

    Aspergillus species originating from Greece were examined by morphological and molecular criteria to explore the diversity of this genus. The phylogenetic relationships of these species were determined using sequences from the ITS and IGS region of the nuclear rRNA gene complex, two nuclear genes (β-tubulin (benA) and RNA polymerase II second largest subunit (rpb2)) and two mitochondrial genes (small rRNA subunit (rns) and cytochrome oxidase subunit I (cox1)) and, where available, related sequences from databases. The morphological characters of the anamorphs and teleomorphs, and the single gene phylogenetic trees, differentiated and placed the species examined in the well-supported sections of Aenei, Aspergillus, Bispori, Candidi, Circumdati, Clavati, Cremei, Flavi, Flavipedes, Fumigati, Nidulantes, Nigri, Restricti, Terrei, Usti, and Zonati, with few uncertainties. The combined use of the three commonly employed nuclear genes (benA, rpb2, and ITS), the IGS region, and two less often used mitochondrial gene sequences (rns and cox1) as a single unit resolved several taxonomic ambiguities. A phylogenetic tree was inferred using Neighbour-Joining, Maximum Parsimony, and Bayesian methods. The strains examined formed seven well-supported clades within the genus Aspergillus. Altogether, the concatenated nuclear and mitochondrial sequences offer additional tools for an improved understanding of phylogenetic relationships within this genus. PMID:23762830

  14. Eight new mtDNA sequences of glass sponges reveal an extensive usage of +1 frameshifting in mitochondrial translation.

    PubMed

    Haen, Karri M; Pett, Walker; Lavrov, Dennis V

    2014-02-10

    Three previously studied mitochondrial genomes of glass sponges (phylum Porifera, class Hexactinellida) contained single nucleotide insertions in protein coding genes inferred as sites of +1 translational frameshifting. To investigate the distribution and evolution of these sites and to help elucidate the mechanism of frameshifting, we determined eight new complete or nearly complete mtDNA sequences from glass sponges and examined individual mitochondrial genes from three others. We found nine new instances of single nucleotide insertions in these sequences and analyzed them both comparatively and phylogenetically. The base insertions appear to have been gained and lost repeatedly in hexactinellid mt protein genes, suggesting no functional significance for the frameshifting sites. A high degree of sequence conservation, the presence of unusual tRNAs, and a distinct pattern of codon usage suggest the "out-of-frame pairing" model of translational frameshifting. Additionally, we provide evidence that relaxed selection pressure on glass sponge mtDNA - possibly a result of their low growth rates and deep-water lifestyle - has allowed frameshift insertions to be tolerated for hundreds of millions of years. Our study provides the first example of a phylogenetically diverse and extensive usage of translational frameshifting in animal mitochondrial coding sequences.

  15. The complete mitochondrial DNA sequences of Nephroselmis olivacea and Pedinomonas minor. Two radically different evolutionary patterns within green algae.

    PubMed Central

    Turmel, M; Lemieux, C; Burger, G; Lang, B F; Otis, C; Plante, I; Gray, M W

    1999-01-01

    Green plants appear to comprise two sister lineages, Chlorophyta (classes Chlorophyceae, Ulvophyceae, Trebouxiophyceae, and Prasinophyceae) and Streptophyta (Charophyceae and Embryophyta, or land plants). To gain insight into the nature of the ancestral green plant mitochondrial genome, we have sequenced the mitochondrial DNAs (mtDNAs) of Nephroselmis olivacea and Pedinomonas minor. These two green algae are presumptive members of the Prasinophyceae. This class is thought to include descendants of the earliest diverging green algae. We find that Nephroselmis and Pedinomonas mtDNAs differ markedly in size, gene content, and gene organization. Of the green algal mtDNAs sequenced so far, that of Nephroselmis (45,223 bp) is the most ancestral (minimally diverged) and occupies the phylogenetically most basal position within the Chlorophyta. Its repertoire of 69 genes closely resembles that in the mtDNA of Prototheca wickerhamii, a later diverging trebouxiophycean green alga. Three of the Nephroselmis genes (nad10, rpl14, and rnpB) have not been identified in previously sequenced mtDNAs of green algae and land plants. In contrast, the 25,137-bp Pedinomonas mtDNA contains only 22 genes and retains few recognizably ancestral features. In several respects, including gene content and rate of sequence divergence, Pedinomonas mtDNA resembles the reduced mtDNAs of chlamydomonad algae, with which it is robustly affiliated in phylogenetic analyses. Our results confirm the existence of two radically different patterns of mitochondrial genome evolution within the green algae. PMID:10488238

  16. Length heterogeneity at conserved sequence block 2 in human mitochondrial DNA acts as a rheostat for RNA polymerase POLRMT activity

    PubMed Central

    Tan, Benedict G.; Wellesley, Frederick C.; Savery, Nigel J.; Szczelkun, Mark D.

    2016-01-01

    The guanine (G)-tract of conserved sequence block 2 (CSB 2) in human mitochondrial DNA can result in transcription termination due to formation of a hybrid G-quadruplex between the nascent RNA and the nontemplate DNA strand. This structure can then influence genome replication, stability and localization. Here we surveyed the frequency of variation in sequence identity and length at CSB 2 amongst human mitochondrial genomes and used in vitro transcription to assess the effects of this length heterogeneity on the activity of the mitochondrial RNA polymerase, POLRMT. In general, increased G-tract length correlated with increased termination levels. However, variation in the population favoured CSB 2 sequences which produced efficient termination while particularly weak or strong signals were avoided. For all variants examined, the 3′ end of the transcripts mapped to the same downstream sequences and were prevented from terminating by addition of the transcription factor TEFM. We propose that CSB 2 length heterogeneity allows variation in the efficiency of transcription termination without affecting the position of the products or the capacity for regulation by TEFM. PMID:27436287

  17. Fast assembly of the mitochondrial genome of a plant parasitic nematode (Meloidogyne graminicola) using next generation sequencing.

    PubMed

    Besnard, Guillaume; Jühling, Frank; Chapuis, Élodie; Zedane, Loubab; Lhuillier, Émeline; Mateille, Thierry; Bellafiore, Stéphane

    2014-05-01

    Little is known about the variations of nematode mitogenomes (mtDNA). Sequencing a complete mtDNA using a PCR approach remains a challenge due to frequent genome reorganizations and low sequence similarities between divergent nematode lineages. Here, a genome skimming approach based on HiSeq sequencing (shotgun) was used to assemble de novo the first complete mtDNA sequence of a root-knot nematode (Meloidogyne graminicola). An AT-rich genome (84.3%) of 20,030 bp was obtained with a mean sequencing depth superior to 300. Thirty-six genes were identified with a semi-automated approach. A comparison with a gene map of the M. javanica mitochondrial genome indicates that the gene order is conserved within this nematode lineage. However, deep genome rearrangements were observed when comparing with other species of the superfamily Hoplolaimoidea. Repeat elements of 111 bp and 94 bp were found in a long non-coding region of 7.5 kb, as similarly reported in M. javanica and M. hapla. This study points out the power of next generation sequencing to produce complete mitochondrial genomes, even without a reference sequence, and possibly opening new avenues for species/race identification, phylogenetics and population genetics of nematodes.

  18. Cytoplasmic male sterility-associated chimeric open reading frames identified by mitochondrial genome sequencing of four Cajanus genotypes.

    PubMed

    Tuteja, Reetu; Saxena, Rachit K; Davila, Jaime; Shah, Trushar; Chen, Wenbin; Xiao, Yong-Li; Fan, Guangyi; Saxena, K B; Alverson, Andrew J; Spillane, Charles; Town, Christopher; Varshney, Rajeev K

    2013-10-01

    The hybrid pigeonpea (Cajanus cajan) breeding technology based on cytoplasmic male sterility (CMS) is currently unique among legumes and displays major potential for yield increase. CMS is defined as a condition in which a plant is unable to produce functional pollen grains. The novel chimeric open reading frames (ORFs) produced as a results of mitochondrial genome rearrangements are considered to be the main cause of CMS. To identify these CMS-related ORFs in pigeonpea, we sequenced the mitochondrial genomes of three C. cajan lines (the male-sterile line ICPA 2039, the maintainer line ICPB 2039, and the hybrid line ICPH 2433) and of the wild relative (Cajanus cajanifolius ICPW 29). A single, circular-mapping molecule of length 545.7 kb was assembled and annotated for the ICPA 2039 line. Sequence annotation predicted 51 genes, including 34 protein-coding and 17 RNA genes. Comparison of the mitochondrial genomes from different Cajanus genotypes identified 31 ORFs, which differ between lines within which CMS is present or absent. Among these chimeric ORFs, 13 were identified by comparison of the related male-sterile and maintainer lines. These ORFs display features that are known to trigger CMS in other plant species and to represent the most promising candidates for CMS-related mitochondrial rearrangements in pigeonpea. PMID:23792890

  19. Cytoplasmic male sterility-associated chimeric open reading frames identified by mitochondrial genome sequencing of four Cajanus genotypes.

    PubMed

    Tuteja, Reetu; Saxena, Rachit K; Davila, Jaime; Shah, Trushar; Chen, Wenbin; Xiao, Yong-Li; Fan, Guangyi; Saxena, K B; Alverson, Andrew J; Spillane, Charles; Town, Christopher; Varshney, Rajeev K

    2013-10-01

    The hybrid pigeonpea (Cajanus cajan) breeding technology based on cytoplasmic male sterility (CMS) is currently unique among legumes and displays major potential for yield increase. CMS is defined as a condition in which a plant is unable to produce functional pollen grains. The novel chimeric open reading frames (ORFs) produced as a results of mitochondrial genome rearrangements are considered to be the main cause of CMS. To identify these CMS-related ORFs in pigeonpea, we sequenced the mitochondrial genomes of three C. cajan lines (the male-sterile line ICPA 2039, the maintainer line ICPB 2039, and the hybrid line ICPH 2433) and of the wild relative (Cajanus cajanifolius ICPW 29). A single, circular-mapping molecule of length 545.7 kb was assembled and annotated for the ICPA 2039 line. Sequence annotation predicted 51 genes, including 34 protein-coding and 17 RNA genes. Comparison of the mitochondrial genomes from different Cajanus genotypes identified 31 ORFs, which differ between lines within which CMS is present or absent. Among these chimeric ORFs, 13 were identified by comparison of the related male-sterile and maintainer lines. These ORFs display features that are known to trigger CMS in other plant species and to represent the most promising candidates for CMS-related mitochondrial rearrangements in pigeonpea.

  20. Cytoplasmic Male Sterility-Associated Chimeric Open Reading Frames Identified by Mitochondrial Genome Sequencing of Four Cajanus Genotypes

    PubMed Central

    Tuteja, Reetu; Saxena, Rachit K.; Davila, Jaime; Shah, Trushar; Chen, Wenbin; Xiao, Yong-Li; Fan, Guangyi; Saxena, K. B.; Alverson, Andrew J.; Spillane, Charles; Town, Christopher; Varshney, Rajeev K.

    2013-01-01

    The hybrid pigeonpea (Cajanus cajan) breeding technology based on cytoplasmic male sterility (CMS) is currently unique among legumes and displays major potential for yield increase. CMS is defined as a condition in which a plant is unable to produce functional pollen grains. The novel chimeric open reading frames (ORFs) produced as a results of mitochondrial genome rearrangements are considered to be the main cause of CMS. To identify these CMS-related ORFs in pigeonpea, we sequenced the mitochondrial genomes of three C. cajan lines (the male-sterile