Science.gov

Sample records for mitochondrial death decision

  1. ER fatalities-The role of ER-mitochondrial contact sites in yeast life and death decisions.

    PubMed

    Smethurst, Daniel G J; Cooper, Katrina F

    2017-01-01

    Following extracellular stress signals, all eukaryotic cells choose whether to elicit a pro-survival or pro-death response. The decision over which path to take is governed by the severity and duration of the damage. In response to mild stress, pro-survival programs are initiated (unfolded protein response, autophagy, mitophagy) whereas severe or chronic stress forces the cell to abandon these adaptive programs and shift towards regulated cell death to remove irreversibly damaged cells. Both pro-survival and pro-death programs involve regulated communication between the endoplasmic reticulum (ER) and mitochondria. In yeast, recent data suggest this inter-organelle contact is facilitated by the endoplasmic reticulum mitochondria encounter structure (ERMES). These membrane contacts are not only important for the exchange of cellular signals, but also play a role in mitochondrial tethering during mitophagy, mitochondrial fission and mitochondrial inheritance. This review focuses on recent findings in yeast that shed light on how ER-mitochondrial communication mediates critical cell fate decisions.

  2. Mitochondrial oxidative phosphorylation controls cancer cell's life and death decisions upon exposure to MAPK inhibitors.

    PubMed

    Corazao-Rozas, Paola; Guerreschi, Pierre; André, Fanny; Gabert, Pierre-Elliott; Lancel, Steve; Dekiouk, Salim; Fontaine, Delphine; Tardivel, Meryem; Savina, Ariel; Quesnel, Bruno; Mortier, Laurent; Marchetti, Philippe; Kluza, Jérome

    2016-06-28

    Although MAPK pathway inhibitors are becoming a promising anticancer strategy, they are insufficient to fully eliminate cancer cells and their long-term efficacy is strikingly limited in patients with BRAF-mutant melanomas. It is well established that BRAF inhibitors (BRAFi) hamper glucose uptake before the apparition of cell death. Here, we show that BRAFi induce an extensive restructuring of mitochondria including an increase in mitochondrial activity and biogenesis associated with mitochondrial network remodeling. Furthermore, we report a close interaction between ER and mitochondria in melanoma exposed to BRAFi. This physical connection facilitates mitochondrial Ca2+ uptake after its release from the ER. Interestingly, Mfn2 silencing disrupts the ER-mitochondria interface, intensifies ER stress and exacerbates ER stress-induced apoptosis in cells exposed to BRAFi in vitro and in vivo. This mitochondrial control of ER stress-mediated cell death is similar in both BRAF- and NRAS-mutant melanoma cells exposed to MEK inhibitors. This evidence reinforces the relevance in combining MAPK pathway inhibitors with mitochondriotropic drugs to improve targeted therapies.

  3. Mitochondrial oxidative phosphorylation controls cancer cell's life and death decisions upon exposure to MAPK inhibitors

    PubMed Central

    André, Fanny; Gabert, Pierre-Elliott; Lancel, Steve; Dekiouk, Salim; Fontaine, Delphine; Tardivel, Meryem; Savina, Ariel; Quesnel, Bruno; Mortier, Laurent; Marchetti, Philippe; Kluza, Jérome

    2016-01-01

    Although MAPK pathway inhibitors are becoming a promising anticancer strategy, they are insufficient to fully eliminate cancer cells and their long-term efficacy is strikingly limited in patients with BRAF-mutant melanomas. It is well established that BRAF inhibitors (BRAFi) hamper glucose uptake before the apparition of cell death. Here, we show that BRAFi induce an extensive restructuring of mitochondria including an increase in mitochondrial activity and biogenesis associated with mitochondrial network remodeling. Furthermore, we report a close interaction between ER and mitochondria in melanoma exposed to BRAFi. This physical connection facilitates mitochondrial Ca2+ uptake after its release from the ER. Interestingly, Mfn2 silencing disrupts the ER–mitochondria interface, intensifies ER stress and exacerbates ER stress-induced apoptosis in cells exposed to BRAFi in vitro and in vivo. This mitochondrial control of ER stress-mediated cell death is similar in both BRAF- and NRAS-mutant melanoma cells exposed to MEK inhibitors. This evidence reinforces the relevance in combining MAPK pathway inhibitors with mitochondriotropic drugs to improve targeted therapies. PMID:27250023

  4. Life and Death Decision Analysis.

    DTIC Science & Technology

    1979-12-01

    LIFE SMOKING: CANCER, EMPHYSEMA, SHORTENED LIFE BATHING: FALLING, ELECTROCUTION CONTRACEPTION: DEATH , ILLNESS PREGNANCY: DEATH , ILLNESS ABORTION ...economic effect is the one with the highest probability of causing my death . -13- EXPECTED NET SYSTEM DESIGN BENEFIT TO ME DEATH DEATH (r A(excluding death ...0-AO81 424 STANFORD UNIV CALIF DEPT OF ENGtNEERING-ECONOM!C SYSTEMS F/6 12/1 LIFE ANDI DEATH DECISION ANALYSIS.CU) DEC 79 R A HOWARD N0OOIN-79-C-0036

  5. Analysis of mitochondrial dysfunction during cell death.

    PubMed

    Gogvadze, Vladimir; Orrenius, Sten; Zhivotovsky, Boris

    2015-01-01

    Mitochondria play a key role in various modes of cell death. Analysis of mitochondrial dysfunction and the release of proteins from the intermembrane space of mitochondria represent essential tools in cell death investigation. Here we describe how to evaluate release of intermembrane space proteins during apoptosis, alterations in the mitochondrial membrane potential, and oxygen consumption in apoptotic cells.

  6. Mitochondrial Ion Channels: Gatekeepers of Life and Death

    PubMed Central

    O'Rourke, Brian; Cortassa, Sonia; Aon, Miguel A.

    2009-01-01

    Continuous generation of ATP by mitochondrial oxidative phosphorylation is essential to maintain function in mechanically active cells such as cardiomyocytes. Emerging evidence indicates that mitochondrial ion channels activated by reactive oxygen species can induce a mitochondrial "critical" state, which can scale to cause electrical and contractile dysfunction of the cardiac cell and, ultimately, the whole heart. Here we focus on how mitochondrial ion channels participate in life-and-death decisions of the cell and discuss the challenges ahead for translating recent findings into novel therapeutic applications. PMID:16174870

  7. Mitochondrial death functions of p53

    PubMed Central

    Marchenko, N D; Moll, U M

    2014-01-01

    The p53 tumor suppressor network plays a fundamental surveillance role in both homeostatic and adaptive cell biology. p53 is one of the most important barriers against malignant derailment of normal cells, orchestrating growth arrest, senescence, or cell death by linking many different pathways in response to genotoxic and non-genotoxic insults. p53 is the key broadband sensor for numerous cellular stresses such as DNA damage, hypoxia, oxidative stress, oncogenic signaling, and nucleolar stress. The crucial tumor suppressive and tissue homeostasis activity of p53 is its ability to activate cell death via multiple different pathways. A well-characterized biochemical function of p53 in the regulation of apoptosis is its role as a potent transcriptional regulator. p53 activates a panel of proapoptotic genes from the mitochondrial apoptotic and death receptor programs while repressing antiapoptotic Bcl2 family genes. In addition, over the last 10 y a growing body of evidence has also defined direct extranuclear non-transcriptional p53 activities within mitochondria-mediated cell death pathways that are based on p53 protein accumulation in cytosolic and mitochondrial compartments and protein-protein interactions. To date, transcription-independent p53-mediated cell death regulation has been described for apoptosis, necrosis, and autophagy. Because mitochondrial dysregulation is central to the development of a number of pathologic processes such as cancer and neurodegenerative and age-related diseases, understanding the direct roles of p53 protein in mitochondria has high translational impact and could facilitate the development of novel drug targets to combat these diseases. In this review we will mainly focus on mechanisms of p53-mediated transcription-independent cell death pathways at mitochondria. PMID:27308326

  8. Ceramide triggers metacaspase-independent mitochondrial cell death in yeast.

    PubMed

    Carmona-Gutierrez, Didac; Reisenbichler, Angela; Heimbucher, Petra; Bauer, Maria A; Braun, Ralf J; Ruckenstuhl, Christoph; Büttner, Sabrina; Eisenberg, Tobias; Rockenfeller, Patrick; Fröhlich, Kai-Uwe; Kroemer, Guido; Madeo, Frank

    2011-11-15

    The activation of ceramide-generating enzymes, the blockade of ceramide degradation, or the addition of ceramide analogues can trigger apoptosis or necrosis in human cancer cells. Moreover, endogenous ceramide plays a decisive role in the killing of neoplastic cells by conventional anticancer chemotherapeutics. Here, we explored the possibility that membrane-permeable C2-ceramide might kill budding yeast (Saccharomyces cerevisiae) cells under fermentative conditions, where they exhibit rapid proliferation and a Warburg-like metabolism that is reminiscent of cancer cells. C2-ceramide efficiently induced the generation of reactive oxygen species (ROS), as well as apoptotic and necrotic cell death, and this effect was not influenced by deletion of the sole yeast metacaspase. However, C2-ceramide largely failed to cause ROS hypergeneration and cell death upon deletion of the mitochondrial genome. Thus, mitochondrial function is strictly required for C2-ceramide-induced yeast lethality. Accordingly, mitochondria from C2-ceramide-treated yeast cells exhibited major morphological alterations including organelle fragmentation and aggregation. Altogether, our results point to a pivotal role of mitochondria in ceramide-induced yeast cell death.

  9. BID links ferroptosis to mitochondrial cell death pathways.

    PubMed

    Neitemeier, Sandra; Jelinek, Anja; Laino, Vincenzo; Hoffmann, Lena; Eisenbach, Ina; Eying, Roman; Ganjam, Goutham K; Dolga, Amalia M; Oppermann, Sina; Culmsee, Carsten

    2017-03-09

    Ferroptosis has been defined as an oxidative and iron-dependent pathway of regulated cell death that is distinct from caspase-dependent apoptosis and established pathways of death receptor-mediated regulated necrosis. While emerging evidence linked features of ferroptosis induced e.g. by erastin-mediated inhibition of the Xc(-) system or inhibition of glutathione peroxidase 4 (Gpx4) to an increasing number of oxidative cell death paradigms in cancer cells, neurons or kidney cells, the biochemical pathways of oxidative cell death remained largely unclear. In particular, the role of mitochondrial damage in paradigms of ferroptosis needs further investigation. In the present study, we find that erastin-induced ferroptosis in neuronal cells was accompanied by BID transactivation to mitochondria, loss of mitochondrial membrane potential, enhanced mitochondrial fragmentation and reduced ATP levels. These hallmarks of mitochondrial demise are also established features of oxytosis, a paradigm of cell death induced by Xc(-) inhibition by millimolar concentrations of glutamate. Bid knockout using CRISPR/Cas9 approaches preserved mitochondrial integrity and function, and mediated neuroprotective effects against both, ferroptosis and oxytosis. Furthermore, the BID-inhibitor BI-6c9 inhibited erastin-induced ferroptosis, and, in turn, the ferroptosis inhibitors ferrostatin-1 and liproxstatin-1 prevented mitochondrial dysfunction and cell death in the paradigm of oxytosis. These findings show that mitochondrial transactivation of BID links ferroptosis to mitochondrial damage as the final execution step in this paradigm of oxidative cell death.

  10. Causes of Death in Adults with Mitochondrial Disease.

    PubMed

    Barends, Marlieke; Verschuren, Lotte; Morava, Eva; Nesbitt, Victoria; Turnbull, Doug; McFarland, Robert

    2016-01-01

    Mitochondrial diseases are a clinically, biochemically and genetically heterogeneous group of disorders with a variable age of onset and rate of disease progression. It might therefore be expected that this variation be reflected in the age and cause of death. However, to date, little has been reported regarding the 'end-of-life' period and causes of death in mitochondrial disease patients. For some specific syndromes, the associated clinical problems might predict the cause of death, but for many patients, it remains difficult to provide an accurate prognosis. To describe a retrospective cohort of adult mitochondrial disease patients who had attended the NHS Highly Specialised Services for Rare Mitochondrial Diseases in Newcastle upon Tyne (UK), evaluate life expectancy and causes of death and assess the consequences for daily patient care. All deceased adult patients cared for at this centre over a period of 10 years were included in the study. Patient history, data on laboratory findings, biochemical investigations and genetic studies were analysed retrospectively. A total of 30 adult mitochondrial patients died within the time period of the study. The main mitochondrial disease-related causes of death in this patient cohort were respiratory failure, cardiac failure and acute cerebral incidents such as seizures and strokes. In almost half of the patients, the cause of death remained unknown. Based on our study, we present recommendations regarding the care of patients with mitochondrial disease.

  11. Calcium and mitochondrial metabolism in ceramide-induced cardiomyocyte death.

    PubMed

    Parra, Valentina; Moraga, Francisco; Kuzmicic, Jovan; López-Crisosto, Camila; Troncoso, Rodrigo; Torrealba, Natalia; Criollo, Alfredo; Díaz-Elizondo, Jessica; Rothermel, Beverly A; Quest, Andrew F G; Lavandero, Sergio

    2013-08-01

    Ceramides are important intermediates in the biosynthesis and degradation of sphingolipids that regulate numerous cellular processes, including cell cycle progression, cell growth, differentiation and death. In cardiomyocytes, ceramides induce apoptosis by decreasing mitochondrial membrane potential and promoting cytochrome-c release. Ca(2+) overload is a common feature of all types of cell death. The aim of this study was to determine the effect of ceramides on cytoplasmic Ca(2+) levels, mitochondrial function and cardiomyocyte death. Our data show that C2-ceramide induces apoptosis and necrosis in cultured cardiomyocytes by a mechanism involving increased Ca(2+) influx, mitochondrial network fragmentation and loss of the mitochondrial Ca(2+) buffer capacity. These biochemical events increase cytosolic Ca(2+) levels and trigger cardiomyocyte death via the activation of calpains. Copyright © 2013 Elsevier B.V. All rights reserved.

  12. Calcium and mitochondrial metabolism in ceramide-induced cardiomyocyte death

    PubMed Central

    Parra, Valentina; Moraga, Francisco; Kuzmicic, Jovan; López-Crisosto, Camila; Troncoso, Rodrigo; Torrealba, Natalia; Criollo, Alfredo; Díaz-Elizondo, Jessica; Rothermel, Beverly A.; Quest, Andrew F.G.; Lavandero, Sergio

    2014-01-01

    Ceramides are important intermediates in the biosynthesis and degradation of sphingolipids that regulatenumerous cellular processes, including cell cycle progression, cell growth, differentiation and death. In cardiomyocytes, ceramides induce apoptosis by decreasing mitochondrial membrane potential and promoting cytochrome-c release. Ca2+ overload is a common feature of all types of cell death. The aim of this study was to determine the effect of ceramides on cytoplasmic Ca2+ levels, mitochondrial function and cardiomyocyte death. Our data show that C2-ceramide induces apoptosis and necrosis in cultured cardiomyocytes by a mechanism involving increased Ca2+ influx, mitochondrial network fragmentation and loss of the mitochondrial Ca2+ buffer capacity. These biochemical events increase cytosolic Ca2+ levels and trigger cardiomyocyte death via the activation of calpains. PMID:23602992

  13. Mitochondrial Mechanisms of Neuronal Cell Death: Potential Therapeutics.

    PubMed

    Dawson, Ted M; Dawson, Valina L

    2017-01-06

    Mitochondria lie at the crossroads of neuronal survival and cell death. They play important roles in cellular bioenergetics, control intracellular Ca(2+) homeostasis, and participate in key metabolic pathways. Mutations in genes involved in mitochondrial quality control cause a myriad of neurodegenerative diseases. Mitochondria have evolved strategies to kill cells when they are not able to continue their vital functions. This review provides an overview of the role of mitochondria in neurologic disease and the cell death pathways that are mediated through mitochondria, including their role in accidental cell death, the regulated cell death pathways of apoptosis and parthanatos, and programmed cell death. It details the current state of parthanatic cell death and discusses potential therapeutic strategies targeting initiators and effectors of mitochondrial-mediated cell death in neurologic disorders.

  14. Mitochondrial and Cell Death Mechanisms in Neurodegenerative Diseases

    PubMed Central

    Martin, Lee J.

    2010-01-01

    Alzheimer’s disease (AD), Parkinson’s disease (PD) and amyotrophic lateral sclerosis (ALS) are the most common human adult-onset neurodegenerative diseases. They are characterized by prominent age-related neurodegeneration in selectively vulnerable neural systems. Some forms of AD, PD, and ALS are inherited, and genes causing these diseases have been identified. Nevertheless, the mechanisms of the neuronal cell death are unresolved. Morphological, biochemical, genetic, as well as cell and animal model studies reveal that mitochondria could have roles in this neurodegeneration. The functions and properties of mitochondria might render subsets of selectively vulnerable neurons intrinsically susceptible to cellular aging and stress and overlying genetic variations, triggering neurodegeneration according to a cell death matrix theory. In AD, alterations in enzymes involved in oxidative phosphorylation, oxidative damage, and mitochondrial binding of Aβ and amyloid precursor protein have been reported. In PD, mutations in putative mitochondrial proteins have been identified and mitochondrial DNA mutations have been found in neurons in the substantia nigra. In ALS, changes occur in mitochondrial respiratory chain enzymes and mitochondrial cell death proteins. Transgenic mouse models of human neurodegenerative disease are beginning to reveal possible principles governing the biology of selective neuronal vulnerability that implicate mitochondria and the mitochondrial permeability transition pore. This review summarizes how mitochondrial pathobiology might contribute to neuronal death in AD, PD, and ALS and could serve as a target for drug therapy. PMID:21258649

  15. The mitochondrial death pathway: a promising therapeutic target in diseases

    PubMed Central

    Gupta, Sanjeev; Kass, George EN; Szegezdi, Eva; Joseph, Bertrand

    2009-01-01

    The mitochondrial pathway to apoptosis is a major pathway of physiological cell death in vertebrates. The mitochondrial cell death pathway commences when apoptogenic molecules present between the outer and inner mitochondrial membranes are released into the cytosol by mitochondrial outer membrane permeabilization (MOMP). BCL-2 family members are the sentinels of MOMP in the mitochondrial apoptotic pathway; the pro-apoptotic B cell lymphoma (BCL)-2 proteins, BCL-2 associated x protein and BCL-2 antagonist killer 1 induce MOMP whereas the anti-apoptotic BCL-2 proteins, BCL-2, BCL-xl and myeloid cell leukaemia 1 prevent MOMP from occurring. The release of pro-apoptotic factors such as cytochrome c from mitochondria leads to formation of a multimeric complex known as the apoptosome and initiates caspase activation cascades. These pathways are important for normal cellular homeostasis and play key roles in the pathogenesis of many diseases. In this review, we will provide a brief overview of the mitochondrial death pathway and focus on a selection of diseases whose pathogenesis involves the mitochondrial death pathway and we will examine the various pharmacological approaches that target this pathway. PMID:19220575

  16. Mitochondrial Extrusion through the cytoplasmic vacuoles during cell death.

    PubMed

    Nakajima, Akihito; Kurihara, Hidetake; Yagita, Hideo; Okumura, Ko; Nakano, Hiroyasu

    2008-08-29

    Under various conditions, noxious stimuli damage mitochondria, resulting in mitochondrial fragmentation; however, the mechanisms by which fragmented mitochondria are eliminated from the cells remain largely unknown. Here we show that cytoplasmic vacuoles originating from the plasma membrane engulfed fragmented mitochondria and subsequently extruded them into the extracellular spaces in undergoing acute tumor necrosis factor alpha-induced cell death in a caspase-dependent fashion. Notably, upon fusion of the membrane encapsulating mitochondria to the plasma membrane, naked mitochondria were released into the extracellular spaces in an exocytotic manner. Mitochondrial extrusion was specific to tumor necrosis factor alpha-induced cell death, because a genotoxic stress-inducing agent such as cisplatin did not elicit mitochondrial extrusion. Moreover, intact actin and tubulin cytoskeletons were required for mitochondrial extrusion as well as membrane blebbing. Furthermore, fragmented mitochondria were engulfed by cytoplasmic vacuoles and extruded from hepatocytes of mice injected with anti-Fas antibody, suggesting that mitochondrial extrusion can be observed in vivo under pathological conditions. Mitochondria are eliminated during erythrocyte maturation under physiological conditions, and anti-mitochondrial antibody is detected in some autoimmune diseases. Thus, elucidating the mechanism underlying mitochondrial extrusion will open a novel avenue leading to better understanding of various diseases caused by mitochondrial malfunction as well as mitochondrial biology.

  17. Mitochondrial Thiols in the Regulation of Cell Death Pathways

    PubMed Central

    Yin, Fei; Sancheti, Harsh

    2012-01-01

    Abstract Significance: Regulation of mitochondrial H2O2 homeostasis and its involvement in the regulation of redox-sensitive signaling and transcriptional pathways is the consequence of the concerted activities of the mitochondrial energy- and redox systems. Recent Advances: The energy component of this mitochondrial energy-redox axis entails the formation of reducing equivalents and their flow through the respiratory chain with the consequent electron leak to generate \\documentclass{aastex}\\usepackage{amsbsy}\\usepackage{amsfonts}\\usepackage{amssymb}\\usepackage{bm}\\usepackage{mathrsfs}\\usepackage{pifont}\\usepackage{stmaryrd}\\usepackage{textcomp}\\usepackage{portland, xspace}\\usepackage{amsmath, amsxtra}\\pagestyle{empty}\\DeclareMathSizes{10}{9}{7}{6}\\begin{document} $${ \\rm O}_2^{ \\cdot - }$$ \\end{document} and H2O2. The mitochondrial redox component entails the thiol-based antioxidant system, largely accounted for by glutathione- and thioredoxin-based systems that support the activities of glutathione peroxidases, peroxiredoxins, and methionine sulfoxide reductase. The ultimate reductant for these systems is NADPH: mitochondrial sources of NADPH are the nicotinamide nucleotide transhydrogenase, isocitrate dehydrogenase-2, and malic enzyme. NADPH also supports the glutaredoxin activity that regulates the extent of S-glutathionylation of mitochondrial proteins in response to altered redox status. Critical Issues: The integrated network of these mitochondrial thiols constitute a regulatory device involved in the maintenance of steady-state levels of H2O2, mitochondrial and cellular redox and metabolic homeostasis, as well as the modulation of cytosolic redox-sensitive signaling; disturbances of this regulatory device affects transcription, growth, and ultimately influences cell survival/death. Future Directions: The modulation of key mitochondrial thiol proteins, which participate in redox signaling, maintenance of the bioenergetic machinery, oxidative

  18. Mitochondrial DNA damage induced autophagy, cell death, and disease.

    PubMed

    Van Houten, Bennett; Hunter, Senyene E; Meyer, Joel N

    2016-01-01

    Mammalian mitochondria contain multiple small genomes. While these organelles have efficient base excision removal of oxidative DNA lesions and alkylation damage, many DNA repair systems that work on nuclear DNA damage are not active in mitochondria. What is the fate of DNA damage in the mitochondria that cannot be repaired or that overwhelms the repair system? Some forms of mitochondrial DNA damage can apparently trigger mitochondrial DNA destruction, either via direct degradation or through specific forms of autophagy, such as mitophagy. However, accumulation of certain types of mitochondrial damage, in the absence of DNA ligase III (Lig3) or exonuclease G (EXOG), can directly trigger cell death. This review examines the cellular effects of persistent damage to mitochondrial genomes and discusses the very different cell fates that occur in response to different kinds of damage.

  19. Pseudomonas aeruginosa pyocyanin induces neutrophil death via mitochondrial reactive oxygen species and mitochondrial acid sphingomyelinase.

    PubMed

    Managò, Antonella; Becker, Katrin Anne; Carpinteiro, Alexander; Wilker, Barbara; Soddemann, Matthias; Seitz, Aaron P; Edwards, Michael J; Grassmé, Heike; Szabò, Ildiko; Gulbins, Erich

    2015-05-01

    Pulmonary infections with Pseudomonas aeruginosa are a serious clinical problem and are often lethal. Because many strains of P. aeruginosa are resistant to antibiotics, therapeutic options are limited. Neutrophils play an important role in the host's early acute defense against pulmonary P. aeruginosa. Therefore, it is important to define the mechanisms by which P. aeruginosa interacts with host cells, particularly neutrophils. Here, we report that pyocyanin, a membrane-permeable pigment and toxin released by P. aeruginosa, induces the death of wild-type neutrophils; its interaction with the mitochondrial respiratory chain results in the release of reactive oxygen species (ROS), the activation of mitochondrial acid sphingomyelinase, the formation of mitochondrial ceramide, and the release of cytochrome c from mitochondria. A genetic deficiency in acid sphingomyelinase prevents both the activation of this pathway and pyocyanin-induced neutrophil death. This reduced death, on the other hand, is associated with an increase in the release of interleukin-8 from pyocyanin-activated acid sphingomyelinase-deficient neutrophils but not from wild-type cells. These studies identified the mechanisms by which pyocyanin induces the release of mitochondrial ROS and by which ROS induce neutrophil death via mitochondrial acid sphingomyelinase. These findings demonstrate a novel mechanism of pyocyanin-induced death of neutrophils and show how this apoptosis balances innate immune reactions.

  20. Pseudomonas aeruginosa Pyocyanin Induces Neutrophil Death via Mitochondrial Reactive Oxygen Species and Mitochondrial Acid Sphingomyelinase

    PubMed Central

    Managò, Antonella; Becker, Katrin Anne; Carpinteiro, Alexander; Wilker, Barbara; Soddemann, Matthias; Seitz, Aaron P.; Edwards, Michael J.; Grassmé, Heike

    2015-01-01

    Abstract Aims: Pulmonary infections with Pseudomonas aeruginosa are a serious clinical problem and are often lethal. Because many strains of P. aeruginosa are resistant to antibiotics, therapeutic options are limited. Neutrophils play an important role in the host's early acute defense against pulmonary P. aeruginosa. Therefore, it is important to define the mechanisms by which P. aeruginosa interacts with host cells, particularly neutrophils. Results: Here, we report that pyocyanin, a membrane-permeable pigment and toxin released by P. aeruginosa, induces the death of wild-type neutrophils; its interaction with the mitochondrial respiratory chain results in the release of reactive oxygen species (ROS), the activation of mitochondrial acid sphingomyelinase, the formation of mitochondrial ceramide, and the release of cytochrome c from mitochondria. A genetic deficiency in acid sphingomyelinase prevents both the activation of this pathway and pyocyanin-induced neutrophil death. This reduced death, on the other hand, is associated with an increase in the release of interleukin-8 from pyocyanin-activated acid sphingomyelinase-deficient neutrophils but not from wild-type cells. Innovation: These studies identified the mechanisms by which pyocyanin induces the release of mitochondrial ROS and by which ROS induce neutrophil death via mitochondrial acid sphingomyelinase. Conclusion: These findings demonstrate a novel mechanism of pyocyanin-induced death of neutrophils and show how this apoptosis balances innate immune reactions. Antioxid. Redox Signal. 22, 1097–1110. PMID:25686490

  1. Paraquat Induces Cell Death Through Impairing Mitochondrial Membrane Permeability.

    PubMed

    Huang, Chuen-Lin; Chao, Chih-Chang; Lee, Yi-Chao; Lu, Mei-Kuang; Cheng, Jing-Jy; Yang, Ying-Chen; Wang, Vin-Chi; Chang, Wen-Chang; Huang, Nai-Kuei

    2016-05-01

    Paraquat (PQ) as a Parkinsonian mimetic has been demonstrated to impair dopaminergic (DAergic) neurons and is highly correlated with the etiology of Parkinson's disease (PD) where the death of DAergic neurons has been mainly attributed to impaired mitochondrial functioning. In this study, PQ-induced cytotoxicity focusing on mitochondrial membrane permeability (MMP), which has been implicated to play a part in neurodegeneration, was investigated. Primarily, PQ-induced cytotoxicity and reactive oxygen species (ROS) were inhibited by an inhibitor of NADPH oxidase (NOX), indicating the toxic effect of PQ redox cycling. Further, dibucaine and cyclosporin A which respectively inhibit mitochondrial apoptosis-induced channels (MAC) and mitochondrial permeability transition pores (mPTP) were used and found to prevent PQ-induced mitochondrial dysfunction, such as decreased mitochondrial membrane potential and increased MMP, mitochondrial ROS, and pro-apoptotic factor release. Knockdown of bax and/or bak blocked PQ-induced mitochondrial clusterization of Bax and/or Bak and cytotoxicity, demonstrating the significance of MAC which is composed of Bax and/or Bak. This clusterization coincided with the release of mitochondrial apoptotic factors before there was an increase in inner MMP, indicating that MAC may precede mPTP formation. Besides, NOX inhibitor but not dibucaine attenuated the earlier PQ-induced cytosolic ROS formation or Bax and/or Bak clusterization indicating PQ redox cycling may account for MAC formation. In this model, we have resolved for the first that PQ cytotoxicity through redox cycling may sequentially result in increased outer (MAC) and inner (mPTP) MMP and suggested MMP could be implicated as a therapeutic target in treating neurodegenerative diseases like PD.

  2. Death-associated Protein 3 Regulates Mitochondrial-encoded Protein Synthesis and Mitochondrial Dynamics.

    PubMed

    Xiao, Lin; Xian, Hongxu; Lee, Kit Yee; Xiao, Bin; Wang, Hongyan; Yu, Fengwei; Shen, Han-Ming; Liou, Yih-Cherng

    2015-10-09

    Mitochondrial morphologies change over time and are tightly regulated by dynamic machinery proteins such as dynamin-related protein 1 (Drp1), mitofusion 1/2, and optic atrophy 1 (OPA1). However, the detailed mechanisms of how these molecules cooperate to mediate fission and fusion remain elusive. DAP3 is a mitochondrial ribosomal protein that involves in apoptosis, but its biological function has not been well characterized. Here, we demonstrate that DAP3 specifically localizes in the mitochondrial matrix. Knockdown of DAP3 in mitochondria leads to defects in mitochondrial-encoded protein synthesis and abnormal mitochondrial dynamics. Moreover, depletion of DAP3 dramatically decreases the phosphorylation of Drp1 at Ser-637 on mitochondria, enhancing the retention time of Drp1 puncta on mitochondria during the fission process. Furthermore, autophagy is inhibited in the DAP3-depleted cells, which sensitizes cells to different types of death stimuli. Together, our results suggest that DAP3 plays important roles in mitochondrial function and dynamics, providing new insights into the mechanism of a mitochondrial ribosomal protein function in cell death. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  3. Methylglyoxal Induces Mitochondrial Dysfunction and Cell Death in Liver

    PubMed Central

    Seo, Kyuhwa; Ki, Sung Hwan

    2014-01-01

    Degradation of glucose is aberrantly increased in hyperglycemia, which causes various harmful effects on the liver. Methylglyoxal is produced during glucose degradation and the levels of methylglyoxal are increased in diabetes patients. In this study we investigated whether methylglyoxal induces mitochondrial impairment and apoptosis in HepG2 cells and induces liver toxicity in vivo. Methylglyoxal caused apoptotic cell death in HepG2 cells. Moreover, methylglyoxal significantly promoted the production of reactive oxygen species (ROS) and depleted glutathione (GSH) content. Pretreatment with antioxidants caused a marked decrease in methylglyoxal-induced apoptosis, indicating that oxidant species are involved in the apoptotic process. Methylglyoxal treatment induced mitochondrial permeability transition, which represents mitochondrial impairment. However, pretreatment with cyclosporin A, an inhibitor of the formation of the permeability transition pore, partially inhibited methylglyoxal-induced cell death. Furthermore, acute treatment of mice with methylglyoxal increased the plasma levels of alanine aminotransferase (ALT) and aspartate aminotransferase (AST), indicating liver toxicity. Collectively, our results showed that methylglyoxal increases cell death and induces liver toxicity, which results from ROS-mediated mitochondrial dysfunction and oxidative stress. PMID:25343013

  4. Death Penalty Decisions: Instruction Comprehension, Attitudes, and Decision Mediators.

    PubMed

    Patry, Marc W; Penrod, Steven D

    2013-01-01

    A primary goal of this research was to empirically evaluate a set of assumptions, advanced in the Supreme Court's ruling in Buchanan v. Angelone (1998), about jury comprehension of death penalty instructions. Further, this research examined the use of evidence in capital punishment decision making by exploring underlying mediating factors upon which death penalty decisions may be based. Manipulated variables included the type of instructions and several variations of evidence. Study 1 was a paper and pencil study of 245 undergraduate mock jurors. The experimental design was an incomplete 4×2×2×2×2 factorial model resulting in 56 possible conditions. Manipulations included four different types of instructions, presence of a list of case-specific mitigators to accompany the instructions, and three variations in the case facts: age of the defendant, bad prior record, and defendant history of emotional abuse. Study 2 was a fully-crossed 2×2×2×2×2 experiment with four deliberating mock juries per cell. Manipulations included jury instructions (original or revised), presence of a list of case-specific mitigators, defendant history of emotional abuse, bad prior record, and heinousness of the crime. The sample of 735 jury-eligible participants included 130 individuals who identified themselves as students. Participants watched one of 32 stimulus videotapes based on a replication of a capital sentencing hearing. The present findings support previous research showing low comprehension of capital penalty instructions. Further, we found that higher instruction comprehension was associated with higher likelihood of issuing life sentence decisions. The importance of instruction comprehension is emphasized in a social cognitive model of jury decision making at the sentencing phase of capital cases.

  5. Death Penalty Decisions: Instruction Comprehension, Attitudes, and Decision Mediators

    PubMed Central

    Patry, Marc W.; Penrod, Steven D.

    2013-01-01

    A primary goal of this research was to empirically evaluate a set of assumptions, advanced in the Supreme Court’s ruling in Buchanan v. Angelone (1998), about jury comprehension of death penalty instructions. Further, this research examined the use of evidence in capital punishment decision making by exploring underlying mediating factors upon which death penalty decisions may be based. Manipulated variables included the type of instructions and several variations of evidence. Study 1 was a paper and pencil study of 245 undergraduate mock jurors. The experimental design was an incomplete 4×2×2×2×2 factorial model resulting in 56 possible conditions. Manipulations included four different types of instructions, presence of a list of case-specific mitigators to accompany the instructions, and three variations in the case facts: age of the defendant, bad prior record, and defendant history of emotional abuse. Study 2 was a fully-crossed 2×2×2×2×2 experiment with four deliberating mock juries per cell. Manipulations included jury instructions (original or revised), presence of a list of case-specific mitigators, defendant history of emotional abuse, bad prior record, and heinousness of the crime. The sample of 735 jury-eligible participants included 130 individuals who identified themselves as students. Participants watched one of 32 stimulus videotapes based on a replication of a capital sentencing hearing. The present findings support previous research showing low comprehension of capital penalty instructions. Further, we found that higher instruction comprehension was associated with higher likelihood of issuing life sentence decisions. The importance of instruction comprehension is emphasized in a social cognitive model of jury decision making at the sentencing phase of capital cases. PMID:24072981

  6. Controlling metabolism and cell death: at the heart of mitochondrial calcium signalling

    PubMed Central

    Murgia, Marta; Giorgi, Carlotta; Pinton, Paolo; Rizzuto, Rosario

    2009-01-01

    Transient increases in intracellular calcium concentration activate and coordinate a wide variety of cellular processes in virtually every cell type. This review describes the main homeostatic mechanisms that control Ca2+ transients, focusing on the mitochondrial checkpoint. We subsequently extend this paradigm to the cardiomyocyte and to the interplay between cytosol, endoplasmic reticulum and mitochondria that occurs beat-to-beat in excitation-contraction coupling. The mechanisms whereby mitochondria decode fast cytosolic calcium spikes are discussed in the light of the results obtained with recombinant photoproteins targeted to the mitochondrial matrix of contracting cardiomyocytes. Mitochondrial calcium homeostasis is then highlighted as a crucial point of convergence of the environmental signals that mediate cardiac cell death, both by necrosis and by apoptosis. Altogether we point to a role of the mitochondrion as an integrator of calcium signalling and fundamental decision maker in cardiomyocyte metabolism and survival. PMID:19285982

  7. Barbiturates induce mitochondrial depolarization and potentiate excitotoxic neuronal death.

    PubMed

    Anderson, Christopher M; Norquist, Becky A; Vesce, Sabino; Nicholls, David G; Soine, William H; Duan, Shumin; Swanson, Raymond A

    2002-11-01

    Barbiturates are widely used as anesthetics, anticonvulsants, and neuroprotective agents. However, barbiturates may also inhibit mitochondrial respiration, and mitochondrial inhibitors are known to potentiate NMDA receptor-mediated neurotoxicity. Here we used rat cortical cultures to examine the effect of barbiturates on neuronal mitochondria and responses to NMDA receptor stimulation. The barbiturates tested, secobarbital, amobarbital, and thiamylal, each potentiated NMDA-induced neuron death at barbiturate concentrations relevant to clinical and experimental use (100-300 microm). By using rhodamine-123 under quenching conditions, barbiturates in this concentration range were shown to depolarize neuronal mitochondria and greatly amplify NMDA-induced mitochondrial depolarization. Barbiturate-induced mitochondrial depolarization was increased by the ATP synthase inhibitor oligomycin, indicating that barbiturates act by inhibiting electron transport sufficiently to cause ATP synthase reversal. Barbiturates similarly amplified the effects of NMDA on cytoplasmic free calcium concentrations. The cell-impermeant barbiturate N-glucoside amobarbital did not influence mitochondrial potential or potentiate NMDA neurotoxicity or calcium responses. However, all of the barbiturates attenuated NMDA-induced calcium elevations and cell death when present at millimolar concentrations. Whole-cell patch-clamp studies showed that these effects may be attributable to actions at the cell membrane, resulting in a block of NMDA-induced current flux at millimolar barbiturate concentrations. Together, these findings reconcile previous reports of opposing effects on barbiturates on NMDA neurotoxicity and show that barbiturate effects on neuronal mitochondria can be functionally significant. Effects of barbiturates on neuronal mitochondria should be considered in experimental and clinical application of these drugs.

  8. Mitochondrial calcium and the permeability transition in cell death.

    PubMed

    Lemasters, John J; Theruvath, Tom P; Zhong, Zhi; Nieminen, Anna-Liisa

    2009-11-01

    Dysregulation of Ca(2+) has long been implicated to be important in cell injury. A Ca(2+)-linked process important in necrosis and apoptosis (or necrapoptosis) is the mitochondrial permeability transition (MPT). In the MPT, large conductance permeability transition (PT) pores open that make the mitochondrial inner membrane abruptly permeable to solutes up to 1500 Da. The importance of Ca(2+) in MPT induction varies with circumstance. Ca(2+) overload is sufficient to induce the MPT. By contrast after ischemia-reperfusion to cardiac myocytes, Ca(2+) overload is the consequence of bioenergetic failure after the MPT rather than its cause. In other models, such as cytotoxicity from Reye-related agents and storage-reperfusion injury to liver grafts, Ca(2+) appears to be permissive to MPT onset. Lastly in oxidative stress, increased mitochondrial Ca(2+) and ROS generation act synergistically to produce the MPT and cell death. Thus, the exact role of Ca(2+) for inducing the MPT and cell death depends on the particular biologic setting.

  9. Lysosomal photodamage induces cell death via mitochondrial apoptotic pathway

    NASA Astrophysics Data System (ADS)

    Liu, Lei; Wang, Xian-wang; Li, Hui

    2009-11-01

    Lysosomal photosensitizers have been used in photodynamic therapy (PDT). Combination of such photosensitizers and light causes lysosomal photodamage, inducing cell death. The lysosomal disruption can lead to apoptosis but its signaling pathways remain to be elucidated. In this study, we selected N-aspartyl chlorin e6 (NPe6), an effective photosensitizer which preferentially accumulates in lysosomes, to study the mechanism of apoptosis caused by lysosomal photodamage. Apoptosis in living human lung adenocarcinoma cells treated by NPe6-PDT was studied using real-time single-cell analysis. In this study, the fluorescence probes Cyto c-GFP and DsRed-Mit were used to detect the spatial and temporal changes of cytochrome c in real-time in sub-cell level; the Rhodamine 123 dyes were used to monitor the changes of mitochondrial membrane potential. The results showed that, after PDT treatment,the mitochondrial membrane potential decreased, and cytochrome c released from mitochondria; The caspase-3 was activated obviously. These results suggested that lysosomal photodamage activates mitochondrial apoptotic pathway to induce cell death.

  10. The mitochondrial dynamism-mitophagy-cell death interactome: multiple roles performed by members of a mitochondrial molecular ensemble.

    PubMed

    Dorn, Gerald W; Kitsis, Richard N

    2015-01-02

    Mitochondrial research is experiencing a renaissance, in part, because of the recognition that these endosymbiotic descendants of primordial protobacteria seem to be pursuing their own biological agendas. Not only is mitochondrial metabolism required to produce most of the biochemical energy that supports their eukaryotic hosts (us) but mitochondria can actively (through apoptosis and programmed necrosis) or passively (through reactive oxygen species toxicity) drive cellular dysfunction or demise. The cellular mitochondrial collective autoregulates its population through biogenic renewal and mitophagic culling; mitochondrial fission and fusion, 2 components of mitochondrial dynamism, are increasingly recognized as playing central roles as orchestrators of these processes. Mitochondrial dynamism is rare in striated muscle cells, so cardiac-specific genetic manipulation of mitochondrial fission and fusion factors has proven useful for revealing noncanonical functions of mitochondrial dynamics proteins. Here, we review newly described functions of mitochondrial fusion/fission proteins in cardiac mitochondrial quality control, cell death, calcium signaling, and cardiac development. A mechanistic conceptual paradigm is proposed in which cell death and selective organelle culling are not distinct processes, but are components of a unified and integrated quality control mechanism that exerts different effects when invoked to different degrees, depending on pathophysiological context. This offers a plausible explanation for seemingly paradoxical expression of mitochondrial dynamics and death factors in cardiomyocytes wherein mitochondrial morphometric remodeling does not normally occur and the ability to recover from cell suicide is severely limited. © 2014 American Heart Association, Inc.

  11. Mitochondrial DNA damage by bleomycin induces AML cell death.

    PubMed

    Yeung, ManTek; Hurren, Rose; Nemr, Carine; Wang, Xiaoming; Hershenfeld, Samantha; Gronda, Marcela; Liyanage, Sanduni; Wu, Yan; Augustine, Jeevan; Lee, Eric A; Spagnuolo, Paul A; Southall, Noel; Chen, Catherine; Zheng, Wei; Jeyaraju, Danny V; Minden, Mark D; Laposa, Rebecca; Schimmer, Aaron D

    2015-06-01

    Mitochondria contain multiple copies of their own 16.6 kb circular genome. To explore the impact of mitochondrial DNA (mtDNA) damage on mitochondrial (mt) function and viability of AML cells, we screened a panel of DNA damaging chemotherapeutic agents to identify drugs that could damage mtDNA. We identified bleomycin as an agent that damaged mtDNA in AML cells at concentrations that induced cell death. Bleomycin also induced mtDNA damage in primary AML samples. Consistent with the observed mtDNA damage, bleomycin reduced mt mass and basal oxygen consumption in AML cells. We also demonstrated that the observed mtDNA damage was functionally important for bleomycin-induced cell death. Finally, bleomycin delayed tumor growth in xenograft mouse models of AML and anti-leukemic concentrations of the drug induced mtDNA damage in AML cells preferentially over normal lung tissue. Taken together, mtDNA-targeted therapy may be an effective strategy to target AML cells and bleomycin could be useful in the treatment of this disease.

  12. Imeglimin prevents human endothelial cell death by inhibiting mitochondrial permeability transition without inhibiting mitochondrial respiration

    PubMed Central

    Detaille, D; Vial, G; Borel, A-L; Cottet-Rouselle, C; Hallakou-Bozec, S; Bolze, S; Fouqueray, P; Fontaine, E

    2016-01-01

    Imeglimin is the first in a new class of oral glucose-lowering agents, having recently completed its phase 2b trial. As Imeglimin did show a full prevention of β-cell apoptosis, and since angiopathy represents a major complication of diabetes, we studied Imeglimin protective effects on hyperglycemia-induced death of human endothelial cells (HMEC-1). These cells were incubated in several oxidative stress environments (exposure to high glucose and oxidizing agent tert-butylhydroperoxide) which led to mitochondrial permeability transition pore (PTP) opening, cytochrome c release and cell death. These events were fully prevented by Imeglimin treatment. This protective effect on cell death occurred without any effect on oxygen consumption rate, on lactate production and on cytosolic redox or phosphate potentials. Imeglimin also dramatically decreased reactive oxygen species production, inhibiting specifically reverse electron transfer through complex I. We conclude that Imeglimin prevents hyperglycemia-induced cell death in HMEC-1 through inhibition of PTP opening without inhibiting mitochondrial respiration nor affecting cellular energy status. Considering the high prevalence of macrovascular and microvascular complications in type 2 diabetic subjects, these results together suggest a potential benefit of Imeglimin in diabetic angiopathy. PMID:27551496

  13. Nek5 interacts with mitochondrial proteins and interferes negatively in mitochondrial mediated cell death and respiration.

    PubMed

    Melo Hanchuk, Talita D; Papa, Priscila Ferreira; La Guardia, Paolo G; Vercesi, Anibal E; Kobarg, Jörg

    2015-06-01

    Mitochondria are involved in energy supply, signaling, cell death and cellular differentiation and have been implicated in several human diseases. Neks (NIMA-related kinases) represent a family of mammal protein kinases that play essential roles in cell-cycle progression, but other functions have recently been related. A yeast two-hybrid (Y2H) screen was performed to identify and characterize Nek5 interaction partners and the mitochondrial proteins Cox11, MTX-2 and BCLAF1 were retrieved. Apoptosis assay showed protective effects of stable hNek5 expression from Hek293-T's cell death after thapsigargin treatment (2 μM). Nek5 silenced cells as well as cells expressing a "kinase dead" version of Nek5, displayed an increase in ROS formation after 4 h of thapsigargin treatment. Mitochondrial respiratory chain activity was found decreased upon stable hNek5expression. Cells silenced for hNek5 on the other hand presented 1.7 fold increased basal rates of respiration, especially at the electrons transfer steps from TMPD to cytochrome c and at the complex II. In conclusion, our data suggest for the first time mitochondrial localization and functions for Nek5 and its participation in cell death and cell respiration regulation. Stable expression of hNek5 in Hek293T cells resulted in enhanced cell viability, decreased cell death and drug resistance, while depletion of hNek5by shRNA overcame cancer cell drug resistance and induced apoptosis in vitro. Stable expression of hNek5 also inhibits thapsigargin promoted apoptosis and the respiratory chain complex IV in HEK293T cells. Copyright © 2015 Elsevier Inc. All rights reserved.

  14. Mitochondrial control of cell death induced by hyperosmotic stress.

    PubMed

    Criollo, Alfredo; Galluzzi, Lorenzo; Maiuri, M Chiara; Tasdemir, Ezgi; Lavandero, Sergio; Kroemer, Guido

    2007-01-01

    HeLa and HCT116 cells respond differentially to sorbitol, an osmolyte able to induce hypertonic stress. In these models, sorbitol promoted the phenotypic manifestations of early apoptosis followed by complete loss of viability in a time-, dose-, and cell type-specific fashion, by eliciting distinct yet partially overlapping molecular pathways. In HCT116 but not in HeLa cells, sorbitol caused the mitochondrial release of the caspase-independent death effector AIF, whereas in both cell lines cytochrome c was retained in mitochondria. Despite cytochrome c retention, HeLa cells exhibited the progressive activation of caspase-3, presumably due to the prior activation of caspase-8. Accordingly, caspase inhibition prevented sorbitol-induced killing in HeLa, but only partially in HCT116 cells. Both the knock-out of Bax in HCT116 cells and the knock-down of Bax in A549 cells by RNA interference reduced the AIF release and/or the mitochondrial alterations. While the knock-down of Bcl-2/Bcl-X(L) sensitized to sorbitol-induced killing, overexpression of a Bcl-2 variant that specifically localizes to mitochondria (but not of the wild-type nor of a endoplasmic reticulum-targeted form) strongly inhibited sorbitol effects. Thus, hyperosmotic stress kills cells by triggering different molecular pathways, which converge at mitochondria where pro- and anti-apoptotic members of the Bcl-2 family exert their control.

  15. Bcl-2 proteins and autophagy regulate mitochondrial dynamics during programmed cell death in the Drosophila ovary

    PubMed Central

    Tanner, Elizabeth A.; Blute, Todd A.; Brachmann, Carrie Baker; McCall, Kimberly

    2011-01-01

    The Bcl-2 family has been shown to regulate mitochondrial dynamics during cell death in mammals and C. elegans, but evidence for this in Drosophila has been elusive. Here, we investigate the regulation of mitochondrial dynamics during germline cell death in the Drosophila melanogaster ovary. We find that mitochondria undergo a series of events during the progression of cell death, with remodeling, cluster formation and uptake of clusters by somatic follicle cells. These mitochondrial dynamics are dependent on caspases, the Bcl-2 family, the mitochondrial fission and fusion machinery, and the autophagy machinery. Furthermore, Bcl-2 family mutants show a striking defect in cell death in the ovary. These data indicate that a mitochondrial pathway is a major mechanism for activation of cell death in Drosophila oogenesis. PMID:21177345

  16. Alcohol Dehydrogenase Accentuates Ethanol-Induced Myocardial Dysfunction and Mitochondrial Damage in Mice: Role of Mitochondrial Death Pathway

    PubMed Central

    Guo, Rui; Ren, Jun

    2010-01-01

    Objectives Binge drinking and alcohol toxicity are often associated with myocardial dysfunction possibly due to accumulation of the ethanol metabolite acetaldehyde although the underlying mechanism is unknown. This study was designed to examine the impact of accelerated ethanol metabolism on myocardial contractility, mitochondrial function and apoptosis using a murine model of cardiac-specific overexpression of alcohol dehydrogenase (ADH). Methods ADH and wild-type FVB mice were acutely challenged with ethanol (3 g/kg/d, i.p.) for 3 days. Myocardial contractility, mitochondrial damage and apoptosis (death receptor and mitochondrial pathways) were examined. Results Ethanol led to reduced cardiac contractility, enlarged cardiomyocyte, mitochondrial damage and apoptosis, the effects of which were exaggerated by ADH transgene. In particular, ADH exacerbated mitochondrial dysfunction manifested as decreased mitochondrial membrane potential and accumulation of mitochondrial O2•−. Myocardium from ethanol-treated mice displayed enhanced Bax, Caspase-3 and decreased Bcl-2 expression, the effect of which with the exception of Caspase-3 was augmented by ADH. ADH accentuated ethanol-induced increase in the mitochondrial death domain components pro-caspase-9 and cytochrome C in the cytoplasm. Neither ethanol nor ADH affected the expression of ANP, total pro-caspase-9, cytosolic and total pro-caspase-8, TNF-α, Fas receptor, Fas L and cytosolic AIF. Conclusions Taken together, these data suggest that enhanced acetaldehyde production through ADH overexpression following acute ethanol exposure exacerbated ethanol-induced myocardial contractile dysfunction, cardiomyocyte enlargement, mitochondrial damage and apoptosis, indicating a pivotal role of ADH in ethanol-induced cardiac dysfunction possibly through mitochondrial death pathway of apoptosis. PMID:20090911

  17. Alcohol dehydrogenase accentuates ethanol-induced myocardial dysfunction and mitochondrial damage in mice: role of mitochondrial death pathway.

    PubMed

    Guo, Rui; Ren, Jun

    2010-01-18

    Binge drinking and alcohol toxicity are often associated with myocardial dysfunction possibly due to accumulation of the ethanol metabolite acetaldehyde although the underlying mechanism is unknown. This study was designed to examine the impact of accelerated ethanol metabolism on myocardial contractility, mitochondrial function and apoptosis using a murine model of cardiac-specific overexpression of alcohol dehydrogenase (ADH). ADH and wild-type FVB mice were acutely challenged with ethanol (3 g/kg/d, i.p.) for 3 days. Myocardial contractility, mitochondrial damage and apoptosis (death receptor and mitochondrial pathways) were examined. Ethanol led to reduced cardiac contractility, enlarged cardiomyocyte, mitochondrial damage and apoptosis, the effects of which were exaggerated by ADH transgene. In particular, ADH exacerbated mitochondrial dysfunction manifested as decreased mitochondrial membrane potential and accumulation of mitochondrial O(2) (*-). Myocardium from ethanol-treated mice displayed enhanced Bax, Caspase-3 and decreased Bcl-2 expression, the effect of which with the exception of Caspase-3 was augmented by ADH. ADH accentuated ethanol-induced increase in the mitochondrial death domain components pro-caspase-9 and cytochrome C in the cytoplasm. Neither ethanol nor ADH affected the expression of ANP, total pro-caspase-9, cytosolic and total pro-caspase-8, TNF-alpha, Fas receptor, Fas L and cytosolic AIF. Taken together, these data suggest that enhanced acetaldehyde production through ADH overexpression following acute ethanol exposure exacerbated ethanol-induced myocardial contractile dysfunction, cardiomyocyte enlargement, mitochondrial damage and apoptosis, indicating a pivotal role of ADH in ethanol-induced cardiac dysfunction possibly through mitochondrial death pathway of apoptosis.

  18. Mitochondrial fusion and fission in cell life and death.

    PubMed

    Westermann, Benedikt

    2010-12-01

    Mitochondria are dynamic organelles that constantly fuse and divide. These processes (collectively termed mitochondrial dynamics) are important for mitochondrial inheritance and for the maintenance of mitochondrial functions. The core components of the evolutionarily conserved fusion and fission machineries have now been identified, and mechanistic studies have revealed the first secrets of the complex processes that govern fusion and fission of a double membrane-bound organelle. Mitochondrial dynamics was recently recognized as an important constituent of cellular quality control. Defects have detrimental consequences on bioenergetic supply and contribute to the pathogenesis of neurodegenerative diseases. These findings open exciting new directions to explore mitochondrial biology.

  19. Glyceraldehyde-3-phosphate Dehydrogenase (GAPDH) Aggregation Causes Mitochondrial Dysfunction during Oxidative Stress-induced Cell Death*

    PubMed Central

    Itakura, Masanori; Kubo, Takeya; Kaneshige, Akihiro; Harada, Naoki; Izawa, Takeshi; Azuma, Yasu-Taka; Kuwamura, Mitsuru; Yamaji, Ryouichi; Takeuchi, Tadayoshi

    2017-01-01

    Glycolytic glyceraldehyde-3-phosphate dehydrogenase (GAPDH) is a multifunctional protein that also mediates cell death under oxidative stress. We reported previously that the active-site cysteine (Cys-152) of GAPDH plays an essential role in oxidative stress-induced aggregation of GAPDH associated with cell death, and a C152A-GAPDH mutant rescues nitric oxide (NO)-induced cell death by interfering with the aggregation of wild type (WT)-GAPDH. However, the detailed mechanism underlying GAPDH aggregate-induced cell death remains elusive. Here we report that NO-induced GAPDH aggregation specifically causes mitochondrial dysfunction. First, we observed a correlation between NO-induced GAPDH aggregation and mitochondrial dysfunction, when GAPDH aggregation occurred at mitochondria in SH-SY5Y cells. In isolated mitochondria, aggregates of WT-GAPDH directly induced mitochondrial swelling and depolarization, whereas mixtures containing aggregates of C152A-GAPDH reduced mitochondrial dysfunction. Additionally, treatment with cyclosporin A improved WT-GAPDH aggregate-induced swelling and depolarization. In doxycycline-inducible SH-SY5Y cells, overexpression of WT-GAPDH augmented NO-induced mitochondrial dysfunction and increased mitochondrial GAPDH aggregation, whereas induced overexpression of C152A-GAPDH significantly suppressed mitochondrial impairment. Further, NO-induced cytochrome c release into the cytosol and nuclear translocation of apoptosis-inducing factor from mitochondria were both augmented in cells overexpressing WT-GAPDH but ameliorated in C152A-GAPDH-overexpressing cells. Interestingly, GAPDH aggregates induced necrotic cell death via a permeability transition pore (PTP) opening. The expression of either WT- or C152A-GAPDH did not affect other cell death pathways associated with protein aggregation, such as proteasome inhibition, gene expression induced by endoplasmic reticulum stress, or autophagy. Collectively, these results suggest that NO-induced GAPDH

  20. Revisiting the Decision of Death in Hurst v. Florida.

    PubMed

    Cooke, Brian K; Ginory, Almari; Zedalis, Jennifer

    2016-12-01

    The United States Supreme Court has considered the question of whether a judge or a jury must make the findings necessary to support imposition of the death penalty in several notable cases, including Spaziano v. Florida (1984), Hildwin v. Florida (1989), and Ring v. Arizona (2002). In 2016, the U.S. Supreme Court revisited the subject in Hurst v. Florida Florida Statute § 921.141 allows the judge, after weighing aggravating and mitigating circumstances, to enter a sentence of life imprisonment or death. Before Hurst, Florida's bifurcated sentencing proceedings included an advisory sentence from jurors and a separate judicial hearing without juror involvement. In Hurst, the Court revisited the question of whether Florida's capital sentencing scheme violates the Sixth Amendment, which requires a jury, not a judge, to find each fact necessary to impose a sentence of death in light of Ring In an eight-to-one decision, the Court reversed the judgment of the Florida Supreme Court, holding that the Sixth Amendment requires a jury to find the aggravating factors necessary for imposing the death penalty. The role of Florida juries in capital sentencing proceedings was thereby elevated from advisory to determinative. We examine the Court's decision and offer commentary regarding this shift from judge to jury in the final imposition of the death penalty and the overall effect of this landmark case. © 2016 American Academy of Psychiatry and the Law.

  1. [Mitochondrial and lysosomal pathways of death of hepatocytes of lamprey Lampetra fluviatilis L].

    PubMed

    Konovalova, S A; Savina, M V; Nikiforov, A A; Puchkova, L V

    2012-01-01

    Mechanisms of mitochondrial and lysosomal pathways of natural cell death in lamprey hepatocytes at the spring period of prespawning migration are described. The mitochondrial pathways (release of cytochrome c from mitochondria into cytosol and activation ofcaspases) operates according to the classical scheme known for apoptosis. The lysosomal cell death pathway connected with activation of cathepsin B has been revealed quite recently in cells in pathologies, in particular at obstruction of gallbladder and bile ducts. The peculiarity of lamprey hepatocytes consists in biliary atresia (the absence both of gallbladder and of bile ducts) in liver of adult animals. Thereby the lamprey hepatocytes represent an excellent object for study of this new pathway of cell death. We have revealed a parallel development of the mitochondrial and lysosomal pathways of cell death of lamprey hepatocytes.

  2. The effects of NAD+ on apoptotic neuronal death and mitochondrial biogenesis and function after glutamate excitotoxicity.

    PubMed

    Wang, Xiaowan; Li, Hailong; Ding, Shinghua

    2014-11-07

    NAD+ is an essential co-enzyme for cellular energy metabolism and is also involved as a substrate for many cellular enzymatic reactions. It has been shown that NAD+ has a beneficial effect on neuronal survival and brain injury in in vitro and in vivo ischemic models. However, the effect of NAD+ on mitochondrial biogenesis and function in ischemia has not been well investigated. In the present study, we used an in vitro glutamate excitotoxicity model of primary cultured cortical neurons to study the effect of NAD+ on apoptotic neuronal death and mitochondrial biogenesis and function. Our results show that supplementation of NAD+ could effectively reduce apoptotic neuronal death, and apoptotic inducing factor translocation after neurons were challenged with excitotoxic glutamate stimulation. Using different approaches including confocal imaging, mitochondrial DNA measurement and Western blot analysis of PGC-1 and NRF-1, we also found that NAD+ could significantly attenuate glutamate-induced mitochondrial fragmentation and the impairment of mitochondrial biogenesis. Furthermore, NAD+ treatment effectively inhibited mitochondrial membrane potential depolarization and NADH redistribution after excitotoxic glutamate stimulation. Taken together, our results demonstrated that NAD+ is capable of inhibiting apoptotic neuronal death after glutamate excitotoxicity via preserving mitochondrial biogenesis and integrity. Our findings provide insights into potential neuroprotective strategies in ischemic stroke.

  3. Honokiol induces a necrotic cell death through the mitochondrial permeability transition pore.

    PubMed

    Li, Ling; Han, Weidong; Gu, Ying; Qiu, Shuang; Lu, Qinghua; Jin, Jie; Luo, Jianhong; Hu, Xun

    2007-05-15

    Previous reports have shown that honokiol induces apoptosis in numerous cancer cell lines and showed preclinical efficacies against apoptosis-resistant B-cell chronic lymphocytic leukemia and multiple myeloma cells from relapse-refractory patients. Here, we show that honokiol can induce a cell death distinct from apoptosis in HL60, MCF-7, and HEK293 cell lines. The death was characterized by a rapid loss of integrity of plasma membrane without externalization of phosphatidyl serine. The broad caspase inhibitor z-VAD-fmk failed to prevent this cell death. Consistently, caspase activation and DNA laddering were not observed. The death was paralleled by a rapid loss of mitochondrial membrane potential, which was mechanistically associated with the mitochondrial permeability transition pore regulated by cyclophilin D (CypD) based on the following evidence: (a) cyclosporin A, an inhibitor of CypD (an essential component of the mitochondrial permeability transition pore), effectively prevented honokiol-induced cell death and loss of mitochondrial membrane potential; (b) inhibition of CypD by RNA interference blocked honokiol-induced cell death; (c) CypD up-regulated by honokiol was correlated with the death rates in HL60, but not in K562 cells, which underwent apoptosis after being exposed to honokiol. We further showed that honokiol induced a CypD-regulated death in primary human acute myelogenous leukemia cells, overcame Bcl-2 and Bcl-X(L)-mediated apoptotic resistance, and was effective against HL60 cells in a pilot in vivo study. To the best of our knowledge, this is the first report to document an induction of mitochondrial permeability transition pore-associated cell death by honokiol.

  4. Mitochondrial superoxide radicals mediate programmed cell death in Trypanosoma cruzi: cytoprotective action of mitochondrial iron superoxide dismutase overexpression

    PubMed Central

    Piacenza, Lucía; Irigoín, Florencia; Alvarez, María Noel; Peluffo, Gonzalo; Taylor, Martin C.; Kelly, John M.; Wilkinson, Shane R.; Radi, Rafael

    2006-01-01

    Trypanosoma cruzi undergo PCD (programmed cell death) under appropriate stimuli, the mechanisms of which remain to be established. In the present study, we show that stimulation of PCD in T. cruzi epimastigotes by FHS (fresh human serum) results in rapid (<1 h) externalization of phosphatidylserine and depletion of the low molecular mass thiols dihydrotrypanothione and glutathione. Concomitantly, enhanced generation of oxidants was established by EPR and immuno-spin trapping of radicals using DMPO (5,5-dimethylpyrroline-N-oxide) and augmentation of the glucose flux through the pentose phosphate pathway. In the early period (<20 min), changes in mitochondrial membrane potential and inhibition of respiration, probably due to the impairment of ADP/ATP exchange with the cytosol, were observed, conditions that favour the generation of O2•−. Accelerated rates of mitochondrial O2•− production were detected by the inactivation of the redox-sensitive mitochondrial aconitase and by oxidation of a mitochondrial-targeted probe (MitoSOX). Importantly, parasites overexpressing mitochondrial FeSOD (iron superoxide dismutase) were more resistant to the PCD stimulus, unambiguously indicating the participation of mitochondrial O2•− in the signalling process. In summary, FHS-induced PCD in T. cruzi involves mitochondrial dysfunction that causes enhanced O2•− formation, which leads to cellular oxidative stress conditions that trigger the initiation of PCD cascades; moreover, overexpression of mitochondrial FeSOD, which is also observed during metacyclogenesis, resulted in cytoprotective effects. PMID:17168856

  5. Fas cell surface death receptor controls hepatic lipid metabolism by regulating mitochondrial function.

    PubMed

    Item, Flurin; Wueest, Stephan; Lemos, Vera; Stein, Sokrates; Lucchini, Fabrizio C; Denzler, Rémy; Fisser, Muriel C; Challa, Tenagne D; Pirinen, Eija; Kim, Youngsoo; Hemmi, Silvio; Gulbins, Erich; Gross, Atan; O'Reilly, Lorraine A; Stoffel, Markus; Auwerx, Johan; Konrad, Daniel

    2017-09-07

    Nonalcoholic fatty liver disease is one of the most prevalent metabolic disorders and it tightly associates with obesity, type 2 diabetes, and cardiovascular disease. Reduced mitochondrial lipid oxidation contributes to hepatic fatty acid accumulation. Here, we show that the Fas cell surface death receptor (Fas/CD95/Apo-1) regulates hepatic mitochondrial metabolism. Hepatic Fas overexpression in chow-fed mice compromises fatty acid oxidation, mitochondrial respiration, and the abundance of mitochondrial respiratory complexes promoting hepatic lipid accumulation and insulin resistance. In line, hepatocyte-specific ablation of Fas improves mitochondrial function and ameliorates high-fat-diet-induced hepatic steatosis, glucose tolerance, and insulin resistance. Mechanistically, Fas impairs fatty acid oxidation via the BH3 interacting-domain death agonist (BID). Mice with genetic or pharmacological inhibition of BID are protected from Fas-mediated impairment of mitochondrial oxidation and hepatic steatosis. We suggest Fas as a potential novel therapeutic target to treat obesity-associated fatty liver and insulin resistance.Hepatic steatosis is a common disease closely associated with metabolic syndrome and insulin resistance. Here Item et al. show that Fas, a member of the TNF receptor superfamily, contributes to mitochondrial dysfunction, steatosis development, and insulin resistance under high fat diet.

  6. Human lactoferrin triggers a mitochondrial- and caspase-dependent regulated cell death in Saccharomyces cerevisiae.

    PubMed

    Acosta-Zaldívar, M; Andrés, M T; Rego, A; Pereira, C S; Fierro, J F; Côrte-Real, M

    2016-02-01

    We have previously shown that the antifungal activity of human lactoferrin (hLf) against Candida albicans relies on its ability to induce cell death associated with apoptotic markers. To gain a deeper understanding of the mechanisms underlying hLf-induced apoptosis, we characterized this cell death process in the well-established Saccharomyces cerevisiae model. Our results indicate that hLf induces cell death in S. cerevisiae in a manner that requires energy and de novo protein synthesis. Cell death is associated with nuclear chromatin condensation, preservation of plasma membrane integrity, and is Yca1p metacaspase-dependent. Lactoferrin also caused mitochondrial dysfunction associated with ROS accumulation and release of cytochrome c. Pre-incubation with oligomycin, an oxidative phosphorylation inhibitor, increased resistance to hLf and, accordingly, mutants deficient in the F1F0-ATP synthase complex were more resistant to death induced by hLf. This indicates that mitochondrial energetic metabolism plays a key role in the killing effect of hLf, though a direct role of F1F0-ATP synthase cannot be precluded. Overexpression of the anti-apoptotic protein Bcl-xL or pre-incubation with N-acetyl cysteine reduced the intracellular level of ROS and increased resistance to hLf, confirming a ROS-mediated mitochondrial cell death process. Mitochondrial involvement was further reinforced by the higher resistance of cells lacking mitochondrial DNA, or other known yeast mitochondrial apoptosis regulators, such as, Aif1p, Cyc3p and Aac1/2/3p. This study provides new insights into a detailed understanding at the molecular level of hLf-induced apoptosis, which may allow the design of new strategies to overcome the emergence of resistance of clinically relevant fungi to conventional antifungals.

  7. Mitochondrial membrane permeabilization and cell death during myocardial infarction: roles of calcium and reactive oxygen species

    PubMed Central

    Webster, Keith A

    2013-01-01

    Excess generation of reactive oxygen species (ROS) and cytosolic calcium accumulation play major roles in the initiation of programmed cell death during acute myocardial infarction. Cell death may include necrosis, apoptosis and autophagy, and combinations thereof. During ischemia, calcium handling between the sarcoplasmic reticulum and myofilament is disrupted and calcium is diverted to the mitochondria causing swelling. Reperfusion, while essential for survival, reactivates energy transduction and contractility and causes the release of ROS and additional ionic imbalance. During acute ischemia–reperfusion, the principal death pathways are programmed necrosis and apoptosis through the intrinsic pathway, initiated by the opening of the mitochondrial permeability transition pore and outer mitochondrial membrane permeabilization, respectively. Despite intense investigation, the mechanisms of action and modes of regulation of mitochondrial membrane permeabilization are incompletely understood. Extrinsic apoptosis, necroptosis and autophagy may also contribute to ischemia–reperfusion injury. In this review, the roles of dysregulated calcium and ROS and the contributions of Bcl-2 proteins, as well as mitochondrial morphology in promoting mitochondrial membrane permeability change and the ensuing cell death during myocardial infarction are discussed. PMID:23176689

  8. Coenzyme Q10 Ameliorates Ultraviolet B Irradiation Induced Cell Death Through Inhibition of Mitochondrial Intrinsic Cell Death Pathway

    PubMed Central

    Jing, Li; Kumari, Santosh; Mendelev, Natalia; Li, P. Andy

    2011-01-01

    Ultraviolet B (UVB) induces cell death by increasing free radical production, activating apoptotic cell death pathways and depolarizing mitochondrial membrane potential. Coenzyme Q10 (CoQ10), an essential cofactor in the mitochondrial electron transport chain, serves as a potent antioxidant in the mitochondria. The aim of the present study is to establish whether CoQ10 is capable of protecting neuronal cells against UVB-induced damage. Murine hippocampal HT22 cells were treated with 0.01, 0.1 or 1 μM of CoQ10 3 or 24 h prior to the cells being exposed to UVB irradiation. The CoQ10 concentrations were maintained during irradiation and 24 h post-UVB. Cell viability was assessed by counting viable cells and MTT conversion assay. Superoxide production and mitochondrial membrane potential were measured using fluorescent probes. Levels of cleaved caspase-9, caspase-3, and apoptosis-inducing factor (AIF) were detected using immunocytochemistry and Western blotting. The results showed that UVB irradiation decreased cell viability and such damaging effect was associated with increased superoxide production, mitochondrial depolarization, and activation of caspase-9 and caspase-3. Treatment with CoQ10 at three different concentrations started 24 h before UVB exposure significantly increased the cell viability. The protective effect of CoQ10 was associated with reduction in superoxide production, normalization of mitochondrial membrane potential and inhibition of caspase-9 and caspase-3 activation. It is concluded that the neuroprotective effect of CoQ10 results from inhibiting oxidative stress and blocking caspase-3 dependent cell death pathway. PMID:22174665

  9. Mitochondrial calcium signalling and cell death: approaches for assessing the role of mitochondrial Ca2+ uptake in apoptosis

    PubMed Central

    Hajnóczky, György; Csordás, György; Das, Sudipto; Garcia-Perez, Cecilia; Saotome, Masao; Roy, Soumya Sinha; Yi, Muqing

    2009-01-01

    Summary Local Ca2+ transfer between adjoining domains of the sarcoendoplasmic reticulum (ER/SR) and mitochondria allows ER/SR Ca2+ release to activate mitochondrial Ca2+ uptake and to evoke a matrix [Ca2+] ([Ca2+]m) rise. [Ca2+]m exerts control on several steps of energy metabolism to synchronize ATP generation with cell function. However, calcium signal propagation to the mitochondria may also ignite a cell death program through opening of the permeability transition pore (PTP). This occurs when the Ca2+ release from the ER/SR is enhanced or is coincident with sensitization of the PTP. Recent studies have shown that several pro-apoptotic factors, including members of the Bcl-2 family proteins and reactive oxygen species (ROS) regulate the Ca2+ sensitivity of both the Ca2+ release channels in the ER and the PTP in the mitochondria. To test the relevance of the mitochondrial Ca2+ accumulation in various apoptotic paradigms, methods are available for buffering of [Ca2+], for dissipation of the driving force of the mitochondrial Ca2+ uptake and for inhibition of the mitochondrial Ca2+ transport mechanisms. However, in intact cells, the efficacy and the specificity of these approaches have to be established. Here we discuss mechanisms that recruit the mitochondrial calcium signal to a pro-apoptotic cascade and the approaches available for assessment of the relevance of the mitochondrial Ca2+ handling in apoptosis. We also present a systematic evaluation of the effect of ruthenium red and Ru360, two inhibitors of mitochondrial Ca2+ uptake on cytosolic [Ca2+] and [Ca2+]m in intact cultured cells. PMID:17074387

  10. Stress-Activated Degradation of Sphingolipids Regulates Mitochondrial Function and Cell Death in Yeast

    PubMed Central

    Manzanares-Estreder, Sara; Pascual-Ahuir, Amparo

    2017-01-01

    Sphingolipids are regulators of mitochondria-mediated cell death in higher eukaryotes. Here, we investigate how changes in sphingolipid metabolism and downstream intermediates of sphingosine impinge on mitochondrial function. We found in yeast that within the sphingolipid degradation pathway, the production via Dpl1p and degradation via Hfd1p of hexadecenal are critical for mitochondrial function and cell death. Genetic interventions, which favor hexadecenal accumulation, diminish oxygen consumption rates and increase reactive oxygen species production and mitochondrial fragmentation and vice versa. The location of the hexadecenal-degrading enzyme Hfd1p in punctuate structures all along the mitochondrial network depends on a functional ERMES (endoplasmic reticulum-mitochondria encounter structure) complex, indicating that modulation of hexadecenal levels at specific ER-mitochondria contact sites might be an important trigger of cell death. This is further supported by the finding that externally added hexadecenal or the absence of Hfd1p enhances cell death caused by ectopic expression of the human Bax protein. Finally, the induction of the sphingolipid degradation pathway upon stress is controlled by the Hog1p MAP kinase. Therefore, the stress-regulated modulation of sphingolipid degradation might be a conserved way to induce cell death in eukaryotic organisms. PMID:28845213

  11. CDK5 phosphorylates DRP1 and drives mitochondrial defects in NMDA-induced neuronal death.

    PubMed

    Jahani-Asl, Arezu; Huang, En; Irrcher, Isabella; Rashidian, Juliet; Ishihara, Naotada; Lagace, Diane C; Slack, Ruth S; Park, David S

    2015-08-15

    Defects in mitochondrial fission and cyclin dependent kinase 5 (CDK5) activation are early events that precede neuronal loss following NMDA-induced neuronal death. Here, we report that the cytoplasmic CDK5 tightly regulates mitochondrial morphology defects associated with NMDA-induced neuronal injury via regulation of the mitochondrial fission protein, dynamin-related protein 1 (DRP1). We show that DRP1 is a direct target of CDK5. CDK5-mediated phosphorylation of DRP1 at a conserved Serine residue, S585, is elevated at the mitochondria and is associated with increased mitochondrial fission. Ectopic expression of a cytoplasmic CDK5 or mutant DRP1-S585D results in increased mitochondrial fragmentation in primary neurons. Conversely, expression of a dominant negative form of cytoplasmic CDK5 or mutant DRP1-S585A results in elongated mitochondria. In addition, pharmacological inhibition of CDK5 by Roscovitine inhibits DRP1 phosphorylation and mitochondrial fission associated with NMDA-induced neuronal loss. Importantly, conditional deletion of CDK5 significantly attenuates DRP1 phosphorylation at S585 and rescues mitochondrial fission defects in neurons exposed to NMDA. Our studies delineate an important mechanism by which CDK5 regulates mitochondrial morphology defects associated with neuronal injury.

  12. A cardiac mitochondrial cAMP signaling pathway regulates calcium accumulation, permeability transition and cell death

    PubMed Central

    Wang, Z; Liu, D; Varin, A; Nicolas, V; Courilleau, D; Mateo, P; Caubere, C; Rouet, P; Gomez, A-M; Vandecasteele, G; Fischmeister, R; Brenner, C

    2016-01-01

    Although cardiac cytosolic cyclic 3′,5′-adenosine monophosphate (cAMP) regulates multiple processes, such as beating, contractility, metabolism and apoptosis, little is known yet on the role of this second messenger within cardiac mitochondria. Using cellular and subcellular approaches, we demonstrate here the local expression of several actors of cAMP signaling within cardiac mitochondria, namely a truncated form of soluble AC (sACt) and the exchange protein directly activated by cAMP 1 (Epac1), and show a protective role for sACt against cell death, apoptosis as well as necrosis in primary cardiomyocytes. Upon stimulation with bicarbonate (HCO3−) and Ca2+, sACt produces cAMP, which in turn stimulates oxygen consumption, increases the mitochondrial membrane potential (ΔΨm) and ATP production. cAMP is rate limiting for matrix Ca2+ entry via Epac1 and the mitochondrial calcium uniporter and, as a consequence, prevents mitochondrial permeability transition (MPT). The mitochondrial cAMP effects involve neither protein kinase A, Epac2 nor the mitochondrial Na+/Ca2+ exchanger. In addition, in mitochondria isolated from failing rat hearts, stimulation of the mitochondrial cAMP pathway by HCO3− rescued the sensitization of mitochondria to Ca2+-induced MPT. Thus, our study identifies a link between mitochondrial cAMP, mitochondrial metabolism and cell death in the heart, which is independent of cytosolic cAMP signaling. Our results might have implications for therapeutic prevention of cell death in cardiac pathologies. PMID:27100892

  13. Connecting mitochondrial dynamics and life-or-death events via Bcl-2 family proteins.

    PubMed

    Aouacheria, Abdel; Baghdiguian, Stephen; Lamb, Heather M; Huska, Jason D; Pineda, Fernando J; Hardwick, J Marie

    2017-04-28

    The morphology of a population of mitochondria is the result of several interacting dynamical phenomena, including fission, fusion, movement, elimination and biogenesis. Each of these phenomena is controlled by underlying molecular machinery, and when defective can cause disease. New understanding of the relationships between form and function of mitochondria in health and disease is beginning to be unraveled on several fronts. Studies in mammals and model organisms have revealed that mitochondrial morphology, dynamics and function appear to be subject to regulation by the same proteins that regulate apoptotic cell death. One protein family that influences mitochondrial dynamics in both healthy and dying cells is the Bcl-2 protein family. Connecting mitochondrial dynamics with life-death pathway forks may arise from the intersection of Bcl-2 family proteins with the proteins and lipids that determine mitochondrial shape and function. Bcl-2 family proteins also have multifaceted influences on cells and mitochondria, including calcium handling, autophagy and energetics, as well as the subcellular localization of mitochondrial organelles to neuronal synapses. The remarkable range of physical or functional interactions by Bcl-2 family proteins is challenging to assimilate into a cohesive understanding. Most of their effects may be distinct from their direct roles in apoptotic cell death and are particularly apparent in the nervous system. Dual roles in mitochondrial dynamics and cell death extend beyond BCL-2 family proteins. In this review, we discuss many processes that govern mitochondrial structure and function in health and disease, and how Bcl-2 family proteins integrate into some of these processes. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Mitochondrial oxidant stress triggers cell death in simulated ischemia-reperfusion.

    PubMed

    Loor, Gabriel; Kondapalli, Jyothisri; Iwase, Hirotaro; Chandel, Navdeep S; Waypa, Gregory B; Guzy, Robert D; Vanden Hoek, Terry L; Schumacker, Paul T

    2011-07-01

    To clarify the relationship between reactive oxygen species (ROS) and cell death during ischemia-reperfusion (I/R), we studied cell death mechanisms in a cellular model of I/R. Oxidant stress during simulated ischemia was detected in the mitochondrial matrix using mito-roGFP, a ratiometric redox sensor, and by Mito-Sox Red oxidation. Reperfusion-induced death was attenuated by over-expression of Mn-superoxide dismutase (Mn-SOD) or mitochondrial phospholipid hydroperoxide glutathione peroxidase (mito-PHGPx), but not by catalase, mitochondria-targeted catalase, or Cu,Zn-SOD. Protection was also conferred by chemically distinct antioxidant compounds, and mito-roGFP oxidation was attenuated by NAC, or by scavenging of residual O(2) during the ischemia (anoxic ischemia). Mitochondrial permeability transition pore (mPTP) oscillation/opening was monitored by real-time imaging of mitochondrial calcein fluorescence. Oxidant stress caused release of calcein to the cytosol during ischemia, a response that was inhibited by chemically diverse antioxidants, anoxia, or over-expression of Mn-SOD or mito-PHGPx. These findings suggest that mitochondrial oxidant stress causes oscillation of the mPTP prior to reperfusion. Cytochrome c release from mitochondria to the cytosol was not detected until after reperfusion, and was inhibited by anoxic ischemia or antioxidant administration during ischemia. Although DNA fragmentation was detected after I/R, no evidence of Bax activation was detected. Over-expression of the anti-apoptotic protein Bcl-X(L) in cardiomyocytes did not confer protection against I/R-induced cell death. Moreover, murine embryonic fibroblasts with genetic depletion of Bax and Bak, or over-expression of Bcl-X(L), failed to show protection against I/R. These findings indicate that mitochondrial ROS during ischemia triggers mPTP activation, mitochondrial depolarization, and cell death during reperfusion through a Bax/Bak-independent cell death pathway. Therefore

  15. USP30 deubiquitylates mitochondrial Parkin substrates and restricts apoptotic cell death.

    PubMed

    Liang, Jin-Rui; Martinez, Aitor; Lane, Jon D; Mayor, Ugo; Clague, Michael J; Urbé, Sylvie

    2015-05-01

    Mitochondria play a pivotal role in the orchestration of cell death pathways. Here, we show that the control of ubiquitin dynamics at mitochondria contributes to the regulation of apoptotic cell death. The unique mitochondrial deubiquitylase, USP30, opposes Parkin-dependent ubiquitylation of TOM20, and its depletion enhances depolarization-induced cell death in Parkin-overexpressing cells. Importantly, USP30 also regulates BAX/BAK-dependent apoptosis, and its depletion sensitizes cancer cells to BH3-mimetics. These results provide the first evidence for a fundamental role of USP30 in determining the threshold for mitochondrial cell death and suggest USP30 as a potential target for combinatorial anti-cancer therapy. © 2015 The Authors. Published under the terms of the CC BY 4.0 license.

  16. Apricot Melanoidins Prevent Oxidative Endothelial Cell Death by Counteracting Mitochondrial Oxidation and Membrane Depolarization

    PubMed Central

    Giordo, Roberta; Emanueli, Costanza; Sanguinetti, Anna Maria; Piscopo, Amalia; Poiana, Marco; Capobianco, Giampiero; Piga, Antonio; Pintus, Gianfranco

    2012-01-01

    The cardiovascular benefits associated with diets rich in fruit and vegetables are thought to be due to phytochemicals contained in fresh plant material. However, whether processed plant foods provide the same benefits as unprocessed ones is an open question. Melanoidins from heat-processed apricots were isolated and their presence confirmed by colorimetric analysis and browning index. Oxidative injury of endothelial cells (ECs) is the key step for the onset and progression of cardiovascular diseases (CVD), therefore the potential protective effect of apricot melanoidins on hydrogen peroxide-induced oxidative mitochondrial damage and cell death was explored in human ECs. The redox state of cytoplasmic and mitochondrial compartments was detected by using the redox-sensitive, fluorescent protein (roGFP), while the mitochondrial membrane potential (MMP) was assessed with the fluorescent dye, JC-1. ECs exposure to hydrogen peroxide, dose-dependently induced mitochondrial and cytoplasmic oxidation. Additionally detected hydrogen peroxide-induced phenomena were MMP dissipation and ECs death. Pretreatment of ECs with apricot melanoidins, significantly counteracted and ultimately abolished hydrogen peroxide-induced intracellular oxidation, mitochondrial depolarization and cell death. In this regard, our current results clearly indicate that melanoidins derived from heat-processed apricots, protect human ECs against oxidative stress. PMID:23144984

  17. Evolution of mitochondrial cell death pathway: Proapoptotic role of HtrA2/Omi in Drosophila

    SciTech Connect

    Igaki, Tatsushi; Suzuki, Yasuyuki; Tokushige, Naoko; Aonuma, Hiroka; Takahashi, Ryosuke . E-mail: ryosuket@kuhp.kyoto-u.ac.jp; Miura, Masayuki . E-mail: miura@mol.f.u-tokyo.ac.jp

    2007-05-18

    Despite the essential role of mitochondria in a variety of mammalian cell death processes, the involvement of mitochondrial pathway in Drosophila cell death has remained unclear. To address this, we cloned and characterized DmHtrA2, a Drosophila homolog of a mitochondrial serine protease HtrA2/Omi. We show that DmHtrA2 normally resides in mitochondria and is up-regulated by UV-irradiation. Upon receipt of apoptotic stimuli, DmHtrA2 is translocated to extramitochondrial compartment; however, unlike its mammalian counterpart, the extramitochondrial DmHtrA2 does not diffuse throughout the cytosol but stays near the mitochondria. RNAi-mediated knock-down of DmHtrA2 in larvae or adult flies results in a resistance to stress stimuli. DmHtrA2 specifically cleaves Drosophila inhibitor-of-apoptosis protein 1 (DIAP1), a cellular caspase inhibitor, and induces cell death both in vitro and in vivo as potent as other fly cell death proteins. Our observations suggest that DmHtrA2 promotes cell death through a cleavage of DIAP1 in the vicinity of mitochondria, which may represent a prototype of mitochondrial cell death pathway in evolution.

  18. Pepper mitochondrial FORMATE DEHYDROGENASE1 regulates cell death and defense responses against bacterial pathogens.

    PubMed

    Choi, Du Seok; Kim, Nak Hyun; Hwang, Byung Kook

    2014-11-01

    Formate dehydrogenase (FDH; EC 1.2.1.2) is an NAD-dependent enzyme that catalyzes the oxidation of formate to carbon dioxide. Here, we report the identification and characterization of pepper (Capsicum annuum) mitochondrial FDH1 as a positive regulator of cell death and defense responses. Transient expression of FDH1 caused hypersensitive response (HR)-like cell death in pepper and Nicotiana benthamiana leaves. The D-isomer -: specific 2-hydroxyacid dehydrogenase signatures of FDH1 were required for the induction of HR-like cell death and FDH activity. FDH1 contained a mitochondrial targeting sequence at the N-terminal region; however, mitochondrial localization of FDH1 was not essential for the induction of HR-like cell death and FDH activity. FDH1 silencing in pepper significantly attenuated the cell death response and salicylic acid levels but stimulated growth of Xanthomonas campestris pv vesicatoria. By contrast, transgenic Arabidopsis (Arabidopsis thaliana) overexpressing FDH1 exhibited greater resistance to Pseudomonas syringae pv tomato in a salicylic acid-dependent manner. Arabidopsis transfer DNA insertion mutant analysis indicated that AtFDH1 expression is required for basal defense and resistance gene-mediated resistance to P. syringae pv tomato infection. Taken together, these data suggest that FDH1 has an important role in HR-like cell death and defense responses to bacterial pathogens. © 2014 American Society of Plant Biologists. All Rights Reserved.

  19. Mitochondrial regulation of cell death: a phylogenetically conserved control

    PubMed Central

    Galluzzi, Lorenzo; Kepp, Oliver; Kroemer, Guido

    2016-01-01

    Mitochondria are fundamental for eukaryotic cells as they participate in critical catabolic and anabolic pathways. Moreover, mitochondria play a key role in the signal transduction cascades that precipitate many (but not all) regulated variants of cellular demise. In this short review, we discuss the differential implication of mitochondria in the major forms of regulated cell death. PMID:28357340

  20. Proapoptotic BAX and BAK: A Requisite Gateway to Mitochondrial Dysfunction and Death

    PubMed Central

    Wei, Michael C.; Zong, Wei-Xing; Cheng, Emily H. -Y.; Lindsten, Tullia; Panoutsakopoulou, Vily; Ross, Andrea J.; Roth, Kevin A.; MacGregor, Grant R.; Thompson, Craig B.; Korsmeyer, Stanley J.

    2011-01-01

    Multiple death signals influence mitochondria during apoptosis, yet the critical initiating event for mitochondrial dysfunction in vivo has been unclear. tBID, the caspase-activated form of a “BH3-domain–only” BCL-2 family member, triggers the homooligomerization of “multidomain” conserved proapoptotic family members BAK or BAX, resulting in the release of cytochrome c from mitochondria. We find that cells lacking both Bax and Bak, but not cells lacking only one of these components, are completely resistant to tBID-induced cytochrome c release and apoptosis. Moreover, doubly deficient cells are resistant to multiple apoptotic stimuli that act through disruption of mitochondrial function: staurosporine, ultraviolet radiation, growth factor deprivation, etoposide, and the endoplasmic reticulum stress stimuli thapsigargin and tunicamycin. Thus, activation of a “multidomain” proapoptotic member, BAX or BAK, appears to be an essential gateway to mitochondrial dysfunction required for cell death in response to diverse stimuli. PMID:11326099

  1. MAPL SUMOylation of Drp1 Stabilizes an ER/Mitochondrial Platform Required for Cell Death.

    PubMed

    Prudent, Julien; Zunino, Rodolfo; Sugiura, Ayumu; Mattie, Sevan; Shore, Gordon C; McBride, Heidi M

    2015-09-17

    There has been evidence that mitochondrial fragmentation is required for apoptosis, but the molecular links between the machinery regulating dynamics and cell death have been controversial. Indeed, activated BAX and BAK can form functional channels in liposomes, bringing into question the contribution of mitochondrial dynamics in apoptosis. We now demonstrate that the activation of apoptosis triggers MAPL/MUL1-dependent SUMOylation of the fission GTPase Drp1, a process requisite for cytochrome c release. SUMOylated Drp1 functionally stabilizes ER/mitochondrial contact sites that act as hotspots for mitochondrial constriction, calcium flux, cristae remodeling, and cytochrome c release. The loss of MAPL does not alter the activation and assembly of BAX/BAK oligomers, indicating that MAPL is activated downstream of BAX/BAK. This work demonstrates how interorganellar contacts are dynamically regulated through active SUMOylation during apoptosis, creating a stabilized platform that signals cytochrome c release.

  2. Cdk1, PKCδ and calcineurin-mediated Drp1 pathway contributes to mitochondrial fission-induced cardiomyocyte death.

    PubMed

    Zaja, Ivan; Bai, Xiaowen; Liu, Yanan; Kikuchi, Chika; Dosenovic, Svjetlana; Yan, Yasheng; Canfield, Scott G; Bosnjak, Zeljko J

    2014-10-31

    Myocardial ischemia-reperfusion (I/R) injury is one of the leading causes of death and disability worldwide. Mitochondrial fission has been shown to be involved in cardiomyocyte death. However, molecular machinery involved in mitochondrial fission during I/R injury has not yet been completely understood. In this study we aimed to investigate molecular mechanisms of controlling activation of dynamin-related protein 1 (Drp1, a key protein in mitochondrial fission) during anoxia-reoxygenation (A/R) injury of HL1 cardiomyocytes. A/R injury induced cardiomyocyte death accompanied by the increases of mitochondrial fission, reactive oxygen species (ROS) production and activated Drp1 (pSer616 Drp1), and decrease of inactivated Drp1 (pSer637 Drp1) while mitochondrial fusion protein levels were not significantly changed. Blocking Drp1 activity with mitochondrial division inhibitor mdivi1 attenuated cell death, mitochondrial fission, and Drp1 activation after A/R. Trolox, a ROS scavenger, decreased pSer616 Drp1 level and mitochondrial fission after A/R. Immunoprecipitation assay further indicates that cyclin dependent kinase 1 (Cdk1) and protein kinase C isoform delta (PKCδ) bind Drp1, thus increasing mitochondrial fission. Inhibiting Cdk1 and PKCδ attenuated the increases in pSer616 Drp1, mitochondrial fission, and cardiomyocyte death. FK506, a calcineurin inhibitor, blocked the decrease in expression of inactivated pSer637 Drp1 and mitochondrial fission. Our findings reveal the following novel molecular mechanisms controlling mitochondrial fission during A/R injury of cardiomyocytes: (1) ROS are upstream initiators of mitochondrial fission; and (2) the increased mitochondrial fission is resulted from both increased activation and decreased inactivation of Drp1 through Cdk1, PKCδ, and calcineurin-mediated pathways, respectively. Copyright © 2014 Elsevier Inc. All rights reserved.

  3. Aspirin induces cell death by directly modulating mitochondrial voltage-dependent anion channel (VDAC)

    PubMed Central

    Tewari, Debanjan; Majumdar, Dhriti; Vallabhaneni, Sirisha; Bera, Amal Kanti

    2017-01-01

    Aspirin induces apoptotic cell death in various cancer cell lines. Here we showed that silencing of VDAC1 protected HeLa cells from aspirin-induced cell death. Compared to the wild type cells, VDAC1 knocked down cells showed lesser change of mitochondrial membrane potential (Δψm), upon aspirin treatment. Aspirin augmented ATP and ionomycin-induced mitochondrial Ca2+ uptake which was abolished in VDAC1 knocked down cells. Aspirin dissociated bound hexokinase II (HK-II) from mitochondria. Further, aspirin promoted the closure of recombinant human VDAC1, reconstituted in planar lipid bilayer. Taken together, these results imply that VDAC1 serves as a novel target for aspirin. Modulation of VDAC1 is possibly associated with the cell death and anticancer effects of aspirin. PMID:28327594

  4. Mitochondria-specific accumulation of amyloid β induces mitochondrial dysfunction leading to apoptotic cell death.

    PubMed

    Cha, Moon-Yong; Han, Sun-Ho; Son, Sung Min; Hong, Hyun-Seok; Choi, Young-Ju; Byun, Jayoung; Mook-Jung, Inhee

    2012-01-01

    Mitochondria are best known as the essential intracellular organelles that host the homeostasis required for cellular survival, but they also have relevance in diverse disease-related conditions, including Alzheimer's disease (AD). Amyloid β (Aβ) peptide is the key molecule in AD pathogenesis, and has been highlighted in the implication of mitochondrial abnormality during the disease progress. Neuronal exposure to Aβ impairs mitochondrial dynamics and function. Furthermore, mitochondrial Aβ accumulation has been detected in the AD brain. However, the underlying mechanism of how Aβ affects mitochondrial function remains uncertain, and it is questionable whether mitochondrial Aβ accumulation followed by mitochondrial dysfunction leads directly to neuronal toxicity. This study demonstrated that an exogenous Aβ(1-42) treatment, when applied to the hippocampal cell line of mice (specifically HT22 cells), caused a deleterious alteration in mitochondria in both morphology and function. A clathrin-mediated endocytosis blocker rescued the exogenous Aβ(1-42)-mediated mitochondrial dysfunction. Furthermore, the mitochondria-targeted accumulation of Aβ(1-42) in HT22 cells using Aβ(1-42) with a mitochondria-targeting sequence induced the identical morphological alteration of mitochondria as that observed in the APP/PS AD mouse model and exogenous Aβ(1-42)-treated HT22 cells. In addition, subsequent mitochondrial dysfunctions were demonstrated in the mitochondria-specific Aβ(1-42) accumulation model, which proved indistinguishable from the mitochondrial impairment induced by exogenous Aβ(1-42)-treated HT22 cells. Finally, cellular toxicity was directly induced by mitochondria-targeted Aβ(1-42) accumulation, which mimics the apoptosis process in exogenous Aβ(1-42)-treated HT22 cells. Taken together, these results indicate that mitochondria-targeted Aβ(1-42) accumulation is the necessary and sufficient condition for Aβ-mediated mitochondria impairments, and leads

  5. Mitochondrial oxygen consumption inhibition importance for TMT-dependent cell death in undifferentiated PC12 cells.

    PubMed

    Misiti, Francesco; Orsini, Federica; Clementi, M Elisabetta; Lattanzi, Wanda; Giardina, Bruno; Michetti, Fabrizio

    2008-05-01

    The evolving role of mitochondria as a target for different death-inducing noxae prompted us to investigate trimethyltin (TMT)-dependent effects on mitochondrial functionality. For this purpose, we used a homogeneous cell culture model represented by undifferentiated PC12 cells. Mitochondria isolated from PC12 cells treated with TMT for 6, 12 and 24h, showed a time-dependent inhibition of ADP-stimulated oxygen consumption using succinate or glutamate/malate as substrate. Using a fluorescent assay, the effect of TMT on mitochondrial membrane potential (delta Psi) in PC12 cells was also determined. After 24h in culture, a strong loss of mitochondrial membrane potential (delta Psi) was observed in TMT-treated cells. Collapse of mitochondrial membrane potential correlated with an increased expression of bax/bcl-2 ratio, as evaluated by polymerase chain reaction. Western blotting and spectrophotometric analysis showed that cytochrome c release and activation of caspase 3 were concurrently induced. Our findings suggest that inhibition of mitochondrial respiration represents the early toxic event for cell death in PC12 due to trimethyltin.

  6. Sulfated lentinan induced mitochondrial dysfunction leads to programmed cell death of tobacco BY-2 cells.

    PubMed

    Wang, Jie; Wang, Yaofeng; Shen, Lili; Qian, Yumei; Yang, Jinguang; Wang, Fenglong

    2017-04-01

    Sulphated lentinan (sLTN) is known to act as a resistance inducer by causing programmed cell death (PCD) in tobacco suspension cells. However, the underlying mechanism of this effect is largely unknown. Using tobacco BY-2 cell model, morphological and biochemical studies revealed that mitochondrial reactive oxygen species (ROS) production and mitochondrial dysfunction contribute to sLNT induced PCD. Cell viability, and HO/PI fluorescence imaging and TUNEL assays confirmed a typical cell death process caused by sLNT. Acetylsalicylic acid (an ROS scavenger), diphenylene iodonium (an inhibitor of NADPH oxidases) and protonophore carbonyl cyanide p-trifluoromethoxyphenyl hydrazone (a protonophore and an uncoupler of mitochondrial oxidative phosphorylation) inhibited sLNT-induced H2O2 generation and cell death, suggesting that ROS generation linked, at least partly, to a mitochondrial dysfunction and caspase-like activation. This conclusion was further confirmed by double-stained cells with the mitochondria-specific marker MitoTracker RedCMXRos and the ROS probe H2DCFDA. Moreover, the sLNT-induced PCD of BY-2 cells required cellular metabolism as up-regulation of the AOX family gene transcripts and induction of the SA biosynthesis, the TCA cycle, and miETC related genes were observed. It is concluded that mitochondria play an essential role in the signaling pathway of sLNT-induced ROS generation, which possibly provided new insight into the sLNT-mediated antiviral response, including PCD.

  7. Caspase-independent mitochondrial cell death results from loss of respiration, not cytotoxic protein release.

    PubMed

    Lartigue, Lydia; Kushnareva, Yulia; Seong, Youngmo; Lin, Helen; Faustin, Benjamin; Newmeyer, Donald D

    2009-12-01

    In apoptosis, mitochondrial outer membrane permeabilization (MOMP) triggers caspase-dependent death. However, cells undergo clonogenic death even if caspases are blocked. One proposed mechanism involved the release of cytotoxic proteins (e.g., AIF and endoG) from mitochondria. To initiate MOMP directly without side effects, we created a tamoxifen-switchable BimS fusion protein. Surprisingly, even after MOMP, caspase-inhibited cells replicated DNA and divided for approximately 48 h before undergoing proliferation arrest. AIF and endoG remained in mitochondria. However, cells gradually lost mitochondrial membrane potential and ATP content, and DNA synthesis slowed to a halt by 72 h. These defects resulted from a partial loss of respiratory function, occurring 4-8 h after MOMP, that was not merely due to dispersion of cytochrome c. In particular, Complex I activity was completely lost, and Complex IV activity was reduced by approximately 70%, whereas Complex II was unaffected. Later, cells exhibited a more profound loss of mitochondrial protein constituents. Thus, under caspase inhibition, MOMP-induced clonogenic death results from a progressive loss of mitochondrial function, rather than the release of cytotoxic proteins from mitochondria.

  8. Mitochondrial mechanisms of cell death and neuroprotection in pediatric ischemic and traumatic brain injury

    PubMed Central

    Robertson, Courtney L.; Scafidi, Susanna; McKenna, Mary C.; Fiskum, Gary

    2011-01-01

    There are several forms of acute pediatric brain injury, including neonatal asphyxia, pediatric cardiac arrest with global ischemia, and head trauma, that result in devastating, lifelong neurologic impairment. The only clinical intervention that appears neuroprotective is hypothermia initiated soon after the initial injury. Evidence indicates that oxidative stress, mitochondrial dysfunction, and impaired cerebral energy metabolism contribute to the brain cell death that is responsible for much of the poor neurologic outcome from these events. Recent results obtained from both in vitro and animal models of neuronal death in the immature brain point toward several molecular mechanisms that are either induced or promoted by oxidative modification of macromolecules, including consumption of cytosolic and mitochondrial NAD+ by poly-ADP ribose polymerase, opening of the mitochondrial inner membrane permeability transition pore, and inactivation of key, rate-limiting metabolic enzymes, e.g., the pyruvate dehydrogenase complex. In addition, the relative abundance of pro-apoptotic proteins in immature brains and neurons, and particularly within their mitochondria, predisposes these cells to the intrinsic, mitochondrial pathway of apoptosis, mediated by Bax- or Bak-triggered release of proteins into the cytosol through the mitochondrial outer membrane. Based on these pathways of cell dysfunction and death, several approaches toward neuroprotection are being investigated that show promise toward clinical translation. These strategies include minimizing oxidative stress by avoiding unnecessary hyperoxia, promoting aerobic energy metabolism by repletion of NAD+ and by providing alternative oxidative fuels, e.g., ketone bodies, directly interfering with apoptotic pathways at the mitochondrial level, and pharmacologic induction of antioxidant and anti-inflammatory gene expression. PMID:19427308

  9. Silver Nanoparticle Exposure Induced Mitochondrial Stress, Caspase-3 Activation and Cell Death: Amelioration by Sodium Selenite

    PubMed Central

    Ma, Wanrui; Jing, Li; Valladares, Alexandra; Mehta, Suresh L.; Wang, Zhizhong; Li, P. Andy; Bang, John J.

    2015-01-01

    Silver nanoparticles (AgNP), one of the most commonly used engineered nanomaterial for biomedical and industrial applications, has shown a toxic potential to our ecosystems and humans. In this study, murine hippocampal neuronal HT22 cells were used to delineate subcellular responses and mechanisms to AgNP by assessing the response levels of caspase-3, mitochondrial oxygen consumption, reactive oxygen species (ROS), and mitochondrial membrane potential in addition to cell viability testing. Selenium, an essential trace element that has been known to carry protecting property from heavy metals, was tested for its ameliorating potential in the cells exposed to AgNP. Results showed that AgNP reduced cell viability. The toxicity was associated with mitochondrial membrane depolarization, increased accumulation of ROS, elevated mitochondrial oxygen consumption, and caspase-3 activation. Treatment with sodium selenite reduced cell death, stabilized mitochondrial membrane potential and oxygen consumption rate, and prevented accumulation of ROS and activation of caspase-3. It is concluded that AgNP induces mitochondrial stress and treatment with selenite is capable of preventing the adverse effects of AgNP on the mitochondria. PMID:26157341

  10. Mitochondrial calcium uptake underlies ROS generation during aminoglycoside-induced hair cell death

    PubMed Central

    Esterberg, Robert; Linbo, Tor; Pickett, Sarah B.; Wu, Patricia; Ou, Henry C.; Rubel, Edwin W.; Raible, David W.

    2016-01-01

    Exposure to aminoglycoside antibiotics can lead to the generation of toxic levels of reactive oxygen species (ROS) within mechanosensory hair cells of the inner ear that have been implicated in hearing and balance disorders. Better understanding of the origin of aminoglycoside-induced ROS could focus the development of therapies aimed at preventing this event. In this work, we used the zebrafish lateral line system to monitor the dynamic behavior of mitochondrial and cytoplasmic oxidation occurring within the same dying hair cell following exposure to aminoglycosides. The increased oxidation observed in both mitochondria and cytoplasm of dying hair cells was highly correlated with mitochondrial calcium uptake. Application of the mitochondrial uniporter inhibitor Ru360 reduced mitochondrial and cytoplasmic oxidation, suggesting that mitochondrial calcium drives ROS generation during aminoglycoside-induced hair cell death. Furthermore, targeting mitochondria with free radical scavengers conferred superior protection against aminoglycoside exposure compared with identical, untargeted scavengers. Our findings suggest that targeted therapies aimed at preventing mitochondrial oxidation have therapeutic potential to ameliorate the toxic effects of aminoglycoside exposure. PMID:27500493

  11. Deoxycholic acid modulates cell death signaling through changes in mitochondrial membrane properties[S

    PubMed Central

    Sousa, Tânia; Castro, Rui E.; Pinto, Sandra N.; Coutinho, Ana; Lucas, Susana D.; Moreira, Rui; Rodrigues, Cecília M. P.; Prieto, Manuel; Fernandes, Fábio

    2015-01-01

    Cytotoxic bile acids, such as deoxycholic acid (DCA), are responsible for hepatocyte cell death during intrahepatic cholestasis. The mechanisms responsible for this effect are unclear, and recent studies conflict, pointing to either a modulation of plasma membrane structure or mitochondrial-mediated toxicity through perturbation of mitochondrial outer membrane (MOM) properties. We conducted a comprehensive comparative study of the impact of cytotoxic and cytoprotective bile acids on the membrane structure of different cellular compartments. We show that DCA increases the plasma membrane fluidity of hepatocytes to a minor extent, and that this effect is not correlated with the incidence of apoptosis. Additionally, plasma membrane fluidity recovers to normal values over time suggesting the presence of cellular compensatory mechanisms for this perturbation. Colocalization experiments in living cells confirmed the presence of bile acids within mitochondrial membranes. Experiments with active isolated mitochondria revealed that physiologically active concentrations of DCA change MOM order in a concentration- and time-dependent manner, and that these changes preceded the mitochondrial permeability transition. Importantly, these effects are not observed on liposomes mimicking MOM lipid composition, suggesting that DCA apoptotic activity depends on features of mitochondrial membranes that are absent in protein-free mimetic liposomes, such as the double-membrane structure, lipid asymmetry, or mitochondrial protein environment. In contrast, the mechanism of action of cytoprotective bile acids is likely not associated with changes in cellular membrane structure. PMID:26351365

  12. Mfn2 downregulation in excitotoxicity causes mitochondrial dysfunction and delayed neuronal death

    PubMed Central

    Martorell-Riera, Alejandro; Segarra-Mondejar, Marc; Muñoz, Juan P; Ginet, Vanessa; Olloquequi, Jordi; Pérez-Clausell, Jeús; Palacín, Manuel; Reina, Manuel; Puyal, Julien; Zorzano, Antonio; Soriano, Francesc X

    2014-01-01

    Mitochondrial fusion and fission is a dynamic process critical for the maintenance of mitochondrial function and cell viability. During excitotoxicity neuronal mitochondria are fragmented, but the mechanism underlying this process is poorly understood. Here, we show that Mfn2 is the only member of the mitochondrial fusion/fission machinery whose expression is reduced in in vitro and in vivo models of excitotoxicity. Whereas in cortical primary cultures, Drp1 recruitment to mitochondria plays a primordial role in mitochondrial fragmentation in an early phase that can be reversed once the insult has ceased, Mfn2 downregulation intervenes in a delayed mitochondrial fragmentation phase that progresses even when the insult has ceased. Downregulation of Mfn2 causes mitochondrial dysfunction, altered calcium homeostasis, and enhanced Bax translocation to mitochondria, resulting in delayed neuronal death. We found that transcription factor MEF2 regulates basal Mfn2 expression in neurons and that excitotoxicity-dependent degradation of MEF2 causes Mfn2 downregulation. Thus, Mfn2 reduction is a late event in excitotoxicity and its targeting may help to reduce excitotoxic damage and increase the currently short therapeutic window in stroke. PMID:25147362

  13. Bim and VDAC1 are hierarchically essential for mitochondrial ATF2 mediated cell death.

    PubMed

    Liu, Zhaoyun; Luo, Qianfu; Guo, Chunbao

    2015-01-01

    ATF2 mediated cytochrome c release is the formation of a channel with some unknown factors larger than that of the individual proteins. BHS-only proteins (BH3s), such as Bim, could induce BAX and VDAC, forming a new channel. According to this facts, we can speculated that there is possible signal relationship with BH3s and ATF2, which is associated with mitochondrial-based death programs. The growth inhibitory effects of mitochondrial ATF2 were tested in cancer cell lines B16F10, A549, EG7, and LL2. Apoptosis was measured by flow cytometry. The effects of ATF2 and levels of apoptosis regulatory proteins were measured by Western blotting. The interaction of proteins were evaluated by immunoprecipitation analysis. The in vivo antitumor activity of mitochondrial ATF2 were tested in xenograft B16F10 models. Genotoxic stress enabled mitochondrial ATF2 accumulation, perturbing the HK1-VDAC1 complex, increasing mitochondrial permeability, and promoting apoptosis. ATF2 inhibition strongly reduced the conformational activation of Bim, suggesting that Bim acts downstream of ATF2. Although Bim downregulation had no effect on ATF2 activation, Bim knockdown abolished VDAC1 activation; the failure of VDAC1 activation in Bim-depleted cells could be reversed by the BH3-only protein mimic ABT-737. We also demonstrate that silencing of ATF2 in B16F10 cells increases both the incidence and prevalence of tumor xenografts in vivo, whereas stably mitochondrial ATF2 transfection inhibited B16F10 tumor xenografts growth. Altogether, these results show that ATF2 is a component of the apoptosis machinery that involves a hierarchical contribution of ATF2, Bim, and VDAC1. Our data offer new insight into the mechanism of mitochondrial ATF2 in mitochondrial apoptosis.

  14. Cdk1, PKCδ and calcineurin-mediated Drp1 pathway contributes to mitochondrial fission-induced cardiomyocyte death

    SciTech Connect

    Zaja, Ivan; Bai, Xiaowen; Liu, Yanan; Kikuchi, Chika; Dosenovic, Svjetlana; Yan, Yasheng; Canfield, Scott G.; Bosnjak, Zeljko J.

    2014-10-31

    Highlights: • Drp1-mediated increased mitochondrial fission but not fusion is involved the cardiomyocyte death during anoxia-reoxygenation injury. • Reactive oxygen species are upstream initiators of mitochondrial fission. • Increased mitochondrial fission is resulted from Cdk1-, PKCδ-, and calcineurin-mediated Drp1 pathways. - Abstract: Myocardial ischemia–reperfusion (I/R) injury is one of the leading causes of death and disability worldwide. Mitochondrial fission has been shown to be involved in cardiomyocyte death. However, molecular machinery involved in mitochondrial fission during I/R injury has not yet been completely understood. In this study we aimed to investigate molecular mechanisms of controlling activation of dynamin-related protein 1 (Drp1, a key protein in mitochondrial fission) during anoxia-reoxygenation (A/R) injury of HL1 cardiomyocytes. A/R injury induced cardiomyocyte death accompanied by the increases of mitochondrial fission, reactive oxygen species (ROS) production and activated Drp1 (pSer616 Drp1), and decrease of inactivated Drp1 (pSer637 Drp1) while mitochondrial fusion protein levels were not significantly changed. Blocking Drp1 activity with mitochondrial division inhibitor mdivi1 attenuated cell death, mitochondrial fission, and Drp1 activation after A/R. Trolox, a ROS scavenger, decreased pSer616 Drp1 level and mitochondrial fission after A/R. Immunoprecipitation assay further indicates that cyclin dependent kinase 1 (Cdk1) and protein kinase C isoform delta (PKCδ) bind Drp1, thus increasing mitochondrial fission. Inhibiting Cdk1 and PKCδ attenuated the increases in pSer616 Drp1, mitochondrial fission, and cardiomyocyte death. FK506, a calcineurin inhibitor, blocked the decrease in expression of inactivated pSer637 Drp1 and mitochondrial fission. Our findings reveal the following novel molecular mechanisms controlling mitochondrial fission during A/R injury of cardiomyocytes: (1) ROS are upstream initiators of

  15. Reactive Oxygen Species Production and Mitochondrial Dysfunction Contribute to Quercetin Induced Death in Leishmania amazonensis

    PubMed Central

    Fonseca-Silva, Fernanda; Inacio, Job D. F.; Canto-Cavalheiro, Marilene M.; Almeida-Amaral, Elmo Eduardo

    2011-01-01

    Background Leishmaniasis, a parasitic disease caused by protozoa of the genus Leishmania, affects more than 12 million people worldwide. Quercetin has generated considerable interest as a pharmaceutical compound with a wide range of therapeutic activities. One such activity is exhibited against the bloodstream parasite Trypanosoma brucei and amastigotes of Leishmania donovani. However, the mechanism of protozoan action of quercetin has not been studied. Methodology/Principal Findings In the present study, we report here the mechanism for the antileishmanial activity of quercetin against Leishmania amazonensis promastigotes. Quercetin inhibited L. amazonensis promastigote growth in a dose- and time- dependent manner beginning at 48 hours of treatment and with maximum growth inhibition observed at 96 hours. The IC50 for quercetin at 48 hours was 31.4 µM. Quercetin increased ROS generation in a dose-dependent manner after 48 hours of treatment. The antioxidant GSH and NAC each significantly reduced quercetin-induced cell death. In addition, quercetin caused mitochondrial dysfunction due to collapse of mitochondrial membrane potential. Conclusions/Significance The effects of several drugs that interfere directly with mitochondrial physiology in parasites such as Leishmania have been described. The unique mitochondrial features of Leishmania make this organelle an ideal drug target while minimizing toxicity. Quercetin has been described as a pro-oxidant, generating ROS which are responsible for cell death in some cancer cells. Mitochondrial membrane potential loss can be brought about by ROS added directly in vitro or induced by chemical agents. Taken together, our results demonstrate that quercetin eventually exerts its antileishmanial effect on L. amazonensis promastigotes due to the generation of ROS and disrupted parasite mitochondrial function. PMID:21346801

  16. Mitochondrial calcium overload triggers complement-dependent superoxide-mediated programmed cell death in Trypanosoma cruzi.

    PubMed

    Irigoín, Florencia; Inada, Natalia M; Fernandes, Mariana P; Piacenza, Lucía; Gadelha, Fernanda R; Vercesi, Anibal E; Radi, Rafael

    2009-03-15

    The epimastigote stage of Trypanosoma cruzi undergoes PCD (programmed cell death) when exposed to FHS (fresh human serum). Although it has been known for over 30 years that complement is responsible for FHS-induced death, the link between complement activation and triggering of PCD has not been established. We have previously shown that the mitochondrion participates in the orchestration of PCD in this model. Several changes in mitochondrial function were described, and in particular it was shown that mitochondrion-derived O(2)(*-) (superoxide radical) is necessary for PCD. In the present study, we establish mitochondrial Ca(2+) overload as the link between complement deposition and the observed changes in mitochondrial physiology and the triggering of PCD. We show that complement activation ends with the assembly of the MAC (membrane attack complex), which allows influx of Ca(2+) and release of respiratory substrates to the medium. Direct consequences of these events are accumulation of Ca(2+) in the mitochondrion and decrease in cell respiration. Mitochondrial Ca(2+) causes partial dissipation of the inner membrane potential and consequent mitochondrial uncoupling. Moreover, we provide evidence that mitochondrial Ca(2+) overload is responsible for the increased O(2)(*-) production, and that if cytosolic Ca(2+) rise is not accompanied by the accumulation of the cation in the mitochondrion and consequent production of O(2)(*-), epimastigotes die by necrosis instead of PCD. Thus our results suggest a model in which MAC assembly on the parasite surface allows Ca(2+) entry and its accumulation in the mitochondrion, leading to O(2)(*-) production, which in turn constitutes a PCD signal.

  17. TRPM2-mediated rise in mitochondrial Zn(2+) promotes palmitate-induced mitochondrial fission and pancreatic β-cell death in rodents.

    PubMed

    Li, Fangfang; Munsey, Tim S; Sivaprasadarao, Asipu

    2017-07-28

    Rise in plasma free fatty acids (FFAs) represents a major risk factor for obesity-induced type 2 diabetes. Saturated FFAs cause a progressive decline in insulin secretion by promoting pancreatic β-cell death through increased production of reactive oxygen species (ROS). Recent studies have demonstrated that palmitate (a C16-FFA)-induced rise in ROS causes β-cell death by triggering mitochondrial fragmentation, but the underlying mechanisms are unclear. Using the INS1-832/13 β-cell line, here we demonstrate that palmitate generates the ROS required for mitochondrial fission by activating NOX (NADPH oxidase)-2. More importantly, we show that chemical inhibition, RNAi-mediated silencing and knockout of ROS-sensitive TRPM (transient receptor potential melastatin)-2 channels prevent palmitate-induced mitochondrial fission. Although TRPM2 activation affects the intracellular dynamics of Ca(2+) and Zn(2+), chelation of Zn(2+) alone was sufficient to prevent mitochondrial fission. Consistent with the role of Zn(2+), palmitate caused a rise in mitochondrial Zn(2+), leading to Zn(2+)-dependent mitochondrial recruitment of Drp-1 (a protein that catalyses mitochondrial fission) and loss of mitochondrial membrane potential. In agreement with the previous reports, Ca(2+) caused Drp-1 recruitment, but it failed to induce mitochondrial fission in the absence of Zn(2+). These results indicate a novel role for Zn(2+) in mitochondrial dynamics. Inhibition or knockout of TRPM2 channels in mouse islets and RNAi-mediated silencing of TRPM2 expression in human islets prevented FFA/cytokine-induced β-cell death, findings that are consistent with the role of abnormal mitochondrial fission in cell death. To conclude, our results reveal a novel, potentially druggable signalling pathway for FFA-induced β-cell death. The cascade involves NOX-2-dependent production of ROS, activation of TRPM2 channels, rise in mitochondrial Zn(2+), Drp-1 recruitment and abnormal mitochondrial fission

  18. Sudden Cardiac Death Due to Deficiency of the Mitochondrial Inorganic Pyrophosphatase PPA2.

    PubMed

    Kennedy, Hannah; Haack, Tobias B; Hartill, Verity; Mataković, Lavinija; Baumgartner, E Regula; Potter, Howard; Mackay, Richard; Alston, Charlotte L; O'Sullivan, Siobhan; McFarland, Robert; Connolly, Grainne; Gannon, Caroline; King, Richard; Mead, Scott; Crozier, Ian; Chan, Wandy; Florkowski, Chris M; Sage, Martin; Höfken, Thomas; Alhaddad, Bader; Kremer, Laura S; Kopajtich, Robert; Feichtinger, René G; Sperl, Wolfgang; Rodenburg, Richard J; Minet, Jean Claude; Dobbie, Angus; Strom, Tim M; Meitinger, Thomas; George, Peter M; Johnson, Colin A; Taylor, Robert W; Prokisch, Holger; Doudney, Kit; Mayr, Johannes A

    2016-09-01

    We have used whole-exome sequencing in ten individuals from four unrelated pedigrees to identify biallelic missense mutations in the nuclear-encoded mitochondrial inorganic pyrophosphatase (PPA2) that are associated with mitochondrial disease. These individuals show a range of severity, indicating that PPA2 mutations may cause a spectrum of mitochondrial disease phenotypes. Severe symptoms include seizures, lactic acidosis, cardiac arrhythmia, and death within days of birth. In the index family, presentation was milder and manifested as cardiac fibrosis and an exquisite sensitivity to alcohol, leading to sudden arrhythmic cardiac death in the second decade of life. Comparison of normal and mutant PPA2-containing mitochondria from fibroblasts showed that the activity of inorganic pyrophosphatase was significantly reduced in affected individuals. Recombinant PPA2 enzymes modeling hypomorphic missense mutations had decreased activity that correlated with disease severity. These findings confirm the pathogenicity of PPA2 mutations and suggest that PPA2 is a cardiomyopathy-associated protein, which has a greater physiological importance in mitochondrial function than previously recognized. Copyright © 2016 The Author(s). Published by Elsevier Inc. All rights reserved.

  19. Mitochondrial Ca2+ influx targets cardiolipin to disintegrate respiratory chain complex II for cell death induction

    PubMed Central

    Hwang, M-S; Schwall, C T; Pazarentzos, E; Datler, C; Alder, N N; Grimm, S

    2014-01-01

    Massive Ca2+ influx into mitochondria is critically involved in cell death induction but it is unknown how this activates the organelle for cell destruction. Using multiple approaches including subcellular fractionation, FRET in intact cells, and in vitro reconstitutions, we show that mitochondrial Ca2+ influx prompts complex II of the respiratory chain to disintegrate, thereby releasing an enzymatically competent sub-complex that generates excessive reactive oxygen species (ROS) for cell death induction. This Ca2+-dependent dissociation of complex II is also observed in model membrane systems, but not when cardiolipin is replaced with a lipid devoid of Ca2+ binding. Cardiolipin is known to associate with complex II and upon Ca2+ binding coalesces into separate homotypic clusters. When complex II is deprived of this lipid, it disintegrates for ROS formation and cell death. Our results reveal Ca2+ binding to cardiolipin for complex II disintegration as a pivotal step for oxidative stress and cell death induction. PMID:24948011

  20. The Differential DRP1 Phosphorylation and Mitochondrial Dynamics in the Regional Specific Astroglial Death Induced by Status Epilepticus

    PubMed Central

    Ko, Ah-Reum; Hyun, Hye-Won; Min, Su-Ji; Kim, Ji-Eun

    2016-01-01

    The response and susceptibility to astroglial degenerations are relevant to the distinctive properties of astrocytes in a hemodynamic-independent manner following status epilepticus (SE). Since impaired mitochondrial fission plays an important role in mitosis, apoptosis and programmed necrosis, we investigated whether the unique pattern of mitochondrial dynamics is involved in the characteristics of astroglial death induced by SE. In the present study, SE induced astroglial apoptosis in the molecular layer of the dentate gyrus, accompanied by decreased mitochondrial length. In contrast, clasmatodendritic (autophagic) astrocytes in the CA1 region showed mitochondrial elongation induced by SE. Mdivi-1 (an inhibitor of mitochondrial fission) effectively attenuated astroglial apoptosis, but WY14643 (an enhancer of mitochondrial fission) aggravated it. In addition, Mdivi-1 accelerated clasmatodendritic changes in astrocytes. These regional specific mitochondrial dynamics in astrocytes were closely correlated with dynamin-related protein 1 (DRP1; a mitochondrial fission protein) phosphorylation, not optic atrophy 1 (OPA1; a mitochondrial fusion protein) expression. To the best of our knowledge, the present data demonstrate for the first time the novel role of DRP1-mediated mitochondrial fission in astroglial loss. Thus, the present findings suggest that the differential astroglial mitochondrial dynamics may participate in the distinct characteristics of astroglial death induced by SE. PMID:27242436

  1. Ubisol-Q10 Prevents Glutamate-Induced Cell Death by Blocking Mitochondrial Fragmentation and Permeability Transition Pore Opening

    PubMed Central

    Kumari, Santosh; Mehta, Suresh L; Milledge, Gaolin Z.; Huang, Xinyu; Li, Haining; Li, P. Andy

    2016-01-01

    Mitochondrial dysfunction and oxidative stress are the major events that lead to the formation of mitochondrial permeability transition pore (mPTP) during glutamate-induced cytotoxicity and cell death. Coenzyme Q10 (CoQ10) has widely been used for the treatment of mitochondrial disorders and neurodegenerative diseases. Comparing to traditional lipid-soluble CoQ10, water soluble CoQ10 (Ubisol-Q10) has high intracellular and intra-mitochondrial distribution. The aims of the present study are to determine the neuroprotective effects of Ubisol-Q10 on glutamate-induced cell death and to explore its functional mechanisms. HT22 neuronal cells were exposed to glutamate. Cell viability was measured and mitochondrial fragmentation was assessed by mitochondrial imaging. The mPTP opening was determined by mitochondrial membrane potential and calcium retention capacity. The results revealed that the anti-glutamate toxicity effects of Ubisol-Q10 was associated with its ability to block mitochondrial fragmentation, to maintain calcium retention capacity and mitochondrial membrane potential, and to prevent mPTP formation, AIF release, and DNA fragmentation. We concluded that Ubisol-Q10 protects cells from glutamate toxicity by preserving the integrity of mitochondrial structure and function. Therefore, adequate CoQ10 supplementation may be beneficial in preventing cerebral stroke and other disorders that involve mitochondrial dysfunction. PMID:27194946

  2. Mutants for Drosophila Isocitrate Dehydrogenase 3b Are Defective in Mitochondrial Function and Larval Cell Death.

    PubMed

    Duncan, Dianne M; Kiefel, Paula; Duncan, Ian

    2017-03-10

    The death of larval salivary gland cells during metamorphosis in Drosophila melanogaster has been a key system for studying steroid controlled programmed cell death. This death is induced by a pulse of the steroid hormone ecdysone that takes place at the end of the prepupal period. For many years, it has been thought that the ecdysone direct response gene Eip93F (E93) plays a critical role in initiating salivary gland cell death. This conclusion was based largely on the finding that the three "type" alleles of E93 cause a near-complete block in salivary gland cell death. Here, we show that these three mutations are in fact allelic to Idh3b, a nearby gene that encodes the β subunit of isocitrate dehydrogenase 3, a mitochondrial enzyme of the tricarboxylic acid (TCA) cycle. The strongest of the Idh3b alleles appears to cause a near-complete block in oxidative phosphorylation, as mitochondria are depolarized in mutant larvae, and development arrests early during cleavage in embryos from homozygous-mutant germline mothers. Idh3b-mutant larval salivary gland cells fail to undergo mitochondrial fragmentation, which normally precedes the death of these cells, and do not initiate autophagy, an early step in the cell death program. These observations suggest a close relationship between the TCA cycle and the initiation of larval cell death. In normal development, tagged Idh3b is released from salivary gland mitochondria during their fragmentation, suggesting that Idh3b may be an apoptogenic factor that functions much like released cytochrome c in mammalian cells.

  3. Mutants for Drosophila Isocitrate Dehydrogenase 3b Are Defective in Mitochondrial Function and Larval Cell Death

    PubMed Central

    Duncan, Dianne M.; Kiefel, Paula; Duncan, Ian

    2017-01-01

    The death of larval salivary gland cells during metamorphosis in Drosophila melanogaster has been a key system for studying steroid controlled programmed cell death. This death is induced by a pulse of the steroid hormone ecdysone that takes place at the end of the prepupal period. For many years, it has been thought that the ecdysone direct response gene Eip93F (E93) plays a critical role in initiating salivary gland cell death. This conclusion was based largely on the finding that the three “type” alleles of E93 cause a near-complete block in salivary gland cell death. Here, we show that these three mutations are in fact allelic to Idh3b, a nearby gene that encodes the β subunit of isocitrate dehydrogenase 3, a mitochondrial enzyme of the tricarboxylic acid (TCA) cycle. The strongest of the Idh3b alleles appears to cause a near-complete block in oxidative phosphorylation, as mitochondria are depolarized in mutant larvae, and development arrests early during cleavage in embryos from homozygous-mutant germline mothers. Idh3b-mutant larval salivary gland cells fail to undergo mitochondrial fragmentation, which normally precedes the death of these cells, and do not initiate autophagy, an early step in the cell death program. These observations suggest a close relationship between the TCA cycle and the initiation of larval cell death. In normal development, tagged Idh3b is released from salivary gland mitochondria during their fragmentation, suggesting that Idh3b may be an apoptogenic factor that functions much like released cytochrome c in mammalian cells. PMID:28104670

  4. Targeted mitochondrial uncoupling beyond UCP1 - The fine line between death and metabolic health.

    PubMed

    Ost, Mario; Keipert, Susanne; Klaus, Susanne

    2017-03-01

    In the early 1930s, the chemical uncoupling agent 2,4-dinitrophenol (DNP) was promoted for the very first time as a powerful and effective weight loss pill but quickly withdrawn from the market due to its lack of tissue-selectivity with resulting dangerous side effects, including hyperthermia and death. Today, novel mitochondria- or tissue-targeted chemical uncouplers with higher safety and therapeutic values are under investigation in order to tackle obesity, diabetes and fatty liver disease. Moreover, in the past 20 years, transgenic mouse models were generated to understand the molecular and metabolic consequences of targeted uncoupling, expressing functional uncoupling protein 1 (UCP1) ectopically in white adipose tissue or skeletal muscle. Similar to the action of chemical mitochondrial uncouplers, UCP1 protein dissipates the proton gradient across the inner mitochondrial membrane, thus allowing maximum activity of the respiratory chain and compensatory increase in oxygen consumption, uncoupled from ATP synthesis. Consequently, targeted mitochondrial uncoupling in adipose tissue and skeletal muscle of UCP1-transgenic mice increased substrate metabolism and ameliorates obesity, hypertriglyceridemia and insulin resistance. Further, muscle-specific decrease in mitochondrial efficiency promotes a cell-autonomous and cell-non-autonomous adaptive metabolic remodeling with increased oxidative stress tolerance. This review provides an overview of novel chemical uncouplers as well as the metabolic consequences and adaptive processes of targeted mitochondrial uncoupling on metabolic health and survival.

  5. The mitochondrial and death receptor pathways involved in the thymocytes apoptosis induced by aflatoxin B1

    PubMed Central

    Chi, Xiaofeng; Li, Xiaochong; Jiang, Min; Fang, Jing; Cui, Hengmin; Lai, Weimin; Zhou, Yi; Zhou, Shan

    2016-01-01

    Aflatoxin B1 (AFB1) is a potent immunosuppressive agent in endotherms, which can be related to the up-regulated apoptosis of immune organs. In this study, we investigated the roles of the mitochondrial, death receptor, and endoplasmic reticulum pathways in Aflatoxin B1 induced thymocytes apoptosis. Chickens were fed an aflatoxin B1 containing diet (0.6 mg/kg AFB1) for 3 weeks. Our results showed that (1) AFB1 diet induced the decrease of T-cell subsets, morphological changes, and excessive apoptosis of thymus. (2) The excessive apoptosis involved the mitochondrial pathway (up-regulation of Bax, Bak, cytC and down-regulation of Bcl-2 and Bcl-xL) and death receptor pathway (up-regulation of FasL, Fas and FADD). (3) Oxidative stress, an apoptosis inducer, was confirmed in the thymus. In conclusion, this is the first study to demonstrate that mitochondrial and death receptor pathways involved in AFB1 induced thymocytes apoptosis in broilers. PMID:26933817

  6. 'Mitochondrial energy imbalance and lipid peroxidation cause cell death in Friedreich's ataxia'

    PubMed Central

    Abeti, R; Parkinson, M H; Hargreaves, I P; Angelova, P R; Sandi, C; Pook, M A; Giunti, P; Abramov, A Y

    2016-01-01

    Friedreich's ataxia (FRDA) is an inherited neurodegenerative disease. The mutation consists of a GAA repeat expansion within the FXN gene, which downregulates frataxin, leading to abnormal mitochondrial iron accumulation, which may in turn cause changes in mitochondrial function. Although, many studies of FRDA patients and mouse models have been conducted in the past two decades, the role of frataxin in mitochondrial pathophysiology remains elusive. Are the mitochondrial abnormalities only a side effect of the increased accumulation of reactive iron, generating oxidative stress? Or does the progressive lack of iron-sulphur clusters (ISCs), induced by reduced frataxin, cause an inhibition of the electron transport chain complexes (CI, II and III) leading to reactive oxygen species escaping from oxidative phosphorylation reactions? To answer these crucial questions, we have characterised the mitochondrial pathophysiology of a group of disease-relevant and readily accessible neurons, cerebellar granule cells, from a validated FRDA mouse model. By using live cell imaging and biochemical techniques we were able to demonstrate that mitochondria are deregulated in neurons from the YG8R FRDA mouse model, causing a decrease in mitochondrial membrane potential (▵Ψm) due to an inhibition of Complex I, which is partially compensated by an overactivation of Complex II. This complex activity imbalance leads to ROS generation in both mitochondrial matrix and cytosol, which results in glutathione depletion and increased lipid peroxidation. Preventing this increase in lipid peroxidation, in neurons, protects against in cell death. This work describes the pathophysiological properties of the mitochondria in neurons from a FRDA mouse model and shows that lipid peroxidation could be an important target for novel therapeutic strategies in FRDA, which still lacks a cure. PMID:27228352

  7. Ethanol-induced oxidative stress precedes mitochondrially mediated apoptotic death of cultured fetal cortical neurons.

    PubMed

    Ramachandran, Vinitha; Watts, Lora Talley; Maffi, Shivani Kaushal; Chen, Juanjuan; Schenker, Steven; Henderson, George

    2003-11-15

    In utero ethanol exposure elicits apoptotic cell death in the fetal brain, and this may be mediated by oxidative stress. Our studies utilize cultured fetal rat cortical neurons and illustrate that ethanol elicits a rapid onset of oxidative stress, which culminates in mitochondrially mediated apoptotic cell death. Cells exposed to ethanol (2.5 mg/ml) remained attached to their polylysine matrix during a 24-hr exposure, but they exhibited distinct signs of oxidative stress, decreased viability, and apoptosis. Confocal microscopy of live cortical neurons pretreated with dichlorodihydrofluorescein diacetate demonstrated an increase in reactive oxygen species (ROS) within 5 min of ethanol exposure. The levels of ROS further increased by 58% within 1 hr (P <.05) and by 82% within 2 hr (P <.05), accompanied by increases of mitochondrial 4-hydroxynonenal (HNE). These early events were followed by decreased trypan blue exclusion of 10% to 32% (P <.05) at the 6- to 24-hr time points, respectively. This culminates in apoptotic death, with increases of Annexin V binding of 43%, 89%, 123%, and 238%, at 2, 6, 12, and 24 hr of ethanol treatment, respectively, as well as DNA fragmentation increases of 50% and 65% by 12 and 24 hr, respectively. Release of cytochrome c by mitochondria increased by 53% at 6 hr of exposure (P <.05), concomitant with activation of caspase 3 (52% at 12 hr, P <.05). Pretreatment with N-acetylcysteine increased cellular glutathione and prevented apoptosis. These studies provide a time line illustrating that oxidative stress and formation of a proapoptotic lipid peroxidation product, HNE, precede a cascade of mitochondrially mediated events in cultured fetal cortical neurons, culminating in apoptotic death. The prevention of apoptosis by augmentation of glutathione stores also strongly supports a role for oxidative stress in ethanol-mediated apoptotic death of fetal cortical neurons.

  8. Phosphorylation of the BNIP3 C-Terminus Inhibits Mitochondrial Damage and Cell Death without Blocking Autophagy

    PubMed Central

    Liu, Katherine E.; Frazier, William A.

    2015-01-01

    BNIP3 is a dual function protein, able to activate autophagy and induce cell death. Upon expression of BNIP3, which is upregulated by hypoxia, the protein induces mitochondrial dysfunction, often leading to cell death. However, some highly respiring cells and cancer cells tolerate BNIP3 expression, suggesting that a yet unknown mechanism exists to restrain the lethal effects of BNIP3 on mitochondria. Here we present evidence that BNIP3 undergoes several phosphorylation events at its C-terminus, adjacent to the transmembrane domain. Phosphorylation at these residues inhibits BNIP3-induced mitochondrial damage, preventing a loss of mitochondrial mass and mitochondrial membrane potential, as well as preventing an increase in reactive oxygen species. This decrease in mitochondrial damage, as well as the reduction of cell death upon C-terminal BNIP3 phosphorylation, can be explained by a diminished interaction between BNIP3 and OPA1, a key regulator of mitochondrial fusion and mitochondrial inner membrane structure. Importantly, phosphorylation of these C-terminal BNIP3 residues blocks cell death without preventing autophagy, providing evidence that the two functional roles of BNIP3 can be regulated independently. These findings establish phosphorylation as a switch to determine the pro-survival and pro-death effects of the protein. Our findings also suggest a novel target for the regulation of these activities in transformed cells where BNIP3 is often highly expressed. PMID:26102349

  9. Vanadate induces necrotic death in neonatal rat cardiomyocytes through mitochondrial membrane depolarization.

    PubMed

    Soares, Sandra Sofia; Henao, Fernando; Aureliano, Manuel; Gutiérrez-Merino, Carlos

    2008-03-01

    Besides the well-known inotropic effects of vanadium in cardiac muscle, previous studies have shown that vanadate can stimulate cell growth or induce cell death. In this work, we studied the toxicity to neonatal rat ventricular myocytes (cardiomyocytes) of two vanadate solutions containing different oligovanadates distribution, decavanadate (containing decameric vanadate, V 10) and metavanadate (containing monomeric vanadate and also di-, tetra-, and pentavanadate). Incubation for 24 h with decavanadate or metavanadate induced necrotic cell death of cardiomyocytes, without significant caspase-3 activation. Only 10 microM total vanadium of either decavanadate (1 microM V 10) or metavanadate (10 microM total vanadium) was needed to produce 50% loss of cell viability after 24 h (assessed with MTT and propidium iodide assays). Atomic absorption spectroscopy showed that vanadium accumulation in cardiomyocytes after 24 h was the same when incubation was done with decavanadate or metavanadate. A decrease of 75% of the rate of mitochondrial superoxide anion generation, monitored with dihydroethidium, and a sustained rise of cytosolic calcium (monitored with Fura-2-loaded cardiomyocytes) was observed after 24 h of incubation of cardiomyocytes with decavanadate or metavanadate concentrations close to those inducing 50% loss of cell viability produced. In addition, mitochondrial membrane depolarization within cardiomyocytes, monitored with tetramethylrhodamine ethyl esther or with 3,3',6,6'-tetrachloro-1,1',3,3'-tetraethylbenzimidazolcarbocyanine iodide, were observed after only 6 h of incubation with decavanadate or metavanadate. The concentration needed for 50% mitochondrial depolarization was 6.5 +/- 1 microM total vanadium for both decavanadate (0.65 microM V 10) and metavanadate. In conclusion, mitochondrial membrane depolarization was an early event in decavanadate- and monovanadate-induced necrotic cell death of cardiomyocytes.

  10. Autophagy inhibition and mitochondrial remodeling join forces to amplify apoptosis in activation-induced cell death.

    PubMed

    Mauro, Corrado; Silvia, Campello

    2016-12-01

    Mitochondrial structural and functional changes and the autophagy pathway crosstalk under several stress conditions. However, their interplay under physiological cell death stimulation has been unclear. In our recent report, we show that during activation-induced cell death (AICD), the T-cell receptor (TCR)-dependent pathway that controls immune tolerance, autophagy is inhibited at an early stage. Further, we found that this inhibition is coupled with mitochondria fragmentation and cristae remodeling to unleash the apoptotic program. Last, we dissected the role of macroautophagy/autophagy versus mitophagy in the context of this physiological cell death, and bulk autophagy turned out to be able to remove dysfunctional and depolarized mitochondria. Our data suggest new possible approaches to modulate the immune function in the context of autoimmunity or immunotherapy.

  11. Redox dynamics of manganese as a mitochondrial life-death switch

    PubMed Central

    Smith, Matthew Ryan; Fernandes, Jolyn; Go, Young-Mi; Jones, Dean P.

    2017-01-01

    Sten Orrenius, M.D., Ph.D., pioneered many areas of cellular and molecular toxicology and made seminal contributions to our knowledge of oxidative stress and glutathione (GSH) metabolism, organellar functions and Ca+2-dependent mechanisms of cell death, and mechanisms of apoptosis. On the occasion of his 80th birthday, we summarize current knowledge on redox biology of manganese (Mn) and its role in mechanisms of cell death. Mn is found in all organisms and has critical roles in cell survival and death mechanisms by regulating Mn-containing enzymes such as manganese superoxide dismutase (SOD2) or affecting expression and activity of caspases. Occupational exposures to Mn cause “manganism”, a Parkinson's disease-like condition of neurotoxicity, and experimental studies show that Mn exposure leads to accumulation of Mn in the brain, especially in mitochondria, and neuronal cell death occurs with features of an apoptotic mechanism. Interesting questions are why a ubiquitous metal that is essential for mitochondrial function would accumulate to excessive levels, cause increased H2O2 production and lead to cell death. Is this due to the interactions of Mn with other essential metals, such as iron, or with toxic metals, such as cadmium? Why is the Mn loading in the human brain so variable, and why is there such a narrow window between dietary adequacy and toxicity? Are non-neuronal tissues similarly vulnerable to insufficiency and excess, yet not characterized? We conclude that Mn is an important component of the redox interface between an organism and its environment and warrants detailed studies to understand the role of Mn as a mitochondrial life-death switch. PMID:28212723

  12. Therapeutic inhibition of mitochondrial function induces cell death in starvation-resistant renal cell carcinomas

    PubMed Central

    Isono, Takahiro; Chano, Tokuhiro; Yonese, Junji; Yuasa, Takeshi

    2016-01-01

    Renal cell carcinomas (RCC) have two types of cells for carbon metabolism and for cell signaling under nutrient-deprivation conditions, namely starvation-resistant and starvation-sensitive cells. Here, we evaluated the mitochondrial characteristics of these cell types and found that the resistant type possessed higher activities for both mitochondrial oxidative phosphorylation and glycolysis than the sensitive types. These higher activities were supported by the stored carbon, lipid and carbohydrate sources, and by a low level of mitochondrial reactive oxygen species (ROS) due to sustained SOD2 expression in the resistant RCC cells. In metastatic RCC cases, higher SOD2 expression was associated with a significantly shorter survival period. We found that treatment with the drugs etomoxir and buformin significantly reduced mitochondrial oxidative phosphorylation and induced cell death under glucose-deprivation conditions in starvation-resistant RCC cells. Our data suggest that inhibitory targeting of mitochondria might offer an effective therapeutic option for metastatic RCC that is resistant to current treatments. PMID:27157976

  13. Therapeutic inhibition of mitochondrial function induces cell death in starvation-resistant renal cell carcinomas.

    PubMed

    Isono, Takahiro; Chano, Tokuhiro; Yonese, Junji; Yuasa, Takeshi

    2016-05-09

    Renal cell carcinomas (RCC) have two types of cells for carbon metabolism and for cell signaling under nutrient-deprivation conditions, namely starvation-resistant and starvation-sensitive cells. Here, we evaluated the mitochondrial characteristics of these cell types and found that the resistant type possessed higher activities for both mitochondrial oxidative phosphorylation and glycolysis than the sensitive types. These higher activities were supported by the stored carbon, lipid and carbohydrate sources, and by a low level of mitochondrial reactive oxygen species (ROS) due to sustained SOD2 expression in the resistant RCC cells. In metastatic RCC cases, higher SOD2 expression was associated with a significantly shorter survival period. We found that treatment with the drugs etomoxir and buformin significantly reduced mitochondrial oxidative phosphorylation and induced cell death under glucose-deprivation conditions in starvation-resistant RCC cells. Our data suggest that inhibitory targeting of mitochondria might offer an effective therapeutic option for metastatic RCC that is resistant to current treatments.

  14. Helicobacter pylori vacuolating cytotoxin A (VacA) engages the mitochondrial fission machinery to induce host cell death

    PubMed Central

    Jain, Prashant; Luo, Zhao-Qing; Blanke, Steven R.

    2011-01-01

    A number of pathogenic bacteria target mitochondria to modulate the host's apoptotic machinery. Studies here revealed that infection with the human gastric pathogen Helicobacter pylori disrupts the morphological dynamics of mitochondria as a mechanism to induce host cell death. The vacuolating cytotoxin A (VacA) is both essential and sufficient for inducing mitochondrial network fragmentation through the mitochondrial recruitment and activation of dynamin-related protein 1 (Drp1), which is a critical regulator of mitochondrial fission within cells. Inhibition of Drp1-induced mitochondrial fission within VacA-intoxicated cells inhibited the activation of the proapoptotic Bcl-2–associated X (Bax) protein, permeabilization of the mitochondrial outer membrane, and cell death. Our data reveal a heretofore unrecognized strategy by which a pathogenic microbe engages the host's apoptotic machinery. PMID:21903925

  15. Altered Mitochondrial Dynamics Contributes to Propofol-Induced Cell Death in Human Stem Cell-Derived Neurons

    PubMed Central

    Twaroski, Danielle M.; Yan, Yasheng; Zaja, Ivan; Clark, Eric; Bosnjak, Zeljko J.; Bai, Xiaowen

    2015-01-01

    Background Studies in developing animals have shown that when anesthetic agents are administered early in life, it can lead to neuronal cell death and learning disabilities. Development of human embryonic stem cell (hESC)-derived neurons has provided a valuable tool for understanding the effects of anesthetics on developing human neurons. Unbalanced mitochondrial fusion/fission leads to various pathological conditions including neurodegeneration. The aim of this study was to dissect the role of mitochondrial dynamics in propofol-induced neurotoxicity. Methods TUNEL staining was used to assess cell death in hESC-derived neurons. Mitochondrial fission was assessed using TOM20 staining and electron microscopy. Expression of mitochondrial fission-related proteins was assessed by Western blot and confocal microscopy was used to assess opening time of the mitochondrial permeability transition pore (mPTP). Results Exposure to 6 hours of 20 μg/mL propofol increased cell death from 3.18±0.17% in the control-treated group to 9.6±0.95% and led to detrimental increases in mitochondrial fission (n=5 coverslips/group) accompanied by increased expression of activated dynamin-related protein 1 (Drp1) and cyclin-dependent kinase 1 (CDK1), key proteins responsible for mitochondrial fission. Propofol exposure also induced earlier opening of the mPTP from 118.9±3.1 seconds in the control-treated group to 73.3±1.6 seconds. Pretreatment of the cells with mdivi-1, a mitochondrial fission blocker rescued the propofol-induced toxicity, mitochondrial fission and mPTP opening time (n=75 cells/group). Inhibiting CDK1 attenuated the increase in cell death and fission and the increase in expression of activated Drp1. Conclusions These data demonstrate for the first time that propofol-induced neurotoxicity occurs through a mitochondrial fission/mPTP-mediated pathway. PMID:26352374

  16. Cholinergic-receptor-independent dysfunction of mitochondrial respiratory chain enzymes, reduced mitochondrial transmembrane potential and ATP depletion underlie necrotic cell death induced by the organophosphate poison mevinphos.

    PubMed

    Chan, J Y H; Chan, S H H; Dai, K Y; Cheng, H L; Chou, J L J; Chang, A Y W

    2006-12-01

    Our current understanding of the nature of cell death that is associated with fatal organophosphate poisoning and the underlying cellular mechanisms is surprisingly limited. Taking advantage of the absence in an in vitro system of acetylcholinesterase, the pharmacological target of organophosphate compounds, the present study evaluated the hypothesis that the repertoire of cholinergic receptor-independent cellular events that underlie fatal organophosphate poisoning entails induction of mitochondrial dysfunction, followed by bioenergetic failure that leads to necrotic cell death because of ATP depletion. Pheochromocytoma PC12 cells incubated with the organophosphate pesticide mevinphos (0.4 or 4mumol) for 1 or 3h underwent a dose-related and time-dependent loss of cell viability that was not reversed by muscarinic (atropine) or nicotinic (mecamylamine) blockade. This was accompanied by depressed NADH cytochrome c reductase, succinate cytochrome c reductase or cytochrome c oxidase activity in the mitochondrial respiratory chain, reduced mitochondrial transmembrane potential, decreased ATP concentration, elevated ADP/ATP ratio, increased lactate dehydrogenase release and necrotic cell death. We conclude that Mev induces cholinergic receptor-independent necrotic cell death by depressing the activity of Complexes I to IV in the mitochondrial respiratory chain, eliciting reduction in mitochondrial transmembrane potential, depleting intracellular ATP contents and damaging cell membrane integrity.

  17. Activation of mitochondrial ERK protects cancer cells from death through inhibition of the permeability transition.

    PubMed

    Rasola, Andrea; Sciacovelli, Marco; Chiara, Federica; Pantic, Boris; Brusilow, William S; Bernardi, Paolo

    2010-01-12

    We studied human cancer cell models in which we detected constitutive activation of ERK. A fraction of active ERK was found to be located in mitochondria in RWPE-2 cells, obtained by v-Ki-Ras transformation of the epithelial prostate RWPE-1 cell line; in metastatic prostate cancer DU145 cells; and in osteosarcoma SAOS-2 cells. All these tumor cells displayed marked resistance to death caused by apoptotic stimuli like arachidonic acid and the BH3 mimetic EM20-25, which cause cell death through the mitochondrial permeability transition pore (PTP). PTP desensitization and the ensuing resistance to cell death induced by arachidonic acid or EM20-25 could be ablated by inhibiting ERK with the drug PD98059 or with a selective ERK activation inhibitor peptide. ERK inhibition enhanced glycogen synthase kinase-3 (GSK-3)-dependent phosphorylation of the pore regulator cyclophilin D, whereas GSK-3 inhibition protected from PTP opening. Neither active ERK in mitochondria nor pore desensitization was observed in non-transformed RWPE-1 cells. Thus, in tumor cells mitochondrial ERK activation desensitizes the PTP through a signaling axis that involves GSK-3 and cyclophilin D, a finding that provides a mechanistic basis for increased resistance to apoptosis of neoplastic cells.

  18. L-carnitine protects C2C12 cells against mitochondrial superoxide overproduction and cell death

    PubMed Central

    Le Borgne, Françoise; Ravaut, Gaétan; Bernard, Arnaud; Demarquoy, Jean

    2017-01-01

    AIM To identify and characterize the protective effect that L-carnitine exerted against an oxidative stress in C2C12 cells. METHODS Myoblastic C2C12 cells were treated with menadione, a vitamin K analog that engenders oxidative stress, and the protective effect of L-carnitine (a nutrient involved in fatty acid metabolism and the control of the oxidative process), was assessed by monitoring various parameters related to the oxidative stress, autophagy and cell death. RESULTS Associated with its physiological function, a muscle cell metabolism is highly dependent on oxygen and may produce reactive oxygen species (ROS), especially under pathological conditions. High levels of ROS are known to induce injuries in cell structure as they interact at many levels in cell function. In C2C12 cells, a treatment with menadione induced a loss of transmembrane mitochondrial potential, an increase in mitochondrial production of ROS; it also induces autophagy and was able to provoke cell death. Pre-treatment of the cells with L-carnitine reduced ROS production, diminished autophagy and protected C2C12 cells against menadione-induced deleterious effects. CONCLUSION In conclusion, L-carnitine limits the oxidative stress in these cells and prevents cell death. PMID:28289521

  19. Nitric oxide and DOPAC-induced cell death: from GSH depletion to mitochondrial energy crisis.

    PubMed

    Nunes, Carla; Barbosa, Rui M; Almeida, Leonor; Laranjinha, João

    2011-09-01

    The molecular mechanisms inherent to cell death associated with Parkinson's disease are not clearly understood. Diverse pathways, sequence of events and models have been explored in several studies. Recently, we have proposed an integrative mechanism, encompassing the interaction of nitric oxide (•NO) and a major dopamine metabolite, dihydroxyphenylacetic (DOPAC), leading to a synergistic mitochondrial dysfunction and cell death that may be operative in PD. In this study, we have studied the sequence of events underlying the mechanisms of cell death in PC12 cells exposed to •NO and DOPAC in terms of: a) free radical production; b) modulation by glutathione (GSH); c) energetic status and d) outer membrane mitochondria permeability. Using Electron Paramagnetic Resonance (EPR) it is shown the early production of oxygen free radicals followed by a depletion of GSH reflected by an increase of GSSG/GSH ratio in the cells treated with the mixture of •NO/DOPAC, as compared with the cells individually exposed to each of the stimulus. Glutathione ethyl ester (GSH-EE) and N-acetylcysteine (NAC) may rescue cells from death, increasing GSH content and preventing ATP loss in cells treated with the mixture DOPAC/•NO but failed to exert similar effects in the cells challenged only with •NO. The depletion of GSH is accompanied by a decreased activity of mitochondrial complex I. At a later stage, the concerted action of DOPAC and •NO include a rise in the ratio Bax/Bcl-2, an observation not evident when cells were exposed only to •NO. The results support a free radical-induced pathway leading to cell death involving the concerted action of DOPAC and •NO and the critical role of GSH in maintaining a functional mitochondria.

  20. Tumor cell death induced by the inhibition of mitochondrial electron transport: The effect of 3-hydroxybakuchiol

    SciTech Connect

    Jaña, Fabián; Faini, Francesca; Lapier, Michel; Pavani, Mario; Kemmerling, Ulrike; Morello, Antonio; Maya, Juan Diego; Jara, José; Parra, Eduardo; Ferreira, Jorge

    2013-10-15

    Changes in mitochondrial ATP synthesis can affect the function of tumor cells due to the dependence of the first step of glycolysis on mitochondrial ATP. The oxidative phosphorylation (OXPHOS) system is responsible for the synthesis of approximately 90% of the ATP in normal cells and up to 50% in most glycolytic cancers; therefore, inhibition of the electron transport chain (ETC) emerges as an attractive therapeutic target. We studied the effect of a lipophilic isoprenylated catechol, 3-hydroxybakuchiol (3-OHbk), a putative ETC inhibitor isolated from Psoralea glandulosa. 3-OHbk exerted cytotoxic and anti-proliferative effects on the TA3/Ha mouse mammary adenocarcinoma cell line and induced a decrease in the mitochondrial transmembrane potential, the activation of caspase-3, the opening of the mitochondrial permeability transport pore (MPTP) and nuclear DNA fragmentation. Additionally, 3-OHbk inhibited oxygen consumption, an effect that was completely reversed by succinate (an electron donor for Complex II) and duroquinol (electron donor for Complex III), suggesting that 3-OHbk disrupted the electron flow at the level of Complex I. The inhibition of OXPHOS did not increase the level of reactive oxygen species (ROS) but caused a large decrease in the intracellular ATP level. ETC inhibitors have been shown to induce cell death through necrosis and apoptosis by increasing ROS generation. Nevertheless, we demonstrated that 3-OHbk inhibited the ETC and induced apoptosis through an interaction with Complex I. By delivering electrons directly to Complex III with duroquinol, cell death was almost completely abrogated. These results suggest that 3-OHbk has antitumor activity resulting from interactions with the ETC, a system that is already deficient in cancer cells. - Highlights: • We studied the anticancer activity of a natural compound, 3-OHbk, on TA3/Ha cells. • 3-OHbk inhibited mitochondrial electron flow by interacting with Complex I. • Complex I inhibition did

  1. Mitochondrial dysfunction and death in motor neurons exposed to the glutathione-depleting agent ethacrynic acid.

    PubMed

    Rizzardini, M; Lupi, M; Bernasconi, S; Mangolini, A; Cantoni, L

    2003-03-15

    This study investigated the mechanisms of toxicity of glutathione (GSH) depletion in one cell type, the motor neuron. Ethacrynic acid (EA) (100 microM) was added to immortalized mouse motor neurons (NSC-34) to deplete both cytosolic and mitochondrial glutathione rapidly. This caused a drop in GSH to 25% of the initial level in 1 h and complete loss in 4 h. This effect was accompanied by enhanced generation of reactive oxygen species (ROS) with a peak after 2 h of exposure, and by signs of mitochondrial dysfunction such as a decrease in 3-(4,5-dimethyl-2-thiazoyl)-2,5-diphenyltetrazolium bromide (MTT) (30% less after 4 h). The increase in ROS and the MTT reduction were both EA concentration-dependent. Expression of heme oxygenase-1 (HO-1), a marker of oxidative stress, also increased. The mitochondrial damage was monitored by measuring the mitochondrial membrane potential (MMP) from the uptake of rhodamine 123 into mitochondria. MMP dropped (20%) after only 1 h exposure to EA, and slowly continued to decline until 3 h, with a steep drop at 5 h (50% decrease), i.e. after the complete GSH loss. Quantification of DNA fragmentation by the TUNEL technique showed that the proportion of cells with fragmented nuclei rose from 10% after 5 h EA exposure to about 65% at 18 h. These results indicate that EA-induced GSH depletion rapidly impairs the mitochondrial function of motor neurons, and this precedes cell death. This experimental model of oxidative toxicity could be useful to study mechanisms of diseases like spinal cord injury (SCI) and amyotrophic lateral sclerosis (ALS), where motor neurons are the vulnerable population and oxidative stress has a pathogenic role.

  2. Lipid analogues as potential drugs for the regulation of mitochondrial cell death

    PubMed Central

    Murray, Michael; Dyari, Herryawan Ryadi Eziwar; Allison, Sarah E; Rawling, Tristan

    2014-01-01

    The mitochondrion plays an important role in the production of energy as ATP, the regulation of cell viability and apoptosis, and the biosynthesis of major structural and regulatory molecules, such as lipids. During ATP production, reactive oxygen species are generated that alter the intracellular redox state and activate apoptosis. Mitochondrial dysfunction is a well-recognized component of the pathogenesis of diseases such as cancer. Understanding mitochondrial function, and how this is dysregulated in disease, offers the opportunity for the development of drug molecules to specifically target such defects. Altered energy metabolism in cancer, in which ATP production occurs largely by glycolysis, rather than by oxidative phosphorylation, is attributable in part to the up-regulation of cell survival signalling cascades. These pathways also regulate the balance between pro-and anti-apoptotic factors that may determine the rate of cell death and proliferation. A number of anti-cancer drugs have been developed that target these factors and one of the most promising groups of agents in this regard are the lipid-based molecules that act directly or indirectly at the mitochondrion. These molecules have emerged in part from an understanding of the mitochondrial actions of naturally occurring fatty acids. Some of these agents have already entered clinical trials because they specifically target known mitochondrial defects in the cancer cell. LINKED ARTICLES This article is part of a themed issue on Mitochondrial Pharmacology: Energy, Injury & Beyond. To view the other articles in this issue visit http://dx.doi.org/10.1111/bph.2014.171.issue-8 PMID:24111728

  3. Synergistic effect of cAMP and palmitate in promoting altered mitochondrial function and cell death in HepG2 cells

    PubMed Central

    Zhang, Linxia; Seitz, Linsey C.; Abramczyk, Amy M.; Chan, Christina

    2009-01-01

    Saturated free fatty acids (FFAs), e.g. palmitate, have long been shown to induce toxicity and cell death in various types of cells. In this study, we demonstrate that cAMP synergistically amplifies the effect of palmitate on the induction of cell death in human hepatocellular carcinoma cell line, HepG2 cells. Elevation of cAMP level in palmitate treated cells led to enhanced mitochondrial fragmentation, mitochondrial reactive oxygen species (ROS) generation and mitochondrial biogenesis. Mitochondrial fragmentation precedes mitochondrial ROS generation and mitochondrial biogenesis, and may contribute to mitochondrial ROS overproduction and subsequent mitochondrial biogenesis. Fragmentation of mitochondria also facilitated the release of cytotoxic mitochondrial proteins, such as Smac, from the mitochondria and subsequent activation of caspases. However, cell death induced by palmitate and cAMP was caspase-independent and mainly necrotic. PMID:20026039

  4. Prerequisites for ubiquinone analogs to prevent mitochondrial permeability transition-induced cell death.

    PubMed

    Belliere, Julie; Devun, Flavien; Cottet-Rousselle, Cécile; Batandier, Cécile; Leverve, Xavier; Fontaine, Eric

    2012-02-01

    The permeability transition pore (PTP) is a mitochondrial inner membrane channel involved in cell death. The inhibition of PTP opening has been proved to be an effective strategy to prevent cell death induced by oxidative stress. Several ubiquinone analogs are known to powerfully inhibit PTP opening with an effect depending on the studied cell line. Here, we have studied the effects of ubiquinone 0 (Ub(0)), ubiquinone 5 (Ub(5)) and ubiquinone 10 (Ub(10)) on PTP regulation, H(2)O(2) production and cell viability in U937 cells. We found that Ub(0) induced both PTP opening and H(2)O(2) production. Ub(5) did not regulate PTP opening yet induced H(2)O(2) production. Ub(10) potently inhibited PTP opening yet induced H(2)O(2) production. Both Ub(0) and Ub(5) induced cell death, whereas Ub(10) was not toxic. Moreover, Ub(10) prevented tert-butyl hydroperoxide-induced PTP opening and subsequent cell death. We conclude that PTP-inhibitor ubiquinone analogs are able to prevent PTP opening-induced cell death only if they are not toxic per se, which is the case when they have no or low pro-oxidant activity.

  5. Colistin-Induced Nephrotoxicity in Mice Involves the Mitochondrial, Death Receptor, and Endoplasmic Reticulum Pathways

    PubMed Central

    Dai, Chongshan; Li, Jichang; Tang, Shusheng

    2014-01-01

    Nephrotoxicity is the dose-limiting factor for colistin, but the exact mechanism is unknown. This study aimed to investigate the roles of the mitochondrial, death receptor, and endoplasmic reticulum pathways in colistin-induced nephrotoxicity. Mice were intravenously administered 7.5 or 15 mg of colistin/kg of body weight/day (via a 3-min infusion and divided into two doses) for 7 days. Renal function, oxidative stress, and apoptosis were measured. Representative biomarkers involved in the mitochondrial, death receptor, and endoplasmic reticulum pathways were investigated, and the key markers involved in apoptosis and autophagy were examined. After 7-day colistin treatment, significant increase was observed with blood urea nitrogen, serum creatinine, and malondialdehyde, while activities of superoxide dismutase (SOD) and catalase decreased in the kidneys. Acute tubular necrosis and mitochondrial dysfunction were detected, and colistin-induced apoptosis was characterized by DNA fragmentation, cleavage of poly(ADP-ribose) polymerase (PARP-1), increase of 8-hydroxydeoxyguanosine (8-OHdG), and activation of caspases (caspase-8, -9, and -3). It was evident that colistin-induced apoptosis involved the mitochondrial pathway (downregulation of Bcl-2 and upregulation of cytochrome C [cytC] and Bax), death receptor pathway (upregulation of Fas, FasL, and Fas-associated death domain [FADD]), and endoplasmic reticulum pathway (upregulation of Grp78/Bip, ATF6, GADD153/CHOP, and caspase-12). In the 15-mg/kg/day colistin group, expression of the cyclin-dependent kinase 2 (CDK2) and phosphorylated JNK (p-JNK) significantly increased (P < 0.05), while in the 7.5-mg/kg/day colistin group, a large number of autophagolysosomes and classic autophagy were observed. Western blot results of Beclin-1 and LC3B indicated that autophagy may play a protective role in colistin-induced nephrotoxicity. In conclusion, this is the first study to demonstrate that all three major apoptosis pathways

  6. Protection of hepatocytes against death due to mitochondrial failure: effect of di-Calciphor on antimycin A-induced toxicity.

    PubMed

    Park, Y; Devlin, T M; Jones, D P

    1994-05-01

    Di-Calciphor is a synthetic derivative of prostaglandin B1 that protects against cerebral and cardiac ischemia apparently by preserving mitochondrial function. To determine whether di-Calciphor specifically protects against mitochondrial failure, we studied its effects on mitochondrial functions in hepatocytes treated with the specific mitochondrial poison, antimycin A. The results show that 1 microM di-Calciphor protects against cell death at concentrations of antimycin A that inhibited mitochondrial respiration and caused cellular ATP depletion. Di-Calciphor did not protect against loss of ATP but did protect against the loss of mitochondrial delta psi and delta pH. In addition, di-Calciphor protected against antimycin A-induced loading of phosphate into mitochondria and an associated mitochondrial swelling. Thus, these results show that di-Calciphor protects against a specific mitochondrial poison and support the interpretation that di-Calciphor is a mitochondrial protective agent. In addition, the results suggest that the protection of the mitochondria involves preservation of mitochondrial ionic and osmotic stability and does not involve improved ATP supply.

  7. Identification and characterization of cannabinoids that induce cell death through mitochondrial permeability transition in Cannabis leaf cells.

    PubMed

    Morimoto, Satoshi; Tanaka, Yumi; Sasaki, Kaori; Tanaka, Hiroyuki; Fukamizu, Tomohide; Shoyama, Yoshinari; Shoyama, Yukihiro; Taura, Futoshi

    2007-07-13

    Cannabinoids are secondary metabolites stored in capitate-sessile glands on leaves of Cannabis sativa. We discovered that cell death is induced in the leaf tissues exposed to cannabinoid resin secreted from the glands, and identified cannabichromenic acid (CBCA) and Delta(1)-tetrahydrocannabinolic acid (THCA) as unique cell death mediators from the resin. These cannabinoids effectively induced cell death in the leaf cells or suspension-cultured cells of C. sativa, whereas pretreatment with the mitochondrial permeability transition (MPT) inhibitor cyclosporin A suppressed this cell death response. Examinations using isolated mitochondria demonstrated that CBCA and THCA mediate opening of MPT pores without requiring Ca(2+) and other cytosolic factors, resulting in high amplitude mitochondrial swelling, release of mitochondrial proteins (cytochrome c and nuclease), and irreversible loss of mitochondrial membrane potential. Therefore, CBCA and THCA are considered to cause serious damage to mitochondria through MPT. The mitochondrial damage was also confirmed by a marked decrease of ATP level in cannabinoid-treated suspension cells. These features are in good accord with those of necrotic cell death, whereas DNA degradation was also observed in cannabinoid-mediated cell death. However, the DNA degradation was catalyzed by nuclease(s) released from mitochondria during MPT, indicating that this reaction was not induced via a caspase-dependent apoptotic pathway. Furthermore, the inhibition of the DNA degradation only slightly blocked the cell death induced by cannabinoids. Based on these results, we conclude that CBCA and THCA have the ability to induce necrotic cell death via mitochondrial dysfunction in the leaf cells of C. sativa.

  8. Dynamin-Related Protein 1 Promotes Mitochondrial Fission and Contributes to The Hippocampal Neuronal Cell Death Following Experimental Status Epilepticus.

    PubMed

    Chen, Shang-Der; Zhen, Yen-Yi; Lin, Jui-Wei; Lin, Tsu-Kung; Huang, Chin-Wei; Liou, Chia-Wei; Chan, Samuel H H; Chuang, Yao-Chung

    2016-12-01

    Prolonged seizure activity may result in mitochondrial dysfunction and lead to cell death in the hippocampus. Mitochondrial fission may occur in an early stage of neuronal cell death. This study examined the role of the mitochondrial fission protein dynamin-related protein 1 (Drp1) in the hippocampus following status epilepticus. Kainic acid (KA) was microinjected unilaterally into the hippocampal CA3 area in Sprague Dawley rats to induce prolonged seizure activity. Biochemical analysis, electron microscopy, and immunofluorescence staining were performed to evaluate the subsequent molecular and cellular events. The effects of pretreatment with a mitochondrial fission protein inhibitor, Mdivi-1 (2 nmol), were also evaluated. Phosphorylation of Drp1 at serine 616 (p-Drp1(Ser616)) was elevated from 1 to 24 h after the elicited seizure activity. Pretreatment with Mdivi-1 decreased the Drp1 phosphorylation at Ser616 and limited the mitochondrial fission. Mdivi-1 rescued the Complex I dysfunction, decreased the levels of oxidized proteins, decreased the activation of cytochrome c/caspase-3 signaling, and blunted cell death in CA3 neurons. Our findings suggest that activation of p-Drp1(Ser616) is related to seizure-induced neuronal damage. Modulation of p-Drp1(Ser616) expression is accompanied by decreases in mitochondrial fission, mitochondrial dysfunction, and oxidation, providing a neuroprotective effect against seizure-induced hippocampal neuronal damage. © 2016 John Wiley & Sons Ltd.

  9. Mitochondrial type II NAD(P)H dehydrogenases in fungal cell death

    PubMed Central

    Gonçalves, A. Pedro; Videira, Arnaldo

    2015-01-01

    During aerobic respiration, cells produce energy through oxidative phosphorylation, which includes a specialized group of multi-subunit complexes in the inner mitochondrial membrane known as the electron transport chain. However, this canonical pathway is branched into single polypeptide alternative routes in some fungi, plants, protists and bacteria. They confer metabolic plasticity, allowing cells to adapt to different environmental conditions and stresses. Type II NAD(P)H dehydrogenases (also called alternative NAD(P)H dehydrogenases) are non-proton pumping enzymes that bypass complex I. Recent evidence points to the involvement of fungal alternative NAD(P)H dehydrogenases in the process of programmed cell death, in addition to their action as overflow systems upon oxidative stress. Consistent with this, alternative NAD(P)H dehydrogenases are phylogenetically related to cell death - promoting proteins of the apoptosis-inducing factor (AIF)-family. PMID:28357279

  10. Beta-nodavirus B2 protein induces hydrogen peroxide production, leading to Drp1-recruited mitochondrial fragmentation and cell death via mitochondrial targeting.

    PubMed

    Su, Yu C; Chiu, Hsuan W; Hung, Jo C; Hong, Jiann R

    2014-10-01

    Because the role of the viral B2 protein in the pathogenesis of nervous necrosis virus infection remains unknown, the aim of the present study was to determine the effects of B2 protein on hydrogen peroxide (H2O2)-mediated cell death via mitochondrial targeting. Using a B2 deletion mutant, the B2 mitochondrial targeting signal sequence ((41)RTFVISAHAA(50)) correlated with mitochondrial free radical production and cell death in fish cells, embryonic zebrafish, and human cancer cells. After treatment of grouper fin cells (GF-1) overexpressing B2 protein with the anti-oxidant drug, N-acetylcysteine (NAC), and overexpression of the antioxidant enzymes, zfCu/Zn superoxide dismutase (SOD) and zfCatalase, decreased H2O2 production and cell death were observed. To investigate the correlation between B2 cytotoxicity and H2O2 production in vivo, B2 was injected into zebrafish embryos. Cell damage, as assessed by the acridine orange assay, gradually increased over 24 h post-fertilization, and was accompanied by marked increases in H2O2 production and embryonic death. Increased oxidative stress, as evidenced by the up-regulation of Mn SOD, catalase, and Nrf2, was also observed during this period. Finally, B2-induced dynamin-related protein 1 (Drp1)-mediated mitochondrial fragmentation and cell death could be reversed by NAC and inhibitors of Drp1 and Mdivi in GF-1 cells. Taken together, betanodavirus B2 induces H2O2 production via targeting the mitochondria, where it inhibits complex II function. H2O2 activates Drp1, resulting in its association with the mitochondria, mitochondrial fission and cell death in vitro and in vivo.

  11. Epigenetic control of mitochondrial cell death through PACS1-mediated regulation of BAX/BAK oligomerization.

    PubMed

    Brasacchio, Daniella; Alsop, Amber E; Noori, Tahereh; Lufti, Mariam; Iyer, Sweta; Simpson, Kaylene J; Bird, Phillip I; Kluck, Ruth M; Johnstone, Ricky W; Trapani, Joseph A

    2017-06-01

    PCAF and ADA3 associate within the same macromolecular complexes to control the transcription of many genes, including some that regulate apoptosis. Here we show that PCAF and ADA3 regulate the expression of PACS1, whose protein product is a key component of the machinery that sorts proteins among the trans-Golgi network and the endosomal compartment. We describe a novel role for PACS1 as a regulator of the intrinsic pathway of apoptosis and mitochondrial outer membrane permeabilization. Cells with decreased PACS1 expression were refractory to cell death mediated by a variety of stimuli that operate through the mitochondrial pathway, including human granzyme B, staurosporine, ultraviolet radiation and etoposide, but remained sensitive to TRAIL receptor ligation. The mitochondria of protected cells failed to release cytochrome c as a result of perturbed oligomerization of BAX and BAK. We conclude that PCAF and ADA3 transcriptionally regulate PACS1 and that PACS1 is a key regulator of BAX/BAK oligomerization and the intrinsic (mitochondrial) pathway to apoptosis.

  12. Over-expression of mitochondrial heat shock protein 70 suppresses programmed cell death in rice.

    PubMed

    Qi, Yaocheng; Wang, Hongjuan; Zou, Yu; Liu, Cheng; Liu, Yanqi; Wang, Ying; Zhang, Wei

    2011-01-03

    In this study, we identified and functionally characterized the mitochondrial heat shock protein 70 (mtHsp70). Over-expression of mtHsp70 suppressed heat- and H(2)O(2)-induced programmed cell death (PCD) in rice protoplasts, as reflected by higher cell viability, decreased DNA laddering and chromatin condensation. Mitochondrial membrane potential (Δψ(m)) after heat shock was destroyed gradually in protoplasts, but mtHsp70 over-expression showed higher Δψ(m) relative to the vector control cells, and partially inhibited cytochrome c release from mitochondria to cytosol. Heat treatment also significantly increased reactive oxygen species (ROS) generation, a phenomenon not observed in protoplasts over-expressing mtHsp70. Together, these results suggest that mtHsp70 may suppress PCD in rice protoplasts by maintaining mitochondrial Δψ(m) and inhibiting the amplification of ROS. Copyright © 2010 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.

  13. Alcohol and thiamine deficiency trigger differential mitochondrial transition pore opening mediating cellular death.

    PubMed

    Bâ, Abdoulaye

    2017-06-01

    Accumulating evidence has shown that binge-type alcohol intake in mothers interferes with thiamine deficiency (TD) to promote the fetal alcohol syndrome (FAS). Developmental alcohol or TD exposures act either synergistically or separately to reproduce FAS features e.g. intrauterine growth retardation and related microcephaly characterized by extensive cellular death induced by one another neurotoxicant. However molecular and cellular mechanisms underlying apoptosis in both alcohol and TD toxicities are unknown. The current review addresses mechanisms of apoptosis underlying alcohol and TD toxicities for further understanding FAS pathology. This study indicates two different mitochondria pathways regulating cellular death: The first mechanism may engage alcohol which activates the c-subunit ring of the F0-ATP synthase to form MPT pore-dependent apoptosis; following the second mechanism, TD activates CyP-D translocation from mitochondrial matrix towards the mitochondrial inner membrane to form MPT pore-dependent necrosis. These studies shed light upon molecular and cellular mechanisms underlying apoptosis and necrosis in developemental brain disorders related to alcohol and thiamine deficiency, in hopes of developing new therapeutic strategies for FAS medication.

  14. Isoniazid-induced cell death is precipitated by underlying mitochondrial complex I dysfunction in mouse hepatocytes.

    PubMed

    Lee, Kang Kwang; Fujimoto, Kazunori; Zhang, Carmen; Schwall, Christine T; Alder, Nathan N; Pinkert, Carl A; Krueger, Winfried; Rasmussen, Theodore; Boelsterli, Urs A

    2013-12-01

    Isoniazid (INH) is an antituberculosis drug that has been associated with idiosyncratic liver injury in susceptible patients. The underlying mechanisms are still unclear, but there is growing evidence that INH and/or its major metabolite, hydrazine, may interfere with mitochondrial function. However, hepatic mitochondria have a large reserve capacity, and minor disruption of energy homeostasis does not necessarily induce cell death. We explored whether pharmacologic or genetic impairment of mitochondrial complex I may amplify mitochondrial dysfunction and precipitate INH-induced hepatocellular injury. We found that INH (≤ 3000 μM) did not induce cell injury in cultured mouse hepatocytes, although it decreased hepatocellular respiration and ATP levels in a concentration-dependent fashion. However, coexposure of hepatocytes to INH and nontoxic concentrations of the complex I inhibitors rotenone (3 μM) or piericidin A (30 nM) resulted in massive ATP depletion and cell death. Although both rotenone and piericidin A increased MitoSox-reactive fluorescence, Mito-TEMPO or N-acetylcysteine did not attenuate the extent of cytotoxicity. However, preincubation of cells with the acylamidase inhibitor bis-p-nitrophenol phosphate provided protection from hepatocyte injury induced by rotenone/INH (but not rotenone/hydrazine), suggesting that hydrazine was the cell-damaging species. Indeed, we found that hydrazine directly inhibited the activity of solubilized complex II. Hepatocytes isolated from mutant Ndufs4(+/-) mice, although featuring moderately lower protein expression levels of this complex I subunit in liver mitochondria, exhibited unchanged hepatic complex I activity and were therefore not sensitized to INH. These data indicate that underlying inhibition of complex I, which alone is not acutely toxic, can trigger INH-induced hepatocellular injury.

  15. Hydrogen peroxide production and mitochondrial dysfunction contribute to the fusaric acid-induced programmed cell death in tobacco cells.

    PubMed

    Jiao, Jiao; Sun, Ling; Zhou, Benguo; Gao, Zhengliang; Hao, Yu; Zhu, Xiaoping; Liang, Yuancun

    2014-08-15

    Fusaric acid (FA), a non-specific toxin produced mainly by Fusarium spp., can cause programmed cell death (PCD) in tobacco suspension cells. The mechanism underlying the FA-induced PCD was not well understood. In this study, we analyzed the roles of hydrogen peroxide (H2O2) and mitochondrial function in the FA-induced PCD. Tobacco suspension cells were treated with 100 μM FA and then analyzed for H2O2 accumulation and mitochondrial functions. Here we demonstrate that cells undergoing FA-induced PCD exhibited H2O2 production, lipid peroxidation, and a decrease of the catalase and ascorbate peroxidase activities. Pre-treatment of tobacco suspension cells with antioxidant ascorbic acid and NADPH oxidase inhibitor diphenyl iodonium significantly reduced the rate of FA-induced cell death as well as the caspase-3-like protease activity. Moreover, FA treatment of tobacco cells decreased the mitochondrial membrane potential and ATP content. Oligomycin and cyclosporine A, inhibitors of the mitochondrial ATP synthase and the mitochondrial permeability transition pore, respectively, could also reduce the rate of FA-induced cell death significantly. Taken together, the results presented in this paper demonstrate that H2O2 accumulation and mitochondrial dysfunction are the crucial events during the FA-induced PCD in tobacco suspension cells.

  16. Bcl-x(L) blocks a mitochondrial inner membrane channel and prevents Ca2+ overload-mediated cell death.

    PubMed

    Tornero, Daniel; Posadas, Inmaculada; Ceña, Valentín

    2011-01-01

    Apoptosis is an active process that plays a key role in many physiological and pathological conditions. One of the most important organelles involved in apoptosis regulation is the mitochondrion. An increase in intracellular Ca(2+) is a general mechanism of toxicity in neurons which occurs in response to different noxious stimuli like excitotoxicity and ischemia producing apoptotic and necrotic cell death through mitochondria-dependent mechanisms. The Bcl-2 family of proteins modulate the release of pro-apoptotic factors from the mitochondrial intermembrane space during cell death induction by different stimuli. In this work, we have studied, using single-cell imaging and patch-clamp single channel recording, the mitochondrial mechanisms involved in the neuroprotective effect of Bcl-x(L) on Ca(2+) overload-mediated cell death in human neuroblastoma SH-SY5Y cells. We have found that Bcl-x(L) neuroprotective actions take place at mitochondria where this antiapoptotic protein delays both mitochondrial potential collapse and opening of the permeability transition pore by preventing Ca(2+)-mediated mitochondrial multiple conductance channel opening. Bcl-x(L) neuroprotective actions were antagonized by the Bcl-x(L) inhibitor ABT-737 and potentiated by the Ca(2+) chelator BAPTA-AM. As a consequence, this would prevent free radical production, mitochondrial membrane permeabilization, release from mitochondria of pro-apoptotic molecules, caspase activation and cellular death.

  17. The multiple functions of cytochrome c and their regulation in life and death decisions of the mammalian cell: from respiration to apoptosis

    PubMed Central

    Hüttemann, Maik; Pecina, Petr; Rainbolt, Matthew; Sanderson, Thomas H.; Kagan, Valerian E.; Samavati, Lobelia; Doan, Jeffrey W.; Lee, Icksoo

    2011-01-01

    Cytochrome c (Cytc) is essential in mitochondrial electron transport and intrinsic type II apoptosis. Mammalian Cytc also scavenges reactive oxygen species (ROS) under healthy conditions, produces ROS with the co-factor p66Shc, and oxidizes cardiolipin during apoptosis. The recent finding that Cytc is phosphorylated in vivo underpins a model for the pivotal role of Cytc regulation in making life and death decisions. An apoptotic sequence of events is proposed involving changes in Cytc phosphorylation, increased ROS via increased mitochondrial membrane potentials or the p66Shc pathway, the oxidation of cardiolipin by Cytc, and its release from the mitochondria. Cytc regulation in respiration and cell death is discussed in a human disease context including neurodegenerative and cardiovascular diseases, cancer, and sepsis. PMID:21296189

  18. The multiple functions of cytochrome c and their regulation in life and death decisions of the mammalian cell: From respiration to apoptosis.

    PubMed

    Hüttemann, Maik; Pecina, Petr; Rainbolt, Matthew; Sanderson, Thomas H; Kagan, Valerian E; Samavati, Lobelia; Doan, Jeffrey W; Lee, Icksoo

    2011-05-01

    Cytochrome c (Cytc) is essential in mitochondrial electron transport and intrinsic type II apoptosis. Mammalian Cytc also scavenges reactive oxygen species (ROS) under healthy conditions, produces ROS with the co-factor p66(Shc), and oxidizes cardiolipin during apoptosis. The recent finding that Cytc is phosphorylated in vivo underpins a model for the pivotal role of Cytc regulation in making life and death decisions. An apoptotic sequence of events is proposed involving changes in Cytc phosphorylation, increased ROS via increased mitochondrial membrane potentials or the p66(Shc) pathway, and oxidation of cardiolipin by Cytc followed by its release from the mitochondria. Cytc regulation in respiration and cell death is discussed in a human disease context including neurodegenerative and cardiovascular diseases, cancer, and sepsis. Copyright © 2011 Elsevier B.V. and Mitochondria Research Society. All rights reserved.

  19. Iron overload induced death of osteoblasts in vitro: involvement of the mitochondrial apoptotic pathway

    PubMed Central

    Dai, Zhipeng; Yang, Jingjing; Zheng, Jin

    2016-01-01

    Background Iron overload is recognized as a new pathogenfor osteoporosis. Various studies demonstrated that iron overload could induce apoptosis in osteoblasts and osteoporosis in vivo. However, the exact molecular mechanisms involved in the iron overload-mediated induction of apoptosis in osteoblasts has not been explored. Purpose In this study, we attempted to determine whether the mitochondrial apoptotic pathway is involved in iron-induced osteoblastic cell death and to investigate the beneficial effect of N-acetyl-cysteine (NAC) in iron-induced cytotoxicity. Methods The MC3T3-E1 osteoblastic cell line was treated with various concentrations of ferric ion in the absence or presence of NAC, and intracellular iron, cell viability, reactive oxygen species, functionand morphology changes of mitochondria and mitochondrial apoptosis related key indicators were detected by commercial kits. In addition, to further explain potential mechanisms underlying iron overload-related osteoporosis, we also assessed cell viability, apoptosis, and osteogenic differentiation potential in bone marrow-derived mesenchymal stemcells(MSCs) by commercial kits. Results Ferric ion demonstrated concentration-dependent cytotoxic effects on osteoblasts. After incubation with iron, an elevation of intracelluar labile iron levels and a concomitant over-generation of reactive oxygen species (ROS) were detected by flow cytometry in osteoblasts. Nox4 (NADPH oxidase 4), an important ROS producer, was also evaluated by western blot. Apoptosis, which was evaluated by Annexin V/propidium iodide staining, Hoechst 33258 staining, and the activation of caspase-3, was detected after exposure to iron. Iron contributed to the permeabilizatio of mitochondria, leading to the release of cytochrome C (cyto C), which, in turn, induced mitochondrial apoptosis in osteoblasts via activation of Caspase-3, up-regulation of Bax, and down-regulation of Bcl-2. NAC could reverse iron-mediated mitochondrial dysfunction and

  20. Iron overload induced death of osteoblasts in vitro: involvement of the mitochondrial apoptotic pathway.

    PubMed

    Tian, Qing; Wu, Shilei; Dai, Zhipeng; Yang, Jingjing; Zheng, Jin; Zheng, Qixin; Liu, Yong

    2016-01-01

    Iron overload is recognized as a new pathogenfor osteoporosis. Various studies demonstrated that iron overload could induce apoptosis in osteoblasts and osteoporosis in vivo. However, the exact molecular mechanisms involved in the iron overload-mediated induction of apoptosis in osteoblasts has not been explored. In this study, we attempted to determine whether the mitochondrial apoptotic pathway is involved in iron-induced osteoblastic cell death and to investigate the beneficial effect of N-acetyl-cysteine (NAC) in iron-induced cytotoxicity. The MC3T3-E1 osteoblastic cell line was treated with various concentrations of ferric ion in the absence or presence of NAC, and intracellular iron, cell viability, reactive oxygen species, functionand morphology changes of mitochondria and mitochondrial apoptosis related key indicators were detected by commercial kits. In addition, to further explain potential mechanisms underlying iron overload-related osteoporosis, we also assessed cell viability, apoptosis, and osteogenic differentiation potential in bone marrow-derived mesenchymal stemcells(MSCs) by commercial kits. Ferric ion demonstrated concentration-dependent cytotoxic effects on osteoblasts. After incubation with iron, an elevation of intracelluar labile iron levels and a concomitant over-generation of reactive oxygen species (ROS) were detected by flow cytometry in osteoblasts. Nox4 (NADPH oxidase 4), an important ROS producer, was also evaluated by western blot. Apoptosis, which was evaluated by Annexin V/propidium iodide staining, Hoechst 33258 staining, and the activation of caspase-3, was detected after exposure to iron. Iron contributed to the permeabilizatio of mitochondria, leading to the release of cytochrome C (cyto C), which, in turn, induced mitochondrial apoptosis in osteoblasts via activation of Caspase-3, up-regulation of Bax, and down-regulation of Bcl-2. NAC could reverse iron-mediated mitochondrial dysfunction and blocked the apoptotic events

  1. Declines in Drp1 and parkin expression underlie DNA damage-induced changes in mitochondrial length and neuronal death.

    PubMed

    Wang, David B; Garden, Gwenn A; Kinoshita, Chizuru; Wyles, Cody; Babazadeh, Nasim; Sopher, Bryce; Kinoshita, Yoshito; Morrison, Richard S

    2013-01-23

    Maintaining proper mitochondrial length is essential for normal mitochondrial function in neurons. Mitochondrial fragmentation has been associated with neuronal cell death caused by a variety of experimental toxic stressors. Despite the fact that oxidative stress is a hallmark of neurodegenerative conditions and aging and the resulting activation of p53 is believed to contribute to the neuropathology, little is still known regarding changes in mitochondrial morphology in p53-dependent neuronal death. Therefore, we specifically addressed the relationship between genotoxic stress, p53 activation, and the regulation of mitochondrial morphology in neurons. In cultured postnatal mouse cortical neurons, treatment with the DNA-damaging agent camptothecin (CPT) resulted in elongated mitochondria, in contrast to fragmented mitochondria observed upon staurosporine and glutamate treatment. In fibroblasts, however, CPT resulted in fragmented mitochondria. CPT treatment in neurons suppressed expression of the mitochondrial fission protein Drp1 and the E3 ubiquitin ligase parkin. The presence of elongated mitochondria and the declines in Drp1 and parkin expression occurred before the commitment point for apoptosis. The CPT-induced changes in Drp1 and parkin were not observed in p53-deficient neurons, while p53 overexpression alone was sufficient to reduce the expression of the two proteins. Elevating Drp1 or parkin expression before CPT treatment enhanced neuronal viability and restored a normal pattern of mitochondrial morphology. The present findings demonstrate that genotoxic stress in neurons results in elongated mitochondria in contrast to fission induced by other forms of stress, and p53-dependent declines in Drp1 and parkin levels contribute to altered mitochondrial morphology and cell death.

  2. Cell death and survival through the endoplasmic reticulum-mitochondrial axis.

    PubMed

    Bravo-Sagua, R; Rodriguez, A E; Kuzmicic, J; Gutierrez, T; Lopez-Crisosto, C; Quiroga, C; Díaz-Elizondo, J; Chiong, M; Gillette, T G; Rothermel, B A; Lavandero, S

    2013-02-01

    The endoplasmic reticulum has a central role in biosynthesis of a variety of proteins and lipids. Mitochondria generate ATP, synthesize and process numerous metabolites, and are key regulators of cell death. The architectures of endoplasmic reticulum and mitochondria change continually via the process of membrane fusion, fission, elongation, degradation, and renewal. These structural changes correlate with important changes in organellar function. Both organelles are capable of moving along the cytoskeleton, thus changing their cellular distribution. Numerous studies have demonstrated coordination and communication between mitochondria and endoplasmic reticulum. A focal point for these interactions is a zone of close contact between them known as the mitochondrial-associated endoplasmic reticulum membrane (MAM), which serves as a signaling juncture that facilitates calcium and lipid transfer between organelles. Here we review the emerging data on how communication between endoplasmic reticulum and mitochondria can modulate organelle function and determine cellular fate.

  3. Rotenone induces cell death in primary dopaminergic culture by increasing ROS production and inhibiting mitochondrial respiration.

    PubMed

    Radad, Khaled; Rausch, Wolf-Dieter; Gille, Gabriele

    2006-09-01

    Although the definite etiology of Parkinson's disease is still unclear, increasing evidence has suggested an important role for environmental factors such as exposure to pesticides in increasing the risk of developing Parkinson's disease. In the present study, primary cultures prepared from embryonic mouse mesencephala were applied to investigate the toxic effects and underlying mechanisms of rotenone-induced neuronal cell death relevant to Parkinson's disease. Results revealed that rotenone destroyed dopaminergic neurons in a dose- and time-dependent manner. Consistent with the cytotoxic effect of rotenone as evidenced by dopaminergic cell loss, it significantly increased the release of lactate dehydrogenase into the culture medium, the number of necrotic cells in the culture and the number of nuclei showing apoptotic features. Rotenone exerted toxicity by decreasing the mitochondrial membrane potential, increasing reactive oxygen species production and shifting respiration to a more anaerobic state.

  4. Oleuropein Prevents Neuronal Death, Mitigates Mitochondrial Superoxide Production and Modulates Autophagy in a Dopaminergic Cellular Model.

    PubMed

    Achour, Imène; Arel-Dubeau, Anne-Marie; Renaud, Justine; Legrand, Manon; Attard, Everaldo; Germain, Marc; Martinoli, Maria-Grazia

    2016-08-09

    Parkinson's disease (PD) is a progressive neurodegenerative disorder, primarily affecting dopaminergic neurons in the substantia nigra. There is currently no cure for PD and present medications aim to alleviate clinical symptoms, thus prevention remains the ideal strategy to reduce the prevalence of this disease. The goal of this study was to investigate whether oleuropein (OLE), the major phenolic compound in olive derivatives, may prevent neuronal degeneration in a cellular dopaminergic model of PD, differentiated PC12 cells exposed to the potent parkinsonian toxin 6-hydroxydopamine (6-OHDA). We also investigated OLE's ability to mitigate mitochondrial oxidative stress and modulate the autophagic flux. Our results obtained by measuring cytotoxicity and apoptotic events demonstrate that OLE significantly decreases neuronal death. OLE could also reduce mitochondrial production of reactive oxygen species resulting from blocking superoxide dismutase activity. Moreover, quantification of autophagic and acidic vesicles in the cytoplasm alongside expression of specific autophagic markers uncovered a regulatory role for OLE against autophagic flux impairment induced by bafilomycin A1. Altogether, our results define OLE as a neuroprotective, anti-oxidative and autophagy-regulating molecule, in a neuronal dopaminergic cellular model.

  5. Oleuropein Prevents Neuronal Death, Mitigates Mitochondrial Superoxide Production and Modulates Autophagy in a Dopaminergic Cellular Model

    PubMed Central

    Achour, Imène; Arel-Dubeau, Anne-Marie; Renaud, Justine; Legrand, Manon; Attard, Everaldo; Germain, Marc; Martinoli, Maria-Grazia

    2016-01-01

    Parkinson’s disease (PD) is a progressive neurodegenerative disorder, primarily affecting dopaminergic neurons in the substantia nigra. There is currently no cure for PD and present medications aim to alleviate clinical symptoms, thus prevention remains the ideal strategy to reduce the prevalence of this disease. The goal of this study was to investigate whether oleuropein (OLE), the major phenolic compound in olive derivatives, may prevent neuronal degeneration in a cellular dopaminergic model of PD, differentiated PC12 cells exposed to the potent parkinsonian toxin 6-hydroxydopamine (6-OHDA). We also investigated OLE’s ability to mitigate mitochondrial oxidative stress and modulate the autophagic flux. Our results obtained by measuring cytotoxicity and apoptotic events demonstrate that OLE significantly decreases neuronal death. OLE could also reduce mitochondrial production of reactive oxygen species resulting from blocking superoxide dismutase activity. Moreover, quantification of autophagic and acidic vesicles in the cytoplasm alongside expression of specific autophagic markers uncovered a regulatory role for OLE against autophagic flux impairment induced by bafilomycin A1. Altogether, our results define OLE as a neuroprotective, anti-oxidative and autophagy-regulating molecule, in a neuronal dopaminergic cellular model. PMID:27517912

  6. Pepper Mitochondrial FORMATE DEHYDROGENASE1 Regulates Cell Death and Defense Responses against Bacterial Pathogens1[C][W][OPEN

    PubMed Central

    Choi, Du Seok; Kim, Nak Hyun; Hwang, Byung Kook

    2014-01-01

    Formate dehydrogenase (FDH; EC 1.2.1.2) is an NAD-dependent enzyme that catalyzes the oxidation of formate to carbon dioxide. Here, we report the identification and characterization of pepper (Capsicum annuum) mitochondrial FDH1 as a positive regulator of cell death and defense responses. Transient expression of FDH1 caused hypersensitive response (HR)-like cell death in pepper and Nicotiana benthamiana leaves. The D-isomer-specific 2-hydroxyacid dehydrogenase signatures of FDH1 were required for the induction of HR-like cell death and FDH activity. FDH1 contained a mitochondrial targeting sequence at the N-terminal region; however, mitochondrial localization of FDH1 was not essential for the induction of HR-like cell death and FDH activity. FDH1 silencing in pepper significantly attenuated the cell death response and salicylic acid levels but stimulated growth of Xanthomonas campestris pv vesicatoria. By contrast, transgenic Arabidopsis (Arabidopsis thaliana) overexpressing FDH1 exhibited greater resistance to Pseudomonas syringae pv tomato in a salicylic acid-dependent manner. Arabidopsis transfer DNA insertion mutant analysis indicated that AtFDH1 expression is required for basal defense and resistance gene-mediated resistance to P. syringae pv tomato infection. Taken together, these data suggest that FDH1 has an important role in HR-like cell death and defense responses to bacterial pathogens. PMID:25237129

  7. Role of reactive oxygen species-mediated mitochondrial dysregulation in 3-bromopyruvate induced cell death in hepatoma cells : ROS-mediated cell death by 3-BrPA.

    PubMed

    Kim, Ji Su; Ahn, Keun Jae; Kim, Jeong-Ah; Kim, Hye Mi; Lee, Jong Doo; Lee, Jae Myun; Kim, Se Jong; Park, Jeon Han

    2008-12-01

    Hexokinase type II (HK II) is the key enzyme for maintaining increased glycolysis in cancer cells where it is overexpressed. 3-bromopyruvate (3-BrPA), an inhibitor of HK II, induces cell death in cancer cells. To elucidate the molecular mechanism of 3-BrPA-induced cell death, we used the hepatoma cell lines SNU449 (low expression of HKII) and Hep3B (high expression of HKII). 3-BrPA induced ATP depletion-dependent necrosis and apoptosis in both cell lines. 3-BrPA increased intracellular reactive oxygen species (ROS) leading to mitochondrial dysregulation. NAC (N-acetyl-L: -cysteine), an antioxidant, blocked 3-BrPA-induced ROS production, loss of mitochondrial membrane potential and cell death. 3-BrPA-mediated oxidative stress not only activated poly-ADP-ribose (PAR) but also translocated AIF from the mitochondria to the nucleus. Taken together, 3-BrPA induced ATP depletion-dependent necrosis and apoptosis and mitochondrial dysregulation due to ROS production are involved in 3-BrPA-induced cell death in hepatoma cells.

  8. The novel mitochondrial iron chelator 5-((methylamino)methyl)-8-hydroxyquinoline protects against mitochondrial-induced oxidative damage and neuronal death.

    PubMed

    Mena, Natalia P; García-Beltrán, Olimpo; Lourido, Fernanda; Urrutia, Pamela J; Mena, Raúl; Castro-Castillo, Vicente; Cassels, Bruce K; Núñez, Marco T

    2015-08-07

    Abundant evidence indicates that iron accumulation, oxidative damage and mitochondrial dysfunction are common features of Huntington's disease, Parkinson's disease, Friedreich's ataxia and a group of disorders known as Neurodegeneration with Brain Iron Accumulation. In this study, we evaluated the effectiveness of two novel 8-OH-quinoline-based iron chelators, Q1 and Q4, to decrease mitochondrial iron accumulation and oxidative damage in cellular and animal models of PD. We found that at sub-micromolar concentrations, Q1 selectively decreased the mitochondrial iron pool and was extremely effective in protecting against rotenone-induced oxidative damage and death. Q4, in turn, preferentially chelated the cytoplasmic iron pool and presented a decreased capacity to protect against rotenone-induced oxidative damage and death. Oral administration of Q1 to mice protected substantia nigra pars compacta neurons against oxidative damage and MPTP-induced death. Taken together, our results support the concept that oral administration of Q1 is a promising therapeutic strategy for the treatment of NBIA.

  9. Sequential reduction of mitochondrial transmembrane potential and generation of reactive oxygen species in early programmed cell death

    PubMed Central

    1995-01-01

    Programmed cell death (PCD) is a physiological process commonly defined by alterations in nuclear morphology (apoptosis) and/or characteristic stepwise degradation of chromosomal DNA occurring before cytolysis. However, determined characteristics of PCD such as loss in mitochondrial reductase activity or cytolysis can be induced in enucleated cells, indicating cytoplasmic PCD control. Here we report a sequential disregulation of mitochondrial function that precedes cell shrinkage and nuclear fragmentation. A first cyclosporin A-inhibitable step of ongoing PCD is characterized by a reduction of mitochondrial transmembrane potential, as determined by specific fluorochromes (5,5',6,6'-tetrachloro-1,1',3,3'-tetraethylbenzimidazolcarbocyanine++ + iodide; 3,3'dihexyloxacarbocyanine iodide). Cytofluorometrically purified cells with reduced mitochondrial transmembrane potential are initially incapable of oxidizing hydroethidine (HE) into ethidium. Upon short-term in vitro culture, such cells acquire the capacity of HE oxidation, thus revealing a second step of PCD marked by mitochondrial generation of reactive oxygen species (ROS). This step can be selectively inhibited by rotenone and ruthenium red yet is not affected by cyclosporin A. Finally, cells reduce their volume, a step that is delayed by radical scavengers, indicating the implication of ROS in the apoptotic process. This sequence of alterations accompanying early PCD is found in very different models of apoptosis induction: glucocorticoid-induced death of lymphocytes, activation-induced PCD of T cell hybridomas, and tumor necrosis factor-induced death of U937 cells. Transfection with the antiapoptotic protooncogene Bcl-2 simultaneously inhibits mitochondrial alterations and apoptotic cell death triggered by steroids or ceramide. In vivo injection of fluorochromes such as 5,5',6,6'-tetrachloro-1,1',3,3'- tetraethylbenzimidazolcarbocyanine iodide; 3,3'dihexyloxacarbocyanine iodide; or HE allows for the detection of

  10. Common mitochondrial DNA deletion associated with sudden natural death in adults.

    PubMed

    Polisecki, Eliana Y; Schreier, Laura E; Ravioli, Julio; Corach, Daniel

    2004-11-01

    One of the most frequent causes of death in developed countries is sudden natural death (SND), which is the most common indication for medico-legal autopsies. Cardiac diseases are frequently detected among SND. Mitochondrial DNA (mtDNA) is easily damaged by reactive oxygen species, and it may cause dysfunction in tissues, leading to early events in cardiovascular disease. A specific mtDNA deletion of 4977 bp is associated to aging, myocardial dysfunction, and bioenergetic deficit. The potential link between mtDNA damage and SND has not been investigated before. Our aim was to evaluate the accumulation of the common mtDNA4977-deletion in cardiac muscle samples from autopsies of SND in adults (n = 14) in comparison to control samples from unnatural deaths (n = 12). Serial dilution-polymerase chain reaction method was performed to estimate the proportion of the total mtDNA harboring the mtDNA4977-deletion. Coefficient variation intra-assay was 8%, and inter-assay was 12%. MtDNA4977-deletion percentage was higher in samples obtained from victims of SND than in those from subjects who died of unnatural causes (p < 0.05). No differences in mtDNA4977-deletion were found between SND victims 39-51 years old, and no correlation was found between these samples and age, r = 0.30, p = 0.29 while it was significant among control samples, r = 0.68, p < 0.05. The association between mtDNA4977 deletion with SND victims might offer a tool to provide additional information to clarify complex SND investigations.

  11. Mitochondrial uncoupling protein 2 induces cell cycle arrest and necrotic cell death.

    PubMed

    Palanisamy, Arun P; Cheng, Gang; Sutter, Alton G; Evans, Zachary P; Polito, Carmen C; Jin, Lan; Liu, John; Schmidt, Michael G; Chavin, Kenneth D

    2014-03-01

    Uncoupling protein 2 (UCP2) is a mitochondrial membrane protein that regulates energy metabolism and reactive oxygen species (ROS) production. We generated mouse carboxy- and amino-terminal green fluorescent protein (GFP)-tagged UCP2 constructs to investigate the effect of UCP2 expression on cell proliferation and viability. UCP2-transfected Hepa 1-6 cells did not show reduced cellular adenosine triphosphate (ATP) but showed increased levels of glutathione. Flow cytometry analysis indicated that transfected cells were less proliferative than nontransfected controls, with most cells blocked at the G1 phase. The effect of UCP2 on cell cycle arrest could not be reversed by providing exogenous ATP or oxidant supply, and was not affected by the chemical uncoupler carbonyl cyanide-p-trifluoromethoxyphenylhydrazone (FCCP). However, this effect of UCP2 was augmented by treatment with genistein, a tyrosine kinase inhibitor, which by itself did not affect cell proliferation on control hepatocytes. Western blotting analysis revealed decreased expression levels of CDK6 but not CDK2 and D-type cyclins. Examination of cell viability in UCP2-transfected cells with Trypan Blue and Annexin-V staining revealed that UCP2 transfection led to significantly increased cell death. However, characteristics of apoptosis were absent in UCP2-transfected Hepa 1-6 cells, including lack of oligonucleosomal fragmentation (laddering) of chromosomal DNA, release of cytochrome c from mitochondria, and cleavage of caspase-3. In conclusion, our results indicate that UCP2 induces cell cycle arrest at G1 phase and causes nonapoptotic cell death, suggesting that UCP2 may act as a powerful influence on hepatic regeneration and cell death in the steatotic liver.

  12. Life or Death Decisions: Framing the Call for Help

    PubMed Central

    Chou, Eileen Y.; Murnighan, J. Keith

    2013-01-01

    Background Chronic blood shortages in the U.S. would be alleviated by small increases, in percentage terms, of people donating blood. The current research investigated the effects of subtle changes in charity-seeking messages on the likelihood of people responses to a call for help. We predicted that “avoid losses” messages would lead to more helping behavior than “promote gains” messages would. Method Two studies investigated the effects of message framing on helping intentions and behaviors. With the help and collaboration of the Red Cross, Study 1, a field experiment, directly assessed the effectiveness of a call for blood donations that was presented as either death-preventing (losses) or life-saving (gains), and as being of either more or less urgent need. With the help and collaboration of a local charity, Study 2, a lab experiment, assessed the effects of the gain-versus-loss framing of a donation-soliciting flyer on individuals’ expectations of others’ monetary donations as well their own volunteering behavior. Study 2 also assessed the effects of three emotional motivators - feelings of empathy, positive affect, and relational closeness. Result Study 1 indicated that, on a college campus, describing blood donations as a way to “prevent a death” rather than “save a life” boosted the donation rate. Study 2 showed that framing a charity’s appeals as helping people to avoid a loss led to larger expected donations, increased intentions to volunteer, and more helping behavior, independent of other emotional motivators. Conclusion This research identifies and demonstrates a reliable and effective method for increasing important helping behaviors by providing charities with concrete ideas that can effectively increase helping behavior generally and potentially death-preventing behavior in particular. PMID:23483903

  13. Death--whose decision? Euthanasia and the terminally ill.

    PubMed

    Fraser, S I; Walters, J W

    2000-04-01

    In Australia and Oregon, USA, legislation to permit statutory sanctioned physician-assisted dying was enacted. However, opponents, many of whom held strong religious views, were successful with repeal in Australia. Similar opposition in Oregon was formidable, but ultimately lost in a 60-40% vote reaffirming physician-assisted dying. This paper examines the human dilemma which arises when technological advances in end-of-life medicine conflict with traditional and religious sanctity-of-life values. Society places high value on personal autonomy, particularly in the United States. We compare the potential for inherent contradictions and arbitrary decisions where patient autonomy is either permitted or forbidden. The broader implications for human experience resulting from new legislation in both Australia and Oregon are discussed. We conclude that allowing autonomy for the terminally ill, within circumscribed options, results in fewer ethical contradictions and greater preservation of dignity.

  14. Expression of FADD and cFLIPL balances mitochondrial integrity and redox signaling to substantiate apoptotic cell death.

    PubMed

    Ranjan, Kishu; Pathak, Chandramani

    2016-11-01

    FADD and cFLIP both are pivotal components of death receptor signaling. The cellular signaling of apoptosis accomplished with death receptors and mitochondria follows independent pathways for cell death. FADD and cFLIP both have an important role in the regulation of apoptotic and non-apoptotic functions. Dysregulated expression of FADD and cFLIP is associated with resistance to apoptosis in cancer cells. Mitochondria are known to play critical role in maintaining cellular respiration and homeostasis in the cells as well as transduces various signals to determine the fate of cell death. However, involvement of FADD and cFLIP in regulation of mitochondrial integrity and programmed cell death signaling to define the fate of cells remains elusive. In the present study, we explored that, induced expression of FADD challenges the mitochondrial integrity and pulverizes the membrane potential by altering the expression of Bcl-2 and cytochrome c. In contrast, mutant of FADD was unable to affect the mitochondrial integrity. Interestingly, expression of FADD and cFLIP helps to balance redox potential by regulating the anti-oxidant levels. Further, we noticed that, knockdown of cFLIPL and induced expression of FADD rapidly accumulate intracellular ROS accompanied by JNK1 activation to substantiate apoptosis. Notably, the ectopic expression of cFLIPL resists the sensitivity of cancer cells against apoptosis inducers Etoposide and HA14-1. Altogether, our findings suggest that FADD and cFLIPL are important modulators of mitochondrial-associated apoptosis apart from the death receptor signaling.

  15. Spinosad induces programmed cell death involves mitochondrial dysfunction and cytochrome C release in Spodoptera frugiperda Sf9 cells.

    PubMed

    Yang, Mingjun; Wang, Bo; Gao, Jufang; Zhang, Yang; Xu, Wenping; Tao, Liming

    2017-02-01

    Spinosad, a reduced-risk insecticide, acts on the nicotinic acetylcholine receptors and the gamma-aminobutyric acid receptor in the nervous system of target insects. However, its mechanism of action in non-neural insect cells is unclear. This study aimed to evaluate mitochondrial functional changes associated with spinosad in Spodoptera frugiperda (Sf9) insect cells. Our results indicate that in Sf9 cells, spinosad induces programmed cell death and mitochondrial dysfunction through enhanced reactive oxygen species production, mitochondrial permeability transition pore (mPTP) opening, and mitochondrial membrane potential collapse, eventually leading to cytochrome C release and apoptosis. The cytochrome C release induced by spinosad treatment was partly inhibited by the mPTP inhibitors cyclosporin A and bongkrekic acid. Subsequently, we found that spinosad downregulated Bcl-2 expression and upregulated p53 and Bax expressions, activated caspase-9 and caspase-3, and triggered PARP cleavage in Sf9 cells. These findings suggested that spinosad-induced programmed cell death was modulated by mitochondrial dysfunction and cytochrome C release.

  16. Early loss of mitochondrial inner transmembrane potential in khat-induced cell death of primary normal human oral cells.

    PubMed

    Lukandu, Ochiba M; Bredholt, Therese; Neppelberg, Evelyn; Gjertsen, Bjørn T; Johannessen, Anne C; Vintermyr, Olav K; Costea, Daniela Elena

    2009-09-19

    Previous studies suggest the use of khat, a psychostimulant plant used by millions of people in Middle East and Africa, as risk factor for oral cancer. We previously reported that khat is able to induce adverse affects, as cell cycle arrest and apoptosis, in normal human oral cells cultured in vitro. This study further investigates the more specific role played by mitochondria in khat-induced cell death and the kinetics of the events involved in this process. Exposure of primary normal human oral keratinocytes and fibroblasts to khat extract resulted in a swift and sustained decrease of the mitochondrial inner transmembrane potential occurring within 0.5-1h. Loss of mitochondrial membrane potential preceded all other biochemical and morphologic changes, and was associated with a significant decrease in cell survival. Subsequently, apoptosis-inducing factor was released from mitochondria into cytosol and relocated to nucleus. Cyclosporine A and bongkrekic acid delayed both the loss of mitochondrial inner transmembrane potential and the onset of cell death. This study describes a novel mechanism of khat-induced cell death in primary normal oral keratinocytes and fibroblasts involving an early pivotal effect on mitochondrial function and integrity.

  17. Complex II inhibition by 3-NP causes mitochondrial fragmentation and neuronal cell death via an NMDA- and ROS-dependent pathway

    PubMed Central

    Liot, G; Bossy, B; Lubitz, S; Kushnareva, Y; Sejbuk, N; Bossy-Wetzel, E

    2009-01-01

    Mitochondrial respiratory complex II inhibition plays a central role in Huntington’s disease (HD). Remarkably, 3-NP, a complex II inhibitor, recapitulates HD-like symptoms. Furthermore, decreases in mitochondrial fusion or increases in mitochondrial fission have been implicated in neurodegenerative diseases. However, the relationship between mitochondrial energy defects and mitochondrial dynamics has never been explored in detail. In addition, the mechanism of neuronal cell death by complex II inhibition remains unclear. Here, we tested the temporal and spatial relationship between energy decline, impairment of mitochondrial dynamics, and neuronal cell death in response to 3-NP using quantitative fluorescence time-lapse microscopy and cortical neurons. 3-NP caused an immediate drop in ATP. This event corresponded with a mild rise in reactive oxygen species (ROS), but mitochondrial morphology remained unaltered. Unexpectedly, several hours after this initial phase, a second dramatic rise in ROS occurred, associated with profound mitochondrial fission characterized by the conversion of filamentous to punctate mitochondria and neuronal cell death. Glutamate receptor antagonist AP5 abolishes the second peak in ROS, mitochondrial fission, and cell death. Thus, secondary excitotoxicity, mediated by glutamate receptor activation of the NMDA subtype, and consequent oxidative and nitrosative stress cause mitochondrial fission, rather than energy deficits per se. These results improve our understanding of the cellular mechanisms underlying HD pathogenesis. PMID:19300456

  18. Mechanisms of cell death pathway activation following drug-induced inhibition of mitochondrial complex I

    PubMed Central

    Imaizumi, Naoki; Kwang Lee, Kang; Zhang, Carmen; Boelsterli, Urs A.

    2015-01-01

    Respiratory complex I inhibition by drugs and other chemicals has been implicated as a frequent mode of mitochondria-mediated cell injury. However, the exact mechanisms leading to the activation of cell death pathways are incompletely understood. This study was designed to explore the relative contributions to cell injury of three distinct consequences of complex I inhibition, i.e., impairment of ATP biosynthesis, increased formation of superoxide and, hence, peroxynitrite, and inhibition of the mitochondrial protein deacetylase, Sirt3, due to imbalance of the NADH/NAD+ ratio. We used the antiviral drug efavirenz (EFV) to model drug-induced complex I inhibition. Exposure of cultured mouse hepatocytes to EFV resulted in a rapid onset of cell injury, featuring a no-effect level at 30 µM EFV and submaximal effects at 50 µM EFV. EFV caused a concentration-dependent decrease in cellular ATP levels. Furthermore, EFV resulted in increased formation of peroxynitrite and oxidation of mitochondrial protein thiols, including cyclophilin D (CypD). This was prevented by the superoxide scavenger, Fe-TCP, or the peroxynitrite decomposition catalyst, Fe-TMPyP. Both ferroporphyrins completely protected from EFV-induced cell injury, suggesting that peroxynitrite contributed to the cell injury. Finally, EFV increased the NADH/NAD+ ratio, inhibited Sirt3 activity, and led to hyperacetylated lysine residues, including those in CypD. However, hepatocytes isolated from Sirt3-null mice were protected against 40 µM EFV as compared to their wild-type controls. In conclusion, these data are compatible with the concept that chemical inhibition of complex I activates multiple pathways leading to cell injury; among these, peroxynitrite formation may be the most critical. PMID:25625582

  19. It's only a matter of time: death, legacies, and intergenerational decisions.

    PubMed

    Wade-Benzoni, Kimberly A; Tost, Leigh Plunkett; Hernandez, Morela; Larrick, Richard P

    2012-07-01

    Intergenerational decisions affect other people in the future. The combination of intertemporal and interpersonal distance between decision makers in the present and other people in the future may lead one to expect little intergenerational generosity. In the experiments reported here, however, we posited that the negative effect of intertemporal distance on intergenerational beneficence would be reversed when people were primed with thoughts of death. This reversal would occur because death priming leads individuals to be concerned with having a lasting impact on other people in the future. Our experiments show that when individuals are exposed to death priming, the expected tendency to allocate fewer resources to others in the future, as compared with others in the present, is reversed. Our findings suggest that legacy motivations triggered by death priming can trump intergenerational discounting tendencies and promote intergenerational beneficence.

  20. Relationship of neonatologists' end-of-life decisions to their personal fear of death.

    PubMed

    Barr, Peter

    2007-03-01

    To study the relationship of Australian and New Zealand (ANZ) neonatologists' personal fear of death to their forgoing life-sustaining treatment and hastening death in newborns destined for severe disability and newborns for whom further treatment is considered non-beneficial or overly burdensome. A self-report questionnaire survey of ANZ neonatologists. Neonatologists registered in the 2004 ANZ Directory of Neonatal Intensive Care Units. 78 of 138 (56%) neonatologists who responded to the study questionnaire. Between-group differences in the Multidimensional Fear of Death Scale. In newborns for whom further treatment was deemed futile, 73 neonatologists reported their attitude to hastening death as follows: 23 preferred to hasten death by withdrawing minimal treatment, 35 preferred to hasten death with analgesia-sedation, and 15 reported that hastening death was unacceptable. Analysis of variance showed a statistically significant difference between the three groups regarding fear of the dying process (F = 3.78, p = 0.028), fear of premature death (F = 3.28, p = 0.044) and fear of being destroyed (F = 3.20, p = 0.047). Post hoc comparisons showed that neonatologists who reported that hastening death was unacceptable compared with neonatologists who preferred to hasten death with analgesia-sedation had significantly less fear of the dying process and fear of premature death, and significantly more fear of being destroyed. ANZ neonatologists' personal fear of death and their attitude to hastening death when further treatment is considered futile are significantly related. Neonatologists' fear of death may influence their end-of-life decisions.

  1. Relationship of neonatologists' end‐of‐life decisions to their personal fear of death

    PubMed Central

    Barr, Peter

    2007-01-01

    Objective To study the relationship of Australian and New Zealand (ANZ) neonatologists' personal fear of death to their forgoing life‐sustaining treatment and hastening death in newborns destined for severe disability and newborns for whom further treatment is considered non‐beneficial or overly burdensome. Design A self‐report questionnaire survey of ANZ neonatologists. Setting Neonatologists registered in the 2004 ANZ Directory of Neonatal Intensive Care Units. Participants 78 of 138 (56%) neonatologists who responded to the study questionnaire. Main outcome measures Between‐group differences in the Multidimensional Fear of Death Scale. Results In newborns for whom further treatment was deemed futile, 73 neonatologists reported their attitude to hastening death as follows: 23 preferred to hasten death by withdrawing minimal treatment, 35 preferred to hasten death with analgesia‐sedation, and 15 reported that hastening death was unacceptable. Analysis of variance showed a statistically significant difference between the three groups regarding fear of the dying process (F = 3.78, p = 0.028), fear of premature death (F = 3.28, p = 0.044) and fear of being destroyed (F = 3.20, p = 0.047). Post hoc comparisons showed that neonatologists who reported that hastening death was unacceptable compared with neonatologists who preferred to hasten death with analgesia‐sedation had significantly less fear of the dying process and fear of premature death, and significantly more fear of being destroyed. Conclusions ANZ neonatologists' personal fear of death and their attitude to hastening death when further treatment is considered futile are significantly related. Neonatologists' fear of death may influence their end‐of‐life decisions. PMID:17284476

  2. Death - whose decision? Euthanasia and the terminally ill

    PubMed Central

    Fraser, S.; Walters, J.

    2000-01-01

    In Australia and Oregon, USA, legislation to permit statutory sanctioned physician-assisted dying was enacted. However, opponents, many of whom held strong religious views, were successful with repeal in Australia. Similar opposition in Oregon was formidable, but ultimately lost in a 60-40% vote reaffirming physician-assisted dying. This paper examines the human dilemma which arises when technological advances in end-of-life medicine conflict with traditional and religious sanctity-of-life values. Society places high value on personal autonomy, particularly in the United States. We compare the potential for inherent contradictions and arbitrary decisions where patient autonomy is either permitted or forbidden. The broader implications for human experience resulting from new legislation in both Australia and Oregon are discussed. We conclude that allowing autonomy for the terminally ill, within circumscribed options, results in fewer ethical contradictions and greater preservation of dignity. Key Words: Physician-assisted suicide • voluntary euthanasia • patient autonomy • religious belief PMID:10786323

  3. Lutein protects dopaminergic neurons against MPTP-induced apoptotic death and motor dysfunction by ameliorating mitochondrial disruption and oxidative stress.

    PubMed

    Nataraj, Jagatheesan; Manivasagam, Thamilarasan; Thenmozhi, Arokiasamy Justin; Essa, Musthafa Mohammed

    2016-07-01

    Mitochondrial dysfunction and oxidative stress-mediated apoptosis plays an important role in various neurodegenerative diseases including Huntington's disease, Parkinson's disease (PD) and Alzheimer's disease (AD). 1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP), the most widely used neurotoxin mimics the symptoms of PD by inhibiting mitochondrial complex I that stimulates excessive intracellular reactive oxygen species (ROS) and finally leads to mitochondrial-dependent apoptosis. Lutein, a carotenoid of xanthophyll family, is found abundantly in leafy green vegetables such as spinach, kale and in egg yolk, animal fat and human eye retinal macula. Increasing evidence indicates that lutein has offers benefits against neuronal damages during diabetic retinopathy, ischemia and AD by virtue of its mitochondrial protective, antioxidant and anti-apoptotic properties. Male C57BL/6 mice (23-26 g) were randomized and grouped in to Control, MPTP, and Lutein treated groups. Lutein significantly reversed the loss of nigral dopaminergic neurons by increasing the striatal dopamine level in mice. Moreover, lutein-ameliorated MPTP induced mitochondrial dysfunction, oxidative stress and motor abnormalities. In addition, lutein repressed the MPTP-induced neuronal damage/apoptosis by inhibiting the activation of pro-apoptotic markers (Bax, caspases-3, 8 and 9) and enhancing anti-apoptotic marker (Bcl-2) expressions. Our current results revealed that lutein possessed protection on dopaminergic neurons by enhancing antioxidant defense and diminishing mitochondrial dysfunction and apoptotic death, suggesting the potential benefits of lutein for PD treatment.

  4. Melatonin Mediates Protective Effects against Kainic Acid-Induced Neuronal Death through Safeguarding ER Stress and Mitochondrial Disturbance

    PubMed Central

    Xue, Feixiao; Shi, Cai; Chen, Qingjie; Hang, Weijian; Xia, Liangtao; Wu, Yue; Tao, Sophia Z.; Zhou, Jie; Shi, Anbing; Chen, Juan

    2017-01-01

    Kainic acid (KA)-induced neuronal death is linked to mitochondrial dysfunction and ER stress. Melatonin is known to protect hippocampal neurons from KA-induced apoptosis, but the exact mechanisms underlying melatonin protective effects against neuronal mitochondria disorder and ER stress remain uncertain. In this study, we investigated the sheltering roles of melatonin during KA-induced apoptosis by focusing on mitochondrial dysfunction and ER stress mediated signal pathways. KA causes mitochondrial dynamic disorder and dysfunction through calpain activation, leading to neuronal apoptosis. Ca2+ chelator BAPTA-AM and calpain inhibitor calpeptin can significantly restore mitochondrial morphology and function. ER stress can also be induced by KA treatment. ER stress inhibitor 4-phenylbutyric acid (PBA) attenuates ER stress-mediated apoptosis and mitochondrial disorder. It is worth noting that calpain activation was also inhibited under PBA administration. Thus, we concluded that melatonin effectively inhibits KA-induced calpain upregulation/activation and mitochondrial deterioration by alleviating Ca2+ overload and ER stress. PMID:28293167

  5. The seleno-organic compound ebselen impairs mitochondrial physiology and induces cell death in AR42J cells.

    PubMed

    Santofimia-Castaño, Patricia; Garcia-Sanchez, Lourdes; Ruy, Deborah Clea; Fernandez-Bermejo, Miguel; Salido, Gines M; Gonzalez, Antonio

    2014-09-17

    Ebselen is a seleno-organic compound that causes cell death in several cancer cell types. The mechanisms underlying its deleterious effects have not been fully elucidated. In this study, the effects of ebselen (1 μM-40 μM) on AR42J tumor cells have been examined. Cell viability was studied using AlamarBlue(®) test. Cell cycle phase determination was carried out by flow cytometry. Changes in intracellular free Ca(2+) concentration were followed by fluorimetry analysis of fura-2-loaded cells. Distribution of mitochondria, mitochondrial Ca(2+) concentration and mitochondrial membrane potential were monitored by confocal microscopy of cells loaded with Mitotracker Green™ FM, rhod-2 or TMRM respectively. Caspase-3 activity was calculated following the luorogenic substrate ACDEVD-AMC signal with a spectrofluorimeter. Results show that cell viability decreased in the presence of ebselen. An increase in the number of cells in the S-phase of the cell cycle was observed. Ebselen induced a concentration-dependent mobilization of Ca(2+) from agonist- and thapsigargin-sensitive Ca(2+) pools. Ebselen induced also a transient increase in mitochondrial Ca(2+) concentration, a progressive decrease of the mitochondrial membrane potential and a disruption of the mitochondrial network. Finally, a concentration-dependent increase in caspase-3 activity was detected. We conclude that ebselen exerts deleterious actions on the cells that involve the impairment of mitochondrial physiology and the activation of caspase-3-mediated apoptotic pathway. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  6. Mitochondrial uncouplers act synergistically with the fumigant phosphine to disrupt mitochondrial membrane potential and cause cell death.

    PubMed

    Valmas, Nicholas; Zuryn, Steven; Ebert, Paul R

    2008-10-30

    Phosphine is the most widely used fumigant for the protection of stored commodities against insect pests, especially food products such as grain. However, pest insects are developing resistance to phosphine and thereby threatening its future use. As phosphine inhibits cytochrome c oxidase (complex IV) of the mitochondrial respiratory chain and reduces the strength of the mitochondrial membrane potential (DeltaPsi(m)), we reasoned that mitochondrial uncouplers should act synergistically with phosphine. The mitochondrial uncouplers FCCP and PCP caused complete mortality in populations of both wild-type and phosphine-resistant lines of Caenorhabditis elegans simultaneously exposed to uncoupler and phosphine at concentrations that were individually nonlethal. Strong synergism was also observed with a third uncoupler DNP. We have also tested an alternative complex IV inhibitor, azide, with FCCP and found that this also caused a synergistic enhancement of toxicity in C. elegans. To investigate potential causes of the synergism, we measured DeltaPsi(m), ATP content, and oxidative damage (lipid hydroperoxides) in nematodes subjected to phosphine-FCCP treatment and found that neither an observed 50% depletion in ATP nor oxidative stress accounted for the synergistic effect. Instead, a synergistic reduction in DeltaPsi(m) was observed upon phosphine-FCCP co-treatment suggesting that this is directly responsible for the subsequent mortality. These results support the hypothesis that phosphine-induced mortality results from the in vivo disruption of normal mitochondrial activity. Furthermore, we have identified a novel pathway that can be targeted to overcome genetic resistance to phosphine.

  7. Mitochondrial lipids in neurodegeneration.

    PubMed

    Aufschnaiter, Andreas; Kohler, Verena; Diessl, Jutta; Peselj, Carlotta; Carmona-Gutierrez, Didac; Keller, Walter; Büttner, Sabrina

    2017-01-01

    Mitochondrial dysfunction is a common feature of many neurodegenerative diseases, including proteinopathies such as Alzheimer's or Parkinson's disease, which are characterized by the deposition of aggregated proteins in the form of insoluble fibrils or plaques. The distinct molecular processes that eventually result in mitochondrial dysfunction during neurodegeneration are well studied but still not fully understood. However, defects in mitochondrial fission and fusion, mitophagy, oxidative phosphorylation and mitochondrial bioenergetics have been linked to cellular demise. These processes are influenced by the lipid environment within mitochondrial membranes as, besides membrane structure and curvature, recruitment and activity of different proteins also largely depend on the respective lipid composition. Hence, the interaction of neurotoxic proteins with certain lipids and the modification of lipid composition in different cell compartments, in particular mitochondria, decisively impact cell death associated with neurodegeneration. Here, we discuss the relevance of mitochondrial lipids in the pathological alterations that result in neuronal demise, focussing on proteinopathies.

  8. Iminophosphorane-organogold(III) complexes induce cell death through mitochondrial ROS production

    PubMed Central

    Vela, Laura; Contel, María; Palomera, Luis; Azaceta, Gemma; Marzo, Isabel

    2011-01-01

    Gold compounds are being investigated as potential antitumor drugs. Some gold(III) derivatives have shown to induce cell death in solid tumors but their mechanism of action differs from that of cisplatin, since most of these compounds do not bind to DNA. We have explored cellular events triggered by three different iminophosphorane-organo gold(III) compounds in leukemia cells (a neutral compound with two chloride ligands [Au{κ2-C,N-C6H4(PPh2=N(C6H5)-2}Cl2] 1, and two cationic compounds with either a dithiocarbamate ligand [Au{κ2-C,N-C6H4(PPh2=N(C6H5)-2}(S2CN-Me2)]PF6 2, or a water-soluble phosphine and a chloride ligand [Au{κ2-C,N-C6H4(PPh2=N(C6H5)-2}(P{Cp(m-C6H4-SO3Na)2}3) Cl]PF6 3). All three compounds showed higher toxicity against leukemia cells when compared to normal T-lymphocytes. Compounds 1 and 2 induced both necrosis and apoptosis, while 3 was mainly apoptotic. Necrotic cell death induced by 1 and 2 was Bax/Bak- and caspase-independent, while apoptosis induced by 3 was Bax/Bak-dependent. Reactive oxygen species (ROS) production at the mitochondrial level was a critical step in the antitumor effect of these compounds. PMID:21864808

  9. Apoptosis Cell Death Effect of Scrophularia Variegata on Breast Cancer Cells via Mitochondrial Intrinsic Pathway

    PubMed Central

    Azadmehr, Abbas; Hajiaghaee, Reza; Baradaran, Behzad; Haghdoost-Yazdi, Hashem

    2015-01-01

    Purpose: Scrophularia variegata M. Beib. (Scrophulariaceae) is an Iranian medicinal plant which is used for various inflammatory disorders in traditional medicine. In this study we evaluated the anti-cancer and cytotoxic effects of the Scrophularia variegata (S. variegata) ethanolic extract on the human breast cancer cell line. Methods: The cytotoxicity effect of the extract on MCF-7 cells was evaluated by MTT assay. In addition, Caspase activity, DNA ladder and Cell death were evaluated by ELISA, gel electrophoresis and Annexin V-FITC/PI staining, respectively. Results: The S. variegata extract showed significant effect cytotoxicity on MCF-7 human breast cancer cell line. Treatment with the extract induced apoptosis on the breast cancer cells by cell cycle arrest in G2/M phase. The results indicated that cytotoxicity activity was associated with an increase of apoptosis as demonstrated by DNA fragmentation as well as an increase of the amount of caspase 3 and caspase 9. In addition, the phytochemical assay showed that the extract had antioxidant capacity and also flavonoids, phenolic compounds and phenyl propanoids were presented in the extract. Conclusion: Our findings indicated that S. variegata extract induced apoptosis via mitochondrial intrinsic pathway on breast cancer by cell cycle arrest in G2/M phase and an increase of caspase 3 and caspase 9. However future studies are needed. PMID:26504768

  10. Alpha-ketoglutarate Curbs Differentiation and Induces Cell Death in Mesenchymal Stromal Precursors with Mitochondrial Dysfunction.

    PubMed

    Singh, Karmveer; Krug, Linda; Basu, Abhijit; Meyer, Patrick; Treiber, Nicolai; Vander Beken, Seppe; Wlaschek, Meinhard; Kochanek, Stefan; Bloch, Wilhelm; Geiger, Hartmut; Maity, Pallab; Scharffetter-Kochanek, Karin

    2017-04-11

    Increased concentrations of reactive oxygen species (ROS) originating from dysfunctional mitochondria contribute to diverse aging-related degenerative disorders. But so far little is known about the impact of distinct ROS on metabolism and fate of stromal precursor cells. We here demonstrate that an increase in superoxide anion radicals due to superoxide dismutase 2 (Sod2) deficiency in stromal precursor cells suppress osteogenic and adipogenic differentiation through fundamental changes in the global metabolite landscape. Our data identify impairment of the pyruvate and L-glutamine metabolism causing toxic accumulation of alpha-ketoglutarate in the Sod2 deficient and intrinsically aged stromal precursor cells as a major cause for their reduced lineage differentiation. Alpha-ketoglutarate accumulation led to enhanced nucleocytoplasmic vacuolation and chromatin condensation-mediated cell death in Sod2 deficient stromal precursor cells as a consequence of DNA damage, Hif-1α instability and reduced histone H3 (Lys27) acetylation. These findings hold promise for prevention and treatment of mitochondrial disorders commonly associated with aged individuals. This article is protected by copyright. All rights reserved.

  11. Mitochondrial calcium uniporter silencing potentiates caspase-independent cell death in MDA-MB-231 breast cancer cells

    SciTech Connect

    Curry, Merril C.; Peters, Amelia A.; Kenny, Paraic A.; Roberts-Thomson, Sarah J.; Monteith, Gregory R.

    2013-05-10

    Highlights: •Some clinical breast cancers are associated with MCU overexpression. •MCU silencing did not alter cell death initiated with the Bcl-2 inhibitor ABT-263. •MCU silencing potentiated caspase-independent cell death initiated by ionomycin. •MCU silencing promoted ionomycin-mediated cell death without changes in bulk Ca{sup 2+}. -- Abstract: The mitochondrial calcium uniporter (MCU) transports free ionic Ca{sup 2+} into the mitochondrial matrix. We assessed MCU expression in clinical breast cancer samples using microarray analysis and the consequences of MCU silencing in a breast cancer cell line. Our results indicate that estrogen receptor negative and basal-like breast cancers are characterized by elevated levels of MCU. Silencing of MCU expression in the basal-like MDA-MB-231 breast cancer cell line produced no change in proliferation or cell viability. However, distinct consequences of MCU silencing were seen on cell death pathways. Caspase-dependent cell death initiated by the Bcl-2 inhibitor ABT-263 was not altered by MCU silencing; whereas caspase-independent cell death induced by the calcium ionophore ionomycin was potentiated by MCU silencing. Measurement of cytosolic Ca{sup 2+} levels showed that the promotion of ionomycin-induced cell death by MCU silencing occurs independently of changes in bulk cytosolic Ca{sup 2+} levels. This study demonstrates that MCU overexpression is a feature of some breast cancers and that MCU overexpression may offer a survival advantage against some cell death pathways. MCU inhibitors may be a strategy to increase the effectiveness of therapies that act through the induction of caspase-independent cell death pathways in estrogen receptor negative and basal-like breast cancers.

  12. Rapid generation of mitochondrial superoxide induces mitochondrion-dependent but caspase-independent cell death in hippocampal neuronal cells that morphologically resembles necroptosis

    SciTech Connect

    Fukui, Masayuki; Choi, Hye Joung; Zhu, Bao Ting

    2012-07-15

    Studies in recent years have revealed that excess mitochondrial superoxide production is an important etiological factor in neurodegenerative diseases, resulting from oxidative modifications of cellular lipids, proteins, and nucleic acids. Hence, it is important to understand the mechanism by which mitochondrial oxidative stress causes neuronal death. In this study, the immortalized mouse hippocampal neuronal cells (HT22) in culture were used as a model and they were exposed to menadione (also known as vitamin K{sub 3}) to increase intracellular superoxide production. We found that menadione causes preferential accumulation of superoxide in the mitochondria of these cells, along with the rapid development of mitochondrial dysfunction and cellular ATP depletion. Neuronal death induced by menadione is independent of the activation of the MAPK signaling pathways and caspases. The lack of caspase activation is due to the rapid depletion of cellular ATP. It was observed that two ATP-independent mitochondrial nucleases, namely, AIF and Endo G, are released following menadione exposure. Silencing of their expression using specific siRNAs results in transient suppression (for ∼ 12 h) of mitochondrial superoxide-induced neuronal death. While suppression of the mitochondrial superoxide dismutase expression markedly sensitizes neuronal cells to mitochondrial superoxide-induced cytotoxicity, its over-expression confers strong protection. Collectively, these findings showed that many of the observed features associated with mitochondrial superoxide-induced cell death, including caspase independency, rapid depletion of ATP level, mitochondrial release of AIF and Endo G, and mitochondrial swelling, are distinctly different from those of apoptosis; instead they resemble some of the known features of necroptosis. -- Highlights: ► Menadione causes mitochondrial superoxide accumulation and injury. ► Menadione-induced cell death is caspase-independent, due to rapid depletion of

  13. Granzyme H induces cell death primarily via a Bcl-2-sensitive mitochondrial cell death pathway that does not require direct Bid activation.

    PubMed

    Ewen, Catherine L; Kane, Kevin P; Bleackley, R Chris

    2013-07-01

    Natural killer and T cell-mediated cytotoxicity is important for the elimination of viruses and transformed cells. The granule lytic pathway utilizes perforin and granzymes to induce cell death, while receptor-mediated lytic pathways rely on molecules such as FasL. Pro-apoptotic activities of Granzyme B (GrB) and Fas are well-established, and many of their cellular targets have been identified. However, humans express additional related granzymes - GrA, GrM, GrK, and GrH. Neither the cytotoxic potential of GrH, nor the mechanism by which GrH may induce target cell death is currently understood. We proposed that GrH would have pro-apoptotic activity that would be distinct from that of GrB and FasL, which could be relevant when Fas/FasL or GrB activity or death pathways were impaired. Our results, using a purified recombinant form of GrH, revealed that GrH induced cell death via a Bcl-2-sensitive mitochondrial pathway without direct processing of Bid. Additionally, neither the apoptosome nor caspase-3 was essential to the induction of GrH-mediated cell death. However, GrH did directly process DFF45, potentially leading to DNA damage. Our findings support the idea that multiple, non-redundant death pathways may be initiated by cytotoxic cells to counteract various immune evasion strategies.

  14. Pre-B-cell colony-enhancing factor protects against apoptotic neuronal death and mitochondrial damage in ischemia

    PubMed Central

    Wang, Xiaowan; Li, Hailong; Ding, Shinghua

    2016-01-01

    We previously demonstrated that Pre-B-cell colony-enhancing factor (PBEF), also known as nicotinamide phosphoribosyltransferase (NAMPT), the rate-limiting enzyme in mammalian NAD+ biosynthesis pathway, plays a brain and neuronal protective role in ischemic stroke. In this study, we further investigated the mechanism of its neuroprotective effect after ischemia in the primary cultured mouse cortical neurons. Using apoptotic cell death assay, fluorescent imaging, molecular biology, mitochondrial biogenesis measurements and Western blotting analysis, our results show that the overexpression of PBEF in neurons can significantly promote neuronal survival, reduce the translocation of apoptosis inducing factor (AIF) from mitochondria to nuclei and inhibit the activation of capase-3 after glutamate-induced excitotoxicity. We further found that the overexpression of PBEF can suppress glutamate-induced mitochondrial fragmentation, the loss of mitochondrial DNA (mtDNA) content and the reduction of PGC-1 and NRF-1 expressions. Furthermore, these beneficial effects by PBEF are dependent on its enzymatic activity of NAD+ synthesis. In summary, our study demonstrated that PBEF ameliorates ischemia-induced neuronal death through inhibiting caspase-dependent and independent apoptotic signaling pathways and suppressing mitochondrial damage and dysfunction. Our study provides novel insights into the mechanisms underlying the neuroprotective effect of PBEF, and helps to identify potential targets for ischemic stroke therapy. PMID:27576732

  15. Effect of Polyphenols on Oxidative Stress and Mitochondrial Dysfunction in Neuronal Death and Brain Edema in Cerebral Ischemia

    PubMed Central

    Panickar, Kiran S.; Anderson, Richard A.

    2011-01-01

    Polyphenols are natural substances with variable phenolic structures and are elevated in vegetables, fruits, grains, bark, roots, tea, and wine. There are over 8000 polyphenolic structures identified in plants, but edible plants contain only several hundred polyphenolic structures. In addition to their well-known antioxidant effects, select polyphenols also have insulin-potentiating, anti-inflammatory, anti-carcinogenic, anti-viral, anti-ulcer, and anti-apoptotic properties. One important consequence of ischemia is neuronal death and oxidative stress plays a key role in neuronal viability. In addition, neuronal death may be initiated by the activation of mitochondria-associated cell death pathways. Another consequence of ischemia that is possibly mediated by oxidative stress and mitochondrial dysfunction is glial swelling, a component of cytotoxic brain edema. The purpose of this article is to review the current literature on the contribution of oxidative stress and mitochondrial dysfunction to neuronal death, cell swelling, and brain edema in ischemia. A review of currently known mechanisms underlying neuronal death and edema/cell swelling will be undertaken and the potential of dietary polyphenols to reduce such neural damage will be critically reviewed. PMID:22174658

  16. Drp1-mediated mitochondrial dynamics and survival of developing chick motoneurons during the period of normal programmed cell death.

    PubMed

    Choi, So Yoen; Kim, Joo Yeon; Kim, Hyun-Wook; Cho, Bongki; Cho, Hyo Min; Oppenheim, Ronald W; Kim, Hyun; Rhyu, Im Joo; Sun, Woong

    2013-01-01

    Mitochondrial morphology is dynamically remodeled by fusion and fission in neurons, and this process is implicated in nervous system development and pathology. However, the mechanism by which mitochondrial dynamics influence neuronal development is less clear. In this study, we found that the length of mitochondria is progressively reduced during normal development of chick embryo motoneurons (MNs), a process partly controlled by a fission-promoting protein, dynamin-related protein 1 (Drp1). Suppression of Drp1 activity by gene electroporation of dominant-negative mutant Drp1 in a subset of developing MNs increased mitochondrial length in vivo, and a greater proportion of Drp1-suppressed MNs underwent programmed cell death (PCD). By contrast, the survival of nontransfected MNs in proximity to the transfected MNs was significantly increased, suggesting that the suppression of Drp1 confers disadvantage during the competition for limited survival signals. Because we also monitored perturbation of neurite outgrowth and mitochondrial membrane depolarization following Drp1 suppression, we suggest that impairments of ATP production and axonal growth may be downstream factors that influence the competition of MNs for survival. Collectively, these results indicate that mitochondrial dynamics are required for normal axonal development and competition-dependent MN PCD.

  17. Mitochondrial peroxiredoxin-5 as potential modulator of mitochondria-ER crosstalk in MPP+-induced cell death.

    PubMed

    De Simoni, Stéphanie; Linard, Dominique; Hermans, Emmanuel; Knoops, Bernard; Goemaere, Julie

    2013-05-01

    Peroxiredoxin-5 (PRDX5) is an antioxidant enzyme which differs from the other peroxiredoxins with regards to its enzymatic mechanism, its high affinity for organic peroxides and peroxynitrite and its wide subcellular distribution. In particular, the mitochondrial isoform of PRDX5 confers a remarkable cytoprotection toward oxidative stress to mammalian cells. Mitochondrial dysfunction and disruption of Ca²⁺ homeostasis are implicated in neurodegeneration. Growing evidence supports that endoplasmic reticulum (ER) could operate in tandem with mitochondria to regulate intracellular Ca²⁺ fluxes in neurodegenerative processes. Here, we overexpressed mitochondrial PRDX5 in SH-SY5Y cells to dissect the role of this enzyme in 1-methyl-4-phenylpyridinium (MPP)⁺-induced cell death. Our data show that mitochondria-dependent apoptosis triggered by MPP⁺, assessed by the measurement of caspase-9 activation and mitochondrial DNA damage, is prevented by mitochondrial PRDX5 overexpression. Moreover, PRDX5 overexpression blocks the increase in intracellular Ca²⁺, Ca²⁺-dependent activation of calpains and Bax cleavage. Finally, using Ca²⁺ channel inhibitors (Nimodipine, Dantrolene and 2-APB), we show that Ca²⁺ release arises essentially from ER stores through 1,4,5-inositol-trisphosphate receptors (IP3 R). Altogether, our results suggest that the MPP⁺ mitochondrial pathway of apoptosis is regulated by mitochondrial PRDX5 in a process that could involve redox modulation of Ca²⁺ transporters via a crosstalk between mitochondria and ER.

  18. Troglitazone, but not rosiglitazone, damages mitochondrial DNA and induces mitochondrial dysfunction and cell death in human hepatocytes

    SciTech Connect

    Rachek, Lyudmila I.; Yuzefovych, Larysa V.; LeDoux, Susan P.; Julie, Neil L.; Wilson, Glenn L.

    2009-11-01

    Thiazolidinediones (TZDs), such as troglitazone (TRO) and rosiglitazone (ROSI), improve insulin resistance by acting as ligands for the nuclear receptor peroxisome proliferator-activated receptor-gamma (PPARgamma). TRO was withdrawn from the market because of reports of serious hepatotoxicity. A growing body of evidence suggests that TRO caused mitochondrial dysfunction and induction of apoptosis in human hepatocytes but its mechanisms of action remain unclear. We hypothesized that damage to mitochondrial DNA (mtDNA) is an initiating event involved in TRO-induced mitochondrial dysfunction and hepatotoxicity. Primary human hepatocytes were exposed to TRO and ROSI. The results obtained revealed that TRO, but not ROSI at equimolar concentrations, caused a substantial increase in mtDNA damage and decreased ATP production and cellular viability. The reactive oxygen species (ROS) scavenger, N-acetyl cystein (NAC), significantly diminished the TRO-induced cytotoxicity, suggesting involvement of ROS in TRO-induced hepatocyte cytotoxicity. The PPARgamma antagonist (GW9662) did not block the TRO-induced decrease in cell viability, indicating that the TRO-induced hepatotoxicity is PPARgamma-independent. Furthermore, TRO induced hepatocyte apoptosis, caspase-3 cleavage and cytochrome c release. Targeting of a DNA repair protein to mitochondria by protein transduction using a fusion protein containing the DNA repair enzyme Endonuclease III (EndoIII) from Escherichia coli, a mitochondrial translocation sequence (MTS) and the protein transduction domain (PTD) from HIV-1 TAT protein protected hepatocytes against TRO-induced toxicity. Overall, our results indicate that significant mtDNA damage caused by TRO is a prime initiator of the hepatoxicity caused by this drug.

  19. Troglitazone, but not rosiglitazone, damages mitochondrial DNA and induces mitochondrial dysfunction and cell death in human hepatocytes.

    PubMed

    Rachek, Lyudmila I; Yuzefovych, Larysa V; Ledoux, Susan P; Julie, Neil L; Wilson, Glenn L

    2009-11-01

    Thiazolidinediones (TZDs), such as troglitazone (TRO) and rosiglitazone (ROSI), improve insulin resistance by acting as ligands for the nuclear receptor peroxisome proliferator-activated receptor-gamma (PPARgamma). TRO was withdrawn from the market because of reports of serious hepatotoxicity. A growing body of evidence suggests that TRO caused mitochondrial dysfunction and induction of apoptosis in human hepatocytes but its mechanisms of action remain unclear. We hypothesized that damage to mitochondrial DNA (mtDNA) is an initiating event involved in TRO-induced mitochondrial dysfunction and hepatotoxicity. Primary human hepatocytes were exposed to TRO and ROSI. The results obtained revealed that TRO, but not ROSI at equimolar concentrations, caused a substantial increase in mtDNA damage and decreased ATP production and cellular viability. The reactive oxygen species (ROS) scavenger, N-acetyl cystein (NAC), significantly diminished the TRO-induced cytotoxicity, suggesting involvement of ROS in TRO-induced hepatocyte cytotoxicity. The PPARgamma antagonist (GW9662) did not block the TRO-induced decrease in cell viability, indicating that the TRO-induced hepatotoxicity is PPARgamma-independent. Furthermore, TRO induced hepatocyte apoptosis, caspase-3 cleavage and cytochrome c release. Targeting of a DNA repair protein to mitochondria by protein transduction using a fusion protein containing the DNA repair enzyme Endonuclease III (EndoIII) from Escherichia coli, a mitochondrial translocation sequence (MTS) and the protein transduction domain (PTD) from HIV-1 TAT protein protected hepatocytes against TRO-induced toxicity. Overall, our results indicate that significant mtDNA damage caused by TRO is a prime initiator of the hepatoxicity caused by this drug.

  20. Troglitazone, but not rosiglitazone, damages mitochondrial DNA and induces mitochondrial dysfunction and cell death in human hepatocytes

    PubMed Central

    Rachek, Lyudmila I.; Yuzefovych, Larysa V.; LeDoux, Susan P.; Julie, Neil L.; Wilson, Glenn L.

    2009-01-01

    Thiazolidinediones (TZDs), such as troglitazone (TRO) and rosiglitazone (ROSI), improve insulin resistance by acting as ligands for the nuclear receptor peroxisome proliferator-activated receptor-γ (PPARγ). TRO was withdrawn from the market because of reports of serious hepatotoxicity. A growing body of evidence suggests that TRO caused mitochondrial dysfunction and induction of apoptosis in human hepatocytes but its mechanisms of action remain unclear. We hypothesized that damage to mitochondrial DNA (mtDNA) is an initiating event involved in TRO-induced mitochondrial dysfunction and hepatotoxicity. Primary human hepatocytes were exposed to TRO and ROSI. The results obtained revealed that TRO, but not ROSI at equimolar concentrations, caused a substantial increase in mtDNA damage and decreased ATP production and cellular viability. The reactive oxygen species (ROS) scavenger, N-acetyl cystein (NAC), significantly diminished the TRO-induced cytotoxicity, suggesting involvement of ROS in TRO-induced hepatocyte cytotoxicity. The PPARγ antagonist (GW9662) did not block the TRO-induced decrease in cell viability, indicating that the TRO-induced hepatotoxicity is PPARγ-independent. Furthermore, TRO induced hepatocyte apoptosis, caspase-3 cleavage and cytochrome c release. Targeting of a DNA repair protein to mitochondria by protein transduction using a fusion protein containing the DNA repair enzyme Endonuclease III (EndoIII) from Escherichia coli, a mitochondrial translocation sequence (MTS) and the protein transduction domain (PTD) from HIV-1 TAT protein protected hepatocytes against TRO-induced toxicity. Overall, our results indicate that significant mtDNA damage caused by TRO is a prime initiator of the hepatoxicity caused by this drug. PMID:19632256

  1. Mitochondrial Bioenergetic Alterations in Mouse Neuroblastoma Cells Infected with Sindbis Virus: Implications to Viral Replication and Neuronal Death

    PubMed Central

    Silva da Costa, Leandro; Pereira da Silva, Ana Paula; Da Poian, Andrea T.; El-Bacha, Tatiana

    2012-01-01

    The metabolic resources crucial for viral replication are provided by the host. Details of the mechanisms by which viruses interact with host metabolism, altering and recruiting high free-energy molecules for their own replication, remain unknown. Sindbis virus, the prototype of and most widespread alphavirus, causes outbreaks of arthritis in humans and serves as a model for the study of the pathogenesis of neurological diseases induced by alphaviruses in mice. In this work, respirometric analysis was used to evaluate the effects of Sindbis virus infection on mitochondrial bioenergetics of a mouse neuroblastoma cell lineage, Neuro 2a. The modulation of mitochondrial functions affected cellular ATP content and this was synchronous with Sindbis virus replication cycle and cell death. At 15 h, irrespective of effects on cell viability, viral replication induced a decrease in oxygen consumption uncoupled to ATP synthesis and a 36% decrease in maximum uncoupled respiration, which led to an increase of 30% in the fraction of oxygen consumption used for ATP synthesis. Decreased proton leak associated to complex I respiration contributed to the apparent improvement of mitochondrial function. Cellular ATP content was not affected by infection. After 24 h, mitochondria dysfunction was clearly observed as maximum uncoupled respiration reduced 65%, along with a decrease in the fraction of oxygen consumption used for ATP synthesis. Suppressed respiration driven by complexes I- and II-related substrates seemed to play a role in mitochondrial dysfunction. Despite the increase in glucose uptake and glycolytic flux, these changes were followed by a 30% decrease in ATP content and neuronal death. Taken together, mitochondrial bioenergetics is modulated during Sindbis virus infection in such a way as to favor ATP synthesis required to support active viral replication. These early changes in metabolism of Neuro 2a cells may form the molecular basis of neuronal dysfunction and Sindbis

  2. Apigenin drives the production of reactive oxygen species and initiates a mitochondrial mediated cell death pathway in prostate epithelial cells.

    PubMed

    Morrissey, Colm; O'Neill, Amanda; Spengler, Barbara; Christoffel, Volker; Fitzpatrick, John M; Watson, R William G

    2005-05-01

    Phytoestrogens may reduce tumorigenesis in prostate cancer. We screened five phytoestrogens for their effect on cell growth and apoptosis in PWR-1E, LNCaP, PC-3, and DU145 prostate epithelial cells in vitro. We assessed cell number, proliferation, and apoptosis using crystal violet assays, flow cytometric analysis, and TUNEL. Focusing specifically on apigenin we assessed the ability of calpain, serine protease, caspase, estrogen receptor, and ceramide synthase inhibitors to block apigenin induced apoptosis. We also analyzed caspase 3, 7, 8, 9, Bcl-2, Bax, Bid, and cytochrome C by Western analysis, and mitochondrial permeability and reactive oxygen species production by flow cytometry using mitosensor(TM) and DCFH-DA, respectively. Apigenin and silybinin significantly reduced cell number, with apigenin inducing apoptosis in PWR-1E, LNCaP, PC-3, and DU145 cells. The PC-3 and DU145 cells were less susceptible to apigenin induced apoptosis then LNCaP and PWR-1E cells. The induction of apoptosis by apigenin was caspase dependent. Apigenin generated reactive oxygen species, a loss of mitochondrial Bcl-2 expression, mitochondrial permeability, cytochrome C release, and the cleavage of caspase 3, 7, 8, and 9 and the concomitant cleavage of the inhibitor of apoptosis protein, cIAP-2. The overexpression of Bcl-2 in LNCaP B10 cells reduced the apoptotic effects of apigenin. Apigenin induces cell death in prostate epithelial cells using a mitochondrial mediated cell death pathway. Bcl-2 has a role in inhibiting apigenin induced cell death in prostate epithelial cells. (c) 2004 Wiley-Liss, Inc.

  3. Cyclosporin A inhibits caspase-independent death of NGF-deprived sympathetic neurons: a potential role for mitochondrial permeability transition.

    PubMed

    Chang, Louis K; Johnson, Eugene M

    2002-05-27

    Opening of the permeability transition pore (PTP) has been implicated as an important mitochondrial event that occurs during apoptosis. We examined the role of the PTP in the well-characterized cell death of rat sympathetic neurons deprived of nerve growth factor (NGF) in vitro. Removal of NGF causes these neurons to undergo either a classic apoptotic cell death or, when treated with a broad-spectrum caspase inhibitor such as boc-aspartyl(OMe)-fluoromethylketone (BAF), a delayed, nonapoptotic cell death. The PTP inhibitor, cyclosporin A (CsA), blocked commitment-to-die in the presence of BAF, as defined by the ability of NGF readdition to rescue cells, but had little effect on commitment-to-die in the absence of BAF. CsA did not have trophic effects on BAF-saved cells, but did block the decrease in mitochondrial membrane potential. These data suggest that PTP opening is a critical event in caspase-independent, nonapoptotic (but not caspase-dependent, apoptotic) death of NGF-deprived rat sympathetic neurons.

  4. Tat-HSP22 inhibits oxidative stress-induced hippocampal neuronal cell death by regulation of the mitochondrial pathway.

    PubMed

    Jo, Hyo Sang; Kim, Dae Won; Shin, Min Jea; Cho, Su Bin; Park, Jung Hwan; Lee, Chi Hern; Yeo, Eun Ji; Choi, Yeon Joo; Yeo, Hyeon Ji; Sohn, Eun Jeong; Son, Ora; Cho, Sung-Woo; Kim, Duk-Soo; Yu, Yeon Hee; Lee, Keun Wook; Park, Jinseu; Eum, Won Sik; Choi, Soo Young

    2017-01-04

    Oxidative stress plays an important role in the progression of various neuronal diseases including ischemia. Heat shock protein 22 (HSP22) is known to protect cells against oxidative stress. However, the protective effects and mechanisms of HSP22 in hippocampal neuronal cells under oxidative stress remain unknown. In this study, we determined whether HSP22 protects against hydrogen peroxide (H2O2)-induced oxidative stress in HT-22 using Tat-HSP22 fusion protein. We found that Tat-HSP22 transduced into HT-22 cells and that H2O2-induced cell death, oxidative stress, and DNA damage were significantly reduced by Tat-HSP22. In addition, Tat-HSP22 markedly inhibited H2O2-induced mitochondrial membrane potential, cytochrome c release, cleaved caspase-3, and Bax expression levels, while Bcl-2 expression levels were increased in HT-22 cells. Further, we showed that Tat-HSP22 transduced into animal brain and inhibited cleaved-caspase-3 expression levels as well as significantly inhibited hippocampal neuronal cell death in the CA1 region of animals in the ischemic animal model. In the present study, we demonstrated that transduced Tat-HSP22 attenuates oxidative stress-induced hippocampal neuronal cell death through the mitochondrial signaling pathway and plays a crucial role in inhibiting neuronal cell death, suggesting that Tat-HSP22 protein may be used to prevent oxidative stress-related brain diseases including ischemia.

  5. Mitochondrial complex I inhibition is not required for dopaminergic neuron death induced by rotenone, MPP+, or paraquat

    PubMed Central

    Choi, Won-Seok; Kruse, Shane E.; Palmiter, Richard D.; Xia, Zhengui

    2008-01-01

    Inhibition of mitochondrial complex I is one of the leading hypotheses for dopaminergic neuron death associated with Parkinson's disease (PD). To test this hypothesis genetically, we used a mouse strain lacking functional Ndufs4, a gene encoding a subunit required for complete assembly and function of complex I. Deletion of the Ndufs4 gene abolished complex I activity in midbrain mesencephalic neurons cultured from embryonic day (E) 14 mice, but did not affect the survival of dopaminergic neurons in culture. Although dopaminergic neurons were more sensitive than other neurons in these cultures to cell death induced by rotenone, MPP+, or paraquat treatments, the absence of complex I activity did not protect the dopaminergic neurons, as would be expected if these compounds act by inhibiting complex 1. In fact, the dopaminergic neurons were more sensitive to rotenone. These data suggest that dopaminergic neuron death induced by treatment with rotenone, MPP+, or paraquat is independent of complex I inhibition. PMID:18812510

  6. Exacerbation of excitotoxic neuronal death induced during mitochondrial inhibition in vivo: relation to energy imbalance or ATP depletion?

    PubMed

    Del Río, P; Montiel, T; Chagoya, V; Massieu, L

    2007-06-08

    During the past two decades a close relationship between the energy state of the cell and glutamate neurotoxicity has been suggested. We have previously shown that increasing the extracellular concentration of glutamate does not cause neuronal death unless a deficit in energy metabolism occurs. The mechanisms of glutamate-induced neuronal death have been extensively studied in vitro and it has been associated with a rapid and severe decrease in ATP levels, accompanied with mitochondrial dysfunction. In this study we aimed to investigate the time course of the changes in energy metabolites during glutamate-induced neuronal death, in the presence of a moderate inhibition of mitochondrial metabolism in the rat striatum in vivo. We also aimed to study whether or not, as reported in vitro, changes in ATP levels are related to the extension of neuronal death. Results show that glutamate-induced lesions are exacerbated when rats are previously treated with a subtoxic dose of the mitochondrial toxin 3-nitropropionic acid (3-NP). However, changes in nucleotide levels were similar in rats injected with glutamate alone and in rats injected with glutamate and previously treated with 3-NP. In spite of the presence of an extensive striatal lesion, nucleotide levels were recovered in 3-NP-treated rats 24 h after glutamate injection. Results show that 3-NP pre-treatment induced an imbalance in nucleotide levels that predisposed cells to glutamate toxicity; however it did not influence the bioenergetic changes induced by glutamate alone. Enhancement of glutamate neurotoxicity in 3-NP pre-treated rats is more related to a sustained nucleotide imbalance than just to a rapid decrease in ATP levels.

  7. Factors Associated with a Family's Delay of Decision for Organ Donation After Brain Death.

    PubMed

    Han, Sang Youb; Kim, Jae Il; Lee, Eun-Woo; Jang, Hye-Yeon; Han, Kum Hyun; Oh, Se Won; Roh, Young-Nam

    2017-01-17

    BACKGROUND This study aimed to explore the factors associated with a family's delay of decision for organ donation after brain death, and to investigate the effect of such a delay on organ donation. MATERIAL AND METHODS Medical records and data on counseling about organ donation with the families of 107 brain-dead potential donors between September 2012 and March 2016 at a single tertiary medical center were retrospectively reviewed. RESULTS The final consent rate was 58% (62/107), and successful donation was performed in 40% (43/107). Ninety-two families (86%) made a decision within 48 hours, whereas 15 (14%) required more than 48 hours for a final decision. In univariate and multivariate analyses, the independent factors associated with a decision delay were mean arterial pressure ≤60 mm Hg and coma therapy. In the early decision group (<48 hours), the consent and successful donation rates were 55% (51/92) and 39% (36/92), respectively, whereas in the delayed decision group (≥48 hours), these rates were 73% (11/15) and 47% (7/15), respectively. The consent and successful donation rates were not inferior in the delayed decision group. CONCLUSIONS These findings justify continuous efforts to maintain organ viability and to extend counseling to encourage donation even if the family cannot decide immediately.

  8. Protective effects of [Gly14]-Humanin on beta-amyloid-induced PC12 cell death by preventing mitochondrial dysfunction.

    PubMed

    Jin, Hui; Liu, Tao; Wang, Wei-Xi; Xu, Jie-Hua; Yang, Peng-Bo; Lu, Hai-Xia; Sun, Qin-Ru; Hu, Hai-Tao

    2010-02-01

    Mitochondrial dysfunction is a hallmark of beta-amyloid (Abeta)-induced neuronal toxicity in Alzheimer's disease (AD), and is considered as an early event in AD pathology. Humanin (HN) and its derivative, [Gly14]-Humanin (HNG), are known for their ability to suppress neuronal death induced by AD-related insults in vitro and in vivo. In the present study, we investigated the neuroprotective effects of HNG on Abeta(25-35)-induced toxicity and its potential mechanisms in PC12 cells. Exposure of PC12 cells to 25 microM Abeta(25-35) caused significant viability loss and cell apoptosis. In addition, decreased mitochondrial membrane potential and increased cytochrome c releases from mitochondria were also observed after Abeta(25-35) exposure. All these effects induced by Abeta(25-35) were markedly reversed by HNG. Pretreatment with 100 nM HNG 6h prior to Abeta(25-35) exposure significantly elevated cell viability, reduced Abeta(25-35)-induced cell apoptosis, stabilized mitochondrial membrane potential, and blocked cytochrome c release from mitochondria. Furthermore, HNG also ameliorated the Abeta(25-35)-induced Bcl-2/Bax ratio reduction and decreased caspase-3 activity in PC12 cells. These results demonstrate that HNG could attenuate Abeta(25-35)-induced PC12 cell injury and apoptosis by preventing mitochondrial dysfunction. Furthermore, these data suggest that mitochondria are involved in the protective effect of HNG against Abeta(25-35). Copyright (c) 2009 Elsevier Ltd. All rights reserved.

  9. GILZ overexpression attenuates endoplasmic reticulum stress-mediated cell death via the activation of mitochondrial oxidative phosphorylation.

    PubMed

    André, Fanny; Corazao-Rozas, Paola; Idziorek, Thierry; Quesnel, Bruno; Kluza, Jérome; Marchetti, Philippe

    2016-09-16

    The Glucocorticoïd-induced leucine zipper (GILZ) protein has profound anti-inflammatory activities in haematopoietic cells. GILZ regulates numerous signal transduction pathways involved in proliferation and survival of normal and neoplastic cells. Here, we have demonstrated the potential of GILZ in alleviating apoptosis induced by ER stress inducers. Whereas the glucocorticoid, dexamethasone, protects from tunicamycin-induced cell death, silencing endogeneous GILZ in dexamethasone-treated cancer cells alter the capacity of glucocorticoids to protect from tunicamycin-mediated apoptosis. Under ER stress conditions, overexpression of GILZ significantly reduced activation of mitochondrial pathway of apoptosis by maintaining Bcl-xl level. GILZ protein affects the UPR signaling shifting the balance towards pro-survival signals as judged by down-regulation of CHOP, ATF4, XBP1s mRNA and increase in GRP78 protein level. Interestingly, GILZ sustains high mitochondrial OXPHOS during ER stress and cytoprotection mediated by GILZ is abolished in cells depleted of mitochondrial DNA, which are OXPHOS-deficient. These findings reveal a new role of GILZ, which acts as a cytoprotector against ER stress through a pathway involving mitochondrial OXPHOS.

  10. Foxo and Fos regulate the decision between cell death and survival in response to UV irradiation

    PubMed Central

    Luo, Xi; Puig, Oscar; Hyun, Joogyung; Bohmann, Dirk; Jasper, Heinrich

    2007-01-01

    Cells damaged by environmental insults have to be repaired or eliminated to ensure tissue homeostasis in metazoans. Recent studies suggest that the balance between cell survival signals and pro-apoptotic stimuli controls the decision between cell repair and death. How these competing signals are integrated and interpreted to achieve accurate control over cell fate in vivo is incompletely understood. Here, we show that the Forkhead Box O transcription factor Foxo and the AP-1 transcription factor DFos are required downstream of Jun-N-terminal kinase signaling for the apoptotic response to UV-induced DNA damage in the developing Drosophila retina. Both transcription factors regulate the pro-apoptotic gene hid. Our results indicate that UV-induced apoptosis is repressed by receptor tyrosine kinase-mediated inactivation of Foxo. These data suggest that integrating stress and survival signals through Foxo drives the decision between cell death and repair of damaged cells in vivo. PMID:17183370

  11. The role of mitochondrial permeability transition in reperfusion-induced cardiomyocyte death depends on the duration of ischemia.

    PubMed

    Ruiz-Meana, Marisol; Inserte, Javier; Fernandez-Sanz, Celia; Hernando, Victor; Miro-Casas, Elisabet; Barba, Ignasi; Garcia-Dorado, David

    2011-11-01

    Mitochondrial permeability transition (MPT) is critical in cardiomyocyte death during reperfusion but it is not the only mechanism responsible for cell injury. The objectives of the study is to investigate the role of the duration of myocardial ischemia on mitochondrial integrity and cardiomyocyte death. Mitochondrial membrane potential (ΔΨm, JC-1) and MPT (calcein) were studied in cardiomyocytes from wild-type and cyclophilin D (CyD) KO mice refractory to MPT, submitted to simulated ischemia and 10 min reperfusion. Reperfusion after 15 min simulated ischemia induced a rapid recovery of ΔΨm, extreme cell shortening (contracture) and mitochondrial calcein release, and CyD ablation did not affect these changes or cell death. However, when reperfusion was performed after 25 min simulated ischemia, CyD ablation improved ΔΨm recovery and reduced calcein release and cell death (57.8 ± 4.9% vs. 77.3 ± 4.8%, P < 0.01). In a Langendorff system, CyD ablation increased infarct size after 30 min of ischemia (61.3 ± 6.4% vs. 45.3 ± 4.0%, P = 0.02) but reduced it when ischemia was prolonged to 60 min (52.8 ± 8.1% vs. 87.6 ± 3.7%, P < 0.01). NMR spectroscopy in rat hearts showed a rapid recovery of phosphocreatine after 30 min ischemia followed by a marked decay associated with contracture and LDH release, that were preventable with contractile blockade but not with cyclosporine A. In contrast, after 50 min ischemia, phosphocreatine recovery was impaired even with contractile blockade (65.2 ± 4% at 2 min), and cyclosporine A reduced contracture, LDH release and infarct size (52.1 ± 4.2% vs. 82.8 ± 3.6%, P < 0.01). In conclusion, the duration of ischemia critically determines the importance of MPT on reperfusion injury. Mechanisms other than MPT may play an important role in cell death after less severe ischemia.

  12. Parallel damage in mitochondrial and lysosomal compartments promotes efficient cell death with autophagy: The case of the pentacyclic triterpenoids

    PubMed Central

    Martins, Waleska K.; Costa, Érico T.; Cruz, Mário C.; Stolf, Beatriz S.; Miotto, Ronei; Cordeiro, Rodrigo M.; Baptista, Maurício S.

    2015-01-01

    The role of autophagy in cell death is still controversial and a lot of debate has concerned the transition from its pro-survival to its pro-death roles. The similar structure of the triterpenoids Betulinic (BA) and Oleanolic (OA) acids allowed us to prove that this transition involves parallel damage in mitochondria and lysosome. After treating immortalized human skin keratinocytes (HaCaT) with either BA or OA, we evaluated cell viability, proliferation and mechanism of cell death, function and morphology of mitochondria and lysosomes, and the status of the autophagy flux. We also quantified the interactions of BA and OA with membrane mimics, both in-vitro and in-silico. Essentially, OA caused mitochondrial damage that relied on autophagy to rescue cellular homeostasis, which failed upon lysosomal inhibition by Chloroquine or Bafilomycin-A1. BA caused parallel damage on mitochondria and lysosome, turning autophagy into a destructive process. The higher cytotoxicity of BA correlated with its stronger efficiency in damaging membrane mimics. Based on these findings, we underlined the concept that autophagy will turn into a destructive outcome when there is parallel damage in mitochondrial and lysosomal membranes. We trust that this concept will help the development of new drugs against aggressive cancers. PMID:26213355

  13. Nitrosative stress and redox-cycling agents synergize to cause mitochondrial dysfunction and cell death in endothelial cells.

    PubMed

    Diers, Anne R; Broniowska, Katarzyna A; Hogg, Neil

    2013-01-01

    Nitric oxide production by the endothelium is required for normal vascular homeostasis; however, in conditions of oxidative stress, interactions of nitric oxide with reactive oxygen species (ROS) are thought to underlie endothelial dysfunction. Beyond canonical nitric oxide signaling pathways, nitric oxide production results in the post-translational modification of protein thiols, termed S-nitrosation. The potential interplay between S-nitrosation and ROS remains poorly understood and is the focus of the current study. The effects of the S-nitrosating agent S-nitrosocysteine (CysNO) in combination with redox-cycling agents was examined in bovine aortic endothelial cells (BAEC). CysNO significantly impairs mitochondrial function and depletes the NADH/NAD(+) pool; however, these changes do not result in cell death. When faced with the additional stressor of a redox-cycling agent used to generate ROS, further loss of NAD(+) occurs, and cellular ATP pools are depleted. Cellular S-nitrosothiols also accumulate, and cell death is triggered. These data demonstrate that CysNO sensitizes endothelial cells to redox-cycling agent-dependent mitochondrial dysfunction and cell death and identify attenuated degradation of S-nitrosothiols as one potential mechanism for the enhanced cytotoxicity.

  14. Parallel damage in mitochondrial and lysosomal compartments promotes efficient cell death with autophagy: The case of the pentacyclic triterpenoids.

    PubMed

    Martins, Waleska K; Costa, Érico T; Cruz, Mário C; Stolf, Beatriz S; Miotto, Ronei; Cordeiro, Rodrigo M; Baptista, Maurício S

    2015-07-27

    The role of autophagy in cell death is still controversial and a lot of debate has concerned the transition from its pro-survival to its pro-death roles. The similar structure of the triterpenoids Betulinic (BA) and Oleanolic (OA) acids allowed us to prove that this transition involves parallel damage in mitochondria and lysosome. After treating immortalized human skin keratinocytes (HaCaT) with either BA or OA, we evaluated cell viability, proliferation and mechanism of cell death, function and morphology of mitochondria and lysosomes, and the status of the autophagy flux. We also quantified the interactions of BA and OA with membrane mimics, both in-vitro and in-silico. Essentially, OA caused mitochondrial damage that relied on autophagy to rescue cellular homeostasis, which failed upon lysosomal inhibition by Chloroquine or Bafilomycin-A1. BA caused parallel damage on mitochondria and lysosome, turning autophagy into a destructive process. The higher cytotoxicity of BA correlated with its stronger efficiency in damaging membrane mimics. Based on these findings, we underlined the concept that autophagy will turn into a destructive outcome when there is parallel damage in mitochondrial and lysosomal membranes. We trust that this concept will help the development of new drugs against aggressive cancers.

  15. Med13p prevents mitochondrial fission and programmed cell death in yeast through nuclear retention of cyclin C.

    PubMed

    Khakhina, Svetlana; Cooper, Katrina F; Strich, Randy

    2014-09-15

    The yeast cyclin C-Cdk8 kinase forms a complex with Med13p to repress the transcription of genes involved in the stress response and meiosis. In response to oxidative stress, cyclin C displays nuclear to cytoplasmic relocalization that triggers mitochondrial fission and promotes programmed cell death. In this report, we demonstrate that Med13p mediates cyclin C nuclear retention in unstressed cells. Deleting MED13 allows aberrant cytoplasmic cyclin C localization and extensive mitochondrial fragmentation. Loss of Med13p function resulted in mitochondrial dysfunction and hypersensitivity to oxidative stress-induced programmed cell death that were dependent on cyclin C. The regulatory system controlling cyclin C-Med13p interaction is complex. First, a previous study found that cyclin C phosphorylation by the stress-activated MAP kinase Slt2p is required for nuclear to cytoplasmic translocation. This study found that cyclin C-Med13p association is impaired when the Slt2p target residue is substituted with a phosphomimetic amino acid. The second step involves Med13p destruction mediated by the 26S proteasome and cyclin C-Cdk8p kinase activity. In conclusion, Med13p maintains mitochondrial structure, function, and normal oxidative stress sensitivity through cyclin C nuclear retention. Releasing cyclin C from the nucleus involves both its phosphorylation by Slt2p coupled with Med13p destruction. © 2014 Khakhina et al. This article is distributed by The American Society for Cell Biology under license from the author(s). Two months after publication it is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/3.0).

  16. 5-Hydroxy-7-Methoxyflavone Triggers Mitochondrial-Associated Cell Death via Reactive Oxygen Species Signaling in Human Colon Carcinoma Cells

    PubMed Central

    Paul, Souren; Jakhar, Rekha; Han, Jaehong; Kang, Sun Chul

    2016-01-01

    Plant-derived compounds are an important source of clinically useful anti-cancer agents. Chrysin, a biologically active flavone found in many plants, has limited usage for cancer chemotherapeutics due to its poor oral bioavailability. 5-Hydroxy-7-methoxyflavone (HMF), an active natural chrysin derivative found in various plant sources, is known to modulate several biological activities. However, the mechanism underlying HMF-induced apoptotic cell death in human colorectal carcinoma cells in vitro is still unknown. Herein, HMF was shown to be capable of inducing cytotoxicity in HCT-116 cells and induced cell death in a dose-dependent manner. Treatment of HCT-116 cells with HMF caused DNA damage and triggered mitochondrial membrane perturbation accompanied by Cyt c release, down-regulation of Bcl-2, activation of BID and Bax, and caspase-3-mediated apoptosis. These results show that ROS generation by HMF was the crucial mediator behind ER stress induction, resulting in intracellular Ca2+ release, JNK phosphorylation, and activation of the mitochondrial apoptosis pathway. Furthermore, time course study also reveals that HMF treatment leads to increase in mitochondrial and cytosolic ROS generation and decrease in antioxidant enzymes expression. Temporal upregulation of IRE1-α expression and JNK phosphorylation was noticed after HMF treatment. These results were further confirmed by pre-treatment with the ROS scavenger N-acetyl-l-cysteine (NAC), which completely reversed the effects of HMF treatment by preventing lipid peroxidation, followed by abolishment of JNK phosphorylation and attenuation of apoptogenic marker proteins. These results emphasize that ROS generation by HMF treatment regulates the mitochondrial-mediated apoptotic signaling pathway in HCT-116 cells, demonstrating HMF as a promising pro-oxidant therapeutic candidate for targeting colorectal cancer. PMID:27116119

  17. Mouse cytotoxic T cell-derived granzyme B activates the mitochondrial cell death pathway in a Bim-dependent fashion.

    PubMed

    Catalán, Elena; Jaime-Sánchez, Paula; Aguiló, Nacho; Simon, Markus M; Froelich, Christopher J; Pardo, Julián

    2015-03-13

    Cytotoxic T cells (Tc) use perforin and granzyme B (gzmB) to kill virus-infected cells and cancer cells. Recent evidence suggests that human gzmB primarily induces apoptosis via the intrinsic mitochondrial pathway by either cleaving Bid or activating Bim leading to the activation of Bak/Bax and subsequent generation of active caspase-3. In contrast, mouse gzmB is thought to predominantly induce apoptosis by directly processing pro-caspase-3. However, in certain mouse cell types gzmB-mediated apoptosis mainly occurs via the mitochondrial pathway. To investigate whether Bim is involved under the latter conditions, we have now employed ex vivo virus-immune mouse Tc that selectively kill by using perforin and gzmB (gzmB(+)Tc) as effector cells and wild type as well as Bim- or Bak/Bax-deficient spontaneously (3T9) or virus-(SV40) transformed mouse embryonic fibroblast cells as targets. We show that gzmB(+)Tc-mediated apoptosis (phosphatidylserine translocation, mitochondrial depolarization, cytochrome c release, and caspase-3 activation) was severely reduced in 3T9 cells lacking either Bim or both Bak and Bax. This outcome was related to the ability of Tc cells to induce the degradation of Mcl-1 and Bcl-XL, the anti-apoptotic counterparts of Bim. In contrast, gzmB(+)Tc-mediated apoptosis was not affected in SV40-transformed mouse embryonic fibroblast cells lacking Bak/Bax. The data provide evidence that Bim participates in mouse gzmB(+)Tc-mediated apoptosis of certain targets by activating the mitochondrial pathway and suggest that the mode of cell death depends on the target cell. Our results suggest that the various molecular events leading to transformation and/or immortalization of cells have an impact on their relative resistance to the multiple gzmB(+)Tc-induced death pathways.

  18. Mouse Cytotoxic T Cell-derived Granzyme B Activates the Mitochondrial Cell Death Pathway in a Bim-dependent Fashion*

    PubMed Central

    Catalán, Elena; Jaime-Sánchez, Paula; Aguiló, Nacho; Simon, Markus M.; Froelich, Christopher J.; Pardo, Julián

    2015-01-01

    Cytotoxic T cells (Tc) use perforin and granzyme B (gzmB) to kill virus-infected cells and cancer cells. Recent evidence suggests that human gzmB primarily induces apoptosis via the intrinsic mitochondrial pathway by either cleaving Bid or activating Bim leading to the activation of Bak/Bax and subsequent generation of active caspase-3. In contrast, mouse gzmB is thought to predominantly induce apoptosis by directly processing pro-caspase-3. However, in certain mouse cell types gzmB-mediated apoptosis mainly occurs via the mitochondrial pathway. To investigate whether Bim is involved under the latter conditions, we have now employed ex vivo virus-immune mouse Tc that selectively kill by using perforin and gzmB (gzmB+Tc) as effector cells and wild type as well as Bim- or Bak/Bax-deficient spontaneously (3T9) or virus-(SV40) transformed mouse embryonic fibroblast cells as targets. We show that gzmB+Tc-mediated apoptosis (phosphatidylserine translocation, mitochondrial depolarization, cytochrome c release, and caspase-3 activation) was severely reduced in 3T9 cells lacking either Bim or both Bak and Bax. This outcome was related to the ability of Tc cells to induce the degradation of Mcl-1 and Bcl-XL, the anti-apoptotic counterparts of Bim. In contrast, gzmB+Tc-mediated apoptosis was not affected in SV40-transformed mouse embryonic fibroblast cells lacking Bak/Bax. The data provide evidence that Bim participates in mouse gzmB+Tc-mediated apoptosis of certain targets by activating the mitochondrial pathway and suggest that the mode of cell death depends on the target cell. Our results suggest that the various molecular events leading to transformation and/or immortalization of cells have an impact on their relative resistance to the multiple gzmB+Tc-induced death pathways. PMID:25605735

  19. Mitochondrial dysfunction and cell death in neurodegenerative diseases through nitroxidative stress.

    PubMed

    Akbar, Mohammed; Essa, Musthafa Mohamed; Daradkeh, Ghazi; Abdelmegeed, Mohamed A; Choi, Youngshim; Mahmood, Lubna; Song, Byoung-Joon

    2016-04-15

    Mitochondria are important for providing cellular energy ATP through the oxidative phosphorylation pathway. They are also critical in regulating many cellular functions including the fatty acid oxidation, the metabolism of glutamate and urea, the anti-oxidant defense, and the apoptosis pathway. Mitochondria are an important source of reactive oxygen species leaked from the electron transport chain while they are susceptible to oxidative damage, leading to mitochondrial dysfunction and tissue injury. In fact, impaired mitochondrial function is commonly observed in many types of neurodegenerative diseases, including Alzheimer's disease, Parkinson's disease, Huntington's disease, alcoholic dementia, brain ischemia-reperfusion related injury, and others, although many of these neurological disorders have unique etiological factors. Mitochondrial dysfunction under many pathological conditions is likely to be promoted by increased nitroxidative stress, which can stimulate post-translational modifications (PTMs) of mitochondrial proteins and/or oxidative damage to mitochondrial DNA and lipids. Furthermore, recent studies have demonstrated that various antioxidants, including naturally occurring flavonoids and polyphenols as well as synthetic compounds, can block the formation of reactive oxygen and/or nitrogen species, and thus ultimately prevent the PTMs of many proteins with improved disease conditions. Therefore, the present review is aimed to describe the recent research developments in the molecular mechanisms for mitochondrial dysfunction and tissue injury in neurodegenerative diseases and discuss translational research opportunities.

  20. JNK interaction with Sab mediates ER stress induced inhibition of mitochondrial respiration and cell death

    PubMed Central

    Win, S; Than, T A; Fernandez-Checa, J C; Kaplowitz, N

    2014-01-01

    Our aim was to better understand the mechanism and importance of sustained c-Jun N-terminal kinase (JNK) activation in endoplasmic reticulum (ER) stress and effects of ER stress on mitochondria by determining the role of mitochondrial JNK binding protein, Sab. Tunicamycin or brefeldin A induced a rapid and marked decline in basal mitochondrial respiration and reserve-capacity followed by delayed mitochondrial-mediated apoptosis. Knockdown of mitochondrial Sab prevented ER stress-induced sustained JNK activation, impaired respiration, and apoptosis, but did not alter the magnitude or time course of activation of ER stress pathways. P-JNK plus adenosine 5′-triphosphate (ATP) added to isolated liver mitochondria promoted superoxide production, which was amplified by addition of calcium and inhibited by a blocking peptide corresponding to the JNK binding site on Sab (KIM1). This peptide also blocked tunicamycin-induced inhibition of cellular respiration. In conclusion, ER stress triggers an interaction of JNK with mitochondrial Sab, which leads to impaired respiration and increased mitochondrial reactive oxygen species, sustaining JNK activation culminating in apoptosis. PMID:24407242

  1. JNK interaction with Sab mediates ER stress induced inhibition of mitochondrial respiration and cell death.

    PubMed

    Win, S; Than, T A; Fernandez-Checa, J C; Kaplowitz, N

    2014-01-09

    Our aim was to better understand the mechanism and importance of sustained c-Jun N-terminal kinase (JNK) activation in endoplasmic reticulum (ER) stress and effects of ER stress on mitochondria by determining the role of mitochondrial JNK binding protein, Sab. Tunicamycin or brefeldin A induced a rapid and marked decline in basal mitochondrial respiration and reserve-capacity followed by delayed mitochondrial-mediated apoptosis. Knockdown of mitochondrial Sab prevented ER stress-induced sustained JNK activation, impaired respiration, and apoptosis, but did not alter the magnitude or time course of activation of ER stress pathways. P-JNK plus adenosine 5'-triphosphate (ATP) added to isolated liver mitochondria promoted superoxide production, which was amplified by addition of calcium and inhibited by a blocking peptide corresponding to the JNK binding site on Sab (KIM1). This peptide also blocked tunicamycin-induced inhibition of cellular respiration. In conclusion, ER stress triggers an interaction of JNK with mitochondrial Sab, which leads to impaired respiration and increased mitochondrial reactive oxygen species, sustaining JNK activation culminating in apoptosis.

  2. Mitochondrial Dysfunction and Cell Death in Neurodegenerative Diseases through Nitroxidative Stress

    PubMed Central

    Akbar, Mohammed; Essa, Musthafa Mohamed; Daradkeh, Ghazi; Abdelmegeed, Mohamed A.; Choi, Youngshim; Mahmood, Lubna; Song, Byoung-Joon

    2016-01-01

    Mitochondria are important for providing cellular energy ATP through the oxidative phosphorylation pathway. They are also critical in regulating many cellular functions including the fatty acid oxidation, the metabolism of glutamate and urea, the anti-oxidant defense, and the apoptosis pathway. Mitochondria are an important source of reactive oxygen species leaked from the electron transport chain while they are susceptible to oxidative damage, leading to mitochondrial dysfunction and tissue injury. In fact, impaired mitochondrial function is commonly observed in many types of neurodegenerative diseases, including Alzheimer’s disease, Parkinson’s disease, Huntington’s disease, alcoholic dementia, brain ischemia-reperfusion related injury, and others, although many of these neurological disorders have unique etiological factors. Mitochondrial dysfunction under many pathological conditions is likely to be promoted by increased nitroxidative stress, which can stimulate post-translational modifications (PTMs) of mitochondrial proteins and/or oxidative damage to mitochondrial DNA and lipids. Furthermore, recent studies have demonstrated that various antioxidants, including naturally occurring flavonoids and polyphenols as well as synthetic compounds, can block the formation of reactive oxygen and/or nitrogen species, and thus ultimately prevent the PTMs of many proteins with improved disease conditions. Therefore, the present review is aimed to describe the recent research developments in the molecular mechanisms for mitochondrial dysfunction and tissue injury in neurodegenerative diseases and discuss translational research opportunities. PMID:26883165

  3. Bax and Bak function as the outer membrane component of the mitochondrial permeability pore in regulating necrotic cell death in mice.

    PubMed

    Karch, Jason; Kwong, Jennifer Q; Burr, Adam R; Sargent, Michelle A; Elrod, John W; Peixoto, Pablo M; Martinez-Caballero, Sonia; Osinska, Hanna; Cheng, Emily H-Y; Robbins, Jeffrey; Kinnally, Kathleen W; Molkentin, Jeffery D

    2013-08-27

    A critical event in ischemia-based cell death is the opening of the mitochondrial permeability transition pore (MPTP). However, the molecular identity of the components of the MPTP remains unknown. Here, we determined that the Bcl-2 family members Bax and Bak, which are central regulators of apoptotic cell death, are also required for mitochondrial pore-dependent necrotic cell death by facilitating outer membrane permeability of the MPTP. Loss of Bax/Bak reduced outer mitochondrial membrane permeability and conductance without altering inner membrane MPTP function, resulting in resistance to mitochondrial calcium overload and necrotic cell death. Reconstitution with mutants of Bax that cannot oligomerize and form apoptotic pores, but still enhance outer membrane permeability, permitted MPTP-dependent mitochondrial swelling and restored necrotic cell death. Our data predict that the MPTP is an inner membrane regulated process, although in the absence of Bax/Bak the outer membrane resists swelling and prevents organelle rupture to prevent cell death. DOI:http://dx.doi.org/10.7554/eLife.00772.001.

  4. Bax and Bak function as the outer membrane component of the mitochondrial permeability pore in regulating necrotic cell death in mice

    PubMed Central

    Karch, Jason; Kwong, Jennifer Q; Burr, Adam R; Sargent, Michelle A; Elrod, John W; Peixoto, Pablo M; Martinez-Caballero, Sonia; Osinska, Hanna; Cheng, Emily H-Y; Robbins, Jeffrey; Kinnally, Kathleen W; Molkentin, Jeffery D

    2013-01-01

    A critical event in ischemia-based cell death is the opening of the mitochondrial permeability transition pore (MPTP). However, the molecular identity of the components of the MPTP remains unknown. Here, we determined that the Bcl-2 family members Bax and Bak, which are central regulators of apoptotic cell death, are also required for mitochondrial pore-dependent necrotic cell death by facilitating outer membrane permeability of the MPTP. Loss of Bax/Bak reduced outer mitochondrial membrane permeability and conductance without altering inner membrane MPTP function, resulting in resistance to mitochondrial calcium overload and necrotic cell death. Reconstitution with mutants of Bax that cannot oligomerize and form apoptotic pores, but still enhance outer membrane permeability, permitted MPTP-dependent mitochondrial swelling and restored necrotic cell death. Our data predict that the MPTP is an inner membrane regulated process, although in the absence of Bax/Bak the outer membrane resists swelling and prevents organelle rupture to prevent cell death. DOI: http://dx.doi.org/10.7554/eLife.00772.001 PMID:23991283

  5. Phellinus linteus polysaccharide extracts increase the mitochondrial membrane potential and cause apoptotic death of THP-1 monocytes

    PubMed Central

    2013-01-01

    Background The differentiation resp. death of human monocytic THP-1 cells induced by polysaccharide extracts of the medicinal mushrooms Phellinus linteus, Agaricus bisporus and Agaricus brasiliensis have been studied. This study aims to identify leads for the causal effects of these mushroom components on cell differentiation and death. Methods THP-1 cells were treated with different polysaccharide extracts of mushrooms and controls. Morphological effects were observed by light microscopy. Flow cytometry was applied to follow the cell differentiation by cell cycle shifts after staining with propidium iodide, changes of mitochondrial membrane potential after incubation with JC-1, and occurrence of intracellular reactive oxygen species after incubation with hydroethidine. Principal component analysis of the data was performed to evaluate the cellular effects of the different treatments. Results P. linteus polysaccharide extracts induced dose-dependent apoptosis of THP-1 cells within 24 h, while A. bisporus and A. brasiliensis polysaccharide extracts caused differentiation into macrophages. A pure P. linteus polysaccharide had no effect. Apoptosis was inhibited by preincubating THP-1 cells with human serum. The principal component analysis revealed that P. linteus, A. bisporus and A. brasiliensis polysaccharide extracts increased reactive oxygen species production. Both A. bisporus and A. brasiliensis polysaccharide extracts decreased the mitochondrial membrane potential, while this was increased by P. linteus polysaccharide extracts. Conclusions P. linteus polysaccharide extracts caused apoptosis of THP-1 monocytes while A. bisporus and A. brasiliensis polysaccharide extracts caused these cells to differentiate into macrophages. The protective effects of human serum suggested that P. linteus polysaccharide extract induced apoptosis by extrinsic pathway, i.e. by binding to the TRAIL receptor. The mitochondrial membrane potential together with reactive oxygen species

  6. Phellinus linteus polysaccharide extracts increase the mitochondrial membrane potential and cause apoptotic death of THP-1 monocytes.

    PubMed

    van Griensven, Leo Jld; Verhoeven, Harrie A

    2013-12-18

    The differentiation resp. death of human monocytic THP-1 cells induced by polysaccharide extracts of the medicinal mushrooms Phellinus linteus, Agaricus bisporus and Agaricus brasiliensis have been studied. This study aims to identify leads for the causal effects of these mushroom components on cell differentiation and death. THP-1 cells were treated with different polysaccharide extracts of mushrooms and controls. Morphological effects were observed by light microscopy. Flow cytometry was applied to follow the cell differentiation by cell cycle shifts after staining with propidium iodide, changes of mitochondrial membrane potential after incubation with JC-1, and occurrence of intracellular reactive oxygen species after incubation with hydroethidine. Principal component analysis of the data was performed to evaluate the cellular effects of the different treatments. P. linteus polysaccharide extracts induced dose-dependent apoptosis of THP-1 cells within 24 h, while A. bisporus and A. brasiliensis polysaccharide extracts caused differentiation into macrophages. A pure P. linteus polysaccharide had no effect. Apoptosis was inhibited by preincubating THP-1 cells with human serum. The principal component analysis revealed that P. linteus, A. bisporus and A. brasiliensis polysaccharide extracts increased reactive oxygen species production. Both A. bisporus and A. brasiliensis polysaccharide extracts decreased the mitochondrial membrane potential, while this was increased by P. linteus polysaccharide extracts. P. linteus polysaccharide extracts caused apoptosis of THP-1 monocytes while A. bisporus and A. brasiliensis polysaccharide extracts caused these cells to differentiate into macrophages. The protective effects of human serum suggested that P. linteus polysaccharide extract induced apoptosis by extrinsic pathway, i.e. by binding to the TRAIL receptor. The mitochondrial membrane potential together with reactive oxygen species seems to play an important role in cell

  7. Proapoptotic activity of Ukrain is based on Chelidonium majus L. alkaloids and mediated via a mitochondrial death pathway

    PubMed Central

    Habermehl, Daniel; Kammerer, Bernd; Handrick, René; Eldh, Therese; Gruber, Charlotte; Cordes, Nils; Daniel, Peter T; Plasswilm, Ludwig; Bamberg, Michael; Belka, Claus; Jendrossek, Verena

    2006-01-01

    Background The anticancer drug Ukrain (NSC-631570) which has been specified by the manufacturer as semisynthetic derivative of the Chelidonium majus L. alkaloid chelidonine and the alkylans thiotepa was reported to exert selective cytotoxic effects on human tumour cell lines in vitro. Few clinical trials suggest beneficial effects in the treatment of human cancer. Aim of the present study was to elucidate the importance of apoptosis induction for the antineoplastic activity of Ukrain, to define the molecular mechanism of its cytotoxic effects and to identify its active constituents by mass spectrometry. Methods Apoptosis induction was analysed in a Jurkat T-lymphoma cell model by fluorescence microscopy (chromatin condensation and nuclear fragmentation), flow cytometry (cellular shrinkage, depolarisation of the mitochondrial membrane potential, caspase-activation) and Western blot analysis (caspase-activation). Composition of Ukrain was analysed by mass spectrometry and LC-MS coupling. Results Ukrain turned out to be a potent inducer of apoptosis. Mechanistic analyses revealed that Ukrain induced depolarisation of the mitochondrial membrane potential and activation of caspases. Lack of caspase-8, expression of cFLIP-L and resistance to death receptor ligand-induced apoptosis failed to inhibit Ukrain-induced apoptosis while lack of FADD caused a delay but not abrogation of Ukrain-induced apoptosis pointing to a death receptor independent signalling pathway. In contrast, the broad spectrum caspase-inhibitor zVAD-fmk blocked Ukrain-induced cell death. Moreover, over-expression of Bcl-2 or Bcl-xL and expression of dominant negative caspase-9 partially reduced Ukrain-induced apoptosis pointing to Bcl-2 controlled mitochondrial signalling events. However, mass spectrometric analysis of Ukrain failed to detect the suggested trimeric chelidonine thiophosphortriamide or putative dimeric or monomeric chelidonine thiophosphortriamide intermediates from chemical synthesis

  8. Proapoptotic activity of Ukrain is based on Chelidonium majus L. alkaloids and mediated via a mitochondrial death pathway.

    PubMed

    Habermehl, Daniel; Kammerer, Bernd; Handrick, René; Eldh, Therese; Gruber, Charlotte; Cordes, Nils; Daniel, Peter T; Plasswilm, Ludwig; Bamberg, Michael; Belka, Claus; Jendrossek, Verena

    2006-01-17

    The anticancer drug Ukrain (NSC-631570) which has been specified by the manufacturer as semisynthetic derivative of the Chelidonium majus L. alkaloid chelidonine and the alkylans thiotepa was reported to exert selective cytotoxic effects on human tumour cell lines in vitro. Few clinical trials suggest beneficial effects in the treatment of human cancer. Aim of the present study was to elucidate the importance of apoptosis induction for the antineoplastic activity of Ukrain, to define the molecular mechanism of its cytotoxic effects and to identify its active constituents by mass spectrometry. Apoptosis induction was analysed in a Jurkat T-lymphoma cell model by fluorescence microscopy (chromatin condensation and nuclear fragmentation), flow cytometry (cellular shrinkage, depolarisation of the mitochondrial membrane potential, caspase-activation) and Western blot analysis (caspase-activation). Composition of Ukrain was analysed by mass spectrometry and LC-MS coupling. Ukrain turned out to be a potent inducer of apoptosis. Mechanistic analyses revealed that Ukrain induced depolarisation of the mitochondrial membrane potential and activation of caspases. Lack of caspase-8, expression of cFLIP-L and resistance to death receptor ligand-induced apoptosis failed to inhibit Ukrain-induced apoptosis while lack of FADD caused a delay but not abrogation of Ukrain-induced apoptosis pointing to a death receptor independent signalling pathway. In contrast, the broad spectrum caspase-inhibitor zVAD-fmk blocked Ukrain-induced cell death. Moreover, over-expression of Bcl-2 or Bcl-xL and expression of dominant negative caspase-9 partially reduced Ukrain-induced apoptosis pointing to Bcl-2 controlled mitochondrial signalling events. However, mass spectrometric analysis of Ukrain failed to detect the suggested trimeric chelidonine thiophosphortriamide or putative dimeric or monomeric chelidonine thiophosphortriamide intermediates from chemical synthesis. Instead, the Chelidonium majus

  9. Transgenic Plant Cells Lacking Mitochondrial Alternative Oxidase Have Increased Susceptibility to Mitochondria-Dependent and -Independent Pathways of Programmed Cell Death1

    PubMed Central

    Robson, Christine A.; Vanlerberghe, Greg C.

    2002-01-01

    The plant mitochondrial electron transport chain is branched such that electrons at ubiquinol can be diverted to oxygen via the alternative oxidase (AOX). This pathway does not contribute to ATP synthesis but can dampen the mitochondrial generation of reactive oxygen species. Here, we establish that transgenic tobacco (Nicotiana tabacum L. cv Petit Havana SR1) cells lacking AOX (AS8 cells) show increased susceptibility to three different death-inducing compounds (H2O2, salicylic acid [SA], and the protein phosphatase inhibitor cantharidin) in comparison with wild-type cells. The timing and extent of AS8 cell death are very similar among the three treatments and, in each case, are accompanied by the accumulation of oligonucleosomal fragments of DNA, indicative of programmed cell death. Death induced by H2O2 or SA occurs by a mitochondria-dependent pathway characterized by cytochrome c release from the mitochondrion. Conversely, death induced by cantharidin occurs by a pathway without any obvious mitochondrial involvement. The ability of AOX to attenuate these death pathways may relate to its ability to maintain mitochondrial function after insult with a death-inducing compound or may relate to its ability to prevent chronic oxidative stress within the mitochondrion. In support of the latter, long-term treatment of AS8 cells with an antioxidant compound increased the resistance of AS8 cells to SA- or cantharidin-induced death. The results indicate that plants maintain both mitochondria-dependent and -independent pathways of programmed cell death and that AOX may act as an important mitochondrial “survival protein” against such death. PMID:12177505

  10. Transgenic plant cells lacking mitochondrial alternative oxidase have increased susceptibility to mitochondria-dependent and -independent pathways of programmed cell death.

    PubMed

    Robson, Christine A; Vanlerberghe, Greg C

    2002-08-01

    The plant mitochondrial electron transport chain is branched such that electrons at ubiquinol can be diverted to oxygen via the alternative oxidase (AOX). This pathway does not contribute to ATP synthesis but can dampen the mitochondrial generation of reactive oxygen species. Here, we establish that transgenic tobacco (Nicotiana tabacum L. cv Petit Havana SR1) cells lacking AOX (AS8 cells) show increased susceptibility to three different death-inducing compounds (H(2)O(2), salicylic acid [SA], and the protein phosphatase inhibitor cantharidin) in comparison with wild-type cells. The timing and extent of AS8 cell death are very similar among the three treatments and, in each case, are accompanied by the accumulation of oligonucleosomal fragments of DNA, indicative of programmed cell death. Death induced by H(2)O(2) or SA occurs by a mitochondria-dependent pathway characterized by cytochrome c release from the mitochondrion. Conversely, death induced by cantharidin occurs by a pathway without any obvious mitochondrial involvement. The ability of AOX to attenuate these death pathways may relate to its ability to maintain mitochondrial function after insult with a death-inducing compound or may relate to its ability to prevent chronic oxidative stress within the mitochondrion. In support of the latter, long-term treatment of AS8 cells with an antioxidant compound increased the resistance of AS8 cells to SA- or cantharidin-induced death. The results indicate that plants maintain both mitochondria-dependent and -independent pathways of programmed cell death and that AOX may act as an important mitochondrial "survival protein" against such death.

  11. Reactive oxygen species, but not Ca2+ overloading, trigger pH- and mitochondrial permeability transition-dependent death of adult rat myocytes after ischemia-reperfusion.

    PubMed

    Kim, Jae-Sung; Jin, Yingai; Lemasters, John J

    2006-05-01

    We investigated the role of pH, reactive oxygen species (ROS), Ca2+, and the mitochondrial permeability transition (MPT) in pH-dependent ischemia-reperfusion injury to adult rat myocytes. Myocytes were incubated in anoxic Krebs-Ringer-HEPES buffer at pH 6.2 for 3 h to simulate ischemia. To simulate reperfusion, myocytes were reoxygenated at pH 6.2 or 7.4 for 2 h. Some myocytes were treated with MPT blockers (cyclosporin A and N-methyl-4-isoleucine cyclosporin) and antioxidants (desferal, diphenylphenylene diamine, and 2-mercaptopropionyl glycine). Mitochondrial membrane potential, inner membrane permeabilization, and ROS formation were imaged with tetramethylrhodamine methyl ester, calcein, and chloromethyldichlorofluorescein diacetate, respectively. For Ca2+ imaging, myocytes were coloaded with rhod-2 and fluo-4 to evaluate mitochondrial and cytosolic Ca2+, respectively. After 10 min of reperfusion at pH 7.4, calcein redistributed across the mitochondrial inner membrane, an event preceded by mitochondrial ROS formation and accompanied by hypercontracture, mitochondrial depolarization, and then cell death. Acidotic reperfusion, antioxidants, and MPT blockers each prevented the MPT, depolarization, hypercontraction, and cell killing. Antioxidants, but neither MPT blockers nor acidotic reperfusion, inhibited ROS formation after reperfusion. Furthermore, anoxic reperfusion at pH 7.4 prevented cell death. Both mitochondrial and cytosolic Ca2+ increased during ischemia but recovered in the first minutes of reperfusion. Mitochondrial and cytosolic Ca2+ overloading again occurred late after reperfusion. This late Ca2+ overloading was blocked by MPT inhibition. Intramitochondrial Ca2+ chelation by cold loading/warm incubation of BAPTA did not prevent cell death after reperfusion. In conclusion, mitochondrial ROS, together with normalization of pH, promote MPT onset and subsequent myocyte death after reperfusion. In contrast, Ca2+ overloading appears to be the consequence

  12. Disruption of the mitochondrial thioredoxin system as a cell death mechanism of cationic triphenylmethanes.

    PubMed

    Zhang, Xu; Zheng, Yujuan; Fried, Levi E; Du, Yatao; Montano, Sergio J; Sohn, Allie; Lefkove, Benjamin; Holmgren, Lars; Arbiser, Jack L; Holmgren, Arne; Lu, Jun

    2011-04-01

    Alterations in mitochondrial structure and function are a hallmark of cancer cells compared to normal cells and thus targeting mitochondria has emerged as an novel approach to cancer therapy. The mitochondrial thioredoxin 2 (Trx2) system is critical for cell viability, but its role in cancer biology is not well understood. Recently some cationic triphenylmethanes such as brilliant green (BG) and gentian violet were shown to have antitumor and antiangiogenic activity with unknown mechanisms. Here we demonstrate that BG killed cells at nanomolar concentrations and targeted mitochondrial Trx2, which was oxidized and degraded. HeLa cells were more sensitive to BG than fibroblasts. In HeLa cells, Trx2 down-regulation by siRNA resulted in increased sensitivity to BG, whereas for fibroblasts, the same treatments had no effect. BG was observed to accumulate in mitochondria and cause a rapid and dramatic decrease in mitochondrial Trx2 protein. With a redox Western blot method, we found that treatment with BG caused oxidation of both Trx1 and Trx2, followed by release of cytochrome c and apoptosis-inducing factor from the mitochondria into the cytosol. Moreover, this treatment resulted in an elevation of the mRNA level of Lon protease, a protein quality control enzyme in the mitochondrial matrix, suggesting that the oxidized Trx2 may be degraded by Lon protease.

  13. Mcl-1 involvement in mitochondrial dynamics is associated with apoptotic cell death.

    PubMed

    Morciano, Giampaolo; Giorgi, Carlotta; Balestra, Dario; Marchi, Saverio; Perrone, Daniela; Pinotti, Mirko; Pinton, Paolo

    2016-01-01

    The B-cell lymphoma-2 (Bcl-2) family proteins are critical regulators of apoptosis and consist of both proapoptotic and antiapoptotic factors. Within this family, the myeloid cell leukemia factor 1 (Mcl-1) protein exists in two forms as the result of alternative splicing. The long variant (Mcl-1L) acts as an antiapoptotic factor, whereas the short isoform (Mcl-1S) displays proapoptotic activity. In this study, using splice-switching antisense oligonucleotides (ASOs), we increased the synthesis of Mcl-1S, which induced a concurrent reduction of Mcl-1L, resulting in increased sensitivity of cancer cells to apoptotic stimuli. The Mcl-1 ASOs also induced mitochondrial hyperpolarization and a consequent increase in mitochondrial calcium (Ca(2+)) accumulation. The high Mcl-1S/L ratio correlated with significant hyperfusion of the entire mitochondrial network, which occurred in a dynamin-related protein (Drp1)-dependent manner. Our data indicate that the balance between the long and short variants of the Mcl-1 gene represents a key aspect of the regulation of mitochondrial physiology. We propose that the Mcl-1L/S balance is a novel regulatory factor controlling the mitochondrial fusion and fission machinery.

  14. Mcl-1 involvement in mitochondrial dynamics is associated with apoptotic cell death

    PubMed Central

    Morciano, Giampaolo; Giorgi, Carlotta; Balestra, Dario; Marchi, Saverio; Perrone, Daniela; Pinotti, Mirko; Pinton, Paolo

    2016-01-01

    The B-cell lymphoma-2 (Bcl-2) family proteins are critical regulators of apoptosis and consist of both proapoptotic and antiapoptotic factors. Within this family, the myeloid cell leukemia factor 1 (Mcl-1) protein exists in two forms as the result of alternative splicing. The long variant (Mcl-1L) acts as an antiapoptotic factor, whereas the short isoform (Mcl-1S) displays proapoptotic activity. In this study, using splice-switching antisense oligonucleotides (ASOs), we increased the synthesis of Mcl-1S, which induced a concurrent reduction of Mcl-1L, resulting in increased sensitivity of cancer cells to apoptotic stimuli. The Mcl-1 ASOs also induced mitochondrial hyperpolarization and a consequent increase in mitochondrial calcium (Ca2+) accumulation. The high Mcl-1S/L ratio correlated with significant hyperfusion of the entire mitochondrial network, which occurred in a dynamin-related protein (Drp1)–dependent manner. Our data indicate that the balance between the long and short variants of the Mcl-1 gene represents a key aspect of the regulation of mitochondrial physiology. We propose that the Mcl-1L/S balance is a novel regulatory factor controlling the mitochondrial fusion and fission machinery. PMID:26538029

  15. Manganese induces mitochondrial dynamics impairment and apoptotic cell death: a study in human Gli36 cells.

    PubMed

    Alaimo, Agustina; Gorojod, Roxana M; Miglietta, Esteban A; Villarreal, Alejandro; Ramos, Alberto J; Kotler, Mónica L

    2013-10-25

    Manganese (Mn) is an essential trace element due to its participation in many physiological processes. However, overexposure to this metal leads to a neurological disorder known as Manganism whose clinical manifestations and molecular mechanisms resemble Parkinson's disease. Several lines of evidence implicate astrocytes as an early target of Mn neurotoxicity being the mitochondria the most affected organelles. The aim of this study was to investigate the possible mitochondrial dynamics alterations in Mn-exposed human astrocytes. Therefore, we employed Gli36 cells which express the astrocytic markers GFAP and S100B. We demonstrated that Mn triggers the mitochondrial apoptotic pathway revealed by increased Bax/Bcl-2 ratio, by the loss of mitochondrial membrane potential and by caspase-9 activation. This apoptotic program may be in turn responsible of caspase-3/7 activation, PARP-1 cleavage, chromatin condensation and fragmentation. In addition, we determined that Mn induces deregulation in mitochondria-shaping proteins (Opa-1, Mfn-2 and Drp-1) expression levels in parallel with the disruption of the mitochondrial network toward to an exacerbated fragmentation. Since mitochondrial dynamics is altered in several neurodegenerative diseases, these proteins could become future targets to be considered in Manganism treatment. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  16. Glutathione administration reduces mitochondrial damage and shifts cell death from necrosis to apoptosis in ageing diabetic mice hearts during exercise

    PubMed Central

    Golbidi, S; Botta, A; Gottfred, S; Nusrat, A; Laher, I; Ghosh, S

    2014-01-01

    Background and Purpose The effect of antioxidants on ageing type 2 diabetic (T2D) hearts during exercise is unclear. We hypothesized that GSH therapy during exercise reduces mitochondrial oxidative stress (mOXS) and cell death in ageing db/db mice hearts. Experimental Approach The effect of GSH on cardiac mOXS and cell death was evaluated both in vivo and in vitro. Key Results During exercise, GSH treatment protected db/db hearts from exaggerated mOXS without reducing total cell death. Despite similar cell death, investigations on apoptosis-specific single-stranded DNA breaks and necrosis-specific damage provided the first in vivo evidence of a shift from necrosis to apoptosis, with reduced fibrosis following GSH administration in exercised db/db hearts. Further support for a GSH-regulated ‘switch’ in death phenotypes came from NIH-3T3 fibroblasts and H9c2 cardiomyocytes treated with H2O2, a reactive oxygen species (ROS). Similar to in vivo findings, augmenting GSH by overexpressing glutamyl cysteine ligase (GCLc) protected fibroblasts and cardiomyocytes from necrosis induced by H2O2, but elevated caspase-3 and apoptosis instead. Similar to in vivo findings, where GSH therapy in normoglycaemic mice suppressed endogenous antioxidants and augmented caspase-3 activity, GCLc overexpression during staurosporine-induced death, which was not characterized by ROS, increased GSH efflux and aggravated death in fibroblasts and cardiomyocytes, confirming that oxidative stress is required for GSH-mediated cytoprotection. Conclusions and Implications While GSH treatment is useful for reducing mOXS and attenuating necrosis and fibrosis in ageing T2D hearts during exercise, such antioxidant treatment could be counterproductive in the healthy heart during exercise. PMID:25039894

  17. Aloe-emodin induces apoptosis of human nasopharyngeal carcinoma cells via caspase-8-mediated activation of the mitochondrial death pathway.

    PubMed

    Lin, Meng-Liang; Lu, Yao-Cheng; Chung, Jing-Gung; Li, Yi-Chen; Wang, Shyang-Guang; N G, Sue-Hwee; Wu, Chia-Yin; Su, Hong-Lin; Chen, Shih-Shun

    2010-05-01

    Aloe-emodin (AE), a natural, biologically active compound from the rhizome of Rheum palmatum, has been shown to induce apoptosis in several cancer cell lines in vitro. However, its molecular mechanism of action in the apoptosis induction of human nasopharyngeal carcinoma (NPC) cells has not been explored. This study shows that AE induced G(2)/M phase arrest by increasing levels of cyclin B1 bound to Cdc2, and also caused an increase in apoptosis of NPC cells, which was characterized by morphological changes, nuclear condensation, DNA fragmentation, caspase-3 activation, cleavage of poly (ADP-ribose) polymerase (PARP) and increased sub-G(1) population. Treatment of NPC cells with AE also resulted in a decrease in Bcl-X(L) and an increase in Bax expression. Ectopic expression of Bcl-X(L) but not Bcl-2 or small interfering RNA (siRNA)-mediated attenuation of Bax suppressed AE-induced apoptotic cell death. AE-induced loss of mitochondrial membrane potential (MMP) and increase in cellular Ca(++) content, reactive oxygen species (ROS) and apoptotic cell death were suppressed by the treatment of cyclosporin A (CsA) or caspase-8 inhibitor Z-IETD-FMK. Co-treatment with caspase-9 inhibitor Z-LEHD-FMK could inhibit AE-induced cell death and the activation of caspase-3 and -9. In addition, suppression of caspase-8 with the specific inhibitor Z-IETD-FMK inhibited AE-induced the activation of Bax, the cleavage of Bid, the translocation of tBid to the mitochondria and the release of cytochrome c, apoptosis-inducing factor (AIF) and Endo G from the mitochondria and subsequent apoptosis. Taken together, these results indicate that the caspase-8-mediated activation of the mitochondrial death pathway plays a critical role in AE-induced apoptosis of NPC cells.

  18. Mitochondrial Permeability Transition Pore Component Cyclophilin D Distinguishes Nigrostriatal Dopaminergic Death Paradigms in the MPTP Mouse Model of Parkinson's Disease

    PubMed Central

    Banerjee, Rebecca; Starkova, Natalia N.; Zhang, Steven F.; Calingasan, Noel Y.; Yang, Lichuan; Wille, Elizabeth; Lorenzo, Beverly J.; Ho, Daniel J.; Beal, M. Flint

    2012-01-01

    Abstract Aims: Mitochondrial damage due to Ca2+ overload-induced opening of permeability transition pores (PTP) is believed to play a role in selective degeneration of nigrostriatal dopaminergic neurons in Parkinson's disease (PD). Genetic ablation of mitochondrial matrix protein cyclophilin D (CYPD) has been shown to increase Ca2+ threshold of PTP in vitro and to prevent cell death in several in vivo disease models. We investigated the role of CYPD in a mouse model of MPTP (1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine)-induced PD. Results: We demonstrate that in vitro, brain mitochondria isolated from CYPD knockout mice were less sensitive to MPP+ (1-methyl-4-phenyl-pyridinium ion)-induced membrane depolarization, and free radical generation compared to wild-type mice. CYPD knockout mitochondria isolated from ventral midbrain of mice treated with MPTP in vivo exhibited less damage as judged from respiratory chain Complex I activity, State 3 respiration rate, and respiratory control index than wild-type mice, whereas assessment of apoptotic markers showed no differences between the two genotypes. However, CYPD knockout mice were significantly resistant only to an acute regimen of MPTP neurotoxicity in contrast to the subacute and chronic MPTP paradigms. Innovation: Inactivation of CYPD is beneficial in preserving mitochondrial functions only in an acute insult model of MPTP-induced dopaminergic neurotoxicity. Conclusion: Our results suggest that CYPD deficiency distinguishes the modes of dopaminergic neurodegeneration in various regimens of MPTP-neurotoxicity. Antioxid. Redox Signal. 16, 855–868. PMID:21529244

  19. Mitochondrial permeability transition pore component cyclophilin D distinguishes nigrostriatal dopaminergic death paradigms in the MPTP mouse model of Parkinson's disease.

    PubMed

    Thomas, Bobby; Banerjee, Rebecca; Starkova, Natalia N; Zhang, Steven F; Calingasan, Noel Y; Yang, Lichuan; Wille, Elizabeth; Lorenzo, Beverly J; Ho, Daniel J; Beal, M Flint; Starkov, Anatoly

    2012-05-01

    Mitochondrial damage due to Ca(2+) overload-induced opening of permeability transition pores (PTP) is believed to play a role in selective degeneration of nigrostriatal dopaminergic neurons in Parkinson's disease (PD). Genetic ablation of mitochondrial matrix protein cyclophilin D (CYPD) has been shown to increase Ca(2+) threshold of PTP in vitro and to prevent cell death in several in vivo disease models. We investigated the role of CYPD in a mouse model of MPTP (1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine)-induced PD. We demonstrate that in vitro, brain mitochondria isolated from CYPD knockout mice were less sensitive to MPP+ (1-methyl-4-phenyl-pyridinium ion)-induced membrane depolarization, and free radical generation compared to wild-type mice. CYPD knockout mitochondria isolated from ventral midbrain of mice treated with MPTP in vivo exhibited less damage as judged from respiratory chain Complex I activity, State 3 respiration rate, and respiratory control index than wild-type mice, whereas assessment of apoptotic markers showed no differences between the two genotypes. However, CYPD knockout mice were significantly resistant only to an acute regimen of MPTP neurotoxicity in contrast to the subacute and chronic MPTP paradigms. Inactivation of CYPD is beneficial in preserving mitochondrial functions only in an acute insult model of MPTP-induced dopaminergic neurotoxicity. Our results suggest that CYPD deficiency distinguishes the modes of dopaminergic neurodegeneration in various regimens of MPTP-neurotoxicity.

  20. Chloroquine-induced glioma cells death is associated with mitochondrial membrane potential loss, but not oxidative stress.

    PubMed

    Vessoni, Alexandre Teixeira; Quinet, Annabel; de Andrade-Lima, Leonardo Carmo; Martins, Davi Jardim; Garcia, Camila Carrião Machado; Rocha, Clarissa Ribeiro Reily; Vieira, Debora Braga; Menck, Carlos Frederico Martins

    2016-01-01

    Chloroquine (CQ), a quinolone derivative widely used to treat and prevent malaria, has been shown to exert a potent adjuvant effect when combined with conventional glioblastoma therapy. Despite inducing lysosome destabilization and activating p53 in human glioma cells, the mechanisms underlying cell death induced by this drug are poorly understood. Here, we analyzed in a time- and dose-dependent manner, the effects of CQ upon mitochondria integrity, autophagy regulation and redox processes in four human glioma cell lines that differ in their resistance to this drug. NAC-containing media protected cells against CQ-induced loss of mitochondrial membrane potential (MMP), autophagic vacuoles (LC3II) accumulation and loss of cell viability induced by CQ. However, we noticed that part of this protection was due to media acidification in NAC preparations, alerting for problems in experimental procedures using NAC. The results indicate that although CQ induces accumulation of LC3II, mitochondria, and oxidative stress, neither of these events is clearly correlated to cell death induced by this drug. The only event elicited in all cell lines at equitoxic doses of CQ was the loss of MMP, indicating that mitochondrial stability is important for cells resistance to this drug. Finally, the data indicate that higher steady-state MMP values can predict cell resistance to CQ treatment. Copyright © 2015 Elsevier Inc. All rights reserved.

  1. The biphosphinic paladacycle complex induces melanoma cell death through lysosomal-mitochondrial axis modulation and impaired autophagy.

    PubMed

    Gigli, Rafael; Pereira, Gustavo J S; Antunes, Fernanda; Bechara, Alexandre; Garcia, Daniel M; Spindola, Daniel G; Jasiulionis, Mirian G; Caires, Antonio C F; Smaili, Soraya S; Bincoletto, Claudia

    2016-01-01

    Recently, palladium complexes have been extensively studied as cyclization of these complexes by cyclometallation reactions increased their stability making them promising antitumor compounds. In this study, we have investigated apoptosis induced by the Biphosphinic Paladacycle Complex (BPC11) and possible cross talk between apoptosis and autophagy in cell line models of metastatic (Tm5) and non-metastatic (4C11-) melanoma. The BPC11-induced cell death in melanoma involved the lysosomal-mitochondrial axis, which is characterized by LMP, CatB activation and increased Bax protein levels following its translocation to mitochondria. Mitochondrial hyperpolarization, followed by membrane potential dissipation and cleavage of caspase-3, also resulted in cell death after 24 h of incubation. We also found that BPC11-mediated LC3II formation and increased p62 protein levels, suggesting blocked autophagy, probably due to LMP. Interestingly, the treatment of Tm5 and 4C11(-) cells with 3-methyladenine (3-MA), an inhibitor of the initial stage of autophagy, potentiated the effects of BPC11. We conclude that BPC11 is an anti-melanoma agent and that autophagy may be acting as a mechanism of melanoma cells resistance. Also, these data highlight the importance of studies involving autophagy and apoptosis during pre-clinical studies of new drugs with anticancer properties.

  2. Heat shock induces apoptosis through reactive oxygen species involving mitochondrial and death receptor pathways in corneal cells.

    PubMed

    Hsu, Ya-Ling; Yu, Hsin-Su; Lin, Hsien-Chung; Wu, Kwou-Yeung; Yang, Rei-Cheng; Kuo, Po-Lin

    2011-10-01

    Although many studies have been performed to elucidate the molecular consequences of ultraviolet irradiation, little is known about the effect of infrared radiation on ocular disease. In addition to photons, heat is generated as a consequence of infrared irradiation, and heat shock is widely considered to be an environmental stressor. Here, we are the first to investigate the biological effect of heat shock on Statens Seruminstitut Rabbit Cornea (SIRC) cells. Our results indicate that heat shock exhibits effective cell proliferation inhibition by inducing apoptosis. Heat shock triggers the mitochondrial apoptotic pathway indicated by a change in Bax/Bcl-2 ratios, resulting in caspase-9 activity. In addition, heat shock triggered the death receptor apoptotic pathway indicated by a change in Fas ligand expression, resulting in caspase-8 activity. Furthermore, we also found that generation of reactive oxygen species (ROS) is a critical mediator in heat shock-induced apoptosis. In addition, the antioxidant vitamin C significantly decreased heat shock-mediated apoptosis. Taken together, these findings suggest a critical role for ROS involving mitochondrial and death receptor pathways in heat shock-mediated apoptosis of cornea cells. Copyright © 2011 Elsevier Ltd. All rights reserved.

  3. The CT20 peptide causes detachment and death of metastatic breast cancer cells by promoting mitochondrial aggregation and cytoskeletal disruption.

    PubMed

    Lee, M W; Bassiouni, R; Sparrow, N A; Iketani, A; Boohaker, R J; Moskowitz, C; Vishnubhotla, P; Khaled, A S; Oyer, J; Copik, A; Fernandez-Valle, C; Perez, J M; Khaled, A R

    2014-05-22

    Metastasis accounts for most deaths from breast cancer, driving the need for new therapeutics that can impede disease progression. Rationally designed peptides that take advantage of cancer-specific differences in cellular physiology are an emerging technology that offer promise as a treatment for metastatic breast cancer. We developed CT20p, a hydrophobic peptide based on the C terminus of Bax that exhibits similarities with antimicrobial peptides, and previously reported that CT20p has unique cytotoxic actions independent of full-length Bax. In this study, we identified the intracellular actions of CT20p which precede cancer cell-specific detachment and death. Previously, we found that CT20p migrated in the heavy membrane fractions of cancer cell lysates. Here, using MDA-MB-231 breast cancer cells, we demonstrated that CT20p localizes to the mitochondria, leading to fusion-like aggregation and mitochondrial membrane hyperpolarization. As a result, the distribution and movement of mitochondria in CT20p-treated MDA-MB-231 cells was markedly impaired, particularly in cell protrusions. In contrast, CT20p did not associate with the mitochondria of normal breast epithelial MCF-10A cells, causing little change in the mitochondrial membrane potential, morphology or localization. In MDA-MB-231 cells, CT20p triggered cell detachment that was preceded by decreased levels of α5β1 integrins and reduced F-actin polymerization. Using folate-targeted nanoparticles to encapsulate and deliver CT20p to murine tumors, we achieved significant tumor regression within days of peptide treatment. These results suggest that CT20p has application in the treatment of metastatic disease as a cancer-specific therapeutic peptide that perturbs mitochondrial morphology and movement ultimately culminating in disruption of the actin cytoskeleton, cell detachment, and loss of cell viability.

  4. Trichothecene exposure leads to mitochondrial ROS-mediated cell death in yeast

    USDA-ARS?s Scientific Manuscript database

    We had previously identified several yeast deletion mutants that conferred resistance to trichothecin (Tcin), a type B trichothecene and DON congener, which revealed a critical role for mitochondria in trichothecene-toxicity (1). Mitochondrial translation was directly inhibited prior to damage to mi...

  5. Role of mitochondrial permeability transition in human renal tubular epithelial cell death induced by aristolochic acid

    SciTech Connect

    Qi Xinming; Cai Yan; Gong Likun; Liu Linlin; Chen Fangping; Xiao Ying; Wu Xiongfei; Li Yan; Xue Xiang |; Ren Jin . E-mail: cdser_simm@mail.shcnc.ac.cn

    2007-07-01

    Aristolochic acid (AA), a natural nephrotoxin and carcinogen, can induce a progressive tubulointerstitial nephropathy. However, the mechanism by which AA causes renal injury remains largely unknown. Here we reported that the mitochondrial permeability transition (MPT) plays an important role in the renal injury induced by aristolochic acid I (AAI). We found that in the presence of Ca{sup 2+}, AAI caused mitochondrial swelling, leakage of Ca{sup 2+}, membrane depolarization, and release of cytochrome c in isolated kidney mitochondria. These alterations were suppressed by cyclosporin A (CsA), an agent known to inhibit MPT. Culture of HK-2 cell, a human renal tubular epithelial cell line for 24 h with AAI caused a decrease in cellular ATP, mitochondrial membrane depolarization, cytochrome c release, and increase of caspase 3 activity. These toxic effects of AAI were attenuated by CsA and bongkrekic acid (BA), another specific MPT inhibitor. Furthermore, AAI greatly inhibited the activity of mitochondrial adenine nucleotide translocator (ANT) in isolated mitochondria. We suggested that ANT may mediate, at least in part, the AAI-induced MPT. Taken together, these results suggested that MPT plays a critical role in the pathogenesis of HK-2 cell injury induced by AAI and implied that MPT might contribute to human nephrotoxicity of aristolochic acid.

  6. Neurodegeneration, myocardial injury, and perinatal death in mitochondrial superoxide dismutase-deficient mice.

    PubMed Central

    Lebovitz, R M; Zhang, H; Vogel, H; Cartwright, J; Dionne, L; Lu, N; Huang, S; Matzuk, M M

    1996-01-01

    Manganese superoxide dismutase (SOD2) converts superoxide to oxygen plus hydrogen peroxide and serves as the primary defense against mitochondrial superoxide. Impaired SOD2 activity in humans has been associated with several chronic diseases, including ovarian cancer and type I diabetes, and SOD2 overexpression appears to suppress malignancy in cultured cells. We have produced a line of SOD2 knockout mice (SOD2m1BCM/SOD2m1BCM) that survive up to 3 weeks of age and exhibit several novel pathologic phenotypes including severe anemia, degeneration of neurons in the basal ganglia and brainstem, and progressive motor disturbances characterized by weakness, rapid fatigue, and circling behavior. In addition, SOD2m1BCM/SOD2m1BCM mice older than 7 days exhibit extensive mitochondrial injury within degenerating neurons and cardiac myocytes. Approximately 10% of SOD2m1BCM/SOD2m1BCM mice exhibit markedly enlarged and dilated hearts. These observations indicate that SOD2 deficiency causes increased susceptibility to oxidative mitochondrial injury in central nervous system neurons, cardiac myocytes, and other metabolically active tissues after postnatal exposure to ambient oxygen concentrations. Our SOD2-deficient mice differ from a recently described model in which homozygotes die within the first 5 days of life with severe cardiomyopathy and do not exhibit motor disturbances, central nervous system injury, or ultrastructural evidence of mitochondrial injury. Images Fig. 1 Fig. 2 Fig. 3 Fig. 4 PMID:8790408

  7. Relation between cell death progression, reactive oxygen species production and mitochondrial membrane potential in fermenting Saccharomyces cerevisiae cells under heat-shock conditions.

    PubMed

    Pyatrikas, Darya V; Fedoseeva, Irina V; Varakina, Nina N; Rusaleva, Tatyana M; Stepanov, Alexei V; Fedyaeva, Anna V; Borovskii, Gennadii B; Rikhvanov, Eugene G

    2015-06-01

    Moderate heat shock increased reactive oxygen species (ROS) production that led to cell death in glucose-grown Saccharomyces cerevisiae cells. Conditions that disturb mitochondrial functions such as treatment by uncouplers and petite mutation were shown to inhibit ROS production and protects cell from thermal death. Hence, mitochondria are responsible for ROS production and play an active role in cell death. An increase in ROS production was accompanied by hyperpolarization of inner mitochondrial membrane. All agents suppressing hyperpolarization also suppressed heat-induced ROS production. It was supposed that generation of ROS under moderate heat shock in glucose-grown S. cerevisiae cells is driven by the mitochondrial membrane potential. © FEMS 2015. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  8. Water-Soluble Coenzyme Q10 Inhibits Nuclear Translocation of Apoptosis Inducing Factor and Cell Death Caused by Mitochondrial Complex I Inhibition

    PubMed Central

    Li, Haining; Chen, Guisheng; Ma, Wanrui; Li, Ping-An Andy

    2014-01-01

    The objectives of the study were to explore the mechanism of rotenone-induced cell damage and to examine the protective effects of water-soluble Coenzyme Q10 (CoQ10) on the toxic effects of rotenone. Murine hippocampal HT22 cells were cultured with mitochondrial complex I inhibitor rotenone. Water-soluble CoQ10 was added to the culture media 3 h prior to the rotenone incubation. Cell viability was determined by alamar blue, reactive oxygen species (ROS) production by dihydroethidine (DHE) and mitochondrial membrane potential by tetramethyl rhodamine methyl ester (TMRM). Cytochrome c, caspase-9 and apoptosis-inducing factor (AIF) were measured using Western blotting after 24 h rotenone incubation. Rotenone caused more than 50% of cell death, increased ROS production, AIF nuclear translocation and reduction in mitochondrial membrane potential, but failed to cause mitochondrial cytochrome c release and caspase-9 activation. Pretreatment with water-soluble CoQ10 enhanced cell viability, decreased ROS production, maintained mitochondrial membrane potential and prevented AIF nuclear translocation. The results suggest that rotenone activates a mitochondria-initiated, caspase-independent cell death pathway. Water-soluble CoQ10 reduces ROS accumulation, prevents the fall of mitochondrial membrane potential, and inhibits AIF translocation and subsequent cell death. PMID:25089873

  9. Mitochondrial calcium in the life and death of exocrine secretory cells.

    PubMed

    Voronina, Svetlana; Tepikin, Alexei

    2012-07-01

    The remarkable recent discoveries of the proteins mediating mitochondrial Ca(2+) transport (reviewed in this issue) provide an exciting opportunity to utilise this new knowledge to improve our fundamental understanding of relationships between Ca(2+) signalling and bioenergetics and, importantly, to improve the understanding of diseases in which Ca(2+) toxicity and mitochondrial malfunction play a crucial role. Ca(2+) is an important activator of exocrine secretion, a regulator of the bioenergetics of exocrine cells and a contributor to exocrine cell damage. Exocrine secretory cells, exocrine tissues and diseases affecting exocrine glands (like Sjögren's syndrome and acute pancreatitis) will, therefore, provide worthy research areas for the application of this new knowledge of the Ca(2+) transport mechanisms in mitochondria.

  10. Ubiquinone-binding site mutagenesis reveals the role of mitochondrial complex II in cell death initiation.

    PubMed

    Kluckova, K; Sticha, M; Cerny, J; Mracek, T; Dong, L; Drahota, Z; Gottlieb, E; Neuzil, J; Rohlena, J

    2015-05-07

    Respiratory complex II (CII, succinate dehydrogenase, SDH) inhibition can induce cell death, but the mechanistic details need clarification. To elucidate the role of reactive oxygen species (ROS) formation upon the ubiquinone-binding (Qp) site blockade, we substituted CII subunit C (SDHC) residues lining the Qp site by site-directed mutagenesis. Cell lines carrying these mutations were characterized on the bases of CII activity and exposed to Qp site inhibitors MitoVES, thenoyltrifluoroacetone (TTFA) and Atpenin A5. We found that I56F and S68A SDHC variants, which support succinate-mediated respiration and maintain low intracellular succinate, were less efficiently inhibited by MitoVES than the wild-type (WT) variant. Importantly, associated ROS generation and cell death induction was also impaired, and cell death in the WT cells was malonate and catalase sensitive. In contrast, the S68A variant was much more susceptible to TTFA inhibition than the I56F variant or the WT CII, which was again reflected by enhanced ROS formation and increased malonate- and catalase-sensitive cell death induction. The R72C variant that accumulates intracellular succinate due to compromised CII activity was resistant to MitoVES and TTFA treatment and did not increase ROS, even though TTFA efficiently generated ROS at low succinate in mitochondria isolated from R72C cells. Similarly, the high-affinity Qp site inhibitor Atpenin A5 rapidly increased intracellular succinate in WT cells but did not induce ROS or cell death, unlike MitoVES and TTFA that upregulated succinate only moderately. These results demonstrate that cell death initiation upon CII inhibition depends on ROS and that the extent of cell death correlates with the potency of inhibition at the Qp site unless intracellular succinate is high. In addition, this validates the Qp site of CII as a target for cell death induction with relevance to cancer therapy.

  11. Ubiquinone-binding site mutagenesis reveals the role of mitochondrial complex II in cell death initiation

    PubMed Central

    Kluckova, K; Sticha, M; Cerny, J; Mracek, T; Dong, L; Drahota, Z; Gottlieb, E; Neuzil, J; Rohlena, J

    2015-01-01

    Respiratory complex II (CII, succinate dehydrogenase, SDH) inhibition can induce cell death, but the mechanistic details need clarification. To elucidate the role of reactive oxygen species (ROS) formation upon the ubiquinone-binding (Qp) site blockade, we substituted CII subunit C (SDHC) residues lining the Qp site by site-directed mutagenesis. Cell lines carrying these mutations were characterized on the bases of CII activity and exposed to Qp site inhibitors MitoVES, thenoyltrifluoroacetone (TTFA) and Atpenin A5. We found that I56F and S68A SDHC variants, which support succinate-mediated respiration and maintain low intracellular succinate, were less efficiently inhibited by MitoVES than the wild-type (WT) variant. Importantly, associated ROS generation and cell death induction was also impaired, and cell death in the WT cells was malonate and catalase sensitive. In contrast, the S68A variant was much more susceptible to TTFA inhibition than the I56F variant or the WT CII, which was again reflected by enhanced ROS formation and increased malonate- and catalase-sensitive cell death induction. The R72C variant that accumulates intracellular succinate due to compromised CII activity was resistant to MitoVES and TTFA treatment and did not increase ROS, even though TTFA efficiently generated ROS at low succinate in mitochondria isolated from R72C cells. Similarly, the high-affinity Qp site inhibitor Atpenin A5 rapidly increased intracellular succinate in WT cells but did not induce ROS or cell death, unlike MitoVES and TTFA that upregulated succinate only moderately. These results demonstrate that cell death initiation upon CII inhibition depends on ROS and that the extent of cell death correlates with the potency of inhibition at the Qp site unless intracellular succinate is high. In addition, this validates the Qp site of CII as a target for cell death induction with relevance to cancer therapy. PMID:25950479

  12. Arbitrariness and the death penalty: how the defendant's appearance during trial influences capital jurors' punishment decision.

    PubMed

    Antonio, Michael E

    2006-01-01

    This paper examines the impact of the defendant's appearance during the trial on capital jurors' punishment decision. The data used in this analysis were gathered by the Capital Jury Project (CJP), a national program of research on the decision-making of capital jurors. A series of multivariate logistic regression analyses were conducted using four aggravating circumstances related to the killing and eight defendant appearance variables as predictors of jurors' punishment decision at three points during the capital trial: (1) after the punishment phase ended, but before formal deliberation began; (2) when the first vote was taken on punishment at jury deliberations; and (3) at the final vote on punishment. Results indicated that when the defendant appeared emotionally involved during the trial (i.e. sorry and sincere) jurors either favored a life sentence or were undecided about punishment; however, when the defendant appeared emotionally uninvolved during the trial (i.e. bored) jurors either sought a death sentence or remained undecided. Policy implications will be discussed.

  13. KH-TFMDI, a novel sirtuin inhibitor, alters the cytoskeleton and mitochondrial metabolism promoting cell death in Leishmania amazonensis.

    PubMed

    Verçoza, Brunno Renato Farias; Godinho, Joseane Lima Prado; de Macedo-Silva, Sara Teixeira; Huber, Kilian; Bracher, Franz; de Souza, Wanderley; Rodrigues, Juliany Cola Fernandes

    2017-07-06

    Treatment of leishmaniasis involves the use of antimonials, miltefosine, amphotericin B or pentamidine. However, the side effects of these drugs and the reports of drug-resistant parasites demonstrate the need for new treatments that are safer and more efficacious. Histone deacetylase inhibitors are a new class of compounds with potential to treat leishmaniasis. Herein, we evaluated the effects of KH-TFMDI, a novel histone deacetylase inhibitor, on Leishmania amazonensis promastigotes and intracellular amastigotes. The IC50 values of this compound for promastigotes and intracellular amastigotes were 1.976 and 1.148 μM, respectively, after 72 h of treatment. Microscopic analyses revealed that promastigotes became elongated and thinner in response to KH-TFMDI, indicating changes in cytoskeleton organization. Immunofluorescence microscopy, western blotting and flow cytometry using an anti-acetylated tubulin antibody revealed an increase in the expression of acetylated tubulin. Furthermore, transmission electron microscopy revealed several ultrastructural changes, such as (a) mitochondrial swelling, followed by the formation of many vesicles inside the matrix; (b) presence of lipid bodies randomly distributed through the cytoplasm; (c) abnormal chromatin condensation; and (d) formation of blebs on the plasma membrane. Physiological studies for mitochondrial function, flow cytometry with propidium iodide and TUNEL assay confirmed the alterations in the mitochondrial metabolism, cell cycle, and DNA fragmentation, respectively, which could result to cell death by mechanisms related to apoptosis-like. All these together indicate that histone deacetylases are promising targets for the development of new drugs to treat Leishmania, and KH-TFMDI is a promising drug candidate that should be tested in vivo.

  14. Exposure to decabromodiphenyl ether (BDE-209) produces mitochondrial dysfunction in rat liver and cell death.

    PubMed

    Pereira, Lilian C; Souza, Alecsandra O; Tasso, Maria J; Oliveira, Alana M C; Duarte, Filipe V; Palmeira, Carlos M; Dorta, Daniel J

    2017-09-07

    Polybrominated diphenyl ethers (PBDE) are ubiquitous environmental pollutants. Exposure to these chemicals has been associated with developmental neurotoxicity, endocrine dysfunctions, reproductive disorders, and hepatotoxicity. The widespread use of PBDE as flame retardants has culminated in daily exposure of humans and wildlife to these contaminants and resulted in their banned use. Thus assessment of the potential effects of each PBDE congener on living organisms has become cause for concern. The aim of this study was to (1) examine the effects of decabromodiphenyl ether (BDE)-209 on different functions of HepG2 cells and (2) investigate whether this congener is involved in mitochondrial toxicity. The use of multiple methods was employed to (i) study the influence of BDE-209 on mitochondrial permeability transition (MPT) process in mitochondria isolated from rat liver and (ii) determine the consequential cellular damage. Our results showed that BDE-209 induced matrix swelling related to MPT with 10 µM and ATP depletion with 0.1 µM. In addition, 0.5 μM BDE-209 reduced HepG2 cell viability, produced collapse of membrane potential, but increased levels of reactive oxygen species (ROS) after 48 h incubation. After 24 h with 5 μM treatment elevated levels of ROS, DNA fragmentation and cytochrome c release, accompanied by caspase 9 and caspase 3 activation was noted. Taken together, these results suggest that short-duration exposure (24 or 48 h) to 0.5 μM or 5 μM BDE-209 concentrations diminished HepG2 cell viability due to apoptosis associated with mitochondrial dysfunction.

  15. TRPV1 mediates cell death in rat synovial fibroblasts through calcium entry-dependent ROS production and mitochondrial depolarization

    SciTech Connect

    Hu Fen; Sun Wenwu; Zhao Xiao Ting; Cui Zongjie Yang Wenxiu

    2008-05-16

    Synoviocyte hyperplasia is critical for rheumatoid arthritis, therefore, potentially an important target for therapeutics. It was found in this work that a TRPV1 agonist capsaicin, and acidic solution (pH 5.5) induced increases in cytosolic calcium concentration ([Ca{sup 2+}]{sub c}) and reactive oxygen species (ROS) production in synoviocytes isolated from a rat model of collagen-induced arthritis. The increases in both [Ca{sup 2+}]{sub c} and ROS production were completely abolished in calcium-free buffer or by a TRPV1 antagonist capsazepine. Further experiments revealed that capsaicin and pH 5.5 solution caused mitochondrial membrane depolarization and reduction in cell viability; such effects were inhibited by capsazepine, or the NAD(P)H oxidase inhibitor diphenylene iodonium. Both capsaicin and pH 5.5 buffer induced apoptosis as shown by nuclear condensation and fragmentation. Furthermore, RT-PCR readily detected TRPV1 mRNA expression in the isolated synoviocytes. Taken together, these data indicated that TRPV1 activation triggered synoviocyte death by [Ca{sup 2+}]{sub c} elevation, ROS production, and mitochondrial membrane depolarization.

  16. Antimicrobial Peptide-induced Apoptotic Death of Leishmania Results from Calcium-de pend ent, Caspase-independent Mitochondrial Toxicity*

    PubMed Central

    Kulkarni, Manjusha M.; Robert McMaster, W.; Kamysz, Wojciech; McGwire, Bradford S.

    2009-01-01

    α- and θ-defensin-, magainin-, and cathelicidin-type antimicrobial peptides (AMPs) can kill the pathogenic protozoan Leishmania. Comparative studies of a panel of AMPs have defined two distinct groups: those that induce nonapoptotic (Class I) and apoptotic (Class II) parasite killing based on their differential ability to induce phosphatidyl serine exposure, loss of mitochondrial membrane potential and decreased ATP production, induction of caspase-3/7 and -12 activity, and DNA degradation. Class II AMPs cause rapid influx of the vital stain SYTOX and an increase in intracellular Ca2+, whereas Class I AMPs cause a slow accumulation of SYTOX and do not affect intracellular Ca2+ levels. Inhibitors of cysteine or caspase proteases diminished fast influx of SYTOX through the surface membrane and DNA degradation but do not ablate the annexin V staining or the induction of apoptosis by Class II AMPs. This suggests that the changes in surface permeability in AMP-mediated apoptosis are related to the downstream events of intracellular cysteine/caspase activation or the loss of ATP. The activation of caspase-12-like activity was Ca2+-dependent, and inhibitors of voltage-gated and nonspecific Ca2+ channels diminished this activity. Flufenamic acid, a nonspecific Ca2+ inhibitor, completely ablated AMP-induced mitochondrial dysfunction and cell death, indicating the importance of dysregulation of Ca2+ in antimicrobial peptide-induced apoptosis. PMID:19357081

  17. The canonical intrinsic mitochondrial death pathway has a non-apoptotic role in signaling lens cell differentiation.

    PubMed

    Weber, Gregory F; Menko, A Sue

    2005-06-10

    The mitochondrial cell death pathway is known for its role in signaling apoptosis. Here, we describe a novel function for the mitochondrial cell death pathway in signaling initiation of differentiation in the developing lens. Most remarkably, we induced lens cell differentiation by short-term exposure of lens epithelial cells to the apoptogen staurosporine. Activation of apoptosis-related pathways induced lens epithelial cells to express differentiation-specific markers and to undergo morphogenetic changes that led to formation of the lens-like structures known as lentoids. The fact that multiple stages of differentiation are expressed at a single stage of development in the embryonic lens made it possible to precisely determine the timing of expression of proteins associated with the apoptotic pathway. We discovered that there was high expression in the lens equatorial epithelium (the region of the lens in which differentiation is initiated) of pro-apoptotic molecules such as Bax and Bcl-x(S) and release of cytochrome c from mitochondria. Furthermore, we found significant caspase-3-like activity in the equatorial epithelium, yet this activity was far lower than that associated with lens cell apoptosis. These apoptotic pathways are likely regulated by the concurrent expression of prosurvival molecules, including Bcl-2 and Bcl-x(L); phosphorylation of Bad; and high expression of inhibitor of apoptosis proteins chicken IAP1, IAP3, and survivin. This finding suggests that prosurvival pathways allow pro-apoptotic molecules to function as molecular switches in the differentiation process without tipping the balance toward apoptosis. We call this process apoptosis-related Bcl-2- and caspase-dependent (ABC) differentiation.

  18. Facilitation of Mitochondrial Outer and Inner Membrane Permeabilization and Cell Death in Oxidative Stress by a Novel Bcl-2 Homology 3 Domain Protein*

    PubMed Central

    Szigeti, Andras; Hocsak, Eniko; Rapolti, Edit; Racz, Boglarka; Boronkai, Arpad; Pozsgai, Eva; Debreceni, Balazs; Bognar, Zita; Bellyei, Szabolcs; Sumegi, Balazs; Gallyas, Ferenc

    2010-01-01

    We identified a sequence homologous to the Bcl-2 homology 3 (BH3) domain of Bcl-2 proteins in SOUL. Tissues expressed the protein to different extents. It was predominantly located in the cytoplasm, although a fraction of SOUL was associated with the mitochondria that increased upon oxidative stress. Recombinant SOUL protein facilitated mitochondrial permeability transition and collapse of mitochondrial membrane potential (MMP) and facilitated the release of proapoptotic mitochondrial intermembrane proteins (PMIP) at low calcium and phosphate concentrations in a cyclosporine A-dependent manner in vitro in isolated mitochondria. Suppression of endogenous SOUL by diced small interfering RNA in HeLa cells increased their viability in oxidative stress. Overexpression of SOUL in NIH3T3 cells promoted hydrogen peroxide-induced cell death and stimulated the release of PMIP but did not enhance caspase-3 activation. Despite the release of PMIP, SOUL facilitated predominantly necrotic cell death, as revealed by annexin V and propidium iodide staining. This necrotic death could be the result of SOUL-facilitated collapse of MMP demonstrated by JC-1 fluorescence. Deletion of the putative BH3 domain sequence prevented all of these effects of SOUL. Suppression of cyclophilin D prevented these effects too, indicating that SOUL facilitated mitochondrial permeability transition in vivo. Overexpression of Bcl-2 and Bcl-xL, which can counteract the mitochondria-permeabilizing effect of BH3 domain proteins, also prevented SOUL-facilitated collapse of MMP and cell death. These data indicate that SOUL can be a novel member of the BH3 domain-only proteins that cannot induce cell death alone but can facilitate both outer and inner mitochondrial membrane permeabilization and predominantly necrotic cell death in oxidative stress. PMID:19901022

  19. Role of SIRT1-mediated mitochondrial and Akt pathways in glioblastoma cell death induced by Cotinus coggygria flavonoid nanoliposomes

    PubMed Central

    Wang, Gang; Wang, Jun Jie; To, Tony SS; Zhao, Hua Fu; Wang, Jing

    2015-01-01

    Flavonoids, the major polyphenol components in Cotinus coggygria (CC), have been found to show an anticancer effect in our previous study; however, the exact mechanisms of inducing human glioblastoma (GBM) cell death remain to be resolved. In this study, a novel polyvinylpyrrolidone K-30/sodium dodecyl sulfate and polyethyleneglycol-coated liposome loaded with CC flavonoids (CCFs) was developed to enhance solubility and the antibrain tumor effect, and the molecular mechanism regarding how CCF nanoliposomes (CCF-NLs) induce apoptotic cell death in vitro was investigated. DBTRG-05MG GBM cell lines treated with CCF-NLs showed potential antiproliferative effects. Regarding the underlying mechanisms of inducing apoptosis in DBTRG-05MG GBM cells, CCF-NLs were shown to downregulate the expression of antiapoptotic B-cell lymphoma/leukemia 2 (Bcl-2), an apoptosis-related protein family member, but the expression of proapoptotic Bcl-2-associated X protein was enhanced compared with that in controls. CCF-NLs also inhibited the activity of caspase-3 and -9, which is the initiator caspase of the extrinsic and intrinsic apoptotic pathways. Blockade of caspase activation consistently induced apoptosis and inhibited growth in CCF-NL-treated DBTRG-05MG cells. This study further investigated the role of the Akt pathway in the apoptotic cell death by CCF-NLs, showing that CCF-NLs deactivated Akt. Specifically, CCF-NLs downregulated the expression of p-Akt and SIRT1 as well as the level of phosphorylated p53. Together, these results indicated SIRT1/p53-mediated cell death was induced by CCF-NLs, but not by extracellular signal-regulated kinase, in DBTRG-05MG cells. Overall, this study suggested caspase-dependent activation of both the intrinsic and extrinsic signaling pathways, probably through blockade of the SIRT1/p53-mediated mitochondrial and Akt pathways to exert the proapoptotic effect of CCF-NLs in DBTRG-05MG GBM cells. PMID:26345416

  20. DJ-1 ameliorates ischemic cell death in vitro possibly via mitochondrial pathway.

    PubMed

    Kaneko, Yuji; Shojo, Hideki; Burns, Jack; Staples, Meaghan; Tajiri, Naoki; Borlongan, Cesar V

    2014-02-01

    DJ-1 is an important redox-reactive neuroprotective protein implicated in regulation of oxidative stress after ischemia. However the molecular mechanism, especially the mitochondrial function, by which DJ-1 protects neuronal cells in stroke remains to be elucidated. The aim of this study was to reveal whether DJ-1 translocates into the mitochondria in exerting neuroprotection against an in vitro model of stroke. Human neural progenitor cells (hNPCs) were initially exposed to oxygen-glucose deprivation and reperfusion injury, and thereafter, DJ-1 translocation was measured by immunocytochemistry and its secretion by hNPCs was detected by enzyme-linked immunosorbant assay (ELISA). Exposure of hNPCs to experimental stroke injury resulted in DJ-1 translocation into the mitochondria. Moreover, significant levels of DJ-1 protein were secreted by the injured hNPCs. Our findings revealed that DJ-1 principally participates in the early phase of stroke involving the mitochondrial pathway. DJ-1 was detected immediately after stroke and efficiently translocated into the mitochondria offering a new venue for developing treatment strategies against ischemic stroke.

  1. Loss of C/EBPδ enhances IR-induced cell death by promoting oxidative stress and mitochondrial dysfunction.

    PubMed

    Banerjee, Sudip; Aykin-Burns, Nukhet; Krager, Kimberly J; Shah, Sumit K; Melnyk, Stepan B; Hauer-Jensen, Martin; Pawar, Snehalata A

    2016-10-01

    Exposure of cells to ionizing radiation (IR) generates reactive oxygen species (ROS). This results in increased oxidative stress and DNA double strand breaks (DSBs) which are the two underlying mechanisms by which IR causes cell/tissue injury. Cells that are deficient or impaired in the cellular antioxidant response are susceptible to IR-induced apoptosis. The transcription factor CCAAT enhancer binding protein delta (Cebpd, C/EBPδ) has been implicated in the regulation of oxidative stress, DNA damage response, genomic stability and inflammation. We previously reported that Cebpd-deficient mice are sensitive to IR and display intestinal and hematopoietic injury, however the underlying mechanism is not known. In this study, we investigated whether an impaired ability to detoxify IR-induced ROS was the underlying cause of the increased radiosensitivity of Cebpd-deficient cells. We found that Cebpd-knockout (KO) mouse embryonic fibroblasts (MEFs) expressed elevated levels of ROS, both at basal levels and after exposure to gamma radiation which correlated with increased apoptosis, and decreased clonogenic survival. Pre-treatment of wild type (WT) and KO MEFs with polyethylene glycol-conjugated Cu-Zn superoxide dismutase (PEG-SOD) and catalase (PEG-CAT) combination prior to irradiation showed a partial rescue of clonogenic survival, thus demonstrating a role for increased intracellular oxidants in promoting IR-induced cell death. Analysis of mitochondrial bioenergetics revealed that irradiated KO MEFs showed significant reductions in basal, adenosine triphosphate (ATP)-linked, maximal respiration and reserved respiratory capacity and decrease in intracellular ATP levels compared to WT MEFs indicating they display mitochondrial dysfunction. KO MEFs expressed significantly lower levels of the cellular antioxidant glutathione (GSH) and its precursor- cysteine as well as methionine. In addition to its antioxidant function, GSH plays an important role in detoxification of

  2. TRIM4; a novel mitochondrial interacting RING E3 ligase, sensitizes the cells to hydrogen peroxide (H2O2) induced cell death.

    PubMed

    Tomar, Dhanendra; Prajapati, Paresh; Lavie, Julie; Singh, Kritarth; Lakshmi, Sripada; Bhatelia, Khyati; Roy, Milton; Singh, Rochika; Bénard, Giovanni; Singh, Rajesh

    2015-12-01

    The emerging evidences suggest that posttranslational modification of target protein by ubiquitin (Ub) not only regulate its turnover through ubiquitin proteasome system (UPS) but is a critical regulator of various signaling pathways. During ubiquitination, E3 ligase recognizes the target protein and determines the topology of ubiquitin chains. In current study, we studied the role of TRIM4, a member of the TRIM/RBCC protein family of RING E3 ligase, in regulation of hydrogen peroxide (H2O2) induced cell death. TRIM4 is expressed differentially in human tissues and expressed in most of the analyzed human cancer cell lines. The subcellular localization studies showed that TRIM4 forms distinct cytoplasmic speckle like structures which transiently interacts with mitochondria. The expression of TRIM4 induces mitochondrial aggregation and increased level of mitochondrial ROS in the presence of H2O2. It sensitizes the cells to H2O2 induced death whereas knockdown reversed the effect. TRIM4 potentiates the loss of mitochondrial transmembrane potential and cytochrome c release in the presence of H2O2. The analysis of TRIM4 interacting proteins showed its interaction with peroxiredoxin 1 (PRX1), including other proteins involved in regulation of mitochondrial and redox homeostasis. TRIM4 interaction with PRX1 is critical for the regulation of H2O2 induced cell death. Collectively, the evidences in the current study suggest the role of TRIM4 in regulation of oxidative stress induced cell death.

  3. Knockdown of TWIST1 enhances arsenic trioxide- and ionizing radiation-induced cell death in lung cancer cells by promoting mitochondrial dysfunction

    SciTech Connect

    Seo, Sung-Keum; Kim, Jae-Hee; Choi, Ha-Na; Choe, Tae-Boo; Hong, Seok-Il; Yi, Jae-Youn; Hwang, Sang-Gu; Lee, Hyun-Gyu; Lee, Yun-Han; Park, In-Chul

    2014-07-11

    Highlights: • Knockdown of TWIST1 enhanced ATO- and IR-induced cell death in NSCLCs. • Intracellular ROS levels were increased in cells treated with TWIST1 siRNA. • TWIST1 siRNA induced MMP loss and mitochondrial fragmentation. • TWIST1 siRNA upregulated the fission-related proteins FIS1 and DRP1. - Abstract: TWIST1 is implicated in the process of epithelial mesenchymal transition, metastasis, stemness, and drug resistance in cancer cells, and therefore is a potential target for cancer therapy. In the present study, we found that knockdown of TWIST1 by small interfering RNA (siRNA) enhanced arsenic trioxide (ATO)- and ionizing radiation (IR)-induced cell death in non-small-cell lung cancer cells. Interestingly, intracellular reactive oxygen species levels were increased in cells treated with TWIST1 siRNA and further increased by co-treatment with ATO or IR. Pretreatment of lung cancer cells with the antioxidant N-acetyl-cysteine markedly suppressed the cell death induced by combined treatment with TWIST1 siRNA and ATO or IR. Moreover, treatment of cells with TWIST1 siRNA induced mitochondrial membrane depolarization and significantly increased mitochondrial fragmentation (fission) and upregulated the fission-related proteins FIS1 and DRP1. Collectively, our results demonstrate that siRNA-mediated TWIST1 knockdown induces mitochondrial dysfunction and enhances IR- and ATO-induced cell death in lung cancer cells.

  4. Mixed Lineage Kinase-3 Stabilizes and Functionally Cooperates with TRIBBLES-3 to Compromise Mitochondrial Integrity in Cytokine-induced Death of Pancreatic Beta Cells*

    PubMed Central

    Humphrey, Rohan K.; Newcomb, Christina J.; Yu, Shu-Mei A.; Hao, Ergeng; Yu, Doris; Krajewski, Stan; Du, Keyong; Jhala, Ulupi S.

    2010-01-01

    Mixed lineage kinases (MLKs) have been implicated in cytokine signaling as well as in cell death pathways. Our studies show that MLK3 is activated in leukocyte-infiltrated islets of non-obese diabetic mice and that MLK3 activation compromises mitochondrial integrity and induces apoptosis of beta cells. Using an ex vivo model of islet-splenocyte co-culture, we show that MLK3 mediates its effects via the pseudokinase TRB3, a mammalian homolog of Drosophila Tribbles. TRB3 expression strongly coincided with conformational change and mitochondrial translocation of BAX. Mechanistically, MLK3 directly interacted with and stabilized TRB3, resulting in inhibition of Akt, a strong suppressor of BAX translocation and mitochondrial membrane permeabilization. Accordingly, attenuation of MLK3 or TRB3 expression each prevented cytokine-induced BAX conformational change and attenuated the progression to apoptosis. We conclude that MLKs compromise mitochondrial integrity and suppress cellular survival mechanisms via TRB3-dependent inhibition of Akt. PMID:20421299

  5. Mitochondrial division inhibitor 1 (Mdivi-1) offers neuroprotection through diminishing cell death and improving functional outcome in a mouse model of traumatic brain injury.

    PubMed

    Wu, Qiong; Xia, Shui-Xiu; Li, Qian-Qian; Gao, Yuan; Shen, Xi; Ma, Lu; Zhang, Ming-Yang; Wang, Tao; Li, Yong-Sheng; Wang, Zu-Feng; Luo, Cheng-Liang; Tao, Lu-Yang

    2016-01-01

    Mitochondria dysfunction, an enormous potential crisis, has attracted increasing attention. Disturbed regulation of mitochondrial dynamics, the balance of mitochondrial fusion and fission, has been implicated in neurodegenerative diseases, such as Parkinson׳s disease and cerebral ischemia/reperfusion. However the role of mitochondrial dynamics in traumatic brain injury (TBI) has not been illuminated. The aim of the present study was to investigate the role of Mdivi-1, a small molecule inhibitor of a key mitochondrial fission protein dynamin-related protein 1 (Drp1), in TBI-induced cell death and functional outcome deficits. Protein expression of Drp1 was first investigated. Outcome parameters consist of motor test, Morris water maze, brain edema and lesion volume. Cell death was detected by propidium iodide (PI) labeling, and mitochondrial morphology was assessed using transmission electron microscopy. In addition, the expression of apoptosis-related proteins cytochrome c (cyt-c) and caspase-3 was investigated. Our findings showed that up-regulation of Drp1 expression started at 1h post-TBI and peaked at 24 h, but inhibition of Drp1 by Mdivi-1 significantly alleviated TBI-induced behavioral deficits and brain edema, reduced morphological change of mitochondria, and decreased TBI-induced cell death together with lesion volume. Moreover, treatment with Mdivi-1 remarkably inhibited TBI-induced the release of cyt-c from mitochondria to cytoplasm, and activation of caspase-3 at 24 h after TBI. Taken together, these data imply that inhibition of Drp1 may help attenuate TBI-induced functional outcome and cell death through maintaining normal mitochondrial morphology and inhibiting activation of apoptosis.

  6. Extracellular Mitochondrial DNA is Generated by Fibroblasts and Predicts Death in Idiopathic Pulmonary Fibrosis.

    PubMed

    Ryu, Changwan; Sun, Huanxing; Gulati, Mridu; Herazo-Maya, Jose; Chen, Yonglin; Osafo-Addo, Awo; Brandsdorfer, Caitlin; Winkler, Julia; Blaul, Christina; Faunce, Jaden; Pan, Hongyi; Woolard, Tony; Tzouvelekis, Argyrios; Antin-Ozerkis, Danielle E; Puchalski, Jonathan T; Slade, Martin; Gonzalez, Anjelica L; Bogenhagen, Daniel F; Kirillov, Varvara; Feghali-Bostwick, Carol; Gibson, Kevin; Lindell, Kathleen; Herzog, Raimund I; Dela Cruz, Charles S; Mehal, Wajahat; Kaminski, Naftali; Herzog, Erica L; Trujillo, Glenda

    2017-08-07

    Idiopathic pulmonary fibrosis (IPF) involves the accumulation of alpha smooth muscle actin (αSMA) expressing myofibroblasts arising from interactions with soluble mediators such as transforming growth factor beta-1 (TGFβ1), and mechanical influences such as local tissue stiffness. While IPF fibroblasts are enriched for aerobic glycolysis and innate immune receptor activation, innate immune ligands related to mitochondrial injury, such as extracellular mitochondrial DNA (mtDNA) have not been identified in IPF. We aimed to define an association between mtDNA and fibroblast responses in IPF. We evaluated the response of normal human lung fibroblasts (NHLFs) to stimulation with mtDNA and determined whether the glycolytic reprogramming that occurs in response to TGFβ1 stimulation and direct contact with stiff substrates, and spontaneously in IPF fibroblasts, is associated with excessive levels of mtDNA. We measured mtDNA concentrations in bronchoalveolar lavage (BAL) from subjects with and without IPF, and in plasma samples from two longitudinal IPF cohorts and demographically-matched controls. Measurements and Main Results Exposure to mtDNA augments αSMA expression in NHLFs. The metabolic changes in NHLFs that are induced by interactions with TGFβ1 or stiff hydrogels are accompanied by the accumulation of extracellular mtDNA. These findings replicate the spontaneous phenotype of IPF fibroblasts. mtDNA concentrations are increased in IPF BAL and plasma, and in the latter compartment, they display robust associations with disease progression and reduced event-free survival. These findings demonstrate a previously unrecognized and highly novel connection between metabolic reprogramming, mtDNA, fibroblast activation, and clinical outcomes that provides new insight into IPF.

  7. The involvement of mitochondrial apoptotic pathway in eugenol-induced cell death in human glioblastoma cells.

    PubMed

    Liang, Wei-Zhe; Chou, Chiang-Ting; Hsu, Shu-Shong; Liao, Wei-Chuan; Shieh, Pochuen; Kuo, Daih-Huang; Tseng, Hui-Wen; Kuo, Chun-Chi; Jan, Chung-Ren

    2015-01-05

    Eugenol, a natural phenolic constituent of clove oil, has a wide range of applications in medicine as a local antiseptic and anesthetic. However, the effect of eugenol on human glioblastoma is unclear. This study examined whether eugenol elevated intracellular free Ca(2+) levels ([Ca(2+)]i) and induced apoptosis in DBTRG-05MG human glioblastoma cells. Eugenol evoked [Ca(2+)]i rises which were reduced by removing extracellular Ca(2+). Eugenol-induced [Ca(2+)]i rises were not altered by store-operated Ca(2+) channel blockers but were inhibited by the PKC inhibitor GF109203X and the transient receptor potential channel melastatin 8 (TRPM8) antagonist capsazepine. In Ca(2+)-free medium, pretreatment with the endoplasmic reticulum Ca(2+) pump inhibitor thapsigargin (TG) or 2,5-di-tert-butylhydroquinone (BHQ) abolished eugenol-induced [Ca(2+)]i rises. The phospholipase C (PLC) inhibitor U73122 significantly inhibited eugenol-induced [Ca(2+)]i rises. Eugenol killed cells which were not reversed by prechelating cytosolic Ca(2+) with 1,2-bis(2-aminophenoxy) ethane-N,N,N',N'-tetraacetic acid-acetoxymethyl ester (BAPTA-AM). Eugenol induced apoptosis through increasing reactive oxygen species (ROS) production, decreasing mitochondrial membrane potential, releasing cytochrome c and activating caspase-9/caspase-3. Together, in DBTRG-05MG cells, eugenol evoked [Ca(2+)]i rises by inducing PLC-dependent release of Ca(2+) from the endoplasmic reticulum and caused Ca(2+) influx possibly through TRPM8 or PKC-sensitive channels. Furthermore, eugenol induced the mitochondrial apoptotic pathway.

  8. Estimation of age at death based on quantitation of the 4977-bp deletion of human mitochondrial DNA in skeletal muscle.

    PubMed

    Meissner, C; von Wurmb, N; Schimansky, B; Oehmichen, M

    1999-11-01

    The 4977-bp deletion in human mitochondrial DNA (mtDNA) is known to accumulate in various tissues with age. Since this deletion in mtDNA correlates closest with age in muscle tissue, iliopsoas muscle tissue was taken at autopsy from 50 persons aged 24-97 years to determine whether age at death can be estimated based on the amount of the 4977-bp deletion in skeletal muscle. Total DNA (nuclear and mtDNA) was extracted from 100 mg tissue and the 4977-bp deletion quantified using a kinetic polymerase chain reaction (PCR) followed by visualization of the products on silver stained polyacrylamide gels. The amount of the 4977-bp deletion of mtDNA ranged from 0.00049% to 0.14% depending on age, with a correlation coefficient of r = 0.83 (P = 0.0001). In forensic practice this method can aid in the estimation of age at death with a relatively wide confidence interval, thus enabling a discrimination between young and elderly persons in the identification of human remains based solely on skeletal muscle.

  9. [Matricide in Caenorhabditis elegans as an example of programmed death of whole animal organism: role of mitochondrial oxidative stress].

    PubMed

    Pestov, N B; Shakhparonov, M I; Kornienko, T V

    2011-01-01

    Nematodes Caenorhabditis elegans is a widely used model for studying the genetic and molecular mechanisms that determine the lifespan. The choice between the two vital program strategies of adult hermaphrodite C. elegans--normal aging and matritcide (programmed death), is largely affected by the availability of food, and also depends on a variety of stresses. We decided to test the hypothesis that, in line with the phenoptosis theory, oxidative stress increases probability of the programmed death of the whole organism. It is shown that high concentrations of paraquat (strong mitochondrial stress) significantly increase the propensity to matricide. In this case, mutants with a reduced antioxidant capacity of mitochondria (nnt) are more sensitive to the reagent. On the other hand, the concentrations of paraquat, necessary for the manifestation of this effect, are toxic to the offspring, while at low concentrations matricide of mutant worms and wild-type worms occurs with equal frequency. Therefore it is safe to conclude that oxidative stress is not the key initiating mechanism of matricide under normal conditions.

  10. STR and mitochondrial DNA SNP typing of a bone marrow transplant recipient after death in a fire.

    PubMed

    Seo, Yasuhisa; Uchiyama, Daisuke; Kuroki, Kohji; Kishida, Tetsuko

    2012-11-01

    Personal identification of a house fire victim is described. About 5 years prior to death, the victim had been underwent bone marrow transplantation (BMT) with a graft from an unrelated donor as treatment for acute myelogenous leukemia. Clinically, the victim had been in remission at the time of death. Typing of STRs and sequencing of mitochondrial DNA (mtDNA) were performed using blood from the heart as well as several soft (psoas major muscle, uterine muscle and mucous membrane of the urinary bladder) and hard (costal cartilage and nail) tissues. STR genotypes and amelogenin from each of the tissue samples were successfully typed, and the parentage was identified. The blood STR types demonstrated no relationship with those from other tissues. None of the blood STR loci showed extra peaks arising from those of the recipient. Therefore, the blood stem cells were assumed to have been altered to those of the donor. The genotypes of mtDNA control regions were also examined. The electropherogram of hypervariable region II (nucleotide positions 29-408) obtained from the blood revealed a similar length heteroplasmy, suggesting microchimerism of the blood. Sequence analysis of mtDNA might be applicable as a more sensitive method for determination of chimerisms after BMT.

  11. Systems modelling methodology for the analysis of apoptosis signal transduction and cell death decisions.

    PubMed

    Rehm, Markus; Prehn, Jochen H M

    2013-06-01

    Systems biology and systems medicine, i.e. the application of systems biology in a clinical context, is becoming of increasing importance in biology, drug discovery and health care. Systems biology incorporates knowledge and methods that are applied in mathematics, physics and engineering, but may not be part of classical training in biology. We here provide an introduction to basic concepts and methods relevant to the construction and application of systems models for apoptosis research. We present the key methods relevant to the representation of biochemical processes in signal transduction models, with a particular reference to apoptotic processes. We demonstrate how such models enable a quantitative and temporal analysis of changes in molecular entities in response to an apoptosis-inducing stimulus, and provide information on cell survival and cell death decisions. We introduce methods for analyzing the spatial propagation of cell death signals, and discuss the concepts of sensitivity analyses that enable a prediction of network responses to disturbances of single or multiple parameters.

  12. Pro-Death Signaling of GRK2 in Cardiac Myocytes after Ischemic Stress Occurs via ERK-Dependent, Hsp90-Mediated Mitochondrial Targeting

    PubMed Central

    Chen, Mai; Sat, Priscila Y.; Chuprun, J. Kurt; Peroutka, Raymond J.; Otis, Nicholas J.; Ibetti, Jessica; Pan, Shi; Sheu, Shey-Shing; Gao, Erhe; Koch, Walter J.

    2013-01-01

    Rationale GRK2 is abundantly expressed in the heart and its expression and activity is increased in injured or stressed myocardium. This up-regulation has been shown to be pathological. GRK2 can promote cell death in ischemic myocytes and its inhibition by a peptide comprised of the last 194 amino acids of GRK2 (known as βARKct) is cardioprotective. Objective The aim of this study was to elucidate the signaling mechanism that accounts for the pro-death signaling seen in the presence of elevated GRK2 and the cardioprotection afforded by the βARKct. Methods and Results Using in vivo mouse models of ischemic injury and also cultured myocytes we found that GRK2 localizes to mitochondria providing novel insight into GRK2-dependent pathophysiological signaling mechanisms. Mitochondrial localization of GRK2 in cardiomyocytes was enhanced after ischemic and oxidative stress, events that induced pro-death signaling. Localization of GRK2 to mitochondria was dependent upon phosphorylation at residue Ser670 within its extreme carboxyl-terminus by extracellular signal-regulated kinases (ERKs), resulting in enhanced GRK2 binding to heat shock protein 90 (Hsp90), which chaperoned GRK2 to mitochondria. Mechanistic studies invivo and invitro showed that ERK regulation of the C-tail of GRK2 was an absolute requirement for stress-induced, mitochondrial-dependent pro-death signaling, and blocking this led to cardioprotection. Elevated mitochondrial GRK2 also caused increased Ca2+-induced opening of the mitochondrial permeability transition pore, a key step in cellular injury. Conclusions We identify GRK2 as a pro-death kinase in the heart acting in a novel manner through mitochondrial localization via ERK regulation. PMID:23467820

  13. Neonatal hypoxic-ischaemic encephalopathy: most deaths followed end-of-life decisions within three days of birth.

    PubMed

    Garcia-Alix, Alfredo; Arnaez, Juan; Cortes, Veronica; Girabent-Farres, Monserrat; Arca, Gemma; Balaguer, Albert

    2013-12-01

    To investigate the circumstances surrounding end-of life decisions (EoL) of infants with hypoxic-ischaemic encephalopathy (HIE) and examine changes over a 10-year period. Retrospective chart review of all infants with HIE who died during 2000-2004 and 2005-2009 in a Level III Neonatal Intensive Care Unit in Madrid, Spain. Of 70 infants with HIE, 18 died during the neonatal period. The mean age of death was 64.4 ± 51 h. In 17 of the 18 infants (94%), death was preceded by an EoL decision, four after withholding therapy (WH) and 13 after withdrawal therapy (WDT). All infants with WH were previously stable and without respiratory support, while all 13 infants in the WDT group had respiratory support and three were unstable. The age of death was greater in the WH group than the WDT group (122 ± 63 h vs 50 ± 34; p < 0.001). After the EoL decision, 11 (65%) infants received sedatives. There were no differences between the time periods. In our cohort, most deaths in newborns with HIE were preceded by EoL decisions mainly within the first 3 days after birth. We did not find changes over the first decade of the 21st century, and death was mainly determined by WDT. ©2013 Foundation Acta Paediatrica. Published by John Wiley & Sons Ltd.

  14. Thiosemicarbazone p-Substituted Acetophenone Derivatives Promote the Loss of Mitochondrial Δψ, GSH Depletion, and Death in K562 Cells

    PubMed Central

    Pessoto, Felipe S.; Yokomizo, Cesar H.; Prieto, Tatiana; Fernandes, Cleverton S.; Silva, Alan P.; Kaiser, Carlos R.; Basso, Ernani A.; Nantes, Iseli L.

    2015-01-01

    A series of thiosemicarbazone (TSC) p-substituted acetophenone derivatives were synthesized and chemically characterized. The p-substituents appended to the phenyl group of the TSC structures were hydrogen, fluor, chlorine, methyl, and nitro, producing compounds named TSC-H, TSC-F, TSC-Cl, TSC-Me, and TSC-NO2, respectively. The TSC compounds were evaluated for their capacity to induce mitochondrial permeability, to deplete mitochondrial thiol content, and to promote cell death in the K562 cell lineage using flow cytometry and fluorescence microscopy. TSC-H, TSC-F, and TSC-Cl exhibited a bell-shaped dose-response curve for the induction of apoptosis in K562 cells due to the change from apoptosis to necrosis as the principal mechanism of cell death at the highest tested doses. TSC-Me and TSC-NO2 exhibited a typical dose-response profile, with a half maximal effective concentration of approximately 10 µM for cell death. Cell death was also evaluated using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay, which revealed lower toxicity of these compounds for peripheral blood mononuclear cells than for K562 cells. The possible mechanisms leading to cell death are discussed based on the observed effects of the new TSC compounds on the cellular thiol content and on mitochondrial bioenergetics. PMID:26075034

  15. Mitochondrial E3 Ubiquitin Protein Ligase 1 Mediates Cigarette Smoke-Induced Endothelial Cell Death and Dysfunction.

    PubMed

    Kim, Sun-Yong; Kim, Hyo Jeong; Park, Mi Kyeong; Huh, Jin Won; Park, Hye Yun; Ha, Sang Yun; Shin, Joo-Ho; Lee, Yun-Song

    2016-02-01

    By virtue of the critical roles of Akt in vascular endothelial cell (EC) survival and function, cigarette smoke-induced Akt reduction may contribute to EC death and dysfunction in smokers' lungs. One of the negative Akt regulatory mechanisms is K48-linked Akt ubiquitination and subsequent proteasomal degradation. Here, we assessed the involvement of mitochondrial E3 ubiquitin protein ligase 1 (MUL1), recently revealed as a novel Akt ubiquitin E3 ligase, in cigarette smoke-induced Akt ubiquitination and its contribution to pulmonary EC death and dysfunction. In human lung microvascular ECs (HLMVECs), cigarette smoke extract (CSE) noticeably elevated MUL1 expression and K48-linked Akt ubiquitination, whereas Akt, p-Akt, eNOS, and p-eNOS levels were decreased. MUL1 knockdown suppressed CSE-induced Akt ubiquitination/degradation and cytoplasmic reductions of Akt and p-Akt. Furthermore, MUL1 knockdown attenuated reductions of eNOS and p-eNOS and alleviated EC survival, migration, and tube formation in the presence of CSE exposure. In addition, overexpression of K284R Akt, a mutant for a MUL1-ubiquitination site, produced similar effects. In HLMVECs exposed to CSE, Akt-MUL1 interaction was increased in coimmunoprecipitation and in situ proximity ligation assays. Similarly, the proximity ligation assay signals were elevated in rat lungs exposed to cigarette smoke for 3 months, during which Mul1 levels were noticeably increased. Finally, we found that CSE-mediated MUL1 induction in HLMVECs is mediated by retinoic acid receptor-related orphan receptor α. Taken together, these data suggest that cigarette smoke-induced MUL1 elevation mediates Akt ubiquitination/degradation, potentially leading to pulmonary EC death and functional impairment.

  16. Melatonin attenuates the mitochondrial translocation of mitochondrial fission proteins and Bax, cytosolic calcium overload and cell death in methamphetamine-induced toxicity in neuroblastoma SH-SY5Y cells.

    PubMed

    Parameyong, Arisa; Govitrapong, Piyarat; Chetsawang, Banthit

    2015-09-01

    Methamphetamine (METH) is an addictive drug that can cause toxicity and degeneration in the brain. Several pieces of evidence have demonstrated that METH toxicity results in increases in oxidative stress that regulate an intracellular signaling cascade that leads to cell death. Recently, several studies have emphasized that the overload of cytosolic calcium levels and mitochondrial fission into a small mitochondrial structure is involved in cell death processes. In the present study, we aimed to investigate the effects of METH toxicity on cytosolic calcium overload and mitochondrial fission in neuroblastoma SH-SY5Y cells. Additionally, the protective effect of melatonin against METH-induced toxicity was also investigated. The results of the present study demonstrated that METH significantly decreases cell viability and increases the levels of mitochondrial fission (Fis1 and Drp1) proteins and pro-apoptotic protein, Bax in isolated mitochondria. The levels of Drp1 in the cytosol of METH-treated cells had no significant differences compared to the control untreated cells. METH also significantly increased the cytosolic calcium levels. Melatonin reversed the toxic effects of METH by restoring cell viability and inhibiting the increase in mitochondrial Fis1 levels and the mitochondrial translocation of Drp1 and Bax. Additionally, melatonin was able to reduce the METH-induced increase in cytosolic calcium levels and fragmented mitochondria into small globular structures in SH-SY5Y cells. The results of the present study demonstrate the potential abilities of melatonin to maintain the homeostasis of mitochondrial dynamics and cytosolic calcium levels in METH-induced toxicity in neuronal cells.

  17. Mechanical stretch exacerbates the cell death in SH-SY5Y cells exposed to paraquat: mitochondrial dysfunction and oxidative stress.

    PubMed

    Wang, Fang; Franco, Rodrigo; Skotak, Maciej; Hu, Gang; Chandra, Namas

    2014-03-01

    Recent studies suggest that traumatic brain injury (TBI) and pesticide exposure increase the risk of Parkinson's disease (PD), but the molecular mechanisms involved remain unclear. Using an in vitro model of TBI, we evaluated the role of mitochondrial membrane potential (ΔΨm) and mitochondrial reactive oxygen species (ROS) induced by stretch on dopaminergic cell death upon paraquat exposure. Human dopaminergic neuroblastoma SH-SY5Y cells grown on silicone membrane were stretched at mild (25%) and moderate (50%) strain prior to paraquat exposure. We observed that moderate stretch (50% strain) increased the vulnerability of cells to paraquat demonstrated by the loss of plasma membrane integrity (propidium iodide-uptake) and decreased mitochondrial activity (MTT assay). Mitochondrial depolarization occurred immediately after stretch, while mitochondrial ROS increased rapidly and remained elevated for up to 4h after the stretch injury. Intracellular glutathione (GSH) stores were also transiently decreased immediately after moderate stretch. Cells treated with paraquat, or moderate stretch exhibited negligible mitochondrial depolarization at 48h post treatment, whereas in cells stretched prior to paraquat exposure, a significant mitochondrial depolarization occurred compared to samples exposed to either paraquat or stretch. Moderate stretch also increased mitochondrial ROS formation, as well as exacerbated intracellular GSH loss induced by paraquat. Overexpression of manganese superoxide dismutase (MnSOD) markedly diminished the deleterious effects of stretch in paraquat neurotoxicity. Our findings demonstrate that oxidative stress induced by mitochondrial dysfunction plays a critical role in the synergistic toxic effects of stretch (TBI) and pesticide exposure. Mitigation of oxidative stress via mitochondria-targeted antioxidants appears an attractive route for treatment of neurodegeneration mediated by TBI.

  18. Mechanical stretch exacerbates the cell death in SH-SY5Y cells exposed to paraquat: mitochondrial dysfunction and oxidative stress

    PubMed Central

    Wang, Fang; Franco, Rodrigo; Skotak, Maciej; Hu, Gang; Chandra, Namas

    2014-01-01

    Recent studies suggest that traumatic brain injury (TBI) and pesticide exposure increase the risk of Parkinson’s disease (PD), but the molecular mechanisms involved remain unclear. Using an in vitro model of TBI, we evaluated the role of mitochondrial membrane potential (ΔΨm) and mitochondrial reactive oxygen species (ROS) induced by stretch on dopaminergic cell death upon paraquat exposure. Human dopaminergic neuroblastoma SH-SY5Y cells grown on silicone membrane were stretched at mild (25%) and moderate (50%) strain prior to paraquat exposure. We observed that moderate stretch (50% strain) increased the vulnerability of cells to paraquat demonstrated by the loss of plasma membrane integrity (propidium iodide-uptake) and decreased mitochondrial activity (MTT assay). Mitochondrial depolarization occurred immediately after stretch, while mitochondrial ROS increased rapidly and remained elevated for up to 4 h after the stretch injury. Intracellular glutathione (GSH) stores were also transiently decreased immediately after moderate stretch. Cells treated with paraquat, or moderate stretch exhibited negligible mitochondrial depolarization at 48 h post treatment, whereas in cells stretched prior to paraquat exposure, a significant mitochondrial depolarization occurred compared to samples exposed to either paraquat or stretch. Moderate stretch also increased mitochondrial ROS formation, as well as exacerbated intracellular GSH loss induced by paraquat. Overexpression of manganese superoxide dismutase (MnSOD) markedly diminished the deleterious effects of stretch in paraquat neurotoxicity. Our findings demonstrate that oxidative stress induced by mitochondrial dysfunction plays a critical role in the synergistic toxic effects of stretch (TBI) and pesticide exposure. Mitigation of oxidative stress via mitochondria-targeted antioxidants appears an attractive route for treatment of neurodegeneration mediated by TBI. PMID:24462953

  19. pCramoll and rCramoll lectins induce cell death in human prostate adenocarcinoma (PC-3) cells by impairment of mitochondrial homeostasis.

    PubMed

    de Oliveira Figueirôa, Evellyne; Aranda-Souza, Mary Ângela; Varejão, Nathalia; Rossato, Franco Aparecido; Costa, Rute Alves Pereira; Figueira, Tiago Rezende; da Silva, Luís Cláudio Nascimento; Castilho, Roger Frigério; Vercesi, Aníbal Eugênio; Dos Santos Correia, Maria Tereza

    2017-09-01

    Lectins from Cratylia mollis seed have shown potential in vivo antitumor actions, however the mechanism have not yet been addressed. Here we evaluated the antitumor effects of native (pCramoll) and recombinant (rCramoll) lectins from C. mollis against human prostate adenocarcinoma (PC-3) cells. The viability of PC-3 cells was analyzed with the MTT assay and ANNEXIN V/propidium iodide staining. The actions of pCramoll or rCramoll on mitochondrial superoxide production, free cytosolic calcium concentration and mitochondrial membrane potential were evaluated using fluorescent probes (MitoSox Red, Fura 2-AM and safranin O, respectively). pCramoll and rCramoll reduced the viability of PC-3 cells in a dose-dependent manner. Both lectins increased the generation of mitochondrial superoxide as well as the concentration of cytosolic calcium. These changes led to a decrease in oxidative phosphorylation, which impaired the formation of ATP. The resulting cell death was not blocked by MPT (mitochondrial permeability transition) inhibitors (Debio 025 or bongkrekic acid). Thus pCramoll and rCramoll promote PC-3 cell death through calcium signaling, leading to mitochondrial collapse. This work provides more insights into the action of pCramoll and rCramoll against cancer cells. These lectins represent valuable tools for biomedical research. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. Targeting mitochondrial cell death pathway to overcome drug resistance with a newly developed iron chelate.

    PubMed

    Ganguly, Avishek; Basu, Soumya; Chakraborty, Paramita; Chatterjee, Shilpak; Sarkar, Avijit; Chatterjee, Mitali; Choudhuri, Soumitra Kumar

    2010-06-22

    Multi drug resistance (MDR) or cross-resistance to multiple classes of chemotherapeutic agents is a major obstacle to successful application of chemotherapy and a basic problem in cancer biology. The multidrug resistance gene, MDR1, and its gene product P-glycoprotein (P-gp) are an important determinant of MDR. Therefore, there is an urgent need for development of novel compounds that are not substrates of P-glycoprotein and are effective against drug-resistant cancer. In this present study, we have synthesized a novel, redox active Fe (II) complex (chelate), iron N- (2-hydroxy acetophenone) glycinate (FeNG). The structure of the complex has been determined by spectroscopic means. To evaluate the cytotoxic effect of FeNG we used doxorubicin resistant and/or sensitive T lymphoblastic leukemia cells and show that FeNG kills both the cell types irrespective of their MDR phenotype. Moreover, FeNG induces apoptosis in doxorubicin resistance T lymphoblastic leukemia cell through mitochondrial pathway via generation reactive oxygen species (ROS). This is substantiated by the fact that the antioxidant N-acetyl-cysteine (NAC) could completely block ROS generation and, subsequently, abrogated FeNG induced apoptosis. Therefore, FeNG induces the doxorubicin resistant T lymphoblastic leukemia cells to undergo apoptosis and thus overcome MDR. Our study provides evidence that FeNG, a redox active metal chelate may be a promising new therapeutic agent against drug resistance cancers.

  1. Mitochondrial proteomics of the acetic acid - induced programmed cell death response in a highly tolerant Zygosaccharomyces bailii - derived hybrid strain

    PubMed Central

    Guerreiro, Joana F.; Sampaio-Marques, Belém; Soares, Renata; Coelho, Ana V.; Leão, Cecília; Ludovico, Paula; Sá-Correia, Isabel

    2016-01-01

    Very high concentrations of acetic acid at low pH induce programmed cell death (PCD) in both the experimental model Saccharomyces cerevisiae and in Zygosaccharomyces bailii, the latter being considered the most problematic acidic food spoilage yeast due to its remarkable intrinsic resistance to this food preservative. However, while the mechanisms underlying S. cerevisiae PCD induced by acetic acid have been previously examined, the corresponding molecular players remain largely unknown in Z. bailii. Also, the reason why acetic acid concentrations known to be necrotic for S. cerevisiae induce PCD with an apoptotic phenotype in Z. bailii remains to be elucidated. In this study, a 2-DE-based expression mitochondrial proteomic analysis was explored to obtain new insights into the mechanisms involved in PCD in the Z. bailii derived hybrid strain ISA1307. This allowed the quantitative assessment of expression of protein species derived from each of the parental strains, with special emphasis on the processes taking place in the mitochondria known to play a key role in acetic acid - induced PCD. A marked decrease in the content of proteins involved in mitochondrial metabolism, in particular, in respiratory metabolism (Cor1, Rip1, Lpd1, Lat1 and Pdb1), with a concomitant increase in the abundance of proteins involved in fermentation (Pdc1, Ald4, Dld3) was registered. Other differentially expressed identified proteins also suggest the involvement of the oxidative stress response, protein translation, amino acid and nucleotide metabolism, among other processes, in the PCD response. Overall, the results strengthen the emerging concept of the importance of metabolic regulation of yeast PCD. PMID:28357336

  2. Synthetic tambjamine analogues induce mitochondrial swelling and lysosomal dysfunction leading to autophagy blockade and necrotic cell death in lung cancer.

    PubMed

    Rodilla, Ananda M; Korrodi-Gregório, Luís; Hernando, Elsa; Manuel-Manresa, Pilar; Quesada, Roberto; Pérez-Tomás, Ricardo; Soto-Cerrato, Vanessa

    2017-02-15

    Current pharmacological treatments for lung cancer show very poor clinical outcomes, therefore, the development of novel anticancer agents with innovative mechanisms of action is urgently needed. Cancer cells have a reversed pH gradient compared to normal cells, which favours cancer progression by promoting proliferation, metabolic adaptation and evasion of apoptosis. In this regard, the use of ionophores to modulate intracellular pH appears as a promising new therapeutic strategy. Indeed, there is a growing body of evidence supporting ionophores as novel antitumour drugs. Despite this, little is known about the implications of pH deregulation and homeostasis imbalance triggered by ionophores at the cellular level. In this work, we deeply analyse for the first time the anticancer effects of tambjamine analogues, a group of highly effective anion selective ionophores, at the cellular and molecular levels. First, their effects on cell viability were determined in several lung cancer cell lines and patient-derived cancer stem cells, demonstrating their potent cytotoxic effects. Then, we have characterized the induced lysosomal deacidification, as well as, the massive cytoplasmic vacuolization observed after treatment with these compounds, which is consistent with mitochondrial swelling. Finally, the activation of several proteins involved in stress response, autophagy and apoptosis was also detected, although they were not significantly responsible for the cell death induced. Altogether, these evidences suggest that tambjamine analogues provoke an imbalance in cellular ion homeostasis that triggers mitochondrial dysfunction and lysosomal deacidification leading to a potent cytotoxic effect through necrosis in lung cancer cell lines and cancer stem cells.

  3. Intracellular zinc flux causes reactive oxygen species mediated mitochondrial dysfunction leading to cell death in Leishmania donovani

    PubMed Central

    Kumari, Anjali; Singh, Krishn Pratap; Mandal, Abhishek; Paswan, Ranjeet Kumar; Sinha, Preeti; Das, Pradeep; Ali, Vahab; Bimal, Sanjiva

    2017-01-01

    Leishmaniasis caused by Leishmania parasite is a global threat to public health and one of the most neglected tropical diseases. Therefore, the discovery of novel drug targets and effective drug is a major challenge and an important goal. Leishmania is an obligate intracellular parasite that alternates between sand fly and human host. To survive and establish infections, Leishmania parasites scavenge and internalize nutrients from the host. Nevertheless, host cells presents mechanism like nutrient restriction to inhibit microbial growth and control infection. Zinc is crucial for cellular growth and disruption in its homeostasis hinders growth and survival in many cells. However, little is known about the role of zinc in Leishmania growth and survival. In this study, the effect of zinc on the growth and survival of L.donovani was analyzed by both Zinc-depletion and Zinc-supplementation using Zinc-specific chelator N, N, N', N'–tetrakis (2-pyridylmethyl) ethylenediamine (TPEN) and Zinc Sulfate (ZnSO4). Treatment of parasites with TPEN rather than ZnSO4 had significantly affected the growth in a dose- and time-dependent manner. The pre-treatment of promastigotes with TPEN resulted into reduced host-parasite interaction as indicated by decreased association index. Zn depletion resulted into flux in intracellular labile Zn pool and increased in ROS generation correlated with decreased intracellular total thiol and retention of plasma membrane integrity without phosphatidylserine exposure in TPEN treated promastigotes. We also observed that TPEN-induced Zn depletion resulted into collapse of mitochondrial membrane potential which is associated with increase in cytosolic calcium and cytochrome-c. DNA fragmentation analysis showed increased DNA fragments in Zn-depleted cells. In summary, intracellular Zn depletion in the L. donovani promastigotes led to ROS-mediated caspase-independent mitochondrial dysfunction resulting into apoptosis-like cell death. Therefore

  4. Evidence for caspase-dependent programmed cell death along with repair processes in affected skeletal muscle fibres in patients with mitochondrial disorders.

    PubMed

    Guglielmi, Valeria; Vattemi, Gaetano; Chignola, Roberto; Chiarini, Anna; Marini, Matteo; Dal Prà, Ilaria; Di Chio, Marzia; Chiamulera, Cristiano; Armato, Ubaldo; Tomelleri, Giuliano

    2016-02-01

    Mitochondrial disorders are heterogeneous multisystemic disorders due to impaired oxidative phosphorylation causing defective mitochondrial energy production. Common histological hallmarks of mitochondrial disorders are RRFs (ragged red fibres), muscle fibres with abnormal focal accumulations of mitochondria. In contrast with the growing understanding of the genetic basis of mitochondrial disorders, the fate of phenotypically affected muscle fibres remains largely unknown. We investigated PCD (programmed cell death) in muscle of 17 patients with mitochondrial respiratory chain dysfunction. We documented that in affected muscle fibres, nuclear chromatin is condensed in lumpy irregular masses and cytochrome c is released into the cytosol to activate, along with Apaf-1 (apoptotic protease-activating factor 1), caspase 9 that, in turn, activates effector caspase 3, caspase 6, and caspase 7, suggesting the execution of the intrinsic apoptotic pathway. Whereas active caspase 3 underwent nuclear translocation, AIF (apoptosis-inducing factor) mainly stayed within mitochondria, into which an up-regulated Bax is relocated. The significant increase in caspase 2, caspase 3 and caspase 6 activity strongly suggest that the cell death programme is caspase-dependent and the activation of caspase 2 together with PUMA (p53 up-regulated modulator of apoptosis) up-regulation point to a role for oxidative stress in triggering the intrinsic pathway. Concurrently, in muscle of patients, the number of satellite cells was significantly increased and myonuclei were detected at different stages of myogenic differentiation, indicating that a reparative programme is ongoing in muscle of patients with mitochondrial disorders. Together, these data suggest that, in patients with mitochondrial disorders, affected muscle fibres are trapped in a mitochondria-regulated caspase-dependent PCD while repairing events take place. © 2016 Authors; published by Portland Press Limited.

  5. 5-Aminolevulinic acid enhances mitochondrial stress upon ionizing irradiation exposure and increases delayed production of reactive oxygen species and cell death in glioma cells.

    PubMed

    Ueta, Kunihiro; Yamamoto, Junkoh; Tanaka, Tohru; Nakano, Yoshiteru; Kitagawa, Takehiro; Nishizawa, Shigeru

    2017-02-01

    5-Aminolevulinic acid (5-ALA) can accumulate protoporphyrin IX (PpIX) in tumour cell mitochondria and is well known for its utility in fluorescence-guided resection of malignant gliomas as a live molecular marker. Previously, we and other authors demonstrated that 5-ALA has a radiosensitizing effect for tumours. In the present study, we aimed to investigate the mechanism underlying the radiosensitizing effect of 5-ALA by focusing on glioma cell mitochondria. Using an enhancer (ciprofloxacin) of 5-ALA-induced PpIX accumulation, we evaluated the influence of ionizing irradiation (IR) and delayed reactive oxygen species (ROS) production 12 h after IR by colony-forming assay and flow cytometry (FCM) with different amounts of PpIX accumulation. The mitochondrial mass and mitochondrial electron transport chain (mtETC) activity were evaluated by FCM and western blot analysis. Cell death and delayed ROS production after IR in glioma cells were increased in proportion to 5-ALA-induced PpIX accumulation. Delayed ROS production enhanced by 5-ALA localized to the glioma cell mitochondria. Mitochondrial mass and mitochondrial complex III activity, among mtETC factors, were also increased 12 h after IR in glioma cells in proportion to 5-ALA-induced PpIX accumulation with some variation. These results suggest that 5-ALA enhances IR-induced mitochondrial oxidative stress and leads to increased cell death with mitochondrial changes, thereby acting as a targeting mitochondrial drug, and so‑called radiosensitizer in glioma cells.

  6. Peroxiredoxin 5 prevents amyloid-beta oligomer-induced neuronal cell death by inhibiting ERK-Drp1-mediated mitochondrial fragmentation.

    PubMed

    Kim, Bokyung; Park, Junghyung; Chang, Kyu-Tae; Lee, Dong-Seok

    2016-01-01

    Alzheimer's disease (AD), a neurodegenerative disorder, is caused by amyloid-beta oligomers (AβOs). AβOs induce cell death by triggering oxidative stress and mitochondrial dysfunction. A recent study showed that AβO-induced oxidative stress is associated with extracellular signal-regulated kinase (ERK)-dynamin related protein 1 (Drp1)-mediated mitochondrial fission. Reactive oxygen species (ROS) are regulated by antioxidant enzymes, especially peroxiredoxins (Prxs) that scavenge H2O2. These enzymes inhibit neuronal cell death induced by various neurotoxic reagents. However, it is unclear whether Prx5, which is specifically expressed in neuronal cells, protects these cells from AβO-induced damage. In this study, we found that Prx5 expression was upregulated by AβO-induced oxidative stress and that Prx5 decreased ERK-Drp1-mediated mitochondrial fragmentation and apoptosis of HT-22 neuronal cells. Prx5 expression was affected by AβO, and amelioration of oxidative stress by N-acetyl-L-cysteine decreased AβO-induced Prx5 expression. Prx5 overexpression reduced ROS as well as RNS and apoptotic cell death but Prx5 knockdown did not. In addition, Prx5 overexpression ameliorated ERK-Drp1-mediated mitochondrial fragmentation but Prx5 knockdown did not. These results indicated that inducible Prx5 expression by AβO plays a key role in inhibiting both ERK-Drp1-induced mitochondrial fragmentation and neuronal cell death by regulating oxidative stress. Thus, Prx5 may be a new therapeutic agent for treating AD.

  7. Differential effects of Bcl-2 and caspases on mitochondrial permeabilization during endogenous or exogenous reactive oxygen species-induced cell death: a comparative study of H₂O₂, paraquat, t-BHP, etoposide and TNF-α-induced cell death.

    PubMed

    Rincheval, Vincent; Bergeaud, Marie; Mathieu, Lise; Leroy, Jacqueline; Guillaume, Arnaud; Mignotte, Bernard; Le Floch, Nathalie; Vayssière, Jean-Luc

    2012-08-01

    In this study, we have compared several features of cell death triggered by classical inducers of apoptotic pathways (etoposide and tumour necrosis factor (TNF)-α) versus exogenous reactive oxygen species (ROS; hydrogen peroxide (H₂O₂), tert-butyl hydroperoxide (t-BHP)) or a ROS generator (paraquat). Our aim was to characterize relationships that exist between ROS, mitochondrial perturbations, Bcl-2 and caspases, depending on source and identity of ROS. First, we have found that these five inducers trigger oxidative stress, mitochondrial membrane permeabilization (MMP), cytochrome c (cyt c) release from mitochondria and cell death. In each case, cell death could be inhibited by several antioxidants, showing that it is primarily ROS dependent. Second, we have highlighted that during etoposide or TNF-α treatments, intracellular ROS level, MMP and cell death are all regulated by caspases and Bcl-2, with caspases acting early in the process. Third, we have demonstrated that H₂O₂-induced cell death shares many of these characteristics with etoposide and TNF-α, whereas t-BHP induces both caspase-dependent and caspase-independent cell death. Surprisingly, paraquat-induced cell death, which harbours some characteristics of apoptosis such as cyt c release and caspase-3 activation, is not modulated by Bcl-2 and caspase inhibitors, suggesting that paraquat also triggers non-apoptotic cell death signals. On the one hand, these results show that endogenous or exogenous ROS can trigger multiple cell death pathways with Bcl-2 and caspases acting differentially. On the other hand, they suggest that H₂O₂ could be an important mediator of etoposide and TNF-α-dependent cell death since these inducers trigger similar phenotypes.

  8. Peroxisome proliferator-activated receptors γ/mitochondrial uncoupling protein 2 signaling protects against seizure-induced neuronal cell death in the hippocampus following experimental status epilepticus

    PubMed Central

    2012-01-01

    Background Status epilepticus induces subcellular changes that may lead to neuronal cell death in the hippocampus. However, the mechanism of seizure-induced neuronal cell death remains unclear. The mitochondrial uncoupling protein 2 (UCP2) is expressed in selected regions of the brain and is emerged as an endogenous neuroprotective molecule in many neurological disorders. We evaluated the neuroprotective role of UCP2 against seizure-induced hippocampal neuronal cell death under experimental status epilepticus. Methods In Sprague–Dawley rats, kainic acid (KA) was microinjected unilaterally into the hippocampal CA3 subfield to induce prolonged bilateral seizure activity. Oxidized protein level, translocation of Bcl-2, Bax and cytochrome c between cytosol and mitochondria, and expression of peroxisome proliferator-activated receptors γ (PPARγ) and UCP2 were examined in the hippocampal CA3 subfield following KA-induced status epilepticus. The effects of microinjection bilaterally into CA3 area of a PPARγ agonist, rosiglitazone or a PPARγ antagonist, GW9662 on UCP2 expression, induced superoxide anion (O2· -) production, oxidized protein level, mitochondrial respiratory chain enzyme activities, translocation of Bcl-2, Bax and cytochrome c, and DNA fragmentation in bilateral CA3 subfields were examined. Results Increased oxidized proteins and mitochondrial or cytosol translocation of Bax or cytochrome c in the hippocampal CA3 subfield was observed 3–48 h after experimental status epilepticus. Expression of PPARγ and UCP2 increased 12–48 h after KA-induced status epilepticus. Pretreatment with rosiglitazone increased UCP2 expression, reduced protein oxidation, O2· - overproduction and dysfunction of mitochondrial Complex I, hindered the translocation of Bax and cytochrome c, and reduced DNA fragmentation in the CA3 subfield. Pretreatment with GW9662 produced opposite effects. Conclusions Activation of PPARγ upregulated mitochondrial UCP2 expression

  9. Cell Death and Survival Through the Endoplasmic Reticulum-Mitochondrial Axis

    PubMed Central

    Bravo-Sagua, R.; Rodriguez, A.E.; Kuzmicic, J.; Gutierrez, T.; Lopez-Crisosto, C.; Quiroga, C.; Díaz-Elizondo, J.; Chiong, M.; Gillette, T.G.; Rothermel, B.A.; Lavandero, S.

    2014-01-01

    The endoplasmic reticulum has a central role in biosynthesis of a variety of proteins and lipids. Mitochondria generate ATP, synthesize and process numerous metabolites, and are key regulators of cell death. The architectures of endoplasmic reticulum and mitochondria change continually via the process of membrane fusion, fission, elongation, degradation, and renewal. These structural changes correlate with important changes in organellar function. Both organelles are capable of moving along the cytoskeleton, thus changing their cellular distribution. Numerous studies have demonstrated coordination and communication between mitochondria and endoplasmic reticulum. A focal point for these interactions is a zone of close contact between them known as the mitochondrial–associated endoplasmic reticulum membrane (MAM), which serves as a signaling juncture that facilitates calcium and lipid transfer between organelles. Here we review the emerging data on how communication between endoplasmic reticulum and mitochondria can modulate organelle function and determine cellular fate. PMID:23228132

  10. Galangin induces human colon cancer cell death via the mitochondrial dysfunction and caspase-dependent pathway.

    PubMed

    Ha, Tae Kwun; Kim, Mi Eun; Yoon, Ju Hwa; Bae, Sung Jin; Yeom, Jihye; Lee, Jun Sik

    2013-09-01

    Galangin is a member of flavonols and found in Alpinia officinarum, galangal root, and propolis. Previous studies have demonstrated that galangin has anti-cancer effects on several cancers, including melanoma, hepatoma, and leukaemia cells. However, anti-cancer activity of galangin on human colon cancer has not been established yet. In this study, we investigated the anti-cancer effects of galangin on two types of human colon cancer cells (HCT-15 and HT-29). We found that galangin induced apoptosis and DNA condensation of human colon cancer cells in a dose-dependent manner. We also determined that galangin increased the activation of caspase-3 and -9, and release of apoptosis inducing factor from the mitochondria into the cytoplasm by Western blot analysis. In addition, galangin induced human colon cancer cell death through the alteration of mitochondria membrane potential and dysfunction. These results suggest that galangin induces apoptosis of HCT-15 and HT-29 human colon cancer cells and may prove useful in the development of therapeutic agents for human colon cancer.

  11. Programmed cell death in plants: protective effect of mitochondrial-targeted quinones.

    PubMed

    Vasil'ev, L A; Dzyubinskaya, E V; Kiselevsky, D B; Shestak, A A; Samuilov, V D

    2011-10-01

    Ubiquinone or plastoquinone covalently linked to synthetic decyltriphenylphosphonium (DTPP(+)) or rhodamine cations prevent programmed cell death (PCD) in pea leaf epidermis induced by chitosan or CN(-). PCD was monitored by recording the destruction of cell nuclei. CN(-) induced the destruction of nuclei in both epidermal cells (EC) and guard cells (GC), whereas chitosan destroyed nuclei in EC not in GC. The half-maximum concentrations for the protective effects of the quinone derivatives were within the pico- and nanomolar range. The protective effect of the quinones was removed by a protonophoric uncoupler and reduced by tetraphenylphosphonium cations. CN(-)-Induced PCD was accelerated by the tested quinone derivatives at concentrations above 10(-8)-10(-7) M. Unlike plastoquinone linked to the rhodamine cation (SkQR1), DTPP(+) derivatives of quinones suppressed menadione-induced H(2)O(2) generation in the cells. The CN(-)-induced destruction of GC nuclei was prevented by DTPP(+) derivatives in the dark not in the light. SkQR1 inhibited this process both in the dark and in the light, and its effect in the light was similar to that of rhodamine 6G. The data on the protective effect of cationic quinone derivatives indicate that mitochondria are involved in PCD in plants.

  12. Release of mitochondrial apoptogenic factors and cell death are mediated by CK2 and NADPH oxidase.

    PubMed

    Kim, Gab Seok; Jung, Joo Eun; Narasimhan, Purnima; Sakata, Hiroyuki; Yoshioka, Hideyuki; Song, Yun Seon; Okami, Nobuya; Chan, Pak H

    2012-04-01

    Activation of the NADPH oxidase subunit, NOX2, and increased oxidative stress are associated with neuronal death after cerebral ischemia and reperfusion. Inhibition of NOX2 by casein kinase 2 (CK2) leads to neuronal survival, but the mechanism is unknown. In this study, we show that in copper/zinc-superoxide dismutase transgenic (SOD1 Tg) mice, degradation of CK2α and CK2α' and dephosphorylation of CK2β against oxidative stress were markedly reduced compared with wild-type (WT) mice that underwent middle cerebral artery occlusion. Inhibition of CK2 pharmacologically or by ischemic reperfusion facilitated accumulation of poly(ADP-ribose) polymers, the translocation of apoptosis-inducing factor (AIF), and cytochrome c release from mitochondria after ischemic injury. The eventual enhancement of CK2 inhibition under ischemic injury strongly increased 8-hydroxy-2'-deoxyguanosine and phosphorylation of H2A.X. Furthermore, CK2 inhibition by tetrabromocinnamic acid (TBCA) in SOD1 Tg and gp91 knockout (KO) mice after ischemia reperfusion induced less release of AIF and cytochrome c than in TBCA-treated WT mice. Inhibition of CK2 in gp91 KO mice subjected to ischemia reperfusion did not increase brain infarction compared with TBCA-treated WT mice. These results strongly suggest that NOX2 activation releases reactive oxygen species after CK2 inhibition, triggering release of apoptogenic factors from mitochondria and inducing DNA damage after ischemic brain injury.

  13. Colistin-induced apoptosis in PC12 cells: involvement of the mitochondrial apoptotic and death receptor pathways.

    PubMed

    Jiang, Hong; Li, Jichang; Zhou, Tiezhong; Wang, Chunhua; Zhang, Hua; Wang, Hongjun

    2014-05-01

    Colistin, a cyclic cationic polypeptide antibiotic that is used to treat infections, may cause neurotoxicity. However, whether colistin can induce apoptosis and the precise mechanism of apoptosis involved in PC12 cells remains to be determined. The aim of the present study was to determine reactive oxygen species (ROS) level and DNA damage, as well as apoptotic factors such as p53, cytochrome c, Bax, Bcl-2, Fas, Fas-L and caspase family via western blotting in PC12 cells treated with colistin sulfate. The results showed that colistin sulfate increased ROS levels significantly. An increase of ROS levels induces the release of cytochrome c and DNA damage. DNA damage can activate p53, which leads to the upregulation of Bax and downregulation of Bcl-2. The imbalance of Bax/Bcl-2 promotes additional release of cytochrome c. The release of cytochrome c contributes to the activation of caspase-9 and the subsequent activation of caspase-3. An increase of Fas and Fas-L induced the activation of caspase-8 leading to the activation of caspases-3, the latter induces apoptosis. Therefore, these results demonstrate that the apoptotic pathway of colistin-induced apoptosis in PC12 cells is involved in both the mitochondrial and death receptor pathway.

  14. Crosstalk between 2 organelles: Lysosomal storage of heparan sulfate causes mitochondrial defects and neuronal death in mucopolysaccharidosis III type C

    PubMed Central

    Pshezhetsky, Alexey V

    2015-01-01

    More than 30% of all lysosomal diseases are mucopolysaccharidoses, disorders affecting the enzymes needed for the stepwise degradation of glycosaminoglycans (mucopolysaccharides). Mucopolysaccharidosis type IIIC (MPS IIIC) is a severe neurologic disease caused by genetic deficiency of heparan sulfate acetyl-CoA: α-glucosaminide N-acetyltransferase (HGSNAT). Through our studies, we have cloned the gene, identified molecular defects in MPS IIIC patients and most recently completed phenotypic characterization of the first animal model of the disease, a mouse with a germline inactivation of the Hgsnat gene.1 The obtained data have led us to propose that Hgsnat deficiency and lysosomal accumulation of heparan sulfate in microglial cells followed by their activation and cytokine release result in mitochondrial dysfunction in the neurons causing their death which explains why MPS IIIC manifests primarily as a neurodegenerative disease. The goal of this addendum is to summarize data yielding new insights into the mechanism of MPS IIIC and promising novel therapeutic solutions for this and similar disorders. PMID:26459666

  15. Protein kinase CK2: structure, regulation and role in cellular decisions of life and death.

    PubMed Central

    Litchfield, David W

    2003-01-01

    Protein kinase CK2 ('casein kinase II') has traditionally been classified as a messenger-independent protein serine/threonine kinase that is typically found in tetrameric complexes consisting of two catalytic (alpha and/or alpha') subunits and two regulatory beta subunits. Accumulated biochemical and genetic evidence indicates that CK2 has a vast array of candidate physiological targets and participates in a complex series of cellular functions, including the maintenance of cell viability. This review summarizes current knowledge of the structural and enzymic features of CK2, and discusses advances that challenge traditional views of this enzyme. For example, the recent demonstrations that individual CK2 subunits exist outside tetrameric complexes and that CK2 displays dual-specificity kinase activity raises new prospects for the precise elucidation of its regulation and cellular functions. This review also discusses a number of the mechanisms that contribute to the regulation of CK2 in cells, and will highlight emerging insights into the role of CK2 in cellular decisions of life and death. In this latter respect, recent evidence suggests that CK2 can exert an anti-apoptotic role by protecting regulatory proteins from caspase-mediated degradation. The mechanistic basis of the observation that CK2 is essential for viability may reside in part in this ability to protect cellular proteins from caspase action. Furthermore, this anti-apoptotic function of CK2 may contribute to its ability to participate in transformation and tumorigenesis. PMID:12396231

  16. Mitochondrial targets of photodynamic therapy and their contribution to cell death

    NASA Astrophysics Data System (ADS)

    Oleinick, Nancy L.; Usuda, Jitsuo; Xue, Liang-yan; Azizuddin, Kashif; Chiu, Song-mao; Lam, Minh C.; Morris, Rachel L.; Nieminen, Anna-Liisa

    2002-06-01

    In response to photodynamic therapy (PDT), many cells in culture or within experimental tumors are eliminated by apoptosis. PDT with photosensitizers that localize in or target mitochondria, such as the phthalocyanine Pc 4, causes prompt release of cytochrome c into the cytoplasm and activation of caspases-9 and -3, among other caspases, that are responsible for initiating cell degradation. Some cells appear resistant to apoptosis after PDT; however, if they have sustained sufficient damage, they will die by a necrotic process or through a different apoptotic pathway. In the case of PDT, the distinction between apoptosis and necrosis may be less important than the mechanism that triggers both processes, since critical lethal damage appears to occur during treatment and does not require the major steps in apoptosis to be expressed. We earlier showed, for example, that human breast cancer MCF-7 cells that lack caspase-3 are resistant to the induction of apoptosis by PDT, but are just as sensitive to the loss of clonogenicity as MCF-7 cells stably expressing transfected procaspase-3. Many photosensitizers that target mitochondria specifically attack the anti-apoptotic protein Bcl-2, generating a variety of crosslinked and cleaved photoproducts. Recent evidence suggests that the closely related protein Bcl-xL is also a target of Pc 4-PDT. Transient transfection of an expression vector encoding deletion mutants of Bcl-2 have identified the critical sensitive site in the protein that is required for photodamage. This region contains two alpha helices that form a secondary membrane anchorage site and are thought to be responsible for pore formation by Bcl-2. As specific protein targets are identified, we are becoming better able to model the critical events in PDT-induced cell death.

  17. Melatonin pre-treatment mitigates SHSY-5Y cells against oxaliplatin induced mitochondrial stress and apoptotic cell death

    PubMed Central

    Choudhury, Arnab; Kar, Sudeshna; Tabassum, Heena

    2017-01-01

    Oxaliplatin (Oxa) treatment to SH-SY5Y human neuroblastoma cells has been shown by previous studies to induce oxidative stress, which in turn modulates intracellular signaling cascades resulting in cell death. While this phenomenon of Oxa-induced neurotoxicity is known, the underlying mechanisms involved in this cell death cascade must be clarified. Moreover, there is still little known regarding the roles of neuronal mitochondria and cytosolic compartments in mediating Oxa-induced neurotoxicity. With a better grasp of the mechanisms driving neurotoxicity in Oxa-treated SH-SY5Y cells, we can then identify certain pathways to target in protecting against neurotoxic cell damage. Therefore, the purpose of this study was to determine whether one such agent, melatonin (Mel), could confer protection against Oxa-induced neurotoxicity in SH-SY5Y cells. Results from the present study found Oxa to significantly reduce SH-SY5Y cell viability in a dose-dependent manner. Alternatively, we found Mel pre-treatment to SH-SY5Y cells to attenuate Oxa-induced toxicity, resulting in a markedly increased cell viability. Mel exerted its protective effects by regulating reactive oxygen species (ROS) production and reducing superoxide radicals inside Oxa-exposed. In addition, we observed pre-treatment with Mel to rescue Oxa-treated cells by protecting mitochondria. As Oxa-treatment alone decreases mitochondrial membrane potential (Δψm), resulting in an altered Bcl-2/Bax ratio and release of sequestered cytochrome c, so Mel was shown to inhibit these pathways. Mel was also found to inhibit proteolytic activation of caspase 3, inactivation of Poly (ADP Ribose) polymerase, and DNA damage, thereby allowing SH-SY5Y cells to resist apoptotic cell death. Collectively, our results suggest a role for melatonin in reducing Oxa induced neurotoxicity. Further studies exploring melatonin’s protective effects may prove successful in eliciting pathways to further alter the neurotoxic pathways of

  18. Direct modulation of the outer mitochondrial membrane channel, voltage-dependent anion channel 1 (VDAC1) by cannabidiol: a novel mechanism for cannabinoid-induced cell death

    PubMed Central

    Rimmerman, N; Ben-Hail, D; Porat, Z; Juknat, A; Kozela, E; Daniels, M P; Connelly, P S; Leishman, E; Bradshaw, H B; Shoshan-Barmatz, V; Vogel, Z

    2013-01-01

    Cannabidiol (CBD) is a non-psychoactive plant cannabinoid that inhibits cell proliferation and induces cell death of cancer cells and activated immune cells. It is not an agonist of the classical CB1/CB2 cannabinoid receptors and the mechanism by which it functions is unknown. Here, we studied the effects of CBD on various mitochondrial functions in BV-2 microglial cells. Our findings indicate that CBD treatment leads to a biphasic increase in intracellular calcium levels and to changes in mitochondrial function and morphology leading to cell death. Density gradient fractionation analysis by mass spectrometry and western blotting showed colocalization of CBD with protein markers of mitochondria. Single-channel recordings of the outer-mitochondrial membrane protein, the voltage-dependent anion channel 1 (VDAC1) functioning in cell energy, metabolic homeostasis and apoptosis revealed that CBD markedly decreases channel conductance. Finally, using microscale thermophoresis, we showed a direct interaction between purified fluorescently labeled VDAC1 and CBD. Thus, VDAC1 seems to serve as a novel mitochondrial target for CBD. The inhibition of VDAC1 by CBD may be responsible for the immunosuppressive and anticancer effects of CBD. PMID:24309936

  19. Direct modulation of the outer mitochondrial membrane channel, voltage-dependent anion channel 1 (VDAC1) by cannabidiol: a novel mechanism for cannabinoid-induced cell death.

    PubMed

    Rimmerman, N; Ben-Hail, D; Porat, Z; Juknat, A; Kozela, E; Daniels, M P; Connelly, P S; Leishman, E; Bradshaw, H B; Shoshan-Barmatz, V; Vogel, Z

    2013-12-05

    Cannabidiol (CBD) is a non-psychoactive plant cannabinoid that inhibits cell proliferation and induces cell death of cancer cells and activated immune cells. It is not an agonist of the classical CB1/CB2 cannabinoid receptors and the mechanism by which it functions is unknown. Here, we studied the effects of CBD on various mitochondrial functions in BV-2 microglial cells. Our findings indicate that CBD treatment leads to a biphasic increase in intracellular calcium levels and to changes in mitochondrial function and morphology leading to cell death. Density gradient fractionation analysis by mass spectrometry and western blotting showed colocalization of CBD with protein markers of mitochondria. Single-channel recordings of the outer-mitochondrial membrane protein, the voltage-dependent anion channel 1 (VDAC1) functioning in cell energy, metabolic homeostasis and apoptosis revealed that CBD markedly decreases channel conductance. Finally, using microscale thermophoresis, we showed a direct interaction between purified fluorescently labeled VDAC1 and CBD. Thus, VDAC1 seems to serve as a novel mitochondrial target for CBD. The inhibition of VDAC1 by CBD may be responsible for the immunosuppressive and anticancer effects of CBD.

  20. Ionizing radiation-induced cell death is partly caused by increase of mitochondrial reactive oxygen species in normal human fibroblast cells.

    PubMed

    Kobashigawa, Shinko; Kashino, Genro; Suzuki, Keiji; Yamashita, Shunichi; Mori, Hiromu

    2015-04-01

    Radiation-induced cell death is thought to be caused by nuclear DNA damage that cannot be repaired. However, in this study we found that a delayed increase of mitochondrial reactive oxygen species (ROS) is responsible for some of the radiation-induced cell death in normal human fibroblast cells. We have previously reported that there is a delayed increase of mitochondrial (·)O2(-), measured using MitoSOX™ Red reagent, due to gamma irradiation. This is dependent on Drp1 localization to mitochondria. Here, we show that knockdown of Drp1 expression reduces the level of DNA double-strand breaks (DSBs) remaining 3 days after 6 Gy irradiation. Furthermore, cells with knockdown of Drp1 expression are more resistant to gamma radiation. We then tested whether the delayed increase of ROS causes DNA damage. The antioxidant, 2-glucopyranoside ascorbic acid (AA-2G), was applied before or after irradiation to inhibit ROS production during irradiation or to inhibit delayed ROS production from mitochondria. Interestingly, 1 h after exposure, the AA-2G treatment reduced the level of DSBs remaining 3 days after 6 Gy irradiation. In addition, irradiated AA-2G-treated cells were more resistant to radiation than the untreated cells. These results indicate that delayed mitochondrial ROS production may cause some of the cell death after irradiation.

  1. Withdrawal of life-support in paediatric intensive care--a study of time intervals between discussion, decision and death.

    PubMed

    Oberender, Felix; Tibballs, James

    2011-05-21

    Scant information exists about the time-course of events during withdrawal of life-sustaining treatment. We investigated the time required for end-of-life decisions, subsequent withdrawal of life-sustaining treatment and the time to death. Prospective, observational study in the ICU of a tertiary paediatric hospital. Data on 38 cases of withdrawal of life-sustaining treatment were recorded over a 12-month period (75% of PICU deaths). The time from the first discussion between medical staff and parents of the subject of withdrawal of life-sustaining treatment to parents and medical staff making the decision varied widely from immediate to 457 hours (19 days) with a median time of 67.8 hours (2.8 days). Large variations were subsequently also observed from the time of decision to actual commencement of the process ranging from 30 minutes to 47.3 hrs (2 days) with a median requirement of 4.7 hours. Death was apparent to staff at a median time of 10 minutes following withdrawal of life support varying from immediate to a maximum of 6.4 hours. Twenty-one per cent of children died more than 1 hour after withdrawal of treatment. Medical confirmation of death occurred at 0 to 35 minutes thereafter with the physician having left the bedside during withdrawal in 18 cases (48%) to attend other patients or to allow privacy for the family. Wide case-by-case variation in timeframes occurs at every step of the process of withdrawal of life-sustaining treatment until death. This knowledge may facilitate medical management, clinical leadership, guidance of parents and inform organ procurement after cardiac death.

  2. Life-and-death decision-making in the acute phase after a severe stroke: Interviews with relatives.

    PubMed

    de Boer, Marike E; Depla, Marja; Wojtkowiak, Joanna; Visser, Marieke C; Widdershoven, Guy A M; Francke, Anneke L; Hertogh, Cees M P M

    2015-05-01

    Decision-making in the acute phase after a severe stroke is complex and may involve life-and-death decisions. Apart from the medical condition and prognosis, quality of life and the deliberation of palliative care should be part of the decision-making process. Relatives play an important role by informing physicians about the patient's values and preferences. However, little is known about how the patients' relatives experience the decision-making process. To elicit the perspective of relatives of severe stroke patients with regard to the decision-making process in the acute phase in order to understand how they participate in treatment decisions. An exploratory qualitative interview approach guided by the principles of grounded theory. Relatives of severe stroke patients (n = 15) were interviewed about their experiences in the decision-making process in the acute phase. Four categories reflecting relatives' experiences were identified: (1) making decisions under time pressure, (2) the feeling of 'who am I' to decide, (3) reluctance in saying 'let her die' and (4) coping with unexpected changes. Following the treatment proposal of the physician was found to be the prevailing tendency of relatives in the decision-making process. A better understanding of the latent world of experiences of relatives that influence the decision-making process may help physicians and other health-care providers to better involve relatives in decision-making and enhance the care, including palliative care, for patients with severe stroke in line with their values and preferences. Communication between physician and relatives seems vital in this process. © The Author(s) 2015.

  3. Dengue fever mortality score: A novel decision rule to predict death from dengue fever.

    PubMed

    Huang, Chien-Cheng; Hsu, Chien-Chin; Guo, How-Ran; Su, Shih-Bin; Lin, Hung-Jung

    2017-09-27

    Dengue fever (DF) is still a major challenge for public health, especially during massive outbreaks. We developed a novel prediction score to help decision making, which has not been performed till date. We conducted a retrospective case-control study to recruit all the DF patients who visited a medical center during the 2015 DF outbreak. Demographic data, vital signs, symptoms/signs, chronic comorbidities, laboratory data, and 30-day mortality rates were included in the study. Univariate analysis and multivariate logistic regression analysis were used to identify the independent mortality predictors, which further formed the components of a DF mortality (DFM) score. Bootstrapping method was used to validate the DFM score. In total, a sample of 2358 DF patients was included in this study, which also consisted of 34 deaths (1.44%). Five independent mortality predictors were identified: elderly age (≥65 years), hypotension (systolic blood pressure <90 mmHg), hemoptysis, diabetes mellitus, and chronic bedridden. After assigning each predictor a score of "1", we developed a DFM score (range: 0-5), which showed that the mortality risk ratios for scores 0, 1, 2, and ≥3 were 0.2%, 2.3%, 6.0%, and 45.5%, respectively. The area under the curve was 0.849 (95% confidence interval [CI]: 0.785-0.914), and Hosmer-Lemeshow goodness-of-fit was 0.642. Compared with score 0, the odds ratios for mortality were 12.73 (95% CI: 3.58-45.30) for score 1, 34.21 (95% CI: 9.75-119.99) for score 2, and 443.89 (95% CI: 86.06-2289.60) for score ≥3, with significant differences (all p values <0.001). The score ≥1 had a sensitivity of 91.2% for mortality and score ≥3 had a specificity of 99.7% for mortality. DFM score was a simple and easy method to help decision making, especially in the massive outbreak. Further studies in other hospitals or nations are warranted to validate this score. Copyright © 2017. Published by Elsevier Ltd.

  4. The influence of the law on clinical decisions affecting life and death.

    PubMed

    Havard, J D

    1983-07-01

    force fed irrespective of their prospects of survival and suffering which this will cause them and their parents. Clinical decisions have been most seriously affected by recent developments in the law of negligence. 1 of the main reasons for this has been the unsatisfactory way in which the adversary system of law ldeals with expert evidence. Attempts have been made to provide courts of law in the UK an agreed statement on expert medical matters, there is a long way to go before reaching the position achieved in many civil law countries on the continent of Europe where the experts recognized by the court hammer out an agreed upon opinion through scientific discourse and without the restrictions of evidentiary rules which are aimed more at the establishment of facts than the validity of scientific opinion. Those who attack the medical profession as being paternalistic and authoritative in making clinical decisions involving life and death fail to realize that the easy way out for the medical profession is to treat every case, however hopeless, with the full technology available, disregarding the patient's and family's interests, the costs in resources, and ignoring the stark reality of the problem.

  5. Methadone induces necrotic-like cell death in SH-SY5Y cells by an impairment of mitochondrial ATP synthesis.

    PubMed

    Perez-Alvarez, Sergio; Cuenca-Lopez, Maria D; de Mera, Raquel M Melero-Fernández; Puerta, Elena; Karachitos, Andonis; Bednarczyk, Piotr; Kmita, Hanna; Aguirre, Norberto; Galindo, Maria F; Jordán, Joaquin

    2010-11-01

    Methadone is a widely used therapeutic opioid in narcotic addiction and neuropathic pain syndromes. Oncologists regularly use methadone as a long-lasting analgesic. Recently it has also been proposed as a promising agent in leukemia therapy, especially when conventional therapies are not effective. Nevertheless, numerous reports indicate a negative impact on human cognition with chronic exposure to opiates. Thus, clarification of methadone toxicity is required. In SH-SY5Y cells we found that high concentrations of methadone were required to induce cell death. Methadone-induced cell death seems to be related to necrotic processes rather than typical apoptosis. Cell cultures challenged with methadone presented alterations in mitochondrial outer membrane permeability. A mechanism that involves Bax translocation to the mitochondria was observed, accompanied with cytochrome c release. Furthermore, no participation of known protein regulators of apoptosis such as Bcl-X(L) and p53 was observed. Interestingly, methadone-induced cell death took place by a caspases-independent pathway; perhaps due to its ability to induce a drastic depletion in cellular ATP levels. Therefore, we studied the effect of methadone on isolated rat liver mitochondria. We observed that methadone caused mitochondrial uncoupling, coinciding with the ionophoric properties of methadone, but did not cause swelling of the organelles. Overall, the effects observed for cells in the presence of supratherapeutic doses of methadone may result from a "bioenergetic crisis." A decreased level of cellular energy may predispose cells to necrotic-like cell death.

  6. Malonate induces cell death via mitochondrial potential collapse and delayed swelling through an ROS-dependent pathway.

    PubMed

    Fernandez-Gomez, Francisco J; Galindo, Maria F; Gómez-Lázaro, Maria; Yuste, Victor J; Comella, Joan X; Aguirre, Norberto; Jordán, Joaquín

    2005-02-01

    1. Herein we study the effects of the mitochondrial complex II inhibitor malonate on its primary target, the mitochondrion. 2. Malonate induces mitochondrial potential collapse, mitochondrial swelling, cytochrome c (Cyt c) release and depletes glutathione (GSH) and nicotinamide adenine dinucleotide coenzyme (NAD(P)H) stores in brain-isolated mitochondria. 3. Although, mitochondrial potential collapse was almost immediate after malonate addition, mitochondrial swelling was not evident before 15 min of drug presence. This latter effect was blocked by cyclosporin A (CSA), Ruthenium Red (RR), magnesium, catalase, GSH and vitamin E. 4. Malonate added to SH-SY5Y cell cultures produced a marked loss of cell viability together with the release of Cyt c and depletion of GSH and NAD(P)H concentrations. All these effects were not apparent in SH-SY5Y cells overexpressing Bcl-xL. 5. When GSH concentrations were lowered with buthionine sulphoximine, cytoprotection afforded by Bcl-xL overexpression was not evident anymore. 6. Taken together, all these data suggest that malonate causes a rapid mitochondrial potential collapse and reactive oxygen species production that overwhelms mitochondrial antioxidant capacity and leads to mitochondrial swelling. Further permeability transition pore opening and the subsequent release of proapoptotic factors such as Cyt c could therefore be, at least in part, responsible for malonate-induced toxicity.

  7. Metabolic rewiring in cancer cells overexpressing the glucocorticoid-induced leucine zipper protein (GILZ): Activation of mitochondrial oxidative phosphorylation and sensitization to oxidative cell death induced by mitochondrial targeted drugs.

    PubMed

    André, Fanny; Trinh, Anne; Balayssac, Stéphane; Maboudou, Patrice; Dekiouk, Salim; Malet-Martino, Myriam; Quesnel, Bruno; Idziorek, Thierry; Kluza, Jérome; Marchetti, Philippe

    2017-04-01

    Cancer cell metabolism is largely controlled by oncogenic signals and nutrient availability. Here, we highlighted that the glucocorticoid-induced leucine zipper (GILZ), an intracellular protein influencing many signaling pathways, reprograms cancer cell metabolism to promote proliferation. We provided evidence that GILZ overexpression induced a significant increase of mitochondrial oxidative phosphorylation as evidenced by the augmentation in basal respiration, ATP-linked respiration as well as respiratory capacity. Pharmacological inhibition of glucose, glutamine and fatty acid oxidation reduced the activation of GILZ-induced mitochondrial oxidative phosphorylation. At glycolysis level, GILZ-overexpressing cells enhanced the expression of glucose transporters in their plasmatic membrane and showed higher glycolytic reserve. (1)H NMR metabolites quantification showed an up-regulation of amino acid biosynthesis. The GILZ-induced metabolic reprograming is present in various cancer cell lines regardless of their driver mutations status and is associated with higher proliferation rates persisting under metabolic stress conditions. Interestingly, high levels of OXPHOS made GILZ-overexpressing cells vulnerable to cell death induced by mitochondrial pro-oxidants. Altogether, these data indicate that GILZ reprograms cancer metabolism towards mitochondrial OXPHOS and sensitizes cancer cells to mitochondria-targeted drugs with pro-oxidant activities.

  8. Suppression of Inner Mitochondrial Membrane Peptidase 2-Like (IMMP2L) Gene Exacerbates Hypoxia-Induced Neural Death Under High Glucose Condition.

    PubMed

    Ma, Yi; Zhang, Zijing; Chen, Zhirong; Ma, Nina; Sun, Shihui; Zhang, Jingwen; Ni, Xinli; Zhang, Jianzhong; Li, P Andy

    2017-05-01

    It is known that diabetes hyperglycemia enhances cerebral ischemia and reperfusion induced damage. We have previously shown that mutation of inner mitochondrial membrane peptidase 2-like (IMMP2L) increases brain damage caused by transient cerebral ischemia. In this study, we attempt to examine the impact of IMMP2L deficiency on an in vitro model that mimics the diabetic hypoxic conditions. Normal IMMP2L wild type and IMMP2L gene deleted HT22 cells were cultured. Hypoxia was induced under high glucose and acidic conditions with 4 h of oxygen deprivation. Cell viability was assessed by CCK-8 assay and cell death was determined using Annexin V/7-AAD assay. Superoxide production was measured using dihydroethidium staining and mitochondrial membrane potential was detected using JC-1 probe. Suppression of IMMP2L reduced the cell viability, increased the ROS production and decreased the mitochondrial membrane potential. In conclusion, our study demonstrated that deficiency of IMMP2L in cells, cultured under hypoxia, high glucose and acidic conditions, exacerbated neuronal death under a condition that mimics in vivo cerebral ischemia in diabetic condition.

  9. DRP1-dependent apoptotic mitochondrial fission occurs independently of BAX, BAK and APAF1 to amplify cell death by BID and oxidative stress.

    PubMed

    Oettinghaus, Björn; D'Alonzo, Donato; Barbieri, Elisa; Restelli, Lisa Michelle; Savoia, Claudia; Licci, Maria; Tolnay, Markus; Frank, Stephan; Scorrano, Luca

    2016-08-01

    During apoptosis mitochondria undergo cristae remodeling and fragmentation, but how the latter relates to outer membrane permeabilization and downstream caspase activation is unclear. Here we show that the mitochondrial fission protein Dynamin Related Protein (Drp) 1 participates in cytochrome c release by selected intrinsic death stimuli. While Bax, Bak double deficient (DKO) and Apaf1(-/-) mouse embryonic fibroblasts (MEFs) were less susceptible to apoptosis by Bcl-2 family member BID, H(2)O(2), staurosporine and thapsigargin, Drp1(-/-) MEFs were protected only from BID and H(2)O(2). Resistance to cell death of Drp1(-/-) and DKO MEFs correlated with blunted cytochrome c release, whereas mitochondrial fragmentation occurred in all cell lines in response to all tested stimuli, indicating that other mechanisms accounted for the reduced cytochrome c release. Indeed, cristae remodeling was reduced in Drp1(-/-) cells, potentially explaining their resistance to apoptosis. Our results indicate that caspase-independent mitochondrial fission and Drp1-dependent cristae remodeling amplify apoptosis. This article is part of a Special Issue entitled 'EBEC 2016: 19th European Bioenergetics Conference, Riva del Garda, Italy, July 2-6, 2016', edited by Prof. Paolo Bernardi.

  10. Saving Can Save from Death Anxiety: Mortality Salience and Financial Decision-Making

    PubMed Central

    Zaleskiewicz, Tomasz; Gasiorowska, Agata; Kesebir, Pelin

    2013-01-01

    Four studies tested the idea that saving money can buffer death anxiety and constitute a more effective buffer than spending money. Saving can relieve future-related anxiety and provide people with a sense of control over their fate, thereby rendering death thoughts less threatening. Study 1 found that participants primed with both saving and spending reported lower death fear than controls. Saving primes, however, were associated with significantly lower death fear than spending primes. Study 2 demonstrated that mortality primes increase the attractiveness of more frugal behaviors in save-or-spend dilemmas. Studies 3 and 4 found, in two different cultures (Polish and American), that the activation of death thoughts prompts people to allocate money to saving as opposed to spending. Overall, these studies provided evidence that saving protects from existential anxiety, and probably more so than spending. PMID:24244497

  11. Saving can save from death anxiety: mortality salience and financial decision-making.

    PubMed

    Zaleskiewicz, Tomasz; Gasiorowska, Agata; Kesebir, Pelin

    2013-01-01

    Four studies tested the idea that saving money can buffer death anxiety and constitute a more effective buffer than spending money. Saving can relieve future-related anxiety and provide people with a sense of control over their fate, thereby rendering death thoughts less threatening. Study 1 found that participants primed with both saving and spending reported lower death fear than controls. Saving primes, however, were associated with significantly lower death fear than spending primes. Study 2 demonstrated that mortality primes increase the attractiveness of more frugal behaviors in save-or-spend dilemmas. Studies 3 and 4 found, in two different cultures (Polish and American), that the activation of death thoughts prompts people to allocate money to saving as opposed to spending. Overall, these studies provided evidence that saving protects from existential anxiety, and probably more so than spending.

  12. News and views on mitochondrial water transport.

    PubMed

    Gena, Patrizia; Fanelli, Elena; Brenner, Catherine; Svelto, Maria; Calamita, Giuseppe

    2009-01-01

    The osmotic movement of water into and out of the mitochondrial matrix underlies the extraordinary plasticity that characterizes mitochondria, a feature of pivotal importance to cell bioenergetics and signaling, and of critical relevance to life-and-death cell decision. However, the biophysics and identity of mitochondrial water transport had remained mostly unexplored, until recent works suggesting high water permeability and the presence of multiple facilitated pathways of water diffusion in liver mitochondria. Here, we attempt to summarize our current view of the mechanisms of mitochondrial water transport and possible relevance of the channel-mediated pathways created by mitochondrial permeability transition, aquaporins and protein/lipid specializations. Assessing the molecular bases and dynamics of mitochondrial water permeability will help to answer the much-debated question over the role of mitochondria.

  13. In vitro cytotoxicity of Mokko lactone in human leukemia HL-60 cells: induction of apoptotic cell death by mitochondrial membrane potential collapse.

    PubMed

    Yun, Y G; Oh, H; Oh, G S; Pae, H O; Choi, B M; Kwon, J W; Kwon, T O; Jang, S I; Chung, Hun-Taeg

    2004-08-01

    We studied the effect of mokko lactone (ML) isolated from the roots of Saussurea lappa (Compositae), a plant that is used for medicinal purposes in Korea, on the induction of apoptosis in human leukemia HL-60 cells. ML was cytotoxic to HL-60 cells, and this cytotoxic effect of ML appears to be attributable to its induction of apoptotic cell death, as ML induced nuclear morphologic changes and internucleosomal DNA fragmentation and increased the proportion of Annexin V-positive cells and the activity of caspase-3. Further studies revealed that the induction of apoptosis by ML was associated with the loss of mitochondrial membrane potential. Collectively, our results suggest that apoptosis induced by ML in HL-60 cells was executed by a collapse of mitochondrial membrane potential followed by the activation of caspase-3. This is the first report on the mechanism of apoptosis-inducing effect of ML.

  14. Mitochondrial Cardiomyopathies.

    PubMed

    El-Hattab, Ayman W; Scaglia, Fernando

    2016-01-01

    Mitochondria are found in all nucleated human cells and perform various essential functions, including the generation of cellular energy. Mitochondria are under dual genome control. Only a small fraction of their proteins are encoded by mitochondrial DNA (mtDNA), whereas more than 99% of them are encoded by nuclear DNA (nDNA). Mutations in mtDNA or mitochondria-related nDNA genes result in mitochondrial dysfunction leading to insufficient energy production required to meet the needs for various organs, particularly those with high energy requirements, including the central nervous system, skeletal and cardiac muscles, kidneys, liver, and endocrine system. Because cardiac muscles are one of the high energy demanding tissues, cardiac involvement occurs in mitochondrial diseases with cardiomyopathies being one of the most frequent cardiac manifestations found in these disorders. Cardiomyopathy is estimated to occur in 20-40% of children with mitochondrial diseases. Mitochondrial cardiomyopathies can vary in severity from asymptomatic status to severe manifestations including heart failure, arrhythmias, and sudden cardiac death. Hypertrophic cardiomyopathy is the most common type; however, mitochondrial cardiomyopathies might also present as dilated, restrictive, left ventricular non-compaction, and histiocytoid cardiomyopathies. Cardiomyopathies are frequent manifestations of mitochondrial diseases associated with defects in electron transport chain complexes subunits and their assembly factors, mitochondrial transfer RNAs, ribosomal RNAs, ribosomal proteins, translation factors, mtDNA maintenance, and coenzyme Q10 synthesis. Other mitochondrial diseases with cardiomyopathies include Barth syndrome, Sengers syndrome, TMEM70-related mitochondrial complex V deficiency, and Friedreich ataxia.

  15. Mitochondrial Cardiomyopathies

    PubMed Central

    El-Hattab, Ayman W.; Scaglia, Fernando

    2016-01-01

    Mitochondria are found in all nucleated human cells and perform various essential functions, including the generation of cellular energy. Mitochondria are under dual genome control. Only a small fraction of their proteins are encoded by mitochondrial DNA (mtDNA), whereas more than 99% of them are encoded by nuclear DNA (nDNA). Mutations in mtDNA or mitochondria-related nDNA genes result in mitochondrial dysfunction leading to insufficient energy production required to meet the needs for various organs, particularly those with high energy requirements, including the central nervous system, skeletal and cardiac muscles, kidneys, liver, and endocrine system. Because cardiac muscles are one of the high energy demanding tissues, cardiac involvement occurs in mitochondrial diseases with cardiomyopathies being one of the most frequent cardiac manifestations found in these disorders. Cardiomyopathy is estimated to occur in 20–40% of children with mitochondrial diseases. Mitochondrial cardiomyopathies can vary in severity from asymptomatic status to severe manifestations including heart failure, arrhythmias, and sudden cardiac death. Hypertrophic cardiomyopathy is the most common type; however, mitochondrial cardiomyopathies might also present as dilated, restrictive, left ventricular non-compaction, and histiocytoid cardiomyopathies. Cardiomyopathies are frequent manifestations of mitochondrial diseases associated with defects in electron transport chain complexes subunits and their assembly factors, mitochondrial transfer RNAs, ribosomal RNAs, ribosomal proteins, translation factors, mtDNA maintenance, and coenzyme Q10 synthesis. Other mitochondrial diseases with cardiomyopathies include Barth syndrome, Sengers syndrome, TMEM70-related mitochondrial complex V deficiency, and Friedreich ataxia. PMID:27504452

  16. "University of Pennsylvania v. Equal Employment Opportunity Commission": The Death of Academic Freedom in Tenure Decisions?

    ERIC Educational Resources Information Center

    Leas, Terrence

    1990-01-01

    Contends that the Supreme Court decision in "Penn" that ruled the university must disclose confidential tenure files to the Equal Employment Opportunity Commission (EEOC) strengthens, rather than threatens, academic freedom and valid academic decision making. Analyzes a number of issues related to academic freedom and discrimination…

  17. Differentiation inducing factor 3 mediates its anti-leukemic effect through ROS-dependent DRP1-mediated mitochondrial fission and induction of caspase-independent cell death

    PubMed Central

    Dubois, Alix; Ginet, Clemence; Furstoss, Nathan; Belaid, Amine; Hamouda, Mohamed Amine; El Manaa, Wedjene; Cluzeau, Thomas; Marchetti, Sandrine; Ricci, Jean Ehrland; Jacquel, Arnaud; Luciano, Frederic; Driowya, Mohsine; Benhida, Rachid

    2016-01-01

    Differentiation-inducing factor (DIF) defines a group of chlorinated hexaphenones that orchestrate stalk-cell differentiation in the slime mold Dictyostelium discoideum (DD). DIF-1 and 3 have also been reported to have tumor inhibiting properties; however, the mechanisms that underlie the effects of these compounds remain poorly defined. Herein, we show that DIF-3 rapidly triggers Ca2+ release and a loss of mitochondrial membrane potential (MMP) in the absence of cytochrome c and Smac release and without caspase activation. Consistently with these findings, we also detected no evidence of apoptosis in cells treated with DIF-3 but instead found that this compound induced autophagy. In addition, DIF-3 promoted mitochondrial fission in K562 and HeLa cells, as assessed by electron and confocal microscopy analysis. Importantly, DIF-3 mediated the phosphorylation and redistribution of dynamin-related protein 1 (DRP1) from the cytoplasmic to the microsomal fraction of K562 cells. Pharmacological inhibition or siRNA silencing of DRP1 not only inhibited mitochondrial fission but also protected K562 cells from DIF-3-mediated cell death. Furthermore, DIF-3 potently inhibited the growth of imatinib-sensitive and imatinib-resistant K562 cells. It also inhibited tumor formation in athymic mice engrafted with an imatinib-resistant CML cell line. Finally, DIF-3 exhibited a clear selectivity toward CD34+ leukemic cells from CML patients, compared with CD34− cells. In conclusion, we show that the potent anti-leukemic effect of DIF-3 is mediated through the induction of mitochondrial fission and caspase-independent cell death. Our findings may have important therapeutic implications, especially in the treatment of tumors that exhibit defects in apoptosis regulation. PMID:27027430

  18. Polyphyllin I induces mitophagic and apoptotic cell death in human breast cancer cells by increasing mitochondrial PINK1 levels.

    PubMed

    Li, Guo-Bing; Fu, Ruo-Qiu; Shen, Han-Ming; Zhou, Jing; Hu, Xiao-Ye; Liu, Yan-Xia; Li, Yu-Nong; Zhang, Hong-Wei; Liu, Xin; Zhang, Yan-Hao; Huang, Cheng; Zhang, Rong; Gao, Ning

    2017-02-07

    The molecular mechanisms underlying the anti-breast cancer effects of polyphyllin I, a natural compound extracted from Paris polyphylla rhizomes, are not fully understood. In the present study, we found that polyphyllin I induces mitochondrial translocation of DRP1 by dephosphorylating DRP1 at Ser637, leading to mitochondrial fission, cytochrome c release from mitochondria into the cytosol and, ultimately apoptosis. Polyphyllin I also increased the stabilization of full-length PINK1 at the mitochondrial surface, leading to the recruitment of PARK2, P62, ubiquitin, and LC3B-II to mitochondria and culminating in mitophagy. PINK1 knockdown markedly suppressed polyphyllin I-induced mitophagy and enhanced polyphyllin I-induced, DRP1-dependent mitochondrial fission and apoptosis. Furthermore, suppression of DRP1 by mdivi-1 or shRNA inhibited PINK1 knockdown/polyphyllin I-induced mitochondrial fragmentation and apoptosis, suggesting that PINK1 depletion leads to excessive fission and, subsequently, mitochondrial fragmentation. An in vivo study confirmed that polyphyllin I greatly inhibited tumor growth and induced apoptosis in MDA-MB-231 xenografts, and these effects were enhanced by PINK1 knockdown. These data describe the mechanism by which PINK1 contributes to polyphyllin I-induced mitophagy and apoptosis and suggest that polyphyllin I may be an effective drug for breast cancer treatment.

  19. The Amaryllidaceae isocarbostyril narciclasine induces apoptosis by activation of the death receptor and/or mitochondrial pathways in cancer cells but not in normal fibroblasts.

    PubMed

    Dumont, Patrick; Ingrassia, Laurent; Rouzeau, Sébastien; Ribaucour, Fabrice; Thomas, Stéphanie; Roland, Isabelle; Darro, Francis; Lefranc, Florence; Kiss, Robert

    2007-09-01

    Our study has shown that the Amaryllidaceae isocarbostyril narciclasine induces marked apoptosis-mediated cytotoxic effects in human cancer cells but not in normal fibroblasts by triggering the activation of the initiator caspases of the death receptor pathway (caspase-8 and caspase-10) at least in human MCF-7 breast and PC-3 prostate carcinoma cells. The formation of the Fas and death receptor 4 (DR4) death-inducing signaling complex was clearly evidenced in MCF-7 and PC-3 cancer cells. Caspase-8 was found to interact with Fas and DR4 receptors on narciclasine treatment. However, narciclasine-induced downstream apoptotic pathways in MCF-7 cells diverged from those in PC-3 cells, where caspase-8 directly activated effector caspases such as caspase-3 in the absence of any further release of mitochondrial proapoptotic effectors. In contrast, in MCF-7 cells, the apoptotic process was found to require an amplification step that is mitochondria-dependent, with Bid processing, release of cytochrome c, and caspase-9 activation. It is postulated that the high selectivity of narciclasine to cancer cells might be linked, at least in part, to this activation of the death receptor pathway. Normal human fibroblasts appear approximately 250-fold less sensitive to narciclasine, which does not induce apoptosis in these cells probably due to the absence of death receptor pathway activation.

  20. The Amaryllidaceae Isocarbostyril Narciclasine Induces Apoptosis By Activation of the Death Receptor and/or Mitochondrial Pathways in Cancer Cells But Not in Normal Fibroblasts1

    PubMed Central

    Dumont, Patrick; Ingrassia, Laurent; Rouzeau, Sébastien; Ribaucour, Fabrice; Thomas, Stéphanie; Roland, Isabelle; Darro, Francis; Lefranc, Florence; Kiss, Robert

    2007-01-01

    Our study has shown that the Amaryllidaceae isocarbostyril narciclasine induces marked apoptosis-mediated cytotoxic effects in human cancer cells but not in normal fibroblasts by triggering the activation of the initiator caspases of the death receptor pathway (caspase-8 and caspase-10) at least in human MCF-7 breast and PC-3 prostate carcinoma cells. The formation of the Fas and death receptor 4 (DR4) death-inducing signaling complex was clearly evidenced in MCF-7 and PC-3 cancer cells. Caspase-8 was found to interact with Fas and DR4 receptors on narciclasine treatment. However, narciclasine-induced downstream apoptotic pathways in MCF-7 cells diverged from those in PC-3 cells, where caspase-8 directly activated effector caspases such as caspase-3 in the absence of any further release of mitochondrial proapoptotic effectors. In contrast, in MCF-7 cells, the apoptotic process was found to require an amplification step that is mitochondria-dependent, with Bid processing, release of cytochrome c, and caspase-9 activation. It is postulated that the high selectivity of narciclasine to cancer cells might be linked, at least in part, to this activation of the death receptor pathway. Normal human fibroblasts appear approximately 250-fold less sensitive to narciclasine, which does not induce apoptosis in these cells probably due to the absence of death receptor pathway activation. PMID:17898872

  1. The influence of mitigation evidence, ethnicity, and SES on death penalty decisions by European American and Latino venire persons.

    PubMed

    Espinoza, Russ K E; Willis-Esqueda, Cynthia

    2015-04-01

    The purpose of the research was to determine whether European American and Latino mock jurors would demonstrate bias in death penalty decision making when mitigation evidence and defendant ethnicity and socioeconomic status (SES) were varied. A total of 561 actual venire persons acted as mock jurors and read a trial transcript that varied a defendant's case information (mitigating circumstances: strong/weak, defendant ethnicity: European American/Latino, and defendant SES: low/high). European American jurors recommended the death penalty significantly more often for the low SES Latino defendant when strength of mitigation evidence was weak. In addition, they also assigned this defendant higher culpability ratings and lower ratings on positive personality trait measures compared with all other conditions. Strong mitigation evidence contributed to lower guilt ratings by European American jurors for the high SES European American defendant. Latino jurors did not differ in their death penalty sentencing across defendant mitigation, ethnicity, or SES conditions. Discussion of in-group favoritism and out-group derogation, as well as suggestions for procedures to diminish juror bias in death penalty cases, is provided.

  2. Selenium suppresses glutamate-induced cell death and prevents mitochondrial morphological dynamic alterations in hippocampal HT22 neuronal cells.

    PubMed

    Ma, Yan-Mei; Ibeanu, Gordon; Wang, Li-Yao; Zhang, Jian-Zhong; Chang, Yue; Dong, Jian-Da; Li, P Andy; Jing, Li

    2017-01-19

    Previous studies have indicated that selenium supplementation may be beneficial in neuroprotection against glutamate-induced cell damage, in which mitochondrial dysfunction is considered a major pathogenic feature. However, the exact mechanisms by which selenium protects against glutamate-provoked mitochondrial perturbation remain ambiguous. In this study glutamate exposed murine hippocampal neuronal HT22 cell was used as a model to investigate the underlying mechanisms of selenium-dependent protection against mitochondria damage. We find that glutamate-induced cytotoxicity was associated with enhancement of superoxide production, activation of caspase-9 and -3, increases of mitochondrial fission marker and mitochondrial morphological changes. Selenium significantly resolved the glutamate-induced mitochondria structural damage, alleviated oxidative stress, decreased Apaf-1, caspases-9 and -3 contents, and altered the autophagy process as observed by a decline in the ratio of the autophagy markers LC3-I and LC3-II. These findings suggest that the protection of selenium against glutamate stimulated cell damage of HT22 cells is associated with amelioration of mitochondrial dynamic imbalance.

  3. Balancing professional tension and deciding upon the status of death: Making end-of-life decisions in intensive care units

    PubMed Central

    Konstantara, Emmanouela; Vandrevala, Tushna; Cox, Anna; Creagh-Brown, Benedict C; Ogden, Jane

    2016-01-01

    This study investigated how intensivists make decisions regarding withholding and withdrawing treatment for patients at the end of their lives. This involved completing in-depth interviews from two sites of the South of England, United Kingdom by twelve intensivists. The data collected by these intensivists were analysed using thematic analysis. This resulted in the identification of three themes: intensivists’ role, treatment effectiveness, and patients’ best interest. Transcending these were two overarching themes relating to the balance between quantity and quality of life, and the intensivists’ sense of responsibility versus burden. The results are considered in terms of making sense of death and the role of beliefs in the decision-making process. PMID:28070383

  4. Decisions that hasten death: double effect and the experiences of physicians in Australia.

    PubMed

    Trankle, Steven A

    2014-03-25

    In Australian end-of-life care, practicing euthanasia or physician-assisted suicide is illegal. Despite this, death hastening practices are common across medical settings. Practices can be clandestine or overt but in many instances physicians are forced to seek protection behind ambiguous medico-legal imperatives such as the Principle of Double Effect. Moreover, the way they conceptualise and experience such practices is inconsistent. To complement the available statistical data, the purpose of this study was to understand the reasoning behind how and why physicians in Australia will hasten death. A qualitative investigation was focused on palliative and critical/acute settings. A thematic analysis was conducted on semi-structured in-depth interviews with 13 specialist physicians. Attention was given to eliciting meanings and experiences in Australian end-of-life care. Highlighting the importance of a multidimensional approach, physicians negotiated multiple influences when death was regarded as hastened. The way they understood and experienced end-of-life care practices were affected by politico-religious and cultural influences, medico-legal imperatives, and personal values and beliefs. Interpersonal and intrapsychic aspects further emphasised the emotional and psychological investment physicians have with patients and others. In most cases death occurred as a result of treating suffering, and sometimes to fulfil the wishes of patients and others who requested death. Experience was especially subject to the efficacy with which physicians negotiated complex but context-specific situations, and was reflective of how they considered a good death. Although many were compelled to draw on the Principle of Double Effect, every physician reported its inadequacy as a medico-legal guideline. The Principle of Double Effect, as a simplistic and generalised guideline, was identified as a convenient mechanism to protect physicians who inadvertently or intentionally hastened

  5. Decisions that hasten death: double effect and the experiences of physicians in Australia

    PubMed Central

    2014-01-01

    Background In Australian end-of-life care, practicing euthanasia or physician-assisted suicide is illegal. Despite this, death hastening practices are common across medical settings. Practices can be clandestine or overt but in many instances physicians are forced to seek protection behind ambiguous medico-legal imperatives such as the Principle of Double Effect. Moreover, the way they conceptualise and experience such practices is inconsistent. To complement the available statistical data, the purpose of this study was to understand the reasoning behind how and why physicians in Australia will hasten death. Method A qualitative investigation was focused on palliative and critical/acute settings. A thematic analysis was conducted on semi-structured in-depth interviews with 13 specialist physicians. Attention was given to eliciting meanings and experiences in Australian end-of-life care. Results Highlighting the importance of a multidimensional approach, physicians negotiated multiple influences when death was regarded as hastened. The way they understood and experienced end-of-life care practices were affected by politico-religious and cultural influences, medico-legal imperatives, and personal values and beliefs. Interpersonal and intrapsychic aspects further emphasised the emotional and psychological investment physicians have with patients and others. In most cases death occurred as a result of treating suffering, and sometimes to fulfil the wishes of patients and others who requested death. Experience was especially subject to the efficacy with which physicians negotiated complex but context-specific situations, and was reflective of how they considered a good death. Although many were compelled to draw on the Principle of Double Effect, every physician reported its inadequacy as a medico-legal guideline. Conclusions The Principle of Double Effect, as a simplistic and generalised guideline, was identified as a convenient mechanism to protect physicians who

  6. Walsuronoid B induces mitochondrial and lysosomal dysfunction leading to apoptotic rather than autophagic cell death via ROS/p53 signaling pathways in liver cancer.

    PubMed

    Geng, Ya-di; Zhang, Chao; Lei, Jian-Li; Yu, Pei; Xia, Yuan-Zheng; Zhang, Hao; Yang, Lei; Kong, Ling-Yi

    2017-10-15

    Walsuronoid B is a limonoid compound extracted from Walsura robusta. Previous studies have shown that limonoid compounds possess anti-cancer potential, although the molecular mechanism of this activity remains elusive. In this study, we demonstrated for the first time that walsuronoid B inhibited cell proliferation in several human cancer lines. Liver cancer cells (HepG2 and Bel-7402) were chosen for their high sensitivity to walsuronoid B. Walsuronoid B induced cell death through G2/M phase arrest and apoptosis and induced the accumulation of autophagosomes through the suppression of mTOR signaling, which serves as a cell survival mechanism and prevents cell death. We further examined the molecular mechanisms and found that walsuronoid B-induced dysfunction of the mitochondria and lysosomes rather than the endoplasmic reticulum contributed to its cell death effect. Walsuronoid B enhanced the generation of hydrogen peroxide, nitric oxide and superoxide anion radical, resulting in elevated levels of reactive oxygen species (ROS). In addition, ROS induced by walsuronoid B upregulated p53 levels; conversely, p53 stimulated ROS. These results suggested that ROS and p53 reciprocally promoted each other's production and cooperated to induce liver cancer cell death. We found that the induction of ROS and p53 significantly triggered G2/M phase arrest and mitochondrial and lysosomal apoptosis. Finally, walsuronoid B suppressed tumor growth in vivo with few side effects. In summary, our findings demonstrated that walsuronoid B caused G2/M phase arrest and induced mitochondrial and lysosomal apoptosis through the ROS/p53 signaling pathway in human liver cancer cells in vitro and in vivo. Copyright © 2017 Elsevier Inc. All rights reserved.

  7. HIF-1alpha activation by a redox-sensitive pathway mediates cyanide-induced BNIP3 upregulation and mitochondrial-dependent cell death.

    PubMed

    Zhang, L; Li, L; Liu, H; Prabhakaran, K; Zhang, X; Borowitz, J L; Isom, G E

    2007-07-01

    Cyanide produces degeneration of the nervous system in which different modes of cell death are activated in the vulnerable brain areas. In brain, the mechanism underlying the cell death is not clear. In this study, an immortalized dopaminergic cell line was used to characterize the cell death signaling cascade activated by cyanide. Cyanide-treated cells exhibited a time- and concentration-dependent apoptosis that was caspase independent. Cyanide induced a rapid surge of intracellular reactive oxygen species (ROS) generation, followed by p38 mitogen-activated protein kinase (MAPK) activation and nuclear accumulation of hypoxia-inducible factor-1alpha (HIF-1alpha). Activation of p38 MAPK and HIF-1alpha accumulation were attenuated by N-acetyl-L-cysteine (antioxidant), catalase (hydrogen peroxide scavenger), or a selective p38 MAPK inhibitor (SB203580). Cyanide activated the hypoxia response element (HRE) promoter, which was also blocked by the antioxidants and SB203580. HRE activation was followed by increased BNIP3 gene transcription, as reflected by elevated BNIP3 mRNA and protein levels. BNIP3 upregulation was reduced by selective RNAi knockdown of HIF-1alpha. Overexpression of BNIP3 produced mitochondrial dysfunction (reduced membrane potential), caspase-independent apoptosis, and sensitization of the cells to cyanide-induced toxicity. Expression of a dominant-negative mutant or RNAi knockdown of BNIP3 protected the cells from cyanide. It was concluded that cyanide activated the HIF-1alpha-mediated pathway of BNIP3 induction through a redox-sensitive process. Increased BNIP3 expression then served as an initiator of mitochondrial-mediated death.

  8. HIF-1alpha Activation by a Redox-Sensitive Pathway Mediates Cyanide-induced BNIP3 Upregulation and Mitochondrial Dependent Cell Death

    PubMed Central

    Zhang, L.; Li, L.; Liu, H.; Prabhakaran, K.; Zhang, X.; Borowitz, J. L.; Isom, G. E.

    2007-01-01

    Cyanide produces degeneration of the nervous system in which different modes of cell death are activated in the vulnerable brain areas. In brain, the mechanism underlying the cell death is not clear. In this study, an immortalized dopaminergic cell line was used to characterize the cell death signaling cascade activated by cyanide. Cyanide-treated cells exhibited a time- and concentration-dependent apoptosis that was caspase-independent. Cyanide induced a rapid surge of intracellular reactive oxygen species (ROS) generation, followed by p38 mitogen-activated protein kinase (MAPK) activation and nuclear accumulation of hypoxia-inducible factor-1α (HIF-1α). Activation of p38 MAPK and HIF-1α accumulation were attenuated by N-acetyl-L-cysteine (antioxidant), catalase (hydrogen peroxide scavenger) or a selective p38 MAPK inhibitor (SB203580). Cyanide activated the hypoxia response element (HRE) promoter, which was also blocked by the antioxidants and SB203580. HRE activation was followed by increased BNIP3 gene transcription, as reflected by elevated BNIP3 mRNA and protein levels. BNIP3 upregulation was reduced by selective RNAi knockdown of HIF-1α. Overexpression of BNIP3 produced mitochondrial dysfunction (reduced membrane potential), caspase-independent apoptosis, and sensitization of the cells to cyanide-induced toxicity. Expression of a dominant negative mutant or RNAi knockdown of BNIP3 protected the cells from cyanide. It was concluded that cyanide activated the HIF-1α-mediated pathway of BNIP3 induction through a redox-sensitive process. Increased BNIP3 expression then served as an initiator of mitochondrial-mediated death. PMID:17561100

  9. Green tea polyphenols induce cell death in breast cancer MCF-7 cells through induction of cell cycle arrest and mitochondrial-mediated apoptosis.

    PubMed

    Liu, Shu-Min; Ou, Shi-Yi; Huang, Hui-Hua

    In order to study the molecular mechanisms of green tea polyphenols (GTPs) in treatment or prevention of breast cancer, the cytotoxic effects of GTPs on five human cell lines (MCF-7, A549, Hela, PC3, and HepG2 cells) were determined and the antitumor mechanisms of GTPs in MCF-7 cells were analyzed. The results showed that GTPs exhibited a broad spectrum of inhibition against the detected cancer cell lines, particularly the MCF-7 cells. Studies on the mechanisms revealed that the main modes of cell death induced by GTPs were cell cycle arrest and mitochondrial-mediated apoptosis. Flow cytometric analysis showed that GTPs mediated cell cycle arrest at both G1/M and G2/M transitions. GTP dose dependently led to apoptosis of MCF-7 cells via the mitochondrial pathways, as evidenced by induction of chromatin condensation, reduction of mitochondrial membrane potential (ΔΨm), improvement in the generation of reactive oxygen species (ROS), induction of DNA fragmentation, and activations of caspase-3 and caspase-9 in the present paper.

  10. Green tea polyphenols induce cell death in breast cancer MCF-7 cells through induction of cell cycle arrest and mitochondrial-mediated apoptosis*

    PubMed Central

    Liu, Shu-min; Ou, Shi-yi; Huang, Hui-hua

    2017-01-01

    In order to study the molecular mechanisms of green tea polyphenols (GTPs) in treatment or prevention of breast cancer, the cytotoxic effects of GTPs on five human cell lines (MCF-7, A549, Hela, PC3, and HepG2 cells) were determined and the antitumor mechanisms of GTPs in MCF-7 cells were analyzed. The results showed that GTPs exhibited a broad spectrum of inhibition against the detected cancer cell lines, particularly the MCF-7 cells. Studies on the mechanisms revealed that the main modes of cell death induced by GTPs were cell cycle arrest and mitochondrial-mediated apoptosis. Flow cytometric analysis showed that GTPs mediated cell cycle arrest at both G1/M and G2/M transitions. GTP dose dependently led to apoptosis of MCF-7 cells via the mitochondrial pathways, as evidenced by induction of chromatin condensation, reduction of mitochondrial membrane potential (ΔΨ m), improvement in the generation of reactive oxygen species (ROS), induction of DNA fragmentation, and activations of caspase-3 and caspase-9 in the present paper. PMID:28124838

  11. RIP kinases: key decision makers in cell death and innate immunity

    PubMed Central

    Humphries, F; Yang, S; Wang, B; Moynagh, P N

    2015-01-01

    Innate immunity represents the first line of defence against invading pathogens. It consists of an initial inflammatory response that recruits white blood cells to the site of infection in an effort to destroy and eliminate the pathogen. Some pathogens replicate within host cells, and cell death by apoptosis is an important effector mechanism to remove the replication niche for such microbes. However, some microbes have evolved evasive strategies to block apoptosis, and in these cases host cells may employ further countermeasures, including an inflammatory form of cell death know as necroptosis. This review aims to highlight the importance of the RIP kinase family in controlling these various defence strategies. RIP1 is initially discussed as a key component of death receptor signalling and in the context of dictating whether a cell triggers a pathway of pro-inflammatory gene expression or cell death by apoptosis. The molecular and functional interplay of RIP1 and RIP3 is described, especially with respect to mediating necroptosis and as key mediators of inflammation. The function of RIP2, with particular emphasis on its role in NOD signalling, is also explored. Special attention is given to emphasizing the physiological and pathophysiological contexts for these various functions of RIP kinases. PMID:25146926

  12. Mitochondrial-Associated Cell Death Mechanisms Are Reset to an Embryonic-Like State in Aged Donor-Derived iPS Cells Harboring Chromosomal Aberrations

    PubMed Central

    Prigione, Alessandro; Hossini, Amir M.; Lichtner, Björn; Serin, Akdes; Fauler, Beatrix; Megges, Matthias; Lurz, Rudi; Lehrach, Hans; Zouboulis, Christos C.

    2011-01-01

    Somatic cells reprogrammed into induced pluripotent stem cells (iPSCs) acquire features of human embryonic stem cells (hESCs) and thus represent a promising source for cellular therapy of debilitating diseases, such as age-related disorders. However, reprogrammed cell lines have been found to harbor various genomic alterations. In addition, we recently discovered that the mitochondrial DNA of human fibroblasts also undergoes random mutational events upon reprogramming. Aged somatic cells might possess high susceptibility to nuclear and mitochondrial genome instability. Hence, concerns over the oncogenic potential of reprogrammed cells due to the lack of genomic integrity may hinder the applicability of iPSC-based therapies for age-associated conditions. Here, we investigated whether aged reprogrammed cells harboring chromosomal abnormalities show resistance to apoptotic cell death or mitochondrial-associated oxidative stress, both hallmarks of cancer transformation. Four iPSC lines were generated from dermal fibroblasts derived from an 84-year-old woman, representing the oldest human donor so far reprogrammed to pluripotency. Despite the presence of karyotype aberrations, all aged-iPSCs were able to differentiate into neurons, re-establish telomerase activity, and reconfigure mitochondrial ultra-structure and functionality to a hESC-like state. Importantly, aged-iPSCs exhibited high sensitivity to drug-induced apoptosis and low levels of oxidative stress and DNA damage, in a similar fashion as iPSCs derived from young donors and hESCs. Thus, the occurrence of chromosomal abnormalities within aged reprogrammed cells might not be sufficient to over-ride the cellular surveillance machinery and induce malignant transformation through the alteration of mitochondrial-associated cell death. Taken together, we unveiled that cellular reprogramming is capable of reversing aging-related features in somatic cells from a very old subject, despite the presence of genomic

  13. A flavivirus protein M-derived peptide directly permeabilizes mitochondrial membranes, triggers cell death and reduces human tumor growth in nude mice.

    PubMed

    Brabant, Magali; Baux, Ludwig; Casimir, Richard; Briand, Jean Paul; Chaloin, Olivier; Porceddu, Mathieu; Buron, Nelly; Chauvier, David; Lassalle, Myriam; Lecoeur, Hervé; Langonné, Alain; Dupont, Sylvie; Déas, Olivier; Brenner, Catherine; Rebouillat, Dominique; Muller, Sylviane; Borgne-Sanchez, Annie; Jacotot, Etienne

    2009-10-01

    Dengue viruses belong to the Flavivirus family and are responsible for hemorrhagic fever in Human. Dengue virus infection triggers apoptosis especially through the expression of the small membrane (M) protein. Using isolated mitochondria, we found that synthetic peptides containing the C-terminus part of the M ectodomain caused apoptosis-related mitochondrial membrane permeabilization (MMP) events. These events include matrix swelling and the dissipation of the mitochondrial transmembrane potential (DeltaPsi(m)). Protein M Flavivirus sequence alignments and helical wheel projections reveal a conserved distribution of charged residues. Moreover, when combined to the cell penetrating HIV-1 Tat peptide transduction domain (Tat-PTD), this sequence triggers a caspase-dependent cell death associated with DeltaPsi(m) loss and cytochrome c release. Mutational approaches coupled to functional screening on isolated mitochondria resulted in the selection of a protein M derived sequence containing nine residues with potent MMP-inducing properties on isolated mitochondria. A chimeric peptide composed of a Tat-PTD linked to the 9-mer entity triggers MMP and cell death. Finally, local administration of this chimeric peptide induces growth inhibition of xenograft prostate PC3 tumors in immuno-compromised mice, and significantly enhances animal survival. Together, these findings support the notion of using viral genomes as valuable sources to discover mitochondria-targeted sequences that may lead to the development of new anticancer compounds.

  14. Micromanaging Death: Process Preferences, Values, and Goals in End-of-Life Medical Decision Making

    ERIC Educational Resources Information Center

    Hawkins, Nikki Ayers; Ditto, Peter H.; Danks, Joseph H.; Smucker, William D.

    2005-01-01

    Purpose: This study examined patients' and surrogates' attitudes about using advance directives to manage end-of-life medical care. It also explored process preferences, or how patients want decisions to be made. Design and Methods: Data come from the third wave of the Advance Directives, Values Assessment, and Communication Enhancement project, a…

  15. Deaths and end-of-life decisions differed between neonatal and paediatric intensive care units at the same children's hospital.

    PubMed

    Snoep, Maartje C; Jansen, Nicolaas J G; Groenendaal, Floris

    2017-09-04

    We compared neonatal deaths and end-of-life decisions in a neonatal intensive care unit (NICU) and paediatric intensive care unit (PICU) in a Dutch tertiary children's hospital. All 235 full-term infants who died within 28 days of life between 2003-2013 in the NICU (n=199) and PICU (n=36) were retrospectively studied. The median length of stay was three days in the NICU and seven days in the PICU (p=0.003). The main reasons for NICU stays were asphyxia (52.8%) and congenital malformations (42.2%) and in the PICU they were congenital malformations (97.2%) primarily cardiac problems (83.3%, p<0.001). The median age of death was three days in the NICU and eight days in the PICU (p<0.001) and mortality despite full intensive care treatment was 4.0% and 25.0% respectively. Intensive treatment was discontinued because of poor survival chances in 21.5% of NICU and 52.8% of PICU cases (p<0.001) and care was redirected because of expected poor quality of life in 70.9% and 22.2%, respectively. Differences between the age at death and end-of-life decisions were found between full-term infants in the NICU and PICU in the same children's hospital. Underlying disorders and doctors' attitudes may have played a role. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  16. End-of-life decisions for children under 1 year of age in the Netherlands: decreased frequency of administration of drugs to deliberately hasten death.

    PubMed

    ten Cate, Katja; van de Vathorst, Suzanne; Onwuteaka-Philipsen, Bregje D; van der Heide, Agnes

    2015-10-01

    To assess whether the frequency of end-of-life decisions for children under 1 year of age in the Netherlands has changed since ultrasound examination around 20 weeks of gestation became routine in 2007 and after a legal provision for deliberately ending the life of a newborn was set up that same year. This was a recurrent nationwide cross-sectional study in the Netherlands. In 2010, a sample of death certificates from children under 1 year of age was derived from the central death registry. All 223 deaths that occurred in a 4-month study period were included. Physicians who had reported a non-sudden death (n=206) were sent a questionnaire on the end-of-life decisions made. 160 questionnaires were returned (response 78%). In 2010, 63% of all deaths of children under 1 year of age were preceded by an end-of-life decision-a percentage comparable to other times when this study was conducted (1995, 2001, 2005). These end-of-life decisions were mainly decisions to withdraw or withhold potentially life-sustaining treatment. In 2010, the percentage of cases in which drugs were administered with the explicit intention to hasten death was 1%, while in 1995 and 2001, this was 9% and in 2005, this was 8%. There has been a reduction of infant deaths that followed administration of drugs with the explicit intention to hasten death. One explanation for this reduction relates to the introduction of routine ultrasound examination around 20 weeks of gestation. In addition, the introduction of legal criteria and a review process for deliberately ending the life of a newborn may have left Dutch physicians with less room to hasten death. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.

  17. Age-based disparities in end-of-life decisions in Belgium: a population-based death certificate survey

    PubMed Central

    2012-01-01

    Background A growing body of scientific research is suggesting that end-of-life care and decision making may differ between age groups and that elderly patients may be the most vulnerable to exclusion of due care at the end of life. This study investigates age-related disparities in the rate of end-of-life decisions with a possible or certain life shortening effect (ELDs) and in the preceding decision making process in Flanders, Belgium in 2007, where euthanasia was legalised in 2002. Comparing with data from an identical survey in 1998 we also study the plausibility of the ‘slippery slope’ hypothesis which predicts a rise in the rate of administration of life ending drugs without patient request, especially among elderly patients, in countries where euthanasia is legal. Method We performed a post-mortem survey among physicians certifying a large representative sample (n = 6927) of death certificates in 2007, identical to a 1998 survey. Response rate was 58.4%. Results While the rates of non-treatment decisions (NTD) and administration of life ending drugs without explicit request (LAWER) did not differ between age groups, the use of intensified alleviation of pain and symptoms (APS) and euthanasia/assisted suicide (EAS), as well as the proportion of euthanasia requests granted, was bivariately and negatively associated with patient age. Multivariate analysis showed no significant effects of age on ELD rates. Older patients were less often included in decision making for APS and more often deemed lacking in capacity than were younger patients. Comparison with 1998 showed a decrease in the rate of LAWER in all age groups except in the 80+ age group where the rate was stagnant. Conclusion Age is not a determining factor in the rate of end-of-life decisions, but is in decision making as patient inclusion rates decrease with old age. Our results suggest there is a need to focus advance care planning initiatives on elderly patients. The slippery slope hypothesis

  18. Age-based disparities in end-of-life decisions in Belgium: a population-based death certificate survey.

    PubMed

    Chambaere, Kenneth; Rietjens, Judith A C; Smets, Tinne; Bilsen, Johan; Deschepper, Reginald; Pasman, H Roeline W; Deliens, Luc

    2012-06-18

    A growing body of scientific research is suggesting that end-of-life care and decision making may differ between age groups and that elderly patients may be the most vulnerable to exclusion of due care at the end of life. This study investigates age-related disparities in the rate of end-of-life decisions with a possible or certain life shortening effect (ELDs) and in the preceding decision making process in Flanders, Belgium in 2007, where euthanasia was legalised in 2002. Comparing with data from an identical survey in 1998 we also study the plausibility of the 'slippery slope' hypothesis which predicts a rise in the rate of administration of life ending drugs without patient request, especially among elderly patients, in countries where euthanasia is legal. We performed a post-mortem survey among physicians certifying a large representative sample (n = 6927) of death certificates in 2007, identical to a 1998 survey. Response rate was 58.4%. While the rates of non-treatment decisions (NTD) and administration of life ending drugs without explicit request (LAWER) did not differ between age groups, the use of intensified alleviation of pain and symptoms (APS) and euthanasia/assisted suicide (EAS), as well as the proportion of euthanasia requests granted, was bivariately and negatively associated with patient age. Multivariate analysis showed no significant effects of age on ELD rates. Older patients were less often included in decision making for APS and more often deemed lacking in capacity than were younger patients. Comparison with 1998 showed a decrease in the rate of LAWER in all age groups except in the 80+ age group where the rate was stagnant. Age is not a determining factor in the rate of end-of-life decisions, but is in decision making as patient inclusion rates decrease with old age. Our results suggest there is a need to focus advance care planning initiatives on elderly patients. The slippery slope hypothesis cannot be confirmed either in general or

  19. Decision making and modes of death in a tertiary neonatal unit.

    PubMed

    Roy, R; Aladangady, N; Costeloe, K; Larcher, V

    2004-11-01

    To study the frequency and reason for withdrawal/withholding of life sustaining treatment (LST) and do not resuscitate (DNR) orders in infants who died in a tertiary neonatal unit. Infants who died at Homerton University Hospital between January 1998 and September 2001 were studied by retrospective analysis of patient records. The case notes of 71 (84%) of 85 infants who died were studied. Mode of death was withdrawal of LST in 28 (40%), DNR in 11 (15%), withholding of LST in two (3%), and natural in 30 (42%) infants. Withdrawal of LST was discussed with the parents of 39 seriously ill infants; 28 (72%) parents agreed. There was no difference in birth weight and gestational age of babies whose parents agreed or refused withdrawal of LST. White and Afro-Caribbean parents and those from the Indian subcontinent (20 of 23) were more likely to agree to withdrawal of LST than Black African or Jewish (eight of 16, p = 0.015) parents. The median age at withdrawal of LST was 4 days (range 1-57). The median duration between discussion and the parents agreeing to withdrawal of LST was 165 minutes (range 30-2160), and median duration between withdrawal of LST and death was 22 minutes (range 5-210). The most common reason for withdrawal of LST was complications of extreme prematurity (68%). The most common mode of death was withdrawal of LST, and the most common reason was complications of extreme prematurity. The ethnic and cultural background of the parents influenced agreement to withdrawal of LST.

  20. Mitochondrial Calcium Handling in Physiology and Disease.

    PubMed

    Granatiero, Veronica; De Stefani, Diego; Rizzuto, Rosario

    2017-01-01

    Calcium (Ca(2+)) accumulation inside mitochondria represents a pleiotropic signal controlling a wide range of cellular functions, including key metabolic pathways and life/death decisions. This phenomenon has been first described in the 1960s, but the identity of the molecules controlling this process remained a mystery until just few years ago, when both mitochondrial Ca(2+) uptake and release systems were genetically dissected. This finally opened the possibility to develop genetic models to directly test the contribution of mitochondrial Ca(2+) homeostasis to cellular functions. Here we summarize our current understanding of the molecular machinery that controls mitochondrial Ca(2+) handling and critically evaluate the physiopathological role of mitochondrial Ca(2+) signaling, based on recent evidences obtained through in vitro and in vivo models.

  1. Silica nanoparticles mediated neuronal cell death in corpus striatum of rat brain: implication of mitochondrial, endoplasmic reticulum and oxidative stress

    NASA Astrophysics Data System (ADS)

    Parveen, Arshiya; Rizvi, Syed Husain Mustafa; Mahdi, Farzana; Tripathi, Sandeep; Ahmad, Iqbal; Shukla, Rajendra K.; Khanna, Vinay K.; Singh, Ranjana; Patel, Devendra K.; Mahdi, Abbas Ali

    2014-11-01

    Extensive uses of silica nanoparticles (SiNPs) in biomedical and industrial fields have increased the risk of exposure, resulting concerns about their safety. We focussed on some of the safety aspects by studying neurobehavioural impairment, oxidative stress (OS), neurochemical and ultrastructural changes in corpus striatum (CS) of male Wistar rats exposed to 80-nm SiNPs. Moreover, its role in inducing mitochondrial and endoplasmic reticulum (ER) stress-mediated neuronal apoptosis was also investigated. The results demonstrated impairment in neurobehavioural indices, and a significant increase in lipid peroxide levels (LPO), hydrogen peroxide (H2O2), superoxide (O2 -) and protein carbonyl content, whereas there was a significant decrease in the activities of the enzymes, manganese superoxide dismutase (Mn SOD), glutathione peroxidase (GPx), catalase (CAT) and reduced glutathione (GSH) content, suggesting impaired antioxidant defence system. Protein (cytochrome c, Bcl-2, Bax, p53, caspase-3, caspase 12 and CHOP/Gadd153) and mRNA (Bcl-2, Bax, p53 and CHOP/Gadd153, cytochrome c) expression studies of mitochondrial and ER stress-related apoptotic factors suggested that both the cell organelles were involved in OS-mediated apoptosis in treated rat brain CS. Moreover, electron microscopic studies clearly showed mitochondrial and ER dysfunction. In conclusion, the result of the study suggested that subchronic SiNPs' exposure has the potential to alter the behavioural activity and also to bring about changes in biochemical, neurochemical and ultrastructural profiles in CS region of rat brain. Furthermore, we also report SiNPs-induced apoptosis in CS, through mitochondrial and ER stress-mediated signalling.

  2. MiADMSA reverses impaired mitochondrial energy metabolism and neuronal apoptotic cell death after arsenic exposure in rats

    SciTech Connect

    Dwivedi, Nidhi; Mehta, Ashish; Yadav, Abhishek; Binukumar, B.K.; Gill, Kiran Dip; Flora, Swaran J.S.

    2011-11-15

    Arsenicosis, due to contaminated drinking water, is a serious health hazard in terms of morbidity and mortality. Arsenic induced free radicals generated are known to cause cellular apoptosis through mitochondrial driven pathway. In the present study, we investigated the effect of arsenic interactions with various complexes of the electron transport chain and attempted to evaluate if there was any complex preference of arsenic that could trigger apoptosis. We also evaluated if chelation with monoisoamyl dimercaptosuccinic acid (MiADMSA) could reverse these detrimental effects. Our results indicate that arsenic exposure induced free radical generation in rat neuronal cells, which diminished mitochondrial potential and enzyme activities of all the complexes of the electron transport chain. Moreover, these complexes showed differential responses towards arsenic. These early events along with diminished ATP levels could be co-related with the later events of cytosolic migration of cytochrome c, altered bax/bcl{sub 2} ratio, and increased caspase 3 activity. Although MiADMSA could reverse most of these arsenic-induced altered variables to various extents, DNA damage remained unaffected. Our study for the first time demonstrates the differential effect of arsenic on the complexes leading to deficits in bioenergetics leading to apoptosis in rat brain. However, more in depth studies are warranted for better understanding of arsenic interactions with the mitochondria. -- Research highlights: Black-Right-Pointing-Pointer Arsenic impairs mitochondrial energy metabolism leading to neuronal apoptosis. Black-Right-Pointing-Pointer Arsenic differentially affects mitochondrial complexes, I - III and IV being more sensitive than complex II. Black-Right-Pointing-Pointer Arsenic-induced apoptosis initiates through ROS generation or impaired [Ca{sup 2+}]i homeostasis. Black-Right-Pointing-Pointer MiADMSA reverses arsenic toxicity via intracellular arsenic- chelation, antioxidant

  3. Inhibiting c-Jun N-terminal kinase partially attenuates caffeine-dependent cell death without alleviating the caffeine-induced reduction in mitochondrial respiration in C2C12 skeletal myotubes.

    PubMed

    Downs, R M; Hughes, M A; Kinsey, S T; Johnson, M C; Baumgarner, B L

    2016-11-04

    Caffeine is a widely consumed stimulant that has previously been shown to promote cytotoxic stress and even cell death in numerous mammalian cell lines. Thus far there is little information available regarding the toxicity of caffeine in skeletal muscle cells. Our preliminary data revealed that treating C2C12 myotubes with 5 mM caffeine for 6 h increased nuclear fragmentation and reduced basal and maximal oxygen consumption rate (OCR) in skeletal myotubes. The purpose of this study was to further elucidate the pathways by which caffeine increased cell death and reduced mitochondrial respiration. We specifically examined the role of c-Jun N-terminal kinase (JNK), which has previously been shown to simultaneously increase caspase-dependent cell death and reduce mitochondrial respiration in other mammalian cell lines. We found that caffeine promoted a dose-dependent increase in cell death in multinucleated myotubes but did not in mononucleated myoblasts. The addition of 10 μM Z-DEVD-FMK, a specific inhibitor of executioner caspases, completely inhibited caffeine-dependent cell death. Further, the addition of 400 μM dantrolene, a specific ryanodine receptor (RYR) inhibitor, prevented the caffeine-dependent increase in cell death and the reduction in basal and maximal OCR. We also discovered that caffeine treatment significantly increased the phosphorylation of JNK and that the addition of 30 μM SP600125 (JNKi), a specific JNK inhibitor, partially attenuated caffeine-induced cell death without preventing the caffeine-dependent reduction in basal and maximal OCR. Our results suggest that JNK partially mediates the increase in caspase-dependent cell death but does not contribute to reduced mitochondrial respiration in caffeine-treated skeletal muscle cells. We conclude that caffeine increased cell death and reduced mitochondrial respiration in a calcium-dependent manner by activating the RYR and promoting reticular calcium release. Copyright © 2016 Elsevier Inc

  4. Inhibiting c-Jun N-terminal kinase partially attenuates caffeine-dependent cell death without alleviating the caffeine-induced reduction in mitochondrial respiration in C2C12 skeletal myotubes

    PubMed Central

    Downs, R.M.; Hughes, M.A.; Kinsey, S.T.; Johnson, M.C.; Baumgarner, B.L.

    2017-01-01

    Caffeine is a widely consumed stimulant that has previously been shown to promote cytotoxic stress and even cell death in numerous mammalian cell lines. Thus far there is little information available regarding the toxicity of caffeine in skeletal muscle cells. Our preliminary data revealed that treating C2C12 myotubes with 5 mM caffeine for 6 h increased nuclear fragmentation and reduced basal and maximal oxygen consumption rate (OCR) in skeletal myotubes. The purpose of this study was to further elucidate the pathways by which caffeine increased cell death and reduced mitochondrial respiration. We specifically examined the role of c-Jun N-terminal kinase (JNK), which has previously been shown to simultaneously increase caspase-dependent cell death and reduce mitochondrial respiration in other mammalian cell lines. We found that caffeine promoted a dose-dependent increase in cell death in multinucleated myotubes but did not in mononucleated myoblasts. The addition of 10 μM Z-DEVD-FMK, a specific inhibitor of executioner caspases, completely inhibited caffeine-dependent cell death. Further, the addition of 400 μM dantrolene, a specific ryanodine receptor (RYR) inhibitor, prevented the caffeine-dependent increase in cell death and the reduction in basal and maximal OCR. We also discovered that caffeine treatment significantly increased the phosphorylation of JNK and that the addition of 30 μM SP600125 (JNKi), a specific JNK inhibitor, partially attenuated caffeine-induced cell death without preventing the caffeine-dependent reduction in basal and maximal OCR. Our results suggest that JNK partially mediates the increase in caspase-dependent cell death but does not contribute to reduced mitochondrial respiration in caffeine-treated skeletal muscle cells. We conclude that caffeine increased cell death and reduced mitochondrial respiration in a calcium-dependent manner by activating the RYR and promoting reticular calcium release. PMID:27717822

  5. Role of the calcium-sensing receptor in cardiomyocyte apoptosis via the sarcoplasmic reticulum and mitochondrial death pathway in cardiac hypertrophy and heart failure.

    PubMed

    Lu, Fang-Hao; Fu, Song-Bin; Leng, Xiaoning; Zhang, Xinying; Dong, Shiyun; Zhao, Ya-Jun; Ren, Huan; Li, Hulun; Zhong, Xin; Xu, Chang-Qing; Zhang, Wei-Hua

    2013-01-01

    Alterations in calcium homeostasis in the intracellular endo/sarcoplasmic reticulum (ER/SR) and mitochondria of cardiomyocytes cause cell death via the SR and mitochondrial apoptotic pathway, contributing to ventricular dysfunction. However, the role of the calcium-sensing receptor (CaR) in cardiac hypertrophy and heart failure has not been studied. This study examined the possible involvement of CaR in the SR and mitochondrial apoptotic pathway in an experimental model of heart failure. In Wistar rats, cardiac hypertrophy and heart failure were induced by subcutaneous injection of isoproterenol (Iso). Calindol, an activator of CaR, and calhex231, an inhibitor of CaR, were administered by caudal vein injection. Cardiac remodeling and left ventricular function were then analyzed in these rats. After 2, 4, 6 and 8 weeks after the administration of Iso, the rats developed cardiac hypertrophy and failure. The cardiac expression of ER chaperones and related apoptotic proteins was significantly increased in the failing hearts. Furthermore, the expression of ER chaperones and the apoptotic rate were also increased with the administration of calindol, whereas the expression of these proteins was reduced with the treatment of calhex231. We also induced cardiac hypertrophy and failure via thoracic aorta constriction (TAC) in mice. After 2 and 4 weeks of TAC, the expression of ER chaperones and apoptotic proteins were increased in the mouse hearts. Furthermore, Iso induced ER stress and apoptosis in cultured cardiomyocytes, while pretreatment with calhex231 prevented ER stress and protected the myocytes against apoptosis. To further investigate the effect of CaR on the concentration of intracellular calcium, the calcium concentration in the SR and mitochondria was determined with Fluo-5N and x-rhod-1 and the mitochondrial membrane potential was examined with JC-1 using laser confocal microscopy. After treatment with Iso for 48 hours, activation of CaR reduced [Ca(2+)]SR

  6. Involvement of intracellular Ca2+ and K+ in dissipation of the mitochondrial membrane potential and cell death induced by extracellular ATP in hepatocytes.

    PubMed Central

    Zoeteweij, J P; van de Water, B; de Bont, H J; Mulder, G J; Nagelkerke, J F

    1992-01-01

    Isolated rat hepatocytes were incubated with extracellular ATP to induce a prolonged increase in intracellular Ca2+ ([Ca2+]i) and a loss of viability within 2 h. By using video-intensified fluorescence microscopy, the effects of exposure to extracellular ATP on [Ca2+]i, mitochondrial membrane potential (MMP) and cell viability were determined simultaneously in individual living hepatocytes. The increase in [Ca2+]i on exposure to ATP was followed by a decreasing MMP; there were big differences between individual cells. Complete loss of the MMP occurred before cell death was observed. Omission of K+ from the incubation medium decreased the cytotoxicity of ATP; under these conditions, intracellular K+ was decreased by more than 80%. Treatment with nigericin also depleted intracellular K+ and decreased ATP-induced toxicity. Protection against loss of viability by means of a decrease in intracellular [K+] was reflected by maintenance of the MMP. These observations suggest that ATP-induced cell death may be caused by a mechanism that has been described for isolated mitochondria: after an increase in Ca2+ levels, a K+ influx into mitochondria is induced, which finally disrupts the MMP and leads to cell death. PMID:1445265

  7. Loss of mitochondrial complex I activity potentiates dopamine neuron death induced by microtubule dysfunction in a Parkinson’s disease model

    PubMed Central

    Choi, Won-Seok; Palmiter, Richard D.

    2011-01-01

    Mitochondrial complex I dysfunction is regarded as underlying dopamine neuron death in Parkinson’s disease models. However, inactivation of the Ndufs4 gene, which compromises complex I activity, does not affect the survival of dopamine neurons in culture or in the substantia nigra pars compacta of 5-wk-old mice. Treatment with piericidin A, a complex I inhibitor, does not induce selective dopamine neuron death in either Ndufs4+/+ or Ndufs4−/− mesencephalic cultures. In contrast, rotenone, another complex I inhibitor, causes selective toxicity to dopamine neurons, and Ndufs4 inactivation potentiates this toxicity. We identify microtubule depolymerization and the accumulation of cytosolic dopamine and reactive oxygen species as alternative mechanisms underlying rotenone-induced dopamine neuron death. Enhanced rotenone toxicity to dopamine neurons from Ndufs4 knockout mice may involve enhanced dopamine synthesis caused by the accumulation of nicotinamide adenine dinucleotide reduced. Our results suggest that the combination of disrupting microtubule dynamics and inhibiting complex I, either by mutations or exposure to toxicants, may be a risk factor for Parkinson’s disease. PMID:21383081

  8. Selenium (sodium selenite) causes cytotoxicity and apoptotic mediated cell death in PLHC-1 fish cell line through DNA and mitochondrial membrane potential damage.

    PubMed

    Selvaraj, Vellaisamy; Tomblin, Justin; Yeager Armistead, Mindy; Murray, Elizabeth

    2013-01-01

    Elevated concentration of selenium poses a toxic threat to organisms inhabiting aquatic ecosystems influenced by excessive inputs from anthropogenic sources. Selenium is also an essential micronutrient in living things, particularly in fish, and provides antioxidant properties to tissues. Whole fish and hepatocytes in primary culture show selenite toxicity above threshold levels. The present study was designed to investigate the process by which selenite exposure causes cellular toxicity and apoptotic and necrotic cell death in fish hepatoma cell line PLHC-1. PLHC-1 cells were exposed to various selenite concentrations (1, 10, 50 and 100 μM) for 10, 20 and 40 h intervals. The 24h inhibitory concentration 50 (IC₅₀) of selenite in PLHC-1 cell line was found to be 237 μM. Flow cytometery data showed that selenite exposed cells promote apoptotic and necrotic mediated cell death when selenite concentrations were ≥10 μM compared to control. Selenite exposure was associated with a significant increase of caspase-3 activities suggesting the induction of apoptosis. Selenite exposure at high levels (≥10 μM) and longer exposure times (≥20 h) induces mitochondrial membrane potential damage (ΔΨ(m)), DNA damage and elevated production of ROS which could be associated with cell death. Copyright © 2012 Elsevier Inc. All rights reserved.

  9. A3K2A3-induced apoptotic cell death of Leishmania amazonensis occurs through caspase- and ATP-dependent mitochondrial dysfunction.

    PubMed

    Garcia, Francielle Pelegrin; Henrique da Silva Rodrigues, Jean; Din, Zia Ud; Rodrigues-Filho, Edson; Ueda-Nakamura, Tânia; Auzély-Velty, Rachel; Nakamura, Celso Vataru

    2017-01-01

    Leishmaniasis is a neglected tropical disease that affects millions of people worldwide. Current therapies mainly rely on antimonial drugs that are inadequate because of their high toxicity and increased drug resistance. An urgent need exists to discover new, more effective, more affordable, and more target-specific drugs. Pathways that are associated with apoptosis-like cell death have been identified in unicellular eukaryotes, including protozoan parasites. In the present study, we studied the mechanism of cell death that is induced by A3K2A3 against L. amazonensis. A3K2A3 is a dibenzylideneacetone that has an acyclic dienone that is attached to aryl groups in both β-positions, which is similar to curcuminoids and chalcone structures. This compound was previously shown to be safe with regard to cytotoxicity and active against the parasite. Biochemical and morphological approaches were used in the present study. The results suggested that A3K2A3 caused mitochondrial dysfunction in L. amazonensis promastigotes, leading to mechanisms of cell death that share some common phenotypic features with metazoan apoptosis, such as an increase in reactive oxygen species production, a decrease in the adenosine triphosphate ratio, phosphatidylserine exposure, a decrease in cell volume, caspase production, and DNA fragmentation. Altogether, these findings indicate that apoptosis can indeed be triggered by chemotherapeutic agents.

  10. Yeast growth in raffinose results in resistance to acetic-acid induced programmed cell death mostly due to the activation of the mitochondrial retrograde pathway.

    PubMed

    Guaragnella, Nicoletta; Zdralević, Maša; Lattanzio, Paolo; Marzulli, Domenico; Pracheil, Tammy; Liu, Zhengchang; Passarella, Salvatore; Marra, Ersilia; Giannattasio, Sergio

    2013-12-01

    In order to investigate whether and how a modification of mitochondrial metabolism can affect yeast sensitivity to programmed cell death (PCD) induced by acetic acid (AA-PCD), yeast cells were grown on raffinose, as a sole carbon source, which, differently from glucose, favours mitochondrial respiration. We found that, differently from glucose-grown cells, raffinose-grown cells were mostly resistant to AA-PCD and that this was due to the activation of mitochondrial retrograde (RTG) response, which increased with time, as revealed by the up-regulation of the peroxisomal isoform of citrate synthase and isocitrate dehydrogenase isoform 1, RTG pathway target genes. Accordingly, the deletion of RTG2 and RTG3, a positive regulator and a transcription factor of the RTG pathway, resulted in AA-PCD, as shown by TUNEL assay. Neither deletion in raffinose-grown cells of HAP4, encoding the positive regulatory subunit of the Hap2,3,4,5 complex nor constitutive activation of the RTG pathway in glucose-grown cells due to deletion of MKS1, a negative regulator of RTG pathway, had effect on yeast AA-PCD. The RTG pathway was found to be activated in yeast cells containing mitochondria, in which membrane potential was measured, capable to consume oxygen in a manner stimulated by the uncoupler CCCP and inhibited by the respiratory chain inhibitor antimycin A. AA-PCD resistance in raffinose-grown cells occurs with a decrease in both ROS production and cytochrome c release as compared to glucose-grown cells en route to AA-PCD. © 2013.

  11. Targeting eIF5A Hypusination Prevents Anoxic Cell Death through Mitochondrial Silencing and Improves Kidney Transplant Outcome.

    PubMed

    Melis, Nicolas; Rubera, Isabelle; Cougnon, Marc; Giraud, Sébastien; Mograbi, Baharia; Belaid, Amine; Pisani, Didier F; Huber, Stephan M; Lacas-Gervais, Sandra; Fragaki, Konstantina; Blondeau, Nicolas; Vigne, Paul; Frelin, Christian; Hauet, Thierry; Duranton, Christophe; Tauc, Michel

    2017-03-01

    The eukaryotic initiation factor 5A (eIF5A), which is highly conserved throughout evolution, has the unique characteristic of post-translational activation through hypusination. This modification is catalyzed by two enzymatic steps involving deoxyhypusine synthase (DHPS) and deoxyhypusine hydroxylase (DOHH). Notably, eIF5A may be involved in regulating the lifespan of Drosophila during long-term hypoxia. Therefore, we investigated the possibility of a link between eIF5A hypusination and cellular resistance to hypoxia/anoxia. Pharmacologic targeting of DHPS by N1-guanyl-1,7-diaminoheptane (GC7) or RNA interference-mediated inhibition of DHPS or DOHH induced tolerance to anoxia in immortalized mouse renal proximal cells. Furthermore, GC7 treatment of cells reversibly induced a metabolic shift toward glycolysis as well as mitochondrial remodeling and led to downregulated expression and activity of respiratory chain complexes, features characteristic of mitochondrial silencing. GC7 treatment also attenuated anoxia-induced generation of reactive oxygen species in these cells and in normoxic conditions, decreased the mitochondrial oxygen consumption rate of cultured cells and mice. In rats, intraperitoneal injection of GC7 substantially reduced renal levels of hypusinated eIF5A and protected against ischemia-reperfusion-induced renal injury. Finally, in the preclinical pig kidney transplant model, intravenous injection of GC7 before kidney removal significantly improved graft function recovery and late graft function and reduced interstitial fibrosis after transplant. This unconventional signaling pathway offers an innovative therapeutic target for treating hypoxic-ischemic human diseases and organ transplantation. Copyright © 2017 by the American Society of Nephrology.

  12. Geldanamycin-induced osteosarcoma cell death is associated with hyperacetylation and loss of mitochondrial pool of heat shock protein 60 (hsp60).

    PubMed

    Gorska, Magdalena; Marino Gammazza, Antonella; Zmijewski, Michal Aleksander; Campanella, Claudia; Cappello, Francesco; Wasiewicz, Tomasz; Kuban-Jankowska, Alicja; Daca, Agnieszka; Sielicka, Alicja; Popowska, Urszula; Knap, Narcyz; Antoniewicz, Jakub; Wakabayashi, Takashi; Wozniak, Michal

    2013-01-01

    Osteosarcoma is one of the most malignant tumors of childhood and adolescence that is often resistant to standard chemo- and radio-therapy. Geldanamycin and geldanamycin analogs have been recently studied as potential anticancer agents for osteosarcoma treatment. Here, for the first time, we have presented novel anticancer mechanisms of geldanamycin biological activity. Moreover, we demonstrated an association between the effects of geldanamycin on the major heat shock proteins (HSPs) and the overall survival of highly metastatic human osteosarcoma 143B cells. We demonstrated that the treatment of 143B cells with geldanamycin caused a subsequent upregulation of cytoplasmic Hsp90 and Hsp70 whose activity is at least partly responsible for cancer development and drug resistance. On the other hand, geldanamycin induced upregulation of Hsp60 gene expression, and a simultaneous loss of hyperacetylated Hsp60 mitochondrial protein pool resulting in decreased viability and augmented cancer cell death. Hyperacetylation of Hsp60 seems to be associated with anticancer activity of geldanamycin. In light of the fact that mitochondrial dysfunction plays a critical role in the apoptotic signaling pathway, the presented data may support a hypothesis that Hsp60 can be another functional part of mitochondria-related acetylome being a potential target for developing novel anticancer strategies.

  13. Geldanamycin-Induced Osteosarcoma Cell Death Is Associated with Hyperacetylation and Loss of Mitochondrial Pool of Heat Shock Protein 60 (Hsp60)

    PubMed Central

    Gorska, Magdalena; Marino Gammazza, Antonella; Zmijewski, Michal Aleksander; Campanella, Claudia; Cappello, Francesco; Wasiewicz, Tomasz; Kuban-Jankowska, Alicja; Daca, Agnieszka; Sielicka, Alicja; Popowska, Urszula; Knap, Narcyz; Antoniewicz, Jakub; Wakabayashi, Takashi; Wozniak, Michal

    2013-01-01

    Osteosarcoma is one of the most malignant tumors of childhood and adolescence that is often resistant to standard chemo- and radio-therapy. Geldanamycin and geldanamycin analogs have been recently studied as potential anticancer agents for osteosarcoma treatment. Here, for the first time, we have presented novel anticancer mechanisms of geldanamycin biological activity. Moreover, we demonstrated an association between the effects of geldanamycin on the major heat shock proteins (HSPs) and the overall survival of highly metastatic human osteosarcoma 143B cells. We demonstrated that the treatment of 143B cells with geldanamycin caused a subsequent upregulation of cytoplasmic Hsp90 and Hsp70 whose activity is at least partly responsible for cancer development and drug resistance. On the other hand, geldanamycin induced upregulation of Hsp60 gene expression, and a simultaneous loss of hyperacetylated Hsp60 mitochondrial protein pool resulting in decreased viability and augmented cancer cell death. Hyperacetylation of Hsp60 seems to be associated with anticancer activity of geldanamycin. In light of the fact that mitochondrial dysfunction plays a critical role in the apoptotic signaling pathway, the presented data may support a hypothesis that Hsp60 can be another functional part of mitochondria-related acetylome being a potential target for developing novel anticancer strategies. PMID:24015183

  14. Preconditioning with low concentration NO attenuates subsequent NO-induced apoptosis in vascular smooth muscle cells via HO-1-dependent mitochondrial death pathway

    SciTech Connect

    Kwak, Hyun-Jeong; Park, Kyoung-Mi; Lee, Seahyoung; Lim, Hyun-Joung; Go, Sang-Hee; Eom, Sang-Mi; Park, Hyun-Young . E-mail: hypark65@nih.go.kr

    2006-12-01

    Nitric oxide (NO) signaling pathways are important in both the maintenance of vascular homeostasis and disease progression. Overproduction of NO has been associated with ischemia/reperfusion (I/R) injury. Growing evidences suggest that NO preconditioning has cytoprotective effects against I/R injury. However, the mechanism with which NO mediates these effects remains to be elucidated. The purpose of this study was to examine the mechanism of how NO preconditioning inhibits subsequent NO-induced apoptosis in vascular smooth muscle cells (VSMC), specifically focusing on heme oxygenase-1 (HO-1). According to our data, sodium nitroprusside (SNP) increased HO-1 expression in a concentration dependent manner. Preconditioning with low concentration SNP (0.3 mM) inhibited subsequent high concentration SNP (1.5 mM)-induced apoptosis, and this effect was reversed by the HO-1 inhibitor SnPP. Low concentration SNP-mediated protection involved p38 kinase inactivation and increased Bcl-2 expression. Furthermore, mitochondrial membrane potential was concomitantly increased with decreased expressions of Bax, Apaf-1, and activity of caspase-3, which was reversed by SnPP treatment. Our results show that low concentration SNP preconditioning suppresses subsequent high concentration SNP-induced apoptosis by inhibiting p38 kinase and mitochondrial death pathway via HO-1-dependent mechanisms in VSMC.

  15. A novel agonistic anti-human death receptor 5 monoclonal antibody with tumoricidal activity induces caspase- and mitochondrial-dependent apoptosis in human leukemia Jurkat cells.

    PubMed

    Du, Yao-Wu; Chen, Ju-Gao; Bai, Hui-Ling; Huang, Hong-Ying; Wang, Jing; Li, Shu-Lian; Liu, Guang-Chao; Jiang, Qi; Chai, Jing; Zhao, Yue-Ping; Ma, Yuan-Fang

    2011-04-01

    An agonistic antibody against TNF-related apoptosis-inducing ligand death receptor 5 (DR5) is a practicable candidate drug for antitumor therapy. In this study, a novel murine anti-human DR5 monoclonal antibody, mDRA-6(IgG1-κ), has been generated. This study aimed to explore the caspase-dependent and mitochondrial mechanisms of mDRA-6 in inducing apoptosis in human leukemia Jurkat cells. The apoptotic effects of mDRA-6 on Jurkat cells, which express DR5 on the cell surface, were detected by flow cytometry and western blot after exposure to different doses of mDRA-6 and at fixed doses of mDRA-6 at different times. It was demonstrated that mDRA-6 can induce Jurkat cell apoptosis via caspase- and mitochondrial-dependent pathways. These results indicate that the novel antibody mDRA-6 against DR5 has an antitumor function and may provide a new reagent for tumor therapy.

  16. An essential oil and its major constituent isointermedeol induce apoptosis by increased expression of mitochondrial cytochrome c and apical death receptors in human leukaemia HL-60 cells.

    PubMed

    Kumar, Ajay; Malik, Fayaz; Bhushan, Shashi; Sethi, Vijay K; Shahi, Ashok K; Kaur, Jagdeep; Taneja, Subhash C; Qazi, Ghulam N; Singh, Jaswant

    2008-02-15

    An essential oil from a lemon grass variety of Cymbopogon flexuosus (CFO) and its major chemical constituent sesquiterpene isointermedeol (ISO) were investigated for their ability to induce apoptosis in human leukaemia HL-60 cells because dysregulation of apoptosis is the hallmark of cancer cells. CFO and ISO inhibited cell proliferation with 48 h IC50 of approximately 30 and 20 microg/ml, respectively. Both induced concentration dependent strong and early apoptosis as measured by various end-points, e.g. annexinV binding, DNA laddering, apoptotic bodies formation and an increase in hypo diploid sub-G0 DNA content during the early 6h period of study. This could be because of early surge in ROS formation with concurrent loss of mitochondrial membrane potential observed. Both CFO and ISO activated apical death receptors TNFR1, DR4 and caspase-8 activity. Simultaneously, both increased the expression of mitochondrial cytochrome c protein with its concomitant release to cytosol leading to caspase-9 activation, suggesting thereby the involvement of both the intrinsic and extrinsic pathways of apoptosis. Further, Bax translocation, and decrease in nuclear NF-kappaB expression predict multi-target effects of the essential oil and ISO while both appeared to follow similar signaling apoptosis pathways. The easy and abundant availability of the oil combined with its suggested mechanism of cytotoxicity make CFO highly useful in the development of anti-cancer therapeutics.

  17. Grape seed extract induces apoptotic death of human prostate carcinoma DU145 cells via caspases activation accompanied by dissipation of mitochondrial membrane potential and cytochrome c release.

    PubMed

    Agarwal, Chapla; Singh, Rana P; Agarwal, Rajesh

    2002-11-01

    Grape seed extract (GSE), rich in the bioflavonoids commonly known as procyanidins, is one of the most commonly consumed dietary supplements in the United States because of its several health benefits. Epidemiological studies show that many prostate cancer (PCA) patients use herbal extracts as dietary supplements in addition to their prescription drugs. Accordingly, in recent years, we have focused our attention on assessing the efficacy of GSE against PCA. Our studies showed that GSE inhibits growth and induces apoptotic death of human PCA cells in culture and in nude mice. Here, we performed detailed studies to define the molecular mechanism of GSE-induced apoptosis in advanced human PCA DU145 cells. GSE treatment of cells at various doses (50-200 micro g/ml) for 12-72 h resulted in a moderate to strong apoptotic death in a dose- and time-dependent manner. In the studies assessing the apoptotic-signaling pathway induced by GSE, we observed an increase in cleaved fragments of caspases 3, 7 and 9 as well as PARP in GSE-treated cells after 48 and 72 h of treatment. Pre-treatment of cells with general caspases inhibitor, z-Val-Ala-Asp(OMe)-FMK or caspase 3-like proteases inhibitor [z-Asp(OMe)-Glu(OMe)-Val-Asp(OMe)-FMK], almost completely (approximately 90%) inhibited the GSE-induced apoptotic cell death. In a later case, GSE-induced caspase-3 activity was completely inhibited. Selective caspase 9 inhibitor [z-Leu-Glu(OMe)-His-Asp(OMe)-FMK] showed only partial inhibition of GSE-induced apoptosis whereas GSE-induced protease activity of caspase 9 was completely inhibited. Upstream of caspase cascade, GSE showed disappearance of mitochondrial membrane potential and an increase in cytochrome c release in cytosol. Together, these results suggest that GSE possibly causes mitochondrial damage leading to cytochrome c release in cytosol and activation of caspases resulting in PARP cleavage and execution of apoptotic death of human PCA DU145 cells. Furthermore, GSE

  18. Hesperidin from Citrus seed induces human hepatocellular carcinoma HepG2 cell apoptosis via both mitochondrial and death receptor pathways.

    PubMed

    Banjerdpongchai, Ratana; Wudtiwai, Benjawan; Khaw-On, Patompong; Rachakhom, Wasitta; Duangnil, Natthachai; Kongtawelert, Prachya

    2016-01-01

    Citrus seeds are full of phenolic compounds, such as flavonoids. The aims of this study were to identify the types of flavonoids in Citrus seed extracts, the cytotoxic effect, mode of cell death, and signaling pathway in human hepatic cancer HepG2 cells. The flavonoids contain anticancer, free radical scavenging, and antioxidant activities. Neohesperidin, hesperidin, and naringin, active flavanone glycosides, were identified in Citrus seed extract. The cytotoxic effect of three compounds was in a dose-dependent manner, and IC50 levels were determined. The sensitivity of human HepG2 cells was as follows: hesperidin > naringin > neohesperidin > naringenin. Hesperidin induced HepG2 cells to undergo apoptosis in a dose-dependent manner as evidenced by the externalization of phosphatidylserine and determined by annexin V-fluorescein isothiocyanate and propidium iodide staining using flow cytometry. Hesperidin did not induce the generation of reactive oxygen species, which was determined by using 2',7'-dichlorohydrofluorescein diacetate and flow cytometry method. The number of hesperidin-treated HepG2 cells with the loss of mitochondrial transmembrane potential increased concentration dependently, using 3,3'-dihexyloxacarbocyanine iodide employing flow cytometry. Caspase-9, -8, and -3 activities were activated and increased in hesperidin-treated HepG2 cells. Bcl-xL protein was downregulated whereas Bax, Bak, and tBid protein levels were upregulated after treatment with hesperidin in a dose-dependent manner. In conclusion, the bioflavanone from Citrus seeds, hesperidin, induced human HepG2 cell apoptosis via mitochondrial pathway and death receptor pathway. Citrus seed flavonoids are beneficial and can be developed as anticancer drug or food supplement, which still needs further in vivo investigation in animals and human beings.

  19. Critical role of free cytosolic calcium, but not uncoupling, in mitochondrial permeability transition and cell death induced by diclofenac oxidative metabolites in immortalized human hepatocytes

    SciTech Connect

    Lim, M.S.; Lim, Priscilla L.K.; Gupta, Rashi; Boelsterli, Urs A. . E-mail: phcbua@nus.edu.sg

    2006-12-15

    Diclofenac is a widely used nonsteroidal anti-inflammatory drug that has been associated with rare but serious hepatotoxicity. Experimental evidence indicates that diclofenac targets mitochondria and induces the permeability transition (mPT) which leads to apoptotic cell death in hepatocytes. While the downstream effector mechanisms have been well characterized, the more proximal pathways leading to the mPT are not known. The purpose of this study was to explore the role of free cytosolic calcium (Ca{sup 2+} {sub c}) in diclofenac-induced cell injury in immortalized human hepatocytes. We show that exposure to diclofenac caused time- and concentration-dependent cell injury, which was prevented by the specific mPT inhibitor cyclosporin A (CsA, 5 {mu}M). At 8 h, diclofenac caused increases in [Ca{sup 2+}]{sub c} (Fluo-4 fluorescence), which was unaffected by CsA. Combined exposure to diclofenac/BAPTA (Ca{sup 2+} chelator) inhibited cell injury, indicating that Ca{sup 2+} plays a critical role in precipitating mPT. Diclofenac decreased the mitochondrial membrane potential, {delta}{psi}{sub m} (JC-1 fluorescence), even in the presence of CsA or BAPTA, indicating that mitochondrial depolarization was not a consequence of the mPT or elevated [Ca{sup 2+}]{sub c}. The CYP2C9 inhibitor sulphaphenazole (10 {mu}M) protected from diclofenac-induced cell injury and prevented increases in [Ca{sup 2+}]{sub c}, while it had no effect on the dissipation of the {delta}{psi}{sub m}. Finally, diclofenac exposure greatly increased the mitochondria-selective superoxide levels secondary to the increases in [Ca{sup 2+}]{sub c}. In conclusion, these data demonstrate that diclofenac has direct depolarizing effects on mitochondria which does not lead to cell injury, while CYP2C9-mediated bioactivation causes increases in [Ca{sup 2+}]{sub c}, triggering the mPT and precipitating cell death.

  20. Induction of Mitochondrial Alternative Oxidase in Response to a Cell Signal Pathway Down-Regulating the Cytochrome Pathway Prevents Programmed Cell Death1

    PubMed Central

    Vanlerberghe, Greg C.; Robson, Christine A.; Yip, Justine Y.H.

    2002-01-01

    Treatment of tobacco (Nicotiana tabacum L. cv Petit Havana SR1) cells with cysteine (Cys) triggers a signal pathway culminating in a large loss of mitochondrial cytochrome (cyt) pathway capacity. This down-regulation of the cyt path likely requires events outside the mitochondrion and is effectively blocked by cantharidin or endothall, indicating that protein dephosphorylation is one critical process involved. Generation of reactive oxygen species, cytosolic protein synthesis, and Ca2+ flux from organelles also appear to be involved. Accompanying the loss of cyt path is a large induction of alternative oxidase (AOX) protein and capacity. Induction of AOX allows the cells to maintain high rates of respiration, indicating that the lesion triggered by Cys is in the cyt path downstream of ubiquinone. Consistent with this, transgenic (AS8) cells unable to induce AOX (due to the presence of an antisense transgene) lose all respiratory capacity upon Cys treatment. This initiates in AS8 a programmed cell death pathway, as evidenced by the accumulation of oligonucleosomal fragments of DNA as the culture dies. Alternatively, wild-type cells remain viable and eventually recover their cyt path. Induction of AOX in response to a chemical inhibition of the cyt path (by antimycin A) is also dependent upon protein dephosphorylation and the generation of reactive oxygen species. Common events required for both down-regulation of the cyt path and induction of AOX may represent a mechanism to coordinate the biogenesis of these two electron transport paths. Such coordinate regulation may be necessary, not only to satisfy metabolic demands, but also to modulate the initiation of a programmed cell death pathway responsive to mitochondrial respiratory status. PMID:12177496

  1. Induction of mitochondrial alternative oxidase in response to a cell signal pathway down-regulating the cytochrome pathway prevents programmed cell death.

    PubMed

    Vanlerberghe, Greg C; Robson, Christine A; Yip, Justine Y H

    2002-08-01

    Treatment of tobacco (Nicotiana tabacum L. cv Petit Havana SR1) cells with cysteine (Cys) triggers a signal pathway culminating in a large loss of mitochondrial cytochrome (cyt) pathway capacity. This down-regulation of the cyt path likely requires events outside the mitochondrion and is effectively blocked by cantharidin or endothall, indicating that protein dephosphorylation is one critical process involved. Generation of reactive oxygen species, cytosolic protein synthesis, and Ca(2+) flux from organelles also appear to be involved. Accompanying the loss of cyt path is a large induction of alternative oxidase (AOX) protein and capacity. Induction of AOX allows the cells to maintain high rates of respiration, indicating that the lesion triggered by Cys is in the cyt path downstream of ubiquinone. Consistent with this, transgenic (AS8) cells unable to induce AOX (due to the presence of an antisense transgene) lose all respiratory capacity upon Cys treatment. This initiates in AS8 a programmed cell death pathway, as evidenced by the accumulation of oligonucleosomal fragments of DNA as the culture dies. Alternatively, wild-type cells remain viable and eventually recover their cyt path. Induction of AOX in response to a chemical inhibition of the cyt path (by antimycin A) is also dependent upon protein dephosphorylation and the generation of reactive oxygen species. Common events required for both down-regulation of the cyt path and induction of AOX may represent a mechanism to coordinate the biogenesis of these two electron transport paths. Such coordinate regulation may be necessary, not only to satisfy metabolic demands, but also to modulate the initiation of a programmed cell death pathway responsive to mitochondrial respiratory status.

  2. Hemoglobin Control of Cell Survival/Death Decision Regulates in Vitro Plant Embryogenesis1[W][OPEN

    PubMed Central

    Huang, Shuanglong; Hill, Robert D.; Wally, Owen S.D.; Dionisio, Giuseppe; Ayele, Belay T.; Jami, Sravan Kumar; Stasolla, Claudio

    2014-01-01

    Programmed cell death (PCD) in multicellular organisms is a vital process in growth, development, and stress responses that contributes to the formation of tissues and organs. Although numerous studies have defined the molecular participants in apoptotic and PCD cascades, successful identification of early master regulators that target specific cells to live or die is limited. Using Zea mays somatic embryogenesis as a model system, we report that the expressions of two plant hemoglobin (Hb) genes (ZmHb1 and ZmHb2) regulate the cell survival/death decision that influences somatic embryogenesis through their cell-specific localization patterns. Suppression of either of the two ZmHbs is sufficient to induce PCD through a pathway initiated by elevated NO and Zn2+ levels and mediated by production of reactive oxygen species. The effect of the death program on the fate of the developing embryos is dependent on the localization patterns of the two ZmHbs. During somatic embryogenesis, ZmHb2 transcripts are restricted to a few cells anchoring the embryos to the subtending embryogenic tissue, whereas ZmHb1 transcripts extend to several embryonic domains. Suppression of ZmHb2 induces PCD in the anchoring cells, allowing the embryos to develop further, whereas suppression of ZmHb1 results in massive PCD, leading to abortion. We conclude that regulation of the expression of these ZmHbs has the capability to determine the developmental fate of the embryogenic tissue during somatic embryogenesis through their effect on PCD. This unique regulation might have implications for development and differentiation in other species. PMID:24784758

  3. Mitochondrial Superoxide Dismutase SOD2, but not Cytosolic SOD1, Plays a Critical Role in Protection against Glutamate-Induced Oxidative Stress and Cell Death in HT22 Neuronal Cells

    PubMed Central

    Fukui, Masayuki; Zhu, Bao Ting

    2010-01-01

    Oxidative cell death is an important contributing factor in neurodegenerative diseases. Using HT22 mouse hippocampal neuronal cells as a model, we sought to demonstrate that mitochondria are crucial early targets of glutamate-induced oxidative cell death. We showed that when HT22 cells were transfected with shRNA for knockdown of the mitochondrial superoxide dismutase (SOD2), these cells became more susceptible to glutamate-induced oxidative cell death. The increased susceptibility was accompanied by increased accumulation of mitochondrial superoxide and loss of normal mitochondrial morphology and functions at early time points following glutamate exposure. However, overexpression of SOD2 in these cells reduced mitochondrial superoxide level, protected its morphology and functions, and provided resistance against glutamate-induced oxidative cytotoxicity. The change in the sensitivity of these SOD2-altered HT22 cells was neurotoxicant-specific, because the cytotoxicity of hydrogen peroxide was not altered in these cells. In addition, selective knockdown of the cytosolic SOD1 in cultured HT22 cells did not appreciably alter their susceptibility to either glutamate or hydrogen peroxide. These findings show that the mitochondrial SOD2 plays a critical role in protecting neuronal cells from glutamate-induced oxidative stress and cytotoxicity. These data also indicate that mitochodria are important early targets of glutamate-induced oxidative neurotoxicity. PMID:20060889

  4. Higher Vulnerability of Menadione-Exposed Cortical Astrocytes of Glutaryl-CoA Dehydrogenase Deficient Mice to Oxidative Stress, Mitochondrial Dysfunction, and Cell Death: Implications for the Neurodegeneration in Glutaric Aciduria Type I.

    PubMed

    Rodrigues, Marília Danyelle Nunes; Seminotti, Bianca; Zanatta, Ângela; de Mello Gonçalves, Aline; Bellaver, Bruna; Amaral, Alexandre Umpierrez; Quincozes-Santos, André; Goodman, Stephen Irwin; Woontner, Michael; Souza, Diogo Onofre; Wajner, Moacir

    2017-08-01

    Patients affected by glutaric aciduria type I (GA-I) show progressive cortical leukoencephalopathy whose pathogenesis is poorly known. In the present work, we exposed cortical astrocytes of wild-type (Gcdh (+/+) ) and glutaryl-CoA dehydrogenase knockout (Gcdh (-/-) ) mice to the oxidative stress inducer menadione and measured mitochondrial bioenergetics, redox homeostasis, and cell viability. Mitochondrial function (MTT and JC1-mitochondrial membrane potential assays), redox homeostasis (DCFH oxidation, nitrate and nitrite production, GSH concentrations and activities of the antioxidant enzymes SOD and GPx), and cell death (propidium iodide incorporation) were evaluated in primary cortical astrocyte cultures of Gcdh (+/+) and Gcdh (-/-) mice unstimulated and stimulated by menadione. We also measured the pro-inflammatory response (TNFα levels, IL1-β and NF-ƙB) in unstimulated astrocytes obtained from these mice. Gcdh (-/-) mice astrocytes were more vulnerable to menadione-induced oxidative stress (decreased GSH concentrations and altered activities of the antioxidant enzymes), mitochondrial dysfunction (decrease of MTT reduction and JC1 values), and cell death as compared with Gcdh (+/+) astrocytes. A higher inflammatory response (TNFα, IL1-β and NF-ƙB) was also observed in Gcdh (-/-) mice astrocytes. These data indicate a higher susceptibility of Gcdh (-/-) cortical astrocytes to oxidative stress and mitochondrial dysfunction, probably leading to cell death. It is presumed that these pathomechanisms may contribute to the cortical leukodystrophy observed in GA-I patients.

  5. Role of mitochondrial permeability transition in human hepatocellular carcinoma Hep-G2 cell death induced by rhein.

    PubMed

    Du, Qiong; Bian, Xiao-Lan; Xu, Xiao-Le; Zhu, Bin; Yu, Bo; Zhai, Qing

    2013-12-01

    Rhein, a compound found as a glucoside in the root of rhubarb, is currently a subject of interest for its antitumor properties. The apoptosis of tumor cell lines induced by rhein was observed, and the involvement of mitochondria was established; however, the role of mitochondrial permeability transition (MPT) remains unknown. Here we report that MPT plays an important role in the apoptosis of human hepatocellular carcinoma Hep-G2 cells induced by rhein. After adding rhein to the isolated hepatic mitochondria, swelling effects and the leakage of Ca(2+) were observed. These alterations were suppressed by cyclosporin A (CsA), an MPT inhibitor. Furthermore, in Hep-G2 cells, the decrease of ATP production, the loss of mitochondrial transmembrane potential (MTP), the release of cytochrome c (Cyto c), and the activation of caspase 3 were also observed. These toxic effects of rhein can also be attenuated by CsA as well. Moreover, TUNEL assay confirmed that in the presence of CsA, rhein-induced apoptosis was largely inhibited. These results suggest that MPT plays a critical role in the pathogenesis of Hep-G2 cell injury induced by rhein, and imply that MPT may contribute to the anti-cancer activity of rhein. © 2013.

  6. Erastin Disrupts Mitochondrial Permeability Transition Pore (mPTP) and Induces Apoptotic Death of Colorectal Cancer Cells

    PubMed Central

    Huo, Haizhong; Zhou, Zhiyuan; Qin, Jian; Liu, Wenyong; Wang, Bing; Gu, Yan

    2016-01-01

    We here evaluated the potential anti-colorectal cancer activity by erastin, a voltage-dependent anion channel (VDAC)-binding compound. Our in vitro studies showed that erastin exerted potent cytotoxic effects against multiple human colorectal cancer cell lines, possibly via inducing oxidative stress and caspase-9 dependent cell apoptosis. Further, mitochondrial permeability transition pore (mPTP) opening was observed in erastin-treated cancer cells, which was evidenced by VDAC-1 and cyclophilin-D (Cyp-D) association, mitochondrial depolarization, and cytochrome C release. Caspase inhibitors, the ROS scavenger MnTBAP, and mPTP blockers (sanglifehrin A, cyclosporin A and bongkrekic acid), as well as shRNA-mediated knockdown of VDAC-1, all significantly attenuated erastin-induced cytotoxicity and apoptosis in colorectal cancer cells. On the other hand, over-expression of VDAC-1 augmented erastin-induced ROS production, mPTP opening, and colorectal cancer cell apoptosis. In vivo studies showed that intraperitoneal injection of erastin at well-tolerated doses dramatically inhibited HT-29 xenograft growth in severe combined immunodeficient (SCID) mice. Together, these results demonstrate that erastin is cytotoxic and pro-apoptotic to colorectal cancer cells. Erastin may be further investigated as a novel anti-colorectal cancer agent. PMID:27171435

  7. Insufficient Astrocyte-Derived Brain-Derived Neurotrophic Factor Contributes to Propofol-Induced Neuron Death Through Akt/Glycogen Synthase Kinase 3β/Mitochondrial Fission Pathway.

    PubMed

    Liu, Yanan; Yan, Yasheng; Inagaki, Yasuyoshi; Logan, Sarah; Bosnjak, Zeljko J; Bai, Xiaowen

    2017-07-01

    Growing animal evidence demonstrates that prolonged exposure to propofol during brain development induces widespread neuronal cell death, but there is little information on the role of astrocytes. Astrocytes can release neurotrophic growth factors such as brain-derived neurotrophic factor (BDNF), which can exert the protective effect on neurons in paracrine fashion. We hypothesize that during propofol anesthesia, BDNF released from developing astrocytes may not be sufficient to prevent propofol-induced neurotoxicity. Hippocampal astrocytes and neurons isolated from neonatal Sprague Dawley rats were exposed to propofol at a clinically relevant dose of 30 μM or dimethyl sulfoxide as control for 6 hours. Propofol-induced cell death was determined by propidium iodide (PI) staining in astrocyte-alone cultures, neuron-alone cultures, or cocultures containing either low or high density of astrocytes (1:9 or 1:1 ratio of astrocytes to neurons ratio [ANR], respectively). The astrocyte-conditioned medium was collected 12 hours after propofol exposure and measured by protein array assay. BDNF concentration in astrocyte-conditioned medium was quantified using enzyme-linked immunosorbent assay. Neuron-alone cultures were treated with BDNF, tyrosine receptor kinase B inhibitor cyclotraxin-B, glycogen synthase kinase 3β (GSK3β) inhibitor CHIR99021, or mitochondrial fission inhibitor Mdivi-1 before propofol exposure. Western blot was performed for quantification of the level of protein kinase B and GSK3β. Mitochondrial shape was visualized through translocase of the outer membrane 20 staining. Propofol increased cell death in neurons by 1.8-fold (% of PI-positive cells [PI%] = 18.6; 95% confidence interval [CI], 15.2-21.9, P < .05) but did not influence astrocyte viability. The neuronal death was attenuated by a high ANR (1:1 cocultures; fold change [FC] = 1.17, 95% CI, 0.96-1.38, P < .05), but not with a low ANR [1:9 cocultures; FC = 1.87, 95% CI, 1.48-2.26, P > .05

  8. Life and death decisions for incompetent patients: determining best interests--the Irish perspective.

    PubMed

    Armstrong, K; Ryan, C A; Hawkes, C P; Janvier, A; Dempsey, E M

    2011-04-01

    To determine whether healthcare providers apply the best interest principle equally to different resuscitation decisions. An anonymous questionnaire was distributed to consultants, trainees in neonatology, paediatrics, obstetrics and 4th medical students. It examined resuscitation scenarios of critically ill patients all needing immediate resuscitation. Outcomes were described including survival and potential long-term sequelae. Respondents were asked whether they would intubate, whether resuscitation was in the patients best interest, would they accept surrogate refusal to initiate resuscitation and in what order they would resuscitate. The response rate was 74%. The majority would wish resuscitation for all except the 80-year-old. It was in the best interest of the 2-month-old and the 7-year-old to be resuscitated compared to the remaining scenarios (p value <0.05 for each comparison). Approximately one quarter who believed it was in a patient best interests to be resuscitated would nonetheless accept the family refusing resuscitation. Medical students were statistically more likely to advocate resuscitation in each category. These results suggest resuscitation is not solely related to survival or long-term outcome and the best interest principle is applied differently, more so at the beginning of life. © 2010 The Author(s)/Acta Paediatrica © 2010 Foundation Acta Paediatrica.

  9. Radical Decisions in Cancer: Redox Control of Cell Growth and Death

    PubMed Central

    Sainz, Rosa M.; Lombo, Felipe; Mayo, Juan C.

    2012-01-01

    Free radicals play a key role in many physiological decisions in cells. Since free radicals are toxic to cellular components, it is known that they cause DNA damage, contribute to DNA instability and mutation and thus favor carcinogenesis. However, nowadays it is assumed that free radicals play a further complex role in cancer. Low levels of free radicals and steady state levels of antioxidant enzymes are responsible for the fine tuning of redox status inside cells. A change in redox state is a way to modify the physiological status of the cell, in fact, a more reduced status is found in resting cells while a more oxidative status is associated with proliferative cells. The mechanisms by which redox status can change the proliferative activity of cancer cells are related to transcriptional and posttranscriptional modifications of proteins that play a critical role in cell cycle control. Since cancer cells show higher levels of free radicals compared with their normal counterparts, it is believed that the anti-oxidative stress mechanism is also increased in cancer cells. In fact, the levels of some of the most important antioxidant enzymes are elevated in advanced status of some types of tumors. Anti-cancer treatment is compromised by survival mechanisms in cancer cells and collateral damage in normal non-pathological tissues. Though some resistance mechanisms have been described, they do not yet explain why treatment of cancer fails in several tumors. Given that some antitumoral treatments are based on the generation of free radicals, we will discuss in this review the possible role of antioxidant enzymes in the survival mechanism in cancer cells and then, its participation in the failure of cancer treatments. PMID:24213319

  10. Inhibitory effect of bufalin on retinoblastoma cells (HXO-RB44) via the independent mitochondrial and death receptor pathway

    PubMed Central

    Meng, Qingfeng; Zhao, Yan; An, LiXin; Li, Xia; Liu, Ping

    2016-01-01

    Cinobufacini (Huachansu) is a Chinese medicine prepared from the skin of Bufo bufo gargarizans Cantor (Bufonidae), and has long been used in traditional Chinese medicine. In the present study, the anti-retinoblastoma constituent bufalin obtained from Cinobufacini was investigated. Treatment of human retinoblastoma (HXO-RB44) cells with bufalin induced apoptosis which was accompanied by a decrease in mitochondrial membrane potential, activation of caspase-9, caspase-8 and caspase-3, as well as changes in the expression of cytochrome C. Bufalin induced the cleavage of caspase-3 and apoptosis, and it was inhibited by both Z-LETD-FMK and Z-IETD-FMK treatment. Taken together, these results demonstrate that bufalin-induced apoptosis in human retinoblastoma (HXO-RB44) cells involved both intrinsic and extrinsic pathways. PMID:27904697

  11. Cause and Consequence: Mitochondrial Dysfunction Initiates and Propagates Neuronal Dysfunction, Neuronal Death and Behavioral Abnormalities in Age Associated Neurodegenerative Diseases

    PubMed Central

    Gibson, Gary E.; Starkov, Anatoly; Blass, John P.; Ratan, Rajiv R.; Beal, M. Flint

    2009-01-01

    SUMMARY Age-related neurodegenerative diseases are associated with mild impairment of oxidative metabolism and accumulation of abnormal proteins. Within the cell, the mitochondria appears to be a dominant site for initiation and propagation of disease processes. Shifts in metabolism in response to mild metabolic perturbations may decrease the threshold for irreversible injury in response to ordinarily sub lethal metabolic insults. Mild impairment of metabolism accrue from and lead to increased reactive oxygen species (ROS). Increased ROS change cell signaling via post transcriptional and transcriptional changes. The cause and consequences of mild impairment of mitochondrial metabolism is one focus of this review. Many experiments in tissues from humans support the notion that oxidative modification of the α-ketoglutarate dehydrogenase complex (KGDHC) compromises neuronal energy metabolism and enhance ROS production in Alzheimer’s Disease (AD). These data suggest that cognitive decline in AD derives from the selective tricarboxylic acid (TCA) cycle abnormalities. By contrast in Huntington’s Disease (HD), a movement disorder with cognitive features distinct form AD, complex II + III abnormalities may dominate. These distinct mitochondrial abnormalities culminate in oxidative stress, energy dysfunction, and aberrant homeostasis of cytosolic calcium. Cytosolic calcium, elevations even only transiently, leads to hyperactivity of a number of enzymes. One calcium activated enzyme with demonstrated pathophysiological import in HD and AD is transglutaminase (TGase). TGase is a cross linking enzymes that can modulate transcrption, inactivate metabolic enzymes, and cause aggregation of critical proteins. Recent data indicate that TGase can silence expression of genes involved in compensating for metabolic stress. Altogether, our results suggest that increasing KGDHC via inhibition of TGase or via a host of other strategies to be described would be effective therapeutic

  12. Inactivation of Akt by arsenic trioxide induces cell death via mitochondrial-mediated apoptotic signaling in SGC-7901 human gastric cancer cells.

    PubMed

    Gao, Yan-Hui; Zhang, Hao-Peng; Yang, Shu-Meng; Yang, Yue; Ma, Yu-Yan; Zhang, Xin-Yu; Yang, Yan-Mei

    2014-04-01

    Arsenic trioxide (As2O3) has been recognized as a potential chemotherapeutic agent, yet the details concerning its mechanism of action in solid cancers remain undetermined. The present study assessed the role of Akt in the cell death induced by As2O3. The MTT assay showed that As2O3 suppressed the proliferation of SGC-7901 cells in a dose- and time-dependent manner. Characteristic apoptotic changes were observed in the As2O3‑treated cells by Hoechst 33342 staining, and FACS analysis showed that As2O3 caused dose-dependent apoptotic cell death. As2O3 activated caspase-3 and -9, and PARP cleavage in a dose-dependent manner. Compromised mitochondrial membrane potential and an increased protein level of Bax indicated involvement of mitochondia. As2O3 decreased the levels of p-Akt (Ser473), p-Akt (Thr308) and p-GSK-3β (Ser9), suggesting that As2O3 inactivated Akt kinase. In addition, LY294002 (a PI3 kinase inhibitor) augmented the apoptosis induced by As2O3. These results demonstrated that inhibition of PI3K/Akt signaling was involved in As2O3-induced apoptosis of gastric cancer SGC-7901 cells.

  13. Subamolide B Isolated from Medicinal Plant Cinnamomum subavenium Induces Cytotoxicity in Human Cutaneous Squamous Cell Carcinoma Cells through Mitochondrial and CHOP-Dependent Cell Death Pathways

    PubMed Central

    Yang, Shu-Yi; Wang, Hui-Min; Wu, Tai-Wen; Chen, Yi-Ju; Shieh, Jeng-Jer; Lin, Ju-Hwa; Ho, Tsing-Fen; Luo, Ren-Jie; Chen, Chung-Yi; Chang, Chia-Che

    2013-01-01

    Subamolide B is a butanolide isolated from Cinnamomum subavenium, a medicinal plant traditionally used to treat various ailments including carcinomatous swelling. We herein reported for the first time that subamolide B potently induced cytotoxicity against diverse human skin cancer cell lines while sparing nonmalignant cells. Mechanistic studies on human cutaneous squamous cell carcinoma (SCC) cell line SCC12 highlighted the involvement of apoptosis in subamolide B-induced cytotoxicity, as evidenced by the activation of caspases-8, -9, -4, and -3, the increase in annexin V-positive population, and the partial restoration of cell viability by cotreatment with the pan-caspase inhibitor z-VAD-fmk. Additionally, subamolide B evoked cell death pathways mediated by FasL/Fas, mitochondria, and endoplasmic reticulum (ER) stress, as supported by subamolide B-induced FasL upregulation, BCL-2 suppression/cytosolic release of cytochrome c, and UPR activation/CHOP upregulation, respectively. Noteworthy, ectopic expression of c-FLIPL or dominant-negative mutant of FADD failed to impair subamolide B-induced cytotoxicity, whereas BCL-2 overexpression or CHOP depletion greatly rescued subamolide B-stimulated cells. Collectively, these results underscored the central role of mitochondrial and CHOP-mediated cell death pathways in subamolide B-induced cytotoxicity. Our findings further implicate the potential of subamolide B for cutaneous SCC therapy or as a lead compound for developing novel chemotherapeutic agents. PMID:23573140

  14. Preferences of the Dutch general public for a good death and associations with attitudes towards end-of-life decision-making.

    PubMed

    Rietjens, Judith A C; van der Heide, Agnes; Onwuteaka-Philipsen, Bregje D; van der Maas, Paul J; van der Wal, Gerrit

    2006-10-01

    Euthanasia and other end-of-life decisions are acceptable to the large majority of the Dutch public. Insight in the relationships of such acceptance, with characteristics considered important for a 'good death', may contribute to the understanding of this liberal attitude. Questionnaires were mailed to 1777 members of the Dutch public (response: 78%), containing questions relating to a good death, attitudes towards euthanasia, terminal sedation and increasing morphine, and demographics. Associations between characteristics of a good death and attitudes towards these end-of-life decisions were analysed. Characteristics that were considered important for a good death were: the possibility to say goodbye to loved ones (94%), dying with dignity (92%), being able to decide about end-of-life care (88%), and dying free of pain (87%). Acceptance of euthanasia, terminal sedation and increasing morphine were related to the wish to have a dignified death, and with concerns about burdening relatives with terminal care. Acceptance of euthanasia was also associated with the wish to be able to decide about medical end-of-life treatments and about the moment of death. Besides saying farewell and dying pain free and with dignity, many members of the Dutch public consider values of control and maintenance of independence as important for a good death.

  15. Finding common ground to achieve a "good death": family physicians working with substitute decision-makers of dying patients. A qualitative grounded theory study.

    PubMed

    Tan, Amy; Manca, Donna

    2013-01-22

    Substitute decision-makers are integral to the care of dying patients and make many healthcare decisions for patients. Unfortunately, conflict between physicians and surrogate decision-makers is not uncommon in end-of-life care and this could contribute to a "bad death" experience for the patient and family. We aim to describe Canadian family physicians' experiences of conflict with substitute decision-makers of dying patients to identify factors that may facilitate or hinder the end-of-life decision-making process. This insight will help determine how to best manage these complex situations, ultimately improving the overall care of dying patients. Grounded Theory methodology was used with semi-structured interviews of family physicians in Edmonton, Canada, who experienced conflict with substitute decision-makers of dying patients. Purposeful sampling included maximum variation and theoretical sampling strategies. Interviews were audio-taped, and transcribed verbatim. Transcripts, field notes and memos were coded using the constant-comparative method to identify key concepts until saturation was achieved and a theoretical framework emerged. Eleven family physicians with a range of 3 to 40 years in clinical practice participated.The family physicians expressed a desire to achieve a "good death" and described their role in positively influencing the experience of death.Finding Common Ground to Achieve a "Good Death" for the Patient emerged as an important process which includes 1) Building Mutual Trust and Rapport through identifying key players and delivering manageable amounts of information, 2) Understanding One Another through active listening and ultimately, and 3) Making Informed, Shared Decisions. Facilitators and barriers to achieving Common Ground were identified. Barriers were linked to conflict. The inability to resolve an overt conflict may lead to an impasse at any point. A process for Resolving an Impasse is described. A novel framework for developing

  16. Kaempferol induces ATM/p53-mediated death receptor and mitochondrial apoptosis in human umbilical vein endothelial cells.

    PubMed

    Lee, Chiu-Fang; Yang, Jai-Sing; Tsai, Fuu-Jen; Chiang, Ni-Na; Lu, Chi-Cheng; Huang, Yu-Syuan; Chen, Chun; Chen, Fu-An

    2016-05-01

    Kaempferol is a member of the flavonoid compounds found in vegetables and fruits. It is shown to exhibit biological impact and anticancer activity, but no report exists on the angiogenic effect of kaempferol and induction of cell apoptosis in vitro. In this study, we investigated the role of kaempferol on anti-angiogenic property and the apoptotic mechanism of human umbilical vein endothelial cells (HUVECs). Our results demonstrated that kaempferol decreased HUVEC viability in a time- and concentration-dependent manner. Kaempferol also induced morphological changes and sub-G1 phase cell population (apoptotic cells). Kaempferol triggered apoptosis of HUVECs as detecting by DNA fragmentation, comet assay and immunofluorescent staining for activated caspase-3. The caspase signals, including caspase-8, -9 and -3, were time-dependently activated in HUVECs after kaempferol exposure. Furthermore, pre-treatment with a specific inhibitor of caspase-8 (Z-IETD-FMK) significantly reduced the activity of caspase-8, -9 and -3, indicating that extrinsic pathway is a major signaling pathway in kaempferol-treated HUVECs. Importantly, kaempferol promoted reactive oxygen species (ROS) evaluated using flow cytometric assay in HUVECs. We further investigated the upstream extrinsic pathway and showed that kaempferol stimulated death receptor signals [Fas/CD95, death receptor 4 (DR4) and DR5] through increasing the levels of phosphorylated p53 and phosphorylated ATM pathways in HUVECs, which can be individually confirmed by N-acetylcysteine (NAC), ATM specific inhibitor (caffeine) and p53 siRNA. Based on these results, kaempferol-induced HUVEC apoptosis was involved in an ROS-mediated p53/ATM/death receptor signaling. Kaempferol might possess therapeutic effects on cancer treatment in anti-vascular targeting.

  17. Melatonin prevents cytosolic calcium overload, mitochondrial damage and cell death due to toxically high doses of dexamethasone-induced oxidative stress in human neuroblastoma SH-SY5Y cells.

    PubMed

    Suwanjang, Wilasinee; Abramov, Andrey Y; Charngkaew, Komgrid; Govitrapong, Piyarat; Chetsawang, Banthit

    2016-07-01

    Stressor exposure activates the hypothalamic-pituitary-adrenal (HPA) axis and causes elevations in the levels of glucocorticoids (GC) from the adrenal glands. Increasing evidence has demonstrated that prolonged exposure to high GC levels can lead to oxidative stress, calcium deregulation, mitochondrial dysfunction and apoptosis in a number of cell types. However, melatonin, via its antioxidant activity, exhibits a neuroprotective effect against oxidative stress-induced cell death. Therefore, in the present study, we explored the protective effect of melatonin in GC-induced toxicity in human neuroblastoma SH-SY5Y cells. Cellular treatment with the toxically high doses of the synthetic GC receptor agonist, dexamethasone (DEX) elicited marked decreases in the levels of glutathione and increases in ROS production, lipid peroxidation and cell death. DEX toxicity also induced increases in the levels of cytosolic calcium and mitochondrial fusion proteins (Mfn1 and Opa1) but decreases in the levels of mitochondrial fission proteins (Fis1 and Drp1). Mitochondrial damage was observed in large proportions of the DEX-treated cells. Pretreatment of the cells with melatonin substantially prevented the DEX-induced toxicity. These results suggest that melatonin might exert protective effects against oxidative stress, cytosolic calcium overload and mitochondrial damage in DEX-induced neurotoxicity. Copyright © 2016 Elsevier Ltd. All rights reserved.

  18. Serious Choices: A Protocol for an Environmental Scan of Patient Decision Aids for Seriously Ill People at Risk of Death Facing Choices about Life-Sustaining Treatments.

    PubMed

    Saunders, Catherine H; Elwyn, Glyn; Kirkland, Kathryn; Durand, Marie-Anne

    2017-08-20

    Seriously ill people at high risk of death face difficult decisions, especially concerning the extent of medical intervention. Given the inherent difficulty and complexity of these decisions, the care they receive often does not align with their preferences. Patient decision aids that educate individuals about options and help them construct preferences about life-sustaining care may reduce the mismatch between the care people say they want and the care they receive. The quantity and quality of patient decision aids for those at high risk of death, however, are unknown. This protocol describes an approach for conducting an environmental scan of life-sustaining treatment patient decision aids for seriously ill patients, identified online and through informant analysis. We intend for the outcome to be an inventory of all life-sustaining treatment patient decision aids for seriously ill patients currently available (either publicly or proprietarily) along with information about their content, quality, and known use. We will identify patient decision aids in a three-step approach (1) mining previously published systematic reviews; (2) systematically searching online and in two popular app stores; and (3) undertaking a key informant survey. We will screen and assess the quality of each patient decision aid identified using the latest published draft of the U.S. National Quality Forum National Standards for the Certification of Patient Decision Aids. Additionally, we will evaluate readability via readable.io and content via inductive content analysis. We will also use natural language processing to assess the content of the decision aids. Researchers increasingly recognize the environmental scan as an optimal method for studying real-world interventions, such as patient decision aids. This study will advance our understanding of the availability, quality, and use of decision aids for life-sustaining interventions targeted at seriously ill patients. We also aim to provide

  19. [General considerations on brain death and recommendations on the clinical decisions after its diagnosis. Red/Consejo Iberoamericano de Donación y Trasplante].

    PubMed

    Escudero, D; Matesanz, R; Soratti, C Alberto; Flores, J Ignacio

    2009-12-01

    The objective of the Latin American Network/Council of Donation and Transplant is to develop cooperation among its member states in all aspects related to donation and transplant of organs, tissue and cells. Given that diagnosing brain death (BD) is one of the key issues for the procurement of organs for transplant, the Network/Council seeks to contribute to defining the accepted concept of BD and its diagnosis and to disseminate this information among healthcare workers. In this report, we present the general guidelines on brain death and recommendations for clinical decisions after its diagnosis established and approved by the Latin American Network/Council of Donation and Transplant at its sixth meeting held in La Havana, Cuba, in May 2008. Although there are legal differences and variations in the diagnostic criteria used to define BD among its member states, brain death is accepted as the death of an individual for all legal, ethical and scientific effects. The diagnosis of BD should be independent of the decision of whether to donor or not donate organs for transplant. Once a diagnosis of BD has been confirmed, the possibility of organ donation should always be considered and the appropriate organ maintenance measures initiated. If organ donation is contraindicated, all support measures should be withdrawn including mechanical respiration. The decision to withdraw all support measures is consistent with the clinical-legal diagnosis and supported by several scientific and bioethics societies.

  20. Cinnamaldehyde-induced apoptosis in human hepatoma PLC/PRF/5 cells involves the mitochondrial death pathway and is sensitive to inhibition by cyclosporin A and z-VAD-fmk.

    PubMed

    Lin, Liang-Tzung; Tai, Chen-Jei; Chang, Shun-Pang; Chen, Jin-Liang; Wu, Shu-Jing; Lin, Chun-Ching

    2013-12-01

    Cinnamaldehyde (CIN) has been shown to exert chemopreventive activity against several types of human cancer cells. We previously reported that CIN induced apoptosis of human hepatoma PLC/PRF/5 cells and this effect was associated with activation of the pro-apoptotic Bcl-2 family of proteins and the MAPK cascade. To further clarify the underlying mechanism of CIN-induced apoptosis, we examined in this study its relationship with the mitochondrial death pathway using the mitochondrial permeability transition (MPT) inhibitor, cyclosporin A (CsA), and the general caspase inhibitor, z-VAD-fmk. Results indicated that CIN-induced apoptosis involved enhanced ROS generation, disruption of mitochondrial potential, and the mitochondrial release of cytochrome c and Smac/DIABLO into the cytosol, which in turn promoted caspase-3 to its active form and the subsequent cleavage of PARP. Treatment with CIN also downregulated protein levels of the anti-apoptotic factors XIAP and Bcl-2 with concomitant accumulation of the pro-apoptotic Bax in a timedependent manner. These mitochondria-related apoptotic effects induced by CIN were however blocked by CsA and z-VAD-fmk pretreatments, which prevented cells from undergoing programmed cell death triggered by CIN. Furthermore, the increase of Bax and decrease of Bcl-2 and XIAP protein expression due to CIN treatment were also reversely modulated by the two inhibitors. Taken together, these results suggested that CIN is an apoptotic inducer that acts on the mitochondrial death pathway in PLC/PRF/5 cells and its effect could be blocked by CsA and z-VAD-fmk.

  1. What matters to the parents? A qualitative study of parents' experiences with life-and-death decisions concerning their premature infants.

    PubMed

    Brinchmann, Berit Støre; Førde, Reidun; Nortvedt, Per

    2002-07-01

    The aim of this article is to generate knowledge about parents' participation in life-and-death decisions concerning their very premature and/or critically ill infants in hospital neonatal units. The question is: what are parents' attitudes towards their involvement in such decision making? A descriptive study design using in-depth interviews was chosen. During the period 1997-2000, 20 qualitative interviews with 35 parents of 26 children were carried out. Ten of the infants died; 16 were alive at the time of the interview. The comparative method (grounded theory) was used to analyse the data. The analysis was carried out continuously and in parallel with data collection. Six categories were revealed by the analysis: indecision and uncertainty (ambivalence); information and communication; participate, but do not decide; seeming to be included; the parents' child; and individual consideration. The findings appear to indicate that parents agree that they should not have the final word in decisions concerning their infants' future life or death. Such a responsibility would put too heavy a burden on parents who lack the medical knowledge and the professional experience needed to make such a decision, and would be likely to lead to them experiencing strong feelings of guilt. The findings show that parents should be well informed and listened to during the whole decision-making process. Their primary concern was how nurses and physicians communicate with parents who are experiencing a crisis, and how this serious information is presented.

  2. Mitigating Circumstances in Death Penalty Decisions: Using Evidence-Based Research to Inform Social Work Practice in Capital Trials

    ERIC Educational Resources Information Center

    Schroeder, Julie; Guin, Cecile C.; Pogue, Rene; Bordelon, Danna

    2006-01-01

    Providing an effective defense for individuals charged with capital crimes requires a diligent, thorough investigation by a mitigation specialist. However, research suggests that mitigation often plays a small role in the decision for life. Jurors often make sentencing decisions prematurely, basing those decisions on their personal reactions to…

  3. Mitigating Circumstances in Death Penalty Decisions: Using Evidence-Based Research to Inform Social Work Practice in Capital Trials

    ERIC Educational Resources Information Center

    Schroeder, Julie; Guin, Cecile C.; Pogue, Rene; Bordelon, Danna

    2006-01-01

    Providing an effective defense for individuals charged with capital crimes requires a diligent, thorough investigation by a mitigation specialist. However, research suggests that mitigation often plays a small role in the decision for life. Jurors often make sentencing decisions prematurely, basing those decisions on their personal reactions to…

  4. Good concordance between patients and their non-professional carers about factors associated with a 'good death' and other important end-of-life decisions.

    PubMed

    Davies, Andrew; Todd, Jennifer; Bailey, Fiona; Gregory, Amanda; Waghorn, Melanie

    2016-05-17

    The aim of this study was to investigate concordance between patients and non-professional carers about factors associated with a 'good death' and other end-of-life decisions. Patients completed a questionnaire about end-of-life care issues, and were asked to rank the importance of factors linked to a 'good death'. Carers also completed a questionnaire about end-of-life care issues relating to the patient, and whether or not they agreed with those choices (ie, medical treatments, PPD). Carers were also asked to rank the importance of factors linked to a 'good death' to the patient, and to them personally at that point in time. Only 69% of patients stated they had discussed their preferences for end-of-life care with their respective carer. The rankings were similar for the patient and the carer's views of what was important for the patient, although the patients ranked 'to be involved in decisions about my care' as less important than the carers, while the carers ranked 'to have sorted out my personal affairs' as less important than the patients. When discussions around end-of-life choices do occur, carers generally appear to agree with the patients' preferences around end-of-life treatment, and preferred place of death. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/

  5. Mono(2-ethylhexyl) phthalate induces apoptosis in p53-silenced L02 cells via activation of both mitochondrial and death receptor pathways.

    PubMed

    Yang, Guangtao; Zhang, Wenjuan; Qin, Qizhi; Wang, Jing; Zheng, Hongyan; Xiong, Wei; Yuan, Jing

    2015-09-01

    Mono(2-ethylhexyl) phthalate (MEHP) is one of the main metabolites of di(2-ethylhexyl) phthalate. The evidence shows that DEHP may exert its toxic effects primarily via MEHP, which is 10-fold more potent than its parent compound in toxicity in vitro. MEHP-induced apoptosis is mediated by either p53-dependent or -independent pathway. However, the detailed mechanism of its toxicity remains unclear. In this study, immortalized normal human liver cell line L02 was chosen, as an in vitro model of nonmalignant liver, to elucidate the role of p53 in MEHP-induced apoptosis. The cells were treated with MEHP (6.25, 12.50, 25.00, 50.00, and 100.00 μM) for 24 and 36 h, then small interfering RNA (siRNA) was used to specifically silence p53 gene of L02 cells. The results indicated that MEHP caused oxidative DNA damage and apoptosis in L02 cells were associated with the p53 signaling pathway. Further study found that MEHP (50.00 and 100.00 μM) induced apoptosis in p53-silenced L02 cells, along with the up-regulations of Fas and FasL proteins as well as increased the Bax/Bcl-2 ratio and Caspase 3, 8, and 9 activities. Additionally, both FasL inhibitor (AF-016) and Caspase inhibitor N-benzyloxycarbonyl-Val-Ala-Asp- fluoromethylketone (Z-VAD-FMK) could prevent the cell apoptosis induced by MEHP. The findings suggested that MEHP-induced apoptosis in L02 cells involving a Caspases-mediated mitochondrial signaling pathway and/or death receptor pathway. p53 was not absolutely necessary for MEHP-induced L02 cell apoptosis.

  6. The roles of endoplasmic reticulum stress and mitochondrial apoptotic signaling pathway in quercetin-mediated cell death of human prostate cancer PC-3 cells.

    PubMed

    Liu, Kuo-Ching; Yen, Chun-Yi; Wu, Rick Sai-Chuen; Yang, Jai-Sing; Lu, Hsu-Feng; Lu, Kung-Wen; Lo, Chyi; Chen, Hung-Yi; Tang, Nou-Ying; Wu, Chih-Chung; Chung, Jing-Gung

    2014-04-01

    Prostate cancer has its highest incidence and is becoming a major concern. Many studies have shown that traditional Chinese medicine exhibited antitumor responses. Quercetin, a natural polyphenolic compound, has been shown to induce apoptosis in many human cancer cell lines. Although numerous evidences show multiple possible signaling pathways of quercetin in apoptosis, there is no report to address the role of endoplasmic reticulum (ER) stress in quercetin-induced apoptosis in PC-3 cells. The purpose of this study was to investigate the effects of quercetin on the induction of the apoptotic pathway in human prostate cancer PC-3 cells. Cells were treated with quercetin for 24 and 48 h and at various doses (50-200 μM), and cell morphology and viability decreased significantly in dose-dependent manners. Flow cytometric assay indicated that quercetin at 150 μM caused G0/G1 phase arrest (31.4-49.7%) and sub-G1 phase cells (19.77%) for 36 h treatment and this effect is a time-dependent manner. Western blotting analysis indicated that quercetin induces the G0/G1 phase arrest via decreasing the levels of CDK2, cyclins E, and D proteins. Quercetin also stimulated the protein expression of ATF, GRP78, and GADD153 which is a hall marker of ER stress. Furthermore, PC-3 cells after incubation with quercetin for 48 h showed an apoptotic cell death and DNA damage which are confirmed by DAPI and Comet assays, leading to decrease the antiapoptotic Bcl-2 protein and level of ΔΨm , and increase the proapoptotic Bax protein and the activations of caspase-3, -8, and -9. Moreover, quercetin promoted the trafficking of AIF protein released from mitochondria to nuclei. These data suggest that quercetin may induce apoptosis by direct activation of caspase cascade through mitochondrial pathway and ER stress in PC-3 cells. Copyright © 2012 Wiley Periodicals, Inc.

  7. Parents' perspective on symptoms, quality of life, characteristics of death and end-of-life decisions for children dying from cancer.

    PubMed

    Hechler, T; Blankenburg, M; Friedrichsdorf, S J; Garske, D; Hübner, B; Menke, A; Wamsler, C; Wolfe, J; Zernikow, B

    2008-01-01

    In the present study, we investigated the situation of children who had succumbed to their malignancy in Germany as perceived by their parents. Specifically, we were interested in bereaved parents' perspective on five essential areas: 1) symptoms and quality of life, 2) characteristics of the child's death, 3) anticipation of their child's death and care delivery, 4) end-of-life decisions and 5) impact of the child's death on the parents and perceived social support by the health care team. We contacted all existing departments for paediatric oncology in the German federal state of Nordrhein Westfalen and asked them to contact all parents for participation in our study who had lost their child to cancer in 1999 and 2000. Upon agreement, we interviewed the parents utilising a validated semi-structured interview on distressing symptoms and quality of life of their children during the end-of-life care period. Six of the 19 departments agreed to participate. Parents of 48 children (31 boys, 17 girls) were interviewed. The main distressing symptoms were fatigue, pain, loss of appetite, and dyspnoea according to the parents. While parents perceived pain and constipation to have been treated successfully, loss of appetite and anxiety were not treated effectively. 75% of the children died due to a progression of their malignancy. Of these, 50% obtained cancer-directed therapy at the end of life, which was negatively rated by the parents in hindsight. 48% of the children died at home even though 88% of the parents chose 'at home' as the most appropriate locale of death in hindsight. Parents anticipated their child's death on average 9 weeks prior to the child's death. 41% of the parents provided palliative home care for their child and the majority (88%) rated the quality of care as good or very good. 64% discussed end-of-life decisions with the health care team, 36% did not have a discussion. Parents were clearly affected by their child's death. However, 15% of the parents

  8. [Death, euthanasia and end-of-life decisions according to the relatives' perspective -- a survey after the death of a close relative].

    PubMed

    van Oorschot, Birgitt; Schweitzer, Susanne; Köhler, Norbert; Leppert, Karena; Steinbach, Kerstin; Hausmann, Christopher; Anselm, Reiner

    2005-06-01

    Empirical research on euthanasia and medical decisions at the end of life usually focus on the doctors' perspective. The perspectives of patients, relatives respectively the bereaved families have been neglected so far. The project "Patients as partners. Tumour patients and their participation" aims to improve the participation of tumour patients in medical decision making at the end of life by means of several offerings for patients. In order to develop a theoretical model, interviews were conducted with patients, relatives, doctors and members of the bereaved families. Between March 2002 and July 2004 questionnaires were sent to the bereaved families about eight to ten weeks after their relatives had perished. Before dying, the patients had been looked after and offered consultation by a palliative care team either in hospital or at home. Of 151 sent out questionnaires, 59.6 % (n = 90) were filled in and sent back by members of the bereaved families. 52.3 % of the patients had died in hospital, 33.7 % in their private home. All of the patients who died at home, but only one in three patients who died in hospital also wanted to die there. The relatives were predominantly very satisfied or satisfied with the medical care (67.8 %). 11 % of the bereaved families said, their dying relatives had seriously asked for euthanasia. In 74.4 % of all cases, decisions for the renunciation of therapy were made, mostly due to a worsening of the general condition (54.4 %) or a progress of the disease (46.6 %). The questioning was successfully conducted. Members of bereaved families are able and also prepared to answer questions about the last days of their relatives lives. The question about the desired dying place has proved to be workable. In empirical research, the perspective of the relatives and bereaved families should be taken in to account seriously.

  9. Enhancing effects of intracellular ascorbic acid on peroxynitrite-induced U937 cell death are mediated by mitochondrial events resulting in enhanced sensitivity to peroxynitrite-dependent inhibition of complex III and formation of hydrogen peroxide.

    PubMed Central

    Guidarelli, Andrea; Fiorani, Mara; Cantoni, Orazio

    2004-01-01

    A short-term pre-exposure to dehydroascorbic acid (DHA) promotes U937 cell death upon exposure to otherwise non-toxic levels of peroxynitrite (ONOO-). Toxicity is mediated by a saturable mechanism and cell death takes place as a consequence of mitochondrial permeability transition. The following lines of evidence are consistent with the notion that the enhancing effects of DHA were related to mitochondrial events resulting in inhibition of complex III upon exposure to otherwise inactive concentrations of ONOO-. First, DHA, as well as bona fide complex III inhibitors, similarly enhanced toxicity and subsequent formation of H2O2 induced by ONOO- via a rotenone- or catalase-sensitive mechanism. Secondly, bona fide complex III inhibitors were ineffective in DHA-pre-loaded cells. In addition, respiration-deficient cells were resistant to toxicity elicited by ONOO- and their supplementation with increasing concentrations of DHA, although resulting in the accumulation of vitamin C levels identical with those observed in respiration-proficient cells, failed to affect ONOO- toxicity. Finally, oxygen-consumption experiments demonstrated that pre-exposure to DHA promotes the ONOO--dependent inhibition of complex III. In conclusion, the above results collectively demonstrate that increasing the intracellular accumulation of vitamin C promotes mitochondrial events leading to ONOO--dependent formation of H2O2 and resulting in a rapid necrotic response. PMID:14627438

  10. End-of-life medical decisions in France: a death certificate follow-up survey 5 years after the 2005 act of parliament on patients’ rights and end of life

    PubMed Central

    2012-01-01

    Background The “Patients’ Rights and End of Life Care” Act came into force in France in 2005. It allows withholding/withdrawal of life-support treatment, and intensified use of medications that may hasten death through a double effect, as long as hastening death is not the purpose of the decision. It also specifies the requirements of the decision-making process. This study assesses the situation by examining the frequency of end-of-life decisions by patients’ and physicians’ characteristics, and describes the decision-making processes. Methods We conducted a nationwide retrospective study of a random sample of adult patients who died in December 2009. Questionnaires were mailed to the physicians who certified/attended these deaths. Cases were weighted to adjust for response rate bias. Bivariate analyses and logistic regressions were performed for each decision. Results Of all deaths, 16.9% were sudden deaths with no information about end of life, 12.2% followed a decision to do everything possible to prolong life, and 47.7% followed at least one medical decision that may certainly or probably hasten death: withholding (14.6%) or withdrawal (4.2%) of treatments, intensified use of opioids and/or benzodiazepines (28.1%), use of medications to deliberately hasten death (i.e. not legally authorized) (0.8%), at the patient’s request (0.2%) or not (0.6%). All other variables held constant, cause of death, patient's age, doctor’s age and specialty, and place of death, influenced the frequencies of decisions. When a decision was made, 20% of the persons concerned were considered to be competent. The decision was discussed with the patient if competent in 40% (everything done) to 86% (intensification of alleviation of symptoms) of cases. Legal requirements regarding decision-making for incompetent patients were frequently not complied with. Conclusions This study shows that end-of-life medical decisions are common in France. Most are in compliance with the

  11. End-of-life medical decisions in France: a death certificate follow-up survey 5 years after the 2005 act of parliament on patients' rights and end of life.

    PubMed

    Pennec, Sophie; Monnier, Alain; Pontone, Silvia; Aubry, Régis

    2012-12-03

    The "Patients' Rights and End of Life Care" Act came into force in France in 2005. It allows withholding/withdrawal of life-support treatment, and intensified use of medications that may hasten death through a double effect, as long as hastening death is not the purpose of the decision. It also specifies the requirements of the decision-making process. This study assesses the situation by examining the frequency of end-of-life decisions by patients' and physicians' characteristics, and describes the decision-making processes. We conducted a nationwide retrospective study of a random sample of adult patients who died in December 2009. Questionnaires were mailed to the physicians who certified/attended these deaths. Cases were weighted to adjust for response rate bias. Bivariate analyses and logistic regressions were performed for each decision. Of all deaths, 16.9% were sudden deaths with no information about end of life, 12.2% followed a decision to do everything possible to prolong life, and 47.7% followed at least one medical decision that may certainly or probably hasten death: withholding (14.6%) or withdrawal (4.2%) of treatments, intensified use of opioids and/or benzodiazepines (28.1%), use of medications to deliberately hasten death (i.e. not legally authorized) (0.8%), at the patient's request (0.2%) or not (0.6%). All other variables held constant, cause of death, patient's age, doctor's age and specialty, and place of death, influenced the frequencies of decisions. When a decision was made, 20% of the persons concerned were considered to be competent. The decision was discussed with the patient if competent in 40% (everything done) to 86% (intensification of alleviation of symptoms) of cases. Legal requirements regarding decision-making for incompetent patients were frequently not complied with. This study shows that end-of-life medical decisions are common in France. Most are in compliance with the 2005 law (similar to some other European countries

  12. Juror Decision-making in Death Penalty Sentencing when Presented with Defendant's History of Child Abuse or Neglect.

    PubMed

    Bell Holleran, Lisa L; Vaughan, Tyler J; Vandiver, Donna M

    2016-11-01

    Previous studies have found aggravating, mitigating, and null effects of defendant histories of abuse and neglect on punishment preferences in capital sentencing. Perceiving these defendants as more dangerous, jurors may be more likely to favor the death penalty when such evidence is presented. This is counter to the intuition that abuse or neglect reduces culpability, and therefore mitigates the severity of punishment. We investigated the effect of defendant childhood physical abuse, sexual abuse, or neglect on the probability of a prospective juror preferring the death penalty in an between-subject experimental design. Using vignettes and two large samples (students and jurors), defendant histories were found to mitigate the probability that the hypothetical defendant received the death penalty, with sexual abuse having the most salient effect. Further, the effects were conditioned by preference for the death penalty - larger mitigating effects were observed among individuals who favor the death penalty. These findings suggest that initial judgments of abuse and neglect are related to juror leniency, and further research on the interaction of jury instructions and defendant histories is needed. Copyright © 2017 John Wiley & Sons, Ltd.

  13. Examining the Terror Management Health Model: The Interactive Effect of Conscious Death Thought and Health-Coping Variables on Decisions in Potentially Fatal Health Domains.

    PubMed

    Cooper, Douglas P; Goldenberg, Jamie L; Arndt, Jamie

    2010-07-01

    From the perspective of the terror management health model (TMHM), expectancies as to whether a health behavior is likely to effectively protect one's health (i.e., response efficacy) and whether an individual is optimistic about the outcomes of his or her health risk assessment (i.e., health optimism) should have a more potent influence on health decisions when thoughts of death are conscious and the health risk domain is potentially fatal. Supporting this, health optimism and response efficacy were found to moderate skin cancer prevention intentions in response to conscious, but not nonconscious, reminders of death,whereas this same relationship was not found in the context of priming thoughts associated with uncertainty. Moreover, these effects were not observed in response to nonfatal dental care outcomes. Discussion focuses on the implications of TMHM for existing health models and health promotion.

  14. Will the S.C.C.'s Decision on Physician-Assisted Death Apply to Persons Suffering from Severe Mental Illness?

    PubMed

    Walker-Renshaw, Barbara; Finley, Margot

    2016-02-01

    In this article, the authors address the question of whether the Supreme Court of Canada's decision in Carter v. Canada leaves open the possibility that persons with severe, treatment-refractory mental illness may lawfully seek a physician-assisted death. If so, how will health care providers distinguish between suicidal ideation and intent that is a symptom of the pathology of a treatable mental illness, on the one hand; and suicidal ideation and intent that is, perhaps, a capable and thoughtful response to a "grievous and irremediable" condition, on the other hand? Mental illness is the most common risk factor for suicide. If physician-assisted death becomes an accepted practice in mental health care, how will that be reconciled with the well-established impetus in mental health care to prevent suicide? The authors consider the competing ethical values of beneficence and promoting patient autonomy, in the context of the recovery movement in mental health care.

  15. A post-mortem survey on end-of-life decisions using a representative sample of death certificates in Flanders, Belgium: research protocol

    PubMed Central

    Chambaere, Kenneth; Bilsen, Johan; Cohen, Joachim; Pousset, Geert; Onwuteaka-Philipsen, Bregje; Mortier, Freddy; Deliens, Luc

    2008-01-01

    Background Reliable studies of the incidence and characteristics of medical end-of-life decisions with a certain or possible life shortening effect (ELDs) are indispensable for an evidence-based medical and societal debate on this issue. This article presents the protocol drafted for the 2007 ELD Study in Flanders, Belgium, and outlines how the main aims and challenges of the study (i.e. making reliable incidence estimates of end-of-life decisions, even rare ones, and describing their characteristics; allowing comparability with past ELD studies; guaranteeing strict anonymity given the sensitive nature of the research topic; and attaining a sufficient response rate) are addressed in a post-mortem survey using a representative sample of death certificates. Study design Reliable incidence estimates are achievable by using large at random samples of death certificates of deceased persons in Flanders (aged one year or older). This entails the cooperation of the appropriate administrative authorities. To further ensure the reliability of the estimates and descriptions, especially of less prevalent end-of-life decisions (e.g. euthanasia), a stratified sample is drawn. A questionnaire is sent out to the certifying physician of each death sampled. The questionnaire, tested thoroughly and avoiding emotionally charged terms is based largely on questions that have been validated in previous national and European ELD studies. Anonymity of both patient and physician is guaranteed through a rigorous procedure, involving a lawyer as intermediary between responding physicians and researchers. To increase response we follow the Total Design Method (TDM) with a maximum of three follow-up mailings. Also, a non-response survey is conducted to gain insight into the reasons for lack of response. Discussion The protocol of the 2007 ELD Study in Flanders, Belgium, is appropriate for achieving the objectives of the study; as past studies in Belgium, the Netherlands, and other European

  16. A matter of life and death: controversy at the interface between clinical and legal decision-making in prolonged disorders of consciousness.

    PubMed

    Turner-Stokes, Lynne

    2017-07-01

    Best interests decision-making and end-of-life care for patients in permanent vegetative or minimally conscious states (VS/MCS) is a complex area of clinical and legal practice, which is poorly understood by most clinicians, lawyers and members of the public. In recent weeks, the Oxford Shrieval lecture by Mr Justice Baker ('A Matter of Life and Death', 11 October 2016) and its subsequent reporting in the public press has sparked debate on the respective roles of clinicians, the Court of Protection and the Mental Capacity Act 2005 in decisions to withhold or withdraw life-sustaining treatments from patients with disorders of consciousness. The debate became polarised and confused by misquotation and inaccurate terminology, and highlighted a lack of knowledge about how patients in VS/MCS die in the absence of court approval. This article sets out the background and discussion and attempts to give a more accurate representation of the facts. In the spirit of transparency, I present a mortality review of all the patients in VS/MCS who have died under the care of my own unit in the last decade-with or without referral to the court, but always in accordance with the law. These data demonstrate that clinicians regularly undertake best interests decision-making in conjunction with families that may include life and death decisions (sometimes even the withdrawal or withholding of clinically assisted nutrition and hydration); and that these can be made within the current legal framework without necessarily involving the court in all cases. This is the first published case series of its kind. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/.

  17. Mitigating circumstances in death penalty decisions: using evidence-based research to inform social work practice in capital trials.

    PubMed

    Schroeder, Julie; Guin, Cecile C; Pogue, Rene; Bordelon, Danna

    2006-10-01

    Providing an effective defense for individuals charged with capital crimes requires a diligent, thorough investigation by a mitigation specialist. However, research suggests that mitigation often plays a small role in the decision for life. Jurors often make sentencing decisions prematurely, basing those decisions on their personal reactions to the defendant (for example, fear, anger), their confusion about the rules of law, and their lack of understanding regarding their role and responsibilities. This article proposes an evidence-based conceptual model of the complicating problems surrounding mitigation practice and a focused discussion about how traditional social work mitigation strategies might be evolved to a set of best practices that more effectively ensure jurors' careful consideration of mitigation evidence.

  18. Inhibitors of mitochondrial fission as a therapeutic strategy for diseases with oxidative stress and mitochondrial dysfunction.

    PubMed

    Reddy, P Hemachandra

    2014-01-01

    Mitochondria are essential cytoplasmic organelles, critical for cell survival and death. Recent mitochondrial research revealed that mitochondrial dynamics-the balance of fission and fusion in normal mitochondrial dynamics--is an important cellular mechanism in eukaryotic cell and is involved in the maintenance of mitochondrial morphology, structure, number, distribution, and function. Research into mitochondria and cell function has revealed that mitochondrial dynamics is impaired in a large number of aging and neurodegenerative diseases, and in several inherited mitochondrial diseases, and that this impairment involves excessive mitochondrial fission, resulting in mitochondrial structural changes and dysfunction, and cell damage. Attempts have been made to develop molecules to reduce mitochondrial fission while maintaining normal mitochondrial fusion and function in those diseases that involve excessive mitochondrial fission. This review article discusses mechanisms of mitochondrial fission in normal and diseased states of mammalian cells and discusses research aimed at developing therapies, such as Mdivi, Dynasore and P110, to prevent or to inhibit excessive mitochondrial fission.

  19. Curcumin Rescues a PINK1 Knock Down SH-SY5Y Cellular Model of Parkinson's Disease from Mitochondrial Dysfunction and Cell Death.

    PubMed

    van der Merwe, Celia; van Dyk, Hayley Christy; Engelbrecht, Lize; van der Westhuizen, Francois Hendrikus; Kinnear, Craig; Loos, Ben; Bardien, Soraya

    2017-05-01

    Parkinson's disease (PD) is a neurodegenerative disorder characterised by the loss of dopaminergic neurons in the substantia nigra. Mutations in the PINK1 gene result in an autosomal recessive form of early-onset PD. PINK1 plays a vital role in mitochondrial quality control via the removal of dysfunctional mitochondria. The aim of the present study was to create a cellular model of PD using siRNA-mediated knock down of PINK1 in SH-SY5Y neuroblastoma cells The possible protective effects of curcumin, known for its many beneficial properties including antioxidant and anti-inflammatory effects, was tested on this model in the presence and absence of paraquat, an additional stressor. PINK1 siRNA and control cells were separated into four treatment groups: (i) untreated, (ii) treated with paraquat, (iii) pre-treated with curcumin then treated with paraquat, or (iv) treated with curcumin. Various parameters of cellular and mitochondrial function were then measured. The PINK1 siRNA cells exhibited significantly decreased cell viability, mitochondrial membrane potential (MMP), mitochondrial respiration and ATP production, and increased apoptosis. Paraquat-treated cells exhibited decreased cell viability, increased apoptosis, a more fragmented mitochondrial network and decreased MMP. Curcumin pre-treatment followed by paraquat exposure rescued cell viability and increased MMP and mitochondrial respiration in control cells, and significantly decreased apoptosis and increased MMP and maximal respiration in PINK1 siRNA cells. These results highlight a protective effect of curcumin against mitochondrial dysfunction and apoptosis in PINK1-deficient and paraquat-exposed cells. More studies are warranted to further elucidate the potential neuroprotective properties of curcumin.

  20. Implications of mitochondrial DNA mutations and mitochondrial dysfunction in tumorigenesis

    PubMed Central

    Lu, Jianxin; Sharma, Lokendra Kumar; Bai, Yidong

    2016-01-01

    Alterations in oxidative phosphorylation resulting from mitochondrial dysfunction have long been hypothesized to be involved in tumorigenesis. Mitochondria have recently been shown to play an important role in regulating both programmed cell death and cell proliferation. Furthermore, mitochondrial DNA (mtDNA) mutations have been found in various cancer cells. However, the role of these mtDNA mutations in tumorigenesis remains largely unknown. This review focuses on basic mitochondrial genetics, mtDNA mutations and consequential mitochondrial dysfunction associated with cancer. The potential molecular mechanisms, mediating the pathogenesis from mtDNA mutations and mitochondrial dysfunction to tumorigenesis are also discussed. PMID:19532122

  1. Heat shock protein 60 or 70 activates nitric-oxide synthase (NOS) I- and inhibits NOS II-associated signaling and depresses the mitochondrial apoptotic cascade during brain stem death.

    PubMed

    Chan, Julie Y H; Cheng, Hsiao-Lei; Chou, Jimmy L J; Li, Faith C H; Dai, Kuang-Yu; Chan, Samuel H H; Chang, Alice Y W

    2007-02-16

    The cellular and molecular basis of brain stem death remains an enigma. As the origin of a "life-and-death" signal that reflects the progression toward brain stem death, the rostral ventrolateral medulla (RVLM) is a suitable neural substrate for mechanistic delineation of this phenomenon. Here, we evaluated the hypothesis that heat shock proteins (HSPs) play a neuroprotective role in the RVLM during brain stem death and delineated the underlying mechanisms, using a clinically relevant animal model that employed the organophosphate pesticide mevinphos (Mev) as the experimental insult. In Sprague-Dawley rats, proteomic, Western blot, and real-time PCR analyses demonstrated that Mev induced de novo synthesis of HSP60 or HSP70 in the RVLM without affecting HSP90 level. Loss-of-function manipulations of HSP60 or HSP70 in the RVLM using anti-serum or antisense oligonucleotide potentiated Mev-elicited cardiovascular depression alongside reduced nitric-oxide synthase (NOS) I/protein kinase G signaling, enhanced NOS II/peroxynitrite cascade, intensified nucleosomal DNA fragmentation, elevated cytoplasmic histone-associated DNA fragments or activated caspase-3, and augmented the cytochrome c/caspase-3 cascade of apoptotic signaling in the RVLM. Co-immunoprecipitation experiments further revealed a progressive increase in the complex formed between HSP60 and mitochondrial or cytosolic Bax or mitochondrial Bcl-2 during Mev intoxication, alongside a dissociation of the cytosolic HSP60-Bcl-2 complex. We conclude that HSP60 and HSP70 confer neuroprotection against Mev intoxication by ameliorating cardiovascular depression via an anti-apoptotic action in the RVLM. The possible underlying intracellular processes include enhancing NOS I/protein kinase G signaling and inhibiting the NOS II/peroxynitrite cascade. In addition, HSP60 exerts its effects against apoptosis by blunting Mev-induced activation of the Bax/cytochrome c/caspase-3 cascade.

  2. A Systems Biological View of Life-and-Death Decision with Respect to Endoplasmic Reticulum Stress—The Role of PERK Pathway

    PubMed Central

    Márton, Margita; Kurucz, Anita; Lizák, Beáta; Margittai, Éva; Bánhegyi, Gábor; Kapuy, Orsolya

    2017-01-01

    Accumulation of misfolded/unfolded proteins in the endoplasmic reticulum (ER) leads to the activation of three branches (Protein kinase (RNA)-like endoplasmic reticulum kinase [PERK], Inositol requiring protein 1 [IRE-1] and Activating trascription factor 6 [ATF6], respectively) of unfolded protein response (UPR). The primary role of UPR is to try to drive back the system to the former or a new homeostatic state by self-eating dependent autophagy, while excessive level of ER stress results in apoptotic cell death. Our study focuses on the role of PERK- and IRE-1-induced arms of UPR in life-or-death decision. Here we confirm that silencing of PERK extends autophagy-dependent survival, whereas the IRE-1-controlled apoptosis inducer is downregulated during ER stress. We also claim that the proper order of surviving and self-killing mechanisms is controlled by a positive feedback loop between PERK and IRE-1 branches. This regulatory network makes possible a smooth, continuous activation of autophagy with respect to ER stress, while the induction of apoptosis is irreversible and switch-like. Using our knowledge of molecular biological techniques and systems biological tools we give a qualitative description about the dynamical behavior of PERK- and IRE-1-controlled life-or-death decision. Our model claims that the two arms of UPR accomplish an altered upregulation of autophagy and apoptosis inducers during ER stress. Since ER stress is tightly connected to aging and age-related degenerative disorders, studying the signaling pathways of UPR and their role in maintaining ER proteostasis have medical importance. PMID:28067773

  3. A Systems Biological View of Life-and-Death Decision with Respect to Endoplasmic Reticulum Stress-The Role of PERK Pathway.

    PubMed

    Márton, Margita; Kurucz, Anita; Lizák, Beáta; Margittai, Éva; Bánhegyi, Gábor; Kapuy, Orsolya

    2017-01-05

    Accumulation of misfolded/unfolded proteins in the endoplasmic reticulum (ER) leads to the activation of three branches (Protein kinase (RNA)-like endoplasmic reticulum kinase [PERK], Inositol requiring protein 1 [IRE-1] and Activating trascription factor 6 [ATF6], respectively) of unfolded protein response (UPR). The primary role of UPR is to try to drive back the system to the former or a new homeostatic state by self-eating dependent autophagy, while excessive level of ER stress results in apoptotic cell death. Our study focuses on the role of PERK- and IRE-1-induced arms of UPR in life-or-death decision. Here we confirm that silencing of PERK extends autophagy-dependent survival, whereas the IRE-1-controlled apoptosis inducer is downregulated during ER stress. We also claim that the proper order of surviving and self-killing mechanisms is controlled by a positive feedback loop between PERK and IRE-1 branches. This regulatory network makes possible a smooth, continuous activation of autophagy with respect to ER stress, while the induction of apoptosis is irreversible and switch-like. Using our knowledge of molecular biological techniques and systems biological tools we give a qualitative description about the dynamical behavior of PERK- and IRE-1-controlled life-or-death decision. Our model claims that the two arms of UPR accomplish an altered upregulation of autophagy and apoptosis inducers during ER stress. Since ER stress is tightly connected to aging and age-related degenerative disorders, studying the signaling pathways of UPR and their role in maintaining ER proteostasis have medical importance.

  4. Mitochondrial Dynamics in Diabetes

    PubMed Central

    Galloway, Chad A.; Jhun, Bong Sook; Yu, Tianzheng

    2011-01-01

    Abstract Mitochondria are at the center of cellular energy metabolism and regulate cell life and death. The cell biological aspect of mitochondria, especially mitochondrial dynamics, has drawn much attention through implications in human pathology, including neurological disorders and metabolic diseases. Mitochondrial fission and fusion are the main processes governing the morphological plasticity and are controlled by multiple factors, including mechanochemical enzymes and accessory proteins. Emerging evidence suggests that mitochondrial dynamics plays an important role in metabolism–secretion coupling in pancreatic β-cells as well as complications of diabetes. This review describes an overview of mechanistic and functional aspects of mitochondrial fission and fusion, and comments on the recent advances connecting mitochondrial dynamics with diabetes and diabetic complications. Antioxid. Redox Signal. 14, 439–457. PMID:20518704

  5. China PEACE risk estimation tool for in-hospital death from acute myocardial infarction: an early risk classification tree for decisions about fibrinolytic therapy

    PubMed Central

    Li, Xi; Li, Jing; Masoudi, Frederick A; Spertus, John A; Lin, Zhenqiu; Krumholz, Harlan M; Jiang, Lixin

    2016-01-01

    Objectives As the predominant approach to acute reperfusion for ST segment elevation myocardial infarction (STEMI) in many countries, fibrinolytic therapy provides a relative risk reduction for death of ∼16% across the range of baseline risk. For patients with low baseline mortality risk, fibrinolytic therapy may therefore provide little benefit, which may be offset by the risk of major bleeding. We aimed to construct a tool to determine if it is possible to identify a low-risk group among fibrinolytic therapy-eligible patients. Design Cross-sectional study. Setting The China Patient-centered Evaluative Assessment of Cardiac Events (PEACE) study includes a nationally representative retrospective sample of patients admitted with acute myocardial infarction (AMI) in 162 hospitals. Participants 3741 patients with STEMI who were fibrinolytic-eligible but did not receive reperfusion therapy. Main outcome measures In-hospital mortality, which was defined as a composite of death occurring within hospitalisation or withdrawal from treatment due to a terminal status at discharge. Results In the study cohort, the in-hospital mortality was 14.7%. In the derivation cohort and the validation cohort, the combination of systolic blood pressure (≥100 mm Hg), age (<60 years old) and gender (male) identified one-fifth of the cohort with an average mortality rate of <3.0%. Half of this low risk group—those with non-anterior AMI—had an average in-hospital death risk of 1.5%. Conclusions Nearly, one in five patients with STEMI who are eligible for fibrinolytic therapy are at a low risk for in-hospital death. Three simple factors available at the time of presentation can identify these individuals and support decision-making about the use of fibrinolytic therapy. Trial registration number NCT01624883. PMID:27798032

  6. Polyamines modulate the roscovitine-induced cell death switch decision autophagy vs. apoptosis in MCF-7 and MDA-MB-231 breast cancer cells.

    PubMed

    Arisan, Elif Damla; Akkoç, Yunus; Akyüz, Kaan Gencer; Kerman, Ezgi Melek; Obakan, Pinar; Çoker-Gürkan, Ajda; Palavan Ünsal, Narçin

    2015-06-01

    Current clinical strategies against breast cancer mainly involve the use of anti‑hormonal agents to decrease estrogen production; however, development of resistance is a major problem. The resistance phenotype depends on the modulation of cell‑cycle regulatory proteins, cyclins and cyclin‑dependent kinases. Roscovitine, a selective inhibitor of cyclin‑dependent kinases, shows high therapeutic potential by causing cell‑cycle arrest in various cancer types. Autophagy is a type of cell death characterized by the enzymatic degradation of macromolecules and organelles in double‑ or multi‑membrane autophagic vesicles. This process has important physiological functions, including the degradation of misfolded proteins and organelle turnover. Recently, the switch between autophagy and apoptosis has been proposed to constitute an important regulator of cell death in response to chemotherapeutic drugs. The process is regulated by several proteins, such as the proteins of the Atg family, essential for the initial formation of the autophagosome, and PI3K, important at the early stages of autophagic vesicle formation. Polyamines (PAs) are small aliphatic amines that play major roles in a number of eukaryotic processes, including cell proliferation. The PA levels are regulated by ornithine decarboxylase (ODC), the rate‑limiting enzyme in PA biosynthesis. In this study, we aimed to investigate the role of PAs in roscovitine‑induced autophagic/apoptotic cell death in estrogen receptor‑positive MCF‑7 and estrogen receptor‑negative MDA‑MB‑231 breast cancer cells. We show that MDA‑MB‑231 cells are more resistant to roscovitine than MCF‑7 cells. This difference was related to the regulation of autophagic key molecules in MDA‑MB‑231 cells. In addition, we found that exogenous PAs have a role in the cell death decision between roscovitine‑induced apoptosis or autophagy in MCF‑7 and MDA‑MB‑231 breast cancer cells.

  7. A national survey of Italian physicians' attitudes towards end-of-life decisions following the death of Eluana Englaro.

    PubMed

    Solarino, Biagio; Bruno, Francesco; Frati, Giacomo; Dell'erba, Alessandro; Frati, Paola

    2011-03-01

    Ethical issues regarding patient care have recently been raised in Italy by the case of Eluana Englaro, a 36-year-old woman who remained in a persistent vegetative state (PVS) for 17 years. There are no specific laws on the books in Italy regarding euthanasia and physician-assisted suicide. In November 2008, a controversial decision by the Italian Supreme Court granted the woman's father his wish to discontinue nutrition and hydration provided to her. Because of this historic decision, the authors carried out a survey of Italian physicians' beliefs regarding end-of-life practices. A questionnaire was e-mailed to 70,000 physicians working for the Italian Public Health System and University Medical Hospitals. A total of 22,219 doctors responded to the questionnaire (32.3%), of whom 17,252 (77.6%) had some experience in treating PVS patients. Nearly 70% of responding doctors were aware of PVS diagnostic criteria; most of them (61%) considered tube feeding to be a medical therapy, and 66% of respondents believed that withdrawal of assisted nutrition and hydration (ANH) might be appropriate depending on the patient's wishes. Moreover, even though 50% of doctors surveyed were not in favor of euthanasia, a significant percentage (42%) did approve of it, while 8% of this sample was uncertain. Italian doctors probably have the least experience in end-of-life decisions in Europe, therefore this national survey is a great chance to understand their authentic opinions regarding such remarkable issues. There is broad consensus that a clear legislative position regarding euthanasia and ANH is needed.

  8. A matter of life and death: controversy at the interface between clinical and legal decision-making in prolonged disorders of consciousness

    PubMed Central

    Turner-Stokes, Lynne

    2017-01-01

    Best interests decision-making and end-of-life care for patients in permanent vegetative or minimally conscious states (VS/MCS) is a complex area of clinical and legal practice, which is poorly understood by most clinicians, lawyers and members of the public. In recent weeks, the Oxford Shrieval lecture by Mr Justice Baker (‘A Matter of Life and Death’, 11 October 2016) and its subsequent reporting in the public press has sparked debate on the respective roles of clinicians, the Court of Protection and the Mental Capacity Act 2005 in decisions to withhold or withdraw life-sustaining treatments from patients with disorders of consciousness. The debate became polarised and confused by misquotation and inaccurate terminology, and highlighted a lack of knowledge about how patients in VS/MCS die in the absence of court approval. This article sets out the background and discussion and attempts to give a more accurate representation of the facts. In the spirit of transparency, I present a mortality review of all the patients in VS/MCS who have died under the care of my own unit in the last decade—with or without referral to the court, but always in accordance with the law. These data demonstrate that clinicians regularly undertake best interests decision-making in conjunction with families that may include life and death decisions (sometimes even the withdrawal or withholding of clinically assisted nutrition and hydration); and that these can be made within the current legal framework without necessarily involving the court in all cases. This is the first published case series of its kind. PMID:27986800

  9. Production of Reactive Oxygen Species, Alteration of Cytosolic Ascorbate Peroxidase, and Impairment of Mitochondrial Metabolism Are Early Events in Heat Shock-Induced Programmed Cell Death in Tobacco Bright-Yellow 2 Cells1

    PubMed Central

    Vacca, Rosa Anna; de Pinto, Maria Concetta; Valenti, Daniela; Passarella, Salvatore; Marra, Ersilia; De Gara, Laura

    2004-01-01

    To gain some insight into the mechanisms by which plant cells die as a result of abiotic stress, we exposed tobacco (Nicotiana tabacum) Bright-Yellow 2 cells to heat shock and investigated cell survival as a function of time after heat shock induction. Heat treatment at 55°C triggered processes leading to programmed cell death (PCD) that was complete after 72 h. In the early phase, cells undergoing PCD showed an immediate burst in hydrogen peroxide (H2O2) and superoxide (O2·-) anion production. Consistently, death was prevented by the antioxidants ascorbate (ASC) and superoxide dismutase (SOD). Actinomycin D and cycloheximide, inhibitors of transcription and translation, respectively, also prevented cell death, but with a lower efficiency. Induction of PCD resulted in gradual oxidation of endogenous ASC; this was accompanied by a decrease in both the amount and the specific activity of the cytosolic ASC peroxidase (cAPX). A reduction in cAPX gene expression was also found in the late PCD phase. Moreover, changes of cAPX kinetic properties were found in PCD cells. Production of ROS in PCD cells was accompanied by early inhibition of glucose (Glc) oxidation, with a strong impairment of mitochondrial function as shown by an increase in cellular NAD(P)H fluorescence, and by failure of mitochondria isolated from cells undergoing PCD to generate membrane potential and to oxidize succinate in a manner controlled by ADP. Thus, we propose that in the early phase of tobacco Bright-Yellow 2 cell PCD, ROS production occurs, perhaps because of damage of the cell antioxidant system, with impairment of the mitochondrial oxidative phosphorylation. PMID:15020761

  10. Ornithine and Homocitrulline Impair Mitochondrial Function, Decrease Antioxidant Defenses and Induce Cell Death in Menadione-Stressed Rat Cortical Astrocytes: Potential Mechanisms of Neurological Dysfunction in HHH Syndrome.

    PubMed

    Zanatta, Ângela; Rodrigues, Marília Danyelle Nunes; Amaral, Alexandre Umpierrez; Souza, Débora Guerini; Quincozes-Santos, André; Wajner, Moacir

    2016-09-01

    Hyperornithinemia-hyperammonemia-homocitrullinuria (HHH) syndrome is caused by deficiency of ornithine translocase leading to predominant tissue accumulation and high urinary excretion of ornithine (Orn), homocitrulline (Hcit) and ammonia. Although affected patients commonly present neurological dysfunction manifested by cognitive deficit, spastic paraplegia, pyramidal and extrapyramidal signs, stroke-like episodes, hypotonia and ataxia, its pathogenesis is still poorly known. Although astrocytes are necessary for neuronal protection. Therefore, in the present study we investigated the effects of Orn and Hcit on cell viability (propidium iodide incorporation), mitochondrial function (thiazolyl blue tetrazolium bromide-MTT-reduction and mitochondrial membrane potential-ΔΨm), antioxidant defenses (GSH) and pro-inflammatory response (NFkB, IL-1β, IL-6 and TNF-α) in unstimulated and menadione-stressed cortical astrocytes that were previously shown to be susceptible to damage by neurotoxins. We first observed that Orn decreased MTT reduction, whereas both amino acids decreased GSH levels, without altering cell viability and the pro-inflammatory factors in unstimulated astrocytes. Furthermore, Orn and Hcit decreased cell viability and ΔΨm in menadione-treated astrocytes. The present data indicate that the major compounds accumulating in HHH syndrome impair mitochondrial function and reduce cell viability and the antioxidant defenses in cultured astrocytes especially when stressed by menadione. It is presumed that these mechanisms may be involved in the neuropathology of this disease.

  11. Arsenic trioxide (As2O3) induces apoptosis and necrosis mediated cell death through mitochondrial membrane potential damage and elevated production of reactive oxygen species in PLHC-1 fish cell line

    PubMed Central

    Selvaraj, Vellaisamy; Cohenford, Menashi; Armistead, Mindy Yeager; Murray, Elizabeth

    2012-01-01

    Several environmental pollutants, including metals can induce toxicological effect on aquatic animal species. Most studies to understand the toxicity of arsenic compounds were performed in mammalian cells; however, the study of the arsenic toxicity to the aquatic animals’ species, including fish, is limited. So the objective of this study was first to investigate the effects of As2O3 induced toxicity particularly on apoptosis and necrosis mediated cell death in fish cell PLHC-1 as compared to the mechanism of toxicity from known mammalian cell lines, secondly to relate in vitro effects in fish to those demonstrated by in vivo systems. To conduct this study, PLHC-1 cells were exposed to various concentrations of As2O3 (0–100μM) for 10, 20 and 40 h. The results indicate that As2O3 exposure promoted apoptotic and necrotic mediated cell death in a concentration and time dependent manner. Cell death (apoptotic and necrotic) induced by As2O3 was further confirmed by changes in various phases of cell cycle, DNA fragmentation (necro- comet and apo-comet) in the comet assay, alteration in mitochondrial membrane potential and formation of increased reactive oxygen species (ROS). Apoptotic mediated cell death was confirmed further by observing the increased caspase-3 activity and elevated expression of p53, cytochrome c and Bax proteins levels in the same experimental conditions. PLHC-1 cells were shown to be a good model for evaluating biochemical/cytotoxic effects following exposure to various reference chemicals and environmental contaminants. In vitro data obtained from this study provides a comprehensive approach for the elucidating the actual molecular mechanism for As2O3 induced toxicity particularly apoptosis and necrosis mediated cell death in PLHC-1 cell line. PMID:23121984

  12. Association of active caspase 8 with the mitochondrial membrane during apoptosis: potential roles in cleaving BAP31 and caspase 3 and mediating mitochondrion-endoplasmic reticulum cross talk in etoposide-induced cell death.

    PubMed

    Chandra, Dhyan; Choy, Grace; Deng, Xiaodi; Bhatia, Bobby; Daniel, Peter; Tang, Dean G

    2004-08-01

    It was recently demonstrated that during apoptosis, active caspase 9 and caspase 3 rapidly accumulate in the mitochondrion-enriched membrane fraction (D. Chandra and D. G. Tang, J. Biol. Chem.278:17408-17420, 2003). We now show that active caspase 8 also becomes associated with the membranes in apoptosis caused by multiple stimuli. In MDA-MB231 breast cancer cells treated with etoposide (VP16), active caspase 8 is detected only in the membrane fraction, which contains both mitochondria and endoplasmic reticulum (ER), as revealed by fractionation studies. Immunofluorescence microscopy, however, shows that procaspase 8 and active caspase 8 predominantly colocalize with the mitochondria. Biochemical analysis demonstrates that both procaspase 8 and active caspase 8 are localized mainly on the outer mitochondrial membrane (OMM) as integral proteins. Functional analyses with dominant-negative mutants, small interfering RNAs, peptide inhibitors, and Fas-associated death domain (FADD)- and caspase 8-deficient Jurkat T cells establish that the mitochondrion-localized active caspase 8 results mainly from the FADD-dependent and tumor necrosis factor receptor-associated death domain-dependent mechanisms and that caspase 8 activation plays a causal role in VP16-induced caspase 3 activation and cell death. Finally, we present evidence that the OMM-localized active caspase 8 can activate cytosolic caspase 3 and ER-localized BAP31. Cleavage of BAP31 leads to the generation of ER- localized, proapoptotic BAP20, which may mediate mitochondrion-ER cross talk through a Ca(2+)-dependent mechanism.

  13. The TrkAIII oncoprotein inhibits mitochondrial free radical ROS-induced death of SH-SY5Y neuroblastoma cells by augmenting SOD2 expression and activity at the mitochondria, within the context of a tumour stem cell-like phenotype.

    PubMed

    Ruggeri, Pierdomenico; Farina, Antonietta R; Di Ianni, Natalia; Cappabianca, Lucia; Ragone, Marzia; Ianni, Giulia; Gulino, Alberto; Mackay, Andrew R

    2014-01-01

    The developmental and stress-regulated alternative TrkAIII splice variant of the NGF receptor TrkA is expressed by advanced stage human neuroblastomas (NBs), correlates with worse outcome in high TrkA expressing unfavourable tumours and exhibits oncogenic activity in NB models. In the present study, we report that constitutive TrkAIII expression in human SH-SY5Y NB cells inhibits Rotenone, Paraquat and LY83583-induced mitochondrial free radical reactive oxygen species (ROS)-mediated death by stimulating SOD2 expression, increasing mitochondrial SOD2 activity and attenuating mitochondrial free radical ROS production, in association with increased mitochondrial capacity to produce H2O2, within the context of a more tumour stem cell-like phenotype. This effect can be reversed by the specific TrkA tyrosine kinase inhibitor GW441756, by the multi-kinase TrkA inhibitors K252a, CEP-701 and Gö6976, which inhibit SOD2 expression, and by siRNA knockdown of SOD2 expression, which restores the sensitivity of TrkAIII expressing SH-SY5Y cells to Rotenone, Paraquat and LY83583-induced mitochondrial free radical ROS production and ROS-mediated death. The data implicate the novel TrkAIII/SOD2 axis in promoting NB resistance to mitochondrial free radical-mediated death and staminality, and suggest that the combined use of TrkAIII and/or SOD2 inhibitors together with agents that induce mitochondrial free radical ROS-mediated death could provide a therapeutic advantage that may also target the stem cell niche in high TrkA expressing unfavourable NB.

  14. Identity and Death Anxiety.

    ERIC Educational Resources Information Center

    Sterling, Christopher M.; Van Horn, K. Roger

    1989-01-01

    Examined relationships between death anxiety and Erikson's concept of ego identity in White male undergraduates (N=63). Found involvement in identity crisis or decision-making period appeared to have increased death anxiety. Recommends further research between death anxiety and ego identity development. (Author/ABL)

  15. Attenuation of Magnesium Sulfate on CoCl₂-Induced Cell Death by Activating ERK1/2/MAPK and Inhibiting HIF-1α via Mitochondrial Apoptotic Signaling Suppression in a Neuronal Cell Line.

    PubMed

    Huang, Chih-Yang; Hsieh, You-Liang; Ju, Da-Tong; Lin, Chien-Chung; Kuo, Chia-Hua; Liou, Yi-Fan; Ho, Tsung-Jung; Tsai, Chang-Hai; Tsai, Fuu-Jen; Lin, Jing-Ying

    2015-08-31

    Magnesium sulfate (MgSO₄) ameliorates hypoxia/ischemia-induced neuronal apoptosis in a rat model. This study aimed to investigate the mechanisms governing the anti-apoptotic effect of MgSO₄ on cobalt chloride (CoCl₂)-exposed NB41A3 mouse neuroblastoma cells. MgSO₄ increased the viability of NB41A3 cells treated with CoCl₂ in a dose-dependent manner. MgSO₄ treatment was shown to lead to an increase in the anti-apoptotic Bcl-2 family proteins, with a concomitant decrease in the pro-apoptotic proteins. MgSO₄ also attenuated the CoCl₂-induced disruption of mitochondrial membrane potential (ΔΨ(m)) and reduced the release of cytochrome c form the mitochondria to the cytosol. Furthermore, exposure to CoCl₂ caused activation of the hypoxia-inducible factor 1α (HIF-1α). On the other hand, MgSO₄ markedly reduced CoCl₂-induced HIF-1α activation and suppressed HIF-1α downstream protein BNIP3. MgSO₄ treatment induced ERK1/2 activation and attenuated CoCl₂-induced activation of p38 and JNK. Addition of the ERK1/2 inhibitor U0126 significantly reduced the ability of MgSO₄ to protect neurons from CoCl₂-induced mitochondrial apoptotic events. However, incubation of cultures with the p38 and JNK inhibitors did not significantly affect MgSO₄-mediated neuroprotection. MgSO₄ appears to suppress CoCl₂-induced NB41A3 cell death by activating ERK1/2/ MAPK pathways, which further modulates the role of Bcl-2 family proteins and mitochondria in NB41A3 cells. Our data suggest that MgSO₄ may act as a survival factor that preserves mitochondrial integrity and inhibits apoptotic pathways.

  16. Grape seed extract targets mitochondrial electron transport chain complex III and induces oxidative and metabolic stress leading to cytoprotective autophagy and apoptotic death in human head and neck cancer cells.

    PubMed

    Shrotriya, Sangeeta; Deep, Gagan; Lopert, Pamela; Patel, Manisha; Agarwal, Rajesh; Agarwal, Chapla

    2015-12-01

    Head and neck squamous cell carcinoma (HNSCC) is a major killer worldwide and innovative measures are urgently warranted to lower the morbidity and mortality caused by this malignancy. Aberrant redox and metabolic status in HNSCC cells offer a unique opportunity to specifically target cancer cells. Therefore, we investigated the efficacy of grape seed extract (GSE) to target the redox and bioenergetic alterations in HNSCC cells. GSE treatment decreased the mitochondrial electron transport chain complex III activity, increased the mitochondrial superoxide levels and depleted the levels of cellular antioxidant (glutathione), thus resulting in the loss of mitochondrial membrane potential in human HNSCC Detroit 562 and FaDu cells. Polyethylene glycol-SOD addition reversed the GSE-mediated apoptosis without restoring complex III activity. Along with redox changes, GSE inhibited the extracellular acidification rate (representing glycolysis) and oxygen consumption rate (indicating oxidative phosphorylation) leading to metabolic stress in HNSCC cells. Molecular studies revealed that GSE activated AMP-activated protein kinase (AMPK), and suppressed Akt/mTOR/4E-BP1/S6K signaling in both Detroit 562 and FaDu cells. Interestingly, GSE increased the autophagic load specifically in FaDu cells, and autophagy inhibition significantly augmented the apoptosis in these cells. Consistent with in vitro results, in vivo analyses also showed that GSE feeding in nude mice activated AMPK and induced-autophagy in FaDu xenograft tumor tissues. Overall, these findings are innovative as we for the first time showed that GSE targets ETC complex III and induces oxidative and metabolic stress, thereby, causing autophagy and apoptotic death in HNSCC cells. © 2014 Wiley Periodicals, Inc.

  17. Grape seed extract targets mitochondrial electron transport chain complex III and induces oxidative and metabolic stress leading to cytoprotective autophagy and apoptotic death in human head and neck cancer cells

    PubMed Central

    Shrotriya, Sangeeta; Deep, Gagan; Lopert, Pamela; Patel, Manisha; Agarwal, Rajesh; Agarwal, Chapla

    2014-01-01

    Head and neck squamous cell carcinoma (HNSCC) is a major killer worldwide and innovative measures are urgently warranted to lower the morbidity and mortality caused by this malignancy. Aberrant redox and metabolic status in HNSCC cells offer a unique opportunity to specifically target cancer cells. Therefore, we investigated the efficacy of grape seed extract (GSE) to target the redox and bioenergetic alterations in HNSCC cells. GSE treatment decreased the mitochondrial electron transport chain complex III activity, increased the mitochondrial superoxide levels and depleted the levels of cellular antioxidant (glutathione), thus resulting in the loss of mitochondrial membrane potential in human HNSCC Detroit 562 and FaDu cells. Polyethylene glycol-SOD addition reversed the GSE-mediated apoptosis without restoring complex III activity. Along with redox changes, GSE inhibited the extracellular acidification rate (representing glycolysis) and oxygen consumption rate (indicating oxidative phosphorylation) leading to metabolic stress in HNSCC cells. Molecular studies revealed that GSE activated AMP-activated protein kinase (AMPK), and suppressed Akt/mTOR/4E-BP1/S6K signaling in both Detroit 562 and FaDu cells. Interestingly, GSE increased the autophagic load specifically in FaDu cells, and autophagy inhibition significantly augmented the apoptosis in these cells. Consistent with in vitro results, in vivo analyses also showed that GSE feeding in nude mice activated AMPK and induced-autophagy in FaDu xenograft tumor tissues. Overall, these findings are innovative as we for the first time showed that GSE targets ETC complex III and induces oxidative and metabolic stress, thereby, causing autophagy and apoptotic death in HNSCC cells. PMID:25557495

  18. Daphnetin-mediated Nrf2 antioxidant signaling pathways ameliorate tert-butyl hydroperoxide (t-BHP)-induced mitochondrial dysfunction and cell death.

    PubMed

    Lv, Hongming; Liu, Qinmei; Zhou, Junfeng; Tan, Guangyun; Deng, Xuming; Ci, Xinxin

    2017-05-01

    Daphnetin (Daph), a natural coumarin derivative isolated from plants of the Genus Daphne, possesses abundant biological activities, such as anti-inflammatory, antioxidant and anticancer properties. In the present study, we focused on investigating the protective effect of Daph against tert-butyl hydroperoxide (t-BHP)-induced oxidative damage, mitochondrial dysfunction and the involvement of underlying molecular mechanisms. Our findings indicated that Daph effectively inhibited t-BHP-stimulated cytotoxicity, cell apoptosis, and mitochondrial dysfunction, which are associated with suppressed reactive oxygen species (ROS) generation, decreased malondialdehyde (MDA) formation, increased superoxide dismutase (SOD) levels and glutathione (GSH)/GSSG (oxidized GSH) ratio. Further investigation indicated that Daph significantly suppressed cytochrome c release and NLRP3 inflammasome activation and modulated apoptosis-related protein Bcl-2, Bax, and caspase-3 expression. Moreover, Daph dramatically induced the expression of the glutamate-cysteine ligase modifier (GCLM) subunit and the glutamate-cysteine ligase catalytic (GCLC) subunit, heme oxygenase-1 (HO-1), and NAD (P) H: quinone oxidoreductase (NQO1), which is largely dependent on upregulating the nuclear factor-erythroid 2-related factor 2 (Nrf2) nuclear translocation, reducing the Keap1 protein expression, and strengthening the antioxidant response element (ARE) promoter activity. Additionally, Daph remarkably activated a c-Jun NH2-terminal kinase (JNK) and extracellular signal-regulated kinase (ERK) phosphorylation, but ERK and JNK inhibitor pretreatment exhibited an evident decrease of the level of Daph-enhanced Nrf2 nuclear translocation. Furthermore, Daph exposure suppressed t-BHP-induced cytotoxicity and ROS overproduction, which are mostly blocked in Nrf2 knockout RAW 264.7 cells and peritoneal macrophages. Accordingly, Daph exhibited protective roles against t-BHP-triggered oxidative damage and mitochondrial

  19. P2X7 Cell Death Receptor Activation and Mitochondrial Impairment in Oxaliplatin-Induced Apoptosis and Neuronal Injury: Cellular Mechanisms and In Vivo Approach

    PubMed Central

    Massicot, France; Hache, Guillaume; David, Ludivine; Chen, Dominique; Leuxe, Charlotte; Garnier-Legrand, Laure; Rat, Patrice; Laprévote, Olivier; Coudoré, François

    2013-01-01

    Limited information is available regarding the cellular mechanisms of oxaliplatin-induced painful neuropathy during exposure of patients to this drug. We therefore determined oxidative stress in cultured cells and evaluated its occurrence in C57BL/6 mice. Using both cultured neuroblastoma (SH-SY5Y) and macrophage (RAW 264.7) cell lines and also brain tissues of oxaliplatin-treated mice, we investigated whether oxaliplatin (OXA) induces oxidative stress and apoptosis. Cultured cells were treated with 2–200 µM OXA for 24 h. The effects of pharmacological inhibitors of oxidative stress or inflammation (N-acetyl cysteine, ibuprofen, acetaminophen) were also tested. Inhibitors were added 30 min before OXA treatment and then in combination with OXA for 24 h. In SH-SY5Y cells, OXA caused a significant dose-dependent decrease in viability, a large increase in ROS and NO production, lipid peroxidation and mitochondrial impairment as assessed by a drop in mitochondrial membrane potential, which are deleterious for the cell. An increase in levels of negatively charged phospholipids such as cardiolipin but also phosphatidylserine and phosphatidylinositol, was also observed. Additionally, OXA caused concentration-dependent P2X7 receptor activation, increased chromatin condensation and caspase-3 activation associated with TNF-α and IL-6 release. The majority of these toxic effects were equally observed in Raw 264.7 which also presented high levels of PGE2. Pretreatment of SH-SY5Y cells with pharmacological inhibitors significantly reduced or blocked all the neurotoxic OXA effects. In OXA-treated mice (28 mg/kg cumulated dose) significant cold hyperalgesia and oxidative stress in the tested brain areas were shown. Our study suggests that targeting P2X7 receptor activation and mitochondrial impairment might be a potential therapeutic strategy against OXA-induced neuropathic pain. PMID:23826152

  20. P2X7 Cell Death Receptor Activation and Mitochondrial Impairment in Oxaliplatin-Induced Apoptosis and Neuronal Injury: Cellular Mechanisms and In Vivo Approach.

    PubMed

    Massicot, France; Hache, Guillaume; David, Ludivine; Chen, Dominique; Leuxe, Charlotte; Garnier-Legrand, Laure; Rat, Patrice; Laprévote, Olivier; Coudoré, François

    2013-01-01

    Limited information is available regarding the cellular mechanisms of oxaliplatin-induced painful neuropathy during exposure of patients to this drug. We therefore determined oxidative stress in cultured cells and evaluated its occurrence in C57BL/6 mice. Using both cultured neuroblastoma (SH-SY5Y) and macrophage (RAW 264.7) cell lines and also brain tissues of oxaliplatin-treated mice, we investigated whether oxaliplatin (OXA) induces oxidative stress and apoptosis. Cultured cells were treated with 2-200 µM OXA for 24 h. The effects of pharmacological inhibitors of oxidative stress or inflammation (N-acetyl cysteine, ibuprofen, acetaminophen) were also tested. Inhibitors were added 30 min before OXA treatment and then in combination with OXA for 24 h. In SH-SY5Y cells, OXA caused a significant dose-dependent decrease in viability, a large increase in ROS and NO production, lipid peroxidation and mitochondrial impairment as assessed by a drop in mitochondrial membrane potential, which are deleterious for the cell. An increase in levels of negatively charged phospholipids such as cardiolipin but also phosphatidylserine and phosphatidylinositol, was also observed. Additionally, OXA caused concentration-dependent P2X7 receptor activation, increased chromatin condensation and caspase-3 activation associated with TNF-α and IL-6 release. The majority of these toxic effects were equally observed in Raw 264.7 which also presented high levels of PGE2. Pretreatment of SH-SY5Y cells with pharmacological inhibitors significantly reduced or blocked all the neurotoxic OXA effects. In OXA-treated mice (28 mg/kg cumulated dose) significant cold hyperalgesia and oxidative stress in the tested brain areas were shown. Our study suggests that targeting P2X7 receptor activation and mitochondrial impairment might be a potential therapeutic strategy against OXA-induced neuropathic pain.

  1. Mitochondrial Dysfunction Induced by N-Butyl-1-(4-Dimethylamino)Phenyl-1,2,3,4-Tetrahydro-β-Carboline-3-Carboxamide Is Required for Cell Death of Trypanosoma cruzi

    PubMed Central

    Volpato, Hélito; Desoti, Vânia Cristina; Valdez, Rodrigo Hinojosa; Ueda-Nakamura, Tânia; Silva, Sueli de Oliveira; Sarragiotto, Maria Helena; Nakamura, Celso Vataru

    2015-01-01

    Background Chagas’ disease is caused by the protozoan Trypanosoma cruzi and affects thousands of people worldwide. The available treatments are unsatisfactory, and new drugs must be developed. Our group recently reported the trypanocidal activity of the synthetic compound N-butyl-1-(4-dimethylamino)phenyl-1,2,3,4-tetrahydro-β-carboline-3-carboxamide (C4), but the mechanism of action of this compound was unclear. Methodology/Principal Findings We investigated the mechanism of action of C4 against epimastigote and trypomastigote forms of T. cruzi. The results showed alterations in mitochondrial membrane potential, alterations in cell membrane integrity, an increase in the formation of reactive oxygen species, phosphatidylserine exposure, a reduction of cell volume, DNA fragmentation, and the formation of lipid inclusions. Conclusion/Significance These finding suggest that mitochondria are a target of C4, the dysfunction of which can lead to different pathways of cell death. PMID:26086449

  2. Topical Administration of the Mitochondrial PTP Opening Inhibitor CoQ10 Prevents Apoptotic Cell Death Induced by UVC-Irradiation in Rat's Corneas and Rabbit's Retinas

    NASA Astrophysics Data System (ADS)

    Papucci, Laura; Witort, Ewa; Schiavone, Nicola; Donnini, Martino; Lapucci, Andrea; Lulli, Matteo; Lazzarano, Stefano; Simoncini, Madine; Mazzoni, Tiziano; Falciani, Piergiuseppe; Capaccioli, Sergio

    2008-06-01

    We have previously demonstrated in vitro that ubiquitous free radical scavenger coenzyme Q10 prevents keratocyte apoptosis induced by excimer laser irradiation more efficiently than other antioxidants. We showed that its anti apoptotic property is independent of its free radical scavenging ability and is related to direct inhibition of PTP (permeability transition pore) opening and mitochondrial depolarization. Here, we demonstrate in vivo, that CoQ10 can efficiently protect rat's corneas and rabbit's retinas irradiated with UVC. Therefore, we propose application of CoQ10 as countermeasure to prevent micro radiation-induced eye damage during interplanetary space exploration.

  3. Cordyceps militaris induces tumor cell death via the caspase-dependent mitochondrial pathway in HepG2 and MCF-7 cells

    PubMed Central

    SONG, JINGJING; WANG, YINGWU; TENG, MEIYU; ZHANG, SHIQIANG; YIN, MENGYA; LU, JIAHUI; LIU, YAN; LEE, ROBERT J; WANG, DI; TENG, LESHENG

    2016-01-01

    Cordyceps militaris (CM), an entomopathogenic fungus belonging to the class ascomycetes, possesses various pharmacological activities, including cytotoxic effects, on various types of human tumor cells. The present study investigated the anti-hepatocellular carcinoma (HCC) and anti-breast cancer effects of CM in in vitro and in vivo models. CM aqueous extract reduced cell viability, suppressed cell proliferation, inhibited cell migration ability, caused the over-release of lactate dehydrogenase, induced mitochondrial dysfunction and enhanced apoptotic rates in MCF-7 and HepG2 cells. The expression levels of cleaved poly (ADP ribose) polymerase and caspase-3, biomarkers of apoptosis, were increased following treatment with CM aqueous extract for 24 h. Furthermore, in the MCF-7 and HepG2 cells, enhanced levels of B cell-associated X protein and cleaved caspase-8 were observed in the CM-treated cells. Finally, the antitumor activities of CM in HCC and breast cancer were also confirmed in MCF-7- and HepG2-xengraft nude mice models. Collectively, the data obtained in the present study suggested that the cytotoxic effects of CM aqueous extract on HCC and breast cancer are associated with the caspase-dependent mitochondrial pathway. PMID:27109250

  4. BENZYL ALCOHOL PROTECTS AGAINST ACETAMINOPHEN HEPATOTOXICITY BY INHIBITING CYTOCHROME P450 ENZYMES BUT CAUSES MITOCHONDRIAL DYSFUNCTION AND CELL DEATH AT HIGHER DOSES

    PubMed Central

    Du, Kuo; McGill, Mitchell R.; Xie, Yuchao; Jaeschke, Hartmut

    2015-01-01

    Acetaminophen (APAP) hepatotoxicity is a serious public health problem in western countries. Current treatment options for APAP poisoning are limited and novel therapeutic intervention strategies are needed. A recent publication suggested that benzyl alcohol (BA) protects against APAP hepatotoxicity and could serve as a promising antidote for APAP poisoning. To assess the protective mechanisms of BA, C56Bl/6J mice were treated with 400mg/kg APAP and/or 270mg/kg BA. APAP alone caused extensive liver injury at 6h and 24h post-APAP. This injury was attenuated by BA co-treatment. Assessment of protein adduct formation demonstrated that BA inhibits APAP metabolic activation. In support of this, in vitro experiments also showed that BA dose-dependently inhibits cytochrome P450 activities. Correlating with the hepatoprotection of BA, APAP-induced oxidant stress and mitochondrial dysfunction were reduced. Similar results were obtained in primary mouse hepatocytes. Interestingly, BA alone caused mitochondrial membrane potential loss and cell toxicity at high doses, and its protective effect could not be reproduced in primary human hepatocytes (PHH). We conclude that BA protects against APAP hepatotoxicity mainly by inhibiting cytochrome P450 enzymes in mice. Considering its toxic effect and the loss of protection in PHH, BA is not a clinically useful treatment option for APAP overdose patient. PMID:26522885

  5. Benzyl alcohol protects against acetaminophen hepatotoxicity by inhibiting cytochrome P450 enzymes but causes mitochondrial dysfunction and cell death at higher doses.

    PubMed

    Du, Kuo; McGill, Mitchell R; Xie, Yuchao; Jaeschke, Hartmut

    2015-12-01

    Acetaminophen (APAP) hepatotoxicity is a serious public health problem in western countries. Current treatment options for APAP poisoning are limited and novel therapeutic intervention strategies are needed. A recent publication suggested that benzyl alcohol (BA) protects against APAP hepatotoxicity and could serve as a promising antidote for APAP poisoning. To assess the protective mechanisms of BA, C56Bl/6J mice were treated with 400 mg/kg APAP and/or 270 mg/kg BA. APAP alone caused extensive liver injury at 6 h and 24 h post-APAP. This injury was attenuated by BA co-treatment. Assessment of protein adduct formation demonstrated that BA inhibits APAP metabolic activation. In support of this, in vitro experiments also showed that BA dose-dependently inhibits cytochrome P450 activities. Correlating with the hepatoprotection of BA, APAP-induced oxidant stress and mitochondrial dysfunction were reduced. Similar results were obtained in primary mouse hepatocytes. Interestingly, BA alone caused mitochondrial membrane potential loss and cell toxicity at high doses, and its protective effect could not be reproduced in primary human hepatocytes (PHH). We conclude that BA protects against APAP hepatotoxicity mainly by inhibiting cytochrome P450 enzymes in mice. Considering its toxic effect and the loss of protection in PHH, BA is not a clinically useful treatment option for APAP overdose patient. Copyright © 2015 Elsevier Ltd. All rights reserved.

  6. Triggering Apoptotic Death of Human Malignant Melanoma A375.S2 Cells by Bufalin: Involvement of Caspase Cascade-Dependent and Independent Mitochondrial Signaling Pathways

    PubMed Central

    Hsiao, Yu-Ping; Yu, Chun-Shu; Yu, Chien-Chih; Yang, Jai-Sing; Chiang, Jo-Hua; Lu, Chi-Cheng; Huang, Hui-Ying; Tang, Nou-Ying; Yang, Jen-Hung; Huang, An-Cheng; Chung, Jing-Gung

    2012-01-01

    Bufalin was obtained from the skin and parotid venom glands of toad and has been shown to induce cytotoxic effects in various types of cancer cell lines, but there is no report to show that whether bufalin affects human skin cancer cells. The aim of this investigation was to study the effects of bufalin on human malignant melanoma A375.S2 cells and to elucidate possible mechanisms involved in induction of apoptosis. A375.S2 cells were treated with different concentrations of bufalin for a specific time period and investigated for effects on apoptotic analyses. Our results indicated that cells after exposure to bufalin significantly decreased cell viability, and induced cell morphological changes and chromatin condensation in a concentration-dependent manner. Flow cytometric assays indicated that bufalin promoted ROS productions, loss of mitochondrial membrane potential (ΔΨm), intracellular Ca2+ release, and nitric oxide (NO) formations in A375.S2 cells. Additionally, the apoptotic induction of bufalin on A375.S2 cells resulted from mitochondrial dysfunction-related responses (disruption of the ΔΨm and releases of cytochrome c, AIF, and Endo G), and activations of caspase-3, caspase-8 and caspase-9 expressions. Based on those observations, we suggest that bufalin-triggered apoptosis in A375.S2 cells is correlated with extrinsic- and mitochondria-mediated multiple signal pathways. PMID:22719785

  7. Cordyceps militaris induces tumor cell death via the caspase‑dependent mitochondrial pathway in HepG2 and MCF‑7 cells.

    PubMed

    Song, Jingjing; Wang, Yingwu; Teng, Meiyu; Zhang, Shiqiang; Yin, Mengya; Lu, Jiahui; Liu, Yan; Lee, Robert J; Wang, Di; Teng, Lesheng

    2016-06-01

    Cordyceps militaris (CM), an entomopathogenic fungus belonging to the class ascomycetes, possesses various pharmacological activities, including cytotoxic effects, on various types of human tumor cells. The present study investigated the anti‑hepatocellular carcinoma (HCC) and anti‑breast cancer effects of CM in in vitro and in vivo models. CM aqueous extract reduced cell viability, suppressed cell proliferation, inhibited cell migration ability, caused the over-release of lactate dehydrogenase, induced mitochondrial dysfunction and enhanced apoptotic rates in MCF‑7 and HepG2 cells. The expression levels of cleaved poly (ADP ribose) polymerase and caspase‑3, biomarkers of apoptosis, were increased following treatment with CM aqueous extract for 24 h. Furthermore, in the MCF‑7 and HepG2 cells, enhanced levels of B cell‑associated X protein and cleaved caspase‑8 were observed in the CM‑treated cells. Finally, the antitumor activities of CM in HCC and breast cancer were also confirmed in MCF‑7‑ and HepG2‑xengraft nude mice models. Collectively, the data obtained in the present study suggested that the cytotoxic effects of CM aqueous extract on HCC and breast cancer are associated with the caspase‑dependent mitochondrial pathway.

  8. Cause and consequence: mitochondrial dysfunction initiates and propagates neuronal dysfunction, neuronal death and behavioral abnormalities in age-associated neurodegenerative diseases.

    PubMed

    Gibson, Gary E; Starkov, Anatoly; Blass, John P; Ratan, Rajiv R; Beal, M Flint

    2010-01-01

    Age-related neurodegenerative diseases are associated with mild impairment of oxidative metabolism and accumulation of abnormal proteins. Within the cell, the mitochondria appears to be a dominant site for initiation and propagation of disease processes. Shifts in metabolism in response to mild metabolic perturbations may decrease the threshold for irreversible injury in response to ordinarily sublethal metabolic insults. Mild impairment of metabolism accrue from and lead to increased reactive oxygen species (ROS). Increased ROS change cell signaling via post-transcriptional and transcriptional changes. The cause and consequences of mild impairment of mitochondrial metabolism is one focus of this review. Many experiments in tissues from humans support the notion that oxidative modification of the alpha-ketoglutarate dehydrogenase complex (KGDHC) compromises neuronal energy metabolism and enhances ROS production in Alzheimer's Disease (AD). These data suggest that cognitive decline in AD derives from the selective tricarboxylic acid (TCA) cycle abnormalities. By contrast in Huntington's Disease (HD), a movement disorder with cognitive features distinct form AD, complex II+III abnormalities may dominate. These distinct mitochondrial abnormalities culminate in oxidative stress, energy dysfunction, and aberrant homeostasis of cytosolic calcium. Cytosolic calcium, elevations even only transiently, leads to hyperactivity of a number of enzymes. One calcium-activated enzyme with demonstrated pathophysiological import in HD and AD is transglutaminase (TGase). TGase is a crosslinking enzymes that can modulate transcription, inactivate metabolic enzymes, and cause aggregation of critical proteins. Recent data indicate that TGase can silence expression of genes involved in compensating for metabolic stress. Altogether, our results suggest that increasing KGDHC via inhibition of TGase or via a host of other strategies to be described would be effective therapeutic approaches

  9. Human rights accountability for maternal death and failure to provide safe, legal abortion: the significance of two ground-breaking CEDAW decisions.

    PubMed

    Kismödi, Eszter; de Mesquita, Judith Bueno; Ibañez, Ximena Andión; Khosla, Rajat; Sepúlveda, Lilian

    2012-06-01

    In 2011, the Committee on the Elimination of Discrimination against Women (CEDAW) issued two landmark decisions. In Alyne da Silva Pimentel v. Brazil, the first maternal death case decided by an international human rights body, it confirms that States have a human rights obligation to guarantee that all women, irrespective of their income or racial background, have access to timely, non-discriminatory, and appropriate maternal health services. In L.C. v. Peru, concerning a 13-year-old rape victim who was denied a therapeutic abortion and had an operation on her spine delayed that left her seriously disabled as a result, it established that the State should guarantee access to abortion when a woman's physical or mental health is in danger, decriminalise abortion when pregnancy results from rape or sexual abuse, review its restrictive interpretation of therapeutic abortion and establish a mechanism to ensure that reproductive rights are understood and observed in all health care facilities. Both cases affirm that accessible and good quality health services are vital to women's human rights and expand States' obligations in relation to these. They also affirm that States must ensure national accountability for sexual and reproductive health rights, and provide remedies and redress in the event of violations. And they reaffirm the importance of international human rights bodies as sources of accountability for sexual and reproductive rights violations, especially where national accountability is absent or ineffective.

  10. Mitochondrial Diseases

    MedlinePlus

    ... disorder, something goes wrong with this process. Mitochondrial diseases are a group of metabolic disorders. Mitochondria are ... cells and cause damage. The symptoms of mitochondrial disease can vary. It depends on how many mitochondria ...

  11. Berberine induces apoptosis in human HSC-3 oral cancer cells via simultaneous activation of the death receptor-mediated and mitochondrial pathway.

    PubMed

    Lin, Chin-Chung; Yang, Jai-Sing; Chen, Jin-Tang; Fan, Shang; Yu, Fu-Shun; Yang, Jiun-Long; Lu, Chi-Cheng; Kao, Ming-Ching; Huang, An-Cheng; Lu, Hsu-Feng; Chung, Jing-Gung

    2007-01-01

    Evidence has accumulated that berberine is able to induce cell cycle arrest and apoptosis in many human cancer cell lines. However, there is no available information on the effects of berberine on human oral squamous cell carcinoma. In this study, the effects of berberine on cell growth, apoptosis and cell cycle regulation in human oral squamous carcinoma HSC-3 cells were examined. Berberine induced dose- and time-dependent irreversible inhibition of cell growth and cellular DNA synthesis. This was also confirmed by phase-contrast microscopy which showed that berberine induced morphological changes in HSC-3 cells. Propidium iodide/annexin V staining for flow cytometric analysis showed that berberine-induced apoptosis correlated with caspase-3 activation. Flow cytometric studies of the cell cycle distribution showed that berberine induced mainly G0/G1-phase arrest. Flow cytometric examinations also showed that berberine induced reactive oxygen species (ROS) and Ca2+ production, as well as the dysfunction of mitochondrial membrane potential (MMP), which were correlated with apoptosis. In conclusion, our data support that berberine initially induces an endoplasmic reticulum stress response based on ROS and Ca2+ production which is followed by dysfunctions of the mitochondria, resulting in apoptosis of these oral cancer HSC-3 cells. Prolonged exposure of the HSC-3 cells to berberine causes increased apoptosis through reduced levels of MMP, release of cytochrome c and activation of caspase-3.

  12. HIF-1α inhibition by 2-methoxyestradiol induces cell death via activation of the mitochondrial apoptotic pathway in acute myeloid leukemia.

    PubMed

    Zhe, Nana; Chen, Shuya; Zhou, Zhen; Liu, Ping; Lin, Xiaojing; Yu, Meisheng; Cheng, Bingqing; Zhang, Yaming; Wang, Jishi

    2016-06-02

    The bone marrow microenvironment plays an important role in the development and progression of AML. Leukemia stem cells are in a hypoxic condition, which induces the expression of HIF-1α. Aberrant activation of HIF-1α is implicated in the poor prognosis of patients with acute myeloid leukemia (AML). Herein, we investigated the expression of HIF-1α in AML and tested 2-methoxyestradiol (2ME2) as a candidate HIF-1α inhibitor for the treatment of AML. We found that HIF-1α was overexpressed in AML. HIF-1α suppression by 2ME2 significantly induced apoptosis of AML cells, and it outperformed traditional chemotherapy drugs such as cytarabine. At the same time, 2ME2 downregulated the transcriptional levels of VEGF, GLUT1 and HO-1 in cellular assays. Additionally, 2ME2 displayed antileukemia activity in bone marrow blasts from AML patients, but showed little effect on normal cells. 2ME2-induced activation of mitochondrial apoptotic pathway is mediated by reactive oxygen species (ROS), which decreased the slight effect of drug on normal cells. Our data show that supression of HIF-1α expression significantly reduced the survival of AML cell lines, suggesting that 2ME2 may represent a powerful therapeutic approach for patients with AML.

  13. Eighth Amendment & Death Penalty.

    ERIC Educational Resources Information Center

    Shortall, Joseph M.; Merrill, Denise W.

    1987-01-01

    Presents a lesson on capital punishment for juveniles based on three hypothetical cases. The goal of the lesson is to have students understand the complexities of decisions regarding the death penalty for juveniles. (JDH)

  14. Eighth Amendment & Death Penalty.

    ERIC Educational Resources Information Center

    Shortall, Joseph M.; Merrill, Denise W.

    1987-01-01

    Presents a lesson on capital punishment for juveniles based on three hypothetical cases. The goal of the lesson is to have students understand the complexities of decisions regarding the death penalty for juveniles. (JDH)

  15. "A good death"--sequence (not stigma), to an enigma called life: case report on end-of-life decision making and care.

    PubMed

    Bhatnagar, Sushma; Joshi, Saurabh

    2013-11-01

    Fear of death and the stigma associated with the terminal events of illness prevents us from dying well. Lack of recognition of palliative care as a speciality, in many countries, leads us to die a pathetic death in ICU rather than dying at home with near and dear ones around. Its time to break the taboo of death and to start talking about this terminal sequence (good death) of good living.

  16. Topological Transitions in Mitochondrial Membranes controlled by Apoptotic Proteins

    NASA Astrophysics Data System (ADS)

    Hwee Lai, Ghee; Sanders, Lori K.; Mishra, Abhijit; Schmidt, Nathan W.; Wong, Gerard C. L.; Ivashyna, Olena; Schlesinger, Paul H.

    2010-03-01

    The Bcl-2 family comprises pro-apoptotic proteins, capable of permeabilizing the mitochondrial membrane, and anti-apoptotic members interacting in an antagonistic fashion to regulate programmed cell death (apoptosis). They offer potential therapeutic targets to re-engage cellular suicide in tumor cells but the extensive network of implicated protein-protein interactions has impeded full understanding of the decision pathway. We show, using synchrotron x-ray diffraction, that pro-apoptotic proteins interact with mitochondrial-like model membranes to generate saddle-splay (negative Gaussian) curvature topologically required for pore formation, while anti-apoptotic proteins can deactivate curvature generation by molecules drastically different from Bcl-2 family members and offer evidence for membrane-curvature mediated interactions general enough to affect very disparate systems.

  17. Mitochondrial Ion Channels

    PubMed Central

    O’Rourke, Brian

    2009-01-01

    In work spanning more than a century, mitochondria have been recognized for their multifunctional roles in metabolism, energy transduction, ion transport, inheritance, signaling, and cell death. Foremost among these tasks is the continuous production of ATP through oxidative phosphorylation, which requires a large electrochemical driving force for protons across the mitochondrial inner membrane. This process requires a membrane with relatively low permeability to ions to minimize energy dissipation. However, a wealth of evidence now indicates that both selective and nonselective ion channels are present in the mitochondrial inner membrane, along with several known channels on the outer membrane. Some of these channels are active under physiological conditions, and others may be activated under pathophysiological conditions to act as the major determinants of cell life and death. This review summarizes research on mitochondrial ion channels and efforts to identify their molecular correlates. Except in a few cases, our understanding of the structure of mitochondrial ion channels is limited, indicating the need for focused discovery in this area. PMID:17059356

  18. Melatonin mitigates mitochondrial malfunction.

    PubMed

    León, Josefa; Acuña-Castroviejo, Darío; Escames, Germane; Tan, Dun-Xian; Reiter, Russel J

    2005-01-01

    Melatonin, or N-acetyl-5-methoxytryptamine, is a compound derived from tryptophan that is found in all organisms from unicells to vertebrates. This indoleamine may act as a protective agent in disease conditions such as Parkinson's, Alzheimer's, aging, sepsis and other disorders including ischemia/reperfusion. In addition, melatonin has been proposed as a drug for the treatment of cancer. These disorders have in common a dysfunction of the apoptotic program. Thus, while defects which reduce apoptotic processes can exaggerate cancer, neurodegenerative disorders and ischemic conditions are made worse by enhanced apoptosis. The mechanism by which melatonin controls cell death is not entirely known. Recently, mitochondria, which are implicated in the intrinsic pathway of apoptosis, have been identified as a target for melatonin actions. It is known that melatonin scavenges oxygen and nitrogen-based reactants generated in mitochondria. This limits the loss of the intramitochondrial glutathione and lowers mitochondrial protein damage, improving electron transport chain (ETC) activity and reducing mtDNA damage. Melatonin also increases the activity of the complex I and complex IV of the ETC, thereby improving mitochondrial respiration and increasing ATP synthesis under normal and stressful conditions. These effects reflect the ability of melatonin to reduce the harmful reduction in the mitochondrial membrane potential that may trigger mitochondrial transition pore (MTP) opening and the apoptotic cascade. In addition, a reported direct action of melatonin in the control of currents through the MTP opens a new perspective in the understanding of the regulation of apoptotic cell death by the indoleamine.

  19. Mitochondrial Dysfunction in Cardiac Ageing

    PubMed Central

    Tocchi, Autumn; Quarles, Ellen K.; Basisty, Nathan; Gitari, Lemuel; Rabinovitch, Peter S.

    2015-01-01

    Cardiovascular diseases are the leading cause of death in most developed nations. While it has received the least public attention, aging is the dominant risk factor for developing cardiovascular diseases, as the prevalence of cardiovascular diseases increases dramatically with increasing age. Cardiac aging is an intrinsic process that results in impaired cardiac function, along with cellular and molecular changes. Mitochondria play a great role in these processes, as cardiac function is an energetically demanding process. In this review, we examine mitochondrial dysfunction in cardiac aging. Recent research has demonstrated that mitochondrial dysfunction can disrupt morphology, signaling pathways, and protein interactions; conversely, mitochondrial homeostasis is maintained by mechanisms that include fission/fusion, autophagy, and unfolded protein responses. Finally, we describe some of the recent findings in mitochondrial targeted treatments to help meet the challenges of mitochondrial dysfunction in aging. PMID:26191650

  20. [The extraordinary death].

    PubMed

    Plattner, Thomas; Zollinger, Ulrich

    2008-07-01

    The examination of a deceased person is an important duty for physicians. It comprises the certification of death, the certification of the identity of the deceased, a thorough examination of the body, an estimation of the moment of death and ends with the decision, if death was caused by a certain or possible violent cause in which case it must be reported to the authorities. Problems and pitfalls are discussed on the basis of practical case presentations.

  1. Mitochondrial vasculopathy

    PubMed Central

    Finsterer, Josef; Zarrouk-Mahjoub, Sinda

    2016-01-01

    Mitochondrial disorders (MIDs) are usually multisystem disorders (mitochondrial multiorgan disorder syndrome) either on from onset or starting at a point during the disease course. Most frequently affected tissues are those with a high oxygen demand such as the central nervous system, the muscle, endocrine glands, or the myocardium. Recently, it has been shown that rarely also the arteries may be affected (mitochondrial arteriopathy). This review focuses on the type, diagnosis, and treatment of mitochondrial vasculopathy in MID patients. A literature search using appropriate search terms was carried out. Mitochondrial vasculopathy manifests as either microangiopathy or macroangiopathy. Clinical manifestations of mitochondrial microangiopathy include leukoencephalopathy, migraine-like headache, stroke-like episodes, or peripheral retinopathy. Mitochondrial macroangiopathy manifests as atherosclerosis, ectasia of arteries, aneurysm formation, dissection, or spontaneous rupture of arteries. The diagnosis relies on the documentation and confirmation of the mitochondrial metabolic defect or the genetic cause after exclusion of non-MID causes. Treatment is not at variance compared to treatment of vasculopathy due to non-MID causes. Mitochondrial vasculopathy exists and manifests as micro- or macroangiopathy. Diagnosing mitochondrial vasculopathy is crucial since appropriate treatment may prevent from severe complications. PMID:27231520

  2. Bromelain inhibits COX-2 expression by blocking the activation of MAPK regulated NF-kappa B against skin tumor-initiation triggering mitochondrial death pathway.

    PubMed

    Bhui, Kulpreet; Prasad, Sahdeo; George, Jasmine; Shukla, Yogeshwer

    2009-09-18

    Chemoprevention impels the pursuit for either single targeted or cocktail of multi-targeted agents. Bromelain, potential agent in this regard, is a pharmacologically active compound, present in stems and fruits of pineapple (Ananas cosmosus), endowed with anti-inflammatory, anti-invasive and anti-metastatic properties. Herein, we report the anti tumor-initiating effects of bromelain in 2-stage mouse skin tumorigenesis model. Pre-treatment of bromelain resulted in reduction in cumulative number of tumors (CNT) and average number of tumors per mouse. Preventive effect was also comprehended in terms of reduction in tumor volume up to a tune of approximately 65%. Components of the cell signaling pathways, connecting proteins involved in cell death were targeted. Bromelain treatment resulted in upregulation of p53 and Bax and subsequent activation of caspase 3 and caspase 9 with concomitant decrease in Bcl-2. A marked inhibition in cyclooxygenase-2 (Cox-2) expression and inactivation of nuclear factor-kappa B (NF-kappaB) was recorded, as phosphorylation and consequent degradation of I kappa B alpha was blocked by bromelain. Also, bromelain treatment curtailed extracellular signal regulated protein kinase (ERK1/2), p38 mitogen-activated protein kinase (MAPK) and Akt activity. The basis of anti tumor-initiating activity of bromelain was revealed by its time dependent reduction in DNA nick formation and increase in percentage prevention. Thus, modulation of inappropriate cell signaling cascades driven by bromelain is a coherent approach in achieving chemoprevention.

  3. Regulation and pharmacology of the mitochondrial permeability transition pore

    PubMed Central

    Zorov, Dmitry B.; Juhaszova, Magdalena; Yaniv, Yael; Nuss, H. Bradley; Wang, Su; Sollott, Steven J.

    2009-01-01

    The ‘mitochondrial permeability transition', characterized by a sudden induced change of the inner mitochondrial membrane permeability for water as well as for small substances (≤1.5 kDa), has been known for three decades. Research interest in the entity responsible for this phenomenon, the ‘mitochondrial permeability transition pore’ (mPTP), has dramatically increased after demonstration that it plays a key role in the life and death decision in cells. Therefore, a better understanding of this phenomenon and its regulation by environmental stresses, kinase signalling, and pharmacological intervention is vital. The characterization of the molecular identity of the mPTP will allow identification of possible pharmacological targets and assist in drug design for its precise regulation. However, despite extensive research efforts, at this point the pore-forming core component(s) of the mPTP remain unidentified. Pivotal new genetic evidence has shown that components once believed to be core elements of the mPTP (namely mitochondrial adenine nucleotide translocator and cyclophilin D) are instead only mPTP regulators (or in the case of voltage-dependent anion channels, probably entirely dispensable). This review provides an update on the current state of knowledge regarding the regulation of the mPTP. PMID:19447775

  4. Death Imagery and Death Anxiety.

    ERIC Educational Resources Information Center

    McDonald, Rita T.; Hilgendorf, William A.

    1986-01-01

    Investigated the relationship between death imagery and death anxiety among 179 undergraduate students. Results reveal subjects with low death anxiety scores had more positive death images. Subjects who imagined death to be young had a more positive image of death. Death was seen as male by majority of respondents. (Author/BL)

  5. Mitochondrial Small Conductance SK2 Channels Prevent Glutamate-induced Oxytosis and Mitochondrial Dysfunction*

    PubMed Central

    Dolga, Amalia M.; Netter, Michael F.; Perocchi, Fabiana; Doti, Nunzianna; Meissner, Lilja; Tobaben, Svenja; Grohm, Julia; Zischka, Hans; Plesnila, Nikolaus; Decher, Niels; Culmsee, Carsten

    2013-01-01

    Small conductance calcium-activated potassium (SK2/KCa2.2) channels are known to be located in the neuronal plasma membrane where they provide feedback control of NMDA receptor activity. Here, we provide evidence that SK2 channels are also located in the inner mitochondrial membrane of neuronal mitochondria. Patch clamp recordings in isolated mitoplasts suggest insertion into the inner mitochondrial membrane with the C and N termini facing the intermembrane space. Activation of SK channels increased mitochondrial K+ currents, whereas channel inhibition attenuated these currents. In a model of glutamate toxicity, activation of SK2 channels attenuated the loss of the mitochondrial transmembrane potential, blocked mitochondrial fission, prevented the release of proapoptotic mitochondrial proteins, and reduced cell death. Neuroprotection was blocked by specific SK2 inhibitory peptides and siRNA targeting SK2 channels. Activation of mitochondrial SK2 channels may therefore represent promising targets for neuroprotective strategies in conditions of mitochondrial dysfunction. PMID:23430260

  6. Mitochondrial small conductance SK2 channels prevent glutamate-induced oxytosis and mitochondrial dysfunction.

    PubMed

    Dolga, Amalia M; Netter, Michael F; Perocchi, Fabiana; Doti, Nunzianna; Meissner, Lilja; Tobaben, Svenja; Grohm, Julia; Zischka, Hans; Plesnila, Nikolaus; Decher, Niels; Culmsee, Carsten

    2013-04-12

    Small conductance calcium-activated potassium (SK2/K(Ca)2.2) channels are known to be located in the neuronal plasma membrane where they provide feedback control of NMDA receptor activity. Here, we provide evidence that SK2 channels are also located in the inner mitochondrial membrane of neuronal mitochondria. Patch clamp recordings in isolated mitoplasts suggest insertion into the inner mitochondrial membrane with the C and N termini facing the intermembrane space. Activation of SK channels increased mitochondrial K(+) currents, whereas channel inhibition attenuated these currents. In a model of glutamate toxicity, activation of SK2 channels attenuated the loss of the mitochondrial transmembrane potential, blocked mitochondrial fission, prevented the release of proapoptotic mitochondrial proteins, and reduced cell death. Neuroprotection was blocked by specific SK2 inhibitory peptides and siRNA targeting SK2 channels. Activation of mitochondrial SK2 channels may therefore represent promising targets for neuroprotective strategies in conditions of mitochondrial dysfunction.

  7. Mitochondrial respiration is sensitive to cytoarchitectural breakdown.

    PubMed

    Kandel, Judith; Angelin, Alessia A; Wallace, Douglas C; Eckmann, David M

    2016-11-07

    An abundance of research suggests that cellular mitochondrial and cytoskeletal disruption are related, but few studies have directly investigated causative connections between the two. We previously demonstrated that inhibiting microtubule and microfilament polymerization affects mitochondrial motility on the whole-cell level in fibroblasts. Since mitochondrial motility can be indicative of mitochondrial function, we now further characterize the effects of these cytoskeletal inhibitors on mitochondrial potential, morphology and respiration. We found that although they did not reduce mitochondrial inner membrane potential, cytoskeletal toxins induced significant decreases in basal mitochondrial respiration. In some cases, basal respiration was only affected after cells were pretreated with the calcium ionophore A23187 in order to stress mitochondrial function. In most cases, mitochondrial morphology remained unaffected, but extreme microfilament depolymerization or combined intermediate doses of microtubule and microfilament toxins resulted in decreased mitochondrial lengths. Interestingly, these two particular exposures did not affect mitochondrial respiration in cells not sensitized with A23187, indicating an interplay between mitochondrial morphology and respiration. In all cases, inducing maximal respiration diminished differences between control and experimental groups, suggesting that reduced basal respiration originates as a largely elective rather than pathological symptom of cytoskeletal impairment. However, viability experiments suggest that even this type of respiration decrease may be associated with cell death.

  8. The Use of Neuroimaging in the Diagnosis of Mitochondrial Disease

    ERIC Educational Resources Information Center

    Friedman, Seth D.; Shaw, Dennis W. W.; Ishak, Gisele; Gropman, Andrea L.; Saneto, Russell P.

    2010-01-01

    Mutations in nuclear and mitochondrial DNA impacting mitochondrial function result in disease manifestations ranging from early death to abnormalities in all major organ systems and to symptoms that can be largely confined to muscle fatigue. The definitive diagnosis of a mitochondrial disorder can be difficult to establish. When the constellation…

  9. The Use of Neuroimaging in the Diagnosis of Mitochondrial Disease

    ERIC Educational Resources Information Center

    Friedman, Seth D.; Shaw, Dennis W. W.; Ishak, Gisele; Gropman, Andrea L.; Saneto, Russell P.

    2010-01-01

    Mutations in nuclear and mitochondrial DNA impacting mitochondrial function result in disease manifestations ranging from early death to abnormalities in all major organ systems and to symptoms that can be largely confined to muscle fatigue. The definitive diagnosis of a mitochondrial disorder can be difficult to establish. When the constellation…

  10. Apoptosis repressor with caspase recruitment domain modulates second mitochondrial-derived activator of caspases mimetic-induced cell death through BIRC2/MAP3K14 signalling in acute myeloid leukaemia.

    PubMed

    Mak, Po Y; Mak, Duncan H; Ruvolo, Vivian; Jacamo, Rodrigo; Kornblau, Steven M; Kantarjian, Hagop; Andreeff, Michael; Carter, Bing Z

    2014-11-01

    Overexpression of the apoptosis repressor with caspase recruitment domain (ARC, also termed NOL3) protein predicts adverse outcome in patients with acute myeloid leukaemia (AML) and confers drug resistance to AML cells. The second mitochondrial-derived activator of caspases (SMAC, also termed DIABLO) mimetic, birinapant, promotes extrinsic apoptosis in AML cells. SMAC mimetics induce cleavage of cellular inhibitor of apoptosis (cIAP) proteins, leading to stabilization of the nuclear factor-κB (NF-κB)-inducing kinase (MAP3K14, also termed NIK) and activation of non-canonical NF-κB signalling. To enhance the therapeutic potential of SMAC mimetics in AML, we investigated the regulation and role of ARC in birinapant-induced apoptosis. We showed that birinapant increases ARC in AML and bone marrow-derived mesenchymal stromal cells (MSCs). Downregulation of MAP3K14 by siRNA decreased ARC levels and suppressed birinapant-induced ARC increase. Reverse-phase protein array analysis of 511 samples from newly diagnosed AML patients showed that BIRC2 (also termed cIAP1) and ARC were inversely correlated. Knockdown of ARC sensitized, while overexpression attenuated, birinapant-induced apoptosis. Furthermore, ARC knockdown in MSCs sensitized co-cultured AML cells to birinapant-induced apoptosis. Our data demonstrate that ARC is regulated via BIRC2/MAP3K14 signalling and its overexpression in AML or MSCs can function as a resistant factor to birinapant-induced leukaemia cell death, suggesting that strategies to inhibit ARC will improve the therapeutic potential of SMAC mimetics. © 2014 John Wiley & Sons Ltd.

  11. Mitochondrial dynamics and cancer.

    PubMed

    Maycotte, Paola; Marín-Hernández, Alvaro; Goyri-Aguirre, Miriam; Anaya-Ruiz, Maricruz; Reyes-Leyva, Julio; Cortés-Hernández, Paulina

    2017-05-01

    Cancer is among the leading causes of death worldwide, and the number of new cases continues to rise. Despite recent advances in diagnosis and therapeutic strategies, millions of cancer-related deaths occur, indicating the need for better therapies and diagnostic strategies. Mitochondria and metabolic alterations have been recognized as important for cancer progression. However, a more precise understanding of how to manipulate mitochondria-related processes for cancer therapy remains to be established. Mitochondria are highly dynamic organelles which continually fuse and divide in response to diverse stimuli. Participation in the aforementioned processes requires a precise regulation at many levels that allows the cell to couple mitochondrial activity to nutrient availability, biosynthetic demands, proliferation rates, and external stimuli. The many functions of these organelles are intimately linked to their morphology. Recent evidence suggests an important link between mitochondrial morphology and disease, including neurodegenerative, inflammatory diseases and cancer. Here, we review recent advances in the understanding of mitochondrial dynamics with a special focus on its relationship to tumor progression.

  12. Inhibitors of Mitochondrial Fission as a Therapeutic Strategy for Diseases with Oxidative Stress and Mitochondrial Dysfunction

    PubMed Central

    Reddy, P. Hemachandra

    2014-01-01

    Mitochondria are essential cytoplasmic organelles, critical for cell survival and death. Recent mitochondrial research revealed that mitochondrial dynamics – the balance of fission and fusion in normal mitochondrial dynamics – is an important cellular mechanism in eukaryotic cell and is involved in the maintenance of mitochondrial morphology, structure, number, distribution, and function. Research into mitochondria and cell function has revealed that mitochondrial dynamics is impaired in a large number of aging and neurodegenerative diseases, and in several inherited mitochondrial diseases, and that this impairment involves excessive mitochondrial fission, resulting in mitochondrial structural changes and dysfunction, and cell damage. Attempts have been made to develop molecules to reduce mitochondrial fission while maintaining normal mitochondrial fusion and function in those diseases that involve excessive mitochondrial fission. This review article discusses mechanisms of mitochondrial fission in normal and diseased states of mammalian cells and discusses research aimed at developing therapies, such as Mdivi, Dynasore and P110, to prevent or to inhibit excessive mitochondrial fission. PMID:24413616

  13. Mitochondrial ribosomes in cancer.

    PubMed

    Kim, Hyun-Jung; Maiti, Priyanka; Barrientos, Antoni

    2017-04-23

    Mitochondria play fundamental roles in the regulation of life and death of eukaryotic cells. They mediate aerobic energy conversion through the oxidative phosphorylation (OXPHOS) system, and harbor and control the intrinsic pathway of apoptosis. As a descendant of a bacterial endosymbiont, mitochondria retain a vestige of their original genome (mtDNA), and its corresponding full gene expression machinery. Proteins encoded in the mtDNA, all components of the multimeric OXPHOS enzymes, are synthesized in specialized mitochondrial ribosomes (mitoribosomes). Mitoribosomes are therefore essential in the regulation of cellular respiration. Additionally, an increasing body of literature has been reporting an alternative role for several mitochondrial ribosomal proteins as apoptosis-inducing factors. No surprisingly, the expression of genes encoding for mitoribosomal proteins, mitoribosome assembly factors and mitochondrial translation factors is modified in numerous cancers, a trait that has been linked to tumorigenesis and metastasis. In this article, we will review the current knowledge regarding the dual function of mitoribosome components in protein synthesis and apoptosis and their association with cancer susceptibility and development. We will also highlight recent developments in targeting mitochondrial ribosomes for the treatment of cancer. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. The Mitochondrial Ca2+ Uniporter: Structure, Function and Pharmacology

    PubMed Central

    Mishra, Jyotsna; Jhun, Bong Sook; Hurst, Stephen; O-Uchi, Jin; Csordás, György; Sheu, Shey-Shing

    2017-01-01

    Mitochondrial Ca2+ uptake is crucial for an array of cellular functions while an imbalance can elicit cell death. In this chapter, we briefly reviewed the various modes of mitochondrial Ca2+ uptake and our current understanding of mitochondrial Ca2+ homeostasis in regards to cell physiology and pathophysiology. Further, this chapter focuses on the molecular identities, intracellular regulators as well as the pharmacology of mitochondrial Ca2+ uniporter complex. PMID:28194521

  15. Mitochondrial DNA.

    ERIC Educational Resources Information Center

    Wright, Russell G.; Bottino, Paul J.

    1986-01-01

    Provides background information for teachers on mitochondrial DNA, pointing out that it may have once been a free-living organism. Includes a ready-to-duplicate exercise titled "Using Microchondrial DNA to Measure Evolutionary Distance." (JN)

  16. Mitochondrial DNA.

    ERIC Educational Resources Information Center

    Wright, Russell G.; Bottino, Paul J.

    1986-01-01

    Provides background information for teachers on mitochondrial DNA, pointing out that it may have once been a free-living organism. Includes a ready-to-duplicate exercise titled "Using Microchondrial DNA to Measure Evolutionary Distance." (JN)

  17. Mitochondrial targeted peptides for cancer therapy.

    PubMed

    Farsinejad, Sadaf; Gheisary, Zohre; Ebrahimi Samani, Sanaz; Alizadeh, Ali Mohammad

    2015-08-01

    Mitochondria are a key pharmacological target in all cancer cells, since the structure and function of this organelle is different between healthy and malignant cells. Oxidative damage, disruption of mitochondrial ATP synthesis, calcium dyshomeostasis, mtDNA damage, and induction of the mitochondrial outer membrane permeabilization (MOMP) lead to the mitochondrial dysfunctionality and increase the probability of the programmed cell death or apoptosis. A variety of the signaling pathways have been developed to promote cell death including overexpression of pro-apoptotic members of Bcl-2 family, overloaded calcium, and elevated reactive oxygen species (ROS) play a key role in the promoting mitochondrial cytochrome c release through MOMP and eventually leads to cell death. There are a wide range of the therapeutic-based peptide drugs, known mitochondrial targeted peptides (MTPs), which specifically target mitochondrial pathways into death. They have prominent advantages such as low toxicity, high specificity, and easy to synthesis. Some of these therapeutic peptides have shown to increased the clinical activity alone or in combination with other agents. In this review, we will outline the biological properties of MTPs for cancer therapy. Understanding the molecular mechanisms and signaling pathways controlling cell death by MTPs can be critical for the development of the therapeutic strategies for cancer patients that would be valuable for researchers in both fields of molecular and clinical oncology.

  18. Drug-induced mitochondrial dysfunction and cardiotoxicity

    PubMed Central

    Varga, Zoltán V; Ferdinandy, Peter; Liaudet, Lucas

    2015-01-01

    Mitochondria has an essential role in myocardial tissue homeostasis; thus deterioration in mitochondrial function eventually leads to cardiomyocyte and endothelial cell death and consequent cardiovascular dysfunction. Several chemical compounds and drugs have been known to directly or indirectly modulate cardiac mitochondrial function, which can account both for the toxicological and pharmacological properties of these substances. In many cases, toxicity problems appear only in the presence of additional cardiovascular disease conditions or develop months/years following the exposure, making the diagnosis difficult. Cardiotoxic agents affecting mitochondria include several widely used anticancer drugs [anthracyclines (Doxorubicin/Adriamycin), cisplatin, trastuzumab (Herceptin), arsenic trioxide (Trisenox), mitoxantrone (Novantrone), imatinib (Gleevec), bevacizumab (Avastin), sunitinib (Sutent), and sorafenib (Nevaxar)], antiviral compound azidothymidine (AZT, Zidovudine) and several oral antidiabetics [e.g., rosiglitazone (Avandia)]. Illicit drugs such as alcohol, cocaine, methamphetamine, ecstasy, and synthetic cannabinoids (spice, K2) may also induce mitochondria-related cardiotoxicity. Mitochondrial toxicity develops due to various mechanisms involving interference with the mitochondrial respiratory chain (e.g., uncoupling) or inhibition of the important mitochondrial enzymes (oxidative phosphorylation, Szent-Györgyi-Krebs cycle, mitochondrial DNA replication, ADP/ATP translocator). The final phase of mitochondrial dysfunction induces loss of mitochondrial membrane potential and an increase in mitochondrial oxidative/nitrative stress, eventually culminating into cell death. This review aims to discuss the mechanisms of mitochondrion-mediated cardiotoxicity of commonly used drugs and some potential cardioprotective strategies to prevent these toxicities. PMID:26386112

  19. Mitochondrial genetics

    PubMed Central

    Chinnery, Patrick Francis; Hudson, Gavin

    2013-01-01

    Introduction In the last 10 years the field of mitochondrial genetics has widened, shifting the focus from rare sporadic, metabolic disease to the effects of mitochondrial DNA (mtDNA) variation in a growing spectrum of human disease. The aim of this review is to guide the reader through some key concepts regarding mitochondria before introducing both classic and emerging mitochondrial disorders. Sources of data In this article, a review of the current mitochondrial genetics literature was conducted using PubMed (http://www.ncbi.nlm.nih.gov/pubmed/). In addition, this review makes use of a growing number of publically available databases including MITOMAP, a human mitochondrial genome database (www.mitomap.org), the Human DNA polymerase Gamma Mutation Database (http://tools.niehs.nih.gov/polg/) and PhyloTree.org (www.phylotree.org), a repository of global mtDNA variation. Areas of agreement The disruption in cellular energy, resulting from defects in mtDNA or defects in the nuclear-encoded genes responsible for mitochondrial maintenance, manifests in a growing number of human diseases. Areas of controversy The exact mechanisms which govern the inheritance of mtDNA are hotly debated. Growing points Although still in the early stages, the development of in vitro genetic manipulation could see an end to the inheritance of the most severe mtDNA disease. PMID:23704099

  20. [Mitochondrial myopathies].

    PubMed

    Finsterer, J

    2009-11-01

    The organ most frequently affected in mitochondrial disorders is the skeletal muscle (mitochondrial myopathy). Mitochondrial myopathies may be part of syndromic as well as non-syndromic mitochondrial disorders. Involvement of the skeletal muscle may remain subclinical, may manifest as isolated elevation of the creatine-kinase, or as weakness and wasting of one or several muscle groups. The course of mitochondrial myopathies is usually slowly progressive and only rarely rapidly progressive leading to restriction of mobility and requirement of a wheel chair or even muscular respiratory insufficiency. Frequently reported symptoms of mitochondrial myopathies are permanent tiredness, easy fatigability, muscle aching at rest or already after moderate exercise, muscle cramps, muscle stiffness, fasciculations and muscle weakness. The diagnosis is based on the history, clinical neurologic examination, blood chemical investigations, lactate stress test, electromyography, magnetic resonance imaging, magnetic resonance spectroscopy, muscle biopsy, biochemical investigations of the skeletal muscles, and genetic investigations. Only symptomatic therapy is available and includes physiotherapy and orthopedic supportive devices, diet, symptomatic drug therapy (analgetics, cramp-releasing drugs, antioxidants, lactate-lowering drugs, alternative energy sources, co-factors), avoidance of mitochondrion-toxic drugs, surgery (correction of ptosis or orthopedic problems), and invasive or non-invasive mechanical ventilation. General anesthesia needs to be performed in the same way as in patients with susceptibility for malignant hyperthermia. Georg Thieme Verlag KG Stuttgart, New York.

  1. Death Cafe.

    PubMed

    Miles, Lizzy; Corr, Charles A

    2017-06-01

    This article explains the meaning of the phrase Death Cafe and describes what typically occurs at a Death Cafe gathering. The article traces the history of the Death Cafe movement, explores some reasons why people take part in a Death Cafe gathering, and gives examples of what individuals think they might derive from their participation. In addition, this article notes similarities between the Death Cafe movement and three other developments in the field of death, dying, and bereavement. Finally, this article identifies two provisional lessons that can be drawn from Death Cafe gatherings and the Death Cafe movement itself.

  2. Mitochondrial morphology-emerging role in bioenergetics.

    PubMed

    Galloway, Chad A; Lee, Hakjoo; Yoon, Yisang

    2012-12-15

    Dynamic change in mitochondrial shape is a cellular process mediated mainly by fission and fusion of mitochondria. Studies have shown that mitochondrial fission and fusion are directly and indirectly associated with mitochondrial maintenance, bioenergetic demand, and cell death. Changes in mitochondrial morphology are frequently observed in response to changes in the surrounding cellular milieu, such as metabolic flux, that influence cellular bioenergetics. Connections between morphological regulation and the bioenergetic status of mitochondria are emerging as reciprocally responsive processes, though the nature of the signaling remains to be defined. Given the pivotal role mitochondria play in cellular fate, tight regulation of fission and fusion is therefore critical to preserving normal cellular physiology. Here we describe recent advancements in the understanding of the mechanisms governing