Sample records for mitochondrial inhibitor antimycin

  1. Environmental and Metabolic Transformations of the Piscicide Antimycin A

    EPA Science Inventory

    Antimycin A is a natural occurring product of bacterial fermentation and is an extremely potent inhibitor of mitochondrial respiration. It is toxic to all organisms that depend on mitochondrial respiration; however, there is a large divergence in toxicity, even between closely re...

  2. Mitochondrial modulation-induced activation of vagal sensory neuronal subsets by antimycin A, but not CCCP or rotenone, correlates with mitochondrial superoxide production.

    PubMed

    Stanford, Katherine R; Taylor-Clark, Thomas E

    2018-01-01

    Inflammation causes nociceptive sensory neuron activation, evoking debilitating symptoms and reflexes. Inflammatory signaling pathways are capable of modulating mitochondrial function, resulting in reactive oxygen species (ROS) production, mitochondrial depolarization and calcium release. Previously we showed that mitochondrial modulation with antimycin A, a complex III inhibitor, selectively stimulated nociceptive bronchopulmonary C-fibers via the activation of transient receptor potential (TRP) ankyrin 1 (A1) and vanilloid 1 (V1) cation channels. TRPA1 is ROS-sensitive, but there is little evidence that TRPV1 is activated by ROS. Here, we used dual imaging of dissociated vagal neurons to investigate the correlation of mitochondrial superoxide production (mitoSOX) or mitochondrial depolarization (JC-1) with cytosolic calcium (Fura-2AM), following mitochondrial modulation by antimycin A, rotenone (complex I inhibitor) and carbonyl cyanide m-chlorophenyl hydrazone (CCCP, mitochondrial uncoupling agent). Mitochondrial modulation by all agents selectively increased cytosolic calcium in a subset of TRPA1/TRPV1-expressing (A1/V1+) neurons. There was a significant correlation between antimycin A-induced calcium responses and mitochondrial superoxide in wild-type 'responding' A1/V1+ neurons, which was eliminated in TRPA1-/- neurons, but not TRPV1-/- neurons. Nevertheless, antimycin A-induced superoxide production did not always increase calcium in A1/V1+ neurons, suggesting a critical role of an unknown factor. CCCP caused both superoxide production and mitochondrial depolarization but neither correlated with calcium fluxes in A1/V1+ neurons. Rotenone-induced calcium responses in 'responding' A1/V1+ neurons correlated with mitochondrial depolarization but not superoxide production. Our data are consistent with the hypothesis that mitochondrial dysfunction causes calcium fluxes in a subset of A1/V1+ neurons via ROS-dependent and ROS-independent mechanisms.

  3. [Respiration of wheat root cells under simultaneous inhibition of parts I and III of the electron transport chain of mitochondria by rotenone and antimycine A].

    PubMed

    Rakhmatullina, D F; Gordon, L Kh; Ogorodnikova, T I

    2005-01-01

    Respiration of excised roots of 5 day old wheat seedlings with blocked mitochondrial oxidation under simultaneous action of rotenone and antimycine A was studied. A reduced rate of oxygen uptake was observed within the first hour of root treatment inhibitors. However, after a 5 h exposure there was an increase in oxygen uptake, which was prevented by KCN but amplified by malate and ascorbate. The application of inhibitors caused a considerable increase in the respiratory coefficient (RC) up to 2.1, that suggests a significant CO2 release, when the initial sites of mitochondrial electron transport chain were inhibited. RC did not raise, when ascorbate was added in the presence of inhibitors. We assume that inhibition of mitochondrial oxidation at I and III sites of electron transport chain facilitates switching on the alternative paths of reductant translocation to oxygen. Participation of ATPases and redox system of plasma membrane in the response reactions of respiration directed to the restoration of ion, particularly, proton homeostasis in conditions of inhibited mitochondrial oxidation is discussed.

  4. Pharmacological Modulation of the Mitochondrial Electron Transport Chain in Paclitaxel-Induced Painful Peripheral Neuropathy.

    PubMed

    Griffiths, Lisa A; Flatters, Sarah J L

    2015-10-01

    Paclitaxel is an effective first-line chemotherapeutic with the major dose-limiting side effect of painful neuropathy. Mitochondrial dysfunction and oxidative stress have been implicated in paclitaxel-induced painful neuropathy. Here we show the effects of pharmacological modulation of mitochondrial sites that produce reactive oxygen species using systemic rotenone (complex I inhibitor) or antimycin A (complex III inhibitor) on the maintenance and development of paclitaxel-induced mechanical hypersensitivity in adult male Sprague Dawley rats. The maximally tolerated dose (5 mg/kg) of rotenone inhibited established paclitaxel-induced mechanical hypersensitivity. However, some of these inhibitory effects coincided with decreased motor coordination; 3 mg/kg rotenone also significantly attenuated established paclitaxel-induced mechanical hypersensitivity without any motor impairment. The maximally tolerated dose (.6 mg/kg) of antimycin A reversed established paclitaxel-induced mechanical hypersensitivity without any motor impairment. Seven daily doses of systemic rotenone or antimycin A were given either after paclitaxel administration or before and during paclitaxel administration. Rotenone had no significant effect on the development of paclitaxel-induced mechanical hypersensitivity. However, antimycin A significantly inhibited the development of paclitaxel-induced mechanical hypersensitivity when given before and during paclitaxel administration but had no effect when given after paclitaxel administration. These studies provide further evidence of paclitaxel-evoked mitochondrial dysfunction in vivo, suggesting that complex III activity is instrumental in paclitaxel-induced pain. This study provides further in vivo evidence that mitochondrial dysfunction is a key contributor to the development and maintenance of chemotherapy-induced painful neuropathy. This work also indicates that selective modulation of the electron transport chain can induce antinociceptive effects in a preclinical model of paclitaxel-induced pain. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.

  5. Magnolol protects osteoblastic MC3T3-E1 cells against antimycin A-induced cytotoxicity through activation of mitochondrial function.

    PubMed

    Choi, Eun Mi

    2012-06-01

    Antimycin A treatment of cells blocks the mitochondrial electron transport chain and leads to elevated ROS generation. In the present study, we investigated the protective effects of magnolol, a hydroxylated biphenyl compound isolated from Magnolia officinalis, on antimycin A-induced toxicity in osteoblastic MC3T3-E1 cells. Osteoblastic MC3T3-E1 cells were pre-incubated with magnolol before treatment with antimycin A. Cell viability and mineralization of osteoblasts were assessed by MTT assay and Alizarin Red staining, respectively. Mitochondrial dysfunction in cells was measured by mitochondrial membrane potential (MMP), complex IV activity, and ATP level. The cellular antioxidant effect of magnolol in osteoblastic MC3T3-E1 cells was assessed by measuring cardiolipin oxidation, mitochondrial superoxide levels, and nitrotyrosine content. Phosphorylated cAMP-response element-binding protein (CREB ) was evaluated using ELISA assay. Pretreatment with magnolol prior to antimycin A exposure significantly reduced antimycin A-induced osteoblast dysfunction by preventing MMP dissipation, ATP loss, and CREB inactivation. Magnolol also reduced cardiolipin peroxidation, mitochondrial superoxide, and nitrotyrosine production induced by antimycin A. These results suggest that magnolol has a protective effect against antimycin A-induced cell damage by its antioxidant effects and the attenuation of mitochondrial dysfunction. All these data indicate that magnolol may reduce or prevent osteoblast degeneration in osteoporosis or other degenerative disorders.

  6. Effect of simvastatin on vascular tone in porcine coronary artery: Potential role of the mitochondria

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Almukhtar, H.; Garle, M.J.; Smith, P.A.

    2016-08-15

    Statins induce acute vasorelaxation which may contribute to the overall benefits of statins in the treatment of cardiovascular disease. The mechanism underlying this relaxation is unknown. As statins have been shown to alter mitochondrial function, in this study we investigated the role of mitochondria in the relaxation to simvastatin. Relaxation of porcine coronary artery segments by statins was measured using isolated tissue baths. Mitochondrial activity was determined by measuring changes in rhodamine 123 fluorescence. Changes in intracellular calcium levels were determined in freshly isolated smooth muscle cells with Fluo-4 using standard epifluorescent imaging techniques. Simvastatin, but not pravastatin, produced amore » slow relaxation of the coronary artery, which was independent of the endothelium. The relaxation was attenuated by the mitochondrial complex I inhibitor rotenone (10 μM) and the complex III inhibitor myxothiazol (10 μM), or a combination of the two. The complex III inhibitor antimycin A (10 μM) produced a similar time-dependent relaxation of the porcine coronary artery, which was attenuated by rotenone. Changes in rhodamine 123 fluorescence showed that simvastatin (10 μM) depolarized the membrane potential of mitochondria in both isolated mitochondria and intact blood vessels. Simvastatin and antimycin A both inhibited calcium-induced contractions in isolated blood vessels and calcium influx in smooth muscle cells and this inhibition was prevented by rotenone. In conclusion, simvastatin produces an endothelium-independent relaxation of the porcine coronary artery which is dependent, in part, upon effects on the mitochondria. The effects on the mitochondria may lead to a reduction in calcium influx and hence relaxation of the blood vessel. - Highlights: • Simvastatin produces a relaxation of the porcine coronary artery. • This relaxation is inhibited by mitochondrial complex inhibitors. • Simvastatin alters mitochondrial membrane potential in intact blood vessels. • Simvastatin inhibits calcium influx in smooth muscle cells, prevented by a mitochondrial inhibitor. • Simvastatin-induced relaxations are dependent upon mitochondrial activity.« less

  7. Effect of the oral administration homeopathic Arnica montana on mitochondrial oxidative stress.

    PubMed

    de Camargo, Ronaldo Antônio; da Costa, Ellen Dias; Catisti, Rosana

    2013-01-01

    To analyze the effect of homeopathic Arnica on mitochondrial oxidative stress induced by Ca(2+) plus inorganic phosphate and/or Fe(2+)-citrate-mediated lipid peroxidation through changes in oxygen consumption rates. Mitochondria were isolated by differential centrifugation from the livers of adult male Wistar rats which had been treated with Arnica montana 6cH, 12cH, 30cH or succussed 30% ethanol (control) for 21 days. In the presence of antimycin-A, electron transport chain inhibitor, as evidenced by antimycin-A insensitive O(2) consumption, Arnica inhibited lipid peroxidation of mitochondrial membranes. In oxidative stress conditions, in the presence of Ca(2+) and inorganic phosphate, animals receiving Arnica 30cH had a significant decrease in mitochondrial O(2) consumption compared to control animals. When administrated orally, Arnica 30cH protects against hepatic mitochondrial membrane permeabilization induced by Ca(2+) and/or Fe(2+)-citrate-mediated lipid peroxidation and fragmentation of proteins due to the attack by reactive oxygen species. Copyright © 2012 The Faculty of Homeopathy. Published by Elsevier Ltd. All rights reserved.

  8. Assaying Mitochondrial Respiration as an Indicator of Cellular Metabolism and Fitness.

    PubMed

    Smolina, Natalia; Bruton, Joseph; Kostareva, Anna; Sejersen, Thomas

    2017-01-01

    Mitochondrial respiration is the most important generator of cellular energy under most circumstances. It is a process of energy conversion of substrates into ATP. The Seahorse equipment allows measuring oxygen consumption rate (OCR) in living cells and estimates key parameters of mitochondrial respiration in real-time mode. Through use of mitochondrial inhibitors, four key mitochondrial respiration parameters can be measured: basal, ATP production-linked, maximal, and proton leak-linked OCR. This approach requires application of mitochondrial inhibitors-oligomycin to block ATP synthase, FCCP-to make the inner mitochondrial membrane permeable for protons and allow maximum electron flux through the electron transport chain, and rotenone and antimycin A-to inhibit complexes I and III, respectively. This chapter describes the protocol of OCR assessment in the culture of primary myotubes obtained upon satellite cell fusion.

  9. Mechanism of Siglec-8-induced human eosinophil apoptosis: role of caspases and mitochondrial injury.

    PubMed

    Nutku, Esra; Hudson, Sherry A; Bochner, Bruce S

    2005-10-28

    Sialic acid binding immunoglobulin like lectin (Siglec)-8 crosslinking with specific antibodies causes human eosinophil apoptosis. Mechanisms by which Siglec-8 crosslinking induces apoptosis are not known. Peripheral blood eosinophils were examined for caspase, mitochondria and reactive oxygen species (ROS) involvement after incubating the cells with anti-Siglec-8 crosslinking Abs or control Abs, in the presence or absence of selective inhibitors. Siglec-8 crosslinking induced rapid cleavage of caspase-3, caspase-8, and caspase-9 in eosinophils. Selective caspase-8 and/or caspase-9 inhibitors inhibited this apoptosis. Siglec-8 crosslinking on eosinophils increased dissipation of mitochondrial membrane potential upstream of caspase activation. Rotenone and antimycin, inhibitors of mitochondrial respiratory chain components, completely inhibited apoptosis. Additional experiments with an inhibitor of ROS, diphenyleneiodonium, demonstrated that ROS was also essential for Siglec-8-mediated apoptosis and preceded Siglec-8-mediated mitochondrial dissipation. These experiments show that Siglec-8-induced apoptosis occurs through the sequential production of ROS, followed by induction of mitochondrial injury and caspase cleavage.

  10. Mitochondrial electron transport chain is involved in microcystin-RR induced tobacco BY-2 cells apoptosis.

    PubMed

    Huang, Wenmin; Li, Dunhai; Liu, Yongding

    2014-09-01

    Microcystin-RR (MC-RR) has been suggested to induce apoptosis in tobacco BY-2 cells through mitochondrial dysfunction including the loss of mitochondrial membrane potential (ΔΨm). To further elucidate the mechanisms involved in MC-RR induced apoptosis in tobacco BY-2 cells, we have investigated the role of mitochondrial electron transport chain (ETC) as a potential source for reactive oxygen species (ROS). Tobacco BY-2 cells after exposure to MC-RR (60mg/L) displayed apoptotic changes in association with an increased production of ROS and loss of ΔΨm. All of these adverse effects were significantly attenuated by ETC inhibitors including Rotenone (2μmol/L, complex I inhibitor) and antimycin A (0.01μmol/L, complex III inhibitor), but not by thenoyltrifluoroacetone (5μmol/L, complex II inhibitor). These results suggest that mitochondrial ETC plays a key role in mediating MC-RR induced apoptosis in tobacco BY-2 cells through an increased mitochondrial production of ROS. Copyright © 2014. Published by Elsevier B.V.

  11. Atpenins, potent and specific inhibitors of mitochondrial complex II (succinate-ubiquinone oxidoreductase)

    PubMed Central

    Miyadera, Hiroko; Shiomi, Kazuro; Ui, Hideaki; Yamaguchi, Yuichi; Masuma, Rokuro; Tomoda, Hiroshi; Miyoshi, Hideto; Osanai, Arihiro; Kita, Kiyoshi; Ōmura, Satoshi

    2003-01-01

    Enzymes in the mitochondrial respiratory chain are involved in various physiological events in addition to their essential role in the production of ATP by oxidative phosphorylation. The use of specific and potent inhibitors of complex I (NADH-ubiquinone reductase) and complex III (ubiquinol-cytochrome c reductase), such as rotenone and antimycin, respectively, has allowed determination of the role of these enzymes in physiological processes. However, unlike complexes I, III, and IV (cytochrome c oxidase), there are few potent and specific inhibitors of complex II (succinate-ubiquinone reductase) that have been described. In this article, we report that atpenins potently and specifically inhibit the succinate-ubiquinone reductase activity of mitochondrial complex II. Therefore, atpenins may be useful tools for clarifying the biochemical and structural properties of complex II, as well as for determining its physiological roles in mammalian tissues. PMID:12515859

  12. Effects of a human recombinant alkaline phosphatase during impaired mitochondrial function in human renal proximal tubule epithelial cells.

    PubMed

    Peters, Esther; Schirris, Tom; van Asbeck, Alexander H; Gerretsen, Jelle; Eymael, Jennifer; Ashikov, Angel; Adjobo-Hermans, Merel J W; Russel, Frans; Pickkers, Peter; Masereeuw, Rosalinde

    2017-02-05

    Sepsis-associated acute kidney injury is a multifactorial syndrome in which inflammation and renal microcirculatory dysfunction play a profound role. Subsequently, renal tubule mitochondria reprioritize cellular functions to prevent further damage. Here, we investigated the putative protective effects of human recombinant alkaline phosphatase (recAP) during inhibition of mitochondrial respiration in conditionally immortalized human proximal tubule epithelial cells (ciPTEC). Full inhibition of mitochondrial oxygen consumption was obtained after 24h antimycin A treatment, which did not affect cell viability. While recAP did not affect the antimycin A-induced decreased oxygen consumption and increased hypoxia-inducible factor-1α or adrenomedullin gene expression levels, the antimycin A-induced increase of pro-inflammatory cytokines IL-6 and IL-8 was attenuated. Antimycin A tended to induce the release of detrimental purines ATP and ADP, which reached statistical significance when antimycin A was co-incubated with lipopolysaccharide, and were completely converted into cytoprotective adenosine by recAP. As the adenosine A 2A receptor was up-regulated after antimycin A exposure, an adenosine A 2A receptor knockout ciPTEC cell line was generated in which recAP still provided protection. Together, recAP did not affect oxygen consumption but attenuated the inflammatory response during impaired mitochondrial function, an effect suggested to be mediated by dephosphorylating ATP and ADP into adenosine. Copyright © 2016 Elsevier B.V. All rights reserved.

  13. Mitochondrial Respiratory Chain Inhibitors Involved in ROS Production Induced by Acute High Concentrations of Iodide and the Effects of SOD as a Protective Factor

    PubMed Central

    Wang, Lingyan; Duan, Qi; Wang, Tingting; Ahmed, Mohamed; Zhang, Na; Li, Yongmei; Li, Lanying; Yao, Xiaomei

    2015-01-01

    A major source of reactive oxygen species (ROS) generation is the mitochondria. By using flow cytometry of the mitochondrial fluorescent probe, MitoSOX Red, western blot of mitochondrial ROS scavenger Peroxiredoxin (Prx) 3 and fluorescence immunostaining, ELISA of cleaved caspases 3 and 9, and TUNEL staining, we demonstrated that exposure to 100 μM KI for 2 hours significantly increased mitochondrial superoxide production and Prx 3 protein expression with increased expressions of cleaved caspases 3 and 9. Besides, we indicated that superoxide dismutase (SOD) at 1000 unit/mL attenuated the increase in mitochondrial superoxide production, Prx 3 protein expression, and lactate dehydrogenase (LDH) release and improved the relative cell viability at 100 μM KI exposure. However, SOD inhibitor diethyldithiocarbamic acid (DETC) (2 mM), Rotenone (0.5 μM), a mitochondrial complex I inhibitor, and Antimycin A (10 μM), a complex III inhibitor, caused an increase in mitochondrial superoxide production, Prx 3 protein expression, and LDH release and decreased the relative cell viability. We conclude that the inhibitors of mitochondrial respiratory chain complex I or III may be involved in oxidative stress caused by elevated concentrations of iodide, and SOD demonstrates its protective effect on the Fischer rat thyroid cell line (FRTL) cells. PMID:26294939

  14. Inhibition of Mitochondrial Complex I Leads to Decreased Motility and Membrane Integrity Related to Increased Hydrogen Peroxide and Reduced ATP Production, while the Inhibition of Glycolysis Has Less Impact on Sperm Motility

    PubMed Central

    Plaza Davila, María; Martin Muñoz, Patricia; Tapia, Jose A.; Ortega Ferrusola, Cristina; Balao da Silva C, Carolina; Peña, Fernando J.

    2015-01-01

    Mitochondria have been proposed as the major source of reactive oxygen species in somatic cells and human spermatozoa. However, no data regarding the role of mitochondrial ROS production in stallion spermatozoa are available. To shed light on the role of the mitochondrial electron transport chain in the origin of oxidative stress in stallion spermatozoa, specific inhibitors of complex I (rotenone) and III (antimycin-A) were used. Ejaculates from seven Andalusian stallions were collected and incubated in BWW media at 37°C in the presence of rotenone, antimycin-A or control vehicle. Incubation in the presence of these inhibitors reduced sperm motility and velocity (CASA analysis) (p<0.01), but the effect was more evident in the presence of rotenone (a complex I inhibitor). These inhibitors also decreased ATP content. The inhibition of complexes I and III decreased the production of reactive oxygen species (p<0.01) as assessed by flow cytometry after staining with CellRox deep red. This observation suggests that the CellRox probe mainly identifies superoxide and that superoxide production may reflect intense mitochondrial activity rather than oxidative stress. The inhibition of complex I resulted in increased hydrogen peroxide production (p<0.01). The inhibition of glycolysis resulted in reduced sperm velocities (p<0.01) without an effect on the percentage of total motile sperm. Weak and moderate (but statistically significant) positive correlations were observed between sperm motility, velocity and membrane integrity and the production of reactive oxygen species. These results indicate that stallion sperm rely heavily on oxidative phosphorylation (OXPHOS) for the production of ATP for motility but also require glycolysis to maintain high velocities. These data also indicate that increased hydrogen peroxide originating in the mitochondria is a mechanism involved in stallion sperm senescence. PMID:26407142

  15. Inhibition of Mitochondrial Complex I Leads to Decreased Motility and Membrane Integrity Related to Increased Hydrogen Peroxide and Reduced ATP Production, while the Inhibition of Glycolysis Has Less Impact on Sperm Motility.

    PubMed

    Plaza Davila, María; Martin Muñoz, Patricia; Tapia, Jose A; Ortega Ferrusola, Cristina; Balao da Silva C, Carolina; Peña, Fernando J

    2015-01-01

    Mitochondria have been proposed as the major source of reactive oxygen species in somatic cells and human spermatozoa. However, no data regarding the role of mitochondrial ROS production in stallion spermatozoa are available. To shed light on the role of the mitochondrial electron transport chain in the origin of oxidative stress in stallion spermatozoa, specific inhibitors of complex I (rotenone) and III (antimycin-A) were used. Ejaculates from seven Andalusian stallions were collected and incubated in BWW media at 37 °C in the presence of rotenone, antimycin-A or control vehicle. Incubation in the presence of these inhibitors reduced sperm motility and velocity (CASA analysis) (p<0.01), but the effect was more evident in the presence of rotenone (a complex I inhibitor). These inhibitors also decreased ATP content. The inhibition of complexes I and III decreased the production of reactive oxygen species (p<0.01) as assessed by flow cytometry after staining with CellRox deep red. This observation suggests that the CellRox probe mainly identifies superoxide and that superoxide production may reflect intense mitochondrial activity rather than oxidative stress. The inhibition of complex I resulted in increased hydrogen peroxide production (p<0.01). The inhibition of glycolysis resulted in reduced sperm velocities (p<0.01) without an effect on the percentage of total motile sperm. Weak and moderate (but statistically significant) positive correlations were observed between sperm motility, velocity and membrane integrity and the production of reactive oxygen species. These results indicate that stallion sperm rely heavily on oxidative phosphorylation (OXPHOS) for the production of ATP for motility but also require glycolysis to maintain high velocities. These data also indicate that increased hydrogen peroxide originating in the mitochondria is a mechanism involved in stallion sperm senescence.

  16. Inhibitor-induced oxidation of the nucleus and cytosol in Arabidopsis thaliana: implications for organelle to nucleus retrograde signalling

    PubMed Central

    Karpinska, Barbara; Alomrani, Sarah Owdah

    2017-01-01

    Concepts of organelle-to-nucleus signalling pathways are largely based on genetic screens involving inhibitors of chloroplast and mitochondrial functions such as norflurazon, lincomycin (LINC), antimycin A (ANT) and salicylhydroxamic acid. These inhibitors favour enhanced cellular oxidation, but their precise effects on the cellular redox state are unknown. Using the in vivo reduction–oxidation (redox) reporter, roGFP2, inhibitor-induced changes in the glutathione redox potentials of the nuclei and cytosol were measured in Arabidopsis thaliana root, epidermal and stomatal guard cells, together with the expression of nuclear-encoded chloroplast and mitochondrial marker genes. All the chloroplast and mitochondrial inhibitors increased the degree of oxidation in the nuclei and cytosol. However, inhibitor-induced oxidation was less marked in stomatal guard cells than in epidermal or root cells. Moreover, LINC and ANT caused a greater oxidation of guard cell nuclei than the cytosol. Chloroplast and mitochondrial inhibitors significantly decreased the abundance of LHCA1 and LHCB1 transcripts. The levels of WHY1, WHY3 and LEA5 transcripts were increased in the presence of inhibitors. Chloroplast inhibitors decreased AOXA1 mRNA levels, while mitochondrial inhibitors had the opposite effect. Inhibitors that are used to characterize retrograde signalling pathways therefore have similar general effects on cellular redox state and gene expression. This article is part of the themed issue ‘Enhancing photosynthesis in crop plants: targets for improvement’. PMID:28808105

  17. The role of mitochondrial reactive oxygen species in pH regulation in articular chondrocytes.

    PubMed

    Milner, P I; Wilkins, R J; Gibson, J S

    2007-07-01

    To examine the effect of O(2) and the role, and source, of reactive oxygen species (ROS) on pH regulation in articular chondrocytes. Cartilage from equine metacarpo/tarsophalangeal joints was digested (collagenase) to isolate chondrocytes and loaded with 2',7'-bis-2-(carboxyethyl)-5(6)-carboxylfluorescein, a pH-sensitive fluorophore. O(2) tension was maintained using Eschweiler tonometers and a Wosthoff gas mixer. Cells were exposed to agents which alter ROS levels, mitochondrial inhibitors and/or inhibitors of protein phosphorylation. ROS levels were determined by dichlorofluorescein and mitochondrial membrane potential measured using JC-1. pH homeostasis was dependent on ROS. Na(+)/H(+) exchanger (NHE) activity was inhibited at low O(2) tension (acid efflux reducing from 2.30+/-0.05 to 1.27+/-0.11mMmin(-1) at 1%). NHE activity correlated with ROS levels (r(2)=0.65). ROS levels were increased by antimycin A (with levels at 1% O(2) tension increasing from 59+/-9% of the value at 20% to 87+/-7%), but reduced by rotenone, myxothiazol and diphenyleneiodonium. Hypoxia induced depolarisation of the mitochondrial membrane potential (with JC-1 red-green fluorescence ratio at 1% O(2) tension decreasing to 40+/-10% of the value at 20%). The response to changes in O(2) and to antimycin A was inhibited by staurosporine, wortmanin and calyculin A. The fall in ROS levels in hypoxia reduces the ability of articular chondrocytes to regulate pH, inhibiting NHE activity via changes in protein phosphorylation. The site of ROS generation is likely to be mitochondrial electron transport chain complex III. These effects are important to understanding normal chondrocyte function and response to altered O(2) tension.

  18. Differential effects of buffer pH on Ca2+-induced ROS emission with inhibited mitochondrial complexes I and III

    PubMed Central

    Lindsay, Daniel P.; Camara, Amadou K. S.; Stowe, David F.; Lubbe, Ryan; Aldakkak, Mohammed

    2015-01-01

    Excessive mitochondrial reactive oxygen species (ROS) emission is a critical component in the etiology of ischemic injury. Complex I and complex III of the electron transport chain are considered the primary sources of ROS emission during cardiac ischemia and reperfusion (IR) injury. Several factors modulate ischemic ROS emission, such as an increase in extra-matrix Ca2+, a decrease in extra-matrix pH, and a change in substrate utilization. Here we examined the combined effects of these factors on ROS emission from respiratory complexes I and III under conditions of simulated IR injury. Guinea pig heart mitochondria were suspended in experimental buffer at a given pH and incubated with or without CaCl2. Mitochondria were then treated with either pyruvate, a complex I substrate, followed by rotenone, a complex I inhibitor, or succinate, a complex II substrate, followed by antimycin A, a complex III inhibitor. H2O2 release rate and matrix volume were compared with and without adding CaCl2 and at pH 7.15, 6.9, or 6.5 with pyruvate + rotenone or succinate + antimycin A to simulate conditions that may occur during in vivo cardiac IR injury. We found a large increase in H2O2 release with high [CaCl2] and pyruvate + rotenone at pH 6.9, but not at pHs 7.15 or 6.5. Large increases in H2O2 release rate also occurred at each pH with high [CaCl2] and succinate + antimycin A, with the highest levels observed at pH 7.15. The increases in H2O2 release were associated with significant mitochondrial swelling, and both H2O2 release and swelling were abolished by cyclosporine A, a desensitizer of the mitochondrial permeability transition pore (mPTP). These results indicate that ROS production by complex I and by complex III is differently affected by buffer pH and Ca2+ loading with mPTP opening. The study suggests that changes in the levels of cytosolic Ca2+ and pH during IR alter the relative amounts of ROS produced at mitochondrial respiratory complex I and complex III. PMID:25805998

  19. Redox signaling in the growth and development of colonial hydroids.

    PubMed

    Blackstone, Neil W

    2003-02-01

    Redox signaling provides a quick and efficient mechanism for clonal or colonial organisms to adapt their growth and development to aspects of the environment, e.g. the food supply. A 'signature' of mitochondrial redox signaling, particularly as mediated by reactive oxygen species (ROS), can be elucidated by experimental manipulation of the electron transport chain. The major sites of ROS formation are found at NADH dehydrogenase of complex I and at the interface between coenzyme Q and complex III. Inhibitors of complex III should thus upregulate ROS from both sites; inhibitors of complex I should upregulate ROS from the first but not the second site, while uncouplers of oxidative phosphorylation should downregulate ROS from both sites. To investigate the possibility of such redox signaling, perturbations of colony growth and development were carried out using the hydroid Podocoryna carnea. Oxygen uptake of colonies was measured to determine comparable physiological doses of antimycin A(1) (an inhibitor of complex III), rotenone (an inhibitor of complex I) and carbonyl cyanide m-chlorophenylhydrazone (CCCP; an uncoupler of oxidative phosphorylation). Using these doses, clear effects on colony growth and development were obtained. Treatment with antimycin A(1) results in 'runner-like' colony growth, with widely spaced polyps and stolon branches, while treatment with CCCP results in 'sheet-like' growth, with closely spaced polyps and stolon branches. Parallel results have been obtained previously with azide, an inhibitor of complex IV, and dinitrophenol, another uncoupler of oxidative phosphorylation. Perhaps surprisingly, rotenone produced effects on colony development similar to those of CCCP. Assays of peroxides using 2',7'-dichlorofluorescin diacetate and fluorescent microscopy suggest a moderate difference in ROS formation between the antimycin and rotenone treatments. The second site of ROS formation (the interface between coenzyme Q and complex III) may thus predominate in the signaling that regulates colony development. The fat-rich, brine shrimp diet of these hydroids may be relevant in this context. Acyl CoA dehydrogenase, which catalyzes the first step in the mitochondrial beta-oxidation of fatty acids, carries electrons to coenzyme Q, thus bypassing complex I. These results support a role for redox signaling, mediated by ROS, in colony development. Nevertheless, other redox sensors between complexes I and III may yet be found.

  20. The generation of oxidative stress-induced rearrangements in Saccharomyces cerevisiae mtDNA is dependent on the Nuc1 (EndoG/ExoG) nuclease and is enhanced by inactivation of the MRX complex.

    PubMed

    Dzierzbicki, Piotr; Kaniak-Golik, Aneta; Malc, Ewa; Mieczkowski, Piotr; Ciesla, Zygmunt

    2012-12-01

    Oxidative stress is known to enhance the frequency of two major types of alterations in the mitochondrial genome of Saccharomyces cerevisiae: point mutations and large deletions resulting in the generation of respiration-deficient petite rhō mutants. We investigated the effect of antimycin A, a well-known agent inducing oxidative stress, on the stability of mtDNA. We show that antimycin enhances exclusively the generation of respiration-deficient petite mutants and this is accompanied by a significant increase in the level of reactive oxygen species (ROS) and in a marked drop of cellular ATP. Whole mitochondrial genome sequencing revealed that mtDNAs of antimycin-induced petite mutants are deleted for most of the wild-type sequence and usually contain one of the active origins of mtDNA replication: ori1, ori2 ori3 or ori5. We show that the frequency of antimycin-induced rhō mutants is significantly elevated in mutants deleted either for the RAD50 or XRS2 gene, both encoding the components of the MRX complex, which is known to be involved in the repair of double strand breaks (DSBs) in DNA. Furthermore, enhanced frequency of rhō mutants in cultures of antimycin-treated cells lacking Rad50 was further increased by the simultaneous absence of the Ogg1 glycosylase, an important enzyme functioning in mtBER. We demonstrate also that rad50Δ and xrs2Δ deletion mutants display a considerable reduction in the frequency of allelic mitochondrial recombination, suggesting that it is the deficiency in homologous recombination which is responsible for enhanced rearrangements of mtDNA in antimycin-treated cells of these mutants. Finally, we show that the generation of large-scale mtDNA deletions induced by antimycin is markedly decreased in a nuc1Δ mutant lacking the activity of the Nuc1 nuclease, an ortholog of the mammalian mitochondrial nucleases EndoG and ExoG. This result indicates that the nuclease plays an important role in processing of oxidative stress-induced lesions in the mitochondrial genome. Copyright © 2012 Elsevier B.V. All rights reserved.

  1. Superoxide produced in the matrix of mitochondria enhances methylmercury toxicity in human neuroblastoma cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mailloux, Ryan J.; Yumvihoze, Emmanuel; Chan, Hing Man, E-mail: laurie.chan@uottawa.ca

    2015-12-15

    The mechanism of intracellular metabolism of methylmercury (MeHg) is not fully known. It has been shown that superoxide (O{sub 2}·{sup −}), the proximal reactive oxygen species (ROS) generated by mitochondria, is responsible for MeHg demethylation. Here, we investigated the impact of different mitochondrial respiratory inhibitors, namely rotenone and antimycin A, on the O{sub 2}·{sup −} mediated degradation of MeHg in human neuroblastoma cells SH-K-SN. We also utilized paraquat (PQ) which generates O{sub 2}·{sup −} in the mitochondrial matrix. We found that the cleavage of the carbon-metal bond in MeHg was highly dependent on the topology of O{sub 2}·{sup −} productionmore » by mitochondria. Both rotenone and PQ, which increase O{sub 2}·{sup −} in the mitochondrial matrix at a dose-dependent manner, enhanced the conversion of MeHg to inorganic mercury (iHg). Surprisingly, antimycin A, which prompts emission of O{sub 2}·{sup −} into the intermembrane space, did not have the same effect even though antimycin A induced a dose dependent increase in O{sub 2}·{sup −} emission. Rotenone and PQ also enhanced the toxicity of sub-toxic doses (0.1 μM) MeHg which correlated with the accumulation of iHg in mitochondria and depletion of mitochondrial protein thiols. Taken together, our results demonstrate that MeHg degradation is mediated by mitochondrial O{sub 2}·{sup −}, specifically within the matrix of mitochondria when O{sub 2}·{sup −} is in adequate supply. Our results also show that O{sub 2}·{sup −} amplifies MeHg toxicity specifically through its conversion to iHg and subsequent interaction with protein cysteine thiols (R-SH). The implications of our findings in mercury neurotoxicity are discussed herein. - Highlights: • Superoxide produced in the matrix of mitochondria degrades MeHg. • Superoxide produced in intermembrane space does not degrade MeHg. • Matrix-generated superoxide enhances Hg toxicity by converting MeHg to iHg.« less

  2. Brief exposure to carbon monoxide preconditions cardiomyogenic cells against apoptosis in ischemia-reperfusion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kondo-Nakamura, Mihoko; Shintani-Ishida, Kaori, E-mail: kaori@m.u-tokyo.ac.jp; Uemura, Koichi

    We examined whether and how pretreatment with carbon monoxide (CO) prevents apoptosis of cardioblastic H9c2 cells in ischemia-reperfusion. Reperfusion (6 h) following brief ischemia (10 min) induced cytochrome c release, activation of caspase-9 and caspase-3, and apoptotic nuclear condensation. Brief CO pretreatment (10 min) or a caspase-9 inhibitor (Z-LEHD-FMK) attenuated these apoptotic changes. Ischemia-reperfusion increased phosphorylation of Akt at Ser472/473/474, and this was enhanced by CO pretreatment. A specific Akt inhibitor (API-2) blunted the anti-apoptotic effects of CO in reperfusion. In normoxic cells, CO enhanced O{sub 2}{sup -} generation, which was inhibited by a mitochondrial complex III inhibitor (antimycin A)more » but not by a NADH oxidase inhibitor (apocynin). The CO-enhanced Akt phosphorylation was suppressed by an O{sub 2}{sup -} scavenger (Tiron), catalase or a superoxide dismutase (SOD) inhibitor (DETC). These results suggest that CO pretreatment induces mitochondrial generation of O{sub 2}{sup -}, which is then converted by SOD to H{sub 2}O{sub 2}, and subsequent Akt activation by H{sub 2}O{sub 2} attenuates apoptosis in ischemia-reperfusion.« less

  3. Disrupting mitochondrial Ca2+ homeostasis causes tumor-selective TRAIL sensitization through mitochondrial network abnormalities.

    PubMed

    Ohshima, Yohei; Takata, Natsuhiko; Suzuki-Karasaki, Miki; Yoshida, Yukihiro; Tokuhashi, Yasuaki; Suzuki-Karasaki, Yoshihiro

    2017-10-01

    The tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) has emerged as a promising anticancer agent with high tumor-selective cytotoxicity. The congenital and acquired resistance of some cancer types including malignant melanoma and osteosarcoma impede the current TRAIL therapy of these cancers. Since fine tuning of the intracellular Ca2+ level is essential for cell function and survival, Ca2+ dynamics could be a promising target for cancer treatment. Recently, we demonstrated that mitochondrial Ca2+ removal increased TRAIL efficacy toward malignant melanoma and osteosarcoma cells. Here we report that mitochondrial Ca2+ overload leads to tumor-selective sensitization to TRAIL cytotoxicity. Treatment with the mitochondrial Na+/Ca2+ exchanger inhibitor CGP-37157 and oxidative phosphorylation inhibitor antimycin A and FCCP resulted in a rapid and persistent mitochondrial Ca2+ rise. These agents also increased TRAIL sensitivity in a tumor-selective manner with a switching from apoptosis to a nonapoptotic cell death. Moreover, we found that mitochondrial Ca2+ overload led to increased mitochondrial fragmentation, while mitochondrial Ca2+ removal resulted in mitochondrial hyperfusion. Regardless of their reciprocal actions on the mitochondrial dynamics, both interventions commonly exacerbated TRAIL-induced mitochondrial network abnormalities. These results expand our previous study and suggest that an appropriate level of mitochondrial Ca2+ is essential for maintaining the mitochondrial dynamics and the survival of these cells. Thus, disturbing mitochondrial Ca2+ homeostasis may serve as a promising approach to overcome the TRAIL resistance of these cancers with minimally compromising the tumor-selectivity.

  4. Oxidative stress in duckweed (Lemna minor L.) induced by glyphosate: Is the mitochondrial electron transport chain a target of this herbicide?

    PubMed

    Gomes, Marcelo Pedrosa; Juneau, Philippe

    2016-11-01

    We investigated the physiological responses of Lemna minor plants exposed to glyphosate. The deleterious effects of this herbicide on photosynthesis, respiration, and pigment concentrations were related to glyphosate-induced oxidative stress through hydrogen peroxide (H 2 O 2 ) accumulation. By using photosynthetic and respiratory electron transport chain (ETC) inhibitors we located the primary site of reactive oxygen species (ROS) production in plants exposed to 500 mg glyphosate l -1 . Inhibition of mitochondrial ETC Complex I by rotenone reduced H 2 O 2 concentrations in glyphosate-treated plants. Complex III activity was very sensitive to glyphosate which appears to act much like antimycin A (an inhibitor of mitochondrial ETC Complex III) by shunting electrons from semiquinone to oxygen, with resulting ROS formation. Confocal evaluations for ROS localization showed that ROS are initially produced outside of the chloroplasts upon initial glyphosate exposure. Our results indicate that in addition to interfering with the shikimate pathway, glyphosate can induce oxidative stress in plants through H 2 O 2 formation by targeting the mitochondrial ETC, which would explain its observed effects on non-target organisms. Copyright © 2016 Elsevier Ltd. All rights reserved.

  5. Localization of superoxide anion production to mitochondrial electron transport chain in 3-NPA-treated cells

    PubMed Central

    Bacsi, Attila; Woodberry, Mitchell; Widger, William; Papaconstantinou, John; Mitra, Sankar; Peterson, Johnny W.; Boldogh, Istvan

    2011-01-01

    3-Nitropropionic acid (3-NPA), an inhibitor of succinate dehydrogenase (SDH) at complex II of the mitochondrial electron transport chain induces cellular energy deficit and oxidative stress-related neurotoxicity. In the present study, we identified the site of reactive oxygen species production in mitochondria. 3-NPA increased O2•− generation in mitochondria respiring on the complex I substrates pyruvate + malate, an effect fully inhibited by rotenone. Antimycin A increased O2•− production in the presence of complex I and/or II substrates. Addition of 3-NPA markedly increased antimycin A-induced O2•− production by mitochondria incubated with complex I substrates, but 3-NPA inhibited O2•− formation driven with the complex II substrate succinate. At 0.6 μM, myxothiazol inhibits complex III, but only partially decreases complex I activity, and allowed 3-NPA-induced O2•− formation; however, at 40 μM myxothiazol (which completely inhibits both complexes I and III) eliminated O2•− production from mitochondria respiring via complex I substrates. These results indicate that in the presence of 3-NPA, mitochondria generate O2•− from a site between the ubiquinol pool and the 3-NPA block in the respiratory complex II. PMID:17011837

  6. Reverse electron transport effects on NADH formation and metmyoglobin reduction.

    PubMed

    Belskie, K M; Van Buiten, C B; Ramanathan, R; Mancini, R A

    2015-07-01

    The objective was to determine if NADH generated via reverse electron flow in beef mitochondria can be used for electron transport-mediated reduction and metmyoglobin reductase pathways. Beef mitochondria were isolated from bovine hearts (n=5) and reacted with combinations of succinate, NAD, and mitochondrial inhibitors to measure oxygen consumption and NADH formation. Mitochondria and metmyoglobin were reacted with succinate, NAD, and mitochondrial inhibitors to measure electron transport-mediated metmyoglobin reduction and metmyoglobin reductase activity. Addition of succinate and NAD increased oxygen consumption, NADH formation, electron transport-mediated metmyoglobin reduction, and reductase activity (p<0.05). Addition of antimycin A prevented electron flow beyond complex III, therefore, decreasing oxygen consumption and electron transport-mediated metmyoglobin reduction. Addition of rotenone prevented reverse electron flow, increased oxygen consumption, increased electron transport-mediated metmyoglobin reduction, and decreased NADH formation. Succinate and NAD can generate NADH in bovine tissue postmortem via reverse electron flow and this NADH can be used by both electron transport-mediated and metmyoglobin reductase pathways. Copyright © 2015 Elsevier Ltd. All rights reserved.

  7. Mechanism of triclosan toxicity: Mitochondrial dysfunction including complex II inhibition, superoxide release and uncoupling of oxidative phosphorylation.

    PubMed

    Teplova, Vera V; Belosludtsev, Konstantin N; Kruglov, Alexey G

    2017-06-05

    Triclosan (5-chloro-2'-(2,4-dichlorophenoxy)phenol), a widely used antibacterial agent, exerts adverse effects on the organism of mammals. Recent research reviled that triclosan at low micromolar concentrations causes mitochondrial dysfunction in many cell types, but the mechanisms of its effect are not fully understood. Here we show that exposure to triclosan disrupted membrane potential, prevented the calcium uptake-driven high-amplitude mitochondrial swelling, stimulated the respiration in the presence of complex I substrates, and suppressed the ADP-stimulated respiration in the presence of complex II substrate, succinate. Triclosan directly inhibited complex II activity. Similar to the complex II inhibitor thenoyltrifluoroacetone, triclosan induced the oxidation of the cytochromes b566 and b562 and caused the release of mitochondrial superoxide. Opposite to thenoyltrifluoroacetone, triclosan increased superoxide release synergistically with myxothiazol but not with antimycin A, indicating different topology of superoxide-producing sites. We concluded that triclosan is unique by its capability of acting as both a protonophore and an unusual complex II inhibitor, which interferes with the mitochondrial respiration by blocking the electron transfer between ubiquinone at the Q d -binding site and heme b. Our data can provide an insight into the mechanisms of the carcinogenic effect of triclosan in the liver and other tissues. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. Evaluation of functioning of mitochondrial electron transport chain with NADH and FAD autofluorescence

    PubMed

    Danylovych, H V

    2016-01-01

    We prove the feasibility of evaluation of mitochondrial electron transport chain function in isolated mitochondria of smooth muscle cells of rats from uterus using fluorescence of NADH and FAD coenzymes. We found the inversely directed changes in FAD and NADH fluorescence intensity under normal functioning of mitochondrial electron transport chain. The targeted effect of inhibitors of complex I, III and IV changed fluorescence of adenine nucleotides. Rotenone (5 μM) induced rapid increase in NADH fluorescence due to inhibition of complex I, without changing in dynamics of FAD fluorescence increase. Antimycin A, a complex III inhibitor, in concentration of 1 μg/ml caused sharp increase in NADH fluorescence and moderate increase in FAD fluorescence in comparison to control. NaN3 (5 mM), a complex IV inhibitor, and CCCP (10 μM), a protonophore, caused decrease in NADH and FAD fluorescence. Moreover, all the inhibitors caused mitochondria swelling. NO donors, e.g. 0.1 mM sodium nitroprusside and sodium nitrite similarly to the effects of sodium azide. Energy-dependent Ca2+ accumulation in mitochondrial matrix (in presence of oxidation substrates and Mg-ATP2- complex) is associated with pronounced drop in NADH and FAD fluorescence followed by increased fluorescence of adenine nucleotides, which may be primarily due to Ca2+- dependent activation of dehydrogenases of citric acid cycle. Therefore, the fluorescent signal of FAD and NADH indicates changes in oxidation state of these nucleotides in isolated mitochondria, which may be used to assay the potential of effectors of electron transport chain.

  9. Potential involvement of F0F1-ATP(synth)ase and reactive oxygen species in apoptosis induction by the antineoplastic agent erucylphosphohomocholine in glioblastoma cell lines : a mechanism for induction of apoptosis via the 18 kDa mitochondrial translocator protein.

    PubMed

    Veenman, Leo; Alten, Julia; Linnemannstöns, Karen; Shandalov, Yulia; Zeno, Sivan; Lakomek, Max; Gavish, Moshe; Kugler, Wilfried

    2010-07-01

    Erucylphosphohomocholine (ErPC3, Erufosine) was reported previously to induce apoptosis in otherwise highly apoptosis-resistant malignant glioma cell lines while sparing their non-tumorigenic counterparts. We also previously found that the mitochondrial 18 kDa Translocator Protein (TSPO) is required for apoptosis induction by ErPC3. These previous studies also suggested involvement of reactive oxygen species (ROS). In the present study we further investigated the potential involvement of ROS generation, the participation of the mitochondrial respiration chain, and the role of the mitochondrial F(O)F(1)-ATP(synth)ase in the pro-apoptotic effects of ErPC3 on U87MG and U118MG human glioblastoma cell lines. For this purpose, cells were treated with the ROS chelator butylated hydroxyanisole (BHA), the mitochondrial respiration chain inhibitors rotenone, antimycin A, myxothiazol, and the uncoupler CCCP. Also oligomycin and piceatannol were studied as inhibitors of the F(O) and F(1) subunits of the mitochondrial F(O)F(1)-ATP(synth)ase, respectively. BHA was able to attenuate apoptosis induction by ErPC3, including mitochondrial ROS generation as determined with cardiolipin oxidation, as well as collapse of the mitochondrial membrane potential (Deltapsi(m)). Similarly, we found that oligomycin attenuated apoptosis and collapse of the Deltapsi(m), normally induced by ErPC3, including the accompanying reductions in cellular ATP levels. Other inhibitors of the mitochondrial respiration chain, as well as piceatannol, did not show such effects. Consequently, our findings strongly point to a role for the F(O) subunit of the mitochondrial F(O)F(1)-ATP(synth)ase in ErPC3-induced apoptosis and dissipation of Deltapsi(m) as well as ROS generation by ErPC3 and TSPO.

  10. Effect of mitochondrial dysfunction and oxidative stress on endogenous levels of coenzyme Q(10) in human cells.

    PubMed

    Yen, Hsiu-Chuan; Chen, Feng-Yuan; Chen, Shih-Wei; Huang, Yu-Hsiang; Chen, Yun-Ru; Chen, Chih-Wei

    2011-01-01

    Little is known about the regulation of endogenous CoQ(10) levels in response to mitochondrial dysfunction or oxidative stress although exogenous CoQ(10) has been extensively used in humans. In this study, we first demonstrated that acute treatment of antimycin A, an inhibitor of mitochondrial complex III, and the absence of mitochondrial DNA suppressed CoQ(10) levels in human 143B cells. Because these two conditions also enhanced formation of reactive oxygen species (ROS), we further investigated whether oxidative stress or mitochondrial dysfunction primarily contributed to the decrease of CoQ(10) levels. Results showed that H(2)O(2) augmented CoQ(10) levels, but carbonyl cyanide-p-trifluoromethoxyphenylhydrazone (FCCP), a chemical uncoupler, decreased CoQ(10) levels in 143B cells. However, H(2)O(2) and FCCP both increased mRNA levels of multiple COQ genes for biosynthesis of CoQ(10) . Our findings suggest that ROS induced CoQ(10) biosynthesis, whereas mitochondrial energy deficiency caused secondary suppression of CoQ(10) levels possibly due to impaired import of COQ proteins into mitochondria. Copyright © 2011 Wiley Periodicals, Inc.

  11. Mitochondrion-Derived Reactive Oxygen Species Lead to Enhanced Amyloid Beta Formation

    PubMed Central

    Schütt, Tanja; Kurz, Christopher; Eckert, Schamim H.; Schiller, Carola; Occhipinti, Angelo; Mai, Sören; Jendrach, Marina; Eckert, Gunter P.; Kruse, Shane E.; Palmiter, Richard D.; Brandt, Ulrich; Dröse, Stephan; Wittig, Ilka; Willem, Michael; Haass, Christian; Reichert, Andreas S.; Müller, Walter E.

    2012-01-01

    Abstract Aims: Intracellular amyloid beta (Aβ) oligomers and extracellular Aβ plaques are key players in the progression of sporadic Alzheimer's disease (AD). Still, the molecular signals triggering Aβ production are largely unclear. We asked whether mitochondrion-derived reactive oxygen species (ROS) are sufficient to increase Aβ generation and thereby initiate a vicious cycle further impairing mitochondrial function. Results: Complex I and III dysfunction was induced in a cell model using the respiratory inhibitors rotenone and antimycin, resulting in mitochondrial dysfunction and enhanced ROS levels. Both treatments lead to elevated levels of Aβ. Presence of an antioxidant rescued mitochondrial function and reduced formation of Aβ, demonstrating that the observed effects depended on ROS. Conversely, cells overproducing Aβ showed impairment of mitochondrial function such as comprised mitochondrial respiration, strongly altered morphology, and reduced intracellular mobility of mitochondria. Again, the capability of these cells to generate Aβ was partly reduced by an antioxidant, indicating that Aβ formation was also ROS dependent. Moreover, mice with a genetic defect in complex I, or AD mice treated with a complex I inhibitor, showed enhanced Aβ levels in vivo. Innovation: We show for the first time that mitochondrion-derived ROS are sufficient to trigger Aβ production in vitro and in vivo. Conclusion: Several lines of evidence show that mitochondrion-derived ROS result in enhanced amyloidogenic amyloid precursor protein processing, and that Aβ itself leads to mitochondrial dysfunction and increased ROS levels. We propose that starting from mitochondrial dysfunction a vicious cycle is triggered that contributes to the pathogenesis of sporadic AD. Antioxid. Redox Signal. 16, 1421–1433. PMID:22229260

  12. Mitochondrial origin of extracelullar transferred electrons in yeast-based biofuel cells.

    PubMed

    Hubenova, Yolina; Mitov, Mario

    2015-12-01

    The influence of mitochondrial electron transport chain inhibitors on the electricity outputs of Candida melibiosica yeast-based biofuel cell was investigated. The addition of 30 μM rotenone or antimycin A to the yeast suspension results in a decrease in the current generation, corresponding to 25.7±1.3%, respectively 38.8±1.9% reduction in the electric charge passed through the bioelectrochemical system. The latter percentage coincides with the share of aerobic respiration in the yeast catabolic processes, determined by the decrease of the ethanol production during cultivation in the presence of oxygen compared with that obtained under strict anaerobic conditions. It was established that the presence of both inhibitors leads to almost complete mitochondrial dysfunction, expressed by inactivation of cytochrome c oxidase and NADH:ubiquinone oxidoreductase as well as reduced electrochemical activity of isolated yeast mitochondria. It was also found that methylene blue partially neutralized the rotenone poisoning, probably serving as alternative intracellular electron shuttle for by-passing the complex I blockage. Based on the obtained results, we suppose that electrons generated through the aerobic respiration processes in the mitochondria participate in the extracellular electron transfer from the yeast cells to the biofuel cell anode, which contributes to higher current outputs at aerobic conditions. Copyright © 2014 Elsevier B.V. All rights reserved.

  13. The occurrence and control of nitric oxide generation by the plant mitochondrial electron transport chain.

    PubMed

    Alber, Nicole A; Sivanesan, Hampavi; Vanlerberghe, Greg C

    2017-07-01

    The plant mitochondrial electron transport chain (ETC) is bifurcated such that electrons from ubiquinol are passed to oxygen via the usual cytochrome path or through alternative oxidase (AOX). We previously showed that knockdown of AOX in transgenic tobacco increased leaf concentrations of nitric oxide (NO), implying that an activity capable of generating NO had been effected. Here, we identify the potential source of this NO. Treatment of leaves with antimycin A (AA, Q i -site inhibitor of Complex III) increased NO amount more than treatment with myxothiazol (Myxo, Q o -site inhibitor) despite both being equally effective at inhibiting respiration. Comparison of nitrate-grown wild-type with AOX knockdown and overexpression plants showed a negative correlation between AOX amount and NO amount following AA. Further, Myxo fully negated the ability of AA to increase NO amount. With ammonium-grown plants, neither AA nor Myxo strongly increased NO amount in any plant line. When these leaves were supplied with nitrite alongside the AA or Myxo, then the inhibitor effects across lines mirrored that of nitrate-grown plants. Hence the ETC, likely the Q-cycle of Complex III generates NO from nitrite, and AOX reduces this activity by acting as a non-energy-conserving electron sink upstream of Complex III. © 2016 John Wiley & Sons Ltd.

  14. A Membrane-Bound NAC Transcription Factor, ANAC017, Mediates Mitochondrial Retrograde Signaling in Arabidopsis[W][OPEN

    PubMed Central

    Ng, Sophia; Ivanova, Aneta; Duncan, Owen; Law, Simon R.; Van Aken, Olivier; De Clercq, Inge; Wang, Yan; Carrie, Chris; Xu, Lin; Kmiec, Beata; Walker, Hayden; Van Breusegem, Frank; Whelan, James; Giraud, Estelle

    2013-01-01

    Plants require daily coordinated regulation of energy metabolism for optimal growth and survival and therefore need to integrate cellular responses with both mitochondrial and plastid retrograde signaling. Using a forward genetic screen to characterize regulators of alternative oxidase1a (rao) mutants, we identified RAO2/Arabidopsis NAC domain-containing protein17 (ANAC017) as a direct positive regulator of AOX1a. RAO2/ANAC017 is targeted to connections and junctions in the endoplasmic reticulum (ER) and F-actin via a C-terminal transmembrane (TM) domain. A consensus rhomboid protease cleavage site is present in ANAC017 just prior to the predicted TM domain. Furthermore, addition of the rhomboid protease inhibitor N-p-Tosyl-l-Phe chloromethyl abolishes the induction of AOX1a upon antimycin A treatment. Simultaneous fluorescent tagging of ANAC017 with N-terminal red fluorescent protein (RFP) and C-terminal green fluorescent protein (GFP) revealed that the N-terminal RFP domain migrated into the nucleus, while the C-terminal GFP tag remained in the ER. Genome-wide analysis of the transcriptional network regulated by RAO2/ANAC017 under stress treatment revealed that RAO2/ANAC017 function was necessary for >85% of the changes observed as a primary response to cytosolic hydrogen peroxide (H2O2), but only ∼33% of transcriptional changes observed in response to antimycin A treatment. Plants with mutated rao2/anac017 were more stress sensitive, whereas a gain-of-function mutation resulted in plants that had lower cellular levels of H2O2 under untreated conditions. PMID:24045017

  15. Influence of metabolic inhibitors on mitochondrial permeability transition and glutathione status.

    PubMed

    Reed, D J; Savage, M K

    1995-05-24

    Treatment of isolated mitochondria with Ca2+ and inorganic phosphate (Pi) induces an inner membrane permeability that appears to be mediated through a cyclosporin A (CsA)-inhibitable Ca(2+)-dependent pore. Isolated mitochondria during inner membrane permeability undergo rapid efflux of matrix solutes such as glutathione as GSH and Ca2+, loss of coupled functions, and large amplitude swelling. Permeability transition without large amplitude swelling, a parameter often used to assess inner membrane permeability, has been observed. The addition of either oligomycin, antimycin, or sulfide to incubation buffer containing Ca2+ and Pi abolished large amplitude swelling of mitochondria. The GSH status during a Ca(2+)- and Pi-dependent mechanism of mitochondrial GSH release in isolated mitochondria was influenced significantly by metabolic inhibitors of the respiratory chain but did not prevent inner membrane permeability as demonstrated by the release of mitochondrial GSH and Ca2+. The release of GSH was inhibited by the addition of CsA, a potent inhibitor of permeability transition. Under these conditions we did not find GSSG; however, rapid oxidation of pyridine nucleotides and depletion of ATP and ADP with conversion to AMP occurred. The addition of CsA, prevented the oxidation of pyridine nucleotides and depletion of ATP and ADP. Since NADH and NADPH were extensively oxidized, protection against oxidative stress is reflected in maintenance of GSH and not observable lipid peroxidation. Evidence from transmission electron microscopy analysis, combined with the GSH release data, indicate that permeability transition can be observed in the absence of large amplitude swelling.

  16. Fungal mitochondrial oxygen consumption induces the growth of strict anaerobic bacteria.

    PubMed

    Lambooij, Joost M; Hoogenkamp, Michel A; Brandt, Bernd W; Janus, Marleen M; Krom, Bastiaan P

    2017-12-01

    Fungi are commonly encountered as part of a healthy oral ecosystem. Candida albicans is the most often observed and investigated fungal species in the oral cavity. The role of fungi in the oral ecosystem has remained enigmatic for decades. Recently, it was shown that C. albicans, in vitro, influences the bacterial composition of young oral biofilms, indicating it possibly plays a role in increasing diversity in the oral ecosystem. C. albicans favored growth of strictly anaerobic species under aerobic culture conditions. In the present study, the role of mitochondrial respiration, as mechanism by which C. albicans modifies its environment, was investigated. Using oxygen sensors, a rapid depletion of dissolved oxygen (dO 2 ) was observed. This decrease was not C. albicans specific as several non-albicans Candida species showed similar oxygen consumption. Heat inactivation as well as addition of the specific mitochondrial respiration inhibitor Antimycin A inhibited depletion of dO 2 . Using 16S rDNA sequencing, it is shown that mitochondrial activity, more than physical presence of C. albicans is responsible for inducing growth of strictly anaerobic oral bacteria in aerobic growth conditions. The described mechanism of dO 2 depletion may be a general mechanism by which fungi modulate their direct environment. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  17. Identification of a mitochondrial alcohol dehydrogenase in Schizosaccharomyces pombe: new insights into energy metabolism

    PubMed Central

    Crichton, Paul G.; Affourtit, Charles; Moore, Anthony L.

    2006-01-01

    In the present study we have shown that mitochondria isolated from Schizosaccharomyces pombe exhibit antimycin A-sensitive oxygen uptake activity that is exclusively dependent on ethanol and is inhibited by trifluoroethanol, a potent inhibitor of ADH (alcohol dehydrogenase). Ethanol-dependent respiratory activity has, to our knowledge, not been reported in S. pombe mitochondria to date, which is surprising as it has been concluded previously that only one ADH gene, encoding a cytosolic enzyme, occurs in this yeast. Spectrophotometric enzyme assays reveal that ADH activity in isolated mitochondria is increased ∼16-fold by Triton X-100, which demonstrates that the enzyme is located in the matrix. Using genetic knockouts, we show conclusively that the novel mitochondrial ADH is encoded by adh4 and, as such, is unrelated to ADH isoenzymes found in mitochondria of other yeasts. By performing a modular-kinetic analysis of mitochondrial electron transfer, we furthermore show how ethanol-dependent respiratory activity (which involves oxidation of matrix-located NADH) compares with that observed when succinate or externally added NADH are used as substrates. This analysis reveals distinct kinetic differences between substrates which fully explain the lack of respiratory control generally observed during ethanol oxidation in yeast mitochondria. PMID:16999687

  18. Discovery of potent broad spectrum antivirals derived from marine actinobacteria.

    PubMed

    Raveh, Avi; Delekta, Phillip C; Dobry, Craig J; Peng, Weiping; Schultz, Pamela J; Blakely, Pennelope K; Tai, Andrew W; Matainaho, Teatulohi; Irani, David N; Sherman, David H; Miller, David J

    2013-01-01

    Natural products provide a vast array of chemical structures to explore in the discovery of new medicines. Although secondary metabolites produced by microbes have been developed to treat a variety of diseases, including bacterial and fungal infections, to date there has been limited investigation of natural products with antiviral activity. In this report, we used a phenotypic cell-based replicon assay coupled with an iterative biochemical fractionation process to identify, purify, and characterize antiviral compounds produced by marine microbes. We isolated a compound from Streptomyces kaviengensis, a novel actinomycetes isolated from marine sediments obtained off the coast of New Ireland, Papua New Guinea, which we identified as antimycin A1a. This compound displays potent activity against western equine encephalitis virus in cultured cells with half-maximal inhibitory concentrations of less than 4 nM and a selectivity index of greater than 550. Our efforts also revealed that several antimycin A analogues display antiviral activity, and mechanism of action studies confirmed that these Streptomyces-derived secondary metabolites function by inhibiting the cellular mitochondrial electron transport chain, thereby suppressing de novo pyrimidine synthesis. Furthermore, we found that antimycin A functions as a broad spectrum agent with activity against a wide range of RNA viruses in cultured cells, including members of the Togaviridae, Flaviviridae, Bunyaviridae, Picornaviridae, and Paramyxoviridae families. Finally, we demonstrate that antimycin A reduces central nervous system viral titers, improves clinical disease severity, and enhances survival in mice given a lethal challenge with western equine encephalitis virus. Our results provide conclusive validation for using natural product resources derived from marine microbes as source material for antiviral drug discovery, and they indicate that host mitochondrial electron transport is a viable target for the continued development of broadly active antiviral compounds.

  19. Discovery of Potent Broad Spectrum Antivirals Derived from Marine Actinobacteria

    PubMed Central

    Raveh, Avi; Delekta, Phillip C.; Dobry, Craig J.; Peng, Weiping; Schultz, Pamela J.; Blakely, Pennelope K.; Tai, Andrew W.; Matainaho, Teatulohi; Irani, David N.; Sherman, David H.; Miller, David J.

    2013-01-01

    Natural products provide a vast array of chemical structures to explore in the discovery of new medicines. Although secondary metabolites produced by microbes have been developed to treat a variety of diseases, including bacterial and fungal infections, to date there has been limited investigation of natural products with antiviral activity. In this report, we used a phenotypic cell-based replicon assay coupled with an iterative biochemical fractionation process to identify, purify, and characterize antiviral compounds produced by marine microbes. We isolated a compound from Streptomyces kaviengensis, a novel actinomycetes isolated from marine sediments obtained off the coast of New Ireland, Papua New Guinea, which we identified as antimycin A1a. This compound displays potent activity against western equine encephalitis virus in cultured cells with half-maximal inhibitory concentrations of less than 4 nM and a selectivity index of greater than 550. Our efforts also revealed that several antimycin A analogues display antiviral activity, and mechanism of action studies confirmed that these Streptomyces-derived secondary metabolites function by inhibiting the cellular mitochondrial electron transport chain, thereby suppressing de novo pyrimidine synthesis. Furthermore, we found that antimycin A functions as a broad spectrum agent with activity against a wide range of RNA viruses in cultured cells, including members of the Togaviridae, Flaviviridae, Bunyaviridae, Picornaviridae, and Paramyxoviridae families. Finally, we demonstrate that antimycin A reduces central nervous system viral titers, improves clinical disease severity, and enhances survival in mice given a lethal challenge with western equine encephalitis virus. Our results provide conclusive validation for using natural product resources derived from marine microbes as source material for antiviral drug discovery, and they indicate that host mitochondrial electron transport is a viable target for the continued development of broadly active antiviral compounds. PMID:24349254

  20. Segregation and transmission of mitochondrial markers in fusion products of the asporogenous yeast Torulopsis glabrata.

    PubMed

    Sriprakash, K S; Batum, C

    1981-09-01

    Using a protoplast fusion technique we have been able to locate to the mitochondrial genome of the asporogenous yeast Torulopsis glabrata mutations conferring resistance to oligomycin, antimycin and diuron. When two strains differing in the size of their mtDNAs were fused the mitochondrial markers from the parent with the larger mtDNA (71-91) were transmitted predominantly among the fusion products. Both genetical and physical evidence support the occurrence of recombination in T. glabrata mitochondrial genome. Segregation of the mitochondrial genome appears to take place before the separation of the first bud from the fusion product.

  1. Evidence of ROS generation by mitochondria in cells with impaired electron transport chain and mitochondrial DNA damage.

    PubMed

    Indo, Hiroko P; Davidson, Mercy; Yen, Hsiu-Chuan; Suenaga, Shigeaki; Tomita, Kazuo; Nishii, Takeshi; Higuchi, Masahiro; Koga, Yasutoshi; Ozawa, Toshihiko; Majima, Hideyuki J

    2007-01-01

    Mitochondrial damage is a well known cause of mitochondria-related diseases. A major mechanism underlying the development of mitochondria-related diseases is thought to be an increase in intracellular oxidative stress produced by impairment of the mitochondrial electron transport chain (ETC). However, clear evidence of intracellular free radical generation has not been clearly provided for mitochondrial DNA (mtDNA)-damaged cells. In this study, using the novel fluorescence dye, 2-[6-(4'-hydroxy)phenoxy-3H-xanthen-3-on-9-yl]benzoic acid (HPF), which was designed to detect hydroxyl radicals (*OH), intracellular free radical formation was examined in 143B cells (parental cells), 143B-rho(0) cells (mtDNA-lacking cells), 87 wt (cybrid), and cybrids of 4977-bp mtDNA deletion (common deletion) cells containing the deletion with 0%, 5%, 50% and >99% frequency (HeLacot, BH5, BH50 and BH3.12, respectively), using a laser confocal microscope detection method. ETC inhibitors (rotenone, 3-nitropropionic acid, thenoyltrifluoroacetone, antimycin A and sodium cyanide) were also tested to determine whether inhibitor treatment increased intracellular reactive oxygen species (ROS) generation. A significant increase in ROS for 143B-rho(0) cells was observed compared with 143B cells. However, for the 87 wt cybrid, no increase was observed. An increase was also observed in the mtDNA-deleted cells BH50 and BH3.12. The ETC inhibitors increased intracellular ROS in both 143B and 143B-rho(0) cells. Furthermore, in every fluorescence image, the fluorescence dye appeared localized around the nuclei. To clarify the localization, we double-stained cells with the dye and MitoTracker Red. The resulting fluorescence was consistently located in mitochondria. Furthermore, manganese superoxide dismutase (MnSOD) cDNA-transfected cells had decreased ROS. These results suggest that more ROS are generated from mitochondria in ETC-inhibited and mtDNA-damaged cells, which have impaired ETC.

  2. Mitochondrial Impairment as a Key Factor for the Lack of Attachment after Cold Storage of Hepatocyte Suspensions

    PubMed Central

    Pless-Petig, Gesine; Walter, Björn; Bienholz, Anja

    2018-01-01

    Isolated primary hepatocytes, which are widely used for pharmacological and clinical purposes, usually undergo certain periods of cold storage in suspension during processing. While adherent hepatocytes were shown previously to suffer iron-dependent cell death during cold (4 °C) storage and early rewarming, we previously found little iron-dependent hepatocyte death in suspension but severely decreased attachment ability unless iron chelators were added. Here, we focus on the role of mitochondrial impairment in this nonattachment of hepatocyte suspensions. Rat hepatocyte suspensions were stored in a chloride-poor, glycine-containing cold storage solution with and without iron chelators at 4 °C. After 1 wk of cold storage in the basic cold storage solution, cell viability in suspension was unchanged, while cell attachment was decreased by >80%. In the stored cells, a loss of mitochondrial membrane potential (MMP), a decrease in adenosine triphosphate (ATP) content (2 ± 2 nmol/106 cells after cold storage, 5 ± 3 nmol/106 cells after rewarming vs. control 29 ± 6 nmol/106 cells), and a decrease in oxygen consumption (101 ± 59 pmol sec−1 per 106 cells after rewarming vs. control 232 ± 83 pmol sec−1 per 106 cells) were observed. Addition of iron chelators to the cold storage solution increased cell attachment to 53% ± 20% and protected against loss of MMP, and cells were able to partially regenerate ATP during rewarming (15 ± 10 nmol/106 cells). Increased attachment could also be achieved by addition of the inhibitor combination of mitochondrial permeability transition, trifluoperazine + fructose. Attached hepatocytes displayed normal MMP and mitochondrial morphology. Additional experiments with freshly isolated hepatocytes confirmed that impaired energy production—as elicited by an inhibitor of the respiratory chain, antimycin A—can decrease cell attachment without decreasing viability. Taken together, these results suggest that mitochondrial impairment with subsequent energy deficiency is a key factor for the lack of attachment of cold-stored hepatocyte suspensions. PMID:29390882

  3. Mitochondrial Impairment as a Key Factor for the Lack of Attachment after Cold Storage of Hepatocyte Suspensions.

    PubMed

    Pless-Petig, Gesine; Walter, Björn; Bienholz, Anja; Rauen, Ursula

    2017-12-01

    Isolated primary hepatocytes, which are widely used for pharmacological and clinical purposes, usually undergo certain periods of cold storage in suspension during processing. While adherent hepatocytes were shown previously to suffer iron-dependent cell death during cold (4 °C) storage and early rewarming, we previously found little iron-dependent hepatocyte death in suspension but severely decreased attachment ability unless iron chelators were added. Here, we focus on the role of mitochondrial impairment in this nonattachment of hepatocyte suspensions. Rat hepatocyte suspensions were stored in a chloride-poor, glycine-containing cold storage solution with and without iron chelators at 4 °C. After 1 wk of cold storage in the basic cold storage solution, cell viability in suspension was unchanged, while cell attachment was decreased by >80%. In the stored cells, a loss of mitochondrial membrane potential (MMP), a decrease in adenosine triphosphate (ATP) content (2 ± 2 nmol/10 6 cells after cold storage, 5 ± 3 nmol/10 6 cells after rewarming vs. control 29 ± 6 nmol/10 6 cells), and a decrease in oxygen consumption (101 ± 59 pmol sec -1 per 10 6 cells after rewarming vs. control 232 ± 83 pmol sec -1 per 10 6 cells) were observed. Addition of iron chelators to the cold storage solution increased cell attachment to 53% ± 20% and protected against loss of MMP, and cells were able to partially regenerate ATP during rewarming (15 ± 10 nmol/10 6 cells). Increased attachment could also be achieved by addition of the inhibitor combination of mitochondrial permeability transition, trifluoperazine + fructose. Attached hepatocytes displayed normal MMP and mitochondrial morphology. Additional experiments with freshly isolated hepatocytes confirmed that impaired energy production-as elicited by an inhibitor of the respiratory chain, antimycin A-can decrease cell attachment without decreasing viability. Taken together, these results suggest that mitochondrial impairment with subsequent energy deficiency is a key factor for the lack of attachment of cold-stored hepatocyte suspensions.

  4. A Functional Antagonistic Relationship between Auxin and Mitochondrial Retrograde Signaling Regulates Alternative Oxidase1a Expression in Arabidopsis1[W][OPEN

    PubMed Central

    Ivanova, Aneta; Law, Simon R.; Narsai, Reena; Duncan, Owen; Lee, Jae-Hoon; Zhang, Botao; Van Aken, Olivier; Radomiljac, Jordan D.; van der Merwe, Margaretha; Yi, KeKe; Whelan, James

    2014-01-01

    The perception and integration of stress stimuli with that of mitochondrion function are important during periods of perturbed cellular homeostasis. In a continuous effort to delineate these mitochondrial/stress-interacting networks, forward genetic screens using the mitochondrial stress response marker alternative oxidase 1a (AOX1a) provide a useful molecular tool to identify and characterize regulators of mitochondrial stress signaling (referred to as regulators of alternative oxidase 1a [RAOs] components). In this study, we reveal that mutations in genes coding for proteins associated with auxin transport and distribution resulted in a greater induction of AOX1a in terms of magnitude and longevity. Three independent mutants for polarized auxin transport, rao3/big, rao4/pin-formed1, and rao5/multidrug-resistance1/abcb19, as well as the Myb transcription factor rao6/asymmetric leaves1 (that displays altered auxin patterns) were identified and resulted in an acute sensitivity toward mitochondrial dysfunction. Induction of the AOX1a reporter system could be inhibited by the application of auxin analogs or reciprocally potentiated by blocking auxin transport. Promoter activation studies with AOX1a::GUS and DR5::GUS lines further confirmed a clear antagonistic relationship between the spatial distribution of mitochondrial stress and auxin response kinetics, respectively. Genome-wide transcriptome analyses revealed that mitochondrial stress stimuli, such as antimycin A, caused a transient suppression of auxin signaling and conversely, that auxin treatment repressed a part of the response to antimycin A treatment, including AOX1a induction. We conclude that mitochondrial stress signaling and auxin signaling are reciprocally regulated, balancing growth and stress response(s). PMID:24820025

  5. Association between ROS production, swelling and the respirasome integrity in cardiac mitochondria.

    PubMed

    Jang, Sehwan; Javadov, Sabzali

    2017-09-15

    Although mitochondrial Ca 2+ overload and ROS production play a critical role in mitochondria-mediated cell death, a cause-effect relationship between them remains elusive. This study elucidated the crosstalk between mitochondrial swelling, ROS production, and electron transfer chain (ETC) supercomplexes in rat heart mitochondria in response to Ca 2+ and tert-butyl hydroperoxide (TBH), a lipid-soluble organic peroxide. Results showed that ROS production induced by TBH was significantly increased in the presence of Ca 2+ in a dose-dependent manner. TBH markedly inhibited the state 3 respiration rate with no effect on the mitochondrial swelling. Ca 2+ exerted a slight effect on mitochondrial respiration that was greatly aggravated by TBH. Analysis of supercomplexes revealed a minor difference in the presence of TBH and/or Ca 2+ . However, incubation of mitochondria in the presence of high Ca 2+ (1 mM) or inhibitors of ETC complexes (rotenone and antimycin A) induced disintegration of the main supercomplex, respirasome. Thus, PTP-dependent swelling of mitochondria solely depends on Ca 2+ but not ROS. TBH has no effect on the respirasome while Ca 2+ induces disintegration of the supercomplex only at a high concentration. Intactness of individual ETC complexes I and III is important for maintenance of the structural integrity of the respirasome. Copyright © 2017 Elsevier Inc. All rights reserved.

  6. Coordinate regulation of cytochrome and alternative pathway respiration in tobacco.

    PubMed

    Vanlerberghe, G C; McIntosh, L

    1992-12-01

    In suspension cells of NT1 tobacco (Nicotiana tabacum L. cv bright yellow), inhibition of the cytochrome pathway of respiration with antimycin A induced a large increase in the capacity of the alternative pathway over a period of approximately 12 h, as confirmed in both whole cells and isolated mitochondria. The increase in alternative pathway capacity required de novo RNA and protein synthesis and correlated closely with the increase of a 35-kD alternative oxidase protein. When the cytochrome pathway of intact cells was inhibited by antimycin A, respiration proceeded exclusively through the alternative pathway, reached rates significantly higher than before antimycin A addition, and was not stimulated by p-trifluoromethoxycarbonylcyanide (FCCP). When inhibition of the cytochrome pathway was relieved, alternative pathway capacity and the level of the 35-kD alternative oxidase protein declined. Respiration rate also declined and could once again be stimulated by FCCP. These observations show that the capacities of the mitochondrial electron transport pathways can be regulated in a coordinate fashion.

  7. Effect of hexavalent chromium on electron leakage of respiratory chain in mitochondria isolated from rat liver.

    PubMed

    Xie, Ying; Zhong, Caigao; Zeng, Ming; Guan, Lan; Luo, Lei

    2013-01-01

    In the present study, we explored reactive axygen species (ROS) production in mitochondria, the mechanism of hexavalent chromium (Cr(VI)) hepatotoxicity, and the role of protection by GSH. Intact mitochondria were isolated from rat liver tissues and mitochondrial basal respiratory rates of NADH and FADH2 respiratory chains were determined. Mitochondria were treated with Cr(VI), GSH and several complex inhibitors. Mitochondria energized by glutamate/malate were separately or jointly treated with Rotenone (Rot), diphenyleneiodonium (DPI) and antimycinA (Ant), while mitochondria energized by succinate were separately or jointly treated with Rot, DPI ' thenoyltrifluoroacetone (TTFA) and Ant. Cr(VI) concentration-dependently induced ROS production in the NADH and FADH2 respiratory chain in liver mitochondria. Basal respiratory rate of the mitochondrial FADH2 respiratory chain was significantly higher than that of NADH respiratory chain. Hepatic mitochondrial electron leakage induced by Cr(VI) from NADH respiratory chain were mainly from ubiquinone binding sites of complex I and complex III. Treatment with 50µM Cr(VI) enhances forward movement of electrons through FADH2 respiratory chain and leaking through the ubiquinone binding site of complex III. Moreover, the protective effect of GSH on liver mitochondria electron leakage is through removing excess H2O2 and reducing total ROS. Copyright © 2013 S. Karger AG, Basel.

  8. A new inhibitor of the CoQ-dependent redox reactions in mitochondria and chromatophores.

    PubMed

    Kolesova, G M; Belyakova, M M; Mamedov, M D; Yaguzhinsky, L S

    2000-05-01

    The effects of 3,4-dimethoxyphenyl-1-amylketone (DPK) on the CoQ-dependent stages of the electron transport systems in mitochondria and Rhodobacter sphaeroides chromatophores were studied. The two systems contain the complete Q-cycle. The sensitivities of the Q-cycles of two electron transport systems to antimycin, myxothiazole, and other inhibitors are virtually indistinguishable from one another, but these systems have different CoQ reduction processes. The dependence of the inhibition extent of the mitochondrial succinate oxidase on the DPK concentration was studied. The effective concentration of DPK is 0.5-2.5 mM. The presence of the point of inflection in the titration curve indicates that there are two mechanisms of inhibition. The effects of DPK on the extent of reduction of cytochromes b and c1 + c in mitochondria as well as on the electrogenic stages of the Q-cycle in chromatophores were examined. The experiments showed that DPK prevents three CoQ-dependent reactions related to the Q-cycle: electron transport between succinate dehydrogenase and the Q-cycle in mitochondria and functioning of the Z (o) and C (i) sites of the Q-cycle in chromatophores. DPK does not affect the electrogenic reaction associated with protonation of the secondary quinone acceptor QB in the reaction center of chromatophores. The mitochondrial NADH-dehydrogenase is inhibited by DPK at lower but comparable concentrations (C50 = 0.2 mM).

  9. Isolation of Phaffia rhodozyma Mutants with Increased Astaxanthin Content

    PubMed Central

    An, Gil-Hwan; Schuman, Donald B.; Johnson, Eric A.

    1989-01-01

    Plating of the astaxanthin-producing yeast Phaffia rhodozyma onto yeast-malt agar containing 50 μM antimycin A gave rise to colonies of unusual morphology, characterized by a nonpigmented lower smooth surface that developed highly pigmented vertical papillae after 1 to 2 months. Isolation and purification of the pigmented papillae, followed by testing for pigment production in shake flasks, demonstrated that several antimycin isolates were increased two- to fivefold in astaxanthin content compared with the parental natural isolate (UCD-FST 67-385). One of the antimycin strains (ant-1) and a nitrosoguanidine derivative of ant-1 (ant-1-4) produced considerably more astaxanthin than the parent (ant-1 had 800 to 900 μg/g; ant-1-4 had 900 to 1,300 μg/g; and 67-385 had 300 to 450 μg/g). The mutant strains were compared physiologically with the parent. The antimycin mutants grew slower on ammonia, glutamate, or glutamine as nitrogen sources compared with the natural isolate and also had lower cell yields on several carbon sources. Although isolated on antimycin plates, they were found to be more susceptible to antimycin A, apparently owing to the spatial separation of the papillae from the agar. They were also more susceptible than the parent to the respiratory inhibitor thenoyltrifluoroacetone and were slightly more susceptible to cyanide, but did not differ from the natural isolate in susceptibility to azide. The antimycin-derived strains were also killed faster than the parent by hydrogen peroxide. The carotenoid compositions of the parent and the antimycin-derived strains were similar to those previously determined in the type strain (UCD-FST 67-210) except that two carotenoids not previously found in the type strain were present in increased quantities in the antimycin mutants and phoenicoxanthin was a minor component. The chemical properties of the unknown carotenoids suggested that the strains isolated on antimycin agar tended to oxygenate and desaturate carotene precursors to a greater extent than the parent. The physiology of the antimycin isolates and the known specificity of antimycin for cytochrome b in the respiratory chain suggests that alteration of cytochrome b or cytochrome P-450 components involved in oxygenation and desaturation of carotenes in mitochondria are affected, which results in increased astaxanthin production. These astaxanthin-overproducing mutants and more highly pigmented derivative strains could be useful in providing a natural source of astaxanthin for the pen-reared-salmon industry or for other farmed animals that contain astaxanthin as their principal carotenoid. Images PMID:16347815

  10. Evidence for the role of oxidative stress in the acetylation of histone H3 by ethanol in rat hepatocytes

    PubMed Central

    Choudhury, Mahua; Park, Pil-Hoon; Jackson, Daniel; Shukla, Shivendra D.

    2010-01-01

    The relationship between ethanol induced oxidative stress and acetylation of histone H3 at lysine 9 (H3AcK9) remains unknown and was therefore investigated in primary cultures of rat hepatocytes. Cells were treated with ethanol and a select group of pharmacological agents and the status of H3AcK9 and reactive oxygen species (ROS) were monitored. When hepatocytes were exposed to ethanol (50 mM, 24 hr) in the presence of N-acetyl cystein (ROS reducer) or dietary antioxidants (quercetin, resveratrol), or NADPH oxidase inhibitor apocynin, ethanol induced increases in ROS and H3AcK9, both were significantly reduced. On the other hand, l-buthionine-sulfoximine (ROS inducer) and inhibitor of mitochondrial complex I (rotenone) and III (antimycin) increased ethanol induced H3AcK9 (p<0.01). Oxidative stress also affected ethanol induced alcohol dehydrogenase 1 (ADH1) mRNA expression. These results demonstrate for the first time that oxidative stress is involved in the ethanol induced histone H3 acetylation in hepatocytes. PMID:20705415

  11. Evidence for the role of oxidative stress in the acetylation of histone H3 by ethanol in rat hepatocytes.

    PubMed

    Choudhury, Mahua; Park, Pil-Hoon; Jackson, Daniel; Shukla, Shivendra D

    2010-09-01

    The relationship between ethanol-induced oxidative stress and acetylation of histone H3 at lysine 9 (H3AcK9) remains unknown and was therefore investigated in primary cultures of rat hepatocytes. Cells were treated with ethanol, and a select group of pharmacological agents and the status of H3AcK9 and reactive oxygen species (ROS) were monitored. Pretreatment of hepatocytes with N-acetyl cystein (ROS reducer), or dietary antioxidants (quercetin, reserveratrol), or NADPH (reduced nicotinamide adenine dinucleotide phosphate) oxidase inhibitor apocynin, significantly reduced ethanol (50 mM, 24 h) induced increases in ROS and H3AcK9. In contrast, l-buthionine sulfoximine (ROS inducer) and inhibitor of mitochondrial complexes I (rotenone) and III (antimycin) increased ethanol-induced H3AcK9 (P<.01). Oxidative stress also affected ethanol-induced alcohol dehydrogenase 1 mRNA expression. These results demonstrate for the first time that oxidative stress is involved in the ethanol-induced histone H3 acetylation in hepatocytes. Copyright © 2010 Elsevier Inc. All rights reserved.

  12. Decreased NAA in gray matter is correlated with decreased availability of acetate in white matter in postmortem multiple sclerosis cortex.

    PubMed

    Li, S; Clements, R; Sulak, M; Gregory, R; Freeman, E; McDonough, J

    2013-11-01

    Multiple sclerosis (MS) is an inflammatory neurodegenerative disease of the central nervous system (CNS) which leads to progressive neurological disability. Our previous studies have demonstrated mitochondrial involvement in MS cortical pathology and others have documented decreased levels of the neuronal mitochondrial metabolite N-acetyl aspartate (NAA) in the MS brain. While NAA is synthesized in neurons, it is broken down in oligodendrocytes into aspartate and acetate. The resulting acetate is incorporated into myelin lipids, linking neuronal mitochondrial function to oligodendrocyte-mediated elaboration of myelin lipids in the CNS. In the present study we show that treating human SH-SY5Y neuroblastoma cells with the electron transport chain inhibitor antimycin A decreased levels of NAA as measured by HPLC. To better understand the significance of the relationship between mitochondrial function and levels of NAA and its breakdown product acetate on MS pathology we then quantitated the levels of NAA and acetate in MS and control postmortem tissue blocks. Regardless of lesion status, we observed that levels of NAA were decreased 25 and 32 % in gray matter from parietal and motor cortex in MS, respectively, compared to controls. Acetate levels in adjacent white matter mirrored these decreases as evidenced by the 36 and 45 % reduction in acetate obtained from parietal and motor cortices. These data suggest a novel mechanism whereby mitochondrial dysfunction and reduced NAA levels in neurons may result in compromised myelination by oligodendrocytes due to decreased availability of acetate necessary for the synthesis of myelin lipids.

  13. Decreased NAA in Gray Matter is Correlated with Decreased Availability of Acetate in White Matter in Postmortem Multiple Sclerosis Cortex

    PubMed Central

    Li, S.; Clements, R.; Sulak, M.; Gregory, R.; Freeman, E.; McDonough, J.

    2013-01-01

    Multiple sclerosis (MS) is an inflammatory neurodegenerative disease of the central nervous system (CNS) which leads to progressive neurological disability. Our previous studies have demonstrated mitochondrial involvement in MS cortical pathology and others have documented decreased levels of the neuronal mitochondrial metabolite N-acetyl aspartate (NAA) in the MS brain. While NAA is synthesized in neurons, it is broken down in oligodendrocytes into aspartate and acetate. The resulting acetate is incorporated into myelin lipids, linking neuronal mitochondrial function to oligodendrocyte-mediated elaboration of myelin lipids in the CNS. In the present study we show that treating human SH-SY5Y neuroblastoma cells with the electron transport chain inhibitor antimycin A decreased levels of NAA as measured by HPLC. To better understand the significance of the relationship between mitochondrial function and levels of NAA and its breakdown product acetate on MS pathology we then quantitated the levels of NAA and acetate in MS and control postmortem tissue blocks. Regardless of lesion status, we observed that levels of NAA were decreased 25 and 32 % in gray matter from parietal and motor cortex in MS, respectively, compared to controls. Acetate levels in adjacent white matter mirrored these decreases as evidenced by the 36 and 45 % reduction in acetate obtained from parietal and motor cortices. These data suggest a novel mechanism whereby mitochondrial dysfunction and reduced NAA levels in neurons may result in compromised myelination by oligodendrocytes due to decreased availability of acetate necessary for the synthesis of myelin lipids. PMID:24078261

  14. Glucose, Lactate and Glutamine but not Glutamate Support Depolarization-Induced Increased Respiration in Isolated Nerve Terminals.

    PubMed

    Hohnholt, Michaela C; Andersen, Vibe H; Bak, Lasse K; Waagepetersen, Helle S

    2017-01-01

    Synaptosomes prepared from various aged and gene modified experimental animals constitute a valuable model system to study pre-synaptic mechanisms. Synaptosomes were isolated from whole brain and the XFe96 extracellular flux analyzer (Seahorse Bioscience) was used to study mitochondrial respiration and glycolytic rate in presence of different substrates. Mitochondrial function was tested by sequentially exposure of the synaptosomes to the ATP synthase inhibitor, oligomycin, the uncoupler FCCP (carbonyl cyanide-4-(trifluoromethoxy) phenylhydrazone) and the electron transport chain inhibitors rotenone and antimycin A. The synaptosomes exhibited intense respiratory activity using glucose as substrate. The FCCP-dependent respiration was significantly higher with 10 mM glucose compared to 1 mM glucose. Synaptosomes also readily used pyruvate as substrate, which elevated basal respiration, activity-dependent respiration induced by veratridine and the respiratory response to uncoupling compared to that obtained with glucose as substrate. Also lactate was used as substrate by synaptosomes but in contrast to pyruvate, mitochondrial lactate mediated respiration was comparable to respiration using glucose as substrate. Synaptosomal respiration using glutamate and glutamine as substrates was significantly higher compared to basal respiration, whereas oligomycin-dependent and FCCP-induced respiration was lower compared to the responses obtained in the presence of glucose as substrate. We provide evidence that synaptosomes are able to use besides glucose and pyruvate also the substrates lactate, glutamate and glutamine to support their basal respiration. Veratridine was found to increase respiration supported by glucose, pyruvate, lactate and glutamine and FCCP was found to increase respiration supported by glucose, pyruvate and lactate. This was not the case when glutamate was the only energy substrate.

  15. Mitochondrial-derived hydrogen peroxide inhibits relaxation of bovine coronary arterial smooth muscle to hypoxia through stimulation of ERK MAP kinase.

    PubMed

    Gao, Qun; Zhao, Xiangmin; Ahmad, Mansoor; Wolin, Michael S

    2009-12-01

    Mitochondrial reactive oxygen species (ROS) are potentially important in vascular oxygen-sensing mechanisms because hypoxia appears to be a stimulus for mitochondrial ROS generation; however, scavenging of endogenous ROS does not alter relaxation of endothelium-denuded bovine coronary arteries (BCA) to hypoxia. The purpose of this study was to investigate the influence of increasing mitochondrial ROS on the relaxation of BCA to hypoxia. Increasing mitochondrial superoxide with inhibitors of electron transport (10 microM rotenone and antimycin) and by opening mitochondrial ATP-dependent K+ channels with 100 microM diazoxide were observed in this study to attenuate relaxation of BCA precontracted with 30 mM KCl to hypoxia by 68-76% and 38%, respectively. This effect of rotenone is not prevented by inhibiting NADPH oxidase (Nox) activation or scavenging superoxide with Peg-SOD; however, it is reversed 85% and 26% by increasing the consumption of intracellular peroxide by 0.1 mM ebselen and 32.5 U/ml Peg-catalase. Because inhibition of extracellular signal-regulated kinase (ERK) mitogen-activated protein (MAP) kinase (10 microM PD-98059), but not src kinase or rho kinase, also reverses the effects of rotenone by 69%, the peroxide-elicited force-enhancing effects of ERK appear to be attenuating the response to hypoxia. Rotenone increased the phosphorylation of ERK (by 163%). Activation of ERK in BCA with 0.1 mM peroxide or endogenous peroxide generated by stimulating Nox2 with a stretch treatment or contraction with 100 nM U-46619 also attenuated relaxation to hypoxia. Thus coronary arterial relaxation to hypoxia may be attenuated by pathophysiological conditions associated with increased peroxide generation by mitochondria or other sources that stimulate ERK.

  16. Occurrence of the malate-aspartate shuttle in various tumor types.

    PubMed

    Greenhouse, W V; Lehninger, A L

    1976-04-01

    The activity of the malate-aspartate shuttle for the reoxidation of cytoplasmic reduced nicotinamide adenine dinucleotide (NADH) by mitochondria was assessed in six lines of rodent ascites tumor cells (two strains of Ehrlich ascites carcinoma, Krebs II carcinoma, Novikoff hepatoma, AS-30D hepatoma, and L1210 mouse leukemia). All the tumor cells examined showed mitochondrial reoxidation of cytoplasmic NADH, as evidenced by the accumulation of pyruvate when the cells were incubated aerobically with L-lactate. Reoxidation of cytoplasmic NADH thus generated was completely inhibited by the transaminase inhibitor aminooxyacetate. The involvement of the respiratory chain in the reoxidation of cytoplasmic NADH was demonstrated by the action of cyanide, rotenone, and antimycin A, which strongly inhibited the formation of pyruvate from added L-lactate. Compounds that inhibit the carrier-mediated entry of malate into mitochondria, such as butylmalonate, benzenetricarboxylate, and iodobenzylmalonate, also inhibited the accumulation of pyruvate from added L-lactate by the tumor cells. The maximal rate of the malate-aspartate shuttle was established by addtion of arsenite to inhibit the mitochondrial oxidation of the pyruvate formed from added lactate. The capacity of the various tumor lines for the reoxidation of cytoplasmic NADH via the malate-aspartate shuttle approaches 20% of the total respiratory rate of the cells and thus appears to be sufficient to account for the mitochondrial reoxidation of that fraction of glycolytic NADH not reoxidized by pyruvate and lactate dehydrognenase in the cytoplasm.

  17. Characterization of oxidative phosphorylation in the colorless chlorophyte Polytomella sp. Its mitochondrial respiratory chain lacks a plant-like alternative oxidase.

    PubMed

    Reyes-Prieto, Adrián; El-Hafidi, Mohammed; Moreno-Sánchez, Rafael; González-Halphen, Diego

    2002-07-01

    The presence of an alternative oxidase (AOX) in Polytomella sp., a colorless relative of Chlamydomonas reinhardtii, was explored. Oxygen uptake in Polytomella sp. mitochondria was inhibited by KCN (94%) or antimycin (96%), and the remaining cyanide-resistant respiration was not blocked by the AOX inhibitors salicylhydroxamic acid (SHAM) or n-propylgallate. No stimulation of an AOX activity was found upon addition of either pyruvate, alpha-ketoglutarate, or AMP, or by treatment with DTT. An antibody raised against C. reinhardtii AOX did not recognized any polypeptide band of Polytomella sp. mitochondria in Western blots. Also, PCR experiments and Southern blot analysis failed to identify an Aox gene in this colorless alga. Finally, KCN exposure of cell cultures failed to stimulate an AOX activity. Nevertheless, KCN exposure of Polytomella sp. cells induced diminished mitochondrial respiration (20%) and apparent changes in cytochrome c oxidase affinity towards cyanide. KCN-adapted cells exhibited a significant increase of a-type cytochromes, suggesting accumulation of inactive forms of cytochrome c oxidase. Another effect of KCN exposure was the reduction of the protein/fatty acid ratio of mitochondrial membranes, which may affect the observed respiratory activity. We conclude that Polytomella lacks a plant-like AOX, and that its corresponding gene was probably lost during the divergence of this colorless genus from its close photosynthetic relatives.

  18. Two separate pathways for d-lactate oxidation by Saccharomyces cerevisiae mitochondria which differ in energy production and carrier involvement.

    PubMed

    Pallotta, Maria Luigia; Valenti, Daniela; Iacovino, Michelina; Passarella, Salvatore

    2004-02-15

    In this work we looked at whether and how mitochondria isolated from Saccharomyces cerevisiae (SCM) oxidize d-lactate. We found that: (1). externally added d-lactate causes oxygen uptake by SCM with P/O ratio equal to 1.5; in the presence of antimycin A (AA), P/O ratio was 1.8, differently in the presence of the non-penetrant alpha-cyanocinnamate (alpha-CCN-) no P/O ratio could be measured. Consistently, mitochondrial electrical membrane potential (deltapsi) generation was found, due to externally added d-lactate in the presence of antimycin A, but not of alpha-CCN-. (2). SCM oxidize d-lactate in two different manners: (i). via inner membrane d-lactate dehydrogenase which leads to d-lactate oxidation without driving deltapsi generation and ATP synthesis and (ii). via the matrix d-lactate dehydrogenase, which drives deltapsi generation and ATP synthesis by using taken up d-lactate. (3). Pyruvate newly synthesised in the mitochondrial matrix is exported via the novel d-lactate/pyruvate antiporter. d-Lactate/pyruvate antiport proved to regulate the rate of pyruvate efflux in vitro. (4). The existence of the d-lactate/H+ symporter is also proposed as shown by mitochondrial swelling. The d-lactate carriers and d-lactate dehydrogenases could account for the removal of the toxic methylglyoxal from cytosol, as well as for the d-lactate-dependent gluconeogenesis.

  19. Rapid mitochondrial adjustments in response to short-term hypoxia and re-oxygenation in the Pacific oyster, Crassostrea gigas.

    PubMed

    Sussarellu, Rossana; Dudognon, Tony; Fabioux, Caroline; Soudant, Philippe; Moraga, Dario; Kraffe, Edouard

    2013-05-01

    As oxygen concentrations in marine coastal habitats can fluctuate rapidly and drastically, sessile marine organisms such as the oyster Crassostrea gigas can experience marked and rapid oxygen variations. In this study, we investigated the responses of oyster gill mitochondria to short-term hypoxia (3 and 12 h, at 1.7 mg O2 l(-1)) and subsequent re-oxygenation. Mitochondrial respiratory rates (states 3 and 4 stimulated by glutamate) and phosphorylation efficiency [respiratory control ratio (RCR) and the relationship between ADP and oxygen consumption (ADP/O)] were measured. Cytochrome c oxidase (CCO) activity and cytochrome concentrations (a, b, c1 and c) were measured to investigate the rearrangements of respiratory chain subunits. The potential implication of an alternative oxidase (AOX) was investigated using an inhibitor of the respiratory chain (antimycin A) and through gene expression analysis in gills and digestive gland. Results indicate a downregulation of mitochondrial capacity, with 60% inhibition of respiratory rates after 12 h of hypoxia. RCR remained stable, while ADP/O increased after 12 h of hypoxia and 1 h of re-oxygenation, suggesting increased phosphorylation efficiency. CCO showed a fast and remarkable increase of its catalytic activity only after 3 h of hypoxia. AOX mRNA levels showed similar patterns in gills and digestive gland, and were upregulated after 12 and 24 h of hypoxia and during re-oxygenation. Results suggest a set of controls regulating mitochondrial functions in response to oxygen fluctuations, and demonstrate the fast and extreme plasticity of oyster mitochondria in response to oxygen variations.

  20. Mangifera indica L. extract (Vimang) inhibits Fe2+-citrate-induced lipoperoxidation in isolated rat liver mitochondria.

    PubMed

    Pardo Andreu, Gilberto; Delgado, René; Velho, Jesus; Inada, Natalia M; Curti, Carlos; Vercesi, Anibal E

    2005-05-01

    The extract of Mangifera indica L. (Vimang) is able to prevent iron mediated mitochondrial damage by means of oxidation of reduced transition metals required for the production of superoxide and hydroxyl radicals and direct free radical scavenging activity. In this study we report for the first time the iron-complexing ability of Vimang as a primary mechanism for protection of rat liver mitochondria against Fe2+ -citrate-induced lipoperoxidation. Thiobarbituric acid reactive substances (TBARS) and antimycin A-insensitive oxygen consumption were used as quantitative measures of lipoperoxidation. Vimang at 10 microM mangiferin concentration equivalent induced near-full protection against 50 microM Fe2+ -citrate-induced mitochondrial swelling and loss of mitochondrial transmembrane potential (DeltaPsi). The IC50 value for Vimang protection against Fe2+ -citrate-induced mitochondrial TBARS formation (7.89+/-1.19 microM) was around 10 times lower than that for tert-butylhydroperoxide mitochondrial induction of TBARS formation. The extract also inhibited the iron citrate induction of mitochondrial antimycin A-insensitive oxygen consumption, stimulated oxygen consumption due to Fe2+ autoxidation and prevented Fe3+ ascorbate reduction. The extracted polyphenolic compound, mainly mangiferin, could form a complex with Fe2+, accelerating Fe2+ oxidation and the formation of more stable Fe3+ -polyphenol complexes, unable to participate in Fenton-type reactions and lipoperoxidation propagation phase. The strong DPPH radical scavenging activity with an apparent IC50 of 2.45+/-0.08 microM suggests that besides its iron-complexing capacity, Vimang could also protect mitochondria from Fe2+ -citrate lipoperoxidation through direct free radical scavenging ability, mainly lipoperoxyl and alcoxyl radicals, acting as both a chain-breaking and iron-complexing antioxidant. These results are of pharmacological relevance since Vimang could be a potential candidate for antioxidant therapy in diseases related to abnormal intracellular iron distribution or iron overload.

  1. Association of cultured myotubes and fasting plasma metabolite profiles with mitochondrial dysfunction in type 2 diabetes subjects.

    PubMed

    Abu Bakar, Mohamad Hafizi; Sarmidi, Mohamad Roji

    2017-08-22

    Accumulating evidence implicates mitochondrial dysfunction-induced insulin resistance in skeletal muscle as the root cause for the greatest hallmarks of type 2 diabetes (T2D). However, the identification of specific metabolite-based markers linked to mitochondrial dysfunction in T2D has not been adequately addressed. Therefore, we sought to identify the markers-based metabolomics for mitochondrial dysfunction associated with T2D. First, a cellular disease model was established using human myotubes treated with antimycin A, an oxidative phosphorylation inhibitor. Non-targeted metabolomic profiling of intracellular-defined metabolites on the cultured myotubes with mitochondrial dysfunction was then determined. Further, a targeted MS-based metabolic profiling of fasting blood plasma from normal (n = 32) and T2D (n = 37) subjects in a cross-sectional study was verified. Multinomial logical regression analyses for defining the top 5% of the metabolites within a 95% group were employed to determine the differentiating metabolites. The myotubes with mitochondrial dysfunction exhibited insulin resistance, oxidative stress and inflammation with impaired insulin signalling activities. Four metabolic pathways were found to be strongly associated with mitochondrial dysfunction in the cultured myotubes. Metabolites derived from these pathways were validated in an independent pilot investigation of the fasting blood plasma of healthy and diseased subjects. Targeted metabolic analysis of the fasting blood plasma with specific baseline adjustment revealed 245 significant features based on orthogonal partial least square discriminant analysis (PLS-DA) with a p-value < 0.05. Among these features, 20 significant metabolites comprised primarily of branched chain and aromatic amino acids, glutamine, aminobutyric acid, hydroxyisobutyric acid, pyroglutamic acid, acylcarnitine species (acetylcarnitine, propionylcarnitine, dodecenoylcarnitine, tetradecenoylcarnitine hexadecadienoylcarnitine and oleylcarnitine), free fatty acids (palmitate, arachidonate, stearate and linoleate) and sphingomyelin (d18:2/16:0) were identified as predictive markers for mitochondrial dysfunction in T2D subjects. The current study illustrates how cellular metabolites provide potential signatures associated with the biochemical changes in the dysregulated body metabolism of diseased subjects. Our finding yields additional insights into the identification of robust biomarkers for T2D associated with mitochondrial dysfunction in cultured myotubes.

  2. Grape seed proanthocyanidin extract attenuates oxidant injury in cardiomyocytes.

    PubMed

    Shao, Zuo-Hui; Becker, Lance B; Vanden Hoek, Terry L; Schumacker, Paul T; Li, Chang-Qing; Zhao, Danhong; Wojcik, Kim; Anderson, Travis; Qin, Yimin; Dey, Lucy; Yuan, Chun-Su

    2003-06-01

    This study sought to test whether grape seed proanthocyanidin extract (GSPE) attenuates exogenous and endogenous oxidant stress induced in chick cardiomyocytes and whether this cytoprotection is mediated by PKC activation, mito K(ATP) channel opening, NO production, oxidant scavenging, or iron chelating effects. Cells were exposed to hydrogen peroxide (H(2)O(2)) (exogenous oxidant stress, 0.5mM) or antimycin A (endogenous oxidant stress, 100 micro M) for 2h following pretreatment with GSPE at various concentrations for 2h. Cells were also pretreated with GSPE or with inhibitors of PKC (chelerytherine), mito K(ATP) channel (5-hydroxydecanoate), nitric oxide synthase (nitro-L-arginine methyl ester) for 2h. Oxidant stress was measured by 2',7'-dichlorofluorescin diacetate and cell viability was assessed using propidium iodide. Free radical scavenging and iron chelating ability was tested in vitro. GSPE dose-dependently attenuated oxidant formation and significantly improved cell survival and contractile function. However, inhibitors of PKC, mito K(ATP) channel or NO synthase failed to abolish the protective action of GSPE during H(2)O(2) or antimycin A exposure. In vitro studies suggested that GSPE scavenges H(2)O(2), hydroxyl radical and superoxide, and may chelate iron. These results indicate that GSPE confers cardioprotection against exogenous H(2)O(2)- or antimycin A-induced oxidant injury. Its effect does not require PKC, mito K(ATP) channel, or NO synthase, presumably because it acts by reactive oxygen species scavenging and iron chelating directly.

  3. Mitochondria mediate tumor necrosis factor-alpha/NF-kappaB signaling in skeletal muscle myotubes

    NASA Technical Reports Server (NTRS)

    Li, Y. P.; Atkins, C. M.; Sweatt, J. D.; Reid, M. B.; Hamilton, S. L. (Principal Investigator)

    1999-01-01

    Tumor necrosis factor-alpha (TNF-alpha) is implicated in muscle atrophy and weakness associated with a variety of chronic diseases. Recently, we reported that TNF-alpha directly induces muscle protein degradation in differentiated skeletal muscle myotubes, where it rapidly activates nuclear factor kappaB (NF-kappaB). We also have found that protein loss induced by TNF-alpha is NF-kappaB dependent. In the present study, we analyzed the signaling pathway by which TNF-alpha activates NF-kappaB in myotubes differentiated from C2C12 and rat primary myoblasts. We found that activation of NF-kappaB by TNF-alpha was blocked by rotenone or amytal, inhibitors of complex I of the mitochondrial respiratory chain. On the other hand, antimycin A, an inhibitor of complex III, enhanced TNF-alpha activation of NK-kappaB. These results suggest a key role of mitochondria-derived reactive oxygen species (ROS) in mediating NF-kappaB activation in muscle. In addition, we found that TNF-alpha stimulated protein kinase C (PKC) activity. However, other signal transduction mediators including ceramide, Ca2+, phospholipase A2 (PLA2), and nitric oxide (NO) do not appear to be involved in the activation of NF-kappaB.

  4. Antioxidant potential of CORM-A1 and resveratrol during TNF-α/cycloheximide-induced oxidative stress and apoptosis in murine intestinal epithelial MODE-K cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Babu, Dinesh, E-mail: dinesh.babu@ugent.be; Leclercq, Georges; Goossens, Vera

    2015-10-15

    Targeting excessive production of reactive oxygen species (ROS) could be an effective therapeutic strategy to prevent oxidative stress-associated gastrointestinal inflammation. NADPH oxidase (NOX) and mitochondrial complexes (I and II) are the major sources of ROS production contributing to TNF-α/cycloheximide (CHX)-induced apoptosis in the mouse intestinal epithelial cell line, MODE-K. In the current study, the influence of a polyphenolic compound (resveratrol) and a water-soluble carbon monoxide (CO)-releasing molecule (CORM-A1) on the different sources of TNF-α/CHX-induced ROS production in MODE-K cells was assessed. This was compared with H{sub 2}O{sub 2}-, rotenone- or antimycin-A-induced ROS-generating systems. Intracellular total ROS, mitochondrial-derived ROS and mitochondrialmore » superoxide anion (O{sub 2}·{sup −}) production levels were assessed. Additionally, the influence on TNF-α/CHX-induced changes in mitochondrial membrane potential (Ψ{sub m}) and mitochondrial function was studied. In basal conditions, CORM-A1 did not affect intracellular total or mitochondrial ROS levels, while resveratrol increased intracellular total ROS but reduced mitochondrial ROS production. TNF-α/CHX- and H{sub 2}O{sub 2}-mediated increase in intracellular total ROS production was reduced by both resveratrol and CORM-A1, whereas only resveratrol attenuated the increase in mitochondrial ROS triggered by TNF-α/CHX. CORM-A1 decreased antimycin-A-induced mitochondrial O{sub 2}·{sup −} production without any influence on TNF-α/CHX- and rotenone-induced mitochondrial O{sub 2}·{sup −} levels, while resveratrol abolished all three effects. Finally, resveratrol greatly reduced and abolished TNF-α/CHX-induced mitochondrial depolarization and mitochondrial dysfunction, while CORM-A1 only mildly affected these parameters. These data indicate that the cytoprotective effect of resveratrol is predominantly due to mitigation of mitochondrial ROS, while CORM-A1 acts solely on NOX-derived ROS to protect MODE-K cells from TNF-α/CHX-induced cell death. This might explain the more pronounced cytoprotective effect of resveratrol. - Highlights: • In MODE-K IECs, TNF-α/CHX induces correlating ROS, mitochondrial O{sub 2}·{sup −} and cell death. • CORM-A1 does not influence basal intracellular ROS and mitochondrial O{sub 2}·{sup −} levels. • Resveratrol increases basal intracellular ROS but decreases mitochondrial O{sub 2}·{sup −} levels. • CORM-A1 acts solely on NOX-derived ROS to protect from cell death by TNF-α/CHX. • Cytoprotection by resveratrol is predominantly due to reduction of mitochondrial O{sub 2}·{sup −}.« less

  5. Dermal fibroblasts from long-lived Ames dwarf mice maintain their in vivo resistance to mitochondrial generated reactive oxygen species (ROS)

    PubMed Central

    Hsieh, Ching-Chyuan; Papaconstantinou, John

    2009-01-01

    Activation of p38 MAPK by ROS involves dissociation of an inactive, reduced thioredoxin-ASK1 complex [(SH)2Trx-ASK1]. Release of ASK1 activates its kinase activity thus stimulating the p38 MAPK pathway. The level of p38 MAPK activity is, therefore, regulated by the balance of free vs. bound ASK1. Longevity of Ames dwarf mice is attributed to their resistance to oxidative stress. The levels of (SH)2 Trx-ASK1 are more abundant in young and old dwarf mice compared to their age-matched controls suggesting that the levels of this complex may play a role in their resistance to oxidative stress. In these studies we demonstrate that dermal fibroblasts from these long-lived mice exhibit (a) higher levels of (SH)2Trx-ASK1 that correlate with their resistance to ROS generated by inhibitors of electron transport chain complexes CI (rotenone), CII (3-nitropropionic acid), CIII, (antimycin A), and H2O2-mediated activation of p38 MAPK, and (b) maintain their in vivo resistance to ROS generated by 3NPA. We propose that elevated levels of (SH)2Trx-ASK1 play a role in conferring resistance to mitochondrial generated oxidative stress and decreased endogenous ROS which are characteristics of longevity determination. PMID:20157567

  6. Release of mitochondrial glutathione and calcium by a cyclosporin A-sensitive mechanism occurs without large amplitude swelling.

    PubMed

    Savage, M K; Reed, D J

    1994-11-15

    Treatment of isolated mitochondria with calcium and inorganic phosphate induces inner membrane permeability that is thought to be mediated through a non-selective, calcium-dependent pore. The inner membrane permeability results in the rapid efflux of small matrix solutes such as glutathione and calcium, loss of coupled functions, and large amplitude swelling. We have identified conditions of permeability transition without large amplitude swelling, a parameter often used to assess inner membrane permeability. The addition of either oligomycin, antimycin, or sulfide to incubation buffer containing calcium and inorganic phosphate abolished large-amplitude swelling of mitochondria but did not prevent inner membrane permeability as demonstrated by the release of mitochondrial glutathione and calcium. The release of both glutathione and calcium was inhibited by the addition of cyclosporin A, a potent inhibitor of permeability transition. Transmission electron microscopy analysis, combined with the glutathione and calcium release data, indicate that permeability transition can be observed in the absence of large-amplitude swelling. Permeability transition occurring both with and without large-amplitude swelling was accompanied by a collapse of the membrane potential. We conclude that cyclosporin A-sensitive permeability transition can occur without obvious morphological changes such as large-amplitude swelling. Monitoring the cyclosporin A-sensitive release of concentrated endogenous matrix solutes, such as GSH, may be a sensitive and useful indicator of permeability transition.

  7. Activation of PPARα by Oral Clofibrate Increases Renal Fatty Acid Oxidation in Developing Pigs.

    PubMed

    He, Yonghui; Khan, Imad; Bai, Xiumei; Odle, Jack; Xi, Lin

    2017-12-08

    The objective of this study was to evaluate the effects of peroxisome proliferator-activated receptor α (PPARα) activation by clofibrate on both mitochondrial and peroxisomal fatty acid oxidation in the developing kidney. Ten newborn pigs from 5 litters were randomly assigned to two groups and fed either 5 mL of a control vehicle (2% Tween 80) or a vehicle containing clofibrate (75 mg/kg body weight, treatment). The pigs received oral gavage daily for three days. In vitro fatty acid oxidation was then measured in kidneys with and without mitochondria inhibitors (antimycin A and rotenone) using [1- 14 C]-labeled oleic acid (C18:1) and erucic acid (C22:1) as substrates. Clofibrate significantly stimulated C18:1 and C22:1 oxidation in mitochondria ( p < 0.001) but not in peroxisomes. In addition, the oxidation rate of C18:1 was greater in mitochondria than peroxisomes, while the oxidation of C22:1 was higher in peroxisomes than mitochondria ( p < 0.001). Consistent with the increase in fatty acid oxidation, the mRNA abundance and enzyme activity of carnitine palmitoyltransferase I (CPT I) in mitochondria were increased. Although mRNA of mitochondrial 3-hydroxy-3-methylglutaryl-coenzyme A synthase (mHMGCS) was increased, the β-hydroxybutyrate concentration measured in kidneys did not increase in pigs treated with clofibrate. These findings indicate that PPARα activation stimulates renal fatty acid oxidation but not ketogenesis.

  8. Critical role of mitochondrial ROS is dependent on their site of production on the electron transport chain in ischemic heart.

    PubMed

    Madungwe, Ngonidzashe B; Zilberstein, Netanel F; Feng, Yansheng; Bopassa, Jean C

    2016-01-01

    Reactive oxygen species (ROS) generation has been implicated in many pathologies including ischemia/reperfusion (I/R) injury. This led to multiple studies on antioxidant therapies to treat cardiovascular diseases but paradoxically, results have so far been mixed as ROS production can be beneficial as a signaling mechanism and in cardiac protection via preconditioning interventions. We investigated whether the differential impact of increased ROS in injury as well as in protection could be explained by their site of production on the mitochondrial electron transport chain. Using amplex red to measure ROS production, we found that mitochondria isolated from hearts after I/R produced more ROS than non-ischemic when complex I substrate (glutamate/malate) was used. Interestingly, the substrates of complex II (succinate) and ubiquinone (sn-glycerol 3-phosphate, G3P) produced less ROS in mitochondria from I/R hearts compared to normal healthy hearts. The inhibitors of complex I (rotenone) and complex III (antimycin A) increased ROS production when glutamate/malate and G3P were used; in contrast, they reduced ROS production when the complex II substrate was used. Mitochondrial calcium retention capacity required to induce mitochondrial permeability transition pore (mPTP) opening was measured using calcium green fluorescence and was found to be higher when mitochondria were treated with G3P and succinate compared to glutamate/malate. Furthermore, Langendorff hearts treated with glutamate/malate exhibited reduced cardiac functional recovery and increased myocardial infarct size compared to hearts treated with G3P. Thus, ROS production by the stimulated respiratory chain complexes I and III has opposite roles: cardio-deleterious when produced in complex I and cardio-protective when produced in complex III. The mechanism of these ROS involves the inhibition of the mPTP opening, a key event in cell death following ischemia/reperfusion injury.

  9. Mitochondrial Dysfunction Leads to Deconjugation of Quercetin Glucuronides in Inflammatory Macrophages

    PubMed Central

    Miki, Satomi; Shiba, Yuko; Minekawa, Shoko; Nishikawa, Tomomi; Mukai, Rie; Terao, Junji; Kawai, Yoshichika

    2013-01-01

    Dietary flavonoids, such as quercetin, have long been recognized to protect blood vessels from atherogenic inflammation by yet unknown mechanisms. We have previously discovered the specific localization of quercetin-3-O-glucuronide (Q3GA), a phase II metabolite of quercetin, in macrophage cells in the human atherosclerotic lesions, but the biological significance is poorly understood. We have now demonstrated the molecular basis of the interaction between quercetin glucuronides and macrophages, leading to deconjugation of the glucuronides into the active aglycone. In vitro experiments showed that Q3GA was bound to the cell surface proteins of macrophages through anion binding and was readily deconjugated into the aglycone. It is of interest that the macrophage-mediated deconjugation of Q3GA was significantly enhanced upon inflammatory activation by lipopolysaccharide (LPS). Zymography and immunoblotting analysis revealed that β-glucuronidase is the major enzyme responsible for the deglucuronidation, whereas the secretion rate was not affected after LPS treatment. We found that extracellular acidification, which is required for the activity of β-glucuronidase, was significantly induced upon LPS treatment and was due to the increased lactate secretion associated with mitochondrial dysfunction. In addition, the β-glucuronidase secretion, which is triggered by intracellular calcium ions, was also induced by mitochondria dysfunction characterized using antimycin-A (a mitochondrial inhibitor) and siRNA-knockdown of Atg7 (an essential gene for autophagy). The deconjugated aglycone, quercetin, acts as an anti-inflammatory agent in the stimulated macrophages by inhibiting the c-Jun N-terminal kinase activation, whereas Q3GA acts only in the presence of extracellular β-glucuronidase activity. Finally, we demonstrated the deconjugation of quercetin glucuronides including the sulfoglucuronides in vivo in the spleen of mice challenged with LPS. These results showed that mitochondrial dysfunction plays a crucial role in the deconjugation of quercetin glucuronides in macrophages. Collectively, this study contributes to clarifying the mechanism responsible for the anti-inflammatory activity of dietary flavonoids within the inflammation sites. PMID:24260490

  10. Hyperoxia activates ATM independent from mitochondrial ROS and dysfunction.

    PubMed

    Resseguie, Emily A; Staversky, Rhonda J; Brookes, Paul S; O'Reilly, Michael A

    2015-08-01

    High levels of oxygen (hyperoxia) are often used to treat individuals with respiratory distress, yet prolonged hyperoxia causes mitochondrial dysfunction and excessive reactive oxygen species (ROS) that can damage molecules such as DNA. Ataxia telangiectasia mutated (ATM) kinase is activated by nuclear DNA double strand breaks and delays hyperoxia-induced cell death through downstream targets p53 and p21. Evidence for its role in regulating mitochondrial function is emerging, yet it has not been determined if mitochondrial dysfunction or ROS activates ATM. Because ATM maintains mitochondrial homeostasis, we hypothesized that hyperoxia induces both mitochondrial dysfunction and ROS that activate ATM. In A549 lung epithelial cells, hyperoxia decreased mitochondrial respiratory reserve capacity at 12h and basal respiration by 48 h. ROS were significantly increased at 24h, yet mitochondrial DNA double strand breaks were not detected. ATM was not required for activating p53 when mitochondrial respiration was inhibited by chronic exposure to antimycin A. Also, ATM was not further activated by mitochondrial ROS, which were enhanced by depleting manganese superoxide dismutase (SOD2). In contrast, ATM dampened the accumulation of mitochondrial ROS during exposure to hyperoxia. Our findings suggest that hyperoxia-induced mitochondrial dysfunction and ROS do not activate ATM. ATM more likely carries out its canonical response to nuclear DNA damage and may function to attenuate mitochondrial ROS that contribute to oxygen toxicity. Copyright © 2015 The Authors. Published by Elsevier B.V. All rights reserved.

  11. Respiratory chain components involved in the glycerophosphate dehydrogenase-dependent ROS production by brown adipose tissue mitochondria.

    PubMed

    Vrbacký, Marek; Drahota, Zdenek; Mrácek, Tomás; Vojtísková, Alena; Jesina, Pavel; Stopka, Pavel; Houstek, Josef

    2007-07-01

    Involvement of mammalian mitochondrial glycerophosphate dehydrogenase (mGPDH, EC 1.1.99.5) in reactive oxygen species (ROS) generation was studied in brown adipose tissue mitochondria by different spectroscopic techniques. Spectrofluorometry using ROS-sensitive probes CM-H2DCFDA and Amplex Red was used to determine the glycerophosphate- or succinate-dependent ROS production in mitochondria supplemented with respiratory chain inhibitors antimycin A and myxothiazol. In case of glycerophosphate oxidation, most of the ROS originated directly from mGPDH and coenzyme Q while complex III was a typical site of ROS production in succinate oxidation. Glycerophosphate-dependent ROS production monitored by KCN-insensitive oxygen consumption was highly activated by one-electron acceptor ferricyanide, whereas succinate-dependent ROS production was unaffected. In addition, superoxide anion radical was detected as a mGPDH-related primary ROS species by fluorescent probe dihydroethidium, as well as by electron paramagnetic resonance (EPR) spectroscopy with DMPO spin trap. Altogether, the data obtained demonstrate pronounced differences in the mechanism of ROS production originating from oxidation of glycerophosphate and succinate indicating that electron transfer from mGPDH to coenzyme Q is highly prone to electron leak and superoxide generation.

  12. Site of mitochondrial reactive oxygen species production in skeletal muscle of chronic obstructive pulmonary disease and its relationship with exercise oxidative stress.

    PubMed

    Puente-Maestu, Luis; Tejedor, Alberto; Lázaro, Alberto; de Miguel, Javier; Alvarez-Sala, Luis; González-Aragoneses, Federico; Simón, Carlos; Agustí, Alvar

    2012-09-01

    Exercise triggers skeletal muscle oxidative stress in patients with chronic obstructive pulmonary disease (COPD). The objective of this research was to study the specific sites of reactive oxygen species (ROS) production in mitochondria isolated from skeletal muscle of patients with COPD and its relationship with local oxidative stress induced by exercise. Vastus lateralis biopsies were obtained in 16 patients with COPD (66 ± 10 yr; FEV(1), 54 ± 12% ref) and in 14 control subjects with normal lung function who required surgery because of lung cancer (65 ± 7 yr; FEV(1), 91 ± 14% ref) at rest and after exercise. In these biopsies we isolated mitochondria and mitochondrial membrane fragments and determined in vitro mitochondrial oxygen consumption (Mit$$\\stackrel{.}{\\hbox{ V }}$$o(2)) and ROS production before and after inhibition of complex I (rotenone), complex II (stigmatellin), and complex III (antimycin-A). We related the in vitro ROS production during state 3 respiration), which mostly corresponds to the mitochondria respiratory state during exercise, with skeletal muscle oxidative stress after exercise, as measured by thiobarbituric acid reactive substances.State 3 Mit$$\\stackrel{.}{\\hbox{ V }}$$o(2) was similar in patients with COPD and control subjects (191 ± 27 versus 229 ± 46 nmol/min/mg; P = 0.058), whereas H(2)O(2) production was higher in the former (147 ± 39 versus 51 ± 8 pmol/mg/h; P < 0.001). The addition of complexI, II, and III inhibitors identify complex III as the main site of H(2)O(2) release by mitochondria in patients with COPD and in control subjects. The mitochondrial production of H(2)O(2) in state 3 respiration was related (r = 0.69; P < 0.001) to postexercise muscle thiobarbituric acid reactive substance levels. Our results show that complex III is the main site of the enhanced mitochondrial H(2)O(2) production that occurs in skeletal muscle of patients with COPD, and the latter appears to contribute to muscle oxidative damage.

  13. Overexpression of Endogenous Anti-Oxidants with Selenium Supplementation Protects Trophoblast Cells from Reactive Oxygen Species-Induced Apoptosis in a Bcl-2-Dependent Manner.

    PubMed

    Khera, Alisha; Vanderlelie, Jessica J; Holland, Olivia; Perkins, Anthony V

    2017-06-01

    The human placenta provides life support for the developing foetus, and a healthy placenta is a prerequisite to a healthy start to life. Placental tissue is subject to oxidative stress which can lead to pathological conditions of pregnancy such as preeclampsia, preterm labour and intrauterine growth restriction. Up-regulation of endogenous anti-oxidants may alleviate placental oxidative stress and provide a therapy for these complications of pregnancy. In this study, selenium supplementation, as inorganic sodium selenite (NaSel) or organic selenomethionine (SeMet), was used to increase the protein production and cellular activity of the important redox active proteins glutathione peroxidase (GPx) and thioredoxin reductase (Thx-Red). Placental trophoblast cell lines, BeWo, JEG-3 and Swan-71, were cultured in various concentrations of NaSel or SeMet for 24 h and cell extracts prepared for western blots and enzyme assays. Rotenone and antimycin were used to stimulate mitochondrial reactive oxygen species (ROS) production and induce apoptosis. Trophoblast cells supplemented with 100 nM NaSel and 500 nM SeMet exhibited significantly enhanced expression and activity of both GPx and Thx-Red. Antimycin and rotenone were found to generate ROS when measured by 2',7'-dichlorofluorescein diacetate (DCFDA) assay, and selenium supplementation was shown to reduce ROS production in a dose-dependent manner. Rotenone, 100 μM treatment for 4 h, caused trophoblast cell apoptosis as evidenced by increased Annexin V binding and decreased expression of Bcl-2. In both assays of apoptosis, selenium supplementation was able to prevent apoptosis, preserve Bcl-2 expression and protect trophoblast cells from mitochondrial oxidative stress. This data suggests that selenoproteins such as GPx and Thx-Red have an important role in protecting trophoblast cells from mitochondrial oxidative stress and that selenium supplementation may be important in treating some placental pathologies.

  14. Pyruvate metabolism in castor-bean mitochondria.

    PubMed Central

    Brailsford, M A; Thompson, A G; Kaderbhai, N; Beechey, R B

    1986-01-01

    We report the isolation of mitochondria from the endosperm of castor beans (Ricinus communis). These mitochondria oxidized succinate, external NADH, malate and pyruvate with respiratory-control and ADP/O ratios consistent with those found previously with mitochondria from other plant sources. The mitochondria exhibited considerable sensitivity to the electron-transport-chain inhibitors antimycin A and cyanide when oxidizing succinate and external NADH. Pyruvate-dependent O2 uptake was relatively insensitive to these inhibitors, although the residual O2 uptake could be inhibited by salicylhydroxamic acid. We conclude that a cyanide-insensitive alternative terminal oxidase is functional in these mitochondria. However, electrons from the succinate dehydrogenase or external NADH dehydrogenase seem to have no access to this pathway. There is little interconnection between the salicylhydroxamic acid-sensitive and cyanide-sensitive pathways of electron transport. alpha-Cyanocinnamate and its analogues, compound UK5099 [alpha-cyano-beta-(1-phenylindol-3-yl)acrylate] and alpha-cyano-4-hydroxycinnamate, were all found to be potent non-competitive inhibitors of pyruvate oxidation in castor-bean mitochondria. The accumulation of pyruvate by castor-bean mitochondria was determined by using a silicone-oil-centrifugation technique. The accumulation was shown to observe Michaelis-Menten kinetics, with a Km for pyruvate of 0.10 mM and a Vmax. of 0.95 nmol/min per mg of mitochondrial protein. However, the observed rates of pyruvate accumulation were insufficient to account for the pyruvate oxidation rates found in the oxygen-electrode studies. We were able to demonstrate that this is due to the immediate export of the accumulated radiolabel in the form of malate and citrate. Compound UK5099 inhibited the accumulation of [2-14C]pyruvate by castor-bean mitochondria at concentrations similar to those required to inhibit pyruvate oxidation. PMID:3814077

  15. Biosynthesis of antimycins with a reconstituted 3-formamidosalicylate pharmacophore in Escherichia coli.

    PubMed

    Liu, Joyce; Zhu, Xuejun; Seipke, Ryan F; Zhang, Wenjun

    2015-05-15

    Antimycins are a family of natural products generated from a hybrid nonribosomal peptide synthetase (NRPS)-polyketide synthase (PKS) assembly line. Although they possess an array of useful biological activities, their structural complexity makes chemical synthesis challenging, and their biosynthesis has thus far been dependent on slow-growing source organisms. Here, we reconstituted the biosynthesis of antimycins in Escherichia coli, a versatile host that is robust and easy to manipulate genetically. Along with Streptomyces genetic studies, the heterologous expression of different combinations of ant genes enabled us to systematically confirm the functions of the modification enzymes, AntHIJKL and AntO, in the biosynthesis of the 3-formamidosalicylate pharmacophore of antimycins. Our E. coli-based antimycin production system can not only be used to engineer the increased production of these bioactive compounds, but it also paves the way for the facile generation of novel and diverse antimycin analogues through combinatorial biosynthesis.

  16. Mitochondrial Respiratory Chain Dysfunction in Dorsal Root Ganglia of Streptozotocin-Induced Diabetic Rats and Its Correction by Insulin Treatment

    PubMed Central

    Chowdhury, Subir K. Roy; Zherebitskaya, Elena; Smith, Darrell R.; Akude, Eli; Chattopadhyay, Sharmila; Jolivalt, Corinne G.; Calcutt, Nigel A.; Fernyhough, Paul

    2010-01-01

    OBJECTIVE Impairments in mitochondrial physiology may play a role in diabetic sensory neuropathy. We tested the hypothesis that mitochondrial dysfunction in sensory neurons is due to abnormal mitochondrial respiratory function. RESEARCH DESIGN AND METHODS Rates of oxygen consumption were measured in mitochondria from dorsal root ganglia (DRG) of 12- to- 22-week streptozotocin (STZ)-induced diabetic rats, diabetic rats treated with insulin, and age-matched controls. Activities and expression of components of mitochondrial complexes and reactive oxygen species (ROS) were analyzed. RESULTS Rates of coupled respiration with pyruvate + malate (P + M) and with ascorbate + TMPD (Asc + TMPD) in DRG were unchanged after 12 weeks of diabetes. By 22 weeks of diabetes, respiration with P + M was significantly decreased by 31–44% and with Asc + TMPD by 29–39% compared with control. Attenuated mitochondrial respiratory activity of STZ-diabetic rats was significantly improved by insulin that did not correct other indices of diabetes. Activities of mitochondrial complexes I and IV and the Krebs cycle enzyme, citrate synthase, were decreased in mitochondria from DRG of 22-week STZ-diabetic rats compared with control. ROS levels in perikarya of DRG neurons were not altered by diabetes, but ROS generation from mitochondria treated with antimycin A was diminished compared with control. Reduced mitochondrial respiratory function was associated with downregulation of expression of mitochondrial proteins. CONCLUSIONS Mitochondrial dysfunction in sensory neurons from type 1 diabetic rats is associated with impaired rates of respiratory activity and occurs without a significant rise in perikaryal ROS. PMID:20103706

  17. Effects of mitochondrial poisons on glutathione redox potential and carotid body chemoreceptor activity.

    PubMed

    Gomez-Niño, A; Agapito, M T; Obeso, A; Gonzalez, C

    2009-01-01

    Low oxygen sensing in chemoreceptor cells involves the inhibition of specific plasma membrane K(+) channels, suggesting that mitochondria-derived reactive oxygen species (ROS) link hypoxia to K(+) channel inhibition, subsequent cell depolarization and activation of neurotransmitter release. We have used several mitochondrial poisons, alone and in combination with the antioxidant N-acetylcysteine (NAC), and quantify their capacity to alter GSH/GSSG levels and glutathione redox potential (E(GSH)) in rat diaphragm. Selected concentrations of mitochondrial poisons with or without NAC were tested for their capacity to activate neurotransmitter release in chemoreceptor cells and to alter ATP levels in intact rat carotid body (CB). We found that rotenone (1 microM), antimycin A (0.2 microg/ml) and sodium azide (5mM) decreased E(GSH); NAC restored E(GSH) to control values. At those concentrations mitochondrial poisons activated neurotransmitter release from CB chemoreceptor cells and decreased CB ATP levels, NAC being ineffective to modify these responses. Additional experiments with 3-nitroprionate (5mM), lower concentrations of rotenone and dinitrophenol revealed variable relationships between E(GSH) and chemoreceptor cell neurotransmitter release responses and ATP levels. These findings indicate a lack of correlation between mitochondrial-generated modifications of E(GSH) and chemoreceptor cells activity. This lack of correlation renders unlikely that alteration of mitochondrial production of ROS is the physiological pathway chemoreceptor cells use to signal hypoxia.

  18. [Oxidative stress promotes hepatocyte apoptosis mediated by glycogen synthase kinase 3β].

    PubMed

    Zhang, Xiangying; Guo, Yuanyuan; Zhang, Li; Wen, Tao; Piao, Zhengfu; Shi, Hongbo; Chen, Dexi; Duan, Zhongping; Ren, Feng

    2015-01-01

    To analyze the role of glycogen synthase kinase 3β (GSK3β) in hepatocyte apoptosis induced by oxidative stress. Human HL-7702 hepatoma cells were induced by H₂O₂/antimycin A to establish oxidative stress-induced cell apoptosis models. SB216763, a specific inhibitor of GSK3β, was given to the cells two hours before H₂O₂/antimycin A induction. Cell survival was observed using calcein acetoxymethyl ester/propidium iodide (PI) double staining, and cell apoptosis was detected using annexin V-FITC/PI staining combined with flow cytometry. In the meanwhile, the cell culture supernatant was subjected to lactate dehydrogenase (LDH) assay to evaluate the extent of cell death. The expressions of p-GSK3β, GSK3β, caspase-3, cleaved caspase-3, c-Jun N-terminal kinase (JNK) and cytochrome C (CytC) proteins were examined using Western blotting. Oxidative stress triggered by H₂O₂/antimycin A promoted GSK3β activity; inhibition of GSK3β activity by SB216763 relieved oxidative stress and reduced cell apoptosis induced by oxidative stress. Compared with the model groups, SB216763 intervened group showed that the cell apoptosis rate and the level of LDH were reduced significantly, and that the expressions of cleaved caspase-3, JNK, CytC proteins decreased. GSK3β is an important signaling molecule in the apoptosis pathway induced by oxidative stress. The inhibition on GSK3β may alleviate the oxidative stress-induced hepatocyte apoptosis.

  19. Mitochondrial impacts of insecticidal formate esters in insecticide-resistant and insecticide-susceptible Drosophila melanogaster.

    PubMed

    Song, Cheol; Scharf, Michael E

    2009-06-01

    Previous research on insecticidal formate esters in flies and mosquitoes has documented toxicity profiles, metabolism characteristics and neurological impacts. The research presented here investigated mitochondrial impacts of insecticidal formate esters and their hydrolyzed metabolite formic acid in the model dipteran insect Drosophila melanogaster Meig. These studies compared two Drosophila strains: an insecticide-susceptible strain (Canton-S) and a strain resistant by cytochrome P450 overexpression (Hikone-R). In initial studies investigating inhibition of mitochondrial cytochrome c oxidase, two proven insecticidal materials (hydramethylnon and sodium cyanide) caused significant inhibition. However, for insecticidal formate esters and formic acid, no significant inhibition was identified in either fly strain. Mitochondrial impacts of formate esters were then investigated further by tracking toxicant-induced cytochrome c release from mitochondria into the cytoplasm, a biomarker of apoptosis and neurological dysfunction. Formic acid and three positive control treatments (rotenone, antimycin A and sodium cyanide) induced cytochrome c release, verifying that formic acid is capable of causing mitochondrial disruption. However, when comparing formate ester hydrolysis and cytochrome c release between Drosophila strains, formic acid liberation was only weakly correlated with cytochrome c release in the susceptible Canton-S strain (r(2) = 0.70). The resistant Hikone-R strain showed no correlation (r(2) < 0.0001) between formate ester hydrolysis and cytochrome c release. The findings of this study provide confirmation of mitochondrial impacts by insecticidal formate esters and suggest links between mitochondrial disruption, respiratory inhibition, apoptosis and formate-ester-induced neurotoxicity.

  20. Cross Talk among Calcium, Hydrogen Peroxide, and Nitric Oxide and Activation of Gene Expression Involving Calmodulins and Calcium-Dependent Protein Kinases in Ulva compressa Exposed to Copper Excess1[C][W][OA

    PubMed Central

    González, Alberto; Cabrera, M. de los Ángeles; Henríquez, M. Josefa; Contreras, Rodrigo A.; Morales, Bernardo; Moenne, Alejandra

    2012-01-01

    To analyze the copper-induced cross talk among calcium, nitric oxide (NO), and hydrogen peroxide (H2O2) and the calcium-dependent activation of gene expression, the marine alga Ulva compressa was treated with the inhibitors of calcium channels, ned-19, ryanodine, and xestospongin C, of chloroplasts and mitochondrial electron transport chains, 3-(3,4-dichlorophenyl)-1,1-dimethylurea and antimycin A, of pyruvate dehydrogenase, moniliformin, of calmodulins, N-(6-aminohexyl)-5-chloro-1-naphtalene sulfonamide, and of calcium-dependent protein kinases, staurosporine, as well as with the scavengers of NO, 2-(4-carboxyphenyl)-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide, and of H2O2, ascorbate, and exposed to a sublethal concentration of copper (10 μm) for 24 h. The level of NO increased at 2 and 12 h. The first peak was inhibited by ned-19 and 3-(2,3-dichlorophenyl)-1,1-dimethylurea and the second peak by ned-19 and antimycin A, indicating that NO synthesis is dependent on calcium release and occurs in organelles. The level of H2O2 increased at 2, 3, and 12 h and was inhibited by ned-19, ryanodine, xestospongin C, and moniliformin, indicating that H2O2 accumulation is dependent on calcium release and Krebs cycle activity. In addition, pyruvate dehydrogenase, 2-oxoxglutarate dehydrogenase, and isocitrate dehydrogenase activities of the Krebs cycle increased at 2, 3, 12, and/or 14 h, and these increases were inhibited in vitro by EGTA, a calcium chelating agent. Calcium release at 2, 3, and 12 h was inhibited by 2-(4-carboxyphenyl)-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide and ascorbate, indicating activation by NO and H2O2. In addition, the level of antioxidant protein gene transcripts decreased with N-(6-aminohexyl)-5-chloro-1-naphtalene sulfonamide and staurosporine. Thus, there is a copper-induced cross talk among calcium, H2O2, and NO and a calcium-dependent activation of gene expression involving calmodulins and calcium-dependent protein kinases. PMID:22234999

  1. Cross talk among calcium, hydrogen peroxide, and nitric oxide and activation of gene expression involving calmodulins and calcium-dependent protein kinases in Ulva compressa exposed to copper excess.

    PubMed

    González, Alberto; Cabrera, M de Los Ángeles; Henríquez, M Josefa; Contreras, Rodrigo A; Morales, Bernardo; Moenne, Alejandra

    2012-03-01

    To analyze the copper-induced cross talk among calcium, nitric oxide (NO), and hydrogen peroxide (H(2)O(2)) and the calcium-dependent activation of gene expression, the marine alga Ulva compressa was treated with the inhibitors of calcium channels, ned-19, ryanodine, and xestospongin C, of chloroplasts and mitochondrial electron transport chains, 3-(3,4-dichlorophenyl)-1,1-dimethylurea and antimycin A, of pyruvate dehydrogenase, moniliformin, of calmodulins, N-(6-aminohexyl)-5-chloro-1-naphtalene sulfonamide, and of calcium-dependent protein kinases, staurosporine, as well as with the scavengers of NO, 2-(4-carboxyphenyl)-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide, and of H(2)O(2), ascorbate, and exposed to a sublethal concentration of copper (10 μm) for 24 h. The level of NO increased at 2 and 12 h. The first peak was inhibited by ned-19 and 3-(2,3-dichlorophenyl)-1,1-dimethylurea and the second peak by ned-19 and antimycin A, indicating that NO synthesis is dependent on calcium release and occurs in organelles. The level of H(2)O(2) increased at 2, 3, and 12 h and was inhibited by ned-19, ryanodine, xestospongin C, and moniliformin, indicating that H(2)O(2) accumulation is dependent on calcium release and Krebs cycle activity. In addition, pyruvate dehydrogenase, 2-oxoxglutarate dehydrogenase, and isocitrate dehydrogenase activities of the Krebs cycle increased at 2, 3, 12, and/or 14 h, and these increases were inhibited in vitro by EGTA, a calcium chelating agent. Calcium release at 2, 3, and 12 h was inhibited by 2-(4-carboxyphenyl)-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide and ascorbate, indicating activation by NO and H(2)O(2). In addition, the level of antioxidant protein gene transcripts decreased with N-(6-aminohexyl)-5-chloro-1-naphtalene sulfonamide and staurosporine. Thus, there is a copper-induced cross talk among calcium, H(2)O(2), and NO and a calcium-dependent activation of gene expression involving calmodulins and calcium-dependent protein kinases.

  2. Identification of a New Isoindole-2-yl Scaffold as a Qo and Qi Dual Inhibitor of Cytochrome bc 1 Complex: Virtual Screening, Synthesis, and Biochemical Assay.

    PubMed

    Azizian, Homa; Bagherzadeh, Kowsar; Shahbazi, Sophia; Sharifi, Niusha; Amanlou, Massoud

    2017-09-18

    Respiratory chain ubiquinol-cytochrome (cyt) c oxidoreductase (cyt bc 1 or complex III) has been demonstrated as a promising target for numerous antibiotics and fungicide applications. In this study, a virtual screening of NCI diversity database was carried out in order to find novel Qo/Qi cyt bc 1 complex inhibitors. Structure-based virtual screening and molecular docking methodology were employed to further screen compounds with inhibition activity against cyt bc 1 complex after extensive reliability validation protocol with cross-docking method and identification of the best score functions. Subsequently, the application of rational filtering procedure over the target database resulted in the elucidation of a novel class of cyt bc 1 complex potent inhibitors with comparable binding energies and biological activities to those of the standard inhibitor, antimycin.

  3. Different molecular mechanisms involved in spontaneous and oxidative stress-induced mitochondrial fragmentation in tripeptidyl peptidase-1 (TPP-1)-deficient fibroblasts

    PubMed Central

    Van Beersel, Guillaume; Tihon, Eliane; Demine, Stéphane; Hamer, Isabelle; Jadot, Michel; Arnould, Thierry

    2012-01-01

    NCLs (neuronal ceroid lipofuscinoses) form a group of eight inherited autosomal recessive diseases characterized by the intralysosomal accumulation of autofluorescent pigments, called ceroids. Recent data suggest that the pathogenesis of NCL is associated with the appearance of fragmented mitochondria with altered functions. However, even if an impairement in the autophagic pathway has often been evoked, the molecular mechanisms leading to mitochondrial fragmentation in response to a lysosomal dysfunction are still poorly understood. In this study, we show that fibroblasts that are deficient for the TPP-1 (tripeptidyl peptidase-1), a lysosomal hydrolase encoded by the gene mutated in the LINCL (late infantile NCL, CLN2 form) also exhibit a fragmented mitochondrial network. This morphological alteration is accompanied by an increase in the expression of the protein BNIP3 (Bcl2/adenovirus E1B 19 kDa interacting protein 3) as well as a decrease in the abundance of mitofusins 1 and 2, two proteins involved in mitochondrial fusion. Using RNAi (RNA interference) and quantitative analysis of the mitochondrial morphology, we show that the inhibition of BNIP3 expression does not result in an increase in the reticulation of the mitochondrial population in LINCL cells. However, this protein seems to play a key role in cell response to mitochondrial oxidative stress as it sensitizes mitochondria to antimycin A-induced fragmentation. To our knowledge, our results bring the first evidence of a mechanism that links TPP-1 deficiency and oxidative stress-induced changes in mitochondrial morphology. PMID:23249249

  4. Development of an antimycin-impregnated bait for controlling common carp

    USGS Publications Warehouse

    Rach, J.J.; Luoma, J.A.; Marking, L.L.

    1994-01-01

    The common carp Cyprinus carpio is a major problem for fisheries and wildlife managers because its feeding behavior causes degradation of valuable fish and waterfowl habitat. This study was designed to evaluate the effectiveness of an antimycin-impregnated bait for control of common carp. The toxic bait contained fish meal, a binder, antimycin, and water. The ingredients were mixed together and made into pellets. This bait was force-fed to common carp or administered in a pond environment, where fish voluntarily fed on the bait. The lowest lethal dose in the forcefeeding study was 0.346 mg antimycin/kg of fish and doses that exceeded 0.811 mg antimycin/kg were toxic to all fish. On three occasions, adult common carp held in 0.004-ha concrete ponds were offered 10 g of toxic bait containing 5.0, 7.5, and 10 mg antimycin/g of bait and the mean mortalities 96 h later were 21, 35, and 51%, respectively. Three tests were conducted in 0.04-ha earthen ponds each containing 100 adult common carp; these fish were offered 50 g of the toxic bait that contained 10 mg antimycin/g, and the mean mortalities (96 h) were 19, 32, and 74%. Toxic baits should be used in conjunction with other management techniques, and only when common carp are congregated and actively feeding, and when few nontarget bottom- feeding species are present.

  5. Rotenone Induction of Hydrogen Peroxide Inhibits mTOR-mediated S6K1 and 4E-BP1/eIF4E Pathways, Leading to Neuronal Apoptosis

    PubMed Central

    Zhou, Qian; Liu, Chunxiao; Liu, Wen; Zhang, Hai; Zhang, Ruijie; Liu, Jia; Zhang, Jinfei; Xu, Chong; Liu, Lei; Huang, Shile; Chen, Long

    2015-01-01

    Rotenone, a common pesticide and inhibitor of mitochondrial complex I, induces loss of dopaminergic neurons and consequential aspects of Parkinson’s disease (PD). However, the exact mechanism of rotenone neurotoxicity is not fully elucidated. Here, we show that rotenone induced reactive oxygen species (ROS), leading to apoptotic cell death in PC12 cells and primary neurons. Pretreatment with catalase (CAT), a hydrogen peroxide-scavenging enzyme, attenuated rotenone-induced ROS and neuronal apoptosis, implying hydrogen peroxide (H2O2) involved, which was further verified by imaging intracellular H2O2 using a peroxide-selective probe H2DCFDA. Using thenoyltrifluoroacetone (TTFA), antimycin A, or Mito-TEMPO, we further demonstrated rotenone-induced mitochondrial H2O2-dependent neuronal apoptosis. Rotenone dramatically inhibited mTOR-mediated phosphorylation of S6K1 and 4E-BP1, which was also attenuated by CAT in the neuronal cells. Of interest, ectopic expression of wild-type mTOR or constitutively active S6K1, or downregulation of 4E-BP1 partially prevented rotenone-induced H2O2 and cell apoptosis. Furthermore, we noticed that rotenone-induced H2O2 was linked to the activation of caspase-3 pathway. This was evidenced by the finding that pretreatment with CAT partially blocked rotenone-induced cleavages of caspase-3 and poly (ADP-ribose) polymerase. Of note, zVAD-fmk, a pan caspase inhibitor, only partially prevented rotenone-induced apoptosis in PC12 cells and primary neurons. Expression of mTOR-wt, S6K1-ca, or silencing 4E-BP1 potentiated zVAD-fmk protection against rotenone-induced apoptosis in the cells. The results indicate that rotenone induction of H2O2 inhibits mTOR-mediated S6K1 and 4E-BP1/eIF4E pathways, resulting in caspase-dependent and -independent apoptosis in neuronal cells. Our findings suggest that rotenone-induced neuronal loss in PD may be prevented by activating mTOR signaling and/or administering antioxidants. PMID:25304210

  6. Single-cell time-lapse imaging of intracellular O2 in response to metabolic inhibition and mitochondrial cytochrome-c release.

    PubMed

    Düssmann, Heiko; Perez-Alvarez, Sergio; Anilkumar, Ujval; Papkovsky, Dmitri B; Prehn, Jochen Hm

    2017-06-01

    The detection of intracellular molecular oxygen (O 2 ) levels is important for understanding cell physiology, cell death, and drug effects, and has recently been improved with the development of oxygen-sensitive probes that are compatible with live cell time-lapse microscopy. We here provide a protocol for the use of the nanoparticle probe MitoImage-MM2 to monitor intracellular oxygen levels by confocal microscopy under baseline conditions, in response to mitochondrial toxins, and following mitochondrial cytochrome-c release. We demonstrate that the MitoImage-MM2 probe, which embeds Pt(II)-5,10,15,20-tetrakis-(2,3,4,5,6-pentafluorophenyl)-porphyrin as oxygen sensor and poly(9,9-dioctylfluorene) as an O 2 -independent component, enables quantitative, ratiometric time-lapse imaging of intracellular O 2 . Multiplexing with tetra-methyl-rhodamine-methyl ester in HeLa cervical cancer cells showed significant increases in intracellular O 2 accompanied by strong mitochondrial depolarization when respiratory chain complexes III or IV were inhibited by Antimycin A or sodium azide, respectively, and when cells were maintained at 'physiological' tissue O 2 levels (5% O 2 ). Multiplexing also allowed us to monitor intracellular O 2 during the apoptotic signaling process of mitochondrial outer membrane permeabilization in HeLa expressing cytochrome-c-eGFP, and demonstrated that mitochondria post cytochrome-c release are able to retain their capacity to respire at physiological O 2 despite a decrease in mitochondrial membrane potential.

  7. Single-cell time-lapse imaging of intracellular O2 in response to metabolic inhibition and mitochondrial cytochrome-c release

    PubMed Central

    Düssmann, Heiko; Perez-Alvarez, Sergio; Anilkumar, Ujval; Papkovsky, Dmitri B; Prehn, Jochen HM

    2017-01-01

    The detection of intracellular molecular oxygen (O2) levels is important for understanding cell physiology, cell death, and drug effects, and has recently been improved with the development of oxygen-sensitive probes that are compatible with live cell time-lapse microscopy. We here provide a protocol for the use of the nanoparticle probe MitoImage-MM2 to monitor intracellular oxygen levels by confocal microscopy under baseline conditions, in response to mitochondrial toxins, and following mitochondrial cytochrome-c release. We demonstrate that the MitoImage-MM2 probe, which embeds Pt(II)-5,10,15,20-tetrakis-(2,3,4,5,6–pentafluorophenyl)-porphyrin as oxygen sensor and poly(9,9-dioctylfluorene) as an O2-independent component, enables quantitative, ratiometric time-lapse imaging of intracellular O2. Multiplexing with tetra-methyl-rhodamine-methyl ester in HeLa cervical cancer cells showed significant increases in intracellular O2 accompanied by strong mitochondrial depolarization when respiratory chain complexes III or IV were inhibited by Antimycin A or sodium azide, respectively, and when cells were maintained at ‘physiological’ tissue O2 levels (5% O2). Multiplexing also allowed us to monitor intracellular O2 during the apoptotic signaling process of mitochondrial outer membrane permeabilization in HeLa expressing cytochrome-c-eGFP, and demonstrated that mitochondria post cytochrome-c release are able to retain their capacity to respire at physiological O2 despite a decrease in mitochondrial membrane potential. PMID:28569778

  8. In Silico Study and Cytotoxicity of the Synthesized Open-chain Analogues of Antimycin A3 Against HEP-2 Laryngeal Cancer Cells

    PubMed Central

    Arsianti, Ade; Fadilah, Fadilah; Kusmardi, Kusmardi; Sugiarta, Gede Y.; Tanimoto, Hiroki; Kakiuchi, Kiyomi

    2017-01-01

    Background: Laryngeal cancers affect one quarter of all head and neck cancers. Chemotherapy is a standard method in treatment laryngeal carcinoma. How-ever, cancer chemotherapy is often a failure due to the appearance of drug resistance. This fact suggests that the search for novel, safe, and more effective laryngeal cancer drugs are required. Antimycin A3 is a fit ligand of anti-apoptotic Bcl-2. While Bcl-2 is known to be over-expressed in laryngeal cancer cell, it is quite reasonable to expect an-timycin A3 and its analogue to induce apoptosis in those cells. Methods: With this viewpoint, we decided to conduct research that is aimed to evaluate cytotoxic activity of the synthesized open-chain analogues of antimycin A3 against HEP-2 laryngeal cancer cells, as well as to conduct in silico study of the analogues on receptor binding target Bcl-2 of laryngeal cancer. Results and Conclusion: Open-chain analogues of antimycin A3 were successfully syn-thesized in a good yield from Boc-L-Threonine by esterification, amidation, and Sharp-less asymmetric dihydroxylation. Consistent with in silico study, the analogues exhibited a greater anticancer activity against laryngeal HEP-2 cells than the original antimycin A3 with IC50 ranging of 31.6 µM to 46.3 µM. Our results clearly demonstrate that the open-chain analogues of an-timycin A3 as a promising candidates of new anti-laryngeal cancer agents.

  9. Shear stress-induced mitochondrial biogenesis decreases the release of microparticles from endothelial cells.

    PubMed

    Kim, Ji-Seok; Kim, Boa; Lee, Hojun; Thakkar, Sunny; Babbitt, Dianne M; Eguchi, Satoru; Brown, Michael D; Park, Joon-Young

    2015-08-01

    The concept of enhancing structural integrity of mitochondria has emerged as a novel therapeutic option for cardiovascular disease. Flow-induced increase in laminar shear stress is a potent physiological stimulant associated with exercise, which exerts atheroprotective effects in the vasculature. However, the effect of laminar shear stress on mitochondrial remodeling within the vascular endothelium and its related functional consequences remain largely unknown. Using in vitro and in vivo complementary studies, here, we report that aerobic exercise alleviates the release of endothelial microparticles in prehypertensive individuals and that these salutary effects are, in part, mediated by shear stress-induced mitochondrial biogenesis. Circulating levels of total (CD31(+)/CD42a(-)) and activated (CD62E(+)) microparticles released by endothelial cells were significantly decreased (∼40% for both) after a 6-mo supervised aerobic exercise training program in individuals with prehypertension. In cultured human endothelial cells, laminar shear stress reduced the release of endothelial microparticles, which was accompanied by an increase in mitochondrial biogenesis through a sirtuin 1 (SIRT1)-dependent mechanism. Resveratrol, a SIRT1 activator, treatment showed similar effects. SIRT1 knockdown using small-interfering RNA completely abolished the protective effect of shear stress. Disruption of mitochondrial integrity by either antimycin A or peroxisome proliferator-activated receptor-γ coactivator-1α small-interfering RNA significantly increased the number of total, and activated, released endothelial microparticles, and shear stress restored these back to basal levels. Collectively, these data demonstrate a critical role of endothelial mitochondrial integrity in preserving endothelial homeostasis. Moreover, prolonged laminar shear stress, which is systemically elevated during aerobic exercise in the vessel wall, mitigates endothelial dysfunction by promoting mitochondrial biogenesis. Copyright © 2015 the American Physiological Society.

  10. Inhibitory Effects of Respiration Inhibitors on Aflatoxin Production

    PubMed Central

    Sakuda, Shohei; Prabowo, Diyan Febri; Takagi, Keiko; Shiomi, Kazuro; Mori, Mihoko; Ōmura, Satoshi; Nagasawa, Hiromichi

    2014-01-01

    Aflatoxin production inhibitors, which do not inhibit the growth of aflatoxigenic fungi, may be used to control aflatoxin without incurring a rapid spread of resistant strains. A respiration inhibitor that inhibits aflatoxin production was identified during a screening process for natural, aflatoxin-production inhibitors. This prompted us to evaluate respiration inhibitors as potential aflatoxin control agents. The inhibitory activities of four natural inhibitors, seven synthetic miticides, and nine synthetic fungicides were evaluated on aflatoxin production in Aspergillus parasiticus. All of the natural inhibitors (rotenone, siccanin, aptenin A5, and antimycin A) inhibited fungal aflatoxin production with IC50 values around 10 µM. Among the synthetic miticides, pyridaben, fluacrypyrim, and tolfenpyrad exhibited strong inhibitory activities with IC50 values less than 0.2 µM, whereas cyflumetofen did not show significant inhibitory activity. Of the synthetic fungicides, boscalid, pyribencarb, azoxystrobin, pyraclostrobin, and kresoxim-methyl demonstrated strong inhibitory activities, with IC50 values less than 0.5 µM. Fungal growth was not significantly affected by any of the inhibitors tested at concentrations used. There was no correlation observed between the targets of respiration inhibitors (complexes I, II, and III) and their IC50 values for aflatoxin-production inhibitory activity. This study suggests that respiration inhibitors, including commonly used pesticides, are useful for aflatoxin control. PMID:24674936

  11. The Vacuolar-Type H+-ATPase in Ovine Rumen Epithelium is Regulated by Metabolic Signals

    PubMed Central

    Kuzinski, Judith; Zitnan, Rudolf; Warnke-Gurgel, Christina; Schweigel, Monika

    2010-01-01

    In this study, the effect of metabolic inhibition (MI) by glucose substitution with 2-deoxyglucose (2-DOG) and/or application of antimycin A on ovine rumen epithelial cells (REC) vacuolar-type H+-ATPase (vH+-ATPase) activity was investigated. Using fluorescent spectroscopy, basal pHi of REC was measured to be 7.3 ± 0.1 in HCO3−-free, glucose-containing NaCl medium. MI induced a strong pHi reduction (−0.44 ± 0.04 pH units) with a more pronounced effect of 2-DOG compared to antimycin A (−0.30 ± 0.03 versus −0.21 ± 0.03 pH units). Treatment with foliomycin, a specific vH+-ATPase inhibitor, decreased REC pHi by 0.21 ± 0.05 pH units. After MI induction, this effect was nearly abolished (−0.03 ± 0.02 pH units). In addition, membrane-associated localization of vH+-ATPase B subunit disappeared. Metabolic control of vH+-ATPase involving regulation of its assembly state by elements of the glycolytic pathway could provide a means to adapt REC ATP consumption according to energy availability. PMID:20069127

  12. Effect of rainbow trout size on response to rotenone and antimycin

    USGS Publications Warehouse

    Brown, Peter J.; Johnson, Heather; Zale, Alexander V.

    2011-01-01

    The piscicides rotenone and antimycin are commonly used to eradicate unwanted fish populations. However, the relationships (if present) between their toxicities and fish sizes are unknown and could be especially important when bioassay fish are used to detect piscicide presence and effectiveness. Size-mediated toxicity could lead to either excessive or inadequate piscicide applications if bioassay fish are larger or smaller than the fish being eradicated. The relationships between time to death and weight of rainbow trout Oncorhynchus mykiss (0.7–574.0 g) at an antimycin concentration of 7.5 μg/L and a rotenone concentration of 12.5 μg/L were determined. Antimycin took significantly longer than rotenone to kill rainbow trout at concentrations typically used in eradication projects. Significant positive relationships existed between fish size and time to death for rotenone and antimycin exposures and were probably caused by size-mediated differences in metabolic rate; however, these relationships accounted for less than 21% of the variation in time to death. Smaller fish appeared to be affected by the chemicals more quickly, but their deaths did not consistently occur before the deaths of larger fish.

  13. Laboratory studies on antimycin A as a fish toxicant

    USGS Publications Warehouse

    Berger, Bernard L.; Lennon, Robert E.; Hogan, James W.

    1969-01-01

    Liquid and sand formulations of antimycin A were tested in laboratory waters of various temperature, hardness, pH, and turbidity against 31 species of fresh-water fish of various sizes and life stages. Each formulation of toxicant was lethal under all water conditions to fish eggs, fry, fingerlings, and adult fish. Trouts are the most sensitive and catfishes the least sensitive. Of the 31 species, 24 succumb to 5 p.p.b. or less of the toxicant; only certain catfishes survive 25 p.p.b, The order of toxicity to various species of fish suggests that antimycin has possibilities for selective or partial control of certain unwanted fish. Although toxic to fish under ice, antimycin is more active in warm water than in cold. It is slightly more active in soft water than in hard; it is more active and persists far longer in water at pH 5 to 8 than at pH 9 or 10. It is active on fish in either clear and turbid waters, and it can be detoxified by potassium permanganate, The results contributed to registration of antimycin A in Fintrol-5 formulation as a fish toxicant.

  14. Influence of antimycin A and uncouplers on anaerobic photosynthesis in isolated chloroplasts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Slovacek, R.E.; Hind, G.

    1977-10-01

    Anaerobiosis depresses the light- and bicarbonate-saturated rates of O/sub 2/ evolution in intact spinach (Spinacia oleracea) chloroplasts by as much as 3-fold from those observed under aerobic conditions. These lower rates are accelerated 2-fold or more by the addition of 1 ..mu..m antimycin A or by low concentrations of the uncouplers 0.3 mM NH/sub 4/Cl or 0.25 ..mu..m carbonyl cyanide m-chlorophenylhydrazone. Oxaloacetate and glycerate 3-phosphate reduction rates are also increased by antimycin A or an uncoupler under anaerobic conditions. At intermediate light intensities, the rate accelerations by either antimycin A or uncoupler are inversely proportional to the adenosine 5'-triphosphate demandmore » of the reduction process for the acceptors HCO/sub 3//sup -/, glycerate 3-phosphate, and oxaloacetate. The acceleration of bicarbonate-supported O/sub 2/ evolution may also be produced by adding an adenosine 5'-triphosphate sink (ribose 5-phosphate) to anaerobic chloroplasts. The above results suggest that a proton gradient back pressure resulting from antimycin A-sensitive cyclic electron flow is responsible for the depression of light-saturated photosynthesis under anaerobiosis.« less

  15. Age-dependent reductions in mitochondrial respiration are exacerbated by calcium in the female rat heart.

    PubMed

    Hunter, J Craig; Machikas, Alexandra M; Korzick, Donna H

    2012-06-01

    Cardiovascular disease mortality increases rapidly after menopause by poorly defined mechanisms. Because mitochondrial function and Ca(2+) sensitivity are important regulators of cell death after myocardial ischemia, we sought to determine whether aging and/or estrogen deficiency (ovariectomy) increased mitochondrial Ca(2+) sensitivity. Mitochondrial respiration was measured in ventricular mitochondria isolated from adult (6 months; n = 26) and aged (24 months; n = 25), intact or ovariectomized female rats using the substrates α-ketoglutarate/malate (complex I); succinate/rotenone (complex II); ascorbate/N,N,N',N'-tetramethyl-p-phenylenediamine/antimycin (complex IV). State 2 and 3 respiration was initiated by sequential addition of mitochondria and adenosine diphosphate. Ca(2+) sensitivity was assessed by Ca(2+)-induced swelling of de-energized mitochondria and reduction in state 3 respiration. Propylpyrazole triol (PPT) was administered intraperitoneally 45 minutes before euthanasia to assess mitochondrial protective effects through estrogen receptor (ER) α activation. Aging decreased the respiratory control index (RCI; state 3/state 2) for complexes I and II by 12% and 8%, respectively, independent of ovary status (P < 0.05). Of interest, Ca(2+) induced a greater decrease (18%-30%; P < 0.05) in complex I state 3 respiration in aged and ovariectomized animals, and mitochondrial swelling occurred twice as quickly in aged (vs adult) female rats (P < 0.05). Pretreatment with PPT increased RCI by 8% and 7% at complexes I and II, respectively (P < 0.05) but surprisingly increased Ca(2+) sensitivity. Age-dependent decreases in RCI and sensitization to Ca(2+) may explain in part the age-associated reductions in female ischemic tolerance; however, protection afforded by ER agonism involves more complex mechanisms. Copyright © 2012 Elsevier HS Journals, Inc. All rights reserved.

  16. Age-Dependent Reductions in Mitochondrial Respiration are Exacerbated by Calcium in the Female Rat Heart

    PubMed Central

    Hunter, J. Craig; Machikas, Alexandra M.; Korzick, Donna H.

    2012-01-01

    Cardiovascular disease mortality increases rapidly following menopause by poorly defined mechanisms. Since mitochondrial function and Ca2+ sensitivity are important regulators of cell death following myocardial ischemia, we sought to determine if aging and/or estrogen deficiency (ovx) increased mitochondrial Ca2+ sensitivity. Mitochondrial respiration was measured in ventricular mitochondria isolated from adult (6mo; n=26) and aged (24mo; n=25), intact or ovariectomized female rats using the substrates: α-ketoglutarate/malate (Complex I); succinate/rotenone (Complex II); ascorbate/TMPD/Antimycin (Complex IV). State 2 and State 3 respiration was initiated by sequential addition of mitochondria and ADP. Ca2+ sensitivity was assessed by Ca2+-induced swelling of de-energized mitochondria and reduction in state 3 respiration. Propylpyrazole triol (PPT) was administered i.p. 45 min prior to euthanasia to assess mitochondrial protective effects through estrogen receptor (ER) α activation. Aging decreased the respiratory control index (RCI; state 3/state 2) for Complexes I and II by 12% and 8%, respectively, independent of ovary status (p<0.05). Of interest, Ca2+ induced a greater decrease (18–30%; p<0.05) in Complex I state 3 respiration in aged and ovx animals, and mitochondrial swelling occurred twice as quickly in aged (vs. adult) female rats (p<0.05). Pretreatment with PPT increased RCI by 8% and 7% at Complexes I and II, respectively (p<0.05) but surprisingly increased Ca2+ sensitivity. Age-dependent decreases in RCI and sensitization to Ca2+ may explain in part the age-associated reductions in female ischemic tolerance; however protection afforded by ER agonism involves more complex mechanisms. PMID:22555015

  17. Oxygen sensitivity of mitochondrial function in rat arterial chemoreceptor cells

    PubMed Central

    Buckler, Keith J; Turner, Philip J

    2013-01-01

    The mechanism of oxygen sensing in arterial chemoreceptors is unknown but has often been linked to mitochondrial function. A common criticism of this hypothesis is that mitochondrial function is insensitive to physiological levels of hypoxia. Here we investigate the effects of hypoxia (down to 0.5% O2) on mitochondrial function in neonatal rat type-1 cells. The oxygen sensitivity of mitochondrial [NADH] was assessed by monitoring autofluorescence and increased in hypoxia with a P50 of 15 mm Hg (1 mm Hg = 133.3 Pa) in normal Tyrode or 46 mm Hg in Ca2+-free Tyrode. Hypoxia also depolarised mitochondrial membrane potential (ψm, measured using rhodamine 123) with a P50 of 3.1, 3.3 and 2.8 mm Hg in normal Tyrode, Ca2+-free Tyrode and Tyrode containing the Ca2+ channel antagonist Ni2+, respectively. In the presence of oligomycin and low carbonyl cyanide 4-(trifluoromethoxy) phenylhydrazone (FCCP; 75 nm) ψm is maintained by electron transport working against an artificial proton leak. Under these conditions hypoxia depolarised ψm/inhibited electron transport with a P50 of 5.4 mm Hg. The effects of hypoxia upon cytochrome oxidase activity were investigated using rotenone, myxothiazol, antimycin A, oligomycin, ascorbate and the electron donor tetramethyl-p-phenylenediamine. Under these conditions ψm is maintained by complex IV activity alone. Hypoxia inhibited cytochrome oxidase activity (depolarised ψm) with a P50 of 2.6 mm Hg. In contrast hypoxia had little or no effect upon NADH (P50= 0.3 mm Hg), electron transport or cytochrome oxidase activity in sympathetic neurons. In summary, type-1 cell mitochondria display extraordinary oxygen sensitivity commensurate with a role in oxygen sensing. The reasons for this highly unusual behaviour are as yet unexplained. PMID:23671162

  18. Obesity-exposed oocytes accumulate and transmit damaged mitochondria due to an inability to activate mitophagy.

    PubMed

    Boudoures, Anna L; Saben, Jessica; Drury, Andrea; Scheaffer, Suzanne; Modi, Zeel; Zhang, Wendy; Moley, Kelle H

    2017-06-01

    Mitochondria are the most prominent organelle in the oocyte. Somatic cells maintain a healthy population of mitochondria by degrading damaged mitochondria via mitophagy, a specialized autophagy pathway. However, evidence from previous work investigating the more general macroautophagy pathway in oocytes suggests that mitophagy may not be active in the oocyte. This would leave the vast numbers of mitochondria - poised to be inherited by the offspring - vulnerable to damage. Here we test the hypothesis that inactive mitophagy in the oocyte underlies maternal transmission of dysfunctional mitochondria. To determine whether oocytes can complete mitophagy, we used either CCCP or AntimycinA to depolarize mitochondria and trigger mitophagy. After depolarization, we did not detect co-localization of mitochondria with autophagosomes and mitochondrial DNA copy number remained unchanged, indicating the non-functional mitochondrial population was not removed. To investigate the impact of an absence of mitophagy in oocytes with damaged mitochondria on offspring mitochondrial function, we utilized in vitro fertilization of high fat high sugar (HF/HS)-exposed oocytes, which have lower mitochondrial membrane potential and damaged mitochondria. Here, we demonstrate that blastocysts generated from HF/HS oocytes have decreased mitochondrial membrane potential, lower metabolites involved in ATP generation, and accumulation of PINK1, a mitophagy marker protein. This mitochondrial phenotype in the blastocyst mirrors the phenotype we show in HF/HS exposed oocytes. Taken together, these data suggest that the mechanisms governing oocyte mitophagy are fundamentally distinct from those governing somatic cell mitophagy and that the absence of mitophagy in the setting of HF/HS exposure contributes to the oocyte-to-blastocyst transmission of dysfunctional mitochondria. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  19. Synchronization of calcium waves by mitochondrial substrates in Xenopus laevis oocytes

    NASA Astrophysics Data System (ADS)

    Jouaville, Laurence S.; Ichas, François; Holmuhamedov, Ekhson L.; Camacho, Patricia; Lechleiter, James D.

    1995-10-01

    INXenopus oocytes, as well as other cells, inositol-l,4,5-tris-phosphate (Ins(l,4,5)P3)-induced Ca2+ release1-4 is an excitable process that generates propagating Ca2+ waves5-7 that annihilate upon collision8-12. The fundamental property responsible for excitability13 appears to be the Ca2+ dependency of the Ins(l,4,5)P3 receptor9. Here we report that Ins(l,4,5)P3-induced Ca2+ wave activity is strengthened by oxidizable substrates that energize mitochondria, increasing Ca2+ wave amplitude, velocity and interwave period. The effects of pyruvate/malate are blocked by ruthenium red at the Ca2+ uniporter, by rotenone at complex I, and by antimycin A at complex III, and are subsequently rescued at complex IV by ascorbate tetramethylphenylenediamine (TMPD)14. Our data reveal that potential-driven mitochondrial Ca2+ uptake is a major factor in the regulation of Ins(l,4,5)P3-induced Ca2+ release and clearly demonstrate a physiological role of mitochondria in intracellular Ca2+ signalling.

  20. Avoidance behavior of ruffe exposed to selected formulations of piscicides

    USGS Publications Warehouse

    Dawson, Verdel K.; Bills, Terry D.; Boogaard, Michael A.

    1998-01-01

    Ruffe were introduced into Duluth Harbor, Minnesota in the early 1980s, probably by release of ballast water from sea-going freighters. Since then, it has become the most abundant species in the fish community. The sensitivity of ruffe to a number of piscicides has been demonstrated, however, the feasibility of using piscicides to control populations depends on whether ruffe cart detect piscicides and move to untreated water, We used a two-choice preference resting system to evaluate avoidance or attraction reactions of ruffe during exposures to the lampricides TFM and bayluscide and the general fish toxicants rotenone and antimycin. We used a second testing system to evaluate the potential for benthic ruffe to move vertically in the water column to avoid piscicides dissolving from experimental bottom-release formulations of bayluscide and antimycin. Near-lethal concentrations of TFM and rotenone tended to repel ruffe. Antimycin and bayluscide did not seem to repel ruffe in the avoidance chamber, but bottom-release formulations (antimycin granules-0.25% a.i. And bayluscide granules-3.2% a.i.) did cause increased swimming and surfacing activity among ruffe in column tests. We conclude that TFM and rotenone could be used to trent entire bodies of water, while bottom-release formulations of antimycin and bayluscide may have more application for treating localized concentrations of ruffe.

  1. Assessment of ToxCast Phase II for Mitochondrial Liabilities Using a High-Throughput Respirometric Assay

    PubMed Central

    Wills, Lauren P.; Beeson, Gyda C.; Hoover, Douglas B.; Schnellmann, Rick G.; Beeson, Craig C.

    2015-01-01

    Previous high-throughput screens to identify mitochondrial toxicants used immortalized cell lines and focused on changes in mitochondrial membrane potential, which may not be sufficient and do not identify different types of mitochondrial dysfunction. Primary cultures of renal proximal tubule cells (RPTC) were examined with the Seahorse Extracellular Flux Analyzer to screen 676 compounds (5 μM; 1 h) from the ToxCast Phase II library for mitochondrial toxicants. Of the 676 compounds, 19 were classified as cytotoxicants, 376 were electron transport chain (ETC) inhibitors, and 5 were uncouplers. The remaining 276 compounds were examined after a 5-h exposure to identify slower acting mitochondrial toxicants. This experiment identified 3 cytotoxicants, 110 ETC inhibitors, and 163 compounds with no effect. A subset of the ToxCast Phase II library was also examined in immortalized human renal cells (HK2) to determine differences in susceptibility to mitochondrial toxicity. Of the 131 RPTC ETC inhibitors tested, only 14 were ETC inhibitors in HK2 cells. Of the 5 RPTC uncouplers, 1 compound was an uncoupler in HK2 cells. These results demonstrate that 73% (491/676) of the compounds in the ToxCast Phase II library compounds exhibit RPTC mitochondrial toxicity, overwhelmingly ETC inhibition. In contrast, renal HK2 cells are markedly less sensitive and only identified 6% of the compounds as mitochondrial toxicants. We suggest caution is needed when studying mitochondrial toxicity in immortalized cell lines. This information will provide mechanisms and chemical-based criteria for assessing and predicting mitochondrial liabilities of new drugs, consumer products, and environmental agents. PMID:25926417

  2. Analysis of antimycin A by reversed-phase liquid chromatography/nuclear magnetic-resonance spectrometry

    USGS Publications Warehouse

    Ha, Steven T.K.; Wilkins, Charles L.; Abidi, Sharon L.

    1989-01-01

    A mixture of closely related streptomyces fermentation products, antimycin A, Is separated, and the components are identified by using reversed-phase high-performance liquid chromatography with directly linked 400-MHz proton nuclear magnetic resonance detection. Analyses of mixtures of three amino acids, alanine, glycine, and valine, are used to determine optimal measurement conditions. Sensitivity increases of as much as a factor of 3 are achieved, at the expense of some loss in chromatographic resolution, by use of an 80-μL NMR cell, Instead of a smaller 14-μL cell. Analysis of the antimycin A mixture, using the optimal analytical high performance liquid chromatography/nuclear magnetic resonance conditions, reveals it to consist of at least 10 closely related components.

  3. The energy blockers 3-bromopyruvate and lonidamine: effects on bioenergetics of brain mitochondria.

    PubMed

    Macchioni, Lara; Davidescu, Magdalena; Roberti, Rita; Corazzi, Lanfranco

    2014-10-01

    Tumor cells favor abnormal energy production via aerobic glycolysis and show resistance to apoptosis, suggesting the involvement of mitochondrial dysfunction. The differences between normal and cancer cells in their energy metabolism provide a biochemical basis for developing new therapeutic strategies. The energy blocker 3-bromopyruvate (3BP) can eradicate liver cancer in animals without associated toxicity, and is a potent anticancer towards glioblastoma cells. Since mitochondria are 3BP targets, in this work the effects of 3BP on the bioenergetics of normal rat brain mitochondria were investigated in vitro, in comparison with the anticancer agent lonidamine (LND). Whereas LND impaired oxygen consumption dependent on any complex of the respiratory chain, 3BP was inhibitory to malate/pyruvate and succinate (Complexes I and II), but preserved respiration from glycerol-3-phosphate and ascorbate (Complex IV). Accordingly, although electron flow along the respiratory chain and ATP levels were decreased by 3BP in malate/pyruvate- and succinate-fed mitochondria, they were not significantly influenced from glycerol-3-phosphate- or ascorbate-fed mitochondria. LND produced a decrease in electron flow from all substrates tested. No ROS were produced from any substrate, with the exception of 3BP-induced H(2)O(2) release from succinate, which suggests an antimycin-like action of 3BP as an inhibitor of Complex III. We can conclude that 3BP does not abolish completely respiration and ATP synthesis in brain mitochondria, and has a limited effect on ROS production, confirming that this drug may have limited harmful effects on normal cells.

  4. Putting together a plasma membrane NADH oxidase: a tale of three laboratories.

    PubMed

    Löw, Hans; Crane, Frederick L; Morré, D James

    2012-11-01

    The observation that high cellular concentrations of NADH were associated with low adenylate cyclase activity led to a search for the mechanism of the effect. Since cyclase is in the plasma membrane, we considered the membrane might have a site for NADH action, and that NADH might be oxidized at that site. A test for NADH oxidase showed very low activity, which could be increased by adding growth factors. The plasma membrane oxidase was not inhibited by inhibitors of mitochondrial NADH oxidase such as cyanide, rotenone or antimycin. Stimulation of the plasma membrane oxidase by iso-proterenol or triiodothyronine was different from lack of stimulation in endoplasmic reticulum. After 25 years of research, three components of a trans membrane NADH oxidase have been discovered. Flavoprotein NADH coenzyme Q reductases (NADH cytochrome b reductase) on the inside, coenzyme Q in the middle, and a coenzyme Q oxidase on the outside as a terminal oxidase. The external oxidase segment is a copper protein with unique properties in timekeeping, protein disulfide isomerase and endogenous NADH oxidase activity, which affords a mechanism for control of cell growth by the overall NADH oxidase and the remarkable inhibition of oxidase activity and growth of cancer cells by a wide range of anti-tumor drugs. A second trans plasma membrane electron transport system has been found in voltage dependent anion channel (VDAC), which has NADH ferricyanide reductase activity. This activity must be considered in relation to ferricyanide stimulation of growth and increased VDAC antibodies in patients with autism. Copyright © 2012 Elsevier Ltd. All rights reserved.

  5. Low-Level Light Therapy Potentiates NPe6-mediated Photodynamic Therapy in a Human Osteosarcoma Cell Line via Increased ATP

    PubMed Central

    Tsai, Shang-Ru; Yin, Rui; Huang, Ying-Ying; Sheu, Bor-Ching; Lee, Si-Chen; Hamblin, Michael R.

    2015-01-01

    Background Low-Level Light Therapy (LLLT) is used to stimulate healing, reduce pain and inflammation, and preserve tissue from dying. LLLT has been shown to protect cells in culture from dying after various cytotoxic insults, and LLLT is known to increase the cellular ATP content. Previous studies have demonstrated that maintaining a sufficiently high ATP level is necessary for the efficient induction and execution of apoptosis steps after photodynamic therapy (PDT). Methods We asked whether LLLT would protect cells from cytotoxicity due to PDT, or conversely whether LLLT would enhance the efficacy of PDT mediated by mono-L-aspartyl chlorin(e6) (NPe6). Increased ATP could lead to enhanced cell uptake of NPe6 by the energy dependent process of endocytosis, and also to more efficient apoptosis. In this study, human osteosarcoma cell line MG-63 was subjected to 1.5 J/cm2 of 810 nm near infrared radiation (NIR) followed by addition of 10 μM NPe6 and after 2 h incubation by 1.5 J/cm2 of 652 nm red light for PDT. Results PDT combined with LLLT led to higher cell death and increased intracellular reactive oxygen species compared to PDT alone. The uptake of NPe6 was moderately increased by LLLT, and cellular ATP was increased. The mitochondrial respiratory chain inhibitor antimycin A abrogated the LLLT-induced increase in cytotoxicity. Conclusions Taken together, these results demonstrate that LLLT potentiates NPe6-mediated PDT via increased ATP synthesis and is a potentially promising strategy that could be applied in clinical PDT. PMID:25462575

  6. Accelerated recovery of mitochondrial membrane potential by GSK-3β inactivation affords cardiomyocytes protection from oxidant-induced necrosis.

    PubMed

    Sunaga, Daisuke; Tanno, Masaya; Kuno, Atsushi; Ishikawa, Satoko; Ogasawara, Makoto; Yano, Toshiyuki; Miki, Takayuki; Miura, Tetsuji

    2014-01-01

    Loss of mitochondrial membrane potential (ΔΨm) is known to be closely linked to cell death by various insults. However, whether acceleration of the ΔΨm recovery process prevents cell necrosis remains unclear. Here we examined the hypothesis that facilitated recovery of ΔΨm contributes to cytoprotection afforded by activation of the mitochondrial ATP-sensitive K+ (mKATP) channel or inactivation of glycogen synthase kinase-3β (GSK-3β). ΔΨm of H9c2 cells was determined by tetramethylrhodamine ethyl ester (TMRE) before or after 1-h exposure to antimycin A (AA), an inducer of reactive oxygen species (ROS) production at complex III. Opening of the mitochondrial permeability transition pore (mPTP) was determined by mitochondrial loading of calcein. AA reduced ΔΨm to 15 ± 1% of the baseline and induced calcein leak from mitochondria. ΔΨm was recovered to 51 ± 3% of the baseline and calcein-loadable mitochondria was 6 ± 1% of the control at 1 h after washout of AA. mKATP channel openers improved the ΔΨm recovery and mitochondrial calcein to 73 ± 2% and 30 ± 7%, respectively, without change in ΔΨm during AA treatment. Activation of the mKATP channel induced inhibitory phosphorylation of GSK-3β and suppressed ROS production, LDH release and apoptosis after AA washout. Knockdown of GSK-3β and pharmacological inhibition of GSK-3β mimicked the effects of mKATP channel activation. ROS scavengers administered at the time of AA removal also improved recovery of ΔΨm. These results indicate that inactivation of GSK-3β directly or indirectly by mKATP channel activation facilitates recovery of ΔΨm by suppressing ROS production and mPTP opening, leading to cytoprotection from oxidant stress-induced cell death.

  7. Pharmacological Inhibition of Poly(ADP-Ribose) Polymerases Improves Fitness and Mitochondrial Function in Skeletal Muscle

    PubMed Central

    Pirinen, Eija; Canto, Carles; Jo, Young-Suk; Morato, Laia; Zhang, Hongbo; Menzies, Keir; Williams, Evan G.; Mouchiroud, Laurent; Moullan, Norman; Hagberg, Carolina; Li, Wei; Timmers, Silvie; Imhof, Ralph; Verbeek, Jef; Pujol, Aurora; van Loon, Barbara; Viscomi, Carlo; Zeviani, Massimo; Schrauwen, Patrick; Sauve, Anthony; Schoonjans, Kristina; Auwerx, Johan

    2014-01-01

    SUMMARY We previously demonstrated that the deletion of the poly(ADP-ribose)polymerase (Parp)-1 gene in mice enhances oxidative metabolism, thereby protecting against diet-induced obesity. However, the therapeutic use of PARP inhibitors to enhance mitochondrial function remains to be explored. Here, we show tight negative correlation between Parp-1 expression and energy expenditure in heterogeneous mouse populations, indicating that variations in PARP-1 activity have an impact on metabolic homeostasis. Notably, these genetic correlations can be translated into pharmacological applications. Long-term treatment with PARP inhibitors enhances fitness in mice by increasing the abundance of mitochondrial respiratory complexes and boosting mitochondrial respiratory capacity. Furthermore, PARP inhibitors reverse mitochondrial defects in primary myotubes of obese humans and attenuate genetic defects of mitochondrial metabolism in human fibroblasts and C. elegans. Overall, our work validates in worm, mouse and human models that PARP inhibition may be used to treat both genetic and acquired muscle dysfunction linked to defective mitochondrial function. PMID:24814482

  8. Pharmacological NAD-Boosting Strategies Improve Mitochondrial Homeostasis in Human Complex I-Mutant Fibroblasts.

    PubMed

    Felici, Roberta; Lapucci, Andrea; Cavone, Leonardo; Pratesi, Sara; Berlinguer-Palmini, Rolando; Chiarugi, Alberto

    2015-06-01

    Mitochondrial disorders are devastating genetic diseases for which efficacious therapies are still an unmet need. Recent studies report that increased availability of intracellular NAD obtained by inhibition of the NAD-consuming enzyme poly(ADP-ribose) polymerase (PARP)-1 or supplementation with the NAD-precursor nicotinamide riboside (NR) ameliorates energetic derangement and symptoms in mouse models of mitochondrial disorders. Whether these pharmacological approaches also improve bioenergetics of human cells harboring mitochondrial defects is unknown. It is also unclear whether the same signaling cascade is prompted by PARP-1 inhibitors and NR supplementation to improve mitochondrial homeostasis. Here, we show that human fibroblasts mutant for the NADH dehydrogenase (ubiquinone) Fe-S protein 1 (NDUFS1) subunit of respiratory complex I have similar ATP, NAD, and mitochondrial content compared with control cells, but show reduced mitochondrial membrane potential. Interestingly, mutant cells also show increased transcript levels of mitochondrial DNA but not nuclear DNA respiratory complex subunits, suggesting activation of a compensatory response. At variance with prior work in mice, however, NR supplementation, but not PARP-1 inhibition, increased intracellular NAD content in NDUFS1 mutant human fibroblasts. Conversely, PARP-1 inhibitors, but not NR supplementation, increased transcription of mitochondrial transcription factor A and mitochondrial DNA-encoded respiratory complexes constitutively induced in mutant cells. Still, both NR and PARP-1 inhibitors restored mitochondrial membrane potential and increased organelle content as well as oxidative activity of NDUFS1-deficient fibroblasts. Overall, data provide the first evidence that in human cells harboring a mitochondrial respiratory defect exposure to NR or PARP-1, inhibitors activate different signaling pathways that are not invariantly prompted by NAD increases, but equally able to improve energetic derangement. Copyright © 2015 by The American Society for Pharmacology and Experimental Therapeutics.

  9. Azoxystrobin, a mitochondrial complex III Qo site inhibitor, exerts beneficial metabolic effects in vivo and in vitro.

    PubMed

    Gao, An-Hui; Fu, Yan-Yun; Zhang, Kun-Zhi; Zhang, Mei; Jiang, Hao-Wen; Fan, Li-Xia; Nan, Fa-Jun; Yuan, Chong-Gang; Li, Jia; Zhou, Yu-Bo; Li, Jing-Ya

    2014-07-01

    Several anti-diabetes drugs exert beneficial effects against metabolic syndrome by inhibiting mitochondrial function. Although much progress has been made toward understanding the role of mitochondrial function inhibitors in treating metabolic diseases, the potential effects of these inhibitors on mitochondrial respiratory chain complex III remain unclear. We investigated the metabolic effects of azoxystrobin (AZOX), a Qo inhibitor of complex III, in a high-fat diet-fed mouse model with insulin resistance in order to elucidate the mechanism by which AZOX improves glucose and lipid metabolism at the metabolic cellular level. Acute administration of AZOX in mice increased the respiratory exchange ratio. Chronic treatment with AZOX reduced body weight and significantly improved glucose tolerance and insulin sensitivity in high-fat diet-fed mice. AZOX treatment resulted in decreased triacylglycerol accumulation and down-regulated the expression of genes involved in liver lipogenesis. AZOX increased glucose uptake in L6 myotubes and 3T3-L1 adipocytes and inhibited de novo lipogenesis in HepG2 cells. The findings indicate that AZOX-mediated alterations to lipid and glucose metabolism may depend on AMP-activated protein kinase (AMPK) signaling. AZOX, a Qo inhibitor of mitochondrial respiratory complex III, exerts whole-body beneficial effects on the regulation of glucose and lipid homeostasis in high-fat diet-fed mice. These findings provide evidence that a Qo inhibitor of mitochondrial respiratory complex III could represent a novel approach for the treatment of obesity. Copyright © 2014 Elsevier B.V. All rights reserved.

  10. Inhibition of Mitochondrial Pyruvate Transport by Zaprinast Causes Massive Accumulation of Aspartate at the Expense of Glutamate in the Retina*

    PubMed Central

    Du, Jianhai; Cleghorn, Whitney M.; Contreras, Laura; Lindsay, Ken; Rountree, Austin M.; Chertov, Andrei O.; Turner, Sally J.; Sahaboglu, Ayse; Linton, Jonathan; Sadilek, Martin; Satrústegui, Jorgina; Sweet, Ian R.; Paquet-Durand, François; Hurley, James B.

    2013-01-01

    Transport of pyruvate into mitochondria by the mitochondrial pyruvate carrier is crucial for complete oxidation of glucose and for biosynthesis of amino acids and lipids. Zaprinast is a well known phosphodiesterase inhibitor and lead compound for sildenafil. We found Zaprinast alters the metabolomic profile of mitochondrial intermediates and amino acids in retina and brain. This metabolic effect of Zaprinast does not depend on inhibition of phosphodiesterase activity. By providing 13C-labeled glucose and glutamine as fuels, we found that the metabolic profile of the Zaprinast effect is nearly identical to that of inhibitors of the mitochondrial pyruvate carrier. Both stimulate oxidation of glutamate and massive accumulation of aspartate. Moreover, Zaprinast inhibits pyruvate-driven O2 consumption in brain mitochondria and blocks mitochondrial pyruvate carrier in liver mitochondria. Inactivation of the aspartate glutamate carrier in retina does not attenuate the metabolic effect of Zaprinast. Our results show that Zaprinast is a potent inhibitor of mitochondrial pyruvate carrier activity, and this action causes aspartate to accumulate at the expense of glutamate. Our findings show that Zaprinast is a specific mitochondrial pyruvate carrier (MPC) inhibitor and may help to elucidate the roles of MPC in amino acid metabolism and hypoglycemia. PMID:24187136

  11. MCT1 inhibitor AZD3965 increases mitochondrial metabolism, facilitating combination therapy and non-invasive magnetic resonance spectroscopy

    PubMed Central

    Beloueche-Babari, Mounia; Wantuch, Slawomir; Casals Galobart, Teresa; Koniordou, Markella; Parkes, Harold G; Arunan, Vaitha; Chung, Yuen-Li; Eykyn, Thomas R; Smith, Paul D; Leach, Martin O

    2017-01-01

    Monocarboxylate transporters (MCT) modulate tumor cell metabolism and offer promising therapeutic targets for cancer treatment. Understanding the impact of MCT blockade on tumor cell metabolism may help develop combination strategies or identify pharmacodynamic biomarkers to support the clinical development of MCT inhibitors now in clinical trials. In this study, we assessed the impact of the MCT1 inhibitor AZD3965 on cancer cell metabolism in vitro and in vivo. Exposing human lymphoma and colon carcinoma cells to AZD3965 increased MCT4-dependent accumulation of intracellular lactate, inhibiting monocarboxylate influx and efflux. AZD3965 also increased the levels of TCA cycle-related metabolites and 13C-glucose mitochondrial metabolism, enhancing oxidative pyruvate dehydrogenase and anaplerotic pyruvate carboxylase fluxes. Increased mitochondrial metabolism was necessary to maintain cell survival under drug stress. These effects were counteracted by co-administration of the mitochondrial complex I inhibitor metformin and the mitochondrial pyruvate carrier inhibitor UK5099. Improved bioenergetics were confirmed in vivo after dosing with AZD3965 in mouse xenograft models of human lymphoma. Our results reveal new metabolic consequences of MCT1 inhibition that might be exploited for therapeutic and pharmacodynamic purposes. PMID:28923861

  12. Extrachromosomal inheritance in Schizosaccharomyces pombe. I. Evidence for an extrakaryotically inherited mutation conferring resistance to antimycin.

    PubMed

    Wolf, K; Burger, G; Lang, B; Kaudewitz, F

    1976-02-27

    In crosses of [ANTr8] with auxotrophic strains, resistance to antimycin segregates almost 50:50 in random spore analysis with a slight preponderance for the sensitivity allele. Tetrad analysis, however, shows all possible types of tetrads (2:2; 3:1; 1:3; 4:0; 0:4 resistant versus sensitive) with an excess of 2:2 segregations and sectoring of colonies on antimycin medium indicating an extrachromosomal mode of inheritance. The overall ratio of resistant versus sensitive spores is the same as compared with random spore data. Using a mutant blocked in meiosis (mei 1) mitotic segregation of stable diploids is achieved, leading to a ratio of 20% resistant to 80% sensitive clones. Possible reasons for the bias in transmission of the resistance determinant is discussed.

  13. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hossain, Quazi Sohel; Department of Biochemistry, School of Medicine, Faculty of Medicine, University of the Ryukyus, 207 Uehara, Nishihara, Okinawa 903-0215; Ulziikhishig, Enkhbaatar

    We recently reported that the glutathione transferase in rat liver mitochondrial membranes (mtMGST1) is activated by S-glutathionylation and the activated mtMGST1 contributes to the mitochondrial permeability transition (MPT) pore and cytochrome c release from mitochondria [Lee, K.K., Shimoji, M., Quazi, S.H., Sunakawa, H., Aniya, Y., 2008. Novel function of glutathione transferase in rat liver mitochondrial membrane: role for cytochrome c release from mitochondria. Toxcol. Appl. Pharmacol. 232, 109-118]. In the present study we investigated the effect of reactive oxygen species (ROS), generator gallic acid (GA) and GST inhibitors on mtMGST1 and the MPT. When rat liver mitochondria were incubated withmore » GA, mtMGST1 activity was increased to about 3 fold and the increase was inhibited with antioxidant enzymes and singlet oxygen quenchers including 1,4-diazabicyclo [2,2,2] octane (DABCO). GA-mediated mtMGST1 activation was prevented by GST inhibitors such as tannic acid, hematin, and cibacron blue and also by cyclosporin A (CsA). In addition, GA induced the mitochondrial swelling which was also inhibited by GST inhibitors, but not by MPT inhibitors CsA, ADP, and bongkrekic acid. GA also released cytochrome c from the mitochondria which was inhibited completely by DABCO, moderately by GST inhibitors, and somewhat by CsA. Ca{sup 2+}-mediated mitochondrial swelling and cytochrome c release were inhibited by MPT inhibitors but not by GST inhibitors. When the outer mitochondrial membrane was isolated after treatment of mitochondria with GA, mtMGST1 activity was markedly increased and oligomer/aggregate of mtMGST1 was observed. These results indicate that mtMGST1 in the outer mitochondrial membrane is activated by GA through thiol oxidation leading to protein oligomerization/aggregation, which may contribute to the formation of ROS-mediated, CsA-insensitive MPT pore, suggesting a novel mechanism for regulation of the MPT by mtMGST1.« less

  14. Is Reliance on Mitochondrial Respiration a “Chink in the Armor” of Therapy-Resistant Cancer?

    PubMed Central

    Wolf, Dieter A.

    2016-01-01

    Summary A series of recent reports has suggested PGC1α-driven upregulation of mitochondrial oxidative phosphorylation as a selective vulnerability of drug-resistant cancers. Accordingly, chemical inhibitors of respiration led to selective eradication of such cancer cells due to their preferential sensitivity to mitochondrial production of reactive oxygen species. These novel insights create a timely opportunity for a biomarker guided application of already existing and newly emerging mitochondrial inhibitors in recurrent drug resistant cancer, including lymphomas, melanomas, and other malignant diseases marked by increased mitochondrial respiration. PMID:25490445

  15. Early cysteine-dependent inactivation of 26S proteasomes does not involve particle disassembly.

    PubMed

    Hugo, Martín; Korovila, Ioanna; Köhler, Markus; García-García, Carlos; Cabrera-García, J Daniel; Marina, Anabel; Martínez-Ruiz, Antonio; Grune, Tilman

    2018-06-01

    Under oxidative stress 26S proteasomes suffer reversible disassembly into its 20S and 19S subunits, a process mediated by HSP70. This inhibits the degradation of polyubiquitinated proteins by the 26S proteasome and allows the degradation of oxidized proteins by a free 20S proteasome. Low fluxes of antimycin A-stimulated ROS production caused dimerization of mitochondrial peroxiredoxin 3 and cytosolic peroxiredoxin 2, but not peroxiredoxin overoxidation and overall oxidation of cellular protein thiols. This moderate redox imbalance was sufficient to inhibit the ATP stimulation of 26S proteasome activity. This process was dependent on reversible cysteine oxidation. Moreover, our results show that this early inhibition of ATP stimulation occurs previous to particle disassembly, indicating an intermediate step during the redox regulation of the 26S proteasome with special relevance under redox signaling rather than oxidative stress conditions. Copyright © 2018 The Authors. Published by Elsevier B.V. All rights reserved.

  16. Genetic Evidence for the Action of Oxathiin and Thiazole Derivatives on the Succinic Dehydrogenase System of Ustilago maydis Mitochondria

    PubMed Central

    Georgopoulos, S. G.; Alexandri, E.; Chrysayi, M.

    1972-01-01

    The inhibitory effect of fungitoxic derivatives of 1,4-oxathiin on substrate oxidation by the basidiomycete Ustilago maydis is diminished by a single-gene mutation (oxr). The difference between mutant and wild type is approximately the same on the basis of inhibition of either growth and operation of the tricarboxylic acid cycle in intact cells or succinate-driven reduction of ferricyanide by mitochondrial preparations. The mutation affects the behavior of the succinic dehydrogenase system of mitochondria not only in the presence but also in the absence of the toxicant, from which it is concluded that some component of the system itself has been modified. The malonate and the antimycin A sensitivity of the oxr mutant is similar to that of the wild type but cross-resistance to thiazole derivatives is easily demonstrated. Images PMID:5030620

  17. Energy metabolism determines the sensitivity of human hepatocellular carcinoma cells to mitochondrial inhibitors and biguanide drugs.

    PubMed

    Hsu, Chia-Chi; Wu, Ling-Chia; Hsia, Cheng-Yuan; Yin, Pen-Hui; Chi, Chin-Wen; Yeh, Tien-Shun; Lee, Hsin-Chen

    2015-09-01

    Human hepatocellular carcinoma (HCC) is one of the most common malignancies worldwide particularly in Asia. Deregulation of cellular energetics was recently included as one of the cancer hallmarks. Compounds that target the mitochondria in cancer cells were proposed to have therapeutic potential. Biguanide drugs which inhibit mitochondrial complex I and repress mTOR signaling are clinically used to treat type 2 diabetes mellitus patients (T2DM) and were recently found to reduce the risk of HCC in T2DM patients. However, whether alteration of energy metabolism is involved in regulating the sensitivity of HCC to biguanide drugs is still unclear. In the present study, we treated four HCC cell lines with mitochondrial inhibitors (rotenone and oligomycin) and biguanide drugs (metformin and phenformin), and found that the HCC cells which had a higher mitochondrial respiration rate were more sensitive to these treatments; whereas the HCC cells which exhibited higher glycolysis were more resistant. When glucose was replaced by galactose in the medium, the altered energy metabolism from glycolysis to mitochondrial respiration in the HCC cells enhanced the cellular sensitivity to mitochondrial inhibitors and biguanides. The energy metabolism change enhanced AMP-activated protein kinase (AMPK) activation, mTOR repression and downregulation of cyclin D1 and Mcl-1 in response to the mitochondrial inhibitors and biguanides. In conclusion, our results suggest that increased mitochondrial oxidative metabolism upregulates the sensitivity of HCC to biguanide drugs. Enhancing the mitochondrial oxidative metabolism in combination with biguanide drugs may be a therapeutic strategy for HCC.

  18. Metabolomic Profiling and Genomic Study of a Marine Sponge-Associated Streptomyces sp

    PubMed Central

    Viegelmann, Christina; Margassery, Lekha Menon; Kennedy, Jonathan; Zhang, Tong; O’Brien, Ciarán; O’Gara, Fergal; Morrissey, John P.; Dobson, Alan D. W.; Edrada-Ebel, RuAngelie

    2014-01-01

    Metabolomics and genomics are two complementary platforms for analyzing an organism as they provide information on the phenotype and genotype, respectively. These two techniques were applied in the dereplication and identification of bioactive compounds from a Streptomyces sp. (SM8) isolated from the sponge Haliclona simulans from Irish waters. Streptomyces strain SM8 extracts showed antibacterial and antifungal activity. NMR analysis of the active fractions proved that hydroxylated saturated fatty acids were the major components present in the antibacterial fractions. Antimycin compounds were initially putatively identified in the antifungal fractions using LC-Orbitrap. Their presence was later confirmed by comparison to a standard. Genomic analysis of Streptomyces sp. SM8 revealed the presence of multiple secondary metabolism gene clusters, including a gene cluster for the biosynthesis of the antifungal antimycin family of compounds. The antimycin gene cluster of Streptomyces sp. SM8 was inactivated by disruption of the antimycin biosynthesis gene antC. Extracts from this mutant strain showed loss of antimycin production and significantly less antifungal activity than the wild-type strain. Three butenolides, 4,10-dihydroxy-10-methyl-dodec-2-en-1,4-olide (1), 4,11-dihydroxy-10-methyl-dodec-2-en-1,4-olide (2), and 4-hydroxy-10-methyl-11-oxo-dodec-2-en-1,4-olide (3) that had previously been reported from marine Streptomyces species were also isolated from SM8. Comparison of the extracts of Streptomyces strain SM8 and its host sponge, H. simulans, using LC-Orbitrap revealed the presence of metabolites common to both extracts, providing direct evidence linking sponge metabolites to a specific microbial symbiont. PMID:24893324

  19. Partitioning of electron flux between the respiratory chains of the yeast Candida parapsilosis: parallel working of the two chains.

    PubMed

    Guerin, M G; Camougrand, N M

    1994-02-08

    Partitioning of the electron flux between the classical and the alternative respiratory chains of the yeast Candida parapsilosis, was measured as a function of the oxidation rate and of the Q-pool redox poise. At low respiration rate, electrons from external NADH travelled preferentially through the alternative pathway as indicated by the antimycin A-insensitivity of electron flow. Inhibition of the alternative pathway by SHAM restored full antimycin A-sensitivity to the remaining electro flow. The dependence of the respiratory rate on the redox poise of the quinone pool was investigated when the electron flux was mediated either by the main respiratory chain (growth in the absence of antimycin A) or by the second respiratory chain (growth in the presence of antimycin A). In the former case, a linear relationship was found between these two parameters. In contrast, in the latter case, the relationship between Q-pool reduction level and electron flux was non-linear, but it could be resolved into two distinct curves. This second quinone is not reducible in the presence of antimycin A but only in the presence of high concentrations of myxothiazol or cyanide. Since two quinone species exist in C. parapsilosis, UQ9 and Qx (C33H54O4), we hypothesized that these two curves could correspond to the functioning of the second quinone engaged during the alternative pathway activity. Partitioning of electrons between both respiratory chains could occur upstream of complex III with the second chain functioning in parallel to the main one, and with the additional possibility of merging into the main one at the complex IV level.

  20. Genetic modification of alternative respiration in Nicotiana benthamiana affects basal and salicylic acid-induced resistance to potato virus X

    PubMed Central

    2011-01-01

    Background Salicylic acid (SA) regulates multiple anti-viral mechanisms, including mechanism(s) that may be negatively regulated by the mitochondrial enzyme, alternative oxidase (AOX), the sole component of the alternative respiratory pathway. However, studies of this mechanism can be confounded by SA-mediated induction of RNA-dependent RNA polymerase 1, a component of the antiviral RNA silencing pathway. We made transgenic Nicotiana benthamiana plants in which alternative respiratory pathway capacity was either increased by constitutive expression of AOX, or decreased by expression of a dominant-negative mutant protein (AOX-E). N. benthamiana was used because it is a natural mutant that does not express a functional RNA-dependent RNA polymerase 1. Results Antimycin A (an alternative respiratory pathway inducer and also an inducer of resistance to viruses) and SA triggered resistance to tobacco mosaic virus (TMV). Resistance to TMV induced by antimycin A, but not by SA, was inhibited in Aox transgenic plants while SA-induced resistance to this virus appeared to be stronger in Aox-E transgenic plants. These effects, which were limited to directly inoculated leaves, were not affected by the presence or absence of a transgene constitutively expressing a functional RNA-dependent RNA polymerase (MtRDR1). Unexpectedly, Aox-transgenic plants infected with potato virus X (PVX) showed markedly increased susceptibility to systemic disease induction and virus accumulation in inoculated and systemically infected leaves. SA-induced resistance to PVX was compromised in Aox-transgenic plants but plants expressing AOX-E exhibited enhanced SA-induced resistance to this virus. Conclusions We conclude that AOX-regulated mechanisms not only play a role in SA-induced resistance but also make an important contribution to basal resistance against certain viruses such as PVX. PMID:21356081

  1. MCT1 Inhibitor AZD3965 Increases Mitochondrial Metabolism, Facilitating Combination Therapy and Noninvasive Magnetic Resonance Spectroscopy.

    PubMed

    Beloueche-Babari, Mounia; Wantuch, Slawomir; Casals Galobart, Teresa; Koniordou, Markella; Parkes, Harold G; Arunan, Vaitha; Chung, Yuen-Li; Eykyn, Thomas R; Smith, Paul D; Leach, Martin O

    2017-11-01

    Monocarboxylate transporters (MCT) modulate tumor cell metabolism and offer promising therapeutic targets for cancer treatment. Understanding the impact of MCT blockade on tumor cell metabolism may help develop combination strategies or identify pharmacodynamic biomarkers to support the clinical development of MCT inhibitors now in clinical trials. In this study, we assessed the impact of the MCT1 inhibitor AZD3965 on cancer cell metabolism in vitro and in vivo Exposing human lymphoma and colon carcinoma cells to AZD3965 increased MCT4-dependent accumulation of intracellular lactate, inhibiting monocarboxylate influx and efflux. AZD3965 also increased the levels of TCA cycle-related metabolites and 13 C-glucose mitochondrial metabolism, enhancing oxidative pyruvate dehydrogenase and anaplerotic pyruvate carboxylase fluxes. Increased mitochondrial metabolism was necessary to maintain cell survival under drug stress. These effects were counteracted by coadministration of the mitochondrial complex I inhibitor metformin and the mitochondrial pyruvate carrier inhibitor UK5099. Improved bioenergetics were confirmed in vivo after dosing with AZD3965 in mouse xenograft models of human lymphoma. Our results reveal new metabolic consequences of MCT1 inhibition that might be exploited for therapeutic and pharmacodynamic purposes. Cancer Res; 77(21); 5913-24. ©2017 AACR . ©2017 American Association for Cancer Research.

  2. Functional screening of selective mitochondrial inhibitors of Plasmodium.

    PubMed

    Gomez-Lorenzo, Maria G; Rodríguez-Alejandre, Ane; Moliner-Cubel, Sonia; Martínez-Hoyos, María; Bahamontes-Rosa, Noemí; Gonzalez Del Rio, Rubén; Ródenas, Carolina; Fuente, Jesús de la; Lavandera, Jose Luis; García-Bustos, Jose F; Mendoza-Losana, Alfonso

    2018-05-09

    Phenotypic screening has produced most of the new chemical entities currently in clinical development for malaria, plus many lead compounds active against Plasmodium falciparum asexual stages. However, lack of knowledge about the mode of action of these compounds delays and may even hamper their future development. Identifying the mode of action of the inhibitors greatly helps to prioritise compounds for further development as novel antimalarials. Here we describe a whole-cell method to detect inhibitors of the mitochondrial electron transport chain, using oxygen consumption as high throughput readout in 384-well plate format. The usefulness of the method has been confirmed with the Tres Cantos Antimalarial Compound Set (TCAMS). The assay identified 124 respiratory inhibitors in TCAMS, seven of which were novel anti-plasmodial chemical structures never before described as mitochondrial inhibitors. Copyright © 2018. Published by Elsevier Ltd.

  3. Acute Mitochondrial Inhibition by Mitogen-activated Protein Kinase/Extracellular Signal-regulated Kinase Kinase (MEK) 1/2 Inhibitors Regulates Proliferation*

    PubMed Central

    Ripple, Maureen O.; Kim, Namjoon; Springett, Roger

    2013-01-01

    The Ras-MEK1/2-ERK1/2 kinase signaling pathway regulates proliferation, survival, and differentiation and, because it is often aberrant in tumors, is a popular target for small molecule inhibition. A novel metabolic analysis that measures the real-time oxidation state of NAD(H) and the hemes of the electron transport chain and oxygen consumption within intact, living cells found that structurally distinct MEK1/2 inhibitors had an immediate, dose-dependent effect on mitochondrial metabolism. The inhibitors U0126, MIIC and PD98059 caused NAD(H) reduction, heme oxidation, and decreased oxygen consumption, characteristic of complex I inhibition. PD198306, an orally active MEK1/2 inhibitor, acted as an uncoupler. Each MEK1/2 inhibitor depleted phosphorylated ERK1/2 and inhibited proliferation, but the most robust antiproliferative effects always correlated with the metabolic failure which followed mitochondrial inhibition rather than inhibition of MEK1/2. This warrants rethinking the role of ERK1/2 in proliferation and emphasizes the importance of mitochondrial function in this process. PMID:23235157

  4. Antimycin A inhibits cytochrome b559-mediated cyclic electron flow within photosystem II.

    PubMed

    Takagi, Daisuke; Ifuku, Kentaro; Nishimura, Taishi; Miyake, Chikahiro

    2018-05-22

    The light reactions of photosynthesis are known to comprise both linear and cyclic electron flow in order to convert light energy into chemical energy in the form of NADPH and ATP. Antimycin A (AA) has been proposed as an inhibitor of ferredoxin-dependent cyclic electron flow around photosystem I (CEF-PSI) in photosynthesis research. However, its precise inhibitory mechanism and target site had not been elucidated yet. Here we show that AA inhibits the cyclic (alternative) electron flow via cytochrome b 559 (Cyt b 559 ) within photosystem II (CEF-PSII). When AA was applied to thylakoid membranes isolated from spinach leaves, the high potential form of Cyt b 559 , which was reduced in the dark, was transformed into the lower potential forms and readily oxidized by molecular oxygen. In the absence of AA, the reduced Cyt b 559 was oxidized by P680 + upon light illumination and re-reduced in the dark, mainly by the electron from the Q B site on the acceptor side of PSII. In contrast, AA suppressed the oxidation of Cyt b 559 and induced its reduction under the illumination. This inhibition of Cyt b 559 oxidation by AA enhanced photoinhibition of PSII. Based on the above results, we propose caution regarding the use of AA for evaluating CEF-PSI per se and concurrently propose that AA provides for new insights into, and interpretations of, the physiological importance of Cyt b 559 , rather than that of CEF-PSI in photosynthetic organisms.

  5. BCL2 and BCL(X)L selective inhibitors decrease mitochondrial ATP production in breast cancer cells and are synthetically lethal when combined with 2-deoxy-D-glucose.

    PubMed

    Lucantoni, Federico; Düssmann, Heiko; Llorente-Folch, Irene; Prehn, Jochen H M

    2018-05-25

    Cancer cells display differences regarding their engagement of glycolytic vs. mitochondrial oxidative phosphorylation (OXPHOS) pathway. Triple negative breast cancer, an aggressive form of breast cancer, is characterized by elevated glycolysis, while estrogen receptor positive breast cancer cells rely predominantly on OXPHOS. BCL2 proteins control the process of mitochondrial outer membrane permeabilization during apoptosis, but also regulate cellular bioenergetics. Because BCL2 proteins are overexpressed in breast cancer and targetable by selective antagonists, we here analysed the effect of BCL2 and BCL(X)L selective inhibitors, Venetoclax and WEHI-539, on mitochondrial bioenergetics and cell death. Employing single cell imaging using a FRET-based mitochondrial ATP sensor, we found that MCF7 breast cancer cells supplied with mitochondrial substrates reduced their mitochondrial ATP production when treated with Venetoclax or WEHI-539 at concentrations that per se did not induce cell death. Treatments with lower concentrations of both inhibitors also reduced the length of the mitochondrial network and the dynamics, as evaluated by quantitative confocal microscopy. We next tested the hypothesis that mitochondrial ATP production inhibition with BCL2 or BCL(X)L antagonists was synthetically lethal when combined with glycolysis inhibition. Treatment with 2-deoxy-D-glucose in combination with Venetoclax or WEHI-539 synergistically reduced the cellular bioenergetics of ER+ and TNBC breast cancer cells and abolished their clonogenic potential. Synthetic lethality was also observed when cultures were grown in 3D spheres. Our findings demonstrate that BCL2 antagonists exert potent effects on cancer metabolism independent of cell death-inducing effects, and demonstrate a synthetic lethality when these are applied in combination with glycolysis inhibitors.

  6. BCL2 and BCL(X)L selective inhibitors decrease mitochondrial ATP production in breast cancer cells and are synthetically lethal when combined with 2-deoxy-D-glucose

    PubMed Central

    Lucantoni, Federico; Düssmann, Heiko; Llorente-Folch, Irene; Prehn, Jochen H.M.

    2018-01-01

    Cancer cells display differences regarding their engagement of glycolytic vs. mitochondrial oxidative phosphorylation (OXPHOS) pathway. Triple negative breast cancer, an aggressive form of breast cancer, is characterized by elevated glycolysis, while estrogen receptor positive breast cancer cells rely predominantly on OXPHOS. BCL2 proteins control the process of mitochondrial outer membrane permeabilization during apoptosis, but also regulate cellular bioenergetics. Because BCL2 proteins are overexpressed in breast cancer and targetable by selective antagonists, we here analysed the effect of BCL2 and BCL(X)L selective inhibitors, Venetoclax and WEHI-539, on mitochondrial bioenergetics and cell death. Employing single cell imaging using a FRET-based mitochondrial ATP sensor, we found that MCF7 breast cancer cells supplied with mitochondrial substrates reduced their mitochondrial ATP production when treated with Venetoclax or WEHI-539 at concentrations that per se did not induce cell death. Treatments with lower concentrations of both inhibitors also reduced the length of the mitochondrial network and the dynamics, as evaluated by quantitative confocal microscopy. We next tested the hypothesis that mitochondrial ATP production inhibition with BCL2 or BCL(X)L antagonists was synthetically lethal when combined with glycolysis inhibition. Treatment with 2-deoxy-D-glucose in combination with Venetoclax or WEHI-539 synergistically reduced the cellular bioenergetics of ER+ and TNBC breast cancer cells and abolished their clonogenic potential. Synthetic lethality was also observed when cultures were grown in 3D spheres. Our findings demonstrate that BCL2 antagonists exert potent effects on cancer metabolism independent of cell death-inducing effects, and demonstrate a synthetic lethality when these are applied in combination with glycolysis inhibitors. PMID:29899841

  7. Dynamic monitoring of p53 translocation to mitochondria for the analysis of specific inhibitors using luciferase-fragment complementation.

    PubMed

    Noda, Natsumi; Awais, Raheela; Sutton, Robert; Awais, Muhammad; Ozawa, Takeaki

    2017-12-01

    Intracellular protein translocation plays a pivotal role in regulating complex biological processes, including cell death. The tumor suppressor p53 is a transcription factor activated by DNA damage and oxidative stress that also translocates from the cytosol into the mitochondrial matrix to facilitate necrotic cell death. However, specific inhibitors of p53 mitochondrial translocation are largely unknown. To explore the inhibitors of p53, we developed a bioluminescent probe to monitor p53 translocation from cytosol to mitochondria using luciferase fragment complementation assays. The probe is composed of a novel pair of luciferase fragments, the N-terminus of green click beetle luciferase CBG68 (CBGN) and multiple-complement luciferase fragment (McLuc1). The combination of luciferase fragments showed significant luminescence intensity and high signal-to-background ratio. When the p53 connected with McLuc1 translocates from cytosol into mitochondrial matrix, CBGN in mitochondrial matrix enables to complement with McLuc1, resulting in the restoration of the luminescence. The luminescence intensity was significantly increased under hydrogen peroxide-induced oxidative stress following the complementation of CBGN and McLuc1. Pifithrin-μ, a selective inhibitor of p53 mitochondrial translocation, prevented the mitochondrial translocation of the p53 probe in a concentration-dependent manner. Furthermore, the high luminescence intensity made it easier to visualize the p53 translocation at a single cell level under a bioluminescence microscope. This p53 mitochondrial translocation assay is a new tool for high-throughput screening to identify novel p53 inhibitors, which could be developed as drugs to treat diseases in which necrotic cell death is a major contributor. © 2017 Wiley Periodicals, Inc.

  8. Inhibiting Mitochondrial DNA Ligase IIIα Activates Caspase 1-Dependent Apoptosis in Cancer Cells.

    PubMed

    Sallmyr, Annahita; Matsumoto, Yoshihiro; Roginskaya, Vera; Van Houten, Bennett; Tomkinson, Alan E

    2016-09-15

    Elevated levels of DNA ligase IIIα (LigIIIα) have been identified as a biomarker of an alteration in DNA repair in cancer cells that confers hypersensitivity to a LigIIIα inhibitor, L67, in combination with a poly (ADP-ribose) polymerase inhibitor. Because LigIIIα functions in the nucleus and mitochondria, we examined the effect of L67 on these organelles. Here, we show that, although the DNA ligase inhibitor selectively targets mitochondria, cancer and nonmalignant cells respond differently to disruption of mitochondrial DNA metabolism. Inhibition of mitochondrial LigIIIα in cancer cells resulted in abnormal mitochondrial morphology, reduced levels of mitochondrial DNA, and increased levels of mitochondrially generated reactive oxygen species that caused nuclear DNA damage. In contrast, these effects did not occur in nonmalignant cells. Furthermore, inhibition of mitochondrial LigIIIα activated a caspase 1-dependent apoptotic pathway, which is known to be part of inflammatory responses induced by pathogenic microorganisms in cancer, but not nonmalignant cells. These results demonstrate that the disruption of mitochondrial DNA metabolism elicits different responses in nonmalignant and cancer cells and suggests that the abnormal response in cancer cells may be exploited in the development of novel therapeutic strategies that selectively target cancer cells. Cancer Res; 76(18); 5431-41. ©2016 AACR. ©2016 American Association for Cancer Research.

  9. Hyphal formation of Candida albicans is controlled by electron transfer system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Watanabe, Toshihiko; Ogasawara, Ayako; Mikami, Takeshi

    2006-09-15

    Most Candida albicans cells cultured in RPMI1640 medium at 37 deg. C grow in hyphal form in aerobic conditions, but they grow in yeast form in anaerobic conditions. The hyphal growth of C. albicans was inhibited in glucose-deficient conditions. Malonic acid, an inhibitor of succinate dehydrogenase, enhanced the yeast proliferation of C. albicans, indicating that the hyphal-formation signal was derived from the glycolysis system and the signal was transmitted to the electron transfer system via the citric acid cycle. Thenoyl trifluoro acetone (TTFA), an inhibitor of the signal transmission between complex II and Co Q, significantly inhibited the hyphal growthmore » of C. albicans. Antimycin, KCN, and oligomycin, inhibitors of complex III, IV, and V, respectively, did not inhibit the hyphal growth of C. albicans. The production of mRNAs for the hyphal formation signal was completely inhibited in anaerobic conditions. These results indicate that the electron transfer system functions upstream of the RAS1 signal pathway and activates the expression of the hyphal formation signal. Since the electron transfer system is inactivated in anaerobic conditions, C. albicans grew in yeast form in this condition.« less

  10. Recombinant Buckwheat Trypsin Inhibitor Induces Mitophagy by Directly Targeting Mitochondria and Causes Mitochondrial Dysfunction in Hep G2 Cells.

    PubMed

    Wang, Zhuanhua; Li, Shanshan; Ren, Rong; Li, Jiao; Cui, Xiaodong

    2015-09-09

    Mitochondria are essential targets for cancer chemotherapy and other disease treatments. Recombinant buckwheat trypsin inhibitor (rBTI), a member of the potato type I proteinase inhibitor family, was derived from tartary buckwheat extracts. Our results showed that rBTI directly targeted mitochondria and induced mitochondrial fragmentation and mitophagy. This occurs through enhanced depolarization of the mitochondrial membrane potential, increasing reactive oxygen species (ROS) generation associated with the rise of the superoxide dismutase and catalase activity and glutathione peroxidase (GSH) content, and changes in the GSH/oxidized glutathione ratio. Mild and transient ROS induced by rBTI were shown to be important signaling molecules required to induce Hep G2 mitophagy to remove dysfunctional mitochondria. Furthermore, rBTI could directly induce mitochondrial fragmentation. It was also noted that rBTI highly increased colocalization of mitochondria in treated cells compared to nontreated cells. Tom 20, a subunit of the translocase of the mitochondrial outer membrane complex responsible for recognizing mitochondrial presequences, may be the direct target of rBTI.

  11. Low-level light therapy potentiates NPe6-mediated photodynamic therapy in a human osteosarcoma cell line via increased ATP.

    PubMed

    Tsai, Shang-Ru; Yin, Rui; Huang, Ying-Ying; Sheu, Bor-Ching; Lee, Si-Chen; Hamblin, Michael R

    2015-03-01

    Low-level light therapy (LLLT) is used to stimulate healing, reduce pain and inflammation, and preserve tissue from dying. LLLT has been shown to protect cells in culture from dying after various cytotoxic insults, and LLLT is known to increase the cellular ATP content. Previous studies have demonstrated that maintaining a sufficiently high ATP level is necessary for the efficient induction and execution of apoptosis steps after photodynamic therapy (PDT). We asked whether LLLT would protect cells from cytotoxicity due to PDT, or conversely whether LLLT would enhance the efficacy of PDT mediated by mono-l-aspartyl chlorin(e6) (NPe6). Increased ATP could lead to enhanced cell uptake of NPe6 by the energy dependent process of endocytosis, and also to more efficient apoptosis. In this study, human osteosarcoma cell line MG-63 was subjected to 1.5J/cm(2) of 810nm near infrared radiation (NIR) followed by addition of 10μM NPe6 and after 2h incubation by 1.5J/cm(2) of 652nm red light for PDT. PDT combined with LLLT led to higher cell death and increased intracellular reactive oxygen species compared to PDT alone. The uptake of NPe6 was moderately increased by LLLT, and cellular ATP was increased. The mitochondrial respiratory chain inhibitor antimycin A abrogated the LLLT-induced increase in cytotoxicity. Taken together, these results demonstrate that LLLT potentiates NPe6-mediated PDT via increased ATP synthesis and is a potentially promising strategy that could be applied in clinical PDT. Copyright © 2014 Elsevier B.V. All rights reserved.

  12. High-throughput screening identifies artesunate as selective inhibitor of cancer stemness: Involvement of mitochondrial metabolism.

    PubMed

    Subedi, Amit; Futamura, Yushi; Nishi, Mayuko; Ryo, Akihide; Watanabe, Nobumoto; Osada, Hiroyuki

    2016-09-02

    Cancer stem cells (CSCs) have robust systems to maintain cancer stemness and drug resistance. Thus, targeting such robust systems instead of focusing on individual signaling pathways should be the approach allowing the identification of selective CSC inhibitors. Here, we used the alkaline phosphatase (ALP) assay to identify inhibitors for cancer stemness in induced cancer stem-like (iCSCL) cells. We screened several compounds from natural product chemical library and evaluated hit compounds for their efficacy on cancer stemness in iCSCL tumorspheres. We identified artesunate, an antimalarial drug, as a selective inhibitor of cancer stemness. Artesunate induced mitochondrial dysfunction that selectively inhibited cancer stemness of iCSCL cells, indicating an essential role of mitochondrial metabolism in cancer stemness. Copyright © 2016 Elsevier Inc. All rights reserved.

  13. Synergism of antifungal activity between mitochondrial respiration inhibitors and kojic acid

    USDA-ARS?s Scientific Manuscript database

    Co-application of certain types of compounds with conventional antimicrobial drugs results in the enhancement of efficacy of drugs through a mechanism termed chemosensitization. We show that kojic acid (KA), a natural product, is a potent chemosensitizer to complex III inhibitors of mitochondrial re...

  14. Inhibition of stress-inducible HSP70 impairs mitochondrial proteostasis and function.

    PubMed

    Leu, Julia I-Ju; Barnoud, Thibaut; Zhang, Gao; Tian, Tian; Wei, Zhi; Herlyn, Meenhard; Murphy, Maureen E; George, Donna L

    2017-07-11

    Protein quality control is an important component of survival for all cells. The use of proteasome inhibitors for cancer therapy derives from the fact that tumor cells generally exhibit greater levels of proteotoxic stress than do normal cells, and thus cancer cells tend to be more sensitive to proteasome inhibition. However, this approach has been limited in some cases by toxicity to normal cells. Recently, the concept of inhibiting proteostasis in organelles for cancer therapy has been advanced, in part because it is predicted to have reduced toxicity for normal cells. Here we demonstrate that a fraction of the major stress-induced chaperone HSP70 (also called HSPA1A or HSP72, but hereafter HSP70) is abundantly present in mitochondria of tumor cells, but is expressed at quite low or undetectable levels in mitochondria of most normal tissues and non-tumor cell lines. We show that treatment of tumor cells with HSP70 inhibitors causes a marked change in mitochondrial protein quality control, loss of mitochondrial membrane potential, reduced oxygen consumption rate, and loss of ATP production. We identify several nuclear-encoded mitochondrial proteins, including polyadenylate binding protein-1 (PABPC1), which exhibit decreased abundance in mitochondria following treatment with HSP70 inhibitors. We also show that targeting HSP70 function leads to reduced levels of several mitochondrial-encoded RNA species that encode components of the electron transport chain. Our data indicate that small molecule inhibitors of HSP70 represent a new class of organelle proteostasis inhibitors that impair mitochondrial function in cancer cells, and therefore constitute novel therapeutics.

  15. Seahorse Xfe24 Extracellular Flux Analyzer-based analysis of cellular respiration in Caenorhabditis elegans

    PubMed Central

    Luz, Anthony L.; Smith, Latasha L.; Rooney, John P.

    2015-01-01

    Mitochondria are critical for their role in ATP production as well as multiple nonenergetic functions, and mitochondrial dysfunction is causal in myriad human diseases. Less well appreciated is the fact that mitochondria integrate environmental and inter- as well as intracellular signals to modulate function. Because mitochondria function in an organismal milieu, there is need for assays capable of rapidly assessing mitochondrial health in vivo. Here, using the Seahorse XFe24 Extracellular Flux Analyzer and the pharmacological inhibitors dicyclohexylcarbodiimide (DCCD, ATP synthase inhibitor), carbonyl cyanide-p-trifluoromethoxyphenylhydrazone (FCCP, mitochondrial uncoupler) and sodium azide (cytochrome c oxidase inhibitor), we describe how to obtain in vivo measurements of the fundamental parameters (basal oxygen consumption rate (OCR), ATP-linked respiration, maximal OCR, spare respiratory capacity and proton leak) of the mitochondrial respiratory chain in the model organism Caenorhabditis elegans. PMID:26523474

  16. Inhibition of oxidative phosphorylation for enhancing citric acid production by Aspergillus niger.

    PubMed

    Wang, Lu; Zhang, Jianhua; Cao, Zhanglei; Wang, Yajun; Gao, Qiang; Zhang, Jian; Wang, Depei

    2015-01-16

    The spore germination rate and growth characteristics were compared between the citric acid high-yield strain Aspergillus niger CGMCC 5751 and A. niger ATCC 1015 in media containing antimycin A or DNP. We inferred that differences in citric acid yield might be due to differences in energy metabolism between these strains. To explore the impact of energy metabolism on citric acid production, the changes in intracellular ATP, NADH and NADH/NAD+ were measured at various fermentation stages. In addition, the effects of antimycin A or DNP on energy metabolism and citric acid production was investigated by CGMCC 5751. By comparing the spore germination rate and the extent of growth on PDA plates containing antimycin A or DNP, CGMCC 5751 was shown to be more sensitive to antimycin A than ATCC 1015. The substrate-level phosphorylation of CGMCC 5751 was greater than that of ATCC 1015 on PDA plates with DNP. DNP at tested concentrations had no apparent effect on the growth of CGMCC 5751. There were no apparent effects on the mycelial morphology, the growth of mycelial pellets or the dry cell mass when 0.2 mg L(-1) antimycin A or 0.1 mg L(-1) DNP was added to medium at the 24-h time point. The concentrations of intracellular ATP, NADH and NADH/NAD+ of CGMCC 5751 were notably lower than those of ATCC 1015 at several fermentation stages. Moreover, at 96 h of fermentation, the citric acid production of CGMCC 5751 reached up to 151.67 g L(-1) and 135.78 g L(-1) by adding 0.2 mg L(-1) antimycin A or 0.1 mg L(-1) DNP, respectively, at the 24-h time point of fermentation. Thus, the citric acid production of CGMCC 5751 was increased by 19.89% and 7.32%, respectively. The concentrations of intracellular ATP, NADH and NADH/NAD+ of the citric acid high-yield strain CGMCC 5751 were notably lower than those of ATCC 1015. The excessive ATP has a strong inhibitory effect on citric acid accumulation by A. niger. Increasing NADH oxidation and appropriately reducing the concentration of intracellular ATP can accelerate glycolysis and the TCA cycle to enhance citric acid yield.

  17. PDE 5 inhibitor improves insulin sensitivity by enhancing mitochondrial function in adipocytes.

    PubMed

    Yu, Hea Min; Chung, Hyo Kyun; Kim, Koon Soon; Lee, Jae Min; Hong, Jun Hwa; Park, Kang Seo

    2017-11-04

    Adipocytes are involved in many metabolic disorders. It was recently reported that phosphodiesterase type 5 (PDE5) is expressed in human adipose tissue. In addition, PDE5 inhibitors have been shown to improve insulin sensitivity in humans. However, the mechanism underlying the role of PDE5 inhibitors as an insulin sensitizer remains largely unknown. The present study was undertaken to investigate the role of the PDE5 inhibitor udenafil in insulin signaling in adipocytes and whether this is mediated through the regulation of mitochondrial function. To study the mechanism underlying the insulin sensitizing action of PDE5 inhibitors, we evaluated quantitative changes in protein or mRNA levels of mitochondrial oxidative phosphorylation (OxPhos) complex, oxygen consumption rate (OCR), and fatty acid oxidation with varying udenafil concentrations in 3T3-L1 cells. Our cell study suggested that udenafil enhanced the insulin signaling pathway in 3T3-L1 cells. Following udenafil treatment, basal mitochondrial OCR, maximal OxPhos capacity, and OxPhos gene expression significantly increased. Finally, we examined whether udenafil can affect the fatty acid oxidation process. Treatment of 3T3-L1 cells with udenafil (10 and 20 μM) significantly increased fatty acid oxidation rate in a dose-dependent manner. In addition, the expression of peroxisome proliferator-activated receptor gamma coactivator 1-alpha (PGC-1α) significantly increased. We demonstrated that the PDE5 inhibitor udenafil enhances insulin sensitivity by improving mitochondrial function in 3T3-L1 cells. This might be the mechanism underlying the PDE5 inhibitor-enhanced insulin signaling in adipocytes. This also suggests that udenafil may provide benefit in the treatment of type 2 diabetes and other related cardiovascular diseases. Copyright © 2017 Elsevier Inc. All rights reserved.

  18. Reversed-phase thin-layer chromatography of homologs of Antimycin-A and related derivatives

    USGS Publications Warehouse

    Abidi, Sharon L.

    1989-01-01

    Using a reversed-phase high-performance liquid chromatographic (HPLC) technique, a mixture of antimycins A was separated into eight hitherto unreported subcomponents, Ala, Alb, A2a, A2b, A3a, A3b, A4a, and A4b. Although a base-line resolution of the known four major antimycins Al, A2, A3, and A4 was readily achieved with mobile phases containing acetate buffers, the separation of the new antibiotic subcomponents was highly sensitive to variation in mobile phase conditions. The type and composition of organic modifiers, the nature of buffer salts, and the concentration of added electrolytes had profound effects on capacity factors, separation factors, and peak resolution values. Of the numerous chromatographic systems examined, a mobile phase consisting of methanol-water (70:30) and 0.005 M tetrabutylammonium phosphate at pH 3.0 yielded the most satisfactory results for the separation of the subcomponents. Reversed-phase gradient HPLC separation of the dansylated or methylated antibiotic compounds produced superior chromatographic characteristics and the presence of added electrolytes was not a critical factor for achieving separation. Differences in the chromatographic outcome between homologous and structural isomers were interpretated based on a differential solvophobic interaction rationale. Preparative reversed-phase HPLC under optimal conditions enabled isolation of pure samples of the methylated antimycin subcomponents for use in structural studies.

  19. High-performance liquid-chromatographic separation of subcomponents of antimycin-A

    USGS Publications Warehouse

    Abidi, S.L.

    1988-01-01

    Using a reversed-phase high-performance liquid chromatographic (HPLC) technique, a mixture of antimycins A was separated into eight hitherto unreported subcomponents, Ala, Alb, A2a, A2b, A3a, A3b, A4a, and A4b. Although a base-line resolution of the known four major antimycins Al, A2, A3, and A4 was readily achieved with mobile phases containing acetate buffers, the separation of the new antibiotic subcomponents was highly sensitive to variation in mobile phase conditions. The type and composition of organic modifiers, the nature of buffer salts, and the concentration of added electrolytes had profound effects on capacity factors, separation factors, and peak resolution values. Of the numerous chromatographic systems examined, a mobile phase consisting of methanol-water (70:30) and 0.005 M tetrabutylammonium phosphate at pH 3.0 yielded the most satisfactory results for the separation of the subcomponents. Reversed-phase gradient HPLC separation of the dansylated or methylated antibiotic compounds produced superior chromatographic characteristics and the presence of added electrolytes was not a critical factor for achieving separation. Differences in the chromatographic outcome between homologous and structural isomers were interpretated based on a differential solvophobic interaction rationale. Preparative reversed-phase HPLC under optimal conditions enabled isolation of pure samples of the methylated antimycin subcomponents for use in structural studies.

  20. Cytosolic calcium mediates RIP1/RIP3 complex-dependent necroptosis through JNK activation and mitochondrial ROS production in human colon cancer cells.

    PubMed

    Sun, Wen; Wu, Xiaxia; Gao, Hongwei; Yu, Jie; Zhao, Wenwen; Lu, Jin-Jian; Wang, Jinhua; Du, Guanhua; Chen, Xiuping

    2017-07-01

    Necroptosis is a form of programmed necrosis mediated by signaling complexes with receptor-interacting protein 1 (RIP1) and RIP3 kinases as the main mediators. However, the underlying execution pathways of this phenomenon have yet to be elucidated in detail. In this study, a RIP1/RIP3 complex was formed in 2-methoxy-6-acetyl-7-methyljuglone (MAM)-treated HCT116 and HT29 colon cancer cells. With this formation, mitochondrial reactive oxygen species (ROS) levels increased, mitochondrial depolarization occurred, and ATP concentrations decreased. This process was identified as necroptosis. This finding was confirmed by experiments showing that MAM-induced cell death was attenuated by the pharmacological or genetic blockage of necroptosis signaling, including RIP1 inhibitor necrostatin-1s (Nec-1s) and siRNA-mediated gene silencing of RIP1 and RIP3, but was unaffected by caspase inhibitor z-vad-fmk or necrosis inhibitor 2-(1H-Indol-3-yl)-3-pentylamino-maleimide (IM54). Transmission electron microscopy (TEM) analysis further revealed the ultrastructural features of MAM-induced necroptosis. MAM-induced RIP1/RIP3 complex triggered necroptosis through cytosolic calcium (Ca 2+ ) accumulation and sustained c-Jun N-terminal kinase (JNK) activation. Both calcium chelator BAPTA-AM and JNK inhibitor SP600125 could attenuate necroptotic features, including mitochondrial ROS elevation, mitochondrial depolarization, and ATP depletion. 2-thenoyltrifluoroacetone (TTFA), which is a mitochondrial complex II inhibitor, was found to effectively reverse both MAM induced mitochondrial ROS generation and cell death, indicating the complex II was the ROS-producing site. The essential role of mitochondrial ROS was confirmed by the protective effect of overexpression of manganese superoxide dismutase (MnSOD). MAM-induced necroptosis was independent of TNFα, p53, MLKL, and lysosomal membrane permeabilization. In summary, our study demonstrated that RIP1/RIP3 complex-triggered cytosolic calcium accumulation is a critical mediator in MAM-induced necroptosis through sustained JNK activation and mitochondrial ROS production. Our study also provided new insights into the molecular regulation of necroptosis in human colon cancer cells. Copyright © 2017 Elsevier Inc. All rights reserved.

  1. D-Lactate transport and metabolism in rat liver mitochondria.

    PubMed

    de Bari, Lidia; Atlante, Anna; Guaragnella, Nicoletta; Principato, Giovanni; Passarella, Salvatore

    2002-07-15

    In the present study we investigated whether isolated rat liver mitochondria can take up and metabolize D-lactate. We found the following: (1) externally added D-lactate causes oxygen uptake by mitochondria [P/O ratio (the ratio of mol of ATP synthesized to mol of oxygen atoms reduced to water during oxidative phosphorylation)=2] and membrane potential (Delta(psi)) generation in processes that are rotenone-insensitive, but inhibited by antimycin A and cyanide, and proton release from coupled mitochondria inhibited by alpha-cyanocinnamate, but not by phenylsuccinate; (2) the activity of the putative flavoprotein (D-lactate dehydrogenase) was detected in inside-out submitochondrial particles, but not in mitochondria and mitoplasts, as it is localized in the matrix phase of the mitochondrial inner membrane; (3) three novel separate translocators exist to mediate D-lactate traffic across the mitochondrial inner membrane: the D-lactate/H(+) symporter, which was investigated by measuring fluorimetrically the rate of endogenous flavin reduction, the D-lactate/oxoacid antiporter (which mediates both the D-lactate/pyruvate and D-lactate/oxaloacetate exchanges) and D-lactate/malate antiporter studied by monitoring photometrically the appearance of the D-lactate counteranions outside mitochondria. The D-lactate translocators, in the light of their different inhibition profiles separate from the monocarboxylate carrier, were found to differ from each other in the V(max) values and in the inhibition and pH profiles and were shown to regulate mitochondrial D-lactate metabolism in vitro. The D-lactate translocators and the D-lactate dehydrogenase could account for the removal of the toxic methylglyoxal from cytosol, as well as for D-lactate-dependent gluconeogenesis.

  2. RIP1-mediated mitochondrial dysfunction and ROS production contributed to tumor necrosis factor alpha-induced L929 cell necroptosis and autophagy.

    PubMed

    Ye, Yuan-Chao; Wang, Hong-Ju; Yu, Lu; Tashiro, Shin-Ichi; Onodera, Satoshi; Ikejima, Takashi

    2012-12-01

    Tumor necrosis factor alpha (TNFα) induces necroptosis and autophagy; however, the detailed molecular mechanism is not fully understood. In this study, we found that TNFα administration caused mitochondrial dysfunction and reactive oxygen species (ROS) production, which led to necroptosis and autophagy in murine fibrosarcoma L929 cells. Notably, the RIP1 (serine-threonine kinase receptor-interacting protein 1, a main adaptor protein of necroptosis) specific inhibitor necrostatin-1 (Nec-1) recovered mitochondrial dysfunction and ROS production due to TNFα administration. Moreover, pan-caspase inhibitor z-VAD-fmk (zVAD) increased RIP1 expression and exacerbated TNFα-induced mitochondrial dysfunction and ROS production, indicating that RIP1 led to mitochondrial dysfunction and ROS production. In addition, cytochrome c release from mitochondria was accompanied with TNFα administration, and Nec-1 blocked the release of cytochrome c upon TNFα administration, while zVAD enhanced the release. These further suggested that RIP1 induced mitochondrial dysfunction accompanied with cytochrome c release. Furthermore, autophagy inhibitor 3-methyladenine (3MA) did not affect RIP1 expression as well as mitochondrial dysfunction and ROS production. Together with our previous publication that autophagy was a downstream consequence of necroptosis, we concluded that TNFα induced mitochondrial dysfunction accompanied with ROS production and cytochrome c release via RIP1, leading to necroptosis and resulting autophagic cell death. Copyright © 2012 Elsevier B.V. All rights reserved.

  3. Mitochondrial dysfunction enhances cisplatin resistance in human gastric cancer cells via the ROS-activated GCN2-eIF2α-ATF4-xCT pathway

    PubMed Central

    Wang, Sheng-Fan; Chen, Meng-Shian; Chou, Yueh-Ching; Ueng, Yune-Fang; Yin, Pen-Hui; Yeh, Tien-Shun; Lee, Hsin-Chen

    2016-01-01

    Mitochondrial DNA mutations and defects in mitochondrial enzymes have been identified in gastric cancers, and they might contribute to cancer progression. In previous studies, mitochondrial dysfunction was induced by oligomycin-enhanced chemoresistance to cisplatin. Herein, we dissected the regulatory mechanism for mitochondrial dysfunction-enhanced cisplatin resistance in human gastric cancer cells. Repeated cisplatin treatment-induced cisplatin-resistant cells exhibited high SLC7A11 (xCT) expression, and xCT inhibitors (sulfasalazine or erastin), xCT siRNA, or a GSH synthesis inhibitor (buthionine sulphoximine, BSO) could sensitize these cells to cisplatin. Clinically, the high expression of xCT was associated with a poorer prognosis for gastric cancer patients under adjuvant chemotherapy. Moreover, we found that mitochondrial dysfunction enhanced cisplatin resistance and up-regulated xCT expression, as well as intracellular glutathione (GSH). The xCT inhibitors, siRNA against xCT or BSO decreased mitochondrial dysfunction-enhanced cisplatin resistance. We further demonstrated that the upregulation of the eIF2α-ATF4 pathway contributed to mitochondrial dysfunction-induced xCT expression, and activated eIF2α kinase GCN2, but not PERK, stimulated the eIF2α-ATF4-xCT pathway in response to mitochondrial dysfunction-increased reactive oxygen species (ROS) levels. In conclusion, our results suggested that the ROS-activated GCN2-eIF2α-ATF4-xCT pathway might contribute to mitochondrial dysfunction-enhanced cisplatin resistance and could be a potential target for gastric cancer therapy. PMID:27708226

  4. Mitochondrial dysfunction enhances cisplatin resistance in human gastric cancer cells via the ROS-activated GCN2-eIF2α-ATF4-xCT pathway.

    PubMed

    Wang, Sheng-Fan; Chen, Meng-Shian; Chou, Yueh-Ching; Ueng, Yune-Fang; Yin, Pen-Hui; Yeh, Tien-Shun; Lee, Hsin-Chen

    2016-11-08

    Mitochondrial DNA mutations and defects in mitochondrial enzymes have been identified in gastric cancers, and they might contribute to cancer progression. In previous studies, mitochondrial dysfunction was induced by oligomycin-enhanced chemoresistance to cisplatin. Herein, we dissected the regulatory mechanism for mitochondrial dysfunction-enhanced cisplatin resistance in human gastric cancer cells. Repeated cisplatin treatment-induced cisplatin-resistant cells exhibited high SLC7A11 (xCT) expression, and xCT inhibitors (sulfasalazine or erastin), xCT siRNA, or a GSH synthesis inhibitor (buthionine sulphoximine, BSO) could sensitize these cells to cisplatin. Clinically, the high expression of xCT was associated with a poorer prognosis for gastric cancer patients under adjuvant chemotherapy. Moreover, we found that mitochondrial dysfunction enhanced cisplatin resistance and up-regulated xCT expression, as well as intracellular glutathione (GSH). The xCT inhibitors, siRNA against xCT or BSO decreased mitochondrial dysfunction-enhanced cisplatin resistance. We further demonstrated that the upregulation of the eIF2α-ATF4 pathway contributed to mitochondrial dysfunction-induced xCT expression, and activated eIF2α kinase GCN2, but not PERK, stimulated the eIF2α-ATF4-xCT pathway in response to mitochondrial dysfunction-increased reactive oxygen species (ROS) levels. In conclusion, our results suggested that the ROS-activated GCN2-eIF2α-ATF4-xCT pathway might contribute to mitochondrial dysfunction-enhanced cisplatin resistance and could be a potential target for gastric cancer therapy.

  5. Bruton's tyrosine kinase inhibition increases BCL-2 dependence and enhances sensitivity to venetoclax in chronic lymphocytic leukemia.

    PubMed

    Deng, J; Isik, E; Fernandes, S M; Brown, J R; Letai, A; Davids, M S

    2017-10-01

    Although the BTK inhibitor ibrutinib has transformed the management of patients with chronic lymphocytic leukemia (CLL), it does not induce substantial apoptosis in vitro, and as such the mechanisms underlying its ability to kill CLL cells are not well understood. Acalabrutinib, a more specific BTK inhibitor now in development, also appears to be highly effective in CLL, but the connection of its mechanism with CLL cell death is also unclear. Using dynamic BH3 profiling, we analyzed alterations in the function of the mitochondrial apoptotic pathway induced by ibrutinib and acalabrutinib. We studied CLL patient samples treated ex vivo with both drugs, as well as primary samples from CLL patients on clinical trials of both drugs. We found that BTK inhibition enhances mitochondrial BCL-2 dependence without significantly altering overall mitochondrial priming. Enhancement of BCL-2 dependence was accompanied by an increase in the pro-apoptotic protein BIM. In contrast, treatment with the selective BCL-2 inhibitor venetoclax enhanced overall mitochondrial priming without increasing BCL-2 dependence. Pre-treatment of CLL cells with either BTK inhibitor, whether ex vivo or in vivo in patients, enhanced killing by venetoclax. Our data suggest that BTK inhibition enhances mitochondrial BCL-2 dependence, supporting the ongoing development of clinical trials combining BTK and BCL-2 inhibition.

  6. Bruton’s tyrosine kinase inhibition increases BCL-2 dependence and enhances sensitivity to venetoclax in chronic lymphocytic leukemia

    PubMed Central

    Deng, Jing; Isik, Elif; Fernandes, Stacey M.; Brown, Jennifer R.; Letai, Anthony; Davids, Matthew S.

    2017-01-01

    Although the BTK inhibitor ibrutinib has transformed the management of patients with CLL, it does not induce substantial apoptosis in vitro, and as such the mechanisms underlying its ability to kill CLL cells are not well understood. Acalabrutinib, a more specific BTK inhibitor now in development, also appears to be highly effective in CLL, but the connection of its mechanism with CLL cell death is also unclear. Using dynamic BH3 profiling, we analyzed alterations in the function of the mitochondrial apoptotic pathway induced by ibrutinib and acalabrutinib. We studied CLL patient samples treated ex vivo with both drugs, as well as primary samples from CLL patients on clinical trials of both drugs. We found that BTK inhibition enhances mitochondrial BCL-2 dependence without significantly altering overall mitochondrial priming. Enhancement of BCL-2 dependence was accompanied by an increase in the pro-apoptotic protein BIM. In contrast, treatment with the selective BCL-2 inhibitor venetoclax enhanced overall mitochondrial priming without increasing BCL-2 dependence. Pre-treatment of CLL cells with either BTK inhibitor, whether ex vivo or in vivo in patients, enhanced killing by venetoclax. Our data suggest that BTK inhibition enhances mitochondrial BCL2 dependence, supporting the ongoing development of clinical trials combining BTK and BCL-2 inhibition. PMID:28111464

  7. Critical contribution of RIPK1 mediated mitochondrial dysfunction and oxidative stress to compression-induced rat nucleus pulposus cells necroptosis and apoptosis.

    PubMed

    Chen, Songfeng; Lv, Xiao; Hu, Binwu; Zhao, Lei; Li, Shuai; Li, Zhiliang; Qing, Xiangcheng; Liu, Hongjian; Xu, Jianzhong; Shao, Zengwu

    2018-04-28

    The aim of this study was to investigate whether RIPK1 mediated mitochondrial dysfunction and oxidative stress contributed to compression-induced nucleus pulposus (NP) cells necroptosis and apoptosis, together with the interplay relationship between necroptosis and apoptosis in vitro. Rat NP cells underwent various periods of 1.0 MPa compression. To determine whether compression affected mitochondrial function, we evaluated the mitochondrial membrane potential, mitochondrial permeability transition pore (mPTP), mitochondrial ultrastructure and ATP content. Oxidative stress-related indicators reactive oxygen species, superoxide dismutase and malondialdehyde were also assessed. To verify the relevance between oxidative stress and necroptosis together with apoptosis, RIPK1 inhibitor necrostatin-1(Nec-1), mPTP inhibitor cyclosporine A (CsA), antioxidants and small interfering RNA technology were utilized. The results established that compression elicited a time-dependent mitochondrial dysfunction and elevated oxidative stress. Nec-1 and CsA restored mitochondrial function and reduced oxidative stress, which corresponded to decreased necroptosis and apoptosis. CsA down-regulated mitochondrial cyclophilin D expression, but had little effects on RIPK1 expression and pRIPK1 activation. Additionally, we found that Nec-1 largely blocked apoptosis; whereas, the apoptosis inhibitor Z-VAD-FMK increased RIPK1 expression and pRIPK1 activation, and coordinated regulation of necroptosis and apoptosis enabled NP cells survival more efficiently. In contrast to Nec-1, SiRIPK1 exacerbated mitochondrial dysfunction and oxidative stress. In summary, RIPK1-mediated mitochondrial dysfunction and oxidative stress play a crucial role in NP cells necroptosis and apoptosis during compression injury. The synergistic regulation of necroptosis and apoptosis may exert more beneficial effects on NP cells survival, and ultimately delaying or even retarding intervertebral disc degeneration.

  8. A Single Streptomyces Symbiont Makes Multiple Antifungals to Support the Fungus Farming Ant Acromyrmex octospinosus

    PubMed Central

    Seipke, Ryan F.; Barke, Jörg; Brearley, Charles; Hill, Lionel; Yu, Douglas W.; Goss, Rebecca J. M.; Hutchings, Matthew I.

    2011-01-01

    Attine ants are dependent on a cultivated fungus for food and use antibiotics produced by symbiotic Actinobacteria as weedkillers in their fungus gardens. Actinobacterial species belonging to the genera Pseudonocardia, Streptomyces and Amycolatopsis have been isolated from attine ant nests and shown to confer protection against a range of microfungal weeds. In previous work on the higher attine Acromyrmex octospinosus we isolated a Streptomyces strain that produces candicidin, consistent with another report that attine ants use Streptomyces-produced candicidin in their fungiculture. Here we report the genome analysis of this Streptomyces strain and identify multiple antibiotic biosynthetic pathways. We demonstrate, using gene disruptions and mass spectrometry, that this single strain has the capacity to make candicidin and multiple antimycin compounds. Although antimycins have been known for >60 years we report the sequence of the biosynthetic gene cluster for the first time. Crucially, disrupting the candicidin and antimycin gene clusters in the same strain had no effect on bioactivity against a co-evolved nest pathogen called Escovopsis that has been identified in ∼30% of attine ant nests. Since the Streptomyces strain has strong bioactivity against Escovopsis we conclude that it must make additional antifungal(s) to inhibit Escovopsis. However, candicidin and antimycins likely offer protection against other microfungal weeds that infect the attine fungal gardens. Thus, we propose that the selection of this biosynthetically prolific strain from the natural environment provides A. octospinosus with broad spectrum activity against Escovopsis and other microfungal weeds. PMID:21857911

  9. Role of cellular bioenergetics in smooth muscle cell proliferation induced by platelet-derived growth factor.

    PubMed

    Perez, Jessica; Hill, Bradford G; Benavides, Gloria A; Dranka, Brian P; Darley-Usmar, Victor M

    2010-05-13

    Abnormal smooth muscle cell proliferation is a hallmark of vascular disease. Although growth factors are known to contribute to cell hyperplasia, the changes in metabolism associated with this response, particularly mitochondrial respiration, remain unclear. Given the increased energy requirements for proliferation, we hypothesized that PDGF (platelet-derived growth factor) would stimulate glycolysis and mitochondrial respiration and that this elevated bioenergetic capacity is required for smooth muscle cell hyperplasia. To test this hypothesis, cell proliferation, glycolytic flux and mitochondrial oxygen consumption were measured after treatment of primary rat aortic VSMCs (vascular smooth muscle cells) with PDGF. PDGF increased basal and maximal rates of glycolytic flux and mitochondrial oxygen consumption; enhancement of these bioenergetic pathways led to a substantial increase in the mitochondrial reserve capacity. Interventions with the PI3K (phosphoinositide 3-kinase) inhibitor LY-294002 or the glycolysis inhibitor 2-deoxy-D-glucose abrogated PDGF-stimulated proliferation and prevented augmentation of glycolysis and mitochondrial reserve capacity. Similarly, when L-glucose was substituted for D-glucose, PDGF-dependent proliferation was abolished, as were changes in glycolysis and mitochondrial respiration. Interestingly, LDH (lactate dehydrogenase) protein levels and activity were significantly increased after PDGF treatment. Moreover, substitution of L-lactate for D-glucose was sufficient to increase mitochondrial reserve capacity and cell proliferation after treatment with PDGF; these effects were inhibited by the LDH inhibitor oxamate. These results suggest that glycolysis, by providing substrates that enhance the mitochondrial reserve capacity, plays an essential role in PDGF-induced cell proliferation, underscoring the integrated metabolic response required for proliferation of VSMCs in the diseased vasculature.

  10. Ginsenoside Rg3 attenuates sepsis-induced injury and mitochondrial dysfunction in liver via AMPK-mediated autophagy flux.

    PubMed

    Xing, Wei; Yang, Lei; Peng, Yue; Wang, Qianlu; Gao, Min; Yang, Mingshi; Xiao, Xianzhong

    2017-08-31

    Sepsis-led mitochondrial dysfunction has become a critical pathophysiological procedure in sepsis. Since ginsenosides have been applied in the treatment of mitochondrial dysfunction, ginsenoside Rg3 was employed to study its effects on the mitochondrial dysfunction induced by sepsis. The apoptosis rate, oxygen consumption rate (OCR), reactive oxygen species (ROS), antioxidant glutathione (GSH) pools, and mitochondrial transmembrane potential (MTP) were determined in LPS-induced sepsis hepatocytes treated with different concentrations of Rg3. Then, the protein expression levels of mitochondrial biogenesis related transcription factors, autophagy-related proteins, and AMP-activated protein kinase (AMPK) signal pathway related proteins were determined by Western blotting in both in vitro and in vivo sepsis models. Rg3 shows functions of promotion of OCR, attenuation of ROS, and maintenance of GSH pools, and its conjugating activity in the in vitro sepsis models. Rg3-treated cells were observed to have a higher MTP value compared with the LPS only induced cells. Moreover, Rg3 treatment can inhibit mitochondrial dysfunction via increasing the protein expression levels of mitochondrial biogenesis related transcription factors. Rg3 treatment has the function of inhibitor of apoptosis of human primary hepatocytes, and Rg3 can up-regulate the autophagy-related proteins and activate AMPK signal pathway in sepsis models. Meanwhile, the mitochondrial protective function exerted by Rg3 decreased after the autophagy inhibitors or AMPK inhibitor treatment in LPS-induced human primary hepatocytes. Rg3 can improve mitochondrial dysfunction by regulating autophagy in mitochondria via activating the AMPK signal pathway, thus protecting cell and organ injuries caused by sepsis. © 2017 The Author(s).

  11. Bioenergetic properties of human sarcoma cells help define sensitivity to metabolic inhibitors

    PubMed Central

    Issaq, Sameer H; Teicher, Beverly A; Monks, Anne

    2014-01-01

    Sarcomas represent a diverse group of malignancies with distinct molecular and pathological features. A better understanding of the alterations associated with specific sarcoma subtypes is critically important to improve sarcoma treatment. Renewed interest in the metabolic properties of cancer cells has led to an exploration of targeting metabolic dependencies as a therapeutic strategy. In this study, we have characterized key bioenergetic properties of human sarcoma cells in order to identify metabolic vulnerabilities between sarcoma subtypes. We have also investigated the effects of compounds that inhibit glycolysis or mitochondrial respiration, either alone or in combination, and examined relationships between bioenergetic parameters and sensitivity to metabolic inhibitors. Using 2-deoxy-D-glucose (2-DG), a competitive inhibitor of glycolysis, oligomycin, an inhibitor of mitochondrial ATP synthase, and metformin, a widely used anti-diabetes drug and inhibitor of complex I of the mitochondrial respiratory chain, we evaluated the effects of metabolic inhibition on sarcoma cell growth and bioenergetic function. Inhibition of glycolysis by 2-DG effectively reduced the viability of alveolar rhabdomyosarcoma cells vs. embryonal rhabdomyosarcoma, osteosarcoma, and normal cells. Interestingly, inhibitors of mitochondrial respiration did not significantly affect viability, but were able to increase sensitivity of sarcomas to inhibition of glycolysis. Additionally, inhibition of glycolysis significantly reduced intracellular ATP levels, and sensitivity to 2-DG-induced growth inhibition was related to respiratory rates and glycolytic dependency. Our findings demonstrate novel relationships between sarcoma bioenergetics and sensitivity to metabolic inhibitors, and suggest that inhibition of metabolic pathways in sarcomas should be further investigated as a potential therapeutic strategy. PMID:24553119

  12. The mitochondrial cytochrome c peroxidase Ccp1 of Saccharomyces cerevisiae is involved in conveying an oxidative stress signal to the transcription factor Pos9 (Skn7).

    PubMed

    Charizanis, C; Juhnke, H; Krems, B; Entian, K D

    1999-10-01

    In Saccharomyces cerevisiae two transcription factors, Pos9 (Skn7) and Yap1, are involved in the response to oxidative stress. Fusion of the Pos9 response-regulator domain to the Gal4 DNA-binding domain results in a transcription factor which renders the expression of a GAL1-lacZ reporter gene dependent on oxidative stress. To identify genes which are involved in the oxygen-dependent activation of the Gal4-Pos9 hybrid protein we screened for mutants that failed to induce the heterologous test system upon oxidative stress (fap mutants for factors activating Pos9). We isolated several respiration-deficient and some respiration-competent mutants by this means. We selected for further characterization only those mutants which also displayed an oxidative-stress-sensitive phenotype. One of the respiration-deficient mutants (complementation groupfap6) could be complemented by the ISM1 gene, which encodes mitochondrial isoleucyl tRNA synthetase, suggesting that respiration competence was important for signalling of oxidative stress. In accordance with this notion a rho0 strain and a wild-type strain in which respiration had been blocked (by treatment with antimycin A or with cyanide) also failed to activate Gal4-Pos9 upon imposition of oxidative stress. Another mutant, fap24, which was respiration-competent, could be complemented by CCP1, which encodes the mitochondrial cytochrome c peroxidase. Mitochondrial cytochrome c peroxidase degrades reactive oxygen species within the mitochondria. This suggested a possible sensor function for the enzyme in the oxidative stress response. To test this we used the previously described point mutant ccp1 W191F, which is characterized by a 10(4)-fold decrease in electron flux between cytochrome c and cytochrome c peroxidase. The Ccp1W191F mutant was still capable of activating the Pos9 transcriptional activation domain, suggesting that the signalling function of Ccp1 is independent of electron flux rates.

  13. Phenformin-Induced Mitochondrial Dysfunction Sensitizes Hepatocellular Carcinoma for Dual Inhibition of mTOR.

    PubMed

    Veiga, Sonia Rosa; Ge, Xuemei; Mercer, Carol A; Hernández-Alvarez, María Isabel; Thomas, Hala Elnakat; Hernández-Losa, Javier; Ramón Y Cajal, Santiago; Zorzano, Antonio; Thomas, George; Kozma, Sara C

    2018-04-24

    Hepatocellular carcinoma (HCC) ranks second in cancer mortality and has limited therapeutic options. We recently described the synergistic effect of allosteric and ATP-site competitive inhibitors against the mammalian target of rapamycin (mTOR) for the treatment of HCC. However, such inhibitors induce glycemia and increase mitochondrial efficiency. Here we determined whether the mitochondrial complex I inhibitor Phenformin could reverse both side effects, impose an energetic-stress on cancer cells and suppress the growth of HCC. Human HCC cell lines were used in vitro to access the signaling and energetic impact of mTOR inhibitors and Phenformin, either alone or in combination. Next, the therapeutic utility of these drugs alone or in combination was investigated pre-clinically in human orthotopic tumors implanted in mice, by analyzing their impact on the tumor burden and overall survival. We found Phenformin caused mitochondrial dysfunction and fragmentation, inducing a compensatory shift to glycolysis. In contrast, dual inhibition of mTOR impaired cell growth and glycolysis, while increasing mitochondrial fusion and efficiency. In a mouse model of human HCC, dual inhibition of mTOR, together with Phenformin, was highly efficacious in controlling tumor burden. However, more striking, pretreatment with Phenformin sensitized tumors to dual inhibition of mTOR, leading to a dramatic improvement in survival. Treatment of HCC cells in vitro with the biguanide Phenformin causes a metabolic shift to glycolysis, mitochondrial dysfunction and fragmentation, and dramatically sensitizes orthotopic liver tumors to dual inhibition of mTOR. We therefore propose this therapeutic approach should be tested clinically in HCC. Copyright ©2018, American Association for Cancer Research.

  14. Mitochondrial uncouplers inhibit clathrin-mediated endocytosis largely through cytoplasmic acidification

    PubMed Central

    Dejonghe, Wim; Kuenen, Sabine; Mylle, Evelien; Vasileva, Mina; Keech, Olivier; Viotti, Corrado; Swerts, Jef; Fendrych, Matyáš; Ortiz-Morea, Fausto Andres; Mishev, Kiril; Delang, Simon; Scholl, Stefan; Zarza, Xavier; Heilmann, Mareike; Kourelis, Jiorgos; Kasprowicz, Jaroslaw; Nguyen, Le Son Long; Drozdzecki, Andrzej; Van Houtte, Isabelle; Szatmári, Anna-Mária; Majda, Mateusz; Baisa, Gary; Bednarek, Sebastian York; Robert, Stéphanie; Audenaert, Dominique; Testerink, Christa; Munnik, Teun; Van Damme, Daniël; Heilmann, Ingo; Schumacher, Karin; Winne, Johan; Friml, Jiří; Verstreken, Patrik; Russinova, Eugenia

    2016-01-01

    ATP production requires the establishment of an electrochemical proton gradient across the inner mitochondrial membrane. Mitochondrial uncouplers dissipate this proton gradient and disrupt numerous cellular processes, including vesicular trafficking, mainly through energy depletion. Here we show that Endosidin9 (ES9), a novel mitochondrial uncoupler, is a potent inhibitor of clathrin-mediated endocytosis (CME) in different systems and that ES9 induces inhibition of CME not because of its effect on cellular ATP, but rather due to its protonophore activity that leads to cytoplasm acidification. We show that the known tyrosine kinase inhibitor tyrphostinA23, which is routinely used to block CME, displays similar properties, thus questioning its use as a specific inhibitor of cargo recognition by the AP-2 adaptor complex via tyrosine motif-based endocytosis signals. Furthermore, we show that cytoplasm acidification dramatically affects the dynamics and recruitment of clathrin and associated adaptors, and leads to reduction of phosphatidylinositol 4,5-biphosphate from the plasma membrane. PMID:27271794

  15. Mitochondrial oxidative stress is the achille's heel of melanoma cells resistant to Braf-mutant inhibitor

    PubMed Central

    André, Fanny; Jonneaux, Aurélie; Scalbert, Camille; Garçon, Guillaume; Malet-Martino, Myriam; Balayssac, Stéphane; Rocchi, Stephane; Savina, Ariel; Formstecher, Pierre; Mortier, Laurent; Kluza, Jérome; Marchetti, Philippe

    2013-01-01

    Vemurafenib/PLX4032, a selective inhibitor of mutant BRAFV600E, constitutes a paradigm shift in melanoma therapy. Unfortunately, acquired resistance, which unavoidably occurs, represents one major limitation to clinical responses. Recent studies have highlighted that vemurafenib activated oxidative metabolism in BRAFV600E melanomas expressing PGC1α. However, the oxidative state of melanoma resistant to BRAF inhibitors is unknown. We established representative in vitro and in vivo models of human melanoma resistant to vemurafenib including primary specimens derived from melanoma patients. Firstly, our study reveals that vemurafenib increased mitochondrial respiration and ROS production in BRAFV600E melanoma cell lines regardless the expression of PGC1α. Secondly, melanoma cells that have acquired resistance to vemurafenib displayed intrinsically high rates of mitochondrial respiration associated with elevated mitochondrial oxidative stress irrespective of the presence of vemurafenib. Thirdly, the elevated ROS level rendered vemurafenib-resistant melanoma cells prone to cell death induced by pro-oxidants including the clinical trial drug, elesclomol. Based on these observations, we propose that the mitochondrial oxidative signature of resistant melanoma constitutes a novel opportunity to overcome resistance to BRAF inhibition. PMID:24161908

  16. Analysis of regional brain mitochondrial bioenergetics and susceptibility to mitochondrial inhibition utilizing a microplate based system

    PubMed Central

    Sauerbeck, Andrew; Pandya, Jignesh; Singh, Indrapal; Bittman, Kevin; Readnower, Ryan; Bing, Guoying; Sullivan, Patrick

    2012-01-01

    The analysis of mitochondrial bioenergetic function typically has required 50–100 μg of protein per sample and at least 15 min per run when utilizing a Clark-type oxygen electrode. In the present work we describe a method utilizing the Seahorse Biosciences XF24 Flux Analyzer for measuring mitochondrial oxygen consumption simultaneously from multiple samples and utilizing only 5 μg of protein per sample. Utilizing this method we have investigated whether regionally based differences exist in mitochondria isolated from the cortex, striatum, hippocampus, and cerebellum. Analysis of basal mitochondrial bioenergetics revealed that minimal differences exist between the cortex, striatum, and hippocampus. However, the cerebellum exhibited significantly slower basal rates of Complex I and Complex II dependent oxygen consumption (p < 0.05). Mitochondrial inhibitors affected enzyme activity proportionally across all samples tested and only small differences existed in the effect of inhibitors on oxygen consumption. Investigation of the effect of rotenone administration on Complex I dependent oxygen consumption revealed that exposure to 10 pM rotenone led to a clear time dependent decrease in oxygen consumption beginning 12 min after administration (p < 0.05). These studies show that the utilization of this microplate based method for analysis of mitochondrial bioenergetics is effective at quantifying oxygen consumption simultaneously from multiple samples. Additionally, these studies indicate that minimal regional differences exist in mitochondria isolated from the cortex, striatum, or hippocampus. Furthermore, utilization of the mitochondrial inhibitors suggests that previous work indicating regionally specific deficits following systemic mitochondrial toxin exposure may not be the result of differences in the individual mitochondria from the affected regions. PMID:21402103

  17. Manganese ions enhance mitochondrial H2O2 emission from Krebs cycle oxidoreductases by inducing permeability transition.

    PubMed

    Bonke, Erik; Siebels, Ilka; Zwicker, Klaus; Dröse, Stefan

    2016-10-01

    Manganese-induced toxicity has been linked to mitochondrial dysfunction and an increased generation of reactive oxygen species (ROS). We could recently show in mechanistic studies that Mn 2+ ions induce hydrogen peroxide (H 2 O 2 ) production from the ubiquinone binding site of mitochondrial complex II (II Q ) and generally enhance H 2 O 2 formation by accelerating the rate of superoxide dismutation. The present study with intact mitochondria reveals that manganese additionally enhances H 2 O 2 emission by inducing mitochondrial permeability transition (mPT). In mitochondria fed by NADH-generating substrates, the combination of Mn 2+ and different respiratory chain inhibitors led to a dynamically increasing H 2 O 2 emission which was sensitive to the mPT inhibitor cyclosporine A (CsA) as well as Ru-360, an inhibitor of the mitochondrial calcium uniporter (MCU). Under these conditions, flavin-containing enzymes of the mitochondrial matrix, e.g. the mitochondrial 2-oxoglutaratedehydrogenase (OGDH), were major sources of ROS. With succinate as substrate, Mn 2+ stimulated ROS production mainly at complex II, whereby the applied succinate concentration had a marked effect on the tendency for mPT. Also Ca 2+ increased the rate of H 2 O 2 emission by mPT, while no direct effect on ROS-production of complex II was observed. The present study reveals a complex scenario through which manganese affects mitochondrial H 2 O 2 emission: stimulating its production from distinct sites (e.g. site II Q ), accelerating superoxide dismutation and enhancing the emission via mPT which also leads to the loss of soluble components of the mitochondrial antioxidant systems and favors the ROS production from flavin-containing oxidoreductases of the Krebs cycle. Copyright © 2016 Elsevier Inc. All rights reserved.

  18. Regulated Cell Death of Lymphoma Cells after Graded Mitochondrial Damage is Differentially Affected by Drugs Targeting Cell Stress Responses.

    PubMed

    Lombardo, Tomás; Folgar, Martín Gil; Salaverry, Luciana; Rey-Roldán, Estela; Alvarez, Elida M; Carreras, María C; Kornblihtt, Laura; Blanco, Guillermo A

    2018-05-01

    Collapse of the mitochondrial membrane potential (MMP) is often considered the initiation of regulated cell death (RCD). Carbonyl cyanide 3-chlorophenylhydrazone (CCCP) is an uncoupler of the electron transport chain (ETC) that facilitates the translocation of protons into the mitochondrial matrix leading to the collapse of the MMP. Several cell stress responses such as mitophagy, mitochondrial biogenesis and the ubiquitin proteasome system may differentially contribute to restrain the initiation of RCD depending on the extent of mitochondrial damage. We induced graded mitochondrial damage after collapse of MMP with the mitochondrial uncoupler CCCP in Burkitt's lymphoma cells, and we evaluated the effect of several drugs targeting cell stress responses over RCD at 72 hr, using a multiparametric flow cytometry approach. CCCP caused collapse of MMP after 30 min., massive mitochondrial fission, oxidative stress and increased mitophagy within the 5-15 μM low-dose range (LDR) of CCCP. Within the 20-50 μM high-dose range (HDR), CCCP caused lysosomal destabilization and rupture, thus precluding mitophagy and autophagy. Cell death after 72 hr was below 20%, with increased mitochondrial mass (MM). The inhibitors of mitophagy 3-(2,4-dichloro-5-methoxyphenyl)-2,3-dihydro-2-thioxo-4(1H)-quinazolinone (Mdivi-1) and vincristine (VCR) increased cell death from CCCP within the LDR, while valproic acid (an inducer of mitochondrial biogenesis) also increased MM and cell death within the LDR. The proteasome inhibitor, MG132, increased cell death only in the HDR. Doxycycline, an antibiotic that disrupts mitochondrial biogenesis, had no effect on cell survival, while iodoacetamide, an inhibitor of glycolysis, increased cell death at the HDR. We conclude that mitophagy influenced RCD of lymphoma cells after MMP collapse by CCCP only within the LDR, while proteasome activity and glycolysis contributed to survival in the HDR under extensive mitochondria and lysosome damage. © 2017 Nordic Association for the Publication of BCPT (former Nordic Pharmacological Society).

  19. SIRT3 aggravates metformin-induced energy stress and apoptosis in ovarian cancer cells.

    PubMed

    Wu, Yao; Gao, Wei-Nan; Xue, Ya-Nan; Zhang, Li-Chao; Zhang, Juan-Juan; Lu, Sheng-Yao; Yan, Xiao-Yu; Yu, Hui-Mei; Su, Jing; Sun, Lian-Kun

    2018-06-15

    Increasing evidence suggests that mitochondrial respiratory chain complex I participates in carcinogenesis and cancer progression by providing energy and maintaining mitochondrial function. However, the role of complex I in ovarian cancer is largely unknown. In this study we showed that metformin, considered to be an inhibitor of complex I, simultaneously inhibited cell growth and induced mitochondrial-related apoptosis in human ovarian cancer cells. Metformin interrupted cellular energy metabolism mainly by causing damage to complex I that impacted mitochondrial function. Additionally, treatment with metformin increased the activation of sirtuin 3 (SIRT3), a mitochondrial deacetylase. We demonstrated that SIRT3 overexpression aggravated metformin-induced apoptosis, energy stress and mitochondrial dysfunction. Moreover, treatment with metformin or SIRT3 overexpression increased activation of AMP-activated protein kinase (AMPK), a major sensor of cellular energy status. AMPK compensated for energy loss by increasing glycolysis. The impact of this was assessed by reducing glucose levels in the media or by using inhibitors (2-deoxyglucose, Compound C) of glycolysis and AMPK. The combination of these factors with metformin intensified cytotoxicity through further downregulation of ATP. Our study outlines an important role for SIRT3 in the antitumor effect of mitochondrial complex I inhibitors in human ovarian cancer cells. This effect appears to be mediated by induction of energy stress and apoptosis. Strategies that target the mitochondria could be enhanced by modulating glycolysis to further aggravate energy stress that may increase the antitumor effect. Copyright © 2018 Elsevier Inc. All rights reserved.

  20. Endophytic Streptomyces sp. AC35, a producer of bioactive isoflavone aglycones and antimycins.

    PubMed

    Ondrejíčková, P; Šturdíková, M; Hushegyi, A; Švajdlenka, E; Markošová, K; Čertík, M

    2016-09-01

    In this research, a microbial endophytic strain obtained from the rhizosphere of the conifer Taxus baccata and designated as Streptomyces sp. AC35 (FJ001754.1 Streptomyces, GenBank) was investigated. High 16S rDNA gene sequence similarity suggests that this strain is closely related to S. odorifer. The major fatty acid profile of intracellular lipids was also carried out to further identify this strain. Atomic force microscopy and scanning acoustic microscopy were used to image our strain. Its major excreted substances were extracted, evaluated for antimicrobial activity, purified, and identified by ultraviolet-visible spectroscopy (UV-vis), liquid chromatography-mass spectrometry (LC-MS/MS) and nuclear magnetic resonance as the bioactive isoflavone aglycones-daidzein, glycitein and genistein. Batch cultivation, performed under different pH conditions, revealed enhanced production of antimycin components when the pH was stable at 7.0. Antimycins were detected by HPLC and identified by UV-vis and LC-MS/MS combined with the multiple reaction monitoring. Our results demonstrate that Streptomyces sp. AC35 might be used as a potential source of effective, pharmaceutically active compounds.

  1. Mitochondrial DNA replication, nucleoside reverse-transcriptase inhibitors, and AIDS cardiomyopathy.

    PubMed

    Lewis, William

    2003-01-01

    Nucleoside reverse-transcriptase inhibitors (NRTIs) in combination with other antiretrovirals (HAART) are the cornerstones of current AIDS therapy, but extensive use brought mitochondrial side effects to light. Clinical experience, pharmacological, cell, and molecular biological evidence links altered mitochondrial (mt-) DNA replication to the toxicity of NRTIs in many tissues, and conversely, mtDNA replication defects and mtDNA depletion in target tissues are observed. Organ-specific pathological changes or diverse systemic effects result from and are frequently attributed to HAART in which NRTIs are included. The shared features of mtDNA depletion and energy depletion became key observations and related the clinical and in vivo experimental findings to inhibition of mtDNA replication by NRTI triphosphates in vitro. Subsequent to those findings, other observations suggested that mitochondrial energy deprivation is concomitant with or the result of mitochondrial oxidative stress in AIDS (from HIV, for example) or from NRTI therapy itself. Copyright 2003, Elsevier Science (USA)

  2. Inhibition of mitochondrial fragmentation diminishes Huntington’s disease–associated neurodegeneration

    PubMed Central

    Guo, Xing; Disatnik, Marie-Helene; Monbureau, Marie; Shamloo, Mehrdad; Mochly-Rosen, Daria; Qi, Xin

    2013-01-01

    Huntington’s disease (HD) is the result of expression of a mutated Huntingtin protein (mtHtt), and is associated with a variety of cellular dysfunctions including excessive mitochondrial fission. Here, we tested whether inhibition of excessive mitochondrial fission prevents mtHtt-induced pathology. We developed a selective inhibitor (P110-TAT) of the mitochondrial fission protein dynamin-related protein 1 (DRP1). We found that P110-TAT inhibited mtHtt-induced excessive mitochondrial fragmentation, improved mitochondrial function, and increased cell viability in HD cell culture models. P110-TAT treatment of fibroblasts from patients with HD and patients with HD with iPS cell–derived neurons reduced mitochondrial fragmentation and corrected mitochondrial dysfunction. P110-TAT treatment also reduced the extent of neurite shortening and cell death in iPS cell–derived neurons in patients with HD. Moreover, treatment of HD transgenic mice with P110-TAT reduced mitochondrial dysfunction, motor deficits, neuropathology, and mortality. We found that p53, a stress gene involved in HD pathogenesis, binds to DRP1 and mediates DRP1-induced mitochondrial and neuronal damage. Furthermore, P110-TAT treatment suppressed mtHtt-induced association of p53 with mitochondria in multiple HD models. These data indicate that inhibition of DRP1-dependent excessive mitochondrial fission with a P110-TAT–like inhibitor may prevent or slow the progression of HD. PMID:24231356

  3. Downregulation of mitochondrial UQCRB inhibits cancer stem cell-like properties in glioblastoma.

    PubMed

    Jung, Narae; Kwon, Ho Jeong; Jung, Hye Jin

    2018-01-01

    Glioblastoma stem cell targeted therapies have become a powerful strategy for the treatment of this deadliest brain tumor. We demonstrate for the first time that downregulation of mitochondrial ubiquinol-cytochrome c reductase binding protein (UQCRB) inhibits the cancer stem cell-like properties in human glioblastoma cells. The synthetic small molecules targeting UQCRB significantly suppressed not only the self-renewal capacity such as growth and neurosphere formation, but also the metastatic potential such as migration and invasion of glioblastoma stem‑like cells (GSCs) derived from U87MG and U373MG at subtoxic concentrations. Notably, the UQCRB inhibitors repressed c‑Met-mediated downstream signal transduction and hypoxia‑inducible factor‑1α (HIF‑1α) activation, thereby reducing the expression levels of GSC markers including CD133, Nanog, Oct4 and Sox2 in the GSCs. Furthermore, the UQCRB inhibitors decreased mitochondrial ROS generation and mitochondrial membrane potential in the GSCs, indicating that they regulate the mitochondrial function in GSCs. Indeed, the knockdown of UQCRB gene by UQCRB siRNA significantly inhibited the cancer stem cell-like phenotypes as well as the expression of stemness markers by blocking mitochondrial ROS/HIF‑1α/c‑Met pathway in U87MG GSCs. These findings suggest that UQCRB and its inhibitors could be a new therapeutic target and lead compounds for eliminating cancer stem cells in glioblastoma.

  4. Mitochondria as new therapeutic targets for eradicating cancer stem cells: Quantitative proteomics and functional validation via MCT1/2 inhibition.

    PubMed

    Lamb, Rebecca; Harrison, Hannah; Hulit, James; Smith, Duncan L; Lisanti, Michael P; Sotgia, Federica

    2014-11-30

    Here, we used quantitative proteomics analysis to identify novel therapeutic targets in cancer stem cells and/or progenitor cells. For this purpose, mammospheres from two ER-positive breast cancer cell lines (MCF7 and T47D) were grown in suspension using low-attachment plates and directly compared to attached monolayer cells grown in parallel. This allowed us to identify a subset of proteins that were selectively over-expressed in mammospheres, relative to epithelial monolayers. We focused on mitochondrial proteins, as they appeared to be highly upregulated in both MCF7 and T47D mammospheres. Key mitochondrial-related enzymes involved in beta-oxidation and ketone metabolism were significantly upregulated in mammospheres, as well as proteins involved in mitochondrial biogenesis, and specific protein inhibitors of autophagy/mitophagy. Overall, we identified >40 "metabolic targets" that were commonly upregulated in both MCF7 and T47D mammospheres. Most of these "metabolic targets" were also transcriptionally upregulated in human breast cancer cells in vivo, validating their clinical relevance. Based on this analysis, we propose that increased mitochondrial biogenesis and decreased mitochondrial degradation could provide a novel mechanism for the accumulation of mitochondrial mass in cancer stem cells. To functionally validate our observations, we utilized a specific MCT1/2 inhibitor (AR-C155858), which blocks the cellular uptake of two types of mitochondrial fuels, namely ketone bodies and L-lactate. Our results indicate that inhibition of MCT1/2 function effectively reduces mammosphere formation, with an IC-50 of ~1 µM, in both ER-positive and ER-negative breast cancer cell lines. Very similar results were obtained with oligomycin A, an inhibitor of the mitochondrial ATP synthase. Thus, the proliferative clonal expansion of cancer stem cells appears to require oxidative mitochondrial metabolism, related to the re-use of monocarboxylic acids, such as ketones or L-lactate. Our findings have important clinical implications for exploiting mitochondrial metabolism to eradicate cancer stem cells and to prevent recurrence, metastasis and drug resistance in cancer patients. Importantly, a related MCT1/2 inhibitor (AZD3965) is currently in phase I clinical trials in patients with advanced cancers: http://clinicaltrials.gov/show/NCT01791595.

  5. Monitoring the change of mitochondrial morphology and its metabolism of the breast cancer cells with the treatment of Hsp70 inhibitor during heat shock by fluorescence imaging

    NASA Astrophysics Data System (ADS)

    Yu, Biying; Yang, Hongqin; Zhang, Xiaoman; Li, Hui

    2016-10-01

    Heat shock (HS) is one of the best-studied exogenous cellular stresses, and all cellular compartments and metabolic processes are involved in HS response. The heat shock proteins (Hsps) expression enhanced during HS mainly localized in subcellular compartments, such as cytosol, endoplasmic reticulum and mitochandria. The major inducible heat shock protein 70 (Hsp70) modulate cellular homeostasis and promote cellular survival by blocking a caspase independent cell death through its association with apoptosis inducing factor. Mitochondria as the critical elements of HS response that participate in key metabolic reactions, and the changes in mitochonrial morphology may impact on mitochondrial metabolism. In this paper, the changes of mitorchondrial morphology in breast cancer cell have been monitored in real time after heat shock (43 °) by the fluorescence imaging, and the influence of Hsp70 inhibitor on mitochandrial structures have also been investigated. Then the information of mitochondrial metabolism which can be characterized by the level of the mitochondrial membrane potential has also been obtained wihout/with the treatment of Hsp70 inhibitor. Our data indicated that the mitochandrial morphology were related with the mitochandrial membrane potential, and the mitochandrial membrane potential was influenced significantly with the treatment of Hsp70 inhibitor during HS.

  6. Lenticular mitoprotection. Part A: Monitoring mitochondrial depolarization with JC-1 and artifactual fluorescence by the glycogen synthase kinase-3β inhibitor, SB216763.

    PubMed

    Brooks, Morgan M; Neelam, Sudha; Fudala, Rafal; Gryczynski, Ignacy; Cammarata, Patrick R

    2013-01-01

    Dissipation of the electrochemical gradient across the inner mitochondrial membrane results in mitochondrial membrane permeability transition (mMPT), a potential early marker for the onset of apoptosis. In this study, we demonstrate a role for glycogen synthase kinase-3β (GSK-3β) in regulating mMPT. Using direct inhibition of GSK-3β with the GSK-3β inhibitor SB216763, mitochondria may be prevented from depolarizing (hereafter referred to as mitoprotection). Cells treated with SB216763 showed an artifact of fluorescence similar to the green emission spectrum of the JC-1 dye. We demonstrate the novel use of spectral deconvolution to negate the interfering contributing fluorescence by SB216763, thus allowing an unfettered analysis of the JC-1 dye to determine the mitochondrial membrane potential. Secondary cultures of virally transfected human lens epithelial cells (HLE-B3) were exposed to acute hypoxic conditions (approximately 1% O₂) followed by exposure to atmospheric oxygen (approximately 21% O₂). The fluorescent dye JC-1 was used to monitor the extent of mitochondrial depolarization upon exposure of inhibitor treatment relative to the control cells (mock inhibition) in atmospheric oxygen. Annexin V-fluorescein isothiocyanate/propidium iodide staining was implemented to determine cell viability. Treatment of HLE-B3 cells with SB216763 (12 µM), when challenged by oxidative stress, suppressed mitochondrial depolarization relative to control cells as demonstrated with JC-1 fluorescent dye analysis. Neither the control nor the SB216763-treated HLE-B3 cells tested positive with annexin V-fluorescein isothiocyanate/propidium iodide staining under the conditions of the experiment. Inhibition of GSK-3β activity by SB216763 blocked mMPT relative to the slow but consistent depolarization observed with the control cells. We conclude that inhibition of GSK-3β activity by the GSK-3β inhibitor SB216763 provides positive protection against mitochondrial depolarization.

  7. Novel Cancer Therapeutics with Allosteric Modulation of the Mitochondrial C-Raf-DAPK Complex by Raf Inhibitor Combination Therapy.

    PubMed

    Tsai, Yi-Ta; Chuang, Mei-Jen; Tang, Shou-Hung; Wu, Sheng-Tang; Chen, Yu-Chi; Sun, Guang-Huan; Hsiao, Pei-Wen; Huang, Shih-Ming; Lee, Hwei-Jen; Yu, Cheng-Ping; Ho, Jar-Yi; Lin, Hui-Kuan; Chen, Ming-Rong; Lin, Chung-Chih; Chang, Sun-Yran; Lin, Victor C; Yu, Dah-Shyong; Cha, Tai-Lung

    2015-09-01

    Mitochondria are the powerhouses of cells. Mitochondrial C-Raf is a potential cancer therapeutic target, as it regulates mitochondrial function and is localized to the mitochondria by its N-terminal domain. However, Raf inhibitor monotherapy can induce S338 phosphorylation of C-Raf (pC-Raf(S338)) and impede therapy. This study identified the interaction of C-Raf with S308 phosphorylated DAPK (pDAPK(S308)), which together became colocalized in the mitochondria to facilitate mitochondrial remodeling. Combined use of the Raf inhibitors sorafenib and GW5074 had synergistic anticancer effects in vitro and in vivo, but targeted mitochondrial function, rather than the canonical Raf signaling pathway. C-Raf depletion in knockout MEF(C-Raf-/-) or siRNA knockdown ACHN renal cancer cells abrogated the cytotoxicity of combination therapy. Crystal structure simulation showed that GW5074 bound to C-Raf and induced a C-Raf conformational change that enhanced sorafenib-binding affinity. In the presence of pDAPK(S308), this drug-target interaction compromised the mitochondrial targeting effect of the N-terminal domain of C-Raf, which induced two-hit damages to cancer cells. First, combination therapy facilitated pC-Raf(S338) and pDAPK(S308) translocation from mitochondria to cytoplasm, leading to mitochondrial dysfunction and reactive oxygen species (ROS) generation. Second, ROS facilitated PP2A-mediated dephosphorylation of pDAPK(S308) to DAPK. PP2A then dissociated from the C-Raf-DAPK complex and induced profound cancer cell death. Increased pDAPK(S308) modification was also observed in renal cancer tissues, which correlated with poor disease-free survival and poor overall survival in renal cancer patients. Besides mediating the anticancer effect, pDAPK(S308) may serve as a predictive biomarker for Raf inhibitors combination therapy, suggesting an ideal preclinical model that is worthy of clinical translation. ©2015 American Association for Cancer Research.

  8. N-Methyl, N-propynyl-2-phenylethylamine (MPPE), a Selegiline Analog, Attenuates MPTP-induced Dopaminergic Toxicity with Guaranteed Behavioral Safety: Involvement of Inhibitions of Mitochondrial Oxidative Burdens and p53 Gene-elicited Pro-apoptotic Change.

    PubMed

    Shin, Eun-Joo; Nam, Yunsung; Lee, Ji Won; Nguyen, Phuong-Khue Thi; Yoo, Ji Eun; Tran, The-Vinh; Jeong, Ji Hoon; Jang, Choon-Gon; Oh, Young J; Youdim, Moussa B H; Lee, Phil Ho; Nabeshima, Toshitaka; Kim, Hyoung-Chun

    2016-11-01

    Selegiline is a monoamine oxidase-B (MAO-B) inhibitor with anti-Parkinsonian effects, but it is metabolized to amphetamines. Since another MAO-B inhibitor N-Methyl, N-propynyl-2-phenylethylamine (MPPE) is not metabolized to amphetamines, we examined whether MPPE induces behavioral side effects and whether MPPE affects dopaminergic toxicity induced by 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP). Multiple doses of MPPE (2.5 and 5 mg/kg/day) did not show any significant locomotor activity and conditioned place preference, whereas selegiline (2.5 and 5 mg/kg/day) significantly increased these behavioral side effects. Treatment with MPPE resulted in significant attenuations against decreases in mitochondrial complex I activity, mitochondrial Mn-SOD activity, and expression induced by MPTP in the striatum of mice. Consistently, MPPE significantly attenuated MPTP-induced oxidative stress and MPPE-mediated antioxidant activity appeared to be more pronounced in mitochondrial-fraction than in cytosolic-fraction. Because MPTP promoted mitochondrial p53 translocation and p53/Bcl-xL interaction, it was also examined whether mitochondrial p53 inhibitor pifithrin-μ attenuates MPTP neurotoxicity. MPPE, selegiline, or pifithrin-μ significantly attenuated mitochondrial p53/Bcl-xL interaction, impaired mitochondrial transmembrane potential, cytosolic cytochrome c release, and cleaved caspase-3 in wild-type mice. Subsequently, these compounds significantly ameliorated MPTP-induced motor impairments. Neuroprotective effects of MPPE appeared to be more prominent than those of selegiline. MPPE or selegiline did not show any additional protective effects against the attenuation by p53 gene knockout, suggesting that p53 gene is a critical target for these compounds. Our results suggest that MPPE possesses anti-Parkinsonian potentials with guaranteed behavioral safety and that the underlying mechanism of MPPE requires inhibition of mitochondrial oxidative stress, mitochondrial translocation of p53, and pro-apoptotic process.

  9. Activation of mitochondrial calpain and release of apoptosis-inducing factor from mitochondria in RCS rat retinal degeneration.

    PubMed

    Mizukoshi, Sayuri; Nakazawa, Mitsuru; Sato, Kota; Ozaki, Taku; Metoki, Tomomi; Ishiguro, Sei-ichi

    2010-09-01

    The present study was performed to investigate changes of cytosolic and mitochondrial calpain activities, and effects of intravitreously injected calpain inhibitor on photoreceptor apoptosis in Royal College of Surgeon's (RCS) rats. Time courses of activities for both cytosolic and mitochondrial calpains and amount of calpastatin in RCS rat retina were analyzed by subcellular fractionation, calpain assay and western blotting. Calpain assay was colorimetrically performed using Suc-LLVY-Glo as substrate. Effects of intravitreously injected calpain inhibitor (ALLN and PD150606) on RCS rat retinal degeneration were analyzed by TUNEL staining. Effects of mitochondrial calpain activity on activation and translocation of apoptosis-inducing factor (AIF) were analyzed by western blotting. Mitochondrial calpain started to be significantly activated at postnatal (p) 28 days in RCS rat retina, whereas cytosolic micro-calpain was activated at p 35 days, although specific activity of mitochondrial calpain was 13% compared to cytosolic micro-calpain. Intravitreously injected ALLN and PD150606 effectively inhibited photoreceptor apoptosis only when injected at p 25 days, but did not inhibit photoreceptor apoptosis when injected at p 32 days. Parts of AIF were truncated/activated by mitochondrial calpains and translocated to the nucleus. These results suggest that 1), calpain presents not only in the cytosolic fraction but also in the mitochondrial fraction in RCS rat retina; 2), mitochondrial calpain is activated earlier than cytosolic calpain during retinal degeneration in RCS rats; 3), photoreceptor apoptosis may be regulated by not only calpain systems but also other mechanisms; 4), mitochondrial calpain may activate AIF to induce apoptosis; and 5), calpain inhibitors may be partially effective to inhibit photoreceptor apoptosis in RCS rats. The present study provides new insights into the molecular basis for photoreceptor apoptosis in RCS rats and the future possibility of new pharmaceutical treatments for retinitis pigmentosa. Copyright (c) 2010 Elsevier Ltd. All rights reserved.

  10. The TrkAIII oncoprotein inhibits mitochondrial free radical ROS-induced death of SH-SY5Y neuroblastoma cells by augmenting SOD2 expression and activity at the mitochondria, within the context of a tumour stem cell-like phenotype.

    PubMed

    Ruggeri, Pierdomenico; Farina, Antonietta R; Di Ianni, Natalia; Cappabianca, Lucia; Ragone, Marzia; Ianni, Giulia; Gulino, Alberto; Mackay, Andrew R

    2014-01-01

    The developmental and stress-regulated alternative TrkAIII splice variant of the NGF receptor TrkA is expressed by advanced stage human neuroblastomas (NBs), correlates with worse outcome in high TrkA expressing unfavourable tumours and exhibits oncogenic activity in NB models. In the present study, we report that constitutive TrkAIII expression in human SH-SY5Y NB cells inhibits Rotenone, Paraquat and LY83583-induced mitochondrial free radical reactive oxygen species (ROS)-mediated death by stimulating SOD2 expression, increasing mitochondrial SOD2 activity and attenuating mitochondrial free radical ROS production, in association with increased mitochondrial capacity to produce H2O2, within the context of a more tumour stem cell-like phenotype. This effect can be reversed by the specific TrkA tyrosine kinase inhibitor GW441756, by the multi-kinase TrkA inhibitors K252a, CEP-701 and Gö6976, which inhibit SOD2 expression, and by siRNA knockdown of SOD2 expression, which restores the sensitivity of TrkAIII expressing SH-SY5Y cells to Rotenone, Paraquat and LY83583-induced mitochondrial free radical ROS production and ROS-mediated death. The data implicate the novel TrkAIII/SOD2 axis in promoting NB resistance to mitochondrial free radical-mediated death and staminality, and suggest that the combined use of TrkAIII and/or SOD2 inhibitors together with agents that induce mitochondrial free radical ROS-mediated death could provide a therapeutic advantage that may also target the stem cell niche in high TrkA expressing unfavourable NB.

  11. The TrkAIII Oncoprotein Inhibits Mitochondrial Free Radical ROS-Induced Death of SH-SY5Y Neuroblastoma Cells by Augmenting SOD2 Expression and Activity at the Mitochondria, within the Context of a Tumour Stem Cell-like Phenotype

    PubMed Central

    Di Ianni, Natalia; Cappabianca, Lucia; Ragone, Marzia; Ianni, Giulia; Gulino, Alberto; Mackay, Andrew R.

    2014-01-01

    The developmental and stress-regulated alternative TrkAIII splice variant of the NGF receptor TrkA is expressed by advanced stage human neuroblastomas (NBs), correlates with worse outcome in high TrkA expressing unfavourable tumours and exhibits oncogenic activity in NB models. In the present study, we report that constitutive TrkAIII expression in human SH-SY5Y NB cells inhibits Rotenone, Paraquat and LY83583-induced mitochondrial free radical reactive oxygen species (ROS)-mediated death by stimulating SOD2 expression, increasing mitochondrial SOD2 activity and attenuating mitochondrial free radical ROS production, in association with increased mitochondrial capacity to produce H2O2, within the context of a more tumour stem cell-like phenotype. This effect can be reversed by the specific TrkA tyrosine kinase inhibitor GW441756, by the multi-kinase TrkA inhibitors K252a, CEP-701 and Gö6976, which inhibit SOD2 expression, and by siRNA knockdown of SOD2 expression, which restores the sensitivity of TrkAIII expressing SH-SY5Y cells to Rotenone, Paraquat and LY83583-induced mitochondrial free radical ROS production and ROS-mediated death. The data implicate the novel TrkAIII/SOD2 axis in promoting NB resistance to mitochondrial free radical-mediated death and staminality, and suggest that the combined use of TrkAIII and/or SOD2 inhibitors together with agents that induce mitochondrial free radical ROS-mediated death could provide a therapeutic advantage that may also target the stem cell niche in high TrkA expressing unfavourable NB. PMID:24736663

  12. Respiration and substrate transport rates as well as reactive oxygen species production distinguish mitochondria from brain and liver.

    PubMed

    Gusdon, Aaron M; Fernandez-Bueno, Gabriel A; Wohlgemuth, Stephanie; Fernandez, Jenelle; Chen, Jing; Mathews, Clayton E

    2015-09-10

    Aberrant mitochondrial function, including excessive reactive oxygen species (ROS) production, has been implicated in the pathogenesis of human diseases. The use of mitochondrial inhibitors to ascertain the sites in the electron transport chain (ETC) resulting in altered ROS production can be an important tool. However, the response of mouse mitochondria to ETC inhibitors has not been thoroughly assessed. Here we set out to characterize the differences in phenotypic response to ETC inhibitors between the more energetically demanding brain mitochondria and less energetically demanding liver mitochondria in commonly utilized C57BL/6J mice. We show that in contrast to brain mitochondria, inhibiting distally within complex I or within complex III does not increase liver mitochondrial ROS production supported by complex I substrates, and liver mitochondrial ROS production supported by complex II substrates occurred primarily independent of membrane potential. Complex I, II, and III enzymatic activities and membrane potential were equivalent between liver and brain and responded to ETC. inhibitors similarly. Brain mitochondria exhibited an approximately two-fold increase in complex I and II supported respiration compared with liver mitochondria while exhibiting similar responses to inhibitors. Elevated NADH transport and heightened complex II-III coupled activity accounted for increased complex I and II supported respiration, respectively in brain mitochondria. We conclude that important mechanistic differences exist between mouse liver and brain mitochondria and that mouse mitochondria exhibit phenotypic differences compared with mitochondria from other species.

  13. Glycation inhibitors extend yeast chronological lifespan by reducing advanced glycation end products and by back regulation of proteins involved in mitochondrial respiration.

    PubMed

    Kazi, Rubina S; Banarjee, Reema M; Deshmukh, Arati B; Patil, Gouri V; Jagadeeshaprasad, Mashanipalya G; Kulkarni, Mahesh J

    2017-03-06

    Advanced Glycation End products (AGEs) are implicated in aging process. Thus, reducing AGEs by using glycation inhibitors may help in attenuating the aging process. In this study using Saccharomyces cerevisiae yeast system, we show that Aminoguanidine (AMG), a well-known glycation inhibitor, decreases the AGE modification of proteins in non-calorie restriction (NR) (2% glucose) and extends chronological lifespan (CLS) similar to that of calorie restriction (CR) condition (0.5% glucose). Proteomic analysis revealed that AMG back regulates the expression of differentially expressed proteins especially those involved in mitochondrial respiration in NR condition, suggesting that it switches metabolism from fermentation to respiration, mimicking CR. AMG induced back regulation of differentially expressed proteins could be possibly due to its chemical effect or indirectly by glycation inhibition. To delineate this, Metformin (MET), a structural analog of AMG and a mild glycation inhibitor and Hydralazine (HYD), another potent glycation inhibitor but not structural analog of AMG were used. HYD was more effective than MET in mimicking AMG suggesting that glycation inhibition was responsible for restoration of differentially expressed proteins. Thus glycation inhibitors particularly AMG, HYD and MET extend yeast CLS by reducing AGEs, modulating the expression of proteins involved in mitochondrial respiration and possibly by scavenging glucose. This study reports the role of glycation in aging process. In the non-caloric restriction condition, carbohydrates such as glucose promote protein glycation and reduce CLS. While, the inhibitors of glycation such as AMG, HYD, MET mimic the caloric restriction condition by back regulating deregulated proteins involved in mitochondrial respiration which could facilitate shift of metabolism from fermentation to respiration and extend yeast CLS. These findings suggest that glycation inhibitors can be potential molecules that can be used in management of aging. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. MicroRNA as biomarkers of mitochondrial toxicity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Baumgart, Bethany R., E-mail: bethany.baumgart@bms

    Mitochondrial toxicity can be difficult to detect as most cells can tolerate reduced activity as long as minimal capacity for function is maintained. However, once minimal capacity is lost, apoptosis or necrosis occurs quickly. Identification of more sensitive, early markers of mitochondrial toxicity was the objective of this work. Rotenone, a mitochondrial complex I inhibitor, and 3-nitropropionic acid (3-NP), a mitochondrial complex II inhibitor, were administered daily to male Sprague–Dawley rats at subcutaneous doses of 0.1 or 0.3 mg/kg/day and intraperitoneal doses of 5 or 10 mg/kg/day, respectively, for 1 week. Samples of kidney, skeletal muscle (quadriceps femoris), and serummore » were collected for analysis of mitochondrial DNA (mtDNA) copy number and microRNA (miRNA) expression patterns. MtDNA was significantly decreased with administration of rotenone at 0.3 mg/kg/day and 3-NP at 5 and 10 mg/kg/day in the quadriceps femoris and with 3-NP at 10 mg/kg/day in the kidney. Additionally, rotenone and 3-NP treatment produced changes to miRNA expression that were similar in direction (i.e. upregulation, downregulation) to those previously linked to mitochondrial functions, such as mitochondrial damage and biogenesis (miR-122, miR-202-3p); regulation of ATP synthesis, abolished oxidative phosphorylation, and loss of membrane potential due to increased reactive oxygen species (ROS) production (miR-338-5p, miR-546, miR-34c); and mitochondrial DNA damage and depletion (miR-546). These results suggest that miRNAs may be sensitive biomarkers for early detection of mitochondrial toxicity. - Highlights: • MtDNA decreased after treatment with respiratory chain inhibitors rotenone and 3-NP. • Decrease in mtDNA is generally dose-related and indicative of mitochondrial toxicity. • Altered miRNA has reported roles in regulating mitochondrial function. • Induction of miR-338-5p in kidney and serum suggests potential as renal biomarker. • Induction of miR-122 implies that expression may not adhere to liver-specific pattern.« less

  15. Ketones prevent synaptic dysfunction induced by mitochondrial respiratory complex inhibitors

    PubMed Central

    Kim, Do Young; Vallejo, Johana; Rho, Jong M

    2010-01-01

    Abstract Ketones have previously shown beneficial effects in models of neurodegenerative disorders, particularly against associated mitochondrial dysfunction and cognitive impairment. However, evidence of a synaptic protective effect of ketones remains lacking. We tested the effects of ketones on synaptic impairment induced by mitochondrial respiratory complex (MRC) inhibitors using electrophysiological, reactive oxygen species (ROS) imaging and biochemical techniques. MRC inhibitors dose-dependently suppressed both population spike (PS) and field potential amplitudes in the CA1 hippocampus. Pre-treatment with ketones strongly prevented changes in the PS, whereas partial protection was seen in the field potential. Rotenone (Rot; 100 nmol/L), a MRC I inhibitor, suppressed synaptic function without altering ROS levels and PS depression by Rot was unaffected by antioxidants. In contrast, antioxidant-induced PS recovery against the MRC II inhibitor 3-nitropropionic acid (3-NP; 1 mmol/L) was similar to the synaptic protective effects of ketones. Ketones also suppressed ROS generation induced by 3-NP. Finally, ketones reversed the decreases in ATP levels caused by Rot and 3-NP. In summary, our data demonstrate that ketones can preserve synaptic function in CA1 hippocampus induced by MRC dysfunction, likely through an antioxidant action and enhanced ATP generation. PMID:20374433

  16. Mitochondrial Impairment May Increase Cellular NAD(P)H: Resazurin Oxidoreductase Activity, Perturbing the NAD(P)H-Based Viability Assays.

    PubMed

    Aleshin, Vasily A; Artiukhov, Artem V; Oppermann, Henry; Kazantsev, Alexey V; Lukashev, Nikolay V; Bunik, Victoria I

    2015-08-21

    Cellular NAD(P)H-dependent oxidoreductase activity with artificial dyes (NAD(P)H-OR) is an indicator of viability, as the cellular redox state is important for biosynthesis and antioxidant defense. However, high NAD(P)H due to impaired mitochondrial oxidation, known as reductive stress, should increase NAD(P)H-OR yet perturb viability. To better understand this complex behavior, we assayed NAD(P)H-OR with resazurin (Alamar Blue) in glioblastoma cell lines U87 and T98G, treated with inhibitors of central metabolism, oxythiamin, and phosphonate analogs of 2-oxo acids. Targeting the thiamin diphosphate (ThDP)-dependent enzymes, the inhibitors are known to decrease the NAD(P)H production in the pentose phosphate shuttle and/or upon mitochondrial oxidation of 2-oxo acids. Nevertheless, the inhibitors elevated NAD(P)H-OR with resazurin in a time- and concentration-dependent manner, suggesting impaired NAD(P)H oxidation rather than increased viability. In particular, inhibition of the ThDP-dependent enzymes affects metabolism of malate, which mediates mitochondrial oxidation of cytosolic NAD(P)H. We showed that oxythiamin not only inhibited mitochondrial 2-oxo acid dehydrogenases, but also induced cell-specific changes in glutamate and malate dehydrogenases and/or malic enzyme. As a result, inhibition of the 2-oxo acid dehydrogenases compromises mitochondrial metabolism, with the dysregulated electron fluxes leading to increases in cellular NAD(P)H-OR. Perturbed mitochondrial oxidation of NAD(P)H may thus complicate the NAD(P)H-based viability assay.

  17. Mitochondrial Impairment May Increase Cellular NAD(P)H: Resazurin Oxidoreductase Activity, Perturbing the NAD(P)H-Based Viability Assays

    PubMed Central

    Aleshin, Vasily A.; Artiukhov, Artem V.; Oppermann, Henry; Kazantsev, Alexey V.; Lukashev, Nikolay V.; Bunik, Victoria I.

    2015-01-01

    Cellular NAD(P)H-dependent oxidoreductase activity with artificial dyes (NAD(P)H-OR) is an indicator of viability, as the cellular redox state is important for biosynthesis and antioxidant defense. However, high NAD(P)H due to impaired mitochondrial oxidation, known as reductive stress, should increase NAD(P)H-OR yet perturb viability. To better understand this complex behavior, we assayed NAD(P)H-OR with resazurin (Alamar Blue) in glioblastoma cell lines U87 and T98G, treated with inhibitors of central metabolism, oxythiamin, and phosphonate analogs of 2-oxo acids. Targeting the thiamin diphosphate (ThDP)-dependent enzymes, the inhibitors are known to decrease the NAD(P)H production in the pentose phosphate shuttle and/or upon mitochondrial oxidation of 2-oxo acids. Nevertheless, the inhibitors elevated NAD(P)H-OR with resazurin in a time- and concentration-dependent manner, suggesting impaired NAD(P)H oxidation rather than increased viability. In particular, inhibition of the ThDP-dependent enzymes affects metabolism of malate, which mediates mitochondrial oxidation of cytosolic NAD(P)H. We showed that oxythiamin not only inhibited mitochondrial 2-oxo acid dehydrogenases, but also induced cell-specific changes in glutamate and malate dehydrogenases and/or malic enzyme. As a result, inhibition of the 2-oxo acid dehydrogenases compromises mitochondrial metabolism, with the dysregulated electron fluxes leading to increases in cellular NAD(P)H-OR. Perturbed mitochondrial oxidation of NAD(P)H may thus complicate the NAD(P)H-based viability assay. PMID:26308058

  18. Mitochondrial ATF2 translocation contributes to apoptosis induction and BRAF inhibitor resistance in melanoma through the interaction of Bim with VDAC1.

    PubMed

    Gao, Zongwei; Shang, Qingjuan; Liu, Zhaoyun; Deng, Chun; Guo, Chunbao

    2015-11-03

    The mitochondrial accumulation of ATF2 is involved in tumor suppressor activities via cytochrome c release in melanoma cells. However, the signaling pathways that connect mitochondrial ATF2 accumulation and cytochrome c release are not well documented. Several melanoma cell lines, B16F10, K1735M2, A375 and A375-R1, were treated with paclitaxel and vemurafenib to test the function of mitochondrial ATF2 and its connection to Bim and voltage-dependent anion channel 1 (VDAC1). Immunoprecipitation analysis was performed to investigate the functional interaction between the involved proteins. VDAC1 oligomerization was evaluated using an EGS-based crosslinking assay. The expression and migration of ATF2 to the mitochondria accounted for paclitaxel stimuli and acquired resistance to BRAF inhibitors. Mitochondrial ATF2 facilitated Bim stabilization through the inhibition of its degradation by the proteasome, thereby promoting cytochrome c release and inducing apoptosis in B16F10 and A375 cells. Studies using B16F10 and A375 cells genetically modified for ATF2 indicated that mitochondrial ATF2 was able to dissociate Bim from the Mcl-1/Bim complex to trigger VDAC1 oligomerization. Immunoprecipitation analysis revealed that Bim interacts with VDAC1, and this interaction was remarkably enhanced during apoptosis. These results reveal that mitochondrial ATF2 is associated with the induction of apoptosis and BRAF inhibitor resistance through Bim activation, which might suggest potential novel therapies for the targeted induction of apoptosis in melanoma therapy.

  19. Mitochondrial ATF2 translocation contributes to apoptosis induction and BRAF inhibitor resistance in melanoma through the interaction of Bim with VDAC1

    PubMed Central

    Deng, Chun; Guo, Chunbao

    2015-01-01

    Background The mitochondrial accumulation of ATF2 is involved in tumor suppressor activities via cytochrome c release in melanoma cells. However, the signaling pathways that connect mitochondrial ATF2 accumulation and cytochrome c release are not well documented. Methods Several melanoma cell lines, B16F10, K1735M2, A375 and A375-R1, were treated with paclitaxel and vemurafenib to test the function of mitochondrial ATF2 and its connection to Bim and voltage-dependent anion channel 1 (VDAC1). Immunoprecipitation analysis was performed to investigate the functional interaction between the involved proteins. VDAC1 oligomerization was evaluated using an EGS-based crosslinking assay. Results The expression and migration of ATF2 to the mitochondria accounted for paclitaxel stimuli and acquired resistance to BRAF inhibitors. Mitochondrial ATF2 facilitated Bim stabilization through the inhibition of its degradation by the proteasome, thereby promoting cytochrome c release and inducing apoptosis in B16F10 and A375 cells. Studies using B16F10 and A375 cells genetically modified for ATF2 indicated that mitochondrial ATF2 was able to dissociate Bim from the Mcl-1/Bim complex to trigger VDAC1 oligomerization. Immunoprecipitation analysis revealed that Bim interacts with VDAC1, and this interaction was remarkably enhanced during apoptosis. Conclusion These results reveal that mitochondrial ATF2 is associated with the induction of apoptosis and BRAF inhibitor resistance through Bim activation, which might suggest potential novel therapies for the targeted induction of apoptosis in melanoma therapy. PMID:26462148

  20. Mitochondria-Division Inhibitor 1 Protects Against Amyloid-β induced Mitochondrial Fragmentation and Synaptic Damage in Alzheimer's Disease.

    PubMed

    Reddy, P Hemachandra; Manczak, Maria; Yin, XiangLing

    2017-01-01

    The purpose our study was to determine the protective effects of mitochondria division inhibitor 1 (Mdivi1) in Alzheimer's disease (AD). Mdivi1 is hypothesized to reduce excessive fragmentation of mitochondria and mitochondrial dysfunction in AD neurons. Very little is known about whether Mdivi1 can confer protective effects in AD. In the present study, we sought to determine the protective effects of Mdivi1 against amyloid-β (Aβ)- and mitochondrial fission protein, dynamin-related protein 1 (Drp1)-induced excessive fragmentation of mitochondria in AD progression. We also studied preventive (Mdivi1+Aβ42) and intervention (Aβ42+Mdivi1) effects against Aβ42 in N2a cells. Using real-time RT-PCR and immunoblotting analysis, we measured mRNA and protein levels of mitochondrial dynamics, mitochondrial biogenesis, and synaptic genes. We also assessed mitochondrial function by measuring H2O2, lipid peroxidation, cytochrome oxidase activity, and mitochondrial ATP. MTT assays were used to assess the cell viability. Aβ42 was found to impair mitochondrial dynamics, lower mitochondrial biogenesis, lower synaptic activity, and lower mitochondrial function. On the contrary, Mdivi1 enhanced mitochondrial fusion activity, lowered fission machinery, and increased biogenesis and synaptic proteins. Mitochondrial function and cell viability were elevated in Mdivi1-treated cells. Interestingly, Mdivi1 pre- and post-treated cells treated with Aβ showed reduced mitochondrial dysfunction, and maintained cell viability, mitochondrial dynamics, mitochondrial biogenesis, and synaptic activity. The protective effects of Mdivi1 were stronger in N2a+Aβ42 pre-treated with Mdivi1, than in N2a+Aβ42 cells than Mdivi1 post-treated cells, indicating that Mdivi1 works better in prevention than treatment in AD like neurons.

  1. Monitoring wheat mitochondrial compositional and respiratory changes using Fourier transform mid-infrared spectroscopy in response to agrochemical treatments

    USDA-ARS?s Scientific Manuscript database

    Fungicides and plant growth regulators can impact plant growth outside of their effects on fungal pathogens. Although many of these chemicals are inhibitors of mitochondrial oxygen uptake, information remains limited as to whether they are able tomodify other mitochondrial constituents. Fourier tran...

  2. Calcium-dependent mitochondrial cAMP production enhances aldosterone secretion.

    PubMed

    Katona, Dávid; Rajki, Anikó; Di Benedetto, Giulietta; Pozzan, Tullio; Spät, András

    2015-09-05

    Glomerulosa cells secrete aldosterone in response to agonists coupled to Ca(2+) increases such as angiotensin II and corticotrophin, coupled to a cAMP dependent pathway. A recently recognized interaction between Ca(2+) and cAMP is the Ca(2+)-induced cAMP formation in the mitochondrial matrix. Here we describe that soluble adenylyl cyclase (sAC) is expressed in H295R adrenocortical cells. Mitochondrial cAMP formation, monitored with a mitochondria-targeted fluorescent sensor (4mtH30), is enhanced by HCO3(-) and the Ca(2+) mobilizing agonist angiotensin II. The effect of angiotensin II is inhibited by 2-OHE, an inhibitor of sAC, and by RNA interference of sAC, but enhanced by an inhibitor of phosphodiesterase PDE2A. Heterologous expression of the Ca(2+) binding protein S100G within the mitochondrial matrix attenuates angiotensin II-induced mitochondrial cAMP formation. Inhibition and knockdown of sAC significantly reduce angiotensin II-induced aldosterone production. These data provide the first evidence for a cell-specific functional role of mitochondrial cAMP. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  3. In Vivo Determination of Mitochondrial Function Using Luciferase-Expressing Caenorhabditis elegans: Contribution of Oxidative Phosphorylation, Glycolysis, and Fatty Acid Oxidation to Toxicant-Induced Dysfunction.

    PubMed

    Luz, Anthony L; Lagido, Cristina; Hirschey, Matthew D; Meyer, Joel N

    2016-08-01

    Mitochondria are a target of many drugs and environmental toxicants; however, how toxicant-induced mitochondrial dysfunction contributes to the progression of human disease remains poorly understood. To address this issue, in vivo assays capable of rapidly assessing mitochondrial function need to be developed. Here, using the model organism Caenorhabditis elegans, we describe how to rapidly assess the in vivo role of the electron transport chain, glycolysis, or fatty acid oxidation in energy metabolism following toxicant exposure, using a luciferase-expressing ATP reporter strain. Alterations in mitochondrial function subsequent to toxicant exposure are detected by depleting steady-state ATP levels with inhibitors of the mitochondrial electron transport chain, glycolysis, or fatty acid oxidation. Differential changes in ATP following short-term inhibitor exposure indicate toxicant-induced alterations at the site of inhibition. Because a microplate reader is the only major piece of equipment required, this is a highly accessible method for studying toxicant-induced mitochondrial dysfunction in vivo. © 2016 by John Wiley & Sons, Inc. Copyright © 2016 John Wiley & Sons, Inc.

  4. Are mitochondria a permanent source of reactive oxygen species?

    PubMed

    Staniek, K; Nohl, H

    2000-11-20

    The observation that in isolated mitochondria electrons may leak out of the respiratory chain to form superoxide radicals (O(2)(radical-)) has prompted the assumption that O(2)(radical-) formation is a compulsory by-product of respiration. Since mitochondrial O(2)(radical-) formation under homeostatic conditions could not be demonstrated in situ so far, conclusions drawn from isolated mitochondria must be considered with precaution. The present study reveals a link between electron deviation from the respiratory chain to oxygen and the coupling state in the presence of antimycin A. Another important factor is the analytical system applied for the detection of activated oxygen species. Due to the presence of superoxide dismutase in mitochondria, O(2)(radical-) release cannot be realistically determined in intact mitochondria. We therefore followed the release of the stable dismutation product H(2)O(2) by comparing most frequently used H(2)O(2) detection methods. The possible interaction of the detection systems with the respiratory chain was avoided by a recently developed method, which was compared with conventional methods. Irrespective of the methods applied, the substrates used for respiration and the state of respiration established, intact mitochondria could not be made to release H(2)O(2) from dismutating O(2)(radical-). Although regular mitochondrial respiration is unlikely to supply single electrons for O(2)(radical-) formation our study does not exclude the possibility of the respiratory chain becoming a radical source under certain conditions.

  5. Liquid-chromatography thermospray mass-spectrometric study of n-acylamino dilactones and 4-butyrolactones derived from Antimycin-A

    USGS Publications Warehouse

    Abidi, S.L.; Ha, S.C.; Rosen, R.T.

    1990-01-01

    Reversed-phase high-performance liquid chromatography—thermospray mass spectrometric (HPLC—MS) characteristics of four sets of lactonic complexes (one 4-butyrolactones and three dilactone complexes) derived from antimycin A were investigated. Three types of 8-hydroxy analogues were also included in the study. Pairs of a–b structures isomeric at the 8-acyloxy ester side-chains were best separated with a high-efficiency octadecylsilica column prior to analysis by HPLC—MS. Mass spectra of the a–b pairs each with identical molecular weights exhibited virtually indistinguishable fragmentation patterns, although their relative intensities were not superimposable. In some cases, HPLC—MS of the title compounds yielded mass chromatograms showing the minor components more easily recognizable than the HPLC—UV counter parts because of the apparent higher ionization efficiency of the minor isomers and increased resolution of subcomponents in the MS system. Under the mobile phase conditions employed, analyte ionization occurred with variable degrees of gas phase ammonolysis depending upon the ammonia concentration of the buffer. Potential applicability of the on-line HPLC—MS technique for the characterization of components in mixtures of antimycin analogues and isomers is demonstrated.

  6. Mitochondrial Division Inhibitor 1 (mdivi-1) Protects Neurons against Excitotoxicity through the Modulation of Mitochondrial Function and Intracellular Ca2+ Signaling.

    PubMed

    Ruiz, Asier; Alberdi, Elena; Matute, Carlos

    2018-01-01

    Excessive dynamin related protein 1 (Drp1)-triggered mitochondrial fission contributes to apoptosis under pathological conditions and therefore it has emerged as a promising therapeutic target. Mitochondrial division inhibitor 1 (mdivi-1) inhibits Drp1-dependent mitochondrial fission and is neuroprotective in several models of brain ischemia and neurodegeneration. However, mdivi-1 also modulates mitochondrial function and oxidative stress independently of Drp1, and consequently the mechanisms through which it protects against neuronal injury are more complex than previously foreseen. In this study, we have analyzed the effects of mdivi-1 on mitochondrial dynamics, Ca 2+ signaling, mitochondrial bioenergetics and cell viability during neuronal excitotoxicity in vitro . Time-lapse fluorescence microscopy revealed that mdivi-1 blocked NMDA-induced mitochondrial fission but not that triggered by sustained AMPA receptor activation, showing that mdivi-1 inhibits excitotoxic mitochondrial fragmentation in a source specific manner. Similarly, mdivi-1 strongly reduced NMDA-triggered necrotic-like neuronal death and, to a lesser extent, AMPA-induced toxicity. Interestingly, neuroprotection provided by mdivi-1 against NMDA, but not AMPA, correlated with a reduction in cytosolic Ca 2+ ([Ca 2+ ] cyt ) overload and calpain activation indicating additional cytoprotective mechanisms. Indeed, mdivi-1 depolarized mitochondrial membrane and depleted ER Ca 2+ content, leading to attenuation of mitochondrial [Ca 2+ ] increase and enhancement of the integrated stress response (ISR) during NMDA receptor activation. Finally, lentiviral knockdown of Drp1 did not rescue NMDA-induced mitochondrial fission and toxicity, indicating that neuroprotective activity of mdivi-1 is Drp1-independent. Together, these results suggest that mdivi-1 induces a Drp1-independent protective phenotype that prevents predominantly NMDA receptor-mediated excitotoxicity through the modulation of mitochondrial function and intracellular Ca 2+ signaling.

  7. PARP Inhibitors Sensitize Ewing Sarcoma Cells to Temozolomide-Induced Apoptosis via the Mitochondrial Pathway.

    PubMed

    Engert, Florian; Schneider, Cornelius; Weiβ, Lilly Magdalena; Probst, Marie; Fulda, Simone

    2015-12-01

    Ewing sarcoma has recently been reported to be sensitive to poly(ADP)-ribose polymerase (PARP) inhibitors. Searching for synergistic drug combinations, we tested several PARP inhibitors (talazoparib, niraparib, olaparib, veliparib) together with chemotherapeutics. Here, we report that PARP inhibitors synergize with temozolomide (TMZ) or SN-38 to induce apoptosis and also somewhat enhance the cytotoxicity of doxorubicin, etoposide, or ifosfamide, whereas actinomycin D and vincristine show little synergism. Furthermore, triple therapy of olaparib, TMZ, and SN-38 is significantly more effective compared with double or monotherapy. Mechanistic studies revealed that the mitochondrial pathway of apoptosis plays a critical role in mediating the synergy of PARP inhibition and TMZ. We show that subsequent to DNA damage-imposed checkpoint activation and G2 cell-cycle arrest, olaparib/TMZ cotreatment causes downregulation of the antiapoptotic protein MCL-1, followed by activation of the proapoptotic proteins BAX and BAK, mitochondrial outer membrane permeabilization (MOMP), activation of caspases, and caspase-dependent cell death. Overexpression of a nondegradable MCL-1 mutant or BCL-2, knockdown of NOXA or BAX and BAK, or the caspase inhibitor N-benzyloxycarbonyl-Val-Ala-Asp-fluoromethylketone (zVAD.fmk) all significantly reduce olaparib/TMZ-mediated apoptosis. These findings emphasize the role of PARP inhibitors for chemosensitization of Ewing sarcoma with important implications for further (pre)clinical studies. ©2015 American Association for Cancer Research.

  8. 4-Methylene-2-octyl-5-oxotetrahydrofuran-3-carboxylic Acid (C75), an Inhibitor of Fatty-acid Synthase, Suppresses the Mitochondrial Fatty Acid Synthesis Pathway and Impairs Mitochondrial Function*

    PubMed Central

    Chen, Cong; Han, Xiao; Zou, Xuan; Li, Yuan; Yang, Liang; Cao, Ke; Xu, Jie; Long, Jiangang; Liu, Jiankang; Feng, Zhihui

    2014-01-01

    4-Methylene-2-octyl-5-oxotetrahydrofuran-3-carboxylic acid (C75) is a synthetic fatty-acid synthase (FASN) inhibitor with potential therapeutic effects in several cancer models. Human mitochondrial β-ketoacyl-acyl carrier protein synthase (HsmtKAS) is a key enzyme in the newly discovered mitochondrial fatty acid synthesis pathway that can produce the substrate for lipoic acid (LA) synthesis. HsmtKAS shares conserved catalytic domains with FASN, which are responsible for binding to C75. In our study, we explored the possible effect of C75 on HsmtKAS and mitochondrial function. C75 treatment decreased LA content, impaired mitochondrial function, increased reactive oxygen species content, and reduced cell viability. HsmtKAS but not FASN knockdown had an effect that was similar to C75 treatment. In addition, an LA supplement efficiently inhibited C75-induced mitochondrial dysfunction and oxidative stress. Overexpression of HsmtKAS showed cellular protection against low dose C75 addition, whereas there was no protective effect upon high dose C75 addition. In summary, the mitochondrial fatty acid synthesis pathway has a vital role in mitochondrial function. Besides FASN, C75 might also inhibit HsmtKAS, thereby reducing LA production, impairing mitochondrial function, and potentially having toxic effects. LA supplements sufficiently ameliorated the toxicity of C75, showing that a combination of C75 and LA may be a reliable cancer treatment. PMID:24784139

  9. Transcriptional upregulation of mitochondrial uncoupling protein 2 protects against oxidative stress-associated neurogenic hypertension.

    PubMed

    Chan, Samuel H H; Wu, Chiung-Ai; Wu, Kay L H; Ho, Ying-Hao; Chang, Alice Y W; Chan, Julie Y H

    2009-10-23

    Mitochondrial uncoupling proteins (UCPs) belong to a superfamily of mitochondrial anion transporters that uncouple ATP synthesis from oxidative phosphorylation and mitigates mitochondrial reactive oxygen species production. We assessed the hypothesis that UCP2 participates in central cardiovascular regulation by maintaining reactive oxygen species homeostasis in the rostral ventrolateral medulla (RVLM), where sympathetic premotor neurons that maintain vasomotor tone located. We also elucidated the molecular mechanisms that underlie transcriptional upregulation of UCP2 in response to oxidative stress in RVLM. In Sprague-Dawley rats, transcriptional upregulation of UCP2 in RVLM by rosiglitazone, an activator of its transcription factor peroxisome proliferator-activated receptor (PPAR)gamma, reduced mitochondrial hydrogen peroxide level in RVLM and systemic arterial pressure. Oxidative stress induced by microinjection of angiotensin II into RVLM augmented UCP2 mRNA or protein expression in RVLM, which was antagonized by comicroinjection of NADPH oxidase inhibitor (diphenyleneiodonium chloride), superoxide dismutase mimetic (tempol), or p38 mitogen-activated protein kinase inhibitor (SB203580) but not by extracellular signal-regulated kinase 1/2 inhibitor (U0126). Angiotensin II also induced phosphorylation of the PPARgamma coactivator, PPARgamma coactivator (PGC)-1alpha, and an increase in formation of PGC-1alpha/PPARgamma complexes in a p38 mitogen-activated protein kinase-dependent manner. Intracerebroventricular infusion of angiotensin II promoted an increase in mitochondrial hydrogen peroxide production in RVLM and chronic pressor response, which was potentiated by gene knockdown of UCP2 but blunted by rosiglitazone. These results suggest that transcriptional upregulation of mitochondrial UCP2 in response to an elevation in superoxide plays an active role in feedback regulation of reactive oxygen species production in RVLM and neurogenic hypertension associated with chronic oxidative stress.

  10. Mitochondrial matrix metalloproteinase activation decreases myocyte contractility in hyperhomocysteinemia.

    PubMed

    Moshal, Karni S; Tipparaju, Srinivas M; Vacek, Thomas P; Kumar, Munish; Singh, Mahavir; Frank, Iluiana E; Patibandla, Phani K; Tyagi, Neetu; Rai, Jayesh; Metreveli, Naira; Rodriguez, Walter E; Tseng, Michael T; Tyagi, Suresh C

    2008-08-01

    Cardiomyocyte N-methyl-d-aspartate receptor-1 (NMDA-R1) activation induces mitochondrial dysfunction. Matrix metalloproteinase protease (MMP) induction is a negative regulator of mitochondrial function. Elevated levels of homocysteine [hyperhomocysteinemia (HHCY)] activate latent MMPs and causes myocardial contractile abnormalities. HHCY is associated with mitochondrial dysfunction. We tested the hypothesis that HHCY activates myocyte mitochondrial MMP (mtMMP), induces mitochondrial permeability transition (MPT), and causes contractile dysfunction by agonizing NMDA-R1. The C57BL/6J mice were administered homocystinemia (1.8 g/l) in drinking water to induce HHCY. NMDA-R1 expression was detected by Western blot and confocal microscopy. Localization of MMP-9 in the mitochondria was determined using confocal microscopy. Ultrastructural analysis of the isolated myocyte was determined by electron microscopy. Mitochondrial permeability was measured by a decrease in light absorbance at 540 nm using the spectrophotometer. The effect of MK-801 (NMDA-R1 inhibitor), GM-6001 (MMP inhibitor), and cyclosporine A (MPT inhibitor) on myocyte contractility and calcium transients was evaluated using the IonOptix video edge track detection system and fura 2-AM. Our results demonstrate that HHCY activated the mtMMP-9 and caused MPT by agonizing NMDA-R1. A significant decrease in percent cell shortening, maximal rate of contraction (-dL/dt), and maximal rate of relaxation (+dL/dt) was observed in HHCY. The decay of calcium transient amplitude was faster in the wild type compared with HHCY. Furthermore, the HHCY-induced decrease in percent cell shortening, -dL/dt, and +dL/dt was attenuated in the mice treated with MK-801, GM-6001, and cyclosporin A. We conclude that HHCY activates mtMMP-9 and induces MPT, leading to myocyte mechanical dysfunction by agonizing NMDA-R1.

  11. Activation of Akt rescues endoplasmic reticulum stress-impaired murine cardiac contractile function via glycogen synthase kinase-3β-mediated suppression of mitochondrial permeation pore opening.

    PubMed

    Zhang, Yingmei; Xia, Zhi; La Cour, Karissa H; Ren, Jun

    2011-11-01

    The present study was designed to examine the impact of chronic Akt activation on endoplasmic reticulum (ER) stress-induced cardiac mechanical anomalies, if any, and the underlying mechanism involved. Wild-type and transgenic mice with cardiac-specific overexpression of the active mutant of Akt (Myr-Akt) were subjected to the ER stress inducer tunicamycin (1 or 3 mg/kg). ER stress led to compromised echocardiographic (elevated left ventricular end-systolic diameter and reduced fractional shortening) and cardiomyocyte contractile function, intracellular Ca(2+) mishandling, and cell survival in wild-type mice associated with mitochondrial damage. In vitro ER stress induction in murine cardiomyocytes upregulated the ER stress proteins Gadd153, GRP78, and phospho-eIF2α, and promoted reactive oxygen species production, carbonyl formation, apoptosis, mitochondrial membrane potential loss, and mitochondrial permeation pore (mPTP) opening associated with overtly impaired cardiomyocyte contractile and intracellular Ca(2+) properties. Interestingly, these anomalies were mitigated by chronic Akt activation or the ER chaperon tauroursodeoxycholic acid (TUDCA). Treatment with tunicamycin also dephosphorylated Akt and its downstream signal glycogen synthase kinase 3β (GSK3β) (leading to activation of GSK3β), the effect of which was abrogated by Akt activation and TUDCA. The ER stress-induced cardiomyocyte contractile and mitochondrial anomalies were obliterated by the mPTP inhibitor cyclosporin A, GSK3β inhibitor SB216763, and ER stress inhibitor TUDCA. This research reported the direct relationship between ER stress and cardiomyocyte contractile and mitochondrial anomalies for the first time. Taken together, these data suggest that ER stress may compromise cardiac contractile and intracellular Ca(2+) properties, possibly through the Akt/GSK3β-dependent impairment of mitochondrial integrity.

  12. Mitochondrial mechanisms of neural cell death and neuroprotective interventions in Parkinson's disease.

    PubMed

    Fiskum, Gary; Starkov, Anatoly; Polster, Brian M; Chinopoulos, Christos

    2003-06-01

    Mitochondrial dysfunction, due to either environmental or genetic factors, can result in excessive production of reactive oxygen species, triggering the apoptotic death of dopaminergic cells in Parkinson's disease. Mitochondrial free radical production is promoted by the inhibition of electron transport at any point distal to the sites of superoxide production. Neurotoxins that induce parkinsonian neuropathology, such as MPP(+) and rotenone, stimulate superoxide production at complex I of the electron transport chain and also stimulate free radical production at proximal redox sites including mitochondrial matrix dehydrogenases. The oxidative stress caused by elevated mitochondrial production of reactive oxygen species promotes the expression and (or) intracellular distribution of the proapoptotic protein Bax to the mitochondrial outer membrane. Interactions between Bax and BH3 death domain proteins such as tBid result in Bax membrane integration, oligomerization, and permeabilization of the outer membrane to intermembrane proteins such as cytochrome c. Once released into the cytosol, cytochrome c together with other proteins activates the caspase cascade of protease activities that mediate the biochemical and morphological alterations characteristic of apoptosis. In addition, loss of mitochondrial cytochrome c stimulates mitochondrial free radical production, further promoting cell death pathways. Excessive mitochondrial Ca(2+) accumulation can also release cytochrome c and promote superoxide production through a mechanism distinctly different from that of Bax. Ca(2+) activates a mitochondrial inner membrane permeability transition causing osmotic swelling, rupture of the outer membrane, and complete loss of mitochondrial structural and functional integrity. While amphiphilic cations, such as dibucaine and propranolol, inhibit Bax-mediated cytochrome c release, transient receptor potential channel inhibitors inhibit mitochondrial swelling and cytochrome c release induced by the inner membrane permeability transition. These advances in the knowledge of mitochondrial cell death mechanisms and their inhibitors may lead to neuroprotective interventions applicable to Parkinsons's disease.

  13. A receptor tyrosine kinase inhibitor, Tyrphostin A9 induces cancer cell death through Drp1 dependent mitochondria fragmentation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Park, So Jung; Park, Young Jun; Shin, Ji Hyun

    2011-05-13

    Highlights: {yields} We screened and identified Tyrphostin A9, a receptor tyrosine kinase inhibitor as a strong mitochondria fission inducer. {yields} Tyrphostin A9 treatment promotes mitochondria dysfunction and contributes to cytotoxicity in cancer cells. {yields} Tyrphostin A9 induces apoptotic cell death through a Drp1-mediated pathway. {yields} Our studies suggest that Tyrphostin A9 induces mitochondria fragmentation and apoptotic cell death via Drp1 dependently. -- Abstract: Mitochondria dynamics controls not only their morphology but also functions of mitochondria. Therefore, an imbalance of the dynamics eventually leads to mitochondria disruption and cell death. To identify specific regulators of mitochondria dynamics, we screened a bioactivemore » chemical compound library and selected Tyrphostin A9, a tyrosine kinase inhibitor, as a potent inducer of mitochondrial fission. Tyrphostin A9 treatment resulted in the formation of fragmented mitochondria filament. In addition, cellular ATP level was decreased and the mitochondrial membrane potential was collapsed in Tyr A9-treated cells. Suppression of Drp1 activity by siRNA or over-expression of a dominant negative mutant of Drp1 inhibited both mitochondrial fragmentation and cell death induced by Tyrpohotin A9. Moreover, treatment of Tyrphostin A9 also evoked mitochondrial fragmentation in other cells including the neuroblastomas. Taken together, these results suggest that Tyrphostin A9 induces Drp1-mediated mitochondrial fission and apoptotic cell death.« less

  14. Iron alters cell survival in a mitochondria-dependent pathway in ovarian cancer cells

    PubMed Central

    Bauckman, Kyle; Haller, Edward; Taran, Nicholas; Rockfield, Stephanie; Ruiz-Rivera, Abigail; Nanjundan, Meera

    2015-01-01

    The role of iron in the development of cancer remains unclear. We previously reported that iron reduces cell survival in a Ras/mitogen-activated protein kinase (MAPK)-dependent manner in ovarian cells; however, the underlying downstream pathway leading to reduced survival was unclear. Although levels of intracellular iron, ferritin/CD71 protein and reactive oxygen species did not correlate with iron-induced cell survival changes, we identified mitochondrial damage (via TEM) and reduced expression of outer mitochondrial membrane proteins (translocase of outer membrane: TOM20 and TOM70) in cell lines sensitive to iron. Interestingly, Ru360 (an inhibitor of the mitochondrial calcium uniporter) reversed mitochondrial changes and restored cell survival in HEY ovarian carcinoma cells treated with iron. Further, cells treated with Ru360 and iron also had reduced autophagic punctae with increased lysosomal numbers, implying cross-talk between these compartments. Mitochondrial changes were dependent on activation of the Ras/MAPK pathway since treatment with a MAPK inhibitor restored expression of TOM20/TOM70 proteins. Although glutathione antioxidant levels were reduced in HEY treated with iron, extracellular glutamate levels were unaltered. Strikingly, oxalomalate (inhibitor of aconitase, involved in glutamate production) reversed iron-induced responses in a similar manner to Ru360. Collectively, our results implicate iron in modulating cell survival in a mitochondria-dependent manner in ovarian cancer cells. PMID:25697096

  15. Guanosine protects human neuroblastoma SH-SY5Y cells against mitochondrial oxidative stress by inducing heme oxigenase-1 via PI3K/Akt/GSK-3β pathway.

    PubMed

    Dal-Cim, Tharine; Molz, Simone; Egea, Javier; Parada, Esther; Romero, Alejandro; Budni, Josiane; Martín de Saavedra, Maria D; del Barrio, Laura; Tasca, Carla I; López, Manuela G

    2012-08-01

    Mitochondrial perturbation and oxidative stress are key factors in neuronal vulnerability in several neurodegenerative diseases or during brain ischemia. Here we have investigated the protective mechanism of action of guanosine, the guanine nucleoside, in a human neuroblastoma cell line, SH-SY5Y, subjected to mitochondrial oxidative stress. Blockade of mitochondrial complexes I and V with rotenone plus oligomycin (Rot/oligo) caused a significant decrease in cell viability and an increase in ROS production. Guanosine that the protective effect of guanosine incubated concomitantly with Rot/oligo abolished Rot/oligo-induced cell death and ROS production in a concentration dependent manner; maximum protection was achieved at the concentration of 1mM. The cytoprotective effect afforded by guanosine was abolished by adenosine A(1) or A(2A) receptor antagonists (DPCPX or ZM241385, respectively), or by a large (big) conductance Ca(2+)-activated K(+) channel (BK) blocker (charybdotoxin). Evaluation of signaling pathways showed that the protective effect of guanosine was not abolished by a MEK inhibitor (PD98059), by a p38(MAPK) inhibitor (SB203580), or by a PKC inhibitor (cheleritrine). However, when blocking the PI3K/Akt pathway with LY294002, the neuroprotective effect of guanosine was abolished. Guanosine increased Akt and p-Ser-9-GSK-3β phosphorylation confirming this pathway plays a key role in guanosine's neuroprotective effect. Guanosine induced the antioxidant enzyme heme oxygenase-1 (HO-1) expression. The protective effects of guanosine were prevented by heme oxygenase-1 inhibitor, SnPP. Moreover, bilirubin, an antioxidant and physiologic product of HO-1, is protective against mitochondrial oxidative stress. In conclusion, our results show that guanosine can afford protection against mitochondrial oxidative stress by a signaling pathway that implicates PI3K/Akt/GSK-3β proteins and induction of the antioxidant enzyme HO-1. Copyright © 2012 Elsevier Ltd. All rights reserved.

  16. Synergistic Anticancer Action of Lysosomal Membrane Permeabilization and Glycolysis Inhibition.

    PubMed

    Kosic, Milica; Arsikin-Csordas, Katarina; Paunovic, Verica; Firestone, Raymond A; Ristic, Biljana; Mircic, Aleksandar; Petricevic, Sasa; Bosnjak, Mihajlo; Zogovic, Nevena; Mandic, Milos; Bumbasirevic, Vladimir; Trajkovic, Vladimir; Harhaji-Trajkovic, Ljubica

    2016-10-28

    We investigated the in vitro and in vivo anticancer effect of combining lysosomal membrane permeabilization (LMP)-inducing agent N-dodecylimidazole (NDI) with glycolytic inhibitor 2-deoxy-d-glucose (2DG). NDI-triggered LMP and 2DG-mediated glycolysis block synergized in inducing rapid ATP depletion, mitochondrial damage, and reactive oxygen species production, eventually leading to necrotic death of U251 glioma cells but not primary astrocytes. NDI/2DG-induced death of glioma cells was partly prevented by lysosomal cathepsin inhibitor E64 and antioxidant α-tocopherol, suggesting the involvement of LMP and oxidative stress in the observed cytotoxicity. LMP-inducing agent chloroquine also displayed a synergistic anticancer effect with 2DG, whereas glucose deprivation or glycolytic inhibitors iodoacetate and sodium fluoride synergistically cooperated with NDI, thus further indicating that the anticancer effect of NDI/2DG combination was indeed due to LMP and glycolysis block. The two agents synergistically induced ATP depletion, mitochondrial depolarization, oxidative stress, and necrotic death also in B16 mouse melanoma cells. Moreover, the combined oral administration of NDI and 2DG reduced in vivo melanoma growth in C57BL/6 mice by inducing necrotic death of tumor cells, without causing liver, spleen, or kidney toxicity. Based on these results, we propose that NDI-triggered LMP causes initial mitochondrial damage that is further increased by 2DG due to the lack of glycolytic ATP required to maintain mitochondrial health. This leads to a positive feedback cycle of mitochondrial dysfunction, ATP loss, and reactive oxygen species production, culminating in necrotic cell death. Therefore, the combination of LMP-inducing agents and glycolysis inhibitors seems worthy of further exploration as an anticancer strategy. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  17. Combined Inhibition of the Renin-Angiotensin System and Neprilysin Positively Influences Complex Mitochondrial Adaptations in Progressive Experimental Heart Failure

    PubMed Central

    Reinders, Jörg; Schröder, Josef; Dietl, Alexander; Schmid, Peter M.; Jungbauer, Carsten; Resch, Markus; Maier, Lars S.; Luchner, Andreas; Birner, Christoph

    2017-01-01

    Background Inhibitors of the renin angiotensin system and neprilysin (RAS-/NEP-inhibitors) proved to be extraordinarily beneficial in systolic heart failure. Furthermore, compelling evidence exists that impaired mitochondrial pathways are causatively involved in progressive left ventricular (LV) dysfunction. Consequently, we aimed to assess whether RAS-/NEP-inhibition can attenuate mitochondrial adaptations in experimental heart failure (HF). Methods and Results By progressive right ventricular pacing, distinct HF stages were induced in 15 rabbits, and 6 animals served as controls (CTRL). Six animals with manifest HF (CHF) were treated with the RAS-/NEP-inhibitor omapatrilat. Echocardiographic studies and invasive blood pressure measurements were undertaken during HF progression. Mitochondria were isolated from LV tissue, respectively, and further worked up for proteomic analysis using the SWATH technique. Enzymatic activities of citrate synthase and the electron transfer chain (ETC) complexes I, II, and IV were assessed. Ultrastructural analyses were performed by transmission electron microscopy. During progression to overt HF, intricate expression changes were mainly detected for proteins belonging to the tricarboxylic acid cycle, glucose and fat metabolism, and the ETC complexes, even though ETC complex I, II, or IV enzymatic activities were not significantly influenced. Treatment with a RAS-/NEP-inhibitor then reversed some maladaptive metabolic adaptations, positively influenced the decline of citrate synthase activity, and altered the composition of each respiratory chain complex, even though this was again not accompanied by altered ETC complex enzymatic activities. Finally, ultrastructural evidence pointed to a reduction of autophagolytic and degenerative processes with omapatrilat-treatment. Conclusions This study describes complex adaptations of the mitochondrial proteome in experimental tachycardia-induced heart failure and shows that a combined RAS-/NEP-inhibition can beneficially influence mitochondrial key pathways. PMID:28076404

  18. Activation of mPTP-dependent mitochondrial apoptosis pathway by a novel pan HDAC inhibitor resminostat in hepatocellular carcinoma cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fu, Meili; Shi, Wenhong; Li, Zhengling

    Over-expression and aberrant activation of histone deacetylases (HDACs) are often associated with poor prognosis of hepatocellular carcinoma (HCC). Here, we evaluated the potential anti-hepatocellular carcinoma (HCC) cell activity by resminostat, a novel pan HDAC inhibitor (HDACi). We demonstrated that resminostat induced potent cytotoxic and anti-proliferative activity against established HCC cell lines (HepG2, HepB3, SMMC-7721) and patient-derived primary HCC cells. Further, resminostat treatment in HCC cells activated mitochondrial permeability transition pore (mPTP)-dependent apoptosis pathway, which was evidenced by physical association of cyclophilin-D and adenine nucleotide translocator 1 (ANT-1), mitochondrial depolarization, cytochrome C release and caspase-9 activation. Intriguingly, the mPTP blockers (sanglifehrinmore » A and cyclosporine A), shRNA knockdown of cyclophilin-D or the caspase-9 inhibitor dramatically attenuated resminostat-induced HCC cell apoptosis and cytotoxicity. Reversely, HCC cells with exogenous cyclophilin-D over-expression were hyper-sensitive to resminostat. Intriguingly, a low concentration of resminostat remarkably potentiated sorafenib-induced mitochondrial apoptosis pathway activation, leading to a profound cytotoxicity in HCC cells. The results of this preclinical study indicate that resminostat (or plus sorafenib) could be further investigated as a valuable anti-HCC strategy. - Highlights: • Resminostat inhibits human HCC cell survival and proliferation. • Resminostat activates mPTP-dependent mitochondrial apoptosis pathway in HCC cells. • Resminostat potentiates sorafenib-induced mitochondrial apoptosis pathway activation. • mPTP or caspase-9 inhibition attenuates apoptosis by resminostat or plus sorafenib.« less

  19. Intramitochondrial Ascorbic Acid Enhances the Formation of Mitochondrial Superoxide Induced by Peroxynitrite via a Ca2+-Independent Mechanism

    PubMed Central

    Guidarelli, Andrea; Cerioni, Liana; Fiorani, Mara; Cantoni, Orazio

    2017-01-01

    Exposure of U937 cells to peroxynitrite promotes mitochondrial superoxide formation via a mechanism dependent on both inhibition of complex III and increased mitochondrial Ca2+ accumulation. Otherwise inactive concentrations of the oxidant produced the same maximal effects in the presence of either complex III inhibitors or agents mobilizing Ca2+ from the ryanodine receptor and enforcing its mitochondrial accumulation. l-Ascorbic acid (AA) produced similar enhancing effects in terms of superoxide formation, DNA strand scission and cytotoxicity. However, AA failed to enhance the intra-mitochondrial concentration of Ca2+ and the effects observed in cells supplemented with peroxinitrite, while insensitive to manipulations preventing the mobilization of Ca2+, or the mitochondrial accumulation of the cation, were also detected in human monocytes and macrophages, which do not express the ryanodine receptor. In all these cell types, mitochondrial permeability transition-dependent toxicity was detected in cells exposed to AA/peroxynitrite and, based on the above criteria, these responses also appeared Ca2+-independent. The enhancing effects of AA are therefore similar to those mediated by bona fide complex III inhibitors, although the vitamin failed to directly inhibit complex III, and in fact enhanced its sensitivity to the inhibitory effects of peroxynitrite. PMID:28767071

  20. Oligomeric BAX induces mitochondrial permeability transition and complete cytochrome c release without oxidative stress.

    PubMed

    Li, Tsyregma; Brustovetsky, Tatiana; Antonsson, Bruno; Brustovetsky, Nickolay

    2008-11-01

    In the present study, we investigated the mechanism of cytochrome c release from isolated brain mitochondria induced by recombinant oligomeric BAX (BAX(oligo)). We found that BAX(oligo) caused a complete release of cytochrome c in a concentration- and time-dependent manner. The release was similar to those induced by alamethicin, which causes maximal mitochondrial swelling and eliminates barrier properties of the OMM. BAX(oligo) also produced large amplitude mitochondrial swelling as judged by light scattering assay and transmission electron microscopy. In addition, BAX(oligo) resulted in a strong mitochondrial depolarization. ATP or a combination of cyclosporin A and ADP, inhibitors of the mPT, suppressed BAX(oligo)-induced mitochondrial swelling and depolarization as well as cytochrome c release but did not influence BAX(oligo) insertion into the OMM. Both BAX(oligo)- and alamethicin-induced cytochrome c releases were accompanied by inhibition of ROS generation, which was assessed by measuring mitochondrial H(2)O(2) release with an Amplex Red assay. The mPT inhibitors antagonized suppression of ROS generation caused by BAX(oligo) but not by alamethicin. Thus, BAX(oligo) resulted in a complete cytochrome c release from isolated brain mitochondria in the mPT-dependent manner without involvement of oxidative stress by the mechanism requiring mitochondrial remodeling and permeabilization of the OMM.

  1. Direct effect of Taxol on free radical formation and mitochondrial permeability transition.

    PubMed

    Varbiro, G; Veres, B; Gallyas, F; Sumegi, B

    2001-08-15

    To elucidate the potential role of mitochondria in Taxol-induced cytotoxicity, we studied its direct mitochondrial effects. In Percoll-gradient purified liver mitochondria, Taxol induced large amplitude swelling in a concentration-dependent manner in the microM range. Opening of the permeability pore was also confirmed by the access of mitochondrial matrix enzymes for membrane impermeable substrates in Taxol-treated mitochondria. Taxol induced the dissipation of mitochondrial membrane potential (DeltaPsi) determined by Rhodamine123 release and induced the release of cytochrome c from the intermembrane space. All these effects were inhibited by 2.5 microM cyclosporine A. Taxol significantly increased the formation of reactive oxygen species (ROS) in both the aqueous and the lipid phase as determined by dihydrorhodamine123 and resorufin derivative. Cytochrome oxidase inhibitor CN(-), azide, and NO abrogated the Taxol-induced mitochondrial ROS formation while inhibitors of the other respiratory complexes and cyclosporine A had no effect. We confirmed that the Taxol-induced collapse of DeltaPsi and the induction of ROS production occurs in BRL-3A cells. In conclusion, Taxol-induced adenine nucleotide translocase-cyclophilin complex mediated permeability transition, and cytochrome oxidase mediated ROS production. Because both cytochrome c release and mitochondrial ROS production can induce suicide pathways, the direct mitochondrial effects of Taxol may contribute to its cytotoxicity.

  2. Thymidine kinase 2 enzyme kinetics elucidate the mechanism of thymidine-induced mitochondrial DNA depletion.

    PubMed

    Sun, Ren; Wang, Liya

    2014-10-07

    Mitochondrial thymidine kinase 2 (TK2) is a nuclear gene-encoded protein, synthesized in the cytosol and subsequently translocated into the mitochondrial matrix, where it catalyzes the phosphorylation of thymidine (dT) and deoxycytidine (dC). The kinetics of dT phosphorylation exhibits negative cooperativity, but dC phosphorylation follows hyperbolic Michaelis-Menten kinetics. The two substrates compete with each other in that dT is a competitive inhibitor of dC phosphorylation, while dC acts as a noncompetitive inhibitor of dT phosphorylation. In addition, TK2 is feedback inhibited by dTTP and dCTP. TK2 also phosphorylates a number of pyrimidine nucleoside analogues used in antiviral and anticancer therapy and thus plays an important role in mitochondrial toxicities caused by nucleoside analogues. Deficiency in TK2 activity due to genetic alterations causes devastating mitochondrial diseases, which are characterized by mitochondrial DNA (mtDNA) depletion or multiple deletions in the affected tissues. Severe TK2 deficiency is associated with early-onset fatal mitochondrial DNA depletion syndrome, while less severe deficiencies result in late-onset phenotypes. In this review, studies of the enzyme kinetic behavior of TK2 enzyme variants are used to explain the mechanism of mtDNA depletion caused by TK2 mutations, thymidine overload due to thymidine phosphorylase deficiency, and mitochondrial toxicity caused by antiviral thymidine analogues.

  3. BID links ferroptosis to mitochondrial cell death pathways.

    PubMed

    Neitemeier, Sandra; Jelinek, Anja; Laino, Vincenzo; Hoffmann, Lena; Eisenbach, Ina; Eying, Roman; Ganjam, Goutham K; Dolga, Amalia M; Oppermann, Sina; Culmsee, Carsten

    2017-08-01

    Ferroptosis has been defined as an oxidative and iron-dependent pathway of regulated cell death that is distinct from caspase-dependent apoptosis and established pathways of death receptor-mediated regulated necrosis. While emerging evidence linked features of ferroptosis induced e.g. by erastin-mediated inhibition of the X c - system or inhibition of glutathione peroxidase 4 (Gpx4) to an increasing number of oxidative cell death paradigms in cancer cells, neurons or kidney cells, the biochemical pathways of oxidative cell death remained largely unclear. In particular, the role of mitochondrial damage in paradigms of ferroptosis needs further investigation. In the present study, we find that erastin-induced ferroptosis in neuronal cells was accompanied by BID transactivation to mitochondria, loss of mitochondrial membrane potential, enhanced mitochondrial fragmentation and reduced ATP levels. These hallmarks of mitochondrial demise are also established features of oxytosis, a paradigm of cell death induced by X c - inhibition by millimolar concentrations of glutamate. Bid knockout using CRISPR/Cas9 approaches preserved mitochondrial integrity and function, and mediated neuroprotective effects against both, ferroptosis and oxytosis. Furthermore, the BID-inhibitor BI-6c9 inhibited erastin-induced ferroptosis, and, in turn, the ferroptosis inhibitors ferrostatin-1 and liproxstatin-1 prevented mitochondrial dysfunction and cell death in the paradigm of oxytosis. These findings show that mitochondrial transactivation of BID links ferroptosis to mitochondrial damage as the final execution step in this paradigm of oxidative cell death. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.

  4. Mdivi-1, mitochondrial fission inhibitor, impairs developmental competence and mitochondrial function of embryos and cells in pigs

    PubMed Central

    YEON, Ji-Yeong; MIN, Sung-Hun; PARK, Hyo-Jin; KIM, Jin-Woo; LEE, Yong-Hee; PARK, Soo-Yong; JEONG, Pil-Soo; PARK, Humdai; LEE, Dong-Seok; KIM, Sun-Uk; CHANG, Kyu-Tae; KOO, Deog-Bon

    2014-01-01

    Mitochondria are highly dynamic organelles that undergo constant fusion/fission as well as activities orchestrated by large dynamin-related GTPases. These dynamic mitochondrial processes influence mitochondrial morphology, size and function. Therefore, this study was conducted to evaluate the effects of mitochondrial fission inhibitor, mdivi-1, on developmental competence and mitochondrial function of porcine embryos and primary cells. Presumptive porcine embryos were cultured in PZM-3 medium supplemented with mdivi-1 (0, 10 and 50 μM) for 6 days. Porcine fibroblast cells were cultured in growth medium with mdivi-1 (0 and 50 μM) for 2 days. Our results showed that the rate of blastocyst production and cell growth in the mdivi-1 (50 μM) treated group was lower than that of the control group (P < 0.05). Moreover, loss of mitochondrial membrane potential in the mdivi-1 (50 μM) treated group was increased relative to the control group (P < 0.05). Subsequent evaluation revealed that the intracellular levels of reactive oxygen species (ROS) and the apoptotic index were increased by mdivi-1 (50 μM) treatment (P < 0.05). Finally, the expression of mitochondrial fission-related protein (Drp 1) was lower in the embryos and cells in the mdivi-1-treated group than the control group. Taken together, these results indicate that mdivi-1 treatment may inhibit developmental competence and mitochondrial function in porcine embryos and primary cells. PMID:25501014

  5. Peroxisomal fatty acid oxidation and inhibitors of the mitochondrial carnitine palmitoyltransferase I in isolated rat hepatocytes.

    PubMed Central

    Skorin, C; Necochea, C; Johow, V; Soto, U; Grau, A M; Bremer, J; Leighton, F

    1992-01-01

    Fatty acid oxidation was studied in the presence of inhibitors of carnitine palmitoyltransferase I (CPT I), in normal and in peroxisome-proliferated rat hepatocytes. The oxidation decreased in mitochondria, as expected, but in peroxisomes it increased. These two effects were seen, in variable proportions, with (+)-decanoylcarnitine, 2-tetradecylglycidic acid (TDGA) and etomoxir. The decrease in mitochondrial oxidation (ketogenesis) affected saturated fatty acids with 12 or more carbon atoms, whereas the increase in peroxisomal oxidation (H2O2 production) affected saturated fatty acids with 8 or more carbon atoms. The peroxisomal increase was sensitive to chlorpromazine, a peroxisomal inhibitor. To study possible mechanisms, palmitoyl-, octanoyl- and acetyl-carnitine acyltransferase activities were measured, in homogenates and in subcellular fractions from control and TDGA-treated cells. The palmitoylcarnitine acyltransferase was inhibited, as expected, but the octanoyltransferase activity also decreased. The CoA derivative of TDGA was synthesized and tentatively identified as being responsible for inhibition of the octanoylcarnitine acyltransferase. These results show that inhibitors of the mitochondrial CPT I may also inhibit the peroxisomal octanoyl transferase; they also support the hypothesis that the octanoyltransferase has the capacity to control or regulate peroxisomal fatty acid oxidation. PMID:1736904

  6. A high-throughput screen for mitochondrial function reveals known and novel mitochondrial toxicants in a library of environmental agents

    PubMed Central

    Datta, Sandipan; Sahdeo, Sunil; Gray, Jennifer A.; Morriseau, Christophe; Hammock, Bruce D.; Cortopassi, Gino

    2016-01-01

    Mitochondrial toxicity is emerging as a major mechanism underlying serious human health consequences. This work performs a high-throughput screen (HTS) of 176 environmental chemicals for mitochondrial toxicity utilizing a previously reported biosensor platform. This established HTS confirmed known mitochondrial toxins and identified novel mitotochondrial uncouplers such as 2, 2′-Methylenebis(4-chlorophenol) and pentachlorophenol. It also identified a mitochondrial ‘structure activity relationship’ (SAR) in the sense that multiple environmental chlorophenols are mitochondrial inhibitors and uncouplers. This study demonstrates proof-of-concept that a mitochondrial HTS assay detects known and novel environmental mitotoxicants, and could be used to quickly evaluate human health risks from mitotoxicants in the environment. PMID:27717841

  7. Proteasome inhibitor MG132 induces selective apoptosis in glioblastoma cells through inhibition of PI3K/Akt and NFkappaB pathways, mitochondrial dysfunction, and activation of p38-JNK1/2 signaling.

    PubMed

    Zanotto-Filho, Alfeu; Braganhol, Elizandra; Battastini, Ana Maria Oliveira; Moreira, José Cláudio Fonseca

    2012-12-01

    Proteasome inhibitors are emerging as a new class of anticancer agents. In this work, we examined the mechanisms underlying cytotoxicity, selectivity and adjuvant potential of the proteasome inhibitor MG132 in a panel of glioblastoma (GBM) cells (U138MG, C6, U87 and U373) and in normal astrocytes. MG132 markedly inhibited GBM cells growth irrespective of the p53 or PTEN mutational status of the cells whereas astrocytic viability was not affected, suggesting a selective toxicity of MG132 to cancerous glial cells. Mechanistically, MG132 arrested cells in G2/M phase of the cell cycle and increased p21(WAF1) protein immunocontent. Following cell arrest, cells become apoptotic as shown by annexin-V binding, caspase-3 activation, chromatin condensation and formation of sub-G1 apoptotic cells. MG132 promoted mitochondrial depolarization and decreased the mitochondrial antiapoptotic protein bcl-xL; it also induced activation of JNK and p38, and inhibition of NFkappaB and PI3K/Akt survival pathways. Pre-treatment of GBMs with the mitochondrial permeability transition pore inhibitor, bongkrekic acid, or pharmacological inhibitors of JNK1/2 and p38, SP600125 and SB203580, attenuated MG132-induced cell death. Besides its apoptotic effect alone, MG132 also enhanced the antiglioma effect of the chemotherapeutics cisplatin, taxol and doxorubicin in C6 and U138MG cells, indicating an adjuvant/chemosensitizer potential. In summary, MG132 exerted profound and selective toxicity in GBMs, being a potential agent for further testing in animal models of the disease.

  8. Catecholamine secretion by chemical hypoxia in guinea-pig, but not rat, adrenal medullary cells: differences in mitochondria.

    PubMed

    Harada, K; Endo, Y; Warashina, A; Inoue, M

    2015-08-20

    The effects of mitochondrial inhibitors (CN(-), a complex IV inhibitor and CCCP, protonophore) on catecholamine (CA) secretion and mitochondrial function were explored functionally and biochemically in rat and guinea-pig adrenal chromaffin cells. Guinea-pig chromaffin cells conspicuously secreted CA in response to CN(-) or CCCP, but rat cells showed a little, if any, secretory response to either of them. The resting metabolic rates in rat adrenal medullae did not differ from those in guinea-pig adrenal medullae. On the other hand, the time course of depolarization of the mitochondrial membrane potential (ΔΨm) in guinea-pig chromaffin cells in response to CN(-) was slower than that in rat chromaffin cells, and this difference was abolished by oligomycin, an F1F0-ATPase inhibitor. The extent of CCCP-induced decrease in cellular ATP in guinea-pig chromaffin cells, which was indirectly measured using a Mg(2+) indicator, was smaller than that in rat chromaffin cells. Relative expression levels of F1F0-ATPase inhibitor factor in guinea-pig adrenal medullae were smaller than in rat adrenal medullae, and the opposite was true for F1F0-ATPase α subunit. The present results indicate that guinea-pig chromaffin cells secrete more CA in response to a mitochondrial inhibitor than rat chromaffin cells and this higher susceptibility in the former is accounted for by a larger extent of reversed operation of F1F0-ATPase with the consequent decrease in ATP under conditions where ΔΨm is depolarized. Copyright © 2015 IBRO. Published by Elsevier Ltd. All rights reserved.

  9. In Vitro Effects of Cognitives and Nootropics on Mitochondrial Respiration and Monoamine Oxidase Activity.

    PubMed

    Singh, Namrata; Hroudová, Jana; Fišar, Zdeněk

    2017-10-01

    Impairment of mitochondrial metabolism, particularly the electron transport chain (ETC), as well as increased oxidative stress might play a significant role in pathogenesis of Alzheimer's disease (AD). Some effects of drugs used for symptomatic AD treatment may be related to their direct action on mitochondrial function. In vitro effects of pharmacologically different cognitives (galantamine, donepezil, rivastigmine, 7-MEOTA, memantine) and nootropic drugs (latrepirdine, piracetam) were investigated on selected mitochondrial parameters: activities of ETC complexes I, II + III, and IV, citrate synthase, monoamine oxidase (MAO), oxygen consumption rate, and hydrogen peroxide production of pig brain mitochondria. Complex I activity was decreased by galantamine, donepezil, and memantine; complex II + III activity was increased by galantamine. None of the tested drugs caused significant changes in the rate of mitochondrial oxygen consumption, even at high concentrations. Except galantamine, all tested drugs were selective MAO-A inhibitors. Latrepirdine, donepezil, and 7-MEOTA were found to be the most potent MAO-A inhibitors. Succinate-induced mitochondrial hydrogen peroxide production was not significantly affected by the drugs tested. The direct effect of cognitives and nootropics used in the treatment of AD on mitochondrial respiration is relatively small. The safest drugs in terms of disturbing mitochondrial function appear to be piracetam and rivastigmine. The MAO-A inhibition by cognitives and nootropics may also participate in mitochondrial neuroprotection. The results support the future research aimed at measuring the effects of currently used drugs or newly synthesized drugs on mitochondrial functioning in order to understand their mechanism of action.

  10. Sevoflurane postconditioning improves myocardial mitochondrial respiratory function and reduces myocardial ischemia-reperfusion injury by up-regulating HIF-1

    PubMed Central

    Yang, Long; Xie, Peng; Wu, Jianjiang; Yu, Jin; Yu, Tian; Wang, Haiying; Wang, Jiang; Xia, Zhengyuan; Zheng, Hong

    2016-01-01

    Background: Sevoflurane postconditioning (SPostC) can exert myocardial protective effects similar to ischemic preconditioning. However, the exact myocardial protection mechanism by SPostC is unclear. Studies indicate that hypoxia-inducible factor-1 (HIF-1) maintains cellular respiration homeostasis by regulating mitochondrial respiratory chain enzyme activity under hypoxic conditions. This study investigated whether SPostC could regulate the expression of myocardial HIF-1α and to improve mitochondrial respiratory function, thereby relieving myocardial ischemia-reperfusion injury in rats. Methods: The myocardial ischemia-reperfusion rat model was established using the Langendorff isolated heart perfusion apparatus. Additionally, postconditioning was performed using sevoflurane alone or in combination with the HIF-1α inhibitor 2-methoxyestradiol (2ME2). The changes in hemodynamic parameters, HIF-1α protein expression levels, mitochondrial respiratory function and enzyme activity, mitochondrial reactive oxygen species (ROS) production rates, and mitochondrial ultrastructure were measured or observed. Results: Compared to the ischemia-reperfusion (I/R) group, HIF-1α expression in the SPostC group was significantly up-regulated. Additionally, cardiac function indicators, mitochondrial state 3 respiratory rate, respiratory control ratio (RCR), cytochrome C oxidase (CcO), NADH oxidase (NADHO), and succinate oxidase (SUCO) activities, mitochondrial ROS production rate, and mitochondrial ultrastructure were significantly better than those in the I/R group. However, these advantages were completely reversed by the HIF-1α specific inhibitor 2ME2 (P<0.05). Conclusion: The myocardial protective function of SPostC might be associated with the improvement of mitochondrial respiratory function after up-regulation of HIF-1α expression. PMID:27830025

  11. Sevoflurane postconditioning improves myocardial mitochondrial respiratory function and reduces myocardial ischemia-reperfusion injury by up-regulating HIF-1.

    PubMed

    Yang, Long; Xie, Peng; Wu, Jianjiang; Yu, Jin; Yu, Tian; Wang, Haiying; Wang, Jiang; Xia, Zhengyuan; Zheng, Hong

    2016-01-01

    Sevoflurane postconditioning (SPostC) can exert myocardial protective effects similar to ischemic preconditioning. However, the exact myocardial protection mechanism by SPostC is unclear. Studies indicate that hypoxia-inducible factor-1 (HIF-1) maintains cellular respiration homeostasis by regulating mitochondrial respiratory chain enzyme activity under hypoxic conditions. This study investigated whether SPostC could regulate the expression of myocardial HIF-1α and to improve mitochondrial respiratory function, thereby relieving myocardial ischemia-reperfusion injury in rats. The myocardial ischemia-reperfusion rat model was established using the Langendorff isolated heart perfusion apparatus. Additionally, postconditioning was performed using sevoflurane alone or in combination with the HIF-1α inhibitor 2-methoxyestradiol (2ME2). The changes in hemodynamic parameters, HIF-1α protein expression levels, mitochondrial respiratory function and enzyme activity, mitochondrial reactive oxygen species (ROS) production rates, and mitochondrial ultrastructure were measured or observed. Compared to the ischemia-reperfusion (I/R) group, HIF-1α expression in the SPostC group was significantly up-regulated. Additionally, cardiac function indicators, mitochondrial state 3 respiratory rate, respiratory control ratio (RCR), cytochrome C oxidase (C c O), NADH oxidase (NADHO), and succinate oxidase (SUCO) activities, mitochondrial ROS production rate, and mitochondrial ultrastructure were significantly better than those in the I/R group. However, these advantages were completely reversed by the HIF-1α specific inhibitor 2ME2 ( P <0.05). The myocardial protective function of SPostC might be associated with the improvement of mitochondrial respiratory function after up-regulation of HIF-1α expression.

  12. Mitochondrial targeted HSP90 inhibitor Gamitrinib-TPP (G-TPP) induces PINK1/Parkin-dependent mitophagy.

    PubMed

    Fiesel, Fabienne C; James, Elle D; Hudec, Roman; Springer, Wolfdieter

    2017-12-05

    Loss-of-function mutations in PINK1 or PARKIN are associated with early-onset Parkinson's disease. Upon mitochondrial stress, PINK1 and Parkin together mediate a response that protects cells from the accumulation of harmful, damaged mitochondria. PINK1, the upstream kinase accumulates on the mitochondrial surface and recruits the E3 ubiquitin ligase Parkin on site to ubiquitylate substrate proteins. The joint activity of both to generate phosphorylated poly-ubiquitin chains on the mitochondrial surface induces the recruitment of autophagy receptors and eventually whole organelles are cleared by autophagy. While this pathway is generally accepted to occur upon chemical uncoupling of mitochondria, the (patho-) physiologic relevance has been questioned. However, few studies have indicated that PINK1 and Parkin are also activated upon accumulation of misfolded proteins in the mitochondrial lumen upon overexpression of ΔOTC (Ornithine transcarbamylase). Here, we used the mitochondrial targeted HSP90 inhibitor Gamitrinib-triphenylphosphonium (G-TPP), an anti-cancer agent, to chemically interfere with mitochondrial protein folding. G-TPP treatment induced PINK1 accumulation, ubiquitin phosphorylation at Ser65, Parkin activation and its recruitment to mitochondria was specific for mitochondrial HSP90 inhibition and largely independent of mitochondrial membrane depolarization. Mitophagy induction was observed by monitoring autophagy receptor recruitment and the mitoKeima reporter. Importantly, mitophagy was not only induced in cancer cells but also in primary human fibroblasts and thereof converted neurons. G-TPP treatment might represent a novel strategy to study PINK1 and Parkin-mediated mitochondrial quality control using a more physiologically relevant stress.

  13. Functional reconstitution of the mitochondrial Ca2+/H+ antiporter Letm1.

    PubMed

    Tsai, Ming-Feng; Jiang, Dawei; Zhao, Linlin; Clapham, David; Miller, Christopher

    2014-01-01

    The leucine zipper, EF hand-containing transmembrane protein 1 (Letm1) gene encodes a mitochondrial inner membrane protein, whose depletion severely perturbs mitochondrial Ca(2+) and K(+) homeostasis. Here we expressed, purified, and reconstituted human Letm1 protein in liposomes. Using Ca(2+) fluorophore and (45)Ca(2+)-based assays, we demonstrate directly that Letm1 is a Ca(2+) transporter, with apparent affinities of cations in the sequence of Ca(2+) ≈ Mn(2+) > Gd(3+) ≈ La(3+) > Sr(2+) > Ba(2+), Mg(2+), K(+), Na(+). Kinetic analysis yields a Letm1 turnover rate of 2 Ca(2+)/s and a Km of ∼25 µM. Further experiments show that Letm1 mediates electroneutral 1 Ca(2+)/2 H(+) antiport. Letm1 is insensitive to ruthenium red, an inhibitor of the mitochondrial calcium uniporter, and CGP-37157, an inhibitor of the mitochondrial Na(+)/Ca(2+) exchanger. Functional properties of Letm1 described here are remarkably similar to those of the H(+)-dependent Ca(2+) transport mechanism identified in intact mitochondria.

  14. Naringin Ameliorates HIV-1 Nucleoside Reverse Transcriptase Inhibitors- Induced Mitochondrial Toxicity.

    PubMed

    Oluwafeyisetan, Adebiyi; Olubunmi, Adebiyi; Peter, Owira

    2016-01-01

    Mitochondrial reactive oxygen species (ROS) generation and defective oxidative phosphorylation (OXPHOS) have been proposed as possible mechanisms underlying the development of nucleoside reverse transcriptase inhibitors (NRTIs)-induced mitochondrial toxicities. Available options in managing these complications have, so far, produced controversial results, thus necessitating further research into newer agents with promise. Antioxidant and free-radical scavenging effects of naringin, a plant-derived flavonoid, have previously been demonstrated. This study was designed to investigate the effects of naringin on NRTIs-induced mitochondrial toxicity. Wistar rats were randomly divided into Zidovudine (AZT)-only (100 mg/kg body weight BW); AZT+Naringin (100+50 mg/kg BW); AZT+Vitamin E (100+100 mg/kg BW); Stavudine (d4T)- only (50 mg/kg BW); d4T+Naringin (50+50 mg/kg BW); d4T+Vitamin E (50+100 mg/kg BW) and Vehicle (3.0 mL/kg BW)-treated groups, respectively. After 56 days of oral daily dosing, rats were euthanized by halothane overdose, blood collected by cardiac puncture and livers promptly excised for further biochemical and ultrastructural analyses. </p> Results: AZT- or d4T-only caused significant mitochondrial dysfunction and mitochondrial ultrastructural damage compared to controls, while either naringin or vitamin E reversed indices of mitochondrial dysfunction evidenced by significantly reduced mitochondrial malondialdehyde (MDA) and blood lactate concentrations, increased liver manganese superoxide dismutase (MnSOD) activity and upregulate expression of mitochondrial-encoded subunit of electron transport chain (ETC) complex IV protein compared to AZT- or d4T-only treated rats. Furthermore, naringin or vitamin E, respectively, ameliorated mitochondrial damage observed in AZT- or d4T-only treated rats. Naringin ameliorated oxidative stress and NRTI-induced mitochondrial damage and might, therefore, be beneficial in managing toxicities and complications arising from NRTI use.

  15. Inhibition of mitochondrial fission prevents hypoxia-induced metabolic shift and cellular proliferation of pulmonary arterial smooth muscle cells.

    PubMed

    Parra, Valentina; Bravo-Sagua, Roberto; Norambuena-Soto, Ignacio; Hernández-Fuentes, Carolina P; Gómez-Contreras, Andrés G; Verdejo, Hugo E; Mellado, Rosemarie; Chiong, Mario; Lavandero, Sergio; Castro, Pablo F

    2017-11-01

    Chronic hypoxia exacerbates proliferation of pulmonary arterial smooth muscle cells (PASMC), thereby reducing the lumen of pulmonary arteries. This leads to poor blood oxygenation and cardiac work overload, which are the basis of diseases such as pulmonary artery hypertension (PAH). Recent studies revealed an emerging role of mitochondria in PAH pathogenesis, as key regulators of cell survival and metabolism. In this work, we assessed whether hypoxia-induced mitochondrial fragmentation contributes to the alterations of both PASMC death and proliferation. In previous work in cardiac myocytes, we showed that trimetazidine (TMZ), a partial inhibitor of lipid oxidation, stimulates mitochondrial fusion and preserves mitochondrial function. Thus, here we evaluated whether TMZ-induced mitochondrial fusion can prevent human PASMC proliferation in an in vitro hypoxic model. Using confocal fluorescence microscopy, we showed that prolonged hypoxia (48h) induces mitochondrial fragmentation along with higher levels of the mitochondrial fission protein DRP1. Concomitantly, both mitochondrial potential and respiratory rates decreased, indicative of mitochondrial dysfunction. In accordance with a metabolic shift towards non-mitochondrial ATP generation, mRNA levels of glycolytic markers HK2, PFKFB2 and GLUT1 increased during hypoxia. Incubation of PASMC with TMZ, prior to hypoxia, prevented all these changes and precluded the increase in PASMC proliferation. These findings were also observed using Mdivi-1 (a pharmacological DRP1 inhibitor) or a dominant negative DRP1 K38A as pre-treatments. Altogether, our data indicate that TMZ exerts a protective role against hypoxia-induced PASMC proliferation, by preserving mitochondrial function, thus highlighting DRP1-dependent morphology as a novel therapeutic approach for diseases such as PAH. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. CGP37157, an inhibitor of the mitochondrial Na+/Ca2+ exchanger, protects neurons from excitotoxicity by blocking voltage-gated Ca2+ channels.

    PubMed

    Ruiz, A; Alberdi, E; Matute, C

    2014-04-10

    Inhibition of the mitochondrial Na(+)/Ca(2+) exchanger (NCLX) by CGP37157 is protective in models of neuronal injury that involve disruption of intracellular Ca(2+) homeostasis. However, the Ca(2+) signaling pathways and stores underlying neuroprotection by that inhibitor are not well defined. In the present study, we analyzed how intracellular Ca(2+) levels are modulated by CGP37157 (10 μM) during NMDA insults in primary cultures of rat cortical neurons. We initially assessed the presence of NCLX in mitochondria of cultured neurons by immunolabeling, and subsequently, we analyzed the effects of CGP37157 on neuronal Ca(2+) homeostasis using cameleon-based mitochondrial Ca(2+) and cytosolic Ca(2+) ([Ca(2+)]i) live imaging. We observed that NCLX-driven mitochondrial Ca(2+) exchange occurs in cortical neurons under basal conditions as CGP37157 induced a decrease in [Ca(2)]i concomitant with a Ca(2+) accumulation inside the mitochondria. In turn, CGP37157 also inhibited mitochondrial Ca(2+) efflux after the stimulation of acetylcholine receptors. In contrast, CGP37157 strongly prevented depolarization-induced [Ca(2+)]i increase by blocking voltage-gated Ca(2+) channels (VGCCs), whereas it did not induce depletion of ER Ca(2+) stores. Moreover, mitochondrial Ca(2+) overload was reduced as a consequence of diminished Ca(2+) entry through VGCCs. The decrease in cytosolic and mitochondrial Ca(2+) overload by CGP37157 resulted in a reduction of excitotoxic mitochondrial damage, characterized here by a reduction in mitochondrial membrane depolarization, oxidative stress and calpain activation. In summary, our results provide evidence that during excitotoxicity CGP37157 modulates cytosolic and mitochondrial Ca(2+) dynamics that leads to attenuation of NMDA-induced mitochondrial dysfunction and neuronal cell death by blocking VGCCs.

  17. CGP37157, an inhibitor of the mitochondrial Na+/Ca2+ exchanger, protects neurons from excitotoxicity by blocking voltage-gated Ca2+ channels

    PubMed Central

    Ruiz, A; Alberdi, E; Matute, C

    2014-01-01

    Inhibition of the mitochondrial Na+/Ca2+ exchanger (NCLX) by CGP37157 is protective in models of neuronal injury that involve disruption of intracellular Ca2+ homeostasis. However, the Ca2+ signaling pathways and stores underlying neuroprotection by that inhibitor are not well defined. In the present study, we analyzed how intracellular Ca2+ levels are modulated by CGP37157 (10 μM) during NMDA insults in primary cultures of rat cortical neurons. We initially assessed the presence of NCLX in mitochondria of cultured neurons by immunolabeling, and subsequently, we analyzed the effects of CGP37157 on neuronal Ca2+ homeostasis using cameleon-based mitochondrial Ca2+ and cytosolic Ca2+ ([Ca2+]i) live imaging. We observed that NCLX-driven mitochondrial Ca2+ exchange occurs in cortical neurons under basal conditions as CGP37157 induced a decrease in [Ca2]i concomitant with a Ca2+ accumulation inside the mitochondria. In turn, CGP37157 also inhibited mitochondrial Ca2+ efflux after the stimulation of acetylcholine receptors. In contrast, CGP37157 strongly prevented depolarization-induced [Ca2+]i increase by blocking voltage-gated Ca2+ channels (VGCCs), whereas it did not induce depletion of ER Ca2+ stores. Moreover, mitochondrial Ca2+ overload was reduced as a consequence of diminished Ca2+ entry through VGCCs. The decrease in cytosolic and mitochondrial Ca2+ overload by CGP37157 resulted in a reduction of excitotoxic mitochondrial damage, characterized here by a reduction in mitochondrial membrane depolarization, oxidative stress and calpain activation. In summary, our results provide evidence that during excitotoxicity CGP37157 modulates cytosolic and mitochondrial Ca2+ dynamics that leads to attenuation of NMDA-induced mitochondrial dysfunction and neuronal cell death by blocking VGCCs. PMID:24722281

  18. Targeting colorectal cancer cells by a novel sphingosine kinase 1 inhibitor PF-543

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ju, TongFa; Gao, DaQuan; Fang, Zheng-yu, E-mail: fangzhengyu158@sina.com

    In this study, we showed that PF-543, a novel sphingosine kinase 1 (SphK1) inhibitor, exerted potent anti-proliferative and cytotoxic effects against a panel of established (HCT-116, HT-29 and DLD-1) and primary human colorectal cancer (CRC) cells. Its sensitivity was negatively associated with SphK1 expression level in the CRC cells. Surprisingly, PF-543 mainly induced programmed necrosis, but not apoptosis, in the CRC cells. CRC cell necrotic death was detected by lactate dehydrogenase (LDH) release, mitochondrial membrane potential (MMP) collapse and mitochondrial P53-cyclophilin-D (Cyp-D) complexation. Correspondingly, the necrosis inhibitor necrostatin-1 largely attenuated PF-543-induced cytotoxicity against CRC cells. Meanwhile, the Cyp-D inhibitors (sanglifehrinmore » A and cyclosporin A), or shRNA-mediated knockdown of Cyp-D, remarkably alleviated PF-543-induced CRC cell necrotic death. Reversely, over-expression of wild-type Cyp-D in HCT-116 cells significantly increased PF-543's sensitivity. In vivo, PF-543 intravenous injection significantly suppressed HCT-116 xenograft growth in severe combined immunodeficient (SCID) mice, whiling remarkably improving the mice survival. The in vivo activity by PF-543 was largely attenuated when combined with the Cyp-D inhibitor cyclosporin A. Collectively, our results demonstrate that PF-543 exerts potent anti-CRC activity in vitro and in vivo. Mitochondrial programmed necrosis pathway is likely the key mechanism responsible for PF-543's actions in CRC cells. - Highlights: • PF-543 is anti-proliferative and cytotoxic to established and primary CRC cells. • PF-543 induces programmed necrosis, but not apoptosis, in CRC cells. • Modulation of mitochondrial protein cyclophilin-D alters PF-543's sensitivity. • PF-543 inhibits HCT-116 xenograft growth in SCID mice, improving mice survival. • Co-administration of cyclophilin-D inhibitor CsA inhibits PF-543's activity in vivo.« less

  19. Cdk1, PKCδ and calcineurin-mediated Drp1 pathway contributes to mitochondrial fission-induced cardiomyocyte death

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zaja, Ivan; Bai, Xiaowen, E-mail: xibai@mcw.edu; Liu, Yanan

    Highlights: • Drp1-mediated increased mitochondrial fission but not fusion is involved the cardiomyocyte death during anoxia-reoxygenation injury. • Reactive oxygen species are upstream initiators of mitochondrial fission. • Increased mitochondrial fission is resulted from Cdk1-, PKCδ-, and calcineurin-mediated Drp1 pathways. - Abstract: Myocardial ischemia–reperfusion (I/R) injury is one of the leading causes of death and disability worldwide. Mitochondrial fission has been shown to be involved in cardiomyocyte death. However, molecular machinery involved in mitochondrial fission during I/R injury has not yet been completely understood. In this study we aimed to investigate molecular mechanisms of controlling activation of dynamin-related protein 1more » (Drp1, a key protein in mitochondrial fission) during anoxia-reoxygenation (A/R) injury of HL1 cardiomyocytes. A/R injury induced cardiomyocyte death accompanied by the increases of mitochondrial fission, reactive oxygen species (ROS) production and activated Drp1 (pSer616 Drp1), and decrease of inactivated Drp1 (pSer637 Drp1) while mitochondrial fusion protein levels were not significantly changed. Blocking Drp1 activity with mitochondrial division inhibitor mdivi1 attenuated cell death, mitochondrial fission, and Drp1 activation after A/R. Trolox, a ROS scavenger, decreased pSer616 Drp1 level and mitochondrial fission after A/R. Immunoprecipitation assay further indicates that cyclin dependent kinase 1 (Cdk1) and protein kinase C isoform delta (PKCδ) bind Drp1, thus increasing mitochondrial fission. Inhibiting Cdk1 and PKCδ attenuated the increases in pSer616 Drp1, mitochondrial fission, and cardiomyocyte death. FK506, a calcineurin inhibitor, blocked the decrease in expression of inactivated pSer637 Drp1 and mitochondrial fission. Our findings reveal the following novel molecular mechanisms controlling mitochondrial fission during A/R injury of cardiomyocytes: (1) ROS are upstream initiators of mitochondrial fission; and (2) the increased mitochondrial fission is resulted from both increased activation and decreased inactivation of Drp1 through Cdk1, PKCδ, and calcineurin-mediated pathways, respectively.« less

  20. Identification of ER-000444793, a Cyclophilin D-independent inhibitor of mitochondrial permeability transition, using a high-throughput screen in cryopreserved mitochondria

    PubMed Central

    Briston, Thomas; Lewis, Sian; Koglin, Mumta; Mistry, Kavita; Shen, Yongchun; Hartopp, Naomi; Katsumata, Ryosuke; Fukumoto, Hironori; Duchen, Michael R.; Szabadkai, Gyorgy; Staddon, James M.; Roberts, Malcolm; Powney, Ben

    2016-01-01

    Growing evidence suggests persistent mitochondrial permeability transition pore (mPTP) opening is a key pathophysiological event in cell death underlying a variety of diseases. While it has long been clear the mPTP is a druggable target, current agents are limited by off-target effects and low therapeutic efficacy. Therefore identification and development of novel inhibitors is necessary. To rapidly screen large compound libraries for novel mPTP modulators, a method was exploited to cryopreserve large batches of functionally active mitochondria from cells and tissues. The cryopreserved mitochondria maintained respiratory coupling and ATP synthesis, Ca2+ uptake and transmembrane potential. A high-throughput screen (HTS), using an assay of Ca2+-induced mitochondrial swelling in the cryopreserved mitochondria identified ER-000444793, a potent inhibitor of mPTP opening. Further evaluation using assays of Ca2+-induced membrane depolarisation and Ca2+ retention capacity also indicated that ER-000444793 acted as an inhibitor of the mPTP. ER-000444793 neither affected cyclophilin D (CypD) enzymatic activity, nor displaced of CsA from CypD protein, suggesting a mechanism independent of CypD inhibition. Here we identified a novel, CypD-independent inhibitor of the mPTP. The screening approach and compound described provides a workflow and additional tool to aid the search for novel mPTP modulators and to help understand its molecular nature. PMID:27886240

  1. c-Jun N-terminal kinase modulates oxidant stress and peroxynitrite formation independent of inducible nitric oxide synthase in acetaminophen hepatotoxicity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Saito, Chieko; Lemasters, John J.; Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, SC 29425

    Acetaminophen (APAP) overdose, which causes liver injury in animals and humans, activates c-jun N-terminal kinase (JNK). Although it was shown that the JNK inhibitor SP600125 effectively reduced APAP hepatotoxicity, the mechanisms of protection remain unclear. C57Bl/6 mice were treated with 10 mg/kg SP600125 or vehicle (8% dimethylsulfoxide) 1 h before 600 mg/kg APAP administration. APAP time-dependently induced JNK activation (detected by JNK phosphorylation). SP600125, but not the vehicle, reduced JNK activation, attenuated mitochondrial Bax translocation and prevented the mitochondrial release of apoptosis-inducing factor at 4-12 h. Nuclear DNA fragmentation, nitrotyrosine staining, tissue GSSG levels and liver injury (plasma ALT releasemore » and necrosis) were partially attenuated by the vehicle (- 65%) and completely eliminated by SP600125 (- 98%) at 6 and 12 h. Furthermore, SP600125 attenuated the increase of inducible nitric oxide synthase (iNOS) mRNA and protein. However, APAP did not enhance plasma nitrite + nitrate levels (NO formation); SP600125 had no effect on this parameter. The iNOS inhibitor L-NIL did not reduce NO formation or injury after APAP but prevented NO formation caused by endotoxin. Since SP600125 completely eliminated the increase in hepatic GSSG levels, an indicator of mitochondrial oxidant stress, it is concluded that the inhibition of peroxynitrite was mainly caused by reduced superoxide formation. Our data suggest that the JNK inhibitor SP600125 protects against APAP-induced liver injury in part by attenuation of mitochondrial Bax translocation but mainly by preventing mitochondrial oxidant stress and peroxynitrite formation and thereby preventing the mitochondrial permeability transition pore opening, a key event in APAP-induced cell necrosis.« less

  2. Suppression of survivin expression in glioblastoma cells by the Ras inhibitor farnesylthiosalicylic acid promotes caspase-dependent apoptosis.

    PubMed

    Blum, Roy; Jacob-Hirsch, Jasmine; Rechavi, Gideon; Kloog, Yoel

    2006-09-01

    The Ras inhibitor farnesylthiosalicylic acid (FTS) has been shown to induce apoptosis in glioblastoma multiforme, but its mechanism of action was unknown. We show that FTS or dominant-negative Ras, by deregulating extracellular signal-regulated kinase and Akt signaling, decreases survivin gene transcripts in U87 glioblastoma multiforme, leading to disappearance of survivin protein and cell death. FTS affected both Ras-controlled regulators of survivin transcription and Ras-regulated survival signals. Thus, Ras inhibition by FTS resulted in release of the survivin "brake" on apoptosis and in activation of the mitochondrial apoptotic pathway: dephosphorylation of Bad, activation of Bax, release of cytochrome c, and caspase activation. FTS-induced apoptosis of U87 cells was strongly attenuated by forced expression of survivin or by caspase inhibitors. These results show that resistance to apoptosis in glioblastoma multiforme can be abolished by a single Ras inhibitor, which targets both survivin, a critical inhibitor of apoptosis, and the intrinsic mitochondrial apoptotic machinery.

  3. Mitochondrial Dysfunction and Its Relationship with mTOR Signaling and Oxidative Damage in Autism Spectrum Disorders.

    PubMed

    Yui, Kunio; Sato, Atsushi; Imataka, George

    2015-01-01

    Mitochondria are organelles that play a central role in processes related to cellular viability, such as energy production, cell growth, cell death via apoptosis, and metabolism of reactive oxygen species (ROS). We can observe behavioral abnormalities relevant to autism spectrum disorders (ASDs) and their recovery mediated by the mTOR inhibitor rapamycin in mouse models. In Tsc2(+/-) mice, the transcription of multiple genes involved in mTOR signaling is enhanced, suggesting a crucial role of dysregulated mTOR signaling in the ASD model. This review proposes that the mTOR inhibitor may be useful for the pharmacological treatment of ASD. This review offers novel insights into mitochondrial dysfunction and the related impaired glutathione synthesis and lower detoxification capacity. Firstly, children with ASD and concomitant mitochondrial dysfunction have been reported to manifest clinical symptoms similar to those of mitochondrial disorders, and it therefore shows that the clinical manifestations of ASD with a concomitant diagnosis of mitochondrial dysfunction are likely due to these mitochondrial disorders. Secondly, the adenosine triphosphate (ATP) production/oxygen consumption pathway may be a potential candidate for preventing mitochondrial dysfunction due to oxidative stress, and disruption of ATP synthesis alone may be related to impaired glutathione synthesis. Finally, a decrease in total antioxidant capacity may account for ASD children who show core social and behavioral impairments without neurological and somatic symptoms.

  4. Hydrogen peroxide production and mitochondrial dysfunction contribute to the fusaric acid-induced programmed cell death in tobacco cells.

    PubMed

    Jiao, Jiao; Sun, Ling; Zhou, Benguo; Gao, Zhengliang; Hao, Yu; Zhu, Xiaoping; Liang, Yuancun

    2014-08-15

    Fusaric acid (FA), a non-specific toxin produced mainly by Fusarium spp., can cause programmed cell death (PCD) in tobacco suspension cells. The mechanism underlying the FA-induced PCD was not well understood. In this study, we analyzed the roles of hydrogen peroxide (H2O2) and mitochondrial function in the FA-induced PCD. Tobacco suspension cells were treated with 100 μM FA and then analyzed for H2O2 accumulation and mitochondrial functions. Here we demonstrate that cells undergoing FA-induced PCD exhibited H2O2 production, lipid peroxidation, and a decrease of the catalase and ascorbate peroxidase activities. Pre-treatment of tobacco suspension cells with antioxidant ascorbic acid and NADPH oxidase inhibitor diphenyl iodonium significantly reduced the rate of FA-induced cell death as well as the caspase-3-like protease activity. Moreover, FA treatment of tobacco cells decreased the mitochondrial membrane potential and ATP content. Oligomycin and cyclosporine A, inhibitors of the mitochondrial ATP synthase and the mitochondrial permeability transition pore, respectively, could also reduce the rate of FA-induced cell death significantly. Taken together, the results presented in this paper demonstrate that H2O2 accumulation and mitochondrial dysfunction are the crucial events during the FA-induced PCD in tobacco suspension cells. Copyright © 2014 Elsevier GmbH. All rights reserved.

  5. Constitutive Activation of PINK1 Protein Leads to Proteasome-mediated and Non-apoptotic Cell Death Independently of Mitochondrial Autophagy*

    PubMed Central

    Akabane, Shiori; Matsuzaki, Kohei; Yamashita, Shun-ichi; Arai, Kana; Okatsu, Kei; Kanki, Tomotake; Matsuda, Noriyuki; Oka, Toshihiko

    2016-01-01

    Phosphatase and tensin homolog-induced putative kinase 1 (PINK1), a Ser/Thr kinase, and PARKIN, a ubiquitin ligase, are causal genes for autosomal recessive early-onset parkinsonism. Multiple lines of evidence indicate that PINK1 and PARKIN cooperatively control the quality of the mitochondrial population via selective degradation of damaged mitochondria by autophagy. Here, we report that PINK1 and PARKIN induce cell death with a 12-h delay after mitochondrial depolarization, which differs from the time profile of selective autophagy of mitochondria. This type of cell death exhibited definite morphologic features such as plasma membrane rupture, was insensitive to a pan-caspase inhibitor, and did not involve mitochondrial permeability transition. Expression of a constitutively active form of PINK1 caused cell death in the presence of a pan-caspase inhibitor, irrespective of the mitochondrial membrane potential. PINK1-mediated cell death depended on the activities of PARKIN and proteasomes, but it was not affected by disruption of the genes required for autophagy. Furthermore, fluorescence and electron microscopic analyses revealed that mitochondria were still retained in the dead cells, indicating that PINK1-mediated cell death is not caused by mitochondrial loss. Our findings suggest that PINK1 and PARKIN play critical roles in selective cell death in which damaged mitochondria are retained, independent of mitochondrial autophagy. PMID:27302064

  6. FFA-ROS-P53-mediated mitochondrial apoptosis contributes to reduction of osteoblastogenesis and bone mass in type 2 diabetes mellitus.

    PubMed

    Li, Jun; He, Wang; Liao, Bo; Yang, Jingyue

    2015-07-31

    This study evaluated the association between free fatty acid (FFA), ROS generation, mitochondrial dysfunction and bone mineral density (BMD) in type 2 diabetic patients and investigated the molecular mechanism. db/db and high fat (HF)-fed mice were treated by Etomoxir, an inhibitor of CPT1, MitoQ, and PFT-α, an inhibitor of P53. Bone metabolic factors were assessed and BMSCs were isolated and induced to osteogenic differentiation. FFA, lipid peroxidation and mtDNA copy number were correlated with BMD in T2DM patients. Etomoxir, MitoQ and PFT-α significantly inhibited the decrease of BMD and bone breaking strength in db/db and HF-fed mice and suppressed the reduction of BMSCs-differentiated osteoblasts. Etomoxir and MitoQ, but not PFT-α, inhibited the increase of mitochondrial ROS generation in db/db and HF-fed mice and osteoblasts. In addition, Etomoxir, MitoQ and PFT-α significantly inhibited mitochondrial dysfunction in osteoblasts. Moreover, mitochondrial apoptosis was activated in osteoblasts derived from db/db and HF-fed mice, which was inhibited by Etomoxir, MitoQ and PFT-α. Furthermore, mitochondrial accumulation of P53 recruited Bax and initiated molecular events of apoptotic events. These results demonstrated that fatty acid oxidation resulted in ROS generation, activating P53/Bax-mediated mitochondrial apoptosis, leading to reduction of osteogenic differentiation and bone loss in T2DM.

  7. Calcineurin Regulates Myocardial Function during Acute Endotoxemia

    PubMed Central

    Joshi, Mandar S.; Julian, Mark W.; Huff, Jennifer E.; Bauer, John A.; Xia, Yong; Crouser, Elliott D.

    2006-01-01

    Rationale: Cyclosporin A (CsA) is known to preserve cardiac contractile function during endotoxemia, but the mechanism is unclear. Increased nitric oxide (NO) production and altered mitochondrial function are implicated as mechanisms contributing to sepsis-induced cardiac dysfunction, and CsA has the capacity to reduce NO production and inhibit mitochondrial dysfunction relating to the mitochondrial permeability transition (MPT). Objectives: We hypothesized that CsA would protect against endotoxin-mediated cardiac contractile dysfunction by attenuating NO production and preserving mitochondrial function. Methods: Left ventricular function was measured continuously over 4 h in cats assigned as follows: control animals (n = 7); LPS alone (3 mg/kg, n = 8); and CsA (6 mg/kg, n = 7), a calcineurin inhibitor that blocks the MPT, or tacrolimus (FK506, 0.1 mg/kg, n = 7), a calcineurin inhibitor lacking MPT activity, followed in 30 min by LPS. Myocardial tissue was then analyzed for NO synthase-2 expression, tissue nitration, protein carbonylation, and mitochondrial morphology and function. Measurements and Main Results: LPS treatment resulted in impaired left ventricular contractility, altered mitochondrial morphology and function, and increased protein nitration. As hypothesized, CsA pretreatment normalized cardiac performance and mitochondrial respiration and reduced myocardial protein nitration. Unexpectedly, FK506 pretreatment had similar effects, normalizing both cardiac and mitochondrial parameters. However, CsA and FK506 pretreatments markedly increased protein carbonylation in the myocardium despite elevated manganese superoxide dismutase activity during endotoxemia. Conclusions: Our data indicate that calcineurin is a critical regulator of mitochondrial respiration, tissue nitration, protein carbonylation, and contractile function in the heart during acute endotoxemia. PMID:16424445

  8. [Phenolic antioxidant TS-13 regulating ARE-dependent genes induces tumor cell death by mitochondria-dependent pathway].

    PubMed

    Martinovich, G G; Martinovich, I V; Zenkov, N K; Men'shikova, E B; Kandalintseva, N V; Cherenkevich, S N

    2015-01-01

    Effects of water-soluble phenolic antioxidant sodium 3-(3'-tret-butyl-4'-hydroxyphenyl)-propyl thiosulfonate (TS-13), potassium 3,5-dimethyl-4-hydroxybenzyl thioetanoate (BEP-11-K) and potassium 3-(3',5'-ditretbutyl-4'-hydroxyphenyl)-propionate (potassium phenosan) on tumor cells proliferative activity and the role of redox-dependent and calcium-dependent signaling mechanisms in realization of tumor cell response to the antioxidant action were studied. Potassium phenosan and BEP-11-K were found to stimulate proliferation and ARE-inducing phenolic antioxidant TS-13 was found to inhibit tumor cell growth in culture. The tumor cell growth rate depended on the rate of intracellular reactive oxygen species production and was decreased by apocynin (a NADPH-oxidase inhibitor) and antimycin A (an ubiquinol-cytochrome c oxidoreductase inhibitor). TS-13 action on tumor cells was accompanied by a transient increase in intracellular reactive oxygen species production and the intracellular calcium concentration, whereas cell incubation with potassium phenosan and BEP-11-K did not influence the reactive oxygen species level and intracellular calcium ions. Cyclosporine A blocked the inhibitory effect of TS-13. Thus, it can be reasonably speculated that phenolic antioxidant TS-13 starts mitochondria-dependent apoptosis in tumor cells by the opening of permeability transition pores.

  9. Cancer metabolism, stemness and tumor recurrence: MCT1 and MCT4 are functional biomarkers of metabolic symbiosis in head and neck cancer.

    PubMed

    Curry, Joseph M; Tuluc, Madalina; Whitaker-Menezes, Diana; Ames, Julie A; Anantharaman, Archana; Butera, Aileen; Leiby, Benjamin; Cognetti, David M; Sotgia, Federica; Lisanti, Michael P; Martinez-Outschoorn, Ubaldo E

    2013-05-01

    Here, we interrogated head and neck cancer (HNSCC) specimens (n = 12) to examine if different metabolic compartments (oxidative vs. glycolytic) co-exist in human tumors. A large panel of well-established biomarkers was employed to determine the metabolic state of proliferative cancer cells. Interestingly, cell proliferation in cancer cells, as marked by Ki-67 immunostaining, was strictly correlated with oxidative mitochondrial metabolism (OXPHOS) and the uptake of mitochondrial fuels, as detected via MCT1 expression (p < 0.001). More specifically, three metabolic tumor compartments were delineated: (1) proliferative and mitochondrial-rich cancer cells (Ki-67+/TOMM20+/COX+/MCT1+); (2) non-proliferative and mitochondrial-poor cancer cells (Ki-67-/TOMM20-/COX-/MCT1-); and (3) non-proliferative and mitochondrial-poor stromal cells (Ki-67-/TOMM20-/COX-/MCT1-). In addition, high oxidative stress (MCT4+) was very specific for cancer tissues. Thus, we next evaluated the prognostic value of MCT4 in a second independent patient cohort (n = 40). Most importantly, oxidative stress (MCT4+) in non-proliferating epithelial cancer cells predicted poor clinical outcome (tumor recurrence; p < 0.0001; log-rank test), and was functionally associated with FDG-PET avidity (p < 0.04). Similarly, oxidative stress (MCT4+) in tumor stromal cells was specifically associated with higher tumor stage (p < 0.03), and was a highly specific marker for cancer-associated fibroblasts (p < 0.001). We propose that oxidative stress is a key hallmark of tumor tissues that drives high-energy metabolism in adjacent proliferating mitochondrial-rich cancer cells, via the paracrine transfer of mitochondrial fuels (such as L-lactate and ketone bodies). New antioxidants and MCT4 inhibitors should be developed to metabolically target "three-compartment tumor metabolism" in head and neck cancers. It is remarkable that two "non-proliferating" populations of cells (Ki-67-/MCT4+) within the tumor can actually determine clinical outcome, likely by providing high-energy mitochondrial "fuels" for proliferative cancer cells to burn. Finally, we also show that in normal mucosal tissue, the basal epithelial "stem cell" layer is hyper-proliferative (Ki-67+), mitochondrial-rich (TOMM20+/COX+) and is metabolically programmed to use mitochondrial fuels (MCT1+), such as ketone bodies and L-lactate. Thus, oxidative mitochondrial metabolism (OXPHOS) is a common feature of both (1) normal stem cells and (2) proliferating cancer cells. As such, we should consider metabolically treating cancer patients with mitochondrial inhibitors (such as Metformin), and/or with a combination of MCT1 and MCT4 inhibitors, to target "metabolic symbiosis."

  10. Cancer metabolism, stemness and tumor recurrence

    PubMed Central

    Curry, Joseph M.; Tuluc, Madalina; Whitaker-Menezes, Diana; Ames, Julie A.; Anantharaman, Archana; Butera, Aileen; Leiby, Benjamin; Cognetti, David M.; Sotgia, Federica; Lisanti, Michael P.; Martinez-Outschoorn, Ubaldo E.

    2013-01-01

    Here, we interrogated head and neck cancer (HNSCC) specimens (n = 12) to examine if different metabolic compartments (oxidative vs. glycolytic) co-exist in human tumors. A large panel of well-established biomarkers was employed to determine the metabolic state of proliferative cancer cells. Interestingly, cell proliferation in cancer cells, as marked by Ki-67 immunostaining, was strictly correlated with oxidative mitochondrial metabolism (OXPHOS) and the uptake of mitochondrial fuels, as detected via MCT1 expression (p < 0.001). More specifically, three metabolic tumor compartments were delineated: (1) proliferative and mitochondrial-rich cancer cells (Ki-67+/TOMM20+/COX+/MCT1+); (2) non-proliferative and mitochondrial-poor cancer cells (Ki-67−/TOMM20−/COX−/MCT1−); and (3) non-proliferative and mitochondrial-poor stromal cells (Ki-67−/TOMM20−/COX−/MCT1−). In addition, high oxidative stress (MCT4+) was very specific for cancer tissues. Thus, we next evaluated the prognostic value of MCT4 in a second independent patient cohort (n = 40). Most importantly, oxidative stress (MCT4+) in non-proliferating epithelial cancer cells predicted poor clinical outcome (tumor recurrence; p < 0.0001; log-rank test), and was functionally associated with FDG-PET avidity (p < 0.04). Similarly, oxidative stress (MCT4+) in tumor stromal cells was specifically associated with higher tumor stage (p < 0.03), and was a highly specific marker for cancer-associated fibroblasts (p < 0.001). We propose that oxidative stress is a key hallmark of tumor tissues that drives high-energy metabolism in adjacent proliferating mitochondrial-rich cancer cells, via the paracrine transfer of mitochondrial fuels (such as L-lactate and ketone bodies). New antioxidants and MCT4 inhibitors should be developed to metabolically target “three-compartment tumor metabolism” in head and neck cancers. It is remarkable that two “non-proliferating” populations of cells (Ki-67−/MCT4+) within the tumor can actually determine clinical outcome, likely by providing high-energy mitochondrial “fuels” for proliferative cancer cells to burn. Finally, we also show that in normal mucosal tissue, the basal epithelial “stem cell” layer is hyper-proliferative (Ki-67+), mitochondrial-rich (TOMM20+/COX+) and is metabolically programmed to use mitochondrial fuels (MCT1+), such as ketone bodies and L-lactate. Thus, oxidative mitochondrial metabolism (OXPHOS) is a common feature of both (1) normal stem cells and (2) proliferating cancer cells. As such, we should consider metabolically treating cancer patients with mitochondrial inhibitors (such as Metformin), and/or with a combination of MCT1 and MCT4 inhibitors, to target “metabolic symbiosis.” PMID:23574725

  11. The leading role of mitochondrial depolarization in the mechanism of glutamate-induced disruptions in Ca2+ homeostasis.

    PubMed

    Khodorov, B I; Storozhevykh, T P; Surin, A M; Yuryavichyus, A I; Sorokina, E G; Borodin, A V; Vinskaya, N P; Khaspekov, L G; Pinelis, V G

    2002-01-01

    Data obtained in studies of the nature of the correlation which we have previously observed [10,17] between mitochondrial depolarization and the level of disruption of Ca2+ homeostasis in cultivated brain neuronsare summarized. Experiments were performed on cultured cerebellar granule cells loaded with Fura-2-AM or rhodamine 123 to measure changes in cytoplasmic Ca2+ and mitochondrial potential during pathogenic treatments of the cells. Prolonged exposure to 100 microM glutamate induced a reversible increase in [Ca2+]i, which was accompanied by only a small degree of mitochondrial depolarization. A sharp increase in this mitochondrial depolarization, induced by addition of 3 mM NaCN or 300 microM dinitrophenol (DNP) to the glutamate-containing solution, resulted in further increase in [Ca2+]i, due to blockade of electrophoretic mitochondrial Ca2+ uptake. Prolonged exposure to CN- or DNP in the post-glutamate period maintained [Ca2+]i at a high level until the metabolic inhibitors were removed. In most cells, this plateau was characterized by low sensitivity to removal of external Ca2+, demonstrating that the mechanisms of Ca2+ release from neurons were disrupted. Addition of oligomycin, a blocker of mitochondrial ATP synthase/ATPase, to the solution containing glutamate and CN- or DNP eliminated the post-glutamate plateau. Parallel experiments with direct measurements of intracellular ATP levels ([ATP]) showed that profound mitochondrial depolarization induced by CN- or DNP sharply enhanced the drop in ATP due to glutamate, while oligomycin significantly weakened this effect of the metabolic inhibitors. Analysis of these data led to the conclusion that blockade of mitochondrial Ca2+ uptake and inhibition of ATP synthesis resulted from mitochondrial depolarization and plays a key role in the mechanism disrupting [Ca2+]i homeostasis after toxic exposure to glutamate.

  12. Calcium transport across the inner mitochondrial membrane: molecular mechanisms and pharmacology

    PubMed Central

    Csordás, György; Várnai, Peter; Golenár, Tünde; Sheu, Shey-Shing; Hajnóczky, György

    2011-01-01

    Growing evidence supports that mitochondrial calcium uptake is important for cell metabolism, signaling and survival. However, both the molecular nature of the mitochondrial Ca2+ transport sites and the calcium signals they respond to remained elusive. Recent RNA interference studies have identified new candidate proteins for Ca2+ uptake across the inner mitochondrial membrane, including LETM1, MCU, MICU1 and NCLX. The sensitivity of these factors to several drugs has been tested and in parallel, some new inhibitors of mitochondrial Ca2+ uptake have been described. This paper provides an update on the pharmacological aspects of the molecular mechanisms of the inner mitochondrial membrane Ca2+ transport. PMID:22123069

  13. Muscarinic Receptor Activation Protects Cells from Apoptotic Effects of DNA Damage, Oxidative Stress, and Mitochondrial Inhibition*

    PubMed Central

    De Sarno, Patrizia; Shestopal, Svetlana A.; King, Taj D.; Zmijewska, Anna; Song, Ling; Jope, Richard S.

    2006-01-01

    The impact of muscarinic receptor stimulation was examined on apoptotic signaling induced by DNA damage, oxidative stress, and mitochondrial impairment. Exposure of human neuroblastoma SH-SY5Y cells to the DNA-damaging agent camptothecin increased p53 levels, activated caspase-3, and caused cell death. Pretreatment with oxotremorine-M, a selective agonist of muscarinic receptors that are expressed endogenously in these cells, did not affect the accumulation of p53 but greatly attenuated caspase-3 activation and protected from cell death to nearly the same extent as treatment with a general caspase inhibitor. Treatment with 50–200 μm H2O2 caused the activation of caspase-3 beginning after 2–3 h, followed by eventual cell death. Oxotremorine-M pretreatment protected cells from H2O2-inducedcaspase-3 activation and death, and this was equivalent to protection afforded by a caspase inhibitor. Muscarinic receptor stimulation also protected cells from caspase-3 activation induced by exposure to rotenone, a mitochondrial complex 1 inhibitor, but no protection was evident from staurosporine-induced caspase-3 activation. The mechanism of protection afforded by muscarinic receptor activation from camptothecin-induced apoptotic signaling involved blockade of mitochondrial cytochrome c release associated with a bolstering of mitochondrial bcl-2 levels and blockade of the translocation of Bax to mitochondria. Likely the most proximal of these events to muscarinic receptor activation, mitochondrial Bax accumulation, also was attenuated by oxotremorine-M treatment after treatment with H2O2 or rotenone. These results demonstrate that stimulation of muscarinic receptors provides substantial protection from DNA damage, oxidative stress, and mitochondrial impairment, insults that may be encountered by neurons in development, aging, or neurodegenerative diseases. These findings suggest that neurotransmitter-induced signaling bolsters survival mechanisms, and inadequate neurotransmission may exacerbate neuronal loss. PMID:12538580

  14. Intravitreal injection or topical eye-drop application of a μ-calpain C2L domain peptide protects against photoreceptor cell death in Royal College of Surgeons' rats, a model of retinitis pigmentosa.

    PubMed

    Ozaki, Taku; Nakazawa, Mitsuru; Yamashita, Tetsuro; Sorimachi, Hiroyuki; Hata, Shoji; Tomita, Hiroshi; Isago, Hitomi; Baba, Ayaka; Ishiguro, Sei-Ichi

    2012-11-01

    Mitochondrial μ-calpain initiates apoptosis-inducing factor (AIF)-dependent apoptosis in retinal photoreceptor degeneration. Mitochondrial μ-calpain inhibitors may represent therapeutic targets for the disease. Therefore, we sought to identify inhibitors of mitochondrial calpains and determine their effects in Royal College of Surgeons' (RCS) rats, an animal model of retinitis pigmentosa (RP). We synthesized 20-mer peptides of the C2-like (C2L) domain of μ-calpain. Two μ-calpain peptides N2 and N9 inhibited mitochondrial μ-calpain activity (IC(50); 892 and 498nM, respectively), but not other proteases. Western blotting showed that 50μM of both μ-calpain peptides caused specific degradation of mitochondrial μ-calpain. Three-dimensional structure of calpains suggested that the peptides N2 and N9 corresponded to the regions forming salt bridges between the protease core domain 2 and the C2L domain. We determined the inhibitory regions of μ-calpain peptides N2 and N9 using 10-mers, and one peptide, N2-10-2, inhibited the activity of mitochondrial μ-calpain (IC(50); 112nM). We next conjugated the peptide N2-10-2 to the C-terminal of HIV-1 tat (HIV), a cell-penetrating peptide. Using isolated rat liver mitochondria, 50μM HIV-conjugated μ-calpain N2-10-2 peptide (HIV-Nμ, IC(50); 285nM) significantly inhibited AIF truncation. The intravitreal injection of 20mM HIV-Nμ also prevented retinal photoreceptor apoptosis determined by TUNEL staining, and preserved retinal function assessed by electroretinography in RCS rats. Topical application of 40mM HIV-Nμ also prevented apoptosis of retinal photoreceptors in RCS rats. Our results demonstrate that HIV-Nμ, a peptide inhibitor of mitochondrial μ-calpain, offers a new modality for treating RP. Copyright © 2012 Elsevier B.V. All rights reserved.

  15. GABA-BZD Receptor Modulating Mechanism of Panax quinquefolius against 72-h Sleep Deprivation Induced Anxiety like Behavior: Possible Roles of Oxidative Stress, Mitochondrial Dysfunction and Neuroinflammation

    PubMed Central

    Chanana, Priyanka; Kumar, Anil

    2016-01-01

    Rationale: Panax quinquefolius (American Ginseng) is known for its therapeutic potential against various neurological disorders, but its plausible mechanism of action still remains undeciphered. GABA (Gamma Amino Butyric Acid) plays an important role in sleep wake cycle homeostasis. Thus, there exists rationale in exploring the GABA-ergic potential of Panax quinquefolius as neuroprotective strategy in sleep deprivation induced secondary neurological problems. Objective: The present study was designed to explore the possible GABA-ergic mechanism in the neuro-protective effect of Panax quinquefolius against 72-h sleep deprivation induced anxiety like behavior, oxidative stress, mitochondrial dysfunction, HPA-axis activation and neuroinflammation. Materials and Methods: Male laca mice were sleep deprived for 72-h by using Grid suspended over water method. Panax quinquefolius (American Ginseng 50, 100, and 200 mg/kg) was administered alone and in combination with GABA modulators (GABA Cl− channel inhibitor, GABA-benzodiazepine receptor inhibitor and GABAA agonist) for 8 days, starting 5 days prior to 72-h sleep deprivation period. Various behavioral (locomotor activity, mirror chamber test), biochemical (lipid peroxidation, reduced glutathione, catalase, nitrite levels), mitochondrial complexes, neuroinflammation marker (Tumor Necrosis Factor, TNF-alpha), serum corticosterone, and histopathological sections of brains were assessed. Results: Seventy two hours sleep deprivation significantly impaired locomotor activity, caused anxiety-like behavior, conditions of oxidative stress, alterations in mitochondrial enzyme complex activities, raised serum corticosterone levels, brain TNFα levels and led to neuroinflammation like signs in discrete brain areas as compared to naive group. Panax quinquefolius (100 and 200 mg/kg) treatment restored the behavioral, biochemical, mitochondrial, molecular and histopathological alterations. Pre-treatment of GABA Cl− channel inhibitor as well as GABA-benzodiazepine receptor inhibitor, significantly reversed the protective effect of P. quinquefolius (100 mg/kg) in 72-h sleep deprived animals (P < 0.05). However, pretreatment with GABAA agonist, potentiated Panax quinquefolius's protective effect which was significant as compared to their effect per se (p < 0.05). Conclusion: GABA-ergic mechanism could be involved in the neuroprotective effect of P.quinquefolius against sleep deprivation induced anxiety-like behavior, oxidative stress, mitochondrial dysfunction, HPA axis activation and neuroinflammation. PMID:27013946

  16. The role of mitochondria in carbon catabolite repression in yeast.

    PubMed

    Haussmann, P; Zimmermann, F K

    1976-10-18

    The role of mitochondria in carbon catabolite repression in Saccharomyces cerevisiae was investigated by comparing normal, respiratory competent (RHO) strains with their mitochondrially inherited, respiratory deficient mutant derivatives (rho). Formation of maltase and invertase was used as an indicator system for the effect of carbon catabolite repression on carbon catabolic reactions. Fermentation rates for glucose, maltose and sucrose were the same in RHO and rho strains. Specific activities of maltase and invertase were usually higher in the rho-mutants. A very pronounced difference in invertase levels was observed when cells were grown on maltose; rho-mutants had around 30 times more invertase than their RHO parent strains. The fact that rho-mutants were much less sensitive to carbon catabolite repression of invertase synthesis than their RHO parents was used to search for the mitochondrial factor(s) or function(s) involved in carbon catabolite repression. A possible metabolic influence of mitochondria on this system of regulation was tested after growth of RHO strains under anaerobic conditions (no respiration nor oxidative phosphorylation), in the presence of KCN (respiration inhibited), dinitrophenol (uncoupling of oxidative phosphorylation) and of both inhibitors anaerobic conditions and dinitrophenol had no effect on the extent of invertase repression. KCN reduced the degree of repression but not to the level found in rho-mutants. A combination of both inhibitors gave the same results as with KCN alone. Erythromycin and chloramphenicol were used as specific inhibitors of mitochondrial protein synthesis. Erythromycin prevented the formation of mitochondrial respiratory systems but did not induce rho-mutants under the conditions used. However, repression of invertase was as strong as in the absence of the inhibitor. Chloramphenicol led only to a slight reduction of the respiratory systems and did not affect invertase levels. A combination of both antibiotics had about the same effect as growth in the presence of KCN. The results showed that mitochondria are involved in carbon catabolite repression and they cause an increase in the degree of repression. These effects cannot be due to mere metabolic activities nor to factors made on the mitochondrial protein synthesizing machinery. This regulatory role of mitochondria is observed as long as an intact mitochondrial genome is maintained.

  17. Desensitizing Mitochondrial Permeability Transition by ERK-Cyclophilin D Axis Contributes to the Neuroprotective Effect of Gallic Acid against Cerebral Ischemia/Reperfusion Injury

    PubMed Central

    Sun, Jing; Ren, Da-Dui; Wan, Jin-Yi; Chen, Chen; Chen, Dong; Yang, Huan; Feng, Chun-Lai; Gao, Jing

    2017-01-01

    Ischemic stroke is a devastating disease with complex pathophysiology. Much evidence confirms that opening of the mitochondrial permeability transition pore (MPTP) is related with mitochondrial dysfunction to apoptosis in ischemic stroke, thus elucidating its signaling mechanism and screening novel MPTP inhibitor is therefore of paramount importance. Our earlier studies identified that gallic acid (GA), a naturally occurring plant phenol, endows with effect on inhibition of mitochondrial dysfunction, which has significant neuroprotective effect in cerebral ischemia/reperfusion injury. However, its molecular mechanisms regulating mitochondrial dysfunction remain elusive. Here, we uncover a role of GA in protecting mitochondria via MPTP inhibition. In addition to inhibit CypD binding to adenine nucleotide translocator, GA potentiates extracellular signal-regulated kinases (ERK) phosphorylation, leading to a decrease in cyclophilin D (CypD) expression, resulting in a desensitization to induction of MPTP, thus inhibiting caspase activation and ultimately giving rise to cellular survival. Our study firstly identifies ERK-CypD axis is one of the cornerstones of the cell death pathways following ischemic stroke, and confirms GA is a novel inhibitor of MPTP, which inhibits apoptosis depending on regulating the ERK-CypD axis. PMID:28428752

  18. DRP-1 is required for BH3 mimetic-mediated mitochondrial fragmentation and apoptosis

    PubMed Central

    Milani, Mateus; Byrne, Dominic P; Greaves, Georgia; Butterworth, Michael; Cohen, Gerald M; Eyers, Patrick A; Varadarajan, Shankar

    2017-01-01

    The concept of using BH3 mimetics as anticancer agents has been substantiated by the efficacy of selective drugs, such as Navitoclax and Venetoclax, in treating BCL-2-dependent haematological malignancies. However, most solid tumours depend on MCL-1 for survival, which is highly amplified in multiple cancers and a major factor determining chemoresistance. Most MCL-1 inhibitors that have been generated so far, while demonstrating early promise in vitro, fail to exhibit specificity and potency in a cellular context. To address the lack of standardised assays for benchmarking the in vitro binding of putative inhibitors before analysis of their cellular effects, we developed a rapid differential scanning fluorimetry (DSF)-based assay, and used it to screen a panel of BH3 mimetics. We next contrasted their binding signatures with their ability to induce apoptosis in a MCL-1 dependent cell line. Of all the MCL-1 inhibitors tested, only A-1210477 induced rapid, concentration-dependent apoptosis, which strongly correlated with a thermal protective effect on MCL-1 in the DSF assay. In cells that depend on both MCL-1 and BCL-XL, A-1210477 exhibited marked synergy with A-1331852, a BCL-XL specific inhibitor, to induce cell death. Despite this selectivity and potency, A-1210477 induced profound structural changes in the mitochondrial network in several cell lines that were not phenocopied following MCL-1 RNA interference or transcriptional repression, suggesting that A-1210477 induces mitochondrial fragmentation in an MCL-1-independent manner. However, A-1210477-induced mitochondrial fragmentation was dependent upon DRP-1, and silencing expression levels of DRP-1 diminished not just mitochondrial fragmentation but also BH3 mimetic-mediated apoptosis. These findings provide new insights into MCL-1 ligands, and the interplay between DRP-1 and the anti-apoptotic BCL-2 family members in the regulation of apoptosis. PMID:28079887

  19. Amyloid β-induced impairments on mitochondrial dynamics, hippocampal neurogenesis, and memory are restored by phosphodiesterase 7 inhibition.

    PubMed

    Bartolome, Fernando; de la Cueva, Macarena; Pascual, Consuelo; Antequera, Desiree; Fernandez, Tamara; Gil, Carmen; Martinez, Ana; Carro, Eva

    2018-02-20

    The phosphodiesterase (PDE) 7 inhibitor S14 is a cell-permeable small heterocyclic molecule that is able to cross the blood-brain barrier. We previously found that intraperitoneal treatment with S14 exerted neuroprotection in an Alzheimer's disease (AD) model (in APP/PS1 mice). The objective of this study was to investigate the neurogenic and cellular effects of oral administration of S14 on amyloid β (Aβ) overload. We orally administered the PDE7 inhibitor S14 (15 mg/kg/day) or vehicle in 6-month-old APP/PS1 mice. After 5 weeks of S14 treatment, we evaluated cognitive functions and brain tissues. We also assessed the effects of S14 on the Aβ-treated human neuroblastome SH-SY5Y cell line. Targeting the cyclic adenosine monophosphate (cAMP)/cAMP-response element binding protein (CREB) pathway, S14 rescued cognitive decline by improving hippocampal neurogenesis in APP/PS1 transgenic mice. Additionally, S14 treatment reverted the Aβ-induced reduction in mitochondrial mass in APP/PS1 mice and in the human neuroblastoma SH-SY5Y cells co-exposed to Aβ. The restoration of the mitochondrial mass was found to be a dual effect of S14: a rescue of the mitochondrial biogenesis formerly slowed down by Aβ overload, and a reduction in the Aβ-increased mitochondrial clearance mechanism of mitophagy. Here, we show new therapeutic effects of the PDE7 inhibitor, confirming S14 as a potential therapeutic drug for AD.

  20. Mitochondrial genome-knockout cells demonstrate a dual mechanism of action for the electron transport complex I inhibitor mycothiazole.

    PubMed

    Meyer, Kirsten J; Singh, A Jonathan; Cameron, Alanna; Tan, An S; Leahy, Dora C; O'Sullivan, David; Joshi, Praneta; La Flamme, Anne C; Northcote, Peter T; Berridge, Michael V; Miller, John H

    2012-04-01

    Mycothiazole, a polyketide metabolite isolated from the marine sponge Cacospongia mycofijiensis, is a potent inhibitor of metabolic activity and mitochondrial electron transport chain complex I in sensitive cells, but other cells are relatively insensitive to the drug. Sensitive cell lines (IC(50) 0.36-13.8 nM) include HeLa, P815, RAW 264.7, MDCK, HeLa S3, 143B, 4T1, B16, and CD4/CD8 T cells. Insensitive cell lines (IC(50) 12.2-26.5 μM) include HL-60, LN18, and Jurkat. Thus, there is a 34,000-fold difference in sensitivity between HeLa and HL-60 cells. Some sensitive cell lines show a biphasic response, suggesting more than one mechanism of action. Mitochondrial genome-knockout ρ(0) cell lines are insensitive to mycothiazole, supporting a conditional mitochondrial site of action. Mycothiazole is cytostatic rather than cytotoxic in sensitive cells, has a long lag period of about 12 h, and unlike the complex I inhibitor, rotenone, does not cause G(2)/M cell cycle arrest. Mycothiazole decreases, rather than increases the levels of reactive oxygen species after 24 h. It is concluded that the cytostatic inhibitory effects of mycothiazole on mitochondrial electron transport function in sensitive cell lines may depend on a pre-activation step that is absent in insensitive cell lines with intact mitochondria, and that a second lower-affinity cytotoxic target may also be involved in the metabolic and growth inhibition of cells.

  1. The hemibiotrophic cacao pathogen Moniliophthora perniciosa depends on a mitochondrial alternative oxidase for biotrophic development

    USDA-ARS?s Scientific Manuscript database

    The mitochondrial alternative oxidase (AOX) is a non-energy conserving ubiquinol oxidase found in most fungal genomes studied to date. With the development of fungicides containing cytochrome-dependent respiratory chain (CRC) inhibitors, a strong interest in studying AOX functions in phytopathogenic...

  2. Assignment of two mitochondrially synthesized polypeptides to human mitochondrial DNA and their use in the study of intracellular mitochondrial interaction.

    PubMed Central

    Oliver, N A; Wallace, D C

    1982-01-01

    Two mitochondrially synthesized marker polypeptides, MV-1 and MV-2, were found in human HeLa and HT1080 cells. These were assigned to the mitochondrial DNA in HeLa-HT1080 cybrids and hybrids by demonstrating their linkage to cytoplasmic genetic markers. These markers include mitochondrial DNA restriction site polymorphisms and resistance to chloramphenicol, an inhibitor of mitochondrial protein synthesis. In the absence of chloramphenicol, the expression of MV-1 and MV-2 in cybrids and hybrids was found to be directly proportional to the ratio of the parental mitochondrial DNAs. In the presence of chloramphenicol, the marker polypeptide linked to the chloramphenicol-sensitive mitochondrial DNA continued to be expressed. This demonstrated that resistant and sensitive mitochondrial DNAs can cooperate within a cell for gene expression and that the CAP-resistant allele was dominant or codominant to sensitive. Such cooperation suggests that mitochondrial DNAs can be exchanged between mitochondria. Images PMID:6955589

  3. Appearance of an Alternate Pathway Cyanide-resistant during Germination of Seeds of Cicer arietinum

    PubMed Central

    Burguillo, Placido De La Fuente; Nicolás, Gregorio

    1977-01-01

    The combined action of the inhibitors antimycin A and cyanide with benzohydroxamic acid indicates the presence of a cyanide-resistant pathway of respiration in chick pea (Cicer arietinum L.) seeds. The appearance of this pathway takes place during germination. During the first 12 hours of germination, the respiration is predominantly cyanide-sensitive, showing after this time a shift to an “alternate” respiration which is sensitive to benzohydroxamic acid, reaching the maximal cyanide resistance between 72 and 96 hours of germination. The appearance of the alternate pathway is initiated by high O2 concentrations and depends on cytoplasmic protein synthesis, since its appearance is inhibited by cycloheximide but not by chloramphenicol. Actinomycin D has no effect on the appearance of the alternate pathway. Our results indicate, in agreement with other authors, that the branching point is located between the flavoproteins and cytochromes b, probably at the level of ubiquinone, but the possibility of more than one branching point of the electron flow is also considered. PMID:16660130

  4. Reduction of molybdate to molybdenum blue by Klebsiella sp. strain hkeem.

    PubMed

    Lim, H K; Syed, M A; Shukor, M Y

    2012-06-01

    A novel molybdate-reducing bacterium, tentatively identified as Klebsiella sp. strain hkeem and based on partial 16s rDNA gene sequencing and phylogenetic analysis, has been isolated. Strain hkeem produced 3 times more molybdenum blue than Serratia sp. strain Dr.Y8; the most potent Mo-reducing bacterium isolated to date. Molybdate was optimally reduced to molybdenum blue using 4.5 mM phosphate, 80 mM molybdate and using 1% (w/v) fructose as a carbon source. Molybdate reduction was optimum at 30 °C and at pH 7.3. The molybdenum blue produced from cellular reduction exhibited absorption spectrum with a maximum peak at 865 nm and a shoulder at 700 nm. Inhibitors of electron transport system such as antimycin A, rotenone, sodium azide, and potassium cyanide did not inhibit the molybdenum-reducing enzyme. Mercury, silver, and copper at 1 ppm inhibited molybdenum blue formation in whole cells of strain hkeem. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. The serine protease inhibitor TLCK attenuates intrinsic death pathways in neurons upstream of mitochondrial demise.

    PubMed

    Reuther, C; Ganjam, G K; Dolga, A M; Culmsee, C

    2014-11-01

    It is well-established that activation of proteases, such as caspases, calpains and cathepsins are essential components in signaling pathways of programmed cell death (PCD). Although these proteases have also been linked to mechanisms of neuronal cell death, they are dispensable in paradigms of intrinsic death pathways, e.g. induced by oxidative stress. However, emerging evidence implicated a particular role for serine proteases in mechanisms of PCD in neurons. Here, we investigated the role of trypsin-like serine proteases in a model of glutamate toxicity in HT-22 cells. In these cells glutamate induces oxytosis, a form of caspase-independent cell death that involves activation of the pro-apoptotic protein BH3 interacting-domain death agonist (Bid), leading to mitochondrial demise and ensuing cell death. In this model system, the trypsin-like serine protease inhibitor Nα-tosyl-l-lysine chloromethyl ketone hydrochloride (TLCK) inhibited mitochondrial damage and cell death. Mitochondrial morphology alterations, the impairment of the mitochondrial membrane potential and ATP depletion were prevented and, moreover, lipid peroxidation induced by glutamate was completely abolished. Strikingly, truncated Bid-induced cell death was not affected by TLCK, suggesting a detrimental activity of serine proteases upstream of Bid activation and mitochondrial demise. In summary, this study demonstrates the protective effect of serine protease inhibition by TLCK against oxytosis-induced mitochondrial damage and cell death. These findings indicate that TLCK-sensitive serine proteases play a crucial role in cell death mechanisms upstream of mitochondrial demise and thus, may serve as therapeutic targets in diseases, where oxidative stress and intrinsic pathways of PCD mediate neuronal cell death.

  6. Effect of Magnolol on the Function of Osteoblastic MC3T3-E1 Cells

    PubMed Central

    Kwak, Eun Jung; Lee, Young Soon; Choi, Eun Mi

    2012-01-01

    Objectives. In the present study, the ability of magnolol, a hydroxylated biphenyl compound isolated from Magnolia officinalis, to stimulate osteoblast function and inhibit the release of bone-resorbing mediators was investigated in osteoblastic MC3T3-E1 cells. Methods. Osteoblast function was measured by cell growth, alkaline phosphatase activity, collagen synthesis, and mineralization. Glutathione content was also measured in the cells. Bone-resorbing cytokines, receptor activator of nuclear factor-κB ligand (RANKL), TNF-α, and IL-6 were measured with an enzyme immunoassay system. Results. Magnolol caused a significant elevation of cell growth, alkaline phosphatase activity, collagen synthesis, mineralization, and glutathione content in the cells (P < 0.05). Skeletal turnover is orchestrated by a complex network of regulatory factors. Among cytokines, RANKL, TNF-α, and IL-6 were found to be key osteoclastogenetic molecules produced by osteoblasts. Magnolol significantly (P < 0.05) decreased the production of osteoclast differentiation inducing factors such as RANKL, TNF-α, and IL-6 in the presence of antimycin A, which inhibits mitochondrial electron transport and has been used as an ROS generator. Conclusion. Magnolol might be a candidate as an agent for the prevention of bone disorders such as osteoporosis. PMID:22474400

  7. Regulation of phosphoenolpyruvate carboxykinase and pyruvate kinase in Saccharomyces cerevisiae grown in the presence of glycolytic and gluconeogenic carbon sources and the role of mitochondrial function on gluconeogenesis.

    PubMed

    Wilson, A J; Bhattacharjee, J K

    1986-12-01

    Phosphoenolpyruvate carboxykinase (PEPCKase) and pyruvate kinase (PKase) were measured in Saccharomyces cerevisiae grown in the presence of glycolytic and gluconeogenic carbon sources. The PEPCKase activity was highest in ethanol-grown cells. However, high PEPCKase activity was also observed in cells grown in 1% glucose, especially as compared with the activity of sucrose-, maltose-, or galactose-grown cells. Activity was first detected after 12 h when glucose was exhausted from the growth medium. The PKase activity was very high in glucose-grown cells; considerable activity was also present in ethanol- and pyruvate-grown cells. The absolute requirement of respiration for gluconeogenesis was demonstrated by the absence or significantly low levels of PEPCKase and fructose-1,6-bisphosphatase activities observed in respiratory deficient mutants, as well as in wild-type S. cerevisiae cells grown in the presence of glucose and antimycin A or chloramphenicol. Obligate glycolytic and gluconeogenic enzymes were present simultaneously only in stationary phase cells, but not in exponential phase cells; hence futile cycling could not occur in log phase cells regardless of the presence of carbon source in the growth medium.

  8. Dynamin-related protein inhibitor downregulates reactive oxygen species levels to indirectly suppress high glucose-induced hyperproliferation of vascular smooth muscle cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Maimaitijiang, Alimujiang; Zhuang, Xinyu; Jiang, Xiaofei

    Hyperproliferation of vascular smooth muscle cells is a pathogenic mechanism common in diabetic vascular complications and is a putatively important therapeutic target. This study investigated multiple levels of biology, including cellular and organellar changes, as well as perturbations in protein synthesis and morphology. Quantitative and qualitative analysis was utilized to assess the effect of mitochondrial dynamic changes and reactive oxygen species(ROS) levels on high-glucose-induced hyperproliferation of vascular smooth muscle cells. The data demonstrated that the mitochondrial fission inhibitor Mdivi-1 and downregulation of ROS levels both effectively inhibited the high-glucose-induced hyperproliferation of vascular smooth muscle cells. Downregulation of ROS levels playedmore » a more direct role and ROS levels were also regulated by mitochondrial dynamics. Increased ROS levels induced excessive mitochondrial fission through dynamin-related protein (Drp 1), while Mdivi-1 suppressed the sensitivity of Drp1 to ROS levels, thus inhibiting excessive mitochondrial fission under high-glucose conditions. This study is the first to propose that mitochondrial dynamic changes and ROS levels interact with each other and regulate high-glucose-induced hyperproliferation of vascular smooth muscle cells. This finding provides novel ideas in understanding the pathogenesis of diabetic vascular remodeling and intervention. - Highlights: • Mdivi-1 inhibits VSMC proliferation by lowering ROS level in high-glucose condition. • ROS may be able to induce mitochondrial fission through Drp1 regulation. • Mdivi-1 can suppress the sensitivity of Drp1 to ROS.« less

  9. Inhibiting prenylation augments chemotherapy efficacy in renal cell carcinoma through dual inhibition on mitochondrial respiration and glycolysis.

    PubMed

    Huang, Jiangrong; Yang, Xiaoyu; Peng, Xiaochun; Huang, Wei

    2017-11-18

    Prenylation is a posttranslational lipid modification required for the proper functions of a number of proteins involved in cell regulation. Here, we show that prenylation inhibition is important for renal cell carcinoma (RCC) growth, survival and response to chemotherapy, and its underlying mechanism may be contributed to mitochondrial dysfunction. We first demonstrated that a HMG-CoA reductase inhibitor pitavastatin inhibited mevalonate pathway and thereby prenylation in RCC cells. In addition, pitavastatin is effective in inhibiting growth and inducing apoptosis in a panel of RCC cell lines. Combination of pitavastatin and paclitaxel is significantly more effective than pitavastatin or paclitaxel alone as shown by both in vitro cell culture system and in vivo RCC xenograft model. Importantly, pitavastatin treatment inhibits mitochondrial respiration via suppressing mitochondrial complex I and II enzyme activities. Interestingly, different from mitochondrial inhibitor phenformin that inhibits mitochondrial respiration but activates glycolytic rate in RCC cells, pitavastatin significantly decreases glycolytic rate. The dual inhibitory action of pitavastatin on mitochondrial respiration and glycolysis results in remarkable energy depletion and oxidative stress in RCC cells. In addition, inhibition of prenylation by depleting Isoprenylcysteine carboxylmethyltransferase (Icmt) also mimics the inhibitory effects of pitavastatin in RCC cells. Our work demonstrates the previously unappreciated association between prenylation inhibition and energy metabolism in RCC, which can be therapeutically exploited, likely in tumors that largely rely on energy metabolism. Copyright © 2017 Elsevier Inc. All rights reserved.

  10. Determination of Antimycin-A in water by liquid chromatographic/mass spectrometry: single-laboratory validation

    USGS Publications Warehouse

    Bernardy, Jeffry A.; Hubert, Terrance D.; Ogorek, Jacob M.; Schmidt, Larry J.

    2013-01-01

    An LC/MS method was developed and validated for the quantitative determination and confirmation of antimycin-A (ANT-A) in water from lakes or streams. Three different water sample volumes (25, 50, and 250 mL) were evaluated. ANT-A was stabilized in the field by immediately extracting it from water into anhydrous acetone using SPE. The stabilized concentrated samples were then transported to a laboratory and analyzed by LC/MS using negative electrospray ionization. The method was determined to have adequate accuracy (78 to 113% recovery), precision (0.77 to 7.5% RSD with samples ≥500 ng/L and 4.8 to 17% RSD with samples ≤100 ng/L), linearity, and robustness over an LOQ range from 8 to 51 600 ng/L.

  11. Determination of antimycin-A in water by liquid chromatographic/mass spectrometry: single-laboratory validation.

    PubMed

    Bernardy, Jeffry A; Hubert, Terrance D; Ogorek, Jacob M; Schmidt, Larry J

    2013-01-01

    An LC/MS method was developed and validated for the quantitative determination and confirmation of antimycin-A (ANT-A) in water from lakes or streams. Three different water sample volumes (25, 50, and 250 mL) were evaluated. ANT-A was stabilized in the field by immediately extracting it from water into anhydrous acetone using SPE. The stabilized concentrated samples were then transported to a laboratory and analyzed by LC/MS using negative electrospray ionization. The method was determined to have adequate accuracy (78 to 113% recovery), precision (0.77 to 7.5% RSD with samples > or = 500 ng/L and 4.8 to 17% RSD with samples < or = 100 ng/L), linearity, and robustness over an LOQ range from 8 to 51 600 ng/L.

  12. Spermine selectively inhibits high-conductance, but not low-conductance calcium-induced permeability transition pore.

    PubMed

    Elustondo, Pia A; Negoda, Alexander; Kane, Constance L; Kane, Daniel A; Pavlov, Evgeny V

    2015-02-01

    The permeability transition pore (PTP) is a large channel of the mitochondrial inner membrane, the opening of which is the central event in many types of stress-induced cell death. PTP opening is induced by elevated concentrations of mitochondrial calcium. It has been demonstrated that spermine and other polyamines can delay calcium-induced swelling of isolated mitochondria, suggesting their role as inhibitors of the mitochondrial PTP. Here we further investigated the mechanism by which spermine inhibits the calcium-induced, cyclosporine A (CSA) -sensitive PTP by using three indicators: 1) calcium release from the mitochondria detected with calcium green, 2) mitochondrial membrane depolarization using TMRM, and 3) mitochondrial swelling by measuring light absorbance. We found that despite calcium release and membrane depolarization, indicative of PTP activation, mitochondria underwent only partial swelling in the presence of spermine. This was in striking contrast to the high-amplitude swelling detected in control mitochondria and in mitochondria treated with the PTP inhibitor CSA. We conclude that spermine selectively prevents opening of the high-conductance state, while allowing activation of the lower conductance state of the PTP. We propose that the existence of lower conductance, stress-induced PTP might play an important physiological role, as it is expected to allow the release of toxic levels of calcium, while keeping important molecules (e.g., NAD) within the mitochondrial matrix. Copyright © 2014 Elsevier B.V. All rights reserved.

  13. THE INTRACELLULAR SITE OF SYNTHESIS OF MITOCHONDRIAL RIBOSOMAL PROTEINS IN NEUROSPORA CRASSA

    PubMed Central

    Lizardi, Paul M.; Luck, David J. L.

    1972-01-01

    The intracellular site of synthesis of mitochondrial ribosomal proteins (MRP) in Neurospora crassa has been investigated using three complementary approaches. (a) Mitochondrial protein synthesis in vitro: Tritium-labeled proteins made by isolated mitochondria were compared to 14C-labeled marker MRP by cofractionation in a two-step procedure involving isoelectric focusing and polyacrylamide gel electrophoresis. Examination of the electrophoretic profiles showed that essentially none of the peaks of in vitro product corresponded exactly to any of the MRP marker peaks. (b) Sensitivity of in vivo MRP synthesis to chloramphenicol: Cells were labeled with leucine-3H in the presence of chloramphenicol, mitochondrial ribosomal subunits were subsequently isolated, and their proteins fractionated by isoelectric focusing followed by gel electrophoresis. The labeling of every single MRP was found to be insensitive to chloramphenicol, a selective inhibitor of mitochondrial protein synthesis. (c) Sensitivity of in vivo MRP synthesis to anisomycin: We have found this antibiotic to be a good selective inhibitor of cytoplasmic protein synthesis in Neurospora. In the presence of anisomycin the labeling of virtually all MRP is inhibited to the same extent as the labeling of cytoplasmic ribosomal proteins. On the basis of these three types of studies we conclude that most if not all 53 structural proteins of mitochondrial ribosomal subunits in Neurospora are synthesized by cytoplasmic ribosomes. PMID:4261038

  14. The dual PI3K/mTOR inhibitor NVP-BEZ235 and chloroquine synergize to trigger apoptosis via mitochondrial-lysosomal cross-talk.

    PubMed

    Seitz, Christian; Hugle, Manuela; Cristofanon, Silvia; Tchoghandjian, Aurélie; Fulda, Simone

    2013-06-01

    On the basis of our previous identification of aberrant phosphatidylinositol-3-kinase (PI3K)/Akt signaling as a novel poor prognostic factor in neuroblastoma, we evaluated the dual PI3K/mTOR inhibitor BEZ235 in the present study. Here, BEZ235 acts in concert with the lysosomotropic agent chloroquine (CQ) to trigger apoptosis in neuroblastoma cells in a synergistic manner, as calculated by combination index (CI < 0.5). Surprisingly, inhibition of BEZ235-induced autophagy is unlikely the primary mechanism of this synergism as reported in other cancers, since neither inhibition of autophagosome formation by knockdown of Atg7 or Atg5 nor disruption of the autophagic flux by Bafilomycin A1 (BafA1) enhance BEZ235-induced apoptosis. BEZ235 stimulates enlargement of the lysosomal compartment and generation of reactive oxygen species (ROS), while CQ promotes lysosomal membrane permeabilization (LMP). In combination, BEZ235 and CQ cooperate to trigger LMP, Bax activation, loss of mitochondrial membrane potential (MMP) and caspase-dependent apoptosis. Lysosome-mediated apoptosis occurs in a ROS-dependent manner, as ROS scavengers significantly reduce BEZ235/CQ-induced loss of MMP, LMP and apoptosis. There is a mitochondrial-lysosomal cross-talk, since lysosomal enzyme inhibitors significantly decrease BEZ235- and CQ-induced drop of MMP and apoptosis. In conclusion, BEZ235 and CQ act in concert to trigger LMP and lysosome-mediated apoptosis via a mitochondrial-lysosomal cross-talk. These findings have important implications for the rational development of PI3K/mTOR inhibitor-based combination therapies. Copyright © 2012 UICC.

  15. Identification and characterisation of a new class of highly specific and potent inhibitors of the mitochondrial pyruvate carrier.

    PubMed

    Hildyard, John C W; Ammälä, Carina; Dukes, Iain D; Thomson, Stephen A; Halestrap, Andrew P

    2005-01-01

    Two novel thiazolidine compounds, GW604714X and GW450863X, were found to be potent inhibitors of mitochondrial respiration supported by pyruvate but not other substrates. Direct measurement of pyruvate transport into rat liver and yeast mitochondria confirmed that these agents inhibited the mitochondrial pyruvate carrier (MPC) with K(i) values <0.1 muM. Inhibitor titrations of pyruvate-dependent respiration by heart mitochondria gave values (+/-S.E.) for the concentration of inhibitor binding sites (pmol per mg protein) and their K(i) (nM) of 56.0+/-0.9 and 0.057+/-0.010 nM for the more hydrophobic GW604714X; for GW450863X the values were 59.9+/-4.6 and 0.60+/-0.12 nM. [(3)H]-methoxy-GW450863X binding was also used to determine the MPC content of the heart, kidney, liver and brain mitochondria giving values of 56, 40, 26 and 20 pmol per mg protein respectively. Binding to yeast mitochondria was <10% of that in rat liver mitochondria, consistent with the slow rate of pyruvate transport into yeast mitochondria. [(3)H]-methoxy-GW450863X binding was inhibited by GW604714X and by the established MPC inhibitor, UK5099. The absorbance spectra of GW450863X and GW604714X were markedly changed by the addition of beta-mercaptoethanol suggesting that the novel inhibitors, like alpha-cyanocinnamate, possess an activated double bond that attacks a critical cysteine residue on the MPC. However, no labelled protein was detected following SDS-PAGE suggesting that the covalent modification is reversible. GW604714X and GW450863X inhibited l-lactate transport by the plasma membrane monocarboxylate transporter MCT1, but at concentrations more than four orders of magnitude greater than the MPC.

  16. [Role of ATP-sensitive potassium channel activators in liver mitochondrial function in rats with different resistance to hypoxia].

    PubMed

    Tkachenko, H M; Kurhaliuk, N M; Vovkanych, L S

    2003-01-01

    Effects of ATP-sensitive potassium (KATP) channels opener pinacidil (0.06 mg/kg) and inhibitor glibenclamide (1 mg/kg) in rats with different resistance to hypoxia on indices of ADP-stimulation of mitochondrial respiration by Chance, calcium capacity and processes of lipid peroxidation in liver has been investigated. We used next substrates of oxidation: 0.35 mM succinate, 1 mM alpha-ketoglutarate. Additional analyses contain the next inhibitors: mitochondrial fermentative complex I-10 mkM rotenone, succinate dehydrogenase 2 mM malonic acid. It was shown that effects of pinacidil induced the increasing of oxidative phosporylation efficacy and ATP synthesis together with lowering of calcium capacity in rats with low resistance to hypoxia. Effects of pinacidil were leveled by glibenclamide. These changes are connected with the increasing of respiratory rate, calcium overload and intensification of lipid peroxidation processes. A conclusion was made about protective effect of pinacidil on mitochondrial functioning by economization of oxygen-dependent processes, adaptive potentialities of organisms with low resistance to hypoxia being increased.

  17. Berberine Regulated Lipid Metabolism in the Presence of C75, Compound C, and TOFA in Breast Cancer Cell Line MCF-7.

    PubMed

    Tan, Wen; Zhong, Zhangfeng; Wang, Shengpeng; Suo, Zhanwei; Yang, Xian; Hu, Xiaodong; Wang, Yitao

    2015-01-01

    Berberine interfering with cancer reprogramming metabolism was confirmed in our previous study. Lipid metabolism and mitochondrial function were also the core parts in reprogramming metabolism. In the presence of some energy-related inhibitors, including C75, compound C, and TOFA, the discrete roles of berberine in lipid metabolism and mitochondrial function were elucidated. An altered lipid metabolism induced by berberine was observed under the inhibition of FASN, AMPK, and ACC in breast cancer cell MCF-7. And the reversion of berberine-induced lipid suppression indicated that ACC inhibition might be involved in that process instead of FASN inhibition. A robust apoptosis induced by berberine even under the inhibition of AMPK and lipid synthesis was also indicated. Finally, mitochondrial function regulation under the inhibition of AMPK and ACC might be in an ACL-independent manner. Undoubtedly, the detailed mechanisms of berberine interfering with lipid metabolism and mitochondrial function combined with energy-related inhibitors need further investigation, including the potential compensatory mechanisms for ATP production and the upregulation of ACL.

  18. Berberine Regulated Lipid Metabolism in the Presence of C75, Compound C, and TOFA in Breast Cancer Cell Line MCF-7

    PubMed Central

    Tan, Wen; Zhong, Zhangfeng; Suo, Zhanwei; Yang, Xian; Hu, Xiaodong; Wang, Yitao

    2015-01-01

    Berberine interfering with cancer reprogramming metabolism was confirmed in our previous study. Lipid metabolism and mitochondrial function were also the core parts in reprogramming metabolism. In the presence of some energy-related inhibitors, including C75, compound C, and TOFA, the discrete roles of berberine in lipid metabolism and mitochondrial function were elucidated. An altered lipid metabolism induced by berberine was observed under the inhibition of FASN, AMPK, and ACC in breast cancer cell MCF-7. And the reversion of berberine-induced lipid suppression indicated that ACC inhibition might be involved in that process instead of FASN inhibition. A robust apoptosis induced by berberine even under the inhibition of AMPK and lipid synthesis was also indicated. Finally, mitochondrial function regulation under the inhibition of AMPK and ACC might be in an ACL-independent manner. Undoubtedly, the detailed mechanisms of berberine interfering with lipid metabolism and mitochondrial function combined with energy-related inhibitors need further investigation, including the potential compensatory mechanisms for ATP production and the upregulation of ACL. PMID:26351511

  19. Ferrous glycinate regulates cell energy metabolism by restrictinghypoxia-induced factor-1α expression in human A549 cells.

    PubMed

    Kuo, Yung-Ting; Jheng, Jhong-Huei; Lo, Mei-Chen; Chen, Wei-Lu; Wang, Shyang-Guang; Lee, Horng-Mo

    2018-06-04

    Iron or oxygen regulates the stability of hypoxia inducible factor-1α (HIF-1α). We investigated whether ferrous glycinate would affect HIF-1α accumulation, aerobic glycolysis and mitochondrial energy metabolism in human A549 lung cancer cells. Incubation of A549 cells with ferrous glycinate decreased the protein levels of HIF-1α, which was abrogated by proteosome inhibitor, or prolyl hydroxylase inhibitor. The addition of ferrous glycinate decreased protein levels of glucose transporter-1, hexokinase-2, and lactate dehydrogenase A, and decreased pyruvate dehydrogenase kinase-1 (PDK-1) and pyruvate dehydrogenase (PDH) phosphorylation in A549 cells. Ferrous glycinate also increased the expression of the mitochondrial transcription factor A (TFAM), and the mitochondrial protein, cytochrome c oxidase (COX-IV). Silencing of HIF-1α expression mimicked the effects of ferrous glycinate on PDK-1, PDH, TFAM and COX-IV in A549 cells. Ferrous glycinate increased mitochondrial membrane potential and ATP production in A549 cells. These results suggest that ferrous glycinate may reverse Warburg effect through down regulating HIF-1α in A549 cells.

  20. 3,3'-Diindolylmethane is a novel mitochondrial H(+)-ATP synthase inhibitor that can induce p21(Cip1/Waf1) expression by induction of oxidative stress in human breast cancer cells.

    PubMed

    Gong, Yixuan; Sohn, Heesook; Xue, Ling; Firestone, Gary L; Bjeldanes, Leonard F

    2006-05-01

    Epidemiologic evidence suggests that high dietary intake of Brassica vegetables, such as broccoli, cabbage, and Brussels sprouts, protects against tumorigenesis in multiple organs. 3,3'-Diindolylmethane, one of the active products derived from Brassica vegetables, is a promising antitumor agent. Previous studies in our laboratory showed that 3,3'-diindolylmethane induced a G(1) cell cycle arrest in human breast cancer MCF-7 cells by a mechanism that included increased expression of p21. In the present study, the upstream events leading to p21 overexpression were further investigated. We show for the first time that 3,3'-diindolylmethane is a strong mitochondrial H(+)-ATPase inhibitor (IC(50) approximately 20 micromol/L). 3,3'-Diindolylmethane treatment induced hyperpolarization of mitochondrial inner membrane, decreased cellular ATP level, and significantly stimulated mitochondrial reactive oxygen species (ROS) production. ROS production, in turn, led to the activation of stress-activated pathways involving p38 and c-Jun NH(2)-terminal kinase. Using specific kinase inhibitors (SB203580 and SP600125), we showed the central role of p38 and c-Jun NH(2)-terminal kinase (JNK) pathways in 3,3'-diindolylmethane-induced p21 mRNA transcription. In addition, antioxidants significantly attenuated 3,3'-diindolylmethane-induced activation of p38 and JNK and induction of p21, indicating that oxidative stress is the major trigger of these events. To further support the role of ROS in 3,3'-diindolylmethane-induced p21 overexpression, we showed that 3,3'-diindolylmethane failed to induce p21 overexpression in mitochondrial respiratory chain deficient rho(0) MCF-7 cells, in which 3,3'-diindolylmethane did not stimulate ROS production. Thus, we have established the critical role of enhanced mitochondrial ROS release in 3,3'-diindolylmethane-induced p21 up-regulation in human breast cancer cells.

  1. Closure of mitochondrial potassium channels favors opening of the Tl(+)-induced permeability transition pore in Ca(2+)-loaded rat liver mitochondria.

    PubMed

    Korotkov, Sergey M; Brailovskaya, Irina V; Shumakov, Anton R; Emelyanova, Larisa V

    2015-06-01

    It is known that a closure of ATP sensitive (mitoKATP) or BK-type Ca(2+) activated (mitoKCa) potassium channels triggers opening of the mitochondrial permeability transition pore (MPTP) in cells and isolated mitochondria. We found earlier that the Tl(+)-induced MPTP opening in Ca(2+)-loaded rat liver mitochondria was accompanied by a decrease of 2,4-dinitrophenol-uncoupled respiration and increase of mitochondrial swelling and ΔΨmito dissipation in the medium containing TlNO3 and KNO3. On the other hand, our study showed that the mitoKATP inhibitor, 5-hydroxydecanoate favored the Tl(+)-induced MPTP opening in the inner membrane of Ca(2+)-loaded rat heart mitochondria (Korotkov et al. 2013). Here we showed that 5-hydroxydecanoate increased the Tl(+)-induced MPTP opening in the membrane of rat liver mitochondria regardless of the presence of mitoKATP modulators (diazoxide and pinacidil). This manifested in more pronounced decrease in the uncoupled respiration and acceleration of both the swelling and the ΔΨmito dissipation in isolated rat liver mitochondria, incubated in the medium containing TlNO3, KNO3, and Ca(2+). A slight delay in Ca(2+)-induced swelling of the mitochondria exposed to diazoxide could be result of an inhibition of succinate oxidation by the mitoKATP modulator. Mitochondrial calcium retention capacity (CRC) was markedly decreased in the presence of the mitoKATP inhibitor (5-hydroxydecanoate) or the mitoKCa inhibitor (paxilline). We suggest that the closure of mitoKATP or mitoKCa in calcium loaded mitochondria favors opening of the Tl(+)-induced MPTP in the inner mitochondrial membrane.

  2. Lenticular cytoprotection, part 2: link between glycogen synthase kinase-3β, epithelial to mesenchymal transition, and mitochondrial depolarization.

    PubMed

    Neelam, Sudha; Brooks, Morgan M; Cammarata, Patrick R

    2014-01-01

    The inhibition of GSK-3β blocks mitochondrial membrane permeability transition (mMPT) for HLE-B3 cells in atmospheric oxygen. GSK-3β, as part of a multifactorial complex, also regulates nuclear levels of β-catenin, a known coordinator of cell survival and adhesion. The purpose of these studies was to demonstrate a novel, but likely disadvantageous, link between β-catenin's influence on the expression of the pro-survival protein, vascular endothelial growth factor (VEGF), resulting in enhanced lens epithelial cell mitochondrial protection against depolarization and nuclear β-catenin as an inducer of epithelial to mesenchymal transition (EMT). Virally transformed human lens epithelial cells (HLE-B3) were treated with SB216763, a specific inhibitor of GSK-3β catalytic activity and XAV939, a specific β-catenin inhibitor that bars the translocation of β-catenin from cytoplasm to the nucleus. Western blot analysis was employed to detect the levels of cytoplasmic and nuclear β-catenin and phospho-β-catenin, pBcl-2 and the EMT proteins, α-smooth muscle actin (α-SMA), and fibronectin. ELISA was used to measure the levels of VEGF in cell culture supernatants. JC-1 analysis was performed to analyze the influence of either SB216763 or XAV939 on mitochondrial depolarization. Cultured lens epithelial cells maintained in hypoxia (1% oxygen) and subsequently reintroduced into atmospheric oxygen and treated with the GSK-3β inhibitor SB216763 illustrated a marked inhibition of phosphorylation of glycogen synthase (downstream substrate of GSK-3β) and significant increase in nuclear translocation of β-catenin. The augmented nuclear β-catenin levels positively correlated with increased expression of α-SMA and fibronectin, both marker proteins indicative of EMT. The enhanced nuclear β-catenin activity also elicited increased VEGF and pBcl-2 expression, resulting in increased resistance to mitochondrial depolarization. Treatment of the cells with the β-catenin inhibitor XAV939 resulted in decreased expression of nuclear β-catenin, VEGF levels, pBcl-2, and EMT proteins, as well as increased mitochondrial depolarization. The data support a model whereby the onset of epithelial to mesenchymal transition may circuitously benefit from the enhanced synthesis of VEGF by setting up a potentially harmful situation whereby the resulting mesenchymal cell population may be more resistant to mitochondrial depolarization than the lens epithelial cell population from which it originated. These findings support the potential therapeutic relevance of developing strategies to undermine the progression of normal cells to mesenchymal transition without subverting cell viability.

  3. Normalization of CD4+ T Cell Metabolism Reverses Lupus

    PubMed Central

    Yin, Yiming; Choi, Seung-Chul; Xu, Zhiwei; Perry, Daniel J.; Seay, Howard; Croker, Byron P.; Sobel, Eric S.; Brusko, Todd M.; Morel, Laurence

    2015-01-01

    Systemic Lupus Erythematosus (SLE) is an autoimmune disease in which autoreactive CD4+ T cells play an essential role. CD4+ T cells rely on glycolysis for inflammatory effector functions, but recent studies have shown that mitochondrial metabolism supports their chronic activation. How these processes contribute to lupus is unclear. Here, we show that both glycolysis and mitochondrial oxidative metabolism are elevated in CD4+ T cells from lupus-prone B6.Sle1.Sle2.Sle3 (TC) mice as compared to non-autoimmune controls. In vitro, both the mitochondrial metabolism inhibitor metformin and the glucose metabolism inhibitor 2-Deoxy-D-glucose (2DG) reduced IFNγ production, although at different stages of activation. Metformin also restored the defective IL-2 production by TC CD4+ T cells. In vivo, treatment of TC mice and other lupus models with a combination of metformin and 2DG normalized T cell metabolism and reversed disease biomarkers. Further, CD4+ T cells from SLE patients also exhibited enhanced glycolysis and mitochondrial metabolism that correlated with their activation status, and their excessive IFNγ production was significantly reduced by metformin in vitro. These results suggest that normalization of T cell metabolism through the dual inhibition of glycolysis and mitochondrial metabolism is a promising therapeutic venue for SLE. PMID:25673763

  4. Characterization of carbohydrate metabolism and demonstration of glycosomes in a Phytomonas sp. isolated from Euphorbia characias.

    PubMed

    Sanchez-Moreno, M; Lasztity, D; Coppens, I; Opperdoes, F R

    1992-09-01

    Phytomonas sp. isolated from Euphorbia characias was adapted to SDM-79 medium. Cells isolated in the early stationary phase of growth were analyzed for their capacity to utilize plant carbohydrates for their energy requirements. The cellulose-degrading enzymes amylase, amylomaltase, invertase, carboxymethylcellulase, and the pectin-degrading enzymes polygalacturonase and oligo-D-galactosiduronate lyase were present in Phytomonas sp. and were all, except for amylomaltase, excreted into the external medium. Glucose, fructose and mannose served as the major energy substrates. Catabolism of carbohydrates occurred mainly via aerobic glycolysis according to the Embden-Meyerhof pathway, of which all the enzymes were detected. Likewise, the end-products of glycolysis, acetate and pyruvate, glycerol, succinate and ethanol were detected in the culture medium, as were the enzymes responsible for their production. Mitochondria were incapable of oxidizing succinate, 2-oxoglutarate, pyruvate, malate and proline, but had a high capacity to oxidize glycerol 3-phosphate. This oxidation was completely inhibited by salicylhydroxamic acid. No cytochromes could be detected either in intact mitochondria or in sub-mitochondrial particles. Mitochondrial respiration was not inhibited by antimycin, azide or cyanide. The glycolytic enzymes, from hexokinase to phosphoglycerate kinase, and the enzymes glycerol kinase, glycerol-3-phosphate dehydrogenase, phosphoenolpyruvate carboxykinase, malate dehydrogenase and adenylate kinase, were all associated with glycosomes that had a buoyant density of about 1.24 g cm-1 in sucrose. Cytochemical staining revealed the presence of catalase in these organelles. The cytosolic enzyme pyruvate kinase was activated by fructose 2,6-bisphosphate, typical of all other pyruvate kinases from Kinetoplastida. The energy metabolism of the plant parasite Phytomonas sp. isolated from E. characias resembled that of the bloodstream form of the mammalian parasite Trypanosoma brucei.

  5. Lack of complex I activity in human cells carrying a mutation in MtDNA-encoded ND4 subunit is corrected by the Saccharomyces cerevisiae NADH-quinone oxidoreductase (NDI1) gene.

    PubMed

    Bai, Y; Hájek, P; Chomyn, A; Chan, E; Seo, B B; Matsuno-Yagi, A; Yagi, T; Attardi, G

    2001-10-19

    The gene for the single subunit, rotenone-insensitive, and flavone-sensitive internal NADH-quinone oxidoreductase of Saccharomyces cerevisiae (NDI1) can completely restore the NADH dehydrogenase activity in mutant human cells that lack the essential mitochondrial DNA (mtDNA)-encoded subunit ND4. In particular, the NDI1 gene was introduced into the nuclear genome of the human 143B.TK(-) cell line derivative C4T, which carries a homoplasmic frameshift mutation in the ND4 gene. Two transformants with a low or high level of expression of the exogenous gene were chosen for a detailed analysis. In these cells the corresponding protein is localized in mitochondria, its NADH-binding site faces the matrix compartment as in yeast mitochondria, and in perfect correlation with its abundance restores partially or fully NADH-dependent respiration that is rotenone-insensitive, flavone-sensitive, and antimycin A-sensitive. Thus the yeast enzyme has become coupled to the downstream portion of the human respiratory chain. Furthermore, the P:O ratio with malate/glutamate-dependent respiration in the transformants is approximately two-thirds of that of the wild-type 143B.TK(-) cells, as expected from the lack of proton pumping activity in the yeast enzyme. Finally, whereas the original mutant cell line C4T fails to grow in medium containing galactose instead of glucose, the high NDI1-expressing transformant has a fully restored capacity to grow in galactose medium. The present observations substantially expand the potential of the yeast NDI1 gene for the therapy of mitochondrial diseases involving complex I deficiency.

  6. CORM-A1 prevents blood-brain barrier dysfunction caused by ionotropic glutamate receptor-mediated endothelial oxidative stress and apoptosis.

    PubMed

    Basuroy, Shyamali; Leffler, Charles W; Parfenova, Helena

    2013-06-01

    In cerebral microvascular endothelial cells (CMVEC) of newborn pigs, glutamate at excitotoxic concentrations (mM) causes apoptosis mediated by reactive oxygen species (ROS). Carbon monoxide (CO) produced by CMVEC or delivered by a CO-releasing molecule, CORM-A1, has antioxidant properties. We tested the hypothesis that CORM-A1 prevents cerebrovascular endothelial barrier dysfunction caused by glutamate excitotoxicity. First, we identified the glutamate receptors (GluRs) and enzymatic sources of ROS involved in the mechanism of endothelial apoptosis. In glutamate-exposed CMVEC, ROS formation and apoptosis were blocked by rotenone, 2-thenoyltrifluoroacetone (TTFA), and antimycin, indicating that mitochondrial complexes I, II, and III are the major sources of oxidative stress. Agonists of ionotropic GluRs (iGluRs) N-methyl-D-aspartate (NMDA), cis-ACPD, AMPA, and kainate increased ROS production and apoptosis, whereas iGluR antagonists exhibited antiapoptotic properties, suggesting that iGluRs mediate glutamate-induced endothelial apoptosis. The functional consequences of endothelial injury were tested in the model of blood-brain barrier (BBB) composed of CMVEC monolayer on semipermeable membranes. Glutamate and iGluR agonists reduced transendothelial electrical resistance and increased endothelial paracellular permeability to 3-kDa dextran. CORM-A1 exhibited potent antioxidant and antiapoptotic properties in CMVEC and completely prevented BBB dysfunction caused by glutamate and iGluR agonists. Overall, the endothelial component of the BBB is a cellular target for excitotoxic glutamate that, via a mechanism involving a iGluR-mediated activation of mitochondrial ROS production and apoptosis, leads to BBB opening that may be prevented by the antioxidant and antiapoptotic actions of CORMs. Antioxidant CORMs therapy may help preserve BBB functional integrity in neonatal cerebrovascular disease.

  7. Further characterization of [3H]gamma-aminobutyric acid release from isolated neuronal growth cones: role of intracellular Ca2+ stores.

    PubMed

    Lockerbie, R O; Gordon-Weeks, P R

    1986-04-01

    We have recently shown that growth cones isolated from neonatal rat forebrain possess uptake and release mechanisms for the neurotransmitter gamma-aminobutyric acid. About half of the K+-induced release of [3H]gamma-aminobutyric acid from isolated growth cones is dependent on extracellular Ca2+. The remaining component of the [3H]gamma-aminobutyric acid release is unaffected by removal of extracellular Ca2+ and is resistant to blockade by the voltage-sensitive Ca2+-channel blocker methoxyverapamil. In the present series of experiments we have used caffeine to assess the possible role of intracellular stores of Ca2+ in supporting that component of the K+-induced release of [3H]gamma-aminobutyric acid from isolated growth cones that is independent of extracellular Ca2+. We have chosen caffeine because of its well established effect of releasing Ca2+ from smooth endoplasmic reticulum in muscle. We found that caffeine can release [3H]gamma-aminobutyric acid from isolated growth cones. This effect persists in Ca2+-free medium, in the presence of methoxyverapamil and in the absence of Na+. Furthermore, isobutylmethylxanthine could not substitute for caffeine suggesting that the caffeine effect is not due to phosphodiesterase inhibition and the subsequent rise in intracellular cyclic nucleotides. A combination of the mitochondrial poisons, Antimycin A and sodium azide had no effect on the release of [3H]gamma-aminobutyric acid induced either by caffeine or by high K+. We conclude that caffeine causes the release of Ca2+ from a non-mitochondrial store within the growth cone and that this Ca2+ store supports that component of the K+-induced release of [3H]gamma-aminobutyric acid that is independent of extracellular Ca2+.

  8. Posttranslational Regulation of Human DNA Polymerase ι.

    PubMed

    McIntyre, Justyna; McLenigan, Mary P; Frank, Ekaterina G; Dai, Xiaoxia; Yang, Wei; Wang, Yinsheng; Woodgate, Roger

    2015-11-06

    Human DNA polymerases (pols) η and ι are Y-family DNA polymerase paralogs that facilitate translesion synthesis past damaged DNA. Both polη and polι can be monoubiquitinated in vivo. Polη has been shown to be ubiquitinated at one primary site. When this site is unavailable, three nearby lysines may become ubiquitinated. In contrast, mass spectrometry analysis of monoubiquitinated polι revealed that it is ubiquitinated at over 27 unique sites. Many of these sites are localized in different functional domains of the protein, including the catalytic polymerase domain, the proliferating cell nuclear antigen-interacting region, the Rev1-interacting region, and its ubiquitin binding motifs UBM1 and UBM2. Polι monoubiquitination remains unchanged after cells are exposed to DNA-damaging agents such as UV light (generating UV photoproducts), ethyl methanesulfonate (generating alkylation damage), mitomycin C (generating interstrand cross-links), or potassium bromate (generating direct oxidative DNA damage). However, when exposed to naphthoquinones, such as menadione and plumbagin, which cause indirect oxidative damage through mitochondrial dysfunction, polι becomes transiently polyubiquitinated via Lys(11)- and Lys(48)-linked chains of ubiquitin and subsequently targeted for degradation. Polyubiquitination does not occur as a direct result of the perturbation of the redox cycle as no polyubiquitination was observed after treatment with rotenone or antimycin A, which both inhibit mitochondrial electron transport. Interestingly, polyubiquitination was observed after the inhibition of the lysine acetyltransferase KATB3/p300. We hypothesize that the formation of polyubiquitination chains attached to polι occurs via the interplay between lysine acetylation and ubiquitination of ubiquitin itself at Lys(11) and Lys(48) rather than oxidative damage per se. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  9. PKCδ knockout mice are protected from para-methoxymethamphetamine-induced mitochondrial stress and associated neurotoxicity in the striatum of mice.

    PubMed

    Shin, Eun-Joo; Dang, Duy-Khanh; Tran, Hai-Quyen; Nam, Yunsung; Jeong, Ji Hoon; Lee, Young Hun; Park, Kyung Tae; Lee, Yong Sup; Jang, Choon-Gon; Hong, Jau-Shyong; Nabeshima, Toshitaka; Kim, Hyoung-Chun

    2016-11-01

    Para-methoxymethamphetamine (PMMA) is a para-ring-substituted amphetamine derivative sold worldwide as an illegal psychotropic drug. Although PMMA use has been reported to lead to severe intoxication and even death, little is known about the mechanism(s) by which PMMA exerts its neurotoxic effects. Here we found that PMMA treatment resulted in phosphorylation of protein kinase Cδ (PKCδ) and subsequent mitochondrial translocation of cleaved PKCδ. PMMA-induced oxidative stress was more pronounced in mitochondria than in the cytosol. Moreover, treatment with PMMA consistently resulted in significant reductions in mitochondrial membrane potential, mitochondrial complex I activity, and mitochondrial Mn superoxide dismutase-immunoreactivity. In contrast, PMMA treatment led to a significant increase in intramitochondrial Ca 2+ level. Treatment with PMMA also significantly increased ionized calcium binding adaptor molecule 1 (Iba-1)-labeled microglial activation and upregulated tumor necrosis factor alpha (TNF-α) gene expression. PKCδ knockout attenuated these mitochondrial effects and dampened the neurotoxic effects of PMMA. Importantly, TNF-α knockout mice were significantly protected from PMMA-induced increases in phospho-PKCδ expression, mitochondrial translocation of cleaved PKCδ, and Iba-1-labeled microgliosis. Both rottlerin, a pharmacological inhibitor of PKCδ, and etanercept, a pharmacological inhibitor of TNF-α, significantly protected against PMMA-mediated induction of apoptosis, as assessed by terminal deoxynucleotidyl transferase dUDP nick end labeling (TUNEL) assays. In addition, PKCδ knockout and TNF-α knockout both resulted in decreased PMMA-mediated induction of dopaminergic loss. Therefore, our results suggest that PKCδ mediates PMMA-induced neurotoxicity by facilitating oxidative stress (mitochondria > cytosol), mitochondrial dysfunction, microglial activation, and pro-apoptotic signaling. Our results also indicate that PMMA-induced PKCδ activation requires the proinflammatory cytokine TNF-α. Copyright © 2016. Published by Elsevier Ltd.

  10. Depleted energy charge and increased pulmonary endothelial permeability induced by mitochondrial complex I inhibition are mitigated by coenzyme Q1 in the isolated perfused rat lung.

    PubMed

    Bongard, Robert D; Yan, Ke; Hoffmann, Raymond G; Audi, Said H; Zhang, Xiao; Lindemer, Brian J; Townsley, Mary I; Merker, Marilyn P

    2013-12-01

    Mitochondrial dysfunction is associated with various forms of lung injury and disease that also involve alterations in pulmonary endothelial permeability, but the relationship, if any, between the two is not well understood. This question was addressed by perfusing isolated intact rat lung with a buffered physiological saline solution in the absence or presence of the mitochondrial complex I inhibitor rotenone (20 μM). Compared to control, rotenone depressed whole lung tissue ATP from 5.66 ± 0.46 (SEM) to 2.34 ± 0.15 µmol · g(-1) dry lung, with concomitant increases in the ADP:ATP and AMP:ATP ratios. Rotenone also increased lung perfusate lactate (from 12.36 ± 1.64 to 38.62 ± 3.14 µmol · 15 min(-1) perfusion · g(-1) dry lung) and the lactate:pyruvate ratio, but had no detectable impact on lung tissue GSH:GSSG redox status. The amphipathic quinone coenzyme Q1 (CoQ1; 50 μM) mitigated the impact of rotenone on the adenine nucleotide balance, wherein mitigation was blocked by NAD(P)H-quinone oxidoreductase 1 or mitochondrial complex III inhibitors. In separate studies, rotenone increased the pulmonary vascular endothelial filtration coefficient (Kf) from 0.043 ± 0.010 to 0.156 ± 0.037 ml · min(-1) · cm H2O(-1) · g(-1) dry lung, and CoQ1 protected against the effect of rotenone on Kf. A second complex I inhibitor, piericidin A, qualitatively reproduced the impact of rotenone on Kf and the lactate:pyruvate ratio. Taken together, the observations imply that pulmonary endothelial barrier integrity depends on mitochondrial bioenergetics as reflected in lung tissue ATP levels and that compensatory activation of whole lung glycolysis cannot protect against pulmonary endothelial hyperpermeability in response to mitochondrial blockade. The study further suggests that low-molecular-weight amphipathic quinones may have therapeutic utility in protecting lung barrier function in mitochondrial insufficiency. Published by Elsevier Inc.

  11. Adaptive mitochondrial reprogramming and resistance to PI3K therapy.

    PubMed

    Ghosh, Jagadish C; Siegelin, Markus D; Vaira, Valentina; Faversani, Alice; Tavecchio, Michele; Chae, Young Chan; Lisanti, Sofia; Rampini, Paolo; Giroda, Massimo; Caino, M Cecilia; Seo, Jae Ho; Kossenkov, Andrew V; Michalek, Ryan D; Schultz, David C; Bosari, Silvano; Languino, Lucia R; Altieri, Dario C

    2015-03-01

    Small molecule inhibitors of phosphatidylinositol-3 kinase (PI3K) have been developed as molecular therapy for cancer, but their efficacy in the clinic is modest, hampered by resistance mechanisms. We studied the effect of PI3K therapy in patient-derived tumor organotypic cultures (from five patient samples), three glioblastoma (GBM) tumor cell lines, and an intracranial model of glioblastoma in immunocompromised mice (n = 4-5 mice per group). Mechanisms of therapy-induced tumor reprogramming were investigated in a global metabolomics screening, analysis of mitochondrial bioenergetics and cell death, and modulation of protein phosphorylation. A high-throughput drug screening was used to identify novel preclinical combination therapies with PI3K inhibitors, and combination synergy experiments were performed. All statistical methods were two-sided. PI3K therapy induces global metabolic reprogramming in tumors and promotes the recruitment of an active pool of the Ser/Thr kinase, Akt2 to mitochondria. In turn, mitochondrial Akt2 phosphorylates Ser31 in cyclophilin D (CypD), a regulator of organelle functions. Akt2-phosphorylated CypD supports mitochondrial bioenergetics and opposes tumor cell death, conferring resistance to PI3K therapy. The combination of a small-molecule antagonist of CypD protein folding currently in preclinical development, Gamitrinib, plus PI3K inhibitors (PI3Ki) reverses this adaptive response, produces synergistic anticancer activity by inducing mitochondrial apoptosis, and extends animal survival in a GBM model (vehicle: median survival = 28.5 days; Gamitrinib+PI3Ki: median survival = 40 days, P = .003), compared with single-agent treatment (PI3Ki: median survival = 32 days, P = .02; Gamitrinib: median survival = 35 days, P = .008 by two-sided unpaired t test). Small-molecule PI3K antagonists promote drug resistance by repurposing mitochondrial functions in bioenergetics and cell survival. Novel combination therapies that target mitochondrial adaptation can dramatically improve on the efficacy of PI3K therapy in the clinic. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  12. [Effect of K-ATP channel opener-pinacidil on the liver mitochondria function in rats with different resistance to hypoxia during stress].

    PubMed

    Tkachenko, H M; Kurhaliuk, N M; Vovkanych, L S

    2004-01-01

    We have examined the influence of ATP-sensitive potassium (KATP) channel opener pinacidil (0.06 mg/kg) and inhibitor glibenclamide (1 mg/kg) on the changes of energy metabolism in the liver of rats under the stress conditions. The rats were divided in two groups with high and low resistance to hypoxia. The stress was modeled by placing the rats in a cage filled with water and closed with a net. The distance from water to the net was only 5 cm. The effects of KATP opener pinacidil (0.06 mg/kg) and inhibitor glibenclamide (1 mg/kg) on ADP-stimulating mitochondrial respiration by Chance, calcium capacity of organellas and processes of lipid peroxidation in the liver of rats with different resistance to hypoxia under the stress condition have been investigated. We have used the next substrates of oxidation: 0.35 mM succinate and 1 mM alpha-ketoglutarate. The additional analyses were conducted with the use of inhibitors: mitochondrial enzyme complex I 10 mM rotenone and succinate dehydrohenase 2 mM malonic acid. It was shown that the stress condition evoked the succinate oxidation and the decrease of alpha-ketoglutarate efficacy, the increase of calcium mitochondrial capacity and the intensification of lipid peroxidation processes. Under the presence of succinate, the increase of O2 uptake with simultaneous decrease of ADP/O ratio in rats with high resistance under stress was observed. Simultaneously, oxidation of alpha-ketoglutarate, a NAD-dependent substrate, was inhibited. Pinacidil caused the reorganization of mitochondrial energy metabolism in favour of NAD-dependent oxidation and the improvment of the protection against stress. The decrease of the efficacy of mitochondrial energy processes functioning was shown in animals with low resistance to hypoxia. KATP channel opener pinacidil has a protective effect on the processes of mitochondrial liver energy support under stress. These changes deal with the increase of alpha-ketoglutarate oxidation (respiratory rate and ADP/O) and the decrease of lipid peroxidation processes. We concluded about protective effect ofpinacidil on mitochondrial functioning under stress.

  13. Aging Reduces an ERRalpha-Directed Mitochondrial Glutaminase Expression Suppressing Glutamine Anaplerosis and Osteogenic Differentiation of Mesenchymal Stem Cells.

    PubMed

    Huang, Tongling; Liu, Renzhong; Fu, Xuekun; Yao, Dongsheng; Yang, Meng; Liu, Qingli; Lu, William W; Wu, Chuanyue; Guan, Min

    2017-02-01

    Aging deteriorates osteogenic capacity of mesenchymal stem/stromal cells (MSCs), contributing to imbalanced bone remodeling and osteoporosis. Glutaminase (Gls) catabolizes glutamine into glutamate at the first step of mitochondrial glutamine (Gln)-dependent anaplerosis which is essential for MSCs upon osteogenic differentiation. Estrogen-related receptor α (ERRα) regulates genes required for mitochondrial function. Here, we found that ERRα and Gls are upregulated by osteogenic induction in human MSCs (hMSCs). In contrast, osteogenic differentiation capacity and glutamine consumption of MSCs, as well as ERRα, Gls and osteogenic marker genes are significantly reduced with age. We demonstrated that ERRα binds to response elements on Gls promoter and affects glutamine anaplerosis through transcriptional induction of Gls. Conversely, mTOR inhibitor rapamycin, ERRα inverse agonist compound 29 or Gls inhibitor BPTES leads to reduced Gln anaplerosis and deteriorated osteogenic differentiation of hMSCs. Importantly, overexpression of ERRα or Gls restored impairment by these inhibitors. Finally, we proved that compensated ERRα or Gls expression indeed potentiated Gln anaplerosis and osteogenic capability of elderly mice MSCs in vitro. Together, we establish that Gls is a novel ERRα target gene and ERRα/Gls signaling pathway plays an important role in osteogenic differentiation of MSCs, providing new sights into novel regenerative therapeutics development. Our findings suggest that restoring age-related mitochondrial Gln-dependent anaplerosis may be beneficial for degenerative bone disorders such as osteoporosis. Stem Cells 2017;35:411-424. © 2016 AlphaMed Press.

  14. Mitochondrial Respiration Inhibitors Suppress Protein Translation and Hypoxic Signaling via the Hyperphosphorylation and Inactivation of Translation Initiation Factor eIF2α and Elongation Factor eEF2

    PubMed Central

    Li, Jun; Mahdi, Fakhri; Du, Lin; Datta, Sandipan; Nagle, Dale G.; Zhou, Yu-Dong

    2011-01-01

    Over 20000 lipid extracts of plants and marine organisms were evaluated in a human breast tumor T47D cell-based reporter assay for hypoxia-inducible factor-1 (HIF-1) inhibitory activity. Bioassay-guided isolation and dereplication-based structure elucidation of an active extract from the Bael tree (Aegle marmelos) afforded two protolimonoids, skimmiarepin A (1) and skimmiarepin C (2). In T47D cells, 1 and 2 inhibited hypoxia-induced HIF-1 activation with IC50 values of 0.063 µM and 0.068 µM, respectively. Compounds 1 and 2 also suppressed hypoxic induction of the HIF-1 target genes GLUT-1 and VEGF. Mechanistic studies revealed that 1 and 2 inhibited HIF-1 activation by blocking the hypoxia-induced accumulation of HIF-1α protein. At the range of concentrations that inhibited HIF-1 activation, 1 and 2 suppressed cellular respiration by selectively inhibiting the mitochondrial electron transport chain at complex I (NADH dehydrogenase). Further investigation indicated that mitochondrial respiration inhibitors such as 1 and rotenone induced the rapid hyperphosphorylation and inhibition of translation initiation factor eIF2α and elongation factor eEF2. The inhibition of protein translation may account for the short-term exposure effects exerted by mitochondrial inhibitors on cellular signaling, while the suppression of cellular ATP production may contribute to the inhibitory effects following extended treatment periods. PMID:21875114

  15. Air pollution induces enhanced mitochondrial oxidative stress in cystic fibrosis airway epithelium.

    PubMed

    Kamdar, O; Le, Wei; Zhang, J; Ghio, A J; Rosen, G D; Upadhyay, D

    2008-10-29

    We studied the effects of airborne particulate matters (PM) on cystic fibrosis (CF) epithelium. We noted that PM enhanced human CF bronchial epithelial apoptosis, activated caspase-9 and PARP-1; and reduced mitochondrial membrane potential. Mitochondrial inhibitors (4,4-diisothiocyanatostilbene-2,2'disulfonic acid, rotenone and thenoyltrifluoroacetone) blocked PM-induced generation of reactive oxygen species and apoptosis. PM upregulated pro-apoptotic Bad, Bax, p53 and p21; and enhanced mitochondrial localization of Bax. The anti-apoptotic Bcl-2, Bcl-xl, Mcl-1 and Xiap remained unchanged; however, overexpression of Bcl-xl blocked PM-induced apoptosis. Accordingly, we provide the evidence that PM enhances oxidative stress and mitochondrial signaling mediated apoptosis via the modulation of Bcl family proteins in CF.

  16. Effects of catecholamines on rat myocardial metabolism. II. Influence of catecholamines on 32p-incorporation into rat myocardial adenylic nucleotides and their turn-over.

    PubMed

    Merouze, P; Gaudemer, Y; Gautheron, D

    1975-01-01

    1. The influence of catecholamines (adrenaline and noradrenaline) on 32Pi incorporation into intracellular phosphate and adenylic nucleotides has been studied on rat myocardium slices; consequently, the turn-over of nucleotides could be determined and compared under the influence of these two hormones. 2. In order to specify the site of action of these catecholamines, several inhibitors and activators of energetic metabolism were included in the incubation medium: 3'5'-AMP, caffein, ouabain, oligomycin, rotenone + antimycin. 3. Both catecholamines favour Pi exchanges between intra and extracellular spaces; ATP turn-over is greatly increased, while ADP turn-over is slightly decreased, and 32P-incorporation into ADP is increased. 4. 3'5'-AMP and caffein are without effect on Pi penetration; however, caffein increases catecholamine effects on this penetration. ATP turn-over is slightly increased by 3'5'-AMP or caffein. 5. Ouabain decreases ATP turn-over but does not prevent the adrenaline induced acceleration. Inhibitors of oxidative phosphorylation and electron transport decrease ATP-turn-over severely; this inhibition is not released by catecholamines. 6. It is concluded that the catecholamine effects observed are dependent on the oxidative phosphorylations process. The increase of Pi exchange by catecholamines may be related to the increase of extracellular space and cation translocations we observed with the hormones.

  17. Discovery of non-peptidic small molecule inhibitors of cyclophilin D as neuroprotective agents in Aβ-induced mitochondrial dysfunction

    NASA Astrophysics Data System (ADS)

    Park, Insun; Londhe, Ashwini M.; Lim, Ji Woong; Park, Beoung-Geon; Jung, Seo Yun; Lee, Jae Yeol; Lim, Sang Min; No, Kyoung Tai; Lee, Jiyoun; Pae, Ae Nim

    2017-10-01

    Cyclophilin D (CypD) is a mitochondria-specific cyclophilin that is known to play a pivotal role in the formation of the mitochondrial permeability transition pore (mPTP).The formation and opening of the mPTP disrupt mitochondrial homeostasis, cause mitochondrial dysfunction and eventually lead to cell death. Several recent studies have found that CypD promotes the formation of the mPTP upon binding to β amyloid (Aβ) peptides inside brain mitochondria, suggesting that neuronal CypD has a potential to be a promising therapeutic target for Alzheimer's disease (AD). In this study, we generated an energy-based pharmacophore model by using the crystal structure of CypD—cyclosporine A (CsA) complex and performed virtual screening of ChemDiv database, which yielded forty-five potential hit compounds with novel scaffolds. We further tested those compounds using mitochondrial functional assays in neuronal cells and identified fifteen compounds with excellent protective effects against Aβ-induced mitochondrial dysfunction. To validate whether these effects derived from binding to CypD, we performed surface plasmon resonance (SPR)—based direct binding assays with selected compounds and discovered compound 29 was found to have the equilibrium dissociation constants (KD) value of 88.2 nM. This binding affinity value and biological activity correspond well with our predicted binding mode. We believe that this study offers new insights into the rational design of small molecule CypD inhibitors, and provides a promising lead for future therapeutic development.

  18. Sorafenib and FH535 in combination act synergistically on hepatocellular carcinoma by targeting cell bioenergetics and mitochondrial function.

    PubMed

    Turcios, Lilia; Vilchez, Valery; Acosta, Luis F; Poyil, Pratheeshkumar; Butterfield, David Allan; Mitov, Mihail; Marti, Francesc; Gedaly, Roberto

    2017-06-01

    Treatment of advanced hepatocellular carcinoma (HCC) remains a challenge due to the high tumor heterogeneity. In the present study, we aim to evaluate the impact of the β-catenin inhibitor, FH535, alone or in combination with the Ras/Raf/MAPK inhibitor Sorafenib, on the bioenergetics profiles of the HCC cell lines Huh7 and PLC/PRF/5. Single low-dose treatments with FH535 or Sorafenib promoted different effects on mitochondrial respiration and glycolysis in a cell type specific manner. However, the combination of these drugs significantly reduced both mitochondrial respiration and glycolytic rates regardless of the HCC cells. The significant changes in mitochondrial respiration observed in cells treated with the Sorafenib-FH535 combination may correspond to differential targeting of ETC complexes and changes in substrate utilization mediated by each drug. Moreover, the bioenergetics changes and the loss of mitochondrial membrane potential that were evidenced by treatment of HCC cells with the combination of FH535 and Sorafenib, preceded the induction of cell apoptosis. Overall, our results demonstrated that Sorafenib-FH535 drug combination induce the disruption of the bioenergetics of HCC by the simultaneous targeting of mitochondrial respiration and glycolytic flux that leads the synergistic effect on inhibition of cell proliferation. These findings support the therapeutic potential of combinatory FH535-Sorafenib treatment of the HCC heterogeneity by the simultaneous targeting of different molecular pathways. Copyright © 2017 Editrice Gastroenterologica Italiana S.r.l. Published by Elsevier Ltd. All rights reserved.

  19. Effects of mycoplasma contamination on phenotypic expression of mitochondrial mutants in human cells.

    PubMed

    Doersen, C J; Stanbridge, E J

    1981-04-01

    HeLa cells sensitive to the mitochondrial protein synthesis inhibitors erythromycin (ERY) and chloramphenicol (CAP) and HeLa variants resistant to the effects of these drugs were purposefully infected with drug-sensitive and -resistant mycoplasma strains. Mycoplasma hyorhinis and the ERY-resistant strain of Mycoplasma orale, MO-ERYr, did not influence the growth of HeLa and ERY-resistant ERY2301 cells in the presence or absence of ERY. M. hyorhinis also did not affect the growth of HeLa and CAP-resistant Cap-2 cells in the presence or absence of CAP. However, both HeLa and Cap-2 cells infected with the CAP-resistant strain of M. hyorhinis, MH-CAPr, were more sensitive to the cytotoxic effect of CAP. This may be due to the glucose dependence of the cells, which was compromised by the increased utilization of glucose by MH-CAPr in these infected cell cultures. In vitro protein synthesis by isolated mitochondria was significantly altered by mycoplasma infection of the various cell lines. A substantial number of mycoplasmas copurified with the mitochondria, resulting in up to a sevenfold increase in the incorporation of [3H]leucine into the trichloroacetic acid-insoluble material. More importantly, the apparent drug sensitivity or resistance of mitochondrial preparations from mycoplasma-infected cells reflected the drug sensitivity or resistance of the contaminating mycoplasmas. These results illustrate the hazards in interpreting mitochondrial protein synthesis data derived from mycoplasma-infected cell lines, particularly putative mitochondrially encoded mutants resistant to inhibitors of mitochondrial protein synthesis.

  20. Mitochondria-targeted esculetin alleviates mitochondrial dysfunction by AMPK-mediated nitric oxide and SIRT3 regulation in endothelial cells: potential implications in atherosclerosis.

    PubMed

    Karnewar, Santosh; Vasamsetti, Sathish Babu; Gopoju, Raja; Kanugula, Anantha Koteswararao; Ganji, Sai Krishna; Prabhakar, Sripadi; Rangaraj, Nandini; Tupperwar, Nitin; Kumar, Jerald Mahesh; Kotamraju, Srigiridhar

    2016-04-11

    Mitochondria-targeted compounds are emerging as a new class of drugs that can potentially alter the pathophysiology of those diseases where mitochondrial dysfunction plays a critical role. We have synthesized a novel mitochondria-targeted esculetin (Mito-Esc) with an aim to investigate its effect during oxidative stress-induced endothelial cell death and angiotensin (Ang)-II-induced atherosclerosis in ApoE(-/-) mice. Mito-Esc but not natural esculetin treatment significantly inhibited H2O2- and Ang-II-induced cell death in human aortic endothelial cells by enhancing NO production via AMPK-mediated eNOS phosphorylation. While L-NAME (NOS inhibitor) significantly abrogated Mito-Esc-mediated protective effects, Compound c (inhibitor of AMPK) significantly decreased Mito-Esc-mediated increase in NO production. Notably, Mito-Esc promoted mitochondrial biogenesis by enhancing SIRT3 expression through AMPK activation; and restored H2O2-induced inhibition of mitochondrial respiration. siSIRT3 treatment not only completely reversed Mito-Esc-mediated mitochondrial biogenetic marker expressions but also caused endothelial cell death. Furthermore, Mito-Esc administration to ApoE(-/-) mice greatly alleviated Ang-II-induced atheromatous plaque formation, monocyte infiltration and serum pro-inflammatory cytokines levels. We conclude that Mito-Esc is preferentially taken up by the mitochondria and preserves endothelial cell survival during oxidative stress by modulating NO generation via AMPK. Also, Mito-Esc-induced SIRT3 plays a pivotal role in mediating mitochondrial biogenesis and perhaps contributes to its anti-atherogenic effects.

  1. Cytological evaluation of the effect of azoxystrobin and alternative oxidase inhibitors in Botrytis cinerea.

    PubMed

    Inoue, Kanako; Tsurumi, Tomohiro; Ishii, Hideo; Park, Pyoyun; Ikeda, Kenichi

    2012-01-01

    Azoxystrobin (AZ), a strobilurin-derived fungicide, is known to inhibit mitochondrial respiration in fungi by blocking the electron transport chain in the inner mitochondrial membrane. Germination was strongly inhibited when Botrytis cinerea spore suspension was treated with AZ and the alternative oxidase (AOX) inhibitors, salicylhydroxamic acid (SHAM) and n-propyl gallate. However, chemical death indicators trypan blue and propidium iodide showed that those spores were still alive. When the spore suspension in the AZ and SHAM solution was replaced with distilled water, the germination rate almost recovered, at least during the first 2 days of incubation with AZ and SHAM solution. No morphological alteration was detected in the cells treated with AZ and SHAM, especially in mitochondria, using transmission electron microscopy. Therefore, simultaneous application of AZ and AOX inhibitors has a fungistatic, rather than a fungicidal, action. © 2011 Federation of European Microbiological Societies. Published by Blackwell Publishing Ltd. All rights reserved.

  2. Selective FLT3 inhibitor FI-700 neutralizes Mcl-1 and enhances p53-mediated apoptosis in AML cells with activating mutations of FLT3 through Mcl-1/Noxa axis.

    PubMed

    Kojima, K; Konopleva, M; Tsao, T; Andreeff, M; Ishida, H; Shiotsu, Y; Jin, L; Tabe, Y; Nakakuma, H

    2010-01-01

    Treatment using Fms-like tyrosine kinase-3 (FLT3) inhibitors is a promising approach to overcome the dismal prognosis of acute myeloid leukemia (AML) with activating FLT3 mutations. Current trials are combining FLT3 inhibitors with p53-activating conventional chemotherapy. The mechanisms of cytotoxicity of FLT3 inhibitors are poorly understood. We investigated the interaction of FLT3 and p53 pathways after their simultaneous blockade using the selective FLT3 inhibitor FI-700 and the MDM2 inhibitor Nutlin-3 in AML. We found that FI-700 immediately reduced antiapoptotic Mcl-1 levels and enhanced Nutlin-induced p53-mediated mitochondrial apoptosis in FLT3/internal tandem duplication cells through the Mcl-1/Noxa axis. FI-700 induced proteasome-mediated degradation of Mcl-1, resulting in the reduced ability of Mcl-1 to sequester proapoptotic Bim. Nutlin-3 induced Noxa, which displaced Bim from Mcl-1. The FI-700/Nutlin-3 combination profoundly activated Bax and induced apoptosis. Our findings suggest that FI-700 actively enhances p53 signaling toward mitochondrial apoptosis and that a combination strategy aimed at inhibiting FLT3 and activating p53 signaling could potentially be effective in AML.

  3. Binding of the respiratory chain inhibitor ametoctradin to the mitochondrial bc1 complex.

    PubMed

    Fehr, Marcus; Wolf, Antje; Stammler, Gerd

    2016-03-01

    Ametoctradin is an agricultural fungicide that inhibits the mitochondrial bc1 complex of oomycetes. The bc1 complex has two quinone binding sites that can be addressed by inhibitors. Depending on their binding sites and binding modes, the inhibitors show different degrees of cross-resistance that need to be considered when designing spray programmes for agricultural fungicides. The binding site of ametoctradin was unknown. Cross-resistance analyses, the reduction of isolated Pythium sp. bc1 complex in the presence of different inhibitors and molecular modelling studies were used to analyse the binding site and binding mode of ametoctradin. All three approaches provide data supporting the argument that ametoctradin binds to the Pythium bc1 complex similarly to stigmatellin. The binding mode of ametoctradin differs from other agricultural fungicides such as cyazofamid and the strobilurins. This explains the lack of cross-resistance with strobilurins and related inhibitors, where resistance is mainly caused by G143A amino acid exchange. Accordingly, mixtures or alternating applications of these fungicides and ametoctradin can help to minimise the risk of the emergence of new resistant isolates. © 2015 Society of Chemical Industry.

  4. The effect of mitochondrial calcium uniporter on mitochondrial fission in hippocampus cells ischemia/reperfusion injury

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhao, Lantao; Li, Shuhong; Wang, Shilei, E-mail: wshlei@aliyun.com

    The mitochondrial calcium uniporter (MCU) transports free Ca{sup 2+} into the mitochondrial matrix, maintaining Ca{sup 2+} homeostasis, thus regulates the mitochondrial morphology. Previous studies have indicated that there was closely crosstalk between MCU and mitochondrial fission during the process of ischemia/reperfusion injury. This study constructed a hypoxia reoxygenation model using primary hippocampus neurons to mimic the cerebral ischemia/reperfusion injury and aims to explore the exactly effect of MCU on the mitochondrial fission during the process of ischemia/reperfusion injury and so as the mechanisms. Our results found that the inhibitor of the MCU, Ru360, decreased mitochondrial Ca{sup 2+} concentration, suppressed themore » expression of mitochondrial fission protein Drp1, MIEF1 and Fis1, and thus improved mitochondrial morphology significantly. Whereas spermine, the agonist of the MCU, had no significant impact compared to the I/R group. This study demonstrated that the MCU regulates the process of mitochondrial fission by controlling the Ca{sup 2+} transport, directly upregulating mitochondrial fission proteins Drp1, Fis1 and indirectly reversing the MIEF1-induced mitochondrial fusion. It also provides new targets for brain protection during ischemia/reperfusion injury. - Highlights: • We study MCU with primary neuron culture. • MCU induces mitochondrial fission. • MCU reverses MIEF1 effect.« less

  5. A TEMPO-conjugated fluorescent probe for monitoring mitochondrial redox reactions.

    PubMed

    Hirosawa, Shota; Arai, Satoshi; Takeoka, Shinji

    2012-05-18

    We report a mitochondrial targeted redox probe (MitoRP) that comprises a nitroxide radical (TEMPO) moiety and coumarin 343. Using isolated mitochondria in the presence/absence of substrates and inhibitors of oxidative phosphorylation, we demonstrated that MitoRP is a useful probe to monitor the electron flow associated with complex I. This journal is © The Royal Society of Chemistry 2012

  6. A phosphorescent rhenium(I) histone deacetylase inhibitor: mitochondrial targeting and paraptosis induction.

    PubMed

    Ye, Rui-Rong; Tan, Cai-Ping; Lin, Yan-Nan; Ji, Liang-Nian; Mao, Zong-Wan

    2015-05-14

    In this report, we designed a histone deacetylase-targeted phosphorescent Re(I) complex ReLMito. Colocalization studies suggested that ReLMito could specially localize to mitochondria. We also demonstrated that ReLMito could induce paraptosis in cancer cells. These features endowed the complex with potential to induce and monitor mitochondrial morphological changes during the paraptosis simultaneously.

  7. Mitochondrial intermediate peptidase: Expression in Escherichia coli and improvement of its enzymatic activity detection with FRET substrates

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Marcondes, Marcelo F.; Torquato, Ricardo J.S.; Assis, Diego M.

    2010-01-01

    In the present study, soluble, functionally-active, recombinant human mitochondrial intermediate peptidase (hMIP), a mitochondrial metalloendoprotease, was expressed in a prokaryotic system. The hMIP fusion protein, with a poly-His-tag (6x His), was obtained by cloning the coding region of hMIP cDNA into the pET-28a expression vector, which was then used to transform Escherichia coli BL21 (DE3) pLysS. After isolation and purification of the fusion protein by affinity chromatography using Ni-Sepharose resin, the protein was purified further using ion exchange chromatography with a Hi-trap resource Q column. The recombinant hMIP was characterized by Western blotting using three distinct antibodies, circular dichroism, andmore » enzymatic assays that used the first FRET substrates developed for MIP and a series of protease inhibitors. The successful expression of enzymatically-active hMIP in addition to the FRET substrates will contribute greatly to the determination of substrate specificity of this protease and to the development of specific inhibitors that are essential for a better understanding of the role of this protease in mitochondrial functioning.« less

  8. Activation of the EGFR/p38/JNK Pathway by Mitochondrial-Derived Hydrogen Peroxide Contributes To Oxygen-induced Contraction Of Ductus Arteriosus

    PubMed Central

    Hong, Zhigang; Cabrera, Jésus A; Mahapatra, Saswati; Kutty, Shelby; Weir, E. Kenneth; Archer, Stephen L.

    2014-01-01

    Oxygen-induced contraction of the ductus arteriosus (DA) involves a mitochondrial oxygen-sensor, which signals pO2 in the DA smooth muscle cell (DASMC) by increasing production of diffusible hydrogen peroxide (H2O2). H2O2 stimulates vasoconstriction by regulating ion channels and rho kinase, leading to calcium influx and calcium sensitization. Because epidermal growth factor receptor (EGFR) signaling is also redox regulated and participates in oxygen sensing and vasoconstriction in other systems, we explored the role of the EGFR and its signaling cascade (p38 and JNK) in DA contraction. Experiments were performed in DA rings isolated from full-term New Zealand White rabbits and human DASMC. In human DASMCs increasing pO2 from hypoxia to normoxia (40 to 100 mmHg) significantly increased cytosolic calcium, p<0.01. This normoxic rise in intracellular calcium was mimicked by EGF and inhibited by EGFR siRNA. In DA rings, EGF caused contraction whilst the specific EGFR inhibitor (AG1478) and the tyrosine kinase inhibitors (genistein or tyrphostin A23) selectively attenuated oxygen-induced contraction (p <0.01). Conversely, orthovanadate, a tyrosine phosphatase inhibitor known to activate EGFR signaling, caused dose-dependent contraction of hypoxic DA and superimposed increases in oxygen caused minimal additional contraction. Ansomycin, an activator of EGFR’s downstream kinases, p38 and JNK, caused DA contraction; conversely, oxygen-induced DA contraction was blocked by inhibitors of p38 MAPK (SB203580) or JNK (JNK inhibitor II). O2-induced phosphorylation of EGFR occurred within 5-minutes of increasing pO2 and was inhibited by mitochondrial-targeted overexpression of catalase. AG1478 prevented the oxygen-induced p38 and JNK phosphorylation. In conclusion, O2-induced EGFR transactivation initiates p38/JNK-mediated increases in cytosolic calcium and contributes to DA contraction. The EGFR/p38/JNK pathway is regulated by mitochondrial redox signaling and is a promising therapeutic target for modulation of the patent ductus arteriosus. PMID:24906456

  9. Effect of holding equine oocytes in meiosis inhibitor-free medium before in vitro maturation and of holding temperature on meiotic suppression and mitochondrial energy/redox potential.

    PubMed

    Martino, Nicola A; Dell'Aquila, Maria E; Filioli Uranio, Manuel; Rutigliano, Lucia; Nicassio, Michele; Lacalandra, Giovanni M; Hinrichs, Katrin

    2014-10-11

    Evaluation of mitochondrial function offers an alternative to evaluate embryo development for assessment of oocyte viability, but little information is available on the relationship between mitochondrial and chromatin status in equine oocytes. We evaluated these parameters in immature equine oocytes either fixed immediately (IMM) or held overnight in an Earle's/Hank's' M199-based medium in the absence of meiotic inhibitors (EH treatment), and in mature oocytes. We hypothesized that EH holding may affect mitochondrial function and that holding temperature may affect the efficiency of meiotic suppression. Experiment 1 - Equine oocytes processed immediately or held in EH at uncontrolled temperature (22 to 27°C) were evaluated for initial chromatin configuration, in vitro maturation (IVM) rates and mitochondrial energy/redox potential. Experiment 2 - We then investigated the effect of holding temperature (25°C, 30°C, 38°C) on initial chromatin status of held oocytes, and subsequently repeated mitochondrial energy/redox assessment of oocytes held at 25°C vs. immediately-evaluated controls. EH holding at uncontrolled temperature was associated with advancement of germinal vesicle (GV) chromatin condensation and with meiotic resumption, as well as a lower maturation rate after IVM. Holding did not have a significant effect on mitochondrial distribution within chromatin configurations. Independent of treatment, oocytes having condensed chromatin had a significantly higher proportion of perinuclear/pericortical mitochondrial distribution than did other GV configurations. Holding did not detrimentally affect oocyte energy/redox parameters in viable GV-stage oocytes. There were no significant differences in chromatin configuration between oocytes held at 25°C and controls, whereas holding at higher temperature was associated with meiosis resumption and loss of oocytes having the condensed chromatin GV configuration. Holding at 25°C was not associated with progression of mitochondrial distribution pattern and there were no significant differences in oocyte energy/redox parameters between these oocytes and controls. Mitochondrial distribution in equine GV-stage oocytes is correlated with chromatin configuration within the GV. Progression of chromatin configuration and mitochondrial status during holding are dependent on temperature. EH holding at 25°C maintains meiotic arrest, viability and mitochondrial potential of equine oocytes. This is the first report on the effects of EH treatment on oocyte mitochondrial energy/redox potential.

  10. Bax-mediated mitochondrial outer membrane permeabilization (MOMP), distinct from the mitochondrial permeability transition, is a key mechanism in diclofenac-induced hepatocyte injury: Multiple protective roles of cyclosporin A

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Siu, W.P.; Pun, Pamela Boon Li; Latchoumycandane, Calivarathan

    2008-03-15

    Diclofenac, a widely used nonsteroidal anti-inflammatory drug, has been associated with rare but severe cases of clinical hepatotoxicity. Diclofenac causes concentration-dependent cell death in human hepatocytes (after 24-48 h) by mitochondrial permeabilization via poorly defined mechanisms. To explore whether the cyclophilin D (CyD)-dependent mitochondrial permeability transition (mPT) and/or the mitochondrial outer membrane permeabilization (MOMP) was primarily involved in mediating cell death, we exposed immortalized human hepatocytes (HC-04) to apoptogenic concentrations of diclofenac (> 500 {mu}M) in the presence or absence of inhibitors of upstream mediators. The CyD inhibitor, cyclosporin A (CsA, 2 {mu}M) fully inhibited diclofenac-induced cell injury, suggesting thatmore » mPT was involved. However, CyD gene silencing using siRNA left the cells susceptible to diclofenac toxicity, and CsA still protected the CyD-negative cells from lethal injury. Diclofenac induced early (9 h) activation of Bax and Bak and caused mitochondrial translocation of Bax, indicating that MOMP was involved in cell death. Inhibition of Bax protein expression by using siRNA significantly protected HC-04 from diclofenac-induced cell injury. Diclofenac also induced early Bid activation (tBid formation, 6 h), which is an upstream mechanism that initiates Bax activation and mitochondrial translocation. Bid activation was sensitive to the Ca{sup 2+} chelator, BAPTA. In conclusion, we found that Bax/Bak-mediated MOMP is a key mechanism of diclofenac-induced lethal cell injury in human hepatocytes, and that CsA can prevent MOMP through inhibition of Bax activation. These data support our concept that the Ca{sup 2+}-Bid-Bax-MOMP axis is a critical pathway in diclofenac (metabolite)-induced hepatocyte injury.« less

  11. Propylthiouracil, Perchlorate, and Thyroid-Stimulating Hormone Modulate High Concentrations of Iodide Instigated Mitochondrial Superoxide Production in the Thyroids of Metallothionein I/II Knockout Mice

    PubMed Central

    Duan, Qi; Wang, Tingting; Zhang, Na; Perera, Vern; Liang, Xue; Abeysekera, Iruni Roshanie

    2016-01-01

    Background Increased oxidative stress has been suggested as one of the underlying mechanisms in iodide excess-induced thyroid disease. Metallothioneins (MTs) are regarded as scavengers of reactive oxygen species (ROS) in oxidative stress. Our aim is to investigate the effects of propylthiouracil (PTU), a thyroid peroxidase inhibitor, perchlorate (KClO4), a competitive inhibitor of iodide transport, and thyroid stimulating hormone (TSH) on mitochondrial superoxide production instigated by high concentrations of iodide in the thyroids of MT-I/II knockout (MT-I/II KO) mice. Methods Eight-week-old 129S7/SvEvBrd-Mt1tm1Bri Mt2tm1Bri/J (MT-I/II KO) mice and background-matched wild type (WT) mice were used. Results By using a mitochondrial superoxide indicator (MitoSOX Red), lactate dehydrogenase (LDH) release, and methyl thiazolyl tetrazolium (MTT) assay, we demonstrated that the decreased relative viability and increased LDH release and mitochondrial superoxide production induced by potassium iodide (100 µM) can be relieved by 300 µM PTU, 30 µM KClO4, or 10 U/L TSH in the thyroid cell suspensions of both MT-I/II KO and WT mice (P<0.05). Compared to the WT mice, a significant decrease in the relative viability along with a significant increase in LDH release and mitochondrial superoxide production were detected in MT-I/II KO mice(P<0.05). Conclusion We concluded that PTU, KClO4, or TSH relieved the mitochondrial oxidative stress induced by high concentrations of iodide in the thyroids of both MT-I/II KO and WT mice. MT-I/II showed antioxidant effects against high concentrations of iodide-induced mitochondrial superoxide production in the thyroid. PMID:26754589

  12. Antiviral Nucleotide Incorporation by Recombinant Human Mitochondrial RNA Polymerase Is Predictive of Increased In Vivo Mitochondrial Toxicity Risk

    PubMed Central

    Lin, Xiaodong; Yokokawa, Fumiaki; Sweeney, Zachary; Saunders, Oliver; Xie, Lili; Lim, Siew Pheng; Uteng, Marianne; Uehara, Kyoko; Warne, Robert; Gang, Wang; Jones, Christopher; Yendluri, Satya; Gu, Helen; Mansfield, Keith; Boisclair, Julie; Heimbach, Tycho; Catoire, Alexandre; Bracken, Kathryn; Weaver, Margaret; Moser, Heinz; Zhong, Weidong

    2016-01-01

    Nucleoside or nucleotide inhibitors are a highly successful class of antivirals due to selectivity, potency, broad coverage, and high barrier to resistance. Nucleosides are the backbone of combination treatments for HIV, hepatitis B virus, and, since the FDA approval of sofosbuvir in 2013, also for hepatitis C virus (HCV). However, many promising nucleotide inhibitors have advanced to clinical trials only to be terminated due to unexpected toxicity. Here we describe the in vitro pharmacology of compound 1, a monophosphate prodrug of a 2′-ethynyluridine developed for the treatment of HCV. Compound 1 inhibits multiple HCV genotypes in vitro (50% effective concentration [EC50], 0.05 to 0.1 μM) with a selectivity index of >300 (50% cytotoxic concentration [CC50], 30 μM in MT-4 cells). The active triphosphate metabolite of compound 1, compound 2, does not inhibit human α, β, or γ DNA polymerases but was a substrate for incorporation by the human mitochondrial RNA polymerase (POLRMT). In dog, the oral administration of compound 1 resulted in elevated serum liver enzymes and microscopic changes in the liver. Transmission electron microscopy showed significant mitochondrial swelling and lipid accumulation in hepatocytes. Gene expression analysis revealed dose-proportional gene signature changes linked to loss of hepatic function and increased mitochondrial dysfunction. The potential of in vivo toxicity through mitochondrial polymerase incorporation by nucleoside analogs has been previously shown. This study shows that even moderate levels of nucleotide analog incorporation by POLRMT increase the risk of in vivo mitochondrial dysfunction. Based on these results, further development of compound 1 as an anti-HCV compound was terminated. PMID:27645237

  13. Alcohol-induced S-adenosylhomocysteine accumulation in the liver sensitizes to TNF hepatotoxicity: possible involvement of mitochondrial S-adenosylmethionine transport.

    PubMed

    Song, Zhenyuan; Zhou, Zhanxiang; Song, Ming; Uriarte, Silvia; Chen, Theresa; Deaciuc, Ion; McClain, Craig J

    2007-08-01

    Hepatocytes are resistant to tumor necrosis factor-alpha- (TNF) induced killing/apoptosis under normal circumstances, but primary hepatocytes from rats chronically fed alcohol have increased TNF cytotoxicity. Therefore, there must be mechanism(s) by which alcohol exposure "sensitizes" to TNF hepatotoxicity. Abnormal metabolism of methionine and S-adenosylmethionine (SAM) are well-documented acquired metabolic abnormalities in ALD. S-adenosylhomocysteine (SAH) is the product of SAM in hepatic transmethylation reactions, and SAH hydrolase (SAHH) is the only enzyme to metabolize SAH to homocysteine and adenosine. Our previous studies demonstrated that chronic intracellular accumulation of SAH sensitized hepatocytes to TNF cytotoxicity in vitro. In the current study, we extended our previous observations by further characterizing the effects of chronic alcohol intake on mitochondrial SAM levels in liver and examining its possible involvement in SAH sensitization to TNF hepatotoxicity. Chronic alcohol consumption in mice not only increased cytosolic SAH levels, but also decreased mitochondrial SAM concentration, leading to decreased mitochondrial SAM to SAH ratio. Moreover, accumulation of hepatic SAH induced by administration of 3-deaza-adenosine (DZA-a potent inhibitor of SAHH) enhanced lipopolysaccharide (LPS)/TNF hepatotoxicity in mice in vivo. Inhibition of SAHH by DZA resulted not only in accumulation of cytoplasmic SAH, but also in depletion of the mitochondrial SAM pool. Further studies using mitochondrial SAM transporter inhibitors showed that inhibition of SAM transport into mitochondria sensitized HepG2 cells to TNF cytotoxicity. In conclusion, our results demonstrate that depletion of the mitochondrial SAM pool by SAH, which is elevated during chronic alcohol consumption, plays a critical role in SAH induced sensitization to TNF hepatotoxicity.

  14. Mitofusin 1 degradation is induced by a disruptor of mitochondrial calcium homeostasis, CGP37157: a role in apoptosis in prostate cancer cells.

    PubMed

    Choudhary, Vivek; Kaddour-Djebbar, Ismail; Alaisami, Rabei; Kumar, M Vijay; Bollag, Wendy B

    2014-05-01

    Mitochondria constantly divide (mitochondrial fission) and fuse (mitochondrial fusion) in a normal cell. Disturbances in the balance between these two physiological processes may lead to cell dysfunction or to cell death. Induction of cell death is the prime goal of prostate cancer chemotherapy. Our previous study demonstrated that androgens increase the expression of a mitochondrial protein involved in fission and facilitate an apoptotic response to CGP37157 (CGP), an inhibitor of mitochondrial calcium efflux, in prostate cancer cells. However, the regulation and role of mitochondrial fusion proteins in the death of these cells have not been examined. Therefore, our objective was to investigate the effect of CGP on a key mitochondrial fusion protein, mitofusin 1 (Mfn1), and the role of Mfn1 in prostate cancer cell apoptosis. We used various prostate cancer cell lines and western blot analysis, qRT-PCR, siRNA, M30 apoptosis assay and immunoprecipitation techniques to determine mechanisms regulating Mfn1. Treatment of prostate cancer cells with CGP resulted in selective degradation of Mfn1. Mfn1 ubiquitination was detected following immunoprecipitation of overexpressed Myc-tagged Mfn1 protein from CGP-treated cells, and treatment with the proteasomal inhibitor lactacystin, as well as siRNA-mediated knockdown of the E3 ubiquitin ligase March5, protected Mfn1 from CGP-induced degradation. These data indicate the involvement of the ubiquitin-proteasome pathway in CGP-induced degradation of Mfn1. We also demonstrated that downregulation of Mfn1 by siRNA enhanced the apoptotic response of LNCaP cells to CGP, suggesting a likely pro-survival role for Mfn1 in these cells. Our results suggest that manipulation of mitofusins may provide a novel therapeutic advantage in treating prostate cancer.

  15. Monoamine Oxidase B Prompts Mitochondrial and Cardiac Dysfunction in Pressure Overloaded Hearts

    PubMed Central

    Kaludercic, Nina; Carpi, Andrea; Nagayama, Takahiro; Sivakumaran, Vidhya; Zhu, Guangshuo; Lai, Edwin W.; Bedja, Djahida; De Mario, Agnese; Chen, Kevin; Gabrielson, Kathleen L.; Lindsey, Merry L.; Pacak, Karel; Takimoto, Eiki; Shih, Jean C.; Kass, David A.; Di Lisa, Fabio

    2014-01-01

    Abstract Aims: Monoamine oxidases (MAOs) are mitochondrial flavoenzymes responsible for neurotransmitter and biogenic amines catabolism. MAO-A contributes to heart failure progression via enhanced norepinephrine catabolism and oxidative stress. The potential pathogenetic role of the isoenzyme MAO-B in cardiac diseases is currently unknown. Moreover, it is has not been determined yet whether MAO activation can directly affect mitochondrial function. Results: In wild type mice, pressure overload induced by transverse aortic constriction (TAC) resulted in enhanced dopamine catabolism, left ventricular (LV) remodeling, and dysfunction. Conversely, mice lacking MAO-B (MAO-B−/−) subjected to TAC maintained concentric hypertrophy accompanied by extracellular signal regulated kinase (ERK)1/2 activation, and preserved LV function, both at early (3 weeks) and late stages (9 weeks). Enhanced MAO activation triggered oxidative stress, and dropped mitochondrial membrane potential in the presence of ATP synthase inhibitor oligomycin both in neonatal and adult cardiomyocytes. The MAO-B inhibitor pargyline completely offset this change, suggesting that MAO activation induces a latent mitochondrial dysfunction, causing these organelles to hydrolyze ATP. Moreover, MAO-dependent aldehyde formation due to inhibition of aldehyde dehydrogenase 2 activity also contributed to alter mitochondrial bioenergetics. Innovation: Our study unravels a novel role for MAO-B in the pathogenesis of heart failure, showing that both MAO-driven reactive oxygen species production and impaired aldehyde metabolism affect mitochondrial function. Conclusion: Under conditions of chronic hemodynamic stress, enhanced MAO-B activity is a major determinant of cardiac structural and functional disarrangement. Both increased oxidative stress and the accumulation of aldehyde intermediates are likely liable for these adverse morphological and mechanical changes by directly targeting mitochondria. Antioxid. Redox Signal. 20, 267–280. PMID:23581564

  16. Granzyme B of cytotoxic T cells induces extramitochondrial reactive oxygen species production via caspase-dependent NADPH oxidase activation.

    PubMed

    Aguiló, Juan I; Anel, Alberto; Catalán, Elena; Sebastián, Alvaro; Acín-Pérez, Rebeca; Naval, Javier; Wallich, Reinhard; Simon, Markus M; Pardo, Julián

    2010-07-01

    Induction of reactive oxygen species (ROS) is a hallmark of granzyme B (gzmB)-mediated pro-apoptotic processes and target cell death. However, it is unclear to what extent the generated ROS derive from mitochondrial and/or extra-mitochondrial sources. To clarify this point, we have produced a mutant EL4 cell line, termed EL4-rho(0), which lacks mitochondrial DNA, associated with a decreased mitochondrial membrane potential and a defective ROS production through the electron transport chain of oxidative phosphorylation. When incubated with either recombinant gzmB plus streptolysin or ex vivo gzmB(+) cytotoxic T cells, EL4-rho(0) cells showed phosphatydylserine translocation, caspase 3 activation, Bak conformational change, cytochrome c release and apoptotic morphology comparable to EL4 cells. Moreover, EL4-rho(0) cells produced ROS at levels similar to EL4 under these conditions. GzmB-mediated ROS production was almost totally abolished in both cell lines by the pan-caspase inhibitor, Z-VAD-fmk. However, addition of apocynin, a specific inhibitor of nicotinamide adenine dinucleotide phosphate (NADPH) oxidases, led to a significant reduction of ROS production and cell death only in EL4-rho(0) but not EL4 cells. These data suggest that gzmB-induced cell death is accompanied by a caspase-dependent pathway of extra-mitochondrial ROS production, most probably through activation of NADPH oxidase.

  17. Mitochondria-targeted therapies for acute kidney injury.

    PubMed

    Tábara, Luis Carlos; Poveda, Jonay; Martin-Cleary, Catalina; Selgas, Rafael; Ortiz, Alberto; Sanchez-Niño, Maria D

    2014-08-08

    Acute kidney injury (AKI) is a serious clinical condition with no effective treatment. Tubular cells are key targets in AKI. Tubular cells and, specifically, proximal tubular cells are extremely rich in mitochondria and mitochondrial changes had long been known to be a feature of AKI. However, only recent advances in understanding the molecules involved in mitochondria biogenesis and dynamics and the availability of mitochondria-targeted drugs has allowed the exploration of the specific role of mitochondria in AKI. We now review the morphological and functional mitochondrial changes during AKI, as well as changes in the expression of mitochondrial genes and proteins. Finally, we summarise the current status of novel therapeutic strategies specifically targeting mitochondria such as mitochondrial permeability transition pore (MPTP) opening inhibitors (cyclosporine A (CsA)), quinone analogues (MitoQ, SkQ1 and SkQR1), superoxide dismutase (SOD) mimetics (Mito-CP), Szeto-Schiller (SS) peptides (Bendavia) and mitochondrial division inhibitors (mdivi-1). MitoQ, SkQ1, SkQR1, Mito-CP, Bendavia and mdivi-1 have improved the course of diverse experimental models of AKI. Evidence for a beneficial effect of CsA on human cardiac ischaemia-reperfusion injury derives from a clinical trial; however, CsA is nephrotoxic. MitoQ and Bendavia have been shown to be safe for humans. Ongoing clinical trials are testing the efficacy of Bendavia in AKI prevention following renal artery percutaneous transluminal angioplasty.

  18. Mitochondrial respiration is sensitive to cytoarchitectural breakdown.

    PubMed

    Kandel, Judith; Angelin, Alessia A; Wallace, Douglas C; Eckmann, David M

    2016-11-07

    An abundance of research suggests that cellular mitochondrial and cytoskeletal disruption are related, but few studies have directly investigated causative connections between the two. We previously demonstrated that inhibiting microtubule and microfilament polymerization affects mitochondrial motility on the whole-cell level in fibroblasts. Since mitochondrial motility can be indicative of mitochondrial function, we now further characterize the effects of these cytoskeletal inhibitors on mitochondrial potential, morphology and respiration. We found that although they did not reduce mitochondrial inner membrane potential, cytoskeletal toxins induced significant decreases in basal mitochondrial respiration. In some cases, basal respiration was only affected after cells were pretreated with the calcium ionophore A23187 in order to stress mitochondrial function. In most cases, mitochondrial morphology remained unaffected, but extreme microfilament depolymerization or combined intermediate doses of microtubule and microfilament toxins resulted in decreased mitochondrial lengths. Interestingly, these two particular exposures did not affect mitochondrial respiration in cells not sensitized with A23187, indicating an interplay between mitochondrial morphology and respiration. In all cases, inducing maximal respiration diminished differences between control and experimental groups, suggesting that reduced basal respiration originates as a largely elective rather than pathological symptom of cytoskeletal impairment. However, viability experiments suggest that even this type of respiration decrease may be associated with cell death.

  19. Structure-based design and mechanisms of allosteric inhibitors for mitochondrial branched-chain α-ketoacid dehydrogenase kinase

    PubMed Central

    Qi, Xiangbing; Gui, Wen-Jun; Morlock, Lorraine K.; Wallace, Amy L.; Ahmed, Kamran; Laxman, Sunil; Campeau, Philippe M.; Lee, Brendan H.; Hutson, Susan M.; Tu, Benjamin P.; Williams, Noelle S.; Tambar, Uttam K.; Wynn, R. Max; Chuang, David T.

    2013-01-01

    The branched-chain amino acids (BCAAs) leucine, isoleucine, and valine are elevated in maple syrup urine disease, heart failure, obesity, and type 2 diabetes. BCAA homeostasis is controlled by the mitochondrial branched-chain α-ketoacid dehydrogenase complex (BCKDC), which is negatively regulated by the specific BCKD kinase (BDK). Here, we used structure-based design to develop a BDK inhibitor, (S)-α-chloro-phenylpropionic acid [(S)-CPP]. Crystal structures of the BDK-(S)-CPP complex show that (S)-CPP binds to a unique allosteric site in the N-terminal domain, triggering helix movements in BDK. These conformational changes are communicated to the lipoyl-binding pocket, which nullifies BDK activity by blocking its binding to the BCKDC core. Administration of (S)-CPP to mice leads to the full activation and dephosphorylation of BCKDC with significant reduction in plasma BCAA concentrations. The results buttress the concept of targeting mitochondrial BDK as a pharmacological approach to mitigate BCAA accumulation in metabolic diseases and heart failure. PMID:23716694

  20. LACTB is a tumour suppressor that modulates lipid metabolism and cell state.

    PubMed

    Keckesova, Zuzana; Donaher, Joana Liu; De Cock, Jasmine; Freinkman, Elizaveta; Lingrell, Susanne; Bachovchin, Daniel A; Bierie, Brian; Tischler, Verena; Noske, Aurelia; Okondo, Marian C; Reinhardt, Ferenc; Thiru, Prathapan; Golub, Todd R; Vance, Jean E; Weinberg, Robert A

    2017-03-30

    Post-mitotic, differentiated cells exhibit a variety of characteristics that contrast with those of actively growing neoplastic cells, such as the expression of cell-cycle inhibitors and differentiation factors. We hypothesized that the gene expression profiles of these differentiated cells could reveal the identities of genes that may function as tumour suppressors. Here we show, using in vitro and in vivo studies in mice and humans, that the mitochondrial protein LACTB potently inhibits the proliferation of breast cancer cells. Its mechanism of action involves alteration of mitochondrial lipid metabolism and differentiation of breast cancer cells. This is achieved, at least in part, through reduction of the levels of mitochondrial phosphatidylserine decarboxylase, which is involved in the synthesis of mitochondrial phosphatidylethanolamine. These observations uncover a novel mitochondrial tumour suppressor and demonstrate a connection between mitochondrial lipid metabolism and the differentiation program of breast cancer cells, thereby revealing a previously undescribed mechanism of tumour suppression.

  1. Pharmacological discrimination of plasmalemmal and mitochondrial sodium-calcium exchanger in cardiomyocyte-derived H9c2 cells.

    PubMed

    Namekata, Iyuki; Hamaguchi, Shogo; Tanaka, Hikaru

    2015-01-01

    We examined the effects of SEA0400 and CGP-37157 on the plasmalemmal Na(+)-Ca(2+) exchanger (NCX) and mitochondrial NCX using H9c2 cardiomyocytes loaded with Ca(2+)-sensitive fluorescent probes. The plasmalemmal NCX activity, which was measured as the increase in cytoplasmic Ca(2+) concentration after application of low Na(+) extracellular solution, was inhibited by SEA0400 but not by CGP-37157. The mitochondrial NCX activity, which was measured in permeabilized H9c2 cells as the decrease in mitochondrial Ca(2+) concentration after application of Ca(2+)-free extramitochondrial solution, was inhibited by CGP-37157 but not by SEA0400. These results indicate that SEA0400 and CGP-37157 act as selective inhibitors towards plasmalemmal and mitochondrial NCX, respectively, and provide pharmacological evidence that the plasmalemmal and mitochondrial NCX are distinct molecular entities.

  2. Activation of the stress proteome as a mechanism for small molecule therapeutics.

    PubMed

    Brose, Rebecca Deering; Shin, Gloria; McGuinness, Martina C; Schneidereith, Tonya; Purvis, Shirley; Dong, Gao X; Keefer, Jeffrey; Spencer, Forrest; Smith, Kirby D

    2012-10-01

    Various small molecule pharmacologic agents with different known functions produce similar outcomes in diverse Mendelian and complex disorders, suggesting that they may induce common cellular effects. These molecules include histone deacetylase inhibitors, 4-phenylbutyrate (4PBA) and trichostatin A, and two small molecules without direct histone deacetylase inhibitor activity, hydroxyurea (HU) and sulforaphane. In some cases, the therapeutic effects of histone deacetylase inhibitors have been attributed to an increase in expression of genes related to the disease-causing gene. However, here we show that the pharmacological induction of mitochondrial biogenesis was necessary for the potentially therapeutic effects of 4PBA or HU in two distinct disease models, X-linked adrenoleukodystrophy and sickle cell disease. We hypothesized that a common cellular response to these four molecules is induction of mitochondrial biogenesis and peroxisome proliferation and activation of the stress proteome, or adaptive cell survival response. Treatment of human fibroblasts with these four agents induced mitochondrial and peroxisomal biogenesis as monitored by flow cytometry, immunofluorescence and/or western analyses. In treated normal human fibroblasts, all four agents induced the adaptive cell survival response: heat shock, unfolded protein, autophagic and antioxidant responses and the c-jun N-terminal kinase pathway, at the transcriptional and translational levels. Thus, activation of the evolutionarily conserved stress proteome and mitochondrial biogenesis may be a common cellular response to such small molecule therapy and a common basis of therapeutic action in various diseases. Modulation of this novel therapeutic target could broaden the range of treatable diseases without directly targeting the causative genetic abnormalities.

  3. Activation of the stress proteome as a mechanism for small molecule therapeutics

    PubMed Central

    Brose, Rebecca Deering; Shin, Gloria; McGuinness, Martina C.; Schneidereith, Tonya; Purvis, Shirley; Dong, Gao X.; Keefer, Jeffrey; Spencer, Forrest; Smith, Kirby D.

    2012-01-01

    Various small molecule pharmacologic agents with different known functions produce similar outcomes in diverse Mendelian and complex disorders, suggesting that they may induce common cellular effects. These molecules include histone deacetylase inhibitors, 4-phenylbutyrate (4PBA) and trichostatin A, and two small molecules without direct histone deacetylase inhibitor activity, hydroxyurea (HU) and sulforaphane. In some cases, the therapeutic effects of histone deacetylase inhibitors have been attributed to an increase in expression of genes related to the disease-causing gene. However, here we show that the pharmacological induction of mitochondrial biogenesis was necessary for the potentially therapeutic effects of 4PBA or HU in two distinct disease models, X-linked adrenoleukodystrophy and sickle cell disease. We hypothesized that a common cellular response to these four molecules is induction of mitochondrial biogenesis and peroxisome proliferation and activation of the stress proteome, or adaptive cell survival response. Treatment of human fibroblasts with these four agents induced mitochondrial and peroxisomal biogenesis as monitored by flow cytometry, immunofluorescence and/or western analyses. In treated normal human fibroblasts, all four agents induced the adaptive cell survival response: heat shock, unfolded protein, autophagic and antioxidant responses and the c-jun N-terminal kinase pathway, at the transcriptional and translational levels. Thus, activation of the evolutionarily conserved stress proteome and mitochondrial biogenesis may be a common cellular response to such small molecule therapy and a common basis of therapeutic action in various diseases. Modulation of this novel therapeutic target could broaden the range of treatable diseases without directly targeting the causative genetic abnormalities. PMID:22752410

  4. Matrix metalloproteinase-3 causes dopaminergic neuronal death through Nox1-regenerated oxidative stress.

    PubMed

    Choi, Dong-Hee; Kim, Ji-Hye; Seo, Joo-Ha; Lee, Jongmin; Choi, Wahn Soo; Kim, Yoon-Seong

    2014-01-01

    In the present study we investigated the interplay between matrix metalloproteinase 3 (MMP3) and NADPH oxidase 1 (Nox1) in the process of dopamine (DA) neuronal death. We found that MMP3 activation causes the induction of Nox1 via mitochondrial reactive oxygen species (ROS) production and subsequently Rac1 activation, eventually leading to Nox1-derived superoxide generation in a rat DA neuronal N27 cells exposed to 6-OHDA. While a MMP3 inhibitor, NNGH, largely attenuated mitochondrial ROS and subsequent Nox1 induction, both apocynin, a putative Nox inhibitor and GKT137831, a Nox1 selective inhibitor failed to reduce 6-OHDA-induced mitochondrial ROS. However, both inhibitors for MMP3 and Nox1 similarly attenuated 6-OHDA-induced N27 cell death. RNAi-mediated selective inhibition of MMP3 or Nox1 showed that knockdown of either MMP3 or Nox1 significantly reduced 6-OHDA-induced ROS generation in N27 cells. While 6-OHDA-induced Nox1 was abolished by MMP3 knockdown, Nox1 knockdown did not alter MMP3 expression. Direct overexpression of autoactivated MMP3 (actMMP3) in N27 cells or in rat substantia nigra (SN) increased expression of Nox1. Selective knockdown of Nox1 in the SN achieved by adeno-associated virus-mediated overexpression of Nox1-specific shRNA largely attenuated the actMMP3-mediated dopaminergic neuronal loss. Furthermore, Nox1 expression was significantly attenuated in Mmp3 null mice treated with N-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP). Together we established novel molecular mechanisms underlying oxidative stress-mediated dopaminergic neuronal death in which MMP3 activation is a key upstream event that leads to mitochondrial ROS, Nox1 induction and eventual dopaminergic neuronal death. Our findings may lead to the development of novel therapeutic approach.

  5. Tubeimoside-1 induces oxidative stress-mediated apoptosis and G0/G1 phase arrest in human prostate carcinoma cells in vitro

    PubMed Central

    Yang, Jing-bo; Khan, Muhammad; He, Yang-yang; Yao, Min; Li, Yong-ming; Gao, Hong-wen; Ma, Tong-hui

    2016-01-01

    Aim: Tubeimoside-1 (TBMS1), a triterpenoid saponin extracted from the Chinese herbal medicine Bolbostemma paniculatum (Maxim) Franquet (Cucurbitaceae), has shown anticancer activities in various cancer cell lines. The aim of this study was to investigate the anticancer activity and molecular targets of TBMS1 in human prostate cancer cells in vitro. Methods: DU145 and P3 human prostate cancer cells were treated with TBMS1. Cell viability and apoptosis were detected. ROS generation, mitochondrial membrane potential and cell cycle profile were examined. Western blotting was used to measure the expression of relevant proteins in the cells. Results: TBMS1 (5–100 μmol/L) significantly suppressed the viability of DU145 and P3 cells with IC50 values of approximately 10 and 20 μmol/L, respectively. Furthermore, TBMS1 dose-dependently induced apoptosis and cell cycle arrest at G0/G1 phase in DU145 and P3 cells. In DU145 cells, TBMS1 induced mitochondrial apoptosis, evidenced by ROS generation, mitochondrial dysfunction, endoplasmic reticulum stress, modulated Bcl-2 family protein and cleaved caspase-3, and activated ASK-1 and its downstream targets p38 and JNK. The G0/G1 phase arrest was linked to increased expression of p53 and p21 and decreased expression of cyclin E and cdk2. Co-treatment with Z-VAD-FMK (pan-caspase inhibitor) could attenuate TBMS1-induced apoptosis but did not prevent G0/G1 arrest. Moreover, co-treatment with NAC (ROS scavenger), SB203580 (p38 inhibitor), SP600125 (JNK inhibitor) or salubrinal (ER stress inhibitor) significantly attenuated TBMS1-induced apoptosis. Conclusion: TBMS1 induces oxidative stress-mediated apoptosis in DU145 human prostate cancer cells in vitro via the mitochondrial pathway. PMID:27292614

  6. Metabolic changes associated with metformin potentiates Bcl-2 inhibitor, Venetoclax, and CDK9 inhibitor, BAY1143572 and reduces viability of lymphoma cells.

    PubMed

    Chukkapalli, Vineela; Gordon, Leo I; Venugopal, Parameswaran; Borgia, Jeffrey A; Karmali, Reem

    2018-04-20

    Metformin exerts direct anti-tumor effects by activating AMP-activated protein kinase (AMPK), a major sensor of cellular metabolism in cancer cells. This, in turn, inhibits pro-survival mTOR signaling. Metformin has also been shown to disrupt complex 1 of the mitochondrial electron transport chain. Here, we explored the lymphoma specific anti-tumor effects of metformin using Daudi (Burkitt), SUDHL-4 (germinal center diffuse large B-cell lymphoma; GC DLBCL), Jeko-1 (Mantle-cell lymphoma; MCL) and KPUM-UH1 (double hit DLBCL) cell lines. We demonstrated that metformin as a single agent, especially at high concentrations produced significant reductions in viability and proliferation only in Daudi and SUDHL-4 cell lines with associated alterations in mitochondrial oxidative and glycolytic metabolism. As bcl-2 proteins, cyclin dependent kinases (CDK) and phosphoinositol-3- kinase (PI3K) also influence mitochondrial physiology and metabolism with clear relevance to the pathogenesis of lymphoma, we investigated the potentiating effects of metformin when combined with novel agents Venetoclax (bcl-2 inhibitor), BAY-1143572 (CDK9 inhibitor) and Idelalisib (p110δ- PI3K inhibitor). Co-treating KPUM-UH1 and SUDHL-4 cells with 10 mM of metformin resulted in 1.4 fold and 8.8 fold decreases, respectively, in IC-50 values of Venetoclax. By contrast, 3-fold and 10 fold reduction in IC-50 values of BAY-1143572 in Daudi and Jeko-1 cells respectively was seen in the presence of 10 mM of metformin. No change in IC-50 value for Idelalisib was observed across cell lines. These data suggest that although metformin is not a potent single agent, targeting cancer metabolism with similar but more effective drugs in novel combination with either bcl-2 or CDK9 inhibitors warrants further exploration.

  7. Simultaneous Fluorescence and Phosphorescence Lifetime Imaging Microscopy in Living Cells

    NASA Astrophysics Data System (ADS)

    Jahn, Karolina; Buschmann, Volker; Hille, Carsten

    2015-09-01

    In living cells, there are always a plethora of processes taking place at the same time. Their precise regulation is the basis of cellular functions, since small failures can lead to severe dysfunctions. For a comprehensive understanding of intracellular homeostasis, simultaneous multiparameter detection is a versatile tool for revealing the spatial and temporal interactions of intracellular parameters. Here, a recently developed time-correlated single-photon counting (TCSPC) board was evaluated for simultaneous fluorescence and phosphorescence lifetime imaging microscopy (FLIM/PLIM). Therefore, the metabolic activity in insect salivary glands was investigated by recording ns-decaying intrinsic cellular fluorescence, mainly related to oxidized flavin adenine dinucleotide (FAD) and the μs-decaying phosphorescence of the oxygen-sensitive ruthenium-complex Kr341. Due to dopamine stimulation, the metabolic activity of salivary glands increased, causing a higher pericellular oxygen consumption and a resulting increase in Kr341 phosphorescence decay time. Furthermore, FAD fluorescence decay time decreased, presumably due to protein binding, thus inducing a quenching of FAD fluorescence decay time. Through application of the metabolic drugs antimycin and FCCP, the recorded signals could be assigned to a mitochondrial origin. The dopamine-induced changes could be observed in sequential FLIM and PLIM recordings, as well as in simultaneous FLIM/PLIM recordings using an intermediate TCSPC timing resolution.

  8. Sex as a response to oxidative stress: a twofold increase in cellular reactive oxygen species activates sex genes.

    PubMed

    Nedelcu, Aurora M; Marcu, Oana; Michod, Richard E

    2004-08-07

    Organisms are constantly subjected to factors that can alter the cellular redox balance and result in the formation of a series of highly reactive molecules known as reactive oxygen species (ROS). As ROS can be damaging to biological structures, cells evolved a series of mechanisms (e.g. cell-cycle arrest, programmed cell death) to respond to high levels of ROS (i.e. oxidative stress). Recently, we presented evidence that in a facultatively sexual lineage--the multicellular green alga Volvox carteri--sex is an additional response to increased levels of stress, and probably ROS and DNA damage. Here we show that, in V. carteri, (i) sex is triggered by an approximately twofold increase in the level of cellular ROS (induced either by the natural sex-inducing stress, namely heat, or by blocking the mitochondrial electron transport chain with antimycin A), and (ii) ROS are responsible for the activation of sex genes. As most types of stress result in the overproduction of ROS, we believe that our findings will prove to extend to other facultatively sexual lineages, which could be indicative of the ancestral role of sex as an adaptive response to stress and ROS-induced DNA damage. Copyright 2004 The Royal Society

  9. Attenuation of noise-induced hearing loss using methylene blue

    PubMed Central

    Park, J-S; Jou, I; Park, S M

    2014-01-01

    The overproduction of reactive oxygen species (ROS) and reactive nitrogen species (RNS) has been known to contribute to the pathogenesis of noise-induced hearing loss. In this study, we discovered that in BALB/c mice pretreatment with methylene blue (MB) for 4 consecutive days significantly protected against cochlear injury by intense broad-band noise for 3 h. It decreased both compound threshold shift and permanent threshold shift and, further, reduced outer hair cell death in the cochlea. MB also reduced ROS and RNS formation after noise exposure. Furthermore, it protected against rotenone- and antimycin A-induced cell death and also reversed ATP generation in the in vitro UB-OC1 cell system. Likewise, MB effectively attenuated the noise-induced impairment of complex IV activity in the cochlea. In addition, it increased the neurotrophin-3 (NT-3) level, which could affect the synaptic connections between hair cells and spiral ganglion neurons in the noise-exposed cochlea, and also promoted the conservation of both efferent and afferent nerve terminals on the outer and inner hair cells. These findings suggest that the amelioration of impaired mitochondrial electron transport and the potentiation of NT-3 expression by treatment with MB have a significant therapeutic value in preventing ROS-mediated sensorineural hearing loss. PMID:24763057

  10. A metabolic function of FGFR3-TACC3 gene fusions in cancer.

    PubMed

    Frattini, Véronique; Pagnotta, Stefano M; Tala; Fan, Jerry J; Russo, Marco V; Lee, Sang Bae; Garofano, Luciano; Zhang, Jing; Shi, Peiguo; Lewis, Genevieve; Sanson, Heloise; Frederick, Vanessa; Castano, Angelica M; Cerulo, Luigi; Rolland, Delphine C M; Mall, Raghvendra; Mokhtari, Karima; Elenitoba-Johnson, Kojo S J; Sanson, Marc; Huang, Xi; Ceccarelli, Michele; Lasorella, Anna; Iavarone, Antonio

    2018-01-11

    Chromosomal translocations that generate in-frame oncogenic gene fusions are notable examples of the success of targeted cancer therapies. We have previously described gene fusions of FGFR3-TACC3 (F3-T3) in 3% of human glioblastoma cases. Subsequent studies have reported similar frequencies of F3-T3 in many other cancers, indicating that F3-T3 is a commonly occuring fusion across all tumour types. F3-T3 fusions are potent oncogenes that confer sensitivity to FGFR inhibitors, but the downstream oncogenic signalling pathways remain unknown. Here we show that human tumours with F3-T3 fusions cluster within transcriptional subgroups that are characterized by the activation of mitochondrial functions. F3-T3 activates oxidative phosphorylation and mitochondrial biogenesis and induces sensitivity to inhibitors of oxidative metabolism. Phosphorylation of the phosphopeptide PIN4 is an intermediate step in the signalling pathway of the activation of mitochondrial metabolism. The F3-T3-PIN4 axis triggers the biogenesis of peroxisomes and the synthesis of new proteins. The anabolic response converges on the PGC1α coactivator through the production of intracellular reactive oxygen species, which enables mitochondrial respiration and tumour growth. These data illustrate the oncogenic circuit engaged by F3-T3 and show that F3-T3-positive tumours rely on mitochondrial respiration, highlighting this pathway as a therapeutic opportunity for the treatment of tumours with F3-T3 fusions. We also provide insights into the genetic alterations that initiate the chain of metabolic responses that drive mitochondrial metabolism in cancer.

  11. The Kinetic Effects on Thymidine Kinase 2 by Enzyme-Bound dTTP May Explain the Mitochondrial Side Effects of Antiviral Thymidine Analogs▿†

    PubMed Central

    Wang, Liya; Sun, Ren; Eriksson, Staffan

    2011-01-01

    Mitochondrial thymidine kinase 2 (TK2) is a key enzyme in the salvage of pyrimidine deoxynucleosides needed for mitochondrial DNA synthesis. TK2 phosphorylates thymidine (dThd), deoxycytidine (dCyd), and many other antiviral pyrimidine nucleoside analogs. Zidovudine (AZT) is the first nucleoside analog approved for anti-HIV therapy, and it is still used in combination with other drugs. One of the side effects of long-term treatment with nucleoside analogs is mitochondrial DNA depletion, which has been ascribed to competition by AZT for the endogenous dThd phosphorylation carried out by TK2. Here we studied the kinetics of AZT and 3′-fluorothymidine phosphorylation by recombinant human TK2 and the effects of these and other pyrimidine nucleoside analogs on the phosphorylation of dThd and dCyd. Thymidine analogs strongly inhibited dThd phosphorylation but not dCyd phosphorylation, which instead was stimulated ∼30%. We found that recombinant human TK2 contained the feedback inhibitor dTTP in a 1:1 molar ratio and that incubation with dThd and AZT could completely remove the enzyme-bound dTTP, but dCyd was less efficient in this regard. The release of feedback inhibitor by dThd and dThd analogs most likely accounts for the observed kinetics. Similar effects were also observed with native rat liver mitochondrial TK2, strongly indicating a physiologic role for this process, which most likely is an important factor in the mitochondrial toxicity observed with antiviral nucleoside analogs. PMID:21444706

  12. Kidney-targeted inhibition of protein kinase C-α ameliorates nephrotoxic nephritis with restoration of mitochondrial dysfunction.

    PubMed

    Kvirkvelia, Nino; McMenamin, Malgorzata; Warren, Marie; Jadeja, Ravirajsinh N; Kodeboyina, Sai Karthik; Sharma, Ashok; Zhi, Wenbo; O'Connor, Paul M; Raju, Raghavan; Lucas, Rudolf; Madaio, Michael P

    2018-05-04

    To investigate the role of protein kinase C-α (PKC-α) in glomerulonephritis, the capacity of PKC-α inhibition to reverse the course of established nephrotoxic nephritis (NTN) was evaluated. Nephritis was induced by a single injection of nephrotoxic serum and after its onset, a PKC-α inhibitor was administered either systemically or by targeted glomerular delivery. By day seven, all mice with NTN had severe nephritis, whereas mice that received PKC-α inhibitors in either form had minimal evidence of disease. To further understand the underlying mechanism, label-free shotgun proteomic analysis of the kidney cortexes were performed, using quantitative mass spectrometry. Ingenuity pathway analysis revealed 157 differentially expressed proteins and mitochondrial dysfunction as the most modulated pathway. Functional protein groups most affected by NTN were mitochondrial proteins associated with respiratory processes. These proteins were down-regulated in the mice with NTN, while their expression was restored with PKC-α inhibition. This suggests a role for proteins that regulate oxidative phosphorylation in recovery. In cultured glomerular endothelial cells, nephrotoxic serum caused a decrease in mitochondrial respiration and membrane potential, mitochondrial morphologic changes and an increase in glycolytic lactic acid production; all normalized by PKC-α inhibition. Thus, PKC-α has a critical role in NTN progression, and the results implicate mitochondrial processes through restoring oxidative phosphorylation, as an essential mechanism underlying recovery. Importantly, our study provides additional support for targeted therapy to glomeruli to reverse the course of progressive disease. Copyright © 2018 International Society of Nephrology. Published by Elsevier Inc. All rights reserved.

  13. Gradual changes in permeability of inner mitochondrial membrane precede the mitochondrial permeability transition.

    PubMed

    Balakirev, M Y; Zimmer, G

    1998-08-01

    Some compounds are known to induce solute-nonselective permeability of the inner mitochondrial membrane (IMM) in Ca2+-loaded mitochondria. Existing data suggest that this process, following the opening of a mitochondrial permeability transition pore, is preceded by different solute-selective permeable states of IMM. At pH 7, for instance, the K0.5 for Ca2+-induced pore opening is 16 microM, a value 80-fold above a therapeutically relevant shift of intracellular Ca2+ during ischemia in vivo. The present work shows that in the absence of Ca2+, phenylarsine oxide and tetraalkyl thiuram disulfides (TDs) are able to induce a complex sequence of IMM permeability changes. At first, these agents activated an electrogenic K+ influx into the mitochondria. This K+-specific pathway had K0.5 = 35 mM for K+ and was inhibited by bromsulfalein with Ki = 2.5 microM. The inhibitors of mitochondrial KATP channel, ATP and glibenclamide, did not inhibit K+ transport via this pathway. Moreover, 50 microM glibenclamide induced by itself K+ influx into the mitochondria. After the increase in K+ permeability of IMM, mitochondria become increasingly permeable to protons. Mechanisms of H+ leak and nonselective permeability increase could also be different depending on the type of mitochondrial permeability transition (MPT) inducer. Thus, permeabilization of mitochondria induced by phenylarsine oxide was fully prevented by ADP and/or cyclosporin A, whereas TD-induced membrane alterations were insensitive toward these inhibitors. It is suggested that MPT in vivo leading to irreversible apoptosis is irrelevant in reversible ischemia/reperfusion injury. Copyright 1998 Academic Press.

  14. Differential effects of temperature on reactive oxygen/nitrogen species production in rat pachytene spermatocytes and round spermatids.

    PubMed

    Pino, José A; Osses, Nelson; Oyarzún, Daniela; Farías, Jorge G; Moreno, Ricardo D; Reyes, Juan G

    2013-02-01

    Reactive oxygen species (ROS) and reactive nitrogen species (RNS) like superoxide and nitric oxide are produced by testis and spermatogenic cells in response to heat stress. However, the magnitude and mechanisms of this production in spermatogenic cells have not been described. In this work, we evaluated ROS/RNS production, its pharmacology, mitochondrial oxidative metabolism, membrane potential and antioxidant capacity at different temperatures in isolated rat pachytene spermatocytes and round spermatids. Our results showed an increment in ROS/RNS production by pachytene spermatocytes when increasing the temperature to 40 °C. Instead, ROS/RNS production by round spermatids did not change at temperatures higher than 33 °C. ROS/RNS production was sensitive to NADPH oxidase inhibitor diphenylene iodonium or the mitochondrial complex I inhibitor rotenone. No additive effects were observed for these two compounds. Our results suggest an important mitochondrial ROS/RNS production in spermatogenic cells. Oligomycin-insensitive oxygen consumption (uncoupled oxygen consumption) increased with temperature and was significantly larger in round spermatids than pachytene spermatocytes, indicating a likely round spermatid mitochondrial uncoupling at high temperatures. A similar conclusion can be reached by measuring the mitochondrial membrane potential using rhodamine 123 fluorescence in permeabilized cells or JC-1 fluorescence in intact cells. The antioxidant capacity was higher in round spermatids than pachytene spermatocytes at 40 °C. Our results strongly suggest that at high temperatures (40 °C) pachytene spermatocytes are more susceptible to oxidative stress, but round spermatids are more protected because of a temperature-induced mitochondrial uncoupling together with a larger antioxidant capacity.

  15. Effects of mycoplasma contamination on phenotypic expression of mitochondrial mutants in human cells.

    PubMed Central

    Doersen, C J; Stanbridge, E J

    1981-01-01

    HeLa cells sensitive to the mitochondrial protein synthesis inhibitors erythromycin (ERY) and chloramphenicol (CAP) and HeLa variants resistant to the effects of these drugs were purposefully infected with drug-sensitive and -resistant mycoplasma strains. Mycoplasma hyorhinis and the ERY-resistant strain of Mycoplasma orale, MO-ERYr, did not influence the growth of HeLa and ERY-resistant ERY2301 cells in the presence or absence of ERY. M. hyorhinis also did not affect the growth of HeLa and CAP-resistant Cap-2 cells in the presence or absence of CAP. However, both HeLa and Cap-2 cells infected with the CAP-resistant strain of M. hyorhinis, MH-CAPr, were more sensitive to the cytotoxic effect of CAP. This may be due to the glucose dependence of the cells, which was compromised by the increased utilization of glucose by MH-CAPr in these infected cell cultures. In vitro protein synthesis by isolated mitochondria was significantly altered by mycoplasma infection of the various cell lines. A substantial number of mycoplasmas copurified with the mitochondria, resulting in up to a sevenfold increase in the incorporation of [3H]leucine into the trichloroacetic acid-insoluble material. More importantly, the apparent drug sensitivity or resistance of mitochondrial preparations from mycoplasma-infected cells reflected the drug sensitivity or resistance of the contaminating mycoplasmas. These results illustrate the hazards in interpreting mitochondrial protein synthesis data derived from mycoplasma-infected cell lines, particularly putative mitochondrially encoded mutants resistant to inhibitors of mitochondrial protein synthesis. PMID:6965101

  16. Metabolic Adaptation to Chronic Inhibition of Mitochondrial Protein Synthesis in Acute Myeloid Leukemia Cells

    PubMed Central

    Jhas, Bozhena; Sriskanthadevan, Shrivani; Skrtic, Marko; Sukhai, Mahadeo A.; Voisin, Veronique; Jitkova, Yulia; Gronda, Marcela; Hurren, Rose; Laister, Rob C.; Bader, Gary D.; Minden, Mark D.; Schimmer, Aaron D.

    2013-01-01

    Recently, we demonstrated that the anti-bacterial agent tigecycline preferentially induces death in leukemia cells through the inhibition of mitochondrial protein synthesis. Here, we sought to understand mechanisms of resistance to tigecycline by establishing a leukemia cell line resistant to the drug. TEX leukemia cells were treated with increasing concentrations of tigecycline over 4 months and a population of cells resistant to tigecycline (RTEX+TIG) was selected. Compared to wild type cells, RTEX+TIG cells had undetectable levels of mitochondrially translated proteins Cox-1 and Cox-2, reduced oxygen consumption and increased rates of glycolysis. Moreover, RTEX+TIG cells were more sensitive to inhibitors of glycolysis and more resistant to hypoxia. By electron microscopy, RTEX+TIG cells had abnormally swollen mitochondria with irregular cristae structures. RNA sequencing demonstrated a significant over-representation of genes with binding sites for the HIF1α:HIF1β transcription factor complex in their promoters. Upregulation of HIF1α mRNA and protein in RTEX+TIG cells was confirmed by Q-RTPCR and immunoblotting. Strikingly, upon removal of tigecycline from RTEX+TIG cells, the cells re-established aerobic metabolism. Levels of Cox-1 and Cox-2, oxygen consumption, glycolysis, mitochondrial mass and mitochondrial membrane potential returned to wild type levels, but HIF1α remained elevated. However, upon re-treatment with tigecycline for 72 hours, the glycolytic phenotype was re-established. Thus, we have generated cells with a reversible metabolic phenotype by chronic treatment with an inhibitor of mitochondrial protein synthesis. These cells will provide insight into cellular adaptations used to cope with metabolic stress. PMID:23520503

  17. Metabolic adaptation to chronic inhibition of mitochondrial protein synthesis in acute myeloid leukemia cells.

    PubMed

    Jhas, Bozhena; Sriskanthadevan, Shrivani; Skrtic, Marko; Sukhai, Mahadeo A; Voisin, Veronique; Jitkova, Yulia; Gronda, Marcela; Hurren, Rose; Laister, Rob C; Bader, Gary D; Minden, Mark D; Schimmer, Aaron D

    2013-01-01

    Recently, we demonstrated that the anti-bacterial agent tigecycline preferentially induces death in leukemia cells through the inhibition of mitochondrial protein synthesis. Here, we sought to understand mechanisms of resistance to tigecycline by establishing a leukemia cell line resistant to the drug. TEX leukemia cells were treated with increasing concentrations of tigecycline over 4 months and a population of cells resistant to tigecycline (RTEX+TIG) was selected. Compared to wild type cells, RTEX+TIG cells had undetectable levels of mitochondrially translated proteins Cox-1 and Cox-2, reduced oxygen consumption and increased rates of glycolysis. Moreover, RTEX+TIG cells were more sensitive to inhibitors of glycolysis and more resistant to hypoxia. By electron microscopy, RTEX+TIG cells had abnormally swollen mitochondria with irregular cristae structures. RNA sequencing demonstrated a significant over-representation of genes with binding sites for the HIF1α:HIF1β transcription factor complex in their promoters. Upregulation of HIF1α mRNA and protein in RTEX+TIG cells was confirmed by Q-RTPCR and immunoblotting. Strikingly, upon removal of tigecycline from RTEX+TIG cells, the cells re-established aerobic metabolism. Levels of Cox-1 and Cox-2, oxygen consumption, glycolysis, mitochondrial mass and mitochondrial membrane potential returned to wild type levels, but HIF1α remained elevated. However, upon re-treatment with tigecycline for 72 hours, the glycolytic phenotype was re-established. Thus, we have generated cells with a reversible metabolic phenotype by chronic treatment with an inhibitor of mitochondrial protein synthesis. These cells will provide insight into cellular adaptations used to cope with metabolic stress.

  18. Maltotriose fermentation by Saccharomyces cerevisiae.

    PubMed

    Zastrow, C R; Hollatz, C; de Araujo, P S; Stambuk, B U

    2001-07-01

    Maltotriose, the second most abundant sugar of brewer's wort, is not fermented but is respired by several industrial yeast strains. We have isolated a strain capable of growing on a medium containing maltotriose and the respiratory inhibitor, antimycin A. This strain produced equivalent amounts of ethanol from 20 g l(-1) glucose, maltose, or maltotriose. We performed a detailed analysis of the rates of active transport and intracellular hydrolysis of maltotriose by this strain, and by a strain that does not ferment this sugar. The kinetics of sugar hydrolysis by both strains was similar, and our results also indicated that yeast cells do not synthesize a maltotriose-specific alpha-glucosidase. However, when considering active sugar transport, a different pattern was observed. The maltotriose-fermenting strain showed the same rate of active maltose or maltotriose transport, while the strain that could not ferment maltotriose showed a lower rate of maltotriose transport when compared with the rates of active maltose transport. Thus, our results revealed that transport across the plasma membrane, and not intracellular hydrolysis, is the rate-limiting step for the fermentation of maltotriose by these Saccharomyces cerevisiae cells.

  19. AS-2, a novel inhibitor of p53-dependent apoptosis, prevents apoptotic mitochondrial dysfunction in a transcription-independent manner and protects mice from a lethal dose of ionizing radiation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Morita, Akinori, E-mail: morita@tokushima-u.ac.jp; Ariyasu, Shinya; Wang, Bing

    2014-08-08

    Highlights: • A bidentate HQ derivative, AS-2, suppresses p53-dependent apoptosis by DNA damage. • AS-2 does not significantly affect nuclear p53 response. • UV-excited blue emission of AS-2 clearly showed its extranuclear localization. • AS-2 prevents mitochondrial dysfunction despite the increase of mitochondrial p53. • AS-2 protects mice from a radiation dose that causes lethal hematopoietic syndrome. - Abstract: In a previous study, we reported that some tetradentate zinc(II) chelators inhibit p53 through the denaturation of its zinc-requiring structure but a chelator, Bispicen, a potent inhibitor of in vitro apoptosis, failed to show any efficient radioprotective effect against irradiated micemore » because the toxicity of the chelator to mice. The unsuitability of using tetradentate chelators as radioprotectors prompted us to undertake a more extensive search for p53-inhibiting agents that are weaker zinc(II) chelators and therefore less toxic. Here, we show that an 8-hydroxyquinoline (8HQ) derivative, AS-2, suppresses p53-dependent apoptosis through a transcription-independent mechanism. A mechanistic study using cells with different p53 characteristics revealed that the suppressive effect of AS-2 on apoptosis is specifically mediated through p53. In addition, AS-2 was less effective in preventing p53-mediated transcription-dependent events than pifithrin-μ (PFTμ), an inhibitor of transcription-independent apoptosis by p53. Fluorescence visualization of the extranuclear distribution of AS-2 also supports that it is ineffective on the transcription-dependent pathway. Further investigations revealed that AS-2 suppressed mitochondrial apoptotic events, such as the mitochondrial release of intermembrane proteins and the loss of mitochondrial membrane potential, although AS-2 resulted in an increase in the mitochondrial translocation of p53 as opposed to the decrease of cytosolic p53, and did not affect the apoptotic interaction of p53 with Bcl-2. AS-2 also protected mice that had been exposed to a lethal dose of ionizing radiation. Our findings indicate that some types of bidentate 8HQ chelators could serve as radioprotectors with no substantial toxicity in vivo.« less

  20. Nicotine Induces Resistance to Chemotherapy by Modulating Mitochondrial Signaling in Lung Cancer

    PubMed Central

    Zhang, Jingmei; Kamdar, Opal; Le, Wei; Rosen, Glenn D.; Upadhyay, Daya

    2009-01-01

    Continued smoking causes tumor progression and resistance to therapy in lung cancer. Carcinogens possess the ability to block apoptosis, and thus may induce development of cancers and resistance to therapy. Tobacco carcinogens have been studied widely; however, little is known about the agents that inhibit apoptosis, such as nicotine. We determine whether mitochondrial signaling mediates antiapoptotic effects of nicotine in lung cancer. A549 cells were exposed to nicotine (1 μM) followed by cisplatin (35 μM) plus etoposide (20 μM) for 24 hours. We found that nicotine prevented chemotherapy-induced apoptosis, improved cell survival, and caused modest increases in DNA synthesis. Inhibition of mitogen-activated protein kinase (MAPK) and Akt prevented the antiapoptotic effects of nicotine and decreased chemotherapy-induced apoptosis. Small interfering RNA MAPK kinase-1 blocked antiapoptotic effects of nicotine, whereas small interfering RNA MAPK kinase-2 blocked chemotherapy-induced apoptosis. Nicotine prevented chemotherapy-induced reduction in mitochondrial membrane potential and caspase-9 activation. Antiapoptotic effects of nicotine were blocked by mitochondrial anion channel inhibitor, 4,4′diisothiocyanatostilbene-2,2′disulfonic acid. Chemotherapy enhanced translocation of proapoptotic Bax to the mitochondria, whereas nicotine blocked these effects. Nicotine up-regulated Akt-mediated antiapoptotic X-linked inhibitor of apoptosis protein and phosphorylated proapoptotic Bcl2-antagonist of cell death. The A549-ρ0 cells, which lack mitochondrial DNA, demonstrated partial resistance to chemotherapy-induced apoptosis, but blocked the antiapoptotic effects of nicotine. Accordingly, we provide evidence that nicotine modulates mitochondrial signaling and inhibits chemotherapy-induced apoptosis in lung cancer. The mitochondrial regulation of nicotine imposes an important mechanism that can critically impair the treatment of lung cancer, because many cancer-therapeutic agents induce apoptosis via the mitochondrial death pathway. Strategies aimed at understanding nicotine-mediated signaling may facilitate the development of improved therapies in lung cancer. PMID:18676776

  1. Nicotine induces resistance to chemotherapy by modulating mitochondrial signaling in lung cancer.

    PubMed

    Zhang, Jingmei; Kamdar, Opal; Le, Wei; Rosen, Glenn D; Upadhyay, Daya

    2009-02-01

    Continued smoking causes tumor progression and resistance to therapy in lung cancer. Carcinogens possess the ability to block apoptosis, and thus may induce development of cancers and resistance to therapy. Tobacco carcinogens have been studied widely; however, little is known about the agents that inhibit apoptosis, such as nicotine. We determine whether mitochondrial signaling mediates antiapoptotic effects of nicotine in lung cancer. A549 cells were exposed to nicotine (1 muM) followed by cisplatin (35 muM) plus etoposide (20 muM) for 24 hours. We found that nicotine prevented chemotherapy-induced apoptosis, improved cell survival, and caused modest increases in DNA synthesis. Inhibition of mitogen-activated protein kinase (MAPK) and Akt prevented the antiapoptotic effects of nicotine and decreased chemotherapy-induced apoptosis. Small interfering RNA MAPK kinase-1 blocked antiapoptotic effects of nicotine, whereas small interfering RNA MAPK kinase-2 blocked chemotherapy-induced apoptosis. Nicotine prevented chemotherapy-induced reduction in mitochondrial membrane potential and caspase-9 activation. Antiapoptotic effects of nicotine were blocked by mitochondrial anion channel inhibitor, 4,4'diisothiocyanatostilbene-2,2'disulfonic acid. Chemotherapy enhanced translocation of proapoptotic Bax to the mitochondria, whereas nicotine blocked these effects. Nicotine up-regulated Akt-mediated antiapoptotic X-linked inhibitor of apoptosis protein and phosphorylated proapoptotic Bcl2-antagonist of cell death. The A549-rho0 cells, which lack mitochondrial DNA, demonstrated partial resistance to chemotherapy-induced apoptosis, but blocked the antiapoptotic effects of nicotine. Accordingly, we provide evidence that nicotine modulates mitochondrial signaling and inhibits chemotherapy-induced apoptosis in lung cancer. The mitochondrial regulation of nicotine imposes an important mechanism that can critically impair the treatment of lung cancer, because many cancer-therapeutic agents induce apoptosis via the mitochondrial death pathway. Strategies aimed at understanding nicotine-mediated signaling may facilitate the development of improved therapies in lung cancer.

  2. Metabolic Modulation of Clear-cell Renal Cell Carcinoma with Dichloroacetate, an Inhibitor of Pyruvate Dehydrogenase Kinase.

    PubMed

    Kinnaird, Adam; Dromparis, Peter; Saleme, Bruno; Gurtu, Vikram; Watson, Kristalee; Paulin, Roxane; Zervopoulos, Sotirios; Stenson, Trevor; Sutendra, Gopinath; Pink, Desmond B; Carmine-Simmen, Katia; Moore, Ronald; Lewis, John D; Michelakis, Evangelos D

    2016-04-01

    Clear-cell renal cell carcinoma (ccRCC) exhibits suppressed mitochondrial function and preferential use of glycolysis even in normoxia, promoting proliferation and suppressing apoptosis. ccRCC resistance to therapy is driven by constitutive hypoxia-inducible factor (HIF) expression due to genetic loss of von Hippel-Lindau factor. In addition to promoting angiogenesis, HIF suppresses mitochondrial function by inducing pyruvate dehydrogenase kinase (PDK), a gatekeeping enzyme for mitochondrial glucose oxidation. To reverse mitochondrial suppression of ccRCC using the PDK inhibitor dichloroacetate (DCA). Radical nephrectomy specimens from patients with ccRCC were assessed for PDK expression. The 786-O ccRCC line and two animal models (chicken in ovo and murine xenografts) were used for mechanistic studies. Mitochondrial function, proliferation, apoptosis, HIF transcriptional activity, angiogenesis, and tumor size were measured in vitro and in vivo. Independent-sample t-tests and analysis of variance were used for statistical analyses. PDK was elevated in 786-O cells and in ccRCC compared to normal kidney tissue from the same patient. DCA reactivated mitochondrial function (increased respiration, Krebs cycle metabolites such as α-ketoglutarate [cofactor of factor inhibiting HIF], and mitochondrial reactive oxygen species), increased p53 activity and apoptosis, and decreased proliferation in 786-O cells. DCA reduced HIF transcriptional activity in an FIH-dependent manner, inhibiting angiogenesis in vitro. DCA reduced tumor size and angiogenesis in vivo in both animal models. DCA can reverse the mitochondrial suppression of ccRCC and decrease HIF transcriptional activity, bypassing its constitutive expression. Its previous clinical use in humans makes it an attractive candidate for translation to ccRCC patients. We show that an energy-boosting drug decreases tumor growth and tumor blood vessels in animals carrying human kidney cancer cells. This generic drug has been used in patients for other conditions and thus could be tested in kidney cancer that remains incurable. Copyright © 2015 European Association of Urology. Published by Elsevier B.V. All rights reserved.

  3. Carbon monoxide stimulates astrocytic mitochondrial biogenesis via L-type Ca{sup 2+} channel-mediated PGC-1α/ERRα activation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Choi, Yoon Kyung; Park, Joon Ha; Baek, Yi-Yong

    Carbon monoxide (CO), derived by the enzymatic reaction of heme oxygenase (HO), is a cellular regulator of energy metabolism and cytoprotection; however, its underlying mechanism has not been clearly elucidated. Astrocytes pre-exposed to the CO-releasing compound CORM-2 increased mitochondrial biogenesis, mitochondrial electron transport components (cytochrome c, Cyt c; cytochrome c oxidase subunit 2, COX2), and ATP synthesis. The increased mitochondrial function was correlated with activation of AMP-activated protein kinase α and upregulation of HO-1, peroxisome proliferators-activated receptor γ-coactivator-1α (PGC-1α), and estrogen-related receptor α (ERRα). These events elicited by CORM-2 were suppressed by Ca{sup 2+} chelators, a HO inhibitor, and anmore » L-type Ca{sup 2+} channel blocker, but not other Ca{sup 2+} channel inhibitors. Among the HO byproducts, combined CORM-2 and bilirubin treatment effectively increased PGC-1α, Cyt c and COX2 expression, mitochondrial biogenesis, and ATP synthesis, and these increases were blocked by Ca{sup 2+} chelators. Moreover, cerebral ischemia significantly increased HO-1, PGC-1α, and ERRα levels, subsequently increasing Cyt c and COX2 expression, in wild-type mice, compared with HO-1{sup +/−} mice. These results suggest that HO-1-derived CO enhances mitochondrial biogenesis in astrocytes by activating L-type Ca{sup 2+} channel-mediated PGC-1α/ERRα axis, leading to maintenance of astrocyte function and neuroprotection/recovery against damage of brain function. - Highlights: • CORM-pretreated astrocytes induces mitochondrial biogenesis by activating L-type Ca{sup 2+} channel-mediated PGC-1α stabilization. • Cerebral ischemia increased electron transport chain proteins (e.g. Cyt c and COX2), in WT mice, compared with HO-1{sup +/−} mice. • CO/HO-1 pathway increases astrocytic mitochondrial functions via a PGC-1α/ERRα axis.« less

  4. Degradation of substance P by membrane peptidases in the rat substantia nigra: effect of selective inhibitors.

    PubMed

    Oblin, A; Danse, M J; Zivkovic, B

    1988-01-11

    The hydrolysis of substance P by membrane peptidases prepared from the rat substantia nigra was studied in the presence of selective inhibitors. Substance P degradation by synaptic and mitochondrial membranes was completely inhibited by 1,10-phenanthroline (1 mM), a non-specific metallopeptidase inhibitor. Captopril and bestatine, selective inhibitors of angiotensin converting enzyme and aminopeptidases respectively, were without effects. However, phosphoramidon (1 microM), a putative 'enkephalinase' inhibitor, selectively inhibited substance P degradation by synaptic membranes. These results suggest that a phosphoramidon-sensitive endopeptidase may be the principal enzyme responsible for substance P degradation in substantia nigra.

  5. Aging Neural Progenitor Cells Have Decreased Mitochondrial Content and Lower Oxidative Metabolism*

    PubMed Central

    Stoll, Elizabeth A.; Cheung, Willy; Mikheev, Andrei M.; Sweet, Ian R.; Bielas, Jason H.; Zhang, Jing; Rostomily, Robert C.; Horner, Philip J.

    2011-01-01

    Although neurogenesis occurs in discrete areas of the adult mammalian brain, neural progenitor cells (NPCs) produce fewer new neurons with age. To characterize the molecular changes that occur during aging, we performed a proteomic comparison between primary-cultured NPCs from the young adult and aged mouse forebrain. This analysis yielded changes in proteins necessary for cellular metabolism. Mitochondrial quantity and oxygen consumption rates decrease with aging, although mitochondrial DNA in aged NPCs does not have increased mutation rates. In addition, aged cells are resistant to the mitochondrial inhibitor rotenone and proliferate in response to lowered oxygen conditions. These results demonstrate that aging NPCs display an altered metabolic phenotype, characterized by a coordinated shift in protein expression, subcellular structure, and metabolic physiology. PMID:21900249

  6. Effects of metabolic modifiers such as carnitines, coenzyme Q10, and PUFAs against different forms of neurotoxic insults: metabolic inhibitors, MPTP, and methamphetamine.

    PubMed

    Virmani, Ashraf; Gaetani, Franco; Binienda, Zbigniew

    2005-08-01

    A number of strategies using the nutritional approach are emerging for the protection of the brain from damage caused by metabolic toxins, age, or disease. Neural dysfunction and metabolic imbalances underlie many diseases, and the inclusion of metabolic modifiers may provide an alternative and early intervention approach that may prevent further damage. Various models have been developed to study the impact of metabolism on brain function. These have also proven useful in expanding our understanding of neurodegeneration processes. For example, the metabolic compromise induced by inhibitors such as 3-nitropropionic acid (3-NPA), rotenone, and 1-methyl-4-phenylpyridinium (MPP+) can cause neurodegeneration in animal models and these models are thought to simulate the processes that may lead to diseases such as Huntington's and Parkinson's diseases. These inhibitors of metabolism are thought to selectively kill neurons by inhibiting various mitochondrial enzymes. However, the eventual cell death is attributed to oxidative stress damage of selectively vulnerable cells, especially highly differentiated neurons. Various studies indicate that the neurotoxicity resulting from these types of metabolic compromise is related to mitochondrial dysfunction and may be ameliorated by metabolic modifiers such as L-carnitine (L-C), creatine, and coenzyme Q10, as well as by antioxidants such as lipoic acid, vitamin E, and resveratrol. Mitochondrial function and cellular metabolism are also affected by the dietary intake of essential polyunsaturated fatty acids (PUFAs), which may regulate membrane composition and influence cellular processes, especially the inflammatory pathways. Cellular metabolic function may also be ameliorated by caloric restriction diets. L-C is a naturally occurring quaternary ammonium compound that is a vital cofactor for the mitochondrial entry and oxidation of fatty acids. Any factors affecting L-C levels may also affect ATP levels. This endogenous compound, L-C, together with its acetyl ester, acetyl-L-carnitine (ALC), also participates in the control of the mitochondrial acyl-CoA/CoA ratio, peroxisomal oxidation of fatty acids, and production of ketone bodies. A deficiency of carnitine is known to have major deleterious effects on the CNS. We have examined L-C and its acetylated derivative, ALC, as potential neuroprotective compounds using various known metabolic inhibitors, as well as against drugs of abuse such as methamphetamine.

  7. Inhibitory Effects of Amorphigenin on the Mitochondrial Complex I of Culex pipiens pallens Coquillett (Diptera: Culicidae)

    PubMed Central

    Ji, Mingshan; Liang, Yaping; Gu, Zumin; Li, Xiuwei

    2015-01-01

    Previous studies in our laboratory found that the extract from seeds of Amorpha fruticosa in the Leguminosae family had lethal effects against mosquito larvae, and an insecticidal compound amorphigenin was isolated. In this study, the inhibitory effects of amorphigenin against the mitochondrial complex I of Culex pipiens pallens (Diptera: Culicidae) were investigated and compared with that of rotenone. The results showed that amorphigenin and rotenone can decrease the mitochondrial complex I activity both in vivo and in vitro as the in vivo IC50 values (the inhibitor concentrations leading to 50% of the enzyme activity lost) were determined to be 2.4329 and 2.5232 μmol/L, respectively, while the in vitro IC50 values were 2.8592 and 3.1375 μmol/L, respectively. Both amorphigenin and rotenone were shown to be reversible and mixed-I type inhibitors of the mitochondrial complex I of Cx. pipiens pallens, indicating that amorphigenin and rotenone inhibited the enzyme activity not only by binding with the free enzyme but also with the enzyme-substrate complex, and the values of KI and KIS for amorphigenin were determined to be 20.58 and 87.55 μM, respectively, while the values for rotenone were 14.04 and 69.23 μM, respectively. PMID:26307964

  8. Mitochondrial permeability transition in cardiac ischemia–reperfusion: whether cyclophilin D is a viable target for cardioprotection?

    PubMed Central

    Jang, Sehwan; Parodi-Rullan, Rebecca; Khuchua, Zaza; Kuznetsov, Andrey V.

    2018-01-01

    Growing number of studies provide strong evidence that the mitochondrial permeability transition pore (PTP), a non-selective channel in the inner mitochondrial membrane, is involved in the pathogenesis of cardiac ischemia–reperfusion and can be targeted to attenuate reperfusion-induced damage to the myocardium. The molecular identity of the PTP remains unknown and cyclophilin D is the only protein commonly accepted as a major regulator of the PTP opening. Therefore, cyclophilin D is an attractive target for pharmacological or genetic therapies to reduce ischemia–reperfusion injury in various animal models and humans. Most animal studies demonstrated cardioprotective effects of PTP inhibition; however, a recent large clinical trial conducted by international groups demonstrated that cyclosporine A, a cyclophilin D inhibitor, failed to protect the heart in patients with myocardial infarction. These studies, among others, raise the question of whether cyclophilin D, which plays an important physiological role in the regulation of cell metabolism and mitochondrial bioenergetics, is a viable target for cardioprotection. This review discusses previous studies to provide comprehensive information on the physiological role of cyclophilin D as well as PTP opening in the cell that can be taken into consideration for the development of new PTP inhibitors. PMID:28378042

  9. Mitochondria-derived reactive oxygen species drive GANT61-induced mesothelioma cell apoptosis.

    PubMed

    Lim, Chuan Bian; Prêle, Cecilia M; Baltic, Svetlana; Arthur, Peter G; Creaney, Jenette; Watkins, D Neil; Thompson, Philip J; Mutsaers, Steven E

    2015-01-30

    Gli transcription factors of the Hedgehog (Hh) pathway have been reported to be drivers of malignant mesothelioma (MMe) cell survival. The Gli inhibitor GANT61 induces apoptosis in various cancer cell models, and has been associated directly with Gli inhibition. However various chemotherapeutics can induce cell death through generation of reactive oxygen species (ROS) but whether ROS mediates GANT61-induced apoptosis is unknown. In this study human MMe cells were treated with GANT61 and the mechanisms regulating cell death investigated. Exposure of MMe cells to GANT61 led to G1 phase arrest and apoptosis, which involved ROS but not its purported targets, GLI1 or GLI2. GANT61 triggered ROS generation and quenching of ROS protected MMe cells from GANT61-induced apoptosis. Furthermore, we demonstrated that mitochondria are important in mediating GANT61 effects: (1) ROS production and apoptosis were blocked by mitochondrial inhibitor rotenone; (2) GANT61 promoted superoxide formation in mitochondria; and (3) mitochondrial DNA-deficient LO68 cells failed to induce superoxide, and were more resistant to apoptosis induced by GANT61 than wild-type cells. Our data demonstrate for the first time that GANT61 induces apoptosis by promoting mitochondrial superoxide generation independent of Gli inhibition, and highlights the therapeutic potential of mitochondrial ROS-mediated anticancer drugs in MMe.

  10. A mutation in the mitochondrial protein UQCRB promotes angiogenesis through the generation of mitochondrial reactive oxygen species

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chang, Junghwa; Jung, Hye Jin; Jeong, Seung Hun

    2014-12-12

    Highlights: • We constructed mitochondrial protein UQCRB mutant stable cell lines on the basis of a human case report. • These mutant cell lines exhibit pro-angiogenic activity with enhanced VEGF expression. • Proliferation of mutant cell lines was regulated by UQCRB inhibitors. • UQCRB may have a functional role in angiogenesis. - Abstract: Ubiquinol-cytochrome c reductase binding protein (UQCRB) is one of the subunits of mitochondrial complex III and is a target protein of the natural anti-angiogenic small molecule terpestacin. Previously, the biological role of UQCRB was thought to be limited to the maintenance of complex III. However, the identificationmore » and validation of UQCRB as a target protein of terpestacin enabled the role of UQCRB in oxygen sensing and angiogenesis to be elucidated. To explore the biological role of this protein further, UQCRB mutant stable cell lines were generated on the basis of a human case report. We demonstrated that these cell lines exhibited glycolytic and pro-angiogenic activities via mitochondrial reactive oxygen species (mROS)-mediated HIF1 signal transduction. Furthermore, a morphological abnormality in mitochondria was detected in UQCRB mutant stable cell lines. In addition, the proliferative effect of the UQCRB mutants was significantly regulated by the UQCRB inhibitors terpestacin and A1938. Collectively, these results provide a molecular basis for UQCRB-related biological processes and reveal potential key roles of UQCRB in angiogenesis and mitochondria-mediated metabolic disorders.« less

  11. Biguanides sensitize leukemia cells to ABT-737-induced apoptosis by inhibiting mitochondrial electron transport

    PubMed Central

    Velez, Juliana; Pan, Rongqing; Lee, Jason T.C.; Enciso, Leonardo; Suarez, Marta; Duque, Jorge Eduardo; Jaramillo, Daniel; Lopez, Catalina; Morales, Ludis; Bornmann, William; Konopleva, Marina; Krystal, Gerald; Andreeff, Michael; Samudio, Ismael

    2016-01-01

    Metformin displays antileukemic effects partly due to activation of AMPK and subsequent inhibition of mTOR signaling. Nevertheless, Metformin also inhibits mitochondrial electron transport at complex I in an AMPK-independent manner, Here we report that Metformin and rotenone inhibit mitochondrial electron transport and increase triglyceride levels in leukemia cell lines, suggesting impairment of fatty acid oxidation (FAO). We also report that, like other FAO inhibitors, both agents and the related biguanide, Phenformin, increase sensitivity to apoptosis induction by the bcl-2 inhibitor ABT-737 supporting the notion that electron transport antagonizes activation of the intrinsic apoptosis pathway in leukemia cells. Both biguanides and rotenone induce superoxide generation in leukemia cells, indicating that oxidative damage may sensitize toABT-737 induced apoptosis. In addition, we demonstrate that Metformin sensitizes leukemia cells to the oligomerization of Bak, suggesting that the observed synergy with ABT-737 is mediated, at least in part, by enhanced outer mitochondrial membrane permeabilization. Notably, Phenformin was at least 10-fold more potent than Metformin in abrogating electron transport and increasing sensitivity to ABT-737, suggesting that this agent may be better suited for targeting hematological malignancies. Taken together, our results suggest that inhibition of mitochondrial metabolism by Metformin or Phenformin is associated with increased leukemia cell susceptibility to induction of intrinsic apoptosis, and provide a rationale for clinical studies exploring the efficacy of combining biguanides with the orally bioavailable derivative of ABT-737, Venetoclax. PMID:27283492

  12. Biguanides sensitize leukemia cells to ABT-737-induced apoptosis by inhibiting mitochondrial electron transport.

    PubMed

    Velez, Juliana; Pan, Rongqing; Lee, Jason T C; Enciso, Leonardo; Suarez, Marta; Duque, Jorge Eduardo; Jaramillo, Daniel; Lopez, Catalina; Morales, Ludis; Bornmann, William; Konopleva, Marina; Krystal, Gerald; Andreeff, Michael; Samudio, Ismael

    2016-08-09

    Metformin displays antileukemic effects partly due to activation of AMPK and subsequent inhibition of mTOR signaling. Nevertheless, Metformin also inhibits mitochondrial electron transport at complex I in an AMPK-independent manner, Here we report that Metformin and rotenone inhibit mitochondrial electron transport and increase triglyceride levels in leukemia cell lines, suggesting impairment of fatty acid oxidation (FAO). We also report that, like other FAO inhibitors, both agents and the related biguanide, Phenformin, increase sensitivity to apoptosis induction by the bcl-2 inhibitor ABT-737 supporting the notion that electron transport antagonizes activation of the intrinsic apoptosis pathway in leukemia cells. Both biguanides and rotenone induce superoxide generation in leukemia cells, indicating that oxidative damage may sensitize toABT-737 induced apoptosis. In addition, we demonstrate that Metformin sensitizes leukemia cells to the oligomerization of Bak, suggesting that the observed synergy with ABT-737 is mediated, at least in part, by enhanced outer mitochondrial membrane permeabilization. Notably, Phenformin was at least 10-fold more potent than Metformin in abrogating electron transport and increasing sensitivity to ABT-737, suggesting that this agent may be better suited for targeting hematological malignancies. Taken together, our results suggest that inhibition of mitochondrial metabolism by Metformin or Phenformin is associated with increased leukemia cell susceptibility to induction of intrinsic apoptosis, and provide a rationale for clinical studies exploring the efficacy of combining biguanides with the orally bioavailable derivative of ABT-737, Venetoclax.

  13. SLP-2 negatively modulates mitochondrial sodium-calcium exchange.

    PubMed

    Da Cruz, Sandrine; De Marchi, Umberto; Frieden, Maud; Parone, Philippe A; Martinou, Jean-Claude; Demaurex, Nicolas

    2010-01-01

    Mitochondria play a major role in cellular calcium homeostasis. Despite decades of studies, the molecules that mediate and regulate the transport of calcium ions in and out of the mitochondrial matrix remain unknown. Here, we investigate whether SLP-2, an inner membrane mitochondrial protein of unknown function, modulates the activity of mitochondrial Ca(2+) transporters. In HeLa cells depleted of SLP-2, the amplitude and duration of mitochondrial Ca(2+) elevations evoked by agonists were decreased compared to control cells. SLP-2 depletion increased the rates of calcium extrusion from mitochondria. This effect disappeared upon Na(+) removal or addition of CGP-37157, an inhibitor of the mitochondrial Na(+)/Ca(2+) exchanger, and persisted in permeabilized cells exposed to a fixed cytosolic Na(+) and Ca(2+) concentration. The rates of mitochondrial Ca(2+) extrusion were prolonged in SLP-2 over-expressing cells, independently of the amplitude of mitochondrial Ca(2+) elevations. The amplitude of cytosolic Ca(2+) elevations was increased by SLP-2 depletion and decreased by SLP-2 over-expression. These data show that SLP-2 modulates mitochondrial calcium extrusion, thereby altering the ability of mitochondria to buffer Ca(2+) and to shape cytosolic Ca(2+) signals. 2009 Elsevier Ltd. All rights reserved.

  14. Potent NLRP3 Inflammasome Activation by the HIV Reverse Transcriptase Inhibitor Abacavir.

    PubMed

    Toksoy, Atiye; Sennefelder, Helga; Adam, Christian; Hofmann, Sonja; Trautmann, Axel; Goebeler, Matthias; Schmidt, Marc

    2017-02-17

    There is experimental and clinical evidence that some exanthematous allergic drug hypersensitivity reactions are mediated by drug-specific T cells. We hypothesized that the capacity of certain drugs to directly stimulate the innate immune system may contribute to generate drug-specific T cells. Here we analyzed whether abacavir, an HIV-1 reverse transcriptase inhibitor often inducing severe delayed-type drug hypersensitivity, can trigger innate immune activation that may contribute to its allergic potential. We show that abacavir fails to generate direct innate immune activation in human monocytes but potently triggers IL-1β release upon pro-inflammatory priming with phorbol ester or Toll-like receptor stimulation. IL-1β processing and secretion were sensitive to Caspase-1 inhibition, NLRP3 knockdown, and K + efflux inhibition and were not observed with other non-allergenic nucleoside reverse transcriptase inhibitors, identifying abacavir as a specific inflammasome activator. It further correlated with dose-dependent mitochondrial reactive oxygen species production and cytotoxicity, indicating that inflammasome activation resulted from mitochondrial damage. However, both NLRP3 depletion and inhibition of K + efflux mitigated abacavir-induced mitochondrial reactive oxygen species production and cytotoxicity, suggesting that these processes were secondary to NLRP3 activation. Instead, depletion of cardiolipin synthase 1 abolished abacavir-induced IL-1β secretion, suggesting that mitochondrial cardiolipin release may trigger abacavir-induced inflammasome activation. Our data identify abacavir as a novel inflammasome-stimulating drug allergen. They implicate a potential contribution of innate immune activation to medication-induced delayed-type hypersensitivity, which may stimulate new concepts for treatment and prevention of drug allergies. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  15. The mitochondrial-targeted antioxidant MitoQ ameliorates metabolic syndrome features in obesogenic diet-fed rats better than Apocynin or Allopurinol.

    PubMed

    Feillet-Coudray, Christine; Fouret, Gillen; Ebabe Elle, Raymond; Rieusset, Jennifer; Bonafos, Beatrice; Chabi, Beatrice; Crouzier, David; Zarkovic, Kamelija; Zarkovic, Neven; Ramos, Jeanne; Badia, Eric; Murphy, Michael P; Cristol, Jean Paul; Coudray, Charles

    2014-10-01

    The prevalence of metabolic syndrome (MetS) components including obesity, dyslipidemia, insulin resistance (IR), and hepatic steatosis is rapidly increasing in wealthy societies. It is accepted that inflammation/oxidative stress are involved in the initiation/evolution of the MetS features. The present work was designed to evaluate the effects of three major cellular ROS production systems on obesity, glucose tolerance, and hepatic steatosis development and on oxidative stress onset. To do so, 40 young male Sprague-Dawley rats were divided into 5 groups: 1-control group, 2-high fat (HF) group (60% energy from fat), 3-HF+ MitoQ (mitochondrial ROS scavenger), 4-HF+ Apocynin (NADPH oxidase inhibitor), 5-HF+ Allopurinol (xanthine oxidase inhibitor). After 8 weeks of these treatments, surrogate MetS, mitochondrial function, and oxidative stress markers were measured in blood and liver. As expected, rats that were fed the HF diet exhibited increased body weight, glucose intolerance, overt hepatic steatosis, and increased hepatic oxidative stress. The impacts of the studied ROS inhibitors on these aspects of the MetS were markedly different. MitoQ showed the most clinically relevant effects, attenuating body weight gain and glucose intolerance provoked by the HF diet. Both Apocynin and Allopurinol showed limited effects suggesting secondary roles of xanthine oxidase (XO) or NADPH oxidase-dependent ROS production in the onset of oxidative stress-dependent obesity, glucose intolerance, and hepatic steatosis process. Thus, MitoQ revealed the central role of mitochondrial oxidative stress in the development of MetS and suggested that mitochondria-targeted antioxidants may be worth considering as potentially helpful therapies for MetS features.

  16. NADPH oxidase inhibitor, diphenyleneiodonium prevents necroptosis in HK-2 cells.

    PubMed

    Dong, Wei; Li, Zhilian; Chen, Yuanhan; Zhang, Li; Ye, Zhiming; Liang, Huaban; Li, Ruizhao; Xu, Lixia; Zhang, Bin; Liu, Shuangxin; Wang, Weidong; Li, Chunling; Luo, Jialun; Shi, Wei; Liang, Xinling

    2017-09-01

    The aim of the present study was to investigate the protective effect of the NADPH oxidase inhibitor, diphenyleneiodonium (DPI) against necroptosis in renal tubular epithelial cells. A necroptosis model of HK-2 cells was established using tumor necrosis factor-α, benzyloxycarbonyl-Val-Ala-Asp-fluoromethylketone and antimycin A (collectively termed TZA), as in our previous research. The necroptosis inhibitor, necrostatin-1 (Nec-1) or the NADPH oxidase inhibitor, DPI were administered to the necroptosis model. Production of reactive oxygen species (ROS) was detected by dichlorodihydrofluorescein diacetate in the different groups, and the manner of cell death was identified by flow cytometry. Western blot analysis was used to determine the levels of phosphorylation of receptor-interacting protein kinase 3 (RIP-3) and mixed lineage kinase domain-like (MLKL), which are essential to necroptosis. The results revealed that TZA increased the percentages of propidium iodide-positive HK-2 cells from 1.22±0.69 to 8.98±0.73% (P<0.001), and augmented the phosphorylation of RIP-3 and MLKL. ROS levels were increased in the TZA group compared with the control group (27.74±1.60×10 4 vs. 18.51±1.10×10 4 , respectively; P<0.001), and could be inhibited by Nec-1 (TZA + Nec-1 group, 22.90±2.22×10 4 vs. TZA group, 27.74±1.60×10 4 ; P=0.01). DPI decreased ROS production (TZA + DPI group, 22.13±1.86×10 4 vs. TZA group, 27.74±1.60×10 4 ; P<0.001) and also reduced the proportions of necrosis in the necroptosis model (TZA + DPI group, 4.40±1.51% vs. TZA group, 8.98±0.73%; P<0.001). Phosphorylated RIP-3 and MLKL were also decreased by DPI treatment. The results indicate that ROS production increases in HK-2 cells undergoing necroptosis, and that the NADPH oxidase inhibitor, DPI may protect HK-2 cells from necroptosis via inhibition of ROS production.

  17. Dual targeting of mitochondrial function and mTOR pathway as a therapeutic strategy for diffuse intrinsic pontine glioma

    PubMed Central

    Tsoli, Maria; Liu, Jie; Franshaw, Laura; Shen, Han; Cheng, Cecilia; Jung, MoonSun; Joshi, Swapna; Ehteda, Anahid; Khan, Aaminah; Montero-Carcabosso, Angel; Dilda, Pierre J.; Hogg, Philip; Ziegler, David S.

    2018-01-01

    Diffuse Intrinsic Pontine Gliomas (DIPG) are the most devastating of all pediatric brain tumors. They mostly affect young children and, as there are no effective treatments, almost all patients with DIPG will die of their tumor within 12 months of diagnosis. A key feature of this devastating tumor is its intrinsic resistance to all clinically available therapies. It has been shown that glioma development is associated with metabolic reprogramming, redox state disruption and resistance to apoptotic pathways. The mitochondrion is an attractive target as a key organelle that facilitates these critical processes. PENAO is a novel anti-cancer compound that targets mitochondrial function by inhibiting adenine nucleotide translocase (ANT). Here we found that DIPG neurosphere cultures express high levels of ANT2 protein and are sensitive to the mitochondrial inhibitor PENAO through oxidative stress, while its apoptotic effects were found to be further enhanced upon co-treatment with mTOR inhibitor temsirolimus. This combination therapy was found to act through inhibition of PI3K/AKT/mTOR pathway, HSP90 and activation of AMPK. In vivo experiments employing an orthotopic model of DIPG showed a marginal anti-tumour effect likely due to poor penetration of the inhibitors into the brain. Further testing of this anti-DIPG strategy with compounds that penetrate the BBB is warranted. PMID:29484131

  18. A new pH-sensitive rectifying potassium channel in mitochondria from the embryonic rat hippocampus.

    PubMed

    Kajma, Anna; Szewczyk, Adam

    2012-10-01

    Patch-clamp single-channel studies on mitochondria isolated from embryonic rat hippocampus revealed the presence of two different potassium ion channels: a large-conductance (288±4pS) calcium-activated potassium channel and second potassium channel with outwardly rectifying activity under symmetric conditions (150/150mM KCl). At positive voltages, this channel displayed a conductance of 67.84pS and a strong voltage dependence at holding potentials from -80mV to +80mV. The open probability was higher at positive than at negative voltages. Patch-clamp studies at the mitoplast-attached mode showed that the channel was not sensitive to activators and inhibitors of mitochondrial potassium channels but was regulated by pH. Moreover, we demonstrated that the channel activity was not affected by the application of lidocaine, an inhibitor of two-pore domain potassium channels, or by tertiapin, an inhibitor of inwardly rectifying potassium channels. In summary, based on the single-channel recordings, we characterised for the first time mitochondrial pH-sensitive ion channel that is selective for cations, permeable to potassium ions, displays voltage sensitivity and does not correspond to any previously described potassium ion channels in the inner mitochondrial membrane. This article is part of a Special Issue entitled: 17th European Bioenergetics Conference (EBEC 2012). Copyright © 2012 Elsevier B.V. All rights reserved.

  19. A sex difference in oxidative stress and behavioral suppression induced by ethanol withdrawal in rats

    PubMed Central

    Jung, Marianna E.; Metzger, Daniel B.

    2016-01-01

    Ethanol withdrawal (EW) is referred to the abrupt termination of long-term heavy drinking, and provokes oxidative brain damage. Here, we investigated whether the cerebellum and hippocampus of female rats are less affected by prooxidant EW than male rats due to the antioxidant effect of 17β-estradiol (E2). Female and male rats received a four-week ethanol diet and three-week withdrawal per cycle for two cycles. Some female rats were ovariectomized with E2 or antioxidant (Vitamin E+Co-Q10) treatment. Measurements were cerebellum (Rotarod) and hippocampus (water-maze)-related behaviors, oxidative markers (O2•−, malondialdehyde, protein carbonyls), mitochondrial membrane swelling, and a key mitochondrial enzyme, cytochrome c oxidase (CcO). Separately, HT22 (hippocampal) cells were subjected to ethanol-exposure and withdrawal for two cycles to assess the effect of a CcO inhibitor on E2’s protection for mitochondrial respiration and cell viability. Ethanol-withdrawn female rats showed a smaller increase in oxidative markers in cerebellum and hippocampus than male rats, and E2 treatment decreased the oxidative markers. Compared to male counterparts, ethanol-withdrawn female rats showed better Rotarod but poorer water-maze performance, accompanied by more severe mitochondrial membrane swelling and CcO suppression in hippocampus. E2 or antioxidant treatment improved Rotarod but not water-maze performance. In the presence of a CcO inhibitor, E2 treatment failed to protect mitochondrial respiration and cell viability from EW. These data suggest that antioxidant E2 contributes to smaller oxidative stress in ethanol-withdrawn female than male rats. They also suggest that EW-induced severe mitochondrial damage in hippocampus may blunt E2’s antioxidant protection for hippocampus-related behavior. PMID:27503149

  20. Sevoflurane postconditioning protects the myocardium against ischemia/reperfusion injury via activation of the JAK2–STAT3 pathway

    PubMed Central

    Wu, Jianjiang; Yu, Jin; Xie, Peng; Maimaitili, Yiliyaer; Wang, Jiang; Yang, Long; Ma, Haiping; Zhang, Xing; Yang, Yining

    2017-01-01

    Background Sevoflurane postconditioning (S-post) has similar cardioprotective effects as ischemic preconditioning. However, the underlying mechanism of S-post has not been fully elucidated. Janus kinase signaling transduction/transcription activator (JAK2–STAT3) plays an important role in cardioprotection. The purpose of this study was to determine whether the cardioprotective effects of S-post are associated with activation of the JAK2–STAT3 signal pathway. Methods An adult male Sprague–Dawley (SD) rat model of myocardial ischemia/reperfusion (I/R) injury was established using the Langendorff isolated heart perfusion apparatus. At the beginning of reperfusion, 2.4% sevoflurane alone or in combination with AG490 (a JAK2 selective inhibitor) was used as a postconditioning treatment. The cardiac function indicators, myocardial infarct size, lactic dehydrogenase (LDH) release, mitochondrial ultrastructure, mitochondrial reactive oxygen species (ROS) generation rates, ATP content, protein expression of p-JAK, p-STAT3, Bcl-2 and Bax were measured. Results Compared with the I/R group, S-post significantly increased the expression of p-JAK, p-STAT3 and Bcl-2 and reduced the protein expression of Bax, which markedly decreased the myocardial infarction areas, improved the cardiac function indicators and the mitochondrial ultrastructure, decreased the mitochondrial ROS and increased the ATP content. However, the cardioprotective effects of S-post were abolished by treatment with a JAK2 selective inhibitor (p < 0.05). Conclusion This study demonstrates that the cardioprotective effects of S-post are associated with the activation of JAK2–STAT3. The mechanism may be related to an increased expression of p-JAK2 and p-STAT3 after S-post, which reduced mitochondrial ROS generation and increased mitochondrial ATP content, thereby reducing apoptosis and myocardial infarct size. PMID:28392989

  1. Autophagy is induced through the ROS-TP53-DRAM1 pathway in response to mitochondrial protein synthesis inhibition.

    PubMed

    Xie, Xiaolei; Le, Li; Fan, Yanxin; Lv, Lin; Zhang, Junjie

    2012-07-01

    Mitoribosome in mammalian cells is responsible for synthesis of 13 mtDNA-encoded proteins, which are integral parts of four mitochondrial respiratory chain complexes (I, III, IV and V). ERAL1 is a nuclear-encoded GTPase important for the formation of the 28S small mitoribosomal subunit. Here, we demonstrate that knockdown of ERAL1 by RNA interference inhibits mitochondrial protein synthesis and promotes reactive oxygen species (ROS) generation, leading to autophagic vacuolization in HeLa cells. Cells that lack ERAL1 expression showed a significant conversion of LC3-I to LC3-II and an enhanced accumulation of autophagic vacuoles carrying the LC3 marker, all of which were blocked by the autophagy inhibitor 3-MA as well as by the ROS scavenger NAC. Inhibition of mitochondrial protein synthesis either by ERAL1 siRNA or chloramphenicol (CAP), a specific inhibitor of mitoribosomes, induced autophagy in HTC-116 TP53 (+/+) cells, but not in HTC-116 TP53 (-/-) cells, indicating that tumor protein 53 (TP53) is essential for the autophagy induction. The ROS elevation resulting from mitochondrial protein synthesis inhibition induced TP53 expression at transcriptional levels by enhancing TP53 promoter activity, and increased TP53 protein stability by suppressing TP53 ubiquitination through MAPK14/p38 MAPK-mediated TP53 phosphorylation. Upregulation of TP53 and its downstream target gene DRAM1, but not CDKN1A/p21, was required for the autophagy induction in ERAL1 siRNA or CAP-treated cells. Altogether, these data indicate that autophagy is induced through the ROS-TP53-DRAM1 pathway in response to mitochondrial protein synthesis inhibition.

  2. Environmental conditions affecting the efficiency and efficacy of piscicides for use in nonnative fish eradication

    USGS Publications Warehouse

    Brown, Peter James

    2010-01-01

    Conservation of native fish is a pressing issue for fisheries managers. Conservation efforts often require eliminating threats posed by nonnative fish by eradicating them with piscicides. The piscicides rotenone and antimycin are used for eradication but their application is often inefficient or ineffective. My goal was to increase the efficiency and efficacy of nonnative fish eradication using piscicides. I identified environmental conditions affecting piscicide application, researched methods to overcome these problems, and provided tools that piscicide applicators can use to make piscicide application more efficient and effective. Rotenone and antimycin were exposed to varying levels of sunlight, turbulence, and dissolved organic matter (DOM) to determine the effect these environmental conditions have on piscicides. Bioassay fish were used to determine the toxicity of the piscicides. Sunlight and turbulence affected rotenone and antimycin but DOM did not. Increasing the concentration of chemical can increase the resistance to the effects of these environmental conditions; however, the effects of these conditions are considerable in natural settings. Observations of bioassay fish in stream applications of rotenone were used to develop a statistical model to predict the persistence of the piscicide. The model can be used to predict rotenone persistence in small montane streams and to estimate where rotenone concentrations need to be fortified. I measured the mixing rate of a chemical plume in different channel morphologies and at center or edge applications. Center application had a significantly shorter mixing distance than edge application, but mixing distance was not different among meandering, straight, and riffle/pool morphologies. Application of my findings will increase the efficiency and efficacy of native fish conservation using piscicides.

  3. The mTOR inhibitor sirolimus suppresses renal, hepatic, and cardiac tissue cellular respiration.

    PubMed

    Albawardi, Alia; Almarzooqi, Saeeda; Saraswathiamma, Dhanya; Abdul-Kader, Hidaya Mohammed; Souid, Abdul-Kader; Alfazari, Ali S

    2015-01-01

    The purpose of this in vitro study was to develop a useful biomarker (e.g., cellular respiration, or mitochondrial O2 consumption) for measuring activities of mTOR inhibitors. It measured the effects of commonly used immunosuppressants (sirolimus-rapamycin, tacrolimus, and cyclosporine) on cellular respiration in target tissues (kidney, liver, and heart) from C57BL/6 mice. The mammalian target of rapamycin (mTOR), a serine/ threonine kinase that supports nutrient-dependent cell growth and survival, is known to control energy conversion processes within the mitochondria. Consistently, inhibitors of mTOR (e.g., rapamycin, also known as sirolimus or Rapamune®) have been shown to impair mitochondrial function. Inhibitors of the calcium-dependent serine/threonine phosphatase calcineurin (e.g., tacrolimus and cyclosporine), on the other hand, strictly prevent lymphokine production leading to a reduced T-cell function. Sirolimus (10 μM) inhibited renal (22%, P=0.002), hepatic (39%, P<0.001), and cardiac (42%, P=0.005) cellular respiration. Tacrolimus and cyclosporine had no or minimum effects on cellular respiration in these tissues. Thus, these results clearly demonstrate that impaired cellular respiration (bioenergetics) is a sensitive biomarker of the immunosuppressants that target mTOR.

  4. Targeted transgenic overexpression of mitochondrial thymidine kinase (TK2) alters mitochondrial DNA (mtDNA) and mitochondrial polypeptide abundance: transgenic TK2, mtDNA, and antiretrovirals.

    PubMed

    Hosseini, Seyed H; Kohler, James J; Haase, Chad P; Tioleco, Nina; Stuart, Tami; Keebaugh, Erin; Ludaway, Tomika; Russ, Rodney; Green, Elgin; Long, Robert; Wang, Liya; Eriksson, Staffan; Lewis, William

    2007-03-01

    Mitochondrial toxicity limits nucleoside reverse transcriptase inhibitors (NRTIs) for acquired immune deficiency syndrome. NRTI triphosphates, the active moieties, inhibit human immunodeficiency virus reverse transcriptase and eukaryotic mitochondrial DNA polymerase pol-gamma. NRTI phosphorylation seems to correlate with mitochondrial toxicity, but experimental evidence is lacking. Transgenic mice (TGs) with cardiac overexpression of thymidine kinase isoforms (mitochondrial TK2 and cytoplasmic TK1) were used to study NRTI mitochondrial toxicity. Echocardiography and nuclear magnetic resonance imaging defined cardiac performance and structure. TK gene copy and enzyme activity, mitochondrial (mt) DNA and polypeptide abundance, succinate dehydrogenase and cytochrome oxidase histochemistry, and electron microscopy correlated with transgenesis, mitochondrial structure, and biogenesis. Antiretroviral combinations simulated therapy. Untreated hTK1 or TK2 TGs exhibited normal left ventricle mass. In TK2 TGs, cardiac TK2 gene copy doubled, activity increased 300-fold, and mtDNA abundance doubled. Abundance of the 17-kd subunit of complex I, succinate dehydrogenase histochemical activity, and cristae density increased. NRTIs increased left ventricle mass 20% in TK2 TGs. TK activity increased 3 logs in hTK1 TGs, but no cardiac phenotype resulted. NRTIs abrogated functional effects of transgenically increased TK2 activity but had no effect on TK2 mtDNA abundance. Thus, NRTI mitochondrial phosphorylation by TK2 is integral to clinical NRTI mitochondrial toxicity.

  5. Targeted Transgenic Overexpression of Mitochondrial Thymidine Kinase (TK2) Alters Mitochondrial DNA (mtDNA) and Mitochondrial Polypeptide Abundance

    PubMed Central

    Hosseini, Seyed H.; Kohler, James J.; Haase, Chad P.; Tioleco, Nina; Stuart, Tami; Keebaugh, Erin; Ludaway, Tomika; Russ, Rodney; Green, Elgin; Long, Robert; Wang, Liya; Eriksson, Staffan; Lewis, William

    2007-01-01

    Mitochondrial toxicity limits nucleoside reverse transcriptase inhibitors (NRTIs) for acquired immune deficiency syndrome. NRTI triphosphates, the active moieties, inhibit human immunodeficiency virus reverse transcriptase and eukaryotic mitochondrial DNA polymerase pol-γ. NRTI phosphorylation seems to correlate with mitochondrial toxicity, but experimental evidence is lacking. Transgenic mice (TGs) with cardiac overexpression of thymidine kinase isoforms (mitochondrial TK2 and cytoplasmic TK1) were used to study NRTI mitochondrial toxicity. Echocardiography and nuclear magnetic resonance imaging defined cardiac performance and structure. TK gene copy and enzyme activity, mitochondrial (mt) DNA and polypeptide abundance, succinate dehydrogenase and cytochrome oxidase histochemistry, and electron microscopy correlated with transgenesis, mitochondrial structure, and biogenesis. Antiretroviral combinations simulated therapy. Untreated hTK1 or TK2 TGs exhibited normal left ventricle mass. In TK2 TGs, cardiac TK2 gene copy doubled, activity increased 300-fold, and mtDNA abundance doubled. Abundance of the 17-kd subunit of complex I, succinate dehydrogenase histochemical activity, and cristae density increased. NRTIs increased left ventricle mass 20% in TK2 TGs. TK activity increased 3 logs in hTK1 TGs, but no cardiac phenotype resulted. NRTIs abrogated functional effects of transgenically increased TK2 activity but had no effect on TK2 mtDNA abundance. Thus, NRTI mitochondrial phosphorylation by TK2 is integral to clinical NRTI mitochondrial toxicity. PMID:17322372

  6. GPER mediates the effects of 17β-estradiol in cardiac mitochondrial biogenesis and function.

    PubMed

    Sbert-Roig, Miquel; Bauzá-Thorbrügge, Marco; Galmés-Pascual, Bel M; Capllonch-Amer, Gabriela; García-Palmer, Francisco J; Lladó, Isabel; Proenza, Ana M; Gianotti, Magdalena

    2016-01-15

    Considering the sexual dimorphism described in cardiac mitochondrial function and oxidative stress, we aimed to investigate the role of 17β-estradiol (E2) in these sex differences and the contribution of E2 receptors to these effects. As a model of chronic deprivation of ovarian hormones, we used ovariectomized (OVX) rats, half of which were treated with E2. Ovariectomy decreased markers of cardiac mitochondrial biogenesis and function and also increased oxidative stress, whereas E2 counteracted these effects. In H9c2 cardiomyocytes we observed that G-protein coupled estrogen receptor (GPER) agonist mimicked the effects of E2 in enhancing mitochondrial function and biogenesis, whereas GPER inhibitor neutralized them. These data suggest that E2 enhances mitochondrial function and decreases oxidative stress in cardiac muscle, thus it could be responsible for the sexual dimorphism observed in mitochondrial biogenesis and function in this tissue. These effects seem to be mediated through GPER stimulation. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  7. Characteristics of Mitochondrial Transformation into Human Cells

    PubMed Central

    Kesner, E. E.; Saada-Reich, A.; Lorberboum-Galski, H.

    2016-01-01

    Mitochondria can be incorporated into mammalian cells by simple co-incubation of isolated mitochondria with cells, without the need of transfection reagents or any other type of intervention. This phenomenon was termed mitochondrial transformation, and although it was discovered in 1982, currently little is known regarding its mechanism(s). Here we demonstrate that mitochondria can be transformed into recipient cells very quickly, and co-localize with endogenous mitochondria. The isolated mitochondria interact directly with cells, which engulf the mitochondria with cellular extensions in a way, which may suggest the involvement of macropinocytosis or macropinocytosis-like mechanisms in mitochondrial transformation. Indeed, macropinocytosis inhibitors but not clathrin-mediated endocytosis inhibition-treatments, blocks mitochondria transformation. The integrity of the mitochondrial outer membrane and its proteins is essential for the transformation of the mitochondria into cells; cells can distinguish mitochondria from similar particles and transform only intact mitochondria. Mitochondrial transformation is blocked in the presence of the heparan sulfate molecules pentosan polysulfate and heparin, which indicate crucial involvement of cellular heparan sulfate proteoglycans in the mitochondrial transformation process. PMID:27184109

  8. A Mitochondrial Pyruvate Carrier Required for Pyruvate Uptake in Yeast, Drosophila, and Humans

    PubMed Central

    Bricker, Daniel K.; Taylor, Eric B.; Schell, John C.; Orsak, Thomas; Boutron, Audrey; Chen, Yu-Chan; Cox, James E.; Cardon, Caleb M.; Van Vranken, Jonathan G.; Dephoure, Noah; Redin, Claire; Boudina, Sihem; Gygi, Steven P.; Brivet, Michèle; Thummel, Carl S.; Rutter, Jared

    2013-01-01

    Pyruvate constitutes a critical branch point in cellular carbon metabolism. We have identified two proteins, Mpc1 and Mpc2, as essential for mitochondrial pyruvate transport in yeast, Drosophila, and humans. Mpc1 and Mpc2 associate to form an ~150-kilodalton complex in the inner mitochondrial membrane. Yeast and Drosophila mutants lacking MPC1 display impaired pyruvate metabolism, with an accumulation of upstream metabolites and a depletion of tricarboxylic acid cycle intermediates. Loss of yeast Mpc1 results in defective mitochondrial pyruvate uptake, and silencing of MPC1 or MPC2 in mammalian cells impairs pyruvate oxidation. A point mutation in MPC1 provides resistance to a known inhibitor of the mitochondrial pyruvate carrier. Human genetic studies of three families with children suffering from lactic acidosis and hyperpyruvatemia revealed a causal locus that mapped to MPC1, changing single amino acids that are conserved throughout eukaryotes. These data demonstrate that Mpc1 and Mpc2 form an essential part of the mitochondrial pyruvate carrier. PMID:22628558

  9. The human T-cell leukemia virus type 1 p13II protein: effects on mitochondrial function and cell growth

    PubMed Central

    D’Agostino, DM; Silic-Benussi, M; Hiraragi, H; Lairmore, MD; Ciminale, V

    2011-01-01

    p13II of human T-cell leukemia virus type 1 (HTLV-1) is an 87-amino-acid protein that is targeted to the inner mitochondrial membrane. p13II alters mitochondrial membrane permeability, producing a rapid, membrane potential-dependent influx of K+. These changes result in increased mitochondrial matrix volume and fragmentation and may lead to depolarization and alterations in mitochondrial Ca2+ uptake/retention capacity. At the cellular level, p13II has been found to interfere with cell proliferation and transformation and to promote apoptosis induced by ceramide and Fas ligand. Assays carried out in T cells (the major targets of HTLV-1 infection in vivo) demonstrate that p13II-mediated sensitization to Fas ligand-induced apoptosis can be blocked by an inhibitor of Ras farnesylation, thus implicating Ras signaling as a downstream target of p13II function. PMID:15761473

  10. mTOR inhibition alleviates mitochondrial disease in a mouse model of Leigh syndrome.

    PubMed

    Johnson, Simon C; Yanos, Melana E; Kayser, Ernst-Bernhard; Quintana, Albert; Sangesland, Maya; Castanza, Anthony; Uhde, Lauren; Hui, Jessica; Wall, Valerie Z; Gagnidze, Arni; Oh, Kelly; Wasko, Brian M; Ramos, Fresnida J; Palmiter, Richard D; Rabinovitch, Peter S; Morgan, Philip G; Sedensky, Margaret M; Kaeberlein, Matt

    2013-12-20

    Mitochondrial dysfunction contributes to numerous health problems, including neurological and muscular degeneration, cardiomyopathies, cancer, diabetes, and pathologies of aging. Severe mitochondrial defects can result in childhood disorders such as Leigh syndrome, for which there are no effective therapies. We found that rapamycin, a specific inhibitor of the mechanistic target of rapamycin (mTOR) signaling pathway, robustly enhances survival and attenuates disease progression in a mouse model of Leigh syndrome. Administration of rapamycin to these mice, which are deficient in the mitochondrial respiratory chain subunit Ndufs4 [NADH dehydrogenase (ubiquinone) Fe-S protein 4], delays onset of neurological symptoms, reduces neuroinflammation, and prevents brain lesions. Although the precise mechanism of rescue remains to be determined, rapamycin induces a metabolic shift toward amino acid catabolism and away from glycolysis, alleviating the buildup of glycolytic intermediates. This therapeutic strategy may prove relevant for a broad range of mitochondrial diseases.

  11. The novel cyclophilin D inhibitor compound 19 protects retinal pigment epithelium cells and retinal ganglion cells from UV radiation.

    PubMed

    Xie, Laiqing; Cheng, Long; Xu, Guoxu; Zhang, Ji; Ji, Xiaoyan; Song, E

    2017-06-10

    Excessive Ultra violet (UV) radiation induces injuries to retinal pigment epithelium (RPE) cells (RPEs) and retinal ganglion cells (RGCs), causing retinal degeneration. Cyclophilin D (Cyp-D)-dependent mitochondrial permeability transition pore (mPTP) opening mediates UV-induced cell death. In this study, we show that a novel Cyp-D inhibitor compound 19 efficiently protected RPEs and RGCs from UV radiation. Compound 19-mediated cytoprotection requires Cyp-D, as it failed to further protect RPEs/RGCs from UV when Cyp-D was silenced by targeted shRNAs. Compound 19 almost blocked UV-induced p53-Cyp-D mitochondrial association, mPTP opening and subsequent cytochrome C release. Further studies showed that compound 19 inhibited UV-induced reactive oxygen species (ROS) production, lipid peroxidation and DNA damage. Together, compound 19 protects RPEs and RGCs from UV radiation, possibly via silencing Cyp-D-regulated intrinsic mitochondrial death pathway. Compound 19 could a lead compound for treating UV-associated retinal degeneration diseases. Copyright © 2017 Elsevier Inc. All rights reserved.

  12. [Effect of L-arginine and the nitric oxide synthase blocker L-NNA on calcium capacity in rat liver mitochondria with differing resistance to hypoxia].

    PubMed

    Kurhaliuk, N M; Ikkert, O V; Vovkanych, L S; Horyn', O V; Hal'kiv, M O; Hordiĭ, S K

    2001-01-01

    The effect of L-arginine and blockator of nitric oxide synthase L-NNA on processes of calcium mitochondrial capacity in liver with different resistance to hypoxia in the experiments with Wistar rats has been studied using the followrng substrates of energy support: succinic, alpha-ketoglutaric acids, alpha-ketolutarate and inhibitor succinatedehydrogenase malonate. As well we used substrates mixtures combination providing for activation of aminotransferase mechanism: glutamate and piruvate, glutamate and malate. It has been shown that L-arginine injection increases calcium mitochondrial capacity of low resistant rats using as substrates the succinate and alpha-ketoglutarate to control meanings of high resistance rats. Effects of donors nitric oxide on this processes limit NO-synthase inhibitor L-NNA.

  13. Melatonin and human mitochondrial diseases

    PubMed Central

    Sharafati-Chaleshtori, Reza; Shirzad, Hedayatollah; Rafieian-Kopaei, Mahmoud; Soltani, Amin

    2017-01-01

    Mitochondrial dysfunction is one of the main causative factors in a wide variety of complications such as neurodegenerative disorders, ischemia/reperfusion, aging process, and septic shock. Decrease in respiratory complex activity, increase in free radical production, increase in mitochondrial synthase activity, increase in nitric oxide production, and impair in electron transport system and/or mitochondrial permeability are considered as the main factors responsible for mitochondrial dysfunction. Melatonin, the pineal gland hormone, is selectively taken up by mitochondria and acts as a powerful antioxidant, regulating the mitochondrial bioenergetic function. Melatonin increases the permeability of membranes and is the stimulator of antioxidant enzymes including superoxide dismutase, glutathione peroxidase, glutathione reductase, and catalase. It also acts as an inhibitor of lipoxygenase. Melatonin can cause resistance to oxidation damage by fixing the microsomal membranes. Melatonin has been shown to retard aging and inhibit neurodegenerative disorders, ischemia/reperfusion, septic shock, diabetes, cancer, and other complications related to oxidative stress. The purpose of the current study, other than introducing melatonin, was to present the recent findings on clinical effects in diseases related to mitochondrial dysfunction including diabetes, cancer, gastrointestinal diseases, and diseases related to brain function. PMID:28400824

  14. Homocysteine activates T cells by enhancing endoplasmic reticulum-mitochondria coupling and increasing mitochondrial respiration.

    PubMed

    Feng, Juan; Lü, Silin; Ding, Yanhong; Zheng, Ming; Wang, Xian

    2016-06-01

    Hyperhomocysteinemia (HHcy) accelerates atherosclerosis by increasing proliferation and stimulating cytokine secretion in T cells. However, whether homocysteine (Hcy)-mediated T cell activation is associated with metabolic reprogramming is unclear. Here, our in vivo and in vitro studies showed that Hcy-stimulated splenic T-cell activation in mice was accompanied by increased levels of mitochondrial reactive oxygen species (ROS) and calcium, mitochondrial mass and respiration. Inhibiting mitochondrial ROS production and calcium signals or blocking mitochondrial respiration largely blunted Hcy-induced T-cell interferon γ (IFN-γ) secretion and proliferation. Hcy also enhanced endoplasmic reticulum (ER) stress in T cells, and inhibition of ER stress with 4-phenylbutyric acid blocked Hcy-induced T-cell activation. Mechanistically, Hcy increased ER-mitochondria coupling, and uncoupling ER-mitochondria by the microtubule inhibitor nocodazole attenuated Hcy-stimulated mitochondrial reprogramming, IFN-γ secretion and proliferation in T cells, suggesting that juxtaposition of ER and mitochondria is required for Hcy-promoted mitochondrial function and T-cell activation. In conclusion, Hcy promotes T-cell activation by increasing ER-mitochondria coupling and regulating metabolic reprogramming.

  15. Protein synthesis and the recovery of both survival and cytoplasmic "petite" mutation in ultraviolet-treated yeast cells. II. Mitochondrial protein synthesis.

    PubMed

    Heude, M; Chanet, R

    1975-04-01

    The contribution of mitochondrial proteins in the repair of UV-induced lethal and cytoplasmic genetic damages was studied in dark liquid held exponential and stationary phase yeast cells. This was performed by using the specific inhibitors, erythromycin (ER) anc chloramphenicol (CAP). It was shown that mitochondrial proteins are involved in the recovery of stationary phase cells. Mitochondrial proteins are partly implicated in the mechanisms leading to the restoration of the (see article) genotype in UV-irradiated dark liquid held exponential phase cells. Here again, in stationary phase cells, mitochondrial enzymes do not seem to participate in the negative liquid holding (NLH) process for the (see article) induction, as shown by inhibiting mitochondrial protein synthesis or both mitochondrial and nuclear protein synthesis. When cells are grown in glycerol, the response after dark liquid holding of UV-treated cells in the different growth stages are similar to that found for glucose-grown cells. In other words, the fate of cytoplasmic genetic damage, in particular, is not correlated with the repressed or derepressed state of the mitochondria.

  16. Measurements of bovine sperm velocities under true anaerobic and aerobic conditions.

    PubMed

    Krzyzosiak, J; Molan, P; Vishwanath, R

    1999-04-30

    Velocities of bovine spermatozoa in a medium containing glucose were similar under true anaerobic and aerobic conditions. Spermatozoa were not able to sustain motility under anaerobic conditions when glycolysis was inhibited, but regained motility when re-aerated. This demonstrates that immobilisation was due to lack of oxygen and that conditions under which motility was analysed were truly anaerobic. Sperm motility parameters were not significantly different in the presence and absence of 4 microM antimycin A and 4 microM rotenone when glucose was present in the medium. After each incubation, functionality of sperm mitochondria was assayed by washing sperm into the medium which supported respiration but not glycolysis, and motility was visually assessed. All sperm samples were highly motile in this medium indicating that their mitochondria were functional. When glycolysis was inhibited, antimycin and rotenone abolished sperm motility immediately after addition. Bovine sperm can maintain similar levels of motility aerobically and anaerobically if a glycolysable substrate is available. Available data on bovine sperm energetics support this view.

  17. Novel Flurometric Tool to Assess Mitochondrial Redox State of Isolated Perfused Rat Lungs After Exposure to Hyperoxia

    PubMed Central

    Audi, Said H.; Staniszewski, Kevin S.; Haworth, Steven T.; Jacobs, Elizabeth R.; Ranji, Mahsa; Zablocki, Clement J.

    2013-01-01

    Recently, we demonstrated the utility of optical fluorometry to detect a change in the redox status of mitochondrial autofluorescent coenzymes nicotinamide adenine dinucleotide (NADH) and oxidized form of flavin adenine dinucleotide \\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{upgreek} \\usepackage{mathrsfs} \\setlength{\\oddsidemargin}{-69pt} \\begin{document} }{}$({\\rm FADH}_{2})$\\end{document} (FAD), as a measure of mitochondrial function in isolated perfused rat lungs (IPL). The objective of this paper was to utilize optical fluorometry to evaluate the effect of rat exposure to hyperoxia (\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{upgreek} \\usepackage{mathrsfs} \\setlength{\\oddsidemargin}{-69pt} \\begin{document} }{}${>}{95\\%}~{\\rm O}_{2}$\\end{document} for 48 h) on lung tissue mitochondrial redox status of NADH and FAD in a nondestructive manner in IPL. Surface NADH and FAD signals were measured before and after lung perfusion with perfusate containing rotenone (ROT, complex I inhibitor), potassium cyanide (KCN, complex IV inhibitor), and/or pentachlorophenol (PCP, uncoupler). ROT- or KCN-induced increase in NADH signal is considered a measure of complex I activity, and KCN-induced decrease in FAD signal is considered a measure of complex II activity. The results show that hyperoxia decreased complex I and II activities by 63% and 55%, respectively, when compared to lungs of rats exposed to room air (normoxic rats). Mitochondrial complex I and II activities in lung homogenates were also lower (77% and 63%, respectively) for hyperoxic than for normoxic lungs. These results suggest that the mitochondrial matrix is more reduced in hyperoxic lungs than in normoxic lungs, and demonstrate the ability of optical fluorometry to detect a change in mitochondrial redox state of hyperoxic lungs prior to histological changes characteristic of hyperoxia. PMID:25379360

  18. Deregulation of Mitochondria-Shaping Proteins Opa-1 and Drp-1 in Manganese-Induced Apoptosis

    PubMed Central

    Alaimo, Agustina; Gorojod, Roxana M.; Beauquis, Juan; Muñoz, Manuel J.; Saravia, Flavia; Kotler, Mónica L.

    2014-01-01

    Mitochondria are dynamic organelles that undergo fusion and fission processes. These events are regulated by mitochondria-shaping proteins. Changes in the expression and/or localization of these proteins lead to a mitochondrial dynamics impairment and may promote apoptosis. Increasing evidence correlates the mitochondrial dynamics disruption with the occurrence of neurodegenerative diseases. Therefore, we focused on this topic in Manganese (Mn)-induced Parkinsonism, a disorder associated with Mn accumulation preferentially in the basal ganglia where mitochondria from astrocytes represent an early target. Using MitoTracker Red staining we observed increased mitochondrial network fission in Mn-exposed rat astrocytoma C6 cells. Moreover, Mn induced a marked decrease in fusion protein Opa-1 levels as well as a dramatic increase in the expression of fission protein Drp-1. Additionally, Mn provoked a significant release of high MW Opa-1 isoforms from the mitochondria to the cytosol as well as an increased Drp-1 translocation to the mitochondria. Both Mdivi-1, a pharmacological Drp-1 inhibitor, and rat Drp-1 siRNA reduced the number of apoptotic nuclei, preserved the mitochondrial network integrity and prevented cell death. CsA, an MPTP opening inhibitor, prevented mitochondrial Δψm disruption, Opa-1 processing and Drp-1 translocation to the mitochondria therefore protecting Mn-exposed cells from mitochondrial disruption and apoptosis. The histological analysis and Hoechst 33258 staining of brain sections of Mn-injected rats in the striatum showed a decrease in cellular mass paralleled with an increase in the occurrence of apoptotic nuclei. Opa-1 and Drp-1 expression levels were also changed by Mn-treatment. Our results demonstrate for the first time that abnormal mitochondrial dynamics is implicated in both in vitro and in vivo Mn toxicity. In addition we show that the imbalance in fusion/fission equilibrium might be involved in Mn-induced apoptosis. This knowledge may provide new therapeutic tools for the treatment of Manganism and other neurodegenerative diseases. PMID:24632637

  19. 4SC-202 activates ASK1-dependent mitochondrial apoptosis pathway to inhibit hepatocellular carcinoma cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fu, Meili, E-mail: fumeilidrlinyi@tom.com; Wan, Fuqiang; Li, Zhengling

    The aim of the present study is to investigate the potential anti-hepatocellular carcinoma (HCC) cell activity by 4SC-202, a novel class I HDAC inhibitor (HDACi). The associated signaling mechanisms were also analyzed. We showed that 4SC-202 treatment induced potent cytotoxic and proliferation–inhibitory activities against established HCC cell lines (HepG2, HepB3, SMMC-7721) and patient-derived primary HCC cells. Further, adding 4SC-202 in HCC cells activated mitochondrial apoptosis pathway, which was evidenced by mitochondrial permeability transition pore (mPTP) opening, cytochrome C cytosol release and caspase-3/-9 activation. Inhibition of this apoptosis pathway, by caspase-3/-9 inhibitors, mPTP blockers, or by shRNA-mediated knockdown of cyclophilin-D (Cyp-D,more » a key component of mPTP), significantly attenuated 4SC-202-induced HCC cell death and apoptosis. Reversely, over-expression of Cyp-D enhanced 4SC-202's sensitivity in HCC cells. Further studies showed that 4SC-202 induced apoptosis signal-regulating kinase 1 (ASK1) activation, causing it translocation to mitochondria and physical association with Cyp-D. This mitochondrial ASK1-Cyp-D complexation appeared required for mediating 4SC-202-induced apoptosis activation. ASK1 stable knockdown by targeted-shRNAs largely inhibited 4SC-202-induced mPTP opening, cytochrome C release, and following HCC cell apoptotic death. Together, we suggest that 4SC-202 activates ASK1-dependent mitochondrial apoptosis pathway to potently inhibit human HCC cells. - Highlights: • 4SC-202 exerts potent anti-proliferative and cytotoxic activity against established/primary HCC cells. • SC-202-induced anti-HCC cell activity relies on caspase-dependent apoptosis activation. • 4SC-202 activates Cyp-D-dependent mitochondrial apoptosis pathway in HCC cells. • 4SC-202 activates ASK1 in HCC cells, causing it translocation to mitochondria. • Mitochondrial ASK1-Cyp-D complexation mediates 4SC-202's activity in HCC cells.« less

  20. Deregulation of mitochondria-shaping proteins Opa-1 and Drp-1 in manganese-induced apoptosis.

    PubMed

    Alaimo, Agustina; Gorojod, Roxana M; Beauquis, Juan; Muñoz, Manuel J; Saravia, Flavia; Kotler, Mónica L

    2014-01-01

    Mitochondria are dynamic organelles that undergo fusion and fission processes. These events are regulated by mitochondria-shaping proteins. Changes in the expression and/or localization of these proteins lead to a mitochondrial dynamics impairment and may promote apoptosis. Increasing evidence correlates the mitochondrial dynamics disruption with the occurrence of neurodegenerative diseases. Therefore, we focused on this topic in Manganese (Mn)-induced Parkinsonism, a disorder associated with Mn accumulation preferentially in the basal ganglia where mitochondria from astrocytes represent an early target. Using MitoTracker Red staining we observed increased mitochondrial network fission in Mn-exposed rat astrocytoma C6 cells. Moreover, Mn induced a marked decrease in fusion protein Opa-1 levels as well as a dramatic increase in the expression of fission protein Drp-1. Additionally, Mn provoked a significant release of high MW Opa-1 isoforms from the mitochondria to the cytosol as well as an increased Drp-1 translocation to the mitochondria. Both Mdivi-1, a pharmacological Drp-1 inhibitor, and rat Drp-1 siRNA reduced the number of apoptotic nuclei, preserved the mitochondrial network integrity and prevented cell death. CsA, an MPTP opening inhibitor, prevented mitochondrial Δψm disruption, Opa-1 processing and Drp-1 translocation to the mitochondria therefore protecting Mn-exposed cells from mitochondrial disruption and apoptosis. The histological analysis and Hoechst 33258 staining of brain sections of Mn-injected rats in the striatum showed a decrease in cellular mass paralleled with an increase in the occurrence of apoptotic nuclei. Opa-1 and Drp-1 expression levels were also changed by Mn-treatment. Our results demonstrate for the first time that abnormal mitochondrial dynamics is implicated in both in vitro and in vivo Mn toxicity. In addition we show that the imbalance in fusion/fission equilibrium might be involved in Mn-induced apoptosis. This knowledge may provide new therapeutic tools for the treatment of Manganism and other neurodegenerative diseases.

  1. Rasagiline and selegiline suppress calcium efflux from mitochondria by PK11195-induced opening of mitochondrial permeability transition pore: a novel anti-apoptotic function for neuroprotection.

    PubMed

    Wu, Yuqiu; Kazumura, Kimiko; Maruyama, Wakako; Osawa, Toshihiko; Naoi, Makoto

    2015-10-01

    Rasagiline and selegiline, inhibitors of type B monoamine oxidase (MAO-B), protect neurons from cell death in cellular and animal models. Suppression of mitochondrial membrane permeabilization and subsequent activation of apoptosis cascade, and induction of anti-apoptotic, pro-survival genes are proposed to contribute the anti-apoptotic function. Rasagiline suppresses neurotoxin- and oxidative stress-induced membrane permeabilization in isolated mitochondria, but the mechanism has been not fully clarified. In this paper, regulation of the mitochondrial permeability transition pore by rasagiline and selegiline was examined in apoptosis induced by PK11195, a ligand of the outer membrane translocator protein 18 kDa (TSPO) in SH-SY5Y cells. The pore opening was quantitatively measured using a simultaneous monitoring system for calcium (Ca(2+)) and superoxide (O2(-)) (Ishibashi et al. in Biochem Biophys Res Commun 344:571-580, 2006). The association of the pore opening with Ca(2+) efflux and ROS increase was proved by the inhibition of Bcl-2 overexpression and cyclosporine A treatment. Potency to release Ca(2+) was correlated with the cytotoxicity of TSPO antagonists, PK11195, FGIN-1-27 and protoporphyrin IX, whereas a TSPO agonist, 4-chloro-diazepamine, did not significantly increase Ca(2+) or cause cell death. Rasagiline and selegiline inhibited mitochondrial Ca(2+) efflux through the mitochondrial permeability transition pore dose dependently. Ca(2+) efflux was confirmed as the initial signal in mitochondrial apoptotic cascade, and the suppression of Ca(2+) efflux may account for the neuroprotective function of rasagiline and selegiline. The quantitative measurement of Ca(2+) efflux can be applied to determine anti-apoptotic activity of neuroprotective compounds. The role of mitochondrial Ca(2+) release in neuronal death and also in neuroprotection by MAO-B inhibitors is discussed.

  2. Panobinostat induces apoptosis via production of reactive oxygen species and synergizes with topoisomerase inhibitors in cervical cancer cells.

    PubMed

    Wasim, Lubna; Chopra, Madhu

    2016-12-01

    Cervical cancer is the fourth major cause of cancer-related deaths in women worldwide and is the most common cancer in developing countries. Therefore, a search for novel treatment modalities is warranted. The present study is designed to investigate the effect of pan histone deacetylase inhibitor, 'panobinostat', on cervical cancer cells alone and in combination with topoisomerase inhibitors. We assessed the effect of panobinostat on two cervical cancer cell lines, HeLa and SiHa, for cell viability, apoptosis, oxidative stress and mitochondrial function using various assays. The results indicate that panobinostat reduces the viability of cervical cancer cells in a dose- and time-dependent manner; it arrests HeLa cells in G0/G1 and SiHa cells in G2/M phase of the cell cycle. Panobinostat induced apoptosis through an increase in the ROS production and the disruption of mitochondrial membrane potential. Concomitantly the expression of anti-apoptotic gene Bcl-xL was reduced, while levels of CDK inhibitor p21 and caspase-9 were increased. Panobinostat increased the acetylation of histone H3 indicating HDAC inhibition. In addition, panobinostat also showed synergistic effect with topoisomerase inhibitors mediated by increased activation of caspase-3/7 activity compared to that in cells treated with panobinostat alone. These results suggest a combination therapy using inhibitors of histone deacetylase and topoisomerase together could hold the promise for an effective targeted therapeutic strategy. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  3. Mitochondrial and Plasma Membrane Citrate Transporters: Discovery of Selective Inhibitors and Application to Structure/Function Analysis

    PubMed Central

    Sun, Jiakang; Aluvila, Sreevidya; Kotaria, Rusudan; Mayor, June A.; Walters, D. Eric; Kaplan, Ronald S.

    2010-01-01

    Cytoplasmic citrate is the prime carbon source for fatty acid, triacylglycerol, and cholesterol biosyntheses, and also regulates glucose metabolism via its allosteric inhibition of phosphofructokinase. It originates either via the efflux of citrate from the mitochondrial matrix on the inner membrane citrate transport protein (CTP) or via the influx of extracellular citrate on the plasma membrane citrate transporter (PMCT). Despite their common substrate, the two transport proteins share little sequence similarity and they transport citrate via fundamentally different mechanisms. We tested the ability of a set of previously identified CTP inhibitors, to inhibit the PMCT. We found that of the top 10 CTP inhibitors only one substantially inhibited the PMCT. Conversely, we identified two other inhibitors that inhibited the PMCT but had little effect on the CTP. All three identified PMCT inhibitors displayed a noncompetitive mechanism. Furthermore, models to explain inhibitor interactions with the CTP are proposed. As part of the present studies a PMCT homology model has been developed based on the crystal structure of the leucine transporter, and a possible citrate binding site has been identified and its composition compared with the two known citrate binding sites present within the CTP. The ability to selectively inhibit the PMCT may prove key to the pharmacologic amelioration of metabolic disorders resulting from the synthesis of excess lipid, cholesterol, and glucose, including human obesity, hyperlipidemia, hyper-cholesterolemia, and Type 2 diabetes. PMID:20686672

  4. Combination of Mitochondrial and Plasma Membrane Citrate Transporter Inhibitors Inhibits De Novo Lipogenesis Pathway and Triggers Apoptosis in Hepatocellular Carcinoma Cells

    PubMed Central

    Phokrai, Phornpun; Suwankulanan, Somrudee; Phakdeeto, Narinthorn; Phunsomboon, Pattamaphorn; Pekthong, Dumrongsak; Richert, Lysiane; Pongcharoen, Sutatip

    2018-01-01

    Increased expression levels of both mitochondrial citrate transporter (CTP) and plasma membrane citrate transporter (PMCT) proteins have been found in various cancers. The transported citrates by these two transporter proteins provide acetyl-CoA precursors for the de novo lipogenesis (DNL) pathway to support a high rate of cancer cell viability and development. Inhibition of the DNL pathway promotes cancer cell apoptosis without apparent cytotoxic to normal cells, leading to the representation of selective and powerful targets for cancer therapy. The present study demonstrates that treatments with CTP inhibitor (CTPi), PMCT inhibitor (PMCTi), and the combination of CTPi and PMCTi resulted in decreased cell viability in two hepatocellular carcinoma cell lines (HepG2 and HuH-7). Treatment with citrate transporter inhibitors caused a greater cytotoxic effect in HepG2 cells than in HuH-7 cells. A lower concentration of combined CTPi and PMCTi promotes cytotoxic effect compared with either of a single compound. An increased cell apoptosis and an induced cell cycle arrest in both cell lines were reported after administration of the combined inhibitors. A combination treatment exhibits an enhanced apoptosis through decreased intracellular citrate levels, which consequently cause inhibition of fatty acid production in HepG2 cells. Apoptosis induction through the mitochondrial-dependent pathway was found as a consequence of suppressed carnitine palmitoyl transferase-1 (CPT-1) activity and enhanced ROS generation by combined CTPi and PMCTi treatment. We showed that accumulation of malonyl-CoA did not correlate with decreasing CPT-1 activity. The present study showed that elevated ROS levels served as an inhibition on Bcl-2 activity that is at least in part responsible for apoptosis. Moreover, inhibition of the citrate transporter is selectively cytotoxic to HepG2 cells but not in primary human hepatocytes, supporting citrate-mediating fatty acid synthesis as a promising cancer therapy. PMID:29546056

  5. A HIF-1alpha-related gene involved in cell protection from hypoxia by suppression of mitochondrial function.

    PubMed

    Kakinuma, Yoshihiko; Katare, Rajesh G; Arikawa, Mikihiko; Muramoto, Kazuyo; Yamasaki, Fumiyasu; Sato, Takayuki

    2008-01-23

    Recently, we reported that acetylcholine-induced hypoxia-inducible factor-1alpha protects cardiomyocytes from hypoxia; however, the downstream factors reducing hypoxic stress are unknown. We identified apoptosis inhibitor (AI) gene as being differentially expressed between von Hippel Lindau (VHL) protein-positive cells with high levels of GRP78 expression and VHL-negative cells with lower GRP levels, using cDNA subtraction. AI decreased GRP78 level, suppressed mitochondrial function, reduced oxygen consumption and, ultimately, suppressed hypoxia-induced apoptosis. By contrast, knockdown of the AI gene increased mitochondrial function. Hypoxic cardiomyocytes and ischemic myocardium showed increased AI mRNA expression. These findings suggest that AI is involved in suppressing mitochondrial function, thereby leading to cellular stress eradication and consequently to protection during hypoxia.

  6. Mitochondrial depolarization in yeast zygotes inhibits clonal expansion of selfish mtDNA.

    PubMed

    Karavaeva, Iuliia E; Golyshev, Sergey A; Smirnova, Ekaterina A; Sokolov, Svyatoslav S; Severin, Fedor F; Knorre, Dmitry A

    2017-04-01

    Non-identical copies of mitochondrial DNA (mtDNA) compete with each other within a cell and the ultimate variant of mtDNA present depends on their relative replication rates. Using yeast Saccharomyces cerevisiae cells as a model, we studied the effects of mitochondrial inhibitors on the competition between wild-type mtDNA and mutant selfish mtDNA in heteroplasmic zygotes. We found that decreasing mitochondrial transmembrane potential by adding uncouplers or valinomycin changes the competition outcomes in favor of the wild-type mtDNA. This effect was significantly lower in cells with disrupted mitochondria fission or repression of the autophagy-related genes ATG8 , ATG32 or ATG33 , implying that heteroplasmic zygotes activate mitochondrial degradation in response to the depolarization. Moreover, the rate of mitochondrially targeted GFP turnover was higher in zygotes treated with uncoupler than in haploid cells or untreated zygotes. Finally, we showed that vacuoles of zygotes with uncoupler-activated autophagy contained DNA. Taken together, our data demonstrate that mitochondrial depolarization inhibits clonal expansion of selfish mtDNA and this effect depends on mitochondrial fission and autophagy. These observations suggest an activation of mitochondria quality control mechanisms in heteroplasmic yeast zygotes. © 2017. Published by The Company of Biologists Ltd.

  7. The acylphloroglucinols hyperforin and myrtucommulone A cause mitochondrial dysfunctions in leukemic cells by direct interference with mitochondria.

    PubMed

    Wiechmann, Katja; Müller, Hans; Fischer, Dagmar; Jauch, Johann; Werz, Oliver

    2015-11-01

    The acylphloroglucinols hyperforin (Hypf) and myrtucommulone A (MC A) induce death of cancer cells by triggering the intrinsic/mitochondrial pathway of apoptosis, accompanied by a loss of the mitochondrial membrane potential and release of cytochrome c. However, the upstream targets and mechanisms leading to these mitochondrial events in cancer cells remain elusive. Here we show that Hypf and MC A directly act on mitochondria derived from human leukemic HL-60 cells and thus, disrupt mitochondrial functions. In isolated mitochondria, Hypf and MC A efficiently impaired mitochondrial viability (EC50 = 0.2 and 0.9 µM, respectively), caused loss of the mitochondrial membrane potential (at 0.03 and 0.1 µM, respectively), and suppressed mitochondrial ATP synthesis (IC50 = 0.2 and 0.5 µM, respectively). Consequently, the compounds activated the adenosine monophosphate-activated protein kinase (AMPK) in HL-60 cells, a cellular energy sensor involved in apoptosis of cancer cells. Side by side comparison with the protonophore CCCP and the ATP synthase inhibitor oligomycin suggest that Hypf and MC A act as protonophores that primarily dissipate the mitochondrial membrane potential by direct interaction with the mitochondrial membrane. Together, Hypf and MC A abolish the mitochondrial proton motive force that on one hand impairs mitochondrial viability and on the other cause activation of AMPK due to lowered ATP levels which may further facilitate the intrinsic mitochondrial pathway of apoptosis.

  8. Reactive oxygen species-generating mitochondrial DNA mutation up-regulates hypoxia-inducible factor-1alpha gene transcription via phosphatidylinositol 3-kinase-Akt/protein kinase C/histone deacetylase pathway.

    PubMed

    Koshikawa, Nobuko; Hayashi, Jun-Ichi; Nakagawara, Akira; Takenaga, Keizo

    2009-11-27

    Lewis lung carcinoma-derived high metastatic A11 cells constitutively overexpress hypoxia-inducible factor (HIF)-1alpha mRNA compared with low metastatic P29 cells. Because A11 cells exclusively possess a G13997A mutation in the mitochondrial NADH dehydrogenase subunit 6 (ND6) gene, we addressed here a causal relationship between the ND6 mutation and the activation of HIF-1alpha transcription, and we investigated the potential mechanism. Using trans-mitochondrial cybrids between A11 and P29 cells, we found that the ND6 mutation was directly involved in HIF-1alpha mRNA overexpression. Stimulation of HIF-1alpha transcription by the ND6 mutation was mediated by overproduction of reactive oxygen species (ROS) and subsequent activation of phosphatidylinositol 3-kinase (PI3K)-Akt and protein kinase C (PKC) signaling pathways. The up-regulation of HIF-1alpha transcription was abolished by mithramycin A, an Sp1 inhibitor, but luciferase reporter and chromatin immunoprecipitation assays indicated that Sp1 was necessary but not sufficient for HIF-1alpha mRNA overexpression in A11 cells. On the other hand, trichostatin A, a histone deacetylase (HDAC) inhibitor, markedly suppressed HIF-1alpha transcription in A11 cells. In accordance with this, HDAC activity was high in A11 cells but low in P29 cells and in A11 cells treated with the ROS scavenger ebselene, the PI3K inhibitor LY294002, and the PKC inhibitor Ro31-8220. These results suggest that the ROS-generating ND6 mutation increases HIF-1alpha transcription via the PI3K-Akt/PKC/HDAC pathway, leading to HIF-1alpha protein accumulation in hypoxic tumor cells.

  9. Bioenergetics of Stromal Cells as a Predictor of Aggressive Prostate Cancer

    DTIC Science & Technology

    2016-11-01

    complex tissue preparations (human prostate and prostatic adenoma) and rat ventral prostate cells it was reported to exhibit high aerobic glycolysis [19...pyruvate dehydrogenase kinase), 2DG (inhibitor of hexokinase), or metformin (inhibitor of mitochondrial complex I) [41] as a therapeutic approach to... cyanide 4-(trifluoromethoxy) phenylhydrazone; GAPDH, Glyceraldehyde 3-phosphate dehydrogenase; GlyST, Glycolytic stress test; HPV, human papilloma virus

  10. Standardized flavonoid-rich fraction of Artemisia princeps Pampanini cv. Sajabal induces apoptosis via mitochondrial pathway in human cervical cancer HeLa cells.

    PubMed

    Ju, Hye-Kyung; Lee, Heon-Woo; Chung, Kyung-Sook; Choi, Jung-Hye; Cho, Jin-Gyeong; Baek, Nam-In; Chung, Hae-Gon; Lee, Kyung-Tae

    2012-05-07

    Artemisia princeps Pampanini is widely used in Eastern traditional medicine for the treatment of circulatory disorders, such as, dysmenorrhea, hematuria, hemorrhoids, and inflammation, and is also used to treat chronic conditions, such as, cancers, ulcers, and digestive disorders. The purpose of this study is to investigate the effect of a standardized flavonoid-rich fraction of Artemisia princeps Pampanini cv. Sajabal (FRAP) on the induction of apoptosis and the molecular mechanism involved in human cervical cancer HeLa cells. Human cervical cancer HeLa cells were treated with FRAP and apoptosis was detected by cell morphologic observation, annexin-V-PI staning and western blot analysis on the expression of protein associated with cell death. FRAP led to the cleavages of caspase-3, -8, and -9 and the cleavage of poly (ADP-ribose) polymerase (PARP) in HeLa cells. Caspase-3 inhibitor (z-DEVD-fmk), caspase-8 inhibitor (z-IETD-fmk), caspase-9 inhibitor (z-LEHD), and broad caspase inhibitor (z-VAD-fmk) significantly suppressed the FRAP-induced accumulation of annexin V positive cells. Furthermore, it was found that FRAP caused a loss of mitochondrial membrane potential (MMP) and the release of cytochrome c to the cytosol. Furthermore, the overexpression of Bcl-xL significantly prevented FRAP-induced apoptosis, MMP changes, and the activations of caspase-3, -8, and -9. Interestingly, pretreatment with caspase-8 inhibitor significantly reduced the FRAP-induced activation of caspase-3 but not that of caspase-9, whereas the caspase-3 inhibitor, z-DEVD-fmk, markedly attenuated the FRAP-induced activation of caspase-8. In BALB/c(nu/nu) mice bearing a HeLa xenograft, FRAP dosed at 25 or 50mg/kg significantly inhibited tumor growth. Our results indicate caspase-mediated activation of the mitochondrial death pathway plays a critical role in the FRAP-induced apoptosis of HeLa cells and that FRAP inhibits the in vivo tumor growth of HeLa xenograft mice. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  11. Mitochondrial O-GlcNAc Transferase (mOGT) Regulates Mitochondrial Structure, Function, and Survival in HeLa Cells*

    PubMed Central

    Sacoman, Juliana L.; Dagda, Raul Y.; Burnham-Marusich, Amanda R.; Dagda, Ruben K.; Berninsone, Patricia M.

    2017-01-01

    O-Linked N-acetylglucosamine transferase (OGT) catalyzes O-GlcNAcylation of target proteins and regulates numerous biological processes. OGT is encoded by a single gene that yields nucleocytosolic and mitochondrial isoforms. To date, the role of the mitochondrial isoform of OGT (mOGT) remains largely unknown. Using high throughput proteomics, we identified 84 candidate mitochondrial glycoproteins, of which 44 are novel. Notably, two of the candidate glycoproteins identified (cytochrome oxidase 2 (COX2) and NADH:ubiquinone oxidoreductase core subunit 4 (MT-ND4)) are encoded by mitochondrial DNA. Using siRNA in HeLa cells, we found that reducing endogenous mOGT expression leads to alterations in mitochondrial structure and function, including Drp1-dependent mitochondrial fragmentation, reduction in mitochondrial membrane potential, and a significant loss of mitochondrial content in the absence of mitochondrial ROS. These defects are associated with a compensatory increase in oxidative phosphorylation per mitochondrion. mOGT is also critical for cell survival; siRNA-mediated knockdown of endogenous mOGT protected cells against toxicity mediated by rotenone, a complex I inhibitor. Conversely, reduced expression of both nucleocytoplasmic (ncOGT) and mitochondrial (mOGT) OGT isoforms is associated with increased mitochondrial respiration and elevated glycolysis, suggesting that ncOGT is a negative regulator of cellular bioenergetics. Last, we determined that mOGT is probably involved in the glycosylation of a restricted set of mitochondrial targets. We identified four proteins implicated in mitochondrial biogenesis and metabolism regulation as candidate substrates of mOGT, including leucine-rich PPR-containing protein and mitochondrial aconitate hydratase. Our findings suggest that mOGT is catalytically active in vivo and supports mitochondrial structure, health, and survival, whereas ncOGT predominantly regulates cellular bioenergetics. PMID:28100784

  12. Improved mitochondrial function underlies the protective effect of pirfenidone against tubulointerstitial fibrosis in 5/6 nephrectomized rats.

    PubMed

    Chen, Jun-Feng; Liu, Hong; Ni, Hai-Feng; Lv, Lin-Li; Zhang, Ming-Hui; Zhang, Ai-Hua; Tang, Ri-Ning; Chen, Ping-Sheng; Liu, Bi-Cheng

    2013-01-01

    Dysfunctional mitochondria participate in the progression of chronic kidney disease (CKD). Pirfenidone is a newly identified anti-fibrotic drug. However, its mechanism remains unclear. Mitochondrial dysfunction is an early event that occurs prior to the onset of renal fibrosis. In this context, we investigated the protective effect of pirfenidone on mitochondria and its relevance to apoptosis and oxidative stress in renal proximal tubular cells. A remnant kidney rat model was established. Human renal proximal tubular epithelial cells (HK2) using rotenone, a mitochondrial respiratory chain complex Ι inhibitor were further investigated in vitro to examine the mitochondrial protective effect of pirfenidone. Pirfenidone protected mitochondrial structures and functions by stabilizing the mitochondrial membrane potential, maintaining ATP production and improving the mitochondrial DNA (mtDNA) copy number. Pirfenidone decreased tubular cell apoptosis by inhibiting the mitochondrial apoptotic signaling pathway. Pirfenidone also reduced oxidative stress by enhancing manganese superoxide dismutase (Mn-SOD) and inhibiting intracellular reactive oxygen species (ROS) generation, which suggested that the anti-oxidant effects occurred at least partially via the mitochondrial pathway. Pirfenidone may be effective prior to the onset of renal fibrosis because this drug exerts its anti-fibrotic effect by protection of mitochondria in renal proximal tubular cells.

  13. Altered Skeletal Muscle Mitochondrial Proteome As the Basis of Disruption of Mitochondrial Function in Diabetic Mice

    PubMed Central

    Zabielski, Piotr; Lanza, Ian R.; Gopala, Srinivas; Holtz Heppelmann, Carrie J.; Bergen, H. Robert; Dasari, Surendra

    2016-01-01

    Insulin plays pivotal role in cellular fuel metabolism in skeletal muscle. Despite being the primary site of energy metabolism, the underlying mechanism on how insulin deficiency deranges skeletal muscle mitochondrial physiology remains to be fully understood. Here we report an important link between altered skeletal muscle proteome homeostasis and mitochondrial physiology during insulin deficiency. Deprivation of insulin in streptozotocin-induced diabetic mice decreased mitochondrial ATP production, reduced coupling and phosphorylation efficiency, and increased oxidant emission in skeletal muscle. Proteomic survey revealed that the mitochondrial derangements during insulin deficiency were related to increased mitochondrial protein degradation and decreased protein synthesis, resulting in reduced abundance of proteins involved in mitochondrial respiration and β-oxidation. However, a paradoxical upregulation of proteins involved in cellular uptake of fatty acids triggered an accumulation of incomplete fatty acid oxidation products in skeletal muscle. These data implicate a mismatch of β-oxidation and fatty acid uptake as a mechanism leading to increased oxidative stress in diabetes. This notion was supported by elevated oxidative stress in cultured myotubes exposed to palmitate in the presence of a β-oxidation inhibitor. Together, these results indicate that insulin deficiency alters the balance of proteins involved in fatty acid transport and oxidation in skeletal muscle, leading to impaired mitochondrial function and increased oxidative stress. PMID:26718503

  14. Improved Mitochondrial Function Underlies the Protective Effect of Pirfenidone against Tubulointerstitial Fibrosis in 5/6 Nephrectomized Rats

    PubMed Central

    Chen, Jun-Feng; Liu, Hong; Ni, Hai-Feng; Lv, Lin-Li; Zhang, Ming-Hui; Zhang, Ai-Hua; Tang, Ri-Ning; Chen, Ping-Sheng; Liu, Bi-Cheng

    2013-01-01

    Dysfunctional mitochondria participate in the progression of chronic kidney disease (CKD). Pirfenidone is a newly identified anti-fibrotic drug. However, its mechanism remains unclear. Mitochondrial dysfunction is an early event that occurs prior to the onset of renal fibrosis. In this context, we investigated the protective effect of pirfenidone on mitochondria and its relevance to apoptosis and oxidative stress in renal proximal tubular cells. A remnant kidney rat model was established. Human renal proximal tubular epithelial cells (HK2) using rotenone, a mitochondrial respiratory chain complex Ι inhibitor were further investigated in vitro to examine the mitochondrial protective effect of pirfenidone. Pirfenidone protected mitochondrial structures and functions by stabilizing the mitochondrial membrane potential, maintaining ATP production and improving the mitochondrial DNA (mtDNA) copy number. Pirfenidone decreased tubular cell apoptosis by inhibiting the mitochondrial apoptotic signaling pathway. Pirfenidone also reduced oxidative stress by enhancing manganese superoxide dismutase (Mn-SOD) and inhibiting intracellular reactive oxygen species (ROS) generation, which suggested that the anti-oxidant effects occurred at least partially via the mitochondrial pathway. Pirfenidone may be effective prior to the onset of renal fibrosis because this drug exerts its anti-fibrotic effect by protection of mitochondria in renal proximal tubular cells. PMID:24349535

  15. Off-Target Effects of Drugs that Disrupt Human Mitochondrial DNA Maintenance

    PubMed Central

    Young, Matthew J.

    2017-01-01

    Nucleoside reverse transcriptase inhibitors (NRTIs) were the first drugs used to treat human immunodeficiency virus (HIV) the cause of acquired immunodeficiency syndrome. Development of severe mitochondrial toxicity has been well documented in patients infected with HIV and administered NRTIs. In vitro biochemical experiments have demonstrated that the replicative mitochondrial DNA (mtDNA) polymerase gamma, Polg, is a sensitive target for inhibition by metabolically active forms of NRTIs, nucleotide reverse transcriptase inhibitors (NtRTIs). Once incorporated into newly synthesized daughter strands NtRTIs block further DNA polymerization reactions. Human cell culture and animal studies have demonstrated that cell lines and mice exposed to NRTIs display mtDNA depletion. Further complicating NRTI off-target effects on mtDNA maintenance, two additional DNA polymerases, Pol beta and PrimPol, were recently reported to localize to mitochondria as well as the nucleus. Similar to Polg, in vitro work has demonstrated both Pol beta and PrimPol incorporate NtRTIs into nascent DNA. Cell culture and biochemical experiments have also demonstrated that antiviral ribonucleoside drugs developed to treat hepatitis C infection act as off-target substrates for POLRMT, the mitochondrial RNA polymerase and primase. Accompanying the above-mentioned topics, this review examines: (1) mtDNA maintenance in human health and disease, (2) reports of DNA polymerases theta and zeta (Rev3) localizing to mitochondria, and (3) additional drugs with off-target effects on mitochondrial function. Lastly, mtDNA damage may induce cell death; therefore, the possibility of utilizing compounds that disrupt mtDNA maintenance to kill cancer cells is discussed. PMID:29214156

  16. Phenolic extract from oleaster (Olea europaea var. Sylvestris) leaves reduces colon cancer growth and induces caspase-dependent apoptosis in colon cancer cells via the mitochondrial apoptotic pathway.

    PubMed

    Zeriouh, Wafa; Nani, Abdelhafid; Belarbi, Meriem; Dumont, Adélie; de Rosny, Charlotte; Aboura, Ikram; Ghanemi, Fatima Zahra; Murtaza, Babar; Patoli, Danish; Thomas, Charles; Apetoh, Lionel; Rébé, Cédric; Delmas, Dominique; Khan, Naim Akhtar; Ghiringhelli, François; Rialland, Mickael; Hichami, Aziz

    2017-01-01

    Dietary polyphenols, derived from natural products, have received a great interest for their chemopreventive properties against cancer. In this study, we investigated the effects of phenolic extract of the oleaster leaves (PEOL) on tumor growth in mouse model and on cell death in colon cancer cell lines. We assessed the effect of oleaster leaf infusion on HCT116 (human colon cancer cell line) xenograft growth in athymic nude mice. We observed that oleaster leaf polyphenol-rich infusion limited HCT116 tumor growth in vivo. Investigations of PEOL on two human CRC cell lines showed that PEOL induced apoptosis in HCT116 and HCT8 cells. We demonstrated an activation of caspase-3, -7 and -9 by PEOL and that pre-treatment with the pan-caspase inhibitor, N-benzyloxycarbonyl-Val-Ala-Asp-fluoromethylketone (z-VAD-fmk), prevented PEOL-induced cell death. We observed an involvement of the mitochondrial pathway in PEOL-induced apoptosis evidenced by reactive oxygen species (ROS) production, a decrease of mitochondrial membrane potential, and cytochrome c release. Increase in intracellular Ca2+ concentration induced by PEOL represents the early event involved in mitochondrial dysfunction, ROS-induced endoplasmic reticulum (ER) stress and apoptosis induced by PEOL, as ruthenium red, an inhibitor of mitochondrial calcium uptake inhibited apoptotic effect of PEOL, BAPTA/AM inhibited PEOL-induced ROS generation and finally, N-acetyl-L-cysteine reversed ER stress and apoptotic effect of PEOL. These results demonstrate that polyphenols from oleaster leaves might have a strong potential as chemopreventive agent in colorectal cancer.

  17. Mitochondrial DNA inheritance in the human fungal pathogen Cryptococcus gattii.

    PubMed

    Wang, Zixuan; Wilson, Amanda; Xu, Jianping

    2015-02-01

    The inheritance of mitochondrial DNA (mtDNA) is predominantly uniparental in most sexual eukaryotes. In this study, we examined the mitochondrial inheritance pattern of Cryptococcus gattii, a basidiomycetous yeast responsible for the recent and ongoing outbreak of cryptococcal infections in the US Pacific Northwest and British Columbia (especially Vancouver Island) in Canada. Using molecular markers, we analyzed the inheritance of mtDNA in 14 crosses between strains within and between divergent lineages in C. gattii. Consistent with results from recent studies, our analyses identified significant variations in mtDNA inheritance patterns among strains and crosses, ranging from strictly uniparental to biparental. For two of the crosses that showed uniparental mitochondrial inheritance in standard laboratory conditions, we further investigated the effects of the following environmental variables on mtDNA inheritance: UV exposure, temperature, and treatments with the methylation inhibitor 5-aza-2'-deoxycytidine and with the ubiquitination inhibitor ammonium chloride. Interestingly, one of these crosses showed no response to these environmental variables while the other exhibited diverse patterns ranging from complete uniparental inheritance of the MATa parent mtDNA, to biparental inheritance, and to a significant bias toward inheritance of the MATα parental mtDNA. Our results indicate that mtDNA inheritance in C. gattii differs from that in its closely related species Cryptococcus neoformans. Copyright © 2015 Elsevier Inc. All rights reserved.

  18. Flurbiprofen, a Cyclooxygenase Inhibitor, Protects Mice from Hepatic Ischemia/Reperfusion Injury by Inhibiting GSK-3β Signaling and Mitochondrial Permeability Transition

    PubMed Central

    Fu, Hailong; Chen, Huan; Wang, Chengcai; Xu, Haitao; Liu, Fang; Guo, Meng; Wang, Quanxing; Shi, Xueyin

    2012-01-01

    Flurbiprofen acts as a nonselective inhibitor for cyclooxygenases (COX-1 and COX-2), but its impact on hepatic ischemia/reperfusion (I/R) injury remains unclear. Mice were randomized into sham, I/R and flurbiprofen (Flurb) groups. The hepatic artery and portal vein to the left and median liver lobes were occluded for 90 min and unclamped for reperfusion to establish a model of segmental (70%) warm hepatic ischemia. Pretreatment of animals with flurbiprofen prior to I/R insult significantly decreased serum alanine aminotransferase (ALT), aspartate aminotransferase (AST) and lactate dehydrogenase (LDH), and prevented hepatocytes from I/R-induced apoptosis/necrosis. Moreover, flurbiprofen dramatically inhibited mitochondrial permeability transition (MPT) pore opening, and thus prevented mitochondrial-related cell death and apoptosis. Mechanistic studies revealed that flurbiprofen markedly inhibited glycogen synthase kinase (GSK)-3β activity and increased phosphorylation of GSK-3β at Ser9, which, consequently, could modulate the adenine nucleotide translocase (ANT)–cyclophilin D (CyP-D) complex and the susceptibility to MPT induction. Therefore, administration of flurbiprofen prior to hepatic I/R ameliorates mitochondrial and hepatocellular damage through inhibition of MPT and inactivation of GSK-3β, and provides experimental evidence for clinical use of flurbiprofen to protect liver function in surgical settings in addition to its conventional use for pain relief. PMID:22714712

  19. Trimetazidine prevents palmitate-induced mitochondrial fission and dysfunction in cultured cardiomyocytes.

    PubMed

    Kuzmicic, Jovan; Parra, Valentina; Verdejo, Hugo E; López-Crisosto, Camila; Chiong, Mario; García, Lorena; Jensen, Michael D; Bernlohr, David A; Castro, Pablo F; Lavandero, Sergio

    2014-10-01

    Metabolic and cardiovascular disease patients have increased plasma levels of lipids and, specifically, of palmitate, which can be toxic for several tissues. Trimetazidine (TMZ), a partial inhibitor of lipid oxidation, has been proposed as a metabolic modulator for several cardiovascular pathologies. However, its mechanism of action is controversial. Given the fact that TMZ is able to alter mitochondrial metabolism, we evaluated the protective role of TMZ on mitochondrial morphology and function in an in vitro model of lipotoxicity induced by palmitate. We treated cultured rat cardiomyocytes with BSA-conjugated palmitate (25 nM free), TMZ (0.1-100 μM), or a combination of both. We evaluated mitochondrial morphology and lipid accumulation by confocal fluorescence microscopy, parameters of mitochondrial metabolism (mitochondrial membrane potential, oxygen consumption rate [OCR], and ATP levels), and ceramide production by mass spectrometry and indirect immunofluorescence. Palmitate promoted mitochondrial fission evidenced by a decrease in mitochondrial volume (50%) and an increase in the number of mitochondria per cell (80%), whereas TMZ increased mitochondrial volume (39%), and decreased mitochondrial number (56%), suggesting mitochondrial fusion. Palmitate also decreased mitochondrial metabolism (ATP levels and OCR), while TMZ potentiated all the metabolic parameters assessed. Moreover, pretreatment with TMZ protected the cardiomyocytes from palmitate-induced mitochondrial fission and dysfunction. TMZ also increased lipid accumulation in cardiomyocytes, and prevented palmitate-induced ceramide production. Our data show that TMZ protects cardiomyocytes by changing intracellular lipid management. Thus, the beneficial effects of TMZ on patients with different cardiovascular pathologies can be related to modulation of the mitochondrial morphology and function. Copyright © 2014 Elsevier Inc. All rights reserved.

  20. The effect of ethidium bromide and chloramphenicol on mitochondrial biogenesis in primary human fibroblasts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kao, Li-Pin; Ovchinnikov, Dmitry; Wolvetang, Ernst, E-mail: e.wolvetang@uq.edu.au

    2012-05-15

    The expression of mitochondrial components is controlled by an intricate interplay between nuclear transcription factors and retrograde signaling from mitochondria. The role of mitochondrial DNA (mtDNA) and mtDNA-encoded proteins in mitochondrial biogenesis is, however, poorly understood and thus far has mainly been studied in transformed cell lines. We treated primary human fibroblasts with ethidium bromide (EtBr) or chloramphenicol for six weeks to inhibit mtDNA replication or mitochondrial protein synthesis, respectively, and investigated how the cells recovered from these insults two weeks after removal of the drugs. Although cellular growth and mitochondrial gene expression were severely impaired after both inhibitor treatmentsmore » we observed marked differences in mitochondrial structure, membrane potential, glycolysis, gene expression, and redox status between fibroblasts treated with EtBr and chloramphenicol. Following removal of the drugs we further detected clear differences in expression of both mtDNA-encoded genes and nuclear transcription factors that control mitochondrial biogenesis, suggesting that the cells possess different compensatory mechanisms to recover from drug-induced mitochondrial dysfunction. Our data reveal new aspects of the interplay between mitochondrial retrograde signaling and the expression of nuclear regulators of mitochondrial biogenesis, a process with direct relevance to mitochondrial diseases and chloramphenicol toxicity in humans. -- Highlights: ► Cells respond to certain environmental toxins by increasing mitochondrial biogenesis. ► We investigated the effect of Chloramphenicol and EtBr in primary human fibroblasts. ► Inhibiting mitochondrial protein synthesis or DNA replication elicit different effects. ► We provide novel insights into the cellular responses toxins and antibiotics.« less

  1. Reconstitution of the anti-apoptotic Bcl-2 protein into lipid membranes and biophysical evidence for its detergent-driven association with the pro-apoptotic Bax protein.

    PubMed

    Wallgren, Marcus; Lidman, Martin; Pedersen, Anders; Brännström, Kristoffer; Karlsson, B Göran; Gröbner, Gerhard

    2013-01-01

    The anti-apoptotic B-cell CLL/lymphoma-2 (Bcl-2) protein and its counterpart, the pro-apoptotic Bcl-2-associated X protein (Bax), are key players in the regulation of the mitochondrial pathway of apoptosis. However, how they interact at the mitochondrial outer membrane (MOM) and there determine whether the cell will live or be sentenced to death remains unknown. Competing models have been presented that describe how Bcl-2 inhibits the cell-killing activity of Bax, which is common in treatment-resistant tumors where Bcl-2 is overexpressed. Some studies suggest that Bcl-2 binds directly to and sequesters Bax, while others suggest an indirect process whereby Bcl-2 blocks BH3-only proteins and prevents them from activating Bax. Here we present the results of a biophysical study in which we investigated the putative interaction of solubilized full-length human Bcl-2 with Bax and the scope for incorporating the former into a native-like lipid environment. Far-UV circular dichroism (CD) spectroscopy was used to detect direct Bcl-2-Bax-interactions in the presence of polyoxyethylene-(23)-lauryl-ether (Brij-35) detergent at a level below its critical micelle concentration (CMC). Additional surface plasmon resonance (SPR) measurements confirmed this observation and revealed a high affinity between the Bax and Bcl-2 proteins. Upon formation of this protein-protein complex, Bax also prevented the binding of antimycin A2 (a known inhibitory ligand of Bcl-2) to the Bcl-2 protein, as fluorescence spectroscopy experiments showed. In addition, Bcl-2 was able to form mixed micelles with Triton X-100 solubilized neutral phospholipids in the presence of high concentrations of Brij-35 (above its CMC). Following detergent removal, the integral membrane protein was found to have been fully reconstituted into a native-like membrane environment, as confirmed by ultracentrifugation and subsequent SDS-PAGE experiments.

  2. Synergistic Protective Effects of Mitochondrial Division Inhibitor 1 and Mitochondria-Targeted Small Peptide SS31 in Alzheimer's Disease.

    PubMed

    Reddy, P Hemachandra; Manczak, Maria; Yin, XiangLing; Reddy, Arubala P

    2018-01-01

    The purpose of our study was to determine the synergistic protective effects of mitochondria-targeted antioxidant SS31 and mitochondria division inhibitor 1 (Mdivi1) in Alzheimer's disease (AD). Using biochemical methods, we assessed mitochondrial function by measuring the levels of hydrogen peroxide, lipid peroxidation, cytochrome c oxidase activity, mitochondrial ATP, and GTPase Drp1 enzymatic activity in mutant AβPP cells. Using biochemical methods, we also measured cell survival and apoptotic cell death. Amyloid-β (Aβ) levels were measured using sandwich ELISA, and using real-time quantitative RT-PCR, we assessed mtDNA (mtDNA) copy number in relation to nuclear DNA (nDNA) in all groups of cells. We found significantly reduced levels of Aβ40 and Aβ42 in mutant AβPP cells treated with SS31, Mdivi1, and SS31+Mdivi1, and the reduction of Aβ42 levels were much higher in SS31+Mdivi1 treated cells than individual treatments of SS31 and Mdivi1. The levels of mtDNA copy number and cell survival were significantly increased in SS31, Mdivi1, and SS31+Mdivi1 treated mutant AβPP cells; however, the increased levels of mtDNA copy number and cell survival were much higher in SS31+Mdivi1 treated cells than individual treatments of SS31 and Mdivi1. Mitochondrial dysfunction is significantly reduced in SS31, Mdivi1, and SS31+Mdivi1 treated mutant AβPP cells; however, the reduction is much higher in cells treated with both SS31+Mdvi1. Similarly, GTPase Drp1 activity is reduced in all treatments, but reduced much higher in SS31+Mdivi1 treated cells. These observations strongly suggest that combined treatment of SS31+Mdivi1 is effective than individual treatments of SS31 and Mdivi1. Therefore, we propose that combined treatment of SS31+Mdivi1 is a better therapeutic strategy for AD. Ours is the first study to investigate combined treatment of mitochondria-targeted antioxidant SS31 and mitochondrial division inhibitor 1 in AD neurons.

  3. Mitochondrial unfolded protein response controls matrix pre-RNA processing and translation.

    PubMed

    Münch, Christian; Harper, J Wade

    2016-06-30

    The mitochondrial matrix is unique in that it must integrate the folding and assembly of proteins derived from the nuclear and mitochondrial genomes. In Caenorhabditis elegans, the mitochondrial unfolded protein response (UPRmt) senses matrix protein misfolding and induces a program of nuclear gene expression, including mitochondrial chaperonins, to promote mitochondrial proteostasis. While misfolded mitochondrial-matrix-localized ornithine transcarbamylase induces chaperonin expression, our understanding of mammalian UPRmt is rudimentary, reflecting a lack of acute triggers for UPRmt activation. This limitation has prevented analysis of the cellular responses to matrix protein misfolding and the effects of UPRmt on mitochondrial translation to control protein folding loads. Here we combine pharmacological inhibitors of matrix-localized HSP90/TRAP1 (ref. 8) or LON protease, which promote chaperonin expression, with global transcriptional and proteomic analysis to reveal an extensive and acute response of human cells to UPRmt. This response encompasses widespread induction of nuclear genes, including matrix-localized proteins involved in folding, pre-RNA processing and translation. Functional studies revealed rapid but reversible translation inhibition in mitochondria occurring concurrently with defects in pre-RNA processing caused by transcriptional repression and LON-dependent turnover of the mitochondrial pre-RNA processing nuclease MRPP3 (ref. 10). This study reveals that acute mitochondrial protein folding stress activates both increased chaperone availability within the matrix and reduced matrix-localized protein synthesis through translational inhibition, and provides a framework for further dissection of mammalian UPRmt.

  4. Dynamics of enhanced mitochondrial respiration in female compared with male rat cerebral arteries.

    PubMed

    Rutkai, Ibolya; Dutta, Somhrita; Katakam, Prasad V; Busija, David W

    2015-11-01

    Mitochondrial respiration has never been directly examined in intact cerebral arteries. We tested the hypothesis that mitochondrial energetics of large cerebral arteries ex vivo are sex dependent. The Seahorse XFe24 analyzer was used to examine mitochondrial respiration in isolated cerebral arteries from adult male and female Sprague-Dawley rats. We examined the role of nitric oxide (NO) on mitochondrial respiration under basal conditions, using N(ω)-nitro-l-arginine methyl ester, and following pharmacological challenge using diazoxide (DZ), and also determined levels of mitochondrial and nonmitochondrial proteins using Western blot, and vascular diameter responses to DZ. The components of mitochondrial respiration including basal respiration, ATP production, proton leak, maximal respiration, and spare respiratory capacity were elevated in females compared with males, but increased in both male and female arteries in the presence of the NOS inhibitor. Although acute DZ treatment had little effect on mitochondrial respiration of male arteries, it decreased the respiration in female arteries. Levels of mitochondrial proteins in Complexes I-V and the voltage-dependent anion channel protein were elevated in female compared with male cerebral arteries. The DZ-induced vasodilation was greater in females than in males. Our findings show that substantial sex differences in mitochondrial respiratory dynamics exist in large cerebral arteries and may provide the mechanistic basis for observations that the female cerebral vasculature is more adaptable after injury. Copyright © 2015 the American Physiological Society.

  5. Drp1-dependent mitophagy protects against cisplatin-induced apoptosis of renal tubular epithelial cells by improving mitochondrial function

    PubMed Central

    Qi, Jia; Duan, Suyan; Huang, Zhimin; Zhang, Chengning; Wu, Lin; Zeng, Ming; Zhang, Bo; Wang, Ningning; Mao, Huijuan; Zhang, Aihua; Xing, Changying; Yuan, Yanggang

    2017-01-01

    Cisplatin chemotherapy often causes acute kidney injury (AKI) in cancer patients. There is increasing evidence that mitochondrial dysfunction plays an important role in cisplatin-induced nephrotoxicity. Degradation of damaged mitochondria is carried out by mitophagy. Although mitophagy is considered of particular importance in protecting against AKI, little is known of the precise role of mitophagy and its molecular mechanisms during cisplatin-induced nephrotoxicity. Also, evidence that activation of mitophagy improved mitochondrial function is lacking. Furthermore, several evidences have shown that mitochondrial fission coordinates with mitophagy. The aim of this study was to investigate whether activation of mitophagy protects against mitochondrial dysfunction and renal proximal tubular cells injury during cisplatin treatment. The effect of mitochondrial fission on mitophagy was also investigated. In cultured human renal proximal tubular cells, we observed that 3-methyladenine, a pharmacological inhibitor of autophagy, blocked mitophagy and exacerbated cisplatin-induced mitochondrial dysfunction and cells injury. In contrast, autophagy activator rapamycin enhanced mitophagy and protected against the harmful effects of cisplatin on mitochondrial function and cells viability. Suppression of mitochondrial fission by knockdown of its main regulator dynamin-related protein-1 (Drp1) decreased cisplatin-induced mitophagy. Meanwhile, Drp1 suppression protected against cisplatin-induced cells injury by inhibiting mitochondrial dysfunction. Our results provide evidence that Drp1-depedent mitophagy has potential as renoprotective targets for the treatment of cisplatin-induced AKI. PMID:28423497

  6. Effects of Incretin-Based Therapies on Neuro-Cardiovascular Dynamic Changes Induced by High Fat Diet in Rats.

    PubMed

    Marques-Neto, Silvio Rodrigues; Castiglione, Raquel Carvalho; Pontes, Aiza; Oliveira, Dahienne Ferreira; Ferraz, Emanuelle Baptista; Nascimento, José Hamilton Matheus; Bouskela, Eliete

    2016-01-01

    Obesity promotes cardiac and cerebral microcirculatory dysfunction that could be improved by incretin-based therapies. However, the effects of this class of compounds on neuro-cardiovascular system damage induced by high fat diet remain unclear. The aim of this study was to investigate the effects of incretin-based therapies on neuro-cardiovascular dysfunction induced by high fat diet in Wistar rats. We have evaluated fasting glucose levels and insulin resistance, heart rate variability quantified on time and frequency domains, cerebral microcirculation by intravital microscopy, mean arterial blood pressure, ventricular function and mitochondrial swelling. High fat diet worsened biometric and metabolic parameters and promoted deleterious effects on autonomic, myocardial and haemodynamic parameters, decreased capillary diameters and increased functional capillary density in the brain. Biometric and metabolic parameters were better improved by glucagon like peptide-1 (GLP-1) compared with dipeptdyl peptidase-4 (DPP-4) inhibitor. On the other hand, both GLP-1 agonist and DPP-4 inhibitor reversed the deleterious effects of high fat diet on autonomic, myocardial, haemodynamic and cerebral microvascular parameters. GLP-1 agonist and DPP-4 inhibitor therapy also increased mitochondrial permeability transition pore resistance in brain and heart tissues of rats subjected to high fat diet. Incretin-based therapies improve deleterious cardiovascular effects induced by high fat diet and may have important contributions on the interplay between neuro-cardiovascular dynamic controls through mitochondrial dysfunction associated to metabolic disorders.

  7. Probing the structural and molecular basis of nucleotide selectivity by human mitochondrial DNA polymerase γ

    PubMed Central

    Sohl, Christal D.; Szymanski, Michal R.; Mislak, Andrea C.; Shumate, Christie K.; Amiralaei, Sheida; Schinazi, Raymond F.; Anderson, Karen S.; Yin, Y. Whitney

    2015-01-01

    Nucleoside analog reverse transcriptase inhibitors (NRTIs) are the essential components of highly active antiretroviral (HAART) therapy targeting HIV reverse transcriptase (RT). NRTI triphosphates (NRTI-TP), the biologically active forms, act as chain terminators of viral DNA synthesis. Unfortunately, NRTIs also inhibit human mitochondrial DNA polymerase (Pol γ), causing unwanted mitochondrial toxicity. Understanding the structural and mechanistic differences between Pol γ and RT in response to NRTIs will provide invaluable insight to aid in designing more effective drugs with lower toxicity. The NRTIs emtricitabine [(-)-2,3′-dideoxy-5-fluoro-3′-thiacytidine, (-)-FTC] and lamivudine, [(-)-2,3′-dideoxy-3′-thiacytidine, (-)-3TC] are both potent RT inhibitors, but Pol γ discriminates against (-)-FTC-TP by two orders of magnitude better than (-)-3TC-TP. Furthermore, although (-)-FTC-TP is only slightly more potent against HIV RT than its enantiomer (+)-FTC-TP, it is discriminated by human Pol γ four orders of magnitude more efficiently than (+)-FTC-TP. As a result, (-)-FTC is a much less toxic NRTI. Here, we present the structural and kinetic basis for this striking difference by identifying the discriminator residues of drug selectivity in both viral and human enzymes responsible for substrate selection and inhibitor specificity. For the first time, to our knowledge, this work illuminates the mechanism of (-)-FTC-TP differential selectivity and provides a structural scaffold for development of novel NRTIs with lower toxicity. PMID:26124101

  8. Blueberry and malvidin inhibit cell cycle progression and induce mitochondrial-mediated apoptosis by abrogating the JAK/STAT-3 signalling pathway.

    PubMed

    Baba, Abdul Basit; Nivetha, Ramesh; Chattopadhyay, Indranil; Nagini, Siddavaram

    2017-11-01

    Blueberries, a rich source of anthocyanins have attracted considerable attention as functional foods that confer immense health benefits including anticancer properties. Herein, we assessed the potential of blueberry and its major constituent malvidin to target STAT-3, a potentially druggable oncogenic transcription factor with high therapeutic index. We demonstrate that blueberry abrogates the JAK/STAT-3 pathway and modulates downstream targets that influence cell proliferation and apoptosis in a hamster model of oral oncogenesis. Further, we provide mechanistic evidence that blueberry and malvidin function as STAT-3 inhibitors in the oral cancer cell line SCC131. Blueberry and malvidin suppressed STAT-3 phosphorylation and nuclear translocation thereby inducing cell cycle arrest and mitochondrial-mediated apoptosis. However, the combination of blueberry and malvidin with the STAT-3 inhibitor S3I-201 was more efficacious in STAT-3 inhibition relative to single agents. The present study has provided leads for the development of novel combinations of compounds that can serve as inhibitors of STAT-mediated oncogenic signalling. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. The dopamine-D2-receptor agonist ropinirole dose-dependently blocks the Ca2+-triggered permeability transition of mitochondria.

    PubMed

    Parvez, Suhel; Winkler-Stuck, Kirstin; Hertel, Silvia; Schönfeld, Peter; Siemen, Detlef

    2010-01-01

    Ropinirole, an agonist of the post-synaptic dopamine D2-receptor, exerts neuroprotective activity. The mechanism is still under discussion. Assuming that this neuroprotection might be associated with inhibition of the apoptotic cascade underlying cell death, we examined a possible effect of ropinirole on the permeability transition pore (mtPTP) in the mitochondrial inner membrane. Using isolated rat liver mitochondria, the effect of ropinirole was studied on Ca2+-triggered large amplitude swelling, membrane depolarization and cytochrome c release. In addition, the effect of ropinirole on oxidation of added, membrane-impermeable NADH was investigated. The results revealed doubtlessly, that ropinirole can inhibit permeability transition. In patch-clamp experiments on mitoplasts, we show directly that ropinirole interacts with the mtPTP. Thus, ropinirole reversibly inhibits the opening of mtPTP with an IC50 of 3.4 microM and a Hill coefficient of 1.3. In both systems (i.e. energized mitochondria and mitoplasts) the inhibitory effect on permeability transition was attenuated by increasing concentrations of inorganic phosphate. In addition, we showed with antimycin A-treated mitochondria that ropinirole failed to suppress respiratory chain-linked reactive oxygen species release. In conclusion, our data suggest that the neuroprotective activity of ropinirole is due to the blockade of the Ca2+-triggered permeability transition. Copyright © 2010 Elsevier B.V. All rights reserved.

  10. The components of an α-glycerophosphate cycle and their relation to oxidative metabolism in the lens

    PubMed Central

    Griffiths, M. H.

    1966-01-01

    1. The concentration of ATP in a lens brei is maintained when the brei is incubated in oxygen with α-glycerophosphate. Lack of α-glycerophosphate or incubation in nitrogen causes the concentration to decrease. α-Glycerophosphate has some effect under anaerobic conditions but this is not sufficient to account for the maintenance in oxygen. 2. Manometric experiments show that α-glycerophosphate enhances the respiration of lens preparations. This respiration can be further increased by the addition of ADP and is abolished by cyanide and antimycin. The inference from these experiments is that a mitochondrial system able to oxidize α-glycerophosphate is present, i.e. the particulate half of the α-glycerophosphate cycle. 3. More than the calculated proportion of NADH is used when limiting amounts of dihydroxyacetone phosphate are added to lens tissue in spectrophotometric experiments. Dihydroxyacetone phosphate is therefore regenerated and an α-glycerophosphate cycle is operative. 4. A preparation of a particulate α-glycerophosphate dehydrogenase that takes up oxygen with methylene blue as electron acceptor is described. 5. Methods for obtaining mitochondria from lens are compared, and a useful extraction medium is defined. 6. Mitochondria with activities of the same order of magnitude as those obtained from liver, with α-glycerophosphate and glutamate as substrates, are prepared from epithelium detached from the capsule; some respiratory control is observed. PMID:4290550

  11. Mitochondrial dysfunction in blood cells from amyotrophic lateral sclerosis patients.

    PubMed

    Ehinger, Johannes K; Morota, Saori; Hansson, Magnus J; Paul, Gesine; Elmér, Eskil

    2015-06-01

    Mitochondrial dysfunction is implicated in amyotrophic lateral sclerosis, where the progressive degeneration of motor neurons results in muscle atrophy, paralysis and death. Abnormalities in both central nervous system and muscle mitochondria have previously been demonstrated in patient samples, indicating systemic disease. In this case-control study, venous blood samples were acquired from 24 amyotrophic lateral sclerosis patients and 21 age-matched controls. Platelets and peripheral blood mononuclear cells were isolated and mitochondrial oxygen consumption measured in intact and permeabilized cells with additions of mitochondrial substrates, inhibitors and titration of an uncoupler. Respiratory values were normalized to cell count and for two markers of cellular mitochondrial content, citrate synthase activity and mitochondrial DNA, respectively. Mitochondrial function was correlated with clinical staging of disease severity. Complex IV (cytochrome c-oxidase)-activity normalized to mitochondrial content was decreased in platelets from amyotrophic lateral sclerosis patients both when normalized to citrate synthase activity and mitochondrial DNA copy number. In mononuclear cells, complex IV-activity was decreased when normalized to citrate synthase activity. Mitochondrial content was increased in amyotrophic lateral sclerosis patient platelets. In mononuclear cells, complex I activity declined and mitochondrial content increased progressively with advancing disease stage. The findings are, however, based on small subsets of patients and need to be confirmed. We conclude that when normalized to mitochondria-specific content, complex IV-activity is reduced in blood cells from amyotrophic lateral sclerosis patients and that there is an apparent compensatory increase in cellular mitochondrial content. This supports systemic involvement in amyotrophic lateral sclerosis and suggests further study of mitochondrial function in blood cells as a future biomarker for the disease.

  12. Critical role of reactive oxygen species (ROS) for synergistic enhancement of apoptosis by vemurafenib and the potassium channel inhibitor TRAM-34 in melanoma cells.

    PubMed

    Bauer, Daniel; Werth, Felix; Nguyen, Ha An; Kiecker, Felix; Eberle, Jürgen

    2017-02-02

    Inhibition of MAP kinase pathways by selective BRAF inhibitors, such as vemurafenib and dabrafenib, have evolved as key therapies of BRAF-mutated melanoma. However, tumor relapse and therapy resistance have remained as major problems, which may be addressed by combination with other pathway inhibitors. Here we identified the potassium channel inhibitor TRAM-34 as highly effective in combination with vemurafenib. Thus apoptosis was significantly enhanced and cell viability was decreased. The combination vemurafenib/TRAM-34 was also effective in vemurafenib-resistant cells, suggesting that acquired resistance may be overcome. Vemurafenib decreased ERK phosphorylation, suppressed antiapoptotic Mcl-1 and enhanced proapoptotic Puma and Bim. The combination resulted in enhancement of proapoptotic pathways as caspase-3 and loss of mitochondrial membrane potential. Indicating a special mechanism of vemurafenib-induced apoptosis, we found strong enhancement of intracellular ROS levels already at 1 h of treatment. The critical role of ROS was demonstrated by the antioxidant vitamin E (α-tocopherol), which decreased intracellular ROS as well as apoptosis. Also caspase activation and loss of mitochondrial membrane potential were suppressed, proving ROS as an upstream effect. Thus ROS represents an initial and independent apoptosis pathway in melanoma cells that is of particular importance for vemurafenib and its combination with TRAM-34.

  13. Mitochondrial Superoxide Production Negatively Regulates Neural Progenitor Proliferation and Cerebral Cortical Development

    PubMed Central

    Hou, Yan; Ouyang, Xin; Wan, Ruiqian; Cheng, Heping; Mattson, Mark P.; Cheng, Aiwu

    2012-01-01

    Although high amounts of reactive oxygen species (ROS) can damage cells, ROS can also play roles as second messengers, regulating diverse cellular processes. Here we report that embryonic mouse cerebral cortical neural progenitor cells (NPCs) exhibit intermittent spontaneous bursts of mitochondrial superoxide (SO) generation (mitochondrial SO flashes) that require transient opening of membrane permeability transition pores (mPTP). This quantal SO production negatively regulates NPC self-renewal. Mitochondrial SO scavengers and mPTP inhibitors reduce SO flash frequency and enhance NPC proliferation, whereas prolonged mPTP opening and SO generation increase SO flash incidence and decrease NPC proliferation. The inhibition of NPC proliferation by mitochondrial SO involves suppression of extracellular signal-regulated kinases. Moreover, mice lacking SOD2 (SOD2−/− mice) exhibit significantly fewer proliferative NPCs and differentiated neurons in the embryonic cerebral cortex at mid-gestation compared with wild type littermates. Cultured SOD2−/− NPCs exhibit a significant increase in SO flash frequency and reduced NPC proliferation. Taken together, our findings suggest that mitochondrial SO flashes negatively regulate NPC self-renewal in the developing cerebral cortex. PMID:22949407

  14. Mitochondrial Dynamics Impacts Stem Cell Identity and Fate Decisions by Regulating a Nuclear Transcriptional Program.

    PubMed

    Khacho, Mireille; Clark, Alysen; Svoboda, Devon S; Azzi, Joelle; MacLaurin, Jason G; Meghaizel, Cynthia; Sesaki, Hiromi; Lagace, Diane C; Germain, Marc; Harper, Mary-Ellen; Park, David S; Slack, Ruth S

    2016-08-04

    Regulated mechanisms of stem cell maintenance are key to preventing stem cell depletion and aging. While mitochondrial morphology plays a fundamental role in tissue development and homeostasis, its role in stem cells remains unknown. Here, we uncover that mitochondrial dynamics regulates stem cell identity, self-renewal, and fate decisions by orchestrating a transcriptional program. Manipulation of mitochondrial structure, through OPA1 or MFN1/2 deletion, impaired neural stem cell (NSC) self-renewal, with consequent age-dependent depletion, neurogenesis defects, and cognitive impairments. Gene expression profiling revealed ectopic expression of the Notch self-renewal inhibitor Botch and premature induction of transcription factors that promote differentiation. Changes in mitochondrial dynamics regulate stem cell fate decisions by driving a physiological reactive oxygen species (ROS)-mediated process, which triggers a dual program to suppress self-renewal and promote differentiation via NRF2-mediated retrograde signaling. These findings reveal mitochondrial dynamics as an upstream regulator of essential mechanisms governing stem cell self-renewal and fate decisions through transcriptional programming. Copyright © 2016 Elsevier Inc. All rights reserved.

  15. Modulation of mitochondrial ion transport by inorganic polyphosphate - essential role in mitochondrial permeability transition pore.

    PubMed

    Baev, Artyom Y; Negoda, Alexander; Abramov, Andrey Y

    2017-02-01

    Inorganic polyphosphate (polyP) is a biopolymer of phosphoanhydride-linked orthophosphate residues. PolyP is involved in multiple cellular processes including mitochondrial metabolism and cell death. We used artificial membranes and isolated mitochondria to investigate the role of the polyP in mitochondrial ion transport and in activation of PTP. Here, we found that polyP can modify ion permeability of de-energised mitochondrial membranes but not artificial membranes. This permeability was selective for Ba 2+ and Ca 2+ but not for other monovalent and bivalent cations and can be blocked by inhibitors of the permeability transition pore - cyclosporine A or ADP. Lower concentrations of polyP modulate calcium dependent permeability transition pore opening. Increase in polyP concentrations and elongation chain length of the polymer causes calcium independent swelling in energized conditions. Physiologically relevant concentrations of inorganic polyP can regulate calcium dependent as well calcium independent mitochondrial permeability transition pore opening. This raises the possibility that cytoplasmic polyP can be an important contributor towards regulation of the cell death.

  16. Spinosad induces programmed cell death involves mitochondrial dysfunction and cytochrome C release in Spodoptera frugiperda Sf9 cells.

    PubMed

    Yang, Mingjun; Wang, Bo; Gao, Jufang; Zhang, Yang; Xu, Wenping; Tao, Liming

    2017-02-01

    Spinosad, a reduced-risk insecticide, acts on the nicotinic acetylcholine receptors and the gamma-aminobutyric acid receptor in the nervous system of target insects. However, its mechanism of action in non-neural insect cells is unclear. This study aimed to evaluate mitochondrial functional changes associated with spinosad in Spodoptera frugiperda (Sf9) insect cells. Our results indicate that in Sf9 cells, spinosad induces programmed cell death and mitochondrial dysfunction through enhanced reactive oxygen species production, mitochondrial permeability transition pore (mPTP) opening, and mitochondrial membrane potential collapse, eventually leading to cytochrome C release and apoptosis. The cytochrome C release induced by spinosad treatment was partly inhibited by the mPTP inhibitors cyclosporin A and bongkrekic acid. Subsequently, we found that spinosad downregulated Bcl-2 expression and upregulated p53 and Bax expressions, activated caspase-9 and caspase-3, and triggered PARP cleavage in Sf9 cells. These findings suggested that spinosad-induced programmed cell death was modulated by mitochondrial dysfunction and cytochrome C release. Copyright © 2016 Elsevier Ltd. All rights reserved.

  17. Weight loss by Ppc-1, a novel small molecule mitochondrial uncoupler derived from slime mold.

    PubMed

    Suzuki, Toshiyuki; Kikuchi, Haruhisa; Ogura, Masato; Homma, Miwako K; Oshima, Yoshiteru; Homma, Yoshimi

    2015-01-01

    Mitochondria play a key role in diverse processes including ATP synthesis and apoptosis. Mitochondrial function can be studied using inhibitors of respiration, and new agents are valuable for discovering novel mechanisms involved in mitochondrial regulation. Here, we screened small molecules derived from slime molds and other microorganisms for their effects on mitochondrial oxygen consumption. We identified Ppc-1 as a novel molecule which stimulates oxygen consumption without adverse effects on ATP production. The kinetic behavior of Ppc-1 suggests its function as a mitochondrial uncoupler. Serial administration of Ppc-1 into mice suppressed weight gain with no abnormal effects on liver or kidney tissues, and no evidence of tumor formation. Serum fatty acid levels were significantly elevated in mice treated with Ppc-1, while body fat content remained low. After a single administration, Ppc-1 distributes into various tissues of individual animals at low levels. Ppc-1 stimulates adipocytes in culture to release fatty acids, which might explain the elevated serum fatty acids in Ppc-1-treated mice. The results suggest that Ppc-1 is a unique mitochondrial regulator which will be a valuable tool for mitochondrial research as well as the development of new drugs to treat obesity.

  18. Tributyltin induces mitochondrial fission through NAD-IDH dependent mitofusin degradation in human embryonic carcinoma cells.

    PubMed

    Yamada, Shigeru; Kotake, Yaichiro; Nakano, Mizuho; Sekino, Yuko; Kanda, Yasunari

    2015-08-01

    Organotin compounds, such as tributyltin (TBT), are well-known endocrine disruptors. TBT acts at the nanomolar level through genomic pathways via the peroxisome proliferator activated receptor (PPAR)/retinoid X receptor (RXR). We recently reported that TBT inhibits cell growth and the ATP content in the human embryonic carcinoma cell line NT2/D1 via a non-genomic pathway involving NAD(+)-dependent isocitrate dehydrogenase (NAD-IDH), which metabolizes isocitrate to α-ketoglutarate. However, the molecular mechanisms by which NAD-IDH mediates TBT toxicity remain unclear. In the present study, we evaluated the effects of TBT on mitochondrial NAD-IDH and energy production. Staining with MitoTracker revealed that nanomolar TBT levels induced mitochondrial fragmentation. TBT also degraded the mitochondrial fusion proteins, mitofusins 1 and 2. Interestingly, apigenin, an inhibitor of NAD-IDH, mimicked the effects of TBT. Incubation with an α-ketoglutarate analogue partially recovered TBT-induced mitochondrial dysfunction, supporting the involvement of NAD-IDH. Our data suggest that nanomolar TBT levels impair mitochondrial quality control via NAD-IDH in NT2/D1 cells. Thus, mitochondrial function in embryonic cells could be used to assess cytotoxicity associated with metal exposure.

  19. Ursolic Acid-enriched herba cynomorii extract induces mitochondrial uncoupling and glutathione redox cycling through mitochondrial reactive oxygen species generation: protection against menadione cytotoxicity in h9c2 cells.

    PubMed

    Chen, Jihang; Wong, Hoi Shan; Ko, Kam Ming

    2014-01-27

    Herba Cynomorii (Cynomorium songaricum Rupr., Cynomoriaceae) is one of the most commonly used 'Yang-invigorating' tonic herbs in Traditional Chinese Medicine (TCM). An earlier study in our laboratory has demonstrated that HCY2, an ursolic acid-enriched fraction derived from Herba Cynomorii, increased mitochondrial ATP generation capacity (ATP-GC) and induced mitochondrial uncoupling as well as a cellular glutathione response, thereby protecting against oxidant injury in H9c2 cells. In this study, we demonstrated that pre-incubation of H9c2 cells with HCY2 increased mitochondrial reactive oxygen species (ROS) generation in these cells, which is likely an event secondary to the stimulation of the mitochondrial electron transport chain. The suppression of mitochondrial ROS by the antioxidant dimethylthiourea abrogated the HCY2-induced enhancement of mitochondrial uncoupling and glutathione reductase (GR)-mediated glutathione redox cycling, and also protected against menadione-induced cytotoxicity. Studies using specific inhibitors of uncoupling protein and GR suggested that the HCY2-induced mitochondrial uncoupling and glutathione redox cycling play a determining role in the cytoprotection against menadione-induced oxidant injury in H9c2 cells. Experimental evidence obtained thus far supports the causal role of HCY2-induced mitochondrial ROS production in eliciting mitochondrial uncoupling and glutathione antioxidant responses, which offer cytoprotection against oxidant injury in H9c2 cells.

  20. Crystallization of Mitochondrial Respiratory Complex II from Chicken Heart: a Membrane Protein Complex Diffracting to 2.0 Å.

    PubMed Central

    Huang, Li-shar; Borders, Toni M.; Shen, John T.; Wang, Chung-Jen; Berry, Edward

    2006-01-01

    Synopsis A multi-subunit mitochondrial membrane protein complex involved in the Krebs Cycle and respiratory chain has been crystallized in a form suitable for near-atomic resolution structure determination. A procedure is presented for preparation of diffraction-quality crystals of a vertebrate mitochondrial respiratory Complex II. The crystals have the potential to diffract to at least 2.0 Å with optimization of post-crystal-growth treatment and cryoprotection. This should allow determination of the structure of this important and medically relevant membrane protein complex at near-atomic resolution and provide great detail of the mode of binding of substrates and inhibitors at the two substrate-binding sites. PMID:15805592

  1. Mitochondrial Dysfunction and Ca(2+) Overload Contributes to Hesperidin Induced Paraptosis in Hepatoblastoma Cells, HepG2.

    PubMed

    Yumnam, Silvia; Hong, Gyeong Eun; Raha, Suchismita; Saralamma, Venu Venkatarame Gowda; Lee, Ho Jeong; Lee, Won-Sup; Kim, Eun-Hee; Kim, Gon Sup

    2016-06-01

    Paraptosis is a programmed cell death which is morphologically and biochemically different from apoptosis. In this study, we have investigated the role of Ca(2+) in hesperidin-induced paraptotic cell death in HepG2 cells. Increase in mitochondrial Ca(2+) level was observed in hesperidin treated HepG2 cells but not in normal liver cancer cells. Inhibition of inositol-1,4,5-triphosphate receptor (IP3 R) and ryanodine receptor also block the mitochondrial Ca(2+) accumulation suggesting that the release of Ca(2+) from the endoplasmic reticulum (ER) may probably lead to the increase in mitochondrial Ca(2+) level. Pretreatment with ruthenium red (RuRed), a Ca(2+) uniporter inhibitor inhibited the hesperidin-induced mitochondrial Ca(2+) overload, swelling of mitochondria, and cell death in HepG2 cells. It has also been demonstrated that mitochondrial Ca(2+) influxes act upstream of ROS and mitochondrial superoxide production. The increased ROS production further leads to mitochondrial membrane loss in hesperidin treated HepG2 cells. Taken together our results show that IP3 R and ryanodine receptor mediated release of Ca(2+) from the ER and its subsequent influx through the uniporter into mitochondria contributes to hesperidin-induced paraptosis in HepG2 cells. © 2015 Wiley Periodicals, Inc.

  2. Crocodile choline from Crocodylus siamensis induces apoptosis of human gastric cancer.

    PubMed

    Mao, Xiao-Mei; Fu, Qi-Rui; Li, Hua-Liang; Zheng, Ya-Hui; Chen, Shu-Ming; Hu, Xin-Yi; Chen, Qing-Xi; Chen, Qiong-Hua

    2017-03-01

    Crocodile choline, an active compound isolated from Crocodylus siamensis, was found to exert potent anti-cancer activities against human gastric cancer cells in vitro and in vivo. Our study revealed that crocodile choline led to cell cycle arrest at the G2/M phase through attenuating the expressions of cyclins, Cyclin B1, and CDK-1. Furthermore, crocodile choline accelerated apoptosis through the mitochondrial apoptotic pathway with the decrease in mitochondrial membrane potential, the increase in reactive oxygen species production and Bax/Bcl-2 ratio, and the activation of caspase-3 along with the release of cytochrome c. In addition, this study, for the first time, shows that Notch pathway is remarkably deregulated by crocodile choline. The combination of crocodile choline and Notch1 short interfering RNA led to dramatically increased cytotoxicity than observed with either agent alone. Notch1 short interfering RNA sensitized and potentiated the capability of crocodile choline to suppress the cell progression and invasion of gastric cancer. Taken together, these data suggested that crocodile choline was a potent progression inhibitor of gastric cancer cells, which was correlated with mitochondrial apoptotic pathway and Notch pathway. Combining Notch1 inhibitors with crocodile choline might represent a novel approach for gastric cancer.

  3. SB203580 enhances the RV-induced loss of mitochondrial membrane potential and apoptosis in A549 cells

    NASA Astrophysics Data System (ADS)

    Li, Hai-yang; Zhuang, Cai-ping; Wang, Xiao-ping; Chen, Tong-sheng

    2012-03-01

    Resveratrol (RV), a naturally occurring phytoalexin, is known to possess a wide spectrum of chemopreventive and chemotherapeutic effects in various stages of human tumors. p38, a member of the mitogen-activated protein kinase (MAPK) superfamily, is always activated by some extracellular stimulus to regulate many cellular signal transduction pathways, such as apoptosis, proliferation, and inflammation and so on. In this report, we assessed the effect of SB203580, a specific inhibitor of p38 MAPK signaling pathway, on the RV-induced apoptosis in human lung adenocarcinoma (A549) cells. CCK-8 assay showed that pretreatment with SB203580 significantly enhanced the cytotoxicity of RV, which was further verified by analyzing the phosphatidylserine externalization using flow cytometry. In order to further confirm whether SB203580 accelerated apoptosis via the intrinsic apoptosis pathway, we analyzed the dysfunction of mitochondrial membrane potential (Δψm) of cells stained with rhodamine 123 by using flow cytometry after treatment with RV in the absence and presence of SB203580. Our data for the first time reported that p38 inhibitor SB203580 enhanced the RV-induced apoptosis via a mitochondrial pathway.

  4. DJ-1 KNOCK-DOWN IMPAIRS ASTROCYTE MITOCHONDRIAL FUNCTION

    PubMed Central

    LARSEN, N. J.; AMBROSI, G.; MULLETT, S. J.; BERMAN, S. B.; HINKLE, D. A.

    2012-01-01

    Mitochondrial dysfunction has long been implicated in the pathogenesis of Parkinson’s disease (PD). PD brain tissues show evidence for mitochondrial respiratory chain Complex I deficiency. Pharmacological inhibitors of Complex I, such as rotenone, cause experimental parkinsonism. The cytoprotective protein DJ-1, whose deletion is sufficient to cause genetic PD, is also known to have mitochondria-stabilizing properties. We have previously shown that DJ-1 is over-expressed in PD astrocytes, and that DJ-1 deficiency impairs the capacity of astrocytes to protect co-cultured neurons against rotenone. Since DJ-1 modulated, astrocyte-mediated neuroprotection against rotenone may depend upon proper astrocytic mitochondrial functioning, we hypothesized that DJ-1 deficiency would impair astrocyte mitochondrial motility, fission/fusion dynamics, membrane potential maintenance, and respiration, both at baseline and as an enhancement of rotenone-induced mitochondrial dysfunction. In astrocyte-enriched cultures, we observed that DJ-1 knock-down reduced mitochondrial motility primarily in the cellular processes of both untreated and rotenone treated cells. In these same cultures, DJ-1 knock-down did not appreciably affect mitochondrial fission, fusion, or respiration, but did enhance rotenone-induced reductions in the mitochondrial membrane potential. In neuron–astrocyte co-cultures, astrocytic DJ-1 knock-down reduced astrocyte process mitochondrial motility in untreated cells, but this effect was not maintained in the presence of rotenone. In the same co-cultures, astrocytic DJ-1 knock-down significantly reduced mitochondrial fusion in the astrocyte cell bodies, but not the processes, under the same conditions of rotenone treatment in which DJ-1 deficiency is known to impair astrocyte-mediated neuroprotection. Our studies therefore demonstrated the following new findings: (i) DJ-1 deficiency can impair astrocyte mitochondrial physiology at multiple levels, (ii) astrocyte mitochondrial dynamics vary with sub-cellular region, and (iii) the physical presence of neurons can affect astrocyte mitochondrial behavior. PMID:21907265

  5. Defective mitochondrial dynamics is an early event in skeletal muscle of an amyotrophic lateral sclerosis mouse model.

    PubMed

    Luo, Guo; Yi, Jianxun; Ma, Changling; Xiao, Yajuan; Yi, Frank; Yu, Tian; Zhou, Jingsong

    2013-01-01

    Mitochondria are dynamic organelles that constantly undergo fusion and fission to maintain their normal functionality. Impairment of mitochondrial dynamics is implicated in various neurodegenerative disorders. Amyotrophic lateral sclerosis (ALS) is an adult-onset neuromuscular degenerative disorder characterized by motor neuron death and muscle atrophy. ALS onset and progression clearly involve motor neuron degeneration but accumulating evidence suggests primary muscle pathology may also be involved. Here, we examined mitochondrial dynamics in live skeletal muscle of an ALS mouse model (G93A) harboring a superoxide dismutase mutation (SOD1(G93A)). Using confocal microscopy combined with overexpression of mitochondria-targeted photoactivatable fluorescent proteins, we discovered abnormal mitochondrial dynamics in skeletal muscle of young G93A mice before disease onset. We further demonstrated that similar abnormalities in mitochondrial dynamics were induced by overexpression of mutant SOD1(G93A) in skeletal muscle of normal mice, indicating the SOD1 mutation drives ALS-like muscle pathology in the absence of motor neuron degeneration. Mutant SOD1(G93A) forms aggregates inside muscle mitochondria and leads to fragmentation of the mitochondrial network as well as mitochondrial depolarization. Partial depolarization of mitochondrial membrane potential in normal muscle by carbonyl cyanide p-trifluoromethoxyphenylhydrazone (FCCP) caused abnormalities in mitochondrial dynamics similar to that in the SOD1(G93A) model muscle. A specific mitochondrial fission inhibitor (Mdivi-1) reversed the SOD1(G93A) action on mitochondrial dynamics, indicating SOD1(G93A) likely promotes mitochondrial fission process. Our results suggest that accumulation of mutant SOD1(G93A) inside mitochondria, depolarization of mitochondrial membrane potential and abnormal mitochondrial dynamics are causally linked and cause intrinsic muscle pathology, which occurs early in the course of ALS and may actively promote ALS progression.

  6. Impaired Mitochondrial Dynamics Underlie Axonal Defects in Hereditary Spastic Paraplegias.

    PubMed

    Denton, Kyle; Mou, Yongchao; Xu, Chong-Chong; Shah, Dhruvi; Chang, Jaerak; Blackstone, Craig; Li, Xue-Jun

    2018-05-02

    Mechanisms by which long corticospinal axons degenerate in hereditary spastic paraplegia (HSP) are largely unknown. Here, we have generated induced pluripotent stem cells (iPSCs) from patients with two autosomal recessive forms of HSP, SPG15 and SPG48, which are caused by mutations in the ZFYVE26 and AP5Z1 genes encoding proteins in the same complex, the spastizin and AP5Z1 proteins, respectively. In patient iPSC-derived telencephalic glutamatergic and midbrain dopaminergic neurons, neurite number, length and branching are significantly reduced, recapitulating disease-specific phenotypes. We analyzed mitochondrial morphology and noted a significant reduction in both mitochondrial length and their densities within axons of these HSP neurons. Mitochondrial membrane potential was also decreased, confirming functional mitochondrial defects. Notably, mdivi-1, an inhibitor of the mitochondrial fission GTPase DRP1, rescues mitochondrial morphology defects and suppresses the impairment in neurite outgrowth and late-onset apoptosis in HSP neurons. Furthermore, knockdown of these HSP genes causes similar axonal defects, also mitigated by treatment with mdivi-1. Finally, neurite outgrowth defects in SPG15 and SPG48 cortical neurons can be rescued by knocking down DRP1 directly. Thus, abnormal mitochondrial morphology caused by an imbalance of mitochondrial fission and fusion underlies specific axonal defects and serves as a potential therapeutic target for SPG15 and SPG48.

  7. Assessment of mitochondrial dysfunction-related, drug-induced hepatotoxicity in primary rat hepatocytes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Cong; Sekine, Shuichi, E-mail: ssekine@facult

    Evidence that mitochondrial dysfunction plays a central role in drug-induced liver injury is rapidly accumulating. In contrast to physiological conditions, in which almost all adenosine triphosphate (ATP) in hepatocytes is generated in mitochondria via aerobic respiration, the high glucose content and limited oxygen supply of conventional culture systems force primary hepatocytes to generate most ATP via cytosolic glycolysis. Thus, such anaerobically poised cells are resistant to xenobiotics that impair mitochondrial function, and are not suitable to identify drugs with mitochondrial liabilities. In this study, primary rat hepatocytes were cultured in galactose-based medium, instead of the conventional glucose-based medium, and inmore » hyperoxia to improve the reliance of energy generation on aerobic respiration. Activation of mitochondria was verified by diminished cellular lactate release and increased oxygen consumption. These conditions improved sensitivity to the mitochondrial complex I inhibitor rotenone. Since oxidative stress is also a general cause of mitochondrial impairment, cells were exposed to test compounds in the presence of transferrin to increase the generation of reactive oxygen species via increased uptake of iron. Finally, 14 compounds with reported mitochondrial liabilities were tested to validate this new drug-induced mitochondrial toxicity assay. Overall, the culture of primary rat hepatocytes in galactose, hyperoxia and transferrin is a useful model for the identification of mitochondrial dysfunction-related drug-induced hepatotoxicity. - Highlights: • Drug-induced mitochondrial toxicity was evaluated using primary rat hepatocytes. • Galactose and hyperoxia could activate OXPHOS in primary rat hepatocytes. • Cells with enhanced OXPHOS exhibit improved sensitivity to mitochondrial toxins. • Transferrin potentiate mitochondrial toxicity via increased ROS production.« less

  8. Mitochondrial JNK activation triggers autophagy and apoptosis and aggravates myocardial injury following ischemia/reperfusion.

    PubMed

    Xu, Jie; Qin, Xinghua; Cai, Xiaoqing; Yang, Lu; Xing, Yuan; Li, Jun; Zhang, Lihua; Tang, Ying; Liu, Jiankang; Zhang, Xing; Gao, Feng

    2015-02-01

    c-Jun N-terminal kinase (JNK) is a stress-activated mitogen-activated protein kinase that plays a central role in initiating apoptosis in disease conditions. Recent studies have shown that mitochondrial JNK signaling is partly responsible for ischemic myocardial dysfunction; however, the underlying mechanism remains unclear. Here we report for the first time that activation of mitochondrial JNK, rather than JNK localization on mitochondria, induces autophagy and apoptosis and aggravates myocardial ischemia/reperfusion injury. Myocardial ischemia/reperfusion induced a dominant increase of mitochondrial JNK phosphorylation, while JNK mitochondrial localization was reduced. Treatment with Tat-SabKIM1, a retro-inverso peptide which blocks JNK interaction with mitochondria, decreased mitochondrial JNK activation without affecting JNK mitochondrial localization following reperfusion. Tat-SabKIM1 treatment reduced Bcl2-regulated autophagy, cytochrome c-mediated apoptosis and myocardial infarct size. Notably, selective inhibition of mitochondrial JNK activation using Tat-SabKIM1 produced a similar infarct size-reducing effect as inhibiting universal JNK activation with JNK inhibitor SP600125. Moreover, insulin-treated animals exhibited significantly dampened mitochondrial JNK activation accompanied by reduced infarct size and diminished autophagy and apoptosis following reperfusion. Taken together, these findings demonstrate that mitochondrial JNK activation, rather than JNK mitochondrial localization, induces autophagy and apoptosis and exacerbates myocardial ischemia/reperfusion injury. Insulin selectively inhibits mitochondrial JNK activation, contributing to insulin cardioprotection against myocardial ischemic/reperfusion injury. This article is part of a Special Issue entitled: Autophagy and protein quality control in cardiometabolic diseases. Copyright © 2014 Elsevier B.V. All rights reserved.

  9. Eicosapentaenoic acid (EPA) induced apoptosis in HepG2 cells through ROS-Ca(2+)-JNK mitochondrial pathways.

    PubMed

    Zhang, Yuanyuan; Han, Lirong; Qi, Wentao; Cheng, Dai; Ma, Xiaolei; Hou, Lihua; Cao, Xiaohong; Wang, Chunling

    2015-01-24

    Eicosapentaenoic acid (EPA), a well-known dietary n-3 PUFAS, has been considered to inhibit proliferation of tumor cells. However, the molecular mechanism related to EPA-induced liver cancer cells apoptosis has not been reported. In this study, we investigated the effect of EPA on HepG2 cells proliferation and apoptosis mechanism through mitochondrial pathways. EPA inhibited proliferation of HepG2 cells in a dose-dependent manner and had no significant effect on the cell viability of humor normal liver L-02 cells. It was found that EPA initially evoked ROS formation, leading to [Ca(2+)]c accumulation and the mitochondrial permeability transition pore (MPTP) opening; EPA-induced HepG2 cells apoptosis was inhibited by N-acetylcysteine (NAC, an inhibitor of ROS), 1,2-bis (2-aminophenoxy) ethane-N,N,N',N'-tetraacetic acid (BAPTA-AM, a chelator of calcium) and CsA (inhibitor of MPTP). The relationship between ROS production, the increase of cytoplasmic Ca and MPTP opening was detected. It seems that ROS may act as an upstream regulator of EPA-induced [Ca(2+)]c generation, moreover, generation of ROS, overload of mitochondrial [Ca(2+)]c, and JNK activated cause the opening of MPTP. Western blotting results showed that EPA elevated the phosphorylation status of JNK, processes associated with the ROS generation. Simultaneously, the apoptosis induced by EPA was related to release of cytochrome C from mitochondria to cytoplasm through the MPTP and activation of caspase-9 and caspase-3. These results suggest that EPA induces apoptosis through ROS-Ca(2+)-JNK mitochondrial pathways. Copyright © 2014 Elsevier Inc. All rights reserved.

  10. [Changes in polarization of myometrial cells plasma and internal mitochondrial membranes under calixarenes action as inhibitors of plasma membrane Na+, K+-ATPase].

    PubMed

    Danylovych, H V; Danylovych, Iu V; Kolomiiets', O V; Kosterin, S O; Rodik, R V; Cherenok, S O; Kal'chenko, V I; Chunikhin, O Iu; Horchev, V F; Karakhim, S O

    2012-01-01

    The influence of supramolecular macrocyclic compounds--calix[4]arenes C-97, C-99, C-107, which are ouabainomymetic high affinity inhibitors of Na+, K(+)-ATPase, on the polarization level of plasmic and mitochondrial membranes of rat uterine smooth muscle cells was investigated. The influence of these compounds on the myocytes characteristic size was studied. By using a confocal microscopy and specific for mitochondrial MitoTracker Orange CM-H2TMRos dye it was proved that the potential-sensitive fluorescent probe DiOC6(3) interacts with mitochondria. Artificial potential collapse of plasmic membrane in this case was modeled by myocytes preincubation with ouabain (1 mM). Further experiments performed using the method of flow cytometry with DiOC6(3) have shown that the compounds C-97, C-99 and C-107 at concentration 50-100 nM caused depolarization of the plasma membrane (at the level of 30% relative to control values) in conditions of artificial collapse of mitochondrial potential by myocytes preincubation in the presence of 5 mM of sodium azide. Under artificial sarcolemma depolarization by ouabain, calixarenes C-97, C-99 and C-107 at 100 nM concentrations caused a transient increase of mitochondrial membrane potential, that is 40% of the control level and lasted about 5 minutes. Calixarenes C-99 and C-107 caused a significant increase in fluorescence of myocytes in these conditions, which was confirmed by confocal microscopy too. It was proved by photon correlation spectroscopy method that the C-99 and C-107 caused an increase of characteristic size of myocytes.

  11. Adenosine 3′,5′-cyclic monophosphate (cAMP)-dependent phosphoregulation of mitochondrial complex I is inhibited by nucleoside reverse transcriptase inhibitors

    PubMed Central

    Lund, Kaleb C.; Wallace, Kendall B.

    2008-01-01

    Nucleoside analog reverse transcriptase inhibitors (NRTI) are known to directly inhibit mitochondrial complex I activity as well as various mitochondrial kinases. Recent observations that complex I activity and superoxide production are modulated through cAMP-dependent phosphorylation suggests a mechanism through which NRTIs may affect mitochondrial respiration via kinase-dependent protein phosphorylation. In the current study we examine the potential for NRTIs to inhibit the cAMP-dependent phosphorylation of complex I and the associated NADH:CoQ oxidoreductase activities and rates of superoxide production using HepG2 cells. Phosphoprotein staining of immunocaptured complex I revealed that 3′-azido-3′-deoxythymidine (AZT; 10 and 50 μM), AZT monophosphate (150 μM), and 2′,3′-dideoxycytidine (ddC; 1μM) prevented the phosphorylation of the NDUFB11 subunit of complex I. This was associated with a decrease in complex I activity with AZT and AZT monophosphate only. In the presence of succinate, superoxide production was increased with 2′,3′-dideoxyinosine (ddI; 10 μM) and ddC (1 μM). In the presence of succinate + cAMP AZT showed an inverse dose-dependent effect on superoxide production. None of the NRTIs examined inhibit PKA activity suggesting that the observed effects are due to a direct interaction with complex I. These data demonstrate a direct effect of NRTIs on cAMP-dependent regulation of mitochondrial bioenergetics independent of DNA polymerase-γ activity; in the case of AZT these observations may provide a mechanism for the observed long-term toxicity with this drug. PMID:17904600

  12. Methylene blue stimulates substrate-level phosphorylation catalysed by succinyl-CoA ligase in the citric acid cycle.

    PubMed

    Komlódi, T; Tretter, L

    2017-09-01

    Methylene blue (MB), a potential neuroprotective agent, is efficient in various neurodegenerative disease models. Beneficial effects of MB have been attributed to improvements in mitochondrial functions. Substrate-level phosphorylation (SLP) results in the production of ATP independent from the ATP synthase (ATP-ase). In energetically compromised mitochondria, ATP produced by SLP can prevent the reversal of the adenine nucleotide translocase and thus the hydrolysis of glycolytic ATP. The aim of the present study was to investigate the effect of MB on mitochondrial SLP catalysed by succinyl-CoA ligase. Measurements were carried out on isolated guinea pig cortical mitochondria respiring on α-ketoglutarate, glutamate, malate or succinate. The mitochondrial functions and parameters like ATP synthesis, oxygen consumption, membrane potential, and NAD(P)H level were followed online, in parallel with the redox state of MB. SLP-mediated ATP synthesis was measured in the presence of inhibitors for ATP-ase and adenylate kinase. In the presence of the ATP-ase inhibitor oligomycin MB stimulated respiration with all of the respiratory substrates. However, the rate of ATP synthesis increased only with substrates α-ketoglutarate and glutamate (forming succinyl-CoA). MB efficiently stimulated SLP and restored the membrane potential in mitochondria also with the combined inhibition of Complex I and ATP synthase. ATP formed by SLP alleviated the energetic insufficiency generated by the lack of oxidative phosphorylation. Thus, the MB-mediated stimulation of SLP might be important in maintaining the energetic competence of mitochondria and in preventing the mitochondrial hydrolysis of glycolytic ATP. The mitochondrial effects of MB are explained by the ability to accept electrons from reducing equivalents and transfer them to cytochrome c bypassing the respiratory Complexes I and III. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. The mitochondrial unfolded protein response activator ATFS-1 protects cells from inhibition of the mevalonate pathway

    PubMed Central

    Rauthan, Manish; Ranji, Parmida; Aguilera Pradenas, Nataly; Pitot, Christophe; Pilon, Marc

    2013-01-01

    Statins are cholesterol-lowering drugs that inhibit 3-hydroxy-3-methyl-glutaryl-CoA (HMG-CoA) reductase, the rate-limiting enzyme in the synthesis of cholesterol via the mevalonate pathway. This pathway also produces coenzyme Q (a component of the respiratory chain), dolichols (important for protein glycosylation), and isoprenoids (lipid moieties responsible for the membrane association of small GTPases). We previously showed that the nematode Caenorhabditis elegans is useful to study the noncholesterol effects of statins because its mevalonate pathway lacks the sterol synthesis branch but retains all other branches. Here, from a screen of 150,000 mutagenized genomes, we isolated four C. elegans mutants resistant to statins by virtue of gain-of-function mutations within the first six amino acids of the protein ATFS-1, the key regulator of the mitochondrial unfolded protein response that includes activation of the chaperones HSP-6 and HSP-60. The atfs-1 gain-of-function mutants are also resistant to ibandronate, an inhibitor of an enzyme downstream of HMG-CoA reductase, and to gliotoxin, an inhibitor acting on a subbranch of the pathway important for protein prenylation, and showed improved mitochondrial function and protein prenylation in the presence of statins. Additionally, preinduction of the mitochondrial unfolded protein response in wild-type worms using ethidium bromide or paraquat triggered statin resistance, and similar observations were made in Schizosaccharomyces pombe and in a mammalian cell line. We conclude that statin resistance through maintenance of mitochondrial homeostasis is conserved across species, and that the cell-lethal effects of statins are caused primarily through impaired protein prenylation that results in mitochondria dysfunction. PMID:23530189

  14. The mitochondrial unfolded protein response activator ATFS-1 protects cells from inhibition of the mevalonate pathway.

    PubMed

    Rauthan, Manish; Ranji, Parmida; Aguilera Pradenas, Nataly; Pitot, Christophe; Pilon, Marc

    2013-04-09

    Statins are cholesterol-lowering drugs that inhibit 3-hydroxy-3-methyl-glutaryl-CoA (HMG-CoA) reductase, the rate-limiting enzyme in the synthesis of cholesterol via the mevalonate pathway. This pathway also produces coenzyme Q (a component of the respiratory chain), dolichols (important for protein glycosylation), and isoprenoids (lipid moieties responsible for the membrane association of small GTPases). We previously showed that the nematode Caenorhabditis elegans is useful to study the noncholesterol effects of statins because its mevalonate pathway lacks the sterol synthesis branch but retains all other branches. Here, from a screen of 150,000 mutagenized genomes, we isolated four C. elegans mutants resistant to statins by virtue of gain-of-function mutations within the first six amino acids of the protein ATFS-1, the key regulator of the mitochondrial unfolded protein response that includes activation of the chaperones HSP-6 and HSP-60. The atfs-1 gain-of-function mutants are also resistant to ibandronate, an inhibitor of an enzyme downstream of HMG-CoA reductase, and to gliotoxin, an inhibitor acting on a subbranch of the pathway important for protein prenylation, and showed improved mitochondrial function and protein prenylation in the presence of statins. Additionally, preinduction of the mitochondrial unfolded protein response in wild-type worms using ethidium bromide or paraquat triggered statin resistance, and similar observations were made in Schizosaccharomyces pombe and in a mammalian cell line. We conclude that statin resistance through maintenance of mitochondrial homeostasis is conserved across species, and that the cell-lethal effects of statins are caused primarily through impaired protein prenylation that results in mitochondria dysfunction.

  15. Monitoring wheat mitochondrial compositional and respiratory changes using Fourier transform mid-infrared spectroscopy in response to agrochemical treatments

    NASA Astrophysics Data System (ADS)

    Pedersen, Matthew; Wegner, Casey; Phansak, Piyaporn; Sarath, Gautam; Gaussoin, Roch; Schlegel, Vicki

    2017-02-01

    Fungicides and plant growth regulators can impact plant growth outside of their effects on fungal pathogens. Although many of these chemicals are inhibitors of mitochondrial oxygen uptake, information remains limited as to whether they are able to modify other mitochondrial constituents. Fourier transform mid-infrared spectroscopy (FT-mIR) offers a high sample throughput method to comparatively and qualitatively evaluate the effects of exogenously added compounds on mitochondrial components. Therefore the objective of this study was to determine the ability of FT-mIR to detect effects mitochondrial fractions isolated from wheat (Triticum aestivum L.) seedlings in response to several agrochemical treatments, with an emphasis on fungicides. The accessed need was to develop FT-mIR analytical and statistical routines as an effective approach to differentiate spectra obtained from chemically-treated or untreated mitochondria. An NADH-dependent oxygen uptake approach was initially used as a comparative method to determine whether the fungicides (azoxystrobin, boscalid, cyazofamid, fluazinam, isopyrazam, and pyraclostrobin) and the plant growth regulator, (trinexapac-ethyl) reduced respiration inhibition on isolated mitochondria. Pyraclostrobin was the most effective inhibitor, whereas amisulbrom did not impact oxygen uptake. However, hierarchical clustering of FT-mIR spectra of isolated mitochondria treated with these different compounds separated into clades consistent with each of their expected mode of action. Analysis of the FT-mIR amide protein region indicated that amisulbrom and pyraclostrobin interacted with the isolated wheat mitochondria. Both chemicals were statistically different from the control signifying that respiration was indeed influenced by these treatments. Moreover, the entire FT-mIR region showed differences in various biological bands thereby providing additional information on mitochondria responses to agrochemicals, if so warranted.

  16. Resveratrol protects against hyperglycemia-induced oxidative damage to mitochondria by activating SIRT1 in rat mesangial cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xu, Ying; Nie, Ling; Yin, Yang-Guang

    2012-03-15

    Oxidative stress and mitochondrial dysfunction are involved in the pathogenesis of diabetic nephropathy (DN). Resveratrol has potent protective effects on diabetes and diabetic complications including diabetic nephropathy. We aimed to investigate the protective effects of resveratrol on mitochondria and the underlying mechanisms by using an in vitro model of hyperglycemia. We exposed primary cultured rat mesangial cells to high glucose (30 mM) for 48 h. We found that pretreatment with resveratrol (10 μM) 6 h prior to high glucose treatment significantly reduced hyperglycemia-induced increase in reactive oxygen species (ROS) production and mitochondrial superoxide generation, as well as stimulated MnSOD activity.more » In addition, resveratrol pretreatment significantly reversed the decrease of mitochondrial complex III activity in glucose-treated mesangial cells, which is considered to be the major source of mitochondrial oxidative stress in glucose-treated cells. Furthermore, resveratrol pretreatment efficiently restored the hyperpolarization of ∆Ψm, increased ATP production and preserved the mtDNA content. All of these protective effects of resveratrol were successfully blocked by siRNA targeting SIRT1 and EX-527, a specific inhibitor of SIRT1 activity. Our results indicated that resveratrol efficiently reduced oxidative stress and maintained mitochondrial function related with activating SIRT1 in glucose-treated mesangial cells. It suggested that resveratrol is pharmacologically promising for treating diabetic nephropathy. -- Highlights: ► We treat mesangial cells with glucose as an in vitro model of diabetic nephropathy. ► We find that the nephroprotective effects of resveratrol relate with mitochondria. ► The beneficial effect of resveratrol was prevented by siRNA SIRT1 or its inhibitor.« less

  17. Diospyrin derivative, an anticancer quinonoid, regulates apoptosis at endoplasmic reticulum as well as mitochondria by modulating cytosolic calcium in human breast carcinoma cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kumar, Binod; Radiation and Cancer Biology Section, Radiation Biology and Health Sciences Division, Bhabha Atomic Research Centre, Mumbai 400085; Kumar, Amit

    2012-01-13

    Highlights: Black-Right-Pointing-Pointer Diospyrin diethylether (D7) caused oxidative stress-dependent activation of PC-PLC. Black-Right-Pointing-Pointer Activated PC-PLC induced a sustained-release of Ca{sup 2+} from endoplasmic reticulum. Black-Right-Pointing-Pointer The elevated cytosolic Ca{sup +2} led to the calpain-caspase12 dependent apoptosis. Black-Right-Pointing-Pointer D7-Induced Ca{sup +2} also found to accentuate the mitochondrial pathway of apoptosis. -- Abstract: Diospyrin diethylether (D7), a bisnaphthoquinonoid derivative, exhibited an oxidative stress-dependent apoptosis in several human cancer cells and tumor models. The present study was aimed at evaluation of the increase in cytosolic calcium [Ca{sup 2+}]{sub c} leading to the apoptotic cell death triggered by D7 in MCF7 human breast carcinoma cells.more » A phosphotidylcholine-specific phospholipase C (PC-PLC) inhibitor, viz. U73122, and an antioxidant, viz. N-acetylcysteine, could significantly prevent the D7-induced rise in [Ca{sup 2+}]{sub c} and PC-PLC activity. Using an endoplasmic reticulum (ER)-Ca{sup 2+} mobilizer (thapsigargin) and an ER-IP3R antagonist (heparin), results revealed ER as a major source of [Ca{sup 2+}]{sub c} which led to the activation of calpain and caspase12, and cleavage of fodrin. These effects including apoptosis were significantly inhibited by the pretreatment of Bapta-AM (a cell permeable Ca{sup 2+}-specific chelator), or calpeptin (a calpain inhibitor). Furthermore, D7-induced [Ca{sup 2+}]{sub c} was found to alter mitochondrial membrane potential and induce cytochrome c release, which was inhibited by either Bapta-AM or ruthenium red (an inhibitor of mitochondrial Ca{sup 2+} uniporter). Thus, these results provided a deeper insight into the D7-induced redox signaling which eventually integrated the calcium-dependent calpain/caspase12 activation and mitochondrial alterations to accentuate the induction of apoptotic cell death.« less

  18. Compartmentalized oxidative stress in dopaminergic cell death induced by pesticides and complex I inhibitors: Distinct roles of superoxide anion and superoxide dismutases

    PubMed Central

    Rodriguez-Rocha, Humberto; Garcia-Garcia, Aracely; Pickett, Chillian; Sumin, Li; Jones, Jocelyn; Chen, Han; Webb, Brian; Choi, Jae; Zhou, You; Zimmerman, Matthew C.; Franco, Rodrigo

    2013-01-01

    The loss of dopaminergic neurons induced by the parkinsonian toxins paraquat, rotenone and 1-methyl-4-phenylpyridinium (MPP+) is associated with oxidative stress. However, controversial reports exist regarding the source/compartmentalization of reactive oxygen species (ROS) generation and its exact role in cell death. We aimed to determine in detail the role of superoxide anion (O2•−), oxidative stress and their subcellular compartmentalization in dopaminergic cell death induced by parkinsonian toxins. Oxidative stress and ROS formation was determined in the cytosol, intermembrane (IMS) and mitochondrial matrix compartments, using dihydroethidine derivatives, the redox sensor roGFP, as well as electron paramagnetic resonance spectroscopy. Paraquat induced an increase in ROS and oxidative stress in both the cytosol and mitochondrial matrix prior to cell death. MPP+ and rotenone primarily induced an increase in ROS and oxidative stress in the mitochondrial matrix. No oxidative stress was detected at the level of the IMS. In contrast to previous studies, overexpression of manganese superoxide dismutase (MnSOD) or copper/zinc SOD (CuZnSOD) had no effect on ROS steady state levels, lipid peroxidation, loss of mitochondrial membrane potential (ΔΨm) and dopaminergic cell death induced by MPP+ or rotenone. In contrast, paraquat-induced oxidative stress and cell death were selectively reduced by MnSOD overexpression, but not by CuZnSOD or manganese-porphyrins. However, MnSOD also failed to prevent ΔΨm loss. Finally, paraquat, but not MPP+ or rotenone, induced the transcriptional activation the redox-sensitive antioxidant response elements (ARE) and nuclear factor kappa-B (NF-κB). These results demonstrate a selective role of mitochondrial O2•− in dopaminergic cell death induced by paraquat, and show that toxicity induced by the complex I inhibitors rotenone and MPP+ does not depend directly on mitochondrial O2•− formation. PMID:23602909

  19. Mitoketoscins: Novel mitochondrial inhibitors for targeting ketone metabolism in cancer stem cells (CSCs)

    PubMed Central

    Ozsvari, Bela; Sotgia, Federica; Simmons, Katie; Trowbridge, Rachel; Foster, Richard; Lisanti, Michael P.

    2017-01-01

    Previous studies have now well-established that epithelial cancer cells can utilize ketone bodies (3-hydroxybutyrate and aceto-acetate) as mitochondrial fuels, to actively promote tumor growth and metastatic dissemination. The two critical metabolic enzymes implicated in this process are OXCT1 and ACAT1, which are both mitochondrial proteins. Importantly, over-expression of OXCT1 or ACAT1 in human breast cancer cells is sufficient to genetically drive tumorigenesis and/or lung metastasis, validating that they indeed behave as metabolic “tumor promoters”. Here, we decided to target these two enzymes, which give cancer cells the ability to recycle ketone bodies into Acetyl-CoA and, therefore, to produce increased ATP. Briefly, we used computational chemistry (in silico drug design) to select a sub-set of potentially promising compounds that spatially fit within the active site of these enzymes, based on their known 3D crystal structures. These libraries of compounds were then phenotypically screened for their effects on total cellular ATP levels. Positive hits were further validated by metabolic flux analysis. Our results indicated that four of these compounds effectively inhibited mitochondrial oxygen consumption. Two of these compounds also induced a reactive glycolytic phenotype in cancer cells. Most importantly, using the mammosphere assay, we showed that these compounds can be used to functionally inhibit cancer stem cell (CSC) activity and propagation. Finally, our molecular modeling studies directly show how these novel compounds are predicted to bind to the active catalytic sites of OXCT1 and ACAT1, within their Coenzyme A binding site. As such, we speculate that these mitochondrial inhibitors are partially mimicking the structure of Coenzyme A. Thus, we conclude that OXCT1 and ACAT1 are important new therapeutic targets for further drug development and optimization. We propose that this new class of drugs should be termed “mitoketoscins”, to reflect that they were designed to target ketone re-utilization and mitochondrial function. PMID:29108233

  20. Effects of 31 FDA approved small-molecule kinase inhibitors on isolated rat liver mitochondria.

    PubMed

    Zhang, Jun; Salminen, Alec; Yang, Xi; Luo, Yong; Wu, Qiangen; White, Matthew; Greenhaw, James; Ren, Lijun; Bryant, Matthew; Salminen, William; Papoian, Thomas; Mattes, William; Shi, Qiang

    2017-08-01

    The FDA has approved 31 small-molecule kinase inhibitors (KIs) for human use as of November 2016, with six having black box warnings for hepatotoxicity (BBW-H) in product labeling. The precise mechanisms and risk factors for KI-induced hepatotoxicity are poorly understood. Here, the 31 KIs were tested in isolated rat liver mitochondria, an in vitro system recently proposed to be a useful tool to predict drug-induced hepatotoxicity in humans. The KIs were incubated with mitochondria or submitochondrial particles at concentrations ranging from therapeutic maximal blood concentrations (Cmax) levels to 100-fold Cmax levels. Ten endpoints were measured, including oxygen consumption rate, inner membrane potential, cytochrome c release, swelling, reactive oxygen species, and individual respiratory chain complex (I-V) activities. Of the 31 KIs examined only three including sorafenib, regorafenib and pazopanib, all of which are hepatotoxic, caused significant mitochondrial toxicity at concentrations equal to the Cmax, indicating that mitochondrial toxicity likely contributes to the pathogenesis of hepatotoxicity associated with these KIs. At concentrations equal to 100-fold Cmax, 18 KIs were found to be toxic to mitochondria, and among six KIs with BBW-H, mitochondrial injury was induced by regorafenib, lapatinib, idelalisib, and pazopanib, but not ponatinib, or sunitinib. Mitochondrial liability at 100-fold Cmax had a positive predictive power (PPV) of 72% and negative predictive power (NPV) of 33% in predicting human KI hepatotoxicity as defined by product labeling, with the sensitivity and specificity being 62% and 44%, respectively. Similar predictive power was obtained using the criterion of Cmax ≥1.1 µM or daily dose ≥100 mg. Mitochondrial liability at 1-2.5-fold Cmax showed a 100% PPV and specificity, though the NPV and sensitivity were 32% and 14%, respectively. These data provide novel mechanistic insights into KI hepatotoxicity and indicate that mitochondrial toxicity at therapeutic levels can help identify hepatotoxic KIs.

  1. Anti-Candida Properties of Urauchimycins from Actinobacteria Associated with Trachymyrmex Ants

    PubMed Central

    Mendes, Thais D.; Borges, Warley S.; Solomon, Scott E.; Vieira, Paulo C.; Duarte, Marta C. T.; Pagnocca, Fernando C.

    2013-01-01

    After decades of intensive searching for antimicrobial compounds derived from actinobacteria, the frequency of isolation of new molecules has decreased. To cope with this concern, studies have focused on the exploitation of actinobacteria from unexplored environments and actinobacteria symbionts of plants and animals. In this study, twenty-four actinobacteria strains isolated from workers of Trachymyrmex ants were evaluated for antifungal activity towards a variety of Candida species. Results revealed that seven strains inhibited the tested Candida species. Streptomyces sp. TD025 presented potent and broad spectrum of inhibition of Candida and was selected for the isolation of bioactive molecules. From liquid shake culture of this bacterium, we isolated the rare antimycin urauchimycins A and B. For the first time, these molecules were evaluated for antifungal activity against medically important Candida species. Both antimycins showed antifungal activity, especially urauchimycin B. This compound inhibited the growth of all Candida species tested, with minimum inhibitory concentration values equivalent to the antifungal nystatin. Our results concur with the predictions that the attine ant-microbe symbiosis may be a source of bioactive metabolites for biotechnology and medical applications. PMID:23586060

  2. An inhibitor of oxidative phosphorylation exploits cancer vulnerability.

    PubMed

    Molina, Jennifer R; Sun, Yuting; Protopopova, Marina; Gera, Sonal; Bandi, Madhavi; Bristow, Christopher; McAfoos, Timothy; Morlacchi, Pietro; Ackroyd, Jeffrey; Agip, Ahmed-Noor A; Al-Atrash, Gheath; Asara, John; Bardenhagen, Jennifer; Carrillo, Caroline C; Carroll, Christopher; Chang, Edward; Ciurea, Stefan; Cross, Jason B; Czako, Barbara; Deem, Angela; Daver, Naval; de Groot, John Frederick; Dong, Jian-Wen; Feng, Ningping; Gao, Guang; Gay, Jason; Do, Mary Geck; Greer, Jennifer; Giuliani, Virginia; Han, Jing; Han, Lina; Henry, Verlene K; Hirst, Judy; Huang, Sha; Jiang, Yongying; Kang, Zhijun; Khor, Tin; Konoplev, Sergej; Lin, Yu-Hsi; Liu, Gang; Lodi, Alessia; Lofton, Timothy; Ma, Helen; Mahendra, Mikhila; Matre, Polina; Mullinax, Robert; Peoples, Michael; Petrocchi, Alessia; Rodriguez-Canale, Jaime; Serreli, Riccardo; Shi, Thomas; Smith, Melinda; Tabe, Yoko; Theroff, Jay; Tiziani, Stefano; Xu, Quanyun; Zhang, Qi; Muller, Florian; DePinho, Ronald A; Toniatti, Carlo; Draetta, Giulio F; Heffernan, Timothy P; Konopleva, Marina; Jones, Philip; Di Francesco, M Emilia; Marszalek, Joseph R

    2018-06-11

    Metabolic reprograming is an emerging hallmark of tumor biology and an actively pursued opportunity in discovery of oncology drugs. Extensive efforts have focused on therapeutic targeting of glycolysis, whereas drugging mitochondrial oxidative phosphorylation (OXPHOS) has remained largely unexplored, partly owing to an incomplete understanding of tumor contexts in which OXPHOS is essential. Here, we report the discovery of IACS-010759, a clinical-grade small-molecule inhibitor of complex I of the mitochondrial electron transport chain. Treatment with IACS-010759 robustly inhibited proliferation and induced apoptosis in models of brain cancer and acute myeloid leukemia (AML) reliant on OXPHOS, likely owing to a combination of energy depletion and reduced aspartate production that leads to impaired nucleotide biosynthesis. In models of brain cancer and AML, tumor growth was potently inhibited in vivo following IACS-010759 treatment at well-tolerated doses. IACS-010759 is currently being evaluated in phase 1 clinical trials in relapsed/refractory AML and solid tumors.

  3. Metabolic effects of the HIV protease inhibitor--saquinavir in differentiating human preadipocytes.

    PubMed

    Bociąga-Jasik, Monika; Polus, Anna; Góralska, Joanna; Czech, Urszula; Gruca, Anna; Śliwa, Agnieszka; Garlicki, Aleksander; Mach, Tomasz; Dembińska-Kieć, Aldona

    2013-01-01

    The iatrogenic, HIV-related lipodystrophy is associated with development of the significant metabolic and cardiovascular complications. The underlying mechanisms of antiretroviral (ARV) drugs are not completely explored. The aim of the study was to characterize effects of the protease inhibitor (PI)--saquinavir (SQV) on metabolic functions, and gene expression during differentiation in cells (Chub-S7) culture. SQV in concentrations observed during antiretroviral therapy (ART) significantly decreased mitochondrial membrane potential (MMP), oxygen consumption and ATP generation. The effects were greater in already differentiated cells. This was accompanied by characteristic changes in the expression of the genes involved in endoplasmic reticulum (ER) stress, and differentiation (lipid droplet formation) process such as: WNT10a, C/EBPa, AFT4, CIDEC, ADIPOQ, LPIN1. The results indicate that SQV affects not only metabolic (mitochondrial) activity of adipocytes, but affects the expression of genes related to differentiation and to a lesser extent to cell apoptosis.

  4. Mitochondrial inhibition of uracil-DNA glycosylase is not mutagenic

    PubMed Central

    Kachhap, Sushant; Singh, Keshav K

    2004-01-01

    Background Uracil DNA glycosylase (UDG) plays a major role in repair of uracil formed due to deamination of cytosine. UDG in human cells is present in both the nucleus and mitochondrial compartments. Although, UDG's role in the nucleus is well established its role in mitochondria is less clear. Results In order to identify UDG's role in the mitochondria we expressed UGI (uracil glycosylase inhibitor) a natural inhibitor of UDG in the mitochondria. Our studies suggest that inhibition of UDG by UGI in the mitochondria does not lead to either spontaneous or induced mutations in mtDNA. Our studies also suggest that UGI expression has no affect on cellular growth or cytochrome c-oxidase activity. Conclusions These results suggest that human cell mitochondria contain alternatives glycosylase (s) that may function as back up DNA repair protein (s) that repair uracil in the mitochondria. PMID:15574194

  5. Improvement of mitochondrial function and dynamics by the metabolic enhancer piracetam.

    PubMed

    Stockburger, Carola; Kurz, Christopher; Koch, Konrad A; Eckert, Schamim H; Leuner, Kristina; Müller, Walter E

    2013-10-01

    The metabolic enhancer piracetam is used in many countries to treat cognitive impairment in aging, brain injuries, as well as dementia such as AD (Alzheimer's disease). As a specific feature of piracetam, beneficial effects are usually associated with mitochondrial dysfunction. In previous studies we were able to show that piracetam enhanced ATP production, mitochondrial membrane potential as well as neurite outgrowth in cell and animal models for aging and AD. To investigate further the effects of piracetam on mitochondrial function, especially mitochondrial fission and fusion events, we decided to assess mitochondrial morphology. Human neuroblastoma cells were treated with the drug under normal conditions and under conditions imitating aging and the occurrence of ROS (reactive oxygen species) as well as in stably transfected cells with the human wild-type APP (amyloid precursor protein) gene. This AD model is characterized by expressing only 2-fold more human Aβ (amyloid β-peptide) compared with control cells and therefore representing very early stages of AD when Aβ levels gradually increase over decades. Interestingly, these cells exhibit an impaired mitochondrial function and morphology under baseline conditions. Piracetam is able to restore this impairment and shifts mitochondrial morphology back to elongated forms, whereas there is no effect in control cells. After addition of a complex I inhibitor, mitochondrial morphology is distinctly shifted to punctate forms in both cell lines. Under these conditions piracetam is able to ameliorate morphology in cells suffering from the mild Aβ load, as well as mitochondrial dynamics in control cells.

  6. Metabolic Characterization of Intact Cells Reveals Intracellular Amyloid Beta but Not Its Precursor Protein to Reduce Mitochondrial Respiration

    PubMed Central

    Schaefer, Patrick M.; von Einem, Bjoern; Walther, Paul; Calzia, Enrico; von Arnim, Christine A. F.

    2016-01-01

    One hallmark of Alzheimer´s disease are senile plaques consisting of amyloid beta (Aβ), which derives from the processing of the amyloid precursor protein (APP). Mitochondrial dysfunction has been linked to the pathogenesis of Alzheimer´s disease and both Aβ and APP have been reported to affect mitochondrial function in isolated systems. However, in intact cells, considering a physiological localization of APP and Aβ, it is pending what triggers the mitochondrial defect. Thus, the aim of this study was to dissect the impact of APP versus Aβ in inducing mitochondrial alterations with respect to their subcellular localization. We performed an overexpression of APP or beta-site amyloid precursor protein cleaving enzyme 1 (BACE1), increasing APP and Aβ levels or Aβ alone, respectively. Conducting a comprehensive metabolic characterization we demonstrate that only APP overexpression reduced mitochondrial respiration, despite lower extracellular Aβ levels compared to BACE overexpression. Surprisingly, this could be rescued by a gamma secretase inhibitor, oppositionally indicating an Aβ-mediated mitochondrial toxicity. Analyzing Aβ localization revealed that intracellular levels of Aβ and an increased spatial association of APP/Aβ with mitochondria are associated with reduced mitochondrial respiration. Thus, our data provide marked evidence for a prominent role of intracellular Aβ accumulation in Alzheimer´s disease associated mitochondrial dysfunction. Thereby it highlights the importance of the localization of APP processing and intracellular transport as a decisive factor for mitochondrial function, linking two prominent hallmarks of neurodegenerative diseases. PMID:28005987

  7. Crystal structure of mitochondrial respiratory membrane protein complex II.

    PubMed

    Sun, Fei; Huo, Xia; Zhai, Yujia; Wang, Aojin; Xu, Jianxing; Su, Dan; Bartlam, Mark; Rao, Zihe

    2005-07-01

    The mitochondrial respiratory Complex II or succinate:ubiquinone oxidoreductase (SQR) is an integral membrane protein complex in both the tricarboxylic acid cycle and aerobic respiration. Here we report the first crystal structure of Complex II from porcine heart at 2.4 A resolution and its complex structure with inhibitors 3-nitropropionate and 2-thenoyltrifluoroacetone (TTFA) at 3.5 A resolution. Complex II is comprised of two hydrophilic proteins, flavoprotein (Fp) and iron-sulfur protein (Ip), and two transmembrane proteins (CybL and CybS), as well as prosthetic groups required for electron transfer from succinate to ubiquinone. The structure correlates the protein environments around prosthetic groups with their unique midpoint redox potentials. Two ubiquinone binding sites are discussed and elucidated by TTFA binding. The Complex II structure provides a bona fide model for study of the mitochondrial respiratory system and human mitochondrial diseases related to mutations in this complex.

  8. Mitochondrial metabolism of pyruvate is essential for regulating glucose-stimulated insulin secretion.

    PubMed

    Patterson, Jessica N; Cousteils, Katelyn; Lou, Jennifer W; Manning Fox, Jocelyn E; MacDonald, Patrick E; Joseph, Jamie W

    2014-05-09

    It is well known that mitochondrial metabolism of pyruvate is critical for insulin secretion; however, we know little about how pyruvate is transported into mitochondria in β-cells. Part of the reason for this lack of knowledge is that the carrier gene was only discovered in 2012. In the current study, we assess the role of the recently identified carrier in the regulation of insulin secretion. Our studies show that β-cells express both mitochondrial pyruvate carriers (Mpc1 and Mpc2). Using both pharmacological inhibitors and siRNA-mediated knockdown of the MPCs we show that this carrier plays a key role in regulating insulin secretion in clonal 832/13 β-cells as well as rat and human islets. We also show that the MPC is an essential regulator of both the ATP-regulated potassium (KATP) channel-dependent and -independent pathways of insulin secretion. Inhibition of the MPC blocks the glucose-stimulated increase in two key signaling molecules involved in regulating insulin secretion, the ATP/ADP ratio and NADPH/NADP(+) ratio. The MPC also plays a role in in vivo glucose homeostasis as inhibition of MPC by the pharmacological inhibitor α-cyano-β-(1-phenylindol-3-yl)-acrylate (UK5099) resulted in impaired glucose tolerance. These studies clearly show that the newly identified mitochondrial pyruvate carrier sits at an important branching point in nutrient metabolism and that it is an essential regulator of insulin secretion.

  9. RNS60, a charge-stabilized nanostructure saline alters Xenopus Laevis oocyte biophysical membrane properties by enhancing mitochondrial ATP production

    PubMed Central

    Choi, Soonwook; Yu, Eunah; Kim, Duk-Soo; Sugimori, Mutsuyuki; Llinás, Rodolfo R

    2015-01-01

    We have examined the effects of RNS60, a 0.9% saline containing charge-stabilized oxygen nanobubble-based structures. RNS60 is generated by subjecting normal saline to Taylor–Couette–Poiseuille (TCP) flow under elevated oxygen pressure. This study, implemented in Xenopus laevis oocytes, addresses both the electrophysiological membrane properties and parallel biological processes in the cytoplasm. Intracellular recordings from defolliculated X. laevis oocytes were implemented in: (1) air oxygenated standard Ringer's solution, (2) RNS60-based Ringer's solution, (3) RNS10.3 (TCP-modified saline without excess oxygen)-based Ringer's, and (4) ONS60 (saline containing high pressure oxygen without TCP modification)-based Ringer's. RNS60-based Ringer's solution induced membrane hyperpolarization from the resting membrane potential. This effect was prevented by: (1) ouabain (a blocker of the sodium/potassium ATPase), (2) rotenone (a mitochondrial electron transfer chain inhibitor preventing usable ATP synthesis), and (3) oligomycin A (an inhibitor of ATP synthase) indicating that RNS60 effects intracellular ATP levels. Increased intracellular ATP levels following RNS60 treatment were directly demonstrated using luciferin/luciferase photon emission. These results indicate that RNS60 alters intrinsic the electrophysiological properties of the X. laevis oocyte membrane by increasing mitochondrial-based ATP synthesis. Ultrastructural analysis of the oocyte cytoplasm demonstrated increased mitochondrial length in the presence of RNS60-based Ringer's solution. It is concluded that the biological properties of RNS60 relate to its ability to optimize ATP synthesis. PMID:25742953

  10. Silent information regulator 1 modulator resveratrol increases brain lactate production and inhibits mitochondrial metabolism, whereas SRT1720 increases oxidative metabolism.

    PubMed

    Rowlands, Benjamin D; Lau, Chew Ling; Ryall, James G; Thomas, Donald S; Klugmann, Matthias; Beart, Philip M; Rae, Caroline D

    2015-07-01

    Silent information regulators (SIRTs) have been shown to deacetylate a range of metabolic enzymes, including those in glycolysis and the Krebs cycle, and thus alter their activity. SIRTs require NAD(+) for their activity, linking cellular energy status to enzyme activity. To examine the impact of SIRT1 modulation on oxidative metabolism, this study tests the effect of ligands that are either SIRT-activating compounds (resveratrol and SRT1720) or SIRT inhibitors (EX527) on the metabolism of (13)C-enriched substrates by guinea pig brain cortical tissue slices with (13)C and (1)H nuclear magnetic resonance spectroscopy. Resveratrol increased lactate labeling but decreased incorporation of (13)C into Krebs cycle intermediates, consistent with effects on AMPK and inhibition of the F0/F1-ATPase. By testing with resveratrol that was directly applied to astrocytes with a Seahorse analyzer, increased glycolytic shift and increased mitochondrial proton leak resulting from interactions of resveratrol with the mitochondrial electron transport chain were revealed. SRT1720, by contrast, stimulated incorporation of (13)C into Krebs cycle intermediates and reduced incorporation into lactate, although the inhibitor EX527 paradoxically also increased Krebs cycle (13)C incorporation. In summary, the various SIRT1 modulators show distinct acute effects on oxidative metabolism. The strong effects of resveratrol on the mitochondrial respiratory chain and on glycolysis suggest that caution should be used in attempts to increase bioavailability of this compound in the CNS. © 2015 Wiley Periodicals, Inc.

  11. Measurement of mitochondrial Ca2+ transport mediated by three transport proteins: VDAC1, the Na+/Ca2+ exchanger, and the Ca2+ uniporter.

    PubMed

    Ben-Hail, Danya; Palty, Raz; Shoshan-Barmatz, Varda

    2014-02-01

    Ca(2+) is a ubiquitous cellular signal, with changes in intracellular Ca(2+) concentration not only stimulating a number of intercellular events but also triggering cell death pathways, including apoptosis. Mitochondrial Ca(2+) uptake and release play pivotal roles in cellular physiology by regulating intracellular Ca(2+) signaling, energy metabolism and cell death. Ca(2+) transport across the inner and outer mitochondrial membranes is mediated by several proteins, including channels, antiporters, and a uniporter. In this article, we present the background to several methods now established for assaying mitochondrial Ca(2+) transport activity across both mitochondrial membranes. The first of these is Ca(2+) transport mediated by the outer mitochondrial protein, the voltage-dependent anion-selective channel protein 1 (VDAC1, also known as porin 1), both as a purified protein reconstituted into a planar lipid bilayer (PLB) or into liposomes and as a mitochondrial membrane-embedded protein. The second method involves isolated mitochondria for assaying the activity of an inner mitochondrial membrane transport protein, the mitochondrial Ca(2+) uniporter (MCU) that transports Ca(2+) and is powered by the steep mitochondrial membrane potential. In the event of Ca(2+) overload, this leads to opening of the mitochondrial permeability transition pore (MPTP) and cell death. The third method describes how Na(+)-dependent mitochondrial Ca(2+) efflux mediated by mitochondrial NCLX, a member of the Na(+)/Ca(2+) exchanger superfamily, can be assayed in digitonin-permeabilized HEK-293 cells. The Ca(2+)-transport assays can be performed under various conditions and in combination with inhibitors, allowing detailed characterization of the transport activity of interest.

  12. Enhanced Mitochondrial Transient Receptor Potential Channel, Canonical Type 3-Mediated Calcium Handling in the Vasculature From Hypertensive Rats.

    PubMed

    Wang, Bin; Xiong, Shiqiang; Lin, Shaoyang; Xia, Weijie; Li, Qiang; Zhao, Zhigang; Wei, Xing; Lu, Zongshi; Wei, Xiao; Gao, Peng; Liu, Daoyan; Zhu, Zhiming

    2017-07-15

    Mitochondrial Ca 2+ homeostasis is fundamental to the regulation of mitochondrial reactive oxygen species (ROS) generation and adenosine triphosphate production. Recently, transient receptor potential channel, canonical type 3 (TRPC3), has been shown to localize to the mitochondria and to play a role in maintaining mitochondrial calcium homeostasis. Inhibition of TRPC3 attenuates vascular calcium influx in spontaneously hypertensive rats (SHRs). However, it remains elusive whether mitochondrial TRPC3 participates in hypertension by increasing mitochondrial calcium handling and ROS production. In this study we demonstrated increased TRPC3 expression in purified mitochondria in the vasculature from SHRs, which facilitates enhanced mitochondrial calcium uptake and ROS generation compared with Wistar-Kyoto rats. Furthermore, inhibition of TRPC3 by its specific inhibitor, Pyr3, significantly decreased the vascular mitochondrial ROS production and H 2 O 2 synthesis and increased adenosine triphosphate content. Administration of telmisartan can improve these abnormalities. This beneficial effect was associated with improvement of the mitochondrial respiratory function through recovering the activity of pyruvate dehydrogenase in the vasculature of SHRs. In vivo, chronic administration of telmisartan suppressed TRPC3-mediated excessive mitochondrial ROS generation and vasoconstriction in the vasculature of SHRs. More importantly, TRPC3 knockout mice exhibited significantly ameliorated hypertension through reduction of angiotensin II-induced mitochondrial ROS generation. Together, we give experimental evidence for a potential mechanism by which enhanced TRPC3 activity at the cytoplasmic and mitochondrial levels contributes to redox signaling and calcium dysregulation in the vasculature from SHRs. Angiotensin II or telmisartan can regulate [Ca 2+ ] mito , ROS production, and mitochondrial energy metabolism through targeting TRPC3. © 2017 The Authors. Published on behalf of the American Heart Association, Inc., by Wiley.

  13. Inhibition of Drp1 attenuates mitochondrial damage and myocardial injury in Coxsackievirus B3 induced myocarditis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lin, Lin; Zhang, Ming; Yan, Rui

    Viral myocarditis (VMC) is closely related to apoptosis, oxidative stress, innate immunity, and energy metabolism, which are all linked to mitochondrial dysfunction. A close nexus between mitochondrial dynamics and cardiovascular disease with mitochondrial dysfunction has been deeply researched, but there is still no relevant report in viral myocarditis. In this study, we aimed to explore the role of Dynamin-related protein 1 (Drp1)-linked mitochondrial fission in VMC. Mice were inoculated with the Coxsackievirus B3 (CVB3) and treated with mdivi1 (a Drp1 inhibitor). Protein expression of Drp1 was increased in mitochondria while decreased in cytoplasm and accompanied by excessive mitochondrial fission inmore » VMC mice. In addition, midivi1 treatment attenuate inflammatory cells infiltration in myocardium of the mice, serum Cardiac troponin I (CTnI) and Creatine kinase-MB (CK-MB) level. Mdivi1 also could improved the survival rate of mice and mitochondrial dysfunction reflected as the up-regulated mitochondrial marker enzymatic activities of succinate dehydrogenase (SDH), cytochrome c oxidase (COX) and mitochondrial membrane potential (MMP). At the same time, mdivi1 rescued the body weight loss, myocardial injury and apoptosis of cardiomyocyte. Furthermore, decease in LVEDs and increase in EF and FS were detected by echocardiogram, which indicated the improved myocardial function. Thus, Drp1-linked excessive mitochondrial fission contributed to VMC and midivi1 may be a potential therapeutic approach. - Highlights: • The expression of Drp1 is significantly increased in mitochondria while decreased in cytoplasm in VMC mice. • Drp1-linked excessive mitochondrial fission is involved in VMC. • Midivi1 treatment mitigate the mitochondrial damage, inflammation, apoptosis in VMC mice. • The disturbance of mitochondrial dynamics may be a new therapeutic target for VMC.« less

  14. Fibroblast growth factor receptor inhibition induces loss of matrix MCL1 and necrosis in cholangiocarcinoma.

    PubMed

    Kabashima, Ayano; Hirsova, Petra; Bronk, Steven F; Hernandez, Matthew C; Truty, Mark J; Rizvi, Sumera; Kaufmann, Scott H; Gores, Gregory J

    2018-03-08

    Myeloid cell leukemia 1 (MCL1), a prosurvival member of the BCL2 protein family, has a pivotal role in human cholangiocarcinoma (CCA) cell survival. We previously reported that fibroblast growth factor receptor (FGFR) signalling mediates MCL1-dependent survival of CCA cells in vitro and in vivo. However, the mode and mechanisms of cell death in this model were not delineated. Human CCA cell lines were treated with the pan-FGFR inhibitor LY2874455 and the mode of cell death examined by several complementary assays. Mitochondrial oxidative metabolism was examined using a XF24 extracellular flux analyser. The efficiency of FGFR inhibition in patient-derived xenografts (PDX) was also assessed. CCA cells expressed two species of MCL1, a full-length form localised to the outer mitochondrial membrane, and an N terminus-truncated species compartmentalised within the mitochondrial matrix. The pan-FGFR inhibitor LY2874455 induced non-apoptotic cell death in the CCA cell lines associated with cellular depletion of both MCL1 species. The cell death was accompanied by failure of mitochondrial oxidative metabolism and was most consistent with necrosis. Enforced expression of N terminus-truncated MCL1 targeted to the mitochondrial matrix, but not full-length MCL1 targeted to the outer mitochondrial membrane, rescued cell death and mitochondrial function. LY2874455 treatment of PDX-bearing mice was associated with tumour cell loss of MCL1 and cell necrosis. FGFR inhibition induces loss of matrix MCL1, resulting in cell necrosis. These observations support a heretofore unidentified, alternative MCL1 survival function, namely prevention of cell necrosis, and have implications for treatment of human CCA. Herein, we report that therapeutic inhibition of a cell receptor expressed by bile duct cancer cells resulted in the loss of a critical survival protein termed MCL1. Cellular depletion of MCL1 resulted in the death of the cancer cells by a process characterised by cell rupture. Cell death by this process can stimulate the immune system and has implications for combination therapy using receptor inhibition with immunotherapy. Copyright © 2018 European Association for the Study of the Liver. Published by Elsevier B.V. All rights reserved.

  15. Brain alpha-ketoglutarate dehydrogenase complex: kinetic properties, regional distribution, and effects of inhibitors.

    PubMed

    Lai, J C; Cooper, A J

    1986-11-01

    The substrate and cofactor requirements and some kinetic properties of the alpha-ketoglutarate dehydrogenase complex (KGDHC; EC 1.2.4.2, EC 2.3.1.61, and EC 1.6.4.3) in purified rat brain mitochondria were studied. Brain mitochondrial KGDHC showed absolute requirement for alpha-ketoglutarate, CoA and NAD, and only partial requirement for added thiamine pyrophosphate, but no requirement for Mg2+ under the assay conditions employed in this study. The pH optimum was between 7.2 and 7.4, but, at pH values below 7.0 or above 7.8, KGDHC activity decreased markedly. KGDHC activity in various brain regions followed the rank order: cerebral cortex greater than cerebellum greater than or equal to midbrain greater than striatum = hippocampus greater than hypothalamus greater than pons and medulla greater than olfactory bulb. Significant inhibition of brain mitochondrial KGDHC was noted at pathological concentrations of ammonia (0.2-2 mM). However, the purified bovine heart KGDHC and KGDHC activity in isolated rat heart mitochondria were much less sensitive to inhibition. At 5 mM both beta-methylene-D,L-aspartate and D,L-vinylglycine (inhibitors of cerebral glucose oxidation) inhibited the purified heart but not the brain mitochondrial enzyme complex. At approximately 10 microM, calcium slightly stimulated (by 10-15%) the brain mitochondrial KGDHC. At concentrations above 100 microM, calcium (IC50 = 1 mM) inhibited both brain mitochondrial and purified heart KGDHC. The present results suggest that some of the kinetic properties of the rat brain mitochondrial KGDHC differ from those of the purified bovine heart and rat heart mitochondrial enzyme complexes. They also suggest that the inhibition of KGDHC by ammonia and the consequent effect on the citric acid cycle fluxes may be of pathophysiological and/or pathogenetic importance in hyperammonemia and in diseases (e.g., hepatic encephalopathy, inborn errors of urea metabolism, Reye's syndrome) where hyperammonemia is a consistent feature. Brain accumulation of calcium occurs in a number of pathological conditions. Therefore, it is possible that such a calcium accumulation may have a deleterious effect on KGDHC activity.

  16. Swimming attenuates d-galactose-induced brain aging via suppressing miR-34a-mediated autophagy impairment and abnormal mitochondrial dynamics.

    PubMed

    Kou, Xianjuan; Li, Jie; Liu, Xingran; Chang, Jingru; Zhao, Qingxia; Jia, Shaohui; Fan, Jingjing; Chen, Ning

    2017-06-01

    microRNAs (miRNAs) have been reported to be involved in many neurodegenerative diseases. To explore the regulatory role of miR-34a in aging-related diseases such as Alzheimer's disease (AD) during exercise intervention, we constructed a rat model with d-galactose (d-gal)-induced oxidative stress and cognitive impairment coupled with dysfunctional autophagy and abnormal mitochondrial dynamics, determined the mitigation of cognitive impairment of d-gal-induced aging rats during swimming intervention, and evaluated miR-34a-mediated functional status of autophagy and abnormal mitochondrial dynamics. Meanwhile, whether the upregulation of miR-34a can lead to dysfunctional autophagy and abnormal mitochondrial dynamics was confirmed in human SH-SY5Y cells with silenced miR-34a by the transfection of a miR-34a inhibitor. Results indicated that swimming intervention could significantly attenuate cognitive impairment, prevent the upregulation of miR-34a, mitigate the dysfunctional autophagy, and inhibit the increase of dynamin-related protein 1 (DRP1) in d-gal-induced aging model rats. In contrast, the miR-34a inhibitor in cell model not only attenuated D-gal-induced the impairment of autophagy but also decreased the expression of DRP1 and mitofusin 2 (MFN2). Therefore, swimming training can delay brain aging of d-gal-induced aging rats through attenuating the impairment of miR-34a-mediated autophagy and abnormal mitochondrial dynamics, and miR-34a could be the novel therapeutic target for aging-related diseases such as AD. NEW & NOTEWORTHY In the present study, we have found that the upregulation of miR-34a is the hallmark of aging or aging-related diseases, which can result in dysfunctional autophagy and abnormal mitochondrial dynamics. In contrast, swimming intervention can delay the aging process by rescuing the impaired functional status of autophagy and abnormal mitochondrial dynamics via the suppression of miR-34a. Copyright © 2017 the American Physiological Society.

  17. Tumor cell death induced by the inhibition of mitochondrial electron transport: The effect of 3-hydroxybakuchiol

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jaña, Fabián; Faini, Francesca; Lapier, Michel

    Changes in mitochondrial ATP synthesis can affect the function of tumor cells due to the dependence of the first step of glycolysis on mitochondrial ATP. The oxidative phosphorylation (OXPHOS) system is responsible for the synthesis of approximately 90% of the ATP in normal cells and up to 50% in most glycolytic cancers; therefore, inhibition of the electron transport chain (ETC) emerges as an attractive therapeutic target. We studied the effect of a lipophilic isoprenylated catechol, 3-hydroxybakuchiol (3-OHbk), a putative ETC inhibitor isolated from Psoralea glandulosa. 3-OHbk exerted cytotoxic and anti-proliferative effects on the TA3/Ha mouse mammary adenocarcinoma cell line andmore » induced a decrease in the mitochondrial transmembrane potential, the activation of caspase-3, the opening of the mitochondrial permeability transport pore (MPTP) and nuclear DNA fragmentation. Additionally, 3-OHbk inhibited oxygen consumption, an effect that was completely reversed by succinate (an electron donor for Complex II) and duroquinol (electron donor for Complex III), suggesting that 3-OHbk disrupted the electron flow at the level of Complex I. The inhibition of OXPHOS did not increase the level of reactive oxygen species (ROS) but caused a large decrease in the intracellular ATP level. ETC inhibitors have been shown to induce cell death through necrosis and apoptosis by increasing ROS generation. Nevertheless, we demonstrated that 3-OHbk inhibited the ETC and induced apoptosis through an interaction with Complex I. By delivering electrons directly to Complex III with duroquinol, cell death was almost completely abrogated. These results suggest that 3-OHbk has antitumor activity resulting from interactions with the ETC, a system that is already deficient in cancer cells. - Highlights: • We studied the anticancer activity of a natural compound, 3-OHbk, on TA3/Ha cells. • 3-OHbk inhibited mitochondrial electron flow by interacting with Complex I. • Complex I inhibition did not induce ROS generation. • 3-OHbk induced apoptosis in tumor cells with no effect on mammary epithelial cells. • Mitochondrial bioenergetics is implicated in anticancer action of 3-OHbk.« less

  18. Mitochondrial division/mitophagy inhibitor (Mdivi) Ameliorates Pressure Overload Induced Heart Failure

    PubMed Central

    Givvimani, Srikanth; Munjal, Charu; Tyagi, Neetu; Sen, Utpal; Metreveli, Naira; Tyagi, Suresh C.

    2012-01-01

    Background We have previously reported the role of anti-angiogenic factors in inducing the transition from compensatory cardiac hypertrophy to heart failure and the significance of MMP-9 and TIMP-3 in promoting this process during pressure overload hemodynamic stress. Several studies reported the evidence of cardiac autophagy, involving removal of cellular organelles like mitochondria (mitophagy), peroxisomes etc., in the pathogenesis of heart failure. However, little is known regarding the therapeutic role of mitochondrial division inhibitor (Mdivi) in the pressure overload induced heart failure. We hypothesize that treatment with mitochondrial division inhibitor (Mdivi) inhibits abnormal mitophagy in a pressure overload heart and thus ameliorates heart failure condition. Materials and Methods To verify this, ascending aortic banding was done in wild type mice to create pressure overload induced heart failure and then treated with Mdivi and compared with vehicle treated controls. Results Expression of MMP-2, vascular endothelial growth factor, CD31, was increased, while expression of anti angiogenic factors like endostatin and angiostatin along with MMP-9, TIMP-3 was reduced in Mdivi treated AB 8 weeks mice compared to vehicle treated controls. Expression of mitophagy markers like LC3 and p62 was decreased in Mdivi treated mice compared to controls. Cardiac functional status assessed by echocardiography showed improvement and there is also a decrease in the deposition of fibrosis in Mdivi treated mice compared to controls. Conclusion Above results suggest that Mdivi inhibits the abnormal cardiac mitophagy response during sustained pressure overload stress and propose the novel therapeutic role of Mdivi in ameliorating heart failure. PMID:22479323

  19. Calpain 10 homology modeling with CYGAK and increased lipophilicity leads to greater potency and efficacy in cells.

    PubMed

    Smith, Matthew A; McInnes, Campbell; Whitaker, Ryan M; Lindsey, Christopher C; Comer, Richard F; Beeson, Craig C; Schnellmann, Rick G

    2012-08-17

    Calpain 10 is a ubiquitously expressed mitochondrial and cytosolic Ca(2+)-regulated cysteine protease in which overexpression or knockdown leads to mitochondrial dysfunction and cell death. We previously identified a potent and specific calpain 10 peptide inhibitor (CYGAK), but it was not efficacious in cells. Therefore, we created a homology model using the calpain 10 amino acid sequence and calpain 1 3-D structure and docked CYGAK in the active site. Using this model we modified the inhibitor to improve potency 2-fold (CYGAbuK). To increase cellular efficacy, we created CYGAK-S-phenyl-oleic acid heterodimers. Using renal mitochondrial matrix CYGAK, CYGAK-OC, and CYGAK-ON had IC(50)'s of 70, 90, and 875 nM, respectively. Using isolated whole renal mitochondria CYGAK, CYGAK-OC, and CYGAK-ON had IC(50)'s of 95, 196, and >10,000 nM, respectively. Using renal proximal tubular cells (RPTC) in primary culture, 30 min exposures to CYGAK-OC and CYGAbuK-OC decreased cellular calpain activity approximately 20% at 1 μM, and concentrations up to 100 μM had no additional effect. RPTC treated with 10 μM CYGAK-OC for 24 h induced accumulation of ATP synthase β and NDUFB8, two calpain 10 substrates. In summary, we used molecular modeling to improve the potency of CYGAK, while creating CYGAK-oleic acid heterodimers to improve efficacy in cells. Since calpain 10 has been implicated in type 2 diabetes and renal aging, the use of this inhibitor may contribute to elucidating the role of calpain 10 in these and other diseases.

  20. The DNA methyltransferase inhibitor zebularine induces mitochondria-mediated apoptosis in gastric cancer cells in vitro and in vivo

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tan, Wei, E-mail: polo5352877@163.com; Zhou, Wei; Yu, Hong-gang

    2013-01-04

    Highlights: Black-Right-Pointing-Pointer Zebularine inhibited cell growth of gastric cancer in a time- and dose-dependent manner. Black-Right-Pointing-Pointer Chromatin condensation and nuclear fragmentation were induced. Black-Right-Pointing-Pointer Zebularine promoted apoptosis via mitochondrial pathways. Black-Right-Pointing-Pointer Tumorigenicity was inhibited by zebularine. -- Abstract: DNA methyltransferase (DNMT) inhibitor zebularine has been reported to potentiate the anti-tumor effect by reactivating the expression of tumor suppressor genes and apoptosis-related genes in various malignant cells. However, the apoptotic signaling pathway in gastric cancer cells induced by zebularine is not well understood. In the study, the effects of zebularine on the growth and apoptosis of gastric cancer cells were investigatedmore » by MTT assay, Hoechst assay, Western blot analysis, flow cytometric analysis of annexin V-FITC/PI staining, and TUNEL assay. Zebularine was an effective inhibitor of human gastric cancer cells proliferation in vitro and in vivo. The effects were dose dependent. A zebularine concentration of 50 {mu}M accounted for the inhibition of cell proliferation of 67% at 48 h. The treatment with zebularine upregulated Bax, and decreased Bcl-2 protein. Caspase-3 was activated, suggesting that the apoptosis is mediated by mitochondrial pathways. Moreover, zebularine injection successfully inhibited the tumor growth via apoptosis induction which was demonstrated by TUNEL assay in xenograft tumor mouse model. These results demonstrated that zebularine induced apoptosis in gastric cancer cells via mitochondrial pathways, and zebularine might become a therapeutic approach for the treatment of gastric cancer.« less

  1. Rho GTPases and their roles in cancer metabolism

    PubMed Central

    Wilson, Kristin F.; Erickson, Jon W.; Antonyak, Marc A.; Cerione, Richard A.

    2013-01-01

    Recently, the small molecule 968 was found to block the Rho GTPase-dependent growth of cancer cells in cell culture and mouse xenografts, and when the target of 968 was found to be mitochondrial enzyme glutaminase (GLS1) it revealed a surprising link between Rho GTPases and mitochondrial glutamine metabolism. Signal transduction via the Rho GTPases, together with NFκB, appears to elevate mitochondrial glutaminase activity in cancer cells, thereby helping cancer cells satisfy their altered metabolic demands. Here, we review what is known about the mechanism of glutaminase activation in cancer cells, as well as compare the properties of two distinct glutaminase inhibitors, and discuss recent findings that shed new light on how glutamine metabolism might affect cancer progression. PMID:23219172

  2. Ionizing radiation induces mitochondrial reactive oxygen species production accompanied by upregulation of mitochondrial electron transport chain function and mitochondrial content under control of the cell cycle checkpoint.

    PubMed

    Yamamori, Tohru; Yasui, Hironobu; Yamazumi, Masayuki; Wada, Yusuke; Nakamura, Yoshinari; Nakamura, Hideo; Inanami, Osamu

    2012-07-15

    Whereas ionizing radiation (Ir) instantaneously causes the formation of water radiolysis products that contain some reactive oxygen species (ROS), ROS are also suggested to be released from biological sources in irradiated cells. It is now becoming clear that these ROS generated secondarily after Ir have a variety of biological roles. Although mitochondria are assumed to be responsible for this Ir-induced ROS production, it remains to be elucidated how Ir triggers it. Therefore, we conducted this study to decipher the mechanism of Ir-induced mitochondrial ROS production. In human lung carcinoma A549 cells, Ir (10 Gy of X-rays) induced a time-dependent increase in the mitochondrial ROS level. Ir also increased mitochondrial membrane potential, mitochondrial respiration, and mitochondrial ATP production, suggesting upregulation of the mitochondrial electron transport chain (ETC) function after Ir. Although we found that Ir slightly enhanced mitochondrial ETC complex II activity, the complex II inhibitor 3-nitropropionic acid failed to reduce Ir-induced mitochondrial ROS production. Meanwhile, we observed that the mitochondrial mass and mitochondrial DNA level were upregulated after Ir, indicating that Ir increased the mitochondrial content of the cell. Because irradiated cells are known to undergo cell cycle arrest under control of the checkpoint mechanisms, we examined the relationships between cell cycle and mitochondrial content and cellular oxidative stress level. We found that the cells in the G2/M phase had a higher mitochondrial content and cellular oxidative stress level than cells in the G1 or S phase, regardless of whether the cells were irradiated. We also found that Ir-induced accumulation of the cells in the G2/M phase led to an increase in cells with a high mitochondrial content and cellular oxidative stress level. This suggested that Ir upregulated mitochondrial ETC function and mitochondrial content, resulting in mitochondrial ROS production, and that Ir-induced G2/M arrest contributed to the increase in the mitochondrial ROS level by accumulating cells in the G2/M phase. Copyright © 2012 Elsevier Inc. All rights reserved.

  3. An Analysis of Enzyme Kinetics Data for Mitochondrial DNA Strand Termination by Nucleoside Reverse Transcription Inhibitors

    PubMed Central

    Wendelsdorf, Katherine V.; Song, Zhuo; Cao, Yang; Samuels, David C.

    2009-01-01

    Nucleoside analogs used in antiretroviral treatment have been associated with mitochondrial toxicity. The polymerase-γ hypothesis states that this toxicity stems from the analogs' inhibition of the mitochondrial DNA polymerase (polymerase-γ) leading to mitochondrial DNA (mtDNA) depletion. We have constructed a computational model of the interaction of polymerase-γ with activated nucleoside and nucleotide analog drugs, based on experimentally measured reaction rates and base excision rates, together with the mtDNA genome size, the human mtDNA sequence, and mitochondrial dNTP concentrations. The model predicts an approximately 1000-fold difference in the activated drug concentration required for a 50% probability of mtDNA strand termination between the activated di-deoxy analogs d4T, ddC, and ddI (activated to ddA) and the activated forms of the analogs 3TC, TDF, AZT, FTC, and ABC. These predictions are supported by experimental and clinical data showing significantly greater mtDNA depletion in cell culture and patient samples caused by the di-deoxy analog drugs. For zidovudine (AZT) we calculated a very low mtDNA replication termination probability, in contrast to its reported mitochondrial toxicity in vitro and clinically. Therefore AZT mitochondrial toxicity is likely due to a mechanism that does not involve strand termination of mtDNA replication. PMID:19132079

  4. Weight Loss by Ppc-1, a Novel Small Molecule Mitochondrial Uncoupler Derived from Slime Mold

    PubMed Central

    Suzuki, Toshiyuki; Kikuchi, Haruhisa; Ogura, Masato; Homma, Miwako K.; Oshima, Yoshiteru; Homma, Yoshimi

    2015-01-01

    Mitochondria play a key role in diverse processes including ATP synthesis and apoptosis. Mitochondrial function can be studied using inhibitors of respiration, and new agents are valuable for discovering novel mechanisms involved in mitochondrial regulation. Here, we screened small molecules derived from slime molds and other microorganisms for their effects on mitochondrial oxygen consumption. We identified Ppc-1 as a novel molecule which stimulates oxygen consumption without adverse effects on ATP production. The kinetic behavior of Ppc-1 suggests its function as a mitochondrial uncoupler. Serial administration of Ppc-1 into mice suppressed weight gain with no abnormal effects on liver or kidney tissues, and no evidence of tumor formation. Serum fatty acid levels were significantly elevated in mice treated with Ppc-1, while body fat content remained low. After a single administration, Ppc-1 distributes into various tissues of individual animals at low levels. Ppc-1 stimulates adipocytes in culture to release fatty acids, which might explain the elevated serum fatty acids in Ppc-1-treated mice. The results suggest that Ppc-1 is a unique mitochondrial regulator which will be a valuable tool for mitochondrial research as well as the development of new drugs to treat obesity. PMID:25668511

  5. Improved sake metabolic profile during fermentation due to increased mitochondrial pyruvate dissimilation.

    PubMed

    Agrimi, Gennaro; Mena, Maria C; Izumi, Kazuki; Pisano, Isabella; Germinario, Lucrezia; Fukuzaki, Hisashi; Palmieri, Luigi; Blank, Lars M; Kitagaki, Hiroshi

    2014-03-01

    Although the decrease in pyruvate secretion by brewer's yeasts during fermentation has long been desired in the alcohol beverage industry, rather little is known about the regulation of pyruvate accumulation. In former studies, we developed a pyruvate under-secreting sake yeast by isolating a strain (TCR7) tolerant to ethyl α-transcyanocinnamate, an inhibitor of pyruvate transport into mitochondria. To obtain insights into pyruvate metabolism, in this study, we investigated the mitochondrial activity of TCR7 by oxigraphy and (13) C-metabolic flux analysis during aerobic growth. While mitochondrial pyruvate oxidation was higher, glycerol production was decreased in TCR7 compared with the reference. These results indicate that mitochondrial activity is elevated in the TCR7 strain with the consequence of decreased pyruvate accumulation. Surprisingly, mitochondrial activity is much higher in the sake yeast compared with CEN.PK 113-7D, the reference strain in metabolic engineering. When shifted from aerobic to anaerobic conditions, sake yeast retains a branched mitochondrial structure for a longer time than laboratory strains. The regulation of mitochondrial activity can become a completely novel approach to manipulate the metabolic profile during fermentation of brewer's yeasts. © 2013 Federation of European Microbiological Societies. Published by John Wiley & Sons Ltd. All rights reserved.

  6. Cellular Protection using Flt3 and PI3Kα inhibitors demonstrates multiple mechanisms of oxidative glutamate toxicity

    PubMed Central

    Kang, Yunyi; Tiziani, Stefano; Park, Goonho; Kaul, Marcus; Paternostro, Giovanni

    2014-01-01

    Glutamate-induced oxidative stress is a major contributor to neurodegenerative diseases. Here we identify small molecule inhibitors of this process. We screen a kinase inhibitor library on neuronal cells and identify Flt3 and PI3Kα inhibitors as potent protectors against glutamate toxicity. Both inhibitors prevented reactive oxygen species (ROS) generation, mitochondrial hyperpolarization, and lipid peroxidation in neuronal cells, but they do so by distinct molecular mechanisms. The PI3Kα inhibitor protects cells by inducing partial restoration of depleted glutathione levels and accumulation of intracellular amino acids, whereas the Flt3 inhibitor prevents lipid peroxidation, a key mechanism of glutamate-mediated toxicity. We also demonstrate that glutamate toxicity involves a combination of ferroptosis, necrosis, and AIF-dependent apoptosis. We confirm the protective effect by using multiple inhibitors of these kinases and multiple cell types. Our results not only identify compounds that protect against glutamate-stimulated oxidative stress, but also provide new insights into the mechanisms of glutamate toxicity in neurons. PMID:24739485

  7. Mitochondrial inhibitor models of Huntington's disease and Parkinson's disease induce zinc accumulation and are attenuated by inhibition of zinc neurotoxicity in vitro or in vivo.

    PubMed

    Sheline, Christian T; Zhu, Julia; Zhang, Wendy; Shi, Chunxiao; Cai, Ai-Li

    2013-01-01

    Inhibition of mitochondrial function occurs in many neurodegenerative diseases, and inhibitors of mitochondrial complexes I and II are used to model them. The complex II inhibitor, 3-nitroproprionic acid (3-NPA), kills the striatal neurons susceptible in Huntington's disease. The complex I inhibitor N-methyl-4-phenylpyridium (MPP(+)) and 6-hydroxydopamine (6-OHDA) are used to model Parkinson's disease. Zinc (Zn(2+)) accumulates after 3-NPA, 6-OHDA and MPP(+) in situ or in vivo. We will investigate the role of Zn(2+) neurotoxicity in 3-NPA, 6-OHDA and MPP(+). Murine striatal/midbrain tyrosine hydroxylase positive, or near-pure cortical neuronal cultures, or animals were exposed to 3-NPA or MPP(+) and 6-OHDA with or without neuroprotective compounds. Intracellular zinc ([Zn(2+)](i)), nicotinamide adenine dinucleotide (NAD(+)), NADH, glycolytic intermediates and neurotoxicity were measured. We showed that compounds or genetics which restore NAD(+) and attenuate Zn(2+) neurotoxicity (pyruvate, nicotinamide, NAD(+), increased NAD(+) synthesis, sirtuin inhibition or Zn(2+) chelation) attenuated the neuronal death induced by these toxins. The increase in [Zn(2+)](i) preceded a reduction in the NAD(+)/NADH ratio that caused a reversible glycolytic inhibition. Pyruvate, nicotinamide and NAD(+) reversed the reductions in the NAD(+)/NADH ratio, glycolysis and neuronal death after challenge with 3-NPA, 6-OHDA or MPP(+), as was previously shown for exogenous Zn(2+). To test efficacy in vivo, we injected 3-NPA into the striatum of rats and systemically into mice, with or without pyruvate. We observed early striatal Zn(2+) fluorescence, and pyruvate significantly attenuated the 3-NPA-induced lesion and restored behavioral scores. Together, these studies suggest that Zn(2+) accumulation caused by MPP(+) and 3-NPA is a novel preventable mechanism of the resultant neurotoxicity. Copyright © 2012 S. Karger AG, Basel.

  8. Paraoxon induces apoptosis in EL4 cells via activation of mitochondrial pathways.

    PubMed

    Saleh, A M; Vijayasarathy, C; Masoud, L; Kumar, L; Shahin, A; Kambal, A

    2003-07-01

    The toxicity of organophosphorus compounds, such as paraoxon (POX), is due to their anticholinesterase action. Recently, we have shown that, at noncholinergic doses (1 to 10 nM), POX (the bioactive metabolite of parathion) causes apoptotic cell death in murine EL4 T-lymphocytic leukemia cell line through activation of caspase-3. In this study, by employing caspase-specific inhibitors, we extend our observations to elucidate the sequence of events involved in POX-stimulated apoptosis. Pretreatment of EL4 cells with the caspase-9-specific inhibitor zLEHD-fmk attenuated POX-induced apoptosis in a dose-dependent manner, whereas the caspase-8 inhibitor zIETD-fmk had no effect. Furthermore, the activation of caspase-9, -8, and -3 in response to POX treatment was completely inhibited in the presence of zLEHD-fmk, implicating the involvement of caspase 9-dependent mitochondrial pathways in POX-stimulated apoptosis. Indeed, under both in vitro and in vivo conditions, POX triggered a dose- and time-dependent translocation of cytochrome c from mitochondria into the cytosol, as assessed by Western blot analysis. Investigation of the mechanism of cytochrome c release revealed that POX disrupted mitochondrial transmembrane potential. Neither this effect nor cytchrome c release was dependent on caspase activation, since the general inhibitor of the caspase family zVAD-fmk did not influence both processes. Finally, POX treatment also resulted in a time-dependent up-regulation and translocation of the proapoptotic molecule Bax to mitochondria. Inhibition of this event by zVAD-fmk suggests that the activation and translocation of Bax to mitochondria is subsequent to activation of the caspase cascades. The results indicate that POX induces apoptosis in EL4 cells through a direct effect on mitochondria by disrupting its transmembrane potential, causing the release of cytochrome c into the cytosol and subsequent activation of caspase-9. Inhibition of this specific pathway might provide a useful strategy to minimize organophosphate-induced poisoning.

  9. Hydroxybenzoic acid derivatives as dual-target ligands: mitochondriotropic antioxidants and cholinesterase inhibitors

    NASA Astrophysics Data System (ADS)

    Oliveira, Catarina; Cagide, Fernando; Teixeira, José; Amorim, Ricardo; Sequeira, Lisa; Mesiti, Francesco; Silva, Tiago; Garrido, Jorge; Remião, Fernando; Vilar, Santiago; Uriarte, Eugenio; Oliveira, Paulo J.; Borges, Fernanda

    2018-04-01

    Alzheimer’s disease (AD) is a multifactorial age-related disease associated with oxidative stress (OS) and impaired cholinergic transmission. Accordingly, targeting mitochondrial OS and restoring cholinergic transmission can be an effective therapeutic strategy towards AD. Herein, we report for the first time dual-target hydroxybenzoic acid (HBAc) derivatives acting as mitochondriotropic antioxidants and cholinesterase (ChE) inhibitors. The studies were performed with two mitochondriotropic antioxidants AntiOxBEN1 (catechol derivative), and AntiOxBEN2 (pyrogallol derivative) and compounds 15-18, which have longer spacers. Compounds AntiOxBEN1 and 15, with a shorter carbon chain spacer (six- and eight-carbon) were shown to be potent antioxidants and BChE inhibitors (IC50 = 85 ± 5 and 106 ± 5 nM, respectively), while compounds 17 and 18 with a ten-carbon chain were more effective AChE inhibitors (IC50 = 7.7 ± 0.4 and 7.2 ± 0.5 nM, respectively). Interestingly, molecular modelling data pointed towards bifunctional ChEs inhibitors. The most promising ChE inhibitors acted by a non-competitive mechanism. In general, with exception of compounds 15 and 17, no cytotoxic effects were observed in differentiated human neuroblastoma (SH-SY5Y) and human hepatocarcinoma (HepG2) cells, while Αβ-induced cytotoxicity was significantly prevented by the new dual-target HBAc derivatives. Overall, due to its BChE selectivity, favourable toxicological profile, neuroprotective activity and drug-like properties, which suggested blood-brain barrier (BBB) permeability, the mitochondriotropic antioxidant AntiOxBEN1 is considered a valid lead candidate for the development of dual acting drugs for AD and other mitochondrial OS-related disease

  10. Hydroxybenzoic Acid Derivatives as Dual-Target Ligands: Mitochondriotropic Antioxidants and Cholinesterase Inhibitors.

    PubMed

    Oliveira, Catarina; Cagide, Fernando; Teixeira, José; Amorim, Ricardo; Sequeira, Lisa; Mesiti, Francesco; Silva, Tiago; Garrido, Jorge; Remião, Fernando; Vilar, Santiago; Uriarte, Eugenio; Oliveira, Paulo J; Borges, Fernanda

    2018-01-01

    Alzheimer's disease (AD) is a multifactorial age-related disease associated with oxidative stress (OS) and impaired cholinergic transmission. Accordingly, targeting mitochondrial OS and restoring cholinergic transmission can be an effective therapeutic strategy toward AD. Herein, we report for the first time dual-target hydroxybenzoic acid (HBAc) derivatives acting as mitochondriotropic antioxidants and cholinesterase (ChE) inhibitors. The studies were performed with two mitochondriotropic antioxidants AntiOxBEN 1 (catechol derivative), and AntiOxBEN 2 (pyrogallol derivative) and compounds 15-18 , which have longer spacers. Compounds AntiOxBEN 1 and 15 , with a shorter carbon chain spacer (six- and eight-carbon) were shown to be potent antioxidants and BChE inhibitors (IC 50 = 85 ± 5 and 106 ± 5 nM, respectively), while compounds 17 and 18 with a 10-carbon chain were more effective AChE inhibitors (IC 50 = 7.7 ± 0.4 and 7.2 ± 0.5 μM, respectively). Interestingly, molecular modeling data pointed toward bifunctional ChEs inhibitors. The most promising ChE inhibitors acted by a non-competitive mechanism. In general, with exception of compounds 15 and 17 , no cytotoxic effects were observed in differentiated human neuroblastoma (SH-SY5Y) and human hepatocarcinoma (HepG2) cells, while Aβ-induced cytotoxicity was significantly prevented by the new dual-target HBAc derivatives. Overall, due to its BChE selectivity, favorable toxicological profile, neuroprotective activity and drug-like properties, which suggested blood-brain barrier (BBB) permeability, the mitochondriotropic antioxidant AntiOxBEN 1 is considered a valid lead candidate for the development of dual acting drugs for AD and other mitochondrial OS-related diseases.

  11. Hydroxybenzoic Acid Derivatives as Dual-Target Ligands: Mitochondriotropic Antioxidants and Cholinesterase Inhibitors

    PubMed Central

    Oliveira, Catarina; Cagide, Fernando; Teixeira, José; Amorim, Ricardo; Sequeira, Lisa; Mesiti, Francesco; Silva, Tiago; Garrido, Jorge; Remião, Fernando; Vilar, Santiago; Uriarte, Eugenio; Oliveira, Paulo J.; Borges, Fernanda

    2018-01-01

    Alzheimer's disease (AD) is a multifactorial age-related disease associated with oxidative stress (OS) and impaired cholinergic transmission. Accordingly, targeting mitochondrial OS and restoring cholinergic transmission can be an effective therapeutic strategy toward AD. Herein, we report for the first time dual-target hydroxybenzoic acid (HBAc) derivatives acting as mitochondriotropic antioxidants and cholinesterase (ChE) inhibitors. The studies were performed with two mitochondriotropic antioxidants AntiOxBEN1 (catechol derivative), and AntiOxBEN2 (pyrogallol derivative) and compounds 15–18, which have longer spacers. Compounds AntiOxBEN1 and 15, with a shorter carbon chain spacer (six- and eight-carbon) were shown to be potent antioxidants and BChE inhibitors (IC50 = 85 ± 5 and 106 ± 5 nM, respectively), while compounds 17 and 18 with a 10-carbon chain were more effective AChE inhibitors (IC50 = 7.7 ± 0.4 and 7.2 ± 0.5 μM, respectively). Interestingly, molecular modeling data pointed toward bifunctional ChEs inhibitors. The most promising ChE inhibitors acted by a non-competitive mechanism. In general, with exception of compounds 15 and 17, no cytotoxic effects were observed in differentiated human neuroblastoma (SH-SY5Y) and human hepatocarcinoma (HepG2) cells, while Aβ-induced cytotoxicity was significantly prevented by the new dual-target HBAc derivatives. Overall, due to its BChE selectivity, favorable toxicological profile, neuroprotective activity and drug-like properties, which suggested blood-brain barrier (BBB) permeability, the mitochondriotropic antioxidant AntiOxBEN1 is considered a valid lead candidate for the development of dual acting drugs for AD and other mitochondrial OS-related diseases. PMID:29740575

  12. Repositioning of antibiotic levofloxacin as a mitochondrial biogenesis inhibitor to target breast cancer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yu, Min; Li, Ruishu, E-mail: liruishu2016@yahoo.com; Zhang, Juan

    Targeting mitochondrial biogenesis has become a potential therapeutic strategy in cancer due to their unique metabolic dependencies. In this study, we show that levofloxacin, a FDA-approved antibiotic, is an attractive candidate for breast cancer treatment. This is achieved by the inhibition of proliferation and induction of apoptosis in a panel of breast cancer cell lines while sparing normal breast cells. It also acts synergistically with conventional chemo drug in two independent in vivo breast xenograft mouse models. Importantly, levofloxacin inhibits mitochondrial biogenesis as shown by the decreased level of mitochondrial respiration, membrane potential and ATP. In addition, the anti-proliferative and pro-apoptoticmore » effects of levofloxacin are reversed by acetyl-L-Carnitine (ALCAR, a mitochondrial fuel), confirming that levofloxacin's action in breast cancer cells is through inhibition of mitochondrial biogenesis. A consequence of mitochondrial biogenesis inhibition by levofloxacin in breast cancer cells is the deactivation of PI3K/Akt/mTOR and MAPK/ERK pathways. We further demonstrate that breast cancer cells have increased mitochondrial biogenesis than normal breast cells, and this explains their different sensitivity to levofloxacin. Our work suggest that levofloxacin is a useful addition to breast cancer treatment. Our work also establish the essential role of mitochondrial biogenesis on the activation of PI3K/Akt/mTOR and MAPK/ERK pathways in breast cancer cells. - Highlights: • Levofloxacin targets a panel of breast cancer cell lines in vitro and in vivo. • Levofloxacin acts synergistically with 5-Fluorouracil in breast cancer. • Levofloxacin targets breast cancer cells via inhibiting mitochondrial biogenesis. • Breast cancer cells have increased mitochondrial biogenesis than normal cells. • Mitochondrial biogenesis inhibition lead to deactivation of PI3K/Akt/mTOR pathway.« less

  13. Glycoprotein Ib activation by thrombin stimulates the energy metabolism in human platelets

    PubMed Central

    Corona de la Peña, Norma; Gutiérrez-Aguilar, Manuel; Hernández-Reséndiz, Ileana; Marín-Hernández, Álvaro

    2017-01-01

    Thrombin-induced platelet activation requires substantial amounts of ATP. However, the specific contribution of each ATP-generating pathway i.e., oxidative phosphorylation (OxPhos) versus glycolysis and the biochemical mechanisms involved in the thrombin-induced activation of energy metabolism remain unclear. Here we report an integral analysis on the role of both energy pathways in human platelets activated by several agonists, and the signal transducing mechanisms associated with such activation. We found that thrombin, Trap-6, arachidonic acid, collagen, A23187, epinephrine and ADP significantly increased glycolytic flux (3–38 times vs. non-activated platelets) whereas ristocetin was ineffective. OxPhos (33 times) and mitochondrial transmembrane potential (88%) were increased only by thrombin. OxPhos was the main source of ATP in thrombin-activated platelets, whereas in platelets activated by any of the other agonists, glycolysis was the principal ATP supplier. In order to establish the biochemical mechanisms involved in the thrombin-induced OxPhos activation in platelets, several signaling pathways associated with mitochondrial activation were analyzed. Wortmannin and LY294002 (PI3K/Akt pathway inhibitors), ristocetin and heparin (GPIb inhibitors) as well as resveratrol, ATP (calcium-release inhibitors) and PP1 (Tyr-phosphorylation inhibitor) prevented the thrombin-induced platelet activation. These results suggest that thrombin activates OxPhos and glycolysis through GPIb-dependent signaling involving PI3K and Akt activation, calcium mobilization and protein phosphorylation. PMID:28817667

  14. Norcantharidin Induces Human Melanoma A375-S2 Cell Apoptosis through Mitochondrial and Caspase Pathways

    PubMed Central

    An, Wei-wei; Wang, Min-wei; Tashiro, Shin-ichi; Onodera, Satoshi

    2004-01-01

    Norcantharidin (NCTD) is the demethylated form of cantharidin, which is the active substance of mylabris. To examine the pathway of NCTD-induced A375-S2 cell death, 3-(4, 5-dimethylthiazol-2-yl)-2, 5-dipheyltetrazolium bromide (MTT) assay, photomicroscopical observation, DNA agarose gel electrophoresis, caspase activity assay and Western blot analysis were carried out. A375-S2 cells treated with NCTD exhibited several typical characteristics of apoptosis. The inhibitory effect of NCTD on human melanoma, A375-S2 cells, was partially reversed by the inhibitors of pan-caspase, caspase-3 and caspase-9. The activities of caspase-3 and -9 were significantly increased after treatment with NCTD at different time. The expression of inhibitor of caspase-activated DNase was decreased in a time-dependent manner, simultaneously, the ratio of Bcl-2/Bax or Bcl-xL/Bax was decreased and the expression ratio of proteins could be reversed by caspase-3 inhibitor. The expression of cytochrome c in cytosol was increased after NCTD treatment and caspase-3 inhibitor had no significant effect on the up-regulation of cytochrom c. These results suggest that NCTD induced A375-S2 cell apoptosis and the activation of caspase and mitochondrial pathway were involved in the process of NCTD-induced A375-S2 cell apoptosis. PMID:15308848

  15. Saxagliptin Restores Vascular Mitochondrial Exercise Response in the Goto-Kakizaki Rat

    PubMed Central

    Keller, Amy C.; Knaub, Leslie A.; Miller, Matthew W.; Birdsey, Nicholas; Klemm, Dwight J.

    2015-01-01

    Abstract: Cardiovascular disease risk and all-cause mortality are largely predicted by physical fitness. Exercise stimulates vascular mitochondrial biogenesis through endothelial nitric oxide synthase (eNOS), sirtuins, and PPARγ coactivator 1α (PGC-1α), a response absent in diabetes and hypertension. We hypothesized that an agent regulating eNOS in the context of diabetes could reconstitute exercise-mediated signaling to mitochondrial biogenesis. Glucagon-like peptide 1 (GLP-1) stimulates eNOS and blood flow; we used saxagliptin, an inhibitor of GLP-1 degradation, to test whether vascular mitochondrial adaptation to exercise in diabetes could be restored. Goto-Kakizaki (GK) rats, a nonobese, type 2 diabetes model, and Wistar controls were exposed to an 8-day exercise intervention with or without saxagliptin (10 mg·kg−1·d−1). We evaluated the impact of exercise and saxagliptin on mitochondrial proteins and signaling pathways in aorta. Mitochondrial protein expression increased with exercise in the Wistar aorta and decreased or remained unchanged in the GK animals. GK rats treated with saxagliptin plus exercise showed increased expression of mitochondrial complexes, cytochrome c, eNOS, nNOS, PGC-1α, and UCP3 proteins. Notably, a 3-week saxagliptin plus exercise intervention significantly increased running time in the GK rats. These data suggest that saxagliptin restores vascular mitochondrial adaptation to exercise in a diabetic rodent model and may augment the impact of exercise on the vasculature. PMID:25264749

  16. Saxagliptin restores vascular mitochondrial exercise response in the Goto-Kakizaki rat.

    PubMed

    Keller, Amy C; Knaub, Leslie A; Miller, Matthew W; Birdsey, Nicholas; Klemm, Dwight J; Reusch, Jane E B

    2015-02-01

    Cardiovascular disease risk and all-cause mortality are largely predicted by physical fitness. Exercise stimulates vascular mitochondrial biogenesis through endothelial nitric oxide synthase (eNOS), sirtuins, and PPARγ coactivator 1α (PGC-1α), a response absent in diabetes and hypertension. We hypothesized that an agent regulating eNOS in the context of diabetes could reconstitute exercise-mediated signaling to mitochondrial biogenesis. Glucagon-like peptide 1 (GLP-1) stimulates eNOS and blood flow; we used saxagliptin, an inhibitor of GLP-1 degradation, to test whether vascular mitochondrial adaptation to exercise in diabetes could be restored. Goto-Kakizaki (GK) rats, a nonobese, type 2 diabetes model, and Wistar controls were exposed to an 8-day exercise intervention with or without saxagliptin (10 mg·kg·d). We evaluated the impact of exercise and saxagliptin on mitochondrial proteins and signaling pathways in aorta. Mitochondrial protein expression increased with exercise in the Wistar aorta and decreased or remained unchanged in the GK animals. GK rats treated with saxagliptin plus exercise showed increased expression of mitochondrial complexes, cytochrome c, eNOS, nNOS, PGC-1α, and UCP3 proteins. Notably, a 3-week saxagliptin plus exercise intervention significantly increased running time in the GK rats. These data suggest that saxagliptin restores vascular mitochondrial adaptation to exercise in a diabetic rodent model and may augment the impact of exercise on the vasculature.

  17. CypD-mPTP axis regulates mitochondrial functions contributing to osteogenic dysfunction of MC3T3-E1 cells in inflammation.

    PubMed

    Gan, Xueqi; Zhang, Ling; Liu, Beilei; Zhu, Zhuoli; He, Yuting; Chen, Junsheng; Zhu, Junfei; Yu, Haiyang

    2018-04-20

    Bone is a dynamic organ, the bone-forming osteoblasts and bone-resorbing osteoclasts form the physiological basis of bone remodeling process. During pathological process of numerous inflammatory diseases, these two aspects are uncoupled and the balance is usually tipped in favor of bone destruction. Evidence suggests that the inflammatory destruction of bone is mainly attributed to oxidative stress and is closely related to mitochondrial dysfunction. The mechanisms underlying osteogenic dysfunction in inflammation still need further investigation. Reactive oxygen species (ROS) is associated with mitochondrial dysfunction and cellular damage. Here, we reported an unexplored role of cyclophilin D (CypD), the major modulator of mitochondrial permeability transition pore (mPTP), and the CypD-mPTP axis in inflammation-induced mitochondrial dysfunction and bone damage. And the protective effects of knocking down CypD by siRNA interference or the addition of cyclosporin A (CsA), an inhibitor of CypD, were evidenced by rescued mitochondrial function and osteogenic function of osteoblast under tumor necrosis factor-α (TNF-α) treatment. These findings provide new insights into the role of CypD-mPTP-dependent mitochondrial pathway in the inflammatory bone injury. The protective effect of CsA or other moleculars affecting the mPTP formation may hold promise as a potential novel therapeutic strategy for inflammation-induced bone damage via mitochondrial pathways.

  18. Mitochondrial Dysfunction and Oxidative Stress Promote Apoptotic Cell Death in the Striatum via Cytochrome c/Caspase-3 Signaling Cascade Following Chronic Rotenone Intoxication in Rats

    PubMed Central

    Lin, Tsu-Kung; Cheng, Ching-Hsiao; Chen, Shang-Der; Liou, Chia-Wei; Huang, Chi-Ren; Chuang, Yao-Chung

    2012-01-01

    Parkinson’s disease (PD) is a progressive neurological disorder marked by nigrostriatal dopaminergic degeneration. Evidence suggests that mitochondrial dysfunction may be linked to PD through a variety of different pathways, including free-radical generation and dysfunction of the mitochondrial Complex I activity. In Lewis rats, chronic systemic administration of a specific mitochondrial Complex I inhibitor, rotenone (3 mg/kg/day) produced parkinsonism-like symptoms. Increased oxidized proteins and peroxynitrite, and mitochondrial or cytosol translocation of Bim, Bax or cytochrome c in the striatum was observed after 2–4 weeks of rotenone infusion. After 28 days of systemic rotenone exposure, imunohistochemical staining for tyrosine hydroxylase indicated nigrostriatal dopaminergic neuronal cell degeneration. Characteristic histochemical (TUNEL or activated caspase-3 staining) or ultrastructural (electron microscopy) features of apoptotic cell death were present in the striatal neuronal cell after chronic rotenone intoxication. We conclude that chronic rotenone intoxication may enhance oxidative and nitrosative stress that induces mitochondrial dysfunction and ultrastructural damage, resulting in translocation of Bim and Bax from cytosol to mitochondria that contributes to apoptotic cell death in the striatum via cytochrome c/caspase-3 signaling cascade. PMID:22942730

  19. Cardiomyocyte mitochondrial respiration is reduced by receptor for advanced glycation end-product signaling in a ceramide-dependent manner.

    PubMed

    Nelson, Michael B; Swensen, Adam C; Winden, Duane R; Bodine, Jared S; Bikman, Benjamin T; Reynolds, Paul R

    2015-07-01

    Cigarette smoke exposure is associated with an increased risk of cardiovascular complications. The role of advanced glycation end products (AGEs) is already well established in numerous comorbidities, including cardiomyopathy. Given the role of AGEs and their receptor, RAGE, in activating inflammatory pathways, we sought to determine whether ceramides could be a mediator of RAGE-induced altered heart mitochondrial function. Using an in vitro model, we treated H9C2 cardiomyocytes with the AGE carboxy-methyllysine before mitochondrial respiration assessment. We discovered that mitochondrial respiration was significantly impaired in AGE-treated cells, but not when cotreated with myriocin, an inhibitor of de novo ceramide biosynthesis. Moreover, we exposed wild-type and RAGE knockout mice to secondhand cigarette smoke and found reduced mitochondrial respiration in the left ventricular myocardium from wild-type mice, but RAGE knockout mice were protected from this effect. Finally, conditional overexpression of RAGE in the lungs of transgenic mice elicited a robust increase in left ventricular ceramides in the absence of smoke exposure. Taken together, these findings suggest a RAGE-ceramide axis as an important contributor to AGE-mediated disrupted cardiomyocyte mitochondrial function. Copyright © 2015 the American Physiological Society.

  20. Lactate is oxidized outside of the mitochondrial matrix in rodent brain.

    PubMed

    Herbst, Eric A F; George, Mitchell A J; Brebner, Karen; Holloway, Graham P; Kane, Daniel A

    2018-05-01

    The nature and existence of mitochondrial lactate oxidation is debated in the literature. Obscuring the issue are disparate findings in isolated mitochondria, as well as relatively low rates of lactate oxidation observed in permeabilized muscle fibres. However, respiration with lactate has yet to be directly assessed in brain tissue with the mitochondrial reticulum intact. To determine if lactate is oxidized in the matrix of brain mitochondria, oxygen consumption was measured in saponin-permeabilized mouse brain cortex samples, and rat prefrontal cortex and hippocampus (dorsal) subregions. While respiration in the presence of ADP and malate increased with the addition of lactate, respiration was maximized following the addition of exogenous NAD + , suggesting maximal lactate metabolism involves extra-matrix lactate dehydrogenase. This was further supported when NAD + -dependent lactate oxidation was significantly decreased with the addition of either low-concentration α-cyano-4-hydroxycinnamate or UK-5099, inhibitors of mitochondrial pyruvate transport. Mitochondrial respiration was comparable between glutamate, pyruvate, and NAD + -dependent lactate oxidation. Results from the current study demonstrate that permeabilized brain is a feasible model for assessing lactate oxidation, and support the interpretation that lactate oxidation occurs outside the mitochondrial matrix in rodent brain.

  1. Mitochondrial proteomic profiling reveals increased carbonic anhydrase II in aging and neurodegeneration.

    PubMed

    Pollard, Amelia; Shephard, Freya; Freed, James; Liddell, Susan; Chakrabarti, Lisa

    2016-10-10

    Carbonic anhydrase inhibitors are used to treat glaucoma and cancers. Carbonic anhydrases perform a crucial role in the conversion of carbon dioxide and water into bicarbonate and protons. However, there is little information about carbonic anhydrase isoforms during the process of ageing. Mitochondrial dysfunction is implicit in ageing brain and muscle. We have interrogated isolated mitochondrial fractions from young adult and middle aged mouse brain and skeletal muscle. We find an increase of tissue specific carbonic anhydrases in mitochondria from middle-aged brain and skeletal muscle. Mitochondrial carbonic anhydrase II was measured in the Purkinje cell degeneration ( pcd 5J ) mouse model. In pcd 5J we find mitochondrial carbonic anhydrase II is also elevated in brain from young adults undergoing a process of neurodegeneration. We show C.elegans exposed to carbonic anhydrase II have a dose related shorter lifespan suggesting that high CAII levels are in themselves life limiting. We show for the first time that the mitochondrial content of brain and skeletal tissue are exposed to significantly higher levels of active carbonic anhydrases as early as in middle-age. Carbonic anhydrases associated with mitochondria could be targeted to specifically modulate age related impairments and disease.

  2. The human gene SLC25A29, of solute carrier family 25, encodes a mitochondrial transporter of basic amino acids.

    PubMed

    Porcelli, Vito; Fiermonte, Giuseppe; Longo, Antonella; Palmieri, Ferdinando

    2014-05-09

    The human genome encodes 53 members of the solute carrier family 25 (SLC25), also called the mitochondrial carrier family, many of which have been shown to transport carboxylates, amino acids, nucleotides, and cofactors across the inner mitochondrial membrane, thereby connecting cytosolic and matrix functions. In this work, a member of this family, SLC25A29, previously reported to be a mitochondrial carnitine/acylcarnitine- or ornithine-like carrier, has been thoroughly characterized biochemically. The SLC25A29 gene was overexpressed in Escherichia coli, and the gene product was purified and reconstituted in phospholipid vesicles. Its transport properties and kinetic parameters demonstrate that SLC25A29 transports arginine, lysine, homoarginine, methylarginine and, to a much lesser extent, ornithine and histidine. Carnitine and acylcarnitines were not transported by SLC25A29. This carrier catalyzed substantial uniport besides a counter-exchange transport, exhibited a high transport affinity for arginine and lysine, and was saturable and inhibited by mercurial compounds and other inhibitors of mitochondrial carriers to various degrees. The main physiological role of SLC25A29 is to import basic amino acids into mitochondria for mitochondrial protein synthesis and amino acid degradation.

  3. Simultaneous high-resolution measurement of mitochondrial respiration and hydrogen peroxide production.

    PubMed

    Krumschnabel, Gerhard; Fontana-Ayoub, Mona; Sumbalova, Zuzana; Heidler, Juliana; Gauper, Kathrin; Fasching, Mario; Gnaiger, Erich

    2015-01-01

    Mitochondrial respiration is associated with the formation of reactive oxygen species, primarily in the form of superoxide (O2 (•-)) and particularly hydrogen peroxide (H2O2). Since H2O2 plays important roles in physiology and pathology, measurement of hydrogen peroxide has received considerable attention over many years. Here we describe how the well-established Amplex Red assay can be used to detect H2O2 production in combination with the simultaneous assessment of mitochondrial bioenergetics by high-resolution respirometry. Fundamental instrumental and methodological parameters were optimized for analysis of the effects of various substrate, uncoupler, and inhibitor titrations (SUIT) on respiration versus H2O2 production. The sensitivity of the H2O2 assay was strongly influenced by compounds contained in different mitochondrial respiration media, which also exerted significant effects on chemical background fluorescence changes. Near linearity of the fluorescence signal was restricted to narrow ranges of accumulating resorufin concentrations independent of the nature of mitochondrial respiration media. Finally, we show an application example using isolated mouse brain mitochondria as an experimental model for the simultaneous measurement of mitochondrial respiration and H2O2 production in SUIT protocols.

  4. Rotenone-sensitive mitochondrial potential in Phytomonas serpens: electrophoretic Ca(2+) accumulation.

    PubMed

    Moysés, Danuza Nogueira; Barrabin, Hector

    2004-06-07

    Phytomonas sp. are flagellated trypanosomatid plant parasites that cause diseases of economic importance in plantations of coffee, oil palm, cassava and coconuts. Here we investigated Ca(2+) uptake by the vanadate-insensitive compartments using permeabilized Phytomonas serpens promastigotes. This uptake occurs at a rate of 1.13+/-0.23 nmol Ca(2+) mg x protein(-1) min(-1). It is completely abolished by the H(+) ionophore FCCP and by valinomycin and nigericin. It is also inhibited by 2 microM ruthenium red, which, at this low concentration, is known to inhibit the mitochondrial calcium uniport. Furthermore, salicylhydroxamic acid (SHAM) and propylgallate, specific inhibitors of the alternative oxidase in plant and parasite mitochondria, are also effective as inhibitors of the Ca(2+) transport. These compounds abolish the membrane potential that is monitored with safranine O. Rotenone, an inhibitor of NADH-CoQ oxidoreductase, can also dissipate 100% of the membrane potential. It is suggested that the mitochondria of P. serpens can be energized via oxidation of NADH in a pathway involving the NADH-CoQ oxidoreductase and the alternative oxidase to regenerate the ubiquinone. The electrochemical H(+) gradient can be used to promote Ca(2+) uptake by the mitochondria.

  5. 3-Nitropropionic Acid is a Suicide Inhibitor of MitochondrialRespiration that, Upon Oxidation by Complex II, Forms a Covalent AdductWith a Catalytic Base Arginine in the Active Site of the Enzyme

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Huang, Li-shar; Sun, Gang; Cobessi, David

    We report three new structures of mitochondrial respiratory Complex II (succinate ubiquinone oxidoreductase, E.C. 1.3.5.1) at up to 2.1 {angstrom} resolution, with various inhibitors. The structures define the conformation of the bound inhibitors and suggest the residues involved in substrate binding and catalysis at the dicarboxylate site. In particular they support the role of Arg297 as a general base catalyst accepting a proton in the dehydrogenation of succinate. The dicarboxylate ligand in oxaloacetate-containing crystals appears to be the same as that reported for Shewanella flavocytochrome c treated with fumarate. The plant and fungal toxin 3-nitropropionic acid, an irreversible inactivator ofmore » succinate dehydrogenase, forms a covalent adduct with the side chain of Arg297. The modification eliminates a trypsin cleavage site in the flavoprotein, and tandem mass spectroscopic analysis of the new fragment shows the mass of Arg 297 to be increased by 83 Da and to have potential of losing 44 Da, consistent with decarboxylation, during fragmentation.« less

  6. Clinical Development of Gamitrinib, a Novel Mitochondrial-Targeted Small Molecule Hsp90 Inhibitor

    DTIC Science & Technology

    2014-09-01

    Leu, Ile degradation COMT FTSJ2 RDH14LDHA LDHB Figure 1 | Mitochondrial Hsp90 proteome. (a) LN229 cells were treated with vehicle (Control) or non...metabolism (Yoshida et al., 2013).Cell Reports 8, 671–677, August 7, 2014 ª2014 The Authors 671 Figure 1. Characterization of TRAP-1/ Mice (A) Map of...weight (Figure 1D) and organ (liver, spleen)672 Cell Reports 8, 671–677, August 7, 2014 ª2014 The Authorshyperplasia (Figure S1A), decreased chronic

  7. Mitochondrial calcium ion and membrane potential transients follow the pattern of epileptiform discharges in hippocampal slice cultures.

    PubMed

    Kovács, Richard; Kardos, Julianna; Heinemann, Uwe; Kann, Oliver

    2005-04-27

    Emerging evidence suggests that mitochondrial dysfunction contributes to the pathophysiology of epilepsy. Recurrent mitochondrial Ca2+ ion load during seizures might act on mitochondrial membrane potential (DeltaPsim) and proton motive force. By using electrophysiology and confocal laser-scanning microscopy, we investigated the effects of epileptiform activity, as induced by low-Mg2+ ion perfusion in hippocampal slice cultures, on changes in DeltaPsim and in mitochondrial Ca2+ ion concentration ([Ca2+]m). The mitochondrial compartment was identified by monitoring DeltaPsim in the soma and dendrites of patched CA3 pyramidal cells using the mitochondria-specific voltage-sensitive dye rhodamine-123 (Rh-123). Interictal activity was accompanied by localized mitochondrial depolarization that was restricted to a few mitochondria in small dendrites. In contrast, robust Rh-123 release into the cytosol was observed during seizure-like events (SLEs), indicating simultaneous depolarization of mitochondria. This was critically dependent on Ca2+ ion uptake and extrusion, because inhibition of the mitochondrial Ca2+ ion uniporter by Ru360 and the mitochondrial Na+/Ca2+ ion exchanger by 7-chloro-5-(2-chlorophenyl)-1,5-dihydro-4,1-benzothiazepin-2(3H)-one but not the inhibitor of mitochondrial permeability transition pore, cyclosporin A, decreased the SLE-associated mitochondrial depolarization. The Ca2+ ion dependence of simultaneous mitochondrial depolarization suggested enhanced Ca2+ ion cycling across mitochondrial membranes during epileptiform activity. Indeed, [Ca2+]m fluctuated during interictal activity in single dendrites, and these fluctuations spread over the entire mitochondrial compartment during SLEs, as revealed using mitochondria-specific dyes (rhod-2 and rhod-ff) and spatial frequency-based image analysis. These findings strengthen the hypothesis that epileptic activity results in Ca2+ ion-dependent changes in mitochondrial function that might contribute to the neuronal injury during epilepsy.

  8. Mitochondrial events responsible for morphine's cardioprotection against ischemia/reperfusion injury

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    He, Haiyan; Department of Pharmacology, Tianjin Medical University, Tianjin 300070; Huh, Jin

    Morphine may induce cardioprotection by targeting mitochondria, but little is known about the exact mitochondrial events that mediate morphine's protection. We aimed to address the role of the mitochondrial Src tyrosine kinase in morphine's protection. Isolated rat hearts were subjected to 30 min ischemia and 2 h of reperfusion. Morphine was given before the onset of ischemia. Infarct size and troponin I release were measured to evaluate cardiac injury. Oxidative stress was evaluated by measuring mitochondrial protein carbonylation and mitochondrial ROS generation. HL-1 cells were subjected to simulated ischemia/reperfusion and LDH release and mitochondrial membrane potential (ΔΨm) were measured. Morphinemore » reduced infarct size as well as cardiac troponin I release which were aborted by the selective Src tyrosine kinase inhibitors PP2 and Src-I1. Morphine also attenuated LDH release and prevented a loss of ΔΨm at reperfusion in a Src tyrosine kinase dependent manner in HL-1 cells. However, morphine failed to reduce LDH release in HL-1 cells transfected with Src siRNA. Morphine increased mitochondrial Src phosphorylation at reperfusion and this was abrogated by PP2. Morphine attenuated mitochondrial protein carbonylation and mitochondrial superoxide generation at reperfusion through Src tyrosine kinase. The inhibitory effect of morphine on the mitochondrial complex I activity was reversed by PP2. These data suggest that morphine induces cardioprotection by preventing mitochondrial oxidative stress through mitochondrial Src tyrosine kinase. Inhibition of mitochondrial complex I at reperfusion by Src tyrosine kinase may account for the prevention of mitochondrial oxidative stress by morphine. - Highlights: • Morphine induced mito-Src phosphorylation and reduced infarct size in rat hearts. • Morphine failed to reduce I/R-induced LDH release in Src-silencing HL-1 cells. • Morphine prevented mitochondria damage caused by I/R through Src. • Morphine reduced mitochondrial ROS generation by inhibiting complex I via Src.« less

  9. Isoorientin induces apoptosis through mitochondrial dysfunction and inhibition of PI3K/Akt signaling pathway in HepG2 cancer cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yuan, Li; Wang, Jing; Xiao, Haifang

    Isoorientin (ISO) is a flavonoid compound that can be extracted from several plant species, such as Phyllostachys pubescens, Patrinia, and Drosophyllum lusitanicum; however, its biological activity remains poorly understood. The present study investigated the effects and putative mechanism of apoptosis induced by ISO in human hepatoblastoma cancer (HepG2) cells. The results showed that ISO induced cell death in a dose-dependent manner in HepG2 cells, but no toxicity in human liver cells (HL-7702) and buffalo rat liver cells (BRL-3A) treated with ISO at the indicated concentrations. ISO-induced cell death included apoptosis which characterized by the appearance of nuclear shrinkage, the cleavagemore » of poly (ADP-ribose) polymerase (PARP) and DNA fragmentation. ISO significantly (p < 0.01) increased the Bax/Bcl-2 ratio, disrupted the mitochondrial membrane potential (MMP), increased the release of cytochrome c, activated caspase-3, and enhanced intracellular levels of reactive oxygen species (ROS) and nitric oxide (NO). In addition, ISO effectively inhibited the phosphorylation of Akt and increased FoxO4 expression. The PI3K/Akt inhibitor LY294002 enhanced the apoptosis-inducing effect of ISO. However, LY294002 markedly quenched ROS and NO generation and diminished the protein expression of heme peroxidase enzyme (HO-1) and inducible nitric oxide synthase (iNOS). Furthermore, the addition of a ROS inhibitor (N-acetyl cysteine, NAC) or iNOS inhibitor (N-[3-(aminomethyl) benzyl] acetamidine, dihydrochloride, 1400W) significantly diminished the apoptosis induced by ISO and also blocked the phosphorylation of Akt. These results demonstrated for the first time that ISO induces apoptosis in HepG2 cells and indicate that this apoptosis might be mediated through mitochondrial dysfunction and PI3K/Akt signaling pathway, and has no toxicity in normal liver cells, suggesting that ISO may have good potential as a therapeutic and chemopreventive agent for liver cancer. Highlights: ► Isoorientin induced apoptosis in HepG2 cells. ► Isoorientin disordered mitochondrial function and inhibited PI3K/AKt pathway. ► PI3K/Akt pathway mediated mitochondrial dysfunction via Bcl-2 family members. ► Isoorientin stimulated the intracellular ROS and NO generation in HepG2 cells. ► ROS and NO initiated mitochondria dysfunction and involved in PI3K/Akt pathway.« less

  10. Abnormal permeability of inner and outer mitochondrial membranes contributes independently to mitochondrial dysfunction in the liver during acute endotoxemia.

    PubMed

    Crouser, Elliott D; Julian, Mark W; Huff, Jennifer E; Joshi, Mandar S; Bauer, John A; Gadd, Martha E; Wewers, Mark D; Pfeiffer, Douglas R

    2004-02-01

    This study was designed to determine the role played by the mitochondrial permeability transition in the pathogenesis of mitochondrial damage and dysfunction in a representative systemic organ during the acute phase of endotoxemia. A well-established, normotensive feline model was employed to determine whether pretreatment with cyclosporine A, a potent inhibitor of the mitochondrial permeability transition, normalizes mitochondrial ultrastructural injury and dysfunction in the liver during acute endotoxemia. The Ohio State University Medical Center research laboratory. Random source, adult, male conditioned cats. Hemodynamic resuscitation and maintenance of acid-base balance and tissue oxygen availability were provided, as needed, to minimize the potentially confounding effects of tissue hypoxia and/or acidosis on the experimental results. Treatment groups received isotonic saline vehicle (control; n = 6), lipopolysaccharide (3.0 mg/kg, intravenously; n = 8), or cyclosporine A (6.0 mg/kg, intravenously; n = 6) or tacrolimus (FK506, 0.1 mg/kg, intravenously; n = 4) followed in 30 mins by lipopolysaccharide (3.0 mg/kg, intravenously). Liver samples were obtained 4 hrs posttreatment, and mitochondrial ultrastructure, function, and cytochrome c, Bax, and ceramide contents were assessed. As expected, significant mitochondrial injury was apparent in the liver 4 hrs after lipopolysaccharide treatment, despite maintenance of regional tissue oxygen availability. Namely, mitochondria demonstrated high-amplitude swelling and exhibited altered respiratory function. Cyclosporine A pretreatment attenuated lipopolysaccharide-induced mitochondrial ultrastructural abnormalities and normalized mitochondrial respiratory control, reflecting protection against inner mitochondrial membrane damage. However, an abnormal permeability of outer mitochondrial membranes to cytochrome c was observed in all lipopolysaccharide-treated groups and was associated with increased mitochondrial concentrations of Bax and ceramide. These studies confirm that liver mitochondria are early targets of injury during endotoxemia and that inner and outer mitochondrial membrane damage occurs through different mechanisms. Inner mitochondrial membrane damage appears to relate to the mitochondrial permeability transition, whereas outer mitochondrial membrane damage can occur independent of the mitochondrial permeability transition. Preliminary evidence suggests that Bax may participate in lipopolysaccharide-induced outer mitochondrial membrane damage, but further investigations are needed to confirm this.

  11. In Vitro Monitoring of the Mitochondrial Beta-Oxidation Flux of Palmitic Acid and Investigation of Its Pharmacological Alteration by Therapeutics.

    PubMed

    Murgasova, Renata; Tor Carreras, Ester; Bourgailh, Julien

    2018-05-03

    The present study was designed to validate the functional assay that enables rapid screening of therapeutic candidates for their effect on mitochondrial fatty acid oxidation. The two whole-cell systems (tissue homogenates and hepatocytes) have been evaluated to monitor the total beta-oxidation flux of physiologically important 3 H-palmitic acid by measurement of tritiated water enrichment in incubations using UPLC coupled on-line to radioactivity monitoring and mass spectrometry. Our results with several known inhibitors of fatty acid oxidation showed that this simple assay could correctly predict a potential in alteration of mitochondrial function by drug candidates. Since the beta-oxidation of palmitic acid takes place almost exclusively in mitochondria of human hepatocytes, this model can be also utilized to distinguish between the mitochondrial and peroxisomal routes of this essential metabolic pathway in some cases. The present work offers a new in vitro screen of changes in mitochondrial beta-oxidation by xenobiotics as well as a model to study the mechanism of this pathway.

  12. Yersinia YopP-induced apoptotic cell death in murine dendritic cells is partially independent from action of caspases and exhibits necrosis-like features.

    PubMed

    Gröbner, Sabine; Autenrieth, Stella E; Soldanova, Irena; Gunst, Dani S J; Schaller, Martin; Bohn, Erwin; Müller, Steffen; Leverkus, Martin; Wesselborg, Sebastian; Autenrieth, Ingo B; Borgmann, Stefan

    2006-11-01

    Yersinia outer protein P (YopP) is a virulence factor of Yersinia enterocolitica that is injected into the cytosol of host cells where it targets MAP kinase kinases (MKKs) and inhibitor of kappaB kinase (IKK)-beta resulting in inhibition of cytokine production as well as induction of apoptosis in murine macrophages and dendritic cells (DC). Here we show that DC death was only partially prevented by the broad spectrum caspase inhibitor zVAD-fmk, indicating simultaneous caspase-dependent and caspase-independent mechanisms of cell death induction by YopP. Microscopic analyses and measurement of cell size demonstrated necrosis-like morphology of caspase-independent cell death. Application of zVAD-fmk prevented cleavage of procaspases and Bid, decrease of the inner transmembrane mitochondrial potential DeltaPsi(m) and mitochondrial release of cytochrome c. From these data we conclude that YopP-induced activation of the mitochondrial death pathway is mediated upstream via caspases. In conclusion, our results suggest that YopP simultaneously induces caspase-dependent apoptotic and caspase-independent necrosis-like death in DC. However, it has to be resolved if necrosis-like DC death occurs independently from apoptotic events or as an apoptotic epiphenomenon.

  13. Mitochondrial Ca{sup 2+} uniporter is critical for store-operated Ca{sup 2+} entry-dependent breast cancer cell migration

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tang, Shihao; Guangzhou No.12 Hospital, Guangzhou; Wang, Xubu

    2015-02-27

    Metastasis of cancer cells is a complicated multistep process requiring extensive and continuous cytosolic calcium modulation. Mitochondrial Ca{sup 2+} uniporter (MCU), a regulator of mitochondrial Ca{sup 2+} uptake, has been implicated in energy metabolism and various cellular signaling processes. However, whether MCU contributes to cancer cell migration has not been established. Here we examined the expression of MCU mRNA in the Oncomine database and found that MCU is correlated to metastasis and invasive breast cancer. MCU inhibition by ruthenium red (RuR) or MCU silencing by siRNA abolished serum-induced migration in MDA-MB-231 breast cancer cells and reduced serum- or thapsigargin (TG)-inducedmore » store-operated Ca2+ entry (SOCE). Serum-induced migrations in MDA-MB-231 cells were blocked by SOCE inhibitors. Our results demonstrate that MCU plays a critical role in breast cancer cell migration by regulating SOCE. - Highlights: • MCU is correlated to metastasis and invasive breast cancer. • MCU inhibition abolished serum-induced migration in MDA-MB-231 breast cancer cells and reduced serum- or TG-induced SOCE. • Serum-induced migrations in MDA-MB-231 cells were blocked by SOCE inhibitors. • MCU plays a critical role in MDA-MB-231 cell migration by regulating SOCE.« less

  14. Salicylic Acid-Dependent Plant Stress Signaling via Mitochondrial Succinate Dehydrogenase1[OPEN

    PubMed Central

    Thatcher, Louise F.

    2017-01-01

    Mitochondria are known for their role in ATP production and generation of reactive oxygen species, but little is known about the mechanism of their early involvement in plant stress signaling. The role of mitochondrial succinate dehydrogenase (SDH) in salicylic acid (SA) signaling was analyzed using two mutants: disrupted in stress response1 (dsr1), which is a point mutation in SDH1 identified in a loss of SA signaling screen, and a knockdown mutant (sdhaf2) for SDH assembly factor 2 that is required for FAD insertion into SDH1. Both mutants showed strongly decreased SA-inducible stress promoter responses and low SDH maximum capacity compared to wild type, while dsr1 also showed low succinate affinity, low catalytic efficiency, and increased resistance to SDH competitive inhibitors. The SA-induced promoter responses could be partially rescued in sdhaf2, but not in dsr1, by supplementing the plant growth media with succinate. Kinetic characterization showed that low concentrations of either SA or ubiquinone binding site inhibitors increased SDH activity and induced mitochondrial H2O2 production. Both dsr1 and sdhaf2 showed lower rates of SA-dependent H2O2 production in vitro in line with their low SA-dependent stress signaling responses in vivo. This provides quantitative and kinetic evidence that SA acts at or near the ubiquinone binding site of SDH to stimulate activity and contributes to plant stress signaling by increased rates of mitochondrial H2O2 production, leading to part of the SA-dependent transcriptional response in plant cells. PMID:28209841

  15. A Novel Methodology for Bioenergetic Analysis of Plasmodium falciparum Reveals a Glucose-Regulated Metabolic Shift and Enables Mode of Action Analyses of Mitochondrial Inhibitors.

    PubMed

    Sakata-Kato, Tomoyo; Wirth, Dyann F

    2016-12-09

    Given that resistance to all drugs in clinical use has arisen, discovery of new antimalarial drug targets is eagerly anticipated. The Plasmodium mitochondrion has been considered a promising drug target largely based on its significant divergence from the host organelle as well as its involvement in ATP production and pyrimidine biosynthesis. However, the functions of Plasmodium mitochondrial protein complexes and associated metabolic pathways are not fully characterized. Here, we report the development of novel and robust bioenergetic assay protocols for Plasmodium falciparum asexual parasites utilizing a Seahorse Bioscience XFe24 Extracellular Flux Analyzer. These protocols allowed us to simultaneously assess the direct effects of metabolites and inhibitors on mitochondrial respiration and glycolytic activity in real-time with the readout of oxygen consumption rate and extracellular acidification rate. Using saponin-freed parasites at the schizont stage, we found that succinate, malate, glycerol-3-phosphate, and glutamate, but not pyruvate, were able to increase the oxygen consumption rate and that glycerol-3-phosphate dehydrogenase had the largest potential as an electron donor among tested mitochondrial dehydrogenases. Furthermore, we revealed the presence of a glucose-regulated metabolic shift between oxidative phosphorylation and glycolysis. We measured proton leak and reserve capacity and found bioenergetic evidence for oxidative phosphorylation in erythrocytic stage parasites but at a level much lower than that observed in mammalian cells. Lastly, we developed an assay platform for target identification and mode of action studies of mitochondria-targeting antimalarials. This study provides new insights into the bioenergetics and metabolomics of the Plasmodium mitochondria.

  16. Thiabendazole inhibits ubiquinone reduction activity of mitochondrial respiratory complex II via a water molecule mediated binding feature.

    PubMed

    Zhou, Qiangjun; Zhai, Yujia; Lou, Jizhong; Liu, Man; Pang, Xiaoyun; Sun, Fei

    2011-07-01

    The mitochondrial respiratory complex II or succinate: ubiquinone oxidoreductase (SQR) is a key membrane complex in both the tricarboxylic acid cycle and aerobic respiration. Five disinfectant compounds were investigated with their potent inhibition effects on the ubiquinone reduction activity of the porcine mitochondrial SQR by enzymatic assay and crystallography. Crystal structure of the SQR bound with thiabendazole (TBZ) reveals a different inhibitor-binding feature at the ubiquinone binding site where a water molecule plays an important role. The obvious inhibitory effect of TBZ based on the biochemical data (IC(50) ~100 μmol/L) and the significant structure-based binding affinity calculation (~94 μmol/L) draw the suspicion of using TBZ as a good disinfectant compound for nematode infections treatment and fruit storage.

  17. Inhibitor of apoptosis signal-regulating kinase 1 protects against acetaminophen-induced liver injury

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xie, Yuchao; Ramachandran, Anup; Breckenridge, David G.

    Metabolic activation and oxidant stress are key events in the pathophysiology of acetaminophen (APAP) hepatotoxicity. The initial mitochondrial oxidative stress triggered by protein adduct formation is amplified by c-jun-N-terminal kinase (JNK), resulting in mitochondrial dysfunction and ultimately cell necrosis. Apoptosis signal-regulating kinase 1 (ASK1) is considered the link between oxidant stress and JNK activation. The objective of the current study was to assess the efficacy and mechanism of action of the small-molecule ASK1 inhibitor GS-459679 in a murine model of APAP hepatotoxicity. APAP (300 mg/kg) caused extensive glutathione depletion, JNK activation and translocation to the mitochondria, oxidant stress and livermore » injury as indicated by plasma ALT activities and area of necrosis over a 24 h observation period. Pretreatment with 30 mg/kg of GS-459679 almost completely prevented JNK activation, oxidant stress and injury without affecting the metabolic activation of APAP. To evaluate the therapeutic potential of GS-459679, mice were treated with APAP and then with the inhibitor. Given 1.5 h after APAP, GS-459679 was still protective, which was paralleled by reduced JNK activation and p-JNK translocation to mitochondria. However, GS-459679 treatment was not more effective than N-acetylcysteine, and the combination of GS-459679 and N-acetylcysteine exhibited similar efficacy as N-acetylcysteine monotherapy, suggesting that GS-459769 and N-acetylcysteine affect the same pathway. Importantly, inhibition of ASK1 did not impair liver regeneration as indicated by PCNA staining. In conclusion, the ASK1 inhibitor GS-459679 protected against APAP toxicity by attenuating JNK activation and oxidant stress in mice and may have therapeutic potential for APAP overdose patients. - Highlights: • Two ASK1 inhibitors protected against acetaminophen-induced liver injury. • The ASK1 inhibitors protect when used as pre- or post-treatment. • Protection by ASK1 inhibitor is not due to inhibition of APAP metabolism. • The ASK1 inhibitor prevents JNK activation and translocation to mitochondria. • Treatment with ASK1 inhibitors does not impair liver regeneration after APAP.« less

  18. IDH1-mutant cancer cells are sensitive to cisplatin and an IDH1-mutant inhibitor counteracts this sensitivity.

    PubMed

    Khurshed, Mohammed; Aarnoudse, Niels; Hulsbos, Renske; Hira, Vashendriya V V; van Laarhoven, Hanneke W M; Wilmink, Johanna W; Molenaar, Remco J; van Noorden, Cornelis J F

    2018-06-07

    Isocitrate dehydrogenase ( IDH1)-1 is mutated in various types of human cancer, and the presence of this mutation is associated with improved responses to irradiation and chemotherapy in solid tumor cells. Mutated IDH1 (IDH1 MUT ) enzymes consume NADPH to produce d-2-hydroxyglutarate (d-2HG) resulting in the decreased reducing power needed for detoxification of reactive oxygen species (ROS), for example. The objective of the current study was to investigate the mechanism behind the chemosensitivity of the widely-used anticancer agent cisplatin in IDH1 MUT cancer cells. Oxidative stress, DNA damage, and mitochondrial dysfunction caused by cisplatin treatment were monitored in IDH1 MUT HCT116 colorectal cancer cells and U251 glioma cells. We found that exposure to cisplatin induced higher levels of ROS, DNA double-strand breaks (DSBs), and cell death in IDH1 MUT cancer cells, as compared with IDH1 wild-type ( IDH1 WT ) cells. Mechanistic investigations revealed that cisplatin treatment dose dependently reduced oxidative respiration in IDH1 MUT cells, which was accompanied by disturbed mitochondrial proteostasis, indicative of impaired mitochondrial activity. These effects were abolished by the IDH1 MUT inhibitor AGI-5198 and were restored by treatment with d-2HG. Thus, our study shows that altered oxidative stress responses and a vulnerable oxidative metabolism underlie the sensitivity of IDH1 MUT cancer cells to cisplatin.-Khurshed, M., Aarnoudse, N., Hulsbos, R., Hira, V. V. V., van Laarhoven, H. W. M., Wilmink, J. W., Molenaar, R. J., van Noorden, C. J. F. IDH1-mutated cancer cells are sensitive to cisplatin and an IDH1-mutant inhibitor counteracts this sensitivity.

  19. Mitochondrial calcium uniporter silencing potentiates caspase-independent cell death in MDA-MB-231 breast cancer cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Curry, Merril C.; Peters, Amelia A.; Kenny, Paraic A.

    Highlights: •Some clinical breast cancers are associated with MCU overexpression. •MCU silencing did not alter cell death initiated with the Bcl-2 inhibitor ABT-263. •MCU silencing potentiated caspase-independent cell death initiated by ionomycin. •MCU silencing promoted ionomycin-mediated cell death without changes in bulk Ca{sup 2+}. -- Abstract: The mitochondrial calcium uniporter (MCU) transports free ionic Ca{sup 2+} into the mitochondrial matrix. We assessed MCU expression in clinical breast cancer samples using microarray analysis and the consequences of MCU silencing in a breast cancer cell line. Our results indicate that estrogen receptor negative and basal-like breast cancers are characterized by elevated levelsmore » of MCU. Silencing of MCU expression in the basal-like MDA-MB-231 breast cancer cell line produced no change in proliferation or cell viability. However, distinct consequences of MCU silencing were seen on cell death pathways. Caspase-dependent cell death initiated by the Bcl-2 inhibitor ABT-263 was not altered by MCU silencing; whereas caspase-independent cell death induced by the calcium ionophore ionomycin was potentiated by MCU silencing. Measurement of cytosolic Ca{sup 2+} levels showed that the promotion of ionomycin-induced cell death by MCU silencing occurs independently of changes in bulk cytosolic Ca{sup 2+} levels. This study demonstrates that MCU overexpression is a feature of some breast cancers and that MCU overexpression may offer a survival advantage against some cell death pathways. MCU inhibitors may be a strategy to increase the effectiveness of therapies that act through the induction of caspase-independent cell death pathways in estrogen receptor negative and basal-like breast cancers.« less

  20. Curcuminoid EF24 enhances the anti-tumour activity of Akt inhibitor MK-2206 through ROS-mediated endoplasmic reticulum stress and mitochondrial dysfunction in gastric cancer.

    PubMed

    Chen, Xi; Dai, Xuanxuan; Zou, Peng; Chen, Weiqian; Rajamanickam, Vinothkumar; Feng, Chen; Zhuge, Weishan; Qiu, Chenyu; Ye, Qingqing; Zhang, Xiaohua; Liang, Guang

    2017-05-01

    Gastric cancer is one of the leading causes of morbidity and mortality worldwide. Akt is an anti-apoptotic kinase that plays a dynamic role in cell survival and is implicated in the pathogenesis of gastric cancer. MK-2206, the first allosteric inhibitor of Akt, is in clinical trials for a number of cancers. Although preclinical studies showed promise, clinical trials reported it had no effect when given alone at tolerated doses. The aim of our study was to delineate the effects of MK-2206 on gastric cancer cells and explore the ability of combination treatments to enhance the anti-tumour activity of MK-2206. SGC-7901, BGC-823 cells and immunodeficient mice were chosen as a model to study the treatment effects. Changes in cell viability, apoptosis and ROS, endoplasmic reticulum stress and mitochondrial dysfunction in the cells were analysed by MTT assays, ROS imaging and FACSCalibur, electron microscopy, JC-1 staining and western blotting. MK-2206 induced apoptotic cell death through the generation of ROS. We utilized ROS production to target gastric cancer cells by combining MK-2206 and an ROS inducer EF24. Our in vitro and in vivo xenograft studies showed that combined treatment with MK-2206 and EF24 synergistically induced apoptosis in gastric cancer cells and caused cell cycle arrest. These activities were mediated through ROS generation and the induction of endoplasmic reticulum stress and mitochondrial dysfunction. Targeting ROS generation by using a combination of an Akt inhibitor and EF24 could have potential as a therapy for gastric cancer. © 2017 The British Pharmacological Society.

  1. Involvement of Bcl-xL degradation and mitochondrial-mediated apoptotic pathway in pyrrolizidine alkaloids-induced apoptosis in hepatocytes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ji Lili; Shanghai R and D Centre for Standardization of Traditional Chinese Medicines, Shanghai 201203; Chen Ying

    2008-09-15

    Pyrrolizidine alkaloids (PAs) are natural hepatotoxins with worldwide distribution in more than 6000 high plants including medicinal herbs or teas. The aim of this study is to investigate the signal pathway involved in PAs-induced hepatotoxicity. Our results showed that clivorine, isolated from Ligularia hodgsonii Hook, decreased cell viability and induced apoptosis in L-02 cells and mouse hepatocytes. Western-blot results showed that clivorine induced caspase-3/-9 activation, mitochondrial release of cytochrome c and decreased anti-apoptotic Bcl-xL in a time (8-48 h)- and concentration (1-100 {mu}M)-dependent manner. Furthermore, inhibitors of pan-caspase, caspase-3 and caspase-9 significantly inhibited clivorine-induced apoptosis and rescued clivorine-decreased cell viability.more » Polyubiquitination of Bcl-xL was detected after incubation with 100 {mu}M clivorine for 40 h in the presence of proteasome specific inhibitor MG132, indicating possible degradation of Bcl-xL protein. Furthermore, pretreatment with MG132 or calpain inhibitor I for 2 h significantly enhanced clivorine-decreased Bcl-xL level and cell viability. All the other tested PAs such as senecionine, isoline and monocrotaline decreased mouse hepatocytes viability in a concentration-dependent manner. Clivorine (10 {mu}M) induced caspase-3 activation and decreased Bcl-xL was also confirmed in mouse hepatocytes. Meanwhile, another PA senecionine isolated from Senecio vulgaris L also induced apoptosis, caspase-3 activation and decreased Bcl-xL in mouse hepatocytes. In conclusion, our results suggest that PAs may share the same hepatotoxic signal pathway, which involves degradation of Bcl-xL protein and thus leading to the activation of mitochondrial-mediated apoptotic pathway.« less

  2. Curcuminoid EF24 enhances the anti‐tumour activity of Akt inhibitor MK‐2206 through ROS‐mediated endoplasmic reticulum stress and mitochondrial dysfunction in gastric cancer

    PubMed Central

    Chen, Xi; Dai, Xuanxuan; Zou, Peng; Chen, Weiqian; Rajamanickam, Vinothkumar; Feng, Chen; Zhuge, Weishan; Qiu, Chenyu; Ye, Qingqing

    2017-01-01

    Background and Purpose Gastric cancer is one of the leading causes of morbidity and mortality worldwide. Akt is an anti‐apoptotic kinase that plays a dynamic role in cell survival and is implicated in the pathogenesis of gastric cancer. MK‐2206, the first allosteric inhibitor of Akt, is in clinical trials for a number of cancers. Although preclinical studies showed promise, clinical trials reported it had no effect when given alone at tolerated doses. The aim of our study was to delineate the effects of MK‐2206 on gastric cancer cells and explore the ability of combination treatments to enhance the anti‐tumour activity of MK‐2206. Experimental Approach SGC‐7901, BGC‐823 cells and immunodeficient mice were chosen as a model to study the treatment effects. Changes in cell viability, apoptosis and ROS, endoplasmic reticulum stress and mitochondrial dysfunction in the cells were analysed by MTT assays, ROS imaging and FACSCalibur, electron microscopy, JC‐1 staining and western blotting. Key Results MK‐2206 induced apoptotic cell death through the generation of ROS. We utilized ROS production to target gastric cancer cells by combining MK‐2206 and an ROS inducer EF24. Our in vitro and in vivo xenograft studies showed that combined treatment with MK‐2206 and EF24 synergistically induced apoptosis in gastric cancer cells and caused cell cycle arrest. These activities were mediated through ROS generation and the induction of endoplasmic reticulum stress and mitochondrial dysfunction. Conclusion and Implications Targeting ROS generation by using a combination of an Akt inhibitor and EF24 could have potential as a therapy for gastric cancer. PMID:28255993

  3. Biochemical studies of membrane bound Plasmodium falciparum mitochondrial L-malate:quinone oxidoreductase, a potential drug target.

    PubMed

    Hartuti, Endah Dwi; Inaoka, Daniel Ken; Komatsuya, Keisuke; Miyazaki, Yukiko; Miller, Russell J; Xinying, Wang; Sadikin, Mohamad; Prabandari, Erwahyuni Endang; Waluyo, Danang; Kuroda, Marie; Amalia, Eri; Matsuo, Yuichi; Nugroho, Nuki B; Saimoto, Hiroyuki; Pramisandi, Amila; Watanabe, Yoh-Ichi; Mori, Mihoko; Shiomi, Kazuro; Balogun, Emmanuel Oluwadare; Shiba, Tomoo; Harada, Shigeharu; Nozaki, Tomoyoshi; Kita, Kiyoshi

    2018-03-01

    Plasmodium falciparum is an apicomplexan parasite that causes the most severe malaria in humans. Due to a lack of effective vaccines and emerging of drug resistance parasites, development of drugs with novel mechanisms of action and few side effects are imperative. To this end, ideal drug targets are those essential to parasite viability as well as absent in their mammalian hosts. The mitochondrial electron transport chain (ETC) of P. falciparum is one source of such potential targets because enzymes, such as L-malate:quinone oxidoreductase (PfMQO), in this pathway are absent humans. PfMQO catalyzes the oxidation of L-malate to oxaloacetate and the simultaneous reduction of ubiquinone to ubiquinol. It is a membrane protein, involved in three pathways (ETC, the tricarboxylic acid cycle and the fumarate cycle) and has been shown to be essential for parasite survival, at least, in the intra-erythrocytic asexual stage. These findings indicate that PfMQO would be a valuable drug target for development of antimalarial with novel mechanism of action. Up to this point in time, difficulty in producing active recombinant mitochondrial MQO has hampered biochemical characterization and targeted drug discovery with MQO. Here we report for the first time recombinant PfMQO overexpressed in bacterial membrane and the first biochemical study. Furthermore, about 113 compounds, consisting of ubiquinone binding site inhibitors and antiparasitic agents, were screened resulting in the discovery of ferulenol as a potent PfMQO inhibitor. Finally, ferulenol was shown to inhibit parasite growth and showed strong synergism in combination with atovaquone, a well-described anti-malarial and bc 1 complex inhibitor. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. Glucagon-like peptide-1 inhibits vascular smooth muscle cell dedifferentiation through mitochondrial dynamics regulation.

    PubMed

    Torres, Gloria; Morales, Pablo E; García-Miguel, Marina; Norambuena-Soto, Ignacio; Cartes-Saavedra, Benjamín; Vidal-Peña, Gonzalo; Moncada-Ruff, David; Sanhueza-Olivares, Fernanda; San Martín, Alejandra; Chiong, Mario

    2016-03-15

    Glucagon-like peptide-1 (GLP-1) is a neuroendocrine hormone produced by gastrointestinal tract in response to food ingestion. GLP-1 plays a very important role in the glucose homeostasis by stimulating glucose-dependent insulin secretion, inhibiting glucagon secretion, inhibiting gastric emptying, reducing appetite and food intake. Because of these actions, the GLP-1 peptide-mimetic exenatide is one of the most promising new medicines for the treatment of type 2 diabetes. In vivo treatments with GLP-1 or exenatide prevent neo-intima layer formation in response to endothelial damage and atherosclerotic lesion formation in aortic tissue. Whether GLP-1 modulates vascular smooth muscle cell (VSMC) migration and proliferation by controlling mitochondrial dynamics is unknown. In this report, we showed that GLP-1 increased mitochondrial fusion and activity in a PKA-dependent manner in the VSMC cell line A7r5. GLP-1 induced a Ser-637 phosphorylation in the mitochondrial fission protein Drp1, and decreased Drp1 mitochondrial localization. GLP-1 inhibited PDGF-BB-induced VSMC migration and proliferation, actions inhibited by overexpressing wild type Drp1 and mimicked by the Drp1 inhibitor Mdivi-1 and by overexpressing dominant negative Drp1. These results show that GLP-1 stimulates mitochondrial fusion, increases mitochondrial activity and decreases PDGF-BB-induced VSMC dedifferentiation by a PKA/Drp1 signaling pathway. Our data suggest that GLP-1 inhibits vascular remodeling through a mitochondrial dynamics-dependent mechanism. Copyright © 2016 Elsevier Inc. All rights reserved.

  5. Mitochondrial NADH Fluorescence is Enhanced by Complex I Binding

    PubMed Central

    Blinova, Ksenia; Levine, Rodney L.; Boja, Emily S.; Griffiths, Gary L.; Shi, Zhen-Dan; Ruddy, Brian; Balaban, Robert S.

    2012-01-01

    Mitochondrial NADH fluorescence has been a useful tool in evaluating mitochondrial energetics both in vitro and in vivo. Mitochondrial NADH fluorescence is enhanced several fold in the matrix through extended fluorescence lifetimes (EFL). However, the actual binding sites responsible for NADH EFL are unknown. We tested the hypothesis that NADH binding to Complex I is a significant source of mitochondrial NADH fluorescence enhancement. To test this hypothesis, the effect of Complex I binding on NADH fluorescence efficiency was evaluated in purified protein, and in native gels of the entire porcine heart mitochondria proteome. To avoid the oxidation of NADH in these preparations, we conducted the binding experiments under anoxic conditions in a specially designed apparatus. Purified intact Complex I enhanced NADH fluorescence in native gels approximately 10 fold. However, no enhancement was detected in denatured individual Complex I subunit proteins. In the Clear and Ghost native gels of the entire mitochondrial proteome, NADH fluorescence enhancement was localized to regions where NADH oxidation occurred in the presence of oxygen. Inhibitor and mass spectroscopy studies revealed that the fluorescence enhancement was specific to Complex I proteins. No fluorescence enhancement was detected for MDH or other dehydrogenases in this assay system, at physiological mole fractions of the matrix proteins. These data suggest that NADH associated with Complex I significantly contributes to the overall mitochondrial NADH fluorescence signal and provides an explanation for the well established close correlation of mitochondrial NADH fluorescence and the metabolic state. PMID:18702505

  6. Impaired ALDH2 activity decreases the mitochondrial respiration in H9C2 cardiomyocytes.

    PubMed

    Mali, Vishal R; Deshpande, Mandar; Pan, Guodong; Thandavarayan, Rajarajan A; Palaniyandi, Suresh S

    2016-02-01

    Reactive oxygen species (ROS)-mediated reactive aldehydes induce cellular stress. In cardiovascular diseases such as ischemia-reperfusion injury, lipid-peroxidation derived reactive aldehydes such as 4-hydroxy-2-nonenal (4HNE) are known to contribute to the pathogenesis. 4HNE is involved in ROS formation, abnormal calcium handling and more importantly defective mitochondrial respiration. Aldehyde dehydrogenase (ALDH) superfamily contains NAD(P)(+)-dependent isozymes which can detoxify endogenous and exogenous aldehydes into non-toxic carboxylic acids. Therefore we hypothesize that 4HNE afflicts mitochondrial respiration and leads to cell death by impairing ALDH2 activity in cultured H9C2 cardiomyocyte cell lines. H9C2 cardiomyocytes were treated with 25, 50 and 75 μM 4HNE and its vehicle, ethanol as well as 25, 50 and 75 μM disulfiram (DSF), an inhibitor of ALDH2 and its vehicle (DMSO) for 4 h. 4HNE significantly decreased ALDH2 activity, ALDH2 protein levels, mitochondrial respiration and mitochondrial respiratory reserve capacity, and increased 4HNE adduct formation and cell death in cultured H9C2 cardiomyocytes. ALDH2 inhibition by DSF and ALDH2 siRNA attenuated ALDH2 activity besides reducing ALDH2 levels, mitochondrial respiration and mitochondrial respiratory reserve capacity and increased cell death. Our results indicate that ALDH2 impairment can lead to poor mitochondrial respiration and increased cell death in cultured H9C2 cardiomyocytes. Copyright © 2015 Elsevier Inc. All rights reserved.

  7. Liver mitochondrial dysfunction and electron transport chain defect induced by high dietary copper in broilers.

    PubMed

    Yang, Fan; Cao, Huabin; Su, Rongsheng; Guo, Jianying; Li, Chengmei; Pan, Jiaqiang; Tang, Zhaoxin

    2017-09-01

    Copper is an important trace mineral in the diet of poultry due to its biological activity. However, limited information is available concerning the effects of high copper on mitochondrial dysfunction. In this study, 72 broilers were used to investigate the effects of high dietary copper on liver mitochondrial dysfunction and electron transport chain defect. Birds were fed with different concentrations [11, 110, 220, and 330 mg of copper/kg dry matter (DM)] of copper from tribasic copper chloride (TBCC). The experiment lasted for 60 d. Liver tissues on d 60 were subjected to histopathological observation. Additionally, liver mitochondrial function was recorded on d 12, 36, and 60. Moreover, a site-specific defect in the electron transport chain in liver mitochondria was also identified by using various chemical inhibitors of mitochondrial respiration. The results showed different degrees of degeneration, mitochondrial swelling, and high-density electrons in hepatocytes. In addition, the respiratory control ratio (RCR) and oxidative phosphorylation rate (OPR) in liver mitochondria increased at first and then decreased in high-dose groups. Moreover, hydrogen peroxide (H2O2) generation velocity in treated groups was higher than that in control group, which were magnified by inhibiting electron transport at Complex IV. The results indicated that high dietary copper could decline liver mitochondrial function in broilers. The presence of a site-specific defect at Complex IV in liver mitochondria may be responsible for liver mitochondrial dysfunction caused by high dietary copper. © 2017 Poultry Science Association Inc.

  8. Loss of mitochondrial transmembrane potential and caspase-9 activation during apoptosis induced by the novel styryl-lactone goniothalamin in HL-60 leukemia cells.

    PubMed

    Inayat-Hussain, S H; Annuar, B O; Din, L B; Ali, A M; Ross, D

    2003-08-01

    Styryl-lactones such as goniothalamin represent a new class of compounds with potential anti-cancer properties. In this study, we investigated the mechanisms of goniothalamin (GTN), a plant styryl-lactone induced apoptosis in human promyelocytic leukemia HL-60 cells. This plant extract resulted in apoptosis in HL-60 cells as assessed by the externalisation of phosphatidylserine. Using the mitochondrial membrane dye (DIOC(6)) in conjunction with flow cytometry, we found that GTN treated HL-60 cells demonstrated a loss of mitochondrial transmembrane potential (Deltapsi(m)). Further immunoblotting on these cells showed activation of initiator caspase-9 and the executioner caspases-3 and -7. Pretreatment with the pharmacological caspase inhibitor, benzyloxycarbonyl-Val-Ala-Asp fluoromethyl ketone (Z-VAD.FMK) abrogated apoptosis as assessed by all of the apoptotic features in this study. In summary, our results demonstrate that goniothalamin-induced apoptosis occurs via the mitochondrial pathway in a caspase dependent manner.

  9. DNA-PK Promotes the Mitochondrial, Metabolic, and Physical Decline that Occurs During Aging.

    PubMed

    Park, Sung-Jun; Gavrilova, Oksana; Brown, Alexandra L; Soto, Jamie E; Bremner, Shannon; Kim, Jeonghan; Xu, Xihui; Yang, Shutong; Um, Jee-Hyun; Koch, Lauren G; Britton, Steven L; Lieber, Richard L; Philp, Andrew; Baar, Keith; Kohama, Steven G; Abel, E Dale; Kim, Myung K; Chung, Jay H

    2017-05-02

    Hallmarks of aging that negatively impact health include weight gain and reduced physical fitness, which can increase insulin resistance and risk for many diseases, including type 2 diabetes. The underlying mechanism(s) for these phenomena is poorly understood. Here we report that aging increases DNA breaks and activates DNA-dependent protein kinase (DNA-PK) in skeletal muscle, which suppresses mitochondrial function, energy metabolism, and physical fitness. DNA-PK phosphorylates threonines 5 and 7 of HSP90α, decreasing its chaperone function for clients such as AMP-activated protein kinase (AMPK), which is critical for mitochondrial biogenesis and energy metabolism. Decreasing DNA-PK activity increases AMPK activity and prevents weight gain, decline of mitochondrial function, and decline of physical fitness in middle-aged mice and protects against type 2 diabetes. In conclusion, DNA-PK is one of the drivers of the metabolic and fitness decline during aging, and therefore DNA-PK inhibitors may have therapeutic potential in obesity and low exercise capacity. Published by Elsevier Inc.

  10. Thiazolidinediones are acute, specific inhibitors of the mitochondrial pyruvate carrier

    PubMed Central

    Divakaruni, Ajit S.; Wiley, Sandra E.; Rogers, George W.; Andreyev, Alexander Y.; Petrosyan, Susanna; Loviscach, Mattias; Wall, Estelle A.; Yadava, Nagendra; Heuck, Alejandro P.; Ferrick, David A.; Henry, Robert R.; McDonald, William G.; Colca, Jerry R.; Simon, Melvin I.; Ciaraldi, Theodore P.; Murphy, Anne N.

    2013-01-01

    Facilitated pyruvate transport across the mitochondrial inner membrane is a critical step in carbohydrate, amino acid, and lipid metabolism. We report that clinically relevant concentrations of thiazolidinediones (TZDs), a widely used class of insulin sensitizers, acutely and specifically inhibit mitochondrial pyruvate carrier (MPC) activity in a variety of cell types. Respiratory inhibition was overcome with methyl pyruvate, localizing the effect to facilitated pyruvate transport, and knockdown of either paralog, MPC1 or MPC2, decreased the EC50 for respiratory inhibition by TZDs. Acute MPC inhibition significantly enhanced glucose uptake in human skeletal muscle myocytes after 2 h. These data (i) report that clinically used TZDs inhibit the MPC, (ii) validate that MPC1 and MPC2 are obligatory components of facilitated pyruvate transport in mammalian cells, (iii) indicate that the acute effect of TZDs may be related to insulin sensitization, and (iv) establish mitochondrial pyruvate uptake as a potential therapeutic target for diseases rooted in metabolic dysfunction. PMID:23513224

  11. Noninvasive probes of mitochondrial molecular motors

    NASA Astrophysics Data System (ADS)

    Nawarathna, Dharmakeerthna; Claycomb, James

    2005-03-01

    We report on a noninvasive method of probing mitochondrial molecular motors using nonlinear dielectric spectroscopy. It has been found previously that enzymes in the plasma membrane, particularly H+ ATPase, result in a strong low frequency (less than 100 Hz) nonlinear harmonic response. In this study, we find evidence that molecular motors located in the inner membranes of mitochondria cause the generation of harmonics at relatively high frequencies (1 - 30 kHz). In particular, we find that potassium cyanide (KCN), a respiratory inhibitor that binds to cytochrome c oxidase and thus prevents transport of protons across the mitochondrial inner membrane, suppresses the harmonic response. We observe this behavior in yeast (S. cerevisiae), a eucaryote that typically contains about 300 mitochondria, and B. indicas, a procaryote believed to be related to the ancient ancestor of mitochondria. Our current modeling efforts are focusing on a Brownian ratchet model of the F0 unit of ATP synthase, a remarkable molecular turbine driven by the proton gradient across the mitochondrial inner membrane.

  12. Mitochondrial modulators improve lipid composition and attenuate memory deficits in experimental model of Huntington's disease.

    PubMed

    Mehrotra, Arpit; Sood, Abhilasha; Sandhir, Rajat

    2015-12-01

    3-Nitropropionic acid (3-NP) is an irreversible inhibitor of succinate dehydrogenase and induces neuropathological changes similar to those observed in Huntington's disease (HD). The objective of the present study was to investigate neuroprotective effect of mitochondrial modulators; alpha-lipoic acid (ALA) and acetyl-L-carnitine (ALCAR) on 3-NP-induced alterations in mitochondrial lipid composition, mitochondrial structure and memory functions. Experimental model of HD was developed by administering 3-NP at sub-chronic doses, twice daily for 17 days. The levels of conjugated dienes, cholesterol and glycolipids were significantly increased, whereas the levels of phospholipids (phosphatidylethanolamine, phosphatidylcholine, phosphatidylserine) including cardiolipin were significantly decreased in the mitochondria isolated from the striatum of 3-NP-treated animals. In addition, the difference in molecular composition of each phospholipid class was also evaluated using mass spectrometry. Mitochondria lipid from 3-NP-treated animals showed increased cholesterol to phospholipid ratio, suggesting decreased mitochondrial membrane fluidity. 3-NP administration also resulted in ultra-structural changes in mitochondria, accompanied by swelling as assessed by transmission electron microscopy. The 3-NP administered animals had impaired spatial memory evaluated using elevated plus maze test. However, combined supplementation with ALA + ALCAR for 21 days normalized mitochondrial lipid composition, improved mitochondrial structure and ameliorated memory impairments in 3-NP-treated animals, suggesting an imperative role of these two modulators in combination in the management of HD.

  13. Blockade of Drp1 rescues oxidative stress-induced osteoblast dysfunction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gan, Xueqi; Huang, Shengbin; Yu, Qing

    Osteoblast dysfunction, induced by oxidative stress, plays a critical role in the pathophysiology of osteoporosis. However, the underlying mechanisms remain unclarified. Imbalance of mitochondrial dynamics has been closely linked to oxidative stress. Here, we reveal an unexplored role of dynamic related protein 1(Drp1), the major regulator in mitochondrial fission, in the oxidative stress-induced osteoblast injury model. We demonstrate that levels of phosphorylation and expression of Drp1 significantly increased under oxidative stress. Blockade of Drp1, through pharmaceutical inhibitor or gene knockdown, significantly protected against H{sub 2}O{sub 2}-induced osteoblast dysfunction, as shown by increased cell viability, improved cellular alkaline phosphatase (ALP) activitymore » and mineralization and restored mitochondrial function. The protective effects of blocking Drp1 in H{sub 2}O{sub 2}-induced osteoblast dysfunction were evidenced by increased mitochondrial function and suppressed production of reactive oxygen species (ROS). These findings provide new insights into the role of the Drp1-dependent mitochondrial pathway in the pathology of osteoporosis, indicating that the Drp1 pathway may be targetable for the development of new therapeutic approaches in the prevention and the treatment of osteoporosis. - Highlights: • Oxidative stress is an early pathological event in osteoporosis. • Imbalance of mitochondrial dynamics are linked to oxidative stress in osteoporosis. • The role of the Drp1-dependent mitochondrial pathway in osteoporosis.« less

  14. Insulin upregulates GRIM-19 and protects cardiac mitochondrial morphology in type 1 diabetic rats partly through PI3K/AKT signaling pathway.

    PubMed

    Li, Yong-Guang; Dong, Zhi-Feng; Chen, Kan-Kai; He, Ya-Ping; Dai, Xiao-Yan; Li, Shuai; Li, Jing-Bo; Zhu, Wei; Wei, Meng

    2017-11-04

    Insulin is involved in the development of diabetic heart disease and is important in the activities of mitochondrial complex I. However, the effect of insulin on cardiac mitochondrial nicotinamide adenine dinucleotide dehydrogenase (ubiquinone) 1 subunit of retinoic-interferon-induced mortality 19 (GRIM-19) has not been characterized. The aim of this study was to investigate the effect of insulin on the mitochondrial GRIM-19 in the hearts of rats with streptozotocin (STZ)-induced type 1 diabetes. Protein changes of GRIM-19 were evaluated by western blotting and reverse transcription-quantitative polymerase chain reaction. Furthermore, the effects of insulin on mitochondrial complex I were detected in HeLa cells and H9C2 cardiac myocytes. During the development of diabetic heart disease, the cardiac function did not change within the 8 weeks, but the mitochondrial morphology was altered. The hearts from the rats with STZ-induced diabetes exhibited reduced expression of GRIM-19. Prior to the overt cardiac dilatation, mitochondrial alterations were already present. Following subcutaneous insulin injection, it was demonstrated that GRIM-19 protein was altered, as well as the mitochondrial morphology. The phosphoinositide 3-kinase inhibitor LY294002 had an effect on insulin signaling in H9C2 cardiacmyocytes, and decreased the level of GRIM-19 by half compared with that in the insulin group. The results indicate that insulin is essential for the control of cardiac mitochondrial morphology and the GRIM-19 expression partly via PI3K/AKT signaling pathways. Copyright © 2017. Published by Elsevier Inc.

  15. G2019S leucine-rich repeat kinase 2 causes uncoupling protein-mediated mitochondrial depolarization

    PubMed Central

    Papkovskaia, Tatiana D.; Chau, Kai-Yin; Inesta-Vaquera, Francisco; Papkovsky, Dmitri B.; Healy, Daniel G.; Nishio, Koji; Staddon, James; Duchen, Michael R.; Hardy, John; Schapira, Anthony H.V.; Cooper, J. Mark

    2012-01-01

    The G2019S leucine rich repeat kinase 2 (LRRK2) mutation is the most common genetic cause of Parkinson's disease (PD), clinically and pathologically indistinguishable from idiopathic PD. Mitochondrial abnormalities are a common feature in PD pathogenesis and we have investigated the impact of G2019S mutant LRRK2 expression on mitochondrial bioenergetics. LRRK2 protein expression was detected in fibroblasts and lymphoblasts at levels higher than those observed in the mouse brain. The presence of G2019S LRRK2 mutation did not influence LRRK2 expression in fibroblasts. However, the expression of the G2019S LRRK2 mutation in both fibroblast and neuroblastoma cells was associated with mitochondrial uncoupling. This was characterized by decreased mitochondrial membrane potential and increased oxygen utilization under basal and oligomycin-inhibited conditions. This resulted in a decrease in cellular ATP levels consistent with compromised cellular function. This uncoupling of mitochondrial oxidative phosphorylation was associated with a cell-specific increase in uncoupling protein (UCP) 2 and 4 expression. Restoration of mitochondrial membrane potential by the UCP inhibitor genipin confirmed the role of UCPs in this mechanism. The G2019S LRRK2-induced mitochondrial uncoupling and UCP4 mRNA up-regulation were LRRK2 kinase-dependent, whereas endogenous LRRK2 levels were required for constitutive UCP expression. We propose that normal mitochondrial function was deregulated by the expression of G2019S LRRK2 in a kinase-dependent mechanism that is a modification of the normal LRRK2 function, and this leads to the vulnerability of selected neuronal populations in PD. PMID:22736029

  16. Localization of MRP-1 to the outer mitochondrial membrane by the chaperone protein HSP90β.

    PubMed

    Roundhill, Elizabeth; Turnbull, Doug; Burchill, Susan

    2016-05-01

    Overexpression of plasma membrane multidrug resistance-associated protein 1 (MRP-1) in Ewing's sarcoma (ES) predicts poor outcome. MRP-1 is also expressed in mitochondria, and we have examined the submitochondrial localization of MRP-1 and investigated the mechanism of MRP-1 transport and role of this organelle in the response to doxorubicin. The mitochondrial localization of MRP-1 was examined in ES cell lines by differential centrifugation and membrane solubilization by digitonin. Whether MRP-1 is chaperoned by heat shock proteins (HSPs) was investigated by immunoprecipitation, immunofluorescence microscopy, and HSP knockout using small hairpin RNA and inhibitors (apoptozole, 17-AAG, and NVPAUY). The effect of disrupting mitochondrial MRP-1-dependent efflux activity on the cytotoxic effect of doxorubicin was investigated by counting viable cell number. Mitochondrial MRP-1 is glycosylated and localized to the outer mitochondrial membrane, where it is coexpressed with HSP90. MRP-1 binds to both HSP90 and HSP70, although only inhibition of HSP90β decreases expression of MRP-1 in the mitochondria. Disruption of mitochondrial MRP-1-dependent efflux significantly increases the cytotoxic effect of doxorubicin (combination index, <0.9). For the first time, we have demonstrated that mitochondrial MRP-1 is expressed in the outer mitochondrial membrane and is a client protein of HSP90β, where it may play a role in the doxorubicin-induced resistance of ES.-Roundhill, E., Turnbull, D., Burchill, S. Localization of MRP-1 to the outer mitochondrial membrane by the chaperone protein HSP90β. © FASEB.

  17. Cell Lines Expressing Nuclear and/or Mitochondrial RNAse H1 | NCI Technology Transfer Center | TTC

    Cancer.gov

    The National Institute of Child Health & Human Development (NICHD), Program in Genomics of Differentiation, seeks interested parties to further co-develop small molecule inhibitors of RNase H1, especially in regards to genome instability, transcription, and translation.

  18. Glutamine oxidation maintains the TCA cycle and cell survival during impaired mitochondrial pyruvate transport.

    PubMed

    Yang, Chendong; Ko, Bookyung; Hensley, Christopher T; Jiang, Lei; Wasti, Ajla T; Kim, Jiyeon; Sudderth, Jessica; Calvaruso, Maria Antonietta; Lumata, Lloyd; Mitsche, Matthew; Rutter, Jared; Merritt, Matthew E; DeBerardinis, Ralph J

    2014-11-06

    Alternative modes of metabolism enable cells to resist metabolic stress. Inhibiting these compensatory pathways may produce synthetic lethality. We previously demonstrated that glucose deprivation stimulated a pathway in which acetyl-CoA was formed from glutamine downstream of glutamate dehydrogenase (GDH). Here we show that import of pyruvate into the mitochondria suppresses GDH and glutamine-dependent acetyl-CoA formation. Inhibiting the mitochondrial pyruvate carrier (MPC) activates GDH and reroutes glutamine metabolism to generate both oxaloacetate and acetyl-CoA, enabling persistent tricarboxylic acid (TCA) cycle function. Pharmacological blockade of GDH elicited largely cytostatic effects in culture, but these effects became cytotoxic when combined with MPC inhibition. Concomitant administration of MPC and GDH inhibitors significantly impaired tumor growth compared to either inhibitor used as a single agent. Together, the data define a mechanism to induce glutaminolysis and uncover a survival pathway engaged during compromised supply of pyruvate to the mitochondria. Copyright © 2014 Elsevier Inc. All rights reserved.

  19. Glutamine oxidation maintains the TCA cycle and cell survival during impaired mitochondrial pyruvate transport

    PubMed Central

    Yang, Chendong; Ko, Bookyung; Hensley, Christopher T.; Jiang, Lei; Wasti, Ajla T.; Kim, Jiyeon; Sudderth, Jessica; Calvaruso, Maria Antonietta; Lumata, Lloyd; Mitsche, Matthew; Rutter, Jared; Merritt, Matthew E.; DeBerardinis, Ralph J.

    2014-01-01

    Summary Alternative modes of metabolism enable cells to resist metabolic stress. Inhibiting these compensatory pathways may produce synthetic lethality. We previously demonstrated that glucose deprivation stimulated a pathway in which acetyl-CoA was formed from glutamine downstream of glutamate dehydrogenase (GDH). Here we show that import of pyruvate into the mitochondria suppresses GDH and glutamine-dependent acetyl-CoA formation. Inhibiting the mitochondrial pyruvate carrier (MPC) activates GDH and re-routes glutamine metabolism to generate both oxaloacetate and acetyl-CoA, enabling persistent tricarboxylic acid (TCA) cycle function. Pharmacological blockade of GDH elicited largely cytostatic effects in culture, but these effects became cytotoxic when combined with MPC inhibition. Concomitant administration of MPC and GDH inhibitors significantly impaired tumor growth compared to either inhibitor used as a single agent. Together, the data define a mechanism to induce glutaminolysis and uncover a survival pathway engaged during compromised supply of pyruvate to the mitochondria. PMID:25458842

  20. Xenobiotics that affect oxidative phosphorylation alter differentiation of human adipose-derived stem cells at concentrations that are found in human blood

    PubMed Central

    Llobet, Laura; Toivonen, Janne M.; Montoya, Julio; Ruiz-Pesini, Eduardo; López-Gallardo, Ester

    2015-01-01

    ABSTRACT Adipogenesis is accompanied by differentiation of adipose tissue-derived stem cells to adipocytes. As part of this differentiation, biogenesis of the oxidative phosphorylation system occurs. Many chemical compounds used in medicine, agriculture or other human activities affect oxidative phosphorylation function. Therefore, these xenobiotics could alter adipogenesis. We have analyzed the effects on adipocyte differentiation of some xenobiotics that act on the oxidative phosphorylation system. The tested concentrations have been previously reported in human blood. Our results show that pharmaceutical drugs that decrease mitochondrial DNA replication, such as nucleoside reverse transcriptase inhibitors, or inhibitors of mitochondrial protein synthesis, such as ribosomal antibiotics, diminish adipocyte differentiation and leptin secretion. By contrast, the environmental chemical pollutant tributyltin chloride, which inhibits the ATP synthase of the oxidative phosphorylation system, can promote adipocyte differentiation and leptin secretion, leading to obesity and metabolic syndrome as postulated by the obesogen hypothesis. PMID:26398948

Top