Science.gov

Sample records for mitochondrial lineage m1

  1. Saami mitochondrial DNA reveals deep maternal lineage clusters.

    PubMed

    Delghandi, M; Utsi, E; Krauss, S

    1998-01-01

    The mitochondrial DNA of 62 Saami from the north of Norway was analyzed in the D loop hypervariable region I and II and sequences were compared to other gene pools. Two major (lineage 1 and 2) and two minor (lineage 3 and 4) maternal lineage clusters were found. Lineage 1 (56.9% of all hitherto analyzed Saami samples) contains a substantial number of branching haplotypes which are unknown in European gene pools. Lineage 2 (31.5%) and lineage 4 (3.6%) have few branching points and are present at a low rate throughout European gene pools. Lineage 3 (4.7%) has polymorphisms characteristic of circumpolar lineages.

  2. Mitochondrial Genome Analysis Reveals Historical Lineages in Yellowstone Bison.

    PubMed

    Forgacs, David; Wallen, Rick L; Dobson, Lauren K; Derr, James N

    2016-01-01

    Yellowstone National Park is home to one of the only plains bison populations that have continuously existed on their present landscape since prehistoric times without evidence of domestic cattle introgression. Previous studies characterized the relatively high levels of nuclear genetic diversity in these bison, but little is known about their mitochondrial haplotype diversity. This study assessed mitochondrial genomes from 25 randomly selected Yellowstone bison and found 10 different mitochondrial haplotypes with a haplotype diversity of 0.78 (± 0.06). Spatial analysis of these mitochondrial DNA (mtDNA) haplotypes did not detect geographic population subdivision (FST = -0.06, p = 0.76). However, we identified two independent and historically important lineages in Yellowstone bison by combining data from 65 bison (defined by 120 polymorphic sites) from across North America representing a total of 30 different mitochondrial DNA haplotypes. Mitochondrial DNA haplotypes from one of the Yellowstone lineages represent descendants of the 22 indigenous bison remaining in central Yellowstone in 1902. The other mitochondrial DNA lineage represents descendants of the 18 females introduced from northern Montana in 1902 to supplement the indigenous bison population and develop a new breeding herd in the northern region of the park. Comparing modern and historical mitochondrial DNA diversity in Yellowstone bison helps uncover a historical context of park restoration efforts during the early 1900s, provides evidence against a hypothesized mitochondrial disease in bison, and reveals the signature of recent hybridization between American plains bison (Bison bison bison) and Canadian wood bison (B. b. athabascae). Our study demonstrates how mitochondrial DNA can be applied to delineate the history of wildlife species and inform future conservation actions.

  3. Mitochondrial Genome Analysis Reveals Historical Lineages in Yellowstone Bison

    PubMed Central

    Derr, James N.

    2016-01-01

    Yellowstone National Park is home to one of the only plains bison populations that have continuously existed on their present landscape since prehistoric times without evidence of domestic cattle introgression. Previous studies characterized the relatively high levels of nuclear genetic diversity in these bison, but little is known about their mitochondrial haplotype diversity. This study assessed mitochondrial genomes from 25 randomly selected Yellowstone bison and found 10 different mitochondrial haplotypes with a haplotype diversity of 0.78 (± 0.06). Spatial analysis of these mitochondrial DNA (mtDNA) haplotypes did not detect geographic population subdivision (FST = -0.06, p = 0.76). However, we identified two independent and historically important lineages in Yellowstone bison by combining data from 65 bison (defined by 120 polymorphic sites) from across North America representing a total of 30 different mitochondrial DNA haplotypes. Mitochondrial DNA haplotypes from one of the Yellowstone lineages represent descendants of the 22 indigenous bison remaining in central Yellowstone in 1902. The other mitochondrial DNA lineage represents descendants of the 18 females introduced from northern Montana in 1902 to supplement the indigenous bison population and develop a new breeding herd in the northern region of the park. Comparing modern and historical mitochondrial DNA diversity in Yellowstone bison helps uncover a historical context of park restoration efforts during the early 1900s, provides evidence against a hypothesized mitochondrial disease in bison, and reveals the signature of recent hybridization between American plains bison (Bison bison bison) and Canadian wood bison (B. b. athabascae). Our study demonstrates how mitochondrial DNA can be applied to delineate the history of wildlife species and inform future conservation actions. PMID:27880780

  4. Mitochondrial DNA polymorphism in a maternal lineage of Holstein cows.

    PubMed Central

    Hauswirth, W W; Laipis, P J

    1982-01-01

    Two mitochondrial genotypes are shown to exist within one Holstein cow maternal lineage. They were detected by the appearance of an extra Hae III recognition site in one genotype. The nucleotide sequence of this region has been determined and the genotypes are distinguished by an adenine/guanine base transition which creates the new Hae III site. This point mutation occurs within an open reading frame at the third position of a glycine codon and therefore does not alter the amino acid sequence. The present pattern of genotypes within the lineage demands that multiple shifts between genotypes must have occurred within the past 20 years with the most rapid shift taking place in no more than 4 years and indicates that mitochondrial DNA polymorphism can occur between maternally related mammals. The process that gave rise to different genotypes in one lineage is clearly of fundamental importance in understanding intraspecific mitochondrial polymorphism and evolution in mammals. Several potential mechanisms for rapid mitochondrial DNA variation are discussed in light of these results. Images PMID:6289312

  5. Genes and languages in Europe: an analysis of mitochondrial lineages.

    PubMed

    Sajantila, A; Lahermo, P; Anttinen, T; Lukka, M; Sistonen, P; Savontaus, M L; Aula, P; Beckman, L; Tranebjaerg, L; Gedde-Dahl, T; Issel-Tarver, L; DiRienzo, A; Pääbo, S

    1995-08-01

    When mitochondrial DNA sequence variation is analyzed from a sample of 637 individuals in 14 European populations, most populations show little differentiation with respect to each other. However, the Saami distinguish themselves by a comparatively large amount of sequence difference when compared with the other populations, by a different distribution of sequence diversity within the population, and by the occurrence of particular sequence motifs. Thus, the Saami seem to have a long history distinct from other European populations. Linguistic affiliations are not reflected in the patterns of relationships of mitochondrial lineages in European populations, whereas prior studies of nuclear gene frequencies have shown a correlation between genetic and linguistic evolution. It is argued that this apparent contradiction is attributable to the fact that genetic lineages and gene frequencies reflect different time perspectives on population history, the latter being more in concordance with linguistic evolution.

  6. Lineage sorting accounting for the disassociation between chloroplast and mitochondrial lineages in oaks of southern France.

    PubMed

    Chiang, T Y

    2000-12-01

    Dumolin-Lapégue et al. (Mol. Biol. Evol. 15: 1321-1331. 1998) suggested that recurrent inversions of a 4-bp sequence of the mtDNA nad4-1/2 locus due to intramolecular recombination were responsible for the disassociation of chloroplast and mitochondrial genomes of French oaks. Based on their PCR-RFLP (PCR-restriction fragment length polymorphism) data obtained from three noncoding spacers, a minimum spanning network representing the phylogeny of the cpDNA was reconstructed. The mapping of alleles b and c of the mtDNA nad4-1/2 locus on the cpDNA network revealed a nonrandom distribution, which contradicted the expected patterns when repeated, and ongoing inversions had been occurring. The fact that polymorphisms (a mixed c + d type) were mostly restricted to the interior nodes of the network, which represented ancient haplotypes and geographically coincided with probable glacial refugia in southern Europe, agreed with a migrant-pool model. Evidence of a widespread pattern of polymorphism distribution indicated that mtDNA haplotypes were likely to be more ancient than the cpDNA haplotypes. Lineage sorting, due to relative age of cpDNA vs. mtDNA, plus the specific migratory mode, which recruited colonists from a random sample of resource populations during glacial expansion (thereby extending the lineage sorting period, LSP), may have resulted in the disassociation of chloroplast and mitochondrial genomes in oaks.

  7. Origin and History of Mitochondrial DNA Lineages in Domestic Horses

    PubMed Central

    Cieslak, Michael; Pruvost, Melanie; Benecke, Norbert; Hofreiter, Michael; Morales, Arturo; Reissmann, Monika; Ludwig, Arne

    2010-01-01

    Domestic horses represent a genetic paradox: although they have the greatest number of maternal lineages (mtDNA) of all domestic species, their paternal lineages are extremely homogeneous on the Y-chromosome. In order to address their huge mtDNA variation and the origin and history of maternal lineages in domestic horses, we analyzed 1961 partial d-loop sequences from 207 ancient remains and 1754 modern horses. The sample set ranged from Alaska and North East Siberia to the Iberian Peninsula and from the Late Pleistocene to modern times. We found a panmictic Late Pleistocene horse population ranging from Alaska to the Pyrenees. Later, during the Early Holocene and the Copper Age, more or less separated sub-populations are indicated for the Eurasian steppe region and Iberia. Our data suggest multiple domestications and introgressions of females especially during the Iron Age. Although all Eurasian regions contributed to the genetic pedigree of modern breeds, most haplotypes had their roots in Eastern Europe and Siberia. We found 87 ancient haplotypes (Pleistocene to Mediaeval Times); 56 of these haplotypes were also observed in domestic horses, although thus far only 39 haplotypes have been confirmed to survive in modern breeds. Thus, at least seventeen haplotypes of early domestic horses have become extinct during the last 5,500 years. It is concluded that the large diversity of mtDNA lineages is not a product of animal breeding but, in fact, represents ancestral variability. PMID:21187961

  8. Unique mitochondrial DNA lineages in Irish stickleback populations: cryptic refugium or rapid recolonization?

    PubMed

    Ravinet, Mark; Harrod, Chris; Eizaguirre, Christophe; Prodöhl, Paulo A

    2014-06-01

    Repeated recolonization of freshwater environments following Pleistocene glaciations has played a major role in the evolution and adaptation of anadromous taxa. Located at the western fringe of Europe, Ireland and Britain were likely recolonized rapidly by anadromous fishes from the North Atlantic following the last glacial maximum (LGM). While the presence of unique mitochondrial haplotypes in Ireland suggests that a cryptic northern refugium may have played a role in recolonization, no explicit test of this hypothesis has been conducted. The three-spined stickleback is native and ubiquitous to aquatic ecosystems throughout Ireland, making it an excellent model species with which to examine the biogeographical history of anadromous fishes in the region. We used mitochondrial and microsatellite markers to examine the presence of divergent evolutionary lineages and to assess broad-scale patterns of geographical clustering among postglacially isolated populations. Our results confirm that Ireland is a region of secondary contact for divergent mitochondrial lineages and that endemic haplotypes occur in populations in Central and Southern Ireland. To test whether a putative Irish lineage arose from a cryptic Irish refugium, we used approximate Bayesian computation (ABC). However, we found no support for this hypothesis. Instead, the Irish lineage likely diverged from the European lineage as a result of postglacial isolation of freshwater populations by rising sea levels. These findings emphasize the need to rigorously test biogeographical hypothesis and contribute further evidence that postglacial processes may have shaped genetic diversity in temperate fauna.

  9. Recovering mitochondrial DNA lineages of extinct Amerindian nations in extant homopatric Brazilian populations

    PubMed Central

    2010-01-01

    Background Brazilian Amerindians have experienced a drastic population decrease in the past 500 years. Indeed, many native groups from eastern Brazil have vanished. However, their mitochondrial mtDNA haplotypes, still persist in Brazilians, at least 50 million of whom carry Amerindian mitochondrial lineages. Our objective was to test whether, by analyzing extant rural populations from regions anciently occupied by specific Amerindian groups, we could identify potentially authentic mitochondrial lineages, a strategy we have named 'homopatric targeting'. Results We studied 173 individuals from Queixadinha, a small village located in a territory previously occupied by the now extinct Botocudo Amerindian nation. Pedigree analysis revealed 74 unrelated matrilineages, which were screened for Amerindian mtDNA lineages by restriction fragment length polymorphism. A cosmopolitan control group was composed of 100 individuals from surrounding cities. All Amerindian lineages identified had their hypervariable segment HVSI sequenced, yielding 13 Amerindian haplotypes in Queixadinha, nine of which were not present in available databanks or in the literature. Among these haplotypes, there was a significant excess of haplogroup C (70%) and absence of haplogroup A lineages, which were the most common in the control group. The novelty of the haplotypes and the excess of the C haplogroup suggested that we might indeed have identified Botocudo lineages. To validate our strategy, we studied teeth extracted from 14 ancient skulls of Botocudo Amerindians from the collection of the National Museum of Rio de Janeiro. We recovered mtDNA sequences from all the teeth, identifying only six different haplotypes (a low haplotypic diversity of 0.8352 ± 0.0617), one of which was present among the lineages observed in the extant individuals studied. Conclusions These findings validate the technique of homopatric targeting as a useful new strategy to study the peopling and colonization of the New

  10. Mitochondrial genome sequences illuminate maternal lineages of conservation concern in a rare carnivore

    PubMed Central

    2011-01-01

    Background Science-based wildlife management relies on genetic information to infer population connectivity and identify conservation units. The most commonly used genetic marker for characterizing animal biodiversity and identifying maternal lineages is the mitochondrial genome. Mitochondrial genotyping figures prominently in conservation and management plans, with much of the attention focused on the non-coding displacement ("D") loop. We used massively parallel multiplexed sequencing to sequence complete mitochondrial genomes from 40 fishers, a threatened carnivore that possesses low mitogenomic diversity. This allowed us to test a key assumption of conservation genetics, specifically, that the D-loop accurately reflects genealogical relationships and variation of the larger mitochondrial genome. Results Overall mitogenomic divergence in fishers is exceedingly low, with 66 segregating sites and an average pairwise distance between genomes of 0.00088 across their aligned length (16,290 bp). Estimates of variation and genealogical relationships from the displacement (D) loop region (299 bp) are contradicted by the complete mitochondrial genome, as well as the protein coding fraction of the mitochondrial genome. The sources of this contradiction trace primarily to the near-absence of mutations marking the D-loop region of one of the most divergent lineages, and secondarily to independent (recurrent) mutations at two nucleotide position in the D-loop amplicon. Conclusions Our study has two important implications. First, inferred genealogical reconstructions based on the fisher D-loop region contradict inferences based on the entire mitogenome to the point that the populations of greatest conservation concern cannot be accurately resolved. Whole-genome analysis identifies Californian haplotypes from the northern-most populations as highly distinctive, with a significant excess of amino acid changes that may be indicative of molecular adaptation; D-loop sequences fail

  11. Fine Dissection of Human Mitochondrial DNA Haplogroup HV Lineages Reveals Paleolithic Signatures from European Glacial Refugia

    PubMed Central

    Sarno, Stefania; Sevini, Federica; Vianello, Dario; Tamm, Erika; Metspalu, Ene; van Oven, Mannis; Hübner, Alexander; Sazzini, Marco; Franceschi, Claudio; Pettener, Davide; Luiselli, Donata

    2015-01-01

    Genetic signatures from the Paleolithic inhabitants of Eurasia can be traced from the early divergent mitochondrial DNA lineages still present in contemporary human populations. Previous studies already suggested a pre-Neolithic diffusion of mitochondrial haplogroup HV*(xH,V) lineages, a relatively rare class of mtDNA types that includes parallel branches mainly distributed across Europe and West Asia with a certain degree of structure. Up till now, variation within haplogroup HV was addressed mainly by analyzing sequence data from the mtDNA control region, except for specific sub-branches, such as HV4 or the widely distributed haplogroups H and V. In this study, we present a revised HV topology based on full mtDNA genome data, and we include a comprehensive dataset consisting of 316 complete mtDNA sequences including 60 new samples from the Italian peninsula, a previously underrepresented geographic area. We highlight points of instability in the particular topology of this haplogroup, reconstructed with BEAST-generated trees and networks. We also confirm a major lineage expansion that probably followed the Late Glacial Maximum and preceded Neolithic population movements. We finally observe that Italy harbors a reservoir of mtDNA diversity, with deep-rooting HV lineages often related to sequences present in the Caucasus and the Middle East. The resulting hypothesis of a glacial refugium in Southern Italy has implications for the understanding of late Paleolithic population movements and is discussed within the archaeological cultural shifts occurred over the entire continent. PMID:26640946

  12. Mitochondrial haplogroup C4c: a rare lineage entering America through the ice-free corridor?

    PubMed

    Hooshiar Kashani, Baharak; Perego, Ugo A; Olivieri, Anna; Angerhofer, Norman; Gandini, Francesca; Carossa, Valeria; Lancioni, Hovirag; Semino, Ornella; Woodward, Scott R; Achilli, Alessandro; Torroni, Antonio

    2012-01-01

    Recent analyses of mitochondrial genomes from Native Americans have brought the overall number of recognized maternal founding lineages from just four to a current count of 15. However, because of their relative low frequency, almost nothing is known for some of these lineages. This leaves a considerable void in understanding the events that led to the colonization of the Americas following the Last Glacial Maximum (LGM). In this study, we identified and completely sequenced 14 mitochondrial DNAs belonging to one extremely rare Native American lineage known as haplogroup C4c. Its age and geographical distribution raise the possibility that C4c marked the Paleo-Indian group(s) that entered North America from Beringia through the ice-free corridor between the Laurentide and Cordilleran ice sheets. The similarities in ages andgeographical distributions for C4c and the previously analyzed X2a lineage provide support to the scenario of a dual origin for Paleo-Indians. Taking into account that C4c is deeply rooted in the Asian portion of the mtDNA phylogeny and is indubitably of Asian origin, the finding that C4c and X2a are characterized by parallel genetic histories definitively dismisses the controversial hypothesis of an Atlantic glacial entry route into North America.

  13. Mitochondrial genetic analyses suggest selection against maternal lineages in bipolar affective disorder.

    PubMed Central

    Kirk, R; Furlong, R A; Amos, W; Cooper, G; Rubinsztein, J S; Walsh, C; Paykel, E S; Rubinsztein, D C

    1999-01-01

    Previous reports of preferential transmission of bipolar affective disorder (BP) from the maternal versus the paternal lines in families suggested that this disorder may be caused by mitochondrial DNA mutations. We have sequenced the mitochondrial genome in 25 BP patients with family histories of psychiatric disorder that suggest matrilineal inheritance. No polymorphism identified more than once in this sequencing showed any significant association with BP in association studies using 94 cases and 94 controls. To determine whether our BP sample showed evidence of selection against the maternal lineage, we determined genetic distances between all possible pairwise comparisons within the BP and control groups, based on multilocus mitochondrial polymorphism haplotypes. These analyses revealed fewer closely related haplotypes in the BP group than in the matched control group, suggesting selection against maternal lineages in this disease. Such selection is compatible with recurrent mitochondrial mutations, which are associated with slightly decreased fitness. Although such mismatch distribution comparisons have been used previously for analyses of population histories, this is, as far as we are aware, the first report of this method being used to study disease. PMID:10417293

  14. [Phylogenetic analysis of ancient mitochondrial DNA lineages of human remains found in Yakutia].

    PubMed

    Fedorova, S A; Stepanov, A D; Adoian, M; Parik, J; Argunov, V A; Ozawa, T; Khusnutdinova, E K; Villems, R

    2008-01-01

    Molecular genetic analysis of ancient human remains are mostly based on mitochondrial DNA due to its better preservation in human skeletons in comparison with nuclear DNA. We investigated mtDNA extracted from human skeletons found in graves in Yakutia to determine their haplotypes and to compare them with lineages of modern populations. Ancient DNA was extracted from fragments of three skeletons of Yakut graves at At-Dabaan, Ojuluun and Jaraama sites (dating XVIII century) and two skeletons of Neolithic graves at Kerdugen site found in central Yakutia (Churapchinsky, Kangalassky and Megino-Kangalassky districts of Yakutia). Five different haplotypes belonging to specific Asian haplogroups were identified. Lineages of mtDNA of Yakut graves belong to haplo-groups C4a, D5a2 and B5b. Our results indicate the continuity of mitochondrial lineages in the Yakut gene pool during the last 300 years. Haplotypes of two humans from Kerdugen site graves belong to haplogroups A4 and G2a/D. We compared these haplotypes with that of 40,000 Eurasian individuals, 900 of them from Yakutia. No exact matches were found in Paleoasian populations of Chukchi, Eskimos, Koryaks and Itelmen. Phylogenetically close haplotypes (+/- 1 mutation) were found in populations of Yakuts and Evenks, as well as in some populations of China, Southern and Western Siberia.

  15. Ancient mitochondrial lineages support the prehistoric maternal root of Basques in Northern Iberian Peninsula.

    PubMed

    Palencia-Madrid, Leire; Cardoso, Sergio; Keyser, Christine; López-Quintana, Juan Carlos; Guenaga-Lizasu, Amagoia; de Pancorbo, Marian M

    2017-03-08

    The Basque population inhabits the Franco-Cantabrian region in southwest Europe where Palaeolithic human groups took refuge during the Last Glacial Maximum. Basques have been an isolated population, largely considered as one of the most ancient European populations and it is possible that they maintained some pre-Neolithic genetic characteristics. This work shows the results of mitochondrial DNA analysis of seven ancient human remains from the Cave of Santimamiñe in the Basque Country dated from Mesolithic to the Late Roman period. In addition, we compared these data with those obtained from a modern sample of Basque population, 158 individuals that nowadays inhabits next to the cave. The results support the hypothesis that Iberians might have been less affected by the Neolithic mitochondrial lineages carried from the Near East than populations of Central Europe and revealed the unexpected presence of prehistoric maternal lineages such as U5a2a and U3a in the Basque region. Comparison between ancient and current population samples upholds the hypothesis of continuity of the maternal lineages in the area of the Franco-Cantabrian region.European Journal of Human Genetics advance online publication, 8 March 2017; doi:10.1038/ejhg.2017.24.

  16. [Genetic structure of sable (Martes zibellina L.) from Eurasia based on distribution of mitochondrial lineages].

    PubMed

    Rozhnov, V V; Pishchulina, S L; Meshcherskiĭ, I G; Simakin, L V; Lazebnyĭ, O E; Kashtanov, S N

    2013-02-01

    The phylogeography of the sable, which is a commercially valuable species, is extremely complicated and poorly investigated. Specifically, the effects of factors such as the range dynamics of the sable during the Pleistocene Epoch, the localization of glacial refugia, species distribution pattern in Holocene, and recent dramatic population decline, along with massive reacclimatization measures, on the species phylogeography remain unclear. Based on the sequence analysis of the control region of mitochondrial DNA from sables that inhabit different parts of the species range, a suggestion was made of the considerably high Pleistocene genetic diversity in sable, which was subsequently lost. The initial diversity of mitochondrial lineages is mostly preserved in the Urals, while in the eastern part of the range, it seems to have been depleted as early as before the last glacial maximum. On the other hand, the even greater depletion of the mitochondrial lineages observed in some populations of central Siberia can be associated with the dramatic population decline at the turn of the 20th century.

  17. Diverse origin of mitochondrial lineages in Iron Age Black Sea Scythians

    PubMed Central

    Juras, Anna; Krzewińska, Maja; Nikitin, Alexey G.; Ehler, Edvard; Chyleński, Maciej; Łukasik, Sylwia; Krenz-Niedbała, Marta; Sinika, Vitaly; Piontek, Janusz; Ivanova, Svetlana; Dabert, Miroslawa; Götherström, Anders

    2017-01-01

    Scythians were nomadic and semi-nomadic people that ruled the Eurasian steppe during much of the first millennium BCE. While having been extensively studied by archaeology, very little is known about their genetic identity. To fill this gap, we analyzed ancient mitochondrial DNA (mtDNA) from Scythians of the North Pontic Region (NPR) and successfully retrieved 19 whole mtDNA genomes. We have identified three potential mtDNA lineage ancestries of the NPR Scythians tracing back to hunter-gatherer and nomadic populations of east and west Eurasia as well as the Neolithic farming expansion into Europe. One third of all mt lineages in our dataset belonged to subdivisions of mt haplogroup U5. A comparison of NPR Scythian mtDNA linages with other contemporaneous Scythian groups, the Saka and the Pazyryks, reveals a common mtDNA package comprised of haplogroups H/H5, U5a, A, D/D4, and F1/F2. Of these, west Eurasian lineages show a downward cline in the west-east direction while east Eurasian haplogroups display the opposite trajectory. An overall similarity in mtDNA lineages of the NPR Scythians was found with the late Bronze Age Srubnaya population of the Northern Black Sea region which supports the archaeological hypothesis suggesting Srubnaya people as ancestors of the NPR Scythians. PMID:28266657

  18. Lack of founding Amerindian mitochondrial DNA lineages in extinct aborigines from Tierra del Fuego-Patagonia.

    PubMed

    Lalueza, C; Pérez-Pérez, A; Prats, E; Cornudella, L; Turbón, D

    1997-01-01

    Ancient DNA from bones and teeth of 60 individuals from four extinct human populations from Tierra del Fuego-Patagonia (Selknam, Yamana, Kaweskar and Aonikenk) has been extracted and the mitochondrial DNA (mtDNA) amplified by using the polymerase chain reaction. High-resolution analysis of endonuclease restriction site variation in the mtDNA and sequencing of its hypervariable non-coding control region, revealed complete absence of two of the four primary mitochondrial haplotype groups present in contemporary Amerinds, namely A and B. In contrast, haplogroups C and D were found in all but one sample with frequencies of approximately 38% and 60%. These results, together with the decreasing incidence of group A in more southerly latitudes in the American continent and the absence of cluster B above 55 degrees North in America and Asia, argue that the first settlers entering America 21000-14000 years ago already lacked both mtDNA lineages.

  19. Mitochondrial phylogeny of the endemic mouthbrooding lineages of cichlid fishes from Lake Tanganyika in eastern Africa.

    PubMed

    Sturmbauer, C; Meyer, A

    1993-07-01

    Of the three cichlid species flocks in eastern Africa, Lake Tanganyika harbors the oldest species assemblage, which is also the most diverse morphologically and behaviorally. For 12 species (20 individuals) of 12 genera of the tribe Ectodini, 852 bp from two segments (cytochrome b and control region) of the mitochondrial genome were sequenced. In addition, orthologous sequences were obtained from eight species (11 individuals) representing other mouthbrooding lineages from Lake Tanganyika. Comparisons of sequence divergences revealed that the single Tanganyikan tribe Ectodini appears to be approximately five times older than the whole Lake Malawi cichlid species flock, suggesting that the radiation of the Tanganyikan mouthbrooding lineages took place long before the species flocks of Lakes Malawi and Victoria evolved. Seven of nine surveyed tribes of Tanganyikan cichlids appear to be approximately equally divergent, and this seems to corroborate the hypothesis of a rapid simultaneous formation of lineages at an early stage in the history of the Lake Tanganyika species flock. The close genetic relationship between the endemic Tropheus lineage and a nonendemic "Haplochromine," Astatotilapia burtoni, indicates that members of the tribe Tropheini may be the sister group of the cichlid flocks of Lakes Malawi and Victoria. The phylogenetic analyses demonstrate the monophyly of the Ectodini and identify the Cyprichromini as their sister group among the Tanganyikan cichlids. Within the tribe Ectodini the molecular data suggest both a branching pattern different than that previously proposed and a subdivision of the Ectodini into four clades, instead of the two originally described. The previously postulated model of morphological transformations believed to be responsible for the drastically different types of ecological specialization found among the Ectodini might therefore be in need of reinterpretation. Characters immediately related to foraging and nutrition seem to

  20. Mitochondrial haplogroup C in ancient mitochondrial DNA from Ukraine extends the presence of East Eurasian genetic lineages in Neolithic Central and Eastern Europe.

    PubMed

    Nikitin, Alexey G; Newton, Jeremy R; Potekhina, Inna D

    2012-09-01

    Recent studies of ancient mitochondrial DNA (mtDNA) lineages have revealed the presence of East Eurasian mtDNA haplogroups in the Central European Neolithic. Here we report the finding of East Eurasian lineages in ancient mtDNA from two Neolithic cemeteries of the North Pontic Region (NPR) in Ukraine. In our study, comprehensive haplotyping information was obtained for 7 out of 18 specimens. Although the majority of identified mtDNA haplogroups belonged to the traditional West Eurasian lineages of H and U, three specimens were determined to belong to the lineages of mtDNA haplogroup C. This find extends the presence of East Eurasian lineages in Neolithic Europe from the Carpathian Mountains to the northern shores of the Black Sea and provides the first genetic account of Neolithic mtDNA lineages from the NPR.

  1. Evidence from mitochondrial DNA that African honey bees spread as continuous maternal lineages.

    PubMed

    Hall, H G; Muralidharan, K

    1989-05-18

    African honey bees have populated much of South and Central America and will soon enter the United States. The mechanism by which they have spread is controversial. Africanization may be largely the result of paternal gene flow into extant European populations or, alternatively, of maternal migration of feral swarms that have maintained an African genetic integrity. We have been using both mitochondrial and nuclear DNA restriction fragment length polymorphisms to follow the population dynamics between European and African bees. In earlier reports, we suggested that if African honey bees had distinctive mitochondrial (mt) DNA, then it could potentially distinguish the relative contributions of swarming and mating to the Africanization process. Because mtDNA is maternally inherited, it would not be transmitted by mating drones and only transported by queens accompanying swarms. Furthermore, the presence of African mtDNA would reflect unbroken maternal lineages from the original bees introduced from Africa. The value of mtDNA for population studies in general has been reviewed recently. Here we report that 19 feral swarms, randomly caught in Mexico, all carried African mtDNA. Thus, the migrating force of the African honey bee in the American tropics consists of continuous African maternal lineages spreading as swarms. The mating of African drones to European queens seems to contribute little to African bee migration.

  2. Admixture Between Historically Isolated Mitochondrial Lineages in Captive Western Gorillas: Recommendations for Future Management

    PubMed Central

    Dew, J. Larry; Bergl, Richard A.; Jensen-Seaman, Michael I.; Anthony, Nicola M.

    2015-01-01

    Although captive populations of western gorilla have been maintained in the United States for over a century, little is known about the geographic origins and genetic composition of the current zoo population. Furthermore, although previous mitochondrial analyses have shown that free-range gorilla populations exhibit substantial regional differentiation, nothing is known of the extent to which this variation has been preserved in captive populations. To address these questions, we combined 379 pedigree records with data from 52 mitochondrial sequences to infer individual haplogroup affiliations, geographical origin of wild founders and instances of inter-breeding between haplogroups in the United States captive gorilla population. We show that the current captive population contains all major mitochondrial lineages found within wild western lowland gorillas. Levels of haplotype diversity are also comparable to those found in wild populations. However, the majority of captive gorilla matings have occurred between individuals with different haplogroup affiliations. Although restricting crosses to individuals within the same haplogroup would preserve the phylogeographic structure present in the wild, careful management of captive populations is required to minimize the risk of drift and inbreeding. However, when captive animals are released back into the wild, we recommend that efforts should be made to preserve natural phylogeographic structure. PMID:25790828

  3. Mitochondrial lineage sorting in action – historical biogeography of the Hyles euphorbiae complex (Sphingidae, Lepidoptera) in Italy

    PubMed Central

    2013-01-01

    Background Mitochondrial genes are among the most commonly used markers in studies of species’ phylogeography and to draw conclusions about taxonomy. The Hyles euphorbiae complex (HEC) comprises six distinct mitochondrial lineages in the Mediterranean region, of which one exhibits a cryptic disjunct distribution. The predominant mitochondrial lineage in most of Europe, euphorbiae, is also present on Malta; however, it is nowadays strangely absent from Southern Italy and Sicily, where it is replaced by 'italica'. A separate biological entity in Italy is further corroborated by larval colour patterns with a congruent, confined suture zone along the Northern Apennines. By means of historic DNA extracted from museum specimens, we aimed to investigate the evolution of the mitochondrial demographic structure of the HEC in Italy and Malta throughout the Twentieth Century. Results At the beginning of the Twentieth Century, the European mainland lineages were also present at a moderate frequency in Southern Italy and Sicily. The proportion of 'italica' then steadily increased in this area from below 60 percent to near fixation in about 120 years. Thus, geographical sorting of mitochondrial lineages in the HEC was not as complete then as the current demography suggests. The pattern of an integral 'italica' core region and a disjunct euphorbiae distribution evolved very recently. To explain these strong demographic changes, we propose genetic drift due to anthropogenic habitat loss and fragmentation in combination with an impact from recent climate warming that favoured the spreading of the potentially better adapted 'italica' populations. Conclusions The pattern of geographically separated mitochondrial lineages is commonly interpreted as representing long term separated entities. However, our results indicate that such a pattern can emerge surprisingly quickly, even in a widespread and rather common taxon. We thus caution against drawing hasty taxonomic conclusions from

  4. Multiple ethnic origins of mitochondrial DNA lineages for the population of Mauritius.

    PubMed

    Fregel, Rosa; Seetah, Krish; Betancor, Eva; Suárez, Nicolás M; Čaval, Diego; Caval, Saša; Janoo, Anwar; Pestano, Jose

    2014-01-01

    This article reports on the first genetic assessment of the contemporary Mauritian population. Small island nodes such as Mauritius played a critical role in historic globalization processes and revealing high-resolution details of labour sourcing is crucial in order to better understand early-modern diaspora events. Mauritius is a particularly interesting case given detailed historic accounts attesting to European (Dutch, French and British), African and Asian points of origin. Ninety-seven samples were analysed for mitochondrial DNA to begin unravelling the complex dynamics of the island's modern population. In corroboration with general demographic information, the majority of maternal lineages were derived from South Asia (58.76%), with Malagasy (16.60%), East/Southeast Asian (11.34%) and Sub-Saharan African (10.21%) also making significant contributions. This study pinpoints specific regional origins for the South Asian genetic contribution, showing a greater influence on the contemporary population from northern and southeast India. Moreover, the analysis of lineages related to the slave trade demonstrated that Madagascar and East Asia were the main centres of origin, with less influence from West Africa.

  5. The Elusive Nature of Adaptive Mitochondrial DNA Evolution of an Arctic Lineage Prone to Frequent Introgression

    PubMed Central

    Melo-Ferreira, José; Vilela, Joana; Fonseca, Miguel M.; da Fonseca, Rute R.; Boursot, Pierre; Alves, Paulo C.

    2014-01-01

    Mitochondria play a fundamental role in cellular metabolism, being responsible for most of the energy production of the cell in the oxidative phosphorylation (OXPHOS) pathway. Mitochondrial DNA (mtDNA) encodes for key components of this process, but its direct role in adaptation remains far from understood. Hares (Lepus spp.) are privileged models to study the impact of natural selection on mitogenomic evolution because 1) species are adapted to contrasting environments, including arctic, with different metabolic pressures, and 2) mtDNA introgression from arctic into temperate species is widespread. Here, we analyzed the sequences of 11 complete mitogenomes (ten newly obtained) of hares of temperate and arctic origins (including two of arctic origin introgressed into temperate species). The analysis of patterns of codon substitutions along the reconstructed phylogeny showed evidence for positive selection in several codons in genes of the OXPHOS complexes, most notably affecting the arctic lineage. However, using theoretical models, no predictable effect of these differences was found on the structure and physicochemical properties of the encoded proteins, suggesting that the focus of selection may lie on complex interactions with nuclear encoded peptides. Also, a cloverleaf structure was detected in the control region only from the arctic mtDNA lineage, which may influence mtDNA replication and transcription. These results suggest that adaptation impacted the evolution of hare mtDNA and may have influenced the occurrence and consequences of the many reported cases of massive mtDNA introgression. However, the origin of adaptation remains elusive. PMID:24696399

  6. Interbreeding among deeply divergent mitochondrial lineages in the American cockroach (Periplaneta americana).

    PubMed

    von Beeren, Christoph; Stoeckle, Mark Y; Xia, Joyce; Burke, Griffin; Kronauer, Daniel J C

    2015-02-06

    DNA barcoding promises to be a useful tool to identify pest species assuming adequate representation of genetic variants in a reference library. Here we examined mitochondrial DNA barcodes in a global urban pest, the American cockroach (Periplaneta americana). Our sampling effort generated 284 cockroach specimens, most from New York City, plus 15 additional U.S. states and six other countries, enabling the first large-scale survey of P. americana barcode variation. Periplaneta americana barcode sequences (n = 247, including 24 GenBank records) formed a monophyletic lineage separate from other Periplaneta species. We found three distinct P. americana haplogroups with relatively small differences within (≤0.6%) and larger differences among groups (2.4%-4.7%). This could be interpreted as indicative of multiple cryptic species. However, nuclear DNA sequences (n = 77 specimens) revealed extensive gene flow among mitochondrial haplogroups, confirming a single species. This unusual genetic pattern likely reflects multiple introductions from genetically divergent source populations, followed by interbreeding in the invasive range. Our findings highlight the need for comprehensive reference databases in DNA barcoding studies, especially when dealing with invasive populations that might be derived from multiple genetically distinct source populations.

  7. Interbreeding among deeply divergent mitochondrial lineages in the American cockroach (Periplaneta americana)

    PubMed Central

    von Beeren, Christoph; Stoeckle, Mark Y.; Xia, Joyce; Burke, Griffin; Kronauer, Daniel J. C.

    2015-01-01

    DNA barcoding promises to be a useful tool to identify pest species assuming adequate representation of genetic variants in a reference library. Here we examined mitochondrial DNA barcodes in a global urban pest, the American cockroach (Periplaneta americana). Our sampling effort generated 284 cockroach specimens, most from New York City, plus 15 additional U.S. states and six other countries, enabling the first large-scale survey of P. americana barcode variation. Periplaneta americana barcode sequences (n = 247, including 24 GenBank records) formed a monophyletic lineage separate from other Periplaneta species. We found three distinct P. americana haplogroups with relatively small differences within (≤0.6%) and larger differences among groups (2.4%–4.7%). This could be interpreted as indicative of multiple cryptic species. However, nuclear DNA sequences (n = 77 specimens) revealed extensive gene flow among mitochondrial haplogroups, confirming a single species. This unusual genetic pattern likely reflects multiple introductions from genetically divergent source populations, followed by interbreeding in the invasive range. Our findings highlight the need for comprehensive reference databases in DNA barcoding studies, especially when dealing with invasive populations that might be derived from multiple genetically distinct source populations. PMID:25656854

  8. Interbreeding among deeply divergent mitochondrial lineages in the American cockroach (Periplaneta americana)

    NASA Astrophysics Data System (ADS)

    von Beeren, Christoph; Stoeckle, Mark Y.; Xia, Joyce; Burke, Griffin; Kronauer, Daniel J. C.

    2015-02-01

    DNA barcoding promises to be a useful tool to identify pest species assuming adequate representation of genetic variants in a reference library. Here we examined mitochondrial DNA barcodes in a global urban pest, the American cockroach (Periplaneta americana). Our sampling effort generated 284 cockroach specimens, most from New York City, plus 15 additional U.S. states and six other countries, enabling the first large-scale survey of P. americana barcode variation. Periplaneta americana barcode sequences (n = 247, including 24 GenBank records) formed a monophyletic lineage separate from other Periplaneta species. We found three distinct P. americana haplogroups with relatively small differences within (<=0.6%) and larger differences among groups (2.4%-4.7%). This could be interpreted as indicative of multiple cryptic species. However, nuclear DNA sequences (n = 77 specimens) revealed extensive gene flow among mitochondrial haplogroups, confirming a single species. This unusual genetic pattern likely reflects multiple introductions from genetically divergent source populations, followed by interbreeding in the invasive range. Our findings highlight the need for comprehensive reference databases in DNA barcoding studies, especially when dealing with invasive populations that might be derived from multiple genetically distinct source populations.

  9. Evolutionary transfers of mitochondrial genes to the nucleus in the Populus lineage and coexpression of nuclear and mitochondrial Sdh4 genes.

    PubMed

    Choi, Catherine; Liu, Zhenlan; Adams, Keith L

    2006-01-01

    The transfer of mitochondrial genes to the nucleus is an ongoing evolutionary process in flowering plants. Evolutionarily recent gene transfers provide insights into the evolutionary dynamics of the process and the way in which transferred genes become functional in the nucleus. Genes that are present in the mitochondrion of some angiosperms but have been transferred to the nucleus in the Populus lineage were identified by searches of Populus sequence databases. Sequence analyses and expression experiments were used to characterize the transferred genes. Two succinate dehydrogenase genes and six mitochondrial ribosomal protein genes have been transferred to the nucleus in the Populus lineage and have become expressed. Three transferred genes have gained an N-terminal mitochondrial targeting presequence from other pre-existing genes and two of the transferred genes do not contain an N-terminal targeting presequence. Intact copies of the succinate dehydrogenase gene Sdh4 are present in both the mitochondrion and the nucleus. Both copies of Sdh4 are expressed in multiple organs of two Populus species and RNA editing occurs in the mitochondrial copy. These results provide a genome-wide perspective on mitochondrial genes that were transferred to the nucleus and became expressed, functional genes during the evolutionary history of Populus.

  10. Phylogeny of major lineages of galliform birds (Aves: Galliformes) based on complete mitochondrial genomes.

    PubMed

    Kan, X-Z; Yang, J-K; Li, X-F; Chen, L; Lei, Z-P; Wang, M; Qian, C-J; Gao, H; Yang, Z-Y

    2010-08-17

    Complete mitochondrial DNA sequences have been used successfully to estimate phylogenetic relationships among animal taxa, and for studies of population genetics and molecular evolution. We made phylogenetic analyses of 22 species of Galliformes, with two species of Anseriformes as outgroups, using maximum likelihood (ML), maximum parsimony (MP) and Bayesian inference (BI) methods based on the nucleotide dataset and the corresponding amino acid dataset of 13 concatenated protein-coding genes. The consensus phylogenetic trees supported monophyly of Galliformes, Phasianidae (nucleotide and amino acid: posterior probabilities 1.00 in BI, bootstrap value > 99% in ML and MP), Coturnicinae, and Gallininae (nucleotide and amino acid: posterior probabilities 1.00 in BI, bootstrap value > 85% in ML and MP), but failed to demonstrate monophyly of Pavoninae and Phasianinae. Our results also support a sister-group relationship between megapodes and all other galliforms. We found that Arborophilinae is basal to the balance of the Phasianidae. Moreover, we suggest that the turkey should be classified in the Phasianinae of Phasianidae. Although the relationships among the various lineages of the Galliformes remain controversial, these results should be useful for further study.

  11. 350 my of mitochondrial genome stasis in mosses, an early land plant lineage.

    PubMed

    Liu, Yang; Medina, Rafael; Goffinet, Bernard

    2014-10-01

    Among land plants, angiosperms have the structurally most labile mitochondrial (mt) genomes. In contrast, the so-called early land plants (e.g., mosses) seem to have completely static mt chromosomes. We assembled the complete mt genomes from 12 mosses spanning the moss tree of life, to assess 1) the phylogenetic depth of the conserved mt gene content and order and 2) the correlation between scattered sequence repeats and gene order lability in land plants. The mt genome of most mosses is approximately 100 kb in size, and thereby the smallest among land plants. Based on divergence time estimates, moss mt genome structure has remained virtually frozen for 350 My, with only two independent gene losses and a single gene relocation detected across the macroevolutionary tree. This is the longest period of mt genome stasis demonstrated to date in a plant lineage. The complete lack of intergenic repeat sequences, considered to be essential for intragenomic recombinations, likely accounts for the evolutionary stability of moss mt genomes.

  12. Mitochondrial lineages in Ladin-speaking communities of the eastern Alps.

    PubMed Central

    Stenico, M; Nigro, L; Barbujani, G

    1998-01-01

    European mitochondrial alleles cluster into five haplogroups. Haplogroup 2 is rare in general, but represents more than half of the few known sequences among Ladin speakers of the Alps. Here we describe DNA diversity in control region I of the hypervariable D-loop in 43 Ladins, and in 25 Italian speakers. Analysis of these data, and of previously published sequences, confirms a high degree of differentiation among Ladins and their geographical neighbours. This cannot be regarded as a simple effect of isolating factors, geographic or linguistic, as diversity is high within Ladin communities too. Rather, allele genealogies, population trees, and principal component analysis suggest a relationship between Ladin and Near Eastern samples. Two evolutionary hypotheses seem compatible with these findings. The view whereby Ladins could be descended from Palaeolithic inhabitants of the Alps is supported by the identification, in this study, of the probable ancestral haplotype of group 2, never previously observed in central Europe. Alternatively, a comparatively recent, Neolithic immigration of the ancestors of current Ladin speakers seems consistent with recent linguistic theories. In both cases, the number of lineages present, and their extensive diversity, are not compatible with a serious bottleneck in the Ladin population's history. PMID:9881466

  13. Reconstructing the colonization history of lost wolf lineages by the analysis of the mitochondrial genome.

    PubMed

    Matsumura, Shuichi; Inoshima, Yasuo; Ishiguro, Naotaka

    2014-11-01

    The grey wolves (Canis lupus) originally inhabited major parts of the Northern hemisphere, but many local populations became extinct. Two lineages of wolves in Japan, namely, Japanese or Honshu (C. l. hodophilax) and Ezo or Hokkaido (C. l. hattai) wolves, rapidly went extinct between 100 and 120years ago. Here we analyse the complete mitochondrial genome sequences from ancient specimens and reconstruct the colonization history of the two extinct subspecies. We show a unique status of Japanese wolves in wolf phylogeny, suggesting their long time separation from other grey wolf populations. Japanese wolves appeared to have colonized the Japanese archipelago in the Late Pleistocene (ca. 25,000-125,000years ago). By contrast, Ezo wolves, which are clearly separated from Japanese wolves in phylogeny, are likely to have arrived at Japan relatively recently (<14,000years ago). Interestingly, their colonization history to Japan tallies well with the dynamics of wolf populations in Europe and America during the last several millennia. Our analyses suggest that at least several thousands of wolves once inhabited in the Japanese archipelago. Our analyses also show that an enigmatic clade of domestic dogs is likely to have originated from rare admixture events between male dogs and female Japanese wolves.

  14. Discordance between nuclear and mitochondrial genomes in sexual and asexual lineages of the freshwater snail Potamopyrgus antipodarum.

    PubMed

    Paczesniak, Dorota; Jokela, Jukka; Larkin, Katelyn; Neiman, Maurine

    2013-09-01

    The presence and extent of mitonuclear discordance in coexisting sexual and asexual lineages provides insight into 1) how and when asexual lineages emerged, and 2) the spatial and temporal scales at which the ecological and evolutionary processes influencing the evolution of sexual and asexual reproduction occur. Here, we used nuclear single-nucleotide polymorphism (SNP) markers and a mitochondrial gene to characterize phylogeographic structure and the extent of mitonuclear discordance in Potamopyrgus antipodarum. This New Zealand freshwater snail is often used to study the evolution and maintenance of sex because obligately sexual and obligately asexual individuals often coexist. While our data indicate that sexual and asexual P. antipodarum sampled from the same lake population are often genetically similar, suggesting recent origin of these asexuals from sympatric sexual P. antipodarum, we also found significantly more population structure in sexuals vs. asexuals. This latter result suggests that some asexual lineages originated in other lakes and/or in the relatively distant past. When comparing mitochondrial and nuclear population genetic structure, we discovered that one mitochondrial haplotype ('1A') was rare in sexuals, but common and widespread in asexuals. Haplotype 1A frequency and nuclear genetic diversity were not associated, suggesting that the commonness of this haplotype cannot be attributed entirely to genetic drift and pointing instead to a role for selection.

  15. Persistence of the mitochondrial lineage responsible for the Irish potato famine in extant new world phytophthora infestans.

    PubMed

    Martin, Michael D; Ho, Simon Y W; Wales, Nathan; Ristaino, Jean B; Gilbert, M Thomas P

    2014-06-01

    The plant pathogen Phytophthora infestans emerged in Europe in 1845, triggering the Irish potato famine and massive European potato crop losses that continued until effective fungicides were widely employed in the 20th century. Today the pathogen is ubiquitous, with more aggressive and virulent strains surfacing in recent decades. Recently, complete P. infestans mitogenome sequences from 19th-century herbarium specimens were shown to belong to a unique lineage (HERB-1) predicted to be rare or extinct in modern times. We report 44 additional P. infestans mitogenomes: four from 19th-century Europe, three from 1950s UK, and 37 from modern populations across the New World. We use phylogenetic analyses to identify the HERB-1 lineage in modern populations from both Mexico and South America, and to demonstrate distinct mitochondrial haplotypes were present in 19th-century Europe, with this lineage initially diversifying 75 years before the first reports of potato late blight.

  16. The Biarzo case in northern Italy: is the temporal dynamic of swine mitochondrial DNA lineages in Europe related to domestication?

    PubMed Central

    Vai, Stefania; Vilaça, Sibelle Torres; Romandini, Matteo; Benazzo, Andrea; Visentini, Paola; Modolo, Marta; Bertolini, Marco; MacQueen, Peggy; Austin, Jeremy; Cooper, Alan; Caramelli, David; Lari, Martina; Bertorelle, Giorgio

    2015-01-01

    Genetically-based reconstructions of the history of pig domestication in Europe are based on two major pillars: 1) the temporal changes of mitochondrial DNA lineages are related to domestication; 2) Near Eastern haplotypes which appeared and then disappeared in some sites across Europe are genetic markers of the first Near Eastern domestic pigs. We typed a small but informative fragment of the mitochondrial DNA in 23 Sus scrofa samples from a site in north eastern Italy (Biarzo shelter) which provides a continuous record across a ≈6,000 year time frame from the Upper Palaeolithic to the Neolithic. We additionally carried out several radiocarbon dating. We found that a rapid mitochondrial DNA turnover occurred during the Mesolithic, suggesting that substantial changes in the composition of pig mitochondrial lineages can occur naturally across few millennia independently of domestication processes. Moreover, so-called Near Eastern haplotypes were present here at least two millennia before the arrival of Neolithic package in the same area. Consequently, we recommend a re-evaluation of the previous idea that Neolithic farmers introduced pigs domesticated in the Near East, and that Mesolithic communities acquired domestic pigs via cultural exchanges, to include the possibility of a more parsimonious hypothesis of local domestication in Europe. PMID:26549464

  17. AK2 deficiency compromises the mitochondrial energy metabolism required for differentiation of human neutrophil and lymphoid lineages

    PubMed Central

    Six, E; Lagresle-Peyrou, C; Susini, S; De Chappedelaine, C; Sigrist, N; Sadek, H; Chouteau, M; Cagnard, N; Fontenay, M; Hermine, O; Chomienne, C; Reynier, P; Fischer, A; André-Schmutz, I; Gueguen, N; Cavazzana, M

    2015-01-01

    Reticular dysgenesis is a human severe combined immunodeficiency that is primarily characterized by profound neutropenia and lymphopenia. The condition is caused by mutations in the adenylate kinase 2 (AK2) gene, resulting in the loss of mitochondrial AK2 protein expression. AK2 regulates the homeostasis of mitochondrial adenine nucleotides (ADP, ATP and AMP) by catalyzing the transfer of high-energy phosphate. Our present results demonstrate that AK2-knocked-down progenitor cells have poor proliferative and survival capacities and are blocked in their differentiation toward lymphoid and granulocyte lineages. We also observed that AK2 deficiency impaired mitochondrial function in general and oxidative phosphorylation in particular – showing that AK2 is critical in the control of energy metabolism. Loss of AK2 disrupts this regulation and leads to a profound block in lymphoid and myeloid cell differentiation. PMID:26270350

  18. Importance of mitochondrial haplotypes and maternal lineage in sprint performance among individuals of West African ancestry.

    PubMed

    Deason, M; Scott, R; Irwin, L; Macaulay, V; Fuku, N; Tanaka, M; Irving, R; Charlton, V; Morrison, E; Austin, K; Pitsiladis, Y P

    2012-04-01

    Mitochondrial DNA (mtDNA) is inherited solely along the matriline, giving insight into both ancestry and prehistory. Individuals of sub-Saharan ancestry are overrepresented in sprint athletics, suggesting a genetic advantage. The purpose of this study was to compare the mtDNA haplogroup data of elite groups of Jamaican and African-American sprinters against respective controls to assess any differences in maternal lineage. The first hypervariable region of mtDNA was haplogrouped in elite Jamaican athletes (N=107) and Jamaican controls (N=293), and elite African-American athletes (N=119) and African-American controls (N=1148). Exact tests of total population differentiation were performed on total haplogroup frequencies. The frequency of non-sub-Saharan haplogroups in Jamaican athletes and Jamaican controls was similar (1.87% and 1.71%, respectively) and lower than that of African-American athletes and African-American controls (21.01% and 8.19%, respectively). There was no significant difference in total haplogroup frequencies between Jamaican athletes and Jamaican controls (P=0.551 ± 0.005); however, there was a highly significant difference between African-American athletes and African-American controls (P<0.001). The finding of statistically similar mtDNA haplogroup distributions in Jamaican athletes and Jamaican controls suggests that elite Jamaican sprinters are derived from the same source population and there is neither population stratification nor isolation for sprint performance. The significant difference between African-American sprinters and African-American controls suggests that the maternal admixture may play a role in sprint performance.

  19. A deafness-associated tRNAAsp mutation alters the m1G37 modification, aminoacylation and stability of tRNAAsp and mitochondrial function

    PubMed Central

    Wang, Meng; Peng, Yanyan; Zheng, Jing; Zheng, Binjiao; Jin, Xiaofen; Liu, Hao; Wang, Yong; Tang, Xiaowen; Huang, Taosheng; Jiang, Pingping; Guan, Min-Xin

    2016-01-01

    In this report, we investigated the pathogenic mechanism underlying the deafness-associated mitochondrial(mt) tRNAAsp 7551A > G mutation. The m.7551A > G mutation is localized at a highly conserved nucleotide(A37), adjacent (3′) to the anticodon, which is important for the fidelity of codon recognition and stabilization in functional tRNAs. It was anticipated that the m.7551A > G mutation altered the structure and function of mt-tRNAAsp. The primer extension assay demonstrated that the m.7551A > G mutation created the m1G37 modification of mt-tRNAAsp. Using cybrid cell lines generated by transferring mitochondria from lymphoblastoid cell lines derived from a Chinese family into mitochondrial DNA(mtDNA)-less (ρo) cells, we demonstrated the significant decreases in the efficiency of aminoacylation and steady-state level of mt-tRNAAsp in mutant cybrids, compared with control cybrids. A failure in metabolism of mt-tRNAAsp caused the variable reductions in mtDNA-encoded polypeptides in mutant cybrids. Impaired mitochondrial translation led to the respiratory phenotype in mutant cybrids. The respiratory deficiency lowed mitochondrial adenosine triphosphate production and increased the production of oxidative reactive species in mutant cybrids. Our data demonstrated that mitochondrial dysfunctions caused by the m.7551A > G mutation are associated with deafness. Our findings may provide new insights into the pathophysiology of maternally transmitted deafness that was manifested by altered nucleotide modification of mitochondrial tRNA. PMID:27536005

  20. The Complete Sequence of the Mitochondrial Genome of Butomus umbellatus – A Member of an Early Branching Lineage of Monocotyledons

    PubMed Central

    Cuenca, Argelia; Petersen, Gitte; Seberg, Ole

    2013-01-01

    In order to study the evolution of mitochondrial genomes in the early branching lineages of the monocotyledons, i.e., the Acorales and Alismatales, we are sequencing complete genomes from a suite of key taxa. As a starting point the present paper describes the mitochondrial genome of Butomus umbellatus (Butomaceae) based on next-generation sequencing data. The genome was assembled into a circular molecule, 450,826 bp in length. Coding sequences cover only 8.2% of the genome and include 28 protein coding genes, four rRNA genes, and 12 tRNA genes. Some of the tRNA genes and a 16S rRNA gene are transferred from the plastid genome. However, the total amount of recognized plastid sequences in the mitochondrial genome is only 1.5% and the amount of DNA transferred from the nucleus is also low. RNA editing is abundant and a total of 557 edited sites are predicted in the protein coding genes. Compared to the 40 angiosperm mitochondrial genomes sequenced to date, the GC content of the Butomus genome is uniquely high (49.1%). The overall similarity between the mitochondrial genomes of Butomus and Spirodela (Araceae), the closest relative yet sequenced, is low (less than 20%), and the two genomes differ in size by a factor 2. Gene order is also largely unconserved. However, based on its phylogenetic position within the core alismatids Butomus will serve as a good reference point for subsequent studies in the early branching lineages of the monocotyledons. PMID:23637852

  1. [Composition and distribution of the mitochondrial lineages of gray whales (Eschirichtius robustus) in the far eastern seas of Russia].

    PubMed

    Meshcherskiĭ, I G; Kuleshova, M A; Litovka, D I; Burkanov, V N; Endrius, R D; Tsidulko, G A; Rozhnov, V V; Il'iashchenko, V Iu

    2015-01-01

    The frequency of occurrence of the mitotypes (control region, cytochrome b gene, and DN2 gene) has been studied for groups of gray whales feeding and growing along Chukotka Peninsula, Koryak Coast, eastern Kamchatka, and Sakhalin Island. The number of the mitotypes decreased dramatically from the northern waters southwards; however, the dominant mitotypes remained the same. Both mitochondrial lineages known for this species might be found for the whales gathering in the reproductive area along the Californian Coast in accordance with the comparison of the published and original data on the haplotypes of the control region. However, it has also been argued that similar sequences of the control region might be found in different mitochondrial genomes, and the analysis of only this site of mtDNA might lead to incorrect conclusions.

  2. Incongruous nuclear and mitochondrial phylogeographic patterns in two sympatric lineages of the wolf spider Pardosa astrigera (Araneae: Lycosidae) from China.

    PubMed

    Chang, Jin; Song, Daxiang; Zhou, Kaiya

    2007-01-01

    We investigated the genetic structure of mitochondrial DNA (COI and 16S rRNA-tRNA(Leu(CUN))-ND1) and nuclear DNA (ITS2) variations among and within populations of Pardosa astrigera in China. Two phenotypes of males were recognized. They differed genetically also in the presence (type A) or absence (type B) of common insertions and deletions in ITS2. The concordance between mtDNA based phylogeny and the phenotypic variations of P. astrigera was weak. Haplotypes of type A did not form a monophyletic group. Instead they were found in three clades, in one of them mixed with type B haplotypes, most likely as a result of long-term and ongoing gene flow of mtDNA between the two phenotypic groups (M = 0.69). Pairwise sequence divergences of all data sets indicated that the genetic divergences between the two phenotypes fall within intraspecific range. Our results indicated that the P. astrigera populations in China consist of two sympatric lineages with male phenotypic variations. Patterns of mismatch distribution within lineages suggested long-term demographic stability in the lineage A, and growth in lineage B that expanded rapidly and recolonized from a southern refuge to the northern parts of China during the late-Pleistocene. On the basis of the estimated divergence time between the two lineages (0.18-0.41 Ma), we suggest that the dry-cold climate and the uplift of the Tibetan plateau during the mid-Pleistocene appear to have a determinating impact on the evolutionary history of P. astrigera in China.

  3. Phylogenetic utility, and variability in structure and content, of complete mitochondrial genomes among genetic lineages of the Hawaiian anchialine shrimp Halocaridina rubra Holthuis 1963 (Atyidae:Decapoda).

    PubMed

    Justice, Joshua L; Weese, David A; Santos, Scott Ross

    2016-07-01

    The Atyidae are caridean shrimp possessing hair-like setae on their claws and are important contributors to ecological services in tropical and temperate fresh and brackish water ecosystems. Complete mitochondrial genomes have only been reported from five of the 449 species in the family, thus limiting understanding of mitochondrial genome evolution and the phylogenetic utility of complete mitochondrial sequences in the Atyidae. Here, comparative analyses of complete mitochondrial genomes from eight genetic lineages of Halocaridina rubra, an atyid endemic to the anchialine ecosystem of the Hawaiian Archipelago, are presented. Although gene number, order, and orientation were syntenic among genomes, three regions were identified and further quantified where conservation was substantially lower: (1) high length and sequence variability in the tRNA-Lys and tRNA-Asp intergenic region; (2) a 317-bp insertion between the NAD6 and CytB genes confined to a single lineage and representing a partial duplication of CytB; and (3) the putative control region. Phylogenetic analyses utilizing complete mitochondrial sequences provided new insights into relationships among the H. rubra genetic lineages, with the topology of one clade correlating to the geologic sequence of the islands. However, deeper nodes in the phylogeny lacked bootstrap support. Overall, our results from H. rubra suggest intra-specific mitochondrial genomic diversity could be underestimated across the Metazoa since the vast majority of complete genomes are from just a single individual of a species.

  4. Arrested development of the myxozoan parasite, Myxobolus cerebralis, in certain populations of mitochondrial 16S lineage III Tubifex tubifex

    USGS Publications Warehouse

    Baxa, D.V.; Kelley, G.O.; Mukkatira, K.S.; Beauchamp, K.A.; Rasmussen, C.; Hedrick, R.P.

    2008-01-01

    Laboratory populations of Tubifex tubifex from mitochondrial (mt)16S ribosomal DNA (rDNA) lineage III were generated from single cocoons of adult worms releasing the triactinomyxon stages (TAMs) of the myxozoan parasite, Myxobolus cerebralis. Subsequent worm populations from these cocoons, referred to as clonal lines, were tested for susceptibility to infection with the myxospore stages of M. cerebralis. Development and release of TAMs occurred in five clonal lines, while four clonal lines showed immature parasitic forms that were not expelled from the worm (non-TAM producers). Oligochaetes from TAM- and non-TAM-producing clonal lines were confirmed as lineage III based on mt16S rDNA and internal transcribed spacer region 1 (ITS1) sequences, but these genes did not differentiate these phenotypes. In contrast, random amplified polymorphic DNA analyses of genomic DNA demonstrated unique banding patterns that distinguished the phenotypes. Cohabitation of parasite-exposed TAM- and non-TAM-producing phenotypes showed an overall decrease in expected TAM production compared to the same exposure dose of the TAM-producing phenotype without cohabitation. These studies suggest that differences in susceptibility to parasite infection can occur in genetically similar T. tubifex populations, and their coexistence may affect overall M. cerebralis production, a factor that may influence the severity of whirling disease in wild trout populations. ?? 2007 Springer-Verlag.

  5. Between the Balkans and the Baltic: Phylogeography of a Common Vole Mitochondrial DNA Lineage Limited to Central Europe

    PubMed Central

    Stojak, Joanna; McDevitt, Allan D.; Herman, Jeremy S.; Kryštufek, Boris; Uhlíková, Jitka; Purger, Jenő J.; Lavrenchenko, Leonid A.; Searle, Jeremy B.; Wójcik, Jan M.

    2016-01-01

    The common vole (Microtus arvalis) has been a model species of small mammal for studying end-glacial colonization history. In the present study we expanded the sampling from central and eastern Europe, analyzing contemporary genetic structure to identify the role of a potential ‘northern glacial refugium’, i.e. a refugium at a higher latitude than the traditional Mediterranean refugia. Altogether we analyzed 786 cytochrome b (cytb) sequences (representing mitochondrial DNA; mtDNA) from the whole of Europe, adding 177 new sequences from central and eastern Europe, and we conducted analyses on eight microsatellite loci for 499 individuals (representing nuclear DNA) from central and eastern Europe, adding data on 311 new specimens. Our new data fill gaps in the vicinity of the Carpathian Mountains, the potential northern refugium, such that there is now dense sampling from the Balkans to the Baltic Sea. Here we present evidence that the Eastern mtDNA lineage of the common vole was present in the vicinity of this Carpathian refugium during the Last Glacial Maximum and the Younger Dryas. The Eastern lineage expanded from this refugium to the Baltic and shows low cytb nucleotide diversity in those most northerly parts of the distribution. Analyses of microsatellites revealed a similar pattern but also showed little differentiation between all of the populations sampled in central and eastern Europe. PMID:27992546

  6. Between the Balkans and the Baltic: Phylogeography of a Common Vole Mitochondrial DNA Lineage Limited to Central Europe.

    PubMed

    Stojak, Joanna; McDevitt, Allan D; Herman, Jeremy S; Kryštufek, Boris; Uhlíková, Jitka; Purger, Jenő J; Lavrenchenko, Leonid A; Searle, Jeremy B; Wójcik, Jan M

    2016-01-01

    The common vole (Microtus arvalis) has been a model species of small mammal for studying end-glacial colonization history. In the present study we expanded the sampling from central and eastern Europe, analyzing contemporary genetic structure to identify the role of a potential 'northern glacial refugium', i.e. a refugium at a higher latitude than the traditional Mediterranean refugia. Altogether we analyzed 786 cytochrome b (cytb) sequences (representing mitochondrial DNA; mtDNA) from the whole of Europe, adding 177 new sequences from central and eastern Europe, and we conducted analyses on eight microsatellite loci for 499 individuals (representing nuclear DNA) from central and eastern Europe, adding data on 311 new specimens. Our new data fill gaps in the vicinity of the Carpathian Mountains, the potential northern refugium, such that there is now dense sampling from the Balkans to the Baltic Sea. Here we present evidence that the Eastern mtDNA lineage of the common vole was present in the vicinity of this Carpathian refugium during the Last Glacial Maximum and the Younger Dryas. The Eastern lineage expanded from this refugium to the Baltic and shows low cytb nucleotide diversity in those most northerly parts of the distribution. Analyses of microsatellites revealed a similar pattern but also showed little differentiation between all of the populations sampled in central and eastern Europe.

  7. Genetic Diversity and Differentiation in Urban and Indigenous Populations of Mexico: Patterns of Mitochondrial DNA and Y-Chromosome Lineages.

    PubMed

    González-Sobrino, Blanca Z; Pintado-Cortina, Ana P; Sebastián-Medina, Leticia; Morales-Mandujano, Fabiola; Contreras, Alejandra V; Aguilar, Yasnaya E; Chávez-Benavides, Juan; Carrillo-Rodríguez, Aurelio; Silva-Zolezzi, Irma; Medrano-González, Luis

    2016-01-01

    Aside from the admixture between indigenous people and people from overseas, populations in Mexico changed drastically after the Spanish conquest of the sixteenth century, forming an intricate history that has been underutilized in understanding the genetic population structure of Mexicans. To infer historical processes of isolation, dispersal, and assimilation, we examined the phylogeography of mitochondrial (mt) DNA and Y-chromosome lineages in 3,026 individuals from 10 urban and nine indigenous populations by identifying single nucleotide polymorphisms. A geographic array with a predominance of Amerindian lineages was observed for mtDNA, with northern indigenous populations being divergent from the central and southern indigenous populations; urban populations showed low differentiation with isolation by distance. Y-chromosome variation distinguished urban and indigenous populations through the Amerindian haplogroup Q frequency. The MtDNA and the Y-chromosome together primarily distinguished urban and indigenous populations, with different geographic arrays for both. Gene flow across geographical distance and between the urban and indigenous realms appears to have altered the pre-Hispanic phylogeography in central and southern Mexico, mainly by displacement of women, while maintaining the indigenous isolation in the north, southeast, and Zapotec regions. Most Amerindian mtDNA diversity currently occurs in urban populations and appears to be reduced among indigenous people.

  8. Population structure and identification of two matrilinear and one patrilinear mitochondrial lineages in the mussel Mytella charruana

    NASA Astrophysics Data System (ADS)

    de Souza, Thainara Oliveira; Alves, Francisco Arimateia dos Santos; Beasley, Colin Robert; de Simone, Luiz Ricardo Lopes; Marques-Silva, Nelane do Socorro; Santos-Neto, Guilherme da Cruz; Tagliaro, Claudia Helena

    2015-04-01

    The mitochondrial gene cytochrome c oxidase subunit I (COI) was sequenced from Mytella charruana (N = 243) at 10 Brazilian coastal localities to search for cryptic species, doubly uniparental inheritance and investigate genetic population structure and demography. Three haplogroups were found: two matrilinear (A and B) in males and females, and one patrilinear (C) found only in males. The p-distances were 0.0624 (A and B), 0.2097 (A and C) and 0.2081 (B and C). Coalescence of M. charruana occurred around 12.5 Mya, and the origins of the lineages were 3.4 and 4 Mya (matrilinear A and B) and 51.2 Mya (patrilinear), which split before the separation of the genera Perna and Mytella. All individuals from the northern coast of Brazil belonged to haplogroup A, whereas haplogroup B predominated among individuals from the eastern and northeastern coasts, with one exception, Goiana. Haplogroup C was found in males from the northern to the eastern coast. GenBank sequences of M. charruana from Colombia, Ecuador and four populations introduced to the USA joined Brazilian haplogroup B. Nuclear gene 18S-ITS1 sequences confirmed that all specimens belong to the same species. Four populations from the northern coast of Brazil were homogenous with evidence of recent population expansion. All populations from the northeastern and eastern coasts of Brazil were significantly structured (pairwise FST and AMOVA). The heterogeneity among Brazilian populations requires that relocation for aquaculture be preceded by genetic identification of the haplogroups. Differences in salinity and temperature may have selected for distinct lineages of mussels and changing conditions in coasts and estuaries may allow only resistant lineages of mussel to persist with the loss of others. In the light of global climate change, more detailed data on temperature, pH, salinity and local currents could help explain the genetic structuring observed among populations of Brazilian M. charruana.

  9. Glacial history of the European marine mussels Mytilus, inferred from distribution of mitochondrial DNA lineages

    PubMed Central

    Śmietanka, B; Burzyński, A; Hummel, H; Wenne, R

    2014-01-01

    Mussels of the genus Mytilus have been used to assess the circumglacial phylogeography of the intertidal zone. These mussels are representative components of the intertidal zone and have rapidly evolving mitochondrial DNA, suitable for high resolution phylogeographic analyses. In Europe, the three Mytilus species currently share mitochondrial haplotypes, owing to the cases of extensive genetic introgression. Genetic diversity of Mytilus edulis, Mytilus trossulus and Mytilus galloprovincialis was studied using a 900-bp long part of the most variable fragment of the control region from one of their two mitochondrial genomes. To this end, 985 specimens were sampled along the European coasts, at sites ranging from the Black Sea to the White Sea. The relevant DNA fragments were amplified, sequenced and analyzed. Contrary to the earlier findings, our coalescence and nested cladistics results show that only a single M. edulis glacial refugium existed in the Atlantic. Despite that, the species survived the glaciation retaining much of its diversity. Unsurprisingly, M. galloprovincialis survived in the Mediterranean Sea. In a relatively short time period, around the climatic optimum at 10 ky ago, the species underwent rapid expansion coupled with population differentiation. Following the expansion, further contemporary gene flow between populations was limited. PMID:24619178

  10. Glacial history of the European marine mussels Mytilus, inferred from distribution of mitochondrial DNA lineages.

    PubMed

    Smietanka, B; Burzyński, A; Hummel, H; Wenne, R

    2014-09-01

    Mussels of the genus Mytilus have been used to assess the circumglacial phylogeography of the intertidal zone. These mussels are representative components of the intertidal zone and have rapidly evolving mitochondrial DNA, suitable for high resolution phylogeographic analyses. In Europe, the three Mytilus species currently share mitochondrial haplotypes, owing to the cases of extensive genetic introgression. Genetic diversity of Mytilus edulis, Mytilus trossulus and Mytilus galloprovincialis was studied using a 900-bp long part of the most variable fragment of the control region from one of their two mitochondrial genomes. To this end, 985 specimens were sampled along the European coasts, at sites ranging from the Black Sea to the White Sea. The relevant DNA fragments were amplified, sequenced and analyzed. Contrary to the earlier findings, our coalescence and nested cladistics results show that only a single M. edulis glacial refugium existed in the Atlantic. Despite that, the species survived the glaciation retaining much of its diversity. Unsurprisingly, M. galloprovincialis survived in the Mediterranean Sea. In a relatively short time period, around the climatic optimum at 10 ky ago, the species underwent rapid expansion coupled with population differentiation. Following the expansion, further contemporary gene flow between populations was limited.

  11. Mitochondrial DNA of ancient Cumanians: culturally Asian steppe nomadic immigrants with substantially more western Eurasian mitochondrial DNA lineages.

    PubMed

    Bogácsi-Szabó, Erika; Kalmár, Tibor; Csányi, Bernadett; Tömöry, Gyöngyvér; Czibula, Agnes; Priskin, Katalin; Horváth, Ferenc; Downes, Christopher Stephen; Raskó, István

    2005-10-01

    The Cumanians were originally Asian pastoral nomads who in the 13th century migrated to Hungary. We have examined mitochondrial DNA from members of the earliest Cumanian population in Hungary from two archeologically well-documented excavations and from 74 modern Hungarians from different rural locations in Hungary. Haplogroups were defined based on HVS I sequences and examinations of haplogroup-associated polymorphic sites of the protein coding region and of HVS II. To exclude contamination, some ancient DNA samples were cloned. A database was created from previously published mtDNA HVS I sequences (representing 2,615 individuals from different Asian and European populations) and 74 modem Hungarian sequences from the present study. This database was used to determine the relationships between the ancient Cumanians, modern Hungarians, and Eurasian populations and to estimate the genetic distances between these populations. We attempted to deduce the genetic trace of the migration of Cumanians. This study is the first ancient DNA characterization of an eastern pastoral nomad population that migrated into Europe. The results indicate that, while still possessing a Central Asian steppe culture, the Cumanians received a large admixture of maternal genes from more westerly populations before arriving in Hungary. A similar dilution of genetic, but not cultural, factors may have accompanied the settlement of other Asian nomads in Europe.

  12. Genetic variation and phylogeography of central Asian and other house mice, including a major new mitochondrial lineage in Yemen.

    PubMed Central

    Prager, E M; Orrego, C; Sage, R D

    1998-01-01

    The mitochondrial DNA (mtDNA) control region and flanking tRNAs were sequenced from 76 mice collected at 60 localities extending from Egypt through Turkey, Yemen, Iran, Afghanistan, Pakistan, and Nepal to eastern Asia. Segments of the Y chromosome and of a processed p53 pseudogene (Psip53) were amplified from many of these mice and from others collected elsewhere in Eurasia and North Africa. The 251 mtDNA types, including 54 new ones reported here, now identified from commensal house mice (Mus musculus group) by sequencing this segment can be organized into four major lineages-domesticus, musculus, castaneus, and a new lineage found in Yemen. Evolutionary tree analysis suggested the domesticus mtDNAs as the sister group to the other three commensal mtDNA lineages and the Yemeni mtDNAs as the next oldest lineage. Using this tree and the phylogeographic approach, we derived a new model for the origin and radiation of commensal house mice whose main features are an origin in west-central Asia (within the present-day range of M. domesticus) and the sequential spreading of mice first to the southern Arabian Peninsula, thence eastward and northward into south-central Asia, and later from south-central Asia to north-central Asia (and thence into most of northern Eurasia) and to southeastern Asia. Y chromosomes with and without an 18-bp deletion in the Zfy-2 gene were detected among mice from Iran and Afghanistan, while only undeleted Ys were found in Turkey, Yemen, Pakistan, and Nepal. Polymorphism for the presence of a Psip53 was observed in Georgia, Iran, Turkmenistan, Afghanistan, and Pakistan. Sequencing of a 128-bp Psip53 segment from 79 commensal mice revealed 12 variable sites and implicated >/=14 alleles. The allele that appeared to be phylogenetically ancestral was widespread, and the greatest diversity was observed in Turkey, Afghanistan, Pakistan, and Nepal. Two mice provided evidence for a second Psip53 locus in some commensal populations. PMID:9755213

  13. Lineage-specific evolution of echinoderm mitochondrial ATP synthase subunit 8.

    PubMed

    De Giorgi, C; Martiradonna, A; Pesole, G; Saccone, C

    1997-06-01

    Peculiar evolutionary properties of the subunit 8 of mitochondrial ATP synthase (ATPase8) are revealed by comparative analyses carried out between both closely and distantly related species of echinoderms. The analysis of nucleotide substitution in the three echinoids demonstrated a relaxation of amino acid functional constraints. The deduced protein sequences display a well conserved domain at the N-terminus, while the central part is very variable. At the C-terminus, the broad distribution of positively charged amino acids, which is typical of other organisms, is not conserved in the two different echinoderm classes of the sea urchins and of the sea stars. Instead, a motif of three amino acids, so far not described elsewhere, is conserved in sea urchins and is found to be very similar to the motif present in the sea stars. Our results indicate that the N-terminal region seems to follow the same evolutionary pattern in different organisms, while the maintenance of the C-terminal part in a phylum-specific manner may reflect the co-evolution of mitochondrial and nuclear genes.

  14. Molecular analyses reveal two geographic and genetic lineages for tapeworms, Taenia solium and Taenia saginata, from Ecuador using mitochondrial DNA.

    PubMed

    Solano, Danilo; Navarro, Juan Carlos; León-Reyes, Antonio; Benítez-Ortiz, Washington; Rodríguez-Hidalgo, Richar

    2016-12-01

    Tapeworms Taenia solium and Taenia saginata are the causative agents of taeniasis/cysticercosis. These are diseases with high medical and veterinary importance due to their impact on public health and rural economy in tropical countries. The re-emergence of T. solium as a result of human migration, the economic burden affecting livestock industry, and the large variability of symptoms in several human cysticercosis, encourage studies on genetic diversity, and the identification of these parasites with molecular phylogenetic tools. Samples collected from the Ecuadorian provinces: Loja, Guayas, Manabí, Tungurahua (South), and Imbabura, Pichincha (North) from 2000 to 2012 were performed under Maximum Parsimony analyses and haplotype networks using partial sequences of mitochondrial DNA, cytochrome oxidase subunit I (COI) and NADH subunit I (NDI), from Genbank and own sequences of Taenia solium and Taenia saginata from Ecuador. Both species have shown reciprocal monophyly, which confirms its molecular taxonomic identity. The COI and NDI genes results suggest phylogenetic structure for both parasite species from south and north of Ecuador. In T. solium, both genes gene revealed greater geographic structure, whereas in T. saginata, the variability for both genes was low. In conclusion, COI haplotype networks of T. solium suggest two geographical events in the introduction of this species in Ecuador (African and Asian lineages) and occurring sympatric, probably through the most common routes of maritime trade between the XV-XIX centuries. Moreover, the evidence of two NDI geographical lineages in T. solium from the north (province of Imbabura) and the south (province of Loja) of Ecuador derivate from a common Indian ancestor open new approaches for studies on genetic populations and eco-epidemiology.

  15. Random Mating Between Two Widely Divergent Mitochondrial Lineages of Cryptolestes ferrugineus (Coleoptera: Laemophloeidae): A Test of Species Limits in a Phosphine-Resistant Stored Product Pest.

    PubMed

    Toon, A; Daglish, G J; Ridley, A W; Emery, R N; Holloway, J C; Walter, G H

    2016-10-01

    Effective pest management relies on accurate delimitation of species and, beyond this, on accurate species identification. Mitochondrial COI sequences are useful for providing initial indications in delimiting species but, despite acknowledged limitations in the method, many studies involving COI sequences and species problems remain unresolved. Here we illustrate how such impasses can be resolved with microsatellite and nuclear sequence data, to assess more directly the amount of gene flow between divergent lineages. We use a population genetics approach to test for random mating between two 8 ± 2% divergent COI lineages of the rusty grain beetle, Cryptolestes ferrugineus (Stephens). This species has become strongly resistant to phosphine, a fumigant used worldwide for disinfesting grain. The possibility of cryptic species would have significant consequences for resistance management, especially if resistance was confined to one mitochondrial lineage. We find no evidence of restricted gene flow or nonrandom mating across the two COI lineages of these beetles, rather we hypothesize that historic population structure associated with early Pleistocene climate changes likely contributed to divergent lineages within this species.

  16. Ocean barriers and glaciation: evidence for explosive radiation of mitochondrial lineages in the Antarctic sea slug Doris kerguelenensis (Mollusca, Nudibranchia).

    PubMed

    Wilson, Nerida G; Schrödl, M; Halanych, Kenneth M

    2009-03-01

    Strong currents and deep passages of water can be barriers for larval dispersal of continental marine animals, but potential effects on direct developers are under-investigated. We examined the genetic structure of Doris kerguelenensis, a directly developing sea slug that occurs across the Drake Passage, the body of water separating Antarctica from South America. We found deep mitochondrial divergences within populations on both sides of the Drake Passage, and South American animals formed multiple sister-group relationships with Antarctic animals. A generalised molecular clock suggested these trans-Drake pairs diverged during the Pliocene–Pleistocene, after the formation of the Drake Passage. Statistical parsimony methods recovered 29 separate haplotype networks (many sympatric) that likely correlate with allopatric events caused by repeated glacial cycles. Data from 16S were congruent but more conserved than COI, and the estimated ancestral 16S haplotype was widespread. The marked difference in the substitution rates between these two mitochondrial genes results in different estimates of connectivity. Demographic analyses on networks revealed some evidence for selection and expanding populations. Contrasting with the Northern Hemisphere, glaciation in Antarctica appears to have increased rather than reduced genetic diversity. This suggests orbitally forced range dynamics based on Northern Hemisphere phylogeography do not hold for Antarctica. The diverse lineages found in D. kerguelenensis point towards a recent, explosive radiation, likely reflecting multiple refuges during glaciation events, combined with limited subsequent dispersal. Whether recognised as cryptic species or not, genetic diversity in Antarctic marine invertebrates appears higher than expected from morphological analyses, and supports the Antarctic biodiversity pump phenomenon.

  17. Mitochondrial lineages reveal intense gene flow between Iberian wild boars and South Iberian pig breeds.

    PubMed

    van Asch, B; Pereira, F; Santos, L S; Carneiro, J; Santos, N; Amorim, A

    2012-02-01

    The phylogeography of wild boars (WB) and domestic pigs (Sus scrofa) has contributed important insights into where and when domestication occurred. The geographic distribution of two core haplotypes (E1a and E1c) of the main European phylogenetic clade suggests that Central Europe was an early domestication centre, although the complexity of the pattern does not exclude the possibility that multiple domestication events occurred in different regions. To investigate the relationships among WB and domestic pig breeds in Iberia, a fragment of the mitochondrial DNA control region from a large sample (n=409) of WB and local pig breeds was co-analysed with published sequences from other European populations. The Iberian sample revealed a high frequency of a sub-cluster (E1c) of the European haplogroup E1 in 77% of total Iberian samples, 96% of WB, 90% of Alentejano (Portugal) and 87% of Iberian breed pigs (Spain; Black Hairy, Black Hairless and Red varieties). Low genetic distance (F'(ST) = 0.105) was observed between Alentejano (Portugal) and Iberian breed pigs (Spain). Alentejano and Iberian breed pigs showed low genetic distances to both Iberian and Central European WB (average F'(ST) =0.345 and 0.215, respectively). This pattern suggests that early pig husbandry in the Iberian Peninsula did not solely rely on imported Central European stock, but also included the recruitment of local WB.

  18. Free from mitochondrial DNA: Nuclear genes and the inference of species trees among closely related darter lineages (Teleostei: Percidae: Etheostomatinae).

    PubMed

    Near, Thomas J; Keck, Benjamin P

    2013-03-01

    Investigations into the phylogenetics of closely related animal species are dominated by the use of mitochondrial DNA (mtDNA) sequence data. However, the near-ubiquitous use of mtDNA to infer phylogeny among closely related animal lineages is tempered by an increasing number of studies that document high rates of transfer of mtDNA genomes among closely related species through hybridization, leading to substantial discordance between phylogenies inferred from mtDNA and nuclear gene sequences. In addition, the recent development of methods that simultaneously infer a species phylogeny and estimate divergence times, while accounting for incongruence among individual gene trees, has ushered in a new era in the investigation of phylogeny among closely related species. In this study we assess if DNA sequence data sampled from a modest number of nuclear genes can resolve relationships of a species-rich clade of North American freshwater teleost fishes, the darters. We articulate and expand on a recently introduced method to infer a time-calibrated multi-species coalescent phylogeny using the computer program (*)BEAST. Our analyses result in well-resolved and strongly supported time-calibrated darter species tree. Contrary to the expectation that mtDNA will provide greater phylogenetic resolution than nuclear gene data; the darter species tree inferred exclusively from nuclear genes exhibits a higher frequency of strongly supported nodes than the mtDNA time-calibrated gene tree.

  19. Variability in triactinomyxon production from Tubifex tubifex populations from the same mitochondrial DNA lineage infected with Myxobolus cerebralis, the causative agent of whirling disease in salmonids

    USGS Publications Warehouse

    Rasmussen, C.; Zickovich, J.; Winton, J.R.; Kerans, B.L.

    2008-01-01

    Myxobolus cerebralis, the causative agent of whirling disease, infects both salmonid fish and an aquatic oligochaete, Tubifex tubifex. Although M. cerebralis has been detected in river drainages throughout the United States, disease severity among wild fish populations has been highly variable. Tubifex tubifex populations have been genetically characterized using sequences from the 16S mitochondrial DNA (mtDNA) gene, the 18S ribosomal RNA gene, the internal transcribed spacer region 1 (ITS1), and randomly amplified polymorphic DNA (RAPD). Our earlier work indicated that large differences in compatibility between the parasite and populations of T. tubifex may play a substantial role in the distribution of whirling disease and resulting mortality in different watersheds. In the present study, we examined 4 laboratory populations of T. tubifex belonging to 16S mtDNA lineage III and 1 population belonging to 16S mtDNA lineage I for triactinomyxon (TAM) production after infection with M. cerebralis myxospores. All 4 16S mtDNA lineage III populations produced TAMs, but statistically significant differences in TAM production were observed. Most individuals in the 16S mtDNA lineage III-infected populations produced TAMs. The 16S mtDNA lineage I population produced few TAMs. Further genetic characterization of the 16S mtDNA lineage III populations with RAPD markers indicated that populations producing similar levels of TAMs had more genetic similarity. ?? American Society of Parasitologists 2008.

  20. Perched at the mito-nuclear crossroads: divergent mitochondrial lineages correlate with environment in the face of ongoing nuclear gene flow in an Australian bird.

    PubMed

    Pavlova, Alexandra; Amos, J Nevil; Joseph, Leo; Loynes, Kate; Austin, Jeremy J; Keogh, J Scott; Stone, Graham N; Nicholls, James A; Sunnucks, Paul

    2013-12-01

    Relationships among multilocus genetic variation, geography, and environment can reveal how evolutionary processes affect genomes. We examined the evolution of an Australian bird, the eastern yellow robin Eopsaltria australis, using mitochondrial (mtDNA) and nuclear (nDNA) genetic markers, and bioclimatic variables. In southeastern Australia, two divergent mtDNA lineages occur east and west of the Great Dividing Range, perpendicular to latitudinal nDNA structure. We evaluated alternative scenarios to explain this striking discordance in landscape genetic patterning. Stochastic mtDNA lineage sorting can be rejected because the mtDNA lineages are essentially distinct geographically for > 1500 km. Vicariance is unlikely: the Great Dividing Range is neither a current barrier nor was it at the Last Glacial Maximum according to species distribution modeling; nuclear gene flow inferred from coalescent analysis affirms this. Female philopatry contradicts known female-biased dispersal. Contrasting mtDNA and nDNA demographies indicate their evolutionary histories are decoupled. Distance-based redundancy analysis, in which environmental temperatures explain mtDNA variance above that explained by geographic position and isolation-by-distance, favors a nonneutral explanation for mitochondrial phylogeographic patterning. Thus, observed mito-nuclear discordance accords with environmental selection on a female-linked trait, such as mtDNA, mtDNA-nDNA interactions or genes on W-chromosome, driving mitochondrial divergence in the presence of nuclear gene flow.

  1. Snails in the desert: Assessing the mitochondrial and morphological diversity and the influence of aestivation behavior on lineage differentiation in the Australian endemic Granulomelon Iredale, 1933 (Stylommatophora: Camaenidae).

    PubMed

    Criscione, Francesco; Köhler, Frank

    2016-01-01

    Progressive aridification since the mid-Miocene has had a significant influence on the evolution of the biota in the arid zone of central Australia. Especially moisture sensitive groups, such as snails, are often restricted to topographically complex areas, which have acted as refugia in an otherwise inhospitable environment. This historical fragmentation is deemed to be a potent agent of allopatric lineage diversification. Camaenid land snails are amongst only a few terrestrial gastropods that have managed to survive in the arid zone probably due to their ability to escape desiccation through aestivation. Here, we present the first study of the mitochondrial lineage differentiation in an endemic land snail genus from the Australian 'Red Centre', Granulomelon Iredale, 1933. Exposing significant incongruence between mtDNA phylogeny and morphology-based taxonomy, we completely revise the species and genus level taxonomy of this camaenid group. We demonstrate that this genus contains three species, G. grandituberculatum, G. adcockianum and G. squamulosum, which have so far been assigned to different genera: Granulomelon Iredale, 1933 (junior synonym: Baccalena Iredale, 1937), Basedowena Iredale, 1937 and Pleuroxia Ancey, 1887. Two of these species are widespread comprising multiple divergent mitochondrial lineages. Based on a molecular clock estimate, these lineages diverged approximately during the mid-Pleistocene, a period of particularly severe aridification. The phylogeographic patterns are consistent with an isolation-by-distance model in one species but not the other. We suggest that these differences can be attributed to their distinctive aestivation behavior.

  2. AmericaPlex26: A SNaPshot Multiplex System for Genotyping the Main Human Mitochondrial Founder Lineages of the Americas

    PubMed Central

    Coutinho, Alexandra; Valverde, Guido; Fehren-Schmitz, Lars; Cooper, Alan; Barreto Romero, Maria Inés; Espinoza, Isabel Flores; Llamas, Bastien; Haak, Wolfgang

    2014-01-01

    Phylogeographic studies have described a reduced genetic diversity in Native American populations, indicative of one or more bottleneck events during the peopling and prehistory of the Americas. Classical sequencing approaches targeting the mitochondrial diversity have reported the presence of five major haplogroups, namely A, B, C, D and X, whereas the advent of complete mitochondrial genome sequencing has recently refined the number of founder lineages within the given diversity to 15 sub-haplogroups. We developed and optimized a SNaPshot assay to study the mitochondrial diversity in pre-Columbian Native American populations by simultaneous typing of 26 single nucleotide polymorphisms (SNPs) characterising Native American sub-haplogroups. Our assay proved to be highly sensitive with respect to starting concentrations of target DNA and could be applied successfully to a range of ancient human skeletal material from South America from various time periods. The AmericaPlex26 is a powerful assay with enhanced phylogenetic resolution that allows time- and cost-efficient mitochondrial DNA sub-typing from valuable ancient specimens. It can be applied in addition or alternative to standard sequencing of the D-loop region in forensics, ancestry testing, and population studies, or where full-resolution mitochondrial genome sequencing is not feasible. PMID:24671218

  3. An analysis of correspondence between unique rabies virus variants and divergent big brown bat (Eptesicus fuscus) mitochondrial DNA lineages

    USGS Publications Warehouse

    Neubaum, M.A.; Shankar, V.; Douglas, M.R.; Douglas, M.E.; O'Shea, T.J.; Rupprecht, C.E.

    2008-01-01

    The literature supports that unique rabies virus (RABV) variants are often compartmentalized in different species of bats. In Colorado, two divergent mtDNA lineages of big brown bats (Eptesicus fuscus) co-occur. RABV associated with this species also segregates into two clades. We hypothesized that unique RABV variants might be associated with mtDNA lineages of Colorado big brown bats. DNA was extracted from brain tissue of rabid big brown bats, the ND2 gene was amplified to determine mtDNA lineage, and the lineage was compared to a previously derived phylogenetic analysis of the RABV N gene. No correspondence was found between host bat lineage and RABV variant. ?? 2008 Springer-Verlag.

  4. Cryptic variation in an ecological indicator organism: mitochondrial and nuclear DNA sequence data confirm distinct lineages of Baetis harrisoni Barnard (Ephemeroptera: Baetidae) in southern Africa

    PubMed Central

    2012-01-01

    Background Baetis harrisoni Barnard is a mayfly frequently encountered in river studies across Africa, but the external morphological features used for identifying nymphs have been observed to vary subtly between different geographic locations. It has been associated with a wide range of ecological conditions, including pH extremes of pH 2.9–10.0 in polluted waters. We present a molecular study of the genetic variation within B. harrisoni across 21 rivers in its distribution range in southern Africa. Results Four gene regions were examined, two mitochondrial (cytochrome c oxidase subunit I [COI] and small subunit ribosomal 16S rDNA [16S]) and two nuclear (elongation factor 1 alpha [EF1α] and phosphoenolpyruvate carboxykinase [PEPCK]). Bayesian and parsimony approaches to phylogeny reconstruction resulted in five well-supported major lineages, which were confirmed using a general mixed Yule-coalescent (GMYC) model. Results from the EF1α gene were significantly incongruent with both mitochondrial and nuclear (PEPCK) results, possibly due to incomplete lineage sorting of the EF1α gene. Mean between-clade distance estimated using the COI and PEPCK data was found to be an order of magnitude greater than the within-clade distance and comparable to that previously reported for other recognised Baetis species. Analysis of the Isolation by Distance (IBD) between all samples showed a small but significant effect of IBD. Within each lineage the contribution of IBD was minimal. Tentative dating analyses using an uncorrelated log-normal relaxed clock and two published estimates of COI mutation rates suggest that diversification within the group occurred throughout the Pliocene and mid-Miocene (~2.4–11.5 mya). Conclusions The distinct lineages of B. harrisoni correspond to categorical environmental variation, with two lineages comprising samples from streams that flow through acidic Table Mountain Sandstone and three lineages with samples from neutral-to-alkaline streams

  5. Subdivisions of haplogroups U and C encompass mitochondrial DNA lineages of Eneolithic-Early Bronze Age Kurgan populations of western North Pontic steppe.

    PubMed

    Nikitin, Alexey G; Ivanova, Svetlana; Kiosak, Dmytro; Badgerow, Jessica; Pashnick, Jeff

    2017-02-02

    Prehistoric Europe experienced a marked cultural and economic shift around 4000 years ago, when the established Neolithic agriculture-based economy was replaced by herding-pastoralist industry. In recent years new data about the genetic structure of human communities living during this transition period began to emerge. At the same time, the genetic identities of the Eneolithic and Early Bronze Age (EBA) inhabitants from a prehistoric cultural crossroad in western North Pontic steppe region remain understudied. This report presents results of the investigation of maternal genetic lineages of individuals buried in kurgans constructed during the Eneolithic-EBA transition in the western part of the North Pontic Region (NPR). Mitochondrial DNA (mtDNA) lineages from the interments belonging to the Eneolithic as well as the EBA cultures such as Yamna (Pit Grave), Catacomb and Babino (Mnogovalikovaya or KMK) were examined. In the 12 successfully haplotyped specimens, 75% of mtDNA lineages consisted of west Eurasian haplogroup U and its U4 and U5 sublineages. Furthermore, we identified a subgroup of east Eurasian haplogroup C in two representatives of the Yamna culture in one of the studied kurgans. Our results indicate the persistence of Mesolithic hunter-gatherer mtDNA lineages in western NPR through the EBA, as well as suggesting a mtDNA lineage continuum connecting the western NPR inhabitants of the Early Metal Ages to the North Pontic Neolithic population groups.Journal of Human Genetics advance online publication, 2 February 2017; doi:10.1038/jhg.2017.12.

  6. Environmental correlates and co-occurrence of three mitochondrial lineages of striped mice (Rhabdomys) in the Free State Province (South Africa)

    NASA Astrophysics Data System (ADS)

    Ganem, Guila; Meynard, Christine N.; Perigault, Manon; Lancaster, Jennifer; Edwards, Shelley; Caminade, Pierre; Watson, Johan; Pillay, Neville

    2012-07-01

    This study shows how data emanating from very different sources can be integrated using modern statistical and spatially explicit techniques in order to gain insights into ecological processes leading to differentiation between closely related taxa. We test ecological radiation in the striped mouse (Rhabdomys sp.) using a niche modeling approach to compare habitat characteristics of its three mitochondrial lineages, which we show to co-occur in a South African province. Here, we describe and make predictions on the distribution and potential niches of these lineages and locate contact zones between them. Our study involved field investigations, genotyping, GIS and multivariate statistics analyses. We used Maxent, an approach allowing us to produce suitability maps and predict potential contact zones. Our results strongly suggest that the three lineages could have different environmental niches which may explain their co-occurrence in some areas. Further, these results might give credence to the hypothesis of ecological radiation within the genus, which could be further tested in contact zones highlighted in our study.

  7. Molecular relationships and classification of several tufted capuchin lineages (Cebus apella, Cebus xanthosternos and Cebus nigritus, Cebidae), by means of mitochondrial cytochrome oxidase II gene sequences.

    PubMed

    Ruiz-García, Manuel; Castillo, Maria Ignacia; Lichilín-Ortiz, Nicolás; Pinedo-Castro, Myreya

    2012-01-01

    The morphological systematics of the tufted capuchins is confusing. In an attempt to clarify the complex systematics and phylogeography of this taxon, we provide a first molecular analysis. We obtained mitochondrial cytochrome oxidase II (mtCOII) gene sequences from 49 tufted capuchins that had exact geographic origins from diverse lineages in Colombia, Peru, Bolivia, French Guyana, Brazil, Argentina and Paraguay and that belonged to clearly recognized morphological taxa. This project had 4 main findings: (1) we determined 2 established and related taxa in the northern Amazon River area, which we named C. a. apella and C. a. fatuellus. C. a. apella is distributed from French Guyana until, at least, the Negro River in the northern Brazilian Amazon, whereas C. a. fatuellus is distributed throughout the Colombian Eastern Llanos and the northern Colombian Amazon. We also determined 2 other southern C. apella taxa, which we named C. a. macrodon and C. a. cay. C. a. macrodon has a western and southern Amazon distribution, while C. a. cay has a more southern distribution outside the Amazon basin. (2) In the upper Amazon basin, there is a unique lineage (C. a. macrocephalus) with 1 widely distributed haplotype. The 4 morphological subspecies (C. a. maranonis, C. a. macrocephalus, C. a. peruanus, C. a. pallidus), and maybe a fifth unknown subspecies, described in this area were molecularly undifferentiated at least for the mitochondrial gene analyzed. (3) Our molecular analysis determined that 1 individual of C. robustus fell into the lineage of C. a. macrocephalus. Therefore, this form does not receive any specific name. (4) The animals classified a priori as C. nigritus and C. xanthosternos (because of their morphological phenotypes and by their geographical origins) were clearly differentiated from the other specimens analyzed with the molecular marker employed. Therefore, we consider that these 2 lineages could be assigned the status of full species following the

  8. Carriers of Mitochondrial DNA Macrohaplogroup N Lineages Reached Australia around 50,000 Years Ago following a Northern Asian Route

    PubMed Central

    Larruga, Jose M.; Abu-Amero, Khaled K.; González, Ana M.

    2015-01-01

    Background The modern human colonization of Eurasia and Australia is mostly explained by a single-out-of-Africa exit following a southern coastal route throughout Arabia and India. However, dispersal across the Levant would better explain the introgression with Neanderthals, and more than one exit would fit better with the different ancient genomic components discovered in indigenous Australians and in ancient Europeans. The existence of an additional Northern route used by modern humans to reach Australia was previously deduced from the phylogeography of mtDNA macrohaplogroup N. Here, we present new mtDNA data and new multidisciplinary information that add more support to this northern route. Methods MtDNA hypervariable segments and haplogroup diagnostic coding positions were analyzed in 2,278 Saudi Arabs, from which 1,725 are new samples. Besides, we used 623 published mtDNA genomes belonging to macrohaplogroup N, but not R, to build updated phylogenetic trees to calculate their coalescence ages, and more than 70,000 partial mtDNA sequences were screened to establish their respective geographic ranges. Results The Saudi mtDNA profile confirms the absence of autochthonous mtDNA lineages in Arabia with coalescence ages deep enough to support population continuity in the region since the out-of-Africa episode. In contrast to Australia, where N(xR) haplogroups are found in high frequency and with deep coalescence ages, there are not autochthonous N(xR) lineages in India nor N(xR) branches with coalescence ages as deep as those found in Australia. These patterns are at odds with the supposition that Australian colonizers harboring N(xR) lineages used a route involving India as a stage. The most ancient N(xR) lineages in Eurasia are found in China, and inconsistently with the coastal route, N(xR) haplogroups with the southernmost geographical range have all more recent radiations than the Australians. Conclusions Apart from a single migration event via a southern route

  9. Animal Mitochondrial DNA as We Do Not Know It: mt-Genome Organization and Evolution in Nonbilaterian Lineages.

    PubMed

    Lavrov, Dennis V; Pett, Walker

    2016-09-26

    Animal mitochondrial DNA (mtDNA) is commonly described as a small, circular molecule that is conserved in size, gene content, and organization. Data collected in the last decade have challenged this view by revealing considerable diversity in animal mitochondrial genome organization. Much of this diversity has been found in nonbilaterian animals (phyla Cnidaria, Ctenophora, Placozoa, and Porifera), which, from a phylogenetic perspective, form the main branches of the animal tree along with Bilateria. Within these groups, mt-genomes are characterized by varying numbers of both linear and circular chromosomes, extra genes (e.g. atp9, polB, tatC), large variation in the number of encoded mitochondrial transfer RNAs (tRNAs) (0-25), at least seven different genetic codes, presence/absence of introns, tRNA and mRNA editing, fragmented ribosomal RNA genes, translational frameshifting, highly variable substitution rates, and a large range of genome sizes. This newly discovered diversity allows a better understanding of the evolutionary plasticity and conservation of animal mtDNA and provides insights into the molecular and evolutionary mechanisms shaping mitochondrial genomes.

  10. Lineage-specific fragmentation and nuclear relocation of the mitochondrial cox2 gene in chlorophycean green algae (Chlorophyta).

    PubMed

    Rodríguez-Salinas, Elizabeth; Riveros-Rosas, Héctor; Li, Zhongkui; Fucíková, Karolina; Brand, Jerry J; Lewis, Louise A; González-Halphen, Diego

    2012-07-01

    In most eukaryotes the subunit 2 of cytochrome c oxidase (COX2) is encoded in intact mitochondrial genes. Some green algae, however, exhibit split cox2 genes (cox2a and cox2b) encoding two polypeptides (COX2A and COX2B) that form a heterodimeric COX2 subunit. Here, we analyzed the distribution of intact and split cox2 gene sequences in 39 phylogenetically diverse green algae in phylum Chlorophyta obtained from databases (28 sequences from 22 taxa) and from new cox2 data generated in this work (23 sequences from 18 taxa). Our results support previous observations based on a smaller number of taxa, indicating that algae in classes Prasinophyceae, Ulvophyceae, and Trebouxiophyceae contain orthodox, intact mitochondrial cox2 genes. In contrast, all of the algae in Chlorophyceae that we examined exhibited split cox2 genes, and could be separated into two groups: one that has a mitochondrion-localized cox2a gene and a nucleus-localized cox2b gene ("Scenedesmus-like"), and another that has both cox2a and cox2b genes in the nucleus ("Chlamydomonas-like"). The location of the split cox2a and cox2b genes was inferred using five different criteria: differences in amino acid sequences, codon usage (mitochondrial vs. nuclear), codon preference (third position frequencies), presence of nucleotide sequences encoding mitochondrial targeting sequences and presence of spliceosomal introns. Distinct green algae could be grouped according to the form of cox2 gene they contain: intact or fragmented, mitochondrion- or nucleus-localized, and intron-containing or intron-less. We present a model describing the events that led to mitochondrial cox2 gene fragmentation and the independent and sequential migration of cox2a and cox2b genes to the nucleus in chlorophycean green algae. We also suggest that the distribution of the different forms of the cox2 gene provides important insights into the phylogenetic relationships among major groups of Chlorophyceae.

  11. Mitochondrial haplotype diversity of Gyrodactylus thymalli (Platyhelminthes; Monogenea): extended geographic sampling in United Kingdom, Poland, and Norway reveals further lineages.

    PubMed

    Hansen, Haakon; Bakke, Tor A; Bachmann, Lutz

    2007-05-01

    In recent years, the mitochondrial haplotype diversity of the monogenean ectoparasites Gyrodactylus salaris Malmberg, 1957 on Atlantic salmon and G. thymalli Zitnan, 1960 on grayling has been studied intensively to understand the taxonomy and phylogeography of the two species. According to these studies, neither species can be considered monophyletic, but unfortunately, the geographic sampling has mostly been restricted to Fennoscandia. Only few samples from continental Europe have been analysed, and samples from the United Kingdom have not been included at all. Gyrodactylosis is a notifiable disease in Europe and is in the UK considered the most important exotic disease threat to wild Atlantic salmon populations. In this study, we report six new mitochondrial haplotypes of G. thymalli from England, Poland, and Norway detected by sequencing 745 bp of the cytochrome oxidase I gene. The six new haplotypes add five new clades to a neighbor-joining dendrogram deduced on the basis of the currently known 44 mitochondrial haplotypes for G. thymalli and G. salaris. We conclude that G. thymalli established in the UK along with the immigration of grayling. There is currently no reason to suspect that this parasite is a threat to Atlantic salmon in the UK, although its infectivity to salmon stocks in the UK has not been tested.

  12. Relationship between Liver Mitochondrial Respiration and Proton Leak in Low and High RFI Steers from Two Lineages of RFI Angus Bulls

    PubMed Central

    Acetoze, G.; Weber, K. L.; Ramsey, J. J.; Rossow, H. A.

    2015-01-01

    The objective of this research is to evaluate liver mitochondrial oxygen consumption and proton leak kinetics in progeny from two lineages of Angus bulls with high and low residual feed intake (RFI). Two Angus bulls were selected based on results from a genetic test for RFI and were used as sires. Eight offspring at 10-11 months of age from each sire were housed in individual pens for 70–105 days following a diet adaptation period of 14 days. Progeny of the low RFI sire had 0.57 kg/d (P = 0.05) lower average RFI than progeny of the high RFI sire. There was no difference in dry matter intake between low and high RFI steers, but low RFI steers gained more body weight (P = 0.02) and tended to have higher average daily gains (P = 0.07). State 3 and State 4 respiration, RCR, and proton leak did not differ between high and low RFI steers (P = 0.96, P = 0.81, P = 0.93, and P = 0.88, resp.). Therefore, the increase in bodyweight gain which distinguished the low RFI steers from the high RFI steers may be associated with other metabolic mechanisms that are not associated with liver mitochondrial respiration and proton leak kinetics. PMID:27347504

  13. Immunoresponsive gene 1 augments bactericidal activity of macrophage-lineage cells by regulating β-oxidation-dependent mitochondrial ROS production.

    PubMed

    Hall, Christopher J; Boyle, Rachel H; Astin, Jonathan W; Flores, Maria Vega; Oehlers, Stefan H; Sanderson, Leslie E; Ellett, Felix; Lieschke, Graham J; Crosier, Kathryn E; Crosier, Philip S

    2013-08-06

    Evidence suggests the bactericidal activity of mitochondria-derived reactive oxygen species (mROS) directly contributes to killing phagocytozed bacteria. Infection-responsive components that regulate this process remain incompletely understood. We describe a role for the mitochondria-localizing enzyme encoded by Immunoresponsive gene 1 (IRG1) during the utilization of fatty acids as a fuel for oxidative phosphorylation (OXPHOS) and associated mROS production. In a zebrafish infection model, infection-responsive expression of zebrafish irg1 is specific to macrophage-lineage cells and is regulated cooperatively by glucocorticoid and JAK/STAT signaling pathways. Irg1-depleted macrophage-lineage cells are impaired in their ability to utilize fatty acids as an energy substrate for OXPHOS-derived mROS production resulting in defective bactericidal activity. Additionally, the requirement for fatty acid β-oxidation during infection-responsive mROS production and bactericidal activity toward intracellular bacteria is conserved in murine macrophages. These results reveal IRG1 as a key component of the immunometabolism axis, connecting infection, cellular metabolism, and macrophage effector function.

  14. Glacial history of the North Atlantic marine snail, Littorina saxatilis, inferred from distribution of mitochondrial DNA lineages.

    PubMed

    Panova, Marina; Blakeslee, April M H; Miller, A Whitman; Mäkinen, Tuuli; Ruiz, Gregory M; Johannesson, Kerstin; André, Carl

    2011-03-11

    The North Atlantic intertidal gastropod, Littorina saxatilis (Olivi, 1792), exhibits extreme morphological variation between and within geographic regions and has become a model for studies of local adaptation; yet a comprehensive analysis of the species' phylogeography is lacking. Here, we examine phylogeographic patterns of the species' populations in the North Atlantic and one remote Mediterranean population using sequence variation in a fragment of the mitochondrial cytochrome b gene (607 bp). We found that, as opposed to many other rocky intertidal species, L. saxatilis has likely had a long and continuous history in the Northwest Atlantic, including survival during the last glacial maximum (LGM), possibly in two refugia. In the Northeast Atlantic, several areas likely harboured refugial populations that recolonized different parts of this region after glacial retreat, resulting in strong population structure. However, the outlying monomorphic Venetian population is likely a recent anthropogenic introduction from northern Europe and not a remnant of an earlier wider distribution in the Mediterranean Sea. Overall, our detailed phylogeography of L. saxatilis adds an important piece to the understanding of Pleistocene history in North Atlantic marine biota as well as being the first study to describe the species' evolutionary history in its natural range. The latter contribution is noteworthy because the snail has recently become an important model species for understanding evolutionary processes of speciation; thus our work provides integral information for such endeavours.

  15. Retrieval of four adaptive lineages in duiker antelope: evidence from mitochondrial DNA sequences and fluorescence in situ hybridization.

    PubMed

    van Vuuren, B J; Robinson, T J

    2001-09-01

    Independent molecular markers (mitochondrial DNA sequences from two genes and fluorescence in situ hybridization with satellite DNA sequences as hybridization probes) were employed to investigate phylogenetic relationships among duiker antelope. When analyzed singly or taken together, the molecular and cytogenetic data allowed for the delimitation of four adaptive groups: the conservative dwarfs which are basal, a savanna specialist which groups apart from the forest duikers, the giant duikers, and the red duikers. Within the latter, a further subdivision comprising an east African and a west African red duiker clade is evident. The placement of the endangered zebra duiker and Aders' duiker remains problematic. Several of the nomenclatural divisions in current use are questioned by our results. These include the recognition of Philantomba as genus name for the blue and Maxwell's duiker and that Harvey's duiker be relegated to a subspecies of the Natal red duiker. We place our results in a biogeographic context and argue that duiker speciation has been driven predominantly by habitat fragmentation which probably led to the disruption of gene flow between geographic populations.

  16. Glacial History of the North Atlantic Marine Snail, Littorina saxatilis, Inferred from Distribution of Mitochondrial DNA Lineages

    PubMed Central

    Panova, Marina; Blakeslee, April M. H.; Miller, A. Whitman; Mäkinen, Tuuli; Ruiz, Gregory M.; Johannesson, Kerstin; André, Carl

    2011-01-01

    The North Atlantic intertidal gastropod, Littorina saxatilis (Olivi, 1792), exhibits extreme morphological variation between and within geographic regions and has become a model for studies of local adaptation; yet a comprehensive analysis of the species' phylogeography is lacking. Here, we examine phylogeographic patterns of the species' populations in the North Atlantic and one remote Mediterranean population using sequence variation in a fragment of the mitochondrial cytochrome b gene (607 bp). We found that, as opposed to many other rocky intertidal species, L. saxatilis has likely had a long and continuous history in the Northwest Atlantic, including survival during the last glacial maximum (LGM), possibly in two refugia. In the Northeast Atlantic, several areas likely harboured refugial populations that recolonized different parts of this region after glacial retreat, resulting in strong population structure. However, the outlying monomorphic Venetian population is likely a recent anthropogenic introduction from northern Europe and not a remnant of an earlier wider distribution in the Mediterranean Sea. Overall, our detailed phylogeography of L. saxatilis adds an important piece to the understanding of Pleistocene history in North Atlantic marine biota as well as being the first study to describe the species' evolutionary history in its natural range. The latter contribution is noteworthy because the snail has recently become an important model species for understanding evolutionary processes of speciation; thus our work provides integral information for such endeavours. PMID:21412417

  17. Tracking colonization and diversification of insect lineages on islands: mitochondrial DNA phylogeography of Tarphius canariensis (Coleoptera: Colydiidae) on the Canary Islands.

    PubMed Central

    Emerson, B C; Oromí, P; Hewitt, G M

    2000-01-01

    The genus Tarphius Erichson (Coleoptera: Colydiidae) is represented by 29 species on the Canary Islands. The majority are rare, single-island endemics intimately associated with the monteverde (laurel forest and fayal-brezal). The Tarphius canariensis complex is by far the most abundant and geographically wide-spread, occurring on Gran Canaria, Tenerife and La Palma. Eighty-seven individuals from the T. canariensis complex were sequenced for 444 bp of the mitochondrial DNA cytochrome oxidase I gene (COI), 597 bp of the COII gene and the intervening tRNA(leu) gene. A neighbour-joining analysis of maximum-likelihood distances put La Palma as a single monophyletic clade of haplotypes occurring within a larger clade comprising all Tenerife haplotypes. Gran Canarian haplotypes were also monophyletic occurring on a separate lineage. Using a combination of the phylogeographic pattern for T. canariensis, geological data, biogeography of the remaining species and estimated divergence times, we proposed a Tenerifean origin in the old Teno massif and independent colonizations from here to north-eastern Tenerife (Anaga), Gran Canaria and La Palma. New methods of estimating diversification rates using branching times were applied to each island fauna. All islands exhibited a gradually decreasing rate of genetic diversification similar to that seen for Brachyderes rugatus (Coleoptera: Curculionidae) from the Canary Islands. PMID:11413633

  18. Distinguishing between Incomplete Lineage Sorting and Genomic Introgressions: Complete Fixation of Allospecific Mitochondrial DNA in a Sexually Reproducing Fish (Cobitis; Teleostei), despite Clonal Reproduction of Hybrids

    PubMed Central

    Choleva, Lukas; Musilova, Zuzana; Kohoutova-Sediva, Alena; Paces, Jan; Rab, Petr; Janko, Karel

    2014-01-01

    Distinguishing between hybrid introgression and incomplete lineage sorting causing incongruence among gene trees in that they exhibit topological differences requires application of statistical approaches that are based on biologically relevant models. Such study is especially challenging in hybrid systems, where usual vectors mediating interspecific gene transfers - hybrids with Mendelian heredity - are absent or unknown. Here we study a complex of hybridizing species, which are known to produce clonal hybrids, to discover how one of the species, Cobitis tanaitica, has achieved a pattern of mito-nuclear mosaic genome over the whole geographic range. We appplied three distinct methods, including the method using solely the information on gene tree topologies, and found that the contrasting mito-nuclear signal might not have resulted from the retention of ancestral polymorphism. Instead, we found two signs of hybridization events related to C. tanaitica; one concerning nuclear gene flow and the other suggested mitochondrial capture. Interestingly, clonal inheritance (gynogenesis) of contemporary hybrids prevents genomic introgressions and non-clonal hybrids are either absent or too rare to be detected among European Cobitis. Our analyses therefore suggest that introgressive hybridizations are rather old episodes, mediated by previously existing hybrids whose inheritance was not entirely clonal. Cobitis complex thus supports the view that the type of resulting hybrids depends on a level of genomic divergence between sexual species. PMID:24971792

  19. Spatio-Temporal Distribution of Aedes aegypti (Diptera: Culicidae) Mitochondrial Lineages in Cities with Distinct Dengue Incidence Rates Suggests Complex Population Dynamics of the Dengue Vector in Colombia

    PubMed Central

    Jaimes-Dueñez, Jeiczon; Arboleda, Sair; Triana-Chávez, Omar; Gómez-Palacio, Andrés

    2015-01-01

    Background Aedes aegypti is the primary vector of the four serotypes of dengue virus (DENV1-4), Chikungunya and yellow fever virus to humans. Previous population genetic studies have revealed a particular genetic structure among the vector populations in the Americas that suggests differences in the ability to transmit DENV. In Colombia, despite its high epidemiologic importance, the genetic population structure and the phylogeographic depiction of Ae. aegypti, as well as its relationship with the epidemiologic landscapes in cities with heterogeneous incidence levels, remains unknown. We conducted a spatiotemporal analysis with the aim of determining the genetic structure and phylogeography of Colombian populations of Ae. aegypti among cities with different eco-epidemiologic characteristics with regard to DENV. Methods/Findings Mitochondrial cytochrome oxidase C subunit 1 (COI) - NADH dehydrogenase subunit 4 (ND4) genes were sequenced and analyzed from 341 adult mosquitoes collected during 2012 and 2013 in the Colombian cities of Bello, Riohacha and Villavicencio, which exhibit low, medium and high levels of incidence of DENV, respectively. The results demonstrated a low genetic differentiation over time and a high genetic structure between the cities due to changes in the frequency of two highly supported genetic groups. The phylogeographic analyses indicated that one group (associated with West African populations) was found in all the cities throughout the sampling while the second group (associated with East African populations) was found in all the samples from Bello and in only one sampling from Riohacha. Environmental factors such as the use of chemical insecticides showed a significant correlation with decreasing genetic diversity, indicating that environmental factors affect the population structure of Ae. aegypti across time and space in these cities. Conclusions Our results suggest that two Ae. aegypti lineages are present in Colombia; one that is

  20. Abolition of mitochondrial substrate-level phosphorylation by itaconic acid produced by LPS-induced Irg1 expression in cells of murine macrophage lineage.

    PubMed

    Németh, Beáta; Doczi, Judit; Csete, Dániel; Kacso, Gergely; Ravasz, Dora; Adams, Daniel; Kiss, Gergely; Nagy, Adam M; Horvath, Gergo; Tretter, Laszlo; Mócsai, Attila; Csépányi-Kömi, Roland; Iordanov, Iordan; Adam-Vizi, Vera; Chinopoulos, Christos

    2016-01-01

    support the notion that Irg1-expressing cells of macrophage lineage lose the capacity of mitochondrial SLP for producing itaconate during mounting of an immune defense.

  1. The complete mitochondrial genome of the cryptic "lineage B" big-fin reef squid, Sepioteuthis lessoniana (Cephalopoda: Loliginidae) in Indo-West Pacific.

    PubMed

    Shen, Kang-Ning; Yen, Ta-Chi; Chen, Ching-Hung; Ye, Jeng-Jia; Hsiao, Chung-Der

    2016-05-01

    In this study, the complete mitogenome sequence of the cryptic "lineage B" big-fin reef squid, Sepioteuthis lessoniana (Cephalopoda: Loliginidae) has been sequenced by next-generation sequencing method. The assembled mitogenome consisting of 16,694 bp, includes 13 protein coding genes, 25 transfer RNAs, 2 ribosomal RNAs genes. The overall base composition of "lineage B" S. lessoniana is 36.7% for A, 18.9 % for C, 34.5 % for T and 9.8 % for G and show 90% identities to "lineage C" S. lessoniana. It is also exhibits high T + A content (71.2%), two non-coding regions with TA tandem repeats. The complete mitogenome of the cryptic "lineage B" S. lessoniana provides essential and important DNA molecular data for further phylogeography and evolutionary analysis for big-fin reef squid species complex.

  2. The complete mitochondrial genome of the cryptic "lineage A" big-fin reef squid, Sepioteuthis lessoniana (Cephalopoda: Loliginidae) in Indo-West Pacific.

    PubMed

    Hsiao, Chung-Der; Shen, Kang-Ning; Ching, Tzu-Yun; Wang, Ya-Hsien; Ye, Jeng-Jia; Tsai, Shiou-Yi; Wu, Shan-Chun; Chen, Ching-Hung; Wang, Chia-Hui

    2016-07-01

    In this study, the complete mitogenome sequence of the cryptic "lineage A" big-fin reef squid, Sepioteuthis lessoniana (Cephalopoda: Loliginidae) has been sequenced by the next-generation sequencing method. The assembled mitogenome consists of 16,605 bp, which includes 13 protein-coding genes, 22 transfer RNAs, and 2 ribosomal RNAs genes. The overall base composition of "lineage A" S. lessoniana is 37.5% for A, 17.4% for C, 9.1% for G, and 35.9% for T and shows 87% identities to "lineage C" S. lessoniana. It is also noticed by its high T + A content (73.4%), two non-coding regions with TA tandem repeats. The complete mitogenome of the cryptic "lineage A" S. lessoniana provides essential and important DNA molecular data for further phylogeography and evolutionary analysis for big-fin reef squid species complex.

  3. Reviving the African wolf Canis lupus lupaster in North and West Africa: a mitochondrial lineage ranging more than 6,000 km wide.

    PubMed

    Gaubert, Philippe; Bloch, Cécile; Benyacoub, Slim; Abdelhamid, Adnan; Pagani, Paolo; Djagoun, Chabi Adéyèmi Marc Sylvestre; Couloux, Arnaud; Dufour, Sylvain

    2012-01-01

    The recent discovery of a lineage of gray wolf in North-East Africa suggests the presence of a cryptic canid on the continent, the African wolf Canis lupus lupaster. We analyzed the mtDNA diversity (cytochrome b and control region) of a series of African Canis including wolf-like animals from North and West Africa. Our objectives were to assess the actual range of C. l. lupaster, to further estimate the genetic characteristics and demographic history of its lineage, and to question its taxonomic delineation from the golden jackal C. aureus, with which it has been considered synonymous. We confirmed the existence of four distinct lineages within the gray wolf, including C. lupus/familiaris (Holarctic wolves and dogs), C. l. pallipes, C. l. chanco and C. l. lupaster. Taxonomic assignment procedures identified wolf-like individuals from Algeria, Mali and Senegal, as belonging to C. l. lupaster, expanding its known distribution c. 6,000 km to the west. We estimated that the African wolf lineage (i) had the highest level of genetic diversity within C. lupus, (ii) coalesced during the Late Pleistocene, contemporaneously with Holarctic wolves and dogs, and (iii) had an effective population size of c. 80,000 females. Our results suggest that the African wolf is a relatively ancient gray wolf lineage with a fairly large, past effective population size, as also suggested by the Pleistocene fossil record. Unique field observations in Senegal allowed us to provide a morphological and behavioral diagnosis of the African wolf that clearly distinguished it from the sympatric golden jackal. However, the detection of C. l. lupaster mtDNA haplotypes in C. aureus from Senegal brings the delineation between the African wolf and the golden jackal into question. In terms of conservation, it appears urgent to further characterize the status of the African wolf with regard to the African golden jackal.

  4. Overview of worldwide diversity of Diaphorina citri Kuwayama mitochondrial cytochrome oxidase 1 haplotypes: two Old World lineages and a New World invasion

    Technology Transfer Automated Retrieval System (TEKTRAN)

    We utilized a Bayesian phylogenetic technique to resolve global relationships of Diaphorina citri populations. This is the first global phylogenetic study of D. citri. New mitochondrial primers were designed from an EST library and an 821 base pair region of the COI was amplified and sequenced. The ...

  5. Overview of worldwide diversity of Diaphorina citri Kuwayama mitochondrial cytochrome oxidase 1 haplotypes: two Old World lineages and a New World invasion

    PubMed Central

    Boykin, L.M.; De Barro, P.; Hall, D.G.; Hunter, W.B.; McKenzie, C.L.; Powell, C.A.; Shatters, R.G.

    2012-01-01

    Relationships among worldwide collections of Diaphorina citri (Asian citrus psyllid) were analyzed using mitochondrial cytochrome oxidase I (mtCOI) haplotypes from novel primers. Sequences were produced from PCR amplicons of an 821bp portion of the mtCOI gene using D. citri specific primers, derived from an existing EST library. An alignment was constructed using 612bps of this fragment and consisted of 212 individuals from 52 collections representing 15 countries. There were a total of eight polymorphic sites that separated the sequences into eight different haplotypes (Dcit-1 through Dcit-8). Phylogenetic network analysis using the statistical parsimony software, TCS, suggests two major haplotype groups with preliminary geographic bias between southwestern Asia (SWA) and southeastern Asia (SEA). The recent (within the last 15 to 25 years) invasion into the New World originated from only the SWA group in the northern hemisphere (USA and Mexico) and from both the SEA and SWA groups in the southern hemisphere (Brazil). In only one case, Reunion Island, did haplotypes from both the SEA and SWA group appear in the same location. In Brazil, both groups were present, but in separate locations. The Dcit-1 SWA haplotype was the most frequently encountered, including ~50% of the countries sampled and 87% of the total sequences obtained from India, Pakistan and Saudi Arabia. The second most frequently encountered haplotype, Dcit-2, the basis of the SEA group, represented ~50% of the countries and contained most of the sequences from Southeast Asia and China. Interestingly, only the Caribbean collections (Puerto Rico and Guadeloupe) represented a unique haplotype not found in other countries, indicating no relationship between the USA (Florida) and Caribbean introductions. There is no evidence for cryptic speciation for D. citri based on the COI region included in this study. PMID:22717059

  6. Ancient wolf lineages in India.

    PubMed Central

    Sharma, Dinesh K; Maldonado, Jesus E; Jhala, Yadrendradev V; Fleischer, Robert C

    2004-01-01

    All previously obtained wolf (Canis lupus) and dog (Canis familiaris) mitochondrial (mt) DNA sequences fall within an intertwined and shallow clade (the 'wolf-dog' clade). We sequenced mtDNA of recent and historical samples from 45 wolves from throughout lowland peninsular India and 23 wolves from the Himalayas and Tibetan Plateau and compared these sequences with all available wolf and dog sequences. All 45 lowland Indian wolves have one of four closely related haplotypes that form a well-supported, divergent sister lineage to the wolf-dog clade. This unique lineage may have been independent for more than 400,000 years. Although seven Himalayan wolves from western and central Kashmir fall within the widespread wolf-dog clade, one from Ladakh in eastern Kashmir, nine from Himachal Pradesh, four from Nepal and two from Tibet form a very different basal clade. This lineage contains five related haplotypes that probably diverged from other canids more than 800,000 years ago, but we find no evidence of current barriers to admixture. Thus, the Indian subcontinent has three divergent, ancient and apparently parapatric mtDNA lineages within the morphologically delineated wolf. No haplotypes of either novel lineage are found within a sample of 37 Indian (or other) dogs. Thus, we find no evidence that these two taxa played a part in the domestication of canids. PMID:15101402

  7. Lineage sorting in apes.

    PubMed

    Mailund, Thomas; Munch, Kasper; Schierup, Mikkel Heide

    2014-01-01

    Recombination allows different parts of the genome to have different genealogical histories. When a species splits in two, allelic lineages sort into the two descendant species, and this lineage sorting varies along the genome. If speciation events are close in time, the lineage sorting process may be incomplete at the second speciation event and lead to gene genealogies that do not match the species phylogeny. We review different recent approaches to model lineage sorting along the genome and show how it is possible to learn about population sizes, natural selection, and recombination rates in ancestral species from application of these models to genome alignments of great ape species.

  8. SOCS3 Deficiency Promotes M1 Macrophage Polarization and Inflammation

    PubMed Central

    Qin, Hongwei; Holdbrooks, Andrew T.; Liu, Yudong; Reynolds, Stephanie L.; Yanagisawa, Lora L.; Benveniste, Etty N.

    2014-01-01

    Macrophages participate in both the amplification of inflammation at the time of injury, and downregulation of the inflammatory response to avoid excess tissue damage. These divergent functions of macrophages are dictated by their microenvironment, especially cytokines, which promote a spectrum of macrophage phenotypes. The M1 proinflammatory phenotype is induced by LPS, IFN-γ and GM-CSF, and IL-4, IL-13 and M-CSF induce anti-inflammatory M2 macrophages. Suppressors Of Cytokine Signaling (SOCS) proteins function as feedback inhibitors of the JAK/STAT signaling pathway, and can terminate innate and adaptive immune responses. In this study, we have evaluated the influence of SOCS3 on macrophage polarization and function. Macrophages obtained from LysMCre-SOCS3fl/fl mice, which lack SOCS3 in myeloid lineage cells, exhibit enhanced and prolonged activation of JAK/STAT pathway compared to macrophages from SOCS3fl/fl mice. Furthermore, SOCS3-deficient macrophages have higher levels of the M1 genes IL-1β, IL-6, IL-12, IL-23 and iNOS, due to enhanced transcriptional activation and chromatin modifications. SOCS3-deficient M1 macrophages also have a stronger capacity to induce Th1 and Th17 cell differentiation than M1 macrophages from SOCS3fl/fl mice. Lastly, LPS-induced sepsis is exacerbated in LysMCre-SOCS3fl/fl mice, and is associated with enhanced STAT1/3 activation and increased plasma levels of M1 cytokines/chemokines such as IL-1β, TNF-α, IL-6, CCL3, CCL4 and CXCL11. These findings collectively indicate that SOCS3 is involved in repressing the M1 proinflammatory phenotype, thereby deactivating inflammatory responses in macrophages. PMID:22925925

  9. Phylogenetic lineages in Entomophthoromycota

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Entomophthoromycota Humber is one of five major phylogenetic lineages among the former phylum Zygomycota. These early terrestrial fungi share evolutionarily ancestral characters such as coenocytic mycelium and gametangiogamy as a sexual process resulting in zygospore formation. Previous molecular st...

  10. Myocardial Lineage Development

    PubMed Central

    Evans, Sylvia M.; Yelon, Deborah; Conlon, Frank L.; Kirby, Margaret L.

    2010-01-01

    The myocardium of the heart is composed of multiple highly specialized myocardial lineages, including those of the ventricular and atrial myocardium, and the specialized conduction system. Specification and maturation of each of these lineages during heart development is a highly ordered, ongoing process involving multiple signaling pathways and their intersection with transcriptional regulatory networks. Here, we attempt to summarize and compare much of what we know about specification and maturation of myocardial lineages from studies in several different vertebrate model systems. To date, most research has focused on early specification, and while there is still more to learn, less is known about factors that promote subsequent maturation of myocardial lineages required to build the functioning adult heart. PMID:21148449

  11. The Cognitive Side of M1

    PubMed Central

    Tomasino, Barbara; Gremese, Michele

    2016-01-01

    The primary motor cortex (M1) is traditionally implicated in voluntary movement control. In order to test the hypothesis that there is a functional topography of M1 activation in studies where it has been implicated in higher cognitive tasks we performed activation-likelihood-estimation (ALE) meta-analyses of functional neuroimaging experiments reporting M1 activation in relation to six cognitive functional categories for which there was a sufficient number of studies to include, namely motor imagery, working memory, mental rotation, social/emotion/empathy, language, and auditory processing. The six categories activated different sub-sectors of M1, either bilaterally or lateralized to one hemisphere. Notably, the activations found in the M1 of the left or right hemisphere detected in our study were unlikely due to button presses. In fact, all contrasts were selected in order to eliminate M1 activation due to activity related to the finger button press. In addition, we identified the M1 sub-region of Area 4a commonly activated by 4/6 categories, namely motor imagery and working memory, emotion/empathy, and language. Overall, our findings lend support to the idea that there is a functional topography of M1 activation in studies where it has been found activated in higher cognitive tasks and that the left Area 4a can be involved in a number of cognitive processes, likely as a product of implicit mental simulation processing. PMID:27378891

  12. Isoscalar [ital M]1 strength in lead

    SciTech Connect

    Alarcon, R.; Choi, S. ); Laszewski, R.M.; Dale, D.S. )

    1993-09-01

    Highly polarized tagged photons were used to measure the distribution of [ital M]1 transition strength in [sup 206]Pb at excitations between 5.5 and 6.9 MeV. The total [ital M]1 strength found in this energy range is consistent with that reported in [sup 208]Pb. For the isoscalar state at 5.8 MeV in [sup 206]Pb, [ital B]([ital M]1[up arrow])=(0.72[plus minus]0.15)[mu][sub [ital N

  13. Giant M1 resonance in Pb

    SciTech Connect

    Laszewski, R.M.; Rullhusen, P.; Hoblit, S.D.; LeBrun, S.F.

    1985-02-11

    Highly polarized tagged photons were used to measure the distribution of M1 transition strength in /sup 206/Pb at excitations between 6.7 and 8.1 MeV. The observed B(up-arrowM1) of about 19..mu../sub 0//sup 2/ can account for most of the isovector M1 strength that is expected in the Pb nucleus. This result in /sup 206/Pb is compared with the current experimental situation in /sup 208/Pb. The discrepancy between predicted and observed M1 strengths in /sup 208/Pb can probably be attributed to local fragmentation of the strength into states that are too weak to have yet all been identified.

  14. mtDNA variation in the Yanomami: evidence for additional New World founding lineages.

    PubMed Central

    Easton, R. D.; Merriwether, D. A.; Crews, D. E.; Ferrell, R. E.

    1996-01-01

    Native Americans have been classified into four founding haplogroups with as many as seven founding lineages based on mtDNA RFLPs and DNA sequence data. mtDNA analysis was completed for 83 Yanomami from eight villages in the Surucucu and Catrimani Plateau regions of Roraima in northwestern Brazil. Samples were typed for 15 polymorphic mtDNA sites (14 RFLP sites and 1 deletion site), and a subset was sequenced for both hypervariable regions of the mitochondrial D-loop. Substantial mitochondrial diversity was detected among the Yanomami, five of seven accepted founding haplotypes and three others were observed. Of the 83 samples, 4 (4.8%) were lineage B1, 1 (1.2%) was lineage B2, 31 (37.4%) were lineage C1, 29 (34.9%) were lineage C2, 2 (2.4%) were lineage D1, 6 (7.2%) were lineage D2, 7 (8.4%) were a haplotype we designated "X6," and 3 (3.6%) were a haplotype we designated "X7." Sequence analysis found 43 haplotypes in 50 samples. B2, X6, and X7 are previously unrecognized mitochondrial founding lineage types of Native Americans. The widespread distribution of these haplotypes in the New World and Asia provides support for declaring these lineages to be New World founding types. PMID:8659527

  15. mtDNA variation in the Yanomami: evidence for additional New World founding lineages.

    PubMed

    Easton, R D; Merriwether, D A; Crews, D E; Ferrell, R E

    1996-07-01

    Native Americans have been classified into four founding haplogroups with as many as seven founding lineages based on mtDNA RFLPs and DNA sequence data. mtDNA analysis was completed for 83 Yanomami from eight villages in the Surucucu and Catrimani Plateau regions of Roraima in northwestern Brazil. Samples were typed for 15 polymorphic mtDNA sites (14 RFLP sites and 1 deletion site), and a subset was sequenced for both hypervariable regions of the mitochondrial D-loop. Substantial mitochondrial diversity was detected among the Yanomami, five of seven accepted founding haplotypes and three others were observed. Of the 83 samples, 4 (4.8%) were lineage B1, 1 (1.2%) was lineage B2, 31 (37.4%) were lineage C1, 29 (34.9%) were lineage C2, 2 (2.4%) were lineage D1, 6 (7.2%) were lineage D2, 7 (8.4%) were a haplotype we designated "X6," and 3 (3.6%) were a haplotype we designated "X7." Sequence analysis found 43 haplotypes in 50 samples. B2, X6, and X7 are previously unrecognized mitochondrial founding lineage types of Native Americans. The widespread distribution of these haplotypes in the New World and Asia provides support for declaring these lineages to be New World founding types.

  16. Mitochondrial phylogeography of a Beringian relict: the endemic freshwater genus of blackfish Dallia (Esociformes).

    PubMed

    Campbell, M A; Lopéz, J A

    2014-02-01

    Mitochondrial genetic variability among populations of the blackfish genus Dallia (Esociformes) across Beringia was examined. Levels of divergence and patterns of geographic distribution of mitochondrial DNA lineages were characterized using phylogenetic inference, median-joining haplotype networks, Bayesian skyline plots, mismatch analysis and spatial analysis of molecular variance (SAMOVA) to infer genealogical relationships and to assess patterns of phylogeography among extant mitochondrial lineages in populations of species of Dallia. The observed variation includes extensive standing mitochondrial genetic diversity and patterns of distinct spatial segregation corresponding to historical and contemporary barriers with minimal or no mixing of mitochondrial haplotypes between geographic areas. Mitochondrial diversity is highest in the common delta formed by the Yukon and Kuskokwim Rivers where they meet the Bering Sea. Other regions sampled in this study host comparatively low levels of mitochondrial diversity. The observed levels of mitochondrial diversity and the spatial distribution of that diversity are consistent with persistence of mitochondrial lineages in multiple refugia through the last glacial maximum.

  17. Direct somatic lineage conversion

    PubMed Central

    Tanabe, Koji; Haag, Daniel; Wernig, Marius

    2015-01-01

    The predominant view of embryonic development and cell differentiation has been that rigid and even irreversible epigenetic marks are laid down along the path of cell specialization ensuring the proper silencing of unrelated lineage programmes. This model made the prediction that specialized cell types are stable and cannot be redirected into other lineages. Accordingly, early attempts to change the identity of somatic cells had little success and was limited to conversions between closely related cell types. Nuclear transplantation experiments demonstrated, however, that specialized cells even from adult mammals can be reprogrammed into a totipotent state. The discovery that a small combination of transcription factors can reprogramme cells to pluripotency without the need of oocytes further supported the view that these epigenetic barriers can be overcome much easier than assumed, but the extent of this flexibility was still unclear. When we showed that a differentiated mesodermal cell can be directly converted to a differentiated ectodermal cell without a pluripotent intermediate, it was suggested that in principle any cell type could be converted into any other cell type. Indeed, the work of several groups in recent years has provided many more examples of direct somatic lineage conversions. Today, the question is not anymore whether a specific cell type can be generated by direct reprogramming but how it can be induced. PMID:26416679

  18. Historic Late Blight Outbreaks Caused by a Widespread Dominant Lineage of Phytophthora infestans (Mont.) de Bary.

    PubMed

    Saville, Amanda C; Martin, Michael D; Ristaino, Jean B

    2016-01-01

    Phytophthora infestans (Mont.) de Bary, the causal agent of potato late blight, was responsible for the Irish potato famine of the 1840s. Initial disease outbreaks occurred in the US in 1843, two years prior to European outbreaks. We examined the evolutionary relationships and source of the 19th-century outbreaks using herbarium specimens of P. infestans from historic (1846-1970) and more recent isolates (1992-2014) of the pathogen. The same unique SSR multilocus genotype, named here as FAM-1, caused widespread outbreaks in both US and Europe. The FAM-1 lineage shared allelic diversity and grouped with the oldest specimens collected in Colombia and Central America. The FAM-1 lineage of P. infestans formed a genetic group that was distinct from more recent aggressive lineages found in the US. The US-1 lineage formed a second, mid-20th century group. Recent modern US lineages and the oldest Mexican lineages formed a genetic group with recent Mexican lineages, suggesting a Mexican origin of recent US lineages. A survey of mitochondrial haplotypes in a larger set of global herbarium specimens documented the more frequent occurrence of the HERB-1 (type Ia) mitochondrial haplotype in archival collections from 1866-75 and 1906-1915 and the rise of the Ib mitochondrial lineage (US-1) between 1946-1955. The FAM-1 SSR lineage survived for almost 100 years in the US, was geographically widespread, and was displaced first in the mid-20th century by the US-1 lineage and then by distinct new aggressive lineages that migrated from Mexico.

  19. Historic Late Blight Outbreaks Caused by a Widespread Dominant Lineage of Phytophthora infestans (Mont.) de Bary

    PubMed Central

    Martin, Michael D.

    2016-01-01

    Phytophthora infestans (Mont.) de Bary, the causal agent of potato late blight, was responsible for the Irish potato famine of the 1840s. Initial disease outbreaks occurred in the US in 1843, two years prior to European outbreaks. We examined the evolutionary relationships and source of the 19th-century outbreaks using herbarium specimens of P. infestans from historic (1846–1970) and more recent isolates (1992–2014) of the pathogen. The same unique SSR multilocus genotype, named here as FAM-1, caused widespread outbreaks in both US and Europe. The FAM-1 lineage shared allelic diversity and grouped with the oldest specimens collected in Colombia and Central America. The FAM-1 lineage of P. infestans formed a genetic group that was distinct from more recent aggressive lineages found in the US. The US-1 lineage formed a second, mid-20th century group. Recent modern US lineages and the oldest Mexican lineages formed a genetic group with recent Mexican lineages, suggesting a Mexican origin of recent US lineages. A survey of mitochondrial haplotypes in a larger set of global herbarium specimens documented the more frequent occurrence of the HERB-1 (type Ia) mitochondrial haplotype in archival collections from 1866–75 and 1906–1915 and the rise of the Ib mitochondrial lineage (US-1) between 1946–1955. The FAM-1 SSR lineage survived for almost 100 years in the US, was geographically widespread, and was displaced first in the mid-20th century by the US-1 lineage and then by distinct new aggressive lineages that migrated from Mexico. PMID:28030580

  20. Tracing the Tumor Lineage

    PubMed Central

    Navin, Nicholas E.; Hicks, James

    2010-01-01

    Defining the pathways through which tumors progress is critical to our understanding and treatment of cancer. We do not routinely sample patients at multiple time points during the progression of their disease, and thus our research is limited to inferring progression a posteriori from the examination of a single tumor sample. Despite this limitation, inferring progression is possible because the tumor genome contains a natural history of the mutations that occur during the formation of the tumor mass. There are two approaches to reconstructing a lineage of progression: (1) inter-tumor comparisons, and (2) intra-tumor comparisons. The inter-tumor approach consists of taking single samples from large collections of tumors and comparing the complexity of the genomes to identify early and late mutations. The intra-tumor approach involves taking multiple samples from individual heterogeneous tumors to compare divergent clones and reconstruct a phylogenetic lineage. Here we discuss how these approaches can be used to interpret the current models for tumor progression. We also compare data from primary and metastatic copy number profiles to shed light on the final steps of breast cancer progression. Finally, we discuss how recent technical advances in single cell genomics will herald a new era in understanding the fundamental basis of tumor heterogeneity and progression. PMID:20537601

  1. 14nm M1 triple patterning

    NASA Astrophysics Data System (ADS)

    Li, Qiao; Ghosh, Pradiptya; Abercrombie, David; LaCour, Pat; Kanodia, Suniti

    2012-03-01

    With 20nm production becoming a reality, research has started to focus on the technology needs for 14nm. The LELE double patterning used in 20nm production will not be able to resolve M1 for 14nm. Main competing enabling technologies for the 14nm M1 are SADP, EUV, and LELELE (referred as LE3 thereafter) triple patterning. SADP has a number of concerns of 1. density, as a layout geometry needs to stay complete as a whole, and can not be broken; 2. the complexity in SADP mask generation and debug feedback to designers; 3. the subtraction nature of the trim mask further complicates OPC and yield. While EUV does not share those concerns, it faces significant challenges on the manufacturing equipment side. Of the SADP concerns, LE3 only shares that of complexity involved in mask generation and intuitive debug feedback mechanism. It does not require a layout geometry to stay as a whole, and it benefits from the affinity to LELE which is being deployed for 20nm production. From a process point of view, this benefit from affinity to LELE is tremendous due to the data and knowledge that have been collected and will be coming from the LELE deployment. In this paper, we first recount the computational complexity of the 3-colorability problem which is an integral part of a LE3 solution. We then describe graph characteristics that can be exploited such that 3-colorability is equivalent under divide-and-conquer. Also outlined are heuristics, which are generally applied in solving computationally intractable problems, for the 3-colorability problem, and the importance in choosing appropriate worst-case exponential runtime algorithms. This paper concludes with a discussion on the new hierarchical problem that faces 3-colorability but not 2-colorability and proposals for non-3-colorability feedback mechanism.

  2. Energy for two: New archaeal lineages and the origin of mitochondria.

    PubMed

    Martin, William F; Neukirchen, Sinje; Zimorski, Verena; Gould, Sven B; Sousa, Filipa L

    2016-09-01

    Metagenomics bears upon all aspects of microbiology, including our understanding of mitochondrial and eukaryote origin. Recently, ribosomal protein phylogenies show the eukaryote host lineage - the archaeal lineage that acquired the mitochondrion - to branch within the archaea. Metagenomic studies are now uncovering new archaeal lineages that branch more closely to the host than any cultivated archaea do. But how do they grow? Carbon and energy metabolism as pieced together from metagenome assemblies of these new archaeal lineages, such as the Deep Sea Archaeal Group (including Lokiarchaeota) and Bathyarchaeota, do not match the physiology of any cultivated microbes. Understanding how these new lineages live in their environment is important, and might hold clues about how mitochondria arose and how the eukaryotic lineage got started. Here we look at these exciting new metagenomic studies, what they say about archaeal physiology in modern environments, how they impact views on host-mitochondrion physiological interactions at eukaryote origin.

  3. The Interpretation of Lineage Markers in Forensic DNA Testing

    PubMed Central

    Buckleton, J.S.; Krawczak, M.; Weir, B.S.

    2011-01-01

    Mitochondrial DNA (mtDNA) and the non-recombining portion of the Y chromosome are inherited matrilinealy and patrilinealy, respectively, and without recombination. Collectively they are termed ‘lineage markers’. Lineage markers may be used in forensic testing of an item, such as a hair from a crime scene, against a hypothesised source, or in relationship testing. An estimate of the evidential weight of a match is usually provided by a count of the occurrence in some database of the mtDNA or Y-STR haplotype under consideration. When the factual statement of a count in the database is applied to a case, issues of relevance of the database and sampling uncertainty may arise. In this paper, we re-examine the issues of sampling uncertainty, the relevance of the database, and the combination of autosomal and lineage marker evidence. We also review the recent developments by C.H. Brenner. PMID:21397888

  4. Mitochondrial genome sequences reveal evolutionary relationships of the Phytophthora 1c clade species.

    PubMed

    Lassiter, Erica S; Russ, Carsten; Nusbaum, Chad; Zeng, Qiandong; Saville, Amanda C; Olarte, Rodrigo A; Carbone, Ignazio; Hu, Chia-Hui; Seguin-Orlando, Andaine; Samaniego, Jose A; Thorne, Jeffrey L; Ristaino, Jean B

    2015-11-01

    Phytophthora infestans is one of the most destructive plant pathogens of potato and tomato globally. The pathogen is closely related to four other Phytophthora species in the 1c clade including P. phaseoli, P. ipomoeae, P. mirabilis and P. andina that are important pathogens of other wild and domesticated hosts. P. andina is an interspecific hybrid between P. infestans and an unknown Phytophthora species. We have sequenced mitochondrial genomes of the sister species of P. infestans and examined the evolutionary relationships within the clade. Phylogenetic analysis indicates that the P. phaseoli mitochondrial lineage is basal within the clade. P. mirabilis and P. ipomoeae are sister lineages and share a common ancestor with the Ic mitochondrial lineage of P. andina. These lineages in turn are sister to the P. infestans and P. andina Ia mitochondrial lineages. The P. andina Ic lineage diverged much earlier than the P. andina Ia mitochondrial lineage and P. infestans. The presence of two mitochondrial lineages in P. andina supports the hybrid nature of this species. The ancestral state of the P. andina Ic lineage in the tree and its occurrence only in the Andean regions of Ecuador, Colombia and Peru suggests that the origin of this species hybrid in nature may occur there.

  5. Mitochondrial Cardiomyopathies.

    PubMed

    El-Hattab, Ayman W; Scaglia, Fernando

    2016-01-01

    Mitochondria are found in all nucleated human cells and perform various essential functions, including the generation of cellular energy. Mitochondria are under dual genome control. Only a small fraction of their proteins are encoded by mitochondrial DNA (mtDNA), whereas more than 99% of them are encoded by nuclear DNA (nDNA). Mutations in mtDNA or mitochondria-related nDNA genes result in mitochondrial dysfunction leading to insufficient energy production required to meet the needs for various organs, particularly those with high energy requirements, including the central nervous system, skeletal and cardiac muscles, kidneys, liver, and endocrine system. Because cardiac muscles are one of the high energy demanding tissues, cardiac involvement occurs in mitochondrial diseases with cardiomyopathies being one of the most frequent cardiac manifestations found in these disorders. Cardiomyopathy is estimated to occur in 20-40% of children with mitochondrial diseases. Mitochondrial cardiomyopathies can vary in severity from asymptomatic status to severe manifestations including heart failure, arrhythmias, and sudden cardiac death. Hypertrophic cardiomyopathy is the most common type; however, mitochondrial cardiomyopathies might also present as dilated, restrictive, left ventricular non-compaction, and histiocytoid cardiomyopathies. Cardiomyopathies are frequent manifestations of mitochondrial diseases associated with defects in electron transport chain complexes subunits and their assembly factors, mitochondrial transfer RNAs, ribosomal RNAs, ribosomal proteins, translation factors, mtDNA maintenance, and coenzyme Q10 synthesis. Other mitochondrial diseases with cardiomyopathies include Barth syndrome, Sengers syndrome, TMEM70-related mitochondrial complex V deficiency, and Friedreich ataxia.

  6. Mitochondrial Cardiomyopathies

    PubMed Central

    El-Hattab, Ayman W.; Scaglia, Fernando

    2016-01-01

    Mitochondria are found in all nucleated human cells and perform various essential functions, including the generation of cellular energy. Mitochondria are under dual genome control. Only a small fraction of their proteins are encoded by mitochondrial DNA (mtDNA), whereas more than 99% of them are encoded by nuclear DNA (nDNA). Mutations in mtDNA or mitochondria-related nDNA genes result in mitochondrial dysfunction leading to insufficient energy production required to meet the needs for various organs, particularly those with high energy requirements, including the central nervous system, skeletal and cardiac muscles, kidneys, liver, and endocrine system. Because cardiac muscles are one of the high energy demanding tissues, cardiac involvement occurs in mitochondrial diseases with cardiomyopathies being one of the most frequent cardiac manifestations found in these disorders. Cardiomyopathy is estimated to occur in 20–40% of children with mitochondrial diseases. Mitochondrial cardiomyopathies can vary in severity from asymptomatic status to severe manifestations including heart failure, arrhythmias, and sudden cardiac death. Hypertrophic cardiomyopathy is the most common type; however, mitochondrial cardiomyopathies might also present as dilated, restrictive, left ventricular non-compaction, and histiocytoid cardiomyopathies. Cardiomyopathies are frequent manifestations of mitochondrial diseases associated with defects in electron transport chain complexes subunits and their assembly factors, mitochondrial transfer RNAs, ribosomal RNAs, ribosomal proteins, translation factors, mtDNA maintenance, and coenzyme Q10 synthesis. Other mitochondrial diseases with cardiomyopathies include Barth syndrome, Sengers syndrome, TMEM70-related mitochondrial complex V deficiency, and Friedreich ataxia. PMID:27504452

  7. Mitochondrial vasculopathy

    PubMed Central

    Finsterer, Josef; Zarrouk-Mahjoub, Sinda

    2016-01-01

    Mitochondrial disorders (MIDs) are usually multisystem disorders (mitochondrial multiorgan disorder syndrome) either on from onset or starting at a point during the disease course. Most frequently affected tissues are those with a high oxygen demand such as the central nervous system, the muscle, endocrine glands, or the myocardium. Recently, it has been shown that rarely also the arteries may be affected (mitochondrial arteriopathy). This review focuses on the type, diagnosis, and treatment of mitochondrial vasculopathy in MID patients. A literature search using appropriate search terms was carried out. Mitochondrial vasculopathy manifests as either microangiopathy or macroangiopathy. Clinical manifestations of mitochondrial microangiopathy include leukoencephalopathy, migraine-like headache, stroke-like episodes, or peripheral retinopathy. Mitochondrial macroangiopathy manifests as atherosclerosis, ectasia of arteries, aneurysm formation, dissection, or spontaneous rupture of arteries. The diagnosis relies on the documentation and confirmation of the mitochondrial metabolic defect or the genetic cause after exclusion of non-MID causes. Treatment is not at variance compared to treatment of vasculopathy due to non-MID causes. Mitochondrial vasculopathy exists and manifests as micro- or macroangiopathy. Diagnosing mitochondrial vasculopathy is crucial since appropriate treatment may prevent from severe complications. PMID:27231520

  8. Phylogenetic analysis of Sicilian goats reveals a new mtDNA lineage.

    PubMed

    Sardina, M T; Ballester, M; Marmi, J; Finocchiaro, R; van Kaam, J B C H M; Portolano, B; Folch, J M

    2006-08-01

    The mitochondrial hypervariable region 1 (HVR1) sequence of 67 goats belonging to the Girgentana, Maltese and Derivata di Siria breeds was partially sequenced in order to present the first phylogenetic characterization of Sicilian goat breeds. These sequences were compared with published sequences of Indian and Pakistani domestic goats and wild goats. Mitochondrial lineage A was observed in most of the Sicilian goats. However, three Girgentana haplotypes were highly divergent from the Capra hircus clade, indicating that a new mtDNA lineage in domestic goats was found.

  9. The mastodon mitochondrial genome: a mammoth accomplishment.

    PubMed

    Roca, Alfred L

    2008-02-01

    The mitochondrial genome of an American mastodon was recently sequenced and used to root a phylogenetic analysis that included full mitochondrial genome sequences from woolly mammoths and the two living elephant genera. The study definitively established that mammoth and Asian elephant mitochondrial DNA lineages are more closely related than either is to African elephants. However, it also suggests that a complex evolutionary picture could ultimately emerge and points to similarities between the early evolution of the Elephantidae and that of the gorilla-human-chimpanzee clade.

  10. Hemosporidian parasites in forest birds from Venezuela: genetic lineage analyses.

    PubMed

    Mijares, Alfredo; Rosales, Romel; Silva-Iturriza, Adriana

    2012-09-01

    Avian hemosporidian parasites of the genera Haemoproteus, Plasmodium, and Leucocytozoon are transmitted by different dipteran vectors. In the present work, we looked for the presence of these parasites in 47 birds from 12 families, which were sampled in the migratory corridor Paso de Portachuelo, located at the Henri Pittier National Park, Venezuela. The presence of the parasites was evidenced by amplification of a region of 471 bp of their cytochrome b gene. This region of the marker presents enough polymorphism to identify most of the mitochondrial lineages. Therefore, the obtained amplicons were sequenced, not only to identify the genus of the parasites sampled, but also to analyze their genetic diversity in the study area. The overall parasite prevalence was low (11%). We reported, for the first time, Plasmodium in birds of the species Formicarius analis and Chamaeza campanisona (Formicariidae) and Haemoproteus in Geotrygon linearis (Columbidae). A phylogenetic tree was generated using the Haemoproteus, Plasmodium, and Leucocytozoon sequences obtained in this study, together with representative sequences from previous studies. The highest genetic diversities between the two Haemoproteus lineages (11.70%) and among the three Plasmodium lineages (7.86%) found in this study are also similar to those found when lineages reported in the literature were used. These results indicate that in the migratory corridor Paso de Portachuleo, representative parasite lineages are found, making this location an attractive location for future studies.

  11. Lineage divergence in Odorrana graminea complex (Anura: Ranidae: Odorrana).

    PubMed

    Xiong, Rongchuan; Li, Cheng; Jiang, Jianping

    2015-05-26

    The confusing and unstable taxonomy of Odorrana livida (Rana livida) since its first record has made it a focal frog complex for systematics. In China, four species, Odorrana nebulosa, O. graminea, O. sinica, O. leporipes, were described to closely resemble O. livida or O. chloronota based on their morphological similarities, accompanied by much taxonomic confusion because of ambiguities in the wide distribution and morphological variations. Currently O. graminea is being used as the name of a provisional monotypic species group to include all the populations in China that closely resemble O. livida or O. chloronota. Here, we conducted a range-wide molecular phylogeographic analysis of the large green odorous frog (Odorrana graminea) complex across the majority of its range in China, based on 2780 bp DNA sequences of three mitochondrial genes (12S, 16S, ND2) in 107 samples from 20 sites. Our data recognized three distinct phylogeographic lineages of the Odorrana graminea (lato sensu) complex in China, and they together with a Thailand lineage formed a monophyletic group. Among the four lineages within O. graminea complex, the average genetic distances based on the concatenated sequences of 12S, 16S and ND2 were 7.5-8.8% and those based on 16S rRNA alone were 4.2-5.5%. Furthermore, canonical discriminant functions in morphometric analyses showed significant separations of all the paired lineage comparisons in China. The aforementioned genetic divergence and mismatched phenotypes among the lineages within the Odorrana graminea complex, in addition to their non-overlapping geographic distributions, imply extensive lineage diversification. However, precise taxonomic status of these lineages needs more studies based on adequate type information and more thorough species delimitation based on analysis of differentiation in bioacoustic and nuclear genetic characters especially regarding gene flow and admixture in geographical contact zones.

  12. Analysis of mitochondrial respiratory-related genes reveals nuclear and mitochondrial genome cooperation in allotetraploid hybrid.

    PubMed

    Peng, L-Y; Wang, J; Tao, M; You, C-P; Ye, L; Xiao, J; Zhang, C; Liu, Y; Liu, S-J

    2014-01-01

    An allotetraploid hybrid lineage derived from the distant hybridization of red crucian carp (Carassius auratus red var., ♀, 2n =100) × common carp (Cyprinus carpio L., ♂, 2n =100) was investigated for its mitochondrial and nuclear genome inheritance patterns. Based on liver transcriptomic data for this hybrid, red crucian carp, and common carp, we identified 94, 136, and 86 contigs corresponding to 41, 46, and 37 mitochondrial respiratory chain nuclear genes, respectively. Mitochondrial respiratory chain nuclear gene sequences from red crucian carp and common carp were both detected in the allotetraploid hybrid, indicating that both parental nuclear genomes were participated in the synthesis of mitochondrial respiratory protein complexes in the hybrid. For mitochondrial respiratory related genes, high sequence similarity (>90%) and a low nucleotide divergence rate (<0.2) between red crucian carp and common carp could be a critical factor allowing cooperation of the three genomes (red crucian carp mitochondrial genome, red crucian and common carp nuclear genomes) in the allotetraploid hybrid lineage. Interestingly, gene duplication events were identified in the allotetraploid hybrid, red crucian and common carp, as confirmed by analysis of orthologous gene trees for these fish. Our findings provide valuable information with which to study cooperation between the nuclear and mitochondrial genomes of other hybrids, and will provide basic genetic information of relevance to mitochondrial-related diseases in humans and animals.

  13. Bioenergetic Changes during Differentiation of Human Embryonic Stem Cells along the Hepatic Lineage

    PubMed Central

    Hopkinson, Branden M.; Kalisz, Mark; Vestentoft, Peter Siig; Juel Rasmussen, Lene; Bisgaard, Hanne Cathrine

    2017-01-01

    Mitochondrial dysfunction has been demonstrated to result in premature aging due to its effects on stem cells. Nevertheless, a full understanding of the role of mitochondrial bioenergetics through differentiation is still lacking. Here we show the bioenergetics profile of human stem cells of embryonic origin differentiating along the hepatic lineage. Our study reveals especially the transition between hepatic specification and hepatic maturation as dependent on mitochondrial respiration and demonstrates that even though differentiating cells are primarily dependent on glycolysis until induction of hepatocyte maturation, oxidative phosphorylation is essential at all stages of differentiation. PMID:28265337

  14. Differences in forward angular light scattering distributions between M1 and M2 macrophages.

    PubMed

    Halaney, David L; Zahedivash, Aydin; Phipps, Jennifer E; Wang, Tianyi; Dwelle, Jordan; Saux, Claude Jourdan Le; Asmis, Reto; Milner, Thomas E; Feldman, Marc D

    2015-11-01

    The ability to distinguish macrophage subtypes noninvasively could have diagnostic potential in cancer, atherosclerosis, and diabetes, where polarized M1 and M2 macrophages play critical and often opposing roles. Current methods to distinguish macrophage subtypes rely on tissue biopsy. Optical imaging techniques based on light scattering are of interest as they can be translated into biopsy-free strategies. Because mitochondria are relatively strong subcellular light scattering centers, and M2 macrophages are known to have enhanced mitochondrial biogenesis compared to M1, we hypothesized that M1 and M2 macrophages may have different angular light scattering profiles. To test this, we developed an in vitro angle-resolved forward light scattering measurement system. We found that M1 and M2 macrophage monolayers scatter relatively unequal amounts of light in the forward direction between 1.6 deg and 3.2 deg with M2 forward scattering significantly more light than M1 at increasing angles. The ratio of forward scattering can be used to identify the polarization state of macrophage populations in culture.

  15. Differences in forward angular light scattering distributions between M1 and M2 macrophages

    NASA Astrophysics Data System (ADS)

    Halaney, David L.; Zahedivash, Aydin; Phipps, Jennifer E.; Wang, Tianyi; Dwelle, Jordan; Saux, Claude Jourdan Le; Asmis, Reto; Milner, Thomas E.; Feldman, Marc D.

    2015-11-01

    The ability to distinguish macrophage subtypes noninvasively could have diagnostic potential in cancer, atherosclerosis, and diabetes, where polarized M1 and M2 macrophages play critical and often opposing roles. Current methods to distinguish macrophage subtypes rely on tissue biopsy. Optical imaging techniques based on light scattering are of interest as they can be translated into biopsy-free strategies. Because mitochondria are relatively strong subcellular light scattering centers, and M2 macrophages are known to have enhanced mitochondrial biogenesis compared to M1, we hypothesized that M1 and M2 macrophages may have different angular light scattering profiles. To test this, we developed an in vitro angle-resolved forward light scattering measurement system. We found that M1 and M2 macrophage monolayers scatter relatively unequal amounts of light in the forward direction between 1.6 deg and 3.2 deg with M2 forward scattering significantly more light than M1 at increasing angles. The ratio of forward scattering can be used to identify the polarization state of macrophage populations in culture.

  16. Differences in forward angular light scattering distributions between M1 and M2 macrophages

    PubMed Central

    Halaney, David L.; Zahedivash, Aydin; Phipps, Jennifer E.; Wang, Tianyi; Dwelle, Jordan; Saux, Claude Jourdan Le; Asmis, Reto; Milner, Thomas E.; Feldman, Marc D.

    2015-01-01

    Abstract. The ability to distinguish macrophage subtypes noninvasively could have diagnostic potential in cancer, atherosclerosis, and diabetes, where polarized M1 and M2 macrophages play critical and often opposing roles. Current methods to distinguish macrophage subtypes rely on tissue biopsy. Optical imaging techniques based on light scattering are of interest as they can be translated into biopsy-free strategies. Because mitochondria are relatively strong subcellular light scattering centers, and M2 macrophages are known to have enhanced mitochondrial biogenesis compared to M1, we hypothesized that M1 and M2 macrophages may have different angular light scattering profiles. To test this, we developed an in vitro angle-resolved forward light scattering measurement system. We found that M1 and M2 macrophage monolayers scatter relatively unequal amounts of light in the forward direction between 1.6 deg and 3.2 deg with M2 forward scattering significantly more light than M1 at increasing angles. The ratio of forward scattering can be used to identify the polarization state of macrophage populations in culture. PMID:26538329

  17. Highly divergent mussel lineages in isolated Indonesian marine lakes

    PubMed Central

    de Leeuw, Christiaan A.; Knegt, Bram; Maas, Diede L.; de Voogd, Nicole J.; Abdunnur; Suyatna, Iwan; Peijnenburg, Katja T.C.A.

    2016-01-01

    Marine lakes, with populations in landlocked seawater and clearly delineated contours, have the potential to provide a unique model to study early stages of evolution in coastal marine taxa. Here we ask whether populations of the mussel Brachidontes from marine lakes in Berau, East Kalimantan (Indonesia) are isolated from each other and from the coastal mangrove systems. We analyzed sequence data of one mitochondrial marker (Cytochrome Oxidase I (COI)), and two nuclear markers (18S and 28S). In addition, we examined shell shape using a geometric morphometric approach. The Indonesian populations of Brachidontes spp. harbored four deeply diverged lineages (14–75% COI corrected net sequence divergence), two of which correspond to previously recorded lineages from marine lakes in Palau, 1,900 km away. These four lineages also showed significant differences in shell shape and constitute a species complex of at least four undescribed species. Each lake harbored a different lineage despite the fact that the lakes are separated from each other by only 2–6 km, while the two mangrove populations, at 20 km distance from each other, harbored the same lineage and shared haplotypes. Marine lakes thus represent isolated habitats. As each lake contained unique within lineage diversity (0.1–0.2%), we suggest that this may have resulted from in situdivergence due to isolation of founder populations after the formation of the lakes (6,000–12,000 years before present). Combined effects of stochastic processes, local adaptation and increased evolutionary rates could produce high levels of differentiation in small populations such as in marine lake environments. Such short-term isolation at small spatial scales may be an important contributing factor to the high marine biodiversity that is found in the Indo-Australian Archipelago. PMID:27761314

  18. Highly divergent mussel lineages in isolated Indonesian marine lakes.

    PubMed

    Becking, Leontine E; de Leeuw, Christiaan A; Knegt, Bram; Maas, Diede L; de Voogd, Nicole J; Abdunnur; Suyatna, Iwan; Peijnenburg, Katja T C A

    2016-01-01

    Marine lakes, with populations in landlocked seawater and clearly delineated contours, have the potential to provide a unique model to study early stages of evolution in coastal marine taxa. Here we ask whether populations of the mussel Brachidontes from marine lakes in Berau, East Kalimantan (Indonesia) are isolated from each other and from the coastal mangrove systems. We analyzed sequence data of one mitochondrial marker (Cytochrome Oxidase I (COI)), and two nuclear markers (18S and 28S). In addition, we examined shell shape using a geometric morphometric approach. The Indonesian populations of Brachidontes spp. harbored four deeply diverged lineages (14-75% COI corrected net sequence divergence), two of which correspond to previously recorded lineages from marine lakes in Palau, 1,900 km away. These four lineages also showed significant differences in shell shape and constitute a species complex of at least four undescribed species. Each lake harbored a different lineage despite the fact that the lakes are separated from each other by only 2-6 km, while the two mangrove populations, at 20 km distance from each other, harbored the same lineage and shared haplotypes. Marine lakes thus represent isolated habitats. As each lake contained unique within lineage diversity (0.1-0.2%), we suggest that this may have resulted from in situdivergence due to isolation of founder populations after the formation of the lakes (6,000-12,000 years before present). Combined effects of stochastic processes, local adaptation and increased evolutionary rates could produce high levels of differentiation in small populations such as in marine lake environments. Such short-term isolation at small spatial scales may be an important contributing factor to the high marine biodiversity that is found in the Indo-Australian Archipelago.

  19. A cryptic lineage within the pupfish Cyprinodon dearborni suggests multiple colonizations of South America

    PubMed Central

    Haney, R. A.; Turner, B. J.; Rand, D. M.

    2013-01-01

    The coastal South American species Cyprinodon dearborni contains two lineages distinct at both mitochondrial and nuclear loci. One appears to be a long-term South American endemic, whereas the other is a more recent colonizer related to the widespread Cyprinodon variegatus. PMID:20738602

  20. Evolutionary origin and consequences of uniparental mitochondrial inheritance.

    PubMed

    Hoekstra, R F

    2000-07-01

    In the great majority of sexual organisms, cytoplasmic genomes such as the mitochondrial genome are inherited (almost) exclusively through only one, usually the maternal, parent. This rule probably evolved to minimize the potential spread of selfish cytoplasmic genomic mutations through a species. Maternal inheritance creates an asymmetry between the sexes from which several evolutionary consequences follow. Because natural selection on mitochondria operates only in females, mitochondrial mutations may have more deleterious effects in males than in females. Strictly uniparental inheritance creates asexual mitochondrial lineages that are vulnerable to mutation accumulation (Muller's ratchet). There is evidence that over evolutionary time mitochondrial genomes have indeed accumulated slightly deleterious mutations. Mutation accumulation in animal mitochondrial genomes is probably slowed down mainly by two processes: a severe reduction in germline mitochondrial genome copy number at some point in the life cycle, enabling more effective elimination of mutations by natural selection, and occasional recombination between maternal and paternal mitochondrial genomes following paternal leakage.

  1. Four phenotypically and phylogenetically distinct lineages in Phytophthora lateralis.

    PubMed

    Brasier, Clive M; Franceschini, Selma; Vettraino, Anna Maria; Hansen, Everett M; Green, Sarah; Robin, Cecile; Webber, Joan F; Vannini, Andrea

    2012-12-01

    Until recently Phytophthora lateralis was known only as the cause of dieback and mortality of Chamaecyparis lawsoniana in its native range in the Pacific Northwest (PNW). Since the 1990s however disease outbreaks have occurred increasingly on ornamental C. lawsoniana in Europe; and in 2007 the pathogen was discovered in soil around old growth Chamaecyparis obtusa in Taiwan, where it may be endemic. When the phenotypes of over 150 isolates of P. lateralis from Taiwan, across the PNW (British Columbia to California) and from France, the Netherlands and the UK were compared three growth rate groups were resolved: one slow growing from Taiwan, one fast growing from the PNW and Europe, and one of intermediate growth from a small area of the UK. Within these growth groups distinct subtypes were identified based on colony patterns and spore metrics and further discriminated in a multivariate analysis. The assumption that the three main growth groups represented phylogenetic units was tested by comparative sequencing of two mitochondrial and three nuclear genes. This assumption was confirmed. In addition two phenotype clusters within the Taiwan growth group were also shown to be phylogenetically distinct. These four phenotypically and genotypically unique populations are informally designated as the PNW lineage, the UK lineage, the Taiwan J lineage, and the Taiwan K lineage. Their characteristics and distribution are described and their evolution, taxonomic, and plant health significance is discussed.

  2. Mitochondrial DNA.

    ERIC Educational Resources Information Center

    Wright, Russell G.; Bottino, Paul J.

    1986-01-01

    Provides background information for teachers on mitochondrial DNA, pointing out that it may have once been a free-living organism. Includes a ready-to-duplicate exercise titled "Using Microchondrial DNA to Measure Evolutionary Distance." (JN)

  3. A predominantly neolithic origin for European paternal lineages.

    PubMed

    Balaresque, Patricia; Bowden, Georgina R; Adams, Susan M; Leung, Ho-Yee; King, Turi E; Rosser, Zoë H; Goodwin, Jane; Moisan, Jean-Paul; Richard, Christelle; Millward, Ann; Demaine, Andrew G; Barbujani, Guido; Previderè, Carlo; Wilson, Ian J; Tyler-Smith, Chris; Jobling, Mark A

    2010-01-19

    The relative contributions to modern European populations of Paleolithic hunter-gatherers and Neolithic farmers from the Near East have been intensely debated. Haplogroup R1b1b2 (R-M269) is the commonest European Y-chromosomal lineage, increasing in frequency from east to west, and carried by 110 million European men. Previous studies suggested a Paleolithic origin, but here we show that the geographical distribution of its microsatellite diversity is best explained by spread from a single source in the Near East via Anatolia during the Neolithic. Taken with evidence on the origins of other haplogroups, this indicates that most European Y chromosomes originate in the Neolithic expansion. This reinterpretation makes Europe a prime example of how technological and cultural change is linked with the expansion of a Y-chromosomal lineage, and the contrast of this pattern with that shown by maternally inherited mitochondrial DNA suggests a unique role for males in the transition.

  4. A Predominantly Neolithic Origin for European Paternal Lineages

    PubMed Central

    Balaresque, Patricia; Bowden, Georgina R.; Adams, Susan M.; Leung, Ho-Yee; King, Turi E.; Rosser, Zoë H.; Goodwin, Jane; Moisan, Jean-Paul; Richard, Christelle; Millward, Ann; Demaine, Andrew G.; Barbujani, Guido; Previderè, Carlo; Wilson, Ian J.; Tyler-Smith, Chris; Jobling, Mark A.

    2010-01-01

    The relative contributions to modern European populations of Paleolithic hunter-gatherers and Neolithic farmers from the Near East have been intensely debated. Haplogroup R1b1b2 (R-M269) is the commonest European Y-chromosomal lineage, increasing in frequency from east to west, and carried by 110 million European men. Previous studies suggested a Paleolithic origin, but here we show that the geographical distribution of its microsatellite diversity is best explained by spread from a single source in the Near East via Anatolia during the Neolithic. Taken with evidence on the origins of other haplogroups, this indicates that most European Y chromosomes originate in the Neolithic expansion. This reinterpretation makes Europe a prime example of how technological and cultural change is linked with the expansion of a Y-chromosomal lineage, and the contrast of this pattern with that shown by maternally inherited mitochondrial DNA suggests a unique role for males in the transition. PMID:20087410

  5. 26 CFR 1.167(m)-1 - Class lives.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 26 Internal Revenue 2 2011-04-01 2011-04-01 false Class lives. 1.167(m)-1 Section 1.167(m)-1...) INCOME TAXES (CONTINUED) Itemized Deductions for Individuals and Corporations § 1.167(m)-1 Class lives. (a) For rules regarding the election to use the class life system authorized by section 167(m),...

  6. 26 CFR 1.167(m)-1 - Class lives.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 26 Internal Revenue 2 2010-04-01 2010-04-01 false Class lives. 1.167(m)-1 Section 1.167(m)-1...) INCOME TAXES (CONTINUED) Itemized Deductions for Individuals and Corporations § 1.167(m)-1 Class lives. (a) For rules regarding the election to use the class life system authorized by section 167(m),...

  7. 26 CFR 1.167(m)-1 - Class lives.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 26 Internal Revenue 2 2012-04-01 2012-04-01 false Class lives. 1.167(m)-1 Section 1.167(m)-1...) INCOME TAXES (CONTINUED) Itemized Deductions for Individuals and Corporations § 1.167(m)-1 Class lives. (a) For rules regarding the election to use the class life system authorized by section 167(m),...

  8. 26 CFR 1.167(m)-1 - Class lives.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 26 Internal Revenue 2 2013-04-01 2013-04-01 false Class lives. 1.167(m)-1 Section 1.167(m)-1...) INCOME TAXES (CONTINUED) Itemized Deductions for Individuals and Corporations § 1.167(m)-1 Class lives. (a) For rules regarding the election to use the class life system authorized by section 167(m),...

  9. 26 CFR 1.167(m)-1 - Class lives.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 26 Internal Revenue 2 2014-04-01 2014-04-01 false Class lives. 1.167(m)-1 Section 1.167(m)-1...) INCOME TAXES (CONTINUED) Itemized Deductions for Individuals and Corporations § 1.167(m)-1 Class lives. (a) For rules regarding the election to use the class life system authorized by section 167(m),...

  10. 26 CFR 31.3402(m)-1 - Withholding allowances.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 26 Internal Revenue 15 2011-04-01 2011-04-01 false Withholding allowances. 31.3402(m)-1 Section 31.3402(m)-1 Internal Revenue INTERNAL REVENUE SERVICE, DEPARTMENT OF THE TREASURY (CONTINUED) EMPLOYMENT... Collection of Income Tax at Source § 31.3402(m)-1 Withholding allowances. (a) General rule. An employee...

  11. Mitochondrial genetics

    PubMed Central

    Chinnery, Patrick Francis; Hudson, Gavin

    2013-01-01

    Introduction In the last 10 years the field of mitochondrial genetics has widened, shifting the focus from rare sporadic, metabolic disease to the effects of mitochondrial DNA (mtDNA) variation in a growing spectrum of human disease. The aim of this review is to guide the reader through some key concepts regarding mitochondria before introducing both classic and emerging mitochondrial disorders. Sources of data In this article, a review of the current mitochondrial genetics literature was conducted using PubMed (http://www.ncbi.nlm.nih.gov/pubmed/). In addition, this review makes use of a growing number of publically available databases including MITOMAP, a human mitochondrial genome database (www.mitomap.org), the Human DNA polymerase Gamma Mutation Database (http://tools.niehs.nih.gov/polg/) and PhyloTree.org (www.phylotree.org), a repository of global mtDNA variation. Areas of agreement The disruption in cellular energy, resulting from defects in mtDNA or defects in the nuclear-encoded genes responsible for mitochondrial maintenance, manifests in a growing number of human diseases. Areas of controversy The exact mechanisms which govern the inheritance of mtDNA are hotly debated. Growing points Although still in the early stages, the development of in vitro genetic manipulation could see an end to the inheritance of the most severe mtDNA disease. PMID:23704099

  12. Rapid molecular genetic subtyping of serotype M1 group A Streptococcus strains.

    PubMed Central

    Hoe, N.; Nakashima, K.; Grigsby, D.; Pan, X.; Dou, S. J.; Naidich, S.; Garcia, M.; Kahn, E.; Bergmire-Sweat, D.; Musser, J. M.

    1999-01-01

    Serotype M1 group A Streptococcus, the most common cause of invasive disease in many case series, generally have resisted extensive molecular subtyping by standard techniques (e.g., multilocus enzyme electrophoresis, pulsed-field gel electrophoresis). We used automated sequencing of the sic gene encoding streptococcal inhibitor of complement and of a region of the chromosome with direct repeat sequences to unambiguously differentiate 30 M1 isolates recovered from 28 patients in Texas with invasive disease episodes temporally clustered and thought to represent an outbreak. Sequencing of the emm gene was less useful for M1 strain differentiation, and restriction fragment length polymorphism analysis with IS1548 or IS1562 as Southern hybridization probes did not provide epidemiologically useful subtyping information. Sequence polymorphism in the direct repeat region of the chromosome and IS1548 profiling data support the hypothesis that M1 organisms have two main evolutionary lineages marked by the presence or absence of the speA2 allele encoding streptococcal pyrogenic exotoxin A2. PMID:10221878

  13. Variation in asexual lineage age in Potamopyrgus antipodarum, a New Zealand snail.

    PubMed

    Neiman, M; Jokela, J; Lively, C M

    2005-09-01

    Asexual lineages are thought to be subject to rapid extinction because they cannot generate recombinant offspring. Accordingly, extant asexual lineages are expected to be of recent derivation from sexual individuals. We examined this prediction by using mitochondrial DNA sequence data to estimate asexual lineage age in populations of a freshwater snail (Potamopyrgus antipodarum) native to New Zealand and characterized by varying frequency of sexual and asexual individuals. We found considerable variation in the amount of genetic divergence of asexual lineages from sexual relatives, pointing to a wide range of asexual lineage ages. Most asexual lineages had close genetic ties (approximately 0.1% sequence divergence) to haplotypes found in sexual representatives, indicating a recent origin from sexual progenitors. There were, however, two asexual clades that were quite genetically distinct (> 1.2% sequence divergence) from sexual lineages and may have diverged from sexual progenitors more than 500,000 years ago. These two clades were found in lakes that had a significantly lower frequency of sexual individuals than lakes without the old clades, suggesting that the conditions that favor sex might select against ancient asexuality. Our results also emphasize the need for large sample sizes and spatially representative sampling when hypotheses for the age of asexual lineages are tested to adequately deal with potential biases in age estimates.

  14. Giant M1 resonance in /sup 140/Ce

    SciTech Connect

    Laszewski, R.M.; Rullhusen, P.; Hoblit, S.D.; LeBrun, S.F.

    1986-11-01

    Highly polarized tagged photons were used to measure the distribution of M1 transition strength in /sup 140/Ce at excitations between 6.7 and 8.7 MeV. A strength of summationgGAMMA/sub 0//sup 2/(M1)/GAMMA = 11.2/sub -3.1/ /sup +4.5/ eV corresponding to a B(M1up-arrow) of about 7.5..mu../sub 0//sup 2/ was observed centered at an excitation of 7.95 MeV. This distribution of M1 strength can account for the giant magnetic dipole resonance predicted in /sup 140/Ce.

  15. Response to comment on "Nuclear genomic sequences reveal that polar bears are an old and distinct bear lineage".

    PubMed

    Hailer, Frank; Kutschera, Verena E; Hallström, Björn M; Fain, Steven R; Leonard, Jennifer A; Arnason, Ulfur; Janke, Axel

    2013-03-29

    Nakagome et al. reanalyzed some of our data and assert that we cannot refute the mitochondrial DNA-based scenario for polar bear evolution. Their single-locus test statistic is strongly affected by introgression and incomplete lineage sorting, whereas our multilocus approaches are better suited to recover the true species relationships. Indeed, our sister-lineage model receives high support in a Bayesian model comparison.

  16. Transmission of Hypervirulence traits via sexual reproduction within and between lineages of the human fungal pathogen cryptococcus gattii.

    PubMed

    Voelz, Kerstin; Ma, Hansong; Phadke, Sujal; Byrnes, Edmond J; Zhu, Pinkuan; Mueller, Olaf; Farrer, Rhys A; Henk, Daniel A; Lewit, Yonathan; Hsueh, Yen-Ping; Fisher, Matthew C; Idnurm, Alexander; Heitman, Joseph; May, Robin C

    2013-01-01

    Since 1999 a lineage of the pathogen Cryptococcus gattii has been infecting humans and other animals in Canada and the Pacific Northwest of the USA. It is now the largest outbreak of a life-threatening fungal infection in a healthy population in recorded history. The high virulence of outbreak strains is closely linked to the ability of the pathogen to undergo rapid mitochondrial tubularisation and proliferation following engulfment by host phagocytes. Most outbreaks spread by geographic expansion across suitable niches, but it is known that genetic re-assortment and hybridisation can also lead to rapid range and host expansion. In the context of C. gattii, however, the likelihood of virulence traits associated with the outbreak lineages spreading to other lineages via genetic exchange is currently unknown. Here we address this question by conducting outgroup crosses between distantly related C. gattii lineages (VGII and VGIII) and ingroup crosses between isolates from the same molecular type (VGII). Systematic phenotypic characterisation shows that virulence traits are transmitted to outgroups infrequently, but readily inherited during ingroup crosses. In addition, we observed higher levels of biparental (as opposed to uniparental) mitochondrial inheritance during VGII ingroup sexual mating in this species and provide evidence for mitochondrial recombination following mating. Taken together, our data suggest that hypervirulence can spread among the C. gattii lineages VGII and VGIII, potentially creating novel hypervirulent genotypes, and that current models of uniparental mitochondrial inheritance in the Cryptococcus genus may not be universal.

  17. Recent Reticulate Evolution in the Ecologically Dominant Lineage of Coccolithophores

    PubMed Central

    Bendif, El Mahdi; Probert, Ian; Díaz-Rosas, Francisco; Thomas, Daniela; van den Engh, Ger; Young, Jeremy R.; von Dassow, Peter

    2016-01-01

    The coccolithophore family Noëlaerhabdaceae contains a number of taxa that are very abundant in modern oceans, including the cosmopolitan bloom-forming Emiliania huxleyi. Introgressive hybridization has been suggested to account for incongruences between nuclear, mitochondrial and plastidial phylogenies of morphospecies within this lineage, but the number of species cultured to date remains rather limited. Here, we present the characterization of 5 new Noëlaerhabdaceae culture strains isolated from samples collected in the south-east Pacific Ocean. These were analyzed morphologically using scanning electron microscopy and phylogenetically by sequencing 5 marker genes (nuclear 18S and 28S rDNA, plastidial tufA, and mitochondrial cox1 and cox3 genes). Morphologically, one of these strains corresponded to Gephyrocapsa ericsonii and the four others to Reticulofenestra parvula. Ribosomal gene sequences were near identical between these new strains, but divergent from G. oceanica, G. muellerae, and E. huxleyi. In contrast to the clear distinction in ribosomal phylogenies, sequences from other genomic compartments clustered with those of E. huxleyi strains with which they share an ecological range (i.e., warm temperate to tropical waters). These data provide strong support for the hypothesis of past (and potentially ongoing) introgressive hybridization within this ecologically important lineage and for the transfer of R. parvula to Gephyrocapsa. These results have important implications for understanding the role of hybridization in speciation in vast ocean meta-populations of phytoplankton. PMID:27252694

  18. AFLP markers resolve intra-specific relationships and infer genetic structure among lineages of the canyon treefrog, Hyla arenicolor.

    PubMed

    Klymus, Katy E; Carl Gerhardt, H

    2012-11-01

    The canyon treefrog, Hyla arenicolor, is a wide-ranging hylid found from southwestern US into southern Mexico. Recent studies have shown this species to have a complex evolutionary history, with several phylogeographically distinct lineages, a probable cryptic species, and multiple episodes of mitochondrial introgression with the sister group, the H. eximia complex. We aimed to use genome wide AFLP markers to better resolve relationships within this group. As in other studies, our inferred phylogeny not only provides evidence for repeated mitochondrial introgression between H. arenicolor lineages and H. eximia/H. wrightorum, but it also affords more resolution within the main H. arenicolor clade than was previously achieved with sequence data. However, as with a previous study, the placement of a lineage of H. arenicolor whose distribution is centered in the Balsas Basin of Mexico remains poorly resolved, perhaps due to past hybridization with the H. eximia complex. Furthermore, the AFLP data set shows no differentiation among lineages from the Grand Canyon and Colorado Plateau despite their large mitochondrial sequence divergence. Finally, our results infer a well-supported sister relationship between this combined Colorado Plateau/Grand Canyon lineage and the Sonoran Desert lineage, a relationship that strongly contradicts conclusions drawn from the mtDNA evidence. Our study provides a basis for further behavioral and ecological speciation studies of this system and highlights the importance of multi-taxon (species) sampling in phylogenetic and phylogeographic studies.

  19. Mitochondrial Diseases

    MedlinePlus

    ... are defective, the cells do not have enough energy. The unused oxygen and fuel molecules build up in the cells and cause damage. The symptoms of mitochondrial disease can vary. It depends on how ... high energy needs, so muscular and neurological problems are common. ...

  20. Replicated evolution of trophic specializations in an endemic cichlid fish lineage from Lake Tanganyika

    PubMed Central

    Rüber, Lukas; Verheyen, Erik; Meyer, Axel

    1999-01-01

    The current phylogenetic hypothesis for the endemic Lake Tanganyika cichlid fishes of the tribe Eretmodini is based solely on morphology and suggests that more complex trophic morphologies derived only once from a less specialized ancestral condition. A molecular phylogeny of eretmodine cichlids based on partial mitochondrial DNA cytochrome b and control-region sequences was used to reconstruct the evolutionary sequence of trophic adaptations and to test alternative models of morphological divergence. The six mitochondrial lineages found disagree with the current taxonomy and the morphology-based phylogeny. Mitochondrial lineages with similar trophic morphologies are not grouped monophyletically but are typically more closely related to lineages with different trophic phenotypes currently assigned to other genera. Our results indicate multiple independent origins of similar trophic specializations in these cichlids. A pattern of repeated divergent morphological evolution becomes apparent when the phylogeography of the mitochondrial haplotypes is analyzed in the context of the geological and paleoclimatological history of Lake Tanganyika. In more than one instance within Lake Tanganyika, similar morphological divergence of dentitional traits occurred in sympatric species pairs. Possibly, resource-based divergent selective regimes led to resource partitioning and brought about similar trophic morphologies independently and repeatedly. PMID:10468591

  1. Thoroughbred racehorse mitochondrial DNA demonstrates closer than expected links between maternal genetic history and pedigree records.

    PubMed

    Bower, M A; Whitten, M; Nisbet, R E R; Spencer, M; Dominy, K M; Murphy, A M; Cassidy, R; Barrett, E; Hill, E W; Binns, M

    2013-06-01

    The potential future earnings and therefore value of Thoroughbred foals untested in the racing arena are calculated based on the performance of their forebears. Thus, lineage is of key importance. However, previous research indicates that maternally inherited mitochondrial DNA (mtDNA) does not correspond to maternal lineage according to recorded pedigree, casting doubt on the voracity of historic pedigrees. We analysed mtDNA of 296 Thoroughbred horses from 33 maternal lineages and identified an interesting trend. Subsequent to the founding of the Thoroughbred breed in the 16th century, well-populated maternal lineages were divided into sub-lineages. Only six in 10 of the Thoroughbreds sampled shared mitochondrial haplotype with other members of their maternal lineage, despite having a common maternal ancestor according to pedigree records. However, nine in 10 Thoroughbreds from the 103 sub-lineages sampled shared mtDNA with horses of their maternal pedigree sub-lineage. Thus, Thoroughbred maternal sub-lineage pedigree represents a more accurate breeding record than previously thought. Errors in pedigrees must have occurred largely, though, not exclusively, at sub-lineage foundation events, probably due to incomplete understanding of modes of inheritance in the past, where maternal sub-lineages were founded from individuals, related, but not by female descent.

  2. Demographic history of Canary Islands male gene-pool: replacement of native lineages by European

    PubMed Central

    Fregel, Rosa; Gomes, Verónica; Gusmão, Leonor; González, Ana M; Cabrera, Vicente M; Amorim, António; Larruga, Jose M

    2009-01-01

    Background The origin and prevalence of the prehispanic settlers of the Canary Islands has attracted great multidisciplinary interest. However, direct ancient DNA genetic studies on indigenous and historical 17th–18th century remains, using mitochondrial DNA as a female marker, have only recently been possible. In the present work, the analysis of Y-chromosome polymorphisms in the same samples, has shed light on the way the European colonization affected male and female Canary Island indigenous genetic pools, from the conquest to present-day times. Results Autochthonous (E-M81) and prominent (E-M78 and J-M267) Berber Y-chromosome lineages were detected in the indigenous remains, confirming a North West African origin for their ancestors which confirms previous mitochondrial DNA results. However, in contrast with their female lineages, which have survived in the present-day population since the conquest with only a moderate decline, the male indigenous lineages have dropped constantly being substituted by European lineages. Male and female sub-Saharan African genetic inputs were also detected in the Canary population, but their frequencies were higher during the 17th–18th centuries than today. Conclusion The European colonization of the Canary Islands introduced a strong sex-biased change in the indigenous population in such a way that indigenous female lineages survived in the extant population in a significantly higher proportion than their male counterparts. PMID:19650893

  3. Two deep evolutionary lineages in the circumtropical glasseye Heteropriacanthus cruentatus (Teleostei, Priacanthidae) with admixture in the south-western Indian Ocean.

    PubMed

    Gaither, M R; Bernal, M A; Fernandez-Silva, I; Mwale, M; Jones, S A; Rocha, C; Rocha, L A

    2015-09-01

    A phylogeographic study of the circumtropical glasseye Heteropriacanthus cruentatus was conducted. Molecular analyses indicate two mitochondrial cytochrome c oxidase subunit I (coI) lineages that are 10·4% divergent: one in the western Atlantic (Caribbean) and another that was detected across the Indo-Pacific. A fixed single nucleotide polymorphism (SNP) was detected at a nuclear locus (S7 ribosomal protein) and is consistent with this finding. There is evidence of recent dispersal from the Atlantic to the Indian Ocean with individuals of mixed lineages detected in South Africa and the Mozambique Channel. Using coalescent analyses of the mitochondrial dataset, time of divergence between lineages was estimated to be c. 15·3 million years. The deep divergence between these two lineages indicates distinct evolutionary units, however, due to the lack of morphological differences and evidence of hybridization between lineages, taxonomic revision is not suggested at this time.

  4. Distribution of M1 transitions in /sup 208/Pb

    SciTech Connect

    Laszewski, R.M.; Alarcon, R.; Dale, D.S.; Hoblit, S.D.

    1988-10-10

    The distribution of M1 strength in /sup 208/Pb has been measured between 5.8 and 7.4 MeV with highly polarized tagged photons. ..sigma..GAMMA/sup 2//sub 0/(M/sup 1/)/GAMMA = 14.6 +- /sup +1.5//sub -1.3/ eV corresponding to ..sigma..B(M1up-arrow) = 10.7 +- /sup +1.1//sub -0.9/..mu../sup 2//sub N/ was found, and can fully account for the much discussed ''missing'' M1 in /sup 208/Pb. When the present result is combined with known 1/sup 1/ transitions above neutron threshold, an M1 giant resonance emerges at 7.3 MeV, 1 MeV wide, with ..sigma..B(M1up-arrow)approx. =15.6..mu../sup 2//sub N/. Smaller 1/sup +/ resonances are also seen in both 5.85 and 6.24 MeV. The total M1 strength below 6.4 MeV amounts to ..sigma..B(M) = (1.9/sup +0.7//sub -0.4/)..mu../sup 2//sub N/.

  5. Historical biogeography of Reticulitermes termites (Isoptera: Rhinotermitidae) inferred from analyses of mitochondrial and nuclear loci.

    PubMed

    Dedeine, Franck; Dupont, Simon; Guyot, Sylvain; Matsuura, Kenji; Wang, Changlu; Habibpour, Behzad; Bagnères, Anne-Geneviève; Mantovani, Barbara; Luchetti, Andrea

    2016-01-01

    Termites of the genus Reticulitermes are ecologically and economically important wood-feeding social insects that are widespread in the Holarctic region. Despite their importance, no study has yet attempted to reconstruct a global time-scaled phylogeny of Reticulitermes termites. In this study, we sequenced mitochondrial (2096bp) and nuclear (829bp) loci from 61 Reticulitermes specimens, collected across the genus' entire range, and one specimen of Coptotermes formosanus, which served as an outgroup. Bayesian and Maximum likelihood analyses conducted on the mitochondrial and nuclear sequences support the existence of four main lineages that span four global geographical regions: North America (NA lineage), western Europe (WE lineage), a region including eastern Europe and western Asia (EA+WA lineage), and eastern Asia (EA lineage). The mitochondrial data allowed us to clarify the phylogenetic relationships among these lineages. They were also used to infer a chronogram that was time scaled based on age estimates for termite fossils (including the oldest Reticulitermes fossils, which date back to the late Eocene-early Oligocene). Our results support the hypothesis that the extant Reticulitermes lineage first differentiated in North America. The first divergence event in the ancestral lineage of Reticulitermes occurred in the early Miocene and separated the Nearctic lineages (i.e., the NA lineages) from the Palearctic lineages (i.e., WE, EE+WA, and EA lineages). Our analyses revealed that the main lineages of Reticulitermes diversified because of vicariance and migration events, which were probably induced by major paleogeographic and paleoclimatic changes that occurred during the Cenozoic era. This is the first global and comprehensive phylogenetic study of Reticulitermes termites, and it provides a crucial foundation for studying the evolution of phenotypic and life-history traits in Reticulitermes. For instance, the phylogeny we obtained suggested that 'asexual

  6. Vanishing native American dog lineages

    PubMed Central

    2011-01-01

    Background Dogs were an important element in many native American cultures at the time Europeans arrived. Although previous ancient DNA studies revealed the existence of unique native American mitochondrial sequences, these have not been found in modern dogs, mainly purebred, studied so far. Results We identified many previously undescribed mitochondrial control region sequences in 400 dogs from rural and isolated areas as well as street dogs from across the Americas. However, sequences of native American origin proved to be exceedingly rare, and we estimate that the native population contributed only a minor fraction of the gene pool that constitutes the modern population. Conclusions The high number of previously unidentified haplotypes in our sample suggests that a lot of unsampled genetic variation exists in non-breed dogs. Our results also suggest that the arrival of European colonists to the Americas may have led to an extensive replacement of the native American dog population by the dogs of the invaders. PMID:21418639

  7. Genome Evolution and Innovation across the Four Major Lineages of Cryptococcus gattii

    PubMed Central

    Farrer, Rhys A.; Desjardins, Christopher A.; Sakthikumar, Sharadha; Gujja, Sharvari; Saif, Sakina; Zeng, Qiandong; Chen, Yuan; Voelz, Kerstin; Heitman, Joseph; May, Robin C.; Fisher, Matthew C.

    2015-01-01

    ABSTRACT Cryptococcus gattii is a fungal pathogen of humans, causing pulmonary infections in otherwise healthy hosts. To characterize genomic variation among the four major lineages of C. gattii (VGI, -II, -III, and -IV), we generated, annotated, and compared 16 de novo genome assemblies, including the first for the rarely isolated lineages VGIII and VGIV. By identifying syntenic regions across assemblies, we found 15 structural rearrangements, which were almost exclusive to the VGI-III-IV lineages. Using synteny to inform orthology prediction, we identified a core set of 87% of C. gattii genes present as single copies in all four lineages. Remarkably, 737 genes are variably inherited across lineages and are overrepresented for response to oxidative stress, mitochondrial import, and metal binding and transport. Specifically, VGI has an expanded set of iron-binding genes thought to be important to the virulence of Cryptococcus, while VGII has expansions in the stress-related heat shock proteins relative to the other lineages. We also characterized genes uniquely absent in each lineage, including a copper transporter absent from VGIV, which influences Cryptococcus survival during pulmonary infection and the onset of meningoencephalitis. Through inclusion of population-level data for an additional 37 isolates, we identified a new transcontinental clonal group that we name VGIIx, mitochondrial recombination between VGII and VGIII, and positive selection of multidrug transporters and the iron-sulfur protein aconitase along multiple branches of the phylogenetic tree. Our results suggest that gene expansion or contraction and positive selection have introduced substantial variation with links to mechanisms of pathogenicity across this species complex. PMID:26330512

  8. Develop Efficient Leak Proof M1 Abrams Plenum Seal

    DTIC Science & Technology

    2014-05-07

    SBIR report, M1 Abrams, plenum seal, turbine blade wear, FOD leakage, turbine failure, air cleaner plenum box, seal design, efficient leak proof seal...premature and excessive turbine blade wear. This in turn leads to a reduced time interval between turbine rebuilds and an estimated $3-$4 million in...Comparison – As drawn vs. actual installation ........................................... 9 Figure 5: Assembly model of M1 Turbine and related components

  9. Diverse Effects on M1 Signaling and Adverse Effect Liability within a Series of M1 Ago-PAMs.

    PubMed

    Rook, Jerri M; Abe, Masahito; Cho, Hyekyung P; Nance, Kellie D; Luscombe, Vincent B; Adams, Jeffrey J; Dickerson, Jonathan W; Remke, Daniel H; Garcia-Barrantes, Pedro M; Engers, Darren W; Engers, Julie L; Chang, Sichen; Foster, Jarrett J; Blobaum, Anna L; Niswender, Colleen M; Jones, Carrie K; Conn, P Jeffrey; Lindsley, Craig W

    2017-01-10

    Both historical clinical and recent preclinical data suggest that the M1 muscarinic acetylcholine receptor is an exciting target for the treatment of Alzheimer's disease and the cognitive and negative symptom clusters in schizophrenia; however, early drug discovery efforts targeting the orthosteric binding site have failed to afford selective M1 activation. Efforts then shifted to focus on selective activation of M1 via either allosteric agonists or positive allosteric modulators (PAMs). While M1 PAMs have robust efficacy in rodent models, some chemotypes can induce cholinergic adverse effects (AEs) that could limit their clinical utility. Here, we report studies aimed at understanding the subtle structural and pharmacological nuances that differentiate efficacy from adverse effect liability within an indole-based series of M1 ago-PAMs. Our data demonstrate that closely related M1 PAMs can display striking differences in their in vivo activities, especially their propensities to induce adverse effects. We report the discovery of a novel PAM in this series that is devoid of observable adverse effect liability. Interestingly, the molecular pharmacology profile of this novel PAM is similar to that of a representative M1 PAM that induces severe AEs. For instance, both compounds are potent ago-PAMs that demonstrate significant interaction with the orthosteric site (either bitopic or negative cooperativity). However, there are subtle differences in efficacies of the compounds at potentiating M1 responses, agonist potencies, and abilities to induce receptor internalization. While these differences may contribute to the differential in vivo profiles of these compounds, the in vitro differences are relatively subtle and highlight the complexities of allosteric modulators and the need to focus on in vivo phenotypic screening to identify safe and effective M1 PAMs.

  10. Phylogenetic lineages in the Botryosphaeriaceae

    PubMed Central

    Crous, Pedro W.; Slippers, Bernard; Wingfield, Michael J.; Rheeder, John; Marasas, Walter F.O.; Philips, Alan J.L.; Alves, Artur; Burgess, Treena; Barber, Paul; Groenewald, Johannes Z.

    2006-01-01

    Botryosphaeria is a species-rich genus with a cosmopolitan distribution, commonly associated with dieback and cankers of woody plants. As many as 18 anamorph genera have been associated with Botryosphaeria, most of which have been reduced to synonymy under Diplodia (conidia mostly ovoid, pigmented, thick-walled), or Fusicoccum (conidia mostly fusoid, hyaline, thin-walled). However, there are numerous conidial anamorphs having morphological characteristics intermediate between Diplodia and Fusicoccum, and there are several records of species outside the Botryosphaeriaceae that have anamorphs apparently typical of Botryosphaeria s.str. Recent studies have also linked Botryosphaeria to species with pigmented, septate ascospores, and Dothiorella anamorphs, or Fusicoccum anamorphs with Dichomera synanamorphs. The aim of this study was to employ DNA sequence data of the 28S rDNA to resolve apparent lineages within the Botryosphaeriaceae. From these data, 12 clades are recognised. Two of these lineages clustered outside the Botryosphaeriaceae, namely Diplodia-like anamorphs occurring on maize, which are best accommodated in Stenocarpella (Diaporthales), as well as an unresolved clade including species of Camarosporium/Microdiplodia. We recognise 10 lineages within the Botryosphaeriaceae, including an unresolved clade (Diplodia/Lasiodiplodia/Tiarosporella), Botryosphaeria s.str. (Fusicoccum anamorphs), Macrophomina, Neoscytalidium gen. nov., Dothidotthia (Dothiorella anamorphs), Neofusicoccum gen. nov. (Botryosphaeria-like teleomorphs, Dichomera-like synanamorphs), Pseudofusicoccum gen. nov., Saccharata (Fusicoccum- and Diplodia-like synanamorphs), “Botryosphaeria” quercuum (Diplodia-like anamorph), and Guignardia (Phyllosticta anamorphs). Separate teleomorph and anamorph names are not provided for newly introduced genera, even where both morphs are known. The taxonomy of some clades and isolates (e.g. B. mamane) remains unresolved due to the absence of ex

  11. Mitochondrial Disease: Possible Symptoms

    MedlinePlus

    ... Instagram Email Menu Understanding Mitochondrial Disease What is Mito? What is Mitochondrial Disease? Types of Mitochondrial Disease ... Program Frequently Asked Questions Newly Diagnosed Treatments & Therapies Mito 101 MitoFIRST Handbook Current Clinical Trials & Studies Community ...

  12. What Is Mitochondrial DNA?

    MedlinePlus

    ... DNA What is mitochondrial DNA? What is mitochondrial DNA? Although most DNA is packaged in chromosomes within ... proteins. For more information about mitochondria and mitochondrial DNA: Molecular Expressions, a web site from the Florida ...

  13. Selectivity of oxomemazine for the M1 muscarinic receptors.

    PubMed

    Lee, S W; Woo, C W; Kim, J G

    1994-12-01

    The binding characteristics of pirenzepine and oxomemazine to muscarinic receptor were studied to evaluate the selectivity of oxomemazine for the muscarinic receptor subtypes in rat cerebral microsomes. Equilibrium dissociation constant (KD) of (-)-[3H]quinuclidinyl benzilate([3H]QNB) determined from saturation isotherms was 64 pM. Analysis of the pirenzepine inhibition curve of [3H]QNB binding to cerebral microsome indicated the presence of two receptor subtypes with high (Ki = 16 nM, M1 receptor) and low (Ki = 400 nM, M3 receptor) affinity for pirenzepine. Oxomemazine also identified two receptor subtypes with about 20-fold difference in the affinity for high (Ki = 84 nM, OH receptor) and low (Ki = 1.65 microM, OL receptor) affinity sites. The percentage populations of M1 and M3 receptors to the total receptors were 61:39, and those of OH and OL receptors 39:61, respectively. Both pirenzepine and oxomemazine increased the KD value for [3H]QNB without affecting the binding site concentrations and Hill coefficient for the [3H]QNB binding. Oxomemazine had a 10-fold higher affinity at M1 receptors than at M3 receptors, and pirenzepine a 8-fold higher affinity at OH receptors than at OL receptors. Analysis of the shallow competition binding curves of oxomemazine for M1 receptors and pirenzepine for OL receptors yielded that 69% of M1 receptors were of OH receptors and the remaining 31% of OL receptors, and that 29% of OL receptors were of M1 receptors and 71% of M3 receptors. However, M3 for oxomemazine and OH for pirenzepine were composed of a uniform population. These results suggest that oxomemazine could be classified as a selective drug for M1 receptors and also demonstrate that rat cerebral microsomes contain three different subtypes of M1, M3 and the other site which is different from M1, M2 and M3 receptors.

  14. Phylogeographic analysis reveals a deep lineage split within North Atlantic Littorina saxatilis.

    PubMed

    Doellman, Meredith M; Trussell, Geoffrey C; Grahame, John W; Vollmer, Steve V

    2011-11-07

    Phylogeographic studies provide critical insight into the evolutionary histories of model organisms; yet, to date, range-wide data are lacking for the rough periwinkle Littorina saxatilis, a classic example of marine sympatric speciation. Here, we use mitochondrial DNA (mtDNA) sequence data to demonstrate that L. saxatilis is not monophyletic for this marker, but is composed of two distinct mtDNA lineages (I and II) that are shared with sister species Littorina arcana and Littorina compressa. Bayesian coalescent dating and phylogeographic patterns indicate that both L. saxatilis lineages originated in the eastern North Atlantic, around the British Isles, at approximately 0.64 Ma. Both lineages are now distributed broadly across the eastern, central and western North Atlantic, and show strong phylogeographic structure among regions. The Iberian Peninsula is genetically distinct, suggesting prolonged isolation from northeastern North Atlantic populations. Western North Atlantic populations of L. saxatilis lineages I and II predate the last glacial maximum and have been isolated from eastern North Atlantic populations since that time. This identification of two distinct, broadly distributed mtDNA lineages further complicates observed patterns of repeated incipient ecological speciation in L. saxatilis, because the sympatric origins of distinct ecotype pairs on eastern North Atlantic shores may be confounded by admixture of divergent lineages.

  15. Phylogeographic analysis reveals a deep lineage split within North Atlantic Littorina saxatilis

    PubMed Central

    Doellman, Meredith M.; Trussell, Geoffrey C.; Grahame, John W.; Vollmer, Steve V.

    2011-01-01

    Phylogeographic studies provide critical insight into the evolutionary histories of model organisms; yet, to date, range-wide data are lacking for the rough periwinkle Littorina saxatilis, a classic example of marine sympatric speciation. Here, we use mitochondrial DNA (mtDNA) sequence data to demonstrate that L. saxatilis is not monophyletic for this marker, but is composed of two distinct mtDNA lineages (I and II) that are shared with sister species Littorina arcana and Littorina compressa. Bayesian coalescent dating and phylogeographic patterns indicate that both L. saxatilis lineages originated in the eastern North Atlantic, around the British Isles, at approximately 0.64 Ma. Both lineages are now distributed broadly across the eastern, central and western North Atlantic, and show strong phylogeographic structure among regions. The Iberian Peninsula is genetically distinct, suggesting prolonged isolation from northeastern North Atlantic populations. Western North Atlantic populations of L. saxatilis lineages I and II predate the last glacial maximum and have been isolated from eastern North Atlantic populations since that time. This identification of two distinct, broadly distributed mtDNA lineages further complicates observed patterns of repeated incipient ecological speciation in L. saxatilis, because the sympatric origins of distinct ecotype pairs on eastern North Atlantic shores may be confounded by admixture of divergent lineages. PMID:21429920

  16. Genomic Characterization of Campylobacter jejuni Strain M1

    PubMed Central

    Friis, Carsten; Wassenaar, Trudy M.; Javed, Muhammad A.; Snipen, Lars; Lagesen, Karin; Hallin, Peter F.; Newell, Diane G.; Toszeghy, Monique; Ridley, Anne; Manning, Georgina; Ussery, David W.

    2010-01-01

    Campylobacter jejuni strain M1 (laboratory designation 99/308) is a rarely documented case of direct transmission of C. jejuni from chicken to a person, resulting in enteritis. We have sequenced the genome of C. jejuni strain M1, and compared this to 12 other C. jejuni sequenced genomes currently publicly available. Compared to these, M1 is closest to strain 81116. Based on the 13 genome sequences, we have identified the C. jejuni pan-genome, as well as the core genome, the auxiliary genes, and genes unique between strains M1 and 81116. The pan-genome contains 2,427 gene families, whilst the core genome comprised 1,295 gene families, or about two-thirds of the gene content of the average of the sequenced C. jejuni genomes. Various comparison and visualization tools were applied to the 13 C. jejuni genome sequences, including a species pan- and core genome plot, a BLAST Matrix and a BLAST Atlas. Trees based on 16S rRNA sequences and on the total gene families in each genome are presented. The findings are discussed in the background of the proven virulence potential of M1. PMID:20865039

  17. Anatomy of a Discovery: M1 and M2 Macrophages

    PubMed Central

    Mills, Charles Dudley

    2015-01-01

    M1 and M2 macrophage-type responses kill or repair in vivo. The unique ability of macrophages to make these polar opposite type of responses provides primary host protection and maintains tissue homeostasis throughout the animal kingdom. In humans and other higher animals, M1 and M2-type macrophage responses also initiate and direct T cells/adaptive immunity to provide additional protection such as Th1 (cytotoxic) or Th2 (antibody-mediated) type responses. Hence, macrophages were renamed M1 and M2 to indicate the central role of macrophages/innate immunity in immune systems. These findings indicate that the long held notion that adaptive immunity controls innate immunity was backward: a sea change in understanding how immune responses occur. The clinical impact of M1/kill and M2/repair responses is immense playing pivotal roles in curing (or causing) many diseases including infections, cancer, autoimmunity, and atherosclerosis. How M1/M2 came to be is an interesting story that, like life, involved Direction, Determination, Discouragement, and Discovery. PMID:25999950

  18. Influence of extracellular zinc on M1 microglial activation

    PubMed Central

    Higashi, Youichirou; Aratake, Takaaki; Shimizu, Shogo; Shimizu, Takahiro; Nakamura, Kumiko; Tsuda, Masayuki; Yawata, Toshio; Ueba, Tetuya; Saito, Motoaki

    2017-01-01

    Extracellular zinc, which is released from hippocampal neurons in response to brain ischaemia, triggers morphological changes in microglia. Under ischaemic conditions, microglia exhibit two opposite activation states (M1 and M2 activation), which may be further regulated by the microenvironment. We examined the role of extracellular zinc on M1 activation of microglia. Pre-treatment of microglia with 30–60 μM ZnCl2 resulted in dose-dependent increases in interleukin-1 beta (IL-1β), interleukin-6 (IL-6), and tumour necrosis factor-alpha (TNFα) secretion when M1 activation was induced by lipopolysaccharide administration. In contrast, the cell-permeable zinc chelator TPEN, the radical scavenger Trolox, and the P2X7 receptor antagonist A438079 suppressed the effects of zinc pre-treatment on microglia. Furthermore, endogenous zinc release was induced by cerebral ischaemia–reperfusion, resulting in increased expression of IL-1β, IL-6, TNFα, and the microglial M1 surface marker CD16/32, without hippocampal neuronal cell loss, in addition to impairments in object recognition memory. However, these effects were suppressed by the zinc chelator CaEDTA. These findings suggest that extracellular zinc may prime microglia to enhance production of pro-inflammatory cytokines via P2X7 receptor activation followed by reactive oxygen species generation in response to stimuli that trigger M1 activation, and that these inflammatory processes may result in deficits in object recognition memory. PMID:28240322

  19. Incipient speciation with biased gene flow between two lineages of the Western Diamondback Rattlesnake (Crotalus atrox).

    PubMed

    Schield, Drew R; Card, Daren C; Adams, Richard H; Jezkova, Tereza; Reyes-Velasco, Jacobo; Proctor, F Nicole; Spencer, Carol L; Herrmann, Hans-Werner; Mackessy, Stephen P; Castoe, Todd A

    2015-02-01

    We used mitochondrial DNA sequence data from 151 individuals to estimate population genetic structure across the range of the Western Diamondback Rattlesnake (Crotalus atrox), a widely distributed North American pit viper. We also tested hypotheses of population structure using double-digest restriction site associated DNA (ddRADseq) data, incorporating thousands of nuclear genome-wide SNPs from 42 individuals. We found strong mitochondrial support for a deep divergence between eastern and western C. atrox populations, and subsequent intermixing of these populations in the Inter-Pecos region of the United States and Mexico. Our nuclear RADseq data also identify these two distinct lineages of C. atrox, and provide evidence for nuclear admixture of eastern and western alleles across a broad geographic region. We identified contrasting patterns of mitochondrial and nuclear genetic variation across this genetic fusion zone that indicate partially restricted patterns of gene flow, which may be due to either pre- or post-zygotic isolating mechanisms. The failure of these two lineages to maintain complete genetic isolation, and evidence for partially-restricted gene flow, imply that these lineages were in the early stages of speciation prior to secondary contact.

  20. Theory and Practice of Lineage Tracing.

    PubMed

    Hsu, Ya-Chieh

    2015-11-01

    Lineage tracing is a method that delineates all progeny produced by a single cell or a group of cells. The possibility of performing lineage tracing initiated the field of Developmental Biology and continues to revolutionize Stem Cell Biology. Here, I introduce the principles behind a successful lineage-tracing experiment. In addition, I summarize and compare different methods for conducting lineage tracing and provide examples of how these strategies can be implemented to answer fundamental questions in development and regeneration. The advantages and limitations of each method are also discussed.

  1. The Theory and Practice of Lineage Tracing

    PubMed Central

    Hsu, Ya-Chieh

    2015-01-01

    Lineage tracing is a method that delineates all progeny produced by a single cell or a group of cells. The possibility of performing lineage tracing initiated the field of Developmental Biology, and continues to revolutionize Stem Cell Biology. Here, I introduce the principles behind a successful lineage-tracing experiment. In addition, I summarize and compare different methods for conducting lineage tracing and provide examples of how these strategies can be implemented to answer fundamental questions in development and regeneration. The advantages and limitations of each method are also discussed. PMID:26284340

  2. A new way to build cell lineages

    PubMed Central

    Zhang, Xiuwei

    2017-01-01

    A combination of single-cell techniques and computational analysis enables the simultaneous discovery of cell states, lineage relationships and the genes that control developmental decisions. PMID:28332977

  3. 26 CFR 31.3402(m)-1 - Withholding allowances.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... Collection of Income Tax at Source § 31.3402(m)-1 Withholding allowances. (a) General rule. An employee may... employee must first use these items ((1) through (13) of this paragraph (b)) to eliminate any payment of... is entitled in accordance with the tables and instructions on Form W-4. (f) Special rules—(1)...

  4. Deep Transcriptomic Profiling of M1 Macrophages Lacking Trpc3

    PubMed Central

    Kumarasamy, Sivarajan; Solanki, Sumeet; Atolagbe, Oluwatomisin T.; Joe, Bina; Birnbaumer, Lutz; Vazquez, Guillermo

    2017-01-01

    In previous studies using mice with macrophage-specific loss of TRPC3 we found a significant, selective effect of TRPC3 on the biology of M1, or inflammatory macrophages. Whereas activation of some components of the unfolded protein response and the pro-apoptotic mediators CamkII and Stat1 was impaired in Trpc3-deficient M1 cells, gathering insight about other molecular signatures within macrophages that might be affected by Trpc3 expression requires an alternative approach. In the present study we conducted RNA-seq analysis to interrogate the transcriptome of M1 macrophages derived from mice with macrophage-specific loss of TRPC3 and their littermate controls. We identified 160 significantly differentially expressed genes between the two groups, of which 62 were upregulated and 98 downregulated in control vs. Trpc3-deficient M1 macrophages. Gene ontology analysis revealed enrichment in processes associated to cellular movement and lipid signaling, whereas the enriched Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways included networks for calcium signaling and cell adhesion molecules, among others. This is the first deep transcriptomic analysis of macrophages in the context of Trpc3 deficiency and the data presented constitutes a unique resource to further explore functions of TRPC3 in macrophage biology. PMID:28051144

  5. Concerning the Integral dx/x[superscript m] (1+x)

    ERIC Educational Resources Information Center

    Walters, William; Huber, Michael

    2010-01-01

    Consider the integral dx/x[superscript m] (1+x). In the "CRC Standard Mathematical Tables," this integral can require repeated integral evaluations. Enter this integral into your favourite computer algebra system, and the results may be unrecognizable. In this article, we seek to provide a simpler evaluation for integrals of this form. We state up…

  6. Testing for intraspecific postzygotic isolation between cryptic lineages of Pseudacris crucifer

    PubMed Central

    Stewart, Kathryn A; Lougheed, Stephen C

    2013-01-01

    Phenotypically cryptic lineages appear common in nature, yet little is known about the mechanisms that initiate and/or maintain barriers to gene flow, or how secondary contact between them might influence evolutionary trajectories. The consequences of such contact between diverging lineages depend on hybrid fitness, highlighting the potential for postzygotic isolating barriers to play a role in the origins of biological species. Previous research shows that two cryptic, deeply diverged intraspecific mitochondrial lineages of a North American chorus frog, the spring peeper (Pseudacris crucifer), meet in secondary contact in Southwestern Ontario, Canada. Our study quantified hatching success, tadpole survival, size at metamorphosis, and development time for experimentally generated pure lineage and hybrid tadpoles. Results suggest that lineages differ in tadpole survival and that F1 hybrids may have equal fitness and higher than average mass at metamorphosis compared with pure parental crosses. These findings imply hybrid early life viability may not be the pivotal reproductive isolation barrier helping to maintain lineage boundaries. However, we observed instances of tadpole gigantism, failure to metamorphose, and bent tails in some tadpoles from hybrid families. We also speculate and provide some evidence that apparent advantages or similarities of hybrids compared with pure lineage tadpoles may disappear when tadpoles are raised with competitors of different genetic makeup. This pilot study implies that ecological context and consideration of extrinsic factors may be a key to revealing mechanisms causing negative hybrid fitness during early life stages, a provocative avenue for future investigations on barriers to gene flow among these intraspecific lineages. PMID:24363891

  7. Antidepressant therapies inhibit inflammation and microglial M1-polarization.

    PubMed

    Kalkman, Hans O; Feuerbach, Dominik

    2016-07-01

    Macrophages and their counterparts in the central nervous system, the microglia, detect and subsequently clear microbial pathogens and injured tissue. These phagocytic cells alter and adapt their phenotype depending on their prime activity, i.e., whether they participate in acute defence against pathogenic organisms ('M1'-phenotype) or in clearing damaged tissues and performing repair activities ('M2'-phenotype). Stimulation of pattern recognition receptors by viruses (vaccines), bacterial membrane components (e.g., LPS), alcohol, or long-chain saturated fatty acids promotes M1-polarization. Vaccine or LPS administration to healthy human subjects can result in sickness symptoms and low mood. Alcohol abuse and abdominal obesity are recognized as risk factors for depression. In the M1-polarized form, microglia and macrophages generate reactive oxygen and nitrogen radicals to eradicate microbial pathogens. Inadvertently, also tetrahydrobiopterin (BH4) may become oxidized. This is an irreversible reaction that generates neopterin, a recognized biomarker for depression. BH4 is a critical cofactor for the synthesis of dopamine, noradrenaline, and serotonin, and its loss could explain some of the symptoms of depression. Based on these aspects, the suppression of M1-polarization would limit the inadvertent catabolism of BH4. In the current review, we evaluate the evidence that antidepressant treatments (monoamine reuptake inhibitors, PDE4 inhibitors, lithium, valproate, agomelatine, tianeptine, electroconvulsive shock, and vagus nerve stimulation) inhibit LPS-induced microglia/macrophage M1-polarization. Consequently, we propose that supplementation with BH4 could limit the reduction in central monoamine synthesis and might represent an effective treatment for depressed mood.

  8. Mitochondrial DNA polymorphism in mitochondrial myopathy.

    PubMed

    Holt, I J; Harding, A E; Morgan-Hughes, J A

    1988-05-01

    In order to test the hypothesis that mitochondrial myopathy may be caused by mutation of the mitochondrial (mt) genome, restriction fragment length polymorphism in leucocyte mt DNA has been studied in 38 patients with mitochondrial myopathy, 44 of their unaffected matrilineal relatives, and 35 normal control subjects. Previously unreported mt DNA polymorphisms were identified in both patients and controls. No differences in restriction fragment patterns were observed between affected and unaffected individuals in the same maternal line, and there was no evidence of major deletion of mt DNA in patients. This study provides no positive evidence of mitochondrial inheritance in mitochondrial myopathy, but this has not been excluded.

  9. Low metabolic rates in salamanders are correlated with weak selective constraints on mitochondrial genes.

    PubMed

    Chong, Rebecca A; Mueller, Rachel Lockridge

    2013-03-01

    Mitochondria are the site for the citric acid cycle and oxidative phosphorylation (OXPHOS), the final steps of ATP synthesis via cellular respiration. Each mitochondrion contains its own genome; in vertebrates, this is a small, circular DNA molecule that encodes 13 subunits of the multiprotein OXPHOS electron transport complexes. Vertebrate lineages vary dramatically in metabolic rates; thus, functional constraints on mitochondrial-encoded proteins likely differ, potentially impacting mitochondrial genome evolution. Here, we examine mitochondrial genome evolution in salamanders, which have the lowest metabolic requirements among tetrapods. We show that salamanders experience weaker purifying selection on protein-coding sequences than do frogs, a comparable amphibian clade with higher metabolic rates. In contrast, we find no evidence for weaker selection against mitochondrial genome expansion in salamanders. Together, these results suggest that different aspects of mitochondrial genome evolution (i.e., nucleotide substitution, accumulation of noncoding sequences) are differently affected by metabolic variation across tetrapod lineages.

  10. Independent origins of Indian caste and tribal paternal lineages.

    PubMed

    Cordaux, Richard; Aunger, Robert; Bentley, Gillian; Nasidze, Ivane; Sirajuddin, S M; Stoneking, Mark

    2004-02-03

    The origins of the nearly one billion people inhabiting the Indian subcontinent and following the customs of the Hindu caste system are controversial: are they largely derived from Indian local populations (i.e. tribal groups) or from recent immigrants to India? Archaeological and linguistic evidence support the latter hypothesis, whereas recent genetic data seem to favor the former hypothesis. Here, we analyze the most extensive dataset of Indian caste and tribal Y chromosomes to date. We find that caste and tribal groups differ significantly in their haplogroup frequency distributions; caste groups are homogeneous for Y chromosome variation and more closely related to each other and to central Asian groups than to Indian tribal or any other Eurasian groups. We conclude that paternal lineages of Indian caste groups are primarily descended from Indo-European speakers who migrated from central Asia approximately 3,500 years ago. Conversely, paternal lineages of tribal groups are predominantly derived from the original Indian gene pool. We also provide evidence for bidirectional male gene flow between caste and tribal groups. In comparison, caste and tribal groups are homogeneous with respect to mitochondrial DNA variation, which may reflect the sociocultural characteristics of the Indian caste society.

  11. Accelerated mutation accumulation in asexual lineages of a freshwater snail.

    PubMed

    Neiman, Maurine; Hehman, Gery; Miller, Joseph T; Logsdon, John M; Taylor, Douglas R

    2010-04-01

    Sexual reproduction is both extremely costly and widespread relative to asexual reproduction, meaning that it must also confer profound advantages in order to persist. One theorized benefit of sex is that it facilitates the clearance of harmful mutations, which would accumulate more rapidly in the absence of recombination. The extent to which ineffective purifying selection and mutation accumulation are direct consequences of asexuality and whether the accelerated buildup of harmful mutations in asexuals can occur rapidly enough to maintain sex within natural populations, however, remain as open questions. We addressed key components of these questions by estimating the rate of mutation accumulation in the mitochondrial genomes of multiple sexual and asexual representatives of Potamopyrgus antipodarum, a New Zealand snail characterized by mixed sexual/asexual populations. We found that increased mutation accumulation is associated with asexuality and occurs rapidly enough to be detected in recently derived asexual lineages of P. antipodarum. Our results demonstrate that increased mutation accumulation in asexuals can differentially affect coexisting and ecologically similar sexual and asexual lineages. The accelerated rate of mutation accumulation observed in asexual P. antipodarum provides some of the most direct evidence to date for a link between asexuality and mutation accumulation and implies that mutational buildup could be rapid enough to contribute to the short-term evolutionary mechanisms that favor sexual reproduction.

  12. Mutation hot spots in mammalian mitochondrial DNA.

    PubMed

    Galtier, Nicolas; Enard, David; Radondy, Yoan; Bazin, Eric; Belkhir, Khalid

    2006-02-01

    Animal mitochondrial DNA is characterized by a remarkably high level of within-species homoplasy, that is, phylogenetic incongruence between sites of the molecule. Several investigators have invoked recombination to explain it, challenging the dogma of maternal, clonal mitochondrial inheritance in animals. Alternatively, a high level of homoplasy could be explained by the existence of mutation hot spots. By using an exhaustive mammalian data set, we test the hot spot hypothesis by comparing patterns of site-specific polymorphism and divergence in several groups of closely related species, including hominids. We detect significant co-occurrence of synonymous polymorphisms among closely related species in various mammalian groups, and a correlation between the site-specific levels of variability within humans (on one hand) and between Hominoidea species (on the other hand), indicating that mutation hot spots actually exist in mammalian mitochondrial coding regions. The whole data, however, cannot be explained by a simple mutation hot spots model. Rather, we show that the site-specific mutation rate quickly varies in time, so that the same sites are not hypermutable in distinct lineages. This study provides a plausible mutation model that potentially accounts for the peculiar distribution of mitochondrial sequence variation in mammals without the need for invoking recombination. It also gives hints about the proximal causes of mitochondrial site-specific hypermutability in humans.

  13. Two Mitochondrial Barcodes for one Biological Species: The Case of European Kuhl's Pipistrelles (Chiroptera)

    PubMed Central

    Andriollo, Tommy; Naciri, Yamama; Ruedi, Manuel

    2015-01-01

    The Kuhl’s pipistrelle (Pipistrellus kuhlii) is a Western Palaearctic species of bat that exhibits several deeply divergent mitochondrial lineages across its range. These lineages could represent cryptic species or merely ancient polymorphism, but no nuclear markers have been studied so far to properly assess the taxonomic status of these lineages. We examined here two lineages occurring in Western Europe, and used both mitochondrial and nuclear markers to measure degrees of genetic isolation between bats carrying them. The sampling focused on an area of strict lineage sympatry in Switzerland but also included bats from further south, in North Africa. All individuals were barcoded for the COI gene to identify their mitochondrial lineages and five highly polymorphic microsatellite loci were used to cluster them according to their nuclear genotypes. Despite this low number of nuclear markers, all North African nuclear genotypes were grouped in a highly distinct subpopulation when compared with European samples sharing the same mitochondrial barcodes. The reverse situation prevailed in Switzerland where bats carrying distinct barcodes had similar nuclear genotypes. There was a weak east/west nuclear structure of populations, but this was independent of mitochondrial lineages as bats carrying either variant were completely admixed. Thus, the divergent mitochondrial barcodes present in Western Europe do not represent cryptic species, but are part of a single biological species. We argue that these distinct barcodes evolved in allopatry and came recently into secondary contact in an area of admixture north of the Alps. Historical records from this area and molecular dating support such a recent bipolar spatial expansion. These results also highlight the need for using appropriate markers before claiming the existence of cryptic species based on highly divergent barcodes. PMID:26241944

  14. Mirror therapy activates outside of cerebellum and ipsilateral M1.

    PubMed

    Shinoura, Nobusada; Suzuki, Yuichi; Watanabe, Yasuko; Yamada, Ryozi; Tabei, Yusuke; Saito, Kuniaki; Yagi, Kazuo

    2008-01-01

    Mirror therapy is effective in the rehabilitation of patients with hemiparesis, but its mechanism is not clear. In this study, a patient with brain tumor (patient 1) who underwent mirror therapy after surgery and showed drastic recovery of hand paresis, a patient with visual memory disturbance (patient 2), and five normal volunteers performed tasks related to mirror therapy in fMRI study. In patient 1 and all normal volunteers, right and left hand clenching with looking at a mirror (eye open) activated outside of cerebellum, while right and left hands clenching with eye closed activated inside of cerebellum. In patient 2, mirror therapy did not activate outside of cerebellum. In patient 1, and 3 out of 5 normal volunteers, the area of right (affected) M1 activated by right and left hands clenching with eye open was more than that by right and left hands clenching with eye closed, and that right M1 was activated by right hand clenching with eye open. In conclusion, mirror therapy facilitate the paresis of patients by activating ipsilateral M1 and outside of cerebellum, which is possibly related to visual memory function.

  15. Flux-driven algebraic damping of m = 1 diocotron mode

    NASA Astrophysics Data System (ADS)

    Chim, Chi Yung; O'Neil, Thomas M.

    2016-07-01

    Recent experiments with pure electron plasmas in a Malmberg-Penning trap have observed the algebraic damping of m = 1 diocotron modes. Transport due to small field asymmetries produces a low density halo of electrons moving radially outward from the plasma core, and the mode damping begins when the halo reaches the resonant radius r = Rw at the wall of the trap. The damping rate is proportional to the flux of halo particles through the resonant layer. The damping is related to, but distinct from, spatial Landau damping, in which a linear wave-particle resonance produces exponential damping. This paper explains with analytic theory the new algebraic damping due to particle transport by both mobility and diffusion. As electrons are swept around the "cat's eye" orbits of the resonant wave-particle interaction, they form a dipole (m = 1) density distribution. From this distribution, the electric field component perpendicular to the core displacement produces E × B-drift of the core back to the axis, that is, damps the m = 1 mode. The parallel component produces drift in the azimuthal direction, that is, causes a shift in the mode frequency.

  16. Flux-driven algebraic damping of m = 1 diocotron mode

    NASA Astrophysics Data System (ADS)

    Chim, Chi Yung; O'Neil, Thomas

    2015-11-01

    Recent experiments with pure electron plasmas in a Malmberg-Penning trap have observed the algebraic damping of m = 1 diocotron modes. Transport due to small field asymmetries produce a low density halo of electrons moving radially outward from the plasma core, and the mode damping begins when the halo reaches the resonant radius rres, where f = mfE × B (rres) . The damping rate is proportional to the flux of halo particles through the resonant layer. The damping is related to, but distinct from spatial Landau damping, in which a linear wave-particle resonance produces exponential damping. This poster explains with analytic theory and simulations the new algebraic damping due to both mobility and diffusive fluxes. As electrons are swept around the ``cat's eye'' orbits of resonant wave-particle interaction, they form a dipole (m = 1) density distribution, and the electric field from this distribution produces an E × B drift of the core back to the axis, i.e. damps the m = 1 mode. Supported by National Science Foundation Grant PHY-1414570.

  17. Phylogeny and evolution of Digitulati ground beetles (Coleoptera, Carabidae) inferred from mitochondrial ND5 gene sequences.

    PubMed

    Su, Zhi-Hui; Imura, Yûki; Okamoto, Munehiro; Kim, Choong-Gon; Zhou, Hong-Zhang; Paik, Jong-Cheol; Osawa, Syozo

    2004-01-01

    Genealogical trees have been constructed using mitochondrial ND5 gene sequences of 87 specimens consisting of 32 species which have been believed to belong to the division Digitulati (one of the lineages of the subtribe Carabina) of the world. There have been recognized six lineages, which are well separated from each other. Each lineage contains the following genus: (1) the lineage A: Ohomopterus from Japan; (2) the lineage B: Isiocarabus from eastern Eurasian Continent; (3) the lineage C: Carabus from China which are further subdivided into three sublineages; (4) the lineage D: Carabus from USA; (5) the lineage E: Carabus from the Eurasian Continent, Japan and North America; and (6) the lineage F: Eucarabus from the Eurasian Continent. Additionally, the genus Acrocarabus which had been treated as a constituent of the division Archicarabomorphi has been recognized to be the 7th lineage of the division Digitulati from the ND5 genealogical analysis as well as morphology. These lineages are assumed to have radiated within a short period and are largely linked to their geographic distribution.

  18. Evolution of mitochondrial gene order in Annelida.

    PubMed

    Weigert, Anne; Golombek, Anja; Gerth, Michael; Schwarz, Francine; Struck, Torsten H; Bleidorn, Christoph

    2016-01-01

    Annelida is a highly diverse animal group with over 21,000 described species. As part of Lophotrochozoa, the vast majority of annelids are currently classified into two groups: Errantia and Sedentaria, together forming Pleistoannelida. Besides these taxa, Sipuncula, Amphinomidae, Chaetopteridae, Oweniidae and Magelonidae can be found branching at the base of the tree. Comparisons of mitochondrial genomes have been used to investigate phylogenetic relationship within animal taxa. Complete annelid mitochondrial genomes are available for some Sedentaria and Errantia and in most cases exhibit a highly conserved gene order. Only two complete genomes have been published from the basal branching lineages and these are restricted to Sipuncula. We describe the first complete mitochondrial genome sequences for all other basal branching annelid families: Owenia fusiformis (Oweniidae), Magelona mirabilis (Magelonidae), Eurythoe complanata (Amphinomidae), Chaetopterus variopedatus and Phyllochaetopterus sp. (Chaetopteridae). The mitochondrial gene order of all these taxa is substantially different from the pattern found in Pleistoannelida. Additionally, we report the first mitochondrial genomes in Annelida that encode genes on both strands. Our findings demonstrate that the supposedly highly conserved mitochondrial gene order suggested for Annelida is restricted to Pleistoannelida, representing the ground pattern of this group. All investigated basal branching annelid taxa show a completely different arrangement of genes than observed in Pleistoannelida. The gene order of protein coding and ribosomal genes in Magelona mirabilis differs only in two transposition events from a putative lophotrochozoan ground pattern and might be the closest to an ancestral annelid pattern. The mitochondrial genomes of Myzostomida show the conserved pattern of Pleistoannelida, thereby supporting their inclusion in this taxon.

  19. A Molecular Assessment of Phylogenetic Relationships and LineageDiversification Within the Family Salamandridae (Amphibia, Caudata)

    SciTech Connect

    Weisrock, David W.; Papenfuss, Theodore J.; Macey, J. Robert; Litvinchuk, Spartak N.; Polymeni, Rosa; Ugurtas, Ismail H.; Zhao, Ermi; Larson, Allan

    2005-08-08

    Phylogenetic relationships among species of the salamanderfamily Salamandridae are investigated using nearly 3000 nucleotide basesof newly reported mitochondrial DNA sequence data from the mtDNA genicregion spanning the genes tRNALeu-COI. This study uses nearlycomprehensive species-level sampling to provide the first completephylogeny for the Salamandridae. Deep phylogenetic relationships amongthe three most divergent lineages in the family Salamandrina terdigitata,a clade comprising the "True" salamanders, and a clade comprising allnewts except S. terdigitata are difficult to resolve. However, mostrelationships within the latter two lineages are resolved with robustlevels of branch support. The genera Euproctus and Triturus arestatistically shown to be nonmonophyletic, instead each contains adiverse set of lineages positioned within the large newt clade. The genusParamesotriton is also resolve as a nonmonophyletic group, with the newlydescribed species P. laoensis constituting a divergent lineage placed ina sister position to clade containing all Pachytriton species and allremaining Paramesotriton species. Sequence divergences between P.laoensis and other Paramesotriton species are as great as those comparingP. laoensis and species of the genera Cynops and Pachytriton. Analyses oflineage diversification across the Salamandridae indicate that, despiteits exceptional diversity, lineage accumulation appears to have beenconstant across time, indicating that it does not represent a truespecies radiation.

  20. Genetic origin, admixture, and asymmetry in maternal and paternal human lineages in Cuba

    PubMed Central

    2008-01-01

    Background Before the arrival of Europeans to Cuba, the island was inhabited by two Native American groups, the Tainos and the Ciboneys. Most of the present archaeological, linguistic and ancient DNA evidence indicates a South American origin for these populations. In colonial times, Cuban Native American people were replaced by European settlers and slaves from Africa. It is still unknown however, to what extent their genetic pool intermingled with and was 'diluted' by the arrival of newcomers. In order to investigate the demographic processes that gave rise to the current Cuban population, we analyzed the hypervariable region I (HVS-I) and five single nucleotide polymorphisms (SNPs) in the mitochondrial DNA (mtDNA) coding region in 245 individuals, and 40 Y-chromosome SNPs in 132 male individuals. Results The Native American contribution to present-day Cubans accounted for 33% of the maternal lineages, whereas Africa and Eurasia contributed 45% and 22% of the lineages, respectively. This Native American substrate in Cuba cannot be traced back to a single origin within the American continent, as previously suggested by ancient DNA analyses. Strikingly, no Native American lineages were found for the Y-chromosome, for which the Eurasian and African contributions were around 80% and 20%, respectively. Conclusion While the ancestral Native American substrate is still appreciable in the maternal lineages, the extensive process of population admixture in Cuba has left no trace of the paternal Native American lineages, mirroring the strong sexual bias in the admixture processes taking place during colonial times. PMID:18644108

  1. Electrochemical immunochip sensor for aflatoxin M1 detection.

    PubMed

    Parker, Charlie O; Lanyon, Yvonne H; Manning, Mary; Arrigan, Damien W M; Tothill, Ibtisam E

    2009-07-01

    An investigation into the fabrication, electrochemical characterization, and development of a microelectrode array (MEA) immunosensor for aflatoxin M(1) is presented in this paper. Gold MEAs (consisting of 35 microsquare electrodes with 20 microm x 20 microm dimensions and edge-to-edge spacing of 200 microm) together with on-chip reference and counter electrodes were fabricated using standard photolithographic methods. The MEAs were then characterized by cyclic voltammetry, and the behavior of the on-chip electrodes were evaluated. The microarray sensors were assessed for their applicability to the development of an immunosensor for the analysis of aflatoxin M(1) directly in milk samples. Following the sensor surface silanization, antibodies were immobilized by cross-linking with 1,4-phenylene diisothiocyanate (PDITC). Surface characterization was conducted by electrochemistry, fluorescence microscopy, scanning electron microscopy (SEM), and atomic force microscopy (AFM). A competitive enzyme linked immunosorbent assay (ELISA) assay format was developed on the microarray electrode surface using the 3,3,5',5'-tetramethylbenzidine dihyrochloride (TMB)/H(2)O(2) electrochemical detection scheme with horseradish peroxidase (HRP) as the enzyme label. The performance of the assay and the microarray sensor were characterized in pure buffer conditions before applying to the milk samples. With the use of this approach, the detection limit for aflatoxin M(1) in milk was estimated to be 8 ng L(-1), with a dynamic detection range of 10-100 ng L(-1), which meets present legislative limits of 50 ng L(-1). The milk interference with the sensor surface was also found to be minimal. These devices show high potential for development of a range of new applications which have previously only been detected using elaborate instrumentation.

  2. Diversification of two lineages of symbiotic Photobacterium.

    PubMed

    Urbanczyk, Henryk; Urbanczyk, Yoshiko; Hayashi, Tetsuya; Ogura, Yoshitoshi

    2013-01-01

    Understanding of processes driving bacterial speciation requires examination of closely related, recently diversified lineages. To gain an insight into diversification of bacteria, we conducted comparative genomic analysis of two lineages of bioluminescent symbionts, Photobacterium leiognathi and 'P. mandapamensis'. The two lineages are evolutionary and ecologically closely related. Based on the methods used in bacterial taxonomy for classification of new species (DNA-DNA hybridization and ANI), genetic relatedness of the two lineages is at a cut-off point for species delineation. In this study, we obtained the whole genome sequence of a representative P. leiognathi strain lrivu.4.1, and compared it to the whole genome sequence of 'P. mandapamensis' svers.1.1. Results of the comparative genomic analysis suggest that P. leiognathi has a more plastic genome and acquired genes horizontally more frequently than 'P. mandapamensis'. We predict that different rates of recombination and gene acquisition contributed to diversification of the two lineages. Analysis of lineage-specific sequences in 25 strains of P. leiognathi and 'P. mandapamensis' found no evidence that bioluminescent symbioses with specific host animals have played a role in diversification of the two lineages.

  3. Diversification of Two Lineages of Symbiotic Photobacterium

    PubMed Central

    Urbanczyk, Henryk; Urbanczyk, Yoshiko; Hayashi, Tetsuya; Ogura, Yoshitoshi

    2013-01-01

    Understanding of processes driving bacterial speciation requires examination of closely related, recently diversified lineages. To gain an insight into diversification of bacteria, we conducted comparative genomic analysis of two lineages of bioluminescent symbionts, Photobacterium leiognathi and ‘P. mandapamensis’. The two lineages are evolutionary and ecologically closely related. Based on the methods used in bacterial taxonomy for classification of new species (DNA-DNA hybridization and ANI), genetic relatedness of the two lineages is at a cut-off point for species delineation. In this study, we obtained the whole genome sequence of a representative P. leiognathi strain lrivu.4.1, and compared it to the whole genome sequence of ‘P. mandapamensis’ svers.1.1. Results of the comparative genomic analysis suggest that P. leiognathi has a more plastic genome and acquired genes horizontally more frequently than ‘P. mandapamensis’. We predict that different rates of recombination and gene acquisition contributed to diversification of the two lineages. Analysis of lineage-specific sequences in 25 strains of P. leiognathi and ‘P. mandapamensis’ found no evidence that bioluminescent symbioses with specific host animals have played a role in diversification of the two lineages. PMID:24349398

  4. Coreceptor gene imprinting governs thymocyte lineage fate

    PubMed Central

    Adoro, Stanley; McCaughtry, Thomas; Erman, Batu; Alag, Amala; Van Laethem, François; Park, Jung-Hyun; Tai, Xuguang; Kimura, Motoko; Wang, Lie; Grinberg, Alex; Kubo, Masato; Bosselut, Remy; Love, Paul; Singer, Alfred

    2012-01-01

    Immature thymocytes are bipotential cells that are signalled during positive selection to become either helper- or cytotoxic-lineage T cells. By tracking expression of lineage determining transcription factors during positive selection, we now report that the Cd8 coreceptor gene locus co-opts any coreceptor protein encoded within it to induce thymocytes to express the cytotoxic-lineage factor Runx3 and to adopt the cytotoxic-lineage fate, findings we refer to as ‘coreceptor gene imprinting'. Specifically, encoding CD4 proteins in the endogenous Cd8 gene locus caused major histocompatibility complex class II-specific thymocytes to express Runx3 during positive selection and to differentiate into CD4+ cytotoxic-lineage T cells. Our findings further indicate that coreceptor gene imprinting derives from the dynamic regulation of specific cis Cd8 gene enhancer elements by positive selection signals in the thymus. Thus, for coreceptor-dependent thymocytes, lineage fate is determined by Cd4 and Cd8 coreceptor gene loci and not by the specificity of T-cell antigen receptor/coreceptor signalling. This study identifies coreceptor gene imprinting as a critical determinant of lineage fate determination in the thymus. PMID:22036949

  5. Asymptotic Distributions of Coalescence Times and Ancestral Lineage Numbers for Populations with Temporally Varying Size

    PubMed Central

    Chen, Hua; Chen, Kun

    2013-01-01

    The distributions of coalescence times and ancestral lineage numbers play an essential role in coalescent modeling and ancestral inference. Both exact distributions of coalescence times and ancestral lineage numbers are expressed as the sum of alternating series, and the terms in the series become numerically intractable for large samples. More computationally attractive are their asymptotic distributions, which were derived in Griffiths (1984) for populations with constant size. In this article, we derive the asymptotic distributions of coalescence times and ancestral lineage numbers for populations with temporally varying size. For a sample of size n, denote by Tm the mth coalescent time, when m + 1 lineages coalesce into m lineages, and An(t) the number of ancestral lineages at time t back from the current generation. Similar to the results in Griffiths (1984), the number of ancestral lineages, An(t), and the coalescence times, Tm, are asymptotically normal, with the mean and variance of these distributions depending on the population size function, N(t). At the very early stage of the coalescent, when t → 0, the number of coalesced lineages n − An(t) follows a Poisson distribution, and as m → n, n(n−1)Tm/2N(0) follows a gamma distribution. We demonstrate the accuracy of the asymptotic approximations by comparing to both exact distributions and coalescent simulations. Several applications of the theoretical results are also shown: deriving statistics related to the properties of gene genealogies, such as the time to the most recent common ancestor (TMRCA) and the total branch length (TBL) of the genealogy, and deriving the allele frequency spectrum for large genealogies. With the advent of genomic-level sequencing data for large samples, the asymptotic distributions are expected to have wide applications in theoretical and methodological development for population genetic inference. PMID:23666939

  6. Asymptotic distributions of coalescence times and ancestral lineage numbers for populations with temporally varying size.

    PubMed

    Chen, Hua; Chen, Kun

    2013-07-01

    The distributions of coalescence times and ancestral lineage numbers play an essential role in coalescent modeling and ancestral inference. Both exact distributions of coalescence times and ancestral lineage numbers are expressed as the sum of alternating series, and the terms in the series become numerically intractable for large samples. More computationally attractive are their asymptotic distributions, which were derived in Griffiths (1984) for populations with constant size. In this article, we derive the asymptotic distributions of coalescence times and ancestral lineage numbers for populations with temporally varying size. For a sample of size n, denote by Tm the mth coalescent time, when m + 1 lineages coalesce into m lineages, and An(t) the number of ancestral lineages at time t back from the current generation. Similar to the results in Griffiths (1984), the number of ancestral lineages, An(t), and the coalescence times, Tm, are asymptotically normal, with the mean and variance of these distributions depending on the population size function, N(t). At the very early stage of the coalescent, when t → 0, the number of coalesced lineages n - An(t) follows a Poisson distribution, and as m → n, $$n\\left(n-1\\right){T}_{m}/2N\\left(0\\right)$$ follows a gamma distribution. We demonstrate the accuracy of the asymptotic approximations by comparing to both exact distributions and coalescent simulations. Several applications of the theoretical results are also shown: deriving statistics related to the properties of gene genealogies, such as the time to the most recent common ancestor (TMRCA) and the total branch length (TBL) of the genealogy, and deriving the allele frequency spectrum for large genealogies. With the advent of genomic-level sequencing data for large samples, the asymptotic distributions are expected to have wide applications in theoretical and methodological development for population genetic inference.

  7. Mitochondrial inheritance in a mitochondrially mediated disease.

    PubMed

    Egger, J; Wilson, J

    1983-07-21

    Mendelian inheritance involves the transmission to successive generations of DNA contained in genes in the nucleus, but DNA is also contained in mitochondria, where it is believed to be responsible for the encoding of certain mitochondrial enzymes. Since nearly all mitochondrial DNA is maternally transmitted, one might expect a nonmendelian pattern of inheritance in mitochondrial cytopathy, a syndrome in which there are abnormalities in mitochondrial structure and deficiencies in a variety of mitochondrial enzymes. We studied the pedigrees of 6 affected families whose members we had examined personally and of 24 families described in the literature. In 27 families, exclusively maternal transmission occurred; in 3 there was also paternal transmission in one generation. Altogether, 51 mothers but only 3 fathers had transmitted the condition. These results are consistent with mitochondrial transmission of mitochondrial cytopathy; the inheritance and enzyme defects of mitochondrial cytopathy can be considered in the light of recent evidence that subunits of respiratory-enzyme complexes are encoded solely by mitochondrial DNA. The occasional paternal transmission may be explained if certain enzyme subunits that are encoded by nuclear DNA are affected.

  8. The divergence of two independent lineages of an endemic Chinese gecko, Gekko swinhonis, launched by the Qinling orogenic belt.

    PubMed

    Yan, Jie; Wang, Qiuxian; Chang, Qing; Ji, Xiang; Zhou, Kaiya

    2010-06-01

    The genetic structure and demographic history of an endemic Chinese gecko, Gekko swinhonis, were investigated by analysing the mitochondrial cytochrome b gene and 10 microsatellite loci for samples collected from 27 localities. Mitochondrial DNA data provided a detailed distribution of two highly divergent evolutionary lineages, between which the average pairwise distance achieved was 0.14. The geographic division of the two lineages coincided with a plate boundary consisting of the Qinling and Taihang Mts, suggesting a historical vicariant pattern. The orogeny of the Qinling Mts, a dispersal and major climatic barrier of the region, may have launched the independent lineage divergence. Both lineages have experienced recent expansion, and the current sympatric localities comprised the region of contact between the lineages. Individual-based phylogenetic analyses of nucDNA and Bayesian-clustering approaches revealed a deep genetic structure analogous to mtDNA. Incongruence between nucDNA and mtDNA at the individual level at localities outside of the contact region can be explained by the different inheritance patterns and male-biased dispersal in this species. High genetic divergence, long-term isolation and ecological adaptation, as well as the morphological differences, suggest the presence of a cryptic species.

  9. Complete mitochondrial genome and phylogeny of Pleistocene mammoth Mammuthus primigenius.

    PubMed

    Rogaev, Evgeny I; Moliaka, Yuri K; Malyarchuk, Boris A; Kondrashov, Fyodor A; Derenko, Miroslava V; Chumakov, Ilya; Grigorenko, Anastasia P

    2006-03-01

    Phylogenetic relationships between the extinct woolly mammoth (Mammuthus primigenius), and the Asian (Elephas maximus) and African savanna (Loxodonta africana) elephants remain unresolved. Here, we report the sequence of the complete mitochondrial genome (16,842 base pairs) of a woolly mammoth extracted from permafrost-preserved remains from the Pleistocene epoch--the oldest mitochondrial genome sequence determined to date. We demonstrate that well-preserved mitochondrial genome fragments, as long as approximately 1,600-1700 base pairs, can be retrieved from pre-Holocene remains of an extinct species. Phylogenetic reconstruction of the Elephantinae clade suggests that M. primigenius and E. maximus are sister species that diverged soon after their common ancestor split from the L. africana lineage. Low nucleotide diversity found between independently determined mitochondrial genomic sequences of woolly mammoths separated geographically and in time suggests that north-eastern Siberia was occupied by a relatively homogeneous population of M. primigenius throughout the late Pleistocene.

  10. Mitochondrial-nuclear epistasis affects fitness within species but does not contribute to fixed incompatibilities between species of Drosophila

    PubMed Central

    Montooth, Kristi L.; Meiklejohn, Colin D.; Abt, Dawn N.; Rand, David M.

    2010-01-01

    Efficient mitochondrial function requires physical interactions between the proteins encoded by the mitochondrial and nuclear genomes. Co-evolution between these genomes may result in the accumulation of incompatibilities between divergent lineages. We test whether mitochondrial-nuclear incompatibilities have accumulated within the Drosophila melanogaster species subgroup by combining divergent mitochondrial and nuclear lineages and quantifying the effects on relative fitness. Precise placement of nine mtDNAs from D. melanogaster, D. simulans and D. mauritiana into two D. melanogaster nuclear genetic backgrounds reveals significant mitochondrial-nuclear epistasis affecting fitness in females. Combining the mitochondrial genomes with three different D. melanogaster X chromosomes reveals significant epistasis for male fitness between X-linked and mitochondrial variation. However, we find no evidence that the more than 500 fixed differences between the mitochondrial genomes of D. melanogaster and the D. simulans species complex are incompatible with the D. melanogaster nuclear genome. Rather, the interactions of largest effect occur between mitochondrial and nuclear polymorphisms that segregate within species of the D. melanogaster species subgroup. We propose that a low mitochondrial substitution rate, resulting from a low mutation rate and/or efficient purifying selection, precludes the accumulation of mitochondrial-nuclear incompatibilities among these Drosophila species. PMID:20624176

  11. Isolation of Mitochondrial Ribosomes.

    PubMed

    Carroll, Adam J

    2017-01-01

    Translation of mitochondrial encoded mRNAs by mitochondrial ribosomes is thought to play a major role in regulating the expression of mitochondrial proteins. However, the structure and function of plant mitochondrial ribosomes remains poorly understood. To study mitochondrial ribosomes, it is necessary to separate them from plastidic and cytosolic ribosomes that are generally present at much higher concentrations. Here, a straight forward protocol for the preparation of fractions highly enriched in mitochondrial ribosomes from plant cells is described. The method begins with purification of mitochondria followed by mitochondrial lysis and ultracentrifugation of released ribosomes through sucrose cushions and gradients. Dark-grown Arabidopsis cells were used in this example because of the ease with which good yields of pure mitochondria can be obtained from them. However, the steps for isolation of ribosomes from mitochondria could be applied to mitochondria obtained from other sources. Proteomic analyses of resulting fractions have confirmed strong enrichment of mitochondrial ribosomal proteins.

  12. Mitochondrial biogenesis and turnover.

    PubMed

    Diaz, Francisca; Moraes, Carlos T

    2008-07-01

    Mitochondrial biogenesis is a complex process involving the coordinated expression of mitochondrial and nuclear genes, the import of the products of the latter into the organelle and turnover. The mechanisms associated with these events have been intensively studied in the last 20 years and our understanding of their details is much improved. Mitochondrial biogenesis requires the participation of calcium signaling that activates a series of calcium-dependent protein kinases that in turn activate transcription factors and coactivators such as PGC-1alpha that regulates the expression of genes coding for mitochondrial components. In addition, mitochondrial biogenesis involves the balance of mitochondrial fission-fusion. Mitochondrial malfunction or defects in any of the many pathways involved in mitochondrial biogenesis can lead to degenerative diseases and possibly play an important part in aging.

  13. Pectocin M1 (PcaM1) Inhibits Escherichia coli Cell Growth and Peptidoglycan Biosynthesis through Periplasmic Expression

    PubMed Central

    Chérier, Dimitri; Giacomucci, Sean; Patin, Delphine; Bouhss, Ahmed; Touzé, Thierry; Blanot, Didier; Mengin-Lecreulx, Dominique; Barreteau, Hélène

    2016-01-01

    Colicins are bacterial toxins produced by some Escherichia coli strains. They exhibit either enzymatic or pore-forming activity towards a very limited number of bacterial species, due to the high specificity of their reception and translocation systems. Yet, we succeeded in making the colicin M homologue from Pectobacterium carotovorum, pectocin M1 (PcaM1), capable of inhibiting E. coli cell growth by bypassing these reception and translocation steps. This goal was achieved through periplasmic expression of this pectocin. Indeed, when appropriately addressed to the periplasm of E. coli, this pectocin could exert its deleterious effects, i.e., the enzymatic degradation of the peptidoglycan lipid II precursor, which resulted in the arrest of the biosynthesis of this essential cell wall polymer, dramatic morphological changes and, ultimately, cell lysis. This result leads to the conclusion that colicin M and its various orthologues constitute powerful antibacterial molecules able to kill any kind of bacterium, once they can reach their lipid II target. They thus have to be seriously considered as promising alternatives to antibiotics. PMID:27740593

  14. Pectocin M1 (PcaM1) Inhibits Escherichia coli Cell Growth and Peptidoglycan Biosynthesis through Periplasmic Expression.

    PubMed

    Chérier, Dimitri; Giacomucci, Sean; Patin, Delphine; Bouhss, Ahmed; Touzé, Thierry; Blanot, Didier; Mengin-Lecreulx, Dominique; Barreteau, Hélène

    2016-10-08

    Colicins are bacterial toxins produced by some Escherichia coli strains. They exhibit either enzymatic or pore-forming activity towards a very limited number of bacterial species, due to the high specificity of their reception and translocation systems. Yet, we succeeded in making the colicin M homologue from Pectobacterium carotovorum, pectocin M1 (PcaM1), capable of inhibiting E. coli cell growth by bypassing these reception and translocation steps. This goal was achieved through periplasmic expression of this pectocin. Indeed, when appropriately addressed to the periplasm of E. coli, this pectocin could exert its deleterious effects, i.e., the enzymatic degradation of the peptidoglycan lipid II precursor, which resulted in the arrest of the biosynthesis of this essential cell wall polymer, dramatic morphological changes and, ultimately, cell lysis. This result leads to the conclusion that colicin M and its various orthologues constitute powerful antibacterial molecules able to kill any kind of bacterium, once they can reach their lipid II target. They thus have to be seriously considered as promising alternatives to antibiotics.

  15. Building a lineage from single cells: genetic techniques for cell lineage tracking.

    PubMed

    Woodworth, Mollie B; Girskis, Kelly M; Walsh, Christopher A

    2017-04-01

    Resolving lineage relationships between cells in an organism is a fundamental interest of developmental biology. Furthermore, investigating lineage can drive understanding of pathological states, including cancer, as well as understanding of developmental pathways that are amenable to manipulation by directed differentiation. Although lineage tracking through the injection of retroviral libraries has long been the state of the art, a recent explosion of methodological advances in exogenous labelling and single-cell sequencing have enabled lineage tracking at larger scales, in more detail, and in a wider range of species than was previously considered possible. In this Review, we discuss these techniques for cell lineage tracking, with attention both to those that trace lineage forwards from experimental labelling, and those that trace backwards across the life history of an organism.

  16. Inferring Kangaroo Phylogeny from Incongruent Nuclear and Mitochondrial Genes

    PubMed Central

    Phillips, Matthew J.; Haouchar, Dalal; Pratt, Renae C.; Gibb, Gillian C.; Bunce, Michael

    2013-01-01

    The marsupial genus Macropus includes three subgenera, the familiar large grazing kangaroos and wallaroos of M. (Macropus) and M. (Osphranter), as well as the smaller mixed grazing/browsing wallabies of M. (Notamacropus). A recent study of five concatenated nuclear genes recommended subsuming the predominantly browsing Wallabia bicolor (swamp wallaby) into Macropus. To further examine this proposal we sequenced partial mitochondrial genomes for kangaroos and wallabies. These sequences strongly favour the morphological placement of W. bicolor as sister to Macropus, although place M. irma (black-gloved wallaby) within M. (Osphranter) rather than as expected, with M. (Notamacropus). Species tree estimation from separately analysed mitochondrial and nuclear genes favours retaining Macropus and Wallabia as separate genera. A simulation study finds that incomplete lineage sorting among nuclear genes is a plausible explanation for incongruence with the mitochondrial placement of W. bicolor, while mitochondrial introgression from a wallaroo into M. irma is the deepest such event identified in marsupials. Similar such coalescent simulations for interpreting gene tree conflicts will increase in both relevance and statistical power as species-level phylogenetics enters the genomic age. Ecological considerations in turn, hint at a role for selection in accelerating the fixation of introgressed or incompletely sorted loci. More generally the inclusion of the mitochondrial sequences substantially enhanced phylogenetic resolution. However, we caution that the evolutionary dynamics that enhance mitochondria as speciation indicators in the presence of incomplete lineage sorting may also render them especially susceptible to introgression. PMID:23451266

  17. Inferring kangaroo phylogeny from incongruent nuclear and mitochondrial genes.

    PubMed

    Phillips, Matthew J; Haouchar, Dalal; Pratt, Renae C; Gibb, Gillian C; Bunce, Michael

    2013-01-01

    The marsupial genus Macropus includes three subgenera, the familiar large grazing kangaroos and wallaroos of M. (Macropus) and M. (Osphranter), as well as the smaller mixed grazing/browsing wallabies of M. (Notamacropus). A recent study of five concatenated nuclear genes recommended subsuming the predominantly browsing Wallabia bicolor (swamp wallaby) into Macropus. To further examine this proposal we sequenced partial mitochondrial genomes for kangaroos and wallabies. These sequences strongly favour the morphological placement of W. bicolor as sister to Macropus, although place M. irma (black-gloved wallaby) within M. (Osphranter) rather than as expected, with M. (Notamacropus). Species tree estimation from separately analysed mitochondrial and nuclear genes favours retaining Macropus and Wallabia as separate genera. A simulation study finds that incomplete lineage sorting among nuclear genes is a plausible explanation for incongruence with the mitochondrial placement of W. bicolor, while mitochondrial introgression from a wallaroo into M. irma is the deepest such event identified in marsupials. Similar such coalescent simulations for interpreting gene tree conflicts will increase in both relevance and statistical power as species-level phylogenetics enters the genomic age. Ecological considerations in turn, hint at a role for selection in accelerating the fixation of introgressed or incompletely sorted loci. More generally the inclusion of the mitochondrial sequences substantially enhanced phylogenetic resolution. However, we caution that the evolutionary dynamics that enhance mitochondria as speciation indicators in the presence of incomplete lineage sorting may also render them especially susceptible to introgression.

  18. Mosaic origin of the mitochondrial proteome.

    PubMed

    Szklarczyk, Radek; Huynen, Martijn A

    2010-11-01

    Although the origin of mitochondria from the endosymbiosis of an α-proteobacterium is well established, the nature of the host cell, the metabolic complexity of the endosymbiont and the subsequent evolution of the proto-mitochondrion into all its current appearances are still the subject of discovery and sometimes debate. Here we review what has been inferred about the original composition and subsequent evolution of the mitochondrial proteome and essential mitochondrial systems. The evolutionary mosaic that currently constitutes mitochondrial proteomes contains (i) endosymbiotic proteins (15-45%), (ii) proteins without detectable orthologs outside the eukaryotic lineage (40%), and (iii) proteins that are derived from non-proteobacterial Bacteria, Bacteriophages and Archaea (15%, specifically multiple tRNA-modification proteins). Protein complexes are of endosymbiotic origin, but have greatly expanded with novel eukaryotic proteins; in contrast to mitochondrial enzymes that are both of proteobacterial and non-proteobacterial origin. This disparity is consistent with the complexity hypothesis, which argues that proteins that are a part of large, multi-subunit complexes are unlikely to undergo horizontal gene transfer. We observe that they neither change their subcellular compartments in the course of evolution, even when their genes do.

  19. Rampant Nuclear Insertion of mtDNA across Diverse Lineages within Orthoptera (Insecta)

    PubMed Central

    Song, Hojun; Moulton, Matthew J.; Whiting, Michael F.

    2014-01-01

    Nuclear mitochondrial pseudogenes (numts) are non-functional fragments of mtDNA inserted into the nuclear genome. Numts are prevalent across eukaryotes and a positive correlation is known to exist between the number of numts and the genome size. Most numt surveys have relied on model organisms with fully sequenced nuclear genomes, but such analyses have limited utilities for making a generalization about the patterns of numt accumulation for any given clade. Among insects, the order Orthoptera is known to have the largest nuclear genome and it is also reported to include several species with a large number of numts. In this study, we use Orthoptera as a case study to document the diversity and abundance of numts by generating numts of three mitochondrial loci across 28 orthopteran families, representing the phylogenetic diversity of the order. We discover that numts are rampant in all lineages, but there is no discernable and consistent pattern of numt accumulation among different lineages. Likewise, we do not find any evidence that a certain mitochondrial gene is more prone to nuclear insertion than others. We also find that numt insertion must have occurred continuously and frequently throughout the diversification of Orthoptera. Although most numts are the result of recent nuclear insertion, we find evidence of very ancient numt insertion shared by highly divergent families dating back to the Jurassic period. Finally, we discuss several factors contributing to the extreme prevalence of numts in Orthoptera and highlight the importance of exploring the utility of numts in evolutionary studies. PMID:25333882

  20. Rampant nuclear insertion of mtDNA across diverse lineages within Orthoptera (Insecta).

    PubMed

    Song, Hojun; Moulton, Matthew J; Whiting, Michael F

    2014-01-01

    Nuclear mitochondrial pseudogenes (numts) are non-functional fragments of mtDNA inserted into the nuclear genome. Numts are prevalent across eukaryotes and a positive correlation is known to exist between the number of numts and the genome size. Most numt surveys have relied on model organisms with fully sequenced nuclear genomes, but such analyses have limited utilities for making a generalization about the patterns of numt accumulation for any given clade. Among insects, the order Orthoptera is known to have the largest nuclear genome and it is also reported to include several species with a large number of numts. In this study, we use Orthoptera as a case study to document the diversity and abundance of numts by generating numts of three mitochondrial loci across 28 orthopteran families, representing the phylogenetic diversity of the order. We discover that numts are rampant in all lineages, but there is no discernable and consistent pattern of numt accumulation among different lineages. Likewise, we do not find any evidence that a certain mitochondrial gene is more prone to nuclear insertion than others. We also find that numt insertion must have occurred continuously and frequently throughout the diversification of Orthoptera. Although most numts are the result of recent nuclear insertion, we find evidence of very ancient numt insertion shared by highly divergent families dating back to the Jurassic period. Finally, we discuss several factors contributing to the extreme prevalence of numts in Orthoptera and highlight the importance of exploring the utility of numts in evolutionary studies.

  1. Mitochondrial DNA evidence of southward migration of Manchus in China.

    PubMed

    Zhao, Yong-Bin; Sun, Wen-Yi; Zhan, Yang; Di, Wang; Yu, Chang-Chun

    2011-01-01

    The Northeast area of China is a cross region between East Asia and Siberia. Although five populations from this area have been studied in maternal lineage, little is known about the genetics of other populations. In this study, forty-seven Manchu individuals were analyzed using a mitochondrial DNA marker, and fourteen mitochondrial DNA haplogroups, the representative haplogroups of east Eurasian, were identified. All analyses showed that Manchu were close to the neighboring populations such as Mongolian, Korean and northern Han Chinese, and were far from the other populations who lived in the cradle of Manchu, suggesting that the Manchu integrated gradually with natives following its southward migration.

  2. Extensive Mitochondrial mRNA Editing and Unusual Mitochondrial Genome Organization in Calcaronean Sponges.

    PubMed

    Lavrov, Dennis V; Adamski, Marcin; Chevaldonné, Pierre; Adamska, Maja

    2016-01-11

    One of the unusual features of DNA-containing organelles in general and mitochondria in particular is the frequent occurrence of RNA editing [1]. The term "RNA editing" refers to a variety of mechanistically unrelated biochemical processes that alter RNA sequence during or after transcription [2]. The editing can be insertional, deletional, or substitutional and has been found in all major types of RNAs [3, 4]. Although mitochondrial mRNA editing is widespread in some eukaryotic lineages [5-7], it is rare in animals, with reported cases limited both in their scope and in phylogenetic distribution [8-11] (see also [12]). While analyzing genomic data from calcaronean sponges Sycon ciliatum and Leucosolenia complicata, we were perplexed by the lack of recognizable mitochondrial coding sequences. Comparison of genomic and transcriptomic data from these species revealed the presence of mitochondrial cryptogenes whose transcripts undergo extensive editing. This editing consisted of single or double uridylate (U) insertions in pre-existing short poly(U) tracts. Subsequent analysis revealed the presence of similar editing in Sycon coactum and the loss of editing in Petrobiona massiliana, a hypercalcified calcaronean sponge. In addition, mitochondrial genomes of at least some calcaronean sponges were found to have a highly unusual architecture, with nearly all genes located on individual and likely linear chromosomes. Phylogenetic analysis of mitochondrial coding sequences revealed accelerated rates of sequence evolution in this group. The latter observation presents a challenge for the mutational-hazard hypothesis [13], which posits that mRNA editing should not occur in lineages with an elevated mutation rate.

  3. Maternal Lineage of Warmblood Mares Contributes to Variation of Gestation Length and Bias of Foal Sex Ratio.

    PubMed

    Kuhl, J; Stock, K F; Wulf, M; Aurich, C

    2015-01-01

    Maternal lineage influences performance traits in horses. This is probably caused by differences in mitochondrial DNA (mtDNA) transferred to the offspring via the oocyte. In the present study, we investigated if reproductive traits with high variability-gestation length and fetal sex ratio-are influenced by maternal lineage. Data from 142 Warmblood mares from the Brandenburg State Stud at Neustadt (Dosse), Germany, were available for the study. Mares were grouped according to their maternal lineage. Influences on the reproduction parameters gestation length and sex ratio of offspring were analyzed by simple and multiple analyses of variance. A total of 786 cases were included. From the 142 mares, 119 were assigned to six maternal lineages with n≥10 mares per lineage, and 23 mares belonged to smaller maternal lineages. The mean number of live foals produced per mare was 4.6±3.6 (±SD). Live foal rate was 83.5%. Mean gestation length was 338.5±8.9 days (±SD) with a range of 313 to 370 days. Gestation length was affected by maternal lineage (p<0.001). Gestation length was also significantly influenced by the individual mare, age of the mare, year of breeding, month of breeding and sex of the foal (p<0.05). Of the 640 foals born alive at term, 48% were male and 52% female. Mare age group and maternal lineage significantly influenced the sex ratio of the foals (p<0.05). It is concluded that maternal lineage influences reproductive parameters with high variation such as gestation length and foal sex ratio in horses. In young primiparous and aged mares, the percentage of female offspring is higher than the expected 1:1 ratio.

  4. Maternal Lineage of Warmblood Mares Contributes to Variation of Gestation Length and Bias of Foal Sex Ratio

    PubMed Central

    Kuhl, J.; Stock, K. F.; Wulf, M.; Aurich, C.

    2015-01-01

    Maternal lineage influences performance traits in horses. This is probably caused by differences in mitochondrial DNA (mtDNA) transferred to the offspring via the oocyte. In the present study, we investigated if reproductive traits with high variability—gestation length and fetal sex ratio—are influenced by maternal lineage. Data from 142 Warmblood mares from the Brandenburg State Stud at Neustadt (Dosse), Germany, were available for the study. Mares were grouped according to their maternal lineage. Influences on the reproduction parameters gestation length and sex ratio of offspring were analyzed by simple and multiple analyses of variance. A total of 786 cases were included. From the 142 mares, 119 were assigned to six maternal lineages with n≥10 mares per lineage, and 23 mares belonged to smaller maternal lineages. The mean number of live foals produced per mare was 4.6±3.6 (±SD). Live foal rate was 83.5%. Mean gestation length was 338.5±8.9 days (±SD) with a range of 313 to 370 days. Gestation length was affected by maternal lineage (p<0.001). Gestation length was also significantly influenced by the individual mare, age of the mare, year of breeding, month of breeding and sex of the foal (p<0.05). Of the 640 foals born alive at term, 48% were male and 52% female. Mare age group and maternal lineage significantly influenced the sex ratio of the foals (p<0.05). It is concluded that maternal lineage influences reproductive parameters with high variation such as gestation length and foal sex ratio in horses. In young primiparous and aged mares, the percentage of female offspring is higher than the expected 1:1 ratio. PMID:26436555

  5. A cluster of metabolic defects caused by mutation in a mitochondrial tRNA.

    PubMed

    Wilson, Frederick H; Hariri, Ali; Farhi, Anita; Zhao, Hongyu; Petersen, Kitt Falk; Toka, Hakan R; Nelson-Williams, Carol; Raja, Khalid M; Kashgarian, Michael; Shulman, Gerald I; Scheinman, Steven J; Lifton, Richard P

    2004-11-12

    Hypertension and dyslipidemia are risk factors for atherosclerosis and occur together more often than expected by chance. Although this clustering suggests shared causation, unifying factors remain unknown. We describe a large kindred with a syndrome including hypertension, hypercholesterolemia, and hypomagnesemia. Each phenotype is transmitted on the maternal lineage with a pattern indicating mitochondrial inheritance. Analysis of the mitochondrial genome of the maternal lineage identified a homoplasmic mutation substituting cytidine for uridine immediately 5' to the mitochondrial transfer RNA(Ile) anticodon. Uridine at this position is nearly invariate among transfer RNAs because of its role in stabilizing the anticodon loop. Given the known loss of mitochondrial function with aging, these findings may have implications for the common clustering of these metabolic disorders.

  6. Mosaic nature of the mitochondrial proteome: Implications for the origin and evolution of mitochondria.

    PubMed

    Gray, Michael W

    2015-08-18

    Comparative studies of the mitochondrial proteome have identified a conserved core of proteins descended from the α-proteobacterial endosymbiont that gave rise to the mitochondrion and was the source of the mitochondrial genome in contemporary eukaryotes. A surprising result of phylogenetic analyses is the relatively small proportion (10-20%) of the mitochondrial proteome displaying a clear α-proteobacterial ancestry. A large fraction of mitochondrial proteins typically has detectable homologs only in other eukaryotes and is presumed to represent proteins that emerged specifically within eukaryotes. A further significant fraction of the mitochondrial proteome consists of proteins with homologs in prokaryotes, but without a robust phylogenetic signal affiliating them with specific prokaryotic lineages. The presumptive evolutionary source of these proteins is quite different in contending models of mitochondrial origin.

  7. Human Mitochondrial Protein Database

    National Institute of Standards and Technology Data Gateway

    SRD 131 Human Mitochondrial Protein Database (Web, free access)   The Human Mitochondrial Protein Database (HMPDb) provides comprehensive data on mitochondrial and human nuclear encoded proteins involved in mitochondrial biogenesis and function. This database consolidates information from SwissProt, LocusLink, Protein Data Bank (PDB), GenBank, Genome Database (GDB), Online Mendelian Inheritance in Man (OMIM), Human Mitochondrial Genome Database (mtDB), MITOMAP, Neuromuscular Disease Center and Human 2-D PAGE Databases. This database is intended as a tool not only to aid in studying the mitochondrion but in studying the associated diseases.

  8. Mito-nuclear discord in six congeneric lineages of Holarctic ducks (genus Anas).

    PubMed

    Peters, Jeffrey L; Winker, Kevin; Millam, Kendra C; Lavretsky, Philip; Kulikova, Irina; Wilson, Robert E; Zhuravlev, Yuri N; McCracken, Kevin G

    2014-06-01

    Many species have Holarctic distributions that extend across Europe, Asia and North America. Most genetics research on these species has examined only mitochondrial (mt) DNA, which has revealed wide variance in divergence between Old World (OW) and New World (NW) populations, ranging from shallow, unstructured genealogies to deeply divergent lineages. In this study, we sequenced 20 nuclear introns to test for concordant patterns of OW-NW differentiation between mtDNA and nuclear (nu) DNA for six lineages of Holarctic ducks (genus Anas). Genetic differentiation for both marker types varied widely among these lineages (idiosyncratic population histories), but mtDNA and nuDNA divergence within lineages was not significantly correlated. Moreover, compared with the association between mtDNA and nuDNA divergence observed among different species, OW-NW nuDNA differentiation was generally lower than mtDNA divergence, at least for lineages with deeply divergent mtDNA. Furthermore, coalescent estimates indicated significantly higher rates of gene flow for nuDNA than mtDNA for four of the six lineages. Thus, Holarctic ducks show prominent mito-nuclear discord between OW and NW populations, and we reject differences in sorting rates as the sole cause of the within-species discord. Male-mediated intercontinental gene flow is likely a leading contributor to this discord, although selection could also cause increased mtDNA divergence relative to weak nuDNA differentiation. The population genetics of these ducks contribute to growing evidence that mtDNA can be an unreliable indicator of stage of speciation and that more holistic approaches are needed for species delimitation.

  9. Lake Tanganyika—A 'Melting Pot' of Ancient and Young Cichlid Lineages (Teleostei: Cichlidae)?

    PubMed Central

    Weiss, Juliane D.; Cotterill, Fenton P. D.; Schliewen, Ulrich K.

    2015-01-01

    A long history of research focused on the East Africa cichlid radiations (EAR) revealed discrepancies between mtDNA and nuclear phylogenies, suggesting that interspecific hybridisation may have been significant during the radiation of these fishes. The approximately 250 cichlid species of Lake Tanganyika have their roots in a monophyletic African cichlid assemblage, but controversies remain about the precise phylogenetic origin and placement of different lineages and consequently about L. Tanganyika colonization scenarios. 3312 AFLP loci and the mitochondrial ND2 gene were genotyped for 91 species representing almost all major lacustrine and riverine haplotilapiine east African cichlid lineages with a focus on L. Tanganyika endemics. Explicitly testing for the possibility of ancient hybridisation events, a comprehensive phylogenetic network hypothesis is proposed for the origin and diversification of L. Tanganyika cichlids. Inference of discordant phylogenetic signal strongly suggests that the genomes of two endemic L. Tanganyika tribes, Eretmodini and Tropheini, are composed of an ancient mixture of riverine and lacustrine lineages. For the first time a strong monophyly signal of all non-haplochromine mouthbrooding species endemic to L. Tanganyika (“ancient mouthbrooders”) was detected. Further, in the genomes of early diverging L. Tanganyika endemics Trematocarini, Bathybatini, Hemibatini and Boulengerochromis genetic components of other lineages belonging to the East African Radiation appear to be present. In combination with recent palaeo-geological results showing that tectonic activity in the L. Tanganyika region resulted in highly dynamic and heterogeneous landscape evolution over the Neogene and Pleistocene, the novel phylogenetic data render a single lacustrine basin as the geographical cradle of the endemic L. Tanganyika cichlid lineages unlikely. Instead a scenario of a pre-rift origin of several independent L. Tanganyika precursor lineages which

  10. Mitochondrial Diseases and Cardiomyopathies.

    PubMed

    Brunel-Guitton, Catherine; Levtova, Alina; Sasarman, Florin

    2015-11-01

    Mitochondrial cardiomyopathies are clinically and genetically heterogeneous. An integrative approach encompassing clinical, biochemical, and molecular investigations is required to reach a specific diagnosis. In this review we summarize the clinical and genetic aspects of mitochondrial disorders associated with cardiomyopathy, including disorders of oxidative phosphorylation. It also describes groups of disorders that, although not usually classified as mitochondrial disorders, stem from defects in mitochondrial function (eg, disorders of β-oxidation and the carnitine cycle), are associated with secondary mitochondrial impairment (eg, organic acidurias), and are important diagnostically because they are treatable. Current biochemical and molecular techniques for the diagnosis of mitochondrial cardiomyopathies are described, and a diagnostic algorithm is proposed, to help clinicians in their approach to cardiomyopathies in the context of mitochondrial diseases.

  11. Aflatoxin M1 in human breast milk in southeastern Turkey.

    PubMed

    Kılıç Altun, Serap; Gürbüz, Semra; Ayağ, Emin

    2016-12-28

    This study was performed to determine aflatoxin M1 (AFM1) in human breast milk samples collected in Şanlıurfa, located in Southeastern region of Turkey, and to investigate a possible correlation between AFM1 occurrence (frequency and levels) and sampling seasons. Human breast milk samples collected in December 2014 and in June 2015 from a total of 74 nursing women, both outpatient and inpatient volunteers in hospitals located in Şanlıurfa, Turkey, were analyzed using competitive enzyme-linked immunosorbent assay (ELISA) for the presence of AFM1. AFM1 was detected in 66 (89.2%) out of 74 samples at an average concentration of 19.0 ± 13.0 ng/l (min.-max., 9.6-80 ng/l). There was a statistically significant difference between December and June concerning AFM1 levels (p < 0.05). Further detailed studies will be needed to determine the main sources of aflatoxins in food, to establish protection strategies against maternal and infant exposure to these mycotoxins.

  12. Thermoelectric waste heat recovery from an M1 Abrams tank

    NASA Astrophysics Data System (ADS)

    Stokes, C. David; Thomas, Peter M.; Baldasaro, Nicholas G.; Mantini, Michael J.; Venkatasubramanian, Rama; Barton, Michael D.; Cardine, Christopher V.; Walker, Grayson W.

    2012-06-01

    The addition of advanced sensors, targeting systems and electronic countermeasures to military vehicles has created a strategic need for additional electric power. By incorporating a thermoelectric (TE) waste heat recovery system to convert available exhaust heat to electricity, increased electric power needs can be met without reducing the energy efficiency of the vehicle. This approach allows existing vehicles to be upgraded without requiring a complete re-design of the engine and powertrain to support the integration of advanced electronic sensors and systems that keep the performance at the state of the art level. RTI has partnered with General Dynamics Land Systems and Creare, Inc. under an Army Research Lab program to develop a thermoelectric exhaust waste heat recovery system for the M1 Abrams tank. We have designed a reduced-scale system that was retrofitted to the tank and generated 80W of electric power on the vehicle operating on a test track by capturing a portion of the exhaust heat from the Honeywell/Lycoming AGT-1500 gas turbine engine.

  13. Localization, concentration, and transmission efficiency of Banana bunchy top virus in four asexual lineages of Pentalonia aphids.

    PubMed

    Watanabe, Shizu; Greenwell, April M; Bressan, Alberto

    2013-02-22

    Banana bunchy top virus (BBTV) is the most destructive pathogenic virus of banana plants worldwide. The virus is transmitted in a circulative non-propagative manner by the banana aphid, Pentalonia nigronervosa Coquerel. In this work, we examined the localization, accumulation, and transmission efficiency of BBTV in four laboratory-established lineages of Pentalonia aphids derived from four different host plants: taro (Colocasia esculenta), heliconia (Heliconia spp.), red ginger (Alpinia purpurata), and banana (Musa sp.). Mitochondrial sequencing identified three and one lineages as Pentalonia caladii van der Goot, a recently proposed species, and P. nigronervosa, respectively. Microsatellite analysis separated the aphid lineages into four distinct genotypes. The transmission of BBTV was tested using leaf disk and whole-plant assays, both of which showed that all four lineages are competent vectors of BBTV, although the P. caladii from heliconia transmitted BBTV to the leaf disks at a significantly lower rate than did P. nigronervosa. The concentration of BBTV in dissected guts, haemolymph, and salivary glands was quantified by real-time PCR. The BBTV titer reached similar concentrations in the guts, haemolymph, and salivary glands of aphids from all four lineages tested. Furthermore, immunofluorescence assays showed that BBTV antigens localized to the anterior midguts and the principal salivary glands, demonstrating a similar pattern of translocations across the four lineages. The results reported in this study showed for the first time that P. caladii is a competent vector of BBTV.

  14. SDF-1/CXCL12 modulates mitochondrial respiration of immature blood cells in a bi-phasic manner.

    PubMed

    Messina-Graham, Steven; Broxmeyer, Hal

    2016-05-01

    SDF-1/CXCL12 is a potent chemokine required for the homing and engraftment of hematopoietic stem and progenitor cells. Previous data from our group has shown that in an SDF-1/CXCL12 transgenic mouse model, lineage(-) Sca-1(+) c-Kit(+) (LSK) bone marrow cells have reduced mitochondrial membrane potential versus wild-type. These results suggested that SDF-1/CXCL12 may function to keep mitochondrial respiration low in immature blood cells in the bone marrow. Low mitochondrial metabolism helps to maintain low levels of reactive oxygen species (ROS), which can influence differentiation. To test whether SDF-1/CXCL12 regulates mitochondrial metabolism, we employed the human leukemia cell line HL-60, that expresses high levels of the SDF-1/CXCL12 receptor, CXCR4, as a model of hematopoietic progenitor cells in vitro. We treated HL-60 cells with SDF-1/CXCL12 for 2 and 24h. Oxygen consumption rates (OCR), mitochondrial-associated ATP production, mitochondrial mass, and mitochondrial membrane potential of HL-60 cells were significantly reduced at 2h and increased at 24h as compared to untreated control cells. These biphasic effects of SDF-1/CXCL12 were reproduced with lineage negative primary mouse bone marrow cells, suggesting a novel function of SDF-1/CXCL12 in modulating mitochondrial respiration by regulating mitochondrial oxidative phosphorylation, ATP production and mitochondrial content.

  15. Introducing the Algerian Mitochondrial DNA and Y-Chromosome Profiles into the North African Landscape

    PubMed Central

    Bekada, Asmahan; Fregel, Rosa; Cabrera, Vicente M.; Larruga, José M.; Pestano, José; Benhamamouch, Soraya; González, Ana M.

    2013-01-01

    North Africa is considered a distinct geographic and ethnic entity within Africa. Although modern humans originated in this Continent, studies of mitochondrial DNA (mtDNA) and Y-chromosome genealogical markers provide evidence that the North African gene pool has been shaped by the back-migration of several Eurasian lineages in Paleolithic and Neolithic times. More recent influences from sub-Saharan Africa and Mediterranean Europe are also evident. The presence of East-West and North-South haplogroup frequency gradients strongly reinforces the genetic complexity of this region. However, this genetic scenario is beset with a notable gap, which is the lack of consistent information for Algeria, the largest country in the Maghreb. To fill this gap, we analyzed a sample of 240 unrelated subjects from a northwest Algeria cosmopolitan population using mtDNA sequences and Y-chromosome biallelic polymorphisms, focusing on the fine dissection of haplogroups E and R, which are the most prevalent in North Africa and Europe respectively. The Eurasian component in Algeria reached 80% for mtDNA and 90% for Y-chromosome. However, within them, the North African genetic component for mtDNA (U6 and M1; 20%) is significantly smaller than the paternal (E-M81 and E-V65; 70%). The unexpected presence of the European-derived Y-chromosome lineages R-M412, R-S116, R-U152 and R-M529 in Algeria and the rest of the Maghreb could be the counterparts of the mtDNA H1, H3 and V subgroups, pointing to direct maritime contacts between the European and North African sides of the western Mediterranean. Female influx of sub-Saharan Africans into Algeria (20%) is also significantly greater than the male (10%). In spite of these sexual asymmetries, the Algerian uniparental profiles faithfully correlate between each other and with the geography. PMID:23431392

  16. Genealogical analysis of maternal and paternal lineages in the Quebec population.

    PubMed

    Tremblay, Marc; Vézina, Hélène

    2010-04-01

    The Quebec population is one of the rare populations of its size for which genealogical information is available for an uninterrupted period of almost four centuries. This allows for in-depth studies on the formation and evolution of a young founder population. Using data from two major population registers, in this study we focus on the maternal and paternal lineages (i.e., strictly female or male genealogical lines) that can be traced back within the Quebec genealogies. Through the analysis of these lineages it is possible to characterize the founders who transmitted to the contemporary population their mitochondrial (for females) and Y-chromosome (for males) DNA. The basic material consists of 2,221 ascending genealogies of subjects who married in the Quebec population between 1945 and 1965. On average, more than nine generations of ancestors were identified among the lineages. Analyses of maternal and paternal lineages show that the number of paternal founders is higher and their origins and genetic contributions are more variable than that of maternal founders, leading to a larger effective population size and greater diversity of Y chromosomes than of mtDNA. This is explained for the most part by differential migratory patterns among male and female founders of the Quebec population. Comparisons of sex-specific genetic contributions with total genetic contribution showed a strong correlation between the two values, with some discrepancies related to sex ratio differences among the founders' first descendants.

  17. Restricted Gene Flow among Lineages of Thrips tabaci Supports Genetic Divergence Among Cryptic Species Groups

    PubMed Central

    Jacobson, Alana L.; Nault, Brian A.; Vargo, Edward L.; Kennedy, George G.

    2016-01-01

    Knowledge of the relative influence of population- versus species-level genetic variation is important to understand patterns of phenotypic variation and ecological relationships that exist among and within morphologically indistinguishable cryptic species and subspecies. In the case of cryptic species groups that are pests, such knowledge is also essential for devising effective population management strategies. The globally important crop pest Thrips tabaci is a taxonomically difficult group of putatively cryptic species. This study examines population genetic structure of T. tabaci and reproductive isolation among lineages of this species complex using microsatellite markers and mitochondrial COI sequences. Overall, genetic structure supports T. tabaci as a cryptic species complex, although limited interbreeding occurs between different clonal groups from the same lineage as well as between individuals from different lineages. These results also provide evidence that thelytoky and arrhenotoky are not fixed phenotypes among members of different T. tabaci lineages that have been generally associated with either reproductive mode. Possible biological and ecological factors contributing to these observations are discussed. PMID:27690317

  18. Origin and evolution of the dependent lineages in the genetic caste determination system of Pogonomyrmex ants.

    PubMed

    Sirviö, Anu; Pamilo, Pekka; Johnson, Robert A; Page, Robert E; Gadau, Jürgen

    2011-03-01

    Hybridizing harvester ants of the Pogonomyrmex barbatus/rugosus complex have an exceptional genetic caste determination (GCD) mechanism. We combined computer simulations, population genomics, and linkage mapping using >1000 nuclear AFLP markers and a partial mtDNA sequence to explore the genetic architecture and origin of the dependent lineages. Our samples included two pairs of hybridizing lineages, and the mitochondrial and nuclear data showed contradicting affinities between them. Clustering of individual genotypes based on nuclear markers indicated some exceptions to the general GCD system, that is, interlineage hybrid genes as well as some pure-line workers. A genetic linkage map of P. rugosus showed one of the highest recombination rates ever measured in insects (14.0 cM/Mb), supporting the view that social insects are characterized by high recombination rates. The population data had 165 markers in which sibling pairs showed a significant genetic difference depending on the caste. The differences were scattered in the genome; 13 linkage groups had loci with F(ST)>0.9 between the hybridizing lineages J1 and J2.The mapping results and the population data indicate that the dependent lineages have been initially formed through hybridization at different points in time but the role of introgression has been insignificant in their later evolution.

  19. A New Miocene-Divergent Lineage of Old World Racer Snake from India

    PubMed Central

    Vyas, Raju; Maheta, Jaydeep

    2016-01-01

    A distinctive early Miocene-divergent lineage of Old world racer snakes is described as a new genus and species based on three specimens collected from the western Indian state of Gujarat. Wallaceophis gen. et. gujaratenesis sp. nov. is a members of a clade of old world racers. The monotypic genus represents a distinct lineage among old world racers is recovered as a sister taxa to Lytorhynchus based on ~3047bp of combined nuclear (cmos) and mitochondrial molecular data (cytb, ND4, 12s, 16s). The snake is distinct morphologically in having a unique dorsal scale reduction formula not reported from any known colubrid snake genus. Uncorrected pairwise sequence divergence for nuclear gene cmos between Wallaceophis gen. et. gujaratenesis sp. nov. other members of the clade containing old world racers and whip snake is 21–36%. PMID:26934509

  20. Mitochondrial genomic investigation of flatfish monophyly.

    PubMed

    Campbell, Matthew A; López, J Andrés; Satoh, Takashi P; Chen, Wei-Jen; Miya, Masaki

    2014-11-10

    We present the first study to use whole mitochondrial genome sequences to examine phylogenetic affinities of the flatfishes (Pleuronectiformes). Flatfishes have attracted attention in evolutionary biology since the early history of the field because understanding the evolutionary history and patterns of diversification of the group will shed light on the evolution of novel body plans. Because recent molecular studies based primarily on DNA sequences from nuclear loci have yielded conflicting results, it is important to examine phylogenetic signal in different genomes and genome regions. We aligned and analyzed mitochondrial genome sequences from thirty-nine pleuronectiforms including nine that are newly reported here, and sixty-six non-pleuronectiforms (twenty additional clade L taxa [Carangimorpha or Carangimorpharia] and forty-six secondary outgroup taxa). The analyses yield strong support for clade L and weak support for the monophyly of Pleuronectiformes. The suborder Pleuronectoidei receives moderate support, and as with other molecular studies the putatively basal lineage of Pleuronectiformes, the Psettodoidei is frequently not most closely related to other pleuronectiforms. Within the Pleuronectoidei, the basal lineages in the group are poorly resolved, however several flatfish subclades receive consistent support. The affinities of Lepidoblepharon and Citharoides among pleuronectoids are particularly uncertain with these data.

  1. Founder mitochondrial haplotypes in Amerindian populations.

    PubMed Central

    Bailliet, G.; Rothhammer, F.; Carnese, F. R.; Bravi, C. M.; Bianchi, N. O.

    1994-01-01

    It had been proposed that the colonization of the New World took place by three successive migrations from northeastern Asia. The first one gave rise to Amerindians (Paleo-Indians), the second and third ones to Nadene and Aleut-Eskimo, respectively. Variation in mtDNA has been used to infer the demographic structure of the Amerindian ancestors. The study of RFLP all along the mtDNA and the analysis of nucleotide substitutions in the D-loop region of the mitochondrial genome apparently indicate that most or all full-blooded Amerindians cluster in one of four different mitochondrial haplotypes that are considered to represent the founder maternal lineages of Paleo-Indians. We have studied the mtDNA diversity in 109 Amerindians belonging to 3 different tribes, and we have reanalyzed the published data on 482 individuals from 18 other tribes. Our study confirms the existence of four major Amerindian haplotypes. However, we also found evidence supporting the existence of several other potential founder haplotypes or haplotype subsets in addition to the four ancestral lineages reported. Confirmation of a relatively high number of founder haplotypes would indicate that early migration into America was not accompanied by a severe genetic bottleneck. PMID:7517626

  2. Founder mitochondrial haplotypes in Amerindian populations.

    PubMed

    Bailliet, G; Rothhammer, F; Carnese, F R; Bravi, C M; Bianchi, N O

    1994-07-01

    It had been proposed that the colonization of the New World took place by three successive migrations from northeastern Asia. The first one gave rise to Amerindians (Paleo-Indians), the second and third ones to Nadene and Aleut-Eskimo, respectively. Variation in mtDNA has been used to infer the demographic structure of the Amerindian ancestors. The study of RFLP all along the mtDNA and the analysis of nucleotide substitutions in the D-loop region of the mitochondrial genome apparently indicate that most or all full-blooded Amerindians cluster in one of four different mitochondrial haplotypes that are considered to represent the founder maternal lineages of Paleo-Indians. We have studied the mtDNA diversity in 109 Amerindians belonging to 3 different tribes, and we have reanalyzed the published data on 482 individuals from 18 other tribes. Our study confirms the existence of four major Amerindian haplotypes. However, we also found evidence supporting the existence of several other potential founder haplotypes or haplotype subsets in addition to the four ancestral lineages reported. Confirmation of a relatively high number of founder haplotypes would indicate that early migration into America was not accompanied by a severe genetic bottleneck.

  3. A novel lineage of myoviruses infecting cyanobacteria is widespread in the oceans.

    PubMed

    Sabehi, Gazalah; Shaulov, Lihi; Silver, David H; Yanai, Itai; Harel, Amnon; Lindell, Debbie

    2012-02-07

    Viruses infecting bacteria (phages) are thought to greatly impact microbial population dynamics as well as the genome diversity and evolution of their hosts. Here we report on the discovery of a novel lineage of tailed dsDNA phages belonging to the family Myoviridae and describe its first representative, S-TIM5, that infects the ubiquitous marine cyanobacterium, Synechococcus. The genome of this phage encodes an entirely unique set of structural proteins not found in any currently known phage, indicating that it uses lineage-specific genes for virion morphogenesis and represents a previously unknown lineage of myoviruses. Furthermore, among its distinctive collection of replication and DNA metabolism genes, it carries a mitochondrial-like DNA polymerase gene, providing strong evidence for the bacteriophage origin of the mitochondrial DNA polymerase. S-TIM5 also encodes an array of bacterial-like metabolism genes commonly found in phages infecting cyanobacteria including photosynthesis, carbon metabolism and phosphorus acquisition genes. This suggests a common gene pool and gene swapping of cyanophage-specific genes among different phage lineages despite distinct sets of structural and replication genes. All cytosines following purine nucleotides are methylated in the S-TIM5 genome, constituting a unique methylation pattern that likely protects the genome from nuclease degradation. This phage is abundant in the Red Sea and S-TIM5 gene homologs are widespread in the oceans. This unusual phage type is thus likely to be an important player in the oceans, impacting the population dynamics and evolution of their primary producing cyanobacterial hosts.

  4. Lineage-tracing methods and the kidney

    PubMed Central

    Humphreys, Benjamin D; DiRocco, Derek P

    2014-01-01

    The kidney is a complex organ with over 30 different cell types, and understanding the lineage relationships between these cells is challenging. During nephrogenesis, a central question is how the coordinated morphogenesis, growth, and differentiation of distinct cell types leads to development of a functional organ. In mature kidney, understanding cell division and fate during injury, regeneration and aging are critical topics for understanding disease. Genetic lineage tracing offers a powerful tool to decipher cellular hierarchies in both development and disease because it allows the progeny of a single cell, or group of cells, to be tracked unambiguously. Recent advances in this field include the use of inducible recombinases, multicolor reporters, and mosaic analysis. In this review, we discuss lineage-tracing methods focusing on the mouse model system and consider the impact of these methods on our understanding of kidney biology and prospects for future application. PMID:24088959

  5. Nuclear genomic sequences reveal that polar bears are an old and distinct bear lineage.

    PubMed

    Hailer, Frank; Kutschera, Verena E; Hallström, Björn M; Klassert, Denise; Fain, Steven R; Leonard, Jennifer A; Arnason, Ulfur; Janke, Axel

    2012-04-20

    Recent studies have shown that the polar bear matriline (mitochondrial DNA) evolved from a brown bear lineage since the late Pleistocene, potentially indicating rapid speciation and adaption to arctic conditions. Here, we present a high-resolution data set from multiple independent loci across the nuclear genomes of a broad sample of polar, brown, and black bears. Bayesian coalescent analyses place polar bears outside the brown bear clade and date the divergence much earlier, in the middle Pleistocene, about 600 (338 to 934) thousand years ago. This provides more time for polar bear evolution and confirms previous suggestions that polar bears carry introgressed brown bear mitochondrial DNA due to past hybridization. Our results highlight that multilocus genomic analyses are crucial for an accurate understanding of evolutionary history.

  6. Mitochondrial helicases and mitochondrial genome maintenance

    PubMed Central

    de Souza-Pinto, Nadja C.; Aamann, Maria D.; Kulikowicz, Tomasz; Stevnsner, Tinna V.; Bohr, Vilhelm A.

    2010-01-01

    Helicases are essential enzymes that utilize the energy of nucleotide hydrolysis to drive unwinding of nucleic acid duplexes. Helicases play roles in all aspects of DNA metabolism including DNA repair, DNA replication and transcription. The subcellular locations and functions of several helicases have been studied in detail; however, the roles of specific helicases in mitochondrial biology remain poorly characterized. This review presents important recent advances in identifying and characterizing mitochondrial helicases, some of which also operate in the nucleus. PMID:20576512

  7. Mitochondrial DNA heterogeneity in Tunisian Berbers.

    PubMed

    Fadhlaoui-Zid, K; Plaza, S; Calafell, F; Ben Amor, M; Comas, D; Bennamar El gaaied, A

    2004-05-01

    Berbers live in groups scattered across North Africa whose origins and genetic relationships with their neighbours are not well established. The first hypervariable segment of the mitochondrial DNA (mtDNA) control region was sequenced in a total of 155 individuals from three Tunisian Berber groups and compared to other North Africans. The mtDNA lineages found belong to a common set of mtDNA haplogroups already described in North Africa. Besides the autochthonous North African U6 haplogroup, a group of L3 lineages characterized by the transition at position 16041 seems to be restricted to North Africans, suggesting that an expansion of this group of lineages took place around 10500 years ago in North Africa, and spread to neighbouring populations. Principal components and the coordinate analyses show that some Berber groups (the Tuareg, the Mozabite, and the Chenini-Douiret) are outliers within the North African genetic landscape. This outlier position is consistent with an isolation process followed by genetic drift in haplotype frequencies, and with the high heterogeneity displayed by Berbers compared to Arab samples as shown in the AMOVA. Despite this Berber heterogeneity, no significant differences were found between Berber and Arab samples, suggesting that the Arabization was mainly a cultural process rather than a demographic replacement.

  8. Mitochondrial phylogenetics and evolution of mysticete whales.

    PubMed

    Sasaki, Takeshi; Nikaido, Masato; Hamilton, Healy; Goto, Mutsuo; Kato, Hidehiro; Kanda, Naohisa; Pastene, Luis; Cao, Ying; Fordyce, R; Hasegawa, Masami; Okada, Norihiro

    2005-02-01

    The phylogenetic relationships among baleen whales (Order: Cetacea) remain uncertain despite extensive research in cetacean molecular phylogenetics and a potential morphological sample size of over 2 million animals harvested. Questions remain regarding the number of species and the monophyly of genera, as well as higher order relationships. Here, we approach mysticete phylogeny with complete mitochondrial genome sequence analysis. We determined complete mtDNA sequences of 10 extant Mysticeti species, inferred their phylogenetic relationships, and estimated node divergence times. The mtDNA sequence analysis concurs with previous molecular studies in the ordering of the principal branches, with Balaenidae (right whales) as sister to all other mysticetes base, followed by Neobalaenidae (pygmy right whale), Eschrichtiidae (gray whale), and finally Balaenopteridae (rorquals + humpback whale). The mtDNA analysis further suggests that four lineages exist within the clade of Eschrichtiidae + Balaenopteridae, including a sister relationship between the humpback and fin whales, and a monophyletic group formed by the blue, sei, and Bryde's whales, each of which represents a newly recognized phylogenetic relationship in Mysticeti. We also estimated the divergence times of all extant mysticete species, accounting for evolutionary rate heterogeneity among lineages. When the mtDNA divergence estimates are compared with the mysticete fossil record, several lineages have molecular divergence estimates strikingly older than indicated by paleontological data. We suggest this discrepancy reflects both a large amount of ancestral polymorphism and long generation times of ancestral baleen whale populations.

  9. Mitochondrial lipids in neurodegeneration.

    PubMed

    Aufschnaiter, Andreas; Kohler, Verena; Diessl, Jutta; Peselj, Carlotta; Carmona-Gutierrez, Didac; Keller, Walter; Büttner, Sabrina

    2017-01-01

    Mitochondrial dysfunction is a common feature of many neurodegenerative diseases, including proteinopathies such as Alzheimer's or Parkinson's disease, which are characterized by the deposition of aggregated proteins in the form of insoluble fibrils or plaques. The distinct molecular processes that eventually result in mitochondrial dysfunction during neurodegeneration are well studied but still not fully understood. However, defects in mitochondrial fission and fusion, mitophagy, oxidative phosphorylation and mitochondrial bioenergetics have been linked to cellular demise. These processes are influenced by the lipid environment within mitochondrial membranes as, besides membrane structure and curvature, recruitment and activity of different proteins also largely depend on the respective lipid composition. Hence, the interaction of neurotoxic proteins with certain lipids and the modification of lipid composition in different cell compartments, in particular mitochondria, decisively impact cell death associated with neurodegeneration. Here, we discuss the relevance of mitochondrial lipids in the pathological alterations that result in neuronal demise, focussing on proteinopathies.

  10. The origin of widespread species in a poor dispersing lineage (diving beetle genus Deronectes)

    PubMed Central

    García-Vázquez, David

    2016-01-01

    In most lineages, most species have restricted geographic ranges, with only few reaching widespread distributions. How these widespread species reached their current ranges is an intriguing biogeographic and evolutionary question, especially in groups known to be poor dispersers. We reconstructed the biogeographic and temporal origin of the widespread species in a lineage with particularly poor dispersal capabilities, the diving beetle genus Deronectes (Dytiscidae). Most of the ca. 60 described species of Deronectes have narrow ranges in the Mediterranean area, with only four species with widespread European distributions. We sequenced four mitochondrial and two nuclear genes of 297 specimens of 109 different populations covering the entire distribution of the four lineages of Deronectes, including widespread species. Using Bayesian probabilities with an a priori evolutionary rate, we performed (1) a global phylogeny/phylogeography to estimate the relationships of the main lineages within each group and root them, and (2) demographic analyses of the best population coalescent model for each species group, including a reconstruction of the geographical history estimated from the distribution of the sampled localities. We also selected 56 specimens to test for the presence of Wolbachia, a maternally transmitted parasite that can alter the patterns of mtDNA variability. All species of the four studied groups originated in the southern Mediterranean peninsulas and were estimated to be of Pleistocene origin. In three of the four widespread species, the central and northern European populations were nested within those in the northern areas of the Anatolian, Balkan and Iberian peninsulas respectively, suggesting a range expansion at the edge of the southern refugia. In the Mediterranean peninsulas the widespread European species were replaced by vicariant taxa of recent origin. The fourth species (D. moestus) was proven to be a composite of unrecognised lineages with

  11. Differential mitochondrial calcium responses in different cell types detected with a mitochondrial calcium fluorescent indicator, mito-GCaMP2.

    PubMed

    Chen, Min; Wang, Yanru; Hou, Tingting; Zhang, Huiliang; Qu, Aijuan; Wang, Xianhua

    2011-10-01

    Mitochondrial calcium plays a crucial role in mitochondrial metabolism, cell calcium handling, and cell death. However, some mechanisms concerning mitochondrial calcium regulation are still unknown, especially how mitochondrial calcium couples with cytosolic calcium. In this work, we constructed a novel mitochondrial calcium fluorescent indicator (mito-GCaMP2) by genetic manipulation. Mito-GCaMP2 was imported into mitochondria with high efficiency and the fluorescent signals co-localized with that of tetramethyl rhodamine methyl ester, a mitochondrial membrane potential indicator. The mitochondrial inhibitors specifically decreased the signals of mito-GCaMP2. The apparent K(d) of mito-GCaMP2 was 195.0 nmol/L at pH 8.0 in adult rat cardiomyocytes. Furthermore, we observed that mito-GCaMP2 preferred the alkaline pH surrounding of mitochondria. In HeLa cells, we found that mitochondrial calcium ([Ca(2+)](mito)) responded to the changes of cytosolic calcium ([Ca(2+)](cyto)) induced by histamine or thapasigargin. Moreover, external Ca(2+) (100 μmol/L) directly induced an increase of [Ca(2+)](mito) in permeabilized HeLa cells. However, in rat cardiomyocytes [Ca(2+)](mito) did not respond to cytosolic calcium transients stimulated by electric pacing or caffeine. In permeabilized cardiomyocytes, 600 nmol/L free Ca(2+) repeatedly increased the fluorescent signals of mito-GCaMP2, which excluded the possibility that mito-GCaMP2 lost its function in cardiomyocytes mitochondria. These results showed that the response of mitochondrial calcium is diverse in different cell lineages and suggested that mitochondria in cardiomyocytes may have a special defense mechanism to control calcium flux.

  12. [Mitochondrial and oocyte development].

    PubMed

    Deng, Wei-Ping; Ren, Zhao-Rui

    2007-12-01

    Oocyte development and maturation is a complicated process. The nuclear maturation and cytoplasmic maturation must synchronize which can ensure normal oocyte fertilization and following development. Mitochondrial is the most important cellular organell in cytoplasm, and the variation of its distribution during oocyte maturation, the capacity of OXPHOS generating ATP as well as the content or copy number or transcription level of mitochondrial DNA play an important role in oocyte development and maturation. Therefore, the studies on the variation of mitochondrial distribution, function and mitochondrial DNA could enhance our understanding of the physiology of reproduction and provide new insight to solve the difficulties of assisted reproduction as well as cloning embryo technology.

  13. Progress in mitochondrial epigenetics.

    PubMed

    Manev, Hari; Dzitoyeva, Svetlana

    2013-08-01

    Mitochondria, intracellular organelles with their own genome, have been shown capable of interacting with epigenetic mechanisms in at least four different ways. First, epigenetic mechanisms that regulate the expression of nuclear genome influence mitochondria by modulating the expression of nuclear-encoded mitochondrial genes. Second, a cell-specific mitochondrial DNA content (copy number) and mitochondrial activity determine the methylation pattern of nuclear genes. Third, mitochondrial DNA variants influence the nuclear gene expression patterns and the nuclear DNA (ncDNA) methylation levels. Fourth and most recent line of evidence indicates that mitochondrial DNA similar to ncDNA also is subject to epigenetic modifications, particularly by the 5-methylcytosine and 5-hydroxymethylcytosine marks. The latter interaction of mitochondria with epigenetics has been termed 'mitochondrial epigenetics'. Here we summarize recent developments in this particular area of epigenetic research. Furthermore, we propose the term 'mitoepigenetics' to include all four above-noted types of interactions between mitochondria and epigenetics, and we suggest a more restricted usage of the term 'mitochondrial epigenetics' for molecular events dealing solely with the intra-mitochondrial epigenetics and the modifications of mitochondrial genome.

  14. Mitochondrial threshold effects.

    PubMed Central

    Rossignol, Rodrigue; Faustin, Benjamin; Rocher, Christophe; Malgat, Monique; Mazat, Jean-Pierre; Letellier, Thierry

    2003-01-01

    The study of mitochondrial diseases has revealed dramatic variability in the phenotypic presentation of mitochondrial genetic defects. To attempt to understand this variability, different authors have studied energy metabolism in transmitochondrial cell lines carrying different proportions of various pathogenic mutations in their mitochondrial DNA. The same kinds of experiments have been performed on isolated mitochondria and on tissue biopsies taken from patients with mitochondrial diseases. The results have shown that, in most cases, phenotypic manifestation of the genetic defect occurs only when a threshold level is exceeded, and this phenomenon has been named the 'phenotypic threshold effect'. Subsequently, several authors showed that it was possible to inhibit considerably the activity of a respiratory chain complex, up to a critical value, without affecting the rate of mitochondrial respiration or ATP synthesis. This phenomenon was called the 'biochemical threshold effect'. More recently, quantitative analysis of the effects of various mutations in mitochondrial DNA on the rate of mitochondrial protein synthesis has revealed the existence of a 'translational threshold effect'. In this review these different mitochondrial threshold effects are discussed, along with their molecular bases and the roles that they play in the presentation of mitochondrial diseases. PMID:12467494

  15. Lineage Analysis in Pulmonary Arterial Hypertension

    DTIC Science & Technology

    2013-06-01

    SMA with some globular domains, predominantly colocalizing with GFP endothelial lineage-marked cells in the neointima (Figure 4F). Figure 4. VE...whether the neointima arises from a small population of apoptosis- resistant pulmonary artery endothelial cells that proliferate after injury to produce

  16. Relaxation of yeast mitochondrial functions after whole-genome duplication

    PubMed Central

    Jiang, Huifeng; Guan, Wenjun; Pinney, David; Wang, Wen; Gu, Zhenglong

    2008-01-01

    Mitochondria are essential for cellular energy production in most eukaryotic organisms. However, when glucose is abundant, yeast species that underwent whole-genome duplication (WGD) mostly conduct fermentation even under aerobic conditions, and most can survive without a functional mitochondrial genome. In this study, we show that the rate of evolution for the nuclear-encoded mitochondrial genes was greater in post-WGD species than pre-WGD species. Furthermore, codon usage bias was relaxed for these genes in post-WGD yeast species. The codon usage pattern and the distribution of a particular transcription regulatory element suggest that the change to an efficient aerobic fermentation lifestyle in this lineage might have emerged after WGD between the divergence of Kluyveromyces polysporus and Saccharomyces castellii from their common ancestor. This new energy production strategy could have led to the relaxation of mitochondrial function in the relevant yeast species. PMID:18669479

  17. Origin and Evolution of the Mitochondrial Proteome

    PubMed Central

    Kurland, C. G.; Andersson, S. G. E.

    2000-01-01

    The endosymbiotic theory for the origin of mitochondria requires substantial modification. The three identifiable ancestral sources to the proteome of mitochondria are proteins descended from the ancestral α-proteobacteria symbiont, proteins with no homology to bacterial orthologs, and diverse proteins with bacterial affinities not derived from α-proteobacteria. Random mutations in the form of deletions large and small seem to have eliminated nonessential genes from the endosymbiont-mitochondrial genome lineages. This process, together with the transfer of genes from the endosymbiont-mitochondrial genome to nuclei, has led to a marked reduction in the size of mitochondrial genomes. All proteins of bacterial descent that are encoded by nuclear genes were probably transferred by the same mechanism, involving the disintegration of mitochondria or bacteria by the intracellular membranous vacuoles of cells to release nucleic acid fragments that transform the nuclear genome. This ongoing process has intermittently introduced bacterial genes to nuclear genomes. The genomes of the last common ancestor of all organisms, in particular of mitochondria, encoded cytochrome oxidase homologues. There are no phylogenetic indications either in the mitochondrial proteome or in the nuclear genomes that the initial or subsequent function of the ancestor to the mitochondria was anaerobic. In contrast, there are indications that relatively advanced eukaryotes adapted to anaerobiosis by dismantling their mitochondria and refitting them as hydrogenosomes. Accordingly, a continuous history of aerobic respiration seems to have been the fate of most mitochondrial lineages. The initial phases of this history may have involved aerobic respiration by the symbiont functioning as a scavenger of toxic oxygen. The transition to mitochondria capable of active ATP export to the host cell seems to have required recruitment of eukaryotic ATP transport proteins from the nucleus. The identity of the

  18. A complete mitochondrial genome of wheat (Triticum aestivum cv. Chinese Yumai), and fast evolving mitochondrial genes in higher plants.

    PubMed

    Cui, Peng; Liu, Huitao; Lin, Qiang; Ding, Feng; Zhuo, Guoyin; Hu, Songnian; Liu, Dongcheng; Yang, Wenlong; Zhan, Kehui; Zhang, Aimin; Yu, Jun

    2009-12-01

    Plant mitochondrial genomes, encoding necessary proteins involved in the system of energy production, play an important role in the development and reproduction of the plant. They occupy a specific evolutionary pattern relative to their nuclear counterparts. Here, we determined the winter wheat (Triticum aestivum cv. Chinese Yumai) mitochondrial genome in a length of 452 and 526 bp by shotgun sequencing its BAC library. It contains 202 genes, including 35 known protein-coding genes, three rRNA and 17 tRNA genes, as well as 149 open reading frames (ORFs; greater than 300 bp in length). The sequence is almost identical to the previously reported sequence of the spring wheat (T. aestivum cv. Chinese Spring); we only identified seven SNPs (three transitions and four transversions) and 10 indels (insertions and deletions) between the two independently acquired sequences, and all variations were found in non-coding regions. This result confirmed the accuracy of the previously reported mitochondrial sequence of the Chinese Spring wheat. The nucleotide frequency and codon usage of wheat are common among the lineage of higher plant with a high AT-content of 58%. Molecular evolutionary analysis demonstrated that plant mitochondrial genomes evolved at different rates, which may correlate with substantial variations in metabolic rate and generation time among plant lineages. In addition, through the estimation of the ratio of non-synonymous to synonymous substitution rates between orthologous mitochondrion-encoded genes of higher plants, we found an accelerated evolutionary rate that seems to be the result of relaxed selection.

  19. Deep sympatric mitochondrial divergence without reproductive isolation in the common redstart Phoenicurus phoenicurus.

    PubMed

    Hogner, Silje; Laskemoen, Terje; Lifjeld, Jan T; Porkert, Jiri; Kleven, Oddmund; Albayrak, Tamer; Kabasakal, Bekir; Johnsen, Arild

    2012-12-01

    Mitochondrial DNA usually shows low sequence variation within and high sequence divergence among species, which makes it a useful marker for phylogenetic inference and DNA barcoding. A previous study on the common redstart (Phoenicurus phoenicurus) revealed two very different mtDNA haplogroups (5% K2P distance). This divergence is comparable to that among many sister species; however, both haplogroups coexist and interbreed in Europe today. Herein, we describe the phylogeographic pattern of these lineages and test hypotheses for how such high diversity in mtDNA has evolved. We found no evidence for mitochondrial pseudogenes confirming that both haplotypes are of mitochondrial origin. When testing for possible reproductive barriers, we found no evidence for lineage-specific assortative mating and no difference in sperm morphology, indicating that they are not examples of cryptic species, nor likely to reflect the early stages of speciation. A gene tree based on a short fragment of cytochrome c oxidase subunit 1 from the common redstart and 10 other Phoenicurus species, showed no introgression from any of the extant congenerics. However, introgression from an extinct congeneric cannot be excluded. Sequences from two nuclear introns did not show a similar differentiation into two distinct groups. Mismatch distributions indicated that the lineages have undergone similar demographic changes. Taken together, these results confirm that deeply divergent mitochondrial lineages can coexist in biological species. Sympatric mtDNA divergences are relatively rare in birds, but the fact that they occur argues against the use of threshold mtDNA divergences in species delineation.

  20. Mitochondrial genome sequence and expression profiling for the legume pod borer Maruca vitrata (Lepidoptera: Crambidae)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    We report on the assembly of the 14,146 base pairs (bp) near complete mitochondrial sequencing of the legume pod borer (LPB), Maruca vitrata (Lepidoptera: Crambidae), which was used to estimate divergence and relationships within the lepidopteran lineage. Arrangement and orientation of 13 protein c...

  1. The complete mitochondrial genome sequence of the liverwort Pleurozia purpurea reveals extremely conservative mitochondrial genome evolution in liverworts.

    PubMed

    Wang, Bin; Xue, Jiayu; Li, Libo; Liu, Yang; Qiu, Yin-Long

    2009-12-01

    Plant mitochondrial genomes have been known to be highly unusual in their large sizes, frequent intra-genomic rearrangement, and generally conservative sequence evolution. Recent studies show that in early land plants the mitochondrial genomes exhibit a mixed mode of conservative yet dynamic evolution. Here, we report the completely sequenced mitochondrial genome from the liverwort Pleurozia purpurea. The circular genome has a size of 168,526 base pairs, containing 43 protein-coding genes, 3 rRNA genes, 25 tRNA genes, and 31 group I or II introns. It differs from the Marchantia polymorpha mitochondrial genome, the only other liverwort chondriome that has been sequenced, in lacking two genes (trnRucg and trnTggu) and one intron (rrn18i1065gII). The two genomes have identical gene orders and highly similar sequences in exons, introns, and intergenic spacers. Finally, a comparative analysis of duplicated trnRucu and other trnR genes from the two liverworts and several other organisms identified the recent lateral origin of trnRucg in Marchantia mtDNA through modification of a duplicated trnRucu. This study shows that the mitochondrial genomes evolve extremely slowly in liverworts, the earliest-diverging lineage of extant land plants, in stark contrast to what is known of highly dynamic evolution of mitochondrial genomes in seed plants.

  2. Comparative analyses within Gyrodactylus (Platyhelminthes: Monogenea) mitochondrial genomes and conserved polymerase chain reaction primers for gyrodactylid mitochondrial DNA.

    PubMed

    Ye, F; Easy, R H; King, S D; Cone, D K; You, P

    2017-04-01

    In this study, we describe the complete mitochondrial genomes of Gyrodactylus brachymystacis and Gyrodactylus parvae infecting rainbow trout (Oncorhynchus mykiss) and the invasive topmouth gudgeon (Pseudorasbora parva), respectively. The two circular genomes have a common genome organization found in other Gyrodactylus species. Comparative analyses of mitochondrial genomes from six Gyrodactylus species were carried out to determine base composition, codon usage, transfer RNA and ribosomal RNA genes, major non-coding regions, and nucleotide diversity within the genus. We also provide the first universal models of the secondary structures of rrnS and rrnL for this group thereby promoting utilization of these genetic markers. Universal primers provided herein can be used to obtain more mitochondrial information for pathogen identification and may reveal different levels of molecular phylogenetic inferences for this lineage.

  3. The one ancestor per generation rule and three other rules of mitochondrial inheritance.

    PubMed

    Ohno, S

    1997-07-22

    In mammals, at least, a species-specific mechanism exists that eliminates sperm-derived mitochondrial DNA from a fertilized egg. The result is the "one female ancestor per generation" rule and three other rules of mitochondrial inheritance. The second, third, and fourth rules are as follows. (ii) Sublineages of a given mitochondrial line can be generated only during the parallel descents from ancestral sisters. (iii) In a static population in which the production of one female progeny per mated pair per generation has been a rule, several ancient mitochondrial lineages harking back to the female founders of the speciation may persist side by side. (iv) Two or more individuals not related to each other in the recent past may share the identical or nearly identical mitochondrial genome derived from the common female ancestor or ancestral sisters of many generations ago.

  4. Mitochondrial Dysfunction in Depression

    PubMed Central

    Bansal, Yashika; Kuhad, Anurag

    2016-01-01

    Abstract: Background Depression is the most debilitating neuropsychiatric disorder with significant impact on socio-occupational and well being of individual. The exact pathophysiology of depression is still enigmatic though various theories have been put forwarded. There are evidences showing that mitochondrial dysfunction in various brain regions is associated with depression. Recent findings have sparked renewed appreciation for the role of mitochondria in many intracellular processes coupled to synaptic plasticity and cellular resilience. New insights in depression pathophysiology are revolving around the impairment of neuroplasticity. Mitochondria have potential role in ATP production, intracellular Ca2+ signalling to establish membrane stability, reactive oxygen species (ROS) balance and to execute the complex processes of neurotransmission and plasticity. So understanding the various concepts of mitochondrial dysfunction in pathogenesis of depression indubitably helps to generate novel and more targeted therapeutic approaches for depression treatment. Objective The review was aimed to give a comprehensive insight on role of mitochondrial dysfunction in depression. Result Targeting mitochondrial dysfunction and enhancing the mitochondrial functions might act as potential target for the treatment of depression. Conclusion Literature cited in this review highly supports the role of mitochondrial dysfunction in depression. As impairment in the mitochondrial functions lead to the generation of various insults that exaggerate the pathogenesis of depression. So, it is useful to study mitochondrial dysfunction in relation to mood disorders, synaptic plasticity, neurogenesis and enhancing the functions of mitochondria might show promiscuous effects in the treatment of depressed patients. PMID:26923778

  5. Clinical mitochondrial genetics

    PubMed Central

    Chinnery, P.; Howell, N.; Andrews, R.; Turnbull, D.

    1999-01-01

    The last decade has been an age of enlightenment as far as mitochondrial pathology is concerned. Well established nuclear genetic diseases, such as Friedreich's ataxia,12 Wilson disease,3 and autosomal recessive hereditary spastic paraplegia,4 have been shown to have a mitochondrial basis, and we are just starting to unravel the complex nuclear genetic disorders which directly cause mitochondrial dysfunction (table 1). However, in addition to the 3 billion base pair nuclear genome, each human cell typically contains thousands of copies of a small, 16.5 kb circular molecule of double stranded DNA (fig 1). Mitochondrial DNA (mtDNA) accounts for only 1% of the total cellular nucleic acid content. It encodes for 13 polypeptides which are essential for aerobic metabolism and defects of the mitochondrial genome are an important cause of human disease.9293 Since the characterisation of the first pathogenic mtDNA defects in 1988,513 over 50 point mutations and well over 100 rearrangements of the mitochondrial genome have been associated with human disease9495 (http://www.gen.emory.edu/mitomap.html). These disorders form the focus of this article.


Keywords: mitochondrial DNA; mitochondrial disease; heteroplasmy; genetic counselling PMID:10874629

  6. Large geographic range size reflects a patchwork of divergent lineages in the long-toed salamander (Ambystoma macrodactylum).

    PubMed

    Lee-Yaw, J A; Irwin, D E

    2012-11-01

    For northern taxa, persistence in multiple vs. single Pleistocene refugia may have been an important determinant of contemporary range size, with larger ranges achieved by species that colonized the north from several glacial refugia. Under this hypothesis, widespread species are expected to demonstrate marked phylogeographic structure in previously glaciated regions. We use a genome-wide survey to characterize genetic structure and evaluate this hypothesis in the most widely distributed salamander in the Pacific Northwest, the long-toed salamander (Ambystoma macrodactylum). Patterns of variation based on 751 amplified fragment length polymorphism (AFLP) loci and mitochondrial sequence data were concordant and support the recognition of at least four distinct lineages of long-toed salamander. The distributions of these lineages indicate that multiple refugia contributed to the species' large contemporary range. At the same time, with up to 133 AFLP bands differing between lineages and levels of sequence divergence ranging from 2.5 to 5.8%, these lineages would be considered separate species by some definitions. Such splitting would partition the large geographic range of the long-toed salamander into several relatively restricted ranges. Our results thus also underscore the potential for estimates of geographic range size to vary considerably depending on the taxonomic treatment of cryptic lineages.

  7. Global divergence of the human follicle mite Demodex folliculorum: Persistent associations between host ancestry and mite lineages

    PubMed Central

    Palopoli, Michael F.; Fergus, Daniel J.; Minot, Samuel; Pei, Dorothy T.; Simison, W. Brian; Fernandez-Silva, Iria; Thoemmes, Megan S.; Dunn, Robert R.; Trautwein, Michelle

    2015-01-01

    Microscopic mites of the genus Demodex live within the hair follicles of mammals and are ubiquitous symbionts of humans, but little molecular work has been done to understand their genetic diversity or transmission. Here we sampled mite DNA from 70 human hosts of diverse geographic ancestries and analyzed 241 sequences from the mitochondrial genome of the species Demodex folliculorum. Phylogenetic analyses recovered multiple deep lineages including a globally distributed lineage common among hosts of European ancestry and three lineages that primarily include hosts of Asian, African, and Latin American ancestry. To a great extent, the ancestral geography of hosts predicted the lineages of mites found on them; 27% of the total molecular variance segregated according to the regional ancestries of hosts. We found that D. folliculorum populations are stable on an individual over the course of years and that some Asian and African American hosts maintain specific mite lineages over the course of years or generations outside their geographic region of birth or ancestry. D. folliculorum haplotypes were much more likely to be shared within families and between spouses than between unrelated individuals, indicating that transmission requires close contact. Dating analyses indicated that D. folliculorum origins may predate modern humans. Overall, D. folliculorum evolution reflects ancient human population divergences, is consistent with an out-of-Africa dispersal hypothesis, and presents an excellent model system for further understanding the history of human movement. PMID:26668374

  8. Global divergence of the human follicle mite Demodex folliculorum: Persistent associations between host ancestry and mite lineages.

    PubMed

    Palopoli, Michael F; Fergus, Daniel J; Minot, Samuel; Pei, Dorothy T; Simison, W Brian; Fernandez-Silva, Iria; Thoemmes, Megan S; Dunn, Robert R; Trautwein, Michelle

    2015-12-29

    Microscopic mites of the genus Demodex live within the hair follicles of mammals and are ubiquitous symbionts of humans, but little molecular work has been done to understand their genetic diversity or transmission. Here we sampled mite DNA from 70 human hosts of diverse geographic ancestries and analyzed 241 sequences from the mitochondrial genome of the species Demodex folliculorum. Phylogenetic analyses recovered multiple deep lineages including a globally distributed lineage common among hosts of European ancestry and three lineages that primarily include hosts of Asian, African, and Latin American ancestry. To a great extent, the ancestral geography of hosts predicted the lineages of mites found on them; 27% of the total molecular variance segregated according to the regional ancestries of hosts. We found that D. folliculorum populations are stable on an individual over the course of years and that some Asian and African American hosts maintain specific mite lineages over the course of years or generations outside their geographic region of birth or ancestry. D. folliculorum haplotypes were much more likely to be shared within families and between spouses than between unrelated individuals, indicating that transmission requires close contact. Dating analyses indicated that D. folliculorum origins may predate modern humans. Overall, D. folliculorum evolution reflects ancient human population divergences, is consistent with an out-of-Africa dispersal hypothesis, and presents an excellent model system for further understanding the history of human movement.

  9. Unraveling the evolutionary history of the Chilostoma Fitzinger, 1833 (Mollusca, Gastropoda, Pulmonata) lineages in Greece.

    PubMed

    Psonis, Nikolaos; Vardinoyannis, Katerina; Mylonas, Moisis; Poulakakis, Nikos

    2015-10-01

    The land snails of the genus Chilostoma Fitzinger, 1833 that includes, in Greece, the (sub)genera Cattania, Josephinella and Thiessea, are highly diversified and present high levels of endemism. However, their evolutionary history is unknown and their taxonomy is complex and continuously revised. The aim of this study is to investigate the phylogenetic relationships of the lineages of the genus Chilostoma distributed in Greece based on partial DNA sequences of two mitochondrial DNA (16S rRNA and COI) genes. Complete sequences of one nuclear gene (ITS1) representing the major mitochondrial lineages were also analyzed. The phylogenetic trees revealed three distinct major clades that correspond to the three (sub)genera. Several taxonomical incongruencies were made obvious, thus, raising questions about the "true" number of species in each clade, while rendering a taxonomic re-evaluation necessary. From a phylogeographic point of view, it seems that the three major phylogenetic clades were separated in the late Miocene. They started differentiating into distinct species during the Pliocene and Pleistocene through several vicariance and dispersal events.

  10. Phenotypic variation within a clonal lineage of Phytophthora infestans infecting both tomato and potato in Nicaragua.

    PubMed

    Blandón-Díaz, J U; Widmark, A-K; Hannukkala, A; Andersson, B; Högberg, N; Yuen, J E

    2012-03-01

    Late blight caused by Phytophthora infestans (Mont.) de Bary is a constraint to both potato and tomato crops in Nicaragua. The hypothesis that the Nicaraguan population of P. infestans is genotypically and phenotypically diverse and potentially subdivided based on host association was tested. A collection of isolates was analyzed using genotypic markers (microsatellites and mitochondrial DNA haplotype) and phenotypic markers (mating type, virulence, and fungicide sensitivity). The genotypic analysis revealed no polymorphism in 121 of 132 isolates of P. infestans tested. Only the Ia haplotype and the A2 mating type were detected. Most of the tested isolates were resistant to metalaxyl. The virulence testing showed variation among isolates of P. infestans. No evidence was found of population differentiation among potato and tomato isolates of P. infestans based on the genotypic and phenotypic analysis. We conclude that the Nicaraguan population of P. infestans consists of a single clonal lineage (NI-1) which belongs to the A2 mating type and the Ia mitochondrial DNA haplotype. Moreover, based on the markers used, this population of P. infestans does not resemble the population in countries from which potato seed is imported to Nicaragua or the population in neighboring countries. The data presented here indicate that the NI-1 clonal lineage is the primary pathogen on both potato and tomato, and its success on both host species is unique in a South American context.

  11. Mitochondrial shaping cuts.

    PubMed

    Escobar-Henriques, Mafalda; Langer, Thomas

    2006-01-01

    A broad range of cellular processes are regulated by proteolytic events. Proteolysis has now also been established to control mitochondrial morphology which results from the balanced action of fusion and fission. Two out of three known core components of the mitochondrial fusion machinery are under proteolytic control. The GTPase Fzo1 in the outer membrane of mitochondria is degraded along two independent proteolytic pathways. One controls mitochondrial fusion in vegetatively growing cells, the other one acts upon mating factor-induced cell cycle arrest. Fusion also depends on proteolytic processing of the GTPase Mgm1 by the rhomboid protease Pcp1 in the inner membrane of mitochondria. Functional links of AAA proteases or other proteolytic components to mitochondrial dynamics are just emerging. This review summarises the current understanding of regulatory roles of proteolytic processes for mitochondrial plasticity.

  12. Mitochondrial inheritance in yeast.

    PubMed

    Westermann, Benedikt

    2014-07-01

    Mitochondria are the site of oxidative phosphorylation, play a key role in cellular energy metabolism, and are critical for cell survival and proliferation. The propagation of mitochondria during cell division depends on replication and partitioning of mitochondrial DNA, cytoskeleton-dependent mitochondrial transport, intracellular positioning of the organelle, and activities coordinating these processes. Budding yeast Saccharomyces cerevisiae has proven to be a valuable model organism to study the mechanisms that drive segregation of the mitochondrial genome and determine mitochondrial partitioning and behavior in an asymmetrically dividing cell. Here, I review past and recent advances that identified key components and cellular pathways contributing to mitochondrial inheritance in yeast. This article is part of a Special Issue entitled: 18th European Bioenergetic Conference. Guest Editors: Manuela Pereira and Miguel Teixeira.

  13. The complete mitochondrial genome of the geophilomorph centipede Strigamia maritima.

    PubMed

    Robertson, Helen E; Lapraz, François; Rhodes, Adelaide C; Telford, Maximilian J

    2015-01-01

    Strigamia maritima (Myriapoda; Chilopoda) is a species from the soil-living order of geophilomorph centipedes. The Geophilomorpha is the most speciose order of centipedes with over a 1000 species described. They are notable for their large number of appendage bearing segments and are being used as a laboratory model to study the embryological process of segmentation within the myriapods. Using a scaffold derived from the recently published genome of Strigamia maritima that contained multiple mitochondrial protein-coding genes, here we report the complete mitochondrial genome of Strigamia, the first from any geophilomorph centipede. The mitochondrial genome of S. maritima is a circular molecule of 14,938 base pairs, within which we could identify the typical mitochondrial genome complement of 13 protein-coding genes and 2 ribosomal RNA genes. Sequences resembling 16 of the 22 transfer RNA genes typical of metazoan mitochondrial genomes could be identified, many of which have clear deviations from the standard 'cloverleaf' secondary structures of tRNA. Phylogenetic trees derived from the concatenated alignment of protein-coding genes of S. maritima and >50 other metazoans were unable to resolve the Myriapoda as monophyletic, but did support a monophyletic group of chilopods: Strigamia was resolved as the sister group of the scolopendromorph Scolopocryptos sp. and these two (Geophilomorpha and Scolopendromorpha), along with the Lithobiomorpha, formed a monophyletic group the Pleurostigmomorpha. Gene order within the S. maritima mitochondrial genome is unique compared to any other arthropod or metazoan mitochondrial genome to which it has been compared. The highly unusual organisation of the mitochondrial genome of Strigamia maritima is in striking contrast with the conservatively evolving nuclear genome: sampling of more members of this order of centipedes will be required to see whether this unusual organization is typical of the Geophilomorpha or results from a more

  14. [Variability of nucleotide sequences of the mitochondrial DNA cytochrome c gene in dolly varden and taranetz char].

    PubMed

    Radchenko, O A; Derenko, M V; Maliarchuk, B A

    2000-07-01

    Nucleotide sequence of the 307-bp fragment of the mitochondrial DNA cytochrome b gene was determined in representatives of the three species of the Salvelinus genus, specifically, dolly varden char (S. malma), taranetz char (S. taranetzi), and white-spotted char (S. leucomaenis). These results pointed to a high level of mitochondrial DNA (mtDNA) divergence between white-spotted char and dolly varden char, on the one hand, and taranetz char, on the other (the mean d value was 5.45%). However, the divergence between the dolly varden char and taranetz char was only 0.81%, which is comparable with the level of intraspecific divergence in the dolly varden char (d = 0.87%). It was shown that the dolly varden char mitochondrial gene pool contained DNA lineages differing from the main mtDNA pool at least in the taranetz char-specific mitochondrial lineages. One of these dolly varden char mtDNA lineages was characterized by the presence of the restriction endonuclease MspI-D variant of the cytochrome b gene. This lineage was widely distributed in the Chukotka populations but it was not detected in the Yana River (Okhotsk sea) populations. These findings suggest that dolly varden char has a more ancient evolutionary lineage, diverging from the common ancestor earlier than did taranetz char.

  15. Mitogenomic analyses propose positive selection in mitochondrial genes for high-altitude adaptation in galliform birds.

    PubMed

    Zhou, Taicheng; Shen, Xuejuan; Irwin, David M; Shen, Yongyi; Zhang, Yaping

    2014-09-01

    Galliform birds inhabit very diverse habitats, including plateaus that are above 3000 m in altitude. At high altitude, lower temperature and hypoxia are two important factors influencing survival. Mitochondria, as the ultimate oxygen transductor, play an important role in aerobic respiration through oxidative phosphorylation (OXPHOS). We analyzed the mitochondrial genomes of six high-altitude phasianidae birds and sixteen low-altitude relatives in an attempt to determine the role of mitochondrial genes in high-altitude adaptation. We reconstructed the phylogenetic relationships of these phasianidae birds and relatives and found at least four lineages that independently occupied this high-altitude habitat. Selective analyses revealed significant evidence for positive selection in the genes ND2, ND4, and ATP6 in three of the high-altitude lineages. This result strongly suggests that adaptive evolution of mitochondrial genes played a critical role during the independent acclimatization to high altitude by galliform birds.

  16. Positive and purifying selection in mitochondrial genomes of a bird with mitonuclear discordance.

    PubMed

    Morales, Hernán E; Pavlova, Alexandra; Joseph, Leo; Sunnucks, Paul

    2015-06-01

    Diversifying selection on metabolic pathways can reduce intraspecific gene flow and promote population divergence. An opportunity to explore this arises from mitonuclear discordance observed in an Australian bird Eopsaltria australis. Across >1500 km, nuclear differentiation is low and latitudinally structured by isolation by distance, whereas two highly divergent, parapatric mitochondrial lineages (>6.6% in ND2) show a discordant longitudinal geographic pattern and experience different climates. Vicariance, incomplete lineage sorting and sex-biased dispersal were shown earlier to be unlikely drivers of the mitonuclear discordance; instead, natural selection on a female-linked trait was the preferred hypothesis. Accordingly, here we tested for signals of positive, divergent selection on mitochondrial genes in E. australis. We used codon models and physicochemical profiles of amino acid replacements to analyse complete mitochondrial genomes of the two mitochondrial lineages in E. australis, its sister species Eopsaltria griseogularis, and outgroups. We found evidence of positive selection on at least five amino acids, encoded by genes of two oxidative phosphorylation pathway complexes NADH dehydrogenase (ND4 and ND4L) and cytochrome bc1 (cyt-b) against a background of widespread purifying selection on all mitochondrial genes. Three of these amino acid replacements were fixed in ND4 of the geographically most widespread E. australis lineage. The other two replacements were fixed in ND4L and cyt-b of the geographically more restricted E. australis lineage. We discuss whether this selection may reflect local environmental adaptation, a by-product of other selective processes, or genetic incompatibilities, and propose how these hypotheses can be tested in future.

  17. Three divergent lineages within an Australian marsupial (Petrogale penicillata) suggest multiple major refugia for mesic taxa in southeast Australia

    PubMed Central

    Hazlitt, Stephanie L; Goldizen, Anne W; Nicholls, James A; Eldridge, Mark D B

    2014-01-01

    Mesic southeastern Australia represents the continent's ancestral biome and is highly biodiverse, yet its phylogeographic history remains poorly understood. Here, we examine mitochondrial DNA (mtDNA) control region and microsatellite diversity in the brush-tailed rock-wallaby (Petrogale penicillata;n = 279 from 31 sites), to assess historic evolutionary and biogeographic processes in southeastern Australia. Our results (mtDNA, microsatellites) confirmed three geographically discrete and genetically divergent lineages within brush-tailed rock-wallabies, whose divergence appears to date to the mid-Pleistocene. These three lineages had been hypothesized previously but data were limited. While the Northern and Central lineages were separated by a known biogeographic barrier (Hunter Valley), the boundary between the Central and Southern lineages was not. We propose that during particularly cool glacial cycles, the high peaks of the Great Dividing Range and the narrow adjacent coastal plain resulted in a more significant north–south barrier for mesic taxa in southeastern Australia than has been previously appreciated. Similarly, located phylogeographic breaks in codistributed species highlight the importance of these regions in shaping the distribution of biodiversity in southeastern Australia and suggest the existence of three major refuge areas during the Pleistocene. Substructuring within the northern lineage also suggests the occurrence of multiple local refugia during some glacial cycles. Within the three major lineages, most brush-tailed rock-wallaby populations were locally highly structured, indicating limited dispersal by both sexes. The three identified lineages represent evolutionarily significant units and should be managed to maximize the retention of genetic diversity within this threatened species. PMID:24772286

  18. Anti-CD47 Treatment Stimulates Phagocytosis of Glioblastoma by M1 and M2 Polarized Macrophages and Promotes M1 Polarized Macrophages In Vivo

    PubMed Central

    Kahn, Suzana A.; Azad, Tej D.; Gholamin, Sharareh; Xu, Chelsea Y.; Liu, Jie; Achrol, Achal S.; Richard, Chase; Sommerkamp, Pia; Schoen, Matthew Kenneth; McCracken, Melissa N.; Majeti, Ravi; Weissman, Irving; Mitra, Siddhartha S.; Cheshier, Samuel H.

    2016-01-01

    Tumor-associated macrophages (TAMs) represent an important cellular subset within the glioblastoma (WHO grade IV) microenvironment and are a potential therapeutic target. TAMs display a continuum of different polarization states between antitumorigenic M1 and protumorigenic M2 phenotypes, with a lower M1/M2 ratio correlating with worse prognosis. Here, we investigated the effect of macrophage polarization on anti-CD47 antibody-mediated phagocytosis of human glioblastoma cells in vitro, as well as the effect of anti-CD47 on the distribution of M1 versus M2 macrophages within human glioblastoma cells grown in mouse xenografts. Bone marrow-derived mouse macrophages and peripheral blood-derived human macrophages were polarized in vitro toward M1 or M2 phenotypes and verified by flow cytometry. Primary human glioblastoma cell lines were offered as targets to mouse and human M1 or M2 polarized macrophages in vitro. The addition of an anti-CD47 monoclonal antibody led to enhanced tumor-cell phagocytosis by mouse and human M1 and M2 macrophages. In both cases, the anti-CD47-induced phagocytosis by M1 was more prominent than that for M2. Dissected tumors from human glioblastoma xenografted within NOD.Cg-Prkdcscid Il2rgtm1Wjl/SzJ mice and treated with anti-CD47 showed a significant increase of M1 macrophages within the tumor. These data show that anti-CD47 treatment leads to enhanced tumor cell phagocytosis by both M1 and M2 macrophage subtypes with a higher phagocytosis rate by M1 macrophages. Furthermore, these data demonstrate that anti-CD47 treatment alone can shift the phenotype of macrophages toward the M1 subtype in vivo. PMID:27092773

  19. Anti-CD47 Treatment Stimulates Phagocytosis of Glioblastoma by M1 and M2 Polarized Macrophages and Promotes M1 Polarized Macrophages In Vivo.

    PubMed

    Zhang, Michael; Hutter, Gregor; Kahn, Suzana A; Azad, Tej D; Gholamin, Sharareh; Xu, Chelsea Y; Liu, Jie; Achrol, Achal S; Richard, Chase; Sommerkamp, Pia; Schoen, Matthew Kenneth; McCracken, Melissa N; Majeti, Ravi; Weissman, Irving; Mitra, Siddhartha S; Cheshier, Samuel H

    2016-01-01

    Tumor-associated macrophages (TAMs) represent an important cellular subset within the glioblastoma (WHO grade IV) microenvironment and are a potential therapeutic target. TAMs display a continuum of different polarization states between antitumorigenic M1 and protumorigenic M2 phenotypes, with a lower M1/M2 ratio correlating with worse prognosis. Here, we investigated the effect of macrophage polarization on anti-CD47 antibody-mediated phagocytosis of human glioblastoma cells in vitro, as well as the effect of anti-CD47 on the distribution of M1 versus M2 macrophages within human glioblastoma cells grown in mouse xenografts. Bone marrow-derived mouse macrophages and peripheral blood-derived human macrophages were polarized in vitro toward M1 or M2 phenotypes and verified by flow cytometry. Primary human glioblastoma cell lines were offered as targets to mouse and human M1 or M2 polarized macrophages in vitro. The addition of an anti-CD47 monoclonal antibody led to enhanced tumor-cell phagocytosis by mouse and human M1 and M2 macrophages. In both cases, the anti-CD47-induced phagocytosis by M1 was more prominent than that for M2. Dissected tumors from human glioblastoma xenografted within NOD.Cg-Prkdcscid Il2rgtm1Wjl/SzJ mice and treated with anti-CD47 showed a significant increase of M1 macrophages within the tumor. These data show that anti-CD47 treatment leads to enhanced tumor cell phagocytosis by both M1 and M2 macrophage subtypes with a higher phagocytosis rate by M1 macrophages. Furthermore, these data demonstrate that anti-CD47 treatment alone can shift the phenotype of macrophages toward the M1 subtype in vivo.

  20. Mesenchymal progenitor cells for the osteogenic lineage.

    PubMed

    Ono, Noriaki; Kronenberg, Henry M

    2015-09-01

    Mesenchymal progenitors of the osteogenic lineage provide the flexibility for bone to grow, maintain its function and homeostasis. Traditionally, colony-forming-unit fibroblasts (CFU-Fs) have been regarded as surrogates for mesenchymal progenitors; however, this definition cannot address the function of these progenitors in their native setting. Transgenic murine models including lineage-tracing technologies based on the cre-lox system have proven to be useful in delineating mesenchymal progenitors in their native environment. Although heterogeneity of cell populations of interest marked by a promoter-based approach complicates overall interpretation, an emerging complexity of mesenchymal progenitors has been revealed. Current literatures suggest two distinct types of bone progenitor cells; growth-associated mesenchymal progenitors contribute to explosive growth of bone in early life, whereas bone marrow mesenchymal progenitors contribute to the much slower remodeling process and response to injury that occurs mainly in adulthood. More detailed relationships of these progenitors need to be studied through further experimentation.

  1. Cophylogeny and disparate rates of evolution in sympatric lineages of chewing lice on pocket gophers.

    PubMed

    Light, Jessica E; Hafner, Mark S

    2007-12-01

    Although molecular-based phylogenetic studies of hosts and parasites are increasingly common in the literature, no study to date has examined two congeneric lineages of parasites that live in sympatry on the same lineage of hosts. This study examines phylogenetic relationships among chewing lice (Phthiraptera: Trichodectidae) of the Geomydoecus coronadoi and Geomydoecus mexicanus species complexes and compares these to phylogenetic patterns in their hosts (pocket gophers of the rodent family Geomyidae). Sympatry of congeneric lice provides a natural experiment to test the hypothesis that closely related lineages of parasites will respond similarly to the same host. Sequence data from the mitochondrial COI and the nuclear EF-1alpha genes confirm that the two louse complexes are reciprocally monophyletic and that individual clades within each species complex parasitize a different species of pocket gopher. Phylogenetic comparisons reveal that both louse complexes show a significant pattern of cophylogeny with their hosts. Comparisons of rates of nucleotide substitution at 4-fold degenerate sites in the COI gene indicate that both groups of lice have significantly higher basal mutation rates than their hosts. The two groups of lice have similar basal rates of mutation, but lice of the G. coronadoi complex show significantly elevated rates of nucleotide substitution at all sites. These rate differences are hypothesized to result from population-level phenomena, such as effective population size, founder effects, and drift, that influence rates of nucleotide substitution.

  2. Cryptic lineages hybridize for worker production in the harvester ant Messor barbarus

    PubMed Central

    Darras, Hugo; Aron, Serge

    2016-01-01

    The reproductive division of labour between queen and worker castes in social insects is a defining characteristic of eusociality and a classic example of phenotypic plasticity. Whether social insect larvae develop into queens or workers has long been thought to be determined by environmental cues, i.e. larvae are developmentally totipotent. Contrary to this paradigm, several recent studies have revealed that caste is determined by genotype in some ant species, but whether this is restricted to just a few exceptional species is still unclear. Here, we show that the Mediterranean harvester ant Messor barbarus possesses an unusual reproductive system, in which the female castes are genetically determined. Using both nuclear and mitochondrial data, we show that Iberian populations have two distinct, cryptic lineages. Workers are always inter-lineage hybrids whereas queens are always produced from pure-lineage matings. The results suggest that genetic caste determination may be more widespread in ants than previously thought, and that further investigation in other species is needed to understand the frequency and evolution of this remarkable reproductive system. PMID:27852941

  3. Tempo and mode of the multiple origins of salinity tolerance in a water beetle lineage.

    PubMed

    Arribas, Paula; Andújar, Carmelo; Abellán, Pedro; Velasco, Josefa; Millán, Andrés; Ribera, Ignacio

    2014-02-01

    Salinity is one of the most important drivers of the distribution, abundance and diversity of organisms. Previous studies on the evolution of saline tolerance have been mainly centred on marine and terrestrial organisms, while lineages inhabiting inland waters remain largely unexplored. This is despite the fact that these systems include a much broader range of salinities, going from freshwater to more than six times the salinity of the sea (i.e. >200 g/L). Here, we study the pattern and timing of the evolution of the tolerance to salinity in an inland aquatic lineage of water beetles (Enochrus species of the subgenus Lumetus, family Hydrophilidae), with the general aim of understanding the mechanisms by which it was achieved. Using a time-calibrated phylogeny built from five mitochondrial and two nuclear genes and information about the salinity tolerance and geographical distribution of the species, we found that salinity tolerance appeared multiple times associated with periods of global aridification. We found evidence of some accelerated transitions from freshwater directly to high salinities, as reconstructed with extant lineages. This, together with the strong positive correlation found between salinity tolerance and aridity of the habitats in which species are found, suggests that tolerance to salinity may be based on a co-opted mechanism developed originally for drought resistance.

  4. Prevalence and Lineage Diversity of Avian Haemosporidians from Three Distinct Cerrado Habitats in Brazil

    PubMed Central

    Belo, Nayara O.; Pinheiro, Renato T.; Reis, Elivânia S.; Ricklefs, Robert E.; Braga, Érika M.

    2011-01-01

    Habitat alteration can disrupt host–parasite interactions and lead to the emergence of new diseases in wild populations. The cerrado habitat of Brazil is being fragmented and degraded rapidly by agriculture and urbanization. We screened 676 wild birds from three habitats (intact cerrado, disturbed cerrado and transition area Amazonian rainforest-cerrado) for the presence of haemosporidian parasites (Plasmodium and Haemoproteus) to determine whether different habitats were associated with differences in the prevalence and diversity of infectious diseases in natural populations. Twenty one mitochondrial lineages, including 11 from Plasmodium and 10 from Haemoproteus were identified. Neither prevalence nor diversity of infections by Plasmodium spp. or Haemoproteus spp. differed significantly among the three habitats. However, 15 of the parasite lineages had not been previously described and might be restricted to these habitats or to the region. Six haemosporidian lineages previously known from other regions, particularly the Caribbean Basin, comprised 50–80% of the infections in each of the samples, indicating a regional relationship between parasite distribution and abundance. PMID:21408114

  5. Matrix elasticity directs stem cell lineage specification

    NASA Astrophysics Data System (ADS)

    Discher, Dennis

    2010-03-01

    Adhesion of stem cells - like most cells - is not just a membrane phenomenon. Most tissue cells need to adhere to a ``solid'' for viability, and over the last decade it has become increasingly clear that the physical ``elasticity'' of that solid is literally ``felt'' by cells. Here we show that Mesenchymal Stem Cells (MSCs) specify lineage and commit to phenotypes with extreme sensitivity to the elasticity typical of tissues [1]. In serum only media, soft matrices that mimic brain appear neurogenic, stiffer matrices that mimic muscle are myogenic, and comparatively rigid matrices that mimic collagenous bone prove osteogenic. Inhibition of nonmuscle myosin II activity blocks all elasticity directed lineage specification, which indicates that the cytoskeleton pulls on matrix through adhesive attachments. Results have significant implications for `therapeutic' stem cells and have motivated development of a proteomic-scale method to identify mechano-responsive protein structures [2] as well as deeper physical studies of matrix physics [3] and growth factor pathways [4]. [4pt] [1] A. Engler, et al. Matrix elasticity directs stem cell lineage specification. Cell (2006).[0pt] [2] C.P. Johnson, et al. Forced unfolding of proteins within cells. Science (2007).[0pt] [3] A.E.X. Brown, et al. Multiscale mechanics of fibrin polymer: Gel stretching with protein unfolding and loss of water. Science (2009).[0pt] [4] D.E. Discher, et al. Growth factors, matrices, and forces combine and control stem cells. Science (2009).

  6. Environmental biology of the marine Roseobacter lineage.

    PubMed

    Wagner-Döbler, Irene; Biebl, Hanno

    2006-01-01

    The Roseobacter lineage is a phylogenetically coherent, physiologically heterogeneous group of alpha-Proteobacteria comprising up to 25% of marine microbial communities, especially in coastal and polar oceans, and it is the only lineage in which cultivated bacteria are closely related to environmental clones. Currently 41 subclusters are described, covering all major marine ecological niches (seawater, algal blooms, microbial mats, sediments, sea ice, marine invertebrates). Members of the Roseobacter lineage play an important role for the global carbon and sulfur cycle and the climate, since they have the trait of aerobic anoxygenic photosynthesis, oxidize the greenhouse gas carbon monoxide, and produce the climate-relevant gas dimethylsulfide through the degradation of algal osmolytes. Production of bioactive metabolites and quorum-sensing-regulated control of gene expression mediate their success in complex communities. Studies of representative isolates in culture, whole-genome sequencing, e.g., of Silicibacter pomeroyi, and the analysis of marine metagenome libraries have started to reveal the environmental biology of this important marine group.

  7. Lymphatic endothelial lineage assemblage during corneal lymphangiogenesis

    PubMed Central

    Connor, Alicia L.; Kelley, Philip M.; Tempero, Richard M.

    2015-01-01

    Post natal inflammatory lymphangiogenesis presumably requires precise regulatory processes to properly assemble proliferating lymphatic endothelial cells (LECs). The specific mechanisms that regulate the assembly of LECs during new lymphatic vessel synthesis are unclear. Dynamic endothelial shuffling and rearrangement has been proposed as a mechanism of blood vessel growth. We developed genetic lineage tracing strategies using an inductive transgenic technology to track the fate of entire tandem dimer tomato positive (tdT) lymphatic vessels or small, in some cases clonal, populations of LECs. We coupled this platform with a suture induced mouse model of corneal lymphangiogenesis and used different analytic microscopy techniques including serial live imaging to study the spatial properties of proliferating tdT+ LEC progenies. LEC precursors and their progeny expanded from the corneal limbal lymphatic vessel and were assembled contiguously to comprise a subunit within a new lymphatic vessel. VE-cadherin blockade induced morphologic abnormalities in newly synthesized lymphatic vessels, but did not disrupt the tdT+ lymphatic endothelial lineage assembly. Analysis of this static and dynamic data based largely on direct in vivo observations supports a model of lymphatic endothelial lineage assemblage during corneal inflammatory lymphangiogenesis. PMID:26658452

  8. Autocrine IL-10 functions as a rheostat for M1 macrophage glycolytic commitment by tuning nitric oxide production.

    PubMed

    Baseler, Walter A; Davies, Luke C; Quigley, Laura; Ridnour, Lisa A; Weiss, Jonathan M; Hussain, S Perwez; Wink, David A; McVicar, Daniel W

    2016-12-01

    Inflammatory maturation of M1 macrophages by proinflammatory stimuli such as toll like receptor ligands results in profound metabolic reprogramming resulting in commitment to aerobic glycolysis as evidenced by repression of mitochondrial oxidative phosphorylation (OXPHOS) and enhanced glucose utilization. In contrast, "alternatively activated" macrophages adopt a metabolic program dominated by fatty acid-fueled OXPHOS. Despite the known importance of these developmental stages on the qualitative aspects of an inflammatory response, relatively little is know regarding the regulation of these metabolic adjustments. Here we provide evidence that the immunosuppressive cytokine IL-10 defines a metabolic regulatory loop. Our data show for the first time that lipopolysaccharide (LPS)-induced glycolytic flux controls IL-10-production via regulation of mammalian target of rapamycin (mTOR) and that autocrine IL-10 in turn regulates macrophage nitric oxide (NO) production. Genetic and pharmacological manipulation of IL-10 and nitric oxide (NO) establish that metabolically regulated autocrine IL-10 controls glycolytic commitment by limiting NO-mediated suppression of OXPHOS. Together these data support a model where autocine IL-10 production is controlled by glycolytic flux in turn regulating glycolytic commitment by preserving OXPHOS via suppression of NO. We propose that this IL-10-driven metabolic rheostat maintains metabolic equilibrium during M1 macrophage differentiation and that perturbation of this regulatory loop, either directly by exogenous cellular sources of IL-10 or indirectly via limitations in glucose availability, skews the cellular metabolic program altering the balance between inflammatory and immunosuppressive phenotypes.

  9. Forest elephant mitochondrial genomes reveal that elephantid diversification in Africa tracked climate transitions.

    PubMed

    Brandt, Adam L; Ishida, Yasuko; Georgiadis, Nicholas J; Roca, Alfred L

    2012-03-01

    Among elephants, the phylogeographic patterns of mitochondrial (mt) and nuclear markers are often incongruent. One hypothesis attributes this to sex differences in dispersal and in the variance of reproductive success. We tested this hypothesis by examining the coalescent dates of genetic markers within elephantid lineages, predicting that lower dispersal and lower variance in reproductive success among females would have increased mtDNA relative to nuclear coalescent dates. We sequenced the mitochondrial genomes of two forest elephants, aligning them to mitogenomes of African savanna and Asian elephants, and of woolly mammoths, including the most divergent mitogenomes within each lineage. Using fossil calibrations, the divergence between African elephant F and S clade mitochondrial genomes (originating in forest and savanna elephant lineages, respectively) was estimated as 5.5 Ma. We estimated that the (African) ancestor of the mammoth and Asian elephant lineages diverged 6.0 Ma, indicating that four elephantid lineages had differentiated in Africa by the Miocene-Pliocene transition, concurrent with drier climates. The coalescent date for forest elephant mtDNAs was c. 2.4 Ma, suggesting that the decrease in tropical forest cover during the Pleistocene isolated distinct African forest elephant lineages. For all elephantid lineages, the ratio of mtDNA to nuclear coalescent dates was much greater than 0.25. This is consistent with the expectation that sex differences in dispersal and in variance of reproductive success would have increased the effective population size of mtDNA relative to nuclear markers in elephantids, contributing to the persistence of incongruent mtDNA phylogeographic patterns.

  10. Phylogenomics of the Zygomycete lineages: Exploring phylogeny and genome evolution

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The Zygomycete lineages mark the major transition from zoosporic life histories of the common ancestors of Fungi and the earliest diverging chytrid lineages (Chytridiomycota and Blastocladiomycota). Genome comparisons from these lineages may reveal gene content changes that reflect the transition to...

  11. Genome sequesnce of lineage III Listeria monocytogenes strain HCC23

    Technology Transfer Automated Retrieval System (TEKTRAN)

    More than 98% of reported human listeriosis cases are caused by Listeria monocytogenes serotypes within lineages I and II. Serotypes within lineage III (4a and 4c) are commonly isolated from environmental and food specimens. We report the first complete genome sequence of a lineage III isolate, HCC2...

  12. Development of a ten-signature classifier using a support vector machine integrated approach to subdivide the M1 stage into M1a and M1b stages of nasopharyngeal carcinoma with synchronous metastases to better predict patients' survival

    PubMed Central

    Zhang, Meng-Xia; Wang, Tong-Min; Sun, Rui; Luo, Dong-Hua; Huang, Pei-Yu; Chen, Qiu-Yan; Hua, Yi-Jun; Tang, Lin-Quan; Guo, Ling; Mo, Hao-Yuan; Qian, Chao-Nan; Mai, Hai-Qiang; Hong, Ming-Huang; Cai, Hong-Min; Chen, Ming-Yuan

    2016-01-01

    The aim of this study was to develop a prognostic classifier and subdivided the M1 stage for nasopharyngeal carcinoma patients with synchronous metastases (mNPC). A retrospective cohort of 347 mNPC patients was recruited between January 2000 and December 2010. Thirty hematological markers and 11 clinical characteristics were collected, and the association of these factors with overall survival (OS) was evaluated. Advanced machine learning schemes of a support vector machine (SVM) were used to select a subset of highly informative factors and to construct a prognostic model (mNPC-SVM). The mNPC-SVM classifier identified ten informative variables, including three clinical indexes and seven hematological markers. The median survival time for low-risk patients (M1a) as identified by the mNPC-SVM classifier was 38.0 months, and survival time was dramatically reduced to 13.8 months for high-risk patients (M1b) (P < 0.001). Multivariate adjustment using prognostic factors revealed that the mNPC-SVM classifier remained a powerful predictor of OS (M1a vs. M1b, hazard ratio, 3.45; 95% CI, 2.59 to 4.60, P < 0.001). Moreover, combination treatment of systemic chemotherapy and loco-regional radiotherapy was associated with significantly better survival outcomes than chemotherapy alone (the 5-year OS, 47.0% vs. 10.0%, P < 0.001) in the M1a subgroup but not in the M1b subgroup (12.0% vs. 3.0%, P = 0.101). These findings were validated by a separate cohort. In conclusion, the newly developed mNPC-SVM classifier led to more precise risk definitions that offer a promising subdivision of the M1 stage and individualized selection for future therapeutic regimens in mNPC patients. PMID:26636646

  13. Development of a ten-signature classifier using a support vector machine integrated approach to subdivide the M1 stage into M1a and M1b stages of nasopharyngeal carcinoma with synchronous metastases to better predict patients' survival.

    PubMed

    Jiang, Rou; You, Rui; Pei, Xiao-Qing; Zou, Xiong; Zhang, Meng-Xia; Wang, Tong-Min; Sun, Rui; Luo, Dong-Hua; Huang, Pei-Yu; Chen, Qiu-Yan; Hua, Yi-Jun; Tang, Lin-Quan; Guo, Ling; Mo, Hao-Yuan; Qian, Chao-Nan; Mai, Hai-Qiang; Hong, Ming-Huang; Cai, Hong-Min; Chen, Ming-Yuan

    2016-01-19

    The aim of this study was to develop a prognostic classifier and subdivided the M1 stage for nasopharyngeal carcinoma patients with synchronous metastases (mNPC). A retrospective cohort of 347 mNPC patients was recruited between January 2000 and December 2010. Thirty hematological markers and 11 clinical characteristics were collected, and the association of these factors with overall survival (OS) was evaluated. Advanced machine learning schemes of a support vector machine (SVM) were used to select a subset of highly informative factors and to construct a prognostic model (mNPC-SVM). The mNPC-SVM classifier identified ten informative variables, including three clinical indexes and seven hematological markers. The median survival time for low-risk patients (M1a) as identified by the mNPC-SVM classifier was 38.0 months, and survival time was dramatically reduced to 13.8 months for high-risk patients (M1b) (P < 0.001). Multivariate adjustment using prognostic factors revealed that the mNPC-SVM classifier remained a powerful predictor of OS (M1a vs. M1b, hazard ratio, 3.45; 95% CI, 2.59 to 4.60, P < 0.001). Moreover, combination treatment of systemic chemotherapy and loco-regional radiotherapy was associated with significantly better survival outcomes than chemotherapy alone (the 5-year OS, 47.0% vs. 10.0%, P < 0.001) in the M1a subgroup but not in the M1b subgroup (12.0% vs. 3.0%, P = 0.101). These findings were validated by a separate cohort. In conclusion, the newly developed mNPC-SVM classifier led to more precise risk definitions that offer a promising subdivision of the M1 stage and individualized selection for future therapeutic regimens in mNPC patients.

  14. Low frequency repetitive transcranial magnetic stimulation targeted to PMC followed by M1 modulates excitability differently from PMC or M1 stimulation alone

    PubMed Central

    Chen, Mo; Deng, Huiqiong; Schmidt, Rebekah L.; Kimberley, Teresa J.

    2016-01-01

    Objectives The excitability of primary motor cortex (M1) can be modulated by applying low-frequency repetitive transcranial magnetic stimulation (rTMS) over M1 or premotor cortex (PMC). A comparison of inhibitory effect between the two locations has been reported with inconsistent results. This study compared the response secondary to rTMS applied over M1, PMC and a combined PMC+M1 stimulation approach which first targets stimulation over PMC then M1. Materials and Methods Ten healthy participants were recruited for a randomized, cross-over design with a 1-week wash-out between visits. Each visit consisted of a pre-test, an rTMS intervention and a post-test. Outcome measures included short interval intracortical inhibition (SICI), intracortical facilitation (ICF) and cortical silent period (CSP). Participants received one of the three interventions in random order at each visit including: 1-Hz rTMS at 90% of resting motor threshold to: M1 (1200 pulses), PMC (1200 pulses) and PMC+M1 (600 pulses each, 1200 total). Results PMC+M1 stimulation resulted in significantly greater inhibition than the other locations for ICF (P = 0.005) and CSP (P < 0.001); for SICI, increased inhibition (group effect) was not observed after any of the three interventions and there was no significant difference between the three interventions. Conclusion The results indicate that PMC+M1 stimulation may modulate brain excitability differently from PMC or M1 alone. CSP was the assessment measure most sensitive to changes in inhibition and was able to distinguish between different inhibitory protocols. This work presents a novel procedure that may have positive implications for therapeutic interventions. PMID:26307511

  15. Mitochondrial ion circuits.

    PubMed

    Nicholls, David G

    2010-01-01

    Proton circuits across the inner mitochondrial membrane link the primary energy generators, namely the complexes of the electron transport chain, to multiple energy utilizing processes, including the ATP synthase, inherent proton leak pathways, metabolite transport and linked circuits of sodium and calcium. These mitochondrial circuits can be monitored in both isolated preparations and intact cells and, for the primary proton circuit techniques, exist to follow both the proton current and proton electrochemical potential components of the circuit in parallel experiments, providing a quantitative means of assessing mitochondrial function and, equally importantly, dysfunction.

  16. Unique mitochondrial genome architecture in unicellular relatives of animals.

    PubMed

    Burger, Gertraud; Forget, Lise; Zhu, Yun; Gray, Michael W; Lang, B Franz

    2003-02-04

    Animal mtDNAs are typically small (approximately 16 kbp), circular-mapping molecules that encode 37 or fewer tightly packed genes. Here we investigate whether similarly compact mitochondrial genomes are also present in the closest unicellular relatives of animals, i.e., choanoflagellate and ichthyosporean protists. We find that the gene content and architecture of the mitochondrial genomes of the choanoflagellate Monosiga brevicollis, the ichthyosporean Amoebidium parasiticum, and Metazoa are radically different from one another. The circular-mapping choanoflagellate mtDNA with its long intergenic regions is four times as large and contains two times as many protein genes as do animal mtDNAs, whereas the ichthyosporean mitochondrial genome totals >200 kbp and consists of several hundred linear chromosomes that share elaborate terminal-specific sequence patterns. The highly peculiar organization of the ichthyosporean mtDNA raises questions about the mechanism of mitochondrial genome replication and chromosome segregation during cell division in this organism. Considering that the closest unicellular relatives of animals possess large, spacious, gene-rich mtDNAs, we posit that the distinct compaction characteristic of metazoan mitochondrial genomes occurred simultaneously with the emergence of a multicellular body plan in the animal lineage.

  17. Structure, transcription, and variability of metazoan mitochondrial genome: perspectives from an unusual mitochondrial inheritance system.

    PubMed

    Ghiselli, Fabrizio; Milani, Liliana; Guerra, Davide; Chang, Peter L; Breton, Sophie; Nuzhdin, Sergey V; Passamonti, Marco

    2013-01-01

    Despite its functional conservation, the mitochondrial genome (mtDNA) presents strikingly different features among eukaryotes, such as size, rearrangements, and amount of intergenic regions. Nonadaptive processes such as random genetic drift and mutation rate play a fundamental role in shaping mtDNA: the mitochondrial bottleneck and the number of germ line replications are critical factors, and different patterns of germ line differentiation could be responsible for the mtDNA diversity observed in eukaryotes. Among metazoan, bivalve mollusc mtDNAs show unusual features, like hypervariable gene arrangements, high mutation rates, large amount of intergenic regions, and, in some species, an unique inheritance system, the doubly uniparental inheritance (DUI). The DUI system offers the possibility to study the evolutionary dynamics of mtDNAs that, despite being in the same organism, experience different genetic drift and selective pressures. We used the DUI species Ruditapes philippinarum to study intergenic mtDNA functions, mitochondrial transcription, and polymorphism in gonads. We observed: 1) the presence of conserved functional elements and novel open reading frames (ORFs) that could explain the evolutionary persistence of intergenic regions and may be involved in DUI-specific features; 2) that mtDNA transcription is lineage-specific and independent from the nuclear background; and 3) that male-transmitted and female-transmitted mtDNAs have a similar amount of polymorphism but of different kinds, due to different population size and selection efficiency. Our results are consistent with the hypotheses that mtDNA evolution is strongly dependent on the dynamics of germ line formation, and that the establishment of a male-transmitted mtDNA lineage can increase male fitness through selection on sperm function.

  18. Mitochondrial biogenesis: pharmacological approaches.

    PubMed

    Valero, Teresa

    2014-01-01

    Organelle biogenesis is concomitant to organelle inheritance during cell division. It is necessary that organelles double their size and divide to give rise to two identical daughter cells. Mitochondrial biogenesis occurs by growth and division of pre-existing organelles and is temporally coordinated with cell cycle events [1]. However, mitochondrial biogenesis is not only produced in association with cell division. It can be produced in response to an oxidative stimulus, to an increase in the energy requirements of the cells, to exercise training, to electrical stimulation, to hormones, during development, in certain mitochondrial diseases, etc. [2]. Mitochondrial biogenesis is therefore defined as the process via which cells increase their individual mitochondrial mass [3]. Recent discoveries have raised attention to mitochondrial biogenesis as a potential target to treat diseases which up to date do not have an efficient cure. Mitochondria, as the major ROS producer and the major antioxidant producer exert a crucial role within the cell mediating processes such as apoptosis, detoxification, Ca2+ buffering, etc. This pivotal role makes mitochondria a potential target to treat a great variety of diseases. Mitochondrial biogenesis can be pharmacologically manipulated. This issue tries to cover a number of approaches to treat several diseases through triggering mitochondrial biogenesis. It contains recent discoveries in this novel field, focusing on advanced mitochondrial therapies to chronic and degenerative diseases, mitochondrial diseases, lifespan extension, mitohormesis, intracellular signaling, new pharmacological targets and natural therapies. It contributes to the field by covering and gathering the scarcely reported pharmacological approaches in the novel and promising field of mitochondrial biogenesis. There are several diseases that have a mitochondrial origin such as chronic progressive external ophthalmoplegia (CPEO) and the Kearns- Sayre syndrome (KSS

  19. Comparative phylogeography and population genetics within Buteo lineatus reveals evidence of distinct evolutionary lineages

    USGS Publications Warehouse

    Hull, J.M.; Strobel, Bradley N.; Boal, C.W.; Hull, A.C.; Dykstra, C.R.; Irish, A.M.; Fish, A.M.; Ernest, H.B.

    2008-01-01

    Traditional subspecies classifications may suggest phylogenetic relationships that are discordant with evolutionary history and mislead evolutionary inference. To more accurately describe evolutionary relationships and inform conservation efforts, we investigated the genetic relationships and demographic histories of Buteo lineatus subspecies in eastern and western North America using 21 nuclear microsatellite loci and 375-base pairs of mitochondrial control region sequence. Frequency based analyses of mitochondrial sequence data support significant population distinction between eastern (B. l. lineatus/alleni/texanus) and western (B. l. elegans) subspecies of B. lineatus. This distinction was further supported by frequency and Bayesian analyses of the microsatellite data. We found evidence of differing demographic histories between regions; among eastern sites, mitochondrial data suggested that rapid population expansion occurred following the end of the last glacial maximum, with B. l. texanus population expansion preceding that of B. l. lineatus/alleni. No evidence of post-glacial population expansion was detected among western samples (B. l. elegans). Rather, microsatellite data suggest that the western population has experienced a recent bottleneck, presumably associated with extensive anthropogenic habitat loss during the 19th and 20th centuries. Our data indicate that eastern and western populations of B. lineatus are genetically distinct lineages, have experienced very different demographic histories, and suggest management as separate conservation units may be warranted. ?? 2008 Elsevier Inc. All rights reserved.

  20. Evolutionary history of asexual hybrid loaches (Cobitis: Teleostei) inferred from phylogenetic analysis of mitochondrial DNA variation.

    PubMed

    Janko, K; Kotlík, P; Ráb, P

    2003-11-01

    Reconstruction of the evolutionary history of asexual lineages undermines their suitability as models for the studies of evolutionary consequences of sexual reproduction. Using molecular tools we addressed the origin, age and maternal ancestry of diploid and triploid asexual lineages arisen through the hybridization between spiny loaches Cobitis elongatoides, C. taenia and C. tanaitica. Reconstructions of the phylogenetic relationships among mitochondrial DNA (mtDNA) haplotypes, revealed by sequence analyses, suggest that both hybrid complexes (C. elongatoides-taenia and C. elongatoides-tanaitica) contained several asexual lineages of independent origin. Cobitis elongatoides was the exclusive maternal ancestor of all the C. elongatoides-tanaitica hybrids, whereas within the C. elongatoides-taenia complex, hybridization was reciprocal. In both complexes the low haplotype divergences were consistent with a recent origin of asexual lineages. Combined mtDNA and allozyme data suggest that the triploids arose through the incorporation of a haploid sperm genome into unreduced ova produced by diploid hybrids.

  1. 26 CFR 301.6501(m)-1 - Tentative carryback adjustment assessment period.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... period. 301.6501(m)-1 Section 301.6501(m)-1 Internal Revenue INTERNAL REVENUE SERVICE, DEPARTMENT OF THE... Assessment and Collection § 301.6501(m)-1 Tentative carryback adjustment assessment period. (a) Period of limitation after tentative carryback adjustment. (1) Under section 6501(m), in a case where an amount...

  2. 26 CFR 1.401(m)-1 - Employee contributions and matching contributions.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... contributions. 1.401(m)-1 Section 1.401(m)-1 Internal Revenue INTERNAL REVENUE SERVICE, DEPARTMENT OF THE... Plans, Etc. § 1.401(m)-1 Employee contributions and matching contributions. (a) General... contributions satisfies the nondiscrimination test of section 401(m) under paragraph (b) of this section and...

  3. 26 CFR 301.6501(m)-1 - Tentative carryback adjustment assessment period.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... period. 301.6501(m)-1 Section 301.6501(m)-1 Internal Revenue INTERNAL REVENUE SERVICE, DEPARTMENT OF THE... Assessment and Collection § 301.6501(m)-1 Tentative carryback adjustment assessment period. (a) Period of limitation after tentative carryback adjustment. (1) Under section 6501(m), in a case where an amount...

  4. 26 CFR 301.6103(m)-1 - Disclosure of taxpayer identity information.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    .... 301.6103(m)-1 Section 301.6103(m)-1 Internal Revenue INTERNAL REVENUE SERVICE, DEPARTMENT OF THE... Returns and Records § 301.6103(m)-1 Disclosure of taxpayer identity information. (a) Definition. For purposes of applying the provisions of section 6103(m) of the Internal Revenue Code, the term...

  5. 26 CFR 1.401(m)-1 - Employee contributions and matching contributions.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... contributions. 1.401(m)-1 Section 1.401(m)-1 Internal Revenue INTERNAL REVENUE SERVICE, DEPARTMENT OF THE.... § 1.401(m)-1 Employee contributions and matching contributions. (a) General nondiscrimination rules—(1... the nondiscrimination test of section 401(m) under paragraph (b) of this section and the...

  6. 26 CFR 301.6103(m)-1 - Disclosure of taxpayer identity information.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 26 Internal Revenue 18 2011-04-01 2011-04-01 false Disclosure of taxpayer identity information. 301.6103(m)-1 Section 301.6103(m)-1 Internal Revenue INTERNAL REVENUE SERVICE, DEPARTMENT OF THE... Returns and Records § 301.6103(m)-1 Disclosure of taxpayer identity information. (a) Definition....

  7. 26 CFR 301.6103(m)-1 - Disclosure of taxpayer identity information.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 26 Internal Revenue 18 2013-04-01 2013-04-01 false Disclosure of taxpayer identity information. 301.6103(m)-1 Section 301.6103(m)-1 Internal Revenue INTERNAL REVENUE SERVICE, DEPARTMENT OF THE... Returns and Records § 301.6103(m)-1 Disclosure of taxpayer identity information. (a) Definition....

  8. 26 CFR 301.6103(m)-1 - Disclosure of taxpayer identity information.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 26 Internal Revenue 18 2012-04-01 2012-04-01 false Disclosure of taxpayer identity information. 301.6103(m)-1 Section 301.6103(m)-1 Internal Revenue INTERNAL REVENUE SERVICE, DEPARTMENT OF THE... Returns and Records § 301.6103(m)-1 Disclosure of taxpayer identity information. (a) Definition....

  9. 26 CFR 301.6103(m)-1 - Disclosure of taxpayer identity information.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 26 Internal Revenue 18 2014-04-01 2014-04-01 false Disclosure of taxpayer identity information. 301.6103(m)-1 Section 301.6103(m)-1 Internal Revenue INTERNAL REVENUE SERVICE, DEPARTMENT OF THE... Returns and Records § 301.6103(m)-1 Disclosure of taxpayer identity information. (a) Definition....

  10. Deregulation of FoxM1b leads to tumour metastasis

    PubMed Central

    Park, Hyun Jung; Gusarova, Galina; Wang, Zebin; Carr, Janai R; Li, Jing; Kim, Ki-Hyun; Qiu, Jin; Park, Yoon-Dong; Williamson, Peter R; Hay, Nissim; Tyner, Angela L; Lau, Lester F; Costa, Robert H; Raychaudhuri, Pradip

    2011-01-01

    The forkhead box M1b (FoxM1b) transcription factor is over-expressed in human cancers, and its expression often correlates with poor prognosis. Previously, using conditional knockout strains, we showed that FoxM1b is essential for hepatocellular carcinoma (HCC) development. However, over-expression of FoxM1b had only marginal effects on HCC progression. Here we investigated the effect of FoxM1b expression in the absence of its inhibitor Arf. We show that transgenic expression of FoxM1b in an Arf-null background drives hepatic fibrosis and metastasis of HCC. We identify novel mechanisms of FoxM1b that are involved in epithelial–mesenchymal transition, cell motility, invasion and a pre-metastatic niche formation. FoxM1b activates the Akt-Snail1 pathway and stimulates expression of Stathmin, lysyl oxidase, lysyl oxidase like-2 and several other genes involved in metastasis. Furthermore, we show that an Arf-derived peptide, which inhibits FoxM1b, impedes metastasis of the FoxM1b-expressing HCC cells. The observations indicate that FoxM1b is a potent activator of tumour metastasis and that the Arf-mediated inhibition of FoxM1b is a critical mechanism for suppression of tumour metastasis. PMID:21204266

  11. A molecular assessment of phylogenetic relationships and lineage accumulation rates within the family Salamandridae (Amphibia, Caudata).

    PubMed

    Weisrock, David W; Papenfuss, Theodore J; Macey, J Robert; Litvinchuk, Spartak N; Polymeni, Rosa; Ugurtas, Ismail H; Zhao, Ermi; Jowkar, Houman; Larson, Allan

    2006-11-01

    We examine phylogenetic relationships among salamanders of the family Salamandridae using approximately 2700 bases of new mtDNA sequence data (the tRNALeu, ND1, tRNAIle, tRNAGln, tRNAMet, ND2, tRNATrp, tRNAAla, tRNAAsn, tRNACys, tRNATyr, and COI genes and the origin for light-strand replication) collected from 96 individuals representing 61 of the 66 recognized salamandrid species and outgroups. Phylogenetic analyses using maximum parsimony and Bayesian analysis are performed on the new data alone and combined with previously reported sequences from other parts of the mitochondrial genome. The basal phylogenetic split is a polytomy of lineages ancestral to (1) the Italian newt Salamandrina terdigitata, (2) a strongly supported clade comprising the "true" salamanders (genera Chioglossa, Mertensiella, Lyciasalamandra, and Salamandra), and (3) a strongly supported clade comprising all newts except S. terdigitata. Strongly supported clades within the true salamanders include monophyly of each genus and grouping Chioglossa and Mertensiella as the sister taxon to a clade comprising Lyciasalamandra and Salamandra. Among newts, genera Echinotriton, Pleurodeles, and Tylototriton form a strongly supported clade whose sister taxon comprises the genera Calotriton, Cynops, Euproctus, Neurergus, Notophthalmus, Pachytriton, Paramesotriton, Taricha, and Triturus. Our results strongly support monophyly of all polytypic newt genera except Paramesotriton and Triturus, which appear paraphyletic, and Calotriton, for which only one of the two species is sampled. Other well-supported clades within newts include (1) Asian genera Cynops, Pachytriton, and Paramesotriton, (2) North American genera Notophthalmus and Taricha, (3) the Triturus vulgaris species group, and (4) the Triturus cristatus species group; some additional groupings appear strong in Bayesian but not parsimony analyses. Rates of lineage accumulation through time are evaluated using this nearly comprehensive sampling of

  12. Home Bodies and Wanderers: Sympatric Lineages of the Deep-Sea Black Coral Leiopathes glaberrima

    PubMed Central

    Ruiz-Ramos, Dannise V.; Saunders, Miles; Fisher, Charles R.; Baums, Iliana B.

    2015-01-01

    Colonial corals occur in a wide range of marine benthic habitats from the shallows to the deep ocean, often defining the structure of their local community. The black coral Leiopathes glaberrima is a long-lived foundation species occurring on carbonate outcrops in the Northern Gulf of Mexico (GoM). Multiple color morphs of L. glaberrima grow sympatrically in the region. Morphological, mitochondrial and nuclear ribosomal markers supported the hypothesis that color morphs constituted a single biological species and that colonies, regardless of color, were somewhat genetically differentiated east and west of the Mississippi Canyon. Ten microsatellite loci were used to determine finer-scale population genetic structure and reproductive characteristics. Gene flow was disrupted between and within two nearby (distance = 36.4 km) hardground sites and two sympatric microsatellite lineages, which might constitute cryptic species, were recovered. Lineage one was outbred and found in all sampled locations (N = 5) across 765.6 km in the Northern Gulf of Mexico. Lineage two was inbred, reproducing predominantly by fragmentation, and restricted to sites around Viosca Knoll. In these sites the lineages and the color phenotypes occurred in different microhabitats, and models of maximum entropy suggested that depth and slope influence the distribution of the color phenotypes within the Vioska Knolls. We conclude that L. glaberrima is phenotypically plastic with a mixed reproductive strategy in the Northern GoM. Such strategy might enable this long-lived species to balance local recruitment with occasional long-distance dispersal to colonize new sites in an environment where habitat is limited. PMID:26488161

  13. Complete Mitochondrial Genomes of New Zealand’s First Dogs

    PubMed Central

    Greig, Karen; Boocock, James; Prost, Stefan; Horsburgh, K. Ann; Jacomb, Chris; Walter, Richard; Matisoo-Smith, Elizabeth

    2015-01-01

    Dogs accompanied people in their migrations across the Pacific Ocean and ultimately reached New Zealand, which is the southern-most point of their oceanic distribution, around the beginning of the fourteenth century AD. Previous ancient DNA analyses of mitochondrial control region sequences indicated the New Zealand dog population included two lineages. We sequenced complete mitochondrial genomes of fourteen dogs from the colonisation era archaeological site of Wairau Bar and found five closely-related haplotypes. The limited number of mitochondrial lineages present at Wairau Bar suggests that the founding population may have comprised only a few dogs; or that the arriving dogs were closely related. For populations such as that at Wairau Bar, which stemmed from relatively recent migration events, control region sequences have insufficient power to address questions about population structure and founding events. Sequencing mitogenomes provided the opportunity to observe sufficient diversity to discriminate between individuals that would otherwise be assigned the same haplotype and to clarify their relationships with each other. Our results also support the proposition that at least one dispersal of dogs into the Pacific was via a south-western route through Indonesia. PMID:26444283

  14. Complete Mitochondrial Genomes of New Zealand's First Dogs.

    PubMed

    Greig, Karen; Boocock, James; Prost, Stefan; Horsburgh, K Ann; Jacomb, Chris; Walter, Richard; Matisoo-Smith, Elizabeth

    2015-01-01

    Dogs accompanied people in their migrations across the Pacific Ocean and ultimately reached New Zealand, which is the southern-most point of their oceanic distribution, around the beginning of the fourteenth century AD. Previous ancient DNA analyses of mitochondrial control region sequences indicated the New Zealand dog population included two lineages. We sequenced complete mitochondrial genomes of fourteen dogs from the colonisation era archaeological site of Wairau Bar and found five closely-related haplotypes. The limited number of mitochondrial lineages present at Wairau Bar suggests that the founding population may have comprised only a few dogs; or that the arriving dogs were closely related. For populations such as that at Wairau Bar, which stemmed from relatively recent migration events, control region sequences have insufficient power to address questions about population structure and founding events. Sequencing mitogenomes provided the opportunity to observe sufficient diversity to discriminate between individuals that would otherwise be assigned the same haplotype and to clarify their relationships with each other. Our results also support the proposition that at least one dispersal of dogs into the Pacific was via a south-western route through Indonesia.

  15. Bears in a forest of gene trees: phylogenetic inference is complicated by incomplete lineage sorting and gene flow.

    PubMed

    Kutschera, Verena E; Bidon, Tobias; Hailer, Frank; Rodi, Julia L; Fain, Steven R; Janke, Axel

    2014-08-01

    Ursine bears are a mammalian subfamily that comprises six morphologically and ecologically distinct extant species. Previous phylogenetic analyses of concatenated nuclear genes could not resolve all relationships among bears, and appeared to conflict with the mitochondrial phylogeny. Evolutionary processes such as incomplete lineage sorting and introgression can cause gene tree discordance and complicate phylogenetic inferences, but are not accounted for in phylogenetic analyses of concatenated data. We generated a high-resolution data set of autosomal introns from several individuals per species and of Y-chromosomal markers. Incorporating intraspecific variability in coalescence-based phylogenetic and gene flow estimation approaches, we traced the genealogical history of individual alleles. Considerable heterogeneity among nuclear loci and discordance between nuclear and mitochondrial phylogenies were found. A species tree with divergence time estimates indicated that ursine bears diversified within less than 2 My. Consistent with a complex branching order within a clade of Asian bear species, we identified unidirectional gene flow from Asian black into sloth bears. Moreover, gene flow detected from brown into American black bears can explain the conflicting placement of the American black bear in mitochondrial and nuclear phylogenies. These results highlight that both incomplete lineage sorting and introgression are prominent evolutionary forces even on time scales up to several million years. Complex evolutionary patterns are not adequately captured by strictly bifurcating models, and can only be fully understood when analyzing multiple independently inherited loci in a coalescence framework. Phylogenetic incongruence among gene trees hence needs to be recognized as a biologically meaningful signal.

  16. Bears in a Forest of Gene Trees: Phylogenetic Inference Is Complicated by Incomplete Lineage Sorting and Gene Flow

    PubMed Central

    Kutschera, Verena E.; Bidon, Tobias; Hailer, Frank; Rodi, Julia L.; Fain, Steven R.; Janke, Axel

    2014-01-01

    Ursine bears are a mammalian subfamily that comprises six morphologically and ecologically distinct extant species. Previous phylogenetic analyses of concatenated nuclear genes could not resolve all relationships among bears, and appeared to conflict with the mitochondrial phylogeny. Evolutionary processes such as incomplete lineage sorting and introgression can cause gene tree discordance and complicate phylogenetic inferences, but are not accounted for in phylogenetic analyses of concatenated data. We generated a high-resolution data set of autosomal introns from several individuals per species and of Y-chromosomal markers. Incorporating intraspecific variability in coalescence-based phylogenetic and gene flow estimation approaches, we traced the genealogical history of individual alleles. Considerable heterogeneity among nuclear loci and discordance between nuclear and mitochondrial phylogenies were found. A species tree with divergence time estimates indicated that ursine bears diversified within less than 2 My. Consistent with a complex branching order within a clade of Asian bear species, we identified unidirectional gene flow from Asian black into sloth bears. Moreover, gene flow detected from brown into American black bears can explain the conflicting placement of the American black bear in mitochondrial and nuclear phylogenies. These results highlight that both incomplete lineage sorting and introgression are prominent evolutionary forces even on time scales up to several million years. Complex evolutionary patterns are not adequately captured by strictly bifurcating models, and can only be fully understood when analyzing multiple independently inherited loci in a coalescence framework. Phylogenetic incongruence among gene trees hence needs to be recognized as a biologically meaningful signal. PMID:24903145

  17. Mitochondrial protection by resveratrol.

    PubMed

    Ungvari, Zoltan; Sonntag, William E; de Cabo, Rafael; Baur, Joseph A; Csiszar, Anna

    2011-07-01

    Mitochondrial dysfunction and oxidative stress are thought to play important roles in mammalian aging. Resveratrol is a plant-derived polyphenol that exerts diverse antiaging activities, mimicking some of the molecular and functional effects of dietary restriction. This review focuses on the molecular mechanisms underlying the mitochondrial protective effects of resveratrol, which could be exploited for the prevention or amelioration of age-related diseases in the elderly.

  18. Peripheral neuropathy in mitochondrial disorders.

    PubMed

    Pareyson, Davide; Piscosquito, Giuseppe; Moroni, Isabella; Salsano, Ettore; Zeviani, Massimo

    2013-10-01

    Why is peripheral neuropathy common but mild in many mitochondrial disorders, and why is it, in some cases, the predominant or only manifestation? Although this question remains largely unanswered, recent advances in cellular and molecular biology have begun to clarify the importance of mitochondrial functioning and distribution in the peripheral nerve. Mutations in proteins involved in mitochondrial dynamics (ie, fusion and fission) frequently result in a Charcot-Marie-Tooth phenotype. Peripheral neuropathies with different phenotypic presentations occur in mitochondrial diseases associated with abnormalities in mitochondrial DNA replication and maintenance, or associated with defects in mitochondrial respiratory chain complex V. Our knowledge of mitochondrial disorders is rapidly growing as new nuclear genes are identified and new phenotypes described. Early diagnosis of mitochondrial disorders, essential to provide appropriate genetic counselling, has become crucial in a few treatable conditions. Recognising and diagnosing an underlying mitochondrial defect in patients presenting with peripheral neuropathy is therefore of paramount importance.

  19. Molecular phylogeny and diversification of the genus Odorrana (Amphibia, Anura, Ranidae) inferred from two mitochondrial genes.

    PubMed

    Chen, Xiaohong; Chen, Zhuo; Jiang, Jianping; Qiao, Liang; Lu, Youqiang; Zhou, Kaiya; Zheng, Guangmei; Zhai, Xiaofei; Liu, Jianxin

    2013-12-01

    A diversity of hypotheses have been proposed for phylogenetic relationships and taxonomy within the genus Odorrana, and great progress has been made over the past several decades. However, there is still some controversy concerning relationships among Odorrana species. Here, we used many paratypes and topotypes and utilized 1.81 kb of mitochondrial sequence data to generate a phylogeny for approximately 4/5 of Odorrana species, and Odorrana haplotypes form a strongly supported monophyletic group relative to the other genera sampled. The deepest phylogenetic divergences within Odorrana separate 3 lineages whose interrelationships are not recovered with strong support. These lineages include the ancestral lineage of O. chapaensis, the ancestral lineage of a strongly supported clade comprising many western species, and the ancestral lineage of a strongly supported clade comprising all other Odorrana sampled. Within the latter clade, the first phylogenetic split separates O. ishikawae from a well-supported clade comprising its other species. These divergences likely occurred in the middle Miocene, approximately 12-15 million years ago. Separation of the ancestral lineage of Odorrana from its closest relative, Babina in our study, likely occurred in the early Miocene or possibly late Oligocene. Rates of lineage accumulation remained high from the middle Miocene through the Pleistocene.

  20. Mitochondrial DNA sequence evolution in the Arctoidea.

    PubMed Central

    Zhang, Y P; Ryder, O A

    1993-01-01

    Some taxa in the superfamily Arctoidea, such as the giant panda and the lesser panda, have presented puzzles to taxonomists. In the present study, approximately 397 bases of the cytochrome b gene, 364 bases of the 12S rRNA gene, and 74 bases of the tRNA(Thr) and tRNA(Pro) genes from the giant panda, lesser panda, kinkajou, raccoon, coatimundi, and all species of the Ursidae were sequenced. The high transition/transversion ratios in cytochrome b and RNA genes prior to saturation suggest that the presumed transition bias may represent a trend for some mammalian lineages rather than strictly a primate phenomenon. Transversions in the 12S rRNA gene accumulate in arctoids at about half the rate reported for artiodactyls. Different arctoid lineages evolve at different rates: the kinkajou, a procyonid, evolves the fastest, 1.7-1.9 times faster than the slowest lineage that comprises the spectacled and polar bears. Generation-time effect can only partially explain the different rates of nucleotide substitution in arctoids. Our results based on parsimony analysis show that the giant panda is more closely related to bears than to the lesser panda; the lesser panda is neither closely related to bears nor to the New World procyonids. The kinkajou, raccoon, and coatimundi diverged from each other very early, even though they group together. The polar bear is closely related to the spectacled bear, and they began to diverge from a common mitochondrial ancestor approximately 2 million years ago. Relationships of the remaining five bear species are derived. PMID:8415740

  1. Positioning the red deer (Cervus elaphus) hunted by the Tyrolean Iceman into a mitochondrial DNA phylogeny.

    PubMed

    Olivieri, Cristina; Marota, Isolina; Rizzi, Ermanno; Ermini, Luca; Fusco, Letizia; Pietrelli, Alessandro; De Bellis, Gianluca; Rollo, Franco; Luciani, Stefania

    2014-01-01

    In the last years several phylogeographic studies of both extant and extinct red deer populations have been conducted. Three distinct mitochondrial lineages (western, eastern and North-African/Sardinian) have been identified reflecting different glacial refugia and postglacial recolonisation processes. However, little is known about the genetics of the Alpine populations and no mitochondrial DNA sequences from Alpine archaeological specimens are available. Here we provide the first mitochondrial sequences of an Alpine Copper Age Cervus elaphus. DNA was extracted from hair shafts which were part of the remains of the clothes of the glacier mummy known as the Tyrolean Iceman or Ötzi (5,350-5,100 years before present). A 2,297 base pairs long fragment was sequenced using a mixed sequencing procedure based on PCR amplifications and 454 sequencing of pooled amplification products. We analyzed the phylogenetic relationships of the Alpine Copper Age red deer's haplotype with haplotypes of modern and ancient European red deer. The phylogenetic analyses showed that the haplotype of the Alpine Copper Age red deer falls within the western European mitochondrial lineage in contrast with the current populations from the Italian Alps belonging to the eastern lineage. We also discussed the phylogenetic relationships of the Alpine Copper Age red deer with the populations from Mesola Wood (northern Italy) and Sardinia.

  2. Evolution of two prototypic T cell lineages

    PubMed Central

    Das, Sabyasachi; Li, Jianxu; Hirano, Masayuki; Sutoh, Yoichi; Herrin, Brantley R.; Cooper, Max D.

    2015-01-01

    Jawless vertebrates, which occupy a unique position in chordate phylogeny, employ leucine-rich repeat (LRR)-based variable lymphocyte receptors (VLR) for antigen recognition. During the assembly of the VLR genes (VLRA, VLRB and VLRC), donor LRR-encoding sequences are copied in a step-wise manner into the incomplete germ-line genes. The assembled VLR genes are differentially expressed by discrete lymphocyte lineages: VLRA- and VLRC-producing cells are T-cell like, whereas VLRB-producing cells are B-cell like. VLRA+ and VLRC+ lymphocytes resemble the two principal T-cell lineages of jawed vertebrates that express the αβ or γδ T-cell receptors (TCR). Reminiscent of the interspersed nature of the TCRα/TCRδ locus in jawed vertebrates, the close proximity of the VLRA and VLRC loci facilitates sharing of donor LRR sequences during VLRA and VLRC assembly. Here we discuss the insight these findings provide into vertebrate T- and B-cell evolution, and the alternative types of anticipatory receptors they use for adaptive immunity. PMID:25958271

  3. [Advances in lineage-specific genes].

    PubMed

    Huanping, Zhang; Tongming, Yin

    2015-06-01

    Lineage-specific genes (LSGs) are defined as genes found in one particular taxonomic group but have no significant sequence similarity with genes from other lineages, which compose about 10%?20% of the total genes in the genome of a focal organism. LSGs were first uncovered in the yeast genome in 1996. The development of the whole genome sequencing leads to the emergence of studies on LSGs as a hot topic in comparative genomics. LSGs have been extensively studied on microbial species, lower marine organisms, plant (such as Arabidopsis thaliana, Oryza sativa, Populus), insects, primate, etc; the biological functions of LSGs are important to clarify the evolution and adaptability of a species. In this review, we summarize the progress of LSGs studies, including LSGs identification, gene characterization, origin and evolution of LSGs, biological function, and expression analysis of LSGs. In addition, we discuss the existing problems and future directions for studies in this area. Our purpose is to provide some unique insights into the researches of LSGs.

  4. Origin of strigolactones in the green lineage.

    PubMed

    Delaux, Pierre-Marc; Xie, Xiaonan; Timme, Ruth E; Puech-Pages, Virginie; Dunand, Christophe; Lecompte, Emilie; Delwiche, Charles F; Yoneyama, Koichi; Bécard, Guillaume; Séjalon-Delmas, Nathalie

    2012-09-01

    The aims of this study were to investigate the appearance of strigolactones in the green lineage and to determine the primitive function of these molecules. We measured the strigolactone content of several isolated liverworts, mosses, charophyte and chlorophyte green algae using a sensitive biological assay and LC-MS/MS analyses. In parallel, sequence comparison of strigolactone-related genes and phylogenetic analyses were performed using available genomic data and newly sequenced expressed sequence tags. The primitive function of strigolactones was determined by exogenous application of the synthetic strigolactone analog, GR24, and by mutant phenotyping. Liverworts, the most basal Embryophytes and Charales, one of the closest green algal relatives to Embryophytes, produce strigolactones, whereas several other species of green algae do not. We showed that GR24 stimulates rhizoid elongation of Charales, liverworts and mosses, and rescues the phenotype of the strigolactone-deficient Ppccd8 mutant of Physcomitrella patens. These findings demonstrate that the first function of strigolactones was not to promote arbuscular mycorrhizal symbiosis. Rather, they suggest that the strigolactones appeared earlier in the streptophyte lineage to control rhizoid elongation. They may have been conserved in basal Embryophytes for this role and then recruited for the stimulation of colonization by glomeromycotan fungi.

  5. Mitochondrial diseases: therapeutic approaches.

    PubMed

    DiMauro, Salvatore; Mancuso, Michelangelo

    2007-06-01

    Therapy of mitochondrial encephalomyopathies (defined restrictively as defects of the mitochondrial respiratory chain) is woefully inadequate, despite great progress in our understanding of the molecular bases of these disorders. In this review, we consider sequentially several different therapeutic approaches. Palliative therapy is dictated by good medical practice and includes anticonvulsant medication, control of endocrine dysfunction, and surgical procedures. Removal of noxious metabolites is centered on combating lactic acidosis, but extends to other metabolites. Attempts to bypass blocks in the respiratory chain by administration of electron acceptors have not been successful, but this may be amenable to genetic engineering. Administration of metabolites and cofactors is the mainstay of real-life therapy and is especially important in disorders due to primary deficiencies of specific compounds, such as carnitine or coenzyme Q10. There is increasing interest in the administration of reactive oxygen species scavengers both in primary mitochondrial diseases and in neurodegenerative diseases directly or indirectly related to mitochondrial dysfunction. Aerobic exercise and physical therapy prevent or correct deconditioning and improve exercise tolerance in patients with mitochondrial myopathies due to mitochondrial DNA (mtDNA) mutations. Gene therapy is a challenge because of polyplasmy and heteroplasmy, but interesting experimental approaches are being pursued and include, for example, decreasing the ratio of mutant to wild-type mitochondrial genomes (gene shifting), converting mutated mtDNA genes into normal nuclear DNA genes (allotopic expression), importing cognate genes from other species, or correcting mtDNA mutations with specific restriction endonucleases. Germline therapy raises ethical problems but is being considered for prevention of maternal transmission of mtDNA mutations. Preventive therapy through genetic counseling and prenatal diagnosis is

  6. Parallel emergence of negative epistasis across experimental lineages.

    PubMed

    Zee, Peter C; Velicer, Gregory J

    2017-01-27

    Epistatic interactions can greatly impact evolutionary phenomena, particularly the process of adaptation. Here, we leverage four parallel experimentally evolved lineages to study the emergence and trajectories of epistatic interactions in the social bacterium Myxococcus xanthus. A social gene (pilA) necessary for effective group swarming on soft agar had been deleted from the common ancestor of these lineages. During selection for competitiveness at the leading edge of growing colonies, two lineages evolved qualitatively novel mechanisms for greatly increased swarming on soft agar, whereas the other two lineages evolved relatively small increases in swarming. By reintroducing pilA into different genetic backgrounds along the four lineages, we tested whether parallel lineages showed similar patterns of epistasis. In particular, we tested whether a pattern of negative epistasis between accumulating mutations and pilA previously found in the fastest lineage would be found only in the two evolved lineages with the fastest and most striking swarming phenotypes, or rather was due to common epistatic structure across all lineages arising from the generic fixation of adaptive mutations. Our analysis reveals the emergence of negative epistasis across all four independent lineages. Further, we present results showing that the observed negative epistasis is not due exclusively to evolving populations approaching a maximum phenotypic value that inherently limits positive effects of pilA reintroduction, but rather involves direct antagonistic interactions between accumulating mutations and the reintroduced social gene.

  7. Contrasting microsatellite diversity in the evolutionary lineages of Phytophthora lateralis.

    PubMed

    Vettraino, AnnaMaria; Brasier, Clive M; Webber, Joan F; Hansen, Everett M; Green, Sarah; Robin, Cecile; Tomassini, Alessia; Bruni, Natalia; Vannini, Andrea

    2017-02-01

    Following recent discovery of Phytophthora lateralis on native Chamaecyparis obtusa in Taiwan, four phenotypically distinct lineages were discriminated: the Taiwan J (TWJ) and Taiwan K (TWK) in Taiwan, the Pacific Northwest (PNW) in North America and Europe and the UK in west Scotland. Across the four lineages, we analysed 88 isolates from multiple sites for microsatellite diversity. Twenty-one multilocus genotypes (MLGs) were resolved with high levels of diversity of the TWK and PNW lineages. No alleles were shared between the PNW and the Taiwanese lineages. TWK was heterozygous at three loci, whereas TWJ isolates were homozygous apart from one isolate, which exhibited a unique allele also present in the TWK lineage. PNW lineage was heterozygous at three loci. The evidence suggests its origin may be a yet unknown Asian source. North American and European PNW isolates shared all their alleles and also a dominant MLG, consistent with a previous proposal that this lineage is a recent introduction into Europe from North America. The UK lineage was monomorphic and homozygous at all loci. It shared its alleles with the PNW and the TWJ and TWK lineages, hence a possible origin in a recent hybridisation event between a Taiwan lineage and PNW cannot be ruled out.

  8. How mitochondrial dynamism orchestrates mitophagy

    PubMed Central

    Shirihai, Orian; Song, Moshi; Dorn, Gerald W

    2015-01-01

    Mitochondria are highly dynamic, except in adult cardiomyocytes. Yet, the fission and fusion-promoting proteins that mediate mitochondrial dynamism are highly expressed in, and essential to the normal functioning of, hearts. Here, we review accumulating evidence supporting important roles for mitochondrial fission and fusion in cardiac mitochondrial quality control, focusing on the PINK1-Parkin mitophagy pathway.Based in part on recent findings from in vivo mouse models in which mitofusin-mediated mitochondrial fusion or Drp1-mediated mitochondrial fission were conditionally interrupted in cardiac myocytes, we propose several new concepts that may provide insight into the cardiac mitochondrial dynamism-mitophagy interactome. PMID:25999423

  9. Parallel habitat-driven differences in the phylogeographical structure of two independent lineages of Mediterranean saline water beetles.

    PubMed

    Abellán, P; Millán, A; Ribera, I

    2009-09-01

    It has been hypothesized that species living in small lentic water bodies, because of the short-term geological persistence of their habitat, should show higher dispersal ability, with increased gene flow among populations and a less pronounced phylogeographical structure. Conversely, lotic species, living in more geologically stable habitats, should show reduced dispersal and an increased phylogeographical structure at the same geographical scales. In this work we tested the influence of habitat type in two groups of aquatic Coleoptera (Nebrioporus ceresyi and Ochthebius notabilis groups, families Dytiscidae and Hydraenidae respectively), each of them with closely related species typical of lotic and lentic saline Western Mediterranean water bodies. We used mitochondrial cox1 sequence data of 453 specimens of 77 populations through the range of nine species to compare a lotic vs. a lentic lineage in each of the two groups. Despite the differences in biology (predators vs. detritivorous) and evolutionary history, in both lotic lineages there was a higher proportion of nucleotide diversity among than within groups of populations, and a faster rate of accumulation of haplotype diversity (as measured by rarefaction curves) than in the lentic lineages. Similarly, lotic lineages had a higher absolute phylogenetic diversity, more remarkable considering their smaller absolute geographical ranges. By comparing closely related species, we were able to show the effect of contrasting habitat preferences in two different groups, in agreement with predictions derived from habitat stability.

  10. A hybrid zone between Bathymodiolus mussel lineages from eastern Pacific hydrothermal vents

    PubMed Central

    2013-01-01

    Background The inhabitants of deep-sea hydrothermal vents occupy ephemeral island-like habitats distributed sporadically along tectonic spreading-centers, back-arc basins, and volcanically active seamounts. The majority of vent taxa undergo a pelagic larval phase, and thus varying degrees of geographical subdivision, ranging from no impedance of dispersal to complete isolation, often exist among taxa that span common geomorphological boundaries. Two lineages of Bathymodiolus mussels segregate on either side of the Easter Microplate, a boundary that separates the East Pacific Rise from spreading centers connected to the Pacific-Antarctic Ridge. Results A recent sample from the northwest flank of the Easter Microplate contained an admixture of northern and southern mitochondrial haplotypes and corresponding alleles at five nuclear gene loci. Genotypic frequencies in this sample did not fit random mating expectation. Significant heterozygote deficiencies at nuclear loci and gametic disequilibria between loci suggested that this transitional region might be a ‘Tension Zone’ maintained by immigration of parental types and possibly hybrid unfitness. An analysis of recombination history in the nuclear genes suggests a prolonged history of parapatric contact between the two mussel lineages. We hereby elevate the southern lineage to species status as Bathymodiolus antarcticus n. sp. and restrict the use of Bathymodiolus thermophilus to the northern lineage. Conclusions Because B. thermophilus s.s. exhibits no evidence for subdivision or isolation-by-distance across its 4000 km range along the EPR axis and Galápagos Rift, partial isolation of B. antarcticus n. sp. requires explanation. The time needed to produce the observed degree of mitochondrial differentiation is consistent with the age of the Easter Microplate (2.5 to 5.3 million years). The complex geomorphology of the Easter Microplate region forces strong cross-axis currents that might disrupt self

  11. Activation of Muscarinic M1 Acetylcholine Receptors Induces Long-Term Potentiation in the Hippocampus

    PubMed Central

    Dennis, Siobhan H.; Pasqui, Francesca; Colvin, Ellen M.; Sanger, Helen; Mogg, Adrian J.; Felder, Christian C.; Broad, Lisa M.; Fitzjohn, Steve M.; Isaac, John T.R.; Mellor, Jack R.

    2016-01-01

    Muscarinic M1 acetylcholine receptors (M1Rs) are highly expressed in the hippocampus, and their inhibition or ablation disrupts the encoding of spatial memory. It has been hypothesized that the principal mechanism by which M1Rs influence spatial memory is by the regulation of hippocampal synaptic plasticity. Here, we use a combination of recently developed, well characterized, selective M1R agonists and M1R knock-out mice to define the roles of M1Rs in the regulation of hippocampal neuronal and synaptic function. We confirm that M1R activation increases input resistance and depolarizes hippocampal CA1 pyramidal neurons and show that this profoundly increases excitatory postsynaptic potential-spike coupling. Consistent with a critical role for M1Rs in synaptic plasticity, we now show that M1R activation produces a robust potentiation of glutamatergic synaptic transmission onto CA1 pyramidal neurons that has all the hallmarks of long-term potentiation (LTP): The potentiation requires NMDA receptor activity and bi-directionally occludes with synaptically induced LTP. Thus, we describe synergistic mechanisms by which acetylcholine acting through M1Rs excites CA1 pyramidal neurons and induces LTP, to profoundly increase activation of CA1 pyramidal neurons. These features are predicted to make a major contribution to the pro-cognitive effects of cholinergic transmission in rodents and humans. PMID:26472558

  12. Activation of Muscarinic M1 Acetylcholine Receptors Induces Long-Term Potentiation in the Hippocampus.

    PubMed

    Dennis, Siobhan H; Pasqui, Francesca; Colvin, Ellen M; Sanger, Helen; Mogg, Adrian J; Felder, Christian C; Broad, Lisa M; Fitzjohn, Steve M; Isaac, John T R; Mellor, Jack R

    2016-01-01

    Muscarinic M1 acetylcholine receptors (M1Rs) are highly expressed in the hippocampus, and their inhibition or ablation disrupts the encoding of spatial memory. It has been hypothesized that the principal mechanism by which M1Rs influence spatial memory is by the regulation of hippocampal synaptic plasticity. Here, we use a combination of recently developed, well characterized, selective M1R agonists and M1R knock-out mice to define the roles of M1Rs in the regulation of hippocampal neuronal and synaptic function. We confirm that M1R activation increases input resistance and depolarizes hippocampal CA1 pyramidal neurons and show that this profoundly increases excitatory postsynaptic potential-spike coupling. Consistent with a critical role for M1Rs in synaptic plasticity, we now show that M1R activation produces a robust potentiation of glutamatergic synaptic transmission onto CA1 pyramidal neurons that has all the hallmarks of long-term potentiation (LTP): The potentiation requires NMDA receptor activity and bi-directionally occludes with synaptically induced LTP. Thus, we describe synergistic mechanisms by which acetylcholine acting through M1Rs excites CA1 pyramidal neurons and induces LTP, to profoundly increase activation of CA1 pyramidal neurons. These features are predicted to make a major contribution to the pro-cognitive effects of cholinergic transmission in rodents and humans.

  13. The Spectrum of Mitochondrial Ultrastructural Defects in Mitochondrial Myopathy

    PubMed Central

    Vincent, Amy E.; Ng, Yi Shiau; White, Kathryn; Davey, Tracey; Mannella, Carmen; Falkous, Gavin; Feeney, Catherine; Schaefer, Andrew M.; McFarland, Robert; Gorman, Grainne S.; Taylor, Robert W.; Turnbull, Doug M.; Picard, Martin

    2016-01-01

    Mitochondrial functions are intrinsically linked to their morphology and membrane ultrastructure. Characterizing abnormal mitochondrial structural features may thus provide insight into the underlying pathogenesis of inherited and acquired mitochondrial diseases. Following a systematic literature review on ultrastructural defects in mitochondrial myopathy, we investigated skeletal muscle biopsies from seven subjects with genetically defined mtDNA mutations. Mitochondrial ultrastructure and morphology were characterized using two complimentary approaches: transmission electron microscopy (TEM) and serial block face scanning EM (SBF-SEM) with 3D reconstruction. Six ultrastructural abnormalities were identified including i) paracrystalline inclusions, ii) linearization of cristae and abnormal angular features, iii) concentric layering of cristae membranes, iv) matrix compartmentalization, v) nanotunelling, and vi) donut-shaped mitochondria. In light of recent molecular advances in mitochondrial biology, these findings reveal novel aspects of mitochondrial ultrastructure and morphology in human tissues with implications for understanding the mechanisms linking mitochondrial dysfunction to disease. PMID:27506553

  14. Role of Macrophage (M1 and M2) in Titanium-Dioxide Nanoparticle-Induced Oxidative Stress and Inflammatory Response in Rat.

    PubMed

    Kumar, Sumit; Meena, Ramovatar; Paulraj, R

    2016-12-01

    Titanium-dioxide nanoparticles (TNP) are used in various consumable goods. Evidence has demonstrated the cytotoxicity of TNPs, but exact mechanism is yet to be elucidated. The present study has been aimed at finding out the mechanism of TNP-induced toxicity in biological system. Different doses of anatase-TNPs administrated intravenously to Wistar rats for once a week for 1 month and properties of TH cells, macrophages, cytokines secretion, oxidative damage, apoptotic pathway, and hematological and pathological changes were investigated as downstream events of TNP-mediated cytotoxicity. Result suggests that TNPs induce TH1 and TH2 response as measured by immunophenotyping (interferon gamma (IFN-γ) and interleukin (IL)-4) of TH cells, causing induction of M1 (nitric oxide (NO), nitric oxide synthase (iNOS), NF-kappaB (NF-κB), cyclooxygenase-2 (COX-2), IL-1, IL-6, and TNF-α) and M2 (Arg-1, Ym1) macrophages response. At lower dose, TH1 or M1 response counteracted by TH2 or M2 response, resulting in insignificant oxidative damage. However, with increasing dose of TNPs, the M1 response was increased over M2 response resulting in significant tissue damage. The M1-induced inflammatory response was found to cause DNA and chromosomal damage resulting apoptosis induction via upregulation of Bax/Bcl-2 ratio and subsequent loss of mitochondrial membrane potential and cyto c release in splenocytes. The TNP-led inflammatory response also causes damage at different tissue levels.

  15. Transcription of mitochondrial DNA.

    PubMed

    Tabak, H F; Grivell, L A; Borst, P

    1983-01-01

    While mitochondrial DNA (mtDNA) is the simplest DNA in nature, coding for rRNAs and tRNAs, results of DNA sequence, and transcript analysis have demonstrated that both the synthesis and processing of mitochondrial RNAs involve remarkably intricate events. At one extreme, genes in animal mtDNAs are tightly packed, both DNA strands are completely transcribed (symmetric transcription), and the appearance of specific mRNAs is entirely dependent on processing at sites signalled by the sequences of the tRNAs, which abut virtually every gene. At the other extreme, gene organization in yeast (Saccharomyces) is anything but compact, with long stretches of AT-rich DNA interspaced between coding sequences and no obvious logic to the order of genes. Transcription is asymmetric and several RNAs are initiated de novo. Nevertheless, extensive RNA processing occurs due largely to the presence of split genes. RNA splicing is complex, is controlled by both mitochondrial and nuclear genes, and in some cases is accompanied by the formation of RNAs that behave as covalently closed circles. The present article reviews current knowledge of mitochondrial transcription and RNA processing in relation to possible mechanisms for the regulation of mitochondrial gene expression.

  16. A Comparative Analysis of Mitochondrial Genomes in Eustigmatophyte Algae

    PubMed Central

    Ševčíková, Tereza; Klimeš, Vladimír; Zbránková, Veronika; Strnad, Hynek; Hroudová, Miluše; Vlček, Čestmír; Eliáš, Marek

    2016-01-01

    Eustigmatophyceae (Ochrophyta, Stramenopiles) is a small algal group with species of the genus Nannochloropsis being its best studied representatives. Nuclear and organellar genomes have been recently sequenced for several Nannochloropsis spp., but phylogenetically wider genomic studies are missing for eustigmatophytes. We sequenced mitochondrial genomes (mitogenomes) of three species representing most major eustigmatophyte lineages, Monodopsis sp. MarTras21, Vischeria sp. CAUP Q 202 and Trachydiscus minutus, and carried out their comparative analysis in the context of available data from Nannochloropsis and other stramenopiles, revealing a number of noticeable findings. First, mitogenomes of most eustigmatophytes are highly collinear and similar in the gene content, but extensive rearrangements and loss of three otherwise ubiquitous genes happened in the Vischeria lineage; this correlates with an accelerated evolution of mitochondrial gene sequences in this lineage. Second, eustigmatophytes appear to be the only ochrophyte group with the Atp1 protein encoded by the mitogenome. Third, eustigmatophyte mitogenomes uniquely share a truncated nad11 gene encoding only the C-terminal part of the Nad11 protein, while the N-terminal part is encoded by a separate gene in the nuclear genome. Fourth, UGA as a termination codon and the cognate release factor mRF2 were lost from mitochondria independently by the Nannochloropsis and T. minutus lineages. Finally, the rps3 gene in the mitogenome of Vischeria sp. is interrupted by the UAG codon, but the genome includes a gene for an unusual tRNA with an extended anticodon loop that we speculate may serve as a suppressor tRNA to properly decode the rps3 gene. PMID:26872774

  17. Tracing the evolution of streptophyte algae and their mitochondrial genome.

    PubMed

    Turmel, Monique; Otis, Christian; Lemieux, Claude

    2013-01-01

    Six monophyletic groups of charophycean green algae are recognized within the Streptophyta. Although incongruent with earlier studies based on genes from three cellular compartments, chloroplast and nuclear phylogenomic analyses have resolved identical relationships among these groups, placing the Zygnematales or the Zygnematales + Coleochaetales as sister to land plants. The present investigation aimed at determining whether this consensus view is supported by the mitochondrial genome and at gaining insight into mitochondrial DNA (mtDNA) evolution within and across streptophyte algal lineages and during the transition toward the first land plants. We present here the newly sequenced mtDNAs of representatives of the Klebsormidiales (Entransia fimbriata and Klebsormidium spec.) and Zygnematales (Closterium baillyanum and Roya obtusa) and compare them with their homologs in other charophycean lineages as well as in selected embryophyte and chlorophyte lineages. Our results indicate that important changes occurred at the levels of genome size, gene order, and intron content within the Zygnematales. Although the representatives of the Klebsormidiales display more similarity in genome size and intron content, gene order seems more fluid and gene losses more frequent than in other charophycean lineages. In contrast, the two members of the Charales display an extremely conservative pattern of mtDNA evolution. Collectively, our analyses of gene order and gene content and the phylogenies we inferred from 40 mtDNA-encoded proteins failed to resolve the relationships among the Zygnematales, Coleochaetales, and Charales; however, they are consistent with previous phylogenomic studies in favoring that the morphologically complex Charales are not sister to land plants.

  18. Tracing the Evolution of Streptophyte Algae and Their Mitochondrial Genome

    PubMed Central

    Turmel, Monique; Otis, Christian; Lemieux, Claude

    2013-01-01

    Six monophyletic groups of charophycean green algae are recognized within the Streptophyta. Although incongruent with earlier studies based on genes from three cellular compartments, chloroplast and nuclear phylogenomic analyses have resolved identical relationships among these groups, placing the Zygnematales or the Zygnematales + Coleochaetales as sister to land plants. The present investigation aimed at determining whether this consensus view is supported by the mitochondrial genome and at gaining insight into mitochondrial DNA (mtDNA) evolution within and across streptophyte algal lineages and during the transition toward the first land plants. We present here the newly sequenced mtDNAs of representatives of the Klebsormidiales (Entransia fimbriata and Klebsormidium spec.) and Zygnematales (Closterium baillyanum and Roya obtusa) and compare them with their homologs in other charophycean lineages as well as in selected embryophyte and chlorophyte lineages. Our results indicate that important changes occurred at the levels of genome size, gene order, and intron content within the Zygnematales. Although the representatives of the Klebsormidiales display more similarity in genome size and intron content, gene order seems more fluid and gene losses more frequent than in other charophycean lineages. In contrast, the two members of the Charales display an extremely conservative pattern of mtDNA evolution. Collectively, our analyses of gene order and gene content and the phylogenies we inferred from 40 mtDNA-encoded proteins failed to resolve the relationships among the Zygnematales, Coleochaetales, and Charales; however, they are consistent with previous phylogenomic studies in favoring that the morphologically complex Charales are not sister to land plants. PMID:24022472

  19. The earliest settlers' antiquity and evolutionary history of Indian populations: evidence from M2 mtDNA lineage

    PubMed Central

    2008-01-01

    Background The "out of Africa" model postulating single "southern route" dispersal posits arrival of "Anatomically Modern Human" to Indian subcontinent around 66–70 thousand years before present (kyBP). However the contributions and legacy of these earliest settlers in contemporary Indian populations, owing to the complex past population dynamics and later migrations has been an issue of controversy. The high frequency of mitochondrial lineage "M2" consistent with its greater age and distribution suggests that it may represent the phylogenetic signature of earliest settlers. Accordingly, we attempted to re-evaluate the impact and contribution of earliest settlers in shaping the genetic diversity and structure of contemporary Indian populations; using our newly sequenced 72 and 4 published complete mitochondrial genomes of this lineage. Results The M2 lineage, harbouring two deep rooting subclades M2a and M2b encompasses approximately one tenth of the mtDNA pool of studied tribes. The phylogeographic spread and diversity indices of M2 and its subclades among the tribes of different geographic regions and linguistic phyla were investigated in detail. Further the reconstructed demographic history of M2 lineage as a surrogate of earliest settlers' component revealed that the demographic events with pronounced regional variations had played pivotal role in shaping the complex net of populations phylogenetic relationship in Indian subcontinent. Conclusion Our results suggest that tribes of southern and eastern region along with Dravidian and Austro-Asiatic speakers of central India are the modern representatives of earliest settlers of subcontinent. The Last Glacial Maximum aridity and post LGM population growth mechanised some sort of homogeneity and redistribution of earliest settlers' component in India. The demic diffusion of agriculture and associated technologies around 3 kyBP, which might have marginalized hunter-gatherer, is coincidental with the decline of

  20. Behavior of sup 14 C aflatoxin M1 during camembert cheese making

    SciTech Connect

    Fremy, J.M.; Roiland, J.C.; Gaymard, A. )

    1990-05-01

    Camembert cheeses are made from raw milk spiked with aflatoxin M1. Three aflatoxin M1 levels (7.5 micrograms/L, 3 micrograms/L, and 0.3 micrograms/L) are used. In curds 35.6, 47.1, and 57.7% of aflatoxin M1, respectively, are recovered, and in wheys 64.4, 52.9, and 42.3%, respectively, are recovered. During the first 15 days of storage, the aflatoxin M1 content of different cheeses decreases 25, 55, and 75%, respectively. A similar experiment is made with milk contaminated with {sup 14}C labeled aflatoxin M1. The same results are obtained, except for the behavior of aflatoxin M1 in cheese; the same 14C activity is recovered during storage for 30 days.

  1. Examining B(M1) staggering as a fingerprint for chiral doublet bands

    SciTech Connect

    Qi, B.; Yao, J. M.; Zhang, S. Q.; Wang, S. Y.; Meng, J.

    2009-04-15

    The electromagnetic transitions of the doublet bands with different triaxiality parameter {gamma} are discussed in the particle rotor model with {pi}h{sub 11/2} x {nu}h{sub 11/2}{sup -1} configuration. It is found that B(M1) staggering as well as the resulting B(M1)/B(E2) and B(M1){sub in}/B(M1){sub out} staggering are sensitive to the triaxiality parameter {gamma}, and they associate strongly with the characters of nuclear chirality for 15 deg. {<=}{gamma}{<=}30 deg., i.e., the staggering is weak in the chiral vibration region while strong in the static chirality region. For partner bands with near degenerate energy spectra and similar B(M1) and B(E2) transitions, the strong B(M1) staggering can be used as a fingerprint for the static chirality.

  2. SAR studies on carboxylic acid series M(1) selective positive allosteric modulators (PAMs).

    PubMed

    Kuduk, Scott D; Beshore, Douglas C

    2014-01-01

    There is mounting evidence from preclinical and early proof-of-concept studies suggesting that selective modulation of the M1 muscarinic receptor is efficacious in cognitive models of Alzheimer's disease (AD). A number of nonselective M1 muscarinic agonists have previously shown positive effects on cognitive function in AD patients, but were limited due to cholinergic adverse events thought to be mediated by pan activation of the M2 to M5 sub-types. Thus, there is a need to identify selective activators of the M1 receptor to evaluate their potential in cognitive disorders. One strategy to confer selectivity for M1 is the identification of allosteric agonists or positive allosteric modulators, which would target an allosteric site on the M1 receptor rather than the highly conserved orthosteric acetylcholine binding site. BQCA has been identified as a highly selective carboxylic acid M1 PAM and this review focuses on an extensive lead optimization campaign undertaken on this compound.

  3. Whole organism lineage tracing by combinatorial and cumulative genome editing

    PubMed Central

    McKenna, Aaron; Findlay, Gregory M.; Gagnon, James A.; Horwitz, Marshall S.; Schier, Alexander F.; Shendure, Jay

    2016-01-01

    Multicellular systems develop from single cells through distinct lineages. However, current lineage tracing approaches scale poorly to whole, complex organisms. Here we use genome editing to progressively introduce and accumulate diverse mutations in a DNA barcode over multiple rounds of cell division. The barcode, an array of CRISPR/Cas9 target sites, marks cells and enables the elucidation of lineage relationships via the patterns of mutations shared between cells. In cell culture and zebrafish, we show that rates and patterns of editing are tunable, and that thousands of lineage-informative barcode alleles can be generated. By sampling hundreds of thousands of cells from individual zebrafish, we find that most cells in adult organs derive from relatively few embryonic progenitors. In future analyses, genome editing of synthetic target arrays for lineage tracing (GESTALT) can be used to generate large-scale maps of cell lineage in multicellular systems for normal development and disease. PMID:27229144

  4. Mitochondrial fusion and inheritance of the mitochondrial genome.

    PubMed

    Takano, Hiroyoshi; Onoue, Kenta; Kawano, Shigeyuki

    2010-03-01

    Although maternal or uniparental inheritance of mitochondrial genomes is a general rule, biparental inheritance is sometimes observed in protists and fungi,including yeasts. In yeast, recombination occurs between the mitochondrial genomes inherited from both parents.Mitochondrial fusion observed in yeast zygotes is thought to set up a space for DNA recombination. In the last decade,a universal mitochondrial fusion mechanism has been uncovered, using yeast as a model. On the other hand, an alternative mitochondrial fusion mechanism has been identified in the true slime mold Physarum polycephalum.A specific mitochondrial plasmid, mF, has been detected as the genetic material that causes mitochondrial fusion in P. polycephalum. Without mF, fusion of the mitochondria is not observed throughout the life cycle, suggesting that Physarum has no constitutive mitochondrial fusion mechanism.Conversely, mitochondria fuse in zygotes and during sporulation with mF. The complete mF sequence suggests that one gene, ORF640, encodes a fusogen for Physarum mitochondria. Although in general, mitochondria are inherited uniparentally, biparental inheritance occurs with specific sexual crossing in P. polycephalum.An analysis of the transmission of mitochondrial genomes has shown that recombinations between two parental mitochondrial genomes require mitochondrial fusion,mediated by mF. Physarum is a unique organism for studying mitochondrial fusion.

  5. The chemotaxis of M1 and M2 macrophages is regulated by different chemokines.

    PubMed

    Xuan, Wenjuan; Qu, Qing; Zheng, Biao; Xiong, Sidong; Fan, Guo-Huang

    2015-01-01

    The homing of proinflammatory (M1) and the "alternatively activated" anti-inflammatory (M2) macrophages plays a different role in the process of inflammation. Chemokines are the major mediators of macrophage chemotaxis, but how they differentially regulate M1 and M2 macrophages remains largely unclear. In the present study, we attempted to screen chemokines that differentially induce chemotaxis of M1 and M2 macrophages and to explore the underlying mechanism. Among the 41 chemokines that specifically bind to 20 chemokine receptors, CCL19, CCL21, CCL24, CCL25, CXCL8, CXCL10, and XCL2 specifically induced M1 macrophage chemotaxis, whereas CCL7 induced chemotaxis of both M1 and M2 macrophages. Whereas the differential effects of these chemokines on M1/M2 macrophage chemotaxis could be attributable to the predominant expression of their cognate receptors on the macrophage subsets, CCR7, the receptor for CCL19/CCL21, appeared to be an exception. Immunoblot analysis indicated an equivalent level of CCR7 in the whole cell lysate of M1 and M2 macrophages, but CCL19 and CCL21 only induced M1 macrophage chemotaxis. Both immunoblot and confocal microscopy analyses demonstrated that CCR7 was predominantly expressed on the cell surface of M1 but in the cytosol of M2 macrophages before ligand stimulation. As a result, CCL19 or CCL21 induced activation of both MEK1-ERK1/2 and PI3K-AKT cascades in M1 but not in M2 macrophages. Intriguingly, CCL19/CCL21-mediated M1 macrophage chemotaxis was blocked by specific inhibition of PI3K rather than MEK1. Together, these findings suggest that recruitment of M1 and M2 macrophages is fine tuned by different chemokines with the involvement of specific signaling pathways.

  6. Complete mitochondrial genome of Undaria pinnatifida (Alariaceae, Laminariales, Phaeophyceae).

    PubMed

    Li, Tian-Yong; Qu, Jie-Qiong; Feng, Yan-Jing; Liu, Cui; Chi, Shan; Liu, Tao

    2015-01-01

    Undaria pinnatifida is one of the most important economic marine algae and key components of coastal ecosystems. Undaria pinnatifida owns a typical heteromorphic, diplohaplontic life cycle. We present the complete sequence of mitochondrial genome of U. pinnatifida, focusing on genome organization and phylogenetic relationship between different brown algae lineages. The size of U. pinnatifida mitochondrial DNA is 37,402 bp, including 3 rRNAs, 25 tRNAs, 35 proteins, as well as 3 ORFs. No intron is found and most genes are encoded on the H-strand. The phylogenetic trees (BI) constructed on 35 protein-coding genes from 17 species proved that Saccharina has a closer relationship with Laminaria than that with Undaria. The results supported the conclusion that Alariaceae is sister genus to the Laminariaceae. Above researches will facilitate the understanding of evolutionary relationship within brown algae.

  7. Selfish drive can trump function when animal mitochondrial genomes compete

    PubMed Central

    Ma, Hansong; O’Farrell, Patrick H.

    2016-01-01

    Mitochondrial genomes compete for transmission from mother to progeny. We explored this competition by introducing a second genome into Drosophila melanogaster to follow transmission. Competitions between closely related genomes favored those functional in electron transport, resulting in a host-beneficial purifying selection1. Contrastingly, matchups between distant genomes often favored those with negligible, negative or lethal consequences, indicating selfish selection. Exhibiting powerful selfish selection, a genome carrying a detrimental mutation displaced a complementing genome leading to population death after several generations. In a different pairing, opposing selfish and purifying selection counterbalanced to give stable transmission of two genomes. Sequencing of recombinant mitochondrial genomes revealed that the non-coding region, containing origins of replication, governs selfish transmission. Uniparental inheritance prevents encounters between distantly related genomes. Nonetheless, within each maternal lineage, constant competition among sibling genomes selects for super-replicators. We suggest that this relentless competition drives positive selection promoting change in the sequences influencing transmission. PMID:27270106

  8. Selfish drive can trump function when animal mitochondrial genomes compete.

    PubMed

    Ma, Hansong; O'Farrell, Patrick H

    2016-07-01

    Mitochondrial genomes compete for transmission from mother to progeny. We explored this competition by introducing a second genome into Drosophila melanogaster to follow transmission. Competitions between closely related genomes favored those functional in electron transport, resulting in a host-beneficial purifying selection. In contrast, matchups between distantly related genomes often favored those with negligible, negative or lethal consequences, indicating selfish selection. Exhibiting powerful selfish selection, a genome carrying a detrimental mutation displaced a complementing genome, leading to population death after several generations. In a different pairing, opposing selfish and purifying selection counterbalanced to give stable transmission of two genomes. Sequencing of recombinant mitochondrial genomes showed that the noncoding region, containing origins of replication, governs selfish transmission. Uniparental inheritance prevents encounters between distantly related genomes. Nonetheless, in each maternal lineage, constant competition among sibling genomes selects for super-replicators. We suggest that this relentless competition drives positive selection, promoting change in the sequences influencing transmission.

  9. Prospective identification of hematopoietic lineage choice by deep learning.

    PubMed

    Buggenthin, Felix; Buettner, Florian; Hoppe, Philipp S; Endele, Max; Kroiss, Manuel; Strasser, Michael; Schwarzfischer, Michael; Loeffler, Dirk; Kokkaliaris, Konstantinos D; Hilsenbeck, Oliver; Schroeder, Timm; Theis, Fabian J; Marr, Carsten

    2017-02-20

    Differentiation alters molecular properties of stem and progenitor cells, leading to changes in their shape and movement characteristics. We present a deep neural network that prospectively predicts lineage choice in differentiating primary hematopoietic progenitors using image patches from brightfield microscopy and cellular movement. Surprisingly, lineage choice can be detected up to three generations before conventional molecular markers are observable. Our approach allows identification of cells with differentially expressed lineage-specifying genes without molecular labeling.

  10. Adult-onset mitochondrial myopathy.

    PubMed Central

    Fernandez-Sola, J.; Casademont, J.; Grau, J. M.; Graus, F.; Cardellach, F.; Pedrol, E.; Urbano-Marquez, A.

    1992-01-01

    Mitochondrial diseases are polymorphic entities which may affect many organs and systems. Skeletal muscle involvement is frequent in the context of systemic mitochondrial disease, but adult-onset pure mitochondrial myopathy appears to be rare. We report 3 patients with progressive skeletal mitochondrial myopathy starting in adult age. In all cases, the proximal myopathy was the only clinical feature. Mitochondrial pathology was confirmed by evidence of ragged-red fibres in muscle histochemistry, an abnormal mitochondrial morphology in electron microscopy and by exclusion of other underlying diseases. No deletions of mitochondrial DNA were found. We emphasize the need to look for a mitochondrial disorder in some non-specific myopathies starting in adult life. Images Figure 1 Figure 2 PMID:1589382

  11. Mitochondrial inheritance in fungi.

    PubMed

    Basse, Christoph W

    2010-12-01

    Faithful inheritance of mitochondria is essential for growth and development. Uniparental inheritance of mitochondria is a common phenomenon in sexual eukaryotes and has been reported for numerous fungal species. Uniparental inheritance is a genetically regulated process, aimed to gain a homoplasmic state within cells, and this is often associated with selective elimination of one parental mitochondria population. This review will focus on recent developments in our understanding of common and specified regulatory circuits of selective mitochondrial inheritance during sexual development. It further refers to the influence of mitochondrial fusion on generation of recombinant mitochondrial DNA molecules. The latter aspect appears rather exciting in the context of intron homing and could bring a new twist to the debate on the significance of uniparental inheritance. The emergence of genome-wide studies offers new perspectives to address potential relationships between uniparental inheritance, vegetative inheritance and last but not least cellular scavenging systems to dispose of disintegrated organelles.

  12. Monocyte Differentiation towards Protumor Activity Does Not Correlate with M1 or M2 Phenotypes

    PubMed Central

    Chimal-Ramírez, G. Karina; Espinoza-Sánchez, Nancy Adriana; Chávez-Sánchez, Luis; Arriaga-Pizano, Lourdes

    2016-01-01

    Macrophages facilitate breast cancer progression. Macrophages were initially classified as M1 or M2 based on their distinct metabolic programs and then expanded to include antitumoral (M1) and protumoral (M2) activities. However, it is still uncertain what markers define the pro- and antitumoral phenotypes and what conditions lead to their formation. In this study, monocytic cell lines and primary monocytes were subjected to commonly reported protocols of M1/M2 polarization and conditions known to engage monocytes into protumoral functions. The results showed that only IDO enzyme and CD86 M1 markers were upregulated correlating with M1 polarization. TNF-α, CCR7, IL-10, arginase I, CD36, and CD163 were expressed indistinguishably from M1 or M2 polarization. Similarly, protumoral engaging resulted in upregulation of both M1 and M2 markers, with conditioned media from the most aggressive breast cancer cell line promoting the greatest changes. In spite of the mixed phenotype, M1-polarized macrophages exhibited the highest expression/secretion of inflammatory mediators, many of which have previously been associated with breast cancer aggressiveness. These data argue that although the existence of protumoral macrophages is unquestionable, their associated phenotypes and the precise conditions driving their formation are still unclear, and those conditions may need both M1 and M2 stimuli. PMID:27376091

  13. Presence of aflatoxin M1 in commercial ultra-high-temperature-treated milk.

    PubMed Central

    Blanco, J L; Domínguez, L; Gómez-Lucía, E; Garayzabal, J F; García, J A; Suárez, G

    1988-01-01

    Forty-seven samples of commercial ultra-high-temperature-treated milk from a dairy facility in the northwest part of Spain were analyzed for the presence of aflatoxin M1. A total of 14 samples (29.8%) were positive for aflatoxin M1 (4 in May, 3 in November, 3 in December, 1 in January, 1 in April, 1 in July, and 1 in August), 29 (61.7%) were negative, and 4 (8.5%) were doubtful, i.e., they showed trace quantities of aflatoxin M1. The range of aflatoxin M1 content was 0.02 to 0.1 ng/ml. PMID:3137868

  14. The Drosophila cyst stem cell lineage

    PubMed Central

    Zoller, Richard; Schulz, Cordula

    2012-01-01

    In all animals, germline cells differentiate in intimate contact with somatic cells and interactions between germline and soma are particularly important for germline development and function. In the male gonad of Drosophila melanogaster, the developing germline cells are enclosed by somatic cyst cells. The cyst cells are derived from cyst stem cells (CySCs) of somatic origin and codifferentiate with the germline cells. The fast generation cycle and the genetic tractability of Drosophila has made the Drosophila testis an excellent model for studying both the roles of somatic cells in guiding germline development and the interdependence of two separate stem cell lineages. This review focuses on our current understanding of CySC specification, CySC self-renewing divisions, cyst cell differentiation, and soma-germline interactions. Many of the mechanisms guiding these processes in Drosophila testes are similarly essential for the development and function of tissues in other organisms, most importantly for gametogenesis in mammals. PMID:23087834

  15. The melanocyte lineage in development and disease

    PubMed Central

    Mort, Richard L.; Jackson, Ian J.; Patton, E. Elizabeth

    2015-01-01

    Melanocyte development provides an excellent model for studying more complex developmental processes. Melanocytes have an apparently simple aetiology, differentiating from the neural crest and migrating through the developing embryo to specific locations within the skin and hair follicles, and to other sites in the body. The study of pigmentation mutations in the mouse provided the initial key to identifying the genes and proteins involved in melanocyte development. In addition, work on chicken has provided important embryological and molecular insights, whereas studies in zebrafish have allowed live imaging as well as genetic and transgenic approaches. This cross-species approach is powerful and, as we review here, has resulted in a detailed understanding of melanocyte development and differentiation, melanocyte stem cells and the role of the melanocyte lineage in diseases such as melanoma. PMID:25670789

  16. Feedback, Lineages and Self-Organizing Morphogenesis

    PubMed Central

    Calof, Anne L.; Lowengrub, John S.; Lander, Arthur D.

    2016-01-01

    Feedback regulation of cell lineage progression plays an important role in tissue size homeostasis, but whether such feedback also plays an important role in tissue morphogenesis has yet to be explored. Here we use mathematical modeling to show that a particular feedback architecture in which both positive and negative diffusible signals act on stem and/or progenitor cells leads to the appearance of bistable or bi-modal growth behaviors, ultrasensitivity to external growth cues, local growth-driven budding, self-sustaining elongation, and the triggering of self-organization in the form of lamellar fingers. Such behaviors arise not through regulation of cell cycle speeds, but through the control of stem or progenitor self-renewal. Even though the spatial patterns that arise in this setting are the result of interactions between diffusible factors with antagonistic effects, morphogenesis is not the consequence of Turing-type instabilities. PMID:26989903

  17. Admixture of Eastern and Western European Red Deer Lineages as a Result of Postglacial Recolonization of the Czech Republic (Central Europe).

    PubMed

    Krojerová-Prokešová, Jarmila; Barančeková, Miroslava; Koubek, Petr

    2015-01-01

    Due to a restriction of the distributional range of European red deer (Cervus elaphus L.) during the Quaternary and subsequent recolonization of Europe from different refugia, a clear phylogeographical pattern in genetic structure has been revealed using mitochondrial DNA markers. In Central Europe, 2 distinct, eastern and western, lineages of European red deer are present; however, admixture between them has not yet been studied in detail. We used mitochondrial DNA (control region and cytochrome b gene) sequences and 22 microsatellite loci from 522 individuals to investigate the genetic diversity of red deer in what might be expected to be an intermediate zone. We discovered a high number of unique mtDNA haplotypes belonging to each lineage and high levels of genetic diversity (cyt b H = 0.867, D-loop H = 0.914). The same structuring of red deer populations was also revealed by microsatellite analysis, with results from both analyses thus suggesting a suture zone between the 2 lineages. Despite the fact that postglacial recolonization of Central Europe by red deer occurred more than 10000 years ago, the degree of admixture between the 2 lineages is relatively small, with only 10.8% admixed individuals detected. Direct translocations of animals by humans have slightly blurred the pattern in this region; however, this blurring was more apparent when using maternally inherited markers than nuclear markers.

  18. Lineage mapper: A versatile cell and particle tracker

    PubMed Central

    Chalfoun, Joe; Majurski, Michael; Dima, Alden; Halter, Michael; Bhadriraju, Kiran; Brady, Mary

    2016-01-01

    The ability to accurately track cells and particles from images is critical to many biomedical problems. To address this, we developed Lineage Mapper, an open-source tracker for time-lapse images of biological cells, colonies, and particles. Lineage Mapper tracks objects independently of the segmentation method, detects mitosis in confluence, separates cell clumps mistakenly segmented as a single cell, provides accuracy and scalability even on terabyte-sized datasets, and creates division and/or fusion lineages. Lineage Mapper has been tested and validated on multiple biological and simulated problems. The software is available in ImageJ and Matlab at isg.nist.gov. PMID:27853188

  19. Lineage mapper: A versatile cell and particle tracker

    NASA Astrophysics Data System (ADS)

    Chalfoun, Joe; Majurski, Michael; Dima, Alden; Halter, Michael; Bhadriraju, Kiran; Brady, Mary

    2016-11-01

    The ability to accurately track cells and particles from images is critical to many biomedical problems. To address this, we developed Lineage Mapper, an open-source tracker for time-lapse images of biological cells, colonies, and particles. Lineage Mapper tracks objects independently of the segmentation method, detects mitosis in confluence, separates cell clumps mistakenly segmented as a single cell, provides accuracy and scalability even on terabyte-sized datasets, and creates division and/or fusion lineages. Lineage Mapper has been tested and validated on multiple biological and simulated problems. The software is available in ImageJ and Matlab at isg.nist.gov.

  20. Two distinct mtDNA lineages among captive African penguins in Japan.

    PubMed

    Murata, Michiko; Murakami, Masaru

    2014-04-01

    The African penguin (Spheniscus demersus) is one of the world's most endangered seabirds. In Japan, although the number of African penguins in captivity continues to increase, genetic data have not been collected for either wild or captive populations. To reveal genetic diversity and characterization in captive African penguins, we analyzed the nucleotide sequences of mitochondrial DNA (mtDNA) from a sample of 236 African penguins. Analysis of 433 bp of the control region and 1,140 bp of cytochrome b sequences revealed the existence of two mtDNA clades. Control region haplotypes were much more divergent (d=3.39%) between the two clades than within each clade. The divergence of these clades may reflect differences at the subspecies or geographical population level in African penguins. These findings suggest that at least two distinct maternal lineages exist in the wild populations of the African penguin.

  1. Decrypting the Mitochondrial Gene Pool of Modern Panamanians

    PubMed Central

    Angerhofer, Norman; Ekins, Jayne E.; Olivieri, Anna; Woodward, Scott R.; Pascale, Juan Miguel; Cooke, Richard; Motta, Jorge; Achilli, Alessandro

    2012-01-01

    The Isthmus of Panama–the narrow neck of land connecting the northern and southern American landmasses–was an obligatory corridor for the Paleo-Indians as they moved into South America. Archaeological evidence suggests an unbroken link between modern natives and their Paleo-Indian ancestors in some areas of Panama, even if the surviving indigenous groups account for only 12.3% of the total population. To evaluate if modern Panamanians have retained a larger fraction of the native pre-Columbian gene pool in their maternally-inherited mitochondrial genome, DNA samples and historical records were collected from more than 1500 volunteer participants living in the nine provinces and four indigenous territories of the Republic. Due to recent gene-flow, we detected ∼14% African mitochondrial lineages, confirming the demographic impact of the Atlantic slave trade and subsequent African immigration into Panama from Caribbean islands, and a small European (∼2%) component, indicating only a minor influence of colonialism on the maternal side. The majority (∼83%) of Panamanian mtDNAs clustered into native pan-American lineages, mostly represented by haplogroup A2 (51%). These findings reveal an overwhelming native maternal legacy in today's Panama, which is in contrast with the overall concept of personal identity shared by many Panamanians. Moreover, the A2 sub-clades A2ad and A2af (with the previously named 6 bp Huetar deletion), when analyzed at the maximum level of resolution (26 entire mitochondrial genomes), confirm the major role of the Pacific coastal path in the peopling of North, Central and South America, and testify to the antiquity of native mitochondrial genomes in Panama. PMID:22675545

  2. Decrypting the mitochondrial gene pool of modern Panamanians.

    PubMed

    Perego, Ugo A; Lancioni, Hovirag; Tribaldos, Maribel; Angerhofer, Norman; Ekins, Jayne E; Olivieri, Anna; Woodward, Scott R; Pascale, Juan Miguel; Cooke, Richard; Motta, Jorge; Achilli, Alessandro

    2012-01-01

    The Isthmus of Panama--the narrow neck of land connecting the northern and southern American landmasses--was an obligatory corridor for the Paleo-Indians as they moved into South America. Archaeological evidence suggests an unbroken link between modern natives and their Paleo-Indian ancestors in some areas of Panama, even if the surviving indigenous groups account for only 12.3% of the total population. To evaluate if modern Panamanians have retained a larger fraction of the native pre-Columbian gene pool in their maternally-inherited mitochondrial genome, DNA samples and historical records were collected from more than 1500 volunteer participants living in the nine provinces and four indigenous territories of the Republic. Due to recent gene-flow, we detected ~14% African mitochondrial lineages, confirming the demographic impact of the Atlantic slave trade and subsequent African immigration into Panama from Caribbean islands, and a small European (~2%) component, indicating only a minor influence of colonialism on the maternal side. The majority (~83%) of Panamanian mtDNAs clustered into native pan-American lineages, mostly represented by haplogroup A2 (51%). These findings reveal an overwhelming native maternal legacy in today's Panama, which is in contrast with the overall concept of personal identity shared by many Panamanians. Moreover, the A2 sub-clades A2ad and A2af (with the previously named 6 bp Huetar deletion), when analyzed at the maximum level of resolution (26 entire mitochondrial genomes), confirm the major role of the Pacific coastal path in the peopling of North, Central and South America, and testify to the antiquity of native mitochondrial genomes in Panama.

  3. Late Mitochondrial Acquisition, Really?

    PubMed Central

    Degli Esposti, Mauro

    2016-01-01

    This article provides a timely critique of a recent Nature paper by Pittis and Gabaldón that has suggested a late origin of mitochondria in eukaryote evolution. It shows that the inferred ancestry of many mitochondrial proteins has been incorrectly assigned by Pittis and Gabaldón to bacteria other than the aerobic proteobacteria from which the ancestor of mitochondria originates, thereby questioning the validity of their suggestion that mitochondrial acquisition may be a late event in eukaryote evolution. The analysis and approach presented here may guide future studies to resolve the true ancestry of mitochondria. PMID:27289097

  4. Complete nucleotide sequence of the mitochondrial genome of a salamander, Mertensiella luschani.

    PubMed

    Zardoya, Rafael; Malaga-Trillo, Edward; Veith, Michael; Meyer, Axel

    2003-10-23

    The complete nucleotide sequence (16,650 bp) of the mitochondrial genome of the salamander Mertensiella luschani (Caudata, Amphibia) was determined. This molecule conforms to the consensus vertebrate mitochondrial gene order. However, it is characterized by a long non-coding intervening sequence with two 124-bp repeats between the tRNA(Thr) and tRNA(Pro) genes. The new sequence data were used to reconstruct a phylogeny of jawed vertebrates. Phylogenetic analyses of all mitochondrial protein-coding genes at the amino acid level recovered a robust vertebrate tree in which lungfishes are the closest living relatives of tetrapods, salamanders and frogs are grouped together to the exclusion of caecilians (the Batrachia hypothesis) in a monophyletic amphibian clade, turtles show diapsid affinities and are placed as sister group of crocodiles+birds, and the marsupials are grouped together with monotremes and basal to placental mammals. The deduced phylogeny was used to characterize the molecular evolution of vertebrate mitochondrial proteins. Amino acid frequencies were analyzed across the main lineages of jawed vertebrates, and leucine and cysteine were found to be the most and least abundant amino acids in mitochondrial proteins, respectively. Patterns of amino acid replacements were conserved among vertebrates. Overall, cartilaginous fishes showed the least variation in amino acid frequencies and replacements. Constancy of rates of evolution among the main lineages of jawed vertebrates was rejected.

  5. Genetic architecture of metabolic rate: environment specific epistasis between mitochondrial and nuclear genes in an insect.

    PubMed

    Arnqvist, Göran; Dowling, Damian K; Eady, Paul; Gay, Laurene; Tregenza, Tom; Tuda, Midori; Hosken, David J

    2010-12-01

    The extent to which mitochondrial DNA (mtDNA) variation is involved in adaptive evolutionary change is currently being reevaluated. In particular, emerging evidence suggests that mtDNA genes coevolve with the nuclear genes with which they interact to form the energy producing enzyme complexes in the mitochondria. This suggests that intergenomic epistasis between mitochondrial and nuclear genes may affect whole-organism metabolic phenotypes. Here, we use crossed combinations of mitochondrial and nuclear lineages of the seed beetle Callosobruchus maculatus and assay metabolic rate under two different temperature regimes. Metabolic rate was affected by an interaction between the mitochondrial and nuclear lineages and the temperature regime. Sequence data suggests that mitochondrial genetic variation has a role in determining the outcome of this interaction. Our genetic dissection of metabolic rate reveals a high level of complexity, encompassing genetic interactions over two genomes, and genotype × genotype × environment interactions. The evolutionary implications of these results are twofold. First, because metabolic rate is at the root of life histories, our results provide insights into the complexity of life-history evolution in general, and thermal adaptation in particular. Second, our results suggest a mechanism that could contribute to the maintenance of nonneutral mtDNA polymorphism.

  6. Pharmacologic Effects on Mitochondrial Function

    ERIC Educational Resources Information Center

    Cohen, Bruce H.

    2010-01-01

    The vast majority of energy necessary for cellular function is produced in mitochondria. Free-radical production and apoptosis are other critical mitochondrial functions. The complex structure, electrochemical properties of the inner mitochondrial membrane (IMM), and genetic control from both mitochondrial DNA (mtDNA) and nuclear DNA (nDNA) are…

  7. Implications of mitochondrial DNA mutations and mitochondrial dysfunction in tumorigenesis

    PubMed Central

    Lu, Jianxin; Sharma, Lokendra Kumar; Bai, Yidong

    2016-01-01

    Alterations in oxidative phosphorylation resulting from mitochondrial dysfunction have long been hypothesized to be involved in tumorigenesis. Mitochondria have recently been shown to play an important role in regulating both programmed cell death and cell proliferation. Furthermore, mitochondrial DNA (mtDNA) mutations have been found in various cancer cells. However, the role of these mtDNA mutations in tumorigenesis remains largely unknown. This review focuses on basic mitochondrial genetics, mtDNA mutations and consequential mitochondrial dysfunction associated with cancer. The potential molecular mechanisms, mediating the pathogenesis from mtDNA mutations and mitochondrial dysfunction to tumorigenesis are also discussed. PMID:19532122

  8. Analysis of complete mitochondrial DNA sequences of three members of the Montastraea annularis coral species complex (Cnidaria, Anthozoa, Scleractinia)

    NASA Astrophysics Data System (ADS)

    Fukami, Hironobu; Knowlton, Nancy

    2005-11-01

    Complete mitochondrial nucleotide sequences of two individuals each of Montastraea annularis, Montastraea faveolata, and Montastraea franksi were determined. Gene composition and order differed substantially from the sea anemone Metridium senile, but were identical to that of the phylogenetically distant coral genus Acropora. However, characteristics of the non-coding regions differed between the two scleractinian genera. Among members of the M. annularis complex, only 25 of 16,134 base pair positions were variable. Sixteen of these occurred in one colony of M. franksi, which (together with additional data) indicates the existence of multiple divergent mitochondrial lineages in this species. Overall, rates of evolution for these mitochondrial genomes were extremely slow (0.03 0.04% per million years based on the fossil record of the M. annularis complex). At higher taxonomic levels, patterns of genetic divergence and synonymous/nonsynonymous substitutions suggest non-neutral and unequal rates of evolution between the two lineages to which Montastraea and Acropora belong.

  9. Diversification and biogeography of the Neotropical caviomorph lineage Octodontoidea (Rodentia: Hystricognathi).

    PubMed

    Upham, Nathan S; Patterson, Bruce D

    2012-05-01

    The rodent superfamily Octodontoidea comprises 6 families, 38 genera, and 193 living species of spiny rats, tuco-tucos, degus, hutias, and their relatives. All are endemic to the Neotropical Region where they represent roughly three-quarters of extant caviomorphs. Although caviomorph monophyly is well established and phylogenetic hypotheses exist for several families, understanding of octodontoid relationships is clouded by sparse taxon sampling and single-gene analyses. We examined sequence variation in one mitochondrial (12S rRNA) and three nuclear genes (vWF, GHR, and RAG1) across all caviomorph families (including 47 octodontoid species), all phiomorph families, and the sole remaining hystricognath family, using the gundi (Ctenodactylus) and springhaas (Pedetes) as outgroups. Our analyses support the monophyly of Phiomorpha, Caviomorpha, and the caviomorph superfamilies Cavioidea (Dasyproctidae, Cuniculidae, and Caviidae, the latter including Hydrochoerus), Erethizontoidea, Chinchilloidea (including Dinomyidae), and Octodontoidea. Cavioids and erethizontoids are strongly supported as sisters, whereas chinchilloids appear to be sister to octodontoids. Among octodontoids, Abrocomidae is consistently recovered as the basal element, sister to a pair of strongly supported clades; one includes Octodontidae and Ctenomyidae as reciprocally monophyletic lineages, whereas the other includes taxa currently allocated to Echimyidae, Capromyidae and Myocastoridae. Capromys appears near the base of this clade, in keeping with current classification, but Myocastor is nested securely inside a clade of Echimyidae that also contains eumysopines, echimyines and dactylomyines. Another, more weakly supported clade of Echimyidae contains fossorial and scansorial taxa from the Chaco-Cerrado-Caatinga and the Atlantic Forest. Biogeographic analyses robustly recover the Patagonia-Southern Andes complex as ancestral for the Octodontoidea, with three component lineages emerging by the

  10. Mitochondrial Dynamics: Coupling Mitochondrial Fitness with Healthy Aging.

    PubMed

    Sebastián, David; Palacín, Manuel; Zorzano, Antonio

    2017-03-01

    Aging is associated with a decline in mitochondrial function and the accumulation of abnormal mitochondria. However, the precise mechanisms by which aging promotes these mitochondrial alterations and the role of the latter in aging are still not fully understood. Mitochondrial dynamics is a key process regulating mitochondrial function and quality. Altered expression of some mitochondrial dynamics proteins has been recently associated with aging and with age-related alterations in yeast, Caenorhabditis elegans, mice, and humans. Here, we review the link between alterations in mitochondrial dynamics, aging, and age-related impairment. We propose that the dysregulation of mitochondrial dynamics leads to age-induced accumulation of unhealthy mitochondria and contributes to alterations linked to aging, such as diabetes and neurodegeneration.

  11. 12 CFR Appendix M1 to Part 226 - Generic Repayment Estimates

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 12 Banks and Banking 3 2010-01-01 2010-01-01 false Generic Repayment Estimates M1 Appendix M1 to Part 226 Banks and Banking FEDERAL RESERVE SYSTEM (CONTINUED) BOARD OF GOVERNORS OF THE FEDERAL RESERVE... rounded down to the nearest whole year if the estimate contains a fractional year less than 0.5,...

  12. Complete genome sequence of Klebsiella oxytoca M1, isolated from Manripo area of South Korea.

    PubMed

    Shin, Sang Heum; Roh, Hanseong; Kim, Juhyeok; Cho, Sukhyeong; Um, Youngsoon; Lee, Jinwon; Ryu, Yeon-Woo; Chong, Hyonyong; Yang, Kap-Seok

    2015-03-20

    Here we report the full genome sequence of Klesiella oxytoca M1, isolated from Manripo area of South Korea. The strain K. oxytoca M1 is able to produce either 2,3-butanediol or acetoin selectively by controlling the pH and temperature.

  13. Inter- and intraspecific mitochondrial DNA variation in North American bears (Ursus)

    USGS Publications Warehouse

    Cronin, M.A.; Amstrup, S.; Garner, G.; Vyse, Ernest R.

    1991-01-01

    We assessed mitochondrial DNA variation in North American black bears (Ursus americanus), brown bears (Ursus arctos), and polar bears (Ursus maritimus). Divergent mitochondrial DNA haplotypes (0.05 base substitutions per nucleotide) were identified in populations of black bears from Montana and Oregon. In contrast, very similar haplotypes occur in black bears across North America. This discordance of haplotype phylogeny and geographic distribution indicates that there has been maintenance of polymorphism and considerable gene flow throughout the history of the species. Intraspecific mitochondrial DNA sequence divergence in brown bears and polar bears is lower than in black bears. The two morphological forms of U. arctos, grizzly and coastal brown bears, are not in distinct mtDNA lineages. Interspecific comparisons indicate that brown bears and polar bears share similar mitochondrial DNA (0.023 base substitutions per nucleotide) which is quite divergent (0.078 base substitutions per nucleotide) from that of black bears. High mitochondrial DNA divergence within black bears and paraphyletic relationships of brown and polar bear mitochondrial DNA indicate that intraspecific variation across species' ranges should be considered in phylogenetic analyses of mitochondrial DNA.

  14. Prediction of mitochondrial protein function by comparative physiology and phylogenetic profiling.

    PubMed

    Cheng, Yiming; Perocchi, Fabiana

    2015-01-01

    According to the endosymbiotic theory, mitochondria originate from a free-living alpha-proteobacteria that established an intracellular symbiosis with the ancestor of present-day eukaryotic cells. During the bacterium-to-organelle transformation, the proto-mitochondrial proteome has undergone a massive turnover, whereby less than 20 % of modern mitochondrial proteomes can be traced back to the bacterial ancestor. Moreover, mitochondrial proteomes from several eukaryotic organisms, for example, yeast and human, show a rather modest overlap, reflecting differences in mitochondrial physiology. Those differences may result from the combination of differential gain and loss of genes and retargeting processes among lineages. Therefore, an evolutionary signature, also called "phylogenetic profile", could be generated for every mitochondrial protein. Here, we present two evolutionary biology approaches to study mitochondrial physiology: the first strategy, which we refer to as "comparative physiology," allows the de novo identification of mitochondrial proteins involved in a physiological function; the second, known as "phylogenetic profiling," allows to predict protein functions and functional interactions by comparing phylogenetic profiles of uncharacterized and known components.

  15. Regional distribution of M1, M2 and non-M1, non-M2 subtypes of muscarinic binding sites in rat brain

    SciTech Connect

    Ehlert, F.J.; Tran, L.P. )

    1990-12-01

    The distribution of subtypes of the muscarinic receptor in homogenates of the rat brain was investigated by measuring the competitive inhibition of the binding (3H)N-methylscopolamine by pirenzepine and AF-DX 116 (11((2-((diethylamino)methyl)-1-piperidinyl)acetyl)-5, 11-dihydro-6H-pyrido(2,3-b)(1,4)benzodiazepine-6-one). In most brain regions, the competitive binding curves for AF-DX 116 and pirenzepine were consistent with a two-site model. The dissociation constant of pirenzepine for its high-affinity site (M1 receptor) was approximately 10(-8) M, whereas the dissociation constant of AF-DX 116 for its high affinity site (M2 receptor) was approximately 10(-7) M. In many regions, particularly those in the forebrain, the sum of the densities of the M1 and M2 binding sites was substantially less than 100% of the total sites, indicating the existence of a third population of sites lacking high affinity for both pirenzepine and AF-DX 116. We have designated these latter sites as non-M1, non-M2 muscarinic receptors. In general, the densities of the M1 and non-M1, non-M2 binding sites were highest in cerebral cortex, corpus striatum and hippocampus, intermediate in thalamus and hypothalamus, and lowest in midbrain, medulla-pons and cerebellum, whereas the M2 binding site had a relatively low, uniform density throughout the brain. The binding capacity of (3H)N-methylquinuclidinyl benzilate was estimated to be 20 to 30% lower than that of (3H)quinuclidinyl benzilate in various regions of the forebrain, but not in more caudal regions of the brain where the two radioligands had approximately the same binding capacities.

  16. Second-generation flat panel displays for the enhanced Abrahms M1 battlefield tank

    NASA Astrophysics Data System (ADS)

    Mahdi, Ken F.; Wyrembelski, Rick J.; Hatton, Terry J.

    1997-07-01

    The Abrams M1 Battlefield Tank has undergone several phases of performance enhancements since its introduction, improvements have covered updates to all the major components of the vehicle with major emphasis on the vetronics and man-machine interface. Through these enhancements of M1 has pioneered the utilization of flat panel display (FPD) technologies and the M1A2 version has an FPD at both the driver and gunner stations and a third at the commander position. These FPDs all employ electroluminescent (EL) imaging technology that is well suited for the severe vetronics environment. The latest M1A2 enhancements, being introduced as part of the M1A2 System Enhancement Package, include a flat panel AMLCD color tactical display which supersedes the earlier monochrome EL FPD used in this application, and a high resolution monochrome EL FPD for the second generation FLIR sensor, which supersedes the earlier bulky CRT display.

  17. ENERGETICS, EPIGENETICS, MITOCHONDRIAL GENETICS

    PubMed Central

    Wallace, Douglas C.; Fan, Weiwei

    2011-01-01

    The epigenome has been hypothesized to provide the interface between the environment and the nuclear DNA (nDNA) genes. Key factors in the environment are the availability of calories and demands on the organism’s energetic capacity. Energy is funneled through glycolysis and mitochondrial oxidative phosphorylation (OXPHOS), the cellular bioenergetic systems. Since there are thousands of bioenergetic genes dispersed across the chromosomes and mitochondrial DNA (mtDNA), both cis and trans regulation of the nDNA genes is required. The bioenergetic systems convert environmental calories into ATP, acetyl-Coenzyme A (acetyl-CoA), S-adenosyl-methionine (SAM), and reduced NAD+. When calories are abundant, ATP and acetyl-CoA phosphorylate and acetylate chromatin, opening the nDNA for transcription and replication. When calories are limiting, chromatin phosphorylation and acetylation are lost and gene expression is suppressed. DNA methylaton via SAM can also be modulated by mitochondrial function. Phosphorylation and acetylation are also pivotal to regulating cellular signal transduction pathways. Therefore, bioenergetics provides the interface between the environment and the epigenome. Consistent with this conclusion, the clinical phenotypes of bioenergetic diseases are strikingly similar to those observed in epigenetic diseases (Angelman, Rett, Fragile X Syndromes, the laminopathies, cancer, etc.), and an increasing number of epigenetic diseases are being associated with mitochondrial dysfunction. This bioenergetic-epigenomic hypothesis has broad implications for the etiology, pathophysiology, and treatment of a wide range of common diseases. PMID:19796712

  18. Mitochondrial Ion Channels

    PubMed Central

    O’Rourke, Brian

    2009-01-01

    In work spanning more than a century, mitochondria have been recognized for their multifunctional roles in metabolism, energy transduction, ion transport, inheritance, signaling, and cell death. Foremost among these tasks is the continuous production of ATP through oxidative phosphorylation, which requires a large electrochemical driving force for protons across the mitochondrial inner membrane. This process requires a membrane with relatively low permeability to ions to minimize energy dissipation. However, a wealth of evidence now indicates that both selective and nonselective ion channels are present in the mitochondrial inner membrane, along with several known channels on the outer membrane. Some of these channels are active under physiological conditions, and others may be activated under pathophysiological conditions to act as the major determinants of cell life and death. This review summarizes research on mitochondrial ion channels and efforts to identify their molecular correlates. Except in a few cases, our understanding of the structure of mitochondrial ion channels is limited, indicating the need for focused discovery in this area. PMID:17059356

  19. Melatonin mitigates mitochondrial malfunction.

    PubMed

    León, Josefa; Acuña-Castroviejo, Darío; Escames, Germane; Tan, Dun-Xian; Reiter, Russel J

    2005-01-01

    Melatonin, or N-acetyl-5-methoxytryptamine, is a compound derived from tryptophan that is found in all organisms from unicells to vertebrates. This indoleamine may act as a protective agent in disease conditions such as Parkinson's, Alzheimer's, aging, sepsis and other disorders including ischemia/reperfusion. In addition, melatonin has been proposed as a drug for the treatment of cancer. These disorders have in common a dysfunction of the apoptotic program. Thus, while defects which reduce apoptotic processes can exaggerate cancer, neurodegenerative disorders and ischemic conditions are made worse by enhanced apoptosis. The mechanism by which melatonin controls cell death is not entirely known. Recently, mitochondria, which are implicated in the intrinsic pathway of apoptosis, have been identified as a target for melatonin actions. It is known that melatonin scavenges oxygen and nitrogen-based reactants generated in mitochondria. This limits the loss of the intramitochondrial glutathione and lowers mitochondrial protein damage, improving electron transport chain (ETC) activity and reducing mtDNA damage. Melatonin also increases the activity of the complex I and complex IV of the ETC, thereby improving mitochondrial respiration and increasing ATP synthesis under normal and stressful conditions. These effects reflect the ability of melatonin to reduce the harmful reduction in the mitochondrial membrane potential that may trigger mitochondrial transition pore (MTP) opening and the apoptotic cascade. In addition, a reported direct action of melatonin in the control of currents through the MTP opens a new perspective in the understanding of the regulation of apoptotic cell death by the indoleamine.

  20. Protons Trigger Mitochondrial Flashes.

    PubMed

    Wang, Xianhua; Zhang, Xing; Huang, Zhanglong; Wu, Di; Liu, Beibei; Zhang, Rufeng; Yin, Rongkang; Hou, Tingting; Jian, Chongshu; Xu, Jiejia; Zhao, Yan; Wang, Yanru; Gao, Feng; Cheng, Heping

    2016-07-26

    Emerging evidence indicates that mitochondrial flashes (mitoflashes) are highly conserved elemental mitochondrial signaling events. However, which signal controls their ignition and how they are integrated with other mitochondrial signals and functions remain elusive. In this study, we aimed to further delineate the signal components of the mitoflash and determine the mitoflash trigger mechanism. Using multiple biosensors and chemical probes as well as label-free autofluorescence, we found that the mitoflash reflects chemical and electrical excitation at the single-organelle level, comprising bursting superoxide production, oxidative redox shift, and matrix alkalinization as well as transient membrane depolarization. Both electroneutral H(+)/K(+) or H(+)/Na(+) antiport and matrix proton uncaging elicited immediate and robust mitoflash responses over a broad dynamic range in cardiomyocytes and HeLa cells. However, charge-uncompensated proton transport, which depolarizes mitochondria, caused the opposite effect, and steady matrix acidification mildly inhibited mitoflashes. Based on a numerical simulation, we estimated a mean proton lifetime of 1.42 ns and diffusion distance of 2.06 nm in the matrix. We conclude that nanodomain protons act as a novel, to our knowledge, trigger of mitoflashes in energized mitochondria. This finding suggests that mitoflash genesis is functionally and mechanistically integrated with mitochondrial energy metabolism.

  1. Ancient Himalayan wolf (Canis lupus chanco) lineage in Upper Mustang of the Annapurna Conservation Area, Nepal

    PubMed Central

    Chetri, Madhu; Jhala, Yadvendradev V.; Jnawali, Shant R.; Subedi, Naresh; Dhakal, Maheshwar; Yumnam, Bibek

    2016-01-01

    Abstract The taxonomic status of the wolf (Canis lupus) in Nepal’s Trans-Himalaya is poorly understood. Recent genetic studies have revealed the existence of three lineages of wolves in the Indian sub-continent. Of these, the Himalayan wolf, Canis lupus chanco, has been reported to be the most ancient lineage historically distributed within the Nepal Himalaya. These wolves residing in the Trans-Himalayan region have been suggested to be smaller and very different from the European wolf. During October 2011, six fecal samples suspected to have originated from wolves were collected from Upper Mustang in the Annapurna Conservation Area of Nepal. DNA extraction and amplification of the mitochondrial (mt) control region (CR) locus yielded sequences from five out of six samples. One sample matched domestic dog sequences in GenBank, while the remaining four samples were aligned within the monophyletic and ancient Himalayan wolf clade. These four sequences which matched each other, were new and represented a novel Himalayan wolf haplotype. This result confirms that the endangered ancient Himalayan wolf is extant in Nepal. Detailed genomic study covering Nepal’s entire Himalayan landscape is recommended in order to understand their distribution, taxonomy and, genetic relatedness with other wolves potentially sharing the same landscape. PMID:27199590

  2. Lineage sorting in multihost parasites: Eidmanniella albescens and Fregatiella aurifasciata on seabirds from the Galapagos Islands

    PubMed Central

    Rivera-Parra, Jose L; Levin, Iris I; Johnson, Kevin P; Parker, Patricia G

    2015-01-01

    Parasites comprise a significant percentage of the biodiversity of the planet and are useful systems to test evolutionary and ecological hypotheses. In this study, we analyze the effect of host species identity and the immediate local species assemblage within mixed species colonies of nesting seabirds on patterns of genetic clustering within two species of multihost ectoparasitic lice. We use three genetic markers (one mitochondrial, COI, and two nuclear, EF1-α and wingless) and maximum likelihood phylogenetic trees to test whether (1) parasites show lineage sorting based on their host species; and (2) switching of lineages to the alternate host species depends on the immediate local species assemblage of individual hosts within a colony. Specifically, we examine the genetic structure of two louse species: Eidmanniella albescens, infecting both Nazca (Sula granti) and blue-footed boobies (Sula nebouxii), and Fregatiella aurifasciata, infecting both great (Fregata minor) and magnificent frigatebirds (Fregata magnificens). We found that host species identity was the only factor explaining the patterns of genetic structure in both parasites. In both cases, there is evident genetic differentiation depending on the host species. Thus, a revision of the taxonomy of these louse species is needed. One possible explanation of this pattern is extremely low louse migration rates between host species, perhaps influenced by fine-scale spatial separation of host species within mixed colonies, and low parasite infrapopulation numbers. PMID:26380662

  3. Differentiation of human neuroblastoma cells toward the osteogenic lineage by mTOR inhibitor

    PubMed Central

    Carpentieri, A; Cozzoli, E; Scimeca, M; Bonanno, E; Sardanelli, A M; Gambacurta, A

    2015-01-01

    Current hypothesis suggest that tumors can originate from adult cells after a process of 'reprogramming' driven by genetic and epigenetic alterations. These cancer cells, called cancer stem cells (CSCs), are responsible for the tumor growth and metastases. To date, the research effort has been directed to the identification, isolation and manipulation of this cell population. Independently of whether tumors were triggered by a reprogramming of gene expression or seeded by stem cells, their energetic metabolism is altered compared with a normal cell, resulting in a high aerobic glycolytic 'Warburg' phenotype and dysregulation of mitochondrial activity. This metabolic alteration is intricately linked to cancer progression.The aim of this work has been to demonstrate the possibility of differentiating a neoplastic cell toward different germ layer lineages, by evaluating the morphological, metabolic and functional changes occurring in this process. The cellular differentiation reported in this study brings to different conclusions from those present in the current literature. We demonstrate that 'in vitro' neuroblastoma cancer cells (chosen as experimental model) are able to differentiate directly into osteoblastic (by rapamycin, an mTOR inhibitor) and hepatic lineage without an intermediate 'stem' cell step. This process seems owing to a synergy among few master molecules, metabolic changes and scaffold presence acting in a concerted way to control the cell fate. PMID:26561783

  4. Lineage sorting in multihost parasites: Eidmanniella albescens and Fregatiella aurifasciata on seabirds from the Galapagos Islands.

    PubMed

    Rivera-Parra, Jose L; Levin, Iris I; Johnson, Kevin P; Parker, Patricia G

    2015-08-01

    Parasites comprise a significant percentage of the biodiversity of the planet and are useful systems to test evolutionary and ecological hypotheses. In this study, we analyze the effect of host species identity and the immediate local species assemblage within mixed species colonies of nesting seabirds on patterns of genetic clustering within two species of multihost ectoparasitic lice. We use three genetic markers (one mitochondrial, COI, and two nuclear, EF1-α and wingless) and maximum likelihood phylogenetic trees to test whether (1) parasites show lineage sorting based on their host species; and (2) switching of lineages to the alternate host species depends on the immediate local species assemblage of individual hosts within a colony. Specifically, we examine the genetic structure of two louse species: Eidmanniella albescens, infecting both Nazca (Sula granti) and blue-footed boobies (Sula nebouxii), and Fregatiella aurifasciata, infecting both great (Fregata minor) and magnificent frigatebirds (Fregata magnificens). We found that host species identity was the only factor explaining the patterns of genetic structure in both parasites. In both cases, there is evident genetic differentiation depending on the host species. Thus, a revision of the taxonomy of these louse species is needed. One possible explanation of this pattern is extremely low louse migration rates between host species, perhaps influenced by fine-scale spatial separation of host species within mixed colonies, and low parasite infrapopulation numbers.

  5. Elastocapillary Instability in Mitochondrial Fission

    NASA Astrophysics Data System (ADS)

    Gonzalez-Rodriguez, David; Sart, Sébastien; Babataheri, Avin; Tareste, David; Barakat, Abdul I.; Clanet, Christophe; Husson, Julien

    2015-08-01

    Mitochondria are dynamic cell organelles that constantly undergo fission and fusion events. These dynamical processes, which tightly regulate mitochondrial morphology, are essential for cell physiology. Here we propose an elastocapillary mechanical instability as a mechanism for mitochondrial fission. We experimentally induce mitochondrial fission by rupturing the cell's plasma membrane. We present a stability analysis that successfully explains the observed fission wavelength and the role of mitochondrial morphology in the occurrence of fission events. Our results show that the laws of fluid mechanics can describe mitochondrial morphology and dynamics.

  6. Involvement of the transcription factor FoxM1 in contact inhibition

    SciTech Connect

    Faust, Dagmar; Al-Butmeh, Firas; Linz, Berenike; Dietrich, Cornelia

    2012-10-05

    Highlights: Black-Right-Pointing-Pointer The transcription factor FoxM1 is downregulated upon contact inhibition. Black-Right-Pointing-Pointer The decrease in FoxM1 levels occurs very likely due to inhibition of ERK activity. Black-Right-Pointing-Pointer The decrease in FoxM1 is not sufficient, but required for contact inhibition. Black-Right-Pointing-Pointer We propose a new model of contact inhibition involving pRB/E2F and FoxM1. -- Abstract: Contact inhibition is a crucial mechanism regulating proliferation in vitro and in vivo. Although it is generally accepted that contact inhibition plays a pivotal role in maintaining tissue homeostasis, the molecular mechanisms of contact inhibition are still not fully understood. FoxM1 is known as a proliferation-associated transcription factor and is upregulated in many cancer types. Vice versa, anti-proliferative signals, such as TGF-{beta} and differentiation signals decrease FoxM1 expression. Here we investigated the role of FoxM1 in contact inhibition in fibroblasts. We show that protein expression of FoxM1 is severely and rapidly downregulated upon contact inhibition, probably by inhibition of ERK activity, which then leads to decreased expression of cyclin A and polo-like kinase 1. Vice versa, ectopic expression of FoxM1 prevents the decrease in cyclin A and polo-like kinase 1 and causes a two-fold increase in saturation density indicating loss of contact inhibition. Hence, we show that downregulation of FoxM1 is required for contact inhibition by regulating expression of cyclin A and polo-like kinase 1.

  7. Activity-dependent plasticity improves M1 motor representation and corticospinal tract connectivity.

    PubMed

    Chakrabarty, S; Friel, K M; Martin, J H

    2009-03-01

    Motor cortex (M1) activity between postnatal weeks 5 and 7 is essential for normal development of the corticospinal tract (CST) and visually guided movements. Unilateral reversible inactivation of M1, by intracortical muscimol infusion, during this period permanently impairs development of the normal dorsoventral distribution of CST terminations and visually guided motor skills. These impairments are abrogated if this M1 inactivation is followed by inactivation of the contralateral, initially active M1, from weeks 7 to 11 (termed alternate inactivation). This later period is when the M1 motor representation normally develops. The purpose of this study was to determine the effects of alternate inactivation on the motor representation of the initially inactivated M1. We used intracortical microstimulation to map the left M1 1 to 2 mo after the end of left M1 muscimol infusion. We compared representations in the unilateral inactivation and alternate inactivation groups. Alternate inactivation converted the sparse proximal M1 motor representation produced by unilateral inactivation to a complete and high-resolution proximal-distal representation. The motor map was restored by week 11, the same age that our present and prior studies demonstrated that alternate inactivation restored CST spinal connectivity. Thus M1 motor map developmental plasticity closely parallels plasticity of CST spinal terminations. After alternate inactivation reestablished CST connections and the motor map, an additional 3 wk was required for motor skill recovery. Since motor map recovery preceded behavioral recovery, our findings suggest that the representation is necessary for recovering motor skills, but additional time, or experience, is needed to learn to take advantage of the restored CST connections and motor map.

  8. Ancient substructure in early mtDNA lineages of southern Africa.

    PubMed

    Barbieri, Chiara; Vicente, Mário; Rocha, Jorge; Mpoloka, Sununguko W; Stoneking, Mark; Pakendorf, Brigitte

    2013-02-07

    Among the deepest-rooting clades in the human mitochondrial DNA (mtDNA) phylogeny are the haplogroups defined as L0d and L0k, which are found primarily in southern Africa. These lineages are typically present at high frequency in the so-called Khoisan populations of hunter-gatherers and herders who speak non-Bantu languages, and the early divergence of these lineages led to the hypothesis of ancient genetic substructure in Africa. Here we update the phylogeny of the basal haplogroups L0d and L0k with 500 full mtDNA genome sequences from 45 southern African Khoisan and Bantu-speaking populations. We find previously unreported subhaplogroups and greatly extend the amount of variation and time-depth of most of the known subhaplogroups. Our major finding is the definition of two ancient sublineages of L0k (L0k1b and L0k2) that are present almost exclusively in Bantu-speaking populations from Zambia; the presence of such relic haplogroups in Bantu speakers is most probably due to contact with ancestral pre-Bantu populations that harbored different lineages than those found in extant Khoisan. We suggest that although these populations went extinct after the immigration of the Bantu-speaking populations, some traces of their haplogroup composition survived through incorporation into the gene pool of the immigrants. Our findings thus provide evidence for deep genetic substructure in southern Africa prior to the Bantu expansion that is not represented in extant Khoisan populations.

  9. Mitochondrial gene rearrangements confirm the parallel evolution of the crab-like form.

    PubMed

    Morrison, C L; Harvey, A W; Lavery, S; Tieu, K; Huang, Y; Cunningham, C W

    2002-02-22

    The repeated appearance of strikingly similar crab-like forms in independent decapod crustacean lineages represents a remarkable case of parallel evolution. Uncertainty surrounding the phylogenetic relationships among crab-like lineages has hampered evolutionary studies. As is often the case, aligned DNA sequences by themselves were unable to fully resolve these relationships. Four nested mitochondrial gene rearrangements--including one of the few reported movements of an arthropod protein-coding gene--are congruent with the DNA phylogeny and help to resolve a crucial node. A phylogenetic analysis of DNA sequences, and gene rearrangements, supported five independent origins of the crab-like form, and suggests that the evolution of the crab-like form may be irreversible. This result supports the utility of mitochondrial gene rearrangements in phylogenetic reconstruction.

  10. A complete Neandertal mitochondrial genome sequence determined by high-throughput sequencing

    PubMed Central

    Green, Richard E.; Malaspinas, Anna-Sapfo; Krause, Johannes; Briggs, Adrian W.; Johnson, Philip L. F.; Uhler, Caroline; Meyer, Matthias; Good, Jeffrey M.; Maricic, Tomislav; Stenzel, Udo; Prüfer, Kay; Siebauer, Michael; Burbano, Hernán A.; Ronan, Michael; Rothberg, Jonathan M.; Egholm, Michael; Rudan, Pavao; Brajković, Dejana; Kućan, Željko; Gušić, Ivan; Wikström, Mårten; Laakkonen, Liisa; Kelso, Janet; Slatkin, Montgomery; Pääbo, Svante

    2008-01-01

    Summary A complete mitochondrial (mt) genome sequence was reconstructed from a 38,000-year-old Neandertal individual using 8,341 mtDNA sequences identified among 4.8 Gb of DNA generated from ~0.3 grams of bone. Analysis of the assembled sequence unequivocally establishes that the Neandertal mtDNA falls outside the variation of extant human mtDNAs and allows an estimate of the divergence date between the two mtDNA lineages of 660,000±140,000 years. Of the 13 proteins encoded in the mtDNA, subunit 2 of cytochrome c oxidase of the mitochondrial electron transport chain has experienced the largest number of amino acid substitutions in human ancestors since the separation from Neandertals. There is evidence that purifying selection in the Neandertal mtDNA was reduced compared to other primate lineages suggesting that the effective population size of Neandertals was small. PMID:18692465

  11. Resolution of the African hominoid trichotomy by use of a mitochondrial gene sequence

    SciTech Connect

    Ruvolo, M.; Disotell, T.R.; Allard, M.W. ); Brown, W.M. ); Honeycutt, R.L. )

    1991-02-15

    Mitochondrial DNA sequences encoding the cytochrome oxidase subunit II gene have been determined for five primate species, siamang (Hylobates syndactylus), lowland gorilla (Gorilla gorilla), pygmy chimpanzee (Pan paniscus), crab-eating macaque (Macaca fascicularis), and green monkey (Cercopithecus aethiops), and compared with published sequences of other primate and nonprimate species. Comparisons of cytochrome oxidase subunit II gene sequences provide clear-cut evidence from the mitochondrial genome for the separation of the African ape trichotomy into two evolutionary lineages, one leading to gorillas and the other to humans and chimpanzees. Several different tree-building methods support this same phylogenetic tree topology. The comparisons also yield trees in which a substantial length separates the divergence point of gorillas from that of humans and chimpanzees, suggesting that the lineage most immediately ancestral to humans and chimpanzees may have been in existence for a relatively long time.

  12. Extensive mitochondrial genome rearrangements between Cerithioidea and Hypsogastropoda (Mollusca; Caenogastropoda) as determined from the partial nucleotide sequences of the mitochondrial DNA of Cerithidea djadjariensis and Batillaria cumingi.

    PubMed

    Kojima, Shigeaki

    2010-06-01

    Partial nucleotide sequences ( approximately 8000 bp) of the mitochondrial DNA of two cerithioidean gastropod species-Cerithidea djadjariensis and Batillaria cumingi-were determined. The order of mitochondrial genes (eight protein genes, two ribosomal RNA genes, and nine transfer RNA genes) was identical between these two species. and remarkably different from the previously reported order in other gastropods. The results indicate that the genome structure of the common ancestor of Cerithioidea and its sister group, Hypsogastropoda, is almost identical to that of the common ancestor of Gastropoda; moreover, independent mitochondrial genome rearrangements were identified between the lineages of Cerithioidea and Hypsogastropoda. The rearrangements within Cerithioidea can be explained by the inversion of a single tRNA gene, two translocations of a single tRNA gene, and three translocations of a genome fragment containing a tRNA gene and protein-coding gene(s).

  13. Phenotypic differences among three clonal lineages of Phytophthora ramorum

    Technology Transfer Automated Retrieval System (TEKTRAN)

    There are three major clonal lineages of Phytophthora ramorum present in North America and Europe named NA1, NA2, and EU1. Twenty-three isolates representing all three lineages were evaluated for phenotype including (i) aggressiveness on detached Rhododendron leaves and (ii) growth rate at minimum, ...

  14. Traces of Early Eurasians in the Mansi of Northwest Siberia Revealed by Mitochondrial DNA Analysis

    PubMed Central

    Derbeneva, Olga A.; Starikovskaya, Elena B.; Wallace, Douglas C.; Sukernik, Rem I.

    2002-01-01

    The mitochondrial DNA (mtDNA) of 98 Mansi, an ancient group (formerly known as “Vogul”) of Uralic-speaking fishers and hunters on the eastern slope of the northern Ural Mountains, were analyzed for sequence variants by restriction fragment–length polymorphism analysis, control-region sequencing, and sequencing of additional informative sites in the coding region. Although 63.3% of the mtDNA detected in the Mansi falls into western Eurasian lineages (e.g., haplogroups UK, TJ, and HV), the remaining 36.7% encompass a subset of eastern Eurasian lineages (e.g., haplogroups A, C, D, F, G, and M). Among the western Eurasian lineages, subhaplogroup U4 was found at a remarkable frequency of 16.3%, along with lineages U5, U7, and J2. This suggests that the aboriginal populations residing immediately to the east of the Ural Mountains may encompass remnants of the early Upper Paleolithic expansion from the Middle East/southeastern Europe. The added presence of eastern Eurasian mtDNA lineages in the Mansi introduces the possibilities that proto-Eurasians encompassed a range of macrohaplogroup M and N lineages that subsequently became geographically distributed and that the Paleolithic expansion may have reached this part of Siberia before it split into western and eastern human groups. PMID:11845409

  15. Traces of early Eurasians in the Mansi of northwest Siberia revealed by mitochondrial DNA analysis.

    PubMed

    Derbeneva, Olga A; Starikovskaya, Elena B; Wallace, Douglas C; Sukernik, Rem I

    2002-04-01

    The mitochondrial DNA (mtDNA) of 98 Mansi, an ancient group (formerly known as "Vogul") of Uralic-speaking fishers and hunters on the eastern slope of the northern Ural Mountains, were analyzed for sequence variants by restriction fragment--length polymorphism analysis, control-region sequencing, and sequencing of additional informative sites in the coding region. Although 63.3% of the mtDNA detected in the Mansi falls into western Eurasian lineages (e.g., haplogroups UK, TJ, and HV), the remaining 36.7% encompass a subset of eastern Eurasian lineages (e.g., haplogroups A, C, D, F, G, and M). Among the western Eurasian lineages, subhaplogroup U4 was found at a remarkable frequency of 16.3%, along with lineages U5, U7, and J2. This suggests that the aboriginal populations residing immediately to the east of the Ural Mountains may encompass remnants of the early Upper Paleolithic expansion from the Middle East/southeastern Europe. The added presence of eastern Eurasian mtDNA lineages in the Mansi introduces the possibilities that proto-Eurasians encompassed a range of macrohaplogroup M and N lineages that subsequently became geographically distributed and that the Paleolithic expansion may have reached this part of Siberia before it split into western and eastern human groups.

  16. Pliocene-Pleistocene lineage diversifications in the Eastern Indigo Snake (Drymarchon couperi) in the Southeastern United States.

    PubMed

    Krysko, Kenneth L; Nuñez, Leroy P; Lippi, Catherine A; Smith, Daniel J; Granatosky, Michael C

    2016-05-01

    Indigo Snakes (Drymarchon; with five currently recognized species) occur from northern Argentina, northward to the United States in southern Texas and eastward in disjunct populations in Florida and Georgia. Based on this known allopatry and a difference in supralabial morphology the two United States taxa previously considered as subspecies within D. corais (Boie 1827), the Western Indigo Snake, D. melanurus erebennus (Cope 1860), and Eastern Indigo Snake, D. couperi (Holbrook 1842), are currently recognized as separate species. Drymarchon couperi is a Federally-designated Threatened species by the United States Fish and Wildlife Service under the Endangered Species Act, and currently being incorporated into a translocation program. This, combined with its disjunct distribution makes it a prime candidate for studying speciation and genetic divergence. In this study, we (1) test the hypothesis that D. m. erebennus and D. couperi are distinct lineages by analyzing 2411 base pairs (bp) of two mitochondrial (mtDNA) loci and one single copy nuclear (scnDNA) locus; (2) estimate the timing of speciation using a relaxed phylogenetics method to determine if Milankovitch cycles during the Pleistocene might have had an influence on lineage diversifications; (3) examine historical population demography to determine if identified lineages have undergone population declines, expansions, or remained stable during the most recent Milankovitch cycles; and (4) use this information to assist in an effective and scientifically sound translocation program. Our molecular data support the initial hypothesis that D. melanurus and D. couperi should be recognized as distinct species, but further illustrate that D. couperi is split into two distinct genetic lineages that correspond to historical biogeography and sea level changes in peninsular Florida. These two well-supported genetic lineages (herein termed Atlantic and Gulf lineages) illustrate a common biogeographic distributional break

  17. Luminal progenitors restrict their lineage potential during mammary gland development.

    PubMed

    Rodilla, Veronica; Dasti, Alessandro; Huyghe, Mathilde; Lafkas, Daniel; Laurent, Cécile; Reyal, Fabien; Fre, Silvia

    2015-02-01

    The hierarchical relationships between stem cells and progenitors that guide mammary gland morphogenesis are still poorly defined. While multipotent basal stem cells have been found within the myoepithelial compartment, the in vivo lineage potential of luminal progenitors is unclear. Here we used the expression of the Notch1 receptor, previously implicated in mammary gland development and tumorigenesis, to elucidate the hierarchical organization of mammary stem/progenitor cells by lineage tracing. We found that Notch1 expression identifies multipotent stem cells in the embryonic mammary bud, which progressively restrict their lineage potential during mammary ductal morphogenesis to exclusively generate an ERαneg luminal lineage postnatally. Importantly, our results show that Notch1-labelled cells represent the alveolar progenitors that expand during pregnancy and survive multiple successive involutions. This study reveals that postnatal luminal epithelial cells derive from distinct self-sustained lineages that may represent the cells of origin of different breast cancer subtypes.

  18. Luminal Progenitors Restrict Their Lineage Potential during Mammary Gland Development

    PubMed Central

    Rodilla, Veronica; Dasti, Alessandro; Huyghe, Mathilde; Lafkas, Daniel; Laurent, Cécile; Reyal, Fabien; Fre, Silvia

    2015-01-01

    The hierarchical relationships between stem cells and progenitors that guide mammary gland morphogenesis are still poorly defined. While multipotent basal stem cells have been found within the myoepithelial compartment, the in vivo lineage potential of luminal progenitors is unclear. Here we used the expression of the Notch1 receptor, previously implicated in mammary gland development and tumorigenesis, to elucidate the hierarchical organization of mammary stem/progenitor cells by lineage tracing. We found that Notch1 expression identifies multipotent stem cells in the embryonic mammary bud, which progressively restrict their lineage potential during mammary ductal morphogenesis to exclusively generate an ERαneg luminal lineage postnatally. Importantly, our results show that Notch1-labelled cells represent the alveolar progenitors that expand during pregnancy and survive multiple successive involutions. This study reveals that postnatal luminal epithelial cells derive from distinct self-sustained lineages that may represent the cells of origin of different breast cancer subtypes. PMID:25688859

  19. Evolution of a morphological novelty occurred before genome compaction in a lineage of extreme parasites

    PubMed Central

    Haag, Karen L.; James, Timothy Y.; Pombert, Jean-François; Larsson, Ronny; Schaer, Tobias M. M.; Refardt, Dominik; Ebert, Dieter

    2014-01-01

    Intracellular parasitism results in extreme adaptations, whose evolutionary history is difficult to understand, because the parasites and their known free-living relatives are so divergent from one another. Microsporidia are intracellular parasites of humans and other animals, which evolved highly specialized morphological structures, but also extreme physiologic and genomic simplification. They are suggested to be an early-diverging branch on the fungal tree, but comparisons to other species are difficult because their rates of molecular evolution are exceptionally high. Mitochondria in microsporidia have degenerated into organelles called mitosomes, which have lost a genome and the ability to produce ATP. Here we describe a gut parasite of the crustacean Daphnia that despite having remarkable morphological similarity to the microsporidia, has retained genomic features of its fungal ancestors. This parasite, which we name Mitosporidium daphniae gen. et sp. nov., possesses a mitochondrial genome including genes for oxidative phosphorylation, yet a spore stage with a highly specialized infection apparatus—the polar tube—uniquely known only from microsporidia. Phylogenomics places M. daphniae at the root of the microsporidia. A comparative genomic analysis suggests that the reduction in energy metabolism, a prominent feature of microsporidian evolution, was preceded by a reduction in the machinery controlling cell cycle, DNA recombination, repair, and gene expression. These data show that the morphological features unique to M. daphniae and other microsporidia were already present before the lineage evolved the extreme host metabolic dependence and loss of mitochondrial respiration for which microsporidia are well known. PMID:25313038

  20. Myeloid cell-derived inducible nitric oxide synthase suppresses M1 macrophage polarization.

    PubMed

    Lu, Geming; Zhang, Ruihua; Geng, Shuo; Peng, Liang; Jayaraman, Padmini; Chen, Chun; Xu, Feifong; Yang, Jianjun; Li, Qin; Zheng, Hao; Shen, Kimberly; Wang, Juan; Liu, Xiyu; Wang, Weidong; Zheng, Zihan; Qi, Chen-Feng; Si, Chuanping; He, John Cijiang; Liu, Kebin; Lira, Sergio A; Sikora, Andrew G; Li, Liwu; Xiong, Huabao

    2015-03-27

    Here we show that iNOS-deficient mice display enhanced classically activated M1 macrophage polarization without major effects on alternatively activated M2 macrophages. eNOS and nNOS mutant mice show comparable M1 macrophage polarization compared with wild-type control mice. Addition of N6-(1-iminoethyl)-L-lysine dihydrochloride, an iNOS inhibitor, significantly enhances M1 macrophage polarization while S-nitroso-N-acetylpenicillamine, a NO donor, suppresses M1 macrophage polarization. NO derived from iNOS mediates nitration of tyrosine residues in IRF5 protein, leading to the suppression of IRF5-targeted M1 macrophage signature gene activation. Computational analyses corroborate a circuit that fine-tunes the expression of IL-12 by iNOS in macrophages, potentially enabling versatile responses based on changing microenvironments. Finally, studies of an experimental model of endotoxin shock show that iNOS deficiency results in more severe inflammation with an enhanced M1 macrophage activation phenotype. These results suggest that NO derived from iNOS in activated macrophages suppresses M1 macrophage polarization.

  1. Novel Markers to Delineate Murine M1 and M2 Macrophages

    PubMed Central

    Jablonski, Kyle A.; Amici, Stephanie A.; Webb, Lindsay M.; Ruiz-Rosado, Juan de Dios; Popovich, Phillip G.; Partida-Sanchez, Santiago; Guerau-de-Arellano, Mireia

    2015-01-01

    Classically (M1) and alternatively activated (M2) macrophages exhibit distinct phenotypes and functions. It has been difficult to dissect macrophage phenotypes in vivo, where a spectrum of macrophage phenotypes exists, and also in vitro, where low or non-selective M2 marker protein expression is observed. To provide a foundation for the complexity of in vivo macrophage phenotypes, we performed a comprehensive analysis of the transcriptional signature of murine M0, M1 and M2 macrophages and identified genes common or exclusive to either subset. We validated by real-time PCR an M1-exclusive pattern of expression for CD38, G-protein coupled receptor 18 (Gpr18) and Formyl peptide receptor 2 (Fpr2) whereas Early growth response protein 2 (Egr2) and c-Myc were M2-exclusive. We further confirmed these data by flow cytometry and show that M1 and M2 macrophages can be distinguished by their relative expression of CD38 and Egr2. Egr2 labeled more M2 macrophages (~70%) than the canonical M2 macrophage marker Arginase-1, which labels 24% of M2 macrophages. Conversely, CD38 labeled most (71%) in vitro M1 macrophages. In vivo, a similar CD38+ population greatly increased after LPS exposure. Overall, this work defines exclusive and common M1 and M2 signatures and provides novel and improved tools to distinguish M1 and M2 murine macrophages. PMID:26699615

  2. Deep sympatric mitochondrial divergence without reproductive isolation in the common redstart Phoenicurus phoenicurus

    PubMed Central

    Hogner, Silje; Laskemoen, Terje; Lifjeld, Jan T; Porkert, Jiri; Kleven, Oddmund; Albayrak, Tamer; Kabasakal, Bekir; Johnsen, Arild

    2012-01-01

    Mitochondrial DNA usually shows low sequence variation within and high sequence divergence among species, which makes it a useful marker for phylogenetic inference and DNA barcoding. A previous study on the common redstart (Phoenicurus phoenicurus) revealed two very different mtDNA haplogroups (5% K2P distance). This divergence is comparable to that among many sister species; however, both haplogroups coexist and interbreed in Europe today. Herein, we describe the phylogeographic pattern of these lineages and test hypotheses for how such high diversity in mtDNA has evolved. We found no evidence for mitochondrial pseudogenes confirming that both haplotypes are of mitochondrial origin. When testing for possible reproductive barriers, we found no evidence for lineage-specific assortative mating and no difference in sperm morphology, indicating that they are not examples of cryptic species, nor likely to reflect the early stages of speciation. A gene tree based on a short fragment of cytochrome c oxidase subunit 1 from the common redstart and 10 other Phoenicurus species, showed no introgression from any of the extant congenerics. However, introgression from an extinct congeneric cannot be excluded. Sequences from two nuclear introns did not show a similar differentiation into two distinct groups. Mismatch distributions indicated that the lineages have undergone similar demographic changes. Taken together, these results confirm that deeply divergent mitochondrial lineages can coexist in biological species. Sympatric mtDNA divergences are relatively rare in birds, but the fact that they occur argues against the use of threshold mtDNA divergences in species delineation. PMID:23301165

  3. The origin of modern frogs (Neobatrachia) was accompanied by acceleration in mitochondrial and nuclear substitution rates

    PubMed Central

    2012-01-01

    Background Understanding the causes underlying heterogeneity of molecular evolutionary rates among lineages is a long-standing and central question in evolutionary biology. Although several earlier studies showed that modern frogs (Neobatrachia) experienced an acceleration of mitochondrial gene substitution rates compared to non-neobatrachian relatives, no further characterization of this phenomenon was attempted. To gain new insights on this topic, we sequenced the complete mitochondrial genomes and nine nuclear loci of one pelobatoid (Pelodytes punctatus) and five neobatrachians, Heleophryne regis (Heleophrynidae), Lechriodus melanopyga (Limnodynastidae), Calyptocephalella gayi (Calyptocephalellidae), Telmatobius bolivianus (Ceratophryidae), and Sooglossus thomasseti (Sooglossidae). These represent major clades not included in previous mitogenomic analyses, and most of them are remarkably species-poor compared to other neobatrachians. Results We reconstructed a fully resolved and robust phylogeny of extant frogs based on the new mitochondrial and nuclear sequence data, and dated major cladogenetic events. The reconstructed tree recovered Heleophryne as sister group to all other neobatrachians, the Australasian Lechriodus and the South American Calyptocephalella formed a clade that was the sister group to Nobleobatrachia, and the Seychellois Sooglossus was recovered as the sister group of Ranoides. We used relative-rate tests and direct comparison of branch lengths from mitochondrial and nuclear-based trees to demonstrate that both mitochondrial and nuclear evolutionary rates are significantly higher in all neobatrachians compared to their non-neobatrachian relatives, and that such rate acceleration started at the origin of Neobatrachia. Conclusions Through the analysis of the selection coefficient (ω) in different branches of the tree, we found compelling evidence of relaxation of purifying selection in neobatrachians, which could (at least in part) explain the

  4. Micromere lineages in the glossiphoniid leech Helobdella

    NASA Technical Reports Server (NTRS)

    Huang, Francoise Z.; Kang, Dongmin; Ramirez-Weber, Felipe-Andres; Bissen, Shirley T.; Weisblat, David A.

    2002-01-01

    In leech embryos, segmental mesoderm and ectoderm arise from teloblasts by lineages that are already relatively well characterized. Here, we present data concerning the early divisions and the definitive fate maps of the micromeres, a group of 25 small cells that arise during the modified spiral cleavage in leech (Helobdella robusta) and contribute to most of the nonsegmental tissues of the adult. Three noteworthy results of this work are as follows. (1) The c"' and dm' clones (3d and 3c in traditional nomenclature) give rise to a hitherto undescribed network of fibers that run from one end of the embryo to the other. (2) The clones of micromeres b" and b"' (2b and 3b in traditional nomenclature) die in normal development; the b" clone can be rescued to assume the normal c" fate if micromere c" or its clone are ablated in early development. (3) Two qualitative differences in micromere fates are seen between H. robusta (Sacramento) and another Helobdella sp. (Galt). First, in Helobdella sp. (Galt), the clone of micromere b" does not normally die, and contributes a subset of the cells arising exclusively from c" in H. robusta (Sacramento). Second, in Helobdella sp. (Galt), micromere c"' makes no definitive contribution, whereas micromere dm' gives rise to cells equivalent to those arising from c"' and dm' in H. robusta (Sacramento).

  5. Lineage management for on-demand data

    NASA Astrophysics Data System (ADS)

    Collins, J. A.; Brodzik, M.; Billingsley, B. W.

    2009-12-01

    Most data consumers would agree that data should be easily available, and welcome the ability to subset, reformat, and reproject archived data before they retrieve the data for local use. Although these features in a data delivery system potentially enhance the interdisciplinary or collaborative use of the data, they also raise concerns for the archive providing those data. The Searchlight project at the National Snow and Ice Data Center (NSIDC) has successfully dealt with many of the technical issues surrounding the dynamic delivery of user-defined data subsets. These data manipulation accomplishments only solve part of the dynamic data delivery problem: We now need to associate accurate provenance and processing information with the customized data product. The user needs the provenance and history in order to make accurate judgements regarding the appropriate use of the data. Our User Support team may need that provenance and history in order to provide a level of service similar to that available for our documented, archived data sets. This presentation will examine the Searchlight team's response to the emerging issue of handling lineage information associated with dynamically generated data products.

  6. Lineage-dependent ecological coherence in bacteria.

    PubMed

    Koeppel, Alexander F; Wu, Martin

    2012-09-01

    Bacteria comprise an essential element of all ecosystems, including those present on and within the human body. Understanding bacterial diversity therefore offers enormous scientific and medical benefit, but significant questions remain regarding how best to characterize that diversity and organize it into biologically meaningful units. Bacterial communities are routinely characterized based on the relative abundances of taxa at the genus or even the phylum level, but the ecological coherence of these high-level taxonomic units is uncertain. Using human microbiota from the skin and gut as our model systems, we tested the ecological coherence of bacteria by investigating the habitat associations of bacteria at all levels of the taxonomic hierarchy. We observed four distinct taxonomic patterns of habitat association, reflecting different levels of ecological coherence among taxa. Our results support the hypothesis that deep-branch bacterial clades could be ecologically coherent and suggest that the phylogenetic depth of ecological coherence varies among the bacterial lineages and is an important factor to consider in studies of human microbiome associations.

  7. An Andean origin of Phytophthora infestans inferred from mitochondrial and nuclear gene genealogies.

    PubMed

    Gómez-Alpizar, Luis; Carbone, Ignazio; Ristaino, Jean Beagle

    2007-02-27

    Phytophthora infestans (Mont.) de Bary caused the 19th century Irish Potato Famine. We assessed the genealogical history of P. infestans using sequences from portions of two nuclear genes (beta-tubulin and Ras) and several mitochondrial loci P3, (rpl14, rpl5, tRNA) and P4 (Cox1) from 94 isolates from South, Central, and North America, as well as Ireland. Summary statistics, migration analyses and the genealogy of current populations of P. infestans for both nuclear and mitochondrial loci are consistent with an "out of South America" origin for P. infestans. Mexican populations of P. infestans from the putative center of origin in Toluca Mexico harbored less nucleotide and haplotype diversity than Andean populations. Coalescent-based genealogies of all loci were congruent and demonstrate the existence of two lineages leading to present day haplotypes of P. infestans on potatoes. The oldest lineage associated with isolates from the section Anarrhichomenun including Solanum tetrapetalum from Ecuador was identified as Phytophthora andina and evolved from a common ancestor of P. infestans. Nuclear and mitochondrial haplotypes found in Toluca Mexico were derived from only one of the two lineages, whereas haplotypes from Andean populations in Peru and Ecuador were derived from both lineages. Haplotypes found in populations from the U.S. and Ireland was derived from both ancestral lineages that occur in South America suggesting a common ancestry among these populations. The geographic distribution of mutations on the rooted gene genealogies demonstrate that the oldest mutations in P. infestans originated in South America and are consistent with a South American origin.

  8. Enzyme-linked immunosorbent assay for determination of aflatoxin M1 based on magnetic nanoparticles

    NASA Astrophysics Data System (ADS)

    Atanasova, M. K.; Ivanova, N. V.; Godjevargova, T. I.

    2017-02-01

    A sensitive enzyme immunoassay with magnetic nanoparticles (Method A) for the quantitative determination of aflatoxin M1 in milk was developed. This immunoassay was based on the immobilization of monoclonal antibody (mAb) on the modified magnetic nanoparticles (MNPs-NH2). It was observed that for each mg of the MNPs, 25 µg of antibody was immobilized. Both aflatoxin M1 in the sample and aflatoxin M1-BSA-peroxidase conjugate competed for the immobilized antibody. The proposed Method A was compared with other method (B). The Method B was based on the immobilization of aflatoxin M1-BSA conjugate on the MNPs-NH2, which competed with the aflatoxin M1 in the sample for binding to the added mAb. The binding of mAb to the aflatoxin M1-BSA-MNPs-NH2 was detected using a target secondary IgG-peroxidase antibody. The analytical characteristics of the two methods were compared. Real milk samples were investigated for present of aflatoxin M1. Two methods were based on the use of MNPs as a solid support for covalently immunoreagents immobilization. A comfortable separation of bound and free fraction of the tracer can be performed only through a simple collection of the MNPs by a permanent magnet. The application of MNPs helps to eliminate non-specific binding and to retain higher activity of bound biomolecules. The development of a MNPs-based ELISA for determination of aflatoxin M1 has a great potential to supersede the traditional ELISA for aflatoxin M1 diagnosis.

  9. Mitochondrial DNA sequences of five squamates: phylogenetic affiliation of snakes.

    PubMed

    Kumazawa, Yoshinori

    2004-04-30

    Complete or nearly complete mitochondrial DNA sequences were determined from four lizards (Western fence lizard, Warren's spinytail lizard, Terrestrial arboreal alligator lizard, and Chinese crocodile lizard) and a snake (Texas blind snake). These genomes had a typical gene organization found in those of most mammals and fishes, except for a translocation of the glutamine tRNA gene in the blind snake and a tandem duplication of the threonine and proline tRNA genes in the spinytail lizard. Although previous work showed the existence of duplicate control regions in mitochondrial DNAs of several snakes, the blind snake did not have this characteristic. Phylogenetic analyses based on different tree-building methods consistently supported that the blind snake and a colubrid snake (akamata) make a sister clade relative to all the lizard taxa from six different families. An alternative hypothesis that snakes evolved from a lineage of varanoids was not favored and nearly statistically rejected by the Kishino-Hasegawa test. It is therefore likely that the apparent similarity of the tongue structure between snakes and varanoids independently evolved and that the duplication of the control region occurred on a snake lineage after divergence of the blind snake.

  10. Mitochondrial DNA sequences from a 7000-year old brain.

    PubMed Central

    Pääbo, S; Gifford, J A; Wilson, A C

    1988-01-01

    Pieces of mitochondrial DNA from a 7000-year-old human brain were amplified by the polymerase chain reaction and sequenced. Albumin and high concentrations of polymerase were required to overcome a factor in the brain extract that inhibits amplification. For this and other sources of ancient DNA, we find an extreme inverse dependence of the amplification efficiency on the length of the sequence to be amplified. This property of ancient DNA distinguishes it from modern DNA and thus provides a new criterion of authenticity for use in research on ancient DNA. The brain is from an individual recently excavated from Little Salt Spring in southwestern Florida and the anthropologically informative sequences it yielded are the first obtained from archaeologically retrieved remains. The sequences show that this ancient individual belonged to a mitochondrial lineage that is rare in the Old World and not previously known to exist among Native Americans. Our finding brings to three the number of maternal lineages known to have been involved in the prehistoric colonization of the New World. Images PMID:3186445

  11. The complete mitochondrial genome of Gobiobotia filifer (Teleostei, Cypriniformes: Cyprinidae).

    PubMed

    Li, Qiang; Liu, Ya; Zhou, Jian; Gong, Quan; Li, Hua; Lai, Jiansheng; Li, Lianman

    2016-09-01

    The Gobiobotia filifer is a small economic fish which distributes in the upstream of Yangtze River and its distributaries. For the environmental pollution and overfishing, its population declined drastically in recent decades, so it is essential to protect its resource. In this study, the complete mitochondrial genome sequence of G. filifer was determined with PCR technology, which contains 13 protein-coding genes, 22 tRNA genes, two rRNA genes, and a non-coding control region with the total length of 16,613 bp. The order and composition of genes were similar to most of the other teleost fish. Most of the genes were encoded on heavy strand, except for ND6 genes and eight tRNAs. Just like most other vertebrates, the bias of G and C has been found in different genes/regions. The complete mitochondrial genome sequence of G. filifer would contribute to better understand evolution of this lineage, population genetics, and will help administrative department to make rules and laws to protect this lineage.

  12. The secondary contact zone of phylogenetic lineages of the Philaenus spumarius (Hemiptera: Aphrophoridae): an example of incomplete allopatric speciation.

    PubMed

    Lis, Agata; Maryańska-Nadachowska, Anna; Lachowska-Cierlik, Dorota; Kajtoch, Lukasz

    2014-01-01

    Previous studies on the phylogeography of the meadow spittlebug Philaenus spumarius (L.) (Hemiptera: Aphrophoridae) suggest the existence of a contact zone of its main phylogenetic lineages along mountain chains in Europe and western Asia. This study presents a detailed examination of the population genetics of P. spumarius within the Carpathian Mountains. The main objective was to determine whether the populations inhabiting that area consist of individuals belonging to different genetic units and whether the observed pattern could be an example of secondary contact zone which formed after incomplete allopatric speciation. Specimens from six transects across the Carpathian arc were examined. The mitochondrial phylogeography of the meadow spittlebug in the examined area clearly shows that individuals from both main clades meet and mix there. Representatives of all three main EF1-α clades were also found. The present distribution of the main clades with a zone of overlap along the mountain ranges may suggest that these phylogenetic lineages form a young hybrid zone. Moreover, a limited number of individuals were shown to possess heteroplasmic mitochondrial DNA, which gives additional support to intraspecific hybridization. P. spumarius could be used in future work as an excellent model species in investigating population genetics, intraspecific hybridization, and speciation in progress.

  13. The secondary contact zone of phylogenetic lineages of the Philaenus spumarius (Hemiptera: Aphrophoridae: Cercopidae): an example of incomplete allopatric speciation.

    PubMed

    Lis, Agata; Maryańska-Nadachowska, Anna; Lachowska-Cierlik, Dorota; Kajtoch, Łukasz

    2014-01-01

    Previous studies on the phylogeography of the meadow spittlebug Philaenus spumarius (L.) (Hemiptera: Aphrophoridae: Cercopidae) suggest the existence of a contact zone of its main phylogenetic lineages along mountain chains in Europe and western Asia. This study presents a detailed examination of the population genetics of P. spumarius within the Carpathian Mountains. The main objective was to determine whether the populations inhabiting that area consist of individuals belonging to different genetic units and whether the observed pattern could be an example of secondary contact zone which formed after incomplete allopatric speciation. Specimens from six transects across the Carpathian arc were examined. The mitochondrial phylogeography of the meadow spittlebug in the examined area clearly shows that individuals from both main clades meet and mix there. Representatives of all three main EF1-α clades were also found. The present distribution of the main clades with a zone of overlap along the mountain ranges may suggest that these phylogenetic lineages form a young hybrid zone. Moreover, a limited number of individuals were shown to possess heteroplasmic mitochondrial DNA, which gives additional support to intraspecific hybridization. P. spumarius could be used in future work as an excellent model species in investigating population genetics, intraspecific hybridization, and speciation in progress.

  14. Ancient DNA Analyses Reveal Contrasting Phylogeographic Patterns amongst Kiwi (Apteryx spp.) and a Recently Extinct Lineage of Spotted Kiwi

    PubMed Central

    Shepherd, Lara D.; Worthy, Trevor H.; Tennyson, Alan J. D.; Scofield, R. Paul; Ramstad, Kristina M.; Lambert, David M.

    2012-01-01

    The little spotted kiwi (Apteryx owenii) is a flightless ratite formerly found throughout New Zealand but now greatly reduced in distribution. Previous phylogeographic studies of the related brown kiwi (A. mantelli, A. rowi and A. australis), with which little spotted kiwi was once sympatric, revealed extremely high levels of genetic structuring, with mitochondrial DNA haplotypes often restricted to populations. We surveyed genetic variation throughout the present and pre-human range of little spotted kiwi by obtaining mitochondrial DNA sequences from contemporary and ancient samples. Little spotted kiwi and great spotted kiwi (A. haastii) formed a monophyletic clade sister to brown kiwi. Ancient samples of little spotted kiwi from the northern North Island, where it is now extinct, formed a lineage that was distinct from remaining little spotted kiwi and great spotted kiwi lineages, potentially indicating unrecognized taxonomic diversity. Overall, little spotted kiwi exhibited much lower levels of genetic diversity and structuring than brown kiwi, particularly through the South Island. Our results also indicate that little spotted kiwi (or at least hybrids involving this species) survived on the South Island mainland until more recently than previously thought. PMID:22876319

  15. Ancient DNA analyses reveal contrasting phylogeographic patterns amongst kiwi (Apteryx spp.) and a recently extinct lineage of spotted kiwi.

    PubMed

    Shepherd, Lara D; Worthy, Trevor H; Tennyson, Alan J D; Scofield, R Paul; Ramstad, Kristina M; Lambert, David M

    2012-01-01

    The little spotted kiwi (Apteryx owenii) is a flightless ratite formerly found throughout New Zealand but now greatly reduced in distribution. Previous phylogeographic studies of the related brown kiwi (A. mantelli, A. rowi and A. australis), with which little spotted kiwi was once sympatric, revealed extremely high levels of genetic structuring, with mitochondrial DNA haplotypes often restricted to populations. We surveyed genetic variation throughout the present and pre-human range of little spotted kiwi by obtaining mitochondrial DNA sequences from contemporary and ancient samples. Little spotted kiwi and great spotted kiwi (A. haastii) formed a monophyletic clade sister to brown kiwi. Ancient samples of little spotted kiwi from the northern North Island, where it is now extinct, formed a lineage that was distinct from remaining little spotted kiwi and great spotted kiwi lineages, potentially indicating unrecognized taxonomic diversity. Overall, little spotted kiwi exhibited much lower levels of genetic diversity and structuring than brown kiwi, particularly through the South Island. Our results also indicate that little spotted kiwi (or at least hybrids involving this species) survived on the South Island mainland until more recently than previously thought.

  16. Final report on key comparison CCQM-K92: Electrolytic conductivity at 0.05 S m-1 and 20 S m-1

    NASA Astrophysics Data System (ADS)

    Vyskočil, L.; Máriássy, M.; Reyes, Adrian; Monroy, Marcela; Vospělová, Alena; Magnusson, Bertil; Pyykkö, Rauno; Kardash, Elena; Barbieri Gonzaga, Fabiano; Fraga, I. C. S.; Lopes, J. C.; Silva, W. B., Jr.; Borges, P. P.; Rocha, W. F. C.; Durbiano, Francesca; Orrù, E.; Pratt, Kenneth W.; Tønnes Jakobsen, Pia; Dalsgaard Jensen, Hans; Avnskjold, Jørgen; Konopelko, L. A.; Kustikov, Y. A.; Suvorov, V. I.; Xiaoping, Song; Hai, Wang; Seitz, Steffen; Spitzer, Petra; Gavrilkin, Vladimir; Prokopenko, Leonid; Stennik, Oleksiy; Kozlowski, Wladyslaw; Dumanska-Kulpa, Joanna; Grzybowska, Izabela; Ovchinnikov, Yury A.; Nagyné Szilágyi, Zsófia; Fükö, Judit

    2013-01-01

    The aim of the key comparison CCQM-K92 was to demonstrate the capabilities of the participating NMIs to measure electrolytic conductivity of an unknown sample. Two samples with nominal electrolytic conductivity values of 0.05 S m-1 and 20 S m-1 have been prepared for comparison. For the first time a conductivity value larger than those given in the IUPAC document [1] was measured in a CCQM comparison. Thus no calibration standards with similar conductivity value were available. The comparison was an activity of the Electrochemical Working Group (EAWG) of the CCQM and was coordinated by SMU. In the comparison NMIs from fifteen countries took part. The higher conductivity (20 S m-1) was measured by ten participants. Good agreement of the results was observed for the majority of participants. Main text. To reach the main text of this paper, click on Final Report. Note that this text is that which appears in Appendix B of the BIPM key comparison database kcdb.bipm.org/. The final report has been peer-reviewed and approved for publication by the CCQM, according to the provisions of the CIPM Mutual Recognition Arrangement (CIPM MRA).

  17. Tracking the evolution of the elusive Andean mountain cat (Oreailurus jacobita) from mitochondrial DNA.

    PubMed

    Johnson, W E; Culver, M; Iriarte, J A; Eizirik, E; Seymour, K L; O'Brien, S J

    1998-01-01

    Rarely observed in the wild, the existence of the Andean mountain cat (Oreailurus jacobita) has been established based on only 3 skulls and 14 museum skins. The Andean mountain cat's evolutionary relationship to other felids based on morphological characters is largely contradictory, with evidence aligning it with South American small spotted cats (ocelot lineage) or alternatively with pantherine lineage felids. Here we describe the phylogenetic distinctiveness and placement of the Andean mountain cat using DNA extracted from pieces of nine independent pelt specimens, including one confiscated from a trapper in 1995. A phylogenetic analysis of DNA sequences from three rapidly evolving mitochondrial genes (16S rRNA, NADH-5, and ATP-8) indicate that the Andean mountain cat is a distinct species belonging to the ocelot lineage. Our findings suggest that the Andean mountain cat diverged from a common ancestor with the ocelot (Leopardus paradalis) and margay (L. wiedii) and exhibits moderate levels of genetic variation.

  18. Mitochondrial nucleoid interacting proteins support mitochondrial protein synthesis.

    PubMed

    He, J; Cooper, H M; Reyes, A; Di Re, M; Sembongi, H; Litwin, T R; Gao, J; Neuman, K C; Fearnley, I M; Spinazzola, A; Walker, J E; Holt, I J

    2012-07-01

    Mitochondrial ribosomes and translation factors co-purify with mitochondrial nucleoids of human cells, based on affinity protein purification of tagged mitochondrial DNA binding proteins. Among the most frequently identified proteins were ATAD3 and prohibitin, which have been identified previously as nucleoid components, using a variety of methods. Both proteins are demonstrated to be required for mitochondrial protein synthesis in human cultured cells, and the major binding partner of ATAD3 is the mitochondrial ribosome. Altered ATAD3 expression also perturbs mtDNA maintenance and replication. These findings suggest an intimate association between nucleoids and the machinery of protein synthesis in mitochondria. ATAD3 and prohibitin are tightly associated with the mitochondrial membranes and so we propose that they support nucleic acid complexes at the inner membrane of the mitochondrion.

  19. The complete mitochondrial genome of Flustra foliacea (Ectoprocta, Cheilostomata) - compositional bias affects phylogenetic analyses of lophotrochozoan relationships

    PubMed Central

    2011-01-01

    Background The phylogenetic relationships of the lophophorate lineages, ectoprocts, brachiopods and phoronids, within Lophotrochozoa are still controversial. We sequenced an additional mitochondrial genome of the most species-rich lophophorate lineage, the ectoprocts. Although it is known that there are large differences in the nucleotide composition of mitochondrial sequences of different lineages as well as in the amino acid composition of the encoded proteins, this bias is often not considered in phylogenetic analyses. We applied several approaches for reducing compositional bias and saturation in the phylogenetic analyses of the mitochondrial sequences. Results The complete mitochondrial genome (16,089 bp) of Flustra foliacea (Ectoprocta, Gymnolaemata, Cheilostomata) was sequenced. All protein-encoding, rRNA and tRNA genes are transcribed from the same strand. Flustra shares long intergenic sequences with the cheilostomate ectoproct Bugula, which might be a synapomorphy of these taxa. Further synapomorphies might be the loss of the DHU arm of the tRNA L(UUR), the loss of the DHU arm of the tRNA S(UCN) and the unique anticodon sequence GAG of the tRNA L(CUN). The gene order of the mitochondrial genome of Flustra differs strongly from that of the other known ectoprocts. Phylogenetic analyses of mitochondrial nucleotide and amino acid data sets show that the lophophorate lineages are more closely related to trochozoan phyla than to deuterostomes or ecdysozoans confirming the Lophotrochozoa hypothesis. Furthermore, they support the monophyly of Cheilostomata and Ectoprocta. However, the relationships of the lophophorate lineages within Lophotrochozoa differ strongly depending on the data set and the used method. Different approaches for reducing heterogeneity in nucleotide and amino acid data sets and saturation did not result in a more robust resolution of lophotrochozoan relationships. Conclusion The contradictory and usually weakly supported phylogenetic

  20. Towards Revised Step IV MICE Optics in the Absence of M1 SSD

    SciTech Connect

    Bayes, R.; Berg, J. S.; Blackmore, V.; Hunt, C.; Liu, A.; Pasternak, J.; Rogers, C. T.

    2015-10-01

    During magnet commissioning in September 2015, the leads on coil M1 of the downstream spectrometer solenoid failed. The coil will not be operational for MICE Step IV. Revised optics settings for the Step IV data taking are reviewed.

  1. Coiled-Coil Irregularities and Instabilities in Group A Streptococcus M1 Are Required for Virulence

    SciTech Connect

    McNamara, Case; Zinkernagel, Annelies S.; Macheboeuf, Pauline; Cunningham, Madeleine W.; Nizet, Victor; Ghosh, Partho

    2008-07-21

    Antigenically variable M proteins are major virulence factors and immunogens of the human pathogen group A Streptococcus (GAS). Here, we report the -3 angstrom resolution structure of a GAS M1 fragment containing the regions responsible for eliciting type-specific, protective immunity and for binding fibrinogen, which promotes M1 proinflammatory and antiphagocytic functions. The structure revealed substantial irregularities and instabilities throughout the coiled coil of the M1 fragment. Similar structural irregularities occur in myosin and tropomyosin, explaining the patterns of cross-reactivity seen in autoimmune sequelae of GAS infection. Sequence idealization of a large segment of the M1 coiled coil enhanced stability but diminished fibrinogen binding, proinflammatory effects, and antibody cross-reactivity, whereas it left protective immunogenicity undiminished. Idealized M proteins appear to have promise as vaccine immunogens.

  2. M1 {gamma} Strength for Zirconium Nuclei in the Photoneutron Channel

    SciTech Connect

    Utsunomiya, H.; Kondo, T.; Kaihori, T.; Makinaga, A.; Akimune, H.; Yamagata, T.; Goriely, S.; Goko, S.; Toyokawa, H.; Matsumoto, T.; Harano, H.; Hohara, S.; Lui, Y.-W.; Hilaire, S.; Peru, S.; Koning, A. J.

    2008-04-25

    Photoneutron cross sections were measured for {sup 91}Zr, {sup 92}Zr, and {sup 94}Zr near the neutron separation energy with quasimonochromatic {gamma} rays. The data exhibit some extra components around the neutron threshold. A coherent analysis of the photoneutron data for {sup 92}Zr together with the neutron capture on {sup 91}Zr based on the microscopic Hartree-Fock-Bogoliubov plus quasiparticle random-phase approximation model for the E1 strength has revealed the presence of an M1 resonance at 9 MeV. The microscopic approach systematically shows the same M1 strength in the photoneutron cross section for {sup 91}Zr and {sup 94}Zr. The total M1 strength is about 75% larger than the strength predicted by the systematics, being qualitatively consistent with the giant M1 resonance observed in the inelastic proton scattering.

  3. Phylogeographical lineages of Arctic grayling (Thymallus arcticus) in North America: divergence, origins and affinities with Eurasian Thymallus.

    PubMed

    Stamford, M D; Taylor, E B

    2004-06-01

    The number and location of Arctic glacial refugia utilized by taxa during the Pleistocene are continuing uncertainties in Holarctic phylogeography. Arctic grayling (Thymallus arcticus) are widely distributed in freshwaters from the eastern side of Hudson Bay (Canada) west to central Asia. We studied mitochondrial DNA (mtDNA) and microsatellite DNA variation in North American T. arcticus to test for genetic signatures of survival in, and postglacial dispersal from, multiple glacial refugia, and to assess their evolutionary affinities with Eurasian Thymallus. In samples from 32 localities, we resolved 12 mtDNA haplotypes belonging to three assemblages that differed from each other in sequence by between 0.75 and 2.13%: a 'South Beringia' lineage found from western Alaska to northern British Columbia, Canada; a 'North Beringia' lineage found on the north slope of Alaska, the lower Mackenzie River, and to eastern Saskatchewan; and a 'Nahanni' lineage confined to the Nahanni River area of the upper Mackenzie River drainage. Sequence analysis of a portion of the control region indicated monophyly of all North American T. arcticus and their probable origin from eastern Siberian T. arcticus at least 3 Mya. Arctic grayling sampled from 25 localities displayed low allelic diversity and expected heterozygosity (H(E)) across five microsatellite loci (means of 2.1 alleles and 0.27 H(E), respectively) and there were declines in these measures of genetic diversity with distance eastward from the lower Yukon River Valley. Assemblages defined by mtDNA divergences were less apparent at microsatellite loci, but again the Nahanni lineage was the most distinctive. Analysis of molecular variance indicated that between 24% (microsatellite DNA) and 81% (mtDNA) of the variance was attributable to differences among South Beringia, North Beringia and Nahanni lineages. Our data suggest that extant North American Arctic grayling are more diverse phylogeographically than previously suspected

  4. Signatures of seaway closures and founder dispersal in the phylogeny of a circumglobally distributed seahorse lineage

    PubMed Central

    Teske, Peter R; Hamilton, Healy; Matthee, Conrad A; Barker, Nigel P

    2007-01-01

    Background The importance of vicariance events on the establishment of phylogeographic patterns in the marine environment is well documented, and generally accepted as an important cause of cladogenesis. Founder dispersal (i.e. long-distance dispersal followed by founder effect speciation) is also frequently invoked as a cause of genetic divergence among lineages, but its role has long been challenged by vicariance biogeographers. Founder dispersal is likely to be common in species that colonize remote habitats by means of rafting (e.g. seahorses), as long-distance dispersal events are likely to be rare and subsequent additional recruitment from the source habitat is unlikely. In the present study, the relative importance of vicariance and founder dispersal as causes of cladogenesis in a circumglobally distributed seahorse lineage was investigated using molecular dating. A phylogeny was reconstructed using sequence data from mitochondrial and nuclear markers, and the well-documented closure of the Central American seaway was used as a primary calibration point to test whether other bifurcations in the phylogeny could also have been the result of vicariance events. The feasibility of three other vicariance events was explored: a) the closure of the Indonesian Seaway, resulting in sister lineages associated with the Indian Ocean and West Pacific, respectively; b) the closure of the Tethyan Seaway, resulting in sister lineages associated with the Indo-Pacific and Atlantic Ocean, respectively, and c) continental break-up during the Mesozoic followed by spreading of the Atlantic Ocean, resulting in pairs of lineages with amphi-Atlantic distribution patterns. Results Comparisons of pairwise genetic distances among the seahorse species hypothesized to have diverged as a result of the closure of the Central American Seaway with those of published teleost sequences having the same distribution patterns show that the seahorses were among the last to diverge. This suggests

  5. Platyzoan mitochondrial genomes.

    PubMed

    Wey-Fabrizius, Alexandra R; Podsiadlowski, Lars; Herlyn, Holger; Hankeln, Thomas

    2013-11-01

    Platyzoa is a putative lophotrochozoan (spiralian) subtaxon within the protostome clade of Metazoa, comprising a range of biologically diverse, mostly small worm-shaped animals. The monophyly of Platyzoa, the relationships between the putative subgroups Platyhelminthes, Gastrotricha and Gnathifera (the latter comprising at least Gnathostomulida, "Rotifera" and Acanthocephala) as well as some aspects of the internal phylogenies of these subgroups are highly debated. Here we review how complete mitochondrial (mt) genome data contribute to these debates. We highlight special features of the mt genomes and discuss problems in mtDNA phylogenies of the clade. Mitochondrial genome data seem to be insufficient to resolve the position of the platyzoan clade within the Spiralia but can help to address internal phylogenetic questions. The present review includes a tabular survey of all published platyzoan mt genomes.

  6. Mitochondrial Function in Sepsis

    PubMed Central

    Arulkumaran, Nishkantha; Deutschman, Clifford S.; Pinsky, Michael R.; Zuckerbraun, Brian; Schumacker, Paul T.; Gomez, Hernando; Gomez, Alonso; Murray, Patrick; Kellum, John A.

    2015-01-01

    Mitochondria are an essential part of the cellular infrastructure, being the primary site for high energy adenosine triphosphate (ATP) production through oxidative phosphorylation. Clearly, in severe systemic inflammatory states, like sepsis, cellular metabolism is usually altered and end organ dysfunction not only common but predictive of long term morbidity and mortality. Clearly, interest is mitochondrial function both as a target for intracellular injury and response to extrinsic stress have been a major focus of basic science and clinical research into the pathophysiology of acute illness. However, mitochondria have multiple metabolic and signaling functions that may be central in both the expression of sepsis and its ultimate outcome. In this review, the authors address five primary questions centered on the role of mitochondria in sepsis. This review should be used as both a summary source in placing mitochondrial physiology within the context of acute illness and as a focal point for addressing new research into diagnostic and treatment opportunities these insights provide. PMID:26871665

  7. Mitochondrial genome evolution in Ophiuroidea, Echinoidea, and Holothuroidea: insights in phylogenetic relationships of Echinodermata.

    PubMed

    Perseke, Marleen; Bernhard, Detlef; Fritzsch, Guido; Brümmer, Franz; Stadler, Peter F; Schlegel, Martin

    2010-07-01

    The genome architecture and amino acid sequences of six new complete mitochondrial genomes were determined from representatives of Hemichordata (1), Ophiuroidea (3), Echinoidea (1) and Holothuroidea (1) and were analysed together with previously known sequences. Phylogenetic analyses recovered three lineages within echinoderms, Crinoidea, Ophiuroidea and a group comprising Holothuroidea, Echinoidea, and Asteroidea. In contrast to previous analyses of mitochondrial genomes the increased data set recovered the classical echinoderm phylogeny of Eleutherozoa and Echinozoa in Maximum Likelihood and Bayesian analyses using hemichordate out-group representatives. However, an inconsistent ramification appeared with vertebrate out-groups and in Maximum Parsimony and Neighbour Joining reconstructions. The basal (consensus) gene orders of all three lineages could be derived from a hypothetical ancestral crinoid gene order by one single rearrangement in each lineage. The genome architecture was highly conserved in Echinoidea, whereas the highest gene order differences and large amounts of unassigned sequences (UAS) were detected in Ophiuroidea, supporting a higher evolutionary rate than in any other echinoderm lineage. The variability in gene order and UAS regions in ophiuroid genomes suggest dominating rearrangement mechanisms by duplication events.

  8. Whole mitochondrial DNA sequencing in Alpine populations and the genetic history of the Neolithic Tyrolean Iceman.

    PubMed

    Coia, V; Cipollini, G; Anagnostou, P; Maixner, F; Battaggia, C; Brisighelli, F; Gómez-Carballa, A; Destro Bisol, G; Salas, A; Zink, A

    2016-01-14

    The Tyrolean Iceman is an extraordinarily well-preserved natural mummy that lived south of the Alpine ridge ~5,200 years before present (ybp), during the Copper Age. Despite studies that have investigated his genetic profile, the relation of the Iceman´s maternal lineage with present-day mitochondrial variation remains elusive. Studies of the Iceman have shown that his mitochondrial DNA (mtDNA) belongs to a novel lineage of haplogroup K1 (K1f) not found in extant populations. We analyzed the complete mtDNA sequences of 42 haplogroup K bearing individuals from populations of the Eastern Italian Alps - putatively in genetic continuity with the Tyrolean Iceman-and compared his mitogenome with a large dataset of worldwide K1 sequences. Our results allow a re-definition of the K1 phylogeny, and indicate that the K1f haplogroup is absent or rare in present-day populations. We suggest that mtDNA Iceman´s lineage could have disappeared during demographic events starting in Europe from ~5,000 ybp. Based on the comparison of our results with published data, we propose a scenario that could explain the apparent contrast between the phylogeographic features of maternal and paternal lineages of the Tyrolean Iceman within the context of the demographic dynamics happening in Europe from 8,000 ybp.

  9. Whole mitochondrial DNA sequencing in Alpine populations and the genetic history of the Neolithic Tyrolean Iceman

    PubMed Central

    Coia, V.; Cipollini, G.; Anagnostou, P.; Maixner, F.; Battaggia, C.; Brisighelli, F.; Gómez-Carballa, A; Destro Bisol, G.; Salas, A.; Zink, A.

    2016-01-01

    The Tyrolean Iceman is an extraordinarily well-preserved natural mummy that lived south of the Alpine ridge ~5,200 years before present (ybp), during the Copper Age. Despite studies that have investigated his genetic profile, the relation of the Iceman´s maternal lineage with present-day mitochondrial variation remains elusive. Studies of the Iceman have shown that his mitochondrial DNA (mtDNA) belongs to a novel lineage of haplogroup K1 (K1f) not found in extant populations. We analyzed the complete mtDNA sequences of 42 haplogroup K bearing individuals from populations of the Eastern Italian Alps – putatively in genetic continuity with the Tyrolean Iceman—and compared his mitogenome with a large dataset of worldwide K1 sequences. Our results allow a re-definition of the K1 phylogeny, and indicate that the K1f haplogroup is absent or rare in present-day populations. We suggest that mtDNA Iceman´s lineage could have disappeared during demographic events starting in Europe from ~5,000 ybp. Based on the comparison of our results with published data, we propose a scenario that could explain the apparent contrast between the phylogeographic features of maternal and paternal lineages of the Tyrolean Iceman within the context of the demographic dynamics happening in Europe from 8,000 ybp. PMID:26764605

  10. How did pygmy shrews colonize Ireland? Clues from a phylogenetic analysis of mitochondrial cytochrome b sequences.

    PubMed Central

    Mascheretti, Silvia; Rogatcheva, Margarita B; Gündüz, Islam; Fredga, Karl; Searle, Jeremy B

    2003-01-01

    There is a long-standing debate as to how Ireland attained its present fauna; we help to inform this debate with a molecular study of one species. A 1110 base pair fragment of the mitochondrial cytochrome b gene was sequenced in 74 specimens of the pygmy shrew, Sorex minutus, collected from throughout its western Palaearctic range. Phylogenetic analysis of these sequences revealed several well-supported lineages. Most of the 65 haplotypes belonged to a northern lineage, which ranged from Britain in the west to Lake Baikal in the east. The other lineages were largely limited to Iberia, Italy and the Balkans. One exception, however, was a lineage found in both Ireland and Andorra. This affinity, and the large difference between the mitochondrial sequences of Irish and British individuals, suggest that pygmy shrews did not colonize Ireland via a land connection from Britain, as has been previously supposed, but instead were introduced by boat from southwest continental Europe. All the Irish pygmy shrews analysed were identical or very similar in cytochrome b sequence, suggesting an extreme founding event. PMID:12908980

  11. Origins of Wohlfahrtia magnifica in Italy based on the identification of mitochondrial cytochrome b gene haplotypes.

    PubMed

    Marangi, Marianna; Hall, Martin J R; Aitken, Alex; Ready, Paul D; Giangaspero, Annunziata

    2016-02-01

    To identify the geographical origins of larvae of Wohlfahrtia magnifica (Diptera: Sarcophagidae) causing myiasis of sheep in Italy, comparative DNA sequence analysis of the mitochondrial cytochrome b gene was performed, based on gene fragments amplified by PCR from genomic DNA isolated from individual specimens. DNA extractions of 19 larvae from Lazio, Molise, Puglia, and Sicilia generated 17 readable sequences homologous to 2 haplotypes, either CB_magn01 or CB_magn02; DNA extracts from 4 adult flies from Calabria (reared from larvae) produced 4 readable sequences belonging to the haplotype CB_magn01. The two haplotypes found represent both the East and West phylogenetic lineages of W. magnifica, which is consistent with the species' arrival from central/southeast Europe (East lineage) and/or from southwest Europe/northwest Africa (West lineage). This is the first report of the sympatric occurrence of the two lineages, which could have resulted from natural or human-assisted dispersal. Polymorphic nuclear loci will have to be characterized in order to explain the origins and lack of mitochondrial haplotype diversity of this pest in Italy, where it poses increasing veterinary problems.

  12. Mitochondrial cholesterol: mechanisms of import and effects on mitochondrial function.

    PubMed

    Martin, Laura A; Kennedy, Barry E; Karten, Barbara

    2016-04-01

    Mitochondria require cholesterol for biogenesis and membrane maintenance, and for the synthesis of steroids, oxysterols and hepatic bile acids. Multiple pathways mediate the transport of cholesterol from different subcellular pools to mitochondria. In steroidogenic cells, the steroidogenic acute regulatory protein (StAR) interacts with a mitochondrial protein complex to mediate cholesterol delivery to the inner mitochondrial membrane for conversion to pregnenolone. In non-steroidogenic cells, several members of a protein family defined by the presence of a StAR-related lipid transfer (START) domain play key roles in the delivery of cholesterol to mitochondrial membranes. Subdomains of the endoplasmic reticulum (ER), termed mitochondria-associated ER membranes (MAM), form membrane contact sites with mitochondria and may contribute to the transport of ER cholesterol to mitochondria, either independently or in conjunction with lipid-transfer proteins. Model systems of mitochondria enriched with cholesterol in vitro and mitochondria isolated from cells with (patho)physiological mitochondrial cholesterol accumulation clearly demonstrate that mitochondrial cholesterol levels affect mitochondrial function. Increased mitochondrial cholesterol levels have been observed in several diseases, including cancer, ischemia, steatohepatitis and neurodegenerative diseases, and influence disease pathology. Hence, a deeper understanding of the mechanisms maintaining mitochondrial cholesterol homeostasis may reveal additional targets for therapeutic intervention. Here we give a brief overview of mitochondrial cholesterol import in steroidogenic cells, and then focus on cholesterol trafficking pathways that deliver cholesterol to mitochondrial membranes in non-steroidogenic cells. We also briefly discuss the consequences of increased mitochondrial cholesterol levels on mitochondrial function and their potential role in disease pathology.

  13. Emergence and oscillation of cosmic space by joining M1-branes

    NASA Astrophysics Data System (ADS)

    Sepehri, Alireza; Rahaman, Farook; Capozziello, Salvatore; Ali, Ahmed Farag; Pradhan, Anirudh

    2016-05-01

    Recently, it has been proposed by Padmanabhan that the difference between the number of degrees of freedom on the boundary surface and the number of degrees of freedom in a bulk region leads to the expansion of the universe. Now, a natural question arises; how could this model explain the oscillation of the universe between contraction and expansion branches? We try to address this issue in the framework of a BIonic system. In this model, M0-branes join to each other and give rise to a pair of M1-anti- M1-branes. The fields which live on these branes play the roles of massive gravitons that cause the emergence of a wormhole between them and formation of a BIon system. This wormhole dissolves into M1-branes and causes a divergence between the number of degrees of freedom on the boundary surface of M1 and the bulk leading to an expansion of M1-branes. When M1-branes become close to each other, the square energy of their system becomes negative and some tachyonic states emerge. To remove these states, M1-branes become compact, the sign of compacted gravity changes, causing anti-gravity to arise: in this case, branes get away from each other. By articulating M1-BIons, an M3-brane and an anti- M3-brane are created and connected by three wormholes forming an M3-BIon. This new system behaves like the initial system and by closing branes to each other, they become compact and, by getting away from each other, they open. Our universe is located on one of these M3-branes and, by compactifying the M3-brane, it contracts and, by opening it, it expands.

  14. Unprimed, M1 and M2 Macrophages Differentially Interact with Porphyromonas gingivalis

    PubMed Central

    Lenzo, Jason C.; Fong, Shao B.; Reynolds, Eric C.

    2016-01-01

    Porphyromonas gingivalis is a keystone pathogen in the development of chronic periodontitis. Tissue macrophages are amongst the first immune cells to respond to bacteria and depending on the cytokine profile at the infection site, macrophages are primed to react to infection in different ways. Priming of naive macrophages with IFN-γ produces a classical pro-inflammatory, antibacterial M1 macrophage after TLR ligation, whereas priming with IL-4 induces an anti-inflammatory tissue-repair M2 phenotype. Previous work has shown that M1 are preferentially generated in gingival tissue following infection with P. gingivalis. However, few studies have investigated the interactions of macrophage subsets with P. gingivalis cells. The aim of this study was to determine the ability of naive, M1 and M2 macrophages to phagocytose P. gingivalis and investigate how this interaction affects both the bacterial cell and the macrophage. M1 and M2 macrophages were both found to have enhanced phagocytic capacity compared with that of naive macrophages, however only the naive and M1 macrophages were able to produce a respiratory burst in order to clear the bacteria from the phagosome. P. gingivalis was found to persist in naive and M2, but not M1 macrophages for 24 hours. Phagocytosis of P. gingivalis also induced high levels of TNF-α, IL-12 and iNOS in M1 macrophages, but not in naive or M2 macrophages. Furthermore, infection of macrophages with P. gingivalis at high bacteria to macrophage ratios, while inducing an inflammatory response, was also found to be deleterious to macrophage longevity, with high levels of apoptotic cell death found in macrophages after infection. The activation of M1 macrophages observed in this study may contribute to the initiation and maintenance of a pro-inflammatory state during chronic periodontitis. PMID:27383471

  15. M1 excitation in Sm isotopes and the proton-neutron sdg interacting boson model

    NASA Astrophysics Data System (ADS)

    Mizusaki, Takahiro; Otsuka, Takaharu; Sugita, Michiaki

    1991-10-01

    The magnetic-dipole scissors mode in spherical to deformed Sm isotopes is studied in terms of the proton-neutron sdg interacting boson model, providing a good agreement with recent experiment by Ziegler et al. The present calculation correctly reproduces the increase of M1 excitation strength in going from spherical to deformed nuclei. It is suggested that there may be 1+ states which do not correspond to the scissors mode but absorb certain M1 strength from the ground state.

  16. Enhanced M1/M2 macrophage ratio promotes orthodontic root resorption.

    PubMed

    He, D; Kou, X; Luo, Q; Yang, R; Liu, D; Wang, X; Song, Y; Cao, H; Zeng, M; Gan, Y; Zhou, Y

    2015-01-01

    Mechanical force-induced orthodontic root resorption is a major clinical challenge in orthodontic treatment. Macrophages play an important role in orthodontic root resorption, but the underlying mechanism remains unclear. In this study, we examined the mechanism by which the ratio of M1 to M2 macrophage polarization affects root resorption during orthodontic tooth movement. Root resorption occurred when nickel-titanium coil springs were applied on the upper first molars of rats for 3 to 14 d. Positively stained odontoclasts or osteoclasts with tartrate-resistant acid phosphatase were found in resorption areas. Meanwhile, M1-like macrophages positive for CD68 and inducible nitric oxide synthase (iNOS) persistently accumulated on the compression side of periodontal tissues. In addition, the expressions of the M1 activator interferon-γ and the M1-associated pro-inflammatory cytokine tumor necrosis factor (TNF)-α were upregulated on the compression side of periodontal tissues. When the coil springs were removed at the 14th day after orthodontic force application, root resorption was partially rescued. The number of CD68(+)CD163(+) M2-like macrophages gradually increased on the compression side of periodontal tissues. The levels of M2 activator interleukin (IL)-4 and the M2-associated anti-inflammatory cytokine IL-10 also increased. Systemic injection of the TNF-α inhibitor etanercept or IL-4 attenuated the severity of root resorption and decreased the ratio of M1 to M2 macrophages. These data imply that the balance between M1 and M2 macrophages affects orthodontic root resorption. Root resorption was aggravated by an enhanced M1/M2 ratio but was partially rescued by a reduced M1/M2 ratio.

  17. Endosymbionts and mitochondrial origins

    NASA Technical Reports Server (NTRS)

    Woese, C. R.

    1977-01-01

    The possibility is put forth that the mitochondrion did not originate from an endosymbiosis 1-2 billion years ago involving an aerobic bacterium. Rather, it arose by endosymbiosis in a much earlier anaerobic period and was initially a photosynthetic organelle analogous to the modern chloroplast. This suggestion arises from a reconsideration of the nature of endosymbiosis. It explains the remarkable diversity in mitochondrial information storage and processing systems.

  18. Mitochondrial inheritance and disease.

    PubMed

    Fine, P E

    1978-09-23

    Spontaneously occurring variants of the D.N.A. content of mitochondria may be responsible for human disease. Among the prime candidates for such a mitochondrial aetiology are certain drug-induced blood dyscrasias, particularly that due to chloramphenicol. Because mitochondria are generally inherited from the female parent, such disorders should be clustered among matroclinally related individuals. The clinical manifestations of such diseases are a function of the manner in which mitochondria are allocated to somatic cells and tissues during development.

  19. Phylogenetic plant community structure along elevation is lineage specific

    PubMed Central

    Ndiribe, Charlotte; Pellissier, Loïc; Antonelli, Silvia; Dubuis, Anne; Pottier, Julien; Vittoz, Pascal; Guisan, Antoine; Salamin, Nicolas

    2013-01-01

    The trend of closely related taxa to retain similar environmental preferences mediated by inherited traits suggests that several patterns observed at the community scale originate from longer evolutionary processes. While the effects of phylogenetic relatedness have been previously studied within a single genus or family, lineage-specific effects on the ecological processes governing community assembly have rarely been studied for entire communities or flora. Here, we measured how community phylogenetic structure varies across a wide elevation gradient for plant lineages represented by 35 families, using a co-occurrence index and net relatedness index (NRI). We propose a framework that analyses each lineage separately and reveals the trend of ecological assembly at tree nodes. We found prevailing phylogenetic clustering for more ancient nodes and overdispersion in more recent tree nodes. Closely related species may thus rapidly evolve new environmental tolerances to radiate into distinct communities, while older lineages likely retain inherent environmental tolerances to occupy communities in similar environments, either through efficient dispersal mechanisms or the exclusion of older lineages with more divergent environmental tolerances. Our study illustrates the importance of disentangling the patterns of community assembly among lineages to better interpret the ecological role of traits. It also sheds light on studies reporting absence of phylogenetic signal, and opens new perspectives on the analysis of niche and trait conservatism across lineages. PMID:24455126

  20. Lineage fusion in Galápagos giant tortoises.

    PubMed

    Garrick, Ryan C; Benavides, Edgar; Russello, Michael A; Hyseni, Chaz; Edwards, Danielle L; Gibbs, James P; Tapia, Washington; Ciofi, Claudio; Caccone, Adalgisa

    2014-11-01

    Although many classic radiations on islands are thought to be the result of repeated lineage splitting, the role of past fusion is rarely known because during these events, purebreds are rapidly replaced by a swarm of admixed individuals. Here, we capture lineage fusion in action in a Galápagos giant tortoise species, Chelonoidis becki, from Wolf Volcano (Isabela Island). The long generation time of Galápagos tortoises and dense sampling (841 individuals) of genetic and demographic data were integral in detecting and characterizing this phenomenon. In C. becki, we identified two genetically distinct, morphologically cryptic lineages. Historical reconstructions show that they colonized Wolf Volcano from Santiago Island in two temporally separated events, the first estimated to have occurred ~199 000 years ago. Following arrival of the second wave of colonists, both lineages coexisted for approximately ~53 000 years. Within that time, they began fusing back together, as microsatellite data reveal widespread introgressive hybridization. Interestingly, greater mate selectivity seems to be exhibited by purebred females of one of the lineages. Forward-in-time simulations predict rapid extinction of the early arriving lineage. This study provides a rare example of reticulate evolution in action and underscores the power of population genetics for understanding the past, present and future consequences of evolutionary phenomena associated with lineage fusion.

  1. Instruction of hematopoietic lineage choice by cytokine signaling

    SciTech Connect

    Endele, Max; Etzrodt, Martin; Schroeder, Timm

    2014-12-10

    Hematopoiesis is the cumulative consequence of finely tuned signaling pathways activated through extrinsic factors, such as local niche signals and systemic hematopoietic cytokines. Whether extrinsic factors actively instruct the lineage choice of hematopoietic stem and progenitor cells or are only selectively allowing survival and proliferation of already intrinsically lineage-committed cells has been debated over decades. Recent results demonstrated that cytokines can instruct lineage choice. However, the precise function of individual cytokine-triggered signaling molecules in inducing cellular events like proliferation, lineage choice, and differentiation remains largely elusive. Signal transduction pathways activated by different cytokine receptors are highly overlapping, but support the production of distinct hematopoietic lineages. Cellular context, signaling dynamics, and the crosstalk of different signaling pathways determine the cellular response of a given extrinsic signal. New tools to manipulate and continuously quantify signaling events at the single cell level are therefore required to thoroughly interrogate how dynamic signaling networks yield a specific cellular response. - Highlights: • Recent studies provided definite proof for lineage-instructive action of cytokines. • Signaling pathways involved in hematopoietic lineage instruction remain elusive. • New tools are emerging to quantitatively study dynamic signaling networks over time.

  2. Mitochondrial DNA Phylogeography of the Norway Rat

    PubMed Central

    Song, Ying; Lan, Zhenjiang; Kohn, Michael H.

    2014-01-01

    Central Eastern Asia, foremost the area bordering northern China and Mongolia, has been thought to be the geographic region where Norway rats (Rattus norvegicus) have originated. However recent fossil analyses pointed to their origin in southern China. Moreover, whereas analyses of fossils dated the species' origin as ∼1.2–1.6 million years ago (Mya), molecular analyses yielded ∼0.5–2.9 Mya. Here, to study the geographic origin of the Norway rat and its spread across the globe we analyzed new and all published mitochondrial DNA cytochrome-b (cyt-b; N = 156) and D-loop (N = 212) sequences representing wild rats from four continents and select inbred strains. Our results are consistent with an origin of the Norway rat in southern China ∼1.3 Mya, subsequent prehistoric differentiation and spread in China and Asia from an initially weakly structured ancestral population, followed by further spread and differentiation across the globe during historic times. The recent spreading occurred mostly from derived European populations rather than from archaic Asian populations. We trace laboratory strains to wild lineages from Europe and North America and these represent a subset of the diversity of the rat; leaving Asian lineages largely untapped as a resource for biomedical models. By studying rats from Europe we made the observation that mtDNA diversity cannot be interpreted without consideration of pest control and, possibly, the evolution of rodenticide resistance. However, demographic models explored by forward-time simulations cannot fully explain the low mtDNA diversity of European rats and lack of haplotype sharing with their source from Asia. Comprehensive nuclear marker analyses of a larger sample of Norway rats representing the world are needed to better resolve the evolutionary history of wild rats and of laboratory rats, as well as to better understand the evolution of anticoagulant resistance. PMID:24586325

  3. Mitochondrial DNA phylogeography of the Norway rat.

    PubMed

    Song, Ying; Lan, Zhenjiang; Kohn, Michael H

    2014-01-01

    Central Eastern Asia, foremost the area bordering northern China and Mongolia, has been thought to be the geographic region where Norway rats (Rattus norvegicus) have originated. However recent fossil analyses pointed to their origin in southern China. Moreover, whereas analyses of fossils dated the species' origin as ∼ 1.2-1.6 million years ago (Mya), molecular analyses yielded ∼ 0.5-2.9 Mya. Here, to study the geographic origin of the Norway rat and its spread across the globe we analyzed new and all published mitochondrial DNA cytochrome-b (cyt-b; N = 156) and D-loop (N = 212) sequences representing wild rats from four continents and select inbred strains. Our results are consistent with an origin of the Norway rat in southern China ∼ 1.3 Mya, subsequent prehistoric differentiation and spread in China and Asia from an initially weakly structured ancestral population, followed by further spread and differentiation across the globe during historic times. The recent spreading occurred mostly from derived European populations rather than from archaic Asian populations. We trace laboratory strains to wild lineages from Europe and North America and these represent a subset of the diversity of the rat; leaving Asian lineages largely untapped as a resource for biomedical models. By studying rats from Europe we made the observation that mtDNA diversity cannot be interpreted without consideration of pest control and, possibly, the evolution of rodenticide resistance. However, demographic models explored by forward-time simulations cannot fully explain the low mtDNA diversity of European rats and lack of haplotype sharing with their source from Asia. Comprehensive nuclear marker analyses of a larger sample of Norway rats representing the world are needed to better resolve the evolutionary history of wild rats and of laboratory rats, as well as to better understand the evolution of anticoagulant resistance.

  4. Optical illusion alters M1 excitability after mirror therapy: a TMS study.

    PubMed

    Läppchen, C H; Ringer, T; Blessin, J; Seidel, G; Grieshammer, S; Lange, R; Hamzei, F

    2012-11-01

    The contralesional primary motor cortex (M1) has been suggested to be involved in the motor recovery after mirror therapy, but whether the ipsilesional M1 is influenced by the contralesional M1 via transcallosal interhemispheric inhibition (IHI) is still unclear. The present study investigated the change of IHI as well as the intracortical inhibition and intracortical facilitation of both M1 induced by training in a mirror with the use of transcranial magnetic stimulation (TMS). In this 2 × 2 factorial design (time × group), healthy subjects exercised standardized motor skills with their right hand on four consecutive days. Either a mirror (mirror group) or a board (control group) was positioned between their hands. Before and after training TMS was applied along with training tests of both hands. Tests were the same motor skills exercised daily by both groups. Tests of the untrained left hand improved significantly more in the mirror group than in the control group after training (P = 0.02) and showed a close correlation with an increase of intracortical inhibition of M1(left). IHI did not show any difference between investigation time points and groups. The present study confirms the previous suggestion of the involvement of the "contralesional" left-side (ipsilateral to the hand behind the mirror) M1 after mirror therapy, which is not mediated by IHI. Even with the same motor skill training (both groups performed same motor skills) but with different visual information, different networks are involved in training-induced plasticity.

  5. Opposite Effects of M1 and M2 Macrophage Subtypes on Lung Cancer Progression.

    PubMed

    Yuan, Ang; Hsiao, Yi-Jing; Chen, Hsuan-Yu; Chen, Huei-Wen; Ho, Chao-Chi; Chen, Yu-Yun; Liu, Yi-Chia; Hong, Tsai-Hsia; Yu, Sung-Liang; Chen, Jeremy J W; Yang, Pan-Chyr

    2015-09-24

    Macrophages in a tumor microenvironment have been characterized as M1- and M2-polarized subtypes. Here, we discovered the different macrophages' impacts on lung cancer cell A549. The M2a/M2c subtypes promoted A549 invasion and xenograft tumor growth. The M1 subtype suppressed angiogenesis. M1 enhanced the sensitivity of A549 to cisplatin and decreased the tube formation activity and cell viability of A549 cells by inducing apoptosis and senescence. Different macrophage subtypes regulated genes involved in the immune response, cytoskeletal remodeling, coagulation, cell adhesion, and apoptosis pathways in A549 cells, which was a pattern that correlated with the altered behaviors of the A549 cells. Furthermore, we found that the identified M1/M2 gene signatures were significantly correlated with the extended overall survival of lung cancer patients. These results suggest that M1/M2 gene expression signature may be used as a prognostic indicator for lung cancer patients, and M1/M2 polarization may be a target of investigation of immune-modulating therapies for lung cancer in the future.

  6. Muscarinic M1 receptor and cannabinoid CB1 receptor do not modulate paraoxon-induced seizures

    PubMed Central

    Kow, Rebecca L; Cheng, Eugene M; Jiang, Kelly; Le, Joshua H; Stella, Nephi; Nathanson, Neil M

    2015-01-01

    One of the major signs of severe organophosphate poisoning is seizures. Previous studies have shown that both muscarinic agonist- and organophosphate-induced seizures require activation of muscarinic acetylcholine receptors in the central nervous system. Seizures induced by the muscarinic agonist pilocarpine require the M1 receptor and are modulated by cannabinoid CB1 receptors. In this study, we determined whether M1 and CB1 receptors also regulated seizures induced by the organophosphate paraoxon. We found no differences in seizures induced by paraoxon in wild-type (WT) and M1 knockout (KO) mice, indicating that in contrast to pilocarpine seizures, M1 receptors are not required for paraoxon seizures. Furthermore, we found that pilocarpine administration resulted in seizure-independent activation of ERK in the hippocampus in a M1 receptor-dependent manner, while paraoxon did not induce seizure-independent activation of ERK in the mouse hippocampus. This shows that pilocarpine and paraoxon activated M1 receptors in the hippocampus to different extents. There were no differences in seizures induced by paraoxon in WT and CB1 KO mice, and neither CB1 agonist nor antagonist administration had significant effects on paraoxon seizures, indicating that, in contrast to pilocarpine seizures, paraoxon seizures are not modulated by CB1 receptors. These results demonstrate that there are fundamental molecular differences in the regulation of seizures induced by pilocarpine and paraoxon. PMID:25692018

  7. The improvement of M1 polarization in macrophages by glycopeptide derived from Ganoderma lucidum.

    PubMed

    Sun, Li-Xin; Lin, Zhi-Bin; Lu, Jie; Li, Wei-Dong; Niu, Yan-Dong; Sun, Yu; Hu, Chen-Yang; Zhang, Guo-Qiang; Duan, Xin-Suo

    2017-01-26

    Ganoderma lucidum (Fr.) Karst (Ganodermataceae) is a medicinal mushroom that has been extensively used in China for centuries to promote longevity and improve vigor without significant adverse effects. There is continuous interest in the bioactive properties of G. lucidum in view of its newly developed popularity in other regions besides Asia, such as Europe. Glycopeptide derived from G. lucidum (Gl-PS) is one of the main effective components isolated from this mushroom. The Gl-PS has been demonstrated pleiotropic with many bioactivities including immunomodulatory and antitumor effects. Macrophages are important cells involved in innate and adaptive immunity. Classically activated macrophages (M1) and alternatively activated macrophages (M2), with their different roles, display distinct cytokine profiles: M1 preferentially produces TNF-α, IL-6, and IL-12; conversely, M2 generates more IL-10 and arginase. Gl-PS might have the potential to promote macrophage M1 polarization by lipopolysaccharide (LPS). In this study, LPS was used to induce the M1 polarization. It was shown that the level of the TNF-α, IL-6, and IL-12 were increased and the IL-10 and arginase I were decreased in the polarized M1 macrophages after application of Gl-PS compared to the control. The results indicated the potential of Gl-PS to promote M1 polarization vs M2, with the health beneficial understanding of the bioactivities of Gl-PS.

  8. Human Mitochondrial DNA Replication

    PubMed Central

    Holt, Ian J.; Reyes, Aurelio

    2012-01-01

    Elucidation of the process of DNA replication in mitochondria is in its infancy. For many years, maintenance of the mitochondrial genome was regarded as greatly simplified compared to the nucleus. Mammalian mitochondria were reported to lack all DNA repair systems, to eschew DNA recombination, and to possess but a single DNA polymerase, polymerase γ. Polγ was said to replicate mitochondrial DNA exclusively via one mechanism, involving only two priming events and a handful of proteins. In this “strand-displacement model,” leading strand DNA synthesis begins at a specific site and advances approximately two-thirds of the way around the molecule before DNA synthesis is initiated on the “lagging” strand. Although the displaced strand was long-held to be coated with protein, RNA has more recently been proposed in its place. Furthermore, mitochondrial DNA molecules with all the features of products of conventional bidirectional replication have been documented, suggesting that the process and regulation of replication in mitochondria is complex, as befits a genome that is a core factor in human health and longevity. PMID:23143808

  9. Mitochondrial ABC transporters.

    PubMed

    Lill, R; Kispal, G

    2001-01-01

    In contrast to bacteria, mitochondria contain only a few ATP binding cassette (ABC) transporters in their inner membrane. The known mitochondrial ABC proteins fall into two major classes that, in the yeast Saccharomyces cerevisiae, are represented by the half-transporter Atm1p and the two closely homologous proteins Mdl1p and Mdl2p. In humans two Atm1p orthologues (ABC7 and MTABC3) and two proteins homologous to Mdll/2p have been localized to mitochondria. The Atm1p-like proteins perform an important function in mitochondrial iron homeostasis and in the maturation of Fe/S proteins in the cytosol. Mutations in ABC7 are causative of hereditary X-linked sideroblastic anemia and cerebellar ataxia (XLSA/A). MTABC3 may be a candidate gene for the lethal neonatal syndrome. The function of the mitochondrial Mdl1/2p-like proteins is not clear at present with the notable exception of murine ABC-me that may transport intermediates of heme biosynthesis from the matrix to the cytosol in erythroid tissues.

  10. Reductive stress impairs myoblasts mitochondrial function and triggers mitochondrial hormesis.

    PubMed

    Singh, François; Charles, Anne-Laure; Schlagowski, Anna-Isabel; Bouitbir, Jamal; Bonifacio, Annalisa; Piquard, François; Krähenbühl, Stephan; Geny, Bernard; Zoll, Joffrey

    2015-07-01

    Even though oxidative stress damage from excessive production of ROS is a well known phenomenon, the impact of reductive stress remains poorly understood. This study tested the hypothesis that cellular reductive stress could lead to mitochondrial malfunction, triggering a mitochondrial hormesis (mitohormesis) phenomenon able to protect mitochondria from the deleterious effects of statins. We performed several in vitro experiments on L6 myoblasts and studied the effects of N-acetylcysteine (NAC) at different exposure times. Direct NAC exposure (1mM) led to reductive stress, impairing mitochondrial function by decreasing maximal mitochondrial respiration and increasing H₂O₂production. After 24h of incubation, the reactive oxygen species (ROS) production was increased. The resulting mitochondrial oxidation activated mitochondrial biogenesis pathways at the mRNA level. After one week of exposure, mitochondria were well-adapted as shown by the decrease of cellular ROS, the increase of mitochondrial content, as well as of the antioxidant capacities. Atorvastatin (ATO) exposure (100μM) for 24h increased ROS levels, reduced the percentage of live cells, and increased the total percentage of apoptotic cells. NAC exposure during 3days failed to protect cells from the deleterious effects of statins. On the other hand, NAC pretreatment during one week triggered mitochondrial hormesis and reduced the deleterious effect of statins. These results contribute to a better understanding of the redox-dependant pathways linked to mitochondria, showing that reductive stress could trigger mitochondrial hormesis phenomenon.

  11. High Prevalence and Lineage Diversity of Avian Malaria in Wild Populations of Great Tits (Parus major) and Mosquitoes (Culex pipiens)

    PubMed Central

    Glaizot, Olivier; Fumagalli, Luca; Iritano, Katia; Lalubin, Fabrice; Van Rooyen, Juan; Christe, Philippe

    2012-01-01

    Avian malaria studies have taken a prominent place in different aspects of evolutionary ecology. Despite a recent interest in the role of vectors within the complex interaction system of the malaria parasite, they have largely been ignored in most epidemiological studies. Epidemiology of the disease is however strongly related to the vector's ecology and behaviour, and there is a need for basic investigations to obtain a better picture of the natural associations between Plasmodium lineages, vector species and bird hosts. The aim of the present study was to identify the mosquito species involved in the transmission of the haemosporidian parasites Plasmodium spp. in two wild populations of breeding great tits (Parus major) in western Switzerland. Additionally, we compared Plasmodium lineages, based on mitochondrial DNA cytochrome b sequences, between the vertebrate and dipteran hosts, and evaluated the prevalence of the parasite in the mosquito populations. Plasmodium spp. were detected in Culex pipiens only, with an overall 6.6% prevalence. Among the six cytochrome b lineages of Plasmodium identified in the mosquitoes, three were also present in great tits. The results provide evidence for the first time that C. pipiens can act as a natural vector of avian malaria in Europe and yield baseline data for future research on the epidemiology of avian malaria in European countries. PMID:22506060

  12. Unequal contribution of native South African phylogeographic lineages to the invasion of the African clawed frog, Xenopus laevis, in Europe

    PubMed Central

    Courant, Julien; Herrel, Anthony; Rebelo, Rui; Rödder, Dennis; Measey, G. John; Backeljau, Thierry

    2016-01-01

    Due to both deliberate and accidental introductions, invasive African Clawed Frog (Xenopus laevis) populations have become established worldwide. In this study, we investigate the geographic origins of invasive X. laevis populations in France and Portugal using the phylogeographic structure of X. laevis in its native South African range. In total, 80 individuals from the whole area known to be invaded in France and Portugal were analysed for two mitochondrial and three nuclear genes, allowing a comparison with 185 specimens from the native range. Our results show that native phylogeographic lineages have contributed differently to invasive European X. laevis populations. In Portugal, genetic and historical data suggest a single colonization event involving a small number of individuals from the south-western Cape region in South Africa. In contrast, French invasive X. laevis encompass two distinct native phylogeographic lineages, i.e., one from the south-western Cape region and one from the northern regions of South Africa. The French X. laevis population is the first example of a X. laevis invasion involving multiple lineages. Moreover, the lack of population structure based on nuclear DNA suggests a potential role for admixture within the invasive French population. PMID:26855879

  13. High prevalence and lineage diversity of avian malaria in wild populations of great tits (Parus major) and mosquitoes (Culex pipiens).

    PubMed

    Glaizot, Olivier; Fumagalli, Luca; Iritano, Katia; Lalubin, Fabrice; Van Rooyen, Juan; Christe, Philippe

    2012-01-01

    Avian malaria studies have taken a prominent place in different aspects of evolutionary ecology. Despite a recent interest in the role of vectors within the complex interaction system of the malaria parasite, they have largely been ignored in most epidemiological studies. Epidemiology of the disease is however strongly related to the vector's ecology and behaviour, and there is a need for basic investigations to obtain a better picture of the natural associations between Plasmodium lineages, vector species and bird hosts. The aim of the present study was to identify the mosquito species involved in the transmission of the haemosporidian parasites Plasmodium spp. in two wild populations of breeding great tits (Parus major) in western Switzerland. Additionally, we compared Plasmodium lineages, based on mitochondrial DNA cytochrome b sequences, between the vertebrate and dipteran hosts, and evaluated the prevalence of the parasite in the mosquito populations. Plasmodium spp. were detected in Culex pipiens only, with an overall 6.6% prevalence. Among the six cytochrome b lineages of Plasmodium identified in the mosquitoes, three were also present in great tits. The results provide evidence for the first time that C. pipiens can act as a natural vector of avian malaria in Europe and yield baseline data for future research on the epidemiology of avian malaria in European countries.

  14. Unequal contribution of native South African phylogeographic lineages to the invasion of the African clawed frog, Xenopus laevis, in Europe.

    PubMed

    De Busschere, Charlotte; Courant, Julien; Herrel, Anthony; Rebelo, Rui; Rödder, Dennis; Measey, G John; Backeljau, Thierry

    2016-01-01

    Due to both deliberate and accidental introductions, invasive African Clawed Frog (Xenopus laevis) populations have become established worldwide. In this study, we investigate the geographic origins of invasive X. laevis populations in France and Portugal using the phylogeographic structure of X. laevis in its native South African range. In total, 80 individuals from the whole area known to be invaded in France and Portugal were analysed for two mitochondrial and three nuclear genes, allowing a comparison with 185 specimens from the native range. Our results show that native phylogeographic lineages have contributed differently to invasive European X. laevis populations. In Portugal, genetic and historical data suggest a single colonization event involving a small number of individuals from the south-western Cape region in South Africa. In contrast, French invasive X. laevis encompass two distinct native phylogeographic lineages, i.e., one from the south-western Cape region and one from the northern regions of South Africa. The French X. laevis population is the first example of a X. laevis invasion involving multiple lineages. Moreover, the lack of population structure based on nuclear DNA suggests a potential role for admixture within the invasive French population.

  15. Ancestral Gene Flow and Parallel Organellar Genome Capture Result in Extreme Phylogenomic Discord in a Lineage of Angiosperms.

    PubMed

    Folk, Ryan A; Mandel, Jennifer R; Freudenstein, John V

    2016-09-16

    While hybridization has recently received a resurgence of attention from systematists and evolutionary biologists, there remains a dearth of case studies on ancient, diversified hybrid lineages-clades of organisms that originated through reticulation. Studies on these groups are valuable in that they would speak to the long-term phylogenetic success of lineages following gene flow between species. We present a phylogenomic view of Heuchera, long known for frequent hybridization, incorporating all three independent genomes: targeted nuclear (~400,000 bp), plastid (~160,000 bp), and mitochondrial (~470,000 bp) data. We analyze these data using multiple concatenation and coalescence strategies. The nuclear phylogeny is consistent with previous work and with morphology, confidently suggesting a monophyletic Heuchera By contrast, analyses of both organellar genomes recover a grossly polyphyletic Heuchera,consisting of three primary clades with relationships extensively rearranged within these as well. A minority of nuclear loci also exhibit phylogenetic discord; yet these topologies remarkably never resemble the pattern of organellar loci and largely present low levels of discord inter alia Two independent estimates of the coalescent branch length of the ancestor of Heuchera using nuclear data suggest rare or nonexistent incomplete lineage sorting with related clades, inconsistent with the observed gross polyphyly of organellar genomes (confirmed by simulation of gene trees under the coalescent). These observations, in combination with previous work, strongly suggest hybridization as the cause of this phylogenetic discord. [Ancient hybridization; chloroplast capture; incongruence; phylogenomics; reticulation.].

  16. Linear Plasmids and the Rate of Sequence Evolution in Plant Mitochondrial Genomes

    PubMed Central

    Warren, Jessica M.; Simmons, Mark P.; Wu, Zhiqiang; Sloan, Daniel B.

    2016-01-01

    The mitochondrial genomes of flowering plants experience frequent insertions of foreign sequences, including linear plasmids that also exist in standalone forms within mitochondria, but the history and phylogenetic distribution of plasmid insertions is not well known. Taking advantage of the increased availability of plant mitochondrial genome sequences, we performed phylogenetic analyses to reconstruct the evolutionary history of these plasmids and plasmid-derived insertions. Mitochondrial genomes from multiple land plant lineages (including liverworts, lycophytes, ferns, and gymnosperms) include fragmented remnants from ancient plasmid insertions. Such insertions are much more recent and widespread in angiosperms, in which approximately 75% of sequenced mitochondrial genomes contain identifiable plasmid insertions. Although conflicts between plasmid and angiosperm phylogenies provide clear evidence of repeated horizontal transfers, we were still able to detect significant phylogenetic concordance, indicating that mitochondrial plasmids have also experienced sustained periods of (effectively) vertical transmission in angiosperms. The observed levels of sequence divergence in plasmid-derived genes suggest that nucleotide substitution rates in these plasmids, which often encode their own viral-like DNA polymerases, are orders of magnitude higher than in mitochondrial chromosomes. Based on these results, we hypothesize that the periodic incorporation of mitochondrial genes into plasmids contributes to the remarkable heterogeneity in substitution rates among genes that has recently been discovered in some angiosperm mitochondrial genomes. In support of this hypothesis, we show that the recently acquired ψtrnP-trnW gene region in a maize linear plasmid is evolving significantly faster than homologous sequences that have been retained in the mitochondrial chromosome in closely related grasses. PMID:26759362

  17. Mitochondrial diseases of the brain.

    PubMed

    Chaturvedi, Rajnish K; Flint Beal, M

    2013-10-01

    Neurodegenerative disorders are debilitating diseases of the brain, characterized by behavioral, motor and cognitive impairments. Ample evidence underpins mitochondrial dysfunction as a central causal factor in the pathogenesis of neurodegenerative disorders including Parkinson's disease, Huntington's disease, Alzheimer's disease, Amyotrophic lateral sclerosis, Friedreich's ataxia and Charcot-Marie-Tooth disease. In this review, we discuss the role of mitochondrial dysfunction such as bioenergetics defects, mitochondrial DNA mutations, gene mutations, altered mitochondrial dynamics (mitochondrial fusion/fission, morphology, size, transport/trafficking, and movement), impaired transcription and the association of mutated proteins with mitochondria in these diseases. We highlight the therapeutic role of mitochondrial bioenergetic agents in toxin and in cellular and genetic animal models of neurodegenerative disorders. We also discuss clinical trials of bioenergetics agents in neurodegenerative disorders. Lastly, we shed light on PGC-1α, TORC-1, AMP kinase, Nrf2-ARE, and Sirtuins as novel therapeutic targets for neurodegenerative disorders.

  18. Expanding the Entamoeba Universe: New Hosts Yield Novel Ribosomal Lineages.

    PubMed

    Jacob, Alison S; Busby, Eloise J; Levy, Abigail D; Komm, Natasha; Clark, C Graham

    2016-01-01

    Removing the requirement for cell culture has led to a substantial increase in the number of lineages of Entamoeba recognized as distinct. Surveying the range of potential host species for this parasite genus has barely been started and it is clear that additional sampling of the same host in different locations often identifies additional diversity. In this study, using small subunit ribosomal RNA gene sequencing, we identify four new lineages of Entamoeba, including the first report of Entamoeba from an elephant, and extend the host range of some previously described lineages. In addition, examination of microbiome data from a number of host animals suggests that substantial Entamoeba diversity remains to be uncovered.

  19. Whole mitochondrial genome screening in maternally inherited non-syndromic hearing impairment using a microarray resequencing mitochondrial DNA chip.

    PubMed

    Lévêque, Marianne; Marlin, Sandrine; Jonard, Laurence; Procaccio, Vincent; Reynier, Pascal; Amati-Bonneau, Patrizia; Baulande, Sylvain; Pierron, Denis; Lacombe, Didier; Duriez, Françoise; Francannet, Christine; Mom, Thierry; Journel, Hubert; Catros, Hélène; Drouin-Garraud, Valérie; Obstoy, Marie-Françoise; Dollfus, Hélène; Eliot, Marie-Madeleine; Faivre, Laurence; Duvillard, Christian; Couderc, Remy; Garabedian, Eréa-Noël; Petit, Christine; Feldmann, Delphine; Denoyelle, Françoise

    2007-11-01

    Mitochondrial DNA (mtDNA) mutations have been implicated in non-syndromic hearing loss either as primary or as predisposing factors. As only a part of the mitochondrial genome is usually explored in deafness, its prevalence is probably under-estimated. Among 1350 families with non-syndromic sensorineural hearing loss collected through a French collaborative network, we selected 29 large families with a clear maternal lineage and screened them for known mtDNA mutations in 12S rRNA, tRNASer(UCN) and tRNALeu(UUR) genes. When no mutation could be identified, a whole mitochondrial genome screening was performed, using a microarray resequencing chip: the MitoChip version 2.0 developed by Affymetrix Inc. Known mtDNA mutations was found in nine of the 29 families, which are described in the article: five with A1555G, two with the T7511C, one with 7472insC and one with A3243G mutation. In the remaining 20 families, the resequencing Mitochip detected 258 mitochondrial homoplasmic variants and 107 potentially heteroplasmic variants. Controls were made by direct sequencing on selected fragments and showed a high sensibility of the MitoChip but a low specificity, especially for heteroplasmic variations. An original analysis on the basis of species conservation, frequency and phylogenetic investigation was performed to select the more probably pathogenic variants. The entire genome analysis allowed us to identify five additional families with a putatively pathogenic mitochondrial variant: T669C, C1537T, G8078A, G12236A and G15077A. These results indicate that the new MitoChip platform is a rapid and valuable tool for identification of new mtDNA mutations in deafness.

  20. The evolution of sex: A new hypothesis based on mitochondrial mutational erosion: Mitochondrial mutational erosion in ancestral eukaryotes would favor the evolution of sex, harnessing nuclear recombination to optimize compensatory nuclear coadaptation.

    PubMed

    Havird, Justin C; Hall, Matthew D; Dowling, Damian K

    2015-09-01

    The evolution of sex in eukaryotes represents a paradox, given the "twofold" fitness cost it incurs. We hypothesize that the mutational dynamics of the mitochondrial genome would have favored the evolution of sexual reproduction. Mitochondrial DNA (mtDNA) exhibits a high-mutation rate across most eukaryote taxa, and several lines of evidence suggest that this high rate is an ancestral character. This seems inexplicable given that mtDNA-encoded genes underlie the expression of life's most salient functions, including energy conversion. We propose that negative metabolic effects linked to mitochondrial mutation accumulation would have invoked selection for sexual recombination between divergent host nuclear genomes in early eukaryote lineages. This would provide a mechanism by which recombinant host genotypes could be rapidly shuffled and screened for the presence of compensatory modifiers that offset mtDNA-induced harm. Under this hypothesis, recombination provides the genetic variation necessary for compensatory nuclear coadaptation to keep pace with mitochondrial mutation accumulation.

  1. Amerindian mitochondrial DNA haplogroups predominate in the population of Argentina: towards a first nationwide forensic mitochondrial DNA sequence database.

    PubMed

    Bobillo, Maria Cecilia; Zimmermann, Bettina; Sala, Andrea; Huber, Gabriela; Röck, Alexander; Bandelt, Hans-Jürgen; Corach, Daniel; Parson, Walther

    2010-07-01

    The study presents South American mitochondrial DNA (mtDNA) data from selected north (N = 98), central (N = 193) and south (N = 47) Argentinean populations. Sequence analysis of the complete mtDNA control region (CR, 16024-576) resulted in 288 unique haplotypes ignoring C-insertions around positions 16193, 309, and 573; the additional analysis of coding region single nucleotide polymorphisms enabled a fine classification of the described lineages. The Amerindian haplogroups were most frequent in the north and south representing more than 60% of the sequences. A slightly different situation was observed in central Argentina where the Amerindian haplogroups represented less than 50%, and the European contribution was more relevant. Particular clades of the Amerindian subhaplogroups turned out to be nearly region-specific. A minor contribution of African lineages was observed throughout the country. This comprehensive admixture of worldwide mtDNA lineages and the regional specificity of certain clades in the Argentinean population underscore the necessity of carefully selecting regional samples in order to develop a nationwide mtDNA database for forensic and anthropological purposes. The mtDNA sequencing and analysis were performed under EMPOP guidelines in order to attain high quality for the mtDNA database.

  2. Evidence for horizontal transfer of mitochondrial DNA to the plastid genome in a bamboo genus.

    PubMed

    Ma, Peng-Fei; Zhang, Yu-Xiao; Guo, Zhen-Hua; Li, De-Zhu

    2015-06-23

    In flowering plants, three genomes (nuclear, mitochondrial, and plastid) coexist and intracellular horizontal transfer of DNA is prevalent, especially from the plastid to the mitochondrion genome. However, the plastid genomes are generally conserved in evolution and have long been considered immune to foreign DNA. Recently, the opposite direction of DNA transfer from the mitochondrial to the plastid genome has been reported in two eudicot lineages. Here we sequenced 6 plastid genomes of bamboos, three of which are neotropical woody species and three are herbaceous ones. Several unusual features were found, including the duplication of trnT-GGU and loss of one copy of rps19 due to contraction of inverted repeats (IRs). The most intriguing was the ~2.7 kb insertion in the plastid IR regions in the three herbaceous bamboos. Furthermore, the insertion was documented to be horizontally transferred from the mitochondrial to the plastid genome. Our study provided evidence of the mitochondrial-to-plastid DNA transfer in the monocots, demonstrating again that this rare event does occur in other angiosperm lineages. However, the mechanism underlying the transfer remains obscure, and more studies in other plants may elucidate it in the future.

  3. New insights on the history of canids in Oceania based on mitochondrial and nuclear data.

    PubMed

    Cairns, Kylie M; Wilton, Alan N

    2016-10-01

    How and when dingoes arrived in Oceania poses a fascinating question for scientists with interest in the historical movements of humans and dogs. The dingo holds a unique position as top terrestrial predator of Australia and exists in a wild state. In the first geographical survey of genetic diversity in the dingo using whole mitochondrial genomes, we analysed 16,428 bp in 25 individuals from five separate populations. We also investigated 13 nuclear loci to compare with the mitochondrial population history patterns. Phylogenetic analyses based upon mitochondrial DNA and nuclear DNA support the hypothesis that there are at least two distinct populations of dingo, one of which occurs in the northwest and the other in the southeast of the continent. Conservative molecular dating based upon mitochondrial DNA suggest that the lineages split approximately 8300 years before present, likely outside Australia but within Oceania. The close relationship between dingoes and New Guinea Singing Dogs suggests that plausibly dingoes spread into Australia via the land bridge between Papua New Guinea and Australia although seafaring introductions cannot be rejected. The geographical distribution of these divergent lineages suggests there were multiple independent dingo immigrations. Importantly, the observation of multiple dingo populations suggests the need for revision of existing conservation and management programs that treat dingoes as a single homogeneous population.

  4. Evidence for horizontal transfer of mitochondrial DNA to the plastid genome in a bamboo genus

    PubMed Central

    Ma, Peng-Fei; Zhang, Yu-Xiao; Guo, Zhen-Hua; Li, De-Zhu

    2015-01-01

    In flowering plants, three genomes (nuclear, mitochondrial, and plastid) coexist and intracellular horizontal transfer of DNA is prevalent, especially from the plastid to the mitochondrion genome. However, the plastid genomes are generally conserved in evolution and have long been considered immune to foreign DNA. Recently, the opposite direction of DNA transfer from the mitochondrial to the plastid genome has been reported in two eudicot lineages. Here we sequenced 6 plastid genomes of bamboos, three of which are neotropical woody species and three are herbaceous ones. Several unusual features were found, including the duplication of trnT-GGU and loss of one copy of rps19 due to contraction of inverted repeats (IRs). The most intriguing was the ~2.7 kb insertion in the plastid IR regions in the three herbaceous bamboos. Furthermore, the insertion was documented to be horizontally transferred from the mitochondrial to the plastid genome. Our study provided evidence of the mitochondrial-to-plastid DNA transfer in the monocots, demonstrating again that this rare event does occur in other angiosperm lineages. However, the mechanism underlying the transfer remains obscure, and more studies in other plants may elucidate it in the future. PMID:26100509

  5. Mitochondrial Hormesis and Diabetic Complications

    PubMed Central

    2015-01-01

    The concept that excess superoxide production from mitochondria is the driving, initial cellular response underlying diabetes complications has been held for the past decade. However, results of antioxidant-based trials have been largely negative. In the present review, the data supporting mitochondrial superoxide as a driving force for diabetic kidney, nerve, heart, and retinal complications are reexamined, and a new concept for diabetes complications—mitochondrial hormesis—is presented. In this view, production of mitochondrial superoxide can be an indicator of healthy mitochondria and physiologic oxidative phosphorylation. Recent data suggest that in response to excess glucose exposure or nutrient stress, there is a reduction of mitochondrial superoxide, oxidative phosphorylation, and mitochondrial ATP generation in several target tissues of diabetes complications. Persistent reduction of mitochondrial oxidative phosphorylation complex activity is associated with the release of oxidants from nonmitochondrial sources and release of proinflammatory and profibrotic cytokines, and a manifestation of organ dysfunction. Restoration of mitochondrial function and superoxide production via activation of AMPK has now been associated with improvement in markers of renal, cardiovascular, and neuronal dysfunction with diabetes. With this Perspective, approaches that stimulate AMPK and PGC1α via exercise, caloric restriction, and medications result in stimulation of mitochondrial oxidative phosphorylation activity, restore physiologic mitochondrial superoxide production, and promote organ healing. PMID:25713188

  6. Mitochondrial Dynamics in Diabetic Cardiomyopathy

    PubMed Central

    Galloway, Chad A.

    2015-01-01

    Abstract Significance: Cardiac function is energetically demanding, reliant on efficient well-coupled mitochondria to generate adenosine triphosphate and fulfill the cardiac demand. Predictably then, mitochondrial dysfunction is associated with cardiac pathologies, often related to metabolic disease, most commonly diabetes. Diabetic cardiomyopathy (DCM), characterized by decreased left ventricular function, arises independently of coronary artery disease and atherosclerosis. Dysregulation of Ca2+ handling, metabolic changes, and oxidative stress are observed in DCM, abnormalities reflected in alterations in mitochondrial energetics. Cardiac tissue from DCM patients also presents with altered mitochondrial morphology, suggesting a possible role of mitochondrial dynamics in its pathological progression. Recent Advances: Abnormal mitochondrial morphology is associated with pathologies across diverse tissues, suggesting that this highly regulated process is essential for proper cell maintenance and physiological homeostasis. Highly structured cardiac myofibers were hypothesized to limit alterations in mitochondrial morphology; however, recent work has identified morphological changes in cardiac tissue, specifically in DCM. Critical Issues: Mitochondrial dysfunction has been reported independently from observations of altered mitochondrial morphology in DCM. The temporal relationship and causative nature between functional and morphological changes of mitochondria in the establishment/progression of DCM is unclear. Future Directions: Altered mitochondrial energetics and morphology are not only causal for but also consequential to reactive oxygen species production, hence exacerbating oxidative damage through reciprocal amplification, which is integral to the progression of DCM. Therefore, targeting mitochondria for DCM will require better mechanistic characterization of morphological distortion and bioenergetic dysfunction. Antioxid. Redox Signal. 22, 1545–1562. PMID

  7. M1 contributes to the intrinsic but not the extrinsic components of motor-skills.

    PubMed

    Romei, Vincenzo; Thut, Gregor; Ramos-Estebanez, Ciro; Pascual-Leone, Alvaro

    2009-10-01

    Procedural skills consist of several components that can be simultaneously acquired. During a motor-learning task we can distinguish between how a "movement" is performed (intrinsic component) and the spatial-related (extrinsic) component of this movement. The intrinsic movement component is thought to be supported by motor loops, including primary motor cortex (M1) as assessed with neuroimaging studies. Here we want to test further whether M1 makes a critical contribution to the movement rather than spatial-related component of skill-learning. To this purpose, we used repetitive Transcranial Magnetic Stimulation (rTMS) and the serial reaction time (SRT) task. Twenty right-handed participants performed the SRT-task starting with their left or right hand. After this learning session, participants switched to the untrained hand by performing original (spatial-related) and mirror-ordered (movement-based) sequences. rTMS was applied to M1 ipsi- or contralateral to the transfer-hand and both sequences were retested. Results revealed rTMS-interference with motor-skill transfer of mirror-ordered but not original sequences, showing that M1 is critically involved in the retrieval/transformation of the intrinsic but not the extrinsic movement coordinates. rTMS-interference in the mirror-condition consisted of both (i) disruption and (ii) release of motor-skill transfer depending on the stimulated hemisphere and on transfer-hand. The pattern of results suggests (i) contralateral (right) M1 involvement in retrieval/transformation of motor information during left-hand reproduction of previously acquired right-hand motor-skills; and (ii) modulatory interactions of inhibitory nature from the dominant (left) to the non-dominant (right) M1 in the same transfer-condition. These results provide further evidence that M1 is essential to intrinsic movement-based skill-learning and novel insight on models of motor-learning and hemispheric specialization, suggesting the involvement of

  8. Neoglycolipid analogues of ganglioside G sub M1 as functional receptors of cholera toxin

    SciTech Connect

    Pacuszka, T.; Bradley, R.M.; Fishman, P.H. )

    1991-03-12

    The authors synthesized several lipid analogues of ganglioside G{sub M1} by attaching its oligosaccharide moiety (G{sub M1}OS) to aminophospholipids, aliphatic amines, and cholesteryl hemisuccinate. They incubated G{sub M1}-deficient rat glioma C6 cells with each of the derivatives as well as native G{sub M1} and assayed the cells for their ability to bind and respond to cholera toxin. On the basis of the observed increase in binding of {sup 125}I-labeled cholera toxin, it was apparent that the cells took up and initially incorporated most of the derivatives into the plasma membrane. In the case of the aliphatic amine derivatives, the ability to generate new toxin binding sites was dependent on chain length; whereas the C{sub 10} derivative was ineffective, C{sub 12} and higher analogues were effective. Increased binding was dependent on both the concentration of the neoglycolipid in the medium and the time of exposure. Cells pretreated with the various derivatives accumulated cyclic AMP in response to cholera toxin, but there were differences in their effectiveness. The cholesterol and long-chain aliphatic amine derivatives were more effective than native G{sub M1}, whereas the phospholipid derivatives were less effective. The distance between G{sub M1}OS and the phospholipid also appeared to influence its functional activity. The results indicate that although G{sub M1}OS provides the recognition site for the binding of cholera toxin, the nature of the lipid moiety plays an important role in the action of the toxin.

  9. The past, present and future of mitochondrial genomics: have we sequenced enough mtDNAs?

    PubMed Central

    2016-01-01

    The year 2014 saw more than a thousand new mitochondrial genome sequences deposited in GenBank—an almost 15% increase from the previous year. Hundreds of peer-reviewed articles accompanied these genomes, making mitochondrial DNAs (mtDNAs) the most sequenced and reported type of eukaryotic chromosome. These mtDNA data have advanced a wide range of scientific fields, from forensics to anthropology to medicine to molecular evolution. But for many biological lineages, mtDNAs are so well sampled that newly published genomes are arguably no longer contributing significantly to the progression of science, and in some cases they are tying up valuable resources, particularly journal editors and referees. Is it time to acknowledge that as a research community we have published enough mitochondrial genome papers? Here, I address this question, exploring the history, milestones and impacts of mitochondrial genomics, the benefits and drawbacks of continuing to publish mtDNAs at a high rate and what the future may hold for such an important and popular genetic marker. I highlight groups for which mtDNAs are still poorly sampled, thus meriting further investigation, and recommend that more energy be spent characterizing aspects of mitochondrial genomes apart from the DNA sequence, such as their chromosomal and transcriptional architectures. Ultimately, one should be mindful before writing a mitochondrial genome paper. Consider perhaps sending the sequence directly to GenBank instead, and be sure to annotate it correctly before submission. PMID:26117139

  10. Small inverted repeats drive mitochondrial genome evolution in Lake Baikal sponges.

    PubMed

    Lavrov, Dennis V; Maikova, Olga O; Pett, Walker; Belikov, Sergey I

    2012-08-15

    Demosponges, the largest and most diverse class in the phylum Porifera, possess mitochondrial DNA (mtDNA) markedly different from that in other animals. Although several studies investigated evolution of demosponge mtDNA among major lineages of the group, the changes within these groups remain largely unexplored. Recently we determined mitochondrial genomic sequence of the Lake Baikal sponge Lubomirskia baicalensis and described proliferation of small inverted repeats (hairpins) that occurred in it since the divergence between L. baicalensis and the most closely related cosmopolitan freshwater sponge Ephydatia muelleri. Here we report mitochondrial genomes of three additional species of Lake Baikal sponges: Swartschewskia papyracea, Rezinkovia echinata and Baikalospongia intermedia morpha profundalis (Demospongiae, Haplosclerida, Lubomirskiidae) and from a more distantly related freshwater sponge Corvomeyenia sp. (Demospongiae, Haplosclerida, Metaniidae). We use these additional sequences to explore mtDNA evolution in Baikalian sponges, paying particular attention to the variation in the rates of nucleotide substitutions and the distribution of hairpins, abundant in these genomes. We show that most of the changes in Lubomirskiidae mitochondrial genomes are due to insertion/deletion/duplication of these elements rather than single nucleotide substitutions. Thus inverted repeats can act as an important force in evolution of mitochondrial genome architecture and be a valuable marker for population- and species-level studies in this group. In addition, we infer (((Rezinkovia+Lubomirskia)+Swartschewskia)+Baikalospongia) phylogeny for the family Lubomirskiidae based on the analysis of mitochondrial coding sequences from freshwater sponges.

  11. Extensive mitochondrial gene arrangements in coleoid Cephalopoda and their phylogenetic implications.

    PubMed

    Akasaki, Tetsuya; Nikaido, Masato; Tsuchiya, Kotaro; Segawa, Susumu; Hasegawa, Masami; Okada, Norihiro

    2006-03-01

    We determined the complete mitochondrial genomes of five cephalopods of the Subclass Coleoidea (Suborder Oegopsida: Watasenia scintillans, Todarodes pacificus, Suborder Myopsida: Sepioteuthis lessoniana, Order Sepiida: Sepia officinalis, and Order Octopoda: Octopus ocellatus) and used them to infer phylogenetic relationships. In our Maximum Likelihood (ML) tree, sepiids (cuttlefish) are at the most basal position of all decapodiformes, and oegopsids and myopsids form a monophyletic clade, thus supporting the traditional classification of the Order Teuthida. We detected extensive gene rearrangements in the mitochondrial genomes of broad cephalopod groups. It is likely that the arrangements of mitochondrial genes in Oegopsida and Sepiida were derived from those of Octopoda, which is thought to be the ancestral order, by entire gene duplication and random gene loss. Oegopsida in particular has undergone long-range gene duplications. We also found that the mitochondrial gene arrangement of Sepioteuthis lessoniana differs from that of Loligo bleekeri, although they belong to the same family. Analysis of both the phylogenetic tree and mitochondrial gene rearrangements of coleoid Cephalopoda suggests that each mitochondrial gene arrangement was acquired after the divergence of each lineage.

  12. Sensitivity of hematopoietic stem cells to mitochondrial dysfunction by SdhD gene deletion

    PubMed Central

    Bejarano-García, José Antonio; Millán-Uclés, África; Rosado, Iván V; Sánchez-Abarca, Luís Ignacio; Caballero-Velázquez, Teresa; Durán-Galván, María José; Pérez-Simón, José Antonio; Piruat, José I

    2016-01-01

    It is established that hematopoietic stem cells (HSC) in the hypoxic bone marrow have adapted their metabolism to oxygen-limiting conditions. This adaptation includes suppression of mitochondrial activity, induction of anerobic glycolysis, and activation of hypoxia-inducible transcription factor 1α (Hif1α)-dependent gene expression. During progression of hematopoiesis, a metabolic switch towards mitochondrial oxidative phosphorylation is observed, making this organelle essential for determining cell fate choice in bone marrow. However, given that HSC metabolism is essentially oxygen-independent, it is still unclear whether functional mitochondria are absolutely required for their survival. To assess the actual dependency of these undifferentiated cells on mitochondrial function, we have performed an analysis of the hematopoiesis in a mouse mutant, named SDHD-ESR, with inducible deletion of the mitochondrial protein-encoding SdhD gene. This gene encodes one of the subunits of the mitochondrial complex II (MCII). In this study, we demonstrate that, in contrast to what has been previously established, survival of HSC, and also myeloid and B-lymphoid progenitors, depends on proper mitochondrial activity. In addition, gene expression analysis of these hematopoietic lineages in SDHD-ESR mutants calls into question the proposed activation of Hif1α in response to MCII dysfunction. PMID:27929539

  13. Complete lack of mitochondrial divergence between two species of NE Atlantic marine intertidal gastropods.

    PubMed

    Kemppainen, P; Panova, M; Hollander, J; Johannesson, K

    2009-10-01

    Some mitochondrial introgression is common between closely related species, but distinct species rarely show substantial introgression in their entire distribution range. In this study, however, we report a complete lack of mitochondrial divergence between two sympatric species of flat periwinkles (Littorina fabalis and Littorina obtusata) which, based on previous allozyme studies, diverged approximately 1 Ma. We re-examined their species status using both morphology (morphometric analysis) and neutral genetic markers (microsatellites) and our results confirmed that these species are well separated. Despite this, the two species shared all common cytochrome-b haplotypes throughout their NE Atlantic distribution and no deep split between typical L. fabalis and L. obtusata haplotypes could be found. We suggest that incomplete lineage sorting explains most of the lack of mitochondrial divergence between these species. However, coalescent-based analyses and the sympatric sharing of unique haplotypes suggest that introgressive hybridization also has occurred.

  14. Mitochondrial STAT3 and reactive oxygen species: A fulcrum of adipogenesis?

    PubMed Central

    Kramer, Adam H; Kadye, Rose; Houseman, Pascalene S; Prinsloo, Earl

    2015-01-01

    The balance between cellular lineages can be controlled by reactive oxygen species (ROS). Cellular differentiation into adipocytes is highly dependent on the production of ROS to initiate the process through activation of multiple interlinked factors that stimulate mitotic clonal expansion and cellular maturation. The signal transducer and activator of transcription family of signaling proteins have accepted roles in adipogenesis and associated lipogenesis. Non-canonical mitochondrial localization of STAT3 and other members of the STAT family however opens up new avenues for investigation of its role in the aforementioned processes. Following recent observations of differences in mitochondrially localized serine 727 phosphorylated STAT3 (mtSTAT3-pS727) in preadipocytes and adipocytes, here, we hypothesize and speculate further on the role of mitochondrial STAT3 in adipogenesis. PMID:27127727

  15. Mitochondrial DNA diversity of honey bees (Apis mellifera) from unmanaged colonies and swarms in the United States.

    PubMed

    Magnus, Roxane M; Tripodi, Amber D; Szalanski, Allen L

    2014-06-01

    To study the genetic diversity of honey bees (Apis mellifera L.) from unmanaged colonies in the United States, we sequenced a portion of the mitochondrial DNA COI-COII region. From the 530 to 1,230 bp amplicon, we observed 23 haplotypes from 247 samples collected from 12 states, representing three of the four A. mellifera lineages known to have been imported into the United States (C, M, and O). Six of the 13 C lineage haplotypes were not found in previous queen breeder studies in the United States. The O lineage accounted for 9% of unmanaged colonies which have not yet been reported in queen breeder studies. The M lineage accounted for a larger portion of unmanaged samples (7%) than queen breeder samples (3%). Based on our mitochondrial DNA data, the genetic diversity of unmanaged honey bees in the United States differs significantly from that of queen breeder populations (p < 0.00001). The detection of genetically distinct maternal lineages of unmanaged honey bees suggests that these haplotypes may have existed outside the managed honey bee population for a long period.

  16. Two novel gene orders and the role of light-strand replication in rearrangement of the vertebrate mitochondrial genome.

    PubMed

    Macey, J R; Larson, A; Ananjeva, N B; Fang, Z; Papenfuss, T J

    1997-01-01

    Two novel mitochondrial gene arrangements are identified in an agamid lizard and a ranid frog. Statistical tests incorporating phylogeny indicate a link between novel vertebrate mitochondrial gene orders and movement of the origin of light-strand replication. A mechanism involving errors in light-strand replication and tandem duplication of genes is proposed for rearrangement of vertebrate mitochondrial genes. A second mechanism involving small direct repeats also is identified. These mechanisms implicate gene order as a reliable phylogenetic character. Shifts in gene order define major lineages without evidence of parallelism or reversal. The loss of the origin of light-strand replication from its typical vertebrate position evolves in parallel and, therefore, is a less reliable phylogenetic character. Gene junctions also evolve in parallel. Sequencing across multigenic regions, in particular transfer RNA genes, should be a major focus of future systematic studies to locate novel gene orders and to provide a better understanding of the evolution of the vertebrate mitochondrial genome.

  17. Sympatric speciation: perfume preferences of orchid bee lineages.

    PubMed

    Jackson, Duncan E

    2008-12-09

    Female attraction to an environmentally derived mating signal released by male orchid bees may be tightly linked to shared olfactory preferences of both sexes. A change in perfume preference may have led to divergence of two morphologically distinct lineages.

  18. Tools and Techniques for Wt1-Based Lineage Tracing.

    PubMed

    Wilm, Bettina; Muñoz-Chapuli, Ramon

    2016-01-01

    The spatiotemporal expression pattern of Wt1 has been extensively studied in a number of animal models to establish its function and the developmental fate of the cells expressing this gene. In this chapter, we review the available animal models for Wt1-expressing cell lineage analysis, including direct Wt1 expression reporters and systems for permanent Wt1 lineage tracing. We describe the presently used constitutive or inducible genetic lineage tracing approaches based on the Cre/loxP system utilizing Cre recombinase expression under control of a Wt1 promoter.To make these systems accessible, we provide laboratory protocols that include dissection and processing of the tissues for immunofluorescence and histopathological analysis of the lineage-labeled Wt1-derived cells within the embryo/tissue context.

  19. Parthenogenesis: birth of a new lineage or reproductive accident?

    PubMed

    van der Kooi, Casper J; Schwander, Tanja

    2015-08-03

    Parthenogenesis - the ability to produce offspring from unfertilized eggs - is widespread among invertebrates and now increasingly found in normally sexual vertebrates. Are these cases reproductive errors or could they be a first step in the emergence of new parthenogenetic lineages?

  20. Peroxiredoxin II promotes hepatic tumorigenesis through cooperation with Ras/Forkhead box M1 signaling pathway.

    PubMed

    Park, Y-H; Kim, S-U; Kwon, T-H; Kim, J-M; Song, I-S; Shin, H-J; Lee, B-K; Bang, D-H; Lee, S-J; Lee, D-S; Chang, K-T; Kim, B-Y; Yu, D-Y

    2016-07-07

    The current study was carried out to define the involvement of Peroxiredoxin (Prx) II in progression of hepatocellular carcinoma (HCC) and the underlying molecular mechanism(s). Expression and function of Prx II in HCC was determined using H-ras(G12V)-transformed HCC cells (H-ras(G12V)-HCC cells) and the tumor livers from H-ras(G12V)-transgenic (Tg) mice and HCC patients. Prx II was upregulated in H-ras(G12V)-HCC cells and H-ras(G12V)-Tg mouse tumor livers, the expression pattern of which highly similar to that of forkhead Box M1 (FoxM1). Moreover, either knockdown of FoxM1 or site-directed mutagenesis of FoxM1-binding site of Prx II promoter significantly reduced Prx II levels in H-ras(G12V)-HCC cells, indicating FoxM1 as a direct transcription factor of Prx II in HCC. Interestingly, the null mutation of Prx II markedly decreased the number and size of tumors in H-ras(G12V)-Tg livers. Consistent with this, knockdown of Prx II in H-ras(G12V)-HCC cells reduced the expression of cyclin D1, cell proliferation, anchorage-independent growth and tumor formation in athymic nude mice, whereas overexpression of Prx II increased or aggravated the tumor phenotypes. Importantly, the expression of Prx II was correlated with that of FoxM1 in HCC patients. The activation of extracellular signal-related kinase (ERK) pathway and the expression of FoxM1 and cyclin D1 were highly dependent on Prx II in H-ras(G12V)-HCC cells and H-ras(G12V)-Tg livers. Prx II is FoxM1-dependently-expressed antioxidant in HCC and function as an enhancer of Ras(G12V) oncogenic potential in hepatic tumorigenesis through activation of ERK/FoxM1/cyclin D1 cascade.

  1. M1 of Murine Gamma-Herpesvirus 68 Induces Endoplasmic Reticulum Chaperone Production

    PubMed Central

    Feng, Jiaying; Gong, Danyang; Fu, Xudong; Wu, Ting-ting; Wang, Jane; Chang, Jennifer; Zhou, Jingting; Lu, Gang; Wang, Yibin; Sun, Ren

    2015-01-01

    Viruses rely on host chaperone network to support their infection. In particular, the endoplasmic reticulum (ER) resident chaperones play key roles in synthesizing and processing viral proteins. Influx of a large amount of foreign proteins exhausts the folding capacity in ER and triggers the unfolded protein response (UPR). A fully-executed UPR comprises signaling pathways that induce ER folding chaperones, increase protein degradation, block new protein synthesis and may eventually activate apoptosis, presenting both opportunities and threats to the virus. Here, we define a role of the MHV-68M1 gene in differential modulation of UPR pathways to enhance ER chaperone production. Ectopic expression of M1 markedly induces ER chaperone genes and expansion of ER. The M1 protein accumulates in ER during infection and this localization is indispensable for its function, suggesting M1 acts from the ER. We found that M1 protein selectively induces the chaperon-producing pathways (IRE1, ATF6) while, interestingly, sparing the translation-blocking arm (PERK). We identified, for the first time, a viral factor capable of selectively intervening the initiation of ER stress signaling to induce chaperon production. This finding provides a unique opportunity of using viral protein as a tool to define the activation mechanisms of individual UPR pathways. PMID:26615759

  2. M1 muscarinic allosteric modulators slow prion neurodegeneration and restore memory loss

    PubMed Central

    Bradley, Sophie J.; Bourgognon, Julie-Myrtille; Sanger, Helen E.; Verity, Nicholas; Mogg, Adrian J.; White, David J.; Butcher, Adrian J.; Moreno, Julie A.; Macedo-Hatch, Timothy; Edwards, Jennifer M.; Wess, Jurgen; Pawlak, Robert; Read, David J.; Sexton, Patrick M.; Broad, Lisa M.; Steinert, Joern R.; Mallucci, Giovanna R.; Felder, Christian C.

    2016-01-01

    The current frontline symptomatic treatment for Alzheimer’s disease (AD) is whole-body upregulation of cholinergic transmission via inhibition of acetylcholinesterase. This approach leads to profound dose-related adverse effects. An alternative strategy is to selectively target muscarinic acetylcholine receptors, particularly the M1 muscarinic acetylcholine receptor (M1 mAChR), which was previously shown to have procognitive activity. However, developing M1 mAChR–selective orthosteric ligands has proven challenging. Here, we have shown that mouse prion disease shows many of the hallmarks of human AD, including progressive terminal neurodegeneration and memory deficits due to a disruption of hippocampal cholinergic innervation. The fact that we also show that muscarinic signaling is maintained in both AD and mouse prion disease points to the latter as an excellent model for testing the efficacy of muscarinic pharmacological entities. The memory deficits we observed in mouse prion disease were completely restored by treatment with benzyl quinolone carboxylic acid (BQCA) and benzoquinazoline-12 (BQZ-12), two highly selective positive allosteric modulators (PAMs) of M1 mAChRs. Furthermore, prolonged exposure to BQCA markedly extended the lifespan of diseased mice. Thus, enhancing hippocampal muscarinic signaling using M1 mAChR PAMs restored memory loss and slowed the progression of mouse prion disease, indicating that this ligand type may have clinical benefit in diseases showing defective cholinergic transmission, such as AD. PMID:27991860

  3. M1 muscarinic allosteric modulators slow prion neurodegeneration and restore memory loss.

    PubMed

    Bradley, Sophie J; Bourgognon, Julie-Myrtille; Sanger, Helen E; Verity, Nicholas; Mogg, Adrian J; White, David J; Butcher, Adrian J; Moreno, Julie A; Molloy, Colin; Macedo-Hatch, Timothy; Edwards, Jennifer M; Wess, Jurgen; Pawlak, Robert; Read, David J; Sexton, Patrick M; Broad, Lisa M; Steinert, Joern R; Mallucci, Giovanna R; Christopoulos, Arthur; Felder, Christian C; Tobin, Andrew B

    2017-02-01

    The current frontline symptomatic treatment for Alzheimer's disease (AD) is whole-body upregulation of cholinergic transmission via inhibition of acetylcholinesterase. This approach leads to profound dose-related adverse effects. An alternative strategy is to selectively target muscarinic acetylcholine receptors, particularly the M1 muscarinic acetylcholine receptor (M1 mAChR), which was previously shown to have procognitive activity. However, developing M1 mAChR-selective orthosteric ligands has proven challenging. Here, we have shown that mouse prion disease shows many of the hallmarks of human AD, including progressive terminal neurodegeneration and memory deficits due to a disruption of hippocampal cholinergic innervation. The fact that we also show that muscarinic signaling is maintained in both AD and mouse prion disease points to the latter as an excellent model for testing the efficacy of muscarinic pharmacological entities. The memory deficits we observed in mouse prion disease were completely restored by treatment with benzyl quinolone carboxylic acid (BQCA) and benzoquinazoline-12 (BQZ-12), two highly selective positive allosteric modulators (PAMs) of M1 mAChRs. Furthermore, prolonged exposure to BQCA markedly extended the lifespan of diseased mice. Thus, enhancing hippocampal muscarinic signaling using M1 mAChR PAMs restored memory loss and slowed the progression of mouse prion disease, indicating that this ligand type may have clinical benefit in diseases showing defective cholinergic transmission, such as AD.

  4. Reduction of the linear reflex gain explained from the M1-M2 refractory period.

    PubMed

    Klomp, Asbjorn; de Vlugt, Erwin; Meskers, Carel G M; de Groot, Jurriaan H; Arendzen, J Hans; van der Helm, Frans C T

    2013-06-01

    Linear system identification methods combined with neuromechanical modeling enable the quantification of reflex gains from recorded joint angular perturbation, torque, and/or electromyography (EMG). However, the stretch reflex response as recorded by EMG consists of multiple consecutive activation volleys (M1 and M2 responses) separated by a period of reduced activity and is nonlinearly related to joint perturbation. The goal of this study is to assess to what extent linear assumptions hold when quantifying these reflexive responses. Series of ramp-and-hold angular perturbations with fixed velocity but different ramp durations (and, therefore, different amplitudes) were applied to the wrist joint of seven healthy volunteers. Evoked EMG responses were compared to the reflex response estimated from a common linear reflex model relating EMG to perturbation velocity. Model fits described the measured EMG responses best when the perturbation and M1 response durations were equivalent. With increasing perturbation duration, i.e., amplitude, EMG response increased but reflex gain decreased due to the inert period after M1, which is believed to be related to alignment of the refractory period of the motoneurons. For angular joint perturbations exceeding the M1 duration (coinciding with 2 (°) of wrist joint rotation in this study), reflex gain variation may be largely explained from a shortcoming of the linear model in describing the nonlinear reflex response, and in particular the period of low reflexive activity after M1.

  5. Mice Lacking M1 and M3 Muscarinic Acetylcholine Receptors Have Impaired Odor Discrimination and Learning

    PubMed Central

    Chan, Wilson; Singh, Sanmeet; Keshav, Taj; Dewan, Ramita; Eberly, Christian; Maurer, Robert; Nunez-Parra, Alexia; Araneda, Ricardo C.

    2017-01-01

    The cholinergic s